These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Metabolism of aflatoxins: key enzymes and interindividual as well as interspecies differences.  

PubMed

Aflatoxins are potent hepatocarcinogen in animal models and suspected carcinogen in humans. The most important aflatoxin in terms of toxic potency and occurrence is aflatoxin B1 (AFB1). In this review, we mainly summarized the key metabolizing enzymes of AFB1 in animals and humans. Moreover, the interindividual and the interspecies differences in AFB1 metabolism are highly concerned. In human liver, CYP3A4 plays an important role in biotransforming AFB1 to the toxic product AFB1-8,9-epoxide. In human lung, CYP2A13 has a significant activity in metabolizing AFB1 to AFB1-8,9-epoxide and AFM1-8,9-epoxide. The epoxide of AFB1-8,9-epoxide could conjugate with glutathione to reduce the toxicity by glutathione-S-transferase (GST). In poultry species, CYP2A6, CYP3A37, CYP1A5, and CYP1A1 are responsible for bioactivation of AFB1. There are interindividual variations in the rate of activation of aflatoxins in various species, and there are also differences between children and adults. The age and living regions are important factors affecting resistance of species to AFB1. The rate of AFB1-8,9-epoxide formation and its conjugation with glutathione are key parameters in interspecies and interindividual differences in sensitivity to the toxic effect of AFB1. This review provides an important information for key metabolizing enzymes and the global metabolism of aflatoxins in different species. PMID:25027283

Dohnal, Vlastimil; Wu, Qinghua; Ku?a, Kamil

2014-09-01

2

Maltose Metabolism in the Hyperthermophilic Archaeon Thermococcus litoralis: Purification and Characterization of Key Enzymes  

PubMed Central

Maltose metabolism was investigated in the hyperthermophilic archaeon Thermococcus litoralis. Maltose was degraded by the concerted action of 4-?-glucanotransferase and maltodextrin phosphorylase (MalP). The first enzyme produced glucose and a series of maltodextrins that could be acted upon by MalP when the chain length of glucose residues was equal or higher than four, to produce glucose-1-phosphate. Phosphoglucomutase activity was also detected in T. litoralis cell extracts. Glucose derived from the action of 4-?-glucanotransferase was subsequently metabolized via an Embden-Meyerhof pathway. The closely related organism Pyrococcus furiosus used a different metabolic strategy in which maltose was cleaved primarily by the action of an ?-glucosidase, a p-nitrophenyl-?-d-glucopyranoside (PNPG)-hydrolyzing enzyme, producing glucose from maltose. A PNPG-hydrolyzing activity was also detected in T. litoralis, but maltose was not a substrate for this enzyme. The two key enzymes in the pathway for maltose catabolism in T. litoralis were purified to homogeneity and characterized; they were constitutively synthesized, although phosphorylase expression was twofold induced by maltodextrins or maltose. The gene encoding MalP was obtained by complementation in Escherichia coli and sequenced (calculated molecular mass, 96,622 Da). The enzyme purified from the organism had a specific activity for maltoheptaose, at the temperature for maximal activity (98°C), of 66 U/mg. A Km of 0.46 mM was determined with heptaose as the substrate at 60°C. The deduced amino acid sequence had a high degree of identity with that of the putative enzyme from the hyperthermophilic archaeon Pyrococcus horikoshii OT3 (66%) and with sequences of the enzymes from the hyperthermophilic bacterium Thermotoga maritima (60%) and Mycobacterium tuberculosis (31%) but not with that of the enzyme from E. coli (13%). The consensus binding site for pyridoxal 5?-phosphate is conserved in the T. litoralis enzyme. PMID:10348846

Xavier, Karina B.; Peist, Ralf; Kossmann, Marina; Boos, Winfried; Santos, Helena

1999-01-01

3

Rhodanese Functions as Sulfur Supplier for Key Enzymes in Sulfur Energy Metabolism  

PubMed Central

How microorganisms obtain energy is a challenging topic, and there have been numerous studies on the mechanisms involved. Here, we focus on the energy substrate traffic in the hyperthermophilic bacterium Aquifex aeolicus. This bacterium can use insoluble sulfur as an energy substrate and has an intricate sulfur energy metabolism involving several sulfur-reducing and -oxidizing supercomplexes and enzymes. We demonstrate that the cytoplasmic rhodanese SbdP participates in this sulfur energy metabolism. Rhodaneses are a widespread family of proteins known to transfer sulfur atoms. We show that SbdP has also some unusual characteristics compared with other rhodaneses; it can load a long sulfur chain, and it can interact with more than one partner. Its partners (sulfur reductase and sulfur oxygenase reductase) are key enzymes of the sulfur energy metabolism of A. aeolicus and share the capacity to use long sulfur chains as substrate. We demonstrate a positive effect of SbdP, once loaded with sulfur chains, on sulfur reductase activity, most likely by optimizing substrate uptake. Taken together, these results lead us to propose a physiological role for SbdP as a carrier and sulfur chain donor to these key enzymes, therefore enabling channeling of sulfur substrate in the cell as well as greater efficiency of the sulfur energy metabolism of A. aeolicus. PMID:22496367

Aussignargues, Clément; Giuliani, Marie-Cécile; Infossi, Pascale; Lojou, Elisabeth; Guiral, Marianne; Giudici-Orticoni, Marie-Thérčse; Ilbert, Marianne

2012-01-01

4

Subcellular distribution of key enzymes of lipid metabolism during the euthermia-hibernation-arousal cycle  

PubMed Central

Mammalian hibernation is a natural, fully reversible hypometabolic state characterized by a drastic reduction of body temperature and metabolic activity, which ensures survival to many species under adverse environmental conditions. During hibernation, many hibernators rely for energy supply almost exclusively on lipid reserves; the shift from carbohydrate to lipid metabolism implies profound rearrangement of the anabolic and catabolic pathways of energetic substrates. However, the structural counterpart of such adaptation is not known. In this study we investigated, by using immunoelectron microscopy, the fine intracellular distribution of two key enzymes involved in lipid metabolism, namely, the fatty acid synthase (FAS) and the long-chain fatty acyl-CoA synthetase (ACSL), in hepatocytes of euthermic, hibernating and arousing hazel dormice. Our results show that the two enzymes are differentially distributed in cellular compartments (cytoplasm, mitochondria and cell nuclei) of hepatocytes during euthermia. Quantitative redistribution of both enzymes among cellular compartments takes place during hibernation and arousal, in accordance with the physiological changes. Interestingly, this redistribution follows different seasonal patterns in cytoplasm, mitochondria and nuclei. In conclusion, our data represent the first quantitative morphological evidence of lipid enzyme distribution in a true hibernator throughout the year cycle, thus providing a structural framework to biochemical changes associated with the hypometabolism of hibernation. PMID:19538638

Suozzi, Anna; Malatesta, Manuela; Zancanaro, Carlo

2009-01-01

5

Development of radiometric assays for quantification of enzyme activities of the key enzymes of thyroid hormones metabolism.  

PubMed

We newly elaborated and adapted several radiometric enzyme assays for the determination of activities of the key enzymes engaged in the biosynthesis (thyroid peroxidase, TPO) and metabolic transformations (conjugating enzymes and iodothyronine deiodinases, IDs) of thyroid hormones (THs) in the thyroid gland and in peripheral tissues, especially in white adipose tissue (WAT). We also elaborated novel, reliable radiometric methods for extremely sensitive determination of enzyme activities of IDs of types 1, 2 and 3 in microsomal fractions of different rat and human tissues, as well as in homogenates of cultured mammalian cells. The use of optimized TLC separation of radioactive products from the unconsumed substrates and film-less autoradiography of radiochromatograms, taking advantage of storage phosphor screens, enabled us to determine IDs enzyme activities as low as 10(-18) katals. In studies of the interaction of fluoxetine (Fluox) with the metabolism of THs, we applied adapted radiometric enzyme assays for iodothyronine sulfotransferases (ST) and uridine 5'-diphospho-glucuronyltransferase (UDP-GT). Fluox is the most frequently used representative of a new group of non-tricyclic antidepressant drugs--selective serotonin re-uptake inhibitors. We used the elaborated assays for quantification the effects of Fluox and for the assessment of the degree of potential induction of rat liver ST and/or UDP-GT enzyme activities by Fluox alone or in combination with T(3). Furthermore, we studied possible changes in IDs activities in murine adipose tissue under the conditions that promoted either tissue hypertrophy (obesogenic treatment) or involution (caloric restriction), and in response to leptin, using our newly developed radiometric enzyme assays for IDs. Our results suggest that deiodinase D1 has a functional role in WAT, with D1 possibly being involved in the control of adipose tissue metabolism and/or accumulation of the tissue. Significant positive correlation between specific enzyme activity of D1 in WAT and plasma leptin levels was found. The newly developed and adapted radiometric enzyme assays proved to be very useful tools for studies of factors modulating THs metabolism, not only in model animals but also in clinical studies of human obesity. PMID:24564653

Pavelka, S

2014-01-01

6

Depletion of reduction potential and key energy generation metabolic enzymes underlies tellurite toxicity in Deinococcus radiodurans.  

PubMed

Oxidative stress resistant Deinococcus radiodurans surprisingly exhibited moderate sensitivity to tellurite induced oxidative stress (LD50 = 40 ?M tellurite, 40 min exposure). The organism reduced 70% of 40 ?M potassium tellurite within 5 h. Tellurite exposure significantly modulated cellular redox status. The level of ROS and protein carbonyl contents increased while the cellular reduction potential substantially decreased following tellurite exposure. Cellular thiols levels initially increased (within 30 min) of tellurite exposure but decreased at later time points. At proteome level, tellurite resistance proteins (TerB and TerD), tellurite reducing enzymes (pyruvate dehydrogense subunits E1 and E3), ROS detoxification enzymes (superoxide dismutase and thioredoxin reductase), and protein folding chaperones (DnaK, EF-Ts, and PPIase) displayed increased abundance in tellurite-stressed cells. However, remarkably decreased levels of key metabolic enzymes (aconitase, transketolase, 3-hydroxy acyl-CoA dehydrogenase, acyl-CoA dehydrogenase, electron transfer flavoprotein alpha, and beta) involved in carbon and energy metabolism were observed upon tellurite stress. The results demonstrate that depletion of reduction potential in intensive tellurite reduction with impaired energy metabolism lead to tellurite toxicity in D. radiodurans. PMID:25331933

Anaganti, Narasimha; Basu, Bhakti; Gupta, Alka; Joseph, Daisy; Apte, Shree Kumar

2015-01-01

7

Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes  

NASA Technical Reports Server (NTRS)

Sucrose (Suc) plays a central role in plant growth and development. It is a major end product of photosynthesis and functions as a primary transport sugar and in some cases as a direct or indirect regulator of gene expression. Research during the last 2 decades has identified the pathways involved and which enzymes contribute to the control of flux. Availability of metabolites for Suc synthesis and 'demand' for products of sucrose degradation are important factors, but this review specifically focuses on the biosynthetic enzyme sucrose-phosphate synthase (SPS), and the degradative enzymes, sucrose synthase (SuSy), and the invertases. Recent progress has included the cloning of genes encoding these enzymes and the elucidation of posttranslational regulatory mechanisms. Protein phosphorylation is emerging as an important mechanism controlling SPS activity in response to various environmental and endogenous signals. In terms of Suc degradation, invertase-catalyzed hydrolysis generally has been associated with cell expansion, whereas SuSy-catalyzed metabolism has been linked with biosynthetic processes (e.g., cell wall or storage products). Recent results indicate that SuSy may be localized in multiple cellular compartments: (1) as a soluble enzyme in the cytosol (as traditionally assumed); (2) associated with the plasma membrane; and (3) associated with the actin cytoskeleton. Phosphorylation of SuSy has been shown to occur and may be one of the factors controlling localization of the enzyme. The purpose of this review is to summarize some of the recent developments relating to regulation of activity and localization of key enzymes involved in sucrose metabolism in plants.

Winter, H.; Huber, S. C.; Brown, C. S. (Principal Investigator)

2000-01-01

8

A Key Role for Old Yellow Enzyme in the Metabolism of Drugs by Trypanosoma cruzi  

PubMed Central

Trypanosoma cruzi is the etiological agent of Chagas' disease. So far, first choice anti-chagasic drugs in use have been shown to have undesirable side effects in addition to the emergence of parasite resistance and the lack of prospect for vaccine against T. cruzi infection. Thus, the isolation and characterization of molecules essential in parasite metabolism of the anti-chagasic drugs are fundamental for the development of new strategies for rational drug design and/or the improvement of the current chemotherapy. While searching for a prostaglandin (PG) F2? synthase homologue, we have identified a novel “old yellow enzyme” from T. cruzi (TcOYE), cloned its cDNA, and overexpressed the recombinant enzyme. Here, we show that TcOYE reduced 9,11-endoperoxide PGH2 to PGF2? as well as a variety of trypanocidal drugs. By electron spin resonance experiments, we found that TcOYE specifically catalyzed one-electron reduction of menadione and ?-lapachone to semiquinone-free radicals with concomitant generation of superoxide radical anions, while catalyzing solely the two-electron reduction of nifurtimox and 4-nitroquinoline-N-oxide drugs without free radical production. Interestingly, immunoprecipitation experiments revealed that anti-TcOYE polyclonal antibody abolished major reductase activities of the lysates toward these drugs, identifying TcOYE as a key drug-metabolizing enzyme by which quinone drugs have their mechanism of action. PMID:12417633

Kubata, Bruno Kilunga; Kabututu, Zakayi; Nozaki, Tomoyoshi; Munday, Craig J.; Fukuzumi, Shunichi; Ohkubo, Kei; Lazarus, Michael; Maruyama, Toshihiko; Martin, Samuel K.; Duszenko, Michael; Urade, Yoshihiro

2002-01-01

9

Levels of Key Enzymes of Methionine-Homocysteine Metabolism in Preeclampsia  

PubMed Central

Objective. To evaluate the role of key enzymes in the methionine-homocysteine metabolism (MHM) in the physiopathology of preeclampsia (PE). Methods. Plasma and placenta from pregnant women (32 controls and 16 PE patients) were analyzed after informed consent. Protein was quantified by western blot. RNA was obtained with RNA purification kit and was quantified by reverse transcritase followed by real-time PCR (RT-qPCR). Identification of the C677T and A1298C methylenetetrahydrofolate reductase (MTHFR) single-nucleotide polymorphisms (SNPs) and A2756G methionine synthase (MTR) SNP was performed using PCR followed by a high-resolution melting (HRM) analysis. S-adenosyl methionine (SAM) and S-adenosyl homocysteine (SAH) were measured in plasma using high-performance liquid chromatography-tandem mass spectrometry (HPLC/MS/MS). The SNP association analysis was carried out using Fisher's exact test. Statistical analysis was performed using a Mann-Whitney test. Results. RNA expression of MTHFR and MTR was significantly higher in patients with PE as compared with controls. Protein, SAM, and SAH levels showed no significant difference between preeclamptic patients and controls. No statistical differences between controls and PE patients were observed with the different SNPs studied. Conclusion. The RNA expression of MTHFR and MTR is elevated in placentas of PE patients, highlighting a potential compensation mechanism of the methionine-homocysteine metabolism in the physiopathology of this disease. PMID:24024209

Pérez-Sepúlveda, Alejandra; Espańa-Perrot, Pedro P.; Fernández B, Ximena; Ahumada, Verónica; Bustos, Vicente; Arraztoa, José Antonio; Dobierzewska, Aneta; Figueroa-Diesel, Horacio; Rice, Gregory E.; Illanes, Sebastián E.

2013-01-01

10

Comparative Analysis on the Key Enzymes of the Glycerol Cycle Metabolic Pathway in Dunaliella salina under Osmotic Stresses  

PubMed Central

The glycerol metabolic pathway is a special cycle way; glycerol-3-phosphate dehydrogenase (G3pdh), glycerol-3-phosphate phosphatase (G3pp), dihydroxyacetone reductase (Dhar), and dihydroxyacetone kinase (Dhak) are the key enzymes around the pathway. Glycerol is an important osmolyte for Dunaliella salina to resist osmotic stress. In this study, comparative activities of the four enzymes in D. salina and their activity changes under various salt stresses were investigated, from which glycerol metabolic flow direction in the glycerol metabolic pathway was estimated. Results showed that the salinity changes had different effects on the enzymes activities. NaCl could stimulate the activities of all the four enzymes in various degrees when D. salina was grown under continuous salt stress. When treated by hyperosmotic or hypoosmotic shock, only the activity of G3pdh in D. salina was significantly stimulated. It was speculated that, under osmotic stresses, the emergency response of the cycle pathway in D. salina was driven by G3pdh via its response to the osmotic stress. Subsequently, with the changes of salinity, other three enzymes started to respond to osmotic stress. Dhar played a role of balancing the cycle metabolic pathway by its forward and backward reactions. Through synergy, the four enzymes worked together for the effective flow of the cycle metabolic pathways to maintain the glycerol requirements of cells in order to adapt to osmotic stress environments. PMID:22675484

Chen, Hui; Lu, Yan; Jiang, Jian-Guo

2012-01-01

11

Ameliorating effect of eugenol on hyperglycemia by attenuating the key enzymes of glucose metabolism in streptozotocin-induced diabetic rats.  

PubMed

Epidemiological studies have demonstrated that diabetes mellitus is a serious health burden for both governments and healthcare providers. This study was hypothesized to evaluate the antihyperglycemic potential of eugenol by determine the activities of key enzymes of glucose metabolism in streptozotocin (STZ)-induced diabetic rats. Diabetes was induced into male albino Wistar rats by intraperitoneal administration of STZ (40 mg/kg body weight (b.w.)). Eugenol was administered to diabetic rats intragastrically at 2.5, 5, and 10 mg/kg b.w. for 30 days. The dose 10 mg/kg b.w. significantly reduced the levels of blood glucose and glycosylated hemoglobin (HbA1c) and increased plasma insulin level. The altered activities of the key enzymes of carbohydrate metabolism such as hexokinase, pyruvate kinase, glucose-6-phosphate dehydrogenase, glucose-6-phosphatase, fructose-1,6-bisphosphatase, and liver marker enzymes (AST, ALT, and ALP), creatine kinase and blood urea nitrogen in serum and blood of diabetic rats were significantly reverted to near normal levels by the administration of eugenol. Further, eugenol administration to diabetic rats improved body weight and hepatic glycogen content demonstrated the antihyperglycemic potential of eugenol in diabetic rats. The present findings suggest that eugenol can potentially ameliorate key enzymes of glucose metabolism in experimental diabetes, and it is sensible to broaden the scale of use of eugenol in a trial to alleviate the adverse effects of diabetes. PMID:24078031

Srinivasan, Subramani; Sathish, Gajendren; Jayanthi, Mahadevan; Muthukumaran, Jayachandran; Muruganathan, Udaiyar; Ramachandran, Vinayagam

2014-01-01

12

Immunohistochemical Localization of Key Arachidonic Acid Metabolism Enzymes during Fracture Healing in Mice  

PubMed Central

This study investigated the localization of critical enzymes involved in arachidonic acid metabolism during the initial and regenerative phases of mouse femur fracture healing. Previous studies found that loss of cyclooxygenase-2 activity impairs fracture healing while loss of 5-lipoxygenase activity accelerates healing. These diametric results show that arachidonic acid metabolism has an essential function during fracture healing. To better understand the function of arachidonic acid metabolism during fracture healing, expression of cyclooxygenase-1 (COX-1), cyclooxygenase -2 (COX-2), 5-lipoxygenase (5-LO), and leukotriene A4 hydrolase (LTA4H) was localized by immunohistochemistry in time-staged fracture callus specimens. All four enzymes were detected in leukocytes present in the bone marrow and attending inflammatory response that accompanied the fracture. In the tissues surrounding the fracture site, the proportion of leukocytes expressing COX-1, COX-2, or LTA4H decreased while those expressing 5-LO remained high at 4 and 7 days after fracture. This may indicate an inflammation resolution function for 5-LO during fracture healing. Only COX-1 was consistently detected in fracture callus osteoblasts during the later stages of healing (day 14 after fracture). In contrast, callus chondrocytes expressed all four enzymes, though 5-LO appeared to be preferentially expressed in newly differentiated chondrocytes. Most interestingly, osteoclasts consistently and strongly expressed COX-2. In addition to bone surfaces and the growth plate, COX-2 expressing osteoclasts were localized at the chondro-osseous junction of the fracture callus. These observations suggest that arachidonic acid mediated signaling from callus chondrocytes or from callus osteoclasts at the chondro-osseous junction regulate fracture healing. PMID:24516658

Lin, Hsuan-Ni; O’Connor, J. Patrick

2014-01-01

13

Efficacy of azelaic acid on hepatic key enzymes of carbohydrate metabolism in high fat diet induced type 2 diabetic mice.  

PubMed

Azelaic acid (AzA), a C9 linear ?,?-dicarboxylic acid, is found in whole grains namely wheat, rye, barley, oat seeds and sorghum. The study was performed to investigate whether AzA exerts beneficial effect on hepatic key enzymes of carbohydrate metabolism in high fat diet (HFD) induced type 2 diabetic C57BL/6J mice. C57BL/6J mice were fed high fat diet for 10 weeks and subjected to intragastric administration of various doses (20 mg, 40 mg and 80 mg/kg BW) of AzA daily for the subsequent 5 weeks. Rosiglitazone (RSG) was used as reference drug. Body weight, food intake, plasma glucose, plasma insulin, blood haemoglobin (Hb), blood glycosylated haemoglobin (HbA1c), liver glycolytic enzyme (hexokinase), hepatic shunt enzyme (glucose-6-phosphate dehydrogenase), gluconeogenic enzymes(glucose-6-phosphatase and fructose-1,6-bisphosphatase), liver glycogen, plasma and liver triglycerides were examined in mice fed with normal standard diet (NC), high fat diet (HFD), HFD with AzA (HFD + AzA) and HFD with rosiglitazone (HFD + RSG). Among the three doses, 80 mg/kg BW of AzA was able to positively regulate plasma glucose, insulin, blood HbA1c and haemoglobin levels by significantly increasing the activity of hexokinase and glucose-6-phosphate dehydrogenase and significantly decreasing the activity of glucose-6-phosphatase and fructose-1,6-bisphosphatase thereby increasing the glycogen content in the liver. From this study, we put forward that AzA could significantly restore the levels of plasma glucose, insulin, HbA1c, Hb, liver glycogen and carbohydrate metabolic key enzymes to near normal in diabetic mice and hence, AzA may be useful as a biomaterial in the development of therapeutic agents against high fat diet induced T2DM. PMID:23402910

Muthulakshmi, Shanmugam; Saravanan, Ramalingam

2013-06-01

14

Shared origins of a key enzyme during the evolution of C4 and CAM metabolism  

PubMed Central

CAM and C4 photosynthesis are two key plant adaptations that have evolved independently multiple times, and are especially prevalent in particular groups of plants, including the Caryophyllales. We investigate the origin of photosynthetic PEPC, a key enzyme of both the CAM and C4 pathways. We combine phylogenetic analyses of genes encoding PEPC with analyses of RNA sequence data of Portulaca, the only plants known to perform both CAM and C4 photosynthesis. Three distinct gene lineages encoding PEPC exist in eudicots (namely ppc-1E1, ppc-1E2 and ppc-2), one of which (ppc-1E1) was recurrently recruited for use in both CAM and C4 photosynthesis within the Caryophyllales. This gene is present in multiple copies in the cacti and relatives, including Portulaca. The PEPC involved in the CAM and C4 cycles of Portulaca are encoded by closely related yet distinct genes. The CAM-specific gene is similar to genes from related CAM taxa, suggesting that CAM has evolved before C4 in these species. The similar origin of PEPC and other genes involved in the CAM and C4 cycles highlights the shared early steps of evolutionary trajectories towards CAM and C4, which probably diverged irreversibly only during the optimization of CAM and C4 phenotypes. PMID:24638902

Christin, Pascal-Antoine; Arakaki, Monica; Osborne, Colin P.; Bräutigam, Andrea; Sage, Rowan F.; Hibberd, Julian M.; Kelly, Steven; Covshoff, Sarah; Wong, Gane Ka-Shu; Hancock, Lillian; Edwards, Erika J.

2014-01-01

15

Key Residues Controlling Phenacetin Metabolism By Human Cytochrome P450 2A Enzymes  

SciTech Connect

Although the human lung cytochrome P450 2A13 (CYP2A13) and its liver counterpart cytochrome P450 2A6 (CYP2A6) are 94% identical in amino acid sequence, they metabolize a number of substrates with substantially different efficiencies. To determine differences in binding for a diverse set of cytochrome P450 2A ligands, we have measured the spectral binding affinities (K{sub D}) for nicotine, phenethyl isothiocyanate (PEITC), coumarin, 2{prime}-methoxyacetophenone (MAP), and 8-methoxypsoralen. The differences in the K{sub D} values for CYP2A6 versus CYP2A13 ranged from 74-fold for 2{prime}-methoxyacetophenone to 1.1-fold for coumarin, with CYP2A13 demonstrating the higher affinity. To identify active site amino acids responsible for the differences in binding of MAP, PEITC, and coumarin, 10 CYP2A13 mutant proteins were generated in which individual amino acids from the CYP2A6 active site were substituted into CYP2A13 at the corresponding position. Titrations revealed that substitutions at positions 208, 300, and 301 individually had the largest effects on ligand binding. The collective relevance of these amino acids to differential ligand selectivity was verified by evaluating binding to CYP2A6 mutant enzymes that incorporate several of the CYP2A13 amino acids at these positions. Inclusion of four CYP2A13 amino acids resulted in a CYP2A6 mutant protein (I208S/I300F/G301A/S369G) with binding affinities for MAP and PEITC much more similar to those observed for CYP2A13 than to those for CYP2A6 without altering coumarin binding. The structure-based quantitative structure-activity relationship analysis using COMBINE successfully modeled the observed mutant-ligand trends and emphasized steric roles for active site residues including four substituted amino acids and an adjacent conserved Leu{sup 370}.

DeVore, N.M.; Smith, B.D.; Urban, M.J.; Scott, E.E.

2009-05-14

16

Cell-wall invertases, key enzymes in the modulation of plant metabolism during defence responses.  

PubMed

Most plant-pathogen interactions do not result in pathogenesis because of pre-formed defensive plant barriers or pathogen-triggered activation of effective plant immune responses. The mounting of defence reactions is accompanied by a profound modulation of plant metabolism. Common metabolic changes are the repression of photosynthesis, the increase in heterotrophic metabolism and the synthesis of secondary metabolites. This enhanced metabolic activity is accompanied by the reduced export of sucrose or enhanced import of hexoses at the site of infection, which is mediated by an induced activity of cell-wall invertase (Cw-Inv). Cw-Inv cleaves sucrose, the major transport sugar in plants, irreversibly yielding glucose and fructose, which can be taken up by plant cells via hexose transporters. These hexose sugars not only function in metabolism, but also act as signalling molecules. The picture of Cw-Inv regulation in plant-pathogen interactions has recently been broadened and is discussed in this review. An interesting emerging feature is the link between Cw-Inv and the circadian clock and new modes of Cw-Inv regulation at the post-translational level. PMID:24646208

Proels, Reinhard Korbinian; Hückelhoven, Ralph

2014-10-01

17

Phosphoenolpyruvate Carboxylase Identified as a Key Enzyme in Erythrocytic Plasmodium falciparum Carbon Metabolism  

PubMed Central

Phospoenolpyruvate carboxylase (PEPC) is absent from humans but encoded in the Plasmodium falciparum genome, suggesting that PEPC has a parasite-specific function. To investigate its importance in P. falciparum, we generated a pepc null mutant (D10?pepc), which was only achievable when malate, a reduction product of oxaloacetate, was added to the growth medium. D10?pepc had a severe growth defect in vitro, which was partially reversed by addition of malate or fumarate, suggesting that pepc may be essential in vivo. Targeted metabolomics using 13C-U-D-glucose and 13C-bicarbonate showed that the conversion of glycolytically-derived PEP into malate, fumarate, aspartate and citrate was abolished in D10?pepc and that pentose phosphate pathway metabolites and glycerol 3-phosphate were present at increased levels. In contrast, metabolism of the carbon skeleton of 13C,15N-U-glutamine was similar in both parasite lines, although the flux was lower in D10?pepc; it also confirmed the operation of a complete forward TCA cycle in the wild type parasite. Overall, these data confirm the CO2 fixing activity of PEPC and suggest that it provides metabolites essential for TCA cycle anaplerosis and the maintenance of cytosolic and mitochondrial redox balance. Moreover, these findings imply that PEPC may be an exploitable target for future drug discovery. PMID:24453970

Chokkathukalam, Achuthanunni; Watson, David G.; Breitling, Rainer; Coombs, Graham H.; Müller, Sylke

2014-01-01

18

Metabolic Engineering in Nicotiana benthamiana Reveals Key Enzyme Functions in Arabidopsis Indole Glucosinolate Modification[W  

PubMed Central

Indole glucosinolates, derived from the amino acid Trp, are plant secondary metabolites that mediate numerous biological interactions between cruciferous plants and their natural enemies, such as herbivorous insects, pathogens, and other pests. While the genes and enzymes involved in the Arabidopsis thaliana core biosynthetic pathway, leading to indol-3-yl-methyl glucosinolate (I3M), have been identified and characterized, the genes and gene products responsible for modification reactions of the indole ring are largely unknown. Here, we combine the analysis of Arabidopsis mutant lines with a bioengineering approach to clarify which genes are involved in the remaining biosynthetic steps in indole glucosinolate modification. We engineered the indole glucosinolate biosynthesis pathway into Nicotiana benthamiana, showing that it is possible to produce indole glucosinolates in a noncruciferous plant. Building upon this setup, we demonstrate that all members of a small gene subfamily of cytochrome P450 monooxygenases, CYP81Fs, are capable of carrying out hydroxylation reactions of the glucosinolate indole ring, leading from I3M to 4-hydroxy-indol-3-yl-methyl and/or 1-hydroxy-indol-3-yl-methyl glucosinolate intermediates, and that these hydroxy intermediates are converted to 4-methoxy-indol-3-yl-methyl and 1-methoxy-indol-3-yl-methyl glucosinolates by either of two family 2 O-methyltransferases, termed indole glucosinolate methyltransferase 1 (IGMT1) and IGMT2. PMID:21317374

Pfalz, Marina; Mikkelsen, Michael Dalgaard; Bednarek, Pawe?; Olsen, Carl Erik; Halkier, Barbara Ann; Kroymann, Juergen

2011-01-01

19

Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer  

NASA Astrophysics Data System (ADS)

Metabolic remodeling is now widely regarded as a hallmark of cancer, but it is not clear whether individual metabolic strategies are frequently exploited by many tumours. Here we compare messenger RNA profiles of 1,454 metabolic enzymes across 1,981 tumours spanning 19 cancer types to identify enzymes that are consistently differentially expressed. Our meta-analysis recovers established targets of some of the most widely used chemotherapeutics, including dihydrofolate reductase, thymidylate synthase and ribonucleotide reductase, while also spotlighting new enzymes, such as the mitochondrial proline biosynthetic enzyme PYCR1. The highest scoring pathway is mitochondrial one-carbon metabolism and is centred on MTHFD2. MTHFD2 RNA and protein are markedly elevated in many cancers and correlated with poor survival in breast cancer. MTHFD2 is expressed in the developing embryo, but is absent in most healthy adult tissues, even those that are proliferating. Our study highlights the importance of mitochondrial compartmentalization of one-carbon metabolism in cancer and raises important therapeutic hypotheses.

Nilsson, Roland; Jain, Mohit; Madhusudhan, Nikhil; Sheppard, Nina Gustafsson; Strittmatter, Laura; Kampf, Caroline; Huang, Jenny; Asplund, Anna; Mootha, Vamsi K.

2014-01-01

20

The high fermentative metabolism of Kluyveromyces marxianus UFV-3 relies on the increased expression of key lactose metabolic enzymes.  

PubMed

The aim of this work was to obtain insights about the factors that determine the lactose fermentative metabolism of Kluyveromyces marxianus UFV-3. K. marxianus UFV-3 and Kluyveromyces lactis JA6 were cultured in a minimal medium containing different lactose concentrations (ranging from 0.25 to 64 mmol l(-1)) under aerobic and hypoxic conditions to evaluate their growth kinetics, gene expression and enzymatic activity. The increase in lactose concentration and the decrease in oxygen level favoured ethanol yield for both yeasts but in K. marxianus UFV-3 the effect was more pronounced. Under hypoxic conditions, the activities of ?-galactosidase and pyruvate decarboxylase from K. marxianus UFV-3 were significantly higher than those in K. lactis JA6. The expression of the LAC4 (?-galactosidase), RAG6 (pyruvate decarboxylase), GAL7 (galactose-1-phosphate uridylyltransferase) and GAL10 (epimerase) genes in K. marxianus UFV-3 was higher under hypoxic conditions than under aerobic conditions. The high expression of genes of the Leloir pathway, LAC4 and RAG6, associated with the high activity of ?-galactosidase and pyruvate decarboxylase contribute to the high fermentative flux in K. marxianus UFV-3. These data on the fermentative metabolism of K. marxianus UFV-3 will be useful for optimising the conversion of cheese whey lactose to ethanol. PMID:22068918

Diniz, Raphael H S; Silveira, Wendel B; Fietto, Luciano G; Passos, Flávia M L

2012-03-01

21

Inhibition of fatty acid amide hydrolase, a key endocannabinoid metabolizing enzyme, by analogues of ibuprofen and indomethacin.  

PubMed

There is evidence in the literature that the nonsteroidal anti-inflammatory drugs indomethacin and ibuprofen can interact with the cannabinoid system both in vitro and in vivo. In the present study, a series of analogues of ibuprofen and indomethacin have been investigated with respect to their ability to inhibit fatty acid amide hydrolase, the enzyme responsible for the hydrolysis of the endogenous cannabinoid anandamide. Of the fourteen compounds tested, the 6-methyl-pyridin-2-yl analogue of ibuprofen ("ibu-am5") was selected for further study. This compound inhibited rat brain anandamide hydrolysis in a non-competitive manner, with IC50 values of 4.7 and 2.5 microM being found at pH 6 and 8, respectively. By comparison, the IC50 values for ibuprofen were 130 and 750 microM at pH 6 and 8, respectively. There was no measurable N-acylethanolamine hydrolyzing acid amidase activity in rat brain membrane preparations. In intact C6 glioma cells, ibu-am5 inhibited the hydrolysis of anandamide with an IC50 value of 1.2 microM. There was little difference in the potencies of ibu-am5 and ibuprofen towards cyclooxygenase-1 and -2 enzymes, and neither compound inhibited the activity of monoacylglycerol lipase. Ibu-am5 inhibited the binding of [3H]-CP55,940 to rat brain CB1 and human CB2 cannabinoid receptors more potently than ibuprofen, but the increase in potency was less than the corresponding increase in potency seen for inhibition of FAAH activity. It is concluded that ibu-am5 is an analogue of ibuprofen with a greater potency towards fatty acid amide hydrolase but with a similar cyclooxygenase inhibitory profile, and may be useful for the study of the therapeutic potential of combined fatty acid amide hydrolase-cyclooxygenase inhibitors. PMID:17397826

Holt, Sandra; Paylor, Ben; Boldrup, Linda; Alajakku, Kirsi; Vandevoorde, Séverine; Sundström, Anna; Cocco, Maria Teresa; Onnis, Valentina; Fowler, Christopher J

2007-06-22

22

Chicken Cytochrome P450 1A5 Is the Key Enzyme for Metabolizing T-2 Toxin to 3?OH-T-2  

PubMed Central

The transmission of T-2 toxin and its metabolites into the edible tissues of poultry has potential effects on human health. We report that T-2 toxin significantly induces CYP1A4 and CYP1A5 expression in chicken embryonic hepatocyte cells. The enzyme activity assays of CYP1A4 and CYP1A5 heterologously expressed in HeLa cells indicate that only CYP1A5 metabolizes T-2 to 3?OH-T-2 by the 3?-hydroxylation of isovaleryl groups. In vitro enzyme assays of recombinant CYP1A5 expressed in DH5? further confirm that CYP1A5 can convert T-2 into TC-1 (3?OH-T-2). Therefore, CYP1A5 is critical for the metabolism of trichothecene mycotoxin in chickens. PMID:23702848

Shang, Shufeng; Jiang, Jun; Deng, Yiqun

2013-01-01

23

21 CFR 862.3360 - Drug metabolizing enzyme genotyping system.  

Code of Federal Regulations, 2012 CFR

...2012-04-01 false Drug metabolizing enzyme genotyping system. 862.3360 Section...Systems § 862.3360 Drug metabolizing enzyme genotyping system. (a) Identification . A drug metabolizing enzyme genotyping system is a device...

2012-04-01

24

21 CFR 862.3360 - Drug metabolizing enzyme genotyping system.  

Code of Federal Regulations, 2014 CFR

...2014-04-01 false Drug metabolizing enzyme genotyping system. 862.3360 Section...Systems § 862.3360 Drug metabolizing enzyme genotyping system. (a) Identification. A drug metabolizing enzyme genotyping system is a device...

2014-04-01

25

21 CFR 862.3360 - Drug metabolizing enzyme genotyping system.  

Code of Federal Regulations, 2011 CFR

...2011-04-01 false Drug metabolizing enzyme genotyping system. 862.3360 Section...Systems § 862.3360 Drug metabolizing enzyme genotyping system. (a) Identification . A drug metabolizing enzyme genotyping system is a device...

2011-04-01

26

21 CFR 862.3360 - Drug metabolizing enzyme genotyping system.  

Code of Federal Regulations, 2013 CFR

...2013-04-01 false Drug metabolizing enzyme genotyping system. 862.3360 Section...Systems § 862.3360 Drug metabolizing enzyme genotyping system. (a) Identification . A drug metabolizing enzyme genotyping system is a device...

2013-04-01

27

Acetyl-coenzyme A carboxylase: crucial metabolic enzyme and attractive target for drug discovery  

E-print Network

. Key words. Metabolic syndrome; obesity; diabetes; structure-based drug design; fatty acid metabolism on these enzymes could lead to the development of novel ther- apies against metabolic syndrome and other diseases known as the metabolic syndrome, in- sulin resistance syndrome or syndrome X [5], has gener- ated

Tong, Liang

28

Composition of native Australian herbs polyphenolic-rich fractions and in vitro inhibitory activities against key enzymes relevant to metabolic syndrome.  

PubMed

Polyphenolic-rich fractions obtained from three native Australian herbs: Tasmannia pepper leaf, anise myrtle and lemon myrtle were characterised with regards to their composition, antioxidant capacities and inhibitory activities against ?-glucosidase, pancreatic lipase and angiotensin I-converting enzyme, using in vitro models. Ellagic acid and derivatives were the dominant compounds of anise myrtle and lemon myrtle fractions, accompanied by flavonoids (catechin, myricetin, hesperetin, and quercetin). Tasmannia pepper leaf fraction comprised chlorogenic acid and quercetin derivatives, exhibited the highest oxygen radical absorbance capacity and effectively inhibited ?-glucosidase (IC(50): 0.83 mg/ml) and pancreatic lipase (IC(50): 0.60 mg/ml). Anise myrtle and lemon myrtle fractions had pronounced ?-glucosidase-inhibitory activities (IC(50): 0.30 and 0.13 mg/ml, respectively) and were less effective against lipase. Enzyme-inhibitory activities showed various levels of correlation with the levels of total phenolics and antioxidant capacities, indicating a specificity of individual phenolic compounds present in the isolated fractions to complex with proteins. PMID:23107721

Sakulnarmrat, Karunrat; Konczak, Izabela

2012-09-15

29

Expression of Enzymes that Metabolize Medications  

NASA Technical Reports Server (NTRS)

Most pharmaceuticals are metabolized by the liver. Clinically-used medication doses are given with normal liver function in mind. A drug overdose can result if the liver is damaged and removing pharmaceuticals from the circulation at a rate slower than normal. Alternatively, if liver function is elevated and removing drugs from the system more quickly than usual, it would be as if too little drug had been given for effective treatment. Because of the importance of the liver in drug metabolism we want to understand the effects of spaceflight on the enzymes of the liver.

Wotring, Virginia E.; Peters, C. P.

2012-01-01

30

Modulating effects of hesperidin on key carbohydrate-metabolizing enzymes, lipid profile, and membrane-bound adenosine triphosphatases against 7,12-dimethylbenz(a)anthracene-induced breast carcinogenesis.  

PubMed

The aim of this study was to document the effect of hesperidin on the key enzyme activities of carbohydrate metabolism, lipid profile, and membrane-bound adenosine triphosphatases (ATPases) during 7,12-dimethylbenz(a)anthracene (DMBA)-induced breast carcinogenesis. Hesperidin has been reported to have multiple biological properties. Breast cancer was induced by single dose of DMBA (20 mg/kg body weight (bw)). The results revealed that there was a significant increase in the activities of hexokinase, phosphoglucoisomerase, and aldolase and a concomitant decrease in the activities of glucose-6-phosphatase and fructose-1,6-diphosphatase in cancer-induced animals. The activities of ATPases were found to be decreased both in erythrocyte membrane and in the liver of mammary cancer-bearing animals. The lipid profiles such as total cholesterol, free cholesterol, phospholipids, triglycerides, and free fatty acids significantly increased and in contrast the ester cholesterol in plasma was found to be decreased, whereas it was found to be elevated in the liver of cancer-bearing groups. The altered levels of the above-mentioned biochemical parameters in cancer-bearing animals were significantly ameliorated by the administration of hesperidin at the dosage of 30 mg/kg bw for 45 days. The histopathological analysis of breast and liver tissues were well supported the modulatory property of hesperidin, and this might be associated with normalizing the gluconeogenesis process, stabilization of cell membranes, and modulation of lipid biosynthesis. PMID:23690228

Nandakumar, N; Rengarajan, T; Balamurugan, A; Balasubramanian, M P

2014-05-01

31

Phosphoinositides: Key modulators of energy metabolism.  

PubMed

Phosphoinositides are key players in many trafficking and signaling pathways. Recent advances regarding the synthesis, location and functions of these lipids have dramatically improved our understanding of how and when these lipids are generated and what their roles are in animal physiology. In particular, phosphoinositides play a central role in insulin signaling, and manipulation of PtdIns(3,4,5)P3 levels in particular, may be an important potential therapeutic target for the alleviation of insulin resistance associated with obesity and the metabolic syndrome. In this article we review the metabolism, regulation and functional roles of phosphoinositides in insulin signaling and the regulation of energy metabolism. This article is part of a Special Issue entitled Phosphoinositides. PMID:25463477

Bridges, Dave; Saltiel, Alan R

2014-11-20

32

A core metabolic enzyme mediates resistance to phosphine gas.  

PubMed

Phosphine is a small redox-active gas that is used to protect global grain reserves, which are threatened by the emergence of phosphine resistance in pest insects. We find that polymorphisms responsible for genetic resistance cluster around the redox-active catalytic disulfide or the dimerization interface of dihydrolipoamide dehydrogenase (DLD) in insects (Rhyzopertha dominica and Tribolium castaneum) and nematodes (Caenorhabditis elegans). DLD is a core metabolic enzyme representing a new class of resistance factor for a redox-active metabolic toxin. It participates in four key steps of core metabolism, and metabolite profiles indicate that phosphine exposure in mutant and wild-type animals affects these steps differently. Mutation of DLD in C. elegans increases arsenite sensitivity. This specific vulnerability may be exploited to control phosphine-resistant insects and safeguard food security. PMID:23139334

Schlipalius, David I; Valmas, Nicholas; Tuck, Andrew G; Jagadeesan, Rajeswaran; Ma, Li; Kaur, Ramandeep; Goldinger, Anita; Anderson, Cameron; Kuang, Jujiao; Zuryn, Steven; Mau, Yosep S; Cheng, Qiang; Collins, Patrick J; Nayak, Manoj K; Schirra, Horst Joachim; Hilliard, Massimo A; Ebert, Paul R

2012-11-01

33

Truffles contain endocannabinoid metabolic enzymes and anandamide.  

PubMed

Truffles are the fruiting body of fungi, members of the Ascomycota phylum endowed with major gastronomic and commercial value. The development and maturation of their reproductive structure are dependent on melanin synthesis. Since anandamide, a prominent member of the endocannabinoid system (ECS), is responsible for melanin synthesis in normal human epidermal melanocytes, we thought that ECS might be present also in truffles. Here, we show the expression, at the transcriptional and translational levels, of most ECS components in the black truffle Tuber melanosporum Vittad. at maturation stage VI. Indeed, by means of molecular biology and immunochemical techniques, we found that truffles contain the major metabolic enzymes of the ECS, while they do not express the most relevant endocannabinoid-binding receptors. In addition, we measured anandamide content in truffles, at different maturation stages (from III to VI), through liquid chromatography-mass spectrometric analysis, whereas the other relevant endocannabinoid 2-arachidonoylglycerol was below the detection limit. Overall, our unprecedented results suggest that anandamide and ECS metabolic enzymes have evolved earlier than endocannabinoid-binding receptors, and that anandamide might be an ancient attractant to truffle eaters, that are well-equipped with endocannabinoid-binding receptors. PMID:25433633

Pacioni, Giovanni; Rapino, Cinzia; Zarivi, Osvaldo; Falconi, Anastasia; Leonardi, Marco; Battista, Natalia; Colafarina, Sabrina; Sergi, Manuel; Bonfigli, Antonella; Miranda, Michele; Barsacchi, Daniela; Maccarrone, Mauro

2015-02-01

34

Mechanistic insights into the regulation of metabolic enzymes by acetylation  

PubMed Central

The activity of metabolic enzymes is controlled by three principle levels: the amount of enzyme, the catalytic activity, and the accessibility of substrates. Reversible lysine acetylation is emerging as a major regulatory mechanism in metabolism that is involved in all three levels of controlling metabolic enzymes and is altered frequently in human diseases. Acetylation rivals other common posttranslational modifications in cell regulation not only in the number of substrates it modifies, but also the variety of regulatory mechanisms it facilitates. PMID:22826120

2012-01-01

35

Expression of Enzymes that Metabolize Medications  

NASA Technical Reports Server (NTRS)

INTRODUCTION: Increased exposure to radiation is one physiological stressor associated with spaceflight and it is feasible to conduct ground experiments using known radiation exposures. The health of the liver, especially the activity rate of its metabolic enzymes, determines the concentration of circulating drugs as well as the duration of their efficacy. While radiation is known to alter normal physiological function, how radiation affects liver metabolism of administered medications is unclear. Crew health could be affected if the actions of medications used in spaceflight deviated from expectations formed during terrestrial medication use. This study is an effort to identify liver metabolic enzymes whose expression is altered by spaceflight or by radiation exposures that mimic features of the spaceflight environment. METHODS: Using procedures approved by the Animal Care and Use Committee, mice were exposed to either 137Cs (controls, 50 mGy, 6Gy, or 50 mGy + 6Gy separated by 24 hours) or 13 days of spaceflight on STS 135. Animals were anesthetized and sacrificed at several time points (4 hours, 24 hours or 7 days) after their last radiation exposure, or within 6 hours of return to Earth for the STS 135 animals. Livers were removed immediately and flash-frozen in liquid nitrogen. Tissue was homogenized, RNA extracted, purified and quality-tested. Complementary DNA was prepared from high-quality RNA samples, and used in RT-qPCR experiments to determine relative expression of a wide variety of genes involved in general metabolism and drug metabolism. RESULTS: Results of the ground radiation exposure experiments indicated 65 genes of the 190 tested were significantly affected by at least one of the radiation doses. Many of the affected genes are involved in the metabolism of drugs with hydrophobic or steroid-like structures, maintenance of redox homeostasis and repair of DNA damage. Most affected genes returned to near control expression levels by 7 days post-treatment. Not all recovered completely by the final time point tested: with 6 Gy exposure, metallothionein expression was 132-fold more than control at the 4 hr time point, and fell at each later time point (11-fold at 24 hrs, and 8-fold at 7 days). In contrast, there were other genes whose expression was altered and remained relatively constant through the 7 day period we tested. One examples is Cyp17a1, which showed a 4-fold elevation at 4 hrs after exposure and remained constant for 7 days after the last treatment. Spaceflight samples evaluated with similar methods and comparisons will be made between the radiation-treated groups and the spaceflight samples. CONCLUSION It seems likely that radiation exposure triggers homeostatic mechanisms, which could include alterations of gene expression. Better understanding of these pathways could aid in optimizing medications doses given to crewmembers who require treatment and eventually, to development of new countermeasures to ameliorate or prevent radiation-induced damage to cells and tissues.

Wotring, V. E.; Peters, C. P.

2011-01-01

36

Metabolic regulation in mammalian hibernation: Enzyme and protein adaptations  

Microsoft Academic Search

Mammalian hibernation requires specific regulatory controls on metabolism to coordinate entry, maintenance, and arousal stages, as well as adjustments to many metabolic functions to support long-term dormancy. Several mechanisms of metabolic regulation are involved in potentiating survival. One of these is the reversible phosphorylation of regulatory enzymes, including glycogen phosphorylase, phosphofructokinase, pyruvate kinase, and pyruvate dehydrogenase. In particular, the sharp

Kenneth B. Storey

1997-01-01

37

Myoglobin content and the activities of enzymes of energy metabolism in red and white fish hearts  

Microsoft Academic Search

The myoglobin content of representative red and white coloured fish hearts was quantitated. It was confirmed that the macroscopic difference in appcarance is due to the presence or absence of myoglobin. Thereafter, the cytochrome c content as well as the maximal activities of key enzymes of energy metabolism were assessed in myoglobin-rich sea raven (Hemitripterus americanus) and myoglobin-poor ocean pout

William R. Driedzic; John M. Stewart

1982-01-01

38

Key Applications of Plant Metabolic Engineering  

PubMed Central

Great strides have been made in plant metabolic engineering over the last two decades, with notable success stories including Golden rice. Here, we discuss the field's progress in addressing four long-standing challenges: creating plants that satisfy their own nitrogen requirement, so reducing or eliminating the need for nitrogen fertilizer; enhancing the nutrient content of crop plants; engineering biofuel feed stocks that harbor easy-to-access fermentable saccharides by incorporating self-destructing lignin; and increasing photosynthetic efficiency. We also look to the future at emerging areas of research in this field. PMID:24915445

Lau, Warren; Fischbach, Michael A.; Osbourn, Anne; Sattely, Elizabeth S.

2014-01-01

39

Key applications of plant metabolic engineering.  

PubMed

Great strides have been made in plant metabolic engineering over the last two decades, with notable success stories including Golden rice. Here, we discuss the field's progress in addressing four long-standing challenges: creating plants that satisfy their own nitrogen requirement, so reducing or eliminating the need for nitrogen fertilizer; enhancing the nutrient content of crop plants; engineering biofuel feed stocks that harbor easy-to-access fermentable saccharides by incorporating self-destructing lignin; and increasing photosynthetic efficiency. We also look to the future at emerging areas of research in this field. PMID:24915445

Lau, Warren; Fischbach, Michael A; Osbourn, Anne; Sattely, Elizabeth S

2014-06-01

40

The influence of diet and gastrointestinal fermentation on key enzymes of substrate utilization in marine teleost fishes  

Microsoft Academic Search

Three closely related marine teleosts with similar size, swimming mode, and habitat preference were compared to test the hypothesis that energy metabolism is linked to diet choice in the wild. Key substrate-utilization enzyme activities were assayed from white locomotory muscle and liver in a carnivore (Scorpis violaceus), an omnivore (Girella tricuspidata), and a herbivore (Kyphosus sydneyanus) collected from their natural

Megan E. Willmott; Kendall D. Clements; Rufus M. G. Wells

2005-01-01

41

Experiment K-7-21: Effect of Microgravity on 1: Metabolic Enzymes of Type 1 and Type 2 Muscle Fibers, and on 2: Metabolic Enzymes, Neurotransmitter Amino Acids, and Neurotransmitter Associated Enzymes in Selected Regions of the Central Nervous System. Part 2; The Distribution of Selected Enzymes and Amino Acids in the Hippocampal Formation  

NASA Technical Reports Server (NTRS)

Six key metabolic enzymes plus glutaminase and glutamate decarboxylase, as well as glutamate, aspartate and GABA, were measured in 11 regions of the hippocampal formation of synchronous, flight and tail suspension rats. Major differences were observed in the normal distribution patterns of each enzyme and amino acid, but no substantive effects of either microgravity or tail suspension on these patterns were clearly demonstrated.

Lowry, O. H.; Krasnov, I.; Ilyina-Kakueva, E. I.; Nemeth, P. M.; McDougal, D. B., Jr.; Choksi, R.; Carter, J. G.; Chi, M. M. Y.; Manchester, J. K.; Pusateri, M. E.

1994-01-01

42

Regulation of yeast central metabolism by enzyme phosphorylation  

PubMed Central

As a frequent post-translational modification, protein phosphorylation regulates many cellular processes. Although several hundred phosphorylation sites have been mapped to metabolic enzymes in Saccharomyces cerevisiae, functionality was demonstrated for few of them. Here, we describe a novel approach to identify in vivo functionality of enzyme phosphorylation by combining flux analysis with proteomics and phosphoproteomics. Focusing on the network of 204 enzymes that constitute the yeast central carbon and amino-acid metabolism, we combined protein and phosphoprotein levels to identify 35 enzymes that change their degree of phosphorylation during growth under five conditions. Correlations between previously determined intracellular fluxes and phosphoprotein abundances provided first functional evidence for five novel phosphoregulated enzymes in this network, adding to nine known phosphoenzymes. For the pyruvate dehydrogenase complex E1 ? subunit Pda1 and the newly identified phosphoregulated glycerol-3-phosphate dehydrogenase Gpd1 and phosphofructose-1-kinase complex ? subunit Pfk2, we then validated functionality of specific phosphosites through absolute peptide quantification by targeted mass spectrometry, metabolomics and physiological flux analysis in mutants with genetically removed phosphosites. These results demonstrate the role of phosphorylation in controlling the metabolic flux realised by these three enzymes. PMID:23149688

Oliveira, Ana Paula; Ludwig, Christina; Picotti, Paola; Kogadeeva, Maria; Aebersold, Ruedi; Sauer, Uwe

2012-01-01

43

Roles of phosphatidate phosphatase enzymes in lipid metabolism  

PubMed Central

Phosphatidate phosphatase (PAP) enzymes catalyze the dephosphorylation of phosphatidate, yielding diacylglycerol and inorganic phosphate. In eukaryotic cells, PAP activity has a central role in the synthesis of phospholipids and triacylglycerol through its product diacylglycerol, and it also generates and/or degrades lipid-signaling molecules that are related to phosphatidate. There are two types of PAP enzyme, Mg2+ dependent (PAP1) and Mg2+ independent (PAP2), but only genes encoding PAP2 enzymes had been identified until recently, when a gene (PAH1) encoding a PAP1 enzyme was found in Saccharomyces cerevisiae. This discovery has revealed a molecular function of the mammalian protein lipin, a deficiency of which causes lipodystrophy in mice. With molecular information now available for both types of PAP, the specific roles of these enzymes in lipid metabolism are being clarified. PMID:17079146

Carman, George M.; Han, Gil-Soo

2006-01-01

44

Filament formation by metabolic enzymes is a specific adaptation to an advanced state of cellular starvation  

PubMed Central

One of the key questions in biology is how the metabolism of a cell responds to changes in the environment. In budding yeast, starvation causes a drop in intracellular pH, but the functional role of this pH change is not well understood. Here, we show that the enzyme glutamine synthetase (Gln1) forms filaments at low pH and that filament formation leads to enzymatic inactivation. Filament formation by Gln1 is a highly cooperative process, strongly dependent on macromolecular crowding, and involves back-to-back stacking of cylindrical homo-decamers into filaments that associate laterally to form higher order fibrils. Other metabolic enzymes also assemble into filaments at low pH. Hence, we propose that filament formation is a general mechanism to inactivate and store key metabolic enzymes during a state of advanced cellular starvation. These findings have broad implications for understanding the interplay between nutritional stress, the metabolism and the physical organization of a cell. DOI: http://dx.doi.org/10.7554/eLife.02409.001 PMID:24771766

Petrovska, Ivana; Nüske, Elisabeth; Munder, Matthias C; Kulasegaran, Gayathrie; Malinovska, Liliana; Kroschwald, Sonja; Richter, Doris; Fahmy, Karim; Gibson, Kimberley; Verbavatz, Jean-Marc; Alberti, Simon

2014-01-01

45

Inhibitors of testosterone biosynthetic and metabolic activation enzymes.  

PubMed

The Leydig cells of the testis have the capacity to biosynthesize testosterone from cholesterol. Testosterone and its metabolically activated product dihydrotestosterone are critical for the development of male reproductive system and spermatogenesis. At least four steroidogenic enzymes are involved in testosterone biosynthesis: Cholesterol side chain cleavage enzyme (CYP11A1) for the conversion of cholesterol into pregnenolone within the mitochondria, 3?-hydroxysteroid dehydrogenase (HSD3B), for the conversion of pregnenolone into progesterone, 17?-hydroxylase/17,20-lyase (CYP17A1) for the conversion of progesterone into androstenedione and 17?-hydroxysteroid dehydrogenase (HSD17B3) for the formation of testosterone from androstenedione. Testosterone is also metabolically activated into more potent androgen dihydrotestosterone by two isoforms 5?-reductase 1 (SRD5A1) and 2 (SRD5A2) in Leydig cells and peripheral tissues. Many endocrine disruptors act as antiandrogens via directly inhibiting one or more enzymes for testosterone biosynthesis and metabolic activation. These chemicals include industrial materials (perfluoroalkyl compounds, phthalates, bisphenol A and benzophenone) and pesticides/biocides (methoxychlor, organotins, 1,2-dibromo-3-chloropropane and prochloraz) and plant constituents (genistein and gossypol). This paper reviews these endocrine disruptors targeting steroidogenic enzymes. PMID:22138857

Ye, Leping; Su, Zhi-Jian; Ge, Ren-Shan

2011-01-01

46

Radiation Exposure Alters Expression of Metabolic Enzyme Genes in Mice  

NASA Technical Reports Server (NTRS)

Most administered pharmaceuticals are metabolized by the liver. The health of the liver, especially the rate of its metabolic enzymes, determines the concentration of circulating drugs as well as the duration of their efficacy. Most pharmaceuticals are metabolized by the liver, and clinically-used medication doses are given with normal liver function in mind. A drug overdose can result in the case of a liver that is damaged and removing pharmaceuticals from the circulation at a rate slower than normal. Alternatively, if liver function is elevated and removing drugs from the system more quickly than usual, it would be as if too little drug had been given for effective treatment. Because of the importance of the liver in drug metabolism, we want to understand the effects of spaceflight on the enzymes of the liver and exposure to cosmic radiation is one aspect of spaceflight that can be modeled in ground experiments. Additionally, it has been previous noted that pre-exposure to small radiation doses seems to confer protection against later and larger radiation doses. This protective power of pre-exposure has been called a priming effect or radioadaptation. This study is an effort to examine the drug metabolizing effects of radioadaptation mechanisms that may be triggered by early exposure to low radiation doses.

Wotring, V. E.; Mangala, L. S.; Zhang, Y.; Wu, H.

2011-01-01

47

Radiation Exposure Alters Expression of Metabolic Enzyme Genes In Mice  

NASA Technical Reports Server (NTRS)

Most pharmaceuticals are metabolized by the liver. The health of the liver, especially the rate of its metabolic enzymes, determines the concentration of circulating drugs as well as the duration of their efficacy. Because of the importance of the liver in drug metabolism it is important to understand the effects of spaceflight on the enzymes of the liver. Exposure to cosmic radiation is one aspect of spaceflight that can be modeled in ground experiments. This study is an effort to examine the effects of adaptive mechanisms that may be triggered by early exposure to low radiation doses. Using procedures approved by the JSC Animal Care & Use Committee, C57 male mice were exposed to Cs-137 in groups: controls, low dose (50 mGy), high dose (6Gy) and a fourth group that received both radiation doses separated by 24 hours. Animals were anesthetized and sacrificed 4 hours after their last radiation exposure. Livers were removed immediately and flash-frozen in liquid nitrogen. Tissue was homogenized, RNA extracted and purified (Absolutely RNA, Agilent). Quality of RNA samples was evaluated (Agilent Bioanalyzer 2100). Complementary DNA was prepared from high-quality RNA samples, and used to run RT-qPCR screening arrays for DNA Repair and Drug Metabolism (SuperArray, SABiosciences/Qiagen; BioRad Cfx96 qPCR System). Of 91 drug metabolism genes examined, expression of 7 was altered by at least one treatment condition. Genes that had elevated expression include those that metabolize promethazine and steroids (4-8-fold), many that reduce oxidation products, and one that reduces heavy metal exposure (greater than 200-fold). Of the 91 DNA repair and general metabolism genes examined, expression of 14 was altered by at least one treatment condition. These gene expression changes are likely homeostatic and could lead to development of new radioprotective countermeasures.

Wotring, Virginia E.; Mangala, L. S.; Zhang, Y.; Wu, H.

2010-01-01

48

Novel mitochondrial alcohol metabolizing enzymes of Euglena gracilis.  

PubMed

Ethanol is one of the most efficient carbon sources for Euglena gracilis. Thus, an in-depth investigation of the distribution of ethanol metabolizing enzymes in this organism was conducted. Cellular fractionation indicated localization of the ethanol metabolizing enzymes in both cytosol and mitochondria. Isolated mitochondria were able to generate a transmembrane electrical gradient (??) after the addition of ethanol. However, upon the addition of acetaldehyde no ?? was formed. Furthermore, acetaldehyde collapsed ?? generated by ethanol or malate but not by D-lactate. Pyrazole, a specific inhibitor of alcohol dehydrogenase (ADH), abolished the effect of acetaldehyde on ??, suggesting that the mitochondrial ADH, by actively consuming NADH to reduce acetaldehyde to ethanol, was able to collapse ??. When mitochondria were fractionated, 27% and 60% of ADH and aldehyde dehydrogenase (ALDH) activities were found in the inner membrane fraction. ADH activity showed two kinetic components, suggesting the presence of two isozymes in the membrane fraction, while ALDH kinetics was monotonic. The ADH Km values were 0.64-6.5 mM for ethanol, and 0.16-0.88 mM for NAD+, while the ALDH Km values were 1.7-5.3 ?M for acetaldehyde and 33-47 ?M for NAD+. These novel enzymes were also able to use aliphatic substrates of different chain length and could be involved in the metabolism of fatty alcohol and aldehydes released from wax esters stored by this microorganism. PMID:21833603

Yoval-Sánchez, Belem; Jasso-Chávez, Ricardo; Lira-Silva, Elizabeth; Moreno-Sánchez, Rafael; Rodríguez-Zavala, José S

2011-10-01

49

Regulation of liver metabolism by enzyme phosphorylation during mammalian hibernation.  

PubMed

Kinetic properties of regulatory enzymes of glycolysis in liver of the mouse, Zapus hudsonius, were modified during hibernation, the probable mechanism being covalent modification. Liver glycogen phosphorylase activity was strongly depressed during both short (less than 24 h) and long (5-8 days) term hibernation, the mechanism involving a decrease in both the percentage of enzyme in the active a form and the total amount (a + b) of enzyme expressed. Phosphofructokinase showed kinetic changes (a 2.5-fold increase in Ka for fructose-2,6-P2, 4- and 3.7-fold decreases in I50 values for ATP and citrate, compared to euthermic controls) in liver of hibernators indicative of phosphorylation inactivation of the enzyme. Measured levels of fructose-2,6-P2 in liver did not change during hibernation. Changes in pyruvate kinase kinetics in liver from long term hibernators similarly indicated enzyme phosphorylation in the depressed state (Ka for fructose-1,6-P2 increased 4.4-fold, I50 for L-alanine decreased 6.3-fold). Apparent covalent modification of glycolytic enzymes during hibernation may serve two functions: depression of glycolytic activity as part of the general metabolic rate depression of hibernation, or reorganization of fuel use in the hibernating state to limit carbohydrate catabolism and promote gluconeogenesis. PMID:2948958

Storey, K B

1987-02-01

50

Control of key metabolic intersections in Bacillus subtilis.  

PubMed

The remarkable ability of bacteria to adapt efficiently to a wide range of nutritional environments reflects their use of overlapping regulatory systems that link gene expression to intracellular pools of a small number of key metabolites. By integrating the activities of global regulators, such as CcpA, CodY and TnrA, Bacillus subtilis manages traffic through two metabolic intersections that determine the flow of carbon and nitrogen to and from crucial metabolites, such as pyruvate, 2-oxoglutarate and glutamate. Here, the latest knowledge on the control of these key intersections in B. subtilis is reviewed. PMID:17982469

Sonenshein, Abraham L

2007-12-01

51

Global probabilistic annotation of metabolic networks enables enzyme discovery  

PubMed Central

Annotation of organism-specific metabolic networks is one of the main challenges of systems biology. Importantly, due to inherent uncertainty of computational annotations, predictions of biochemical function need to be treated probabilistically. We present a global probabilistic approach to annotate genome-scale metabolic networks that integrates sequence homology and context-based correlations under a single principled framework. The developed method for Global Biochemical reconstruction Using Sampling (GLOBUS) not only provides annotation probabilities for each functional assignment, but also suggests likely alternative functions. GLOBUS is based on statistical Gibbs sampling of probable metabolic annotations and is able to make accurate functional assignments even in cases of remote sequence identity to known enzymes. We apply GLOBUS to genomes of Bacillus subtilis and Staphylococcus aureus, and validate the method predictions by experimentally demonstrating the 6-phosphogluconolactonase activity of ykgB and the role of the sps pathway for rhamnose biosynthesis in B. subtilis. PMID:22960854

Plata, Germán; Fuhrer, Tobias; Hsiao, Tzu-Lin; Sauer, Uwe; Vitkup, Dennis

2013-01-01

52

Elucidation of metabolic pathways from enzyme classification data.  

PubMed

The IUBMB Enzyme List is widely used by other databases as a source for avoiding ambiguity in the recognition of enzymes as catalytic entities. However, it was not designed for metabolic pathway tracing, which has become increasingly important in systems biology. A Reactions Database has been created from the material in the Enzyme List to allow reactions to be searched by substrate/product, and pathways to be traced from any selected starting/seed substrate. An extensive synonym glossary allows searches by many of the alternative names, including accepted abbreviations, by which a chemical compound may be known. This database was necessary for the development of the application Reaction Explorer ( http://www.reaction-explorer.org ), which was written in Real Studio ( http://www.realsoftware.com/realstudio/ ) to search the Reactions Database and draw metabolic pathways from reactions selected by the user. Having input the name of the starting compound (the "seed"), the user is presented with a list of all reactions containing that compound and then selects the product of interest as the next point on the ensuing graph. The pathway diagram is then generated as the process iterates. A contextual menu is provided, which allows the user: (1) to remove a compound from the graph, along with all associated links; (2) to search the reactions database again for additional reactions involving the compound; (3) to search for the compound within the Enzyme List. PMID:24218216

McDonald, Andrew G; Tipton, Keith F

2014-01-01

53

Enzymes To Die For: Exploiting Nucleotide Metabolizing Enzymes for Cancer Gene Therapy  

PubMed Central

Suicide gene therapy is an attractive strategy to selectively destroy cancer cells while minimizing unnecessary toxicity to normal cells. Since this idea was first introduced more than two decades ago, numerous studies have been conducted and significant developments have been made to further its application for mainstream cancer therapy. Major limitations of the suicide gene therapy strategy that have hindered its clinical application include inefficient directed delivery to cancer cells and the poor prodrug activation capacity of suicide enzymes. This review is focused on efforts that have been and are currently being pursued to improve the activity of individual suicide enzymes towards their respective prodrugs with particular attention to the application of nucleotide metabolizing enzymes in suicide cancer gene therapy. A number of protein engineering strategies have been employed and our discussion here will center on the use of mutagenesis approaches to create and evaluate nucleotide metabolizing enzymes with enhanced prodrug activation capacity and increased thermostability. Several of these studies have yielded clinically important enzyme variants that are relevant for cancer gene therapy applications because their utilization can serve to maximize cancer cell killing while minimizing the prodrug dose, thereby limiting undesirable side effects. PMID:22384805

Ardiani, Andressa; Johnson, Adam J.; Ruan, Hongmei; Sanchez-Bonilla, Marilyn; Serve, Kinta; Black, Margaret E.

2012-01-01

54

Up-regulation of photosynthesis and sucrose metabolism enzymes in young expanding leaves of sugarcane under elevated growth CO2  

Technology Transfer Automated Retrieval System (TEKTRAN)

Leaf photosynthesis (CER), levels of soluble protein and chlorophyll (Chl), and activities of key enzymes involved in C4 photosynthesis and sucrose metabolism were determined during leaf ontogeny for sugarcane grown at 360 and 720 ppm CO2. After leaf emergence, although leaf CER of both CO2 treatmen...

55

In vivo enzyme activity in inborn errors of metabolism  

SciTech Connect

Low-dose continuous infusions of (2H5)phenylalanine, (1-13C)propionate, and (1-13C)leucine were used to quantitate phenylalanine hydroxylation in phenylketonuria (PKU, four subjects), propionate oxidation in methylmalonic acidaemia (MMA, four subjects), and propionic acidaemia (PA, four subjects) and leucine oxidation in maple syrup urine disease (MSUD, four subjects). In vivo enzyme activity in PKU, MMA, and PA subjects was similar to or in excess of that in adult controls (range of phenylalanine hydroxylation in PKU, 3.7 to 6.5 mumol/kg/h, control 3.2 to 7.9, n = 7; propionate oxidation in MMA, 15.2 to 64.8 mumol/kg/h, and in PA, 11.1 to 36.0, control 5.1 to 19.0, n = 5). By contrast, in vivo leucine oxidation was undetectable in three of the four MSUD subjects (less than 0.5 mumol/kg/h) and negligible in the remaining subject (2 mumol/kg/h, control 10.4 to 15.7, n = 6). These results suggest that significant substrate removal can be achieved in some inborn metabolic errors either through stimulation of residual enzyme activity in defective enzyme systems or by activation of alternate metabolic pathways. Both possibilities almost certainly depend on gross elevation of substrate concentrations. By contrast, only minimal in vivo oxidation of leucine appears possible in MSUD.

Thompson, G.N.; Walter, J.H.; Leonard, J.V.; Halliday, D. (Clinical Research Centre, Harrow (England))

1990-08-01

56

The RNA world and the origin of metabolic enzymes  

PubMed Central

An RNA world has been placed centre stage for explaining the origin of life. Indeed, RNA is the most plausible molecule able to form both a (self)-replicator and to inherit information, necessities for initiating genetics. However, in parallel with self-replication, the proto-organism had to obtain the ability to catalyse supply of its chemical constituents, including the ribonucleotide metabolites required to replicate RNA. Although the possibility of an RNA-catalysed metabolic network has been considered, it is to be questioned whether RNA molecules, at least on their own, possess the required catalytic capacities. An alternative scenario for the origin of metabolism involves chemical reactions that are based on environmental catalysts. Recently, we described a non-enzymatic glycolysis and pentose phosphate pathway-like reactions catalysed by metal ions [mainly Fe(II)] and phosphate, simple inorganic molecules abundantly found in Archaean sediments. While the RNA world can serve to explain the origin of genetics, the origin of the metabolic network might thus date back to constraints of environmental chemistry. Interestingly, considering a metal-catalysed origin of metabolism gives rise to an attractive hypothesis about how the first enzymes could have formed: simple RNA or (poly)peptide molecules could have bound the metal ions, and thus increased their solubility, concentration and accessibility. In a second step, this would have allowed substrate specificity to evolve. PMID:25109990

Ralser, Markus

2014-01-01

57

Comparison of metabolism of sesamin and episesamin by drug-metabolizing enzymes in human liver.  

PubMed

Sesamin and episesamin are two epimeric lignans that are found in refined sesame oil. Commercially available sesamin supplements contain both sesamin and episesamin at an approximate 1:1 ratio. Our previous study clarified the sequential metabolism of sesamin by cytochrome P450 (P450) and UDP-glucuronosyltransferase in human liver. In addition, we revealed that sesamin caused a mechanism-based inhibition (MBI) of CYP2C9, the P450 enzyme responsible for sesamin monocatecholization. In the present study, we compared the metabolism and the MBI of episesamin with those of sesamin. Episesamin was first metabolized to the two epimers of monocatechol, S- and R-monocatechols in human liver microsomes. The P450 enzymes responsible for S- and R-monocatechol formation were CYP2C9 and CYP1A2, respectively. The contribution of CYP2C9 was much larger than that of CYP1A2 in sesamin metabolism, whereas the contribution of CYP2C9 was almost equal to that of CYP1A2 in episesamin metabolism. Docking of episesamin to the active site of CYP1A2 explained the stereoselectivity in CYP1A2-dependent episesamin monocatecholization. Similar to sesamin, the episesamin S- and R-monocatechols were further metabolized to dicatechol, glucuronide, and methylate metabolites in human liver; however, the contribution of each reaction was significantly different between sesamin and episesamin. The liver microsomes from CYP2C19 ultra-rapid metabolizers showed a significant amount of episesamin dicatechol. In this study, we have revealed significantly different metabolism by P450, UDP-glucuronosyltransferase, and catechol-O-methyltransferase for sesamin and episesamin, resulting in different biological effects. PMID:22752007

Yasuda, Kaori; Ikushiro, Shinichi; Wakayama, Shuto; Itoh, Toshimasa; Yamamoto, Keiko; Kamakura, Masaki; Munetsuna, Eiji; Ohta, Miho; Sakaki, Toshiyuki

2012-10-01

58

Evolution of Domain Architectures and Catalytic Functions of Enzymes in Metabolic Systems  

E-print Network

Evolution of Domain Architectures and Catalytic Functions of Enzymes in Metabolic Systems Summit architectures and catalytic functions of enzymes constitute the centerpieces of a metabolic network. These types. In contrast, prokaryotic enzymes become more versatile by catalyzing multiple reactions with similar chemical

Yeang, Chen-Hsiang

59

The enzymes of biotin dependent CO2 metabolism: What structures reveal about  

E-print Network

REVIEW The enzymes of biotin dependent CO2 metabolism: What structures reveal about their reaction cofactor involved in carbon dioxide metabolism. Indeed, biotin- dependent enzymes are ubiquitous in nature. It is the ureido ring that functions as the CO2 carrier. A complete understanding of biotin-dependent enzymes

Holden, Hazel

60

Monitoring the Metabolic Status of Geobacter Species in Contaminated Groundwater by Quantifying Key Metabolic Proteins with Geobacter-Specific Antibodies?  

PubMed Central

Simple and inexpensive methods for assessing the metabolic status and bioremediation activities of subsurface microorganisms are required before bioremediation practitioners will adopt molecular diagnosis of the bioremediation community as a routine practice for guiding the development of bioremediation strategies. Quantifying gene transcripts can diagnose important aspects of microbial physiology during bioremediation but is technically challenging and does not account for the impact of translational modifications on protein abundance. An alternative strategy is to directly quantify the abundance of key proteins that might be diagnostic of physiological state. To evaluate this strategy, an antibody-based quantification approach was developed to investigate subsurface Geobacter communities. The abundance of citrate synthase corresponded with rates of metabolism of Geobacter bemidjiensis in chemostat cultures. During in situ bioremediation of uranium-contaminated groundwater the quantity of Geobacter citrate synthase increased with the addition of acetate to the groundwater and decreased when acetate amendments stopped. The abundance of the nitrogen-fixation protein, NifD, increased as ammonium became less available in the groundwater and then declined when ammonium concentrations increased. In a petroleum-contaminated aquifer, the abundance of BamB, an enzyme subunit involved in the anaerobic degradation of mono-aromatic compounds by Geobacter species, increased in zones in which Geobacter were expected to play an important role in aromatic hydrocarbon degradation. These results suggest that antibody-based detection of key metabolic proteins, which should be readily adaptable to standardized kits, may be a feasible method for diagnosing the metabolic state of microbial communities responsible for bioremediation, aiding in the rational design of bioremediation strategies. PMID:21551286

Yun, Jiae; Ueki, Toshiyuki; Miletto, Marzia; Lovley, Derek R.

2011-01-01

61

Enzymes involved in l-lactate metabolism in humans.  

PubMed

l-lactate formation occurs via the reduction of pyruvate catalyzed by lactate dehydrogenase. l-lactate removal takes place via its oxidation into pyruvate, which may be oxidized or converted into glucose. Pyruvate oxidation involves the cooperative effort of pyruvate dehydrogenase, the tricarboxylic acid cycle, and the mitochondrial respiratory chain. Enzymes of the gluconeogenesis pathway sequentially convert pyruvate into glucose. In addition, pyruvate may undergo reversible transamination to alanine by alanine aminotransferase. Enzymes involved in l-lactate metabolism are crucial to diabetes pathophysiology and therapy. Elevated plasma alanine aminotransferase concentration has been associated with insulin resistance. Polymorphisms in the G6PC2 gene have been associated with fasting glucose concentration and insulin secretion. In diabetes patients, pyruvate dehydrogenase is down-regulated and the activity of pyruvate carboxylase is diminished in the pancreatic islets. Inhibitors of fructose 1,6-bisphosphatase are being investigated as potential therapy for type 2 diabetes. In addition, enzymes implicated in l-lactate metabolism have revealed to be important in cancer cell homeostasis. Many human tumors have higher LDH5 levels than normal tissues. The LDHC gene is expressed in a broad range of tumors. The activation of PDH is a potential mediator in the body response that protects against cancer and PDH activation has been observed to reduce glioblastoma growth. The expression of PDK1 may serve as a biomarker of poor prognosis in gastric cancer. Mitochondrial DNA mutations have been detected in a number of human cancers. Genes encoding succinate dehydrogenase have tumor suppressor functions and consequently mutations in these genes may cause a variety of tumors. PMID:24029012

Adeva, M; González-Lucán, M; Seco, M; Donapetry, C

2013-11-01

62

Hormonal Regulation of Hepatic Drug Metabolizing Enzyme Activity During Adolescence  

PubMed Central

Activities of drug metabolizing enzymes (DME) are known to change throughout the course of physical and sexual maturation with the greatest variability noted during infancy and adolescence. The mechanisms responsible for developmental regulation of DME are currently unknown. However, the hormonal changes of puberty/adolescence provide a theoretical framework for understanding biochemical regulation of DME activity during growth and maturation. Important information regarding potential influences of growth and sex hormones can also be extrapolated from studies evaluating changes in activities of DMEs occurring as a consequence of physiologic, pathologic and/or pharmacologic hormonal fluctuations. Collectively, current data support the hypothesis that isoform-specific alterations in DME activity during adolescence are mediated via sex and/or growth hormones. Characterization of the underlying biochemical alterations responsible for developmental changes in DME activity will require additional studies in which relationships between DME and important hormonal axes are evaluated during the course of pubertal development. PMID:18971926

Kennedy, M.J.

2009-01-01

63

Cytochromes P450: Inhibition of CYP2A Enzymes Involved in Xenobiotic Metabolism and Generation of CYP26 Enzymes Involved in Retinoic Acid Metabolism  

E-print Network

The cytochrome P450 (P450) superfamily of mixed function oxidase enzymes catalyze the metabolism of a variety of endogenous and exogenous biochemicals, including steroids, fatty acids, vitamins, eicosanoids, drugs, pesticides, and toxins. P450...

Stephens, Eva Susanne

2012-08-31

64

Ammonium metabolism enzymes aid Helicobacter pylori acid resistance.  

PubMed

The gastric pathogen Helicobacter pylori possesses a highly active urease to support acid tolerance. Urea hydrolysis occurs inside the cytoplasm, resulting in the production of NH3 that is immediately protonated to form NH4 (+). This ammonium must be metabolized or effluxed because its presence within the cell is counterproductive to the goal of raising pH while maintaining a viable proton motive force (PMF). Two compatible hypotheses for mitigating intracellular ammonium toxicity include (i) the exit of protonated ammonium outward via the UreI permease, which was shown to facilitate diffusion of both urea and ammonium, and/or (ii) the assimilation of this ammonium, which is supported by evidence that H. pylori assimilates urea nitrogen into its amino acid pools. We investigated the second hypothesis by constructing strains with altered expression of the ammonium-assimilating enzymes glutamine synthetase (GS) and glutamate dehydrogenase (GDH) and the ammonium-evolving periplasmic enzymes glutaminase (Ggt) and asparaginase (AsnB). H. pylori strains expressing elevated levels of either GS or GDH are more acid tolerant than the wild type, exhibit enhanced ammonium production, and are able to alkalize the medium faster than the wild type. Strains lacking the genes for either Ggt or AsnB are acid sensitive, have 8-fold-lower urea-dependent ammonium production, and are more acid sensitive than the parent. Additionally, we found that purified H. pylori GS produces glutamine in the presence of Mg(2+) at a rate similar to that of unadenylated Escherichia coli GS. These data reveal that all four enzymes contribute to whole-cell acid resistance in H. pylori and are likely important for assimilation and/or efflux of urea-derived ammonium. PMID:24936052

Miller, Erica F; Maier, Robert J

2014-09-01

65

Decreased carbohydrate metabolism enzyme activities in the glaucomatous trabecular meshwork  

PubMed Central

Purpose To determine whether activity of carbohydrate metabolism enzymes (aldolase, pyruvate kinase, isocitrate dehydrogenase, and malate dehydrogenase) are altered in the glaucomatous trabecular meshwork (TM) compared to controls. Methods Tissue specimens were obtained from trabeculectomy (n=45 open angle glaucoma; Caucasian, average age 61±8 years of age of both genders) and from cadaver eyes (n=15 control and n=5 glaucoma; Caucasian, average age 63±4 years of both genders). Protein extracts from TM tissue were prepared in a non-denaturing buffer containing 0.1% genapol. Aldolase activity was measured spectrophotometrically at 240 nm absorbance using reaction of 3-phosphoglycerate with hydrazine to form hydrazone. Pyruvate kinase activity was measured by coupling lactate dehydrogenase with NADPH and pyruvate absorbance was measured at 340 nm. Isocitrate dehydrogenase activity was measured using reduction of NADP to NADPH at the characteristic absorbance at 340 nm. Malate dehydrogenase catalyzes the interconversion of L-malate and oxaloacetate using NADP as a coenzyme, quantified by its absorbance at 340 nm. Results Aldolase, pyruvate kinase, isocitrate dehydrogenase, and malate dehyrogenase activities in the glaucomatous TM tissue were found to be reduced 70, 50, 25, and 69 percent, respectively. SDS–PAGE analysis suggests the presence of 4-hydorxynonenal (HNE) modified isocitrate dehydrogenase protein in the glaucomatous TM tissue compared to controls. Conclusions Several Krebs cycle enzyme activities are considerably reduced in glaucomatous TM. HNE modified isocitrate dehydrogenase activity is consistent with reduced inactivated form of the protein. Lipid peroxidation product modification of aldolase, pyruvate kinase, and isocitrate dehydrogenase serves as a likely reason for the reduction of enzyme activity. PMID:20664702

Goel, Manik; Mundorf, Tom; Rockwood, Edward J.; Bhattacharya, Sanjoy K.

2010-01-01

66

Fermentation, Respiration & Enzyme Specificity: A Simple Device & Key Experiments with Yeast.  

ERIC Educational Resources Information Center

Using graphs and diagrams, the authors describe a simple fermentation chamber and provide key experiments that can be used in the classroom to give students meaningful insight into metabolic processes. (ZWH)

Reinking, Larry N.; And Others

1994-01-01

67

Effect of Chromium(VI) Toxicity on Enzymes of Nitrogen Metabolism in Clusterbean (Cyamopsis tetragonoloba L.)  

PubMed Central

Heavy metals are the intrinsic component of the environment with both essential and nonessential types. Their excessive levels pose a threat to plant growth and yield. Also, some heavy metals are toxic to plants even at very low concentrations. The present investigation (a pot experiment) was conducted to determine the affects of varying chromium(VI) levels (0.0, 0.5, 1.0, 2.0, and 4.0?mg chromium(VI)?kg?1 soil in the form of potassium dichromate) on the key enzymes of nitrogen metabolism in clusterbean. Chromium treatment adversely affect nitrogenase, nitrate reductase, nitrite reductase, glutamine synthetase, and glutamate dehydrogenase in various plant organs at different growth stages as specific enzyme activity of these enzymes decreased with an increase in chromium(VI) levels from 0 to 2.0?mg chromium(VI)?kg?1 soil and 4.0?mg chromium(VI)?kg?1 soil was found to be lethal to clusterbean plants. In general, the enzyme activity increased with advancement of growth to reach maximum at flowering stage and thereafter decreased at grain filling stage. PMID:24744916

Sangwan, Punesh; Joshi, U. N.

2014-01-01

68

Metabolism of chamaechromone in vitro with human liver microsomes and recombinant human drug-metabolizing enzymes.  

PubMed

Chamaechromone is a major component in the dried roots of Stellera chamaejasme with antihepatitis B virus and insecticidal activity. In this study, metabolic profiles of chamaechromone were investigated in human liver microsomes. One monohydroxide and two monoglucuronides of chamaechromone were identified. The enzyme kinetics for both hydroxylation and glucuronidation were fitted to the Michaelis-Menten equation. The hydroxylation of chamaechromone was inhibited by ?-naphthoflavone, and predominantly catalyzed by recombinant human cytochrome P450 1A2, whereas the glucuronidation was inhibited by quercetin, 1-naphthol, and fluconazole, and mainly catalyzed by recombinant human UDP-glucuronosyltransferase 1A3, 1A7, 1A9, and 2B7. PMID:24687737

Lou, Yan; Hu, Haihong; Qiu, Yunqing; Zheng, Jinqi; Wang, Linrun; Zhang, Xingguo; Zeng, Su

2014-04-01

69

MIT-led study finds turning on key enzyme blocks tumor formation  

Cancer.gov

Unlike ordinary cells, cancer cells devote most of their energy to reproducing themselves. To do this, they must trigger alternative metabolic pathways that produce new cellular building blocks, such as DNA, carbohydrates and lipids. Chemical compounds that disrupt an enzyme critical to this metabolic diversion prevent tumors from forming in mice, according to an MIT-led study appearing online in Nature Chemical Biology on Aug. 26. MIT is home to the David H. Koch Institute for Integrative Cancer Research.

70

A QUANTITATIVE MODEL FOR XENOBIOTIC METABOLIZING ENZYME (XME) INDUCTION REGULATED BY THE PREGNANE X RECEPTOR (PXR)  

EPA Science Inventory

The nuclear receptor, PXR, is an integral part of the regulation of hepatic metabolism. It has been shown to regulate specific CYPs (phase I drug-metabolizing enzymes) as well as certain phase II drug metabolism activities, including UDP-glucuronosyl transferase (UGT), sulfotran...

71

Mutations in Phosphoinositide Metabolizing Enzymes and Human Disease  

NSDL National Science Digital Library

Phosphoinositides are implicated in the regulation of a wide variety of cellular functions. Their importance in cellular and organismal physiology is underscored by the growing number of human diseases linked to perturbation of kinases and phosphatases that catalyze interconversion from one phosphoinositide to another. Many such enzymes are attractive targets for therapeutic interventions. Here, we review diseases linked to inheritable or somatic mutations of these enzymes. Phosphatidylinositol (PtdIns), a membrane phospholipid, can be reversibly phosphorylated at the 3, 4, and 5 positions of the inositol ring to generate seven phosphoinositides [PI3P, PI4P, PI5P, PI(3,4)P2, PI(4,5)P2, PI(3,5)P2, and PI(3,4,5)P3] (FIGURE 1A). The importance of this metabolism in cell regulation was first established in the context of studies on stimulus-secretion coupling. It was found that many stimuli that trigger secretion also trigger enhanced turnover of PtdIns and phosphoinositides (42). Subsequently, it became clear that phospholipase C-dependent hydrolysis of PI(4,5)P2 to generate the second messenger molecules diacyl glycerol and Ins(1,4,5)P3 (IP3) is a mechanism through which many cell surface receptors, including many receptors that stimulate secretion, transduce their signals (10). Diacyl glycerol binds and regulates protein kinase C and a variety of other effectors, whereas IP3 triggers calcium release from the endoplasmic reticulum (10, 42). In another signal transduction pathway, PI(4,5)P2 is cleaved by phospholipase A2 to generate arachidonic acid, a precursor of many signaling molecules.

Heather J. McCrea (Yale University); Pietro De Camilli (Yale University School of Medicine)

2009-02-01

72

Extraction and study of enzymes linked to malate metabolism in tree leaves  

E-print Network

Extraction and study of enzymes linked to malate metabolism in tree leaves D. Gerant, A. Citerne, C, 1984). Enzymes implicated in synthesis and catabolism of this substrate are widely distributed in the cellular compartments. If these enzymes have become well known in herbaceous plants (Macrae, 1971; Davis

Paris-Sud XI, Université de

73

Molecular characterization of genes encoding enzymes of the metabolic pathways in Neocallimastix frontalis.  

E-print Network

Molecular characterization of genes encoding enzymes of the metabolic pathways in Neocallimastix. Enzyme activities leading to the formation of succinate, lactate, formate and ethanol are associated with the cytoplasmic fraction, while the enzymes leading to the formation of the main fermentation products H2, C02

Boyer, Edmond

74

Effects of gas periodic stimulation on key enzyme activity in gas double-dynamic solid state fermentation (GDD-SSF).  

PubMed

The heat and mass transfer have been proved to be the important factors in air pressure pulsation for cellulase production. However, as process of enzyme secretion, the cellulase formation has not been studied in the view of microorganism metabolism and metabolic key enzyme activity under air pressure pulsation condition. Two fermentation methods in ATPase activity, cellulase productivity, weight lose rate and membrane permeability were systematically compared. Results indicated that gas double-dynamic solid state fermentation had no obviously effect on cell membrane permeability. However, the relation between ATPase activity and weight loss rate was linearly dependent with r=0.9784. Meanwhile, the results also implied that gas periodic stimulation had apparently strengthened microbial metabolism through increasing ATPase activity during gas double-dynamic solid state fermentation, resulting in motivating the production of cellulase by Trichoderma reesei YG3. Therefore, the increase of ATPase activity would be another crucial factor to strengthen fermentation process for cellulase production under gas double-dynamic solid state fermentation. PMID:24564900

Chen, Hongzhang; Shao, Meixue; Li, Hongqiang

2014-03-01

75

Fungal colonization and enzyme-mediated metabolism of waste coal by Neosartorya fischeri strain ECCN 84.  

PubMed

Colonization and oxidative metabolism of South African low-rank discard coal by the fungal strain ECCN 84 previously isolated from a coal environment and identified as Neosartorya fischeri was investigated. Results show that waste coal supported fungal growth. Colonization of waste coal particles by N. fischeri ECCN 84 was associated with the formation of compact spherical pellets or sclerotia-like structures. Dissection of the pellets from liquid cultures revealed a nucleus of "engulfed" coal which when analyzed by energy dispersive X-ray spectroscopy showed a time-dependent decline in weight percentage of elemental carbon and an increase in elemental oxygen. Proliferation of peroxisomes in hyphae attached to coal particles and increased extracellular laccase activity occurred after addition of waste coal to cultures of N. fischeri ECCN 84. These results support a role for oxidative enzyme action in the biodegradation of coal and suggest that extracellular laccase is a key component in this process. PMID:25273148

Sekhohola, Lerato Mary; Isaacs, Michelle Louise; Cowan, Ashton Keith

2014-10-01

76

Effect of oxytocin on serum biochemistry, liver enzymes, and metabolic hormones in lactating Nili Ravi buffaloes.  

PubMed

Studies reporting the effects of oxytocin on the health of lactating animals are lacking and still no such data is available on Nili Ravi buffalo, the most prominent Asian buffalo breed. The present study was conducted to investigate the effect of oxytocin on physiological and metabolic parameters of lactating Nili Ravi buffaloes. Healthy lactating buffaloes (n?=?40) of recent calving were selected from a commercial dairy farm situated in the peri-urban area of district Faisalabad, Pakistan. These buffaloes were randomly allocated to two equal groups viz experimental and control, comprising 20 animals each. Twice-a-day (morning and evening) milking practice was followed. The experimental and control buffaloes were administered subcutaneously with 3 mL of oxytocin (10 IU/mL) and normal saline respectively, prior to each milking. Serum biochemical profile including glucose, total cholesterol (tChol), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), total proteins (TP), C-reactive protein (CRP), liver enzymes aspartate transaminase (AST), alanine transaminase (ALT), and metabolic hormones triiodothyronine (T3) and thyroxine (T4) were studied. Results revealed significantly higher (P???0.01) levels of glucose, total cholesterol, LDL-C, triglycerides, total proteins, and C-reactive protein in experimental (oxytocin-injected) lactating buffaloes compared to control group. Liver enzymes AST and ALT as well as serum T4 concentration was significantly higher (P???0.01) in oxytocin-injected lactating buffaloes as compared to control animals. It was concluded that oxytocin had the key role in increasing the metabolic parameters and hormones, resulting in the optimization of production. But, at the same time, it may pose a threat to the animal health. PMID:25281211

Iqbal, Zafar; Ur Rahman, Zia; Muhammad, Faqir; Akhtar, Masood; Awais, Mian Muhammad; Khaliq, Tanweer; Nasir, Amar; Nadeem, Muhammad; Khan, Kinza; Arshad, Hafiz Muhammad; Basit, Muhammad Abdul

2015-01-01

77

Articular cartilage chondrocytes express aromatase and use enzymes involved in estrogen metabolism  

PubMed Central

Introduction Sex hormones, especially estrogens, have been implicated in articular cartilage metabolism and the pathogenesis of postmenopausal osteoarthritis. The conversion by aromatase (CYP19A1) of androstenedione into estrone (E1) and of testosterone into 17?-estradiol (E2) plays a key role in the endogenous synthesis of estrogens in tissue. Methods We analyzed the expression of aromatase (CYP19A1) in immortalized C-28/I2 and T/C-28a2 chondrocytes, as well as in cultured primary human articular chondrocytes and human articular cartilage tissue, by means of RT-PCR, Western blotting and immunohistochemistry. By means of quantitative RT-PCR and enzyme-linked immunosorbent assay, we also determined whether the aromatase inhibitor letrozole influences estrogen metabolism of cultured chondrocytes in immortalized C-28/I2 chondrocytes. Results Aromatase mRNA was detected in both immortalized chondrocyte cell lines, in cultured primary human chondrocytes, and in human articular cartilage tissue. By means of Western blot analysis, aromatase was detected at the protein level in articular cartilage taken from various patients of both sexes and different ages. Cultured primary human articular chondrocytes, C-28/I2 and T/C-28a2, and human articular cartilage tissue reacted with antibodies for aromatase. Incubation of C-28/I2 chondrocytes with 10?11 M to 10?7 M letrozole as an aromatase inhibitor revealed significantly increased amounts of the mRNAs of the enzyme cytochrome P4501A1 (CYP1A1), which is involved in the catagen estrogen metabolism, and of the estrogen receptors ER-? and ER-?. Concomitantly, synthesis of estrone (E1) was significantly downregulated after incubation with letrozole. Conclusions We demonstrate that human articular cartilage expresses aromatase at the mRNA and protein levels. Blocking of estrone synthesis by the aromatase inhibitor letrozole is counteracted by an increase in ER-? and ER-?. In addition, CYP1A1, an enzyme involved in catabolic estrogen metabolism, is upregulated. This suggests that articular chondrocytes use ERs functionally. The role of endogenous synthesized estrogens in articular cartilage health remains to be elucidated. PMID:24725461

2014-01-01

78

The mouse liver displays daily rhythms in the metabolism of phospholipids and in the activity of lipid synthesizing enzymes.  

PubMed

The circadian system involves central and peripheral oscillators regulating temporally biochemical processes including lipid metabolism; their disruption leads to severe metabolic diseases (obesity, diabetes, etc). Here, we investigated the temporal regulation of glycerophospholipid (GPL) synthesis in mouse liver, a well-known peripheral oscillator. Mice were synchronized to a 12:12?h light-dark (LD) cycle and then released to constant darkness with food ad libitum. Livers collected at different times exhibited a daily rhythmicity in some individual GPL content with highest levels during the subjective day. The activity of GPL-synthesizing/remodeling enzymes: phosphatidate phosphohydrolase 1 (PAP-1/lipin) and lysophospholipid acyltransferases (LPLATs) also displayed significant variations, with higher levels during the subjective day and at dusk. We evaluated the temporal regulation of expression and activity of phosphatidylcholine (PC) synthesizing enzymes. PC is mainly synthesized through the Kennedy pathway with Choline Kinase (ChoK) as a key regulatory enzyme or through the phosphatidylethanolamine (PE) N-methyltransferase (PEMT) pathway. The PC/PE content ratio exhibited a daily variation with lowest levels at night, while ChoK? and PEMT mRNA expression displayed maximal levels at nocturnal phases. Our results demonstrate that mouse liver GPL metabolism oscillates rhythmically with a precise temporal control in the expression and/or activity of specific enzymes. PMID:25140391

Gorné, Lucas D; Acosta-Rodríguez, Victoria A; Pasquaré, Susana J; Salvador, Gabriela A; Giusto, Norma M; Guido, Mario Eduardo

2014-08-20

79

Sensor potency of the moonlighting enzyme-decorated cytoskeleton: the cytoskeleton as a metabolic sensor  

PubMed Central

Background There is extensive evidence for the interaction of metabolic enzymes with the eukaryotic cytoskeleton. The significance of these interactions is far from clear. Presentation of the hypothesis In the cytoskeletal integrative sensor hypothesis presented here, the cytoskeleton senses and integrates the general metabolic activity of the cell. This activity depends on the binding to the cytoskeleton of enzymes and, depending on the nature of the enzyme, this binding may occur if the enzyme is either active or inactive but not both. This enzyme-binding is further proposed to stabilize microtubules and microfilaments and to alter rates of GTP and ATP hydrolysis and their levels. Testing the hypothesis Evidence consistent with the cytoskeletal integrative sensor hypothesis is presented in the case of glycolysis. Several testable predictions are made. There should be a relationship between post-translational modifications of tubulin and of actin and their interaction with metabolic enzymes. Different conditions of cytoskeletal dynamics and enzyme-cytoskeleton binding should reveal significant differences in local and perhaps global levels and ratios of ATP and GTP. The different functions of moonlighting enzymes should depend on cytoskeletal binding. Implications of the hypothesis The physical and chemical effects arising from metabolic sensing by the cytoskeleton would have major consequences on cell shape, dynamics and cell cycle progression. The hypothesis provides a framework that helps the significance of the enzyme-decorated cytoskeleton be determined. PMID:23398642

2013-01-01

80

In silico study of binding motifs in squalene synthase enzyme of secondary metabolic pathway solanaceae family.  

PubMed

Solanaceae is an important family with several plants of medicinal importance. These medicinal plants have distinctive pathways for secondary metabolite biosynthesis. In most of the plants, two important compounds, dimethylallyl diphosphate and isopentenyl diphosphate, synthesize isoprenoid or terpenoids. Squalene synthase (SQS) is a key enzyme of the biosynthesis of isoprenoid (farnesyl pyrophosphate (FPP) ? squalene). Withania somnifera (ashwagandha), an important medicinal plant of family solanaceae produces withanolides. Withanolides are secondary metabolites synthesized through isoprenoid pathway. In this study, 13 SQS protein sequences from the plants of solanacae family and Arabidopsis thaliana were analyzed. The conserved domains in corresponding sequences were searched. The multiple sequence alignment of conserved domains revealed the important motifs and identified the residue substitution in each motif. Our result further indicated that residue substitution in motifs might not lead to functional variation, although it may affect the binding affinity of Mg(++), FPP and NAD(P)H. In addition, the homology modelling of SQS enzyme of W. somnifera was done for the prediction of three-dimensional structure. Molecular docking study of considered substrates with WsSQS was performed and the docked structure were analyzed further. The docked structures showed binding affinity for motif 2 of WsSQS. Our analysis revealed that 29 residues of motif 2 might be important for catalytic/functional activity of SQS enzyme of W. somnifera. This study may provide an understanding of metabolic pathways responsible for the production of secondary metabolites. The motifs may play a key role in regulating the pathway towards enhanced production of metabolites. PMID:25106523

Sanchita; Singh, Garima; Sharma, Ashok

2014-11-01

81

De novo transcriptome characterization of Lilium 'Sorbonne' and key enzymes related to the flavonoid biosynthesis.  

PubMed

Lily is an important cut-flower and bulb crop in the commercial market. Here, transcriptome profiling of Lilium 'Sorbonne' was conducted through de novo sequencing based on Illumina platform. This research aims at revealing basic information and data that can be used for applied purposes especially the molecular regulatory information on flower color formation in lily. In total, 36,920,680 short reads which corresponded to 3.32 GB of total nucleotides, were produced through transcriptome sequencing. These reads were assembled into 39,636 Unigenes, of which 30,986 were annotated in Nr, Nt, Swiss-Prot, KEGG, COG, GO databases. Based on the three public protein databases, a total of 32,601 coding sequences were obtained. Meanwhile, 19,242 Unigenes were assigned to 128 KEGG pathways. Those with the greatest representation by unique sequences were for ''metabolic pathways'' (5,406 counts, 28.09 %). Our transcriptome revealed 156 Unigenes that encode key enzymes in the flavonoid biosynthesis pathway including CHS, CHI, F3H, FLS, DFR, etc. MISA software identified 2,762 simple sequence repeats, from which 1,975 primers pairs were designed. Over 2,762 motifs were identified, of which the most frequent was AG/CT (659, 23.86 %), followed by A/T (615, 22.27 %) and CCG/CGG (416, 15.06 %). Based on the results, we believe that the color formation of the Lilium 'Sorbonne' flower was mainly controlled by the flavonoid biosynthesis pathway. Additionally, this research provides initial genetic resources that will be valuable to the lily community for other molecular biology research, and the SSRs will facilitate marker-assisted selection in lily breeding. PMID:25307066

Zhang, Ming-Fang; Jiang, Ling-Min; Zhang, Dong-Mei; Jia, Gui-Xia

2015-02-01

82

2D SMARTCyp Reactivity-Based Site of Metabolism Prediction for Major Drug-Metabolizing Cytochrome P450 Enzymes  

E-print Network

the impact of a key substrate-receptor recognition feature of each enzyme as a correction term abstraction from the substrate followed by oxygen rebound or a concerted oxygenation via formation of a sigma

83

Axonal and dendritic localization of mRNAs for glycogen-metabolizing enzymes in cultured rodent neurons  

PubMed Central

Background Localization of mRNAs encoding cytoskeletal or signaling proteins to neuronal processes is known to contribute to axon growth, synaptic differentiation and plasticity. In addition, a still increasing spectrum of mRNAs has been demonstrated to be localized under different conditions and developing stages thus reflecting a highly regulated mechanism and a role of mRNA localization in a broad range of cellular processes. Results Applying fluorescence in-situ-hybridization with specific riboprobes on cultured neurons and nervous tissue sections, we investigated whether the mRNAs for two metabolic enzymes, namely glycogen synthase (GS) and glycogen phosphorylase (GP), the key enzymes of glycogen metabolism, may also be targeted to neuronal processes. If it were so, this might contribute to clarify the so far enigmatic role of neuronal glycogen. We found that the mRNAs for both enzymes are localized to axonal and dendritic processes in cultured lumbar spinal motoneurons, but not in cultured trigeminal neurons. In cultured cortical neurons which do not store glycogen but nevertheless express glycogen synthase, the GS mRNA is also subject to axonal and dendritic localization. In spinal motoneurons and trigeminal neurons in situ, however, the mRNAs could only be demonstrated in the neuronal somata but not in the nerves. Conclusions We could demonstrate that the mRNAs for major enzymes of neural energy metabolism can be localized to neuronal processes. The heterogeneous pattern of mRNA localization in different culture types and developmental stages stresses that mRNA localization is a versatile mechanism for the fine-tuning of cellular events. Our findings suggest that mRNA localization for enzymes of glycogen metabolism could allow adaptation to spatial and temporal energy demands in neuronal events like growth, repair and synaptic transmission. PMID:24898526

2014-01-01

84

Specificity of Non-Michaelis-Menten Enzymes: Necessary Information for Analyzing Metabolic Pathways  

E-print Network

Specificity of Non-Michaelis-Menten Enzymes: Necessary Information for Analyzing Metabolic Pathways results for analyzing the kinetic behavior of metabolic pathways. The importance of using kcat/K0.5 h the state in which Michaelis and his collaborators had left it more than thirty years earlier. During

85

Activities of amino acid metabolizing enzymes in the stomach and small intestine of developing rats  

E-print Network

Activities of amino acid metabolizing enzymes in the stomach and small intestine of developing rats amino acids. Introduction. The stomach and small intestine clearly have a common embryonic origin ; both, involded in amino acid metabolism. The stomach and intestine play an important role in the post

Boyer, Edmond

86

Effects of anticonvulsant drug gabapentin on the enzymes in metabolic pathways of glutamate and GABA  

Microsoft Academic Search

Gabapentin is a novel anticonvulsant drug. The anticonvulsant mechanism of gabapentin is not known. Based on the amino acid structure of gabapentin we explored its possible effects on glutamate and ?-aminobutyric acid (GABA) metabolism in brain as they may relate to its anticonvulsant mechanisms of action. Gabapentin was tested for its effects on seven enzymes in the metabolic pathways of

Arie Goldlust; Ti-Zhi Su; Devin F. Welty; Charles P. Taylor; Dale L. Oxender

1995-01-01

87

Predicting enzyme targets for cancer drugs by profiling human Metabolic reactions in NCI60 cell lines  

Microsoft Academic Search

BACKGROUND: Drugs can influence the whole metabolic system by targeting enzymes which catalyze metabolic reactions. The existence of interactions between drugs and metabolic reactions suggests a potential way to discover drug targets. RESULTS: In this paper, we present a computational method to predict new targets for approved anti-cancer drugs by exploring drug-reaction interactions. We construct a Drug-Reaction Network to provide

Limin Li; Xiaobo Zhou; Wai-Ki Ching; Ping Wang

2010-01-01

88

MetaCyc: a multiorganism database of metabolic pathways and enzymes  

Microsoft Academic Search

MetaCyc is a database of metabolic pathways and enzymes located at http:\\/\\/MetaCyc.org\\/. Its goal is to serve as a metabolic encyclopedia, containing a collection of non-redundant pathways central to 15 small molecule metabolism, which have been reported in the experimental literature. Most of the pathways in MetaCyc occur in microorganisms and plants, although animal pathways are also repre- sented. MetaCyc

Ron Caspi; Hartmut Foerster; Carol A. Fulcher; Rebecca Hopkinson; John Ingraham; Pallavi Kaipa; Markus Krummenacker; Suzanne M. Paley; John Pick; Seung Yon Rhee; Christophe Tissier; Peifen Zhang; Peter D. Karp

2006-01-01

89

Xenobiotic metabolizing enzyme (XME) expression in aging humans.  

EPA Science Inventory

In the presence of foreign compounds, metabolic homeostasis of the organism is maintained by the liver?s ability to detoxify and eliminate these xenobiotics. This is accomplished, in part, by the expression of XMEs, which metabolize xenobiotics and determine whether exposure will...

90

PGC-1{alpha}: a key regulator of energy metabolism  

NSDL National Science Digital Library

Peroxisome proliferator-activated receptor-{gamma} coactivator (PGC)-1{alpha} is a member of a family of transcription coactivators that plays a central role in the regulation of cellular energy metabolism. This makes it an inviting target for pharmacological intervention in the treatment of obesity and Type 2 diabetes.

Huiyun Liang (University of Texas Health Science Center Department of Cellular and Structural Biology, Barshop Institute for Longevity and Aging Studies); Walter F. Ward (University of Texas Health Science Center Barshop Institute for Longevity and Aging Studies)

2006-12-01

91

Experiment K-6-21. Effect of microgravity on 1) metabolic enzymes of type 1 and type 2 muscle fibers and on 2) metabolic enzymes, neutransmitter amino acids, and neurotransmitter associated enzymes in motor and somatosensory cerebral cortex. Part 1: Metabolic enzymes of individual muscle fibers; part 2: metabolic enzymes of hippocampus and spinal cord  

NASA Technical Reports Server (NTRS)

The individual fibers of any individual muscle vary greatly in enzyme composition, a fact which is obscured when enzyme levels of a whole muscle are measured. The purpose of this study was therefore to assess the changes due to weightless on the enzyme patterns composed by the individual fibers within the flight muscles. In spite of the limitation in numbers of muscles examined, it is apparent that: (1) that the size of individual fibers (i.e., their dry weight) was reduced about a third, (2) that this loss in dry mass was accompanied by changes in the eight enzymes studied, and (3) that these changes were different for the two muscles, and different for the two enzyme groups. In the soleus muscle the absolute amounts of the three enzymes of oxidative metabolism decreased about in proportion to the dry weight loss, so that their concentration in the atrophic fibers was almost unchanged. In contrast, there was little loss among the four enzymes of glycogenolysis - glycolysis so that their concentrations were substantially increased in the atrophic fibers. In the TA muscle, these seven enzymes were affected in just the opposite direction. There appeared to be no absolute loss among the oxidative enzymes, whereas the glycogenolytic enzymes were reduced by nearly half, so that the concentrations of the first metabolic group were increased within the atrophic fibers and the concentrations of the second group were only marginally decreased. The behavior of hexokinase was exceptional in that it did not decrease in absolute terms in either type of muscle and probably increased as much as 50 percent in soleus. Thus, their was a large increase in concentration of this enzyme in the atrophied fibers of both muscles. Another clear-cut finding was the large increase in the range of activities of the glycolytic enzymes among individual fibers of TA muscles. This was due to the emergence of TA fibers with activities for enzymes of this group extending down to levels as low as those found in control soleus muscles. It would be interesting to know if this represents a transition stage, and whether with prolonged weightlessness most of the fibers would be transformed into a low glycogenolytic type.

Lowry, O.; Mcdougal, D., Jr.; Nemeth, Patti M.; Maggie, M.-Y. Chi; Pusateri, M.; Carter, J.; Manchester, J.; Norris, Beverly; Krasnov, I.

1990-01-01

92

Light Modulation of the Activity of Carbon Metabolism Enzymes in the Crassulacean Acid Metabolism Plant Kalanchoë 1  

PubMed Central

When intact Kalanchoë plants are illuminated NADP-linked malic dehydrogenase and three enzymes of the reductive pentose phosphate pathway, ribulose-5-phosphate kinase, NADP-linked glyceraldehyde-3-phosphate dehydrogenase, and sedoheptulose-1,7-diphosphate phosphatase, are activated. In crude extracts these enzymes are activated by dithiothreitol treatment. Light or dithiothreitol treatment does not inactivate the oxidative pentose phosphate pathway enzyme glucose-6-phosphate dehydrogenase. Likewise, neither light, in vivo, nor dithiothreitol, in vitro, affects fructose-1,6-diphosphate phosphatase. Apparently the potential for modulation of enzyme activity by the reductively activated light effect mediator system exists in Crassulacean acid metabolism plants, but some enzymes which are light-dark-modulated in the pea plant are not in Kalanchoë. PMID:16660316

Gupta, Vimal K.; Anderson, Louise E.

1978-01-01

93

Metabolism as a key to histone deacetylase inhibition  

PubMed Central

There is growing interest in the epigenetic mechanisms that are dysregulated in cancer and other human pathologies. Under this broad umbrella, modulators of histone deacetylase (HDAC) activity have gained interest as both cancer chemopreventive and therapeutic agents. Of the first generation, FDA-approved HDAC inhibitors to have progressed to clinical trials, vorinostat represents a “direct acting” compound with structural features suitable for docking into the HDAC pocket, whereas romidepsin can be considered a prodrug that undergoes reductive metabolism to generate the active intermediate (a zinc-binding thiol). It is now evident that other agents, including those in the human diet, can be converted by metabolism to intermediates that affect HDAC activity. Examples are cited of short-chain fatty acids, seleno-?-keto acids, small molecule thiols, mercapturic acid metabolites, indoles, and polyphenols. The findings are discussed in the context of putative endogenous HDAC inhibitors generated by intermediary metabolism (e.g. pyruvate), the yin–yang of HDAC inhibition versus HDAC activation, and the screening assays that might be most appropriate for discovery of novel HDAC inhibitors in the future. PMID:21599534

Rajendran, Praveen; Williams, David E.; Ho, Emily; Dashwood, Roderick H.

2012-01-01

94

Biochemistry and biotechnology of mesophilic and thermophilic nitrile metabolizing enzymes  

Microsoft Academic Search

Mesophilic nitrile-degrading enzymes are widely dispersed in the Bacteria and lower orders of the eukaryotic kingdom. Two\\u000a distinct enzyme systems, a nitrilase catalyzing the direct conversion of nitriles to carboxylic acids and separate but cotranscribed\\u000a nitrile hydratase and amidase activities, are now well known. Nitrile hydratases are metalloenzymes, incorporating FeIII or CoII ions in thiolate ligand networks where they function

Don Cowan; Rebecca Cramp; Rui Pereira; Dan Graham; Qadreyah Almatawah

1998-01-01

95

Gallium nitrate is efficacious in murine models of tuberculosis and inhibits key bacterial Fe-dependent enzymes.  

PubMed

Acquiring iron (Fe) is critical to the metabolism and growth of Mycobacterium tuberculosis. Disruption of Fe metabolism is a potential approach for novel antituberculous therapy. Gallium (Ga) has many similarities to Fe. Biological systems are often unable to distinguish Ga(3+) from Fe(3+). Unlike Fe(3+), Ga(3+) cannot be physiologically reduced to Ga(2+). Thus, substituting Ga for Fe in the active site of enzymes may render them nonfunctional. We previously showed that Ga inhibits growth of M. tuberculosis in broth and within cultured human macrophages. We now report that Ga(NO3)3 shows efficacy in murine tuberculosis models. BALB/c SCID mice were infected intratracheally with M. tuberculosis, following which they received daily intraperitoneal saline, Ga(NO3)3, or NaNO3. All mice receiving saline or NaNO3 died. All Ga(NO3)3-treated mice survived. M. tuberculosis CFU in the lungs, liver, and spleen of the NaNO3-treated or saline-treated mice were significantly higher than those in Ga-treated mice. When BALB/c mice were substituted for BALB/c SCID mice as a chronic (nonlethal) infection model, Ga(NO3)3 treatment significantly decreased lung CFU. To assess the mechanism(s) whereby Ga inhibits bacterial growth, the effect of Ga on M. tuberculosis ribonucleotide reductase (RR) (a key enzyme in DNA replication) and aconitase activities was assessed. Ga decreased M. tuberculosis RR activity by 50 to 60%, but no additional decrease in RR activity was seen at Ga concentrations that completely inhibited mycobacterial growth. Ga decreased aconitase activity by 90%. Ga(NO3)3 shows efficacy in murine M. tuberculosis infection and leads to a decrease in activity of Fe-dependent enzymes. Additional work is warranted to further define Ga's mechanism of action and to optimize delivery forms for possible therapeutic uses in humans. PMID:24060870

Olakanmi, Oyebode; Kesavalu, Banurekha; Pasula, Rajamouli; Abdalla, Maher Y; Schlesinger, Larry S; Britigan, Bradley E

2013-12-01

96

Gallium Nitrate Is Efficacious in Murine Models of Tuberculosis and Inhibits Key Bacterial Fe-Dependent Enzymes  

PubMed Central

Acquiring iron (Fe) is critical to the metabolism and growth of Mycobacterium tuberculosis. Disruption of Fe metabolism is a potential approach for novel antituberculous therapy. Gallium (Ga) has many similarities to Fe. Biological systems are often unable to distinguish Ga3+ from Fe3+. Unlike Fe3+, Ga3+ cannot be physiologically reduced to Ga2+. Thus, substituting Ga for Fe in the active site of enzymes may render them nonfunctional. We previously showed that Ga inhibits growth of M. tuberculosis in broth and within cultured human macrophages. We now report that Ga(NO3)3 shows efficacy in murine tuberculosis models. BALB/c SCID mice were infected intratracheally with M. tuberculosis, following which they received daily intraperitoneal saline, Ga(NO3)3, or NaNO3. All mice receiving saline or NaNO3 died. All Ga(NO3)3-treated mice survived. M. tuberculosis CFU in the lungs, liver, and spleen of the NaNO3-treated or saline-treated mice were significantly higher than those in Ga-treated mice. When BALB/c mice were substituted for BALB/c SCID mice as a chronic (nonlethal) infection model, Ga(NO3)3 treatment significantly decreased lung CFU. To assess the mechanism(s) whereby Ga inhibits bacterial growth, the effect of Ga on M. tuberculosis ribonucleotide reductase (RR) (a key enzyme in DNA replication) and aconitase activities was assessed. Ga decreased M. tuberculosis RR activity by 50 to 60%, but no additional decrease in RR activity was seen at Ga concentrations that completely inhibited mycobacterial growth. Ga decreased aconitase activity by 90%. Ga(NO3)3 shows efficacy in murine M. tuberculosis infection and leads to a decrease in activity of Fe-dependent enzymes. Additional work is warranted to further define Ga's mechanism of action and to optimize delivery forms for possible therapeutic uses in humans. PMID:24060870

Olakanmi, Oyebode; Kesavalu, Banurekha; Pasula, Rajamouli; Abdalla, Maher Y.; Schlesinger, Larry S.

2013-01-01

97

Antidiabetic activity of Sedum dendroideum: metabolic enzymes as putative targets for the bioactive flavonoid kaempferitrin.  

PubMed

The aim of this study was to evaluate the antidiabetic potential of a leaf extract and flavonoids from Sedum dendroideum (SD). Additionally, our goals were to establish a possible structure/activity relationship between these flavonoids and to assess the most active flavonoid on the glycolytic enzyme 6-phosphofructo-1-kinase (PFK). SD juice (LJ), a flavonoid-rich fraction (BF), and separately five flavonoids were evaluated intraperitoneally for their acute hypoglycemic activity in normal and streptozotocin-induced diabetic mice. First, the major flavonoids kaempferol 3,7-dirhamnoside or kaempferitrin (1), kaempferol 3-glucoside-7-rhamnoside (2), and kaempferol 3-neohesperidoside-7-rhamnoside (3) were tested. Then, the monoglycosides kaempferol 7-rhamnoside (5) and kaempferol 3-rhamnoside (6) were assayed to establish their structure/activity relationship. The effect of 1 on PFK was evaluated in skeletal muscle, liver, and adipose tissue from treated mice. LJ (400 mg/kg), BF (40 mg/kg), and flavonoid 1 (4 mg/kg) reduced glycemia in diabetic mice (120 min) by 52, 53, and 61%, respectively. Flavonoids 2, 3, 5, and 6 were inactive or showed little activity, suggesting that the two rhamnosyl moieties in kaempferitrin are important requirements. Kaempferitrin enhanced the PFK activity chiefly in hepatic tissue, suggesting that it is able to stimulate tissue glucose utilization. This result is confirmed testing kaempferitrin on C2C12 cell line, where it enhanced glucose consumption, lactate production, and the key regulatory glycolytic enzymes. The hypoglycemic activity of kaempferitrin depends on the presence of both rhamnosyl residues in the flavonoid structure when intraperitoneally administered. Our findings show for the first time that a flavonoid is capable of stimulating PFK in a model of diabetes and that kaempferitrin stimulates glucose-metabolizing enzymes. This study contributes to the knowledge of the mechanisms by which this flavonoid exerts its hypoglycemic activity. PMID:24817132

Da Silva, Daniel; Casanova, Livia Marques; Marcondes, Mariah Celestino; Espindola-Netto, Jair Machado; Paixăo, Larissa Pereira; De Melo, Giany Oliveira; Zancan, Patricia; Sola-Penna, Mauro; Costa, Sônia Soares

2014-05-01

98

Metaproteomic Analysis of a Chemosynthetic Hydrothermal Vent Community Reveals Insights into Key-Metabolic Processes  

NASA Astrophysics Data System (ADS)

In 2005 researchers at the Centre for Geobiology, University of Bergen, Norway, discovered two active vent fields at the southwestern Mohns Ridge in the Norwegian-Greenland Sea. The fields harbours both low-temperature iron deposits and high-temperature white smoker vents. Distinct microbial mats were abundantly present and located in close vicinity to the hydrothermal vent sites. Characteristics of the mat environment were steep physical and chemical gradients with temperatures ranging from 10°C in the top layer to 90°C at 10 cm bsf and high concentrations of hydrogen sulfide and methane. The work presented here focus on the In situ community activities, and is part of an integrated strategy combining metagenomics, metatranscriptomics and metaproteomics to in-depth characterise these newly discovered hydrothermal vent communities. Extracted proteins were separated via SDS-PAGE. Peptides extracted after In-gel tryptic digest was injected into an Ultimate 3000 nanoLC system connected to a linear quadropole ion trap-orbitrap (LTQ-Orbitrap XL) mass spectrometer equipped with a nanoelectrospray ion source. A custom database of open reading frames (ORFs) from the combined metatranscriptome and metagenome datasets was implemented and searched against using Mascot 2.2; the IRMa tool box [1] was used in peptide validation. Validated ORFs were subjected to a Blastp search against Refseq with an E-value cut-off of 0.001. A total of 1097 proteins with ? 2 peptides were identified of which 921 gave a hit against Refseq, containing 519 unique proteins. Key enzymes of the sulfur oxidation pathway (sox) were found, which were taxonomically affiliated to Epsilonproteobacteria. In addition, this group actively expressed hydrogenases and membrane proteins involved in aerobic and anaerobic respiratory chains. Enzymes of dissimilatory sulfate-reduction (APS-reductase, AprAB and DsrA2) were found with closest hit to members of the Deltaproteobacteria. These findings indicate an internal sulfur cycle within the community. The community contained expressed enzymes of a variety of carbon metabolism pathways. Key enzymes of the reverse TCA cycle for fixation of CO2 and the Wood-Ljungdahl pathway for oxidation of acetyl-CoA and / or the fixation of CO2 were found. Key enzymes of aerobic and anaerobic methane-oxidation pathways were identified as well, namely particulate methane monooxygenase and methyl-Coenzyme M reductase. Various house-keeping gene-products, like cold- and heat shock proteins as well as ribosomal proteins and ATP synthases were identified. This approach has a future potential of broadening our understanding of environmental complexity and regulation in response to geochemical constraints. [1] Dupierris, V., Masselon, C., Court, M., Kieffer-Jaquinod, S., and Bruley, C. (2009) A toolbox for validation of mass spectrometry peptides identification and generation of database: IRMa. Bioinformatics 25, 1980-1981.

Steen, I.; Stokke, R.; Lanzen, A.; Pedersen, R.; Řvreĺs, L.; Urich, T.

2010-12-01

99

Metabolic and Bactericidal Effects of Targeted Suppression of NadD and NadE Enzymes in Mycobacteria  

PubMed Central

ABSTRACT Mycobacterium tuberculosis remains a major cause of death due to the lack of treatment accessibility, HIV coinfection, and drug resistance. Development of new drugs targeting previously unexplored pathways is essential to shorten treatment time and eliminate persistent M. tuberculosis. A promising biochemical pathway which may be targeted to kill both replicating and nonreplicating M. tuberculosis is the biosynthesis of NAD(H), an essential cofactor in multiple reactions crucial for respiration, redox balance, and biosynthesis of major building blocks. NaMN adenylyltransferase (NadD) and NAD synthetase (NadE), the key enzymes of NAD biosynthesis, were selected as promising candidate drug targets for M. tuberculosis. Here we report for the first time kinetic characterization of the recombinant purified NadD enzyme, setting the stage for its structural analysis and inhibitor development. A protein knockdown approach was applied to validate bothNadD and NadE as target enzymes. Induced degradation of either target enzyme showed a strong bactericidal effect which coincided with anticipated changes in relative levels of NaMN and NaAD intermediates (substrates of NadD and NadE, respectively) and ultimate depletion of the NAD(H) pool. A metabolic catastrophe predicted as a likely result of NAD(H) deprivation of cellular metabolism was confirmed by 13C biosynthetic labeling followed by gas chromatography-mass spectrometry (GC-MS) analysis. A sharp suppression of metabolic flux was observed in multiple NAD(P)(H)-dependent pathways, including synthesis of many amino acids (serine, proline, aromatic amino acids) and fatty acids. Overall, these results provide strong validation of the essential NAD biosynthetic enzymes, NadD and NadE, as antimycobacterial drug targets. PMID:24549842

Rodionova, Irina A.; Schuster, Brian M.; Guinn, Kristine M.; Sorci, Leonardo; Scott, David A.; Li, Xiaoqing; Kheterpal, Indu; Shoen, Carolyn; Cynamon, Michael; Locher, Christopher; Rubin, Eric J.; Osterman, Andrei L.

2014-01-01

100

Oral cancer cells may rewire alternative metabolic pathways to survive from siRNA silencing of metabolic enzymes  

PubMed Central

Background Cancer cells may undergo metabolic adaptations that support their growth as well as drug resistance properties. The purpose of this study is to test if oral cancer cells can overcome the metabolic defects introduced by using small interfering RNA (siRNA) to knock down their expression of important metabolic enzymes. Methods UM1 and UM2 oral cancer cells were transfected with siRNA to transketolase (TKT) or siRNA to adenylate kinase (AK2), and Western blotting was used to confirm the knockdown. Cellular uptake of glucose and glutamine and production of lactate were compared between the cancer cells with either TKT or AK2 knockdown and those transfected with control siRNA. Statistical analysis was performed with student T-test. Results Despite the defect in the pentose phosphate pathway caused by siRNA knockdown of TKT, the survived UM1 or UM2 cells utilized more glucose and glutamine and secreted a significantly higher amount of lactate than the cells transferred with control siRNA. We also demonstrated that siRNA knockdown of AK2 constrained the proliferation of UM1 and UM2 cells but similarly led to an increased uptake of glucose/glutamine and production of lactate by the UM1 or UM2 cells survived from siRNA silencing of AK2. Conclusions Our results indicate that the metabolic defects introduced by siRNA silencing of metabolic enzymes TKT or AK2 may be compensated by alternative feedback metabolic mechanisms, suggesting that cancer cells may overcome single defective pathways through secondary metabolic network adaptations. The highly robust nature of oral cancer cell metabolism implies that a systematic medical approach targeting multiple metabolic pathways may be needed to accomplish the continued improvement of cancer treatment. PMID:24666435

2014-01-01

101

Hydrogenosome Metabolism Is the Key Target for Antiparasitic Activity of Resveratrol against Trichomonas vaginalis  

PubMed Central

Metronidazole (MDZ) and related 5-nitroimidazoles are the recommended drugs for treatment of trichomoniasis, a sexually transmitted disease caused by the protozoan parasite Trichomonas vaginalis. However, novel treatment options are needed, as recent reports have claimed resistance to these drugs in T. vaginalis isolates. In this study, we analyzed for the first time the in vitro effects of the natural polyphenol resveratrol (RESV) on T. vaginalis. At concentrations of between 25 and 100 ?M, RESV inhibited the in vitro growth of T. vaginalis trophozoites; doses of 25 ?M exerted a cytostatic effect, and higher doses exerted a cytotoxic effect. At these concentrations, RESV caused inhibition of the specific activity of a 120-kDa [Fe]-hydrogenase (Tvhyd). RESV did not affect Tvhyd gene expression and upregulated pyruvate-ferredoxin oxidoreductase (a hydrogenosomal enzyme) gene expression only at a high dose (100 ?M). At doses of 50 to 100 ?M, RESV also caused overexpression of heat shock protein 70 (Hsp70), a protective protein found in the hydrogenosome of T. vaginalis. The results demonstrate the potential of RESV as an antiparasitic treatment for trichomoniasis and suggest that the mechanism of action involves induction of hydrogenosomal dysfunction. In view of the results, we propose hydrogenosomal metabolism as a key target in the design of novel antiparasitic drugs. PMID:23478970

Mallo, Natalia; Lamas, Jesús

2013-01-01

102

Organization of Enzyme Concentration across the Metabolic Network in Cancer Cells  

PubMed Central

Rapid advances in mass spectrometry have allowed for estimates of absolute concentrations across entire proteomes, permitting the interrogation of many important biological questions. Here, we focus on a quantitative aspect of human cancer cell metabolism that has been limited by a paucity of available data on the abundance of metabolic enzymes. We integrate data from recent measurements of absolute protein concentration to analyze the statistics of protein abundance across the human metabolic network. At a global level, we find that the enzymes in glycolysis comprise approximately half of the total amount of metabolic proteins and can constitute up to 10% of the entire proteome. We then use this analysis to investigate several outstanding problems in cancer metabolism, including the diversion of glycolytic flux for biosynthesis, the relative contribution of nitrogen assimilating pathways, and the origin of cellular redox potential. We find many consistencies with current models, identify several inconsistencies, and find generalities that extend beyond current understanding. Together our results demonstrate that a relatively simple analysis of the abundance of metabolic enzymes was able to reveal many insights into the organization of the human cancer cell metabolic network. PMID:25621879

Madhukar, Neel S.; Warmoes, Marc O.; Locasale, Jason W.

2015-01-01

103

Nanoparticle-protein interactions: from crucial plasma proteins to key enzymes  

NASA Astrophysics Data System (ADS)

Studying the effects of NPs on proteins may help understanding potential biological injuries such as changes in protein fibrillation, exposure of new antigenic epitopes, and loss of function such as enzymatic activity impairment. In this mini-review we present recent data which help understand the basis of NP-protein interactions and their subsequent potential effects on key mediators of biological functions such as enzymes.

Sanfins, Elodie; Dairou, Julien; Rodrigues-Lima, Fernando; Dupret, Jean-Marie

2011-07-01

104

Pharmacogenomics of drug metabolizing enzymes and transporters: implications for cancer therapy  

PubMed Central

The new era of personalized medicine, which integrates the uniqueness of an individual with respect to the pharmacokinetics and pharmacodynamics of a drug, holds promise as a means to provide greater safety and efficacy in drug design and development. Personalized medicine is particularly important in oncology, whereby most clinically used anticancer drugs have a narrow therapeutic window and exhibit a large interindividual pharmacokinetic and pharmacodynamic variability. This variability can be explained, at least in part, by genetic variations in the genes encoding drug metabolizing enzymes, transporters, or drug targets. Understanding of how genetic variations influence drug disposition and action could help in tailoring cancer therapy based on individual’s genetic makeup. This review focuses on the pharmacogenomics of drug metabolizing enzymes and drug transporters, with a particular highlight of examples whereby genetic variations in the metabolizing enzymes and transporters influence the pharmacokinetics and/or response of chemotherapeutic agents. PMID:23226051

Li, Jing; Bluth, Martin H

2011-01-01

105

Identification of the human liver enzymes involved in the metabolism of the antimigraine agent almotriptan.  

PubMed

Almotriptan is a novel highly selective 5-hydroxytryptamine(1B/1D) agonist developed for the acute oral treatment of migraine. The in vitro metabolism of almotriptan has been investigated using human liver subcellular fractions and cDNA-expressed human enzymes, to study the metabolic pathways and identify the enzymes responsible for the formation of the major metabolites. Specific enzymes were identified by correlation analysis, chemical inhibition studies, and incubation with various cDNA expressed human enzymes. Human liver microsomes and S9 fraction metabolize almotriptan by 2-hydroxylation of the pyrrolidine group to form a carbinolamine metabolite intermediate, a reaction catalyzed by CYP3A4 and CYP2D6. This metabolite is further oxidized by aldehyde dehydrogenase to the open ring gamma-aminobutyric acid metabolite. Almotriptan is also metabolized at the dimethylaminoethyl group by N-demethylation, a reaction that is carried out by five different cytochrome P450s, flavin monooxygenase-3 mediated N-oxidation, and MAO-A catalyzed oxidative deamination to form the indole acetic acid and the indole ethyl alcohol derivatives of almotriptan. The use of human liver mitochondria confirmed the contribution of MAO-A to the metabolism of almotriptan. Both, the gamma-aminobutyric acid and the indole acetic acid metabolites have been found to be the major in vivo metabolites of almotriptan in humans. In addition, different clinical trials conducted to study the effects of CYP3A4, CYP2D6, and MAO-A on the pharmacokinetics of almotriptan confirmed the involvement of these enzymes in the metabolic clearance of this drug and that no dose changes are required in the presence of inhibitors of these enzymes. PMID:12642466

Salva, Miquel; Jansat, Josep M; Martinez-Tobed, Antonio; Palacios, Jose M

2003-04-01

106

Survey of Human Oxidoreductases and Cytochrome P450 Enzymes Involved in the Metabolism of Chemicals.  

PubMed

Analyzing the literature resources used in our previous reports, we calculated the fractions of the oxidoreductase enzymes FMO (microsomal flavin-containing monooxygenase), AKR (aldo-keto reductase), MAO (monoamine oxidase), and cytochrome P450 participating in metabolic reactions. The calculations show that the fractions of P450s involved in metabolism of all chemicals (general chemicals, natural and physiological compounds, and drugs) are rather consistent in the findings that > 90% of enzymatic reactions are catalyzed by P450s. Regarding drug metabolism, three-fourths of the human P450 reactions can be accounted for by a set of five P450s: 1A2, 2C9, 2C19, 2D6, and 3A4, and the largest fraction of the P450 reactions is catalyzed by P450 3A enzymes. P450 3A4 participation in metabolic reactions of drugs varied from 13% for general chemicals to 27% for drugs. PMID:25485457

Rendic, Slobodan Petar; Guengerich, F Peter

2014-12-01

107

Novel TPP-riboswitch activators bypass metabolic enzyme dependency  

PubMed Central

Riboswitches are conserved regions within mRNA molecules that bind specific metabolites and regulate gene expression. TPP-riboswitches, which respond to thiamine pyrophosphate (TPP), are involved in the regulation of thiamine metabolism in numerous bacteria. As these regulatory RNAs are often modulating essential biosynthesis pathways they have become increasingly interesting as promising antibacterial targets. Here, we describe thiamine analogs containing a central 1,2,3-triazole group to induce repression of thiM-riboswitch dependent gene expression in different E. coli strains. Additionally, we show that compound activation is dependent on proteins involved in the metabolic pathways of thiamine uptake and synthesis. The most promising molecule, triazolethiamine (TT), shows concentration dependent reporter gene repression that is dependent on the presence of thiamine kinase ThiK, whereas the effect of pyrithiamine (PT), a known TPP-riboswitch modulator, is ThiK independent. We further show that this dependence can be bypassed by triazolethiamine-derivatives that bear phosphate-mimicking moieties. As triazolethiamine reveals superior activity compared to pyrithiamine, it represents a very promising starting point for developing novel antibacterial compounds that target TPP-riboswitches. Riboswitch-targeting compounds engage diverse endogenous mechanisms to attain in vivo activity. These findings are of importance for the understanding of compounds that require metabolic activation to achieve effective riboswitch modulation and they enable the design of novel compound generations that are independent of endogenous activation mechanisms. PMID:25121086

Lünse, Christina E.; Scott, Fraser J.; Suckling, Colin J.; Mayer, Günter

2014-01-01

108

The role of estrogen-metabolizing enzymes and estrogen receptors in human epidermis  

Microsoft Academic Search

Local estrogen metabolism and its sensitivities in the skin have been also suggested to contribute to skin homeostasis in addition to age- and\\/or gender-dependent circulating estrogen, even though their local mechanisms have been largely unknown. To characterize their potential correlations, age- and gender-dependencies were evaluated focusing on 5 pivotal estrogen-metabolizing enzymes including aromatase, estrogen sulfotransferase, steroid sulfatase, and 17?-hydroxysteroid dehydrogenases

Takayoshi Inoue; Yasuhiro Miki; Keiko Abe; Masahito Hatori; Masami Hosaka; Yoshiyuki Kariya; Shingo Kakuo; Tsutomu Fujimura; Akira Hachiya; Setsuya Aiba; Hironobu Sasano

2011-01-01

109

The ontogeny of drug metabolism enzymes and implications for adverse drug events  

Microsoft Academic Search

Profound changes in drug metabolizing enzyme (DME) expression occurs during development that impacts the risk of adverse drug events in the fetus and child. A review of our current knowledge suggests individual hepatic DME ontogeny can be categorized into one of three groups. Some enzymes, e.g., CYP3A7, are expressed at their highest level during the first trimester and either remain

Ronald N. Hines

2008-01-01

110

Experimental diabetes treated with trigonelline: effect on key enzymes related to diabetes and hypertension, ?-cell and liver function.  

PubMed

Type 2 diabetes is quite diverse, including the improvement of insulin sensitivity by dipeptidylpeptidase-4 (DPP-4) inhibitor, ?-glucosidase inhibitors, and the protection of ?-cells islet. The aim of this study was to search the effect of trigonelline (Trig) on DPP-4, ?-glucosidase and angiotensin converting enzyme (ACE) activities as well as ?-cells architecture, and starch and glucose tolerance test. In surviving diabetic rats, the supplement of Trig potentially inhibited DPP-4 and ?-glucosidase activities in both plasma and small intestine. The pancreas islet and less ?-cells damage were observed after the administration of trig to diabetic rats. The increase of GLP-1 in surviving diabetic rats suppressed the increase of blood glucose level and improved results in the oral glucose and starch tolerance test. Trig also normalized key enzyme related to hypertension as ACE and improved the hemoglobin A1c and lipid profiles (plasma triglyceride, HDL-cholesterol, LDL-cholesterol, and total cholesterol), and liver indices toxicity. Therefore, these results revealed that Trig was successful in improving glycemic control, metabolic parameters, and liver function in diabetic rats. It is therefore suggested that Trig may be a potential agent for the treatment of type 2 diabetes. PMID:23754616

Hamden, Khaled; Bengara, Amel; Amri, Zahra; Elfeki, Abdelfattah

2013-09-01

111

In vivo co-localization of enzymes on RNA scaffolds increases metabolic production in a geometrically dependent manner.  

PubMed

Co-localization of biochemical processes plays a key role in the directional control of metabolic fluxes toward specific products in cells. Here, we employ in vivo scaffolds made of RNA that can bind engineered proteins fused to specific RNA binding domains. This allows proteins to be co-localized on RNA scaffolds inside living Escherichia coli. We assembled a library of eight aptamers and corresponding RNA binding domains fused to partial fragments of fluorescent proteins. New scaffold designs could co-localize split green fluorescent protein fragments to produce activity as measured by cell-based fluorescence. The scaffolds consisted of either single bivalent RNAs or RNAs designed to polymerize in one or two dimensions. The new scaffolds were used to increase metabolic output from a two-enzyme pentadecane production pathway that contains a fatty aldehyde intermediate, as well as three and four enzymes in the succinate production pathway. Pentadecane synthesis depended on the geometry of enzymes on the scaffold, as determined through systematic reorientation of the acyl-ACP reductase fusion by rotation via addition of base pairs to its cognate RNA aptamer. Together, these data suggest that intra-cellular scaffolding of enzymatic reactions may enhance the direct channeling of a variety of substrates. PMID:25034694

Sachdeva, Gairik; Garg, Abhishek; Godding, David; Way, Jeffrey C; Silver, Pamela A

2014-08-01

112

Controlled sumoylation of the mevalonate pathway enzyme HMGS-1 regulates metabolism during aging.  

PubMed

Many metabolic pathways are critically regulated during development and aging but little is known about the molecular mechanisms underlying this regulation. One key metabolic cascade in eukaryotes is the mevalonate pathway. It catalyzes the synthesis of sterol and nonsterol isoprenoids, such as cholesterol and ubiquinone, as well as other metabolites. In humans, an age-dependent decrease in ubiquinone levels and changes in cholesterol homeostasis suggest that mevalonate pathway activity changes with age. However, our knowledge of the mechanistic basis of these changes remains rudimentary. We have identified a regulatory circuit controlling the sumoylation state of Caenorhabditis elegans HMG-CoA synthase (HMGS-1). This protein is the ortholog of human HMGCS1 enzyme, which mediates the first committed step of the mevalonate pathway. In vivo, HMGS-1 undergoes an age-dependent sumoylation that is balanced by the activity of ULP-4 small ubiquitin-like modifier protease. ULP-4 exhibits an age-regulated expression pattern and a dynamic cytoplasm-to-mitochondria translocation. Thus, spatiotemporal ULP-4 activity controls the HMGS-1 sumoylation state in a mechanism that orchestrates mevalonate pathway activity with the age of the organism. To expand the HMGS-1 regulatory network, we combined proteomic analyses with knockout studies and found that the HMGS-1 level is also governed by the ubiquitin-proteasome pathway. We propose that these conserved molecular circuits have evolved to govern the level of mevalonate pathway flux during aging, a flux whose dysregulation is associated with numerous age-dependent cardiovascular and cancer pathologies. PMID:25187565

Sapir, Amir; Tsur, Assaf; Koorman, Thijs; Ching, Kaitlin; Mishra, Prashant; Bardenheier, Annabelle; Podolsky, Lisa; Bening-Abu-Shach, Ulrike; Boxem, Mike; Chou, Tsui-Fen; Broday, Limor; Sternberg, Paul W

2014-09-16

113

Metabolism of Beclomethasone Dipropionate by Cytochrome P450 3A Enzymes  

PubMed Central

Inhaled glucocorticoids, such as beclomethasone dipropionate (BDP), are the mainstay treatment of asthma. However, ?30% of patients exhibit little to no benefit from treatment. It has been postulated that glucocorticoid resistance, or insensitivity, is attributable to individual differences in glucocorticoid receptor-mediated processes. It is possible that variations in cytochrome P450 3A enzyme-mediated metabolism of BDP may contribute to this phenomenon. This hypothesis was explored by evaluating the contributions of CYP3A4, 3A5, 3A7, and esterase enzymes in the metabolism of BDP in vitro and relating metabolism to changes in CYP3A enzyme mRNA expression via the glucocorticoid receptor in lung and liver cells. CYP3A4 and CYP3A5 metabolized BDP via hydroxylation ([M4] and [M6]) and dehydrogenation ([M5]) at similar rates; CYP3A7 did not metabolize BDP. A new metabolite [M6], formed by the combined action of esterases and CYP3A4 hydroxylation, was also characterized. To validate the results observed using microsomes and recombinant enzymes, studies were also conducted using A549 lung and DPX2 liver cells. Both liver and lung cells produced esterase-dependent metabolites [M1–M3], with [M1] correlating with CYP3A5 mRNA induction in A549 cells. Liver cells produced both hydroxylated and dehydrogenated metabolites [M4, M5, and M6], but lung cells produced only the dehydrogenated metabolite [M5]. These studies show that CYP3A4 and CYP3A5 metabolize BDP to inactive metabolites and suggest that differences in the expression or function of these enzymes in the lung and/or liver could influence BDP disposition in humans. PMID:23512537

Roberts, Jessica K.; Moore, Chad D.; Ward, Robert M.; Yost, Garold S.

2013-01-01

114

Nerve Agent Hydrolysis Activity Designed into a Human Drug Metabolism Enzyme  

PubMed Central

Organophosphorus (OP) nerve agents are potent suicide inhibitors of the essential neurotransmitter-regulating enzyme acetylcholinesterase. Due to their acute toxicity, there is significant interest in developing effective countermeasures to OP poisoning. Here we impart nerve agent hydrolysis activity into the human drug metabolism enzyme carboxylesterase 1. Using crystal structures of the target enzyme in complex with nerve agent as a guide, a pair of histidine and glutamic acid residues were designed proximal to the enzyme's native catalytic triad. The resultant variant protein demonstrated significantly increased rates of reactivation following exposure to sarin, soman, and cyclosarin. Importantly, the addition of these residues did not alter the high affinity binding of nerve agents to this protein. Thus, using two amino acid substitutions, a novel enzyme was created that efficiently converted a group of hemisubstrates, compounds that can start but not complete a reaction cycle, into bona fide substrates. Such approaches may lead to novel countermeasures for nerve agent poisoning. PMID:21445272

Hemmert, Andrew C.; Otto, Tamara C.; Chica, Roberto A.; Wierdl, Monika; Edwards, Jonathan S.; Lewis, Steven L.; Edwards, Carol C.; Tsurkan, Lyudmila; Cadieux, C. Linn; Kasten, Shane A.; Cashman, John R.; Mayo, Stephen L.; Potter, Philip M.; Cerasoli, Douglas M.; Redinbo, Matthew R.

2011-01-01

115

Dual Targeting of Antioxidant and Metabolic Enzymes to the Mitochondrion and the Apicoplast of Toxoplasma gondii  

Microsoft Academic Search

Toxoplasma gondii is an aerobic protozoan parasite that possesses mitochondrial antioxidant enzymes to safely dispose of oxygen radicals generated by cellular respiration and metabolism. As with most Apicomplexans, it also harbors a chloroplast-like organelle, the apicoplast, which hosts various biosynthetic pathways and requires antioxidant protection. Most apicoplast-resident proteins are encoded in the nuclear genome and are targeted to the organelle

Paco Pino; Bernardo Javier Foth; Lai-Yu Kwok; Lilach Sheiner; Rebecca Schepers; Thierry Soldati; Dominique Soldati-Favre

2007-01-01

116

Pharmacogenomics of drug-metabolizing enzymes and drug transporters in chemotherapy.  

PubMed

There is wide variability in the response of individuals to standard doses of drug therapy. This is an important problem in clinical practice, where it can lead to therapeutic failures or adverse drug events. Polymorphisms in genes coding for metabolizing enzymes and drug transporters can affect drug efficacy and toxicity. Pharmacogenomics aims to identify individuals predisposed to high risk of toxicity and low response from standard doses of anticancer drugs. This chapter focuses on the clinical significance of polymorphisms in drug-metabolizing enzymes and drug transporters in influencing efficacy and toxicity of anticancer therapy. The most important examples to demonstrate the influence of pharmacogenomics on anticancer therapy are thiopurine methyltransferase (TPMT), UGT (uridine diphosphate glucuronosyltransferase) 1A1*28, and DPD (dihydropyrimidine dehydrogenase) *2A, respectively, for 6-mercaptopurine, irinotecan, and 5-fluorouracil therapy. However, in most other anticancer therapies no clear association has been found for polymorphisms in drug-metabolizing enzymes and drug transporters and pharmacokinetics or pharmacodynamics of anticancer drugs. Evaluation of different regimens and tumor types showed that polymorphisms can have different, sometimes even contradictory, pharmacokinetic and pharmacodynamic effects in different tumors in response to different drugs. The clinical application of pharmacogenomics in cancer treatment therefore requires more detailed information regarding the different polymorphisms in drug-metabolizing enzymes and drug transporters. A greater understanding of complexities in pharmacogenomics is needed before individualized therapy can be applied on a routine basis. PMID:18370231

Bosch, Tessa M

2008-01-01

117

Hepatic Xenobiotic Metabolizing Enzyme Gene Expression Through the Life Stages of the Mouse  

EPA Science Inventory

BACKGROUND: Differences in responses to environmental chemicals and drugs between life stages are likely due in part to differences in the expression of xenobiotic metabolizing enzymes and transporters (XMETs). No comprehensive analysis of the mRNA expression of XMETs has been ca...

118

IDENTIFICATION OF CHANGES IN XENOBIOTIC METABOLISM ENZYME EXPRESSION DURING AGING USING COMPREHENSIVE TRANSCRIPT PROFILING  

EPA Science Inventory

Aging leads to changes in the expression of enzymes and transporters important in the metabolism and fate of xenobiotics in liver, kidney and intestine. Most notable are the changes in a number of CYP and xenobiotic transporter genes regulated by the nuclear receptors PXR, CAR an...

119

Astrocyte-neuron crosstalk regulates the expression and subcellular localization of carbohydrate metabolism enzymes.  

PubMed

Astrocytes releasing glucose- and/or glycogen-derived lactate and glutamine play a crucial role in shaping neuronal function and plasticity. Little is known, however, how metabolic functions of astrocytes, e.g., their ability to degrade glucosyl units, are affected by the presence of neurons. To address this issue we carried out experiments which demonstrated that co-culturing of rat hippocampal astrocytes with neurons significantly elevates the level of mRNA and protein for crucial enzymes of glycolysis (phosphofructokinase, aldolase, and pyruvate kinase), glycogen metabolism (glycogen synthase and glycogen phosphorylase), and glutamine synthetase in astrocytes. Simultaneously, the decrease of the capability of neurons to metabolize glucose and glutamine is observed. We provide evidence that neurons alter the expression of astrocytic enzymes by secretion of as yet unknown molecule(s) into the extracellular fluid. Moreover, our data demonstrate that almost all studied enzymes may localize in astrocytic nuclei and this localization is affected by the co-culturing with neurons which also reduces proliferative activity of astrocytes. Our results provide the first experimental evidence that the astrocyte-neuron crosstalk substantially affects the expression of basal metabolic enzymes in the both types of cells and influences their subcellular localization in astrocytes. GLIA 2015;63:328-340. PMID:25257920

Mamczur, Piotr; Borsuk, Borys; Paszko, Jadwiga; Sas, Zuzanna; Mozrzymas, Jerzy; Wi?niewski, Jacek R; Gizak, Agnieszka; Rakus, Dariusz

2015-02-01

120

Fenvalerate-induced changes in a catfish, Clarias batrachus: metabolic enzymes, RNA and protein  

Microsoft Academic Search

We studied the effects of a sublethal concentration of pyrethroid insecticide fenvalerate on metabolic enzymes, RNA and protein of brain, liver and skeletal muscle of the freshwater catfish, Clarias batrachus. Exposure to fenvalerate gradually decreased the activity of citrate synthase (CS), glucose 6-phosphate dehydrogenase (G6-PDH) and lactate dehydrogenase (LDH) in brain, liver and skeletal muscle up to 21 days. The

G Tripathi; Priyanka Verma

2004-01-01

121

Exogenous cannabinoids as substrates, inhibitors, and inducers of human drug metabolizing enzymes: a systematic review.  

PubMed

Exogenous cannabinoids are structurally and pharmacologically diverse compounds that are widely used. The purpose of this systematic review is to summarize the data characterizing the potential for these compounds to act as substrates, inhibitors, or inducers of human drug metabolizing enzymes, with the aim of clarifying the significance of these properties in clinical care and drug interactions. In vitro data were identified that characterize cytochrome P-450 (CYP-450) enzymes as potential significant contributors to the primary metabolism of several exogenous cannabinoids: tetrahydrocannabinol (THC; CYPs 2C9, 3A4); cannabidiol (CBD; CYPs 2C19, 3A4); cannabinol (CBN; CYPs 2C9, 3A4); JWH-018 (CYPs 1A2, 2C9); and AM2201 (CYPs 1A2, 2C9). CYP-450 enzymes may also contribute to the secondary metabolism of THC, and UDP-glucuronosyltransferases have been identified as capable of catalyzing both primary (CBD, CBN) and secondary (THC, JWH-018, JWH-073) cannabinoid metabolism. Clinical pharmacogenetic data further support CYP2C9 as a significant contributor to THC metabolism, and a pharmacokinetic interaction study using ketoconazole with oromucosal cannabis extract further supports CYP3A4 as a significant metabolic pathway for THC and CBD. However, the absence of interaction between CBD from oromucosal cannabis extract with omeprazole suggests a less significant role of CYP2C19 in CBD metabolism. Studies of THC, CBD, and CBN inhibition and induction of major human CYP-450 isoforms generally reflect a low risk of clinically significant drug interactions with most use, but specific human data are lacking. Smoked cannabis herb (marijuana) likely induces CYP1A2 mediated theophylline metabolism, although the role of cannabinoids specifically in eliciting this effect is questionable. PMID:24160757

Stout, Stephen M; Cimino, Nina M

2014-02-01

122

Entropy is Key to the Formation of Pentacyclic Terpenoids by Enzyme-Catalyzed Polycyclization.  

PubMed

Polycyclizations constitute a cornerstone of chemistry and biology. Multicyclic scaffolds are generated by terpene cyclase enzymes in nature through a carbocationic polycyclization cascade of a prefolded polyisoprene backbone, for which electrostatic stabilization of transient carbocationic species is believed to drive catalysis. Computational studies and site-directed mutagenesis were used to assess the contribution of entropy to the polycyclization cascade catalyzed by the triterpene cyclase from A. acidocaldarius. Our results show that entropy contributes significantly to the rate enhancement through the release of water molecules through specific channels. A single rational point mutation that results in the disruption of one of these water channels decreased the entropic contribution to catalysis by 60?kcal?mol(-1) . This work demonstrates that entropy is the key to enzyme-catalyzed polycyclizations, which are highly relevant in biology since 90?% of all natural products contain a cyclic subunit. PMID:24711227

Syrén, Per-Olof; Hammer, Stephan C; Claasen, Birgit; Hauer, Bernhard

2014-05-01

123

Interactions of paralytic shellfish toxins with xenobiotic-metabolizing and antioxidant enzymes in rodents.  

PubMed

Paralytic shellfish toxins (PSTs) are neurotoxins known to block voltage-gated sodium channels in intoxicated animals and humans. Their metabolism in mammalian systems and their effects on other receptors are not as well understood. In this study, we investigated the in vitro metabolism of two classes of PSTs, gonyautoxin 2/3 (GTX2/3) and C1/2 toxins (C1/2), using rat and mouse liver enzyme preparations. We also analyzed the effects of these toxins on several antioxidant and xenobiotic-metabolizing enzymes in mice. These toxins were selected for their prevalence in the coastal waters of Southern China. When the toxins were incubated with liver preparations containing Phase I and Phase II xenobiotic metabolizing enzymes and appropriate co-factors, no transformation of the toxins was detectable. When mice were given sub-lethal doses of GTX2/3, a loss of activity was observed in hepatic ethoxyresorufin-O-deethylase, penthoxyresorufin-O-deethylase, glutathione peroxidase and superoxide dismutase, but not in glutathione S-transferase, catalase and glutathione reductase. Exposure to the same mouse units of C1/2 caused only a slight reduction in the activity of penthoxyresorufin-O-deethylase and glutathione peroxidase. Our results indicated that these toxins may not be metabolized readily in mammals and that they may cause adverse effects other than sodium channel blocking. PMID:14505944

Hong, Hai-zheng; Lam, Paul K S; Hsieh, Dennis P H

2003-09-15

124

Drug-Metabolizing Enzyme, Transporter and Nuclear Receptor Genetically Modified Mouse Models  

PubMed Central

Determining the in vivo significance of a specific enzyme, transporter or xenobiotic receptor in drug metabolism and pharmacokinetics may be hampered by gene multiplicity and complexity, levels of expression and interaction between various components involved. The development of knockout (loss-of-function) and transgenic (gain-of-function) mouse models opens the door to the improved understanding of gene function in a whole body system. There is also growing interest in the development of humanized mice to overcome species difference in drug metabolism and disposition. This review, therefore, aims to summarize and discuss some successful examples of drug-metabolizing enzyme, transporter, and nuclear receptor genetically modified mouse models. These genetically modified mouse models have proven as invaluable models for understanding in vivo function of drug-metabolizing enzymes, transporters and xenobiotic receptors in drug metabolism and transport, as well as predicting potential drug-drug interaction and toxicity in humans. Nevertheless, concerns remain about interpretation of data obtained from such genetically modified mouse models in which the expression of related genes is altered significantly. PMID:20854191

Jiang, Xi-Ling; Gonzalez, Frank J.; Yu, Ai-Ming

2011-01-01

125

Sphingolipid metabolism and interorganellar transport: localization of sphingolipid enzymes and lipid transfer proteins.  

PubMed

In recent decades, many sphingolipid enzymes, sphingolipid-metabolism regulators and sphingolipid transfer proteins have been isolated and characterized. This review will provide an overview of the intracellular localization and topology of sphingolipid enzymes in mammalian cells to highlight the locations where respective sphingolipid species are produced. Interestingly, three sphingolipids that reside or are synthesized in cytosolic leaflets of membranes (ceramide, glucosylceramide and ceramide-1-phosphate) all have cytosolic lipid transfer proteins (LTPs). These LTPs consist of ceramide transfer protein (CERT), four-phosphate adaptor protein 2 (FAPP2) and ceramide-1-phosphate transfer protein (CPTP), respectively. These LTPs execute functions that affect both the location and metabolism of the lipids they bind. Molecular details describing the mechanisms of regulation of LTPs continue to emerge and reveal a number of critical processes, including competing phosphorylation and dephosphorylation reactions and binding interactions with regulatory proteins and lipids that influence the transport, organelle distribution and metabolism of sphingolipids. PMID:25382749

Yamaji, Toshiyuki; Hanada, Kentaro

2015-02-01

126

Recombinant arginine-degrading enzymes in metabolic anticancer therapy and bioanalytics.  

PubMed

Tumor cells often exhibit specific metabolic defects due to the aberrations in oncogene-dependent regulatory and/or signaling pathways that distinguish them from normal cells. Among others, many malignant cells are deficient in biosynthesis of certain amino acids and concomitantly exhibit elevated sensitivity to deprivation of these amino acids. Although the underlying causes of such metabolic changes are still not fully understood, this feature of malignant cells is exploited in metabolic enzymotherapies based on single amino acid, e.g., arginine, deprivation. To achieve efficient arginine depletion in vivo, two recombinant enzymes, bacterial arginine deiminase and human arginase I have been evaluated and are undergoing further development. This review is aimed to summarize the current knowledge on the application of arginine-degrading enzymes as anticancer agents and as bioanalytical tools for arginine assays. The problems that have to be solved to optimize this therapy for clinical application are discussed. PMID:25231409

Stasyk, Oleh V; Boretsky, Yuriy R; Gonchar, Mykhailo V; Sibirny, Andriy A

2015-03-01

127

Regional variation in muscle metabolic enzymes in individual American shad (Alosa sapidissima)  

USGS Publications Warehouse

Evaluation of the activity of metabolic enzymes is often used to asses metabolic capacity at the tissue level, but the amount of regional variability within a tissue in an individual fish of a given species is frequently unknown. The activities of four enzymes (citrate synthase (CS), phosphofructokinase, lactate dehydrogenase (LDH), and ??-hydroxyacyl coenzyme A dehydrogenase (HOAD) were assayed in red and white muscle at 10 sites along the body of adult American shad (Alosa sapidissima). Red and white muscle HOAD and white muscle CS and LDH varied significantly, generally increasing posteriorly. Maximal variation occurs in red muscle HOAD (~450%) and white muscle LDH (~60%) activity. Differences between the sexes also vary with sampling location. This study suggests that the variability in enzyme activity may be linked to functional differences in the muscle at different locations, and also provides guidelines for sample collection in this species.

Leonard, J.B.K.

1999-01-01

128

Odorant Metabolism Catalyzed by Olfactory Mucosal Enzymes Influences Peripheral Olfactory Responses in Rats  

PubMed Central

A large set of xenobiotic-metabolizing enzymes (XMEs), such as the cytochrome P450 monooxygenases (CYPs), esterases and transferases, are highly expressed in mammalian olfactory mucosa (OM). These enzymes are known to catalyze the biotransformation of exogenous compounds to facilitate elimination. However, the functions of these enzymes in the olfactory epithelium are not clearly understood. In addition to protecting against inhaled toxic compounds, these enzymes could also metabolize odorant molecules, and thus modify their stimulating properties or inactivate them. In the present study, we investigated the in vitro biotransformation of odorant molecules in the rat OM and assessed the impact of this metabolism on peripheral olfactory responses. Rat OM was found to efficiently metabolize quinoline, coumarin and isoamyl acetate. Quinoline and coumarin are metabolized by CYPs whereas isoamyl acetate is hydrolyzed by carboxylesterases. Electro-olfactogram (EOG) recordings revealed that the hydroxylated metabolites derived from these odorants elicited lower olfactory response amplitudes than the parent molecules. We also observed that glucurono-conjugated derivatives induced no olfactory signal. Furthermore, we demonstrated that the local application of a CYP inhibitor on rat olfactory epithelium increased EOG responses elicited by quinoline and coumarin. Similarly, the application of a carboxylesterase inhibitor increased the EOG response elicited by isoamyl acetate. This increase in EOG amplitude provoked by XME inhibitors is likely due to enhanced olfactory sensory neuron activation in response to odorant accumulation. Taken together, these findings strongly suggest that biotransformation of odorant molecules by enzymes localized to the olfactory mucosa may change the odorant’s stimulating properties and may facilitate the clearance of odorants to avoid receptor saturation. PMID:23555703

Thiebaud, Nicolas; Veloso Da Silva, Stéphanie; Jakob, Ingrid; Sicard, Gilles; Chevalier, Joëlle; Ménétrier, Franck; Berdeaux, Olivier; Artur, Yves; Heydel, Jean-Marie; Le Bon, Anne-Marie

2013-01-01

129

Colon cancer chemopreventive efficacy of silibinin through perturbation of xenobiotic metabolizing enzymes in experimental rats.  

PubMed

Our findings reported so far demonstrate that silibinin modulates gut microbial enzymes, colonic oxidative stress and Wnt/?-catenin signaling, to exert its antiproliferative effect against 1,2 di-methylhydrazine (DMH) induced colon carcinogenesis. Since xenobiotic metabolizing enzymes play a crucial role in carcinogen activation and metabolism, we aimed to explore the effect of silibinin on xenobiotic metabolizing enzymes during DMH induced colon carcinogenesis. Male albino rats were randomly divided into six groups. Group 1 served as control and group 2 rats received 50mg/kg body weight of silibinin p.o. every day. Groups 3-6 rats were given DMH at a dose of (20mg/kg body weight subcutaneously) once a week for 15 weeks to induce colonic tumors. In addition to DMH, group 4 (initiation), group 5 (post-initiation) and group 6 (entire period) rats received silibinin (50mg/kg body weight, p.o., everyday) at different time points during the experimental period of 32 weeks. Rats exposed to DMH alone showed increased activities of phase I enzymes (cytochrome b5, cytochrome b5 reductase, cytochromeP450, cytochromeP450 reductase, cytochromP4502E1) and decreased activities of phase II enzymes (Uridine diphospho glucuronyl transferase, Glutathione-S-transferase and DT-Diaphorase) in the liver and colonic mucosa as compared to control rats. Silibinin supplementation modulates the xenobiotic metabolizing enzymes favoring carcinogen detoxification. Evaluation of lipid peroxidation and antioxidants status showed that silibinin supplementation counteracts DMH induced hepatic and circulatory oxidative stress. Tumor burden in experimental animals was assessed both macroscopically and microscopically in the colon tissues. Our findings emphasize the potential chemopreventive action of silibinin against DMH induced colon carcinogenesis. PMID:22115893

Sangeetha, Nagarajan; Viswanathan, Periyaswamy; Balasubramanian, Thangavel; Nalini, Namasivayam

2012-01-15

130

Metabolic Pathways of Inhaled Glucocorticoids by the CYP3A Enzymes  

PubMed Central

Asthma is one of the most prevalent diseases in the world, for which the mainstay treatment has been inhaled glucocorticoids (GCs). Despite the widespread use of these drugs, approximately 30% of asthma sufferers exhibit some degree of steroid insensitivity or are refractory to inhaled GCs. One hypothesis to explain this phenomenon is interpatient variability in the clearance of these compounds. The objective of this research is to determine how metabolism of GCs by the CYP3A family of enzymes could affect their effectiveness in asthmatic patients. In this work, the metabolism of four frequently prescribed inhaled GCs, triamcinolone acetonide, flunisolide, budesonide, and fluticasone propionate, by the CYP3A family of enzymes was studied to identify differences in their rates of clearance and to identify their metabolites. Both interenzyme and interdrug variability in rates of metabolism and metabolic fate were observed. CYP3A4 was the most efficient metabolic catalyst for all the compounds, and CYP3A7 had the slowest rates. CYP3A5, which is particularly relevant to GC metabolism in the lungs, was also shown to efficiently metabolize triamcinolone acetonide, budesonide, and fluticasone propionate. In contrast, flunisolide was only metabolized via CYP3A4, with no significant turnover by CYP3A5 or CYP3A7. Common metabolites included 6?-hydroxylation and ?6-dehydrogenation for triamcinolone acetonide, budesonide, and flunisolide. The structure of ?6-flunisolide was unambiguously established by NMR analysis. Metabolism also occurred on the D-ring substituents, including the 21-carboxy metabolites for triamcinolone acetonide and flunisolide. The novel metabolite 21-nortriamcinolone acetonide was also identified by liquid chromatography–mass spectrometry and NMR analysis. PMID:23143891

Moore, Chad D.; Roberts, Jessica K.; Orton, Christopher R.; Murai, Takahiro; Fidler, Trevor P.; Reilly, Christopher A.; Ward, Robert M.

2013-01-01

131

Thin film voltammetry of metabolic enzymes in rat liver microsomes  

PubMed Central

We report herein thin film voltammetry and kinetics of electron transfer for redox proteins in rat liver microsomes for the first time. Films were made layer-by-layer from liver microsomes and polycations on pyrolytic graphite electrodes. Cyclic voltammograms were chemically reversible with a midpoint potential of ?0.48 V vs SCE at 0.1 V s?1 in pH 7.0 phosphate buffer. Reduction peak potentials shifted negative at higher scan rates, and oxidation-reduction peak current ratios were ?1 consistent with non-ideal quasireversible thin film voltammetry. Analysis of oxidation-reduction peak separations gave an average apparent surface electron transfer rate constant of 30 s?1. Absence of significant electrocatalytic reduction of O2 or H2O2 and lack of shift in midpoint potential when CO is added that indicates lack of an iron heme cofactor suggest that peaks can be attributed to oxidoreductases present in the microsomes rather than cytochrome P450 enzymes. PMID:18037986

Krishnan, Sadagopan; Rusling, James F.

2007-01-01

132

Cyclophosphamide metabolizing enzyme polymorphisms and survival outcomes after adjuvant chemotherapy for node-positive breast cancer: a retrospective cohort study  

Microsoft Academic Search

INTRODUCTION: Cyclophosphamide-based adjuvant chemotherapy is a mainstay of treatment for women with node-positive breast cancer, but is not universally effective in preventing recurrence. Pharmacogenetic variability in drug metabolism is one possible mechanism of treatment failure. We hypothesize that functional single nucleotide polymorphisms (SNPs) in drug metabolizing enzymes (DMEs) that activate (CYPs) or metabolize (GSTs) cyclophosphamide account for some of the

Priya P Gor; H Irene Su; Robert J Gray; Phyllis A Gimotty; Michelle Horn; Richard Aplenc; William P Vaughan; Martin S Tallman; Timothy R Rebbeck; Angela DeMichele

2010-01-01

133

Connecting metabolism and reproduction: roles of central energy sensors and key molecular mediators.  

PubMed

It is well established that pubertal activation of the reproductive axis and maintenance of fertility are critically dependent on the magnitude of body energy reserves and the metabolic state of the organism. Hence, conditions of impaired energy homeostasis often result in deregulation of puberty and reproduction, whereas gonadal dysfunction can be associated with the worsening of the metabolic profile and, eventually, changes in body weight. While much progress has taken place in our knowledge about the neuroendocrine mechanisms linking metabolism and reproduction, our understanding of how such dynamic interplay happens is still incomplete. As paradigmatic example, much has been learned in the last two decades on the reproductive roles of key metabolic hormones (such as leptin, insulin and ghrelin), their brain targets and the major transmitters and neuropeptides involved. Yet, the molecular mechanisms whereby metabolic information is translated and engages into the reproductive circuits remain largely unsolved. In this work, we will summarize recent developments in the characterization of the putative central roles of key cellular energy sensors, such as mTOR, in this phenomenon, and will relate these with other molecular mechanisms likely contributing to the brain coupling of energy balance and fertility. In doing so, we aim to provide an updated view of an area that, despite still underdeveloped, may be critically important to fully understand how reproduction and metabolism are tightly connected in health and disease. PMID:25289807

Roa, Juan; Tena-Sempere, Manuel

2014-11-01

134

Enzymes of the central carbon metabolism: Are they linkers between transcription, DNA replication, and carcinogenesis?  

PubMed

Dependence of carcinogenesis on disruption of DNA replication regulation is a well-known fact. There are also many reports demonstrating the interplay between transcription and DNA replication processes, particularly underlying the importance of promoter activities in the control of replication initiation. Recent findings have shown direct links between central carbon metabolism and DNA replication regulation. Here, we summarize previously published reports which indicated that enzymes of the central carbon metabolism, particularly those involved in glycolysis and the tricarboxylic acid cycle, may contribute to regulation of transcription and DNA transactions (replication and repair). In this light, we propose a hypothesis that some of these enzymes might be linkers between transcription, DNA replication, and carcinogenesis. If true, it may have a consequence in our understanding of causes and mechanisms of carcinogenesis. Particularly, certain metabolic perturbations might directly (through central carbon metabolism enzymes) influence regulation of DNA transactions (replication control and fidelity), and thus facilitate carcinogenesis. To test this hypothesis, further studies will be necessary, which is discussed in the final part of this article. PMID:25491416

Konieczna, Aleksandra; Szczepa?ska, Aneta; Sawiuk, Karolina; ?y?e?, Robert; W?grzyn, Grzegorz

2015-01-01

135

Repression of intestinal drug metabolizing enzymes by the SV40 large T antigen.  

PubMed

Toxic compounds such as carcinogens are removed from the body by the action of a series of detoxifying enzymes and transporters expressed in the liver and the small intestine. We have found that intestinal epithelial cells expressing the SV40 large T antigen (TAg) contain significantly lower levels of mRNAs, encoding several drug metabolizing/detoxifying enzymes and transporters compared to their non-transgenic littermates. In addition, TAg blocks the induction of these mRNAs by xenobiotics. The repression depends on an intact LXCXE motif in TAg, suggesting that inactivation of the retinoblastoma (Rb) family of tumor suppressors plays a role in the process. These results imply that a functional Rb pathway in the intestine is necessary for the expression of the detoxification system used to clear carcinogens, and suggest that loss of this tumor suppressor might alter susceptibility to chemical injury. In addition, the effect of TAg on the detoxification pathway appears to be tissue-specific, as its ectopic expression in the liver failed to suppress the P450 enzymes. The TAg-mediated suppression of drug metabolizing/detoxifying enzymes may have broad implications in the metabolism and mechanism of action of both carcinogens and prescription drugs. PMID:17334401

Sáenz-Robles, M T; Toma, D; Cantalupo, P; Zhou, J; Gong, H; Edwards, C; Pipas, J M; Xie, W

2007-08-01

136

The Genes and Enzymes of Phosphonate Metabolism by Bacteria, and Their Distribution in the Marine Environment  

PubMed Central

Phosphonates are compounds that contain the chemically stable carbon–phosphorus (C–P) bond. They are widely distributed amongst more primitive life forms including many marine invertebrates and constitute a significant component of the dissolved organic phosphorus reservoir in the oceans. Virtually all biogenic C–P compounds are synthesized by a pathway in which the key step is the intramolecular rearrangement of phosphoenolpyruvate to phosphonopyruvate. However C–P bond cleavage by degradative microorganisms is catalyzed by a number of enzymes – C–P lyases, C–P hydrolases, and others of as-yet-uncharacterized mechanism. Expression of some of the pathways of phosphonate catabolism is controlled by ambient levels of inorganic P (Pi) but for others it is Pi-independent. In this report we review the enzymology of C–P bond metabolism in bacteria, and also present the results of an in silico investigation of the distribution of the genes that encode the pathways responsible, in both bacterial genomes and in marine metagenomic libraries, and their likely modes of regulation. Interrogation of currently available whole-genome bacterial sequences indicates that some 10% contain genes encoding putative pathways of phosphonate biosynthesis while ?40% encode one or more pathways of phosphonate catabolism. Analysis of metagenomic data from the global ocean survey suggests that some 10 and 30%, respectively, of bacterial genomes across the sites sampled encode these pathways. Catabolic routes involving phosphonoacetate hydrolase, C–P lyase(s), and an uncharacterized 2-aminoethylphosphonate degradative sequence were predominant, and it is likely that both substrate-inducible and Pi-repressible mechanisms are involved in their regulation. The data we present indicate the likely importance of phosphonate-P in global biogeochemical P cycling, and by extension its role in marine productivity and in carbon and nitrogen dynamics in the oceans. PMID:22303297

Villarreal-Chiu, Juan F.; Quinn, John P.; McGrath, John W.

2011-01-01

137

Fructan metabolism and expression of genes coding fructan metabolic enzymes during cold acclimation and overwintering in timothy (Phleum pratense).  

PubMed

Metabolism of fructans in temperate grasses dynamically fluctuates before and during winter and is involved in the overwintering activity of plants. We monitored three candidate factors that may be involved in seasonal fructan metabolism in timothy (Phleum pratense): transcription levels of two fructosyltransferase (PpFT1 and PpFT2) genes and one fructan exohydrolase (Pp6-FEH1) gene during fall and winter and under artificially cold conditions. Functional analysis using a recombinant enzyme for PpFT2, a novel fructosyltransferase cDNA, revealed that it encoded sucrose:fructan 6-fructosyltransferase, with enzymatic properties different from previously characterized PpFT1. PpFT1 transcripts decreased from September to December as the amount of fructans increased, whereas PpFT2 transcripts increased in timothy crowns. PpFT2 was transcriptionally more induced than PpFT1 in response to cold and sucrose in timothy seedlings. A rapid increase in Pp6-FEH1 transcripts and increased monosaccharide content were observed in timothy crowns when air temperature was continuously below 0°C and plants were not covered by snow. Transcriptional induction of Pp6-FEH1 by exposure to -3°C was also observed in seedlings. These findings suggest Pp6-FEH1 involvement in the second phase of hardening. PpFT1 and PpFT2 transcription levels decreased under snow cover, whereas Pp6-FEH1 transcription levels were constant, which corresponded with the fluctuation of fructosyltransferase and fructan exohydrolase activities. Inoculation with snow mold fungi (Typhula ishikariensis) increased Pp6-FEH1 transcription levels and accelerated hydrolysis of fructans. These results suggest that transcriptional regulation of genes coding fructan metabolizing enzymes is partially involved in the fluctuation of fructan metabolism during cold acclimation and overwintering. PMID:24913052

Tamura, Ken-ichi; Sanada, Yasuharu; Tase, Kazuhiro; Yoshida, Midori

2014-07-01

138

Spatial modulation of key pathway enzymes by DNA-guided scaffold system and respiration chain engineering for improved N-acetylglucosamine production by Bacillus subtilis.  

PubMed

Previously we constructed a Bacillus subtilis strain for efficient production of N-acetylglucosamine (GlcNAc) by engineering of GlcNAc synthetic and catabolic pathways. However, the further improvement of GlcNAc titer is limited by the intrinsic inefficiency of GlcNAc synthetic pathway and undesirable cellular properties including sporulation and high maintenance metabolism. In this work, we further improved GlcNAc titer through spatial modulation of key pathway enzymes and by blocking sporulation and decreasing maintenance metabolism. Specifically, a DNA-guided scaffold system was firstly used to modulate the activities of glucosamine-6-phosphate synthase and GlcNAc-6-phosphate N-acetyltransferase, increasing the GlcNAc titer from 1.83g/L to 4.55g/L in a shake flask. Next, sporulation was blocked by respectively deleting spo0A (gene encoding the initiation regulon of sporulation) and sigE (gene encoding RNA polymerase sporulation-specific sigma factor). Deletion of sigE more effectively blocked sporulation without altering cell growth or GlcNAc production. The respiration chain was then engineered to decrease the maintenance metabolism of recombinant B. subtilis by deleting cydB and cydC, genes encoding cytochrome bd ubiquinol oxidase (subunit II) and ATP-binding protein for the expression of cytochrome bd, respectively. The respiration-engineered B. subtilis produced 6.15g/L GlcNAc in a shake flask and 20.58g/L GlcNAc in a 3-L fed-batch bioreactor. To the best of our knowledge, this report is the first to describe the modulation of pathway enzymes via a DNA-guided scaffold system in B. subtilis. The combination of spatial modulation of key pathway enzymes and optimization of cellular properties may be used to develop B. subtilis as a well-organized cell factory for the production of the other industrially useful chemicals. PMID:24815549

Liu, Yanfeng; Zhu, Yanqiu; Ma, Wenlong; Shin, Hyun-dong; Li, Jianghua; Liu, Long; Du, Guocheng; Chen, Jian

2014-07-01

139

Poloxamer 407-mediated alterations in the activities of enzymes regulating lipid metabolism in rats  

Microsoft Academic Search

Purpose: Recently, the P-407-treated mouse was established as a useful animal model of hyper- lipidemia and atherosclerosis. The present study was aimed to determine whether P-407-induced hyperlipidemia in the rat is associated with alterations in the activities of enzymes responsible for lipid metabolism. Methods and Results: Rats were made hyperlipidemic by i.p. injection of 1.0 g\\/kg P-407 and blood samples

Kishor M. Wasan; Ramaswamy Subramanian; Mona Kwong; Ira J. Goldberg; Thamrah Wright; Thomas P. Johnston

140

The effect of enzyme inhibition on the metabolism and activation of tacrine by human liver microsomes.  

PubMed Central

1. Tacrine (1,2,3,4-tetrahydro-9-aminoacridine-hydrochloride: THA) underwent metabolism in vitro by a panel (n = 12) of human liver microsomes genotyped for CYP2D6, in the presence of NADPH, to both protein-reactive and stable metabolites. 2. There was considerable variation in the extent of THA metabolism amongst human livers. Protein-reactive metabolite formation showed a 10-fold variation (0.6 +/- 0.1%-5.2 +/- 0.8% of incubated radioactivity mg-1 protein) whilst stable metabolites showed a 3-fold variation (24.3 +/- 1.7%-78.6 +/- 2.6% of incubated radioactivity). 3. Using cytochrome P450 isoform specific inhibitors CYP1A2 was identified as the major enzyme involved in all routes of THA metabolism. 4. There was a high correlation between aromatic and alicyclic hydroxylation (r = 0.92, P < 0.0001) consistent with these biotransformations being catalysed by the same enzymes. 5. Enoxacin (ENOX), cimetidine (CIM) and chloroquine (CQ) inhibited THA metabolism by a preferential decrease in the bioactivation to protein-reactive, and hence potentially toxic, species. The inhibitory potency of ENOX and CIM was increased significantly upon pre-incubation with microsomes and NADPH. 6. Covalent binding correlated with 7-OH-THA formation before (r = 0.792, P < 0.0001) and after (r = 0.73, P < 0.0001) inhibition by CIM, consistent with a two-step mechanism in the formation of protein-reactive metabolite(s) via a 7-OH intermediate. 7. The use of enzyme inhibitors may provide a useful tool for examining the relationship between the metabolism and toxicity of THA in vivo. PMID:7946932

Spaldin, V; Madden, S; Pool, W F; Woolf, T F; Park, B K

1994-01-01

141

Evaluation of recombinant cytochrome P450 enzymes as an in vitro system for metabolic clearance predictions.  

PubMed

The aim of this study was to explore the potential of recombinant cytochrome P450 (P450) enzymes for human metabolic clearance prediction. The relative abundance and relative activity approaches were compared as methods to bridge the gap between catalytic activities in recombinant P450 enzymes and human liver microsomes (HLMs). Relative activity factors were measured by determining the intrinsic clearance (CL(int)) of probe substrates (bufuralol-CYP2D6, diclofenac-CYP2C9, midazolam-CYP3A4, and phenacetin-CYP1A2) in recombinant P450s and 16 HLM donors. Simultaneous determination of drug depletion and metabolite formation profiles has enabled a direct comparison of these methods for CL(int) determination. Of the 110 drugs tested, 66% were metabolized by one or more P450 enzymes; of these 44% of were metabolized by CYP3A4 (0.3-21 microl/min/pmol of P450), 41% by CYP2D6 (0.6-60 microl/min/pmol of P450), 26% by CYP2C19 (0.4-8.1 microl/min/pmol of P450), 9% by CYP1A2 (0.4-2.5 microl/min/pmol of P450), and 4% by CYP2C9 (0.9-6.4 microl/min/pmol of P450). Recombinant enzymes demonstrated improved prediction reliability relative to HLMs and hepatocytes. The most reliable correlations in terms of lowest bias and highest precision were observed by comparing in vivo CL(int), calculated using the parallel-tube model and incorporating fraction unbound in blood, with in vitro CL(int) determined using relative activity factors and adjusted for nonspecific binding. Predictions were less reliable using the relative abundance approach. For these drugs, recombinant P450 enzymes offer improved assay sensitivity compared with HLMs and cryopreserved hepatocytes for CL(int) determination using the drug depletion method. PMID:19196847

Stringer, Rowan A; Strain-Damerell, Claire; Nicklin, Paul; Houston, J Brian

2009-05-01

142

Genes, Enzymes, and Regulation of para-Cresol Metabolism in Geobacter metallireducens? †  

PubMed Central

In aerobic and facultatively anaerobic bacteria, the degradation of para-cresol (p-cresol) involves the initial hydroxylation to p-hydroxybenzyl alcohol by water catalyzed by the soluble, periplasmatic flavocytochrome p-cresol methylhydroxylase (PCMH; ?2?2 composition). In denitrifying bacteria the further metabolism proceeds via oxidation to p-hydroxybenzoate, the formation of p-hydroxybenzoyl-coenzyme A (CoA), and the subsequent dehydroxylation of the latter to benzoyl-CoA by reduction. In contrast, the strictly anaerobic Desulfobacterium cetonicum degrades p-cresol by addition to fumarate, yielding p-hydroxybenzylsuccinate. In this work, in vitro enzyme activity measurements revealed that the obligately anaerobic Geobacter metallireducens uses the p-cresol degradation pathway of denitrifying bacteria. Surprisingly, PCMH, which is supposed to catalyze both p-cresol hydroxylation and p-hydroxybenzyl alcohol oxidation to the corresponding aldehyde, was located in the membrane fraction. The ? subunit of the enzyme was present in two isoforms, suggesting an ????2 composition. We propose that the unusual asymmetric architecture and the membrane association of PCMH might be important for alternative electron transfer routes to either cytochrome c (in the case of p-cresol oxidation) or to menaquinone (in the case of p-hydroxybenzyl alcohol oxidation). Unusual properties of further enzymes of p-cresol metabolism, p-hydroxybenzoate-CoA ligase, and p-hydroxybenzoyl-CoA reductase were identified and are discussed. A proteomic approach identified a gene cluster comprising most of the putative structural genes for enzymes involved in p-cresol metabolism (pcm genes). Reverse transcription-PCR studies revealed a different regulation of transcription of pcm genes and the corresponding enzyme activities, suggesting the presence of posttranscriptional regulatory elements. PMID:17449613

Peters, Franziska; Heintz, Dimitri; Johannes, Jörg; van Dorsselaer, Alain; Boll, Matthias

2007-01-01

143

Inhibition of hepatic drug-metabolizing enzymes by thiophaophate insecticides and its toxicological evaluation.  

PubMed

Thiophosphate insecticides, fenitrothion, diazinon and methylparathion, inhibit hepatic drug-metabolizing enzyme activity which was assayed using aminopyrine and aniline as substrates. About 50% inhibition was observed 4 hrs after the injection of fenitrothion into mice in a dose of 25 mg/kg. The addition in vitro of thiophosphates into a reaction mixture of drug metabolizing enzyme also produced an effective inhibition and IC50 was around 10(-5)M for fenitrothion. DDVP and oxygenated metabolite of fenitrothion did not show any inhibiting effect either in vitro or in vivo. The inhibition of thiophosphates in vitro was competitive while the kinetics of in vivo inhibition was shown as non-competitive. The drug metabolism in the rat liver preparation was also inhibited by thiophosphate in vitro, but in vivo treatment to male rats resulted in only slight inhibition. Female rats exhibited the similar response as mice. The administration of fenitrothion to mice prolonged the hexobarbital sleeping time and, consequently, suppressed the oxidative metabolism of parathion in liver preparation. These effects reveal that the biological half life of thiophosphate insecticides could be altered by the mode of administration or by co-existing thiophosphates. PMID:1193049

Uchiyama, M; Yochida, T; Homma, K; Hongo, T

1975-01-01

144

Intermediary metabolism in Clostridium acetobutylicum: levels of enzymes involved in the formation of acetate and butyrate  

SciTech Connect

The levels of seven intermediary enzymes involved in acetate and butyrate formation from acetyl coenzyme A in the saccharolytic anaerobe Clostridium acetobutylicum were investigated as a function of time in solvent-producing batch fermentations. Phosphate acetyltransferase and acetate kinase, which are known to form acetate from acetyl coenzyme A, both showed a decrease in specific activity when the organism reached the solvent formation stage. The three consecutive enzymes thiolase, beta-hydroxybutyryl-coenzyme A dehydrogenase, and crotonase exhibited a coordinate expression and a maximal activity after growth had ceased. Only low levels of butyryl coenzyme A dehydrogenase activity were found. Phosphate butyryltransferase activity rapidly decreased after 20 h from 5 to 11 U/mg of protein to below the detection limit (1 mU/mg). Butyrate no longer can be formed, and the metabolic flux may be diverted to butanol. Butyrate kinase showed a 2.5- to 10-fold increase in specific activity after phosphate butyryltransferase activity no longer could be detected. These results suggest that the uptake of acetate and butyrate during solvent formation can not proceed via a complete reversal of the phosphate transferase and kinase reactions. The activities of all enzymes investigated as a function of time in vitro are much higher than the metabolic fluxes through them in vivo. This indicates that none of the maximal activities of the enzymes assayed is rate limiting in C. acetobutylicum. (Refs. 46).

Hartmanis, M.G.N.; Gatenbeck, S.

1984-06-01

145

[Paraoxonase--important enzyme of the lipid metabolism and potential ally in the antiatherosclerotic treatment].  

PubMed

In composed process of atherogenesis take part different classes of lipoproteins. Atherogenic are low density lipoproteins (LDL), especially their modified, like oxidized, particles. Different role have high density lipoproteins (HDL): those molecules could protect arterial wall. This effect depends eg. on the presence paraoxonase 1 (PON 1) in HDL molecules. PON 1 is the enzyme with hydrolase activity. PON 1 protects lipoproteins against oxidative stress and makes possible to metabolize lipid peroxides. Several polymorphisms of the gene PON 1 have been identified. The most important for enzyme activity seem to be two polymorphisms: in the position 55 (L55M) and in the position 192 (R192Q). For instance the genotype PON 1 55 MM is connected with low enzyme serum level. Gene polymorphisms of PON could be one of the possibilities genetic conditioning of atherosclerosis. PMID:21268919

Sapian-Raczkowska, Bozena; Rabczy?ski, Maciej; Adamiec, Rajmund

2010-11-01

146

Spatial and temporal expression of folate-related transporters and metabolic enzymes during mouse placental development.  

PubMed

It is well understood that maternal folate deficiency can cause abnormal fetal development. However, the extent to which placental development and function are also dependent upon folate uptake and metabolism remains unclear. To understand which trophoblast cell types may be affected by folate deficiency or abnormal folate metabolism, we completed a comprehensive spatial and temporal protein expression analysis of folate receptor (Folr), folate transporters (proton-coupled folate receptor [Slc46a1 or PCFT] and reduced folate carrier-1 [Rfc1]) and folate metabolic enzymes (5,10-methylenetetrahydrofolate reductase [Mthfr] and methionine synthase [Mtr]) in histological sections of mouse placentas from early development (E8.5) until term (E18.5). We observed that the highest level of protein expression was during early development (E8.5-E10.5), prior to the formation of the three main layers of the mature placenta suggesting that folate uptake and metabolism may be required for placental development, itself. As expected, the labyrinth trophoblast cells, which are responsible for nutrient transport, expressed these proteins throughout pregnancy, including robust expression in the sinusoidal trophoblast giant cells that line the maternal blood spaces. Other trophoblast giant cell (TGC) subtypes (parietal-TGCs and canal-TGCs), whose function does not include nutrient transport, expressed folate transporters and enzymes from E8.5 onwards. Remarkably, these proteins were also detected in glycogen trophoblast cells from E12.5-E18.5 suggesting a new role in folate uptake and metabolism for these cells. Together, these data provide evidence that folate may be necessary for normal placental development and function, and perturbations in its availability or metabolism may lead to secondary effects on fetal development. PMID:22365888

Cherukad, J; Wainwright, V; Watson, E D

2012-05-01

147

Drug-metabolizing and antioxidant enzymes in monosodium L-glutamate obese mice.  

PubMed

The prevalence of obesity is rapidly increasing across the world. Physiologic alterations associated with obesity are known to alter enzyme expression and/or activities. As drug-metabolizing and antioxidant enzymes serve as defense system against potentially toxic compounds, their modulation might have serious consequences. In this work, we studied selected antioxidant and drug-metabolizing enzymes (DME) in monosodium glutamate-mouse model of obesity. Specific activities, protein, and mRNA expressions of these enzymes in liver as well as in small intestine were compared in obese male mice and in their lean counterparts. Furthermore, expression of the NF-E2-related factor 2 (Nrf2) and its relation to obesity were tested. Obtained results showed that obesity affects expression and/or activities of some DME and antioxidant enzymes. In obese mice, upregulation of UDP-glucuronosyltransferases 1A (UGT1A), NAD(P)H:quinone oxidoreductase 1 (NQO1), nuclear transcription factor Nrf2, and downregulation of some isoforms of glutathione S-transferases (GST) were observed. Most of these changes were tissue and/or isoform specific. NQO1 seems to be regulated transcriptionally via Nrf2, but other enzymes might be regulated post-transcriptionally and/or post-translationally. Enhanced expression of Nrf2 in livers of obese mice is expected to play a role in protective adaptation. In contrast, elevated activities of NQO1 and UGT1A may cause alterations in drug pharmacokinetics in obese individuals. Moreover, decreased capacity of GST in obese animals indicates potentially reduced antioxidant defense and weaker chemoprotection. PMID:25473020

Matoušková, Petra; Bártíková, Hana; Boušová, Iva; Levorová, Lucie; Szotáková, Barbora; Skálová, Lenka

2015-02-01

148

Thioredoxin Glutathione Reductase from Schistosoma mansoni: An Essential Parasite Enzyme and a Key Drug Target  

PubMed Central

Background Schistosomiasis—infection with helminth parasites in the genus Schistosoma, including S. mansoni—is a widespread, devastating tropical disease affecting more than 200 million people. No vaccine is available, and praziquantel, the only drug extensively utilized, is currently administered more than 100 million people yearly. Because praziquantel resistance may develop it is essential to identify novel drug targets. Our goal was to investigate the potential of a unique, selenium-containing parasite enzyme thioredoxin glutathione reductase (TGR) as a drug target. Methods and Findings Using RNA interference we found that TGR is essential for parasite survival; after silencing of TGR expression, in vitro parasites died within 4 d. We also found that auranofin is an efficient inhibitor of pure TGR (Ki = 10 nM), able to kill parasites rapidly in culture at physiological concentrations (5 ?M), and able to partially cure infected mice (worm burden reductions of ~60%). Furthermore, two previously used antischistosomal compounds inhibited TGR activity, suggesting that TGR is a key target during therapy with those compounds. Conclusions Collectively, our results indicate that parasite TGR meets all the major criteria to be a key target for antischistosomal chemotherapy. To our knowledge this is the first validation of a Schistosoma drug target using a convergence of both genetic and biochemical approaches. PMID:17579510

Kuntz, Angela N; Davioud-Charvet, Elisabeth; Sayed, Ahmed A; Califf, Lindsay L; Dessolin, Jean; Arnér, Elias S. J; Williams, David L

2007-01-01

149

Alteration of the Expression of Pesticide-Metabolizing Enzymes in Pregnant Mice: Potential Role in the Increased Vulnerability of the Developing Brain  

PubMed Central

Studies on therapeutic drug disposition in humans have shown significant alterations as the result of pregnancy. However, it is not known whether pesticide metabolic capacity changes throughout pregnancy, which could affect exposure of the developing brain. We sought to determine the effect of pregnancy on the expression of hepatic enzymes involved in the metabolism of pesticides. Livers were collected from virgin and pregnant C57BL/6 mice at gestational days (GD)7, GD11, GD14, GD17, and postpartum days (PD)1, PD15, and PD30. Relative mRNA expression of several enzymes involved in the metabolism of pesticides, including hepatic cytochromes (Cyp) P450s, carboxylesterases (Ces), and paraoxonase 1 (Pon1), were assessed in mice during gestation and the postpartum period. Compared with virgin mice, alterations in the expression occurred at multiple time points, with the largest changes observed on GD14. At this time point, the expression of most of the Cyps involved in pesticide metabolism in the liver (Cyp1a2, Cyp2d22, Cyp2c37, Cyp2c50, Cyp2c54, and Cyp3a11) were downregulated by 30% or more. Expression of various Ces isoforms and Pon1 were also decreased along with Pon1 activity. These data demonstrate significant alterations in the expression of key enzymes that detoxify pesticides during pregnancy, which could alter exposure of developing animals to these chemicals. PMID:23223497

Fortin, Marie C.; Aleksunes, Lauren M.

2013-01-01

150

Model of 2,3-bisphosphoglycerate metabolism in the human erythrocyte based on detailed enzyme kinetic equations: equations and parameter refinement.  

PubMed Central

Over the last 25 years, several mathematical models of erythrocyte metabolism have been developed. Although these models have identified the key features in the regulation and control of erythrocyte metabolism, many important aspects remain unexplained. In particular, none of these models have satisfactorily accounted for 2,3-bisphosphoglycerate (2,3-BPG) metabolism. 2,3-BPG is an important modulator of haemoglobin oxygen affinity, and hence an understanding of the regulation of 2,3-BPG concentration is important for understanding blood oxygen transport. A detailed, comprehensive, and hence realistic mathematical model of erythrocyte metabolism is presented that can explain the regulation and control of 2,3-BPG concentration and turnover. The model is restricted to the core metabolic pathways, namely glycolysis, the 2,3-BPG shunt and the pentose phosphate pathway (PPP), and includes membrane transport of metabolites, the binding of metabolites to haemoglobin and Mg(2+), as well as pH effects on key enzymic reactions and binding processes. The model is necessarily complex, since it is intended to describe the regulation and control of 2,3-BPG metabolism under a wide variety of physiological and experimental conditions. In addition, since H(+) and blood oxygen tension are important external effectors of 2,3-BPG concentration, it was important that the model take into account the large array of kinetic and binding phenomena that result from changes in these effectors. Through an iterative loop of experimental and simulation analysis many values of enzyme-kinetic parameters of the model were refined to yield close conformity between model simulations and 'real' experimental data. This iterative process enabled a single set of parameters to be found which described well the metabolic behaviour of the erythrocyte under a wide variety of conditions. PMID:10477269

Mulquiney, P J; Kuchel, P W

1999-01-01

151

Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation.  

PubMed

Cytochromes P450 (CYP) are a major source of variability in drug pharmacokinetics and response. Of 57 putatively functional human CYPs only about a dozen enzymes, belonging to the CYP1, 2, and 3 families, are responsible for the biotransformation of most foreign substances including 70-80% of all drugs in clinical use. The highest expressed forms in liver are CYPs 3A4, 2C9, 2C8, 2E1, and 1A2, while 2A6, 2D6, 2B6, 2C19 and 3A5 are less abundant and CYPs 2J2, 1A1, and 1B1 are mainly expressed extrahepatically. Expression of each CYP is influenced by a unique combination of mechanisms and factors including genetic polymorphisms, induction by xenobiotics, regulation by cytokines, hormones and during disease states, as well as sex, age, and others. Multiallelic genetic polymorphisms, which strongly depend on ethnicity, play a major role for the function of CYPs 2D6, 2C19, 2C9, 2B6, 3A5 and 2A6, and lead to distinct pharmacogenetic phenotypes termed as poor, intermediate, extensive, and ultrarapid metabolizers. For these CYPs, the evidence for clinical significance regarding adverse drug reactions (ADRs), drug efficacy and dose requirement is rapidly growing. Polymorphisms in CYPs 1A1, 1A2, 2C8, 2E1, 2J2, and 3A4 are generally less predictive, but new data on CYP3A4 show that predictive variants exist and that additional variants in regulatory genes or in NADPH:cytochrome P450 oxidoreductase (POR) can have an influence. Here we review the recent progress on drug metabolism activity profiles, interindividual variability and regulation of expression, and the functional and clinical impact of genetic variation in drug metabolizing P450s. PMID:23333322

Zanger, Ulrich M; Schwab, Matthias

2013-04-01

152

Distribution of alcohol-metabolizing enzyme genotypes in trauma patients with excessive alcohol consumption in the emergency department  

Microsoft Academic Search

Objectives:The objective of this study was to investigate the distribution of genetic polymorphisms of alcohol-metabolizing enzymes in trauma patients with excessive alcohol consumption in the emergency department (ED).

Yang-Ming Tseng; Bow-Wen Hu; Shih-Meng Tsai; Ing-Jun Chen; Yi-Ru Jin; Jang-Hwa Lee; Fong-Dee Huang; Szu-Hsien Wu; Fa-Lai Yeh; Li-Yu Tsai

2007-01-01

153

Penn Medicine researchers find that a metabolic enzyme stops progression of most common type of kidney cancer  

Cancer.gov

Researchers found that an enzyme called FBP1 -- essential for regulating metabolism -- binds to a transcription factor in the nucleus of certain kidney cells and restrains energy production in the cell body.

154

Impact of a community-based diabetes self-management program on key metabolic parameters  

PubMed Central

Objective: Characterize the impact of a pharmacist-led diabetes self-management program on three key metabolic parameters: glycosylated hemoglobin (HbA1c), low-density lipoprotein cholesterol (LDL-C), and mean arterial blood pressure (MAP) among employee health program participants. Methods: A self-insured company in the Kansas City metropolitan area began offering a pharmacist-led diabetes self-management program to eligible company employees and their dependents in 2008. A retrospective pre-post analysis was conducted to determine if the program affected key metabolic parameters in participants by determining mean change after one year of participation. Results: Among 183 program participants, 65 participants met inclusion criteria. All three key metabolic parameters were significantly reduced from baseline to one year of program participation: HbA1c decreased from 8.1 % to 7.3% (p=0.007); LDL-C decreased from 108.3 mg/dL to 96.4 mg/dL (p=0.009); and MAP decreased from 96.1 to 92.3 mm Hg (p=0.005). Conclusions: The pharmacist-led diabetes self-management program demonstrated significant reductions in HbA1c, LDL-C, and MAP from baseline to one year of program participation. Improvements were statistically significant and clinically relevant for each parameter. Previous studies indicate these reductions may cause reduced overall healthcare costs.

Johnson, Courtney; Ruisinger, Janelle F.; Bates, Jessica; Barnes., Brian J.

2014-01-01

155

Identification of Enzymes and Quantification of Metabolic Fluxes in the Wild Type and in a Recombinant Aspergillus oryzae Strain  

Microsoft Academic Search

Two a-amylase-producing strains of Aspergillus oryzae, a wild-type strain and a recombinant containing additional copies of the a-amylase gene, were characterized with respect to enzyme activities, localization of enzymes to the mitochondria or cytosol, macromolecular composition, and metabolic fluxes through the central metabolism during glucose-limited chemostat cultivations. Citrate synthase and isocitrate dehydrogenase (NAD) activities were found only in the mitochondria,

HENRIK PEDERSEN; MORTEN CARLSEN; JENS NIELSEN

1999-01-01

156

Gestational Age-Dependent Changes in Gene Expression of Metabolic Enzymes and Transporters in Pregnant Mice  

PubMed Central

Pregnancy-induced changes in drug pharmacokinetics can be explained by changes in expression of drug-metabolizing enzymes and transporters and/or normal physiology. In this study, we determined gestational age-dependent expression profiles for all metabolic enzyme and transporter genes in the maternal liver, kidney, small intestine, and placenta of pregnant mice by microarray analysis. We specifically examined the expression of genes important for xenobiotic, bile acid, and steroid hormone metabolism and disposition, namely, cytochrome P450s (Cyp), UDP-glucuronosyltranserases (Ugt), sulfotransferases (Sult), and ATP-binding cassette (Abc), solute carrier (Slc), and solute carrier organic anion (Slco) transporters. Few Ugt and Sult genes were affected by pregnancy. Cyp17a1 expression in the maternal liver increased 3- to 10-fold during pregnancy, which was the largest observed change in the maternal tissues. Cyp1a2, most Cyp2 isoforms, Cyp3a11, and Cyp3a13 expression in the liver decreased on gestation days (gd) 15 and 19 compared with nonpregnant controls (gd 0). In contrast, Cyp2d40, Cyp3a16, Cyp3a41a, Cyp3a41b, and Cyp3a44 in the liver were induced throughout pregnancy. In the placenta, Cyp expression on gd 10 and 15 was upregulated compared with gd 19. Notable changes were also observed in Abc and Slc transporters. Abcc3 expression in the liver and Abcb1a, Abcc4, and Slco4c1 expression in the kidney were downregulated on gd 15 and 19. In the placenta, Slc22a3 (Oct3) expression on gd 10 was 90% lower than that on gd 15 and 19. This study demonstrates important gestational age-dependent expression of metabolic enzyme and transporter genes, which may have mechanistic relevance to drug disposition in human pregnancy. PMID:23175668

Shuster, Diana L.; Bammler, Theo K.; Beyer, Richard P.; MacDonald, James W.; Tsai, Jesse M.; Farin, Frederico M.; Hebert, Mary F.; Thummel, Kenneth E.

2013-01-01

157

Combined effects of urinary phytoestrogens metabolites and polymorphisms in metabolic enzyme gene on idiopathic male infertility.  

PubMed

Phytoestrogens are plant-derived compounds that may interact with estrogen receptors and mimic estrogenic effects. It remains unclear whether the individual variability in metabolizing phytoestrogens contributes to phytoestrogens-induced beneficial or detrimental effects. Our aim was to determine whether there is any interaction between metabolic rates (MR) of phytoestrogens and genetic polymorphisms in related xenobiotic metabolizing enzyme genes. MR was used to assess phytoestrogen exposure and individual metabolic ability. The amount of phytoestrogens in urine was measured by ultra-high performance liquid chromatography-tandem mass spectrometry in 600 idiopathic infertile male patients and 401 controls. Polymorphisms were genotyped using the SNPstream platform combined with the Taqman method. Prototypes and metabolites of secoisolariciresinol (SEC) have inverse effects on male reproduction. It was found that low MR of SEC increased the risk of male infertility (OR 2.49, 95 % CI 1.78, 3.48, P trend = 8.00 × 10(-8)). Novel interactions were also observed between the MR of SEC and rs1042389 in CYP2B6, rs1048943 in CYP1A1, and rs1799931 in NAT2 on male infertility (P inter = 1.06 × 10(-4), 1.14 × 10(-3), 3.55 × 10(-3), respectively). By analyzing the relationships between urinary phytoestrogen concentrations, their metabolites and male infertility, we found that individual variability in metabolizing SEC contributed to the interpersonal differences in SEC's effects on male reproduction. PMID:24488272

Qin, Yufeng; Du, Guizhen; Chen, Minjian; Hu, Weiyue; Lu, Chuncheng; Wu, Wei; Hang, Bo; Zhou, Zuomin; Wang, Xinru; Xia, Yankai

2014-08-01

158

Reduction of nuclear encoded enzymes of mitochondrial energy metabolism in cells devoid of mitochondrial DNA  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer We examined OXPHOS and citrate synthase enzyme activities in HEK293 cells devoid of mtDNA. Black-Right-Pointing-Pointer Enzymes partially encoded by mtDNA show reduced activities. Black-Right-Pointing-Pointer Also the entirely nuclear encoded complex II and citrate synthase exhibit reduced activities. Black-Right-Pointing-Pointer Loss of mtDNA induces a feedback mechanism that downregulates complex II and citrate synthase. -- Abstract: Mitochondrial DNA (mtDNA) depletion syndromes are generally associated with reduced activities of oxidative phosphorylation (OXPHOS) enzymes that contain subunits encoded by mtDNA. Conversely, entirely nuclear encoded mitochondrial enzymes in these syndromes, such as the tricarboxylic acid cycle enzyme citrate synthase (CS) and OXPHOS complex II, usually exhibit normal or compensatory enhanced activities. Here we report that a human cell line devoid of mtDNA (HEK293 {rho}{sup 0} cells) has diminished activities of both complex II and CS. This finding indicates the existence of a feedback mechanism in {rho}{sup 0} cells that downregulates the expression of entirely nuclear encoded components of mitochondrial energy metabolism.

Mueller, Edith E., E-mail: ed.mueller@salk.at [Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Muellner Hauptstrasse 48, 5020 Salzburg (Austria); Mayr, Johannes A., E-mail: h.mayr@salk.at [Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Muellner Hauptstrasse 48, 5020 Salzburg (Austria); Zimmermann, Franz A., E-mail: f.zimmermann@salk.at [Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Muellner Hauptstrasse 48, 5020 Salzburg (Austria); Feichtinger, Rene G., E-mail: r.feichtinger@salk.at [Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Muellner Hauptstrasse 48, 5020 Salzburg (Austria); Stanger, Olaf, E-mail: o.stanger@rbht.nhs.uk [Department of Cardiac Surgery, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020 Salzburg (Austria)] [Department of Cardiac Surgery, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020 Salzburg (Austria); Sperl, Wolfgang, E-mail: w.sperl@salk.at [Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Muellner Hauptstrasse 48, 5020 Salzburg (Austria)] [Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Muellner Hauptstrasse 48, 5020 Salzburg (Austria); Kofler, Barbara, E-mail: b.kofler@salk.at [Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Muellner Hauptstrasse 48, 5020 Salzburg (Austria)] [Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Muellner Hauptstrasse 48, 5020 Salzburg (Austria)

2012-01-20

159

Targeting enzymes to the right compartment: metabolic engineering for itaconic acid production by Aspergillus niger.  

PubMed

Itaconic acid is an unsaturated dicarboxylic acid which has a high potential as a biochemical building block. It can be microbially produced from some Aspergillus species, such as Aspergillus itaconicus and Aspergillus terreus. However, the achieved titers are significantly lower as compared to the citric acid production by A. niger. Heterologous expression of cis-aconitate decarboxylase in A. niger leads to the accumulation of small amounts of itaconic acid. Additional expression of aconitase, the second enzyme metabolically linking citric acid and itaconic acid improves productivity. However, proper organelle targeting of the enzymes appears to be an important point to consider. Here we compare the mitochondrial expression with the cytosolic expression of cis-aconitate decarboxylase or aconitase in A. niger. Heterologous expression of both enzymes in the mitochondria doubles the productivity compared to strains which express the enzymes in the cytosol. It is essential to target enzymes to the correct compartment in order to establish a proper flux through a compartmentalized pathway. PMID:23727192

Blumhoff, Marzena L; Steiger, Matthias G; Mattanovich, Diethard; Sauer, Michael

2013-09-01

160

Parvoviruses Cause Nuclear Envelope Breakdown by Activating Key Enzymes of Mitosis  

PubMed Central

Disassembly of the nuclear lamina is essential in mitosis and apoptosis requiring multiple coordinated enzymatic activities in nucleus and cytoplasm. Activation and coordination of the different activities is poorly understood and moreover complicated as some factors translocate between cytoplasm and nucleus in preparatory phases. Here we used the ability of parvoviruses to induce nuclear membrane breakdown to understand the triggers of key mitotic enzymes. Nuclear envelope disintegration was shown upon infection, microinjection but also upon their application to permeabilized cells. The latter technique also showed that nuclear envelope disintegration was independent upon soluble cytoplasmic factors. Using time-lapse microscopy, we observed that nuclear disassembly exhibited mitosis-like kinetics and occurred suddenly, implying a catastrophic event irrespective of cell- or type of parvovirus used. Analyzing the order of the processes allowed us to propose a model starting with direct binding of parvoviruses to distinct proteins of the nuclear pore causing structural rearrangement of the parvoviruses. The resulting exposure of domains comprising amphipathic helices was required for nuclear envelope disintegration, which comprised disruption of inner and outer nuclear membrane as shown by electron microscopy. Consistent with Ca++ efflux from the lumen between inner and outer nuclear membrane we found that Ca++ was essential for nuclear disassembly by activating PKC. PKC activation then triggered activation of cdk-2, which became further activated by caspase-3. Collectively our study shows a unique interaction of a virus with the nuclear envelope, provides evidence that a nuclear pool of executing enzymes is sufficient for nuclear disassembly in quiescent cells, and demonstrates that nuclear disassembly can be uncoupled from initial phases of mitosis. PMID:24204256

Porwal, Manvi; Cohen, Sarah; Snoussi, Kenza; Popa-Wagner, Ruth; Anderson, Fenja; Dugot-Senant, Nathalie; Wodrich, Harald; Dinsart, Christiane; Kleinschmidt, Jürgen A.; Panté, Nelly; Kann, Michael

2013-01-01

161

Mutually exclusive acetylation and ubiquitylation among enzymes involved in glucose metabolism  

PubMed Central

The posttranslational modification (PTM) in protein occurs in a regiospecific manner. In addition, the most commonly occurring PTMs involve similar residues in proteins such as acetylation, ubiquitylation, methylation and sumoylation at the lysine residue and phosphorylation and O-GlcNAc modification at serine/threonine residues. Thus, the possibility of modification sites where two such PTMs may occur in a mutually exclusive manner (ME-PTM) is much higher than known. A recent surge in the identification and the mapping of the commonly occurring PTMs in proteins has revealed that this is indeed the case. However, in what way such ME-PTM sites are regulated and what could be their relevance in the coordinated network of protein function remains to be known. To gain such potential insights in a biological context, we analyzed two most prevalent PTMs on the lysine residue by acetylation and ubiquitylation along with the most abundant PTM in proteins by phosphorylation among enzymes involved in glucose metabolism, a fundamental process in biology. The analysis of the PTM data sets has revealed two important clues that may be intrinsically associated with their regulation and function. First, the most commonly occurring PTMs by phosphorylation, acetylation and ubiquitylation are widespread and clustered in most of the enzymes involved in glucose metabolism; and the prevalence of phosphorylation sites correlates with the number of acetylation and ubiquitylation sites including the ME-modification sites. Second, the prevalence of ME-acetylation/ubiquitylation sites is exceptionally high among enzymes involved in glucose metabolism and have distinct pattern among the subset of enzymes of glucose metabolism such as glycolysis, tricarboxylic acid (TCA) cycle, glycogen synthesis, and the irreversible steps of gluconeogenesis. We hypothesize that phosphorylation including tyrosine phosphorylation plays an important role in the regulation of ME-acetylation/ubiquitylation sites and their similar pattern among the subset of functionally related proteins allows their coordinated regulation in the normal physiology. Similarly their coordinated dysregulation may underlie the disease processes such as reprogrammed metabolism in cancer, obesity, type 2 diabetes, and cardiovascular diseases. Our hypothesis provides an opportunity to understand the regulation of ME-PTMs in proteins and their relevance at the network level and is open for experimental validation. PMID:24052902

Ande, Sudharsana Rao; Padilla-Meier, G Pauline; Mishra, Suresh

2013-01-01

162

Enzyme  

MedlinePLUS

Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

163

Hepatic activities of xenobiotic metabolizing enzymes and biliary levels of xenobiotics in english sole ( Parophrys vetulus ) exposed to environmental contaminants  

Microsoft Academic Search

English sole (Parophrys vetulus) are susceptible to the development of hepatic disease, including neoplasia, as a result of environmental exposure to polycyclic aromatic hydrocarbons (PAHs). The metabolism of PAHs, believed to be an essential factor in the development of neoplasia, has received considerable study in English sole, except that xenobiotic metabolizing enzymes (XMEs) have not been wellstudied in this species.

Tracy K. Collier; Usha Varanasi

1991-01-01

164

Extract from Eugenia punicifolia is an antioxidant and inhibits enzymes related to metabolic syndrome.  

PubMed

The present study aimed to investigate in vitro biological activities of extract of Eugenia punicifolia leaves (EEP), emphasizing the inhibitory activity of enzymes related to metabolic syndrome and its antioxidant effects. The antioxidant activity was analyzed by free radicals scavengers in vitro assays: DPPH·, ABTS(·+), O2(·?), and NO· and a cell-based assay. EEP were tested in inhibitory colorimetric assays using ?-amylase, ?-glucosidase, xanthine oxidase, and pancreatic lipase enzymes. The EEP exhibited activity in ABTS(·+), DPPH·, and O2(·?) scavenger (IC50 = 10.5 ± 1.2, 28.84 ± 0.54, and 38.12 ± 2.6 ?g/mL), respectively. EEP did not show cytotoxic effects, and it showed antioxidant activity in cells in a concentration-dependent manner. EEP exhibited inhibition of ?-amylase, ?-glucosidase, and xanthine oxidase activities in vitro assays (IC50 = 122.8 ± 6.3; 2.9 ± 0.1; 23.5 ± 2.6), respectively; however, EEP did not inhibit the lipase activity. The findings supported that extract of E. punicifolia leaves is a natural antioxidant and inhibitor of enzymes, such as ?-amylase, ?-glucosidase, and xanthine oxidase, which can result in a reduction in the carbohydrate absorption rate and decrease of risks factors of cardiovascular disease, thereby providing a novel dietary opportunity for the prevention of metabolic syndrome. PMID:24078187

Lopes Galeno, Denise Morais; Carvalho, Rosany Piccolotto; Boleti, Ana Paula de Araújo; Lima, Arleilson Sousa; Oliveira de Almeida, Patricia Danielle; Pacheco, Carolina Carvalho; Pereira de Souza, Tatiane; Lima, Emerson Silva

2014-01-01

165

The effects of space flight on some rat liver enzymes regulating carbohydrate and lipid metabolism  

NASA Technical Reports Server (NTRS)

The effects of space flight conditions on the activities of certain enzymes regulating carbohydrate and lipid metabolism in rat liver are investigated in an attempt to account for the losses in body weight observed during space flight despite preflight caloric consumption. Liver samples were analyzed for the activities of 32 cytosolic and microsomal enzymes as well as hepatic glycogen and individual fatty acid levels for ground control rats and rats flown on board the Cosmos 936 biosatellite under normal space flight conditions and in centrifuges which were sacrificed upon recovery or 25 days after recovery. Significant decreases in the activities of glycogen phosphorylase, alpha-glycerol phosphate acyl transferase, diglyceride acyl transferase, aconitase and 6-phosphogluconate dehydrogenase and an increase in palmitoyl CoA desaturase are found in the flight stationary relative to the flight contrifuged rats upon recovery, with all enzymes showing alterations returning to normal values 25 days postflight. The flight stationary group is also observed to be characterized by more than twice the amount of liver glycogen of the flight centrifuged group as well as a significant increase in the ratio of palmitic to palmitoleic acid. Results thus indicate metabolic changes which may be involved in the mechanism of weight loss during weightlessness, and demonstrate the equivalence of centrifugation during space flight to terrestrial gravity.

Abraham, S.; Lin, C. Y.; Klein, H. P.; Volkmann, C.

1981-01-01

166

Integrative analyses of genetic variation in enzyme activities of primary carbohydrate metabolism reveal distinct modes of regulation in Arabidopsis thaliana  

Microsoft Academic Search

Background Plant primary carbohydrate metabolism is complex and flexible, and is regulated at many levels. Changes of transcript levels do not always lead to changes in enzyme activities, and these do not always affect metabolite levels and fluxes. To analyze interactions between these three levels of function, we have performed parallel genetic analyses of 15 enzyme activities involved in primary

Joost JB Keurentjes; Ronan Sulpice; Yves Gibon; Marie-Caroline Steinhauser; Jingyuan Fu; Maarten Koornneef; Mark Stitt; Dick Vreugdenhil

2008-01-01

167

The Role of Intracellular Signaling in Insulin-mediated Regulation of Drug Metabolizing Enzyme Gene and Protein Expression  

PubMed Central

Endogenous factors, including hormones, growth factors and cytokines, play an important role in the regulation of hepatic drug metabolizing enzyme expression in both physiological and pathophysiological conditions. Alterations of hepatic drug metabolizing enzymes gene and protein expression, observed in diabetes, fasting, obesity, protein-calorie malnutrition and long-term alcohol consumption alters the metabolism of xenobiotics, including procarcinogens, carcinogens, toxicants, and therapeutic agents and may also impact the efficacy and safety of therapeutic agents, as well as result in drug-drug interactions. Although the mechanisms by which xenobiotics regulate drug metabolizing enzymes have been studied intensively, less is known regarding the cellular signaling pathways and components which regulate drug metabolizing enzyme gene and protein expression in response to hormones and cytokines. Recent findings, however, have revealed that several cellular signaling pathways are involved in hormone- and growth factor-mediated regulation of drug metabolizing enzymes. Our laboratory, and others, have demonstrated that insulin and growth factors regulate drug metabolizing enzyme gene and protein expression, including cytochromes P450, glutathione S-transferases and microsomal epoxide hydrolase, through receptors which are members of the large receptor tyrosine kinase family, and by downstream effectors such as phosphatidylinositol 3-kinase, the mitogen activated protein kinase, Akt/protein kinase B, mTOR, and the p70S6 kinase. Here, we review current knowledge of the signaling pathways implicated in regulation of drug metabolizing enzyme gene and protein expression in response to insulin and growth factors, with the goal of increasing our understanding of how chronic disease affects these signaling pathways, components, and ultimately gene expression and translational control. PMID:17097148

Kim, Sang K.; Novak, Raymond F.

2007-01-01

168

Metabolic priorities during starvation: enzyme sparing in liver and white muscle of Atlantic cod, Gadus morhua L.  

PubMed

Atlantic cod, Gadus morhua, respond to starvation first by mobilising hepatic lipids, then muscle and hepatic glycogen and finally muscle proteins. The dual role of proteins as functional elements and energetic reserves should lead to a temporal hierarchy of mobilisation where the nature of a function dictates its conservation during starvation. We examined (1) whether lysosomal and anti-oxidant enzymes in liver and white muscle are spared during prolonged starvation, (2) whether the responses of these enzymes in muscle vary longitudinally. Hepatic contents of lysosomal proteases decreased with starvation, whereas those of catalase (CAT) increased and lysosomal enzymes of carbohydrate metabolism and glutathione S-transferase (GST) did not change. In white muscle, starvation decreased the specific activity of lysosomal enzymes of carbohydrate degradation and doubled that of cathepsin D (CaD). The activity of anti-oxidant enzymes and acid phosphatase in muscle was unchanged with starvation. In white muscle neither lysosomal enzymes nor anti-oxidant enzymes varied significantly with sampling position. In cod muscle, antioxidant enzymes, CaD and acid phosphatase are spared during a period of starvation that decreases lysosomal enzymes of carbohydrate metabolism and decreases glycolytic enzyme activities. In cod liver, the anti-oxidant enzymes, CAT and GST, were also spared during starvation. PMID:12781835

Guderley, Helga; Lapointe, Dominique; Bédard, Martin; Dutil, Jean-Denis

2003-06-01

169

Danning tablets attenuates ?-naphthylisothiocyanate-induced cholestasis by modulating the expression of transporters and metabolic enzymes  

PubMed Central

Background The Danning tablets (DNts) is commonly prescribed in China as a cholagogic formula. Our previous studies showed that DNts exerted the protective effect on ?-naphthylisothiocyanate (ANIT)-induced liver injury with cholestasis in a dose-dependent mannar. However, the detailed molecular mechanisms of DNts against ANIT-induced cholestasis are still not fully explored. Methods Danning tablet (3 g/kg body weight/day) was administered orally to experimental rats for seven days before they were treated with ANIT (60 mg/kg daily via gastrogavage) which caused cholestasis. Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total bilirubin (T-Bil), direct bilirubin (D-Bil) and total bile acid (TBA) were measured to evaluate the protective effect of Danning tablet at 12, 24 and 48h after ANIT treatment. Meanwhile, total bilirubin or total bile acid in the bile, urine and liver were also measured at 48h after ANIT treatment. Furthermore, the hepatic or renal mRNA and protein levels of metabolic enzymes and transports were investigated to elucidate the protective mechanisms of Danning tablet against ANIT-induced cholestasis. Results In this study, we found that DNts significantly attenuated translocation of multidrug resistance-associated protein 2 (Mrp2) from the canalicular membrane into an intracellular and up-regulated the hepatic mRNA and protein expressions of metabolic enzymes including cytochrome P450 2b1(Cyp2b1) and uridine diphosphate-5˘- glucuronosyltransferase (Ugt1a1)) and transporters including bile salt export pump (Bsep) and multidrug resistance protein 2 (Mdr2)) as well as renal organic solute transporter beta (Ost?), accompanied by further increase in urinary and biliary excretion of bile acid and bilirubin. Conclusions DNts might promote bile acid and bilirubin elimination by regulating the expressions of hepatic and renal transporters as well as hepatic metabolic enzymes. PMID:25033983

2014-01-01

170

HuR is a post-transcriptional regulator of core metabolic enzymes in pancreatic cancer  

PubMed Central

Cancer cell metabolism differs from normal cells, yet the regulatory mechanisms responsible for these differences are incompletely understood, particularly in response to acute changes in the tumor microenvironment. HuR, an RNA-binding protein, acts under acute stress to regulate core signaling pathways in cancer through post-transcriptional regulation of mRNA targets. We demonstrate that HuR regulates the metabolic phenotype in pancreatic cancer cells and is critical for survival under acute glucose deprivation. Using three pancreatic cancer cell line models, HuR-proficient cells demonstrated superior survival under glucose deprivation when compared with isogenic cells with siRNA-silencing of HuR expression (HuR-deficient cells). We found that HuR-proficient cells utilized less glucose, but produced greater lactate, as compared with HuR-deficient cells. Acute glucose deprivation was found to act as a potent stimulus for HuR translocation from the nucleus to the cytoplasm, where HuR stabilizes its mRNA targets. We performed a gene expression array on ribonucleoprotein-immunoprecipitated mRNAs bound to HuR and identified 11 novel HuR target transcripts that encode enzymes central to glucose metabolism. Three (GPI, PRPS2 and IDH1) were selected for validation studies, and confirmed as bona fide HuR targets. These findings establish HuR as a critical regulator of pancreatic cancer cell metabolism and survival under acute glucose deprivation. Further explorations into HuR’s role in cancer cell metabolism should uncover novel therapeutic targets that are critical for cancer cell survival in a metabolically compromised tumor microenvironment. PMID:23807417

Burkhart, Richard A; Pineda, Danielle M; Chand, Saswati N; Romeo, Carmella; Londin, Eric R; Karoly, Edward D; Cozzitorto, Joseph A; Rigoutsos, Isidore; Yeo, Charles J; Brody, Jonathan R; Winter, Jordan M

2013-01-01

171

Calcium-regulated nuclear enzymes: potential mediators of phytochrome-induced changes in nuclear metabolism?  

NASA Technical Reports Server (NTRS)

Calcium ions have been proposed to serve as important regulatory elements in stimulus-response coupling for phytochrome responses. An important test of this hypothesis will be to identify specific targets of calcium action that are required for some growth or development process induced by the photoactivated form of phytochrome (Pfr). Initial studies have revealed that there are at least two enzymes in pea nuclei that are stimulated by Pfr in a Ca(2+)-dependent fashion, a calmodulin-regulated nucleoside triphosphatase and a calmodulin-independent but Ca(2+)-dependent protein kinase. The nucleoside triphosphatase appears to be associated with the nuclear envelope, while the protein kinase co-purifies with a nuclear fraction highly enriched for chromatin. This short review summarizes the latest findings on these enzymes and relates them to what is known about Pfr-regulated nuclear metabolism.

Roux, S. J.

1992-01-01

172

Structure of glycerol-3-phosphate dehydrogenase, an essential monotopic membrane enzyme involved in respiration and metabolism.  

PubMed

Sn-glycerol-3-phosphate dehydrogenase (GlpD) is an essential membrane enzyme, functioning at the central junction of respiration, glycolysis, and phospholipid biosynthesis. Its critical role is indicated by the multitiered regulatory mechanisms that stringently controls its expression and function. Once expressed, GlpD activity is regulated through lipid-enzyme interactions in Escherichia coli. Here, we report seven previously undescribed structures of the fully active E. coli GlpD, up to 1.75 A resolution. In addition to elucidating the structure of the native enzyme, we have determined the structures of GlpD complexed with substrate analogues phosphoenolpyruvate, glyceric acid 2-phosphate, glyceraldehyde-3-phosphate, and product, dihydroxyacetone phosphate. These structural results reveal conformational states of the enzyme, delineating the residues involved in substrate binding and catalysis at the glycerol-3-phosphate site. Two probable mechanisms for catalyzing the dehydrogenation of glycerol-3-phosphate are envisioned, based on the conformational states of the complexes. To further correlate catalytic dehydrogenation to respiration, we have additionally determined the structures of GlpD bound with ubiquinone analogues menadione and 2-n-heptyl-4-hydroxyquinoline N-oxide, identifying a hydrophobic plateau that is likely the ubiquinone-binding site. These structures illuminate probable mechanisms of catalysis and suggest how GlpD shuttles electrons into the respiratory pathway. Glycerol metabolism has been implicated in insulin signaling and perturbations in glycerol uptake and catabolism are linked to obesity in humans. Homologs of GlpD are found in practically all organisms, from prokaryotes to humans, with >45% consensus protein sequences, signifying that these structural results on the prokaryotic enzyme may be readily applied to the eukaryotic GlpD enzymes. PMID:18296637

Yeh, Joanne I; Chinte, Unmesh; Du, Shoucheng

2008-03-01

173

Structure of glycerol-3-phosphate dehydrogenase, an essential monotopic membrane enzyme involved in respiration and metabolism  

SciTech Connect

Sn-glycerol-3-phosphate dehydrogenase (GlpD) is an essential membrane enzyme, functioning at the central junction of respiration, glycolysis, and phospholipid biosynthesis. Its critical role is indicated by the multitiered regulatory mechanisms that stringently controls its expression and function. Once expressed, GlpD activity is regulated through lipid-enzyme interactions in Escherichia coli. Here, we report seven previously undescribed structures of the fully active E. coli GlpD, up to 1.75 {angstrom} resolution. In addition to elucidating the structure of the native enzyme, we have determined the structures of GlpD complexed with substrate analogues phosphoenolpyruvate, glyceric acid 2-phosphate, glyceraldehyde-3-phosphate, and product, dihydroxyacetone phosphate. These structural results reveal conformational states of the enzyme, delineating the residues involved in substrate binding and catalysis at the glycerol-3-phosphate site. Two probable mechanisms for catalyzing the dehydrogenation of glycerol-3-phosphate are envisioned, based on the conformational states of the complexes. To further correlate catalytic dehydrogenation to respiration, we have additionally determined the structures of GlpD bound with ubiquinone analogues menadione and 2-n-heptyl-4-hydroxyquinoline N-oxide, identifying a hydrophobic plateau that is likely the ubiquinone-binding site. These structures illuminate probable mechanisms of catalysis and suggest how GlpD shuttles electrons into the respiratory pathway. Glycerol metabolism has been implicated in insulin signaling and perturbations in glycerol uptake and catabolism are linked to obesity in humans. Homologs of GlpD are found in practically all organisms, from prokaryotes to humans, with >45% consensus protein sequences, signifying that these structural results on the prokaryotic enzyme may be readily applied to the eukaryotic GlpD enzymes.

Yeh, Joanne I.; Chinte, Unmesh; Du, Shoucheng (Pitt)

2008-04-02

174

Modeling of sensing potency of cytoskeletal systems decorated with metabolic enzymes.  

PubMed

The highly dynamic cytoskeleton interacts with enzymes and other proteins that are involved in metabolic or signaling pathways. These interactions can influence the structural and functional characteristics of the partners at the microscopic level of individual proteins and polymers. In this work the functional consequences of such interactions have been studied at the macroscopic level in order to evaluate the integrative and regulatory roles of the metabolic pathways associated with the microtubule cytoskeleton. Here we present mathematical models of the interactions between a hypothetical metabolic pathway and microtubule assembly, and explore for the first time the functional consequences of these interactions in distinct situations. The models include kinetic constants of the individual steps and testable, relevant parameters which allow the quantification of the coupled processes at the microscopic and macroscopic levels. For example our kinetic model for the self-assembly of microtubules reproduces the alteration of the time-dependent turbidity caused by pyruvate kinase binding. Our data reveal the power of a mechanistic description of a filamentous system to explain how cells sense the state of metabolic and other pathways. PMID:25451961

Oláh, Judit; Norris, Vic; Ovádi, Judit

2015-01-21

175

Metabolizing enzyme toxicology assay chip (MetaChip) for high-throughput microscale toxicity analyses  

PubMed Central

The clinical progression of new chemical entities to pharmaceuticals remains hindered by the relatively slow pace of technology development in toxicology and clinical safety evaluation, particularly in vitro approaches, that can be used in the preclinical and early clinical phases of drug development. To alleviate this bottle-neck, we have developed a metabolizing enzyme toxicology assay chip (MetaChip) that combines high-throughput P450 catalysis with cell-based screening on a microscale platform. The MetaChip concept is demonstrated by using sol-gel encapsulated P450s to activate the prodrug cyclophosphamide, which is the major constituent of the anticancer drug Cytoxan, as well as other compounds that are activated by P450 metabolism. The MetaChip provides a high-throughput microscale alternative to currently used in vitro methods for human metabolism and toxicology screening based on liver slices, cultured human hepatocytes, purified microsomal preparations, or isolated and purified P450s. This technology creates opportunities for rapid and inexpensive assessment of ADME/Tox (absorption, distribution, metabolism, excretion/toxicology) at very early phases of drug development, thereby enabling unsuitable candidates to be eliminated from consideration much earlier in the drug discovery process. PMID:15657119

Lee, Moo-Yeal; Park, Chan Beum; Dordick, Jonathan S.; Clark, Douglas S.

2005-01-01

176

Phosphoinositide-metabolizing enzymes at the interface between membrane traffic and cell signalling  

PubMed Central

Phosphoinositides (PIs) have long been known to have important roles in cell signalling. During the past decade, it has become clear that these lipids also act as constitutive signals that aid in defining organelle identity, and are short-lived recruiters and regulators of cytoskeletal and membrane dynamics. Recent studies have provided important clues as to how regulated activation of PI-metabolizing enzymes and recruitment of their binding proteins might cooperate in targeting distinct pools of PIs to different cell physiological functions. PMID:17330069

Krauß, Michael; Haucke, Volker

2007-01-01

177

Inflammation-induced phenoconversion of polymorphic drug metabolizing enzymes: hypothesis with implications for personalized medicine.  

PubMed

Phenoconversion transiently converts genotypic extensive metabolizers (EMs) into phenotypic poor metabolizers (PMs) of drugs, potentially with corresponding changes in clinical response. This phenomenon, typically resulting from coadministration of medications that inhibit certain drug metabolizing enzymes (DMEs), is especially well documented for enzymes of the cytochrome P450 family. Nonclinical evidence gathered over the last two decades also strongly implicates elevated levels of some proinflammatory cytokines, released during inflammation, in down-regulation of drug metabolism, especially by certain DMEs of the P450 family, thereby potentially causing transient phenoconversion. Clinically, phenoconversion of NAT2, CYP2C19, and CYP2D6 has been documented in inflammatory conditions associated with elevated cytokines, such as human immunodeficiency virus infection, cancer, and liver disease. The potential of other inflammatory conditions to cause phenoconversion has not been studied but experimental and anecdotal clinical evidence supports infection-induced down-regulation of CYP1A2, CYP3A4, and CYP2C9 as well. Collectively, the evidence supports a hypothesis that certain inflammatory conditions associated with elevated proinflammatory cytokines may cause phenoconversion of certain DMEs. Since inflammatory conditions associated with elevated levels of proinflammatory cytokines are highly prevalent, phenoconversion of genotypic EM patients into transient phenotypic PMs may be more frequent than appreciated. Since drug pharmacokinetics, and therefore the clinical response, is influenced by DME phenotype rather than genotype per se, phenoconversion (whatever its cause) can have a significant impact on the analysis and interpretation of genotype-focused clinical outcome association studies. There is a risk that focusing on genotype alone may miss important associations between clinical outcomes and DME phenotypes, thus compromising future prospects of personalized medicine. PMID:25519488

Shah, Rashmi R; Smith, Robert L

2015-03-01

178

Modulation of xenobiotic-metabolizing enzymes by ethanolic neem leaf extract during hamster buccal pouch carcinogenesis.  

PubMed

Chemoprevention by medicinal plants is a promising approach for controlling cancer. There is substantial evidence to indicate that chemopreventive agents exert their anticarcinogenic effects by modulation of phase I and phase II xenobiotic-metabolizing enzymes. Therefore, we examined the chemopreventive potential of ethanolic neem leaf extract (ENLE) on 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis. Hamsters were divided into four groups of six animals each. The right buccal pouches of animals in Group I were painted with 0.5 per cent DMBA in liquid paraffin three times per week. Animals in Group 2 painted with DMBA as in group 1, received in addition, intragastric administration of ENLE at a concentration of 200 mg/kg bw three times per week on days alternate to DMBA application. Group 3 was given ENLE alone. Animals in Group 4 served as controls. All animals were killed after an experimental period of 14 weeks. Five out of six hamsters painted with DMBA alone developed squamous cell carcinomas in the buccal pouch. The HBP tumours showed an increase in phase I carcinogen activation (cytochrome P450 and b5) and phase II detoxification enzyme (glutathione-S-transferase, DT-diaphorase and NADPH-diaphorase) activities. In the liver of tumour-bearing animals, enhanced cytochrome P450 and b5 levels were accompanied by a decrease in phase II detoxification enzyme activities. Administration of ENLE effectively suppressed DMBA-induced HBP tumours, decreased cytochrome P450 and b5 levels, and enhanced phase II enzyme activities in the pouch and liver. Our results suggest that the modulation of DMBA metabolism is a possible mechanism for the chemopreventive effects of ethanolic neem leaf extract. PMID:16110755

Subapriya, R; Velmurugan, B; Nagini, S

2005-06-01

179

Identification of metabolic pathways and enzyme systems involved in the in vitro human hepatic metabolism of dronedarone, a potent new oral antiarrhythmic drug.  

PubMed

The in vitro metabolism of dronedarone and its major metabolites has been studied in human liver microsomes and cryopreserved hepatocytes in primary culture through the use of specific or total cytochrome P450 (CYP) and monoamine oxidase (MAO) inhibitors. The identification of the main metabolites and enzymes participating in their metabolism was also elucidated by using rhCYP, rhMAO, flavin monooxygenases (rhFMO) and UDP-glucuronosyltransferases (rhUGT) and liquid chromatography/tandem mass spectrometry (LC/MS-MS) analysis. Dronedarone was extensively metabolized in human hepatocytes with a metabolic clearance being almost completely inhibited (98 ± 2%) by 1-aminobenzotriazole. Ketoconazole also inhibited dronedarone metabolism by 89 ± 7%, demonstrating the crucial role of CYP3A in its metabolism. CYP3A isoforms mostly contributed to N-debutylation while hydroxylation on the butyl-benzofuran moiety was catalyzed by CYP2D6. However, hydroxylation on the dibutylamine moiety did not appear to be CYP-dependent. N-debutyl-dronedarone was less rapidly metabolized than dronedarone, the major metabolic pathway being catalyzed by MAO-A to form propanoic acid-dronedarone and phenol-dronedarone. Propanoic acid-dronedarone was metabolized at a similar rate to that of N-debutyl-dronedarone and was predominantly hydroxylated by CYP2C8 and CYP1A1. Phenol-dronedarone was extensively glucuronidated while C-dealkyl-dronedarone was metabolized at a slow rate. The evaluation of the systemic clearance of each metabolic process together with the identification of both the major metabolites and predominant enzyme systems and isoforms involved in the formation and subsequent metabolism of these metabolites has enhanced the overall understanding of metabolism of dronedarone in humans. PMID:25505590

Klieber, Sylvie; Arabeyre-Fabre, Catherine; Moliner, Patricia; Marti, Eric; Mandray, Martine; Ngo, Robert; Ollier, Céline; Brun, Priscilla; Fabre, Gérard

2014-06-01

180

Effects of Naturally Occurring Coumarins on Hepatic Drug Metabolizing Enzymes in Mice  

PubMed Central

Cytochromes P450 (P450s) and glutathione S-transferases (GSTs) constitute two important enzyme families involved in carcinogen metabolism. Generally, P450s play activation or detoxifying roles while GSTs act primarily as detoxifying enzymes. We previously demonstrated that oral administration of the linear furanocoumarins, isopimpinellin and imperatorin, modulated P450 and GST activities in various tissues of mice. The purpose of the present study was to compare a broader range of naturally occurring coumarins (simple coumarins, and furanocoumarins of the linear and angular type) for their abilities to modulate hepatic drug metabolizing enzymes when administered orally to mice. We now report that all of the different coumarins tested (coumarin, limettin, auraptene, angelicin, bergamottin, imperatorin and isopimpinellin) induced hepatic GST activities, whereas the linear furanocoumarins possessed the greatest abilities to induce hepatic P450 activities, in particular P450 2B and 3A. In both cases, this corresponded to an increase in protein expression of the enzymes. Induction of P4502B10, 3A11, and 2C9 by xenobiotics often are a result of activation of the pregnane X receptor (PXR) and/or constitutive androstane receptor (CAR). Using a pregnane X receptor reporter system, our results demonstrated that isopimpinellin activated both PXR and its human ortholog SXR by recruiting coactivator SRC-1 in transfected cells. In CAR transfection assays, isopimpinellin counteracted the inhibitory effect of androstanol on full length mCAR, a Gal4-mCAR ligand binding domain fusion, and restored coactivator binding. Orally administered isopimpinellin induced hepatic mRNA expression of Cyp2b10,Cyp3a1, GSTa in CAR(+/+) wild-type mice. In contrast, the induction of Cyp2b10 mRNA by isopimpinellin was attenuated in the CAR(?/?) mice, suggesting that isopimpinellin induces Cyp2b10 via the CAR receptor. Overall, the current data indicate that naturally occurring coumarins have diverse activities in terms of inducing various xenobiotic metabolizing enzymes based on their chemical structure. PMID:18692084

Kleiner, Heather E.; Xia, Xiojun; Sonoda, Junichiro; Zhang, Jun; Pontius, Elizabeth; Abey, Jane; Evans, Ronald M.; Moore, David D.; DiGiovanni., John

2008-01-01

181

Variability in drug metabolizing enzyme activity in HIV-infected patients  

PubMed Central

Aims To evaluate variability in cytochrome P450 (CYP) 1A2, CYP2D6, CYP3A, N-acetyltransferase 2 (NAT2), and xanthine oxidase (XO) activity in HIV-infected patients and compare this with data from uninfected, healthy volunteers. Methods Ten HIV-infected men and seven women on medication affecting CYP enzyme activity were phenotyped four times over 2 months using caffeine, dextromethorphan, and midazolam. Urinary caffeine and dextromethorphan metabolite ratios were used to phenotype CYP1A2, NAT2, XO, and CYP2D6 activity and midazolam plasma clearance was used to phenotype CYP3A activity. Plasma and urine samples were analyzed by validated LC/UV or LC/MS methods for midazolam, caffeine, and dextromethorphan. Noncompartmental pharmacokinetics and nonparametric statistical analyses were performed, and the data compared with those of healthy volunteer historic controls. Results Compared with age and sex-matched healthy volunteers, HIV-infected subjects had 18% lower hepatic CYP3A4 activity, 90% lower CYP2D6 activity, 53% lower NAT2 activity, and 22% higher XO activity. No significant difference was found in CYP1A2 activity. Additionally, 25% genotype–phenotype discordance in CYP2D6 activity was noted in HIV-infected subjects. Intraindividual variability in enzyme activity increased by 42–62% in HIV-infected patients for CYP1A2, NAT2, and XO, and decreased by 33% for CYP2D6. Interindividual variability in enzyme activity increased by 27–63% in HIV-infected subjects for CYP2D6, CYP1A2, and XO, and decreased by 38% for NAT2. Higher plasma TNF? concentrations correlated with lower CYP2D6 and CYP3A4 activity. Conclusions Infection with HIV or stage of HIV infection may alter Phase I and II drug metabolizing enzyme activity. HIV infection was related to an increase in variability of these drug-metabolizing enzymes. Altered metabolism may be a consequence of immune activation and cytokine exposure. PMID:20084375

Brown, Kevin C.; Werner, Rebecca E.; Gotzkowsky, Karl; Gaedigk, Andrea; Blake, Mike; Hein, David W.; van der Horst, Charles; Kashuba, Angela D. M.

2010-01-01

182

Effects of naturally occurring coumarins on hepatic drug-metabolizing enzymes in mice.  

PubMed

Cytochromes P450 (P450s) and glutathione S-transferases (GSTs) constitute two important enzyme families involved in carcinogen metabolism. Generally, P450s play activation or detoxifying roles while GSTs act primarily as detoxifying enzymes. We previously demonstrated that oral administration of the linear furanocoumarins, isopimpinellin and imperatorin, modulated P450 and GST activities in various tissues of mice. The purpose of the present study was to compare a broader range of naturally occurring coumarins (simple coumarins, and furanocoumarins of the linear and angular type) for their abilities to modulate hepatic drug-metabolizing enzymes when administered orally to mice. We now report that all of the different coumarins tested (coumarin, limettin, auraptene, angelicin, bergamottin, imperatorin and isopimpinellin) induced hepatic GST activities, whereas the linear furanocoumarins possessed the greatest abilities to induce hepatic P450 activities, in particular P450 2B and 3A. In both cases, this corresponded to an increase in protein expression of the enzymes. Induction of P4502B10, 3A11, and 2C9 by xenobiotics often is a result of activation of the pregnane X receptor (PXR) and/or constitutive androstane receptor (CAR). Using a pregnane X receptor reporter system, our results demonstrated that isopimpinellin activated both PXR and its human ortholog SXR by recruiting coactivator SRC-1 in transfected cells. In CAR transfection assays, isopimpinellin counteracted the inhibitory effect of androstanol on full-length mCAR, a Gal4-mCAR ligand-binding domain fusion, and restored coactivator binding. Orally administered isopimpinellin induced hepatic mRNA expression of Cyp2b10, Cyp3a11, and GSTain CAR(+/+) wild-type mice. In contrast, the induction of Cyp2b10 mRNA by isopimpinellin was attenuated in the CAR(-/-) mice, suggesting that isopimpinellin induces Cyp2b10 via the CAR receptor. Overall, the current data indicate that naturally occurring coumarins have diverse activities in terms of inducing various xenobiotic metabolizing enzymes based on their chemical structure. PMID:18692084

Kleiner, Heather E; Xia, Xiaojun; Sonoda, Junichiro; Zhang, Jun; Pontius, Elizabeth; Abey, Jane; Evans, Ronald M; Moore, David D; DiGiovanni, John

2008-10-15

183

Antioxidative properties and inhibition of key enzymes relevant to type-2 diabetes and hypertension by essential oils from black pepper.  

PubMed

The antioxidant properties and effect of essential oil of black pepper (Piper guineense) seeds on ? -amylase, ? -glucosidase (key enzymes linked to type-2 diabetes), and angiotensin-I converting enzyme (ACE) (key enzyme linked to hypertension) were assessed. The essential oil was obtained by hydrodistillation and dried with anhydrous Na2SO4, and the phenolic content, radical [1,1-diphenyl-2 picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) and nitric oxide (NO)] scavenging abilities as well as the ferric reducing antioxidant property (FRAP) and Fe(2+)-chelating ability of the essential oil were investigated. Furthermore, the effect on ? -amylase, ? -glucosidase, and ACE enzyme activities was also investigated. The characterization of the constituents was done using GC. The essential oil scavenged DPPH?, NO?, and ABTS? and chelated Fe(2+). ? -Pinene, ? -pinene, cis-ocimene, myrcene, allo-ocimene, and 1,8-cineole were among the constituents identified by GC. The essential oil inhibited ? -amylase, ? -glucosidase, and ACE enzyme activities in concentration-dependent manners, though exhibiting a stronger inhibition of ? -glucosidase than ? -amylase activities. Conclusively, the phenolic content, antioxidant activity, and inhibition of ? -amylase, ? -glucosidase, and angiotensin-1 converting enzyme activities by the essential oil extract of black pepper could be part of the mechanism by which the essential oil could manage and/or prevent type-2 diabetes and hypertension. PMID:24348547

Oboh, Ganiyu; Ademosun, Ayokunle O; Odubanjo, Oluwatoyin V; Akinbola, Ifeoluwa A

2013-01-01

184

PAPER www.rsc.org/loc | Lab on a Chip Programmable assembly of a metabolic pathway enzyme in a pre-packaged  

E-print Network

PAPER www.rsc.org/loc | Lab on a Chip Programmable assembly of a metabolic pathway enzyme in a pre report a biofunctionalization strategy for the assembly of catalytically active enzymes within and temporally defined sites. The enzyme of a bacterial metabolic pathway, S-adenosylhomocysteine nucleosidase

Rubloff, Gary W.

185

Flux control and excess capacity in the enzymes of glycolysis and their relationship to flight metabolism in Drosophila melanogaster  

PubMed Central

An important question in evolutionary and physiological genetics is how the control of flux-base phenotypes is distributed across the enzymes in a pathway. This control is often related to enzyme-specific levels of activity that are reported to be in excess of that required for demand. In glycolysis, metabolic control is frequently considered vested in classical regulatory enzymes, each strongly displaced from equilibrium. Yet the contribution of individual steps to control is unclear. To assess enzyme-specific control in the glycolytic pathway, we used P-element excision-derived mutagenesis in Drosophila melanogaster to generate full and partial knockouts of seven metabolic genes and to measure tethered flight performance. For most enzymes, we find that reduction to half of the normal activity has no measurable impact on wing beat frequency. The enzymes catalyzing near-equilibrium reactions, phosphoglucose isomerase, phosphoglucomutase, and triosephosphate isomerase fail to show any decline in flight performance even when activity levels are reduced to 17% or less. At reduced activities, the classic regulatory enzymes, hexokinase and glycogen phosphorylase, show significant drops in flight performance and are nearer to saturation. Our results show that flight performance is canalized or robust to the activity variation found in natural populations. Furthermore, enzymes catalyzing near-equilibrium reactions show strong genetic dominance down to low levels of activity. This implies considerable excess enzyme capacity for these enzymes. PMID:17159148

Eanes, Walter F.; Merritt, Thomas J. S.; Flowers, Jonathan M.; Kumagai, Seiji; Sezgin, Efe; Zhu, Chen-Tseh

2006-01-01

186

Natural allelic variations of xenobiotic-metabolizing enzymes affect sexual dimorphism in Oryzias latipes.  

PubMed

Sexual dimorphisms, which are phenotypic differences between males and females, are driven by sexual selection. Interestingly, sexually selected traits show geographical variations within species despite strong directional selective pressures. This paradox has eluded many evolutionary biologists for some time, and several models have been proposed (e.g. 'indicator model' and 'trade-off model'). However, disentangling which of these theories explains empirical patterns remains difficult, because genetic polymorphisms that cause variation in sexual differences are still unknown. In this study, we show that polymorphisms in cytochrome P450 (CYP) 1B1, which encodes a xenobiotic-metabolizing enzyme, are associated with geographical differences in sexual dimorphism in the anal fin morphology of medaka fish (Oryzias latipes). Biochemical assays and genetic cross experiments show that high- and low-activity CYP1B1 alleles enhanced and declined sex differences in anal fin shapes, respectively. Behavioural and phylogenetic analyses suggest maintenance of the high-activity allele by sexual selection, whereas the low-activity allele possibly has experienced positive selection due to by-product effects of CYP1B1 in inferred ancestral populations. The present data can elucidate evolutionary mechanisms behind genetic variations in sexual dimorphism and indicate trade-off interactions between two distinct mechanisms acting on the two alleles with pleiotropic effects of xenobiotic-metabolizing enzymes. PMID:25377463

Katsumura, Takafumi; Oda, Shoji; Nakagome, Shigeki; Hanihara, Tsunehiko; Kataoka, Hiroshi; Mitani, Hiroshi; Kawamura, Shoji; Oota, Hiroki

2014-12-22

187

Update on the Genetic Polymorphisms of Drug-Metabolizing Enzymes in Antiepileptic Drug Therapy  

PubMed Central

Genetic polymorphisms in the genes that encode drug-metabolizing enzymes are implicated in the inter-individual variability in the pharmacokinetics and pharmaco-dynamics of antiepileptic drugs (AEDs). However, the clinical impact of these polymorphisms on AED therapy still remains controversial. The defective alleles of cytochrome P450 (CYP) 2C9 and/or CYP2C19 could affect not only the pharmacokinetics, but also the pharmacodynamics of phenytoin therapy. CYP2C19 deficient genotypes were associated with the higher serum concentration of an active metabolite of clobazam, N-desmethylclobazam, and with the higher clinical efficacy of clobazam therapy than the other CYP2C19 genotypes. The defective alleles of CYP2C9 and/or CYP2C19 were also found to have clinically significant effects on the inter-individual variabilities in the population pharmacokinetics of phenobarbital, valproic acid and zonisamide. EPHX1 polymorphisms may be associated with the pharmacokinetics of carbamazepine and the risk of phenytoin-induced congenital malformations. Similarly, the UDP-glucuronosyltransferase 2B7 genotype may affect the pharmacokinetics of lamotrigine. Gluthatione S-transferase null genotypes are implicated in an increased risk of hepatotoxicity caused by carbamazepine and valproic acid. This article summarizes the state of research on the effects of mutations of drug-metabolizing enzymes on the pharmacokinetics and pharmacodynamics of AED therapies. Future directions for the dose-adjustment of AED are discussed.

Saruwatari, Junji; Ishitsu, Takateru; Nakagawa, Kazuko

2010-01-01

188

Role of Aldo-Keto Reductase Family 1 (AKR1) Enzymes in Human Steroid Metabolism  

PubMed Central

Human aldo-keto reductases AKR1C1-AKR1C4 and AKR1D1 play essential roles in the metabolism of all steroid hormones, the biosynthesis of neurosteroids and bile acids, the metabolism of conjugated steroids, and synthetic therapeutic steroids. These enzymes catalyze NADPH dependent reductions at the C3, C5, C17 and C20 positions on the steroid nucleus and side-chain. AKR1C1-AKR1C4 act as 3-keto, 17-keto and 20-ketosteroid reductases to varying extents, while AKR1D1 acts as the sole ?4-3-ketosteroid-5?-reductase (steroid 5?-reductase) in humans. AKR1 enzymes control the concentrations of active ligands for nuclear receptors and control their ligand occupancy and trans-activation, they also regulate the amount of neurosteroids that can modulate the activity of GABAA and NMDA receptors. As such they are involved in the pre-receptor regulation of nuclear and membrane bound receptors. Altered expression of individual AKR1C genes is related to development of prostate, breast, and endometrial cancer. Mutations in AKR1C1 and AKR1C4 are responsible for sexual development dysgenesis and mutations in AKR1D1 are causative in bile-acid deficiency. PMID:24189185

Rižner, Tea Lanišnik; Penning, Trevor M.

2013-01-01

189

Subcellular localization of glyoxylate cycle key enzymes involved in oxalate biosynthesis of wood-destroying basidiomycete Fomitopsis palustris grown on glucose.  

PubMed

This study investigated the subcellular localization of key enzymes of the glyoxylate cycle, i.e. isocitrate lyase (ICL; EC 4.1.3.1) and malate synthase (EC 2.3.3.9), that function constitutively in coordination with oxalate biosynthesis of glucose-grown Fomitopsis palustris. The ICL purified previously from F. palustris is termed FPICL1. Subcellular fractionation analysis of the cell homogenate by the sucrose density-gradient method showed that both key enzymes were present in peroxisomes, whereas acetyl-CoA synthase (EC 6.2.1.1) and oxalate-producing oxaloacetate acetylhydrolase (EC 3.7.1.1) were cytosolic. The peroxisomal localization of FPICL1 was further confirmed by electron microscopic and immunocytochemical analysis with anti-FPICL1 antibody. In addition, the peroxisomal target signal, composed of SKL at the C terminus of the cDNA encoding FPICL1, was found, which also suggests that FPICL1 is peroxisomal. Accordingly, it is postulated that transportation of succinate from peroxisomes to mitochondria, and vice versa, for the transportation of isocitrate or citrate, occurs in glucose-grown F. palustris for the constitutive metabolic coordination of the TCA and glyoxylate cycles with oxalate biosynthesis. PMID:16735748

Sakai, Shunsuke; Nishide, Tatsunori; Munir, Erman; Baba, Kei'ichi; Inui, Hiroshi; Nakano, Yoshihisa; Hattori, Takefumi; Shimada, Mikio

2006-06-01

190

The activity of drug-metabolizing enzymes and the biotransformation of selected anthelmintics in the model tapeworm Hymenolepis diminuta.  

PubMed

The drug-metabolizing enzymes of some helminths can deactivate anthelmintics and therefore partially protect helminths against these drugs' toxic effect. The aim of our study was to assess the activity of the main drug-metabolizing enzymes and evaluate the metabolism of selected anthelmintics (albendazole, flubendazole, mebendazole) in the rat tapeworm Hymenolepis diminuta, a species often used as a model tapeworm. In vitro and ex vivo experiments were performed. Metabolites of the anthelmintics were detected and identified by HPLC with spectrofluorometric or mass-spectrometric detection. The enzymes of H. diminuta are able to reduce the carbonyl group of flubendazole, mebendazole and several other xenobiotics. Although the activity of a number of oxidation enzymes was determined, no oxidative metabolites of albendazole were detected. Regarding conjugation enzymes, a high activity of glutathione S-transferase was observed. A methyl derivative of reduced flubendazole was the only conjugation metabolite identified in ex vivo incubations of H. diminuta with anthelmintics. The results revealed that H. diminuta metabolized flubendazole and mebendazole, but not albendazole. The biotransformation pathways found in H. diminuta differ from those described in Moniezia expanza and suggest the interspecies differences in drug metabolism not only among classes of helminths, but even among tapeworms. PMID:22309895

Bártíková, Hana; Vok?ál, Ivan; Skálová, Lenka; Kubí?ek, Vladimír; Firbasová, Jana; Briestenský, David; Lamka, Ji?í; Szotáková, Barbora

2012-05-01

191

Correlation of Homocysteine Metabolic Enzymes Gene Polymorphism and Mild Cognitive Impairment in the Xinjiang Uygur Population  

PubMed Central

Background The aim of this study was to investigate the genetic polymorphisms in the homocysteine (HCY) metabolic enzymes in the Xinjiang Uygur population who have mild cognitive impairment (MCI). Material/Methods Based on the epidemiological investigation, 129 cases of diagnosed Uygur MCI patients and a matched control group with 131 cases were enrolled for analyzing the association between the polymorphisms in the HCY metabolism related genes (C677T, A1298C, and G1968A polymorphisms in MTHFR, as well as the A2756G polymorphism in MS) and MCI by using the SNaPshot method. We then determined the homocysteine level in patients. Results In Xinjiang Uygur subjects, the A1298C polymorphisms in MTHFR and the A2756G polymorphisms in the MS gene in the MCI group were different from those in the control group. However, the C677T and G1968A polymorphisms in the MTHFR gene in MCI patients were not different from those in the control group. Multivariate logistic regression showed that, in addition to the well-known risk factors, such as low education level, high cholesterol level, high level of low-density lipoprotein, and high homocysteine levels, the A>G mutation in the MS gene at the rs1805087 locus was another independent risk factor for MCI in the Uyghur MCI population. The risk of MCI in G allele carriers was 2.265 times higher than that in matched control individuals (95% CI: 1.205~4.256, P<0.05). Conclusions The genetic polymorphism of HCY metabolizing enzymes is correlated to the occurrence of MCI in the Xinjiang Uygur population. The A2756G polymorphism in the MS gene could be an independent risk factor for MCI in the Xinjiang Uygur population. PMID:25625218

Luo, Mei; Ji, Huihui; Zhou, Xiaohui; Liang, Jie; Zou, Ting

2015-01-01

192

Correlating Structure and Function of Drug-Metabolizing Enzymes: Progress and Ongoing Challenges  

PubMed Central

This report summarizes a symposium sponsored by the American Society for Pharmacology and Experimental Therapeutics at Experimental Biology held April 20-24 in Boston, MA. Presentations discussed the status of cytochrome P450 (P450) knowledge, emphasizing advances and challenges in relating structure with function and in applying this information to drug design. First, at least one structure of most major human drug-metabolizing P450 enzymes is known. However, the flexibility of these active sites can limit the predictive value of one structure for other ligands. A second limitation is our coarse-grain understanding of P450 interactions with membranes, other P450 enzymes, NADPH–cytochrome P450 reductase, and cytochrome b5. Recent work has examined differential P450 interactions with reductase in mixed P450 systems and P450:P450 complexes in reconstituted systems and cells, suggesting another level of functional control. In addition, protein nuclear magnetic resonance is a new approach to probe these protein/protein interactions, identifying interacting b5 and P450 surfaces, showing that b5 and reductase binding are mutually exclusive, and demonstrating ligand modulation of CYP17A1/b5 interactions. One desired outcome is the application of such information to control drug metabolism and/or design selective P450 inhibitors. A final presentation highlighted development of a CYP3A4 inhibitor that slows clearance of human immunodeficiency virus drugs otherwise rapidly metabolized by CYP3A4. Although understanding P450 structure/function relationships is an ongoing challenge, translational advances will benefit from continued integration of existing and new biophysical approaches. PMID:24130370

Johnson, Eric F.; Connick, J. Patrick; Reed, James R.; Backes, Wayne L.; Desai, Manoj C.; Xu, Lianhong; Estrada, D. Fernando; Laurence, Jennifer S.

2014-01-01

193

Antimutagenic potential and modulation of carcinogen-metabolizing enzymes by ginger essential oil.  

PubMed

Essential oil extracted from ginger (GEO) was evaluated for its mutagenicity to Salmonella typhimurium TA 98, TA 100, TA 102, and TA 1535 strains with and without microsomal activation. GEO was found to be non-mutagenic up to a concentration of 3?mg/plate. It was also assessed for antimutagenic potential against direct acting mutagens such as sodium azide, 4-nitro-o-phenylenediamine, N-methyl-N'-nitro-N-nitrosoguanidine, tobacco extract, and 2-acetamidoflourene, which needs microsomal activation. GEO significantly inhibited (p?metabolizing enzymes was investigated by studying its effect on various isoforms of microsomal cytochrome P450 enzymes. Significant inhibition of CYP1A1, CYP1A2, and CYP2B1/2, aniline hydroxylase (an indicator of CYP2E1 activity), and aminopyrine-N-demethylase (indicator of CYP1A, 2A, 2B, 2D, and 3A activity) was shown by GEO both in vitro and in vivo. GEO gave an IC50 value of 30, 57.5, and 40?µg for CYP1A1, CYP1A2, and CYP2B1/2, respectively, 55?µg for aniline hydroxylase, and 37.5?µg for aminopyrene-N-demethylase. GEO also significantly increased the levels of phase II carcinogen-metabolizing enzymes uridine 5'-diphospho-glucuronyl transferase and glutathione-S-transferase in vivo indicating the use of GEO as an antimutagen and as a potential chemopreventive agent. PMID:24023002

Jeena, Kottarapat; Liju, Vijayasteltar B; Viswanathan, Ramanath; Kuttan, Ramadasan

2014-06-01

194

Discovery of new enzymes and metabolic pathways using structure and genome context  

PubMed Central

Assigning valid functions to proteins identified in genome projects is challenging, with over-prediction and database annotation errors major concerns1. We, and others2, are developing computation-guided strategies for functional discovery using “metabolite docking” to experimentally derived3 or homology-based4 three-dimensional structures. Bacterial metabolic pathways often are encoded by “genome neighborhoods” (gene clusters and/or operons), which can provide important clues for functional assignment. We recently demonstrated the synergy of docking and pathway context by “predicting” the intermediates in the glycolytic pathway in E. coli5. Metabolite docking to multiple binding proteins/enzymes in the same pathway increases the reliability of in silico predictions of substrate specificities because the pathway intermediates are structurally similar. We report that structure-guided approaches for predicting the substrate specificities of several enzymes encoded by a bacterial gene cluster allowed i) the correct prediction of the in vitro activity of a structurally characterized enzyme of unknown function (PDB 2PMQ), 2-epimerization of trans-4-hydroxy-L-proline betaine (tHyp-B) and cis-4-hydroxy-D-proline betaine (cHyp-B), and ii) the correct identification of the catabolic pathway in which Hyp-B 2-epimerase participates. The substrate-liganded pose predicted by virtual library screening (docking) was confirmed experimentally. The enzymatic activities in the predicted pathway were confirmed by in vitro assays and genetic analyses; the intermediates were identified by metabolomics; and repression of the genes encoding the pathway by high salt was established by transcriptomics, confirming the osmolyte role of tHyp-B. This study establishes the utility of structure-guide functional predictions to enable the discovery of new metabolic pathways. PMID:24056934

Zhao, Suwen; Kumar, Ritesh; Sakai, Ayano; Vetting, Matthew W.; Wood, B. McKay; Brown, Shoshana; Bonanno, Jeffery B.; Hillerich, Brandan S.; Seidel, Ronald D.; Babbitt, Patricia C.; Almo, Steven C.; Sweedler, Jonathan V.; Gerlt, John A.; Cronan, John E.; Jacobson, Matthew P.

2014-01-01

195

Pesticide exposure and genetic variation in xenobiotic-metabolizing enzymes interact to induce biochemical liver damage.  

PubMed

Metabolic activation of pesticides in the liver may result in highly reactive intermediates capable of impairing various cellular functions. Nevertheless, the knowledge about the effect of pesticide exposure on liver function is still limited. This study assessed whether exposure to pesticides elicits early biochemical changes in biomarkers of liver function and looked for potential gene-environmental interactions between pesticide exposure and polymorphisms of pesticide-metabolizing genes. A longitudinal study was conducted in farm-workers from Andalusia (South Spain), during two periods of the same crop season with different degree of pesticide exposure. Blood samples were taken for the measurement of serum and erythrocyte cholinesterase activities as well as for determining clinical chemistry parameters as biomarkers of liver function. Serum lipid levels were also measured as they may help to monitor the progress of toxic liver damage. A reduction in serum cholinesterase was associated with decreased levels of all clinical chemistry parameters studied except HDL-cholesterol. Conversely, a decreased erythrocyte cholinesterase (indicating long-term pesticide exposure) was associated with increased levels of aspartate aminotransferase and alkaline phosphatase and increased levels of triglycerides, total cholesterol and LDL-cholesterol, but reduced levels of HDL-cholesterol. Changes in liver biomarkers were particularly associated with the PON155M/192R haplotype. The obtained results therefore support the hypothesis that pesticide exposure results in subtle biochemical liver toxicity and highlight the role of genetic polymorphisms in pesticide-metabolizing enzymes as biomarkers of susceptibility for developing adverse health effects. PMID:23688862

Hernández, Antonio F; Gil, Fernando; Lacasańa, Marina; Rodríguez-Barranco, Miguel; Tsatsakis, Aristidis M; Requena, Mar; Parrón, Tesifón; Alarcón, Raquel

2013-11-01

196

Vitamin E-Induced Changes in Glutamate and GABA Metabolizing Enzymes of Chick Embryo Cerebrum  

PubMed Central

Vitamin E exists in eight different forms, four tocopherols and four tocotrienols. It forms an important component of our antioxidant system. The structure of Vitamin E makes it unique and indispensable in protecting cell membranes. ?-tocopherol, one of the forms of Vitamin E, is also known to regulate signal transduction pathways by mechanisms that are independent of its antioxidant properties. Vitamin E compounds reduce the production of inflammatory compounds such as prostaglandins. Swollen, dystrophic axons are considered as the hallmark of Vitamin E deficiency in the brains of rats, monkeys, and humans. The present work aimed to study the Vitamin E- (?-tochopherol acetate-) induced alterations of enzymes involved in metabolism of Glutamate and GABA during developmental neurogenesis of cerebrum. Therefore, cytosolic and crude mitochondrial enzyme activities of glutamine synthetase, aspartate transaminase, alanine transaminase, GABA transaminase, succinic Semialdehyde dehydrogenase, glutamic dehydrogenase, and ?-Ketoglutarate dehydrogenase were analysed. Vitamin E induced significant changes in these enzymes thus altering the normal levels of glutamate and GABA during developmental neurogenesis. Such changes are surely to disturb the expression and/or intensity of neurotransmitter signaling during critical periods of brain development. PMID:23984094

Dessai, Shanti N.; Pinto, Annaliza

2013-01-01

197

Effects of cow ghee (clarified butter oil) & soybean oil on carcinogen-metabolizing enzymes in rats  

PubMed Central

Background & objectives: Our previous study showed that cow ghee relative to soybean oil had a protective effect against carcinogen induced mammary cancer in rats. The objective of this study was to elucidate its biochemical mechanism. Methods: Two groups of 21 day old rats (20 each) were fed for 44 wk diet containing cow ghee or soybean oil (10%). Five animals from each group were sacrificed at 0 day and at 5, 21 and 44 wk for analysis of phase I and phase II pathways enzymes of carcinogen metabolism. Results: Dietary cow ghee relative to soybean oil decreased the activities of cytochrome P450 (CYP) enzymes, CYP1A1, CYP1A2, CYP1B1 and CYP2B1, responsible for activation of carcinogen in liver. Carcinogen detoxification activities of uridinediphospho-glucuronosyl transferase (UDPGT) and quinone reductase (QR) in liver, and ?-glutamyltranspeptidase (GGTP) and QR in mammary tissue were significantly higher in cow ghee fed rats than in soybean oil fed rats. The hepatic GGTP activity decreased on soybean oil diet; while in cow ghee group it remained unaffected. Interpretation & conclusions: Our findings show that dietary cow ghee compared to soybean oil downregulates the enzyme activities responsible for carcinogen activation in liver and upregulates carcinogen detoxification activities in liver and mammary tissues. PMID:23041740

Rani, Rita; Kansal, Vinod K.

2012-01-01

198

De novo biosynthesis of secondary metabolism enzymes in homogeneous cultures of Penicillium urticae.  

PubMed Central

The initiation of patulin biosynthesis in submerged batch cultures of Penicillium urticae NRRL 2159A was investigated at the enzyme level. In contrast to earlier studies, this study achieved a clear temporal separation of growing cells devoid of secondary metabolism-specific enzymes from nongrowing cells, which rapidly produce these enzymes. A spore inoculum, silicone-treated flasks, and two new media which supported a rapid, pellet-free, filamentous type of growth were used. In yeast extract-glucose-buffer medium, a marked drop in the specific growth rate (approximately equal to 0.26 h-1) coincided with the appearance of the first pathway-specific enzyme, 6-methylsalicylic acid synthetase, at about 19 h after inoculation. About 3 h later, when replicatory growth had ceased entirely, the sparsely branched mycelia (length, approximately equal to 550 microns) began the rapid synthesis of a later pathway enzyme, m-hydroxybenzyl alcohol dehydrogenase. A similar sequence of events occurred in a defined nitrate-glucose-buffer medium; 12 other strains or isolates of P. urticae, as well as some patulin-producing aspergilli, behaved in a similar manner. The age at which a culture produced m-hydroxybenzyl alcohol dehydrogenase was increased by increasing the nutrient nitrogen content of the medium or by decreasing the size of the spore inoculum. In each instance the appearance of enzyme was determined by the nutritional status of the culture and not by its age. A similar appearance of patulin pathway enzymes occurred when a growing culture was resuspended in a nitrogen-free 4% glucose solution with or without 0.1 M phosphate (pH 6.5). The appearance of both the synthetase and the dehydrogenase was arrested by the addition of cycloheximide (0.4 to 5 micrograms/ml) or actinomycin D (20 to 80 micrograms/ml). This requirement for de novo protein and ribonucleic acid syntheses was confirmed by the incorporation of labeled leucine into the dehydrogenase, and the possibility that latent or preformed proteins were being activated was eliminated. Images PMID:6988382

Grootwassink, J W; Gaucher, G M

1980-01-01

199

Garlic oil attenuated nitrosodiethylamine-induced hepatocarcinogenesis by modulating the metabolic activation and detoxification enzymes.  

PubMed

Nitrosodiethylamine (NDEA) is a potent carcinogen widely existing in the environment. Our previous study has demonstrated that garlic oil (GO) could prevent NDEA-induced hepatocarcinogenesis in rats, but the underlying mechanisms are not fully understood. It has been well documented that the metabolic activation may play important roles in NDEA-induced hepatocarcinogenesis. Therefore, we designed the current study to explore the potential mechanisms by investigating the changes of hepatic phase ? enzymes (including cytochrome P450 enzyme (CYP) 2E1, CYP1A2 and CYP1A1) and phase ? enzymes (including glutathione S transferases (GSTs) and UDP- Glucuronosyltransferases (UGTs)) by using enzymatic methods, real-time PCR, and western blotting analysis. We found that NDEA treatment resulted in significant decreases of the activities of CYP2E1, CYP1A2, GST alpha, GST mu, UGTs and increases of the activities of CYP1A1 and GST pi. Furthermore, the mRNA and protein levels of CYP2E1, CYP1A2, GST alpha, GST mu and UGT1A6 in the liver of NDEA-treated rats were significantly decreased compared with those of the control group rats, while the mRNA and protein levels of CYP1A1 and GST pi were dramatically increased. Interestingly, all these adverse effects induced by NDEA were simultaneously and significantly suppressed by GO co-treatment. These data suggest that the protective effects of GO against NDEA-induced hepatocarcinogenesis might be, at least partially, attributed to the modulation of phase I and phase II enzymes. PMID:23494807

Zhang, Cui-Li; Zeng, Tao; Zhao, Xiu-Lan; Xie, Ke-Qin

2013-01-01

200

Effects of Oxygen Limitation on Xylose Fermentation, Intracellular Metabolites, and Key Enzymes of Neurospora crassa AS3.1602  

NASA Astrophysics Data System (ADS)

The effects of oxygen limitation on xylose fermentation of Neurospora crassa AS3.1602 were studied using batch cultures. The maximum yield of ethanol was 0.34 g/g at oxygen transfer rate (OTR) of 8.4 mmol/L·h. The maximum yield of xylitol was 0.33 g/g at OTR of 5.1 mmol/L·h. Oxygen limitation greatly affected mycelia growth and xylitol and ethanol productions. The specific growth rate (?) decreased 82% from 0.045 to 0.008 h-1 when OTR changed from 12.6 to 8.4 mmol/L·h. Intracellular metabolites of the pentose phosphate pathway, glycolysis, and tricarboxylic acid cycle were determined at various OTRs. Concentrations of most intracellular metabolites decreased with the increase in oxygen limitation. Intracellular enzyme activities of xylose reductase, xylitol dehydrogenase, and xylulokinase, the first three enzymes in xylose metabolic pathway, decreased with the increase in oxygen limitation, resulting in the decreased xylose uptake rate. Under all tested conditions, transaldolase and transketolase activities always maintained at low levels, indicating a great control on xylose metabolism. The enzyme of glucose-6-phosphate dehydrogenase played a major role in NADPH regeneration, and its activity decreased remarkably with the increase in oxygen limitation.

Zhang, Zhihua; Qu, Yinbo; Zhang, Xiao; Lin, Jianqiang

201

Calcareous sponge genomes reveal complex evolution of ż-carbonic anhydrases and two key biomineralization enzymes.  

PubMed

BackgroundCalcium carbonate biominerals form often complex and beautiful skeletal elements, including coral exoskeletons and mollusc shells. Although the ability to generate these carbonate structures was apparently gained independently during animal evolution, it sometimes involves the same gene families. One of the best-studied of these gene families comprises the ż- carbonic anhydrases (CAs), which catalyse the reversible transformation of CO2 to HCO3 ż and fulfill many physiological functions. Among Porifera żthe oldest animal phylum with the ability to produce skeletal elementsż only the class of calcareous sponges can build calcitic spicules, which are the extracellular products of specialized cells, the sclerocytes. Little is known about the molecular mechanisms of their synthesis, but inhibition studies suggest an essential role of CAs. In order to gain insight into the evolution and function of CAs in biomineralization of a basal metazoan species, we determined the diversity and expression of CAs in the calcareous sponges Sycon ciliatum and Leucosolenia complicata by means of genomic screening, RNA-Seq and RNA in situ hybridization expression analysis. Active biomineralization was located with calcein-staining.ResultsWe found that the CA repertoires of two calcareous sponge species are strikingly more complex than those of other sponges. By characterizing their expression patterns, we could link two CAs (one intracellular and one extracellular) to the process of calcite spicule formation in both studied species. The extracellular biomineralizing CAs seem to be of paralogous origin, a finding that advises caution against assuming functional conservation of biomineralizing genes based upon orthology assessment alone. Additionally, calcareous sponges possess acatalytic CAs related to human CAs X and XI, suggesting an ancient origin of these proteins. Phylogenetic analyses including CAs from genomes of all non-bilaterian phyla suggest multiple gene losses and duplications and presence of several CAs in the last common ancestor of metazoans.ConclusionsWe identified two key biomineralization enzymes from the CA-family in calcareous sponges and propose their possible interaction in spicule formation. The complex evolutionary history of the CA family is driven by frequent gene diversification and losses. These evolutionary patterns likely facilitated the numerous events of independent recruitment of CAs into biomineralization within Metazoa. PMID:25421146

Voigt, Oliver; Adamski, Marcin; Sluzek, Kasia; Adamska, Maja

2014-11-25

202

Enzyme Informatics  

PubMed Central

Over the last 50 years, sequencing, structural biology and bioinformatics have completely revolutionised biomolecular science, with millions of sequences and tens of thousands of three dimensional structures becoming available. The bioinformatics of enzymes is well served by, mostly free, online databases. BRENDA describes the chemistry, substrate specificity, kinetics, preparation and biological sources of enzymes, while KEGG is valuable for understanding enzymes and metabolic pathways. EzCatDB, SFLD and MACiE are key repositories for data on the chemical mechanisms by which enzymes operate. At the current rate of genome sequencing and manual annotation, human curation will never finish the functional annotation of the ever-expanding list of known enzymes. Hence there is an increasing need for automated annotation, though it is not yet widespread for enzyme data. In contrast, functional ontologies such as the Gene Ontology already profit from automation. Despite our growing understanding of enzyme structure and dynamics, we are only beginning to be able to design novel enzymes. One can now begin to trace the functional evolution of enzymes using phylogenetics. The ability of enzymes to perform secondary functions, albeit relatively inefficiently, gives clues as to how enzyme function evolves. Substrate promiscuity in enzymes is one example of imperfect specificity in protein-ligand interactions. Similarly, most drugs bind to more than one protein target. This may sometimes result in helpful polypharmacology as a drug modulates plural targets, but also often leads to adverse side-effects. Many cheminformatics approaches can be used to model the interactions between druglike molecules and proteins in silico. We can even use quantum chemical techniques like DFT and QM/MM to compute the structural and energetic course of enzyme catalysed chemical reaction mechanisms, including a full description of bond making and breaking. PMID:23116471

Alderson, Rosanna G.; Ferrari, Luna De; Mavridis, Lazaros; McDonagh, James L.; Mitchell, John B. O.; Nath, Neetika

2012-01-01

203

Differential induction of carcinogen metabolizing enzymes in a transgenic mouse model of fulminant hepatitis.  

PubMed

The objective of this work is to examine the possible modulation of carcinogen metabolism (activation by cytochrome P450s and detoxification by conjugation via glutathione S-transferases [GST]) in relation to hepatitis B virus (HBV)-associated liver injury. In HBV transgenic mouse lineage 107.5, the hepatitis B surface antigen (HBsAg) is expressed at noncytopathic concentrations but after injection of an HBsAg-specific, major histocompatibility complex (MHC) class I restricted cytotoxic T-lymphocyte (CTL) clone, the mice develop a severe acute necroinflammatory liver disease that reaches maximum severity within 3 days and gradually subsides during the next 2 to 3 weeks. In this model, using immunohistochemical analysis, we observed an increase of P450s (CYP1A and 2A5), both involved in aflatoxin B1, metabolism, but minor changes or no changes for others (2B, 2C, 2E, 3A). There was a fivefold decrease in the total liver P450 microsomal content 3 days' post-CTL injection with the result that the relative proportion of CYP2A5 and 1A compared with other P450s is increased. Individual microsomal P450 enzyme contents estimated by Western blotting; Northern blot analysis of liver CYP messenger RNA (mRNA) levels as well as in vitro metabolism of specific substrates for different P450 isoenzymes were consistent with the immunohistochemical data. Immunohistochemical staining with antibodies to cytosolic pi class GST was increased 1 and 3 days postinjection followed by a progressive decrease at later time points (the same phenomenon was observed to a lesser extent for GST alpha). The activity of hepatic cytosols toward substrates specific for different subclasses of GST (mu, pi, alpha) showed that while GST mu was not changed in the CTL-injected HBV transgenic mice, GST pi and, to a lesser extent, alpha were increased as compared with controls. These results suggest that liver cell injury induced by a process of acute fulminant-like hepatitis can lead to the induction of some carcinogen metabolizing enzymes notably, Cyp 1A, 2A5 and GST pi in the mouse. PMID:8781338

Chemin, I; Takahashi, S; Belloc, C; Lang, M A; Ando, K; Guidotti, L G; Chisari, F V; Wild, C P

1996-09-01

204

The Catalytic Machinery of a Key Enzyme in Amino Acid Biosynthesis  

SciTech Connect

The aspartate pathway of amino acid biosynthesis is essential for all microbial life but is absent in mammals. Characterizing the enzyme-catalyzed reactions in this pathway can identify new protein targets for the development of antibiotics with unique modes of action. The enzyme aspartate {beta}-semialdehyde dehydrogenase (ASADH) catalyzes an early branch point reaction in the aspartate pathway. Kinetic, mutagenic, and structural studies of ASADH from various microbial species have been used to elucidate mechanistic details and to identify essential amino acids involved in substrate binding, catalysis, and enzyme regulation. Important structural and functional differences have been found between ASADHs isolated from these bacterial and fungal organisms, opening the possibility for developing species-specific antimicrobial agents that target this family of enzymes.

Viola, Ronald E.; Faehnle, Christopher R.; Blanco, Julio; Moore, Roger A.; Liu, Xuying; Arachea, Buenafe T.; Pavlovsky, Alexander G. (Toledo); (Yale); (Cold Spring); (NIH)

2013-02-28

205

Saturated fatty acid metabolism is key link between cell division, cancer, and senescence in cellular and whole organism aging  

PubMed Central

Cellular senescence is an in vivo and in vitro phenomenon, accompanied by physiological changes including cessation of division and disturbances of organelle structure and function. Review of the literature was undertaken to determine whether there is evidence that whole organism aging and cell senescence share a common initiation pathway. In vivo aged cells of different lineages, including aged T lymphocytes, show high expression of the INK4A-p16 gene. In cell culture when telomeres are shortened past a key length or state, the Arf/Ink gene system (p16/p14 humans, p16/p19 mice) switches on and activates p53, which suppresses further cell division. The p53 gene is a key tumor suppressor and its deletion or mutation allows cancerous growth. The switching on of p53 also causes changes in fatty acid metabolism, especially down-regulation of both fatty acid synthase and stearoyl-CoA (delta-9) desaturase. The co-suppression of these genes together with enhanced uptake of extracellular fatty acids, leads to raised levels of cellular palmitate and induction of either apoptosis or senescence. In senescent cells, the fatty acid composition of the cellular membranes alters and leads to changes in both structure and function of organelles, especially mitochondria. Animal models of accelerated aging exhibit repression of stearoyl-CoA desaturase activity while anti-aging calorie restriction stimulates the same enzyme system. It is concluded that aging in cells and whole organisms share a common initiation pathway and that cellular senescence is protective against cancer. Healthy longevity is likely to be most enhanced by factors that actively suppress excessive cell division. PMID:20431990

2010-01-01

206

In-Silico Prediction of Key Metabolic Differences between Two Non-Small Cell Lung Cancer Subtypes  

PubMed Central

Metabolism expresses the phenotype of living cells and understanding it is crucial for different applications in biotechnology and health. With the increasing availability of metabolomic, proteomic and, to a larger extent, transcriptomic data, the elucidation of specific metabolic properties in different scenarios and cell types is a key topic in systems biology. Despite the potential of the elementary flux mode (EFM) concept for this purpose, its use has been limited so far, mainly because their computation has been infeasible for genome-scale metabolic networks. In a recent work, we determined a subset of EFMs in human metabolism and proposed a new protocol to integrate gene expression data, spotting key 'characteristic EFMs' in different scenarios. Our approach was successfully applied to identify metabolic differences among several human healthy tissues. In this article, we evaluated the performance of our approach in clinically interesting situation. In particular, we identified key EFMs and metabolites in adenocarcinoma and squamous-cell carcinoma subtypes of non-small cell lung cancers. Results are consistent with previous knowledge of these major subtypes of lung cancer in the medical literature. Therefore, this work constitutes the starting point to establish a new methodology that could lead to distinguish key metabolic processes among different clinical outcomes. PMID:25093336

Rezola, Alberto; Pey, Jon; Rubio, Ángel; Planes, Francisco J.

2014-01-01

207

Gene expression variability in human hepatic drug metabolizing enzymes and transporters.  

PubMed

Interindividual variability in the expression of drug-metabolizing enzymes and transporters (DMETs) in human liver may contribute to interindividual differences in drug efficacy and adverse reactions. Published studies that analyzed variability in the expression of DMET genes were limited by sample sizes and the number of genes profiled. We systematically analyzed the expression of 374 DMETs from a microarray data set consisting of gene expression profiles derived from 427 human liver samples. The standard deviation of interindividual expression for DMET genes was much higher than that for non-DMET genes. The 20 DMET genes with the largest variability in the expression provided examples of the interindividual variation. Gene expression data were also analyzed using network analysis methods, which delineates the similarities of biological functionalities and regulation mechanisms for these highly variable DMET genes. Expression variability of human hepatic DMET genes may affect drug-gene interactions and disease susceptibility, with concomitant clinical implications. PMID:23637747

Yang, Lun; Price, Elvin T; Chang, Ching-Wei; Li, Yan; Huang, Ying; Guo, Li-Wu; Guo, Yongli; Kaput, Jim; Shi, Leming; Ning, Baitang

2013-01-01

208

Non-Viral Gene Transfer as a Tool for Studying Transcription Regulation of Xenobiotic Metabolizing Enzymes  

PubMed Central

Numerous xenobiotic metabolizing enzymes are regulated by nuclear receptors at transcriptional level. The challenge we currently face is to understand how a given nuclear receptor interacts with its xenobiotics, migrates into nucleus, binds to the xenobiotic response element of a target gene, and regulates transcription. Toward this end, new methods have been developed to introduce the nuclear receptor gene into appropriate cells and study its activity in activating reporter gene expression under the control of a promoter containing xenobiotic response elements. The goal of this review is to critically examine the gene transfer methods currently available. We concentrate on the gene transfer mechanism, advantages and limitations of each method when employed for nuclear receptor-mediated gene regulation studies. It is our hope that the information provided highlights the importance of gene transfer in studying the mechanisms by which our body eliminates the potentially harmful substances and maintains the homeostasis. PMID:20713102

Bonamassa, Barbara; Liu, Dexi

2010-01-01

209

Gene Expression Variability in Human Hepatic Drug Metabolizing Enzymes and Transporters  

PubMed Central

Interindividual variability in the expression of drug-metabolizing enzymes and transporters (DMETs) in human liver may contribute to interindividual differences in drug efficacy and adverse reactions. Published studies that analyzed variability in the expression of DMET genes were limited by sample sizes and the number of genes profiled. We systematically analyzed the expression of 374 DMETs from a microarray data set consisting of gene expression profiles derived from 427 human liver samples. The standard deviation of interindividual expression for DMET genes was much higher than that for non-DMET genes. The 20 DMET genes with the largest variability in the expression provided examples of the interindividual variation. Gene expression data were also analyzed using network analysis methods, which delineates the similarities of biological functionalities and regulation mechanisms for these highly variable DMET genes. Expression variability of human hepatic DMET genes may affect drug-gene interactions and disease susceptibility, with concomitant clinical implications. PMID:23637747

Yang, Lun; Price, Elvin T.; Chang, Ching-Wei; Li, Yan; Huang, Ying; Guo, Li-Wu; Guo, Yongli; Kaput, Jim; Shi, Leming; Ning, Baitang

2013-01-01

210

Plastid Localization of the Key Carotenoid Enzyme Phytoene Synthase Is Altered by Isozyme, Allelic Variation, and Activity[W  

PubMed Central

Plant carotenoids have unique physiological roles related to specific plastid suborganellar locations. Carotenoid metabolic engineering could enhance plant adaptation to climate change and improve food security and nutritional value. However, lack of fundamental knowledge on carotenoid pathway localization limits targeted engineering. Phytoene synthase (PSY), a major rate-controlling carotenoid enzyme, is represented by multiple isozymes residing at unknown plastid sites. In maize (Zea mays), the three isozymes were transiently expressed and found either in plastoglobuli or in stroma and thylakoid membranes. PSY1, with one to two residue modifications of naturally occurring functional variants, exhibited altered localization, associated with distorted plastid shape and formation of a fibril phenotype. Mutating the active site of the enzyme reversed this phenotype. Discovery of differential PSY locations, linked with activity and isozyme type, advances the engineering potential for modifying carotenoid biosynthesis. PMID:23023170

Shumskaya, Maria; Bradbury, Louis M.T.; Monaco, Regina R.; Wurtzel, Eleanore T.

2012-01-01

211

Plastid localization of the key carotenoid enzyme phytoene synthase is altered by isozyme, allelic variation, and activity.  

PubMed

Plant carotenoids have unique physiological roles related to specific plastid suborganellar locations. Carotenoid metabolic engineering could enhance plant adaptation to climate change and improve food security and nutritional value. However, lack of fundamental knowledge on carotenoid pathway localization limits targeted engineering. Phytoene synthase (PSY), a major rate-controlling carotenoid enzyme, is represented by multiple isozymes residing at unknown plastid sites. In maize (Zea mays), the three isozymes were transiently expressed and found either in plastoglobuli or in stroma and thylakoid membranes. PSY1, with one to two residue modifications of naturally occurring functional variants, exhibited altered localization, associated with distorted plastid shape and formation of a fibril phenotype. Mutating the active site of the enzyme reversed this phenotype. Discovery of differential PSY locations, linked with activity and isozyme type, advances the engineering potential for modifying carotenoid biosynthesis. PMID:23023170

Shumskaya, Maria; Bradbury, Louis M T; Monaco, Regina R; Wurtzel, Eleanore T

2012-09-01

212

An Overview of Gibberellin Metabolism Enzyme Genes and Their Related Mutants in Rice1[w  

PubMed Central

To enhance our understanding of GA metabolism in rice (Oryza sativa), we intensively screened and identified 29 candidate genes encoding the following GA metabolic enzymes using all available rice DNA databases: ent-copalyl diphosphate synthase (CPS), ent-kaurene synthase (KS), ent-kaurene oxidase (KO), ent-kaurenoic acid oxidase (KAO), GA 20-oxidase (GA20ox), GA 3-oxidase (GA3ox), and GA 2-oxidase (GA2ox). In contrast to the Arabidopsis genome, multiple CPS-like, KS-like, and KO-like genes were identified in the rice genome, most of which are contiguously arranged. We also identified 18 GA-deficient rice mutants at six different loci from rice mutant collections. Based on the mutant and expression analyses, we demonstrated that the enzymes catalyzing the early steps in the GA biosynthetic pathway (i.e. CPS, KS, KO, and KAO) are mainly encoded by single genes, while those for later steps (i.e. GA20ox, GA3ox, and GA2ox) are encoded by gene families. The remaining CPS-like, KS-like, and KO-like genes were likely to be involved in the biosynthesis of diterpene phytoalexins rather than GAs because the expression of two CPS-like and three KS-like genes (OsCPS2, OsCPS4, OsKS4, OsKS7, and OsKS8) were increased by UV irradiation, and four of these genes (OsCPS2, OsCPS4, OsKS4, and OsKS7) were also induced by an elicitor treatment. PMID:15075394

Sakamoto, Tomoaki; Miura, Koutarou; Itoh, Hironori; Tatsumi, Tomoko; Ueguchi-Tanaka, Miyako; Ishiyama, Kanako; Kobayashi, Masatomo; Agrawal, Ganesh K.; Takeda, Shin; Abe, Kiyomi; Miyao, Akio; Hirochika, Hirohiko; Kitano, Hidemi; Ashikari, Motoyuki; Matsuoka, Makoto

2004-01-01

213

Drug metabolizing enzyme induction pathways in experimental non-alcoholic steatohepatitis  

PubMed Central

Non-alcoholic steatohepatitis (NASH) is a disease that compromises hepatic function and the capacity to metabolize numerous drugs. Aryl hydrocarbon receptor (AhR), constitutive androstane receptor (CAR), pregnane X receptor (PXR), peroxisome proliferator-activated receptor alpha (PPAR?), and nuclear factor-E2 related factor 2 (Nrf2) are xenobiotic activated transcription factors that regulate induction of a number of drug metabolizing enzymes (DMEs). The purpose of the current study was to determine whether experimental NASH alters the xenobiotic activation of these transcription factors and induction of downstream DME targets Cyp1A1, Cyp2B10, Cyp3A11, Cyp4A14 and NAD(P)H:quinone oxidoreductase 1 (Nqo1), respectively. Mice fed normal rodent chow or methionine-choline-deficient (MCD) diet for 8 weeks were then treated with microsomal enzyme inducers ?-naphoflavone (BNF), 1,4-bis-[2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP), pregnenolone-16?-carbonitrile (PCN), clofibrate (CFB) or oltipraz (OPZ), known activators of AhR, CAR, PXR, PPAR? and Nrf2, respectively. Results of this study show that (1) Hepatic PXR mRNA levels were significantly increased (1.4-fold) in mice fed MCD diet, while AhR, CAR, PPAR? and Nrf2 were not affected. (2) The MCD diet did not alter hepatic inducibility of Cyp1A1, Cyp2B10, Cyp3A11 mRNA levels by their respective microsomal inducers. (3) Constitutive levels of Cyp4A14 mRNA were significantly increased in mice fed the MCD diet, yet further induction by clofibrate was not observed. (4) Hepatic Nqo1 mRNA levels were significantly increased by the MCD diet; however, additional induction of Nqo1 was still achievable following treatment with the Nrf2 activator OPZ. PMID:18488193

Fisher, Craig D.; Jackson, Jonathan P.; Lickteig, Andrew J.; Augustine, Lisa M.

2015-01-01

214

Expression pattern of enzymes related to juvenile hormone metabolism in the silkworm, Bombyx mori L.  

PubMed

The physiological balance of juvenile hormone (JH) in insects depends on its biosynthesis and degradation pathway. Three key enzymes namely, juvenile hormone esterase (JHE), juvenile hormone epoxide hydrolase (JHEH) and juvenile hormone diol kinase (JHDK) are required for degradation in insects. Our present results showed that JHE and JHEH exhibited expression in almost all the tissues. This indicated that JHE and JHEH might degrade JH simultaneously. In addition, the highest levels of JHDK were observed in the midgut, with trace level being found in the malpighian tubule and haemocytes. Since the midgut is a digestive organ and not a JH target, it was hypothesized that both JHE and JHEH hydrolyzed JH to JH diol (JHd) which was then transported to midgut and hydrolyzed further by JHDK, to be finally excreted out of the body. Also the expression studies on JH degradation enzymes in different tissues and stages indicated that the activities of the three enzymes are specific and coincident with the JH functions in silkworm, Bombyx mori L. PMID:21107706

Hua-Jun, Yang; Fang, Zhou; Awquib, Sabhat; Malik, Firdose Ahmad; Roy, Bhaskar; Xing-Hua, Li; Jia-Biao, Hu; Chun-Guang, Sun; Niu, Yan-Shan; Yun-Gen, Miao

2011-10-01

215

Protective effect of p-methoxycinnamic acid, an active phenolic acid against 1,2-dimethylhydrazine-induced colon carcinogenesis: modulating biotransforming bacterial enzymes and xenobiotic metabolizing enzymes.  

PubMed

Objective of the study is to evaluate the modifying potential of p-methoxycinnamic acid (p-MCA), an active rice bran phenolic acid on biotransforming bacterial enzymes and xenobiotic metabolizing enzymes in 1,2-dimethylhydrazine-induced rat colon carcinogenesis. 48 male albino wistar rats were divided into six groups. Group1 (control) received modified pellet diet and 0.1 % carboxymethylcellulose; group2 received modified pellet diet along with p-MCA (80 mg/kg b.wt. p.o.) everyday for 16 weeks; groups 3-6 received 1,2-dimethylhydrazine (DMH) (20 mg/kg b.wt.) subcutaneous injection once a week for the first 4 weeks, while groups 4-6 received p-MCA at three different doses of 20, 40 and 80 mg/kg b.wt. p.o. everyday for 16 weeks. A significant increase in carcinogen-activating enzymes (cytochrome P450, cytochrome b5, cytochrome P4502E1, NADH-cytochrome-b5-reductase and NADPH-cytochrome-P450 reductase) with concomitant decrease in phaseII enzymes, DT-Diaphorase, glutathione S-transferase, UDP-glucuronyl-transferase and gamma glutamyltransferase were observed in group3 compared to control. DMH treatment significantly increased the activities of feacal and colonic bacterial enzymes (?-glucosidase, ?-galactosidase, ?-glucuronidase, nitroreductase, sulphatase and mucinase). p-MCA supplementation (40 mg/kg b.wt) to carcinogen exposed rats inhibited these enzymes, which were near those of control rats. The formation of dysplastic aberrant crypt foci in the colon and the histopathological observations of the liver also supports our biochemical findings. p-MCA (40 mg/kg b.wt.) offers remarkable modulating efficacy of biotransforming bacterial and xenobiotic metabolizing enzymes in colon carcinogenesis. PMID:24908112

Gunasekaran, Sivagami; Venkatachalam, Karthikkumar; Jeyavel, Kabalimoorthy; Namasivayam, Nalini

2014-09-01

216

Acyclic monoterpene primary alcohol:NADP+ oxidoreductase of Rauwolfia serpentina cells: the key enzyme in biosynthesis of monoterpene alcohols.  

PubMed

Acyclic monoterpene primary alcohol:NADP+ oxidoreductase, a key enzyme in the biosynthesis of monoterpene alcohols in plants, is unstable and has been only poorly characterized. However we have established conditions which stabilize the enzyme from Rauwolfia serpentina cells, and then purified it to homogeneity. It is a monomer with a molecular weight of about 44,000 and contains zinc ions. Various branched-chain allylic primary alcohols such as nerol, geraniol, and 10-hydroxygeraniol were substrates, but ethanol was inert. The enzyme exclusively requires NADP+ or NADPH as the cofactor. Steady-state kinetic studies showed that the nerol dehydrogenation proceeds by an ordered Bi-Bi mechanism. NADP+ binds the enzyme first and then NADPH is the second product released from it. Gas chromatography-mass spectrometric analysis of the reaction products showed that 10-hydroxygeraniol undergoes a reversible dehydrogenation to produce 10-oxogeraniol or 10-hydroxygeranial, which are oxidized further to give 10-oxogeranial, the direct precursor of iridodial. The enzyme has been found to exclusively transfer the pro-R hydrogen of NADPH to neral. The N-terminal sequence of the first 21 amino acids revealed no significant homology with those of various other proteins including the NAD(P)(+)-dependent alcohol dehydrogenases registered in a protein data bank. PMID:1864846

Ikeda, H; Esaki, N; Nakai, S; Hashimoto, K; Uesato, S; Soda, K; Fujita, T

1991-02-01

217

Epigenetic regulation of uterine biology by transcription factor KLF11 via posttranslational histone deacetylation of cytochrome p450 metabolic enzymes.  

PubMed

Endocrine regulation of uterine biology is critical for embryo receptivity and human reproduction. Uterine endometrium depends on extrinsic sex steroid input and hence likely has mechanisms that enable adaptation to hormonal variation. Emerging evidence suggests that sex steroid bioavailability in the endometrium is determined by adjusting their metabolic rate and fate via regulation of cytochrome (CYP) p450 enzymes. The CYP enzymes are targeted by ubiquitously expressed Sp/Krüppel-like (Sp/KLF) transcription factors. Specifically, KLF11 is highly expressed in reproductive tissues, regulates an array of endocrine/metabolic pathways via epigenetic histone-based mechanisms and, when aberrantly expressed, is associated with diabetes and reproductive tract diseases, such as leiomyoma and endometriosis. Using KLF11 as a model to investigate epigenetic regulation of endometrial first-pass metabolism, we evaluated the expression of a comprehensive array of metabolic enzymes in Ishikawa cells. KLF11 repressed most endometrial CYP enzymes. To characterize KLF11-recruited epigenetic regulatory mechanisms, we focused on the estrogen-metabolizing enzyme CYP3A4. KLF11 expression declined in secretory phase endometrial epithelium associated with increased CYP3A4 expression. Additionally, KLF11 bound to CYP3A4 promoter GC elements and thereby repressed promoter, message, protein as well as enzymatic function. This repression was epigenetically mediated, because KLF11 colocalized with and recruited the corepressor SIN3A/histone deacetylase resulting in selective deacetylation of the CYP3A4 promoter. Repression was reversed by a mutation in KLF11 that abrogated cofactor recruitment and binding. This repression was also pharmacologically reversible with an histone deacetylase inhibitor. Pharmacological alteration of endometrial metabolism could have long-term translational implications on human reproduction and uterine disease. PMID:25076120

Zheng, Ye; Tabbaa, Zaid M; Khan, Zaraq; Schoolmeester, John K; El-Nashar, Sherif; Famuyide, Abimbola; Keeney, Gary L; Daftary, Gaurang S

2014-11-01

218

Glucose metabolism, enzymic analysis and product formation in chemostat culture of Hanseniaspora uvarum.  

PubMed

The physiology of Hanseniaspora uvarum K5 was studied in glucose-limited chemostat cultures and upon glucose pulse. Up to a dilution rate of 0.28 h-1, glucose was completely metabolized in biomass and CO2. Above this value, increase in the dilution rate was accompanied by sequential production of metabolites (glycerol, acetate and ethanol) and decrease in cell yield. Similar results were observed upon glucose pulse. From the enzyme activities (pyruvate dehydrogenase, pyruvate decarboxylase, NAD and NADP-dependent acetaldehyde dehydrogenases, acetyl coenzyme A synthetase and alcohol dehydrogenase) and substrate affinities, the following conclusions were drawn with respect to product formation of cells: (1) pyruvate was preferentially metabolized via pyruvate dehydrogenase, when biomass and CO2 were the only products formed; (2) acetaldehyde formed by pyruvate decarboxylase was preferentially oxidized in acetate by NADP-dependent aldehyde dehydrogenase; acetate accumulation results from insufficient activity of acetyl-CoA synthetase required for the complete oxidation of acetate; (3) acetaldehyde was oxidized in ethanol by alcohol dehydrogenase, in addition to acetate production. PMID:7785333

Venturin, C; Boze, H; Moulin, G; Galzy, P

1995-04-15

219

Alteration of fatty-acid-metabolizing enzymes affects mitochondrial form and function in hereditary spastic paraplegia.  

PubMed

Hereditary spastic paraplegia (HSP) is considered one of the most heterogeneous groups of neurological disorders, both clinically and genetically. The disease comprises pure and complex forms that clinically include slowly progressive lower-limb spasticity resulting from degeneration of the corticospinal tract. At least 48 loci accounting for these diseases have been mapped to date, and mutations have been identified in 22 genes, most of which play a role in intracellular trafficking. Here, we identified mutations in two functionally related genes (DDHD1 and CYP2U1) in individuals with autosomal-recessive forms of HSP by using either the classical positional cloning or a combination of whole-genome linkage mapping and next-generation sequencing. Interestingly, three subjects with CYP2U1 mutations presented with a thin corpus callosum, white-matter abnormalities, and/or calcification of the basal ganglia. These genes code for two enzymes involved in fatty-acid metabolism, and we have demonstrated in human cells that the HSP pathophysiology includes alteration of mitochondrial architecture and bioenergetics with increased oxidative stress. Our combined results focus attention on lipid metabolism as a critical HSP pathway with a deleterious impact on mitochondrial bioenergetic function. PMID:23176821

Tesson, Christelle; Nawara, Magdalena; Salih, Mustafa A M; Rossignol, Rodrigue; Zaki, Maha S; Al Balwi, Mohammed; Schule, Rebecca; Mignot, Cyril; Obre, Emilie; Bouhouche, Ahmed; Santorelli, Filippo M; Durand, Christelle M; Oteyza, Andrés Caballero; El-Hachimi, Khalid H; Al Drees, Abdulmajeed; Bouslam, Naima; Lamari, Foudil; Elmalik, Salah A; Kabiraj, Mohammad M; Seidahmed, Mohammed Z; Esteves, Typhaine; Gaussen, Marion; Monin, Marie-Lorraine; Gyapay, Gabor; Lechner, Doris; Gonzalez, Michael; Depienne, Christel; Mochel, Fanny; Lavie, Julie; Schols, Ludger; Lacombe, Didier; Yahyaoui, Mohamed; Al Abdulkareem, Ibrahim; Zuchner, Stephan; Yamashita, Atsushi; Benomar, Ali; Goizet, Cyril; Durr, Alexandra; Gleeson, Joseph G; Darios, Frederic; Brice, Alexis; Stevanin, Giovanni

2012-12-01

220

Serum-responsive expression of carbonyl-metabolizing enzymes in normal and transformed human buccal keratinocytes.  

PubMed

Gene expression of carbonyl-metabolizing enzymes (CMEs) was investigated in normal buccal keratinocytes (NBK) and the transformed buccal keratinocyte lines SVpgC2a and SqCC/Y1. Studies were performed at a serum concentration known to induce terminal squamous differentiation (TSD) in normal cells. Overall, 39 of 58 evaluated CMEs were found to be expressed at the transcript level. Together the transformed cell lines showed altered transcription of eight CME genes compared to NBK, substantiating earlier results. Serum increased transcript levels of ALDH1A3, DHRS3, HPGD and AKR1A1, and decreased those of ALDH4A1 in NBK; of these, the transformed, TSD-deficient cell lines partly retained regulation of ALDH1A3 and DHRS3. Activity measurements in crude cell lysates, including relevant enzymatic inhibitors, indicated significant capacity for CME-mediated xenobiotic metabolism among the cell lines, notably with an increase in serum-differentiated NBK. The results constitute the first evidence for differential CME gene expression and activity in non-differentiated and differentiated states of epithelial cells. PMID:18854940

Staab, C A; Ceder, R; Roberg, K; Grafström, R C; Höög, J-O

2008-11-01

221

'Chiral compartmentation' in metabolism: enzyme stereo-specificity yielding evolutionary options.  

PubMed

We introduce the concept of 'chiral compartmentation' in metabolism that emerges from the stereo-specificity of enzymes for their substrate(s). The fully differentiated mammalian erythrocyte has no sub-cellular organelles and yet it displays compartmentation of lactic acid that is generated either by glycolysis or the glyoxalase pathway. A form of 'operational compartmentation' exists, based not on the chemistry of the reactive groups in the molecules but their stereoisomerism. This we call 'chiral compartmentation', and the rationale for its 'natural selection' in the erythrocyte (and presumably in the cytoplasm of other cells) is discussed. Increasing awareness of the presence of d-amino acids in proteins in the otherwise dominant 'L-chiral biosphere', and of the preferential use of one enantiomer of a metabolite versus the other is largely due to recent developments in rapidly-applicable, analytical-chemical methods. We confirmed that the glyoxalase pathway yields D-lactic acid by using nuclear magnetic resonance (NMR) spectroscopy of stretched chiral hydrogels. The activities of the two lactate-producing pathways have been described by numerical integration of simultaneous non-linear differential equations, based on enzyme models like that introduced by Michaelis and Menten in 1913. PMID:23707419

Kuchel, Philip W; Pagčs, Guilhem; Naumann, Christoph

2013-09-01

222

[Enzyme activities in nitrogen metabolism of winter wheat and its grain quality under different environmental conditions].  

PubMed

The study with three wheat cultivars grown in two places of Shandong Province showed that the nitrate reductase (NR) and glutamine synthetase (GS) activities in flag leaf and the GS activity in grain were in the sequence of Jimai 20 > Youmai 3 > PH971942, and higher in Longkou than in Taian. The strong gluten wheat cultivars in Longkou had better grain qualities than those in Taian. There were significant correlations between the environmental factors at grain-filling stage and the grain qualities and enzyme activities of wheat. Higher temperature, moderate drought and less sunshine at grain filling stage were benefit to the grain qualities. The protein content of grain was positively correlated with the NR and GS activities in flag leaf for the medium and strong gluten wheat cultivars in Longkou and for the medium gluten wheat cultivars in Taian. Wheat cultivars for different use needed different environmental conditions, while suitable environmental conditions could promote the enzyme activities in nitrogen metabolism of wheat, and thus, improve the qualities of wheat grain. PMID:17209384

Zhao, Chun; Jiao, Nianyuan; Ning, Tangyuan; Wang, Hao; Lou, Jinhua; Hou, Xiangshan; Li, Zengjia

2006-10-01

223

The UBIAD1 prenyltransferase links menaquinone-4 [corrected] synthesis to cholesterol metabolic enzymes.  

PubMed

Schnyder corneal dystrophy (SCD) is an autosomal dominant disease characterized by germline variants in UBIAD1 introducing missense alterations leading to deposition of cholesterol in the cornea, progressive opacification, and loss of visual acuity. UBIAD1 was recently shown to synthesize menaquinone-4 (MK-4, vitamin K(2) ), but causal mechanisms of SCD are unknown. We report a novel c.864G>A UBIAD1 mutation altering glycine 177 to glutamic acid (p.G177E) in six SCD families, including four families from Finland who share a likely founder mutation. We observed reduced MK-4 synthesis by UBIAD1 altered by SCD mutations p.N102S, p.G177R/E, and p.D112N, and molecular models showed p.G177-mutant UBIAD1 disrupted transmembrane helices and active site residues. We show UBIAD1 interacts with HMGCR and SOAT1, enzymes catalyzing cholesterol synthesis and storage, respectively, using yeast two-hybrid screening and immunoprecipitation. Docking simulations indicate cholesterol binds to UBIAD1 in the substrate-binding cleft and substrate-binding overlaps with GGPP binding, an MK-4 substrate, suggesting potential competition between these metabolites. Impaired MK-4 synthesis is a biochemical defect identified in SCD suggesting UBIAD1 links vitamin K and cholesterol metabolism through physical contact between enzymes and metabolites. Our data suggest a role for endogenous MK-4 in maintaining cornea health and visual acuity. PMID:23169578

Nickerson, Michael L; Bosley, Allen D; Weiss, Jayne S; Kostiha, Brittany N; Hirota, Yoshihisa; Brandt, Wolfgang; Esposito, Dominic; Kinoshita, Shigeru; Wessjohann, Ludger; Morham, Scott G; Andresson, Thorkell; Kruth, Howard S; Okano, Toshio; Dean, Michael

2013-02-01

224

Xenobiotic metabolizing enzyme activities in cells used for testing skin sensitization in vitro.  

PubMed

For ethical and regulatory reasons, in vitro tests for scoring potential toxicities of cosmetics are essential. A test strategy for investigating potential skin sensitization using two human keratinocytic and two human dendritic cell lines has been developed (Mehling et al. Arch Toxicol 86:1273–1295, 2012). Since prohaptens may be metabolically activated in the skin, information on xenobiotic metabolizing enzyme (XME) activities in these cell lines is of high interest. In this study, XME activity assays, monitoring metabolite or cofactor, showed the following: all three passages of keratinocytic (KeratinoSens® and LuSens) and dendritic (U937 und THP-1) cells displayed N-acetyltransferase 1 (NAT1) activities (about 6–60 nmol/min/mg S9-protein for acetylation of para-aminobenzoic acid). This is relevant since reactive species of many cosmetics are metabolically controlled by cutaneous NAT1. Esterase activities of about 1–4 nmol fluorescein diacetate/min/mg S9-protein were observed in all passages of investigated keratinocytic and about 1 nmol fluorescein diacetate/min/mg S9-protein in dendritic cell lines. This is also of practical relevance since many esters and amides are detoxified and others activated by cutaneous esterases. In both keratinocytic cell lines, activities of aldehyde dehydrogenase (ALDH) were observed (5–17 nmol product/min/mg cytosolic protein). ALDH is relevant for the detoxication of reactive aldehydes. Activities of several other XME were below detection, namely the investigated cytochrome P450-dependent alkylresorufin O-dealkylases 7-ethylresorufin O-deethylase, 7-benzylresorufin O-debenzylase and 7-pentylresorufin O-depentylase (while NADPH cytochrome c reductase activities were much above the limit of quantification), the flavin-containing monooxygenase, the alcohol dehydrogenase as well as the UDP glucuronosyl transferase activities. PMID:23958860

Fabian, E; Vogel, D; Blatz, V; Ramirez, T; Kolle, S; Eltze, T; van Ravenzwaay, B; Oesch, F; Landsiedel, R

2013-09-01

225

Cigarette Smoking, Genetic Variants in Carcinogen-metabolizing Enzymes, and Colorectal Cancer Risk  

PubMed Central

The risk of colorectal cancer associated with smoking is unclear and may be influenced by genetic variation in enzymes that metabolize cigarette carcinogens. The authors examined the colorectal cancer risk associated with smoking and 26 variants in carcinogen metabolism genes in 1,174 colorectal cancer cases and 1,293 population-based controls recruited in Canada by the Ontario Familial Colorectal Cancer Registry from 1997 to 2001. Adjusted odds ratios were calculated by multivariable logistic regression. Smoking for >27 years was associated with a statistically significant increased colorectal cancer risk (adjusted odds ratio (AOR) = 1.25, 95% confidence interval (CI): 1.02, 1.53) in all subjects. Colorectal cancer risk associated with smoking was higher in males for smoking status, duration, and intensity. The CYP1A1-3801-CC (AOR = 0.47, 95% CI: 0.23, 0.94) and CYP2C9-430-CT (AOR = 0.82, 95% CI: 0.68, 0.99) genotypes were associated with decreased risk, and the GSTM1-K173N-CG (AOR = 1.99, 95% CI: 1.21, 3.25) genotype was associated with an increased risk of colorectal cancer. Statistical interactions between smoking and genetic variants were assessed by comparing logistic regression models with and without a multiplicative interaction term. Significant interactions were observed between smoking status and SULT1A1-638 (P = 0.02), NAT2-857 (P = 0.01), and CYP1B1-4390 (P = 0.04) variants and between smoking duration and NAT1-1088 (P = 0.02), SULT1A1-638 (P = 0.04), and NAT1-acetylator (P = 0.03) status. These findings support the hypothesis that prolonged cigarette smoking is associated with increased risk of colorectal cancer and that this risk may be modified by variation in carcinogen metabolism genes. PMID:20937634

Cleary, Sean P.; Cotterchio, Michelle; Shi, Ellen; Gallinger, Steven; Harper, Patricia

2010-01-01

226

Polymorphisms of two histamine-metabolizing enzymes genes and childhood allergic asthma: a case control study  

PubMed Central

Background Histamine-metabolizing enzymes (N-methyltransferase and amiloride binding protein 1) are responsible for histamine degradation, a biogenic amine involved in allergic inflammation. Genetic variants of HNMT and ABP1 genes were found to be associated with altered enzyme activity. We hypothesized that alleles leading to decreased enzyme activity and, therefore, decreased inactivation of histamine may be responsible for altered susceptibility to asthma. Methods The aim of this study was to analyze polymorphisms within the HNMT and ABP1 genes in the group of 149 asthmatic children and in the group of 156 healthy children. The genetic analysis involved four polymorphisms of the HNMT gene: rs2071048 (-1637T/C), rs11569723 (-411C/T), rs1801105 (Thr105Ile = 314C/T) and rs1050891 (1097A/T) and rs1049793 (His645Asp) polymorphism for ABP1 gene. Genotyping was performed with use of PCR-RFLP. Statistical analysis was performed using Statistica software; linkage disequilibrium analysis was done with use of Haploview software. Results We found an association of TT genotype and T allele of Thr105Ile polymorphism of HNMT gene with asthma. For other polymorphisms for HNMT and ABP1 genes, we have not observed relationship with asthma although the statistical power for some SNPs might not have been sufficient to detect an association. In linkage disequilibrium analysis, moderate linkage was found between -1637C/T and -411C/T polymorphisms of HNMT gene. However, no significant differences in haplotype frequencies were found between the group of the patients and the control group. Conclusions Our results indicate modifying influence of histamine N-methyltransferase functional polymorphism on the risk of asthma. The other HNMT polymorphisms and ABP1 functional polymorphism seem unlikely to affect the risk of asthma. PMID:21040557

2010-01-01

227

Molecular, cellular, and tissue impact of depleted uranium on xenobiotic-metabolizing enzymes.  

PubMed

Enzymes that metabolize xenobiotics (XME) are well recognized in experimental models as representative indicators of organ detoxification functions and of exposure to toxicants. As several in vivo studies have shown, uranium can alter XME in the rat liver or kidneys after either acute or chronic exposure. To determine how length or level of exposure affects these changes in XME, we continued our investigation of chronic rat exposure to depleted uranium (DU, uranyl nitrate). The first study examined the effect of duration (1-18 months) of chronic exposure to DU, the second evaluated dose dependence, from a level close to that found in the environment near mining sites (0.2 mg/L) to a supra-environmental dose (120 mg/L, 10 times the highest level naturally found in the environment), and the third was an in vitro assessment of whether DU exposure directly affects XME and, in particular, CYP3A. The experimental in vivo models used here demonstrated that CYP3A is the enzyme modified to the greatest extent: high gene expression changed after 6 and 9 months. The most substantial effects were observed in the liver of rats after 9 months of exposure to 120 mg/L of DU: CYP3A gene and protein expression and enzyme activity all decreased by more than 40 %. Nonetheless, no direct effect of DU by itself was observed after in vitro exposure of rat microsomal preparations, HepG2 cells, or human primary hepatocytes. Overall, these results probably indicate the occurrence of regulatory or adaptive mechanisms that could explain the indirect effect observed in vivo after chronic exposure. PMID:24146111

Gueguen, Yann; Rouas, Caroline; Monin, Audrey; Manens, Line; Stefani, Johanna; Delissen, Olivia; Grison, Stéphane; Dublineau, Isabelle

2014-02-01

228

Expression of retinoic acid-synthesizing and -metabolizing enzymes during nephrogenesis in the rat.  

PubMed

Vitamin A signaling through its active form retinoic acid (RA) plays a critical role during kidney development and vitamin A deficiency in the rat induces renal hypoplasia. Here, we describe the distribution of four enzymes of the RA synthetic pathway (aldehyde dehydrogenases ALDH1A1-3 and ALDH8A1) and two enzymes of the degradative pathway (CYP26A1 and CYP26B1) in the developing rat metanephros. We provide evidence that each enzyme displays a cell-type specific expression pattern that changes considerably in the course of renal organogenesis and nephron differentiation. ALDH1A2 expression was restricted to the cortical stroma cell population, whereas ALDH8A1 transcripts were present in emerging renal vesicles. CYP26A1 and CYP26B1 mRNAs were absent during this time. Following nephron induction, ALDH1A1 remained weakly expressed in the UB ends, but was highly expressed in the UB-connected tubule and in all differentiating tubular segments of the developing nephron. ALDH1A2 was strongly expressed in the visceral layer of the developing glomeruli, as well as in cortical collecting tubules. ALDH1A3 mRNAs were found in the developing papilla and ureter. During postnatal nephrogenesis, ALDH1A3 and ALDH8A1 were co-expressed in the ureteric bud ends. CYP26A1 and CYP26B1 were both expressed from E18.5 onwards in S-shaped bodies, in tubular and glomerular anlagen, respectively. On the last day of nephrogenesis in the rat, CYP26B1 expression extended to UB ends. Our results indicate that tubular and glomerular differentiation of the nephron relies upon precise control of the RA metabolic pathway. PMID:15567713

Marlier, Arnaud; Gilbert, Thierry

2004-12-01

229

Pharmacogenomics of drug-metabolizing enzymes: a recent update on clinical implications and endogenous effects.  

PubMed

Interindividual differences in drug disposition are important causes for adverse drug reactions and lack of drug response. The majority of phase I and phase II drug-metabolizing enzymes (DMEs) are polymorphic and constitute essential factors for the outcome of drug therapy. Recently, both genome-wide association (GWA) studies with a focus on drug response, as well as more targeted studies of genes encoding DMEs have revealed in-depth information and provided additional information for variation in drug metabolism and drug response, resulting in increased knowledge that aids drug development and clinical practice. In addition, an increasing number of meta-analyses have been published based on several original and often conflicting pharmacogenetic studies. Here, we review data regarding the pharmacogenomics of DMEs, with particular emphasis on novelties. We conclude that recent studies have emphasized the importance of CYP2C19 polymorphism for the effects of clopidogrel, whereas the CYP2C9 polymorphism appears to have a role in anticoagulant treatment, although inferior to VKORC1. Furthermore, the analgesic and side effects of codeine in relation to CYP2D6 polymorphism are supported and the influence of CYP2D6 genotype on breast cancer recurrence during tamoxifen treatment appears relevant as based on three large studies. The influence of CYP2D6 polymorphism on the effect of antidepressants in a clinical setting is yet without any firm evidence, and the relation between CYP2D6 ultrarapid metabolizers and suicide behavior warrants further studies. There is evidence for the influence of CYP3A5 polymorphism on tacrolimus dose, although the influence on response is less studied. Recent large GWA studies support a link between CYP1A2 polymorphism and blood pressure as well as coffee consumption, and between CYP2A6 polymorphism and cigarette consumption, which in turn appears to influence the lung cancer incidence. Regarding phase II enzyme polymorphism, the anticancer treatment with mercaptopurines and irinotecan is still considered important in relation to the polymorphism of TPMT and UGT1A1, respectively. There is a need for further clarification of the clinical importance and use of all these findings, but the recent research in the field that encompasses larger studies and a whole genome perspective, improves the possibilities be able to make firm and cost-effective recommendations for drug treatment in the future. PMID:23089672

Sim, S C; Kacevska, M; Ingelman-Sundberg, M

2013-02-01

230

Activities of carbohydrate and amino acid metabolizing enzymes from liver of mink ( Mustela vison) and preliminary observations on steady state kinetics of the enzymes  

Microsoft Academic Search

The activity and some kinetic parameters of the key enzymes of the glycolysis, the gluconeogenesis and the amino acid catabolism from the liver of male and female mink have been determined and compared to the corresponding activities from rat and cat. The activities of glucose-6-phosphatase and pyruvate kinase are dependent on sex, both being higher in females. Except for pyruvate

P. G. Sorensen; I. M. Petersen; O. Sand

1995-01-01

231

Metabolic enzyme activities in larvae of the African catfish, Clarias gariepinus : changes in relation to age and nutrition  

Microsoft Academic Search

The influence of ontogeny and nutrition on metabolic enzyme activities in larvae of the African catfish, Clarias gariepinus, was studied. After start of exogenous feeding, the larvae were reared for 10 days under three different nutritional conditions: Artemia nauplii, a dry starter diet, and starvation. The live feed gave the best growth (96 mg within 10 days) whereas the dry

Helmut Segnerl; Johan Verreth

1995-01-01

232

Relationships between environmental organochlorine contaminant residues, plasma corticosterone concentrations, and intermediary metabolic enzyme activities in Great Lakes herring gull embryos.  

PubMed Central

Experiments were conducted to survey and detect differences in plasma corticosterone concentrations and intermediary metabolic enzyme activities in herring gull (Larus argentatus) embryos environmentally exposed to organochlorine contaminants in ovo. Unincubated fertile herring gull eggs were collected from an Atlantic coast control site and various Great Lakes sites in 1997 and artificially incubated in the laboratory. Liver and/or kidney tissues from approximately half of the late-stage embryos were analyzed for the activities of various intermediary metabolic enzymes known to be regulated, at least in part, by corticosteroids. Basal plasma corticosterone concentrations were determined for the remaining embryos. Yolk sacs were collected from each embryo and a subset was analyzed for organochlorine contaminants. Regression analysis of individual yolk sac organochlorine residue concentrations, or 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents (TEQs), with individual basal plasma corticosterone concentrations indicated statistically significant inverse relationships for polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (PCDDs/PCDFs), total polychlorinated biphenyls (PCBs), non-ortho PCBs, and TEQs. Similarly, inverse relationships were observed for the activities of two intermediary metabolic enzymes (phosphoenolpyruvate carboxykinase and malic enzyme) when regressed against PCDDs/PCDFs. Overall, these data suggest that current levels of organochlorine contamination may be affecting the hypothalamo-pituitary-adrenal axis and associated intermediary metabolic pathways in environmentally exposed herring gull embryos in the Great Lakes. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:10064546

Lorenzen, A; Moon, T W; Kennedy, S W; Glen, G A

1999-01-01

233

Crystal structure of ATP sulfurylase from Saccharomyces cerevisiae, a key enzyme in sulfate activation  

PubMed Central

ATP sulfurylases (ATPSs) are ubiquitous enzymes that catalyse the primary step of intracellular sulfate activation: the reaction of inorganic sulfate with ATP to form adenosine-5?-phosphosulfate (APS) and pyrophosphate (PPi). With the crystal structure of ATPS from the yeast Saccharomyces cerevisiae, we have solved the first structure of a member of the ATP sulfurylase family. We have analysed the crystal structure of the native enzyme at 1.95 ? resolution using multiple isomorphous replacement (MIR) and, subsequently, the ternary enzyme product complex with APS and PPi bound to the active site. The enzyme consists of six identical subunits arranged in two stacked rings in a D3 symmetric assembly. Nucleotide binding causes significant conformational changes, which lead to a rigid body structural displacement of domains III and IV of the ATPS monomer. Despite having similar folds and active site design, examination of the active site of ATPS and comparison with known structures of related nucleotidylyl transferases reveal a novel ATP binding mode that is peculiar to ATP sulfuryl-ases. PMID:11157739

Ullrich, Tobias C.; Blaesse, Michael; Huber, Robert

2001-01-01

234

TM6SF2 and MAC30, new enzyme homologs in sterol metabolism and common metabolic disease  

PubMed Central

Carriers of the Glu167Lys coding variant in the TM6SF2 gene have recently been identified as being more susceptible to non-alcoholic fatty liver disease (NAFLD), yet exhibit lower levels of circulating lipids and hence are protected against cardiovascular disease. Despite the physiological importance of these observations, the molecular function of TM6SF2 remains unknown, and no sequence similarity with functionally characterized proteins has been identified. In order to trace its evolutionary history and to identify functional domains, we embarked on a computational protein sequence analysis of TM6SF2. We identified a new domain, the EXPERA domain, which is conserved among TM6SF, MAC30/TMEM97 and EBP (D8, D7 sterol isomerase) protein families. EBP mutations are the cause of chondrodysplasia punctata 2 X-linked dominant (CDPX2), also known as Conradi-Hünermann-Happle syndrome, a defective cholesterol biosynthesis disorder. Our analysis of evolutionary conservation among EXPERA domain-containing families and the previously suggested catalytic mechanism for the EBP enzyme, indicate that TM6SF and MAC30/TMEM97 families are both highly likely to possess, as for the EBP family, catalytic activity as sterol isomerases. This unexpected prediction of enzymatic functions for TM6SF and MAC30/TMEM97 is important because it now permits detailed experiments to investigate the function of these key proteins in various human pathologies, from cardiovascular disease to cancer. PMID:25566323

Sanchez-Pulido, Luis; Ponting, Chris P.

2014-01-01

235

Chemical characterization, antioxidant and inhibitory effects of some marine sponges against carbohydrate metabolizing enzymes  

PubMed Central

Background More than 15,000 marine products have been described up to now; Sponges are champion producers, concerning the diversity of products that have been found. Most bioactive compounds from sponges were classified into anti-inflammatory, antitumor, immuno- or neurosurpressive, antiviral, antimalarial, antibiotic, or antifouling. Evaluation of in vitro inhibitory effects of different extracts from four marine sponges versus some antioxidants indices and carbohydrate hydrolyzing enzymes concerned with diabetes mellitus was studied. The chemical characterizations for the extracts of the predominating sponges; SP1 and SP3 were discussed. Methods All chemicals served in the biological study were of analytical grade and purchased from Sigma, Merck and Aldrich. All kits were the products of Biosystems (Spain), Sigma Chemical Company (USA), Biodiagnostic (Egypt). Carbohydrate metabolizing enzymes; α-amylase, α-glucosidase, and β-galactosidase (EC3.2.1.1, EC3.2.1.20, and EC3.2.1.23, respectively) were obtained from Sigma Chemical Company (USA). Results Four marine sponges; Smenospongia (SP1), Callyspongia (SP2), Niphates (SP3), and Stylissa (SP4), were collected from the Red Sea at Egyptian coasts, and taxonomically characterized. The sponges' extracts exhibited diverse inhibitory effects on oxidative stress indices and carbohydrate hydrolyzing enzymes in linear relationships to some extent with concentration of inhibitors (dose dependant). The extracts of sponges (3, 1, and 2) showed, respectively, potent-reducing power. Purification and Chemical characterization of sponge 1 using NMR and mass spectroscopy, recognized the existence of di-isobutyl phthalate (1), di-n-butyl phthalate (2), linoleic acid (3), ?-sitosterol (4), and cholesterol (5). Sponge 3 produced bis-[2-ethyl]-hexyl-phthylester (6) and triglyceride fatty acid ester (7). Conclusion Marine sponges are promising sources for delivering of bioactive compounds. Four marine sponges, collected from Red Sea at Egyptian coasts, were identified as Smenospongia (SP1), Callyspongia (SP2), Niphates (SP3), and Stylissa (SP4). The results demonstrated that different sponges extracts exhibited inhibitory effects on oxidative stress indices and carbohydrate hydrolyzing enzymes in linear relationships to some extent with concentration of inhibitors (dose dependant). The extracts of sponges (3, 1, and 2) showed, respectively, potent-reducing power. Chemical characterizations of sponges SP1 and SP3 were discussed. Based on this study, marine sponges are considered as talented sources for production of diverse and multiple biologically active compounds. PMID:22898269

2012-01-01

236

Mycobacterium tuberculosis Glucosyl-3-Phosphoglycerate Synthase: Structure of a Key Enzyme in Methylglucose Lipopolysaccharide Biosynthesis  

PubMed Central

Tuberculosis constitutes today a serious threat to human health worldwide, aggravated by the increasing number of identified multi-resistant strains of Mycobacterium tuberculosis, its causative agent, as well as by the lack of development of novel mycobactericidal compounds for the last few decades. The increased resilience of this pathogen is due, to a great extent, to its complex, polysaccharide-rich, and unusually impermeable cell wall. The synthesis of this essential structure is still poorly understood despite the fact that enzymes involved in glycosidic bond synthesis represent more than 1% of all M. tuberculosis ORFs identified to date. One of them is GpgS, a retaining glycosyltransferase (GT) with low sequence homology to any other GTs of known structure, which has been identified in two species of mycobacteria and shown to be essential for the survival of M. tuberculosis. To further understand the biochemical properties of M. tuberculosis GpgS, we determined the three-dimensional structure of the apo enzyme, as well as of its ternary complex with UDP and 3-phosphoglycerate, by X-ray crystallography, to a resolution of 2.5 and 2.7 Ĺ, respectively. GpgS, the first enzyme from the newly established GT-81 family to be structurally characterized, displays a dimeric architecture with an overall fold similar to that of other GT-A-type glycosyltransferases. These three-dimensional structures provide a molecular explanation for the enzyme's preference for UDP-containing donor substrates, as well as for its glucose versus mannose discrimination, and uncover the structural determinants for acceptor substrate selectivity. Glycosyltransferases constitute a growing family of enzymes for which structural and mechanistic data urges. The three-dimensional structures of M. tuberculosis GpgS now determined provide such data for a novel enzyme family, clearly establishing the molecular determinants for substrate recognition and catalysis, while providing an experimental scaffold for the structure-based rational design of specific inhibitors, which lay the foundation for the development of novel anti-tuberculosis therapies. PMID:19015727

Pereira, Pedro José Barbosa; Empadinhas, Nuno; Albuquerque, Luciana; Sá-Moura, Bebiana; da Costa, Milton S.; Macedo-Ribeiro, Sandra

2008-01-01

237

Expression pattern of glycoside hydrolase genes in Lutzomyia longipalpis reveals key enzymes involved in larval digestion  

PubMed Central

The sand fly Lutzomyia longipalpis is the most important vector of American Visceral Leishmaniasis. Adults are phytophagous (males and females) or blood feeders (females only), and larvae feed on solid detritus. Digestion in sand fly larvae has scarcely been studied, but some glycosidase activities putatively involved in microorganism digestion were already described. Nevertheless, the molecular nature of these enzymes, as the corresponding genes and transcripts, were not explored yet. Catabolism of microbial carbohydrates in insects generally involves ?-1,3-glucanases, chitinases, and digestive lysozymes. In this work, the transcripts of digestive ?-1,3-glucanase and chitinases were identified in the L. longipalpis larvae throughout analysis of sequences and expression patterns of glycoside hydrolases families 16, 18, and 22. The activity of one i-type lysozyme was also registered. Interestingly, this lysozyme seems to play a role in immunity, rather than digestion. This is the first attempt to identify the molecular nature of sand fly larval digestive enzymes. PMID:25140153

Moraes, Caroline da Silva; Diaz-Albiter, Hector M.; Faria, Maiara do Valle; Sant'Anna, Maurício R. V.; Dillon, Rod J.; Genta, Fernando A.

2014-01-01

238

Kinetic constraints and features imposed by the immobilization of enzymes onto solid matrices: a key to advanced biotransformation.  

PubMed

The kinetics of immobilized enzymes can not be analyzed by means of the simple Michaelis-Menten concept, which generally fails to describe the immobilized state due to both its probable barriers, and because the active concentration of the enzyme approaches, or even exceeds this of its substrate(s). In such cases, the various experimental data are usually treated by complex rate equations comprising too many parameters acquiring different natures and meanings, depending on both the properties of the immobilization state and the experimental conditions; thus, more likely, only apparent values of the Michaelis-Menten kinetic parameters can be estimated experimentally. Likewise, immobilization is often a key method in optimizing the operational performance of enzymes, in both laboratory and industrial scale, and affects considerably the kinetics in non-aqueous and non-conventional media due to several issues as the structural changes of the enzyme molecule, the heterogeneity of the system, and the partial or total absence of water. In this work a theoretical approach is described on the formulation of simplified rate equations, reflecting also the actual mass balances of the reactants, in the case where esterification synthetic reactions are catalyzed by immobilized lipases, in either a non-aqueous organic solvent or in a non-solvent system. PMID:25434099

Foukis, A; Stergiou, P Y; Filippou, M; Koukouritaki, M; Parapouli, M; Theodorou, L G; Hatziloukas, E; Afendra, A; Pandey, A; Papamichael, E M

2014-11-01

239

Kinetic constraints and features imposed by the immobilization of enzymes onto solid matrices: a key to advanced biotransformation.  

PubMed

The kinetics of immobilized enzymes can not be analyzed by means of the simple Michaelis-Menten concept, which generally fails to describe the immobilized state due to both its probable barriers, and because the active concentration of the enzyme approaches, or even exceeds this of its substrate(s). In such cases, the various experimental data are usually treated by complex rate equations comprising too many parameters acquiring different natures and meanings, depending on both the properties of the immobilization state and the experimental conditions; thus, more likely, only apparent values of the Michaelis-Menten kinetic parameters can be estimated experimentally. Likewise, immobilization is often a key method in optimizing the operational performance of enzymes, in both laboratory and industrial scale, and affects considerably the kinetics in non-aqueous and non-conventional media due to several issues as the structural changes of the enzyme molecule, the heterogeneity of the system, and the partial or total absence of water. In this work a theoretical approach is described on the formulation of simplified rate equations, reflecting also the actual mass balances of the reactants, in the case where esterification synthetic reactions are catalyzed by immobilized lipases, in either a non-aqueous organic solvent or in a non-solvent system. PMID:25507697

Foukis, A; Stergiou, P Y; Filippou, M; Koukouritaki, M; Parapouli, M; Theodorou, L G; Hatziloukas, E; Afendra, A; Pandey, A; Papamichael, E M

2014-11-01

240

Primary structure of a key enzyme in plant tetrapyrrole synthesis: glutamate 1-semialdehyde aminotransferase.  

PubMed Central

The formation of delta-aminolevulinate from glutamate 1-semialdehyde (GSA) is catalyzed by glutamate 1-semialdehyde aminotransferase (EC 5.4.3.8). The active form of the barley enzyme appears to be a dimer of identical subunits with a molecular mass of 46 kDa. From the purified enzyme, amino acid sequences of the N-terminal ends of the mature protein as well as an internal peptide were determined. DNA primers deduced from these peptide sequences were used to amplify with the polymerase chain reaction a cDNA sequence encoding part of the enzyme. Screening a cDNA library with this DNA fragment identified a full-length clone encoding the 49,540-Da precursor of the GSA aminotransferase. The transit peptide for chloroplast import consists of 34 amino acids. GSA aminotransferase and a precursor form were expressed on a multicopy plasmid in Escherichia coli. Both recombinant gene products reacted with an antibody against the barley GSA aminotransferase. Active barley GSA aminotransferase expressed in E. coli was shown to be active in assays of bacterial cell extracts. As a gene symbol for barley GSA aminotransferase, Gsa is proposed. Images PMID:2349227

Grimm, B

1990-01-01

241

Effect of increasing body condition on key regulators of fat metabolism in subcutaneous adipose tissue depot and circulation of nonlactating dairy cows.  

PubMed

In response to negative energy balance, overconditioned cows mobilize more body fat than thin cows and subsequently are prone to develop metabolic disorders. Changes in adipose tissue (AT) metabolism are barely investigated in overconditioned cows. Therefore, the objective was to investigate the effect of increasing body condition on key regulator proteins of fat metabolism in subcutaneous AT and circulation of dairy cows. Nonlactating, nonpregnant dairy cows (n=8) investigated in the current study served as a model to elucidate the changes in the course of overcondition independent from physiological changes related to gestation, parturition, and lactation. Cows were fed diets with increasing portions of concentrate during the first 6wk of the experiment until 60% were reached, which was maintained for 9wk. Biopsy samples from AT of the subcutaneous tailhead region were collected every 8wk, whereas blood was sampled monthly. Within the experimental period cows had an average BW gain of 243±33.3 kg. Leptin and insulin concentrations were increased until wk 12. Based on serum concentrations of glucose, insulin, and nonesterified fatty acids, the surrogate indices for insulin sensitivity were calculated. High-concentrate feeding led to decreased quantitative insulin sensitivity check index and homeostasis model assessment due to high insulin and glucose concentrations indicating decreased insulin sensitivity. Adiponectin, an adipokine-promoting insulin sensitivity, decreased in subcutaneous AT, but remained unchanged in the circulation. The high-concentrate diet affected key enzymes reflecting AT metabolism such as AMP-activated protein kinase and hormone-sensitive lipase, both represented as the proportion of the phosphorylated protein to total protein, as well as fatty acid synthase. The extent of phosphorylation of AMP-activated protein kinase and the protein expression of fatty acid synthase were inversely regulated throughout the experimental period, whereas the extent of phosphorylation of hormone-sensitive lipase was consistently decreasing by the high-concentrate diet. Overcondition in nonpregnant, nonlactating dairy cows changed the expression of key regulator proteins of AT metabolism and circulation accompanied by impaired insulin sensitivity, which might increase the risk for metabolic disorders. PMID:25497790

Locher, L; Häussler, S; Laubenthal, L; Singh, S P; Winkler, J; Kinoshita, A; Kenéz, Á; Rehage, J; Huber, K; Sauerwein, H; Dänicke, S

2015-02-01

242

Cadmium Alters the Biotransformation of Carcinogenic Aromatic Amines by Arylamine N-Acetyltransferase Xenobiotic-Metabolizing Enzymes: Molecular, Cellular, and in Vivo Studies  

PubMed Central

Background Cadmium (Cd) is a carcinogenic heavy metal of environmental concern. Exposure to both Cd and carcinogenic organic compounds, such as polycyclic aromatic hydrocarbons or aromatic amines (AAs), is a common environmental problem. Human arylamine N-acetyltransferases (NATs) are xenobiotic-metabolizing enzymes that play a key role in the biotransformation of AA carcinogens. Changes in NAT activity have long been associated with variations in susceptibility to different cancers in relation with exposure to certain AAs. Objective We explored the possible interactions between Cd and the NAT-dependent biotransformation of carcinogenic AAs. Methods We exposed purified enzymes, lung epithelial cells, and mouse models to Cd and subsequently analyzed NAT-dependent metabolism of AAs. Results We found that Cd, at biologically relevant concentrations, impairs the NAT-dependent acetylation of carcinogenic AAs such as 2-aminofluorene (2-AF) in lung epithelial cells. NAT activity was strongly impaired in the tissues of mice exposed to Cd. Accordingly, mice exposed to Cd and 2-AF displayed altered in vivo toxicokinetics with a significant decrease (~ 50%) in acetylated 2-AF in plasma. We found that human NAT1 was rapidly and irreversibly inhibited by Cd [median inhibitory concentration (IC50) ? 55 nM; rate inhibition constant (kinact) = 5 × 104 M?1 · sec?1], with results of acetyl coenzyme A (acetyl-CoA) protection assays indicating that Cd-mediated inhibition was due to the reaction of metal with the active-site cysteine residue of the enzyme. We found similar results for human NAT2, although this isoform was less sensitive to inactivation (IC50 ? 1 ?M; kinact = 1 × 104 M?1 · sec?1). Conclusions Our data suggest that Cd can alter the metabolism of carcinogenic AAs through the impairment of the NAT-dependent pathway, which may have important toxicological consequences. PMID:20810355

Ragunathan, Nilusha; Dairou, Julien; Sanfins, Elodie; Busi, Florent; Noll, Christophe; Janel, Nathalie; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

2010-01-01

243

Structural Insights into Maize Viviparous14, a Key Enzyme in the Biosynthesis of the Phytohormone Abscisic Acid[W  

PubMed Central

The key regulatory step in the biosynthesis of abscisic acid (ABA), a hormone central to the regulation of several important processes in plants, is the oxidative cleavage of the 11,12 double bond of a 9-cis-epoxycarotenoid. The enzyme viviparous14 (VP14) performs this cleavage in maize (Zea mays), making it a target for the rational design of novel chemical agents and genetic modifications that improve plant behavior through the modulation of ABA levels. The structure of VP14, determined to 3.2-Ĺ resolution, provides both insight into the determinants of regio- and stereospecificity of this enzyme and suggests a possible mechanism for oxidative cleavage. Furthermore, mutagenesis of the distantly related CCD1 of maize shows how the VP14 structure represents a template for all plant carotenoid cleavage dioxygenases (CCDs). In addition, the structure suggests how VP14 associates with the membrane as a way of gaining access to its membrane soluble substrate. PMID:20884803

Messing, Simon A.J.; Gabelli, Sandra B.; Echeverria, Ignacia; Vogel, Jonathan T.; Guan, Jiahn Chou; Tan, Bao Cai; Klee, Harry J.; McCarty, Donald R.; Amzel, L. Mario

2010-01-01

244

Structural Insights into Maize Viviparous14, a Key Enzyme in the Biosynthesis of the Phytohormone Abscisic Acid  

SciTech Connect

The key regulatory step in the biosynthesis of abscisic acid (ABA), a hormone central to the regulation of several important processes in plants, is the oxidative cleavage of the 11,12 double bond of a 9-cis-epoxycarotenoid. The enzyme viviparous14 (VP14) performs this cleavage in maize (Zea mays), making it a target for the rational design of novel chemical agents and genetic modifications that improve plant behavior through the modulation of ABA levels. The structure of VP14, determined to 3.2-{angstrom} resolution, provides both insight into the determinants of regio- and stereospecificity of this enzyme and suggests a possible mechanism for oxidative cleavage. Furthermore, mutagenesis of the distantly related CCD1 of maize shows how the VP14 structure represents a template for all plant carotenoid cleavage dioxygenases (CCDs). In addition, the structure suggests how VP14 associates with the membrane as a way of gaining access to its membrane soluble substrate.

Messing, Simon A.J.; Gabelli, Sandra B.; Echeverria, Ignacia; Vogel, Jonathan T.; Guan, Jiahn Chou; Tan, Bao Cai; Klee, Harry J.; McCarty, Donald R.; Amzel, L. Mario (JHU); (Florida)

2011-09-06

245

[Effects of waterlogging on the growth and energy-metabolic enzyme activities of different tree species].  

PubMed

Aimed to understand the waterlogging tolerance and adaptation mechanisms of different tree species, a simulated field experiment was conducted to study the growth and energy-metabolic enzyme activities of one-year-old seedlings of Taxodium distichum, Carya illinoensis, and Sapium sebiferum. Three treatments were installed, i. e., CK, waterlogging, and flooding, with the treatment duration being 60 days. Under waterlogging and flooding, the relative growth of test tree species was in the order of T. distichum > C. illinoensis > S. sebiferum, indicating that T. distichum had the strongest tolerance against waterlogging and flooding, while S. sebiferum had the weakest one. Also under waterlogging and flooding, the root/crown ratio of the three tree species increased significantly, suggesting that more photosynthates were allocated in roots, and the lactate dehydrogenase (LDH) and alcohol dehydrogenase (ADH) activities of the tree species also had a significant increase. Among the test tree species, T. distichum had the lowest increment of LDH and ADH activities under waterlogging and flooding, but the increment could maintain at a higher level in the treatment duration, while for C. illinoensis and S. sebiferum, the increment was larger during the initial and medium period, but declined rapidly during the later period of treatment. The malate dehydrogenase (MDH), phosphohexose (HPI), and glucose-6-phosphate dehydrogenase (G6PDH) -6-phosphogluconate dehydrogenase (6PGDH) activities of the tree species under waterlogging and flooding had a significant decrease, and the decrement was the largest for T. distichum, being 35.6% for MDH, 21.0% for HPI, and 22.7% for G6PDH - 6PGDH under flooding. It was suggested that under waterlogging and flooding, the tree species with strong waterlogging tolerance had a higher ability to maintain energy-metabolic balance, and thus, its growth could be maintained at a certain level. PMID:20560312

Wang, Gui-Bin; Cao, Fu-Liang; Zhang, Xiao-Yan; Zhang, Wang-Xiang

2010-03-01

246

Lipid metabolism enzyme ACSVL3 supports glioblastoma stem cell maintenance and tumorigenicity  

PubMed Central

Background Targeting cell metabolism offers promising opportunities for the development of drugs to treat cancer. We previously found that the fatty acyl-CoA synthetase VL3 (ACSVL3) is elevated in malignant brain tumor tissues and involved in tumorigenesis. This study investigates the role of ACSVL3 in the maintenance of glioblastoma multiforme (GBM) stem cell self-renewal and the capacity of GBM stem cells to initiate tumor xenograft formation. Methods We examined ACSVL3 expression during differentiation of several GBM stem cell enriched neurosphere cultures. To study the function of ACSVL3, we performed loss-of-function by using small interfering RNAs to target ACSVL3 and examined stem cell marker expression, neurosphere formation and tumor initiation properties. Results ACSVL3 expression levels were substantially increased in GBM stem cell enriched neurosphere cultures and decreased after differentiation of the neurospheres. Down-regulating ACSVL3 with small inhibiting RNAs decreased the expression of markers and regulators associated with stem cell self-renewal, including CD133, ALDH, Musashi-1 and Sox-2. ACSVL3 knockdown in neurosphere cells led to increased expression of differentiation markers GFAP and Tuj1. Furthermore, ACSVL3 knockdown reduced anchorage-independent neurosphere cell growth, neurosphere-forming capacity as well as self-renewal of these GBM stem cell enriched neurosphere cultures. In vivo studies revealed that ACSVL3 loss-of-function substantially inhibited the ability of neurosphere cells to propagate orthotopic tumor xenografts. A link between ACSVL3 and cancer stem cell phenotype was further established by the findings that ACSVL3 expression was regulated by receptor tyrosine kinase pathways that support GBM stem cell self-renewal and tumor initiation, including EGFR and HGF/c-Met pathways. Conclusions Our findings indicate that the lipid metabolism enzyme ACSVL3 is involved in GBM stem cell maintenance and the tumor-initiating capacity of GBM stem cell enriched-neurospheres in animals. PMID:24893952

2014-01-01

247

Adenine aminohydrolase from Leishmania donovani: unique enzyme in parasite purine metabolism.  

PubMed

Adenine aminohydrolase (AAH) is an enzyme that is not present in mammalian cells and is found exclusively in Leishmania among the protozoan parasites that infect humans. AAH plays a paramount role in purine metabolism in this genus by steering 6-aminopurines into 6-oxypurines. Leishmania donovani AAH is 38 and 23% identical to Saccharomyces cerevisiae AAH and human adenosine deaminase enzymes, respectively, catalyzes adenine deamination to hypoxanthine with an apparent K(m) of 15.4 ?M, and does not recognize adenosine as a substrate. Western blot analysis established that AAH is expressed in both life cycle stages of L. donovani, whereas subcellular fractionation and immunofluorescence studies confirmed that AAH is localized to the parasite cytosol. Deletion of the AAH locus in intact parasites established that AAH is not an essential gene and that ?aah cells are capable of salvaging the same range of purine nucleobases and nucleosides as wild type L. donovani. The ?aah null mutant was able to infect murine macrophages in vitro and in mice, although the parasite loads in both model systems were modestly reduced compared with wild type infections. The ?aah lesion was also introduced into a conditionally lethal ?hgprt/?xprt mutant in which viability was dependent on pharmacologic ablation of AAH by 2'-deoxycoformycin. The ?aah/?hgprt/?xprt triple knock-out no longer required 2'-deoxycoformycin for growth and was avirulent in mice with no persistence after a 4-week infection. These genetic studies underscore the paramount importance of AAH to purine salvage by L. donovani. PMID:22238346

Boitz, Jan M; Strasser, Rona; Hartman, Charles U; Jardim, Armando; Ullman, Buddy

2012-03-01

248

Carboxylation of phenylphosphate by phenol carboxylase, an enzyme system of anaerobic phenol metabolism.  

PubMed Central

Several lines of evidence indicate that the first step in the anaerobic metabolism of phenol is phenol carboxylation to 4-hydroxybenzoate; this reaction is considered a biological Kolbe-Schmitt carboxylation. A phenol carboxylase system was characterized by using a denitrifying Pseudomonas strain, K 172, which catalyzes an isotope exchange between 14CO2 and the carboxyl group of 4-hydroxybenzoate. The enzymatic isotope exchange activity (100 nmol min-1 mg-1 of protein) requires Mn2+ and K+. We show that this system also catalyzes the carboxylation of phenylphosphate (the phosphoric acid monophenyl ester) to 4-hydroxybenzoate and phosphate. The specific activity of phenylphosphate carboxylation at the optimal pH of 6.5 is 12 nmol of CO2 fixed min-1 mg-1 of protein. Phenylphosphate cannot be replaced by Mg(2+)-ATP and phenol. The carboxylase activity requires Mn2+ but, in contrast to the isotope exchange activity, does not require K+. The apparent Km values are 1.5 mM dissolved CO2 and 0.2 mM phenylphosphate. Several convenient assays for phenylophosphate carboxylation are described. The isotope exchange reaction and the net carboxylation reaction are catalyzed by the same oxygen-sensitive enzyme, which has a half-life in an air-saturated solution of less than 1 min. Both activities cochromatographed with a protein with a Mr of 280,000, and both activities were induced only after anaerobic growth on phenol. The carboxylation of phenylphosphate suggests that phenylphosphate itself is the physiological CO2 acceptor molecular of this novel CO2 fixation reaction. Alternatively, phenylphosphate could simulate the unknown natural precursor. It is suggested that the formation of an enzyme-bound phenolate anion from the activated phenolic compound is the rate-determining step in the carboxylation reaction. PMID:1592817

Lack, A; Fuchs, G

1992-01-01

249

Polymorphisms in carcinogen metabolism enzymes, fish intake, and risk of prostate cancer  

PubMed Central

Cooking fish at high temperature can produce potent carcinogens such as heterocyclic amines and polycyclic aromatic hydrocarbons. The effects of these carcinogens may undergo modification by the enzymes responsible for their detoxification and/or activation. In this study, we investigated genetic polymorphisms in nine carcinogen metabolism enzymes and their modifying effects on the association between white or dark fish consumption and prostate cancer (PCA) risk. We genotyped 497 localized and 936 advanced PCA cases and 760 controls from the California Collaborative Case–Control Study of Prostate Cancer. Three polymorphisms, EPHX1 Tyr113His, CYP1B1 Leu432Val and GSTT1 null/present, were associated with localized PCA risk. The PTGS2 765 G/C polymorphism modified the association between white fish consumption and advanced PCA risk (interaction P 5 0.002), with high white fish consumption being positively associated with risk only among carriers of the C allele. This effect modification by PTGS2 genotype was stronger when restricted to consumption of well-done white fish (interaction P 5 0.021). These findings support the hypotheses that changes in white fish brought upon by high-temperature cooking methods, such as carcinogen accumulation and/or fatty acid composition changes, may contribute to prostate carcinogenesis. However, the gene–diet interactions should be interpreted with caution given the limited sample size. Thus, our findings require further validation with additional studies. Abbreviations: AA African American; BMI body mass index; CI confidence interval; CNV copy number variant; EPIC European Prospective Investigation into Cancer and Nutrition; HCA heterocyclic amine; HCFA Health Care Financing Administration; LAC Los Angeles county; MAF minor allele frequency; NHW non-Hispanic White; OR odds ratio; PAH polycyclic aromatic hydrocarbon; PCA prostate cancer; PTGS2 prostaglandin- endoperoxide synthase 2; PUFA polyunsaturated fatty acids; RDD random-digit dialing; SEER Surveillance, Epidemiology, and End Result; SES socio-economic status; SFBA San Francisco Bay Area; SNP single-nucleotide polymorphism PMID:22610071

Stern, Mariana C.

2012-01-01

250

Functional Polymorphisms of Folate-Metabolizing Enzymes in Relation to Homocysteine Concentrations in Systemic Lupus Erythematosus  

PubMed Central

Objective To determine if functional polymorphisms of folate/homocysteine pathway enzymes are associated with homocysteine concentrations and/or coronary artery calcification (CAC) scores in patients with systemic lupus erythematosus (SLE) and controls. Methods We investigated 163 SLE patients and 160 controls. Functional polymorphisms in 6 genes in the folate/homocysteine pathway were genotyped: 5,10-methylenetetrahydrofolate reductase (MTHFR) 677C>T, MTHFR 1298A>C, cystathionine ß-synthase (CBS) 844ins68, methionine synthase (MTR) 2756A>G, methionine synthase reductase (MTRR) 66A>G, thymidylate synthase (TYMS) 1494del6, and dihydrofolate reductase (DHFR) c.86+60_78. Results Homocysteine levels were higher in African American SLE patients than Caucasian patients and African American controls. Genotype distributions were significantly different in African American and Caucasian controls for 6 of the 7 polymorphisms. Genotype distributions for each polymorphism did not differ significantly between SLE patients and controls even after stratification by race. Glomerular filtration rate was strongly negatively correlated to homocysteine levels, and was therefore adjusted for as a covariate in the models of the effects of the polymorphisms on homocysteine levels. In SLE patients none of the 7 polymorphisms was associated with homocysteine concentrations. In Caucasian controls only MTHFR 677C>T and 1298A>C showed effects on homo-cysteine similar to what would be expected from the literature. There were no genotypic associations with median CAC scores in SLE patients or controls with and without stratification by race. Conclusion Polymorphisms in folate/homocysteine metabolizing enzymes do not predict higher homocysteine levels or CAC scores in patients with SLE. PMID:18785313

SUMMERS, CAROLYN M.; CUCCHIARA, ANDREW J.; NACKOS, ELENI; HAMMONS, ANDREA L.; MOHR, ELISABETH; WHITEHEAD, ALEXANDER S.; VON FELDT, JOAN M.

2014-01-01

251

(CANCER RESEARCH 48, 1390-1397, March 15, 1988] Epoxide-metabolizing Enzymes in Mammary Gland and Liver from BALB/c Mice  

E-print Network

(CANCER RESEARCH 48, 1390-1397, March 15, 1988] Epoxide-metabolizing Enzymes in Mammary Gland and Liver from BALB/c Mice and Effects of Inducers on Enzyme Activity1 Marilyn H. Suva, Roger N. Wixtrom.3.23) (EH) are hydrolytic enzymes which may play an important role in the activation and detoxification

Hammock, Bruce D.

252

Turmeric (Curcuma longa L.) volatile oil inhibits key enzymes linked to type 2 diabetes.  

PubMed

Anti-diabetic capacity of Curcuma longa volatile oil in terms of its ability to inhibit glucosidase activities was evaluated. Turmeric volatile oils inhibited glucosidase enzymes more effectively than the reference standard drug acarbose. Drying of rhizomes was found to enhance ?-glucosidase (IC?? = 1.32-0.38 ?g/ml) and ?-amylase (IC?? = 64.7-34.3 ?g/ml) inhibitory capacities of volatile oils. Ar-Turmerone, the major volatile component in the rhizome also showed potent ?-glucosidase (IC?? = 0.28 ?g) and ?-amylase (IC?? = 24.5 ?g) inhibition. PMID:22385048

Lekshmi, P C; Arimboor, Ranjith; Indulekha, P S; Menon, A Nirmala

2012-11-01

253

[Effects of exogenous NO3- on cherry root function and enzyme activities related to nitrogen metabolism under hypoxia stress].  

PubMed

A water culture experiment with controlled dissolved oxygen concentration was conducted to explore the effects of exogenous NO3- on the root function and enzyme activities related to nitrogen metabolism of cherry (Prunun cerasus x P. canescens) seedlings under hypoxia stress. Comparing with the control (7.5 mmol NO3- x L(-1)), treatments 15 and 22.5 mmol NO3- x L(-1) made the materials for plant metabolism abundant, ensured the synthesis of enzyme proteins, increased root activity, maintained root respiration, improved the activities of enzymes related to nitrogen metabolism, such as nitrate reductase (NR), glutamine synthethase (GS), and glutamate dehydrogenase (NADH-GDH) in roots, and thereby, supplied enough energy for root respiration and NAD+ to glycolytic pathway, ensured electron transfer, and avoid ammonium toxicity under hypoxia stress. As a result, the injury of hypoxia stress to cherry plant was alleviated. Applying NO3- at the concentration of 22.5 mmol x L(-1) was more advisable. However, NO3- deficiency (0 mmol x L(-1)) showed opposite results. The above results suggested that applying exogenous NO3- to growth medium could regulate cherry root function and nitrogen metabolism, and antagonize the damage of hypoxia stress on cherry roots. PMID:21443020

Feng, Li-guo; Sheng, Li-xi; Shu, Huai-rui

2010-12-01

254

Does the thermal plasticity of metabolic enzymes underlie thermal compensation of locomotor performance in the eastern newt (Notophthalmus viridescens)?  

PubMed

Eastern newts (Notophthalmus viridescens) upregulate the metabolic capacity of skeletal muscle in winter to compensate for thermodynamic effects on metabolism. However, whether this compensation facilitates locomotor performance at low temperature is unknown. Therefore, our aim was to determine if thermal acclimation of metabolic enzymes in muscle benefits locomotion. Eastern newts from southern Ohio were acclimated to cold (5°C, 10:14 L:D) or warm (25°C, 14:10 L:D) conditions for 12 weeks. Following acclimation, we measured the locomotor performance (burst speed and time until exhaustion) and the activities of metabolic enzymes in skeletal muscle at 5-30°C. Creatine kinase (CK) activity in skeletal muscle was higher in cold compared to warm-acclimated newts, and cold-acclimated newts had a higher burst speed at low temperature compared to warm-acclimated newts. At low temperature, time until exhaustion was higher in cold compared to warm-acclimated newts, but the activities of citrate synthase (CS) and cytochrome c oxidase (CCO) in muscle were lower in cold compared to warm-acclimated newts. Together, these results demonstrate that eastern newts compensate for the effects of low temperature on locomotor performance. Whereas thermal compensation of CK activity is correlated with burst locomotion at low temperature, aerobic enzymes in skeletal muscle (CS and CCO) are not linked to compensation of sustained locomotion. PMID:25382581

Mineo, Patrick M; Schaeffer, Paul J

2015-01-01

255

Genome-wide identification of gibberellins metabolic enzyme genes and expression profiling analysis during seed germination in maize.  

PubMed

Gibberellin (GA) is an essential phytohormone that controls many aspects of plant development. To enhance our understanding of GA metabolism in maize, we intensively screened and identified 27 candidate genes encoding the seven GA metabolic enzymes including ent-copalyl diphosphate synthase (CPS), ent-kaurene synthase (KS), ent-kaurene oxidase (KO), ent-kaurenoic acid oxidase (KAO), GA 20-oxidase (GA20ox), GA 3-oxidase (GA3ox), and GA 2-oxidase (GA2ox), using all available public maize databases. The results indicate that maize genome contains three CPS, four KS, two KO and one KAO genes, and most of them are arranged separately on the maize genome, which differs from that in rice. In addition, the enzymes catalyzing the later steps (ZmGA20ox, ZmGA3ox and ZmGA2ox) are also encoded by gene families in maize, but GA3ox enzyme is likely to be encoded by single gene. Expression profiling analysis exhibited that transcripts of 15 GA metabolic genes could be detected during maize seed germination, which provides further evidence for the notion that increased synthesis of active GA in the embryo is required for triggering germination events. Moreover, a variety of temporal genes expression patterns of GA metabolic genes were detected, which revealed the complexity of underlying mechanism for GA regulated seed germination. PMID:21640170

Song, Jian; Guo, Baojian; Song, Fangwei; Peng, Huiru; Yao, Yingyin; Zhang, Yirong; Sun, Qixin; Ni, Zhongfu

2011-08-15

256

Enzymic synthesis of indole-3-acetyl-1-O-beta-d-glucose. II. Metabolic characteristics of the enzyme.  

PubMed

The synthesis of indole-3-acetyl-1-O-beta-D-glucose from indole-3-acetic acid (IAA) and uridine diphosphoglucose (UDPG) has been shown to be a reversible reaction with the equilibrium away from ester formation and toward formation of IAA. The enzyme occurs primarily in the liquid endosperm of the corn kernel but some activity occurs in the embryo. It is relatively specific showing no glucose ester formation with oxindole-3-acetic acid or 7-hydroxy-oxindole-3-acetic acid, and low activity with phenylpropene acids, such as rho-coumaric acid. The enzyme is also specific for the nucleotide sugar showing no activity with UDPGalactose or UDPXylose. The enzyme is inhibited by inorganic pyrophosphate, by phosphate esters and by phospholipids, particularly phosphatidyl ethanolamine. The enzyme is inhibited by zeatin, by 2,4-dichlorophenoxy-acetic acid, by IAA-myo-inositol and IAA-glucan, but not by zeatin riboside, and only weakly by gibberellic acid, abscisic acid and kinetin. The reaction is slightly stimulated by both calcium and calmodulin and, in some cases, by thiol compounds. The role of this enzyme in the homeostatic control of indole-3-acetic acid levels in Zea mays is discussed. PMID:11537439

Leznicki, A J; Bandurski, R S

1988-01-01

257

Enzymic synthesis of indole-3-acetyl-1-O-beta-d-glucose. II. Metabolic characteristics of the enzyme  

NASA Technical Reports Server (NTRS)

The synthesis of indole-3-acetyl-1-O-beta-D-glucose from indole-3-acetic acid (IAA) and uridine diphosphoglucose (UDPG) has been shown to be a reversible reaction with the equilibrium away from ester formation and toward formation of IAA. The enzyme occurs primarily in the liquid endosperm of the corn kernel but some activity occurs in the embryo. It is relatively specific showing no glucose ester formation with oxindole-3-acetic acid or 7-hydroxy-oxindole-3-acetic acid, and low activity with phenylpropene acids, such as rho-coumaric acid. The enzyme is also specific for the nucleotide sugar showing no activity with UDPGalactose or UDPXylose. The enzyme is inhibited by inorganic pyrophosphate, by phosphate esters and by phospholipids, particularly phosphatidyl ethanolamine. The enzyme is inhibited by zeatin, by 2,4-dichlorophenoxy-acetic acid, by IAA-myo-inositol and IAA-glucan, but not by zeatin riboside, and only weakly by gibberellic acid, abscisic acid and kinetin. The reaction is slightly stimulated by both calcium and calmodulin and, in some cases, by thiol compounds. The role of this enzyme in the homeostatic control of indole-3-acetic acid levels in Zea mays is discussed.

Leznicki, A. J.; Bandurski, R. S.

1988-01-01

258

Sequence and organization of genes encoding enzymes involved in pyruvate metabolism in Mycoplasma capricolum.  

PubMed Central

The region of the genome of Mycoplasma capricolum upstream of the portion encompassing the genes for Enzymes I and IIAglc of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) was cloned and sequenced. Examination of the sequence revealed open reading frames corresponding to numerous genes involved with the oxidation of pyruvate. The deduced gene organization is naox (encoding NADH oxidase)-lplA (encoding lipoate-protein ligase)-odpA (encoding pyruvate dehydrogenase EI alpha)-odpB (encoding pyruvate dehydrogenase EI beta)-odp2(encoding pyruvate dehydrogenase EII)-dldH (encoding dihydrolipoamide dehydrogenase)-pta (encoding phosphotransacetylase)-ack (encoding acetate kinase)-orfA (an unknown open reading frame)-kdtB-ptsI-crr. Analysis of the DNA sequence suggests that the naox and lplA genes are part of a single operon, odpA and odpB constitute an additional operon, odp2 and dldH a third operon, and pta and ack an additional transcription unit. Phylogenetic analyses of the protein products of the odpA and odpB genes indicate that they are most similar to the corresponding proteins from Mycoplasma genitalium, Acholeplasma laidlawii, and Gram-positive organisms. The product of the odp2 gene contains a single lipoyl domain, as is the case with the corresponding proteins from M. genitalium and numerous other organisms. An evolutionary tree places the M. capricolum odp2 gene product in close relationship to the corresponding proteins from A. laidlawii and M.genitalium. The dldH gene encodes an unusual form of dihydrolipoamide dehydrogenase that contains an aminoterminal extension corresponding to a lipoyl domain, a property shared by the corresponding proteins from Alcaligenes eutrophus and Clostridium magnum. Aside from that feature, the protein is related phylogenetically to the corresponding proteins from A. laidlawii and M. genitalium. The phosphotransacetylase from M. capricolum is related most closely to the corresponding protein from M. genitalium and is distinguished easily from the enzymes from Escherichia coli and Haemophilus influenzae by the absence of the characteristic amino-terminal extension. The acetate kinase from M. capricolum is related evolutionarily to the homologous enzyme from M. genitalium. Map position comparisons of genes encoding proteins involved with pyruvate metabolism show that, whereas all the genes are clustered in M. capricolum, they are scattered in M. genitalium. PMID:8844861

Zhu, P. P.; Peterkofsky, A.

1996-01-01

259

Stereoselective Formation and Metabolism of 4-Hydroxy-Retinoic Acid Enantiomers by Cytochrome P450 Enzymes*  

PubMed Central

All-trans-retinoic acid (atRA), the major active metabolite of vitamin A, plays a role in many biological processes, including maintenance of epithelia, immunity, and fertility and regulation of apoptosis and cell differentiation. atRA is metabolized mainly by CYP26A1, but other P450 enzymes such as CYP2C8 and CYP3As also contribute to atRA 4-hydroxylation. Although the primary metabolite of atRA, 4-OH-RA, possesses a chiral center, the stereochemical course of atRA 4-hydroxylation has not been studied previously. (4S)- and (4R)-OH-RA enantiomers were synthesized and separated by chiral column HPLC. CYP26A1 was found to form predominantly (4S)-OH-RA. This stereoselectivity was rationalized via docking of atRA in the active site of a CYP26A1 homology model. The docked structure showed a well defined niche for atRA within the active site and a specific orientation of the ?-ionone ring above the plane of the heme consistent with stereoselective abstraction of the hydrogen atom from the pro-(S)-position. In contrast to CYP26A1, CYP3A4 formed the 4-OH-RA enantiomers in a 1:1 ratio and CYP3A5 preferentially formed (4R)-OH-RA. Interestingly, CYP3A7 and CYP2C8 preferentially formed (4S)-OH-RA from atRA. Both (4S)- and (4R)-OH-RA were substrates of CYP26A1 but (4S)-OH-RA was cleared 3-fold faster than (4R)-OH-RA. In addition, 4-oxo-RA was formed from (4R)-OH-RA but not from (4S)-OH-RA by CYP26A1. Overall, these findings show that (4S)-OH-RA is preferred over (4R)-OH-RA by the enzymes regulating atRA homeostasis. The stereoselectivity observed in CYP26A1 function will aid in better understanding of the active site features of the enzyme and the disposition of biologically active retinoids. PMID:23071109

Shimshoni, Jakob A.; Roberts, Arthur G.; Scian, Michele; Topletz, Ariel R.; Blankert, Sean A.; Halpert, James R.; Nelson, Wendel L.; Isoherranen, Nina

2012-01-01

260

A pangenomic analysis of the Nannochloropsis organellar genomes reveals novel genetic variations in key metabolic genes  

PubMed Central

Background Microalgae in the genus Nannochloropsis are photosynthetic marine Eustigmatophytes of significant interest to the bioenergy and aquaculture sectors due to their ability to efficiently accumulate biomass and lipids for utilization in renewable transportation fuels, aquaculture feed, and other useful bioproducts. To better understand the genetic complement that drives the metabolic processes of these organisms, we present the assembly and comparative pangenomic analysis of the chloroplast and mitochondrial genomes from Nannochloropsis salina CCMP1776. Results The chloroplast and mitochondrial genomes of N. salina are 98.4% and 97% identical to their counterparts in Nannochloropsis gaditana. Comparison of the Nannochloropsis pangenome to other algae within and outside of the same phyla revealed regions of significant genetic divergence in key genes that encode proteins needed for regulation of branched chain amino synthesis (acetohydroxyacid synthase), carbon fixation (RuBisCO activase), energy conservation (ATP synthase), protein synthesis and homeostasis (Clp protease, ribosome). Conclusions Many organellar gene modifications in Nannochloropsis are unique and deviate from conserved orthologs found across the tree of life. Implementation of secondary and tertiary structure prediction was crucial to functionally characterize many proteins and therefore should be implemented in automated annotation pipelines. The exceptional similarity of the N. salina and N. gaditana organellar genomes suggests that N. gaditana be reclassified as a strain of N. salina. PMID:24646409

2014-01-01

261

Cellulase a key enzyme in fermentation: Annual report, 1985--1986  

SciTech Connect

Many microbial cellulase systems are comprised of multiple components namely, endoglucanase (EG), cellobiohydrolase (CBH), and betaglucosidabe. These three types of enzyme of the cellulase complex act synergistically but their mechanism of interaction in the hydrolysis of crystalline cellulose is poorly understood. As monoclonal antibodies (McAb) can be used as both snesitive and specific protein probes, we proposed the preparation of McAb specific for cellulases components, which should allow direct analysis of these enzymes. We have been generating murine McAb that react specifically with cellobiohydrolases and endoglucanases. To date a McAb specific for a fungal (Trichoderma reesei) cellobiohydrolase I (CBH I) that does not show cross reactivity toward endoglucanases, has been obtained (Riskeet et al; 1986a). This McAb preparation has been used for purification of CBH I via affinity chromatography. Thus the purified McAb to CBH I was immobilized on CnBr-Sepharose-4b to yield an immunomatrix which was analogous studies are also being developed with the cellulase form Microbispora bispora. 5 refs.

Eveleigh, D.E.; Macmillan, J.D.

1986-05-04

262

The histone demethylase enzyme KDM3A is a key estrogen receptor regulator in breast cancer  

PubMed Central

Endocrine therapy has successfully been used to treat estrogen receptor (ER)-positive breast cancer, but this invariably fails with cancers becoming refractory to treatment. Emerging evidence has suggested that fluctuations in ER co-regulatory protein expression may facilitate resistance to therapy and be involved in breast cancer progression. To date, a small number of enzymes that control methylation status of histones have been identified as co-regulators of ER signalling. We have identified the histone H3 lysine 9 mono- and di-methyl demethylase enzyme KDM3A as a positive regulator of ER activity. Here, we demonstrate that depletion of KDM3A by RNAi abrogates the recruitment of the ER to cis-regulatory elements within target gene promoters, thereby inhibiting estrogen-induced gene expression changes. Global gene expression analysis of KDM3A-depleted cells identified gene clusters associated with cell growth. Consistent with this, we show that knockdown of KDM3A reduces ER-positive cell proliferation and demonstrate that KDM3A is required for growth in a model of endocrine therapy-resistant disease. Crucially, we show that KDM3A catalytic activity is required for both ER-target gene expression and cell growth, demonstrating that developing compounds which target demethylase enzymatic activity may be efficacious in treating both ER-positive and endocrine therapy-resistant disease. PMID:25488809

Wade, Mark A.; Jones, Dominic; Wilson, Laura; Stockley, Jacqueline; Coffey, Kelly; Robson, Craig N.; Gaughan, Luke

2015-01-01

263

The histone demethylase enzyme KDM3A is a key estrogen receptor regulator in breast cancer.  

PubMed

Endocrine therapy has successfully been used to treat estrogen receptor (ER)-positive breast cancer, but this invariably fails with cancers becoming refractory to treatment. Emerging evidence has suggested that fluctuations in ER co-regulatory protein expression may facilitate resistance to therapy and be involved in breast cancer progression. To date, a small number of enzymes that control methylation status of histones have been identified as co-regulators of ER signalling. We have identified the histone H3 lysine 9 mono- and di-methyl demethylase enzyme KDM3A as a positive regulator of ER activity. Here, we demonstrate that depletion of KDM3A by RNAi abrogates the recruitment of the ER to cis-regulatory elements within target gene promoters, thereby inhibiting estrogen-induced gene expression changes. Global gene expression analysis of KDM3A-depleted cells identified gene clusters associated with cell growth. Consistent with this, we show that knockdown of KDM3A reduces ER-positive cell proliferation and demonstrate that KDM3A is required for growth in a model of endocrine therapy-resistant disease. Crucially, we show that KDM3A catalytic activity is required for both ER-target gene expression and cell growth, demonstrating that developing compounds which target demethylase enzymatic activity may be efficacious in treating both ER-positive and endocrine therapy-resistant disease. PMID:25488809

Wade, Mark A; Jones, Dominic; Wilson, Laura; Stockley, Jacqueline; Coffey, Kelly; Robson, Craig N; Gaughan, Luke

2015-01-01

264

Quantitative studies of enzyme-substrate compartmentation, functional coupling and metabolic channelling in muscle cells  

Microsoft Academic Search

Some historical aspects of development of the concepts of functional coupling, metabolic channelling, compartmentation and energy transfer networks are reviewed. Different quantitative approaches, including kinetic and mathematical modeling of energy metabolism, intracellular energy transfer and metabolic regulation of energy production and fluxes in the cells in vivo are analyzed. As an example of the system with metabolic channelling, thermodynamic aspects

Valdur Saks; Pierre Dos Santos; Frank N. Gellerich; Philippe Diolez

1998-01-01

265

Hydroxylated PAHs in bile of deep-sea fish. Relationship with xenobiotic metabolizing enzymes  

SciTech Connect

Polycyclic aromatic hydrocarbon (PAH) pollution in deep-sea environments has been assessed by measuring bile PAH metabolites in deep-sea fish. Five species from the NW Mediterranean were selected for the study: Coryphaenoides guentheri, Lepidion lepidion, Mora moro, Bathypterois mediterraneus, and Alepocephalus rostratus. Bile crude samples were directly analyzed by HPLC-fluorescence at the excitation/emission wavelengths of benzo[a]pyrene. Differences among sampling sites were recorded, which suggests that coastal discharges of contaminants may reach these remote areas. Subsequently, a number of bile samples were hydrolyzed and analyzed by gas chromatography--mass spectrometry (GC-MS) for the determination of individual PAHs. 1-Pyrenol and 2-phenylphenol were among the most abundant compounds detected. The results obtained confirm the long-range transport of PAHs to deep-sea environments, subsequent exposure of fish inhabiting those remote areas, and its ability to metabolize and excrete them through the bile. The data also describe hepatic enzymes (cytochrome P450 and glutathione S-transferases) that appear to be as catalytically efficient as those in shallow water species.

Escartin, E.; Porte, C. [IIQAB-CSIC, Barcelona (Spain). Environmental Chemistry Dept.] [IIQAB-CSIC, Barcelona (Spain). Environmental Chemistry Dept.

1999-08-15

266

Ketohexokinase: Expression and Localization of the Principal Fructose-metabolizing Enzyme  

PubMed Central

Ketohexokinase (KHK, also known as fructokinase) initiates the pathway through which most dietary fructose is metabolized. Very little is known about the cellular localization of this enzyme. Alternatively spliced KHK-C and KHK-A mRNAs are known, but the existence of the KHK-A protein isoform has not been demonstrated in vivo. Using antibodies to KHK for immunohistochemistry and Western blotting of rodent tissues, including those from mouse knockouts, coupled with RT-PCR assays, we determined the distribution of the splice variants. The highly expressed KHK-C isoform localized to hepatocytes in the liver and to the straight segment of the proximal renal tubule. In both tissues, cytoplasmic and nuclear staining was observed. The KHK-A mRNA isoform was observed exclusively in a range of other tissues, and by Western blotting, the presence of endogenous immunoreactive KHK-A protein was shown for the first time, proving that the KHK-A mRNA is translated into KHK-A protein in vivo, and supporting the suggestion that this evolutionarily conserved isoform is physiologically functional. However, the low levels of KHK-A expression prevented its immunohistochemical localization within these tissues. Our results highlight that the use of in vivo biological controls (tissues from knockout animals) is required to distinguish genuine KHK immunoreactivity from experimental artifact. (J Histochem Cytochem 57:763–774, 2009) PMID:19365088

Diggle, Christine P.; Shires, Michael; Leitch, Derek; Brooke, David; Carr, Ian M.; Markham, Alex F.; Hayward, Bruce E.; Asipu, Aruna; Bonthron, David T.

2009-01-01

267

Comparison of liver enzymes in osmerid fishes: key differences between a glycerol accumulating species, rainbow smelt (Osmerus mordax), and a species that does not accumulate glycerol, capelin (Mallotus villosus).  

PubMed

Activities of enzymes associated with glycerol synthesis were compared in the liver of two osmerid fishes, the smelt (Osmerus mordax), which can accumulate high (400 mM) levels of glycerol and capelin (Mallotus villosus) that does not accumulate glycerol. Animals were sampled at approximately the same time of year and temperature thus negating potential seasonal effects. These species are closely related, reducing interpretative issues involving comparison between unrelated species. We found that key enzyme activities were elevated in the smelt relative to the non-glycerol accumulating capelin, namely enzymes involved with glycolysis (phosphofructose kinase-1 and aldolase), amino acid metabolism (aspartate aminotransferase and alanine aminotransferase), gluconeogenesis (phosphoenolpyruvate carboxykinase) and glycerol synthesis (glycerol-3-phosphate dehydrogenase). The enzyme profiles strongly support the hypothesis that smelt can synthesize glycerol by utilizing glycogen and amino acids as the carbon source and that they have increased capacity for metabolic flux through loci required for synthesis of the three carbon intermediate dihydroxyacetone phosphate and subsequently glycerol synthesis. PMID:12020659

Treberg, J R; Lewis, J M; Driedzic, W R

2002-06-01

268

Histopathological findings of the pancreas, liver, and carbohydrate metabolizing enzymes in STZ-induced diabetic rats improved by administration of myrtenal.  

PubMed

This study aims to evaluate the efficacy of myrtenal, a natural monoterpene, for its antihyperglycemic effects and ? cell protective properties in streptozotocin (STZ)-induced diabetic rats. Oral administration of myrtenal at doses of 20, 40, and 80 mg/kg body weight to diabetic rats for 28 days resulted in a significant reduction (P < 0.05) in the levels of plasma glucose, glycosylated hemoglobin (HbA1c), and an increase in the levels of insulin and hemoglobin (Hb). Protection of body weight loss of diabetic rats by myrtenal was noted. The altered activities of the key metabolic enzymes involved in carbohydrate metabolism such as hexokinase, glucose-6-phosphatase, fructose-1,6-bisphosphatase, glucose-6-phosphate dehydrogenase, and hepatic enzymes AST, ALT, and ALP levels of diabetic rats were significantly improved by the administration of myrtenal in STZ-induced diabetic rats. Moreover, myrtenal treatment improved hepatic and muscle glycogen content in diabetic rats. Histopathological studies further revealed that the reduced islet cells were restored to near-normal conditions on treatment with myrtenal in STZ-induced diabetic rats. An alteration in liver architecture was also prevented by myrtenal treatment. Our results suggest that myrtenal possess antihyperglycemic and ? cell protective effects. Hence, myrtenal could be considered as a potent phytochemical for development as a new antidiabetic agent. PMID:25292424

Rathinam, Ayyasamy; Pari, Leelavinothan; Chandramohan, Ramasamy; Sheikh, Bashir Ahmad

2014-12-01

269

Expression of hepatic drug-metabolizing cytochrome p450 enzymes and their intercorrelations: a meta-analysis.  

PubMed

Cytochrome P450 is a family of enzymes that catalyze reactions involved in the metabolism of drugs and other xenobiotics. These enzymes are therefore important in pharmacologic and toxicologic studies, and information on their abundances is of value in the process of scaling in vitro data to in vivo metabolic parameters. A meta-analysis was applied to data on the abundance of human hepatic cytochrome P450 enzymes in Caucasian adult livers (50 studies). Despite variations in the methods used to measure the abundance of enzymes, agreement between the studies in 26 different laboratories was generally good. Nonetheless, some heterogeneity was detected (Higgins and Thompson heterogeneity test). More importantly, large interindividual variability was observed in the collated data. Positive correlations between the expression levels of some cytochrome P450 enzymes were found in the abundance data, including the following pairs: CYP3A4/CYP3A5*1/*3 (Rs = 0.70, P < 0.0001, n = 52), CYP3A4/CYP2C8 (Rs = 0.68, P < 0.0001, n = 134), CYP3A4/CYP2C9 (Rs = 0.55, P < 0.0001, n = 71), and CYP2C8/CYP2C9 (Rs = 0.55, P < 0.0001, n = 99). These correlations can be used to demonstrate common genetic transcriptional mechanisms. PMID:24879845

Achour, Brahim; Barber, Jill; Rostami-Hodjegan, Amin

2014-08-01

270

Cloning of ?-Primeverosidase from Tea Leaves, a Key Enzyme in Tea Aroma Formation1  

PubMed Central

A ?-primeverosidase from tea (Camellia sinensis) plants is a unique disaccharide-specific glycosidase, which hydrolyzes aroma precursors of ?-primeverosides (6-O-?-d-xylopyranosyl-?-d-glucopyranosides) to liberate various aroma compounds, and the enzyme is deeply concerned with the floral aroma formation in oolong tea and black tea during the manufacturing process. The ?-primeverosidase was purified from fresh leaves of a cultivar for green tea (C. sinensis var sinensis cv Yabukita), and its partial amino acid sequences were determined. The ?-primeverosidase cDNA has been isolated from a cDNA library of cv Yabukita using degenerate oligonucleotide primers. The cDNA insert encodes a polypeptide consisting of an N-terminal signal peptide of 28 amino acid residues and a 479-amino acid mature protein. The ?-primeverosidase protein sequence was 50% to 60% identical to ?-glucosidases from various plants and was classified in a family 1 glycosyl hydrolase. The mature form of the ?-primeverosidase expressed in Escherichia coli was able to hydrolyze ?-primeverosides to liberate a primeverose unit and aglycons, but did not act on 2-phenylethyl ?-d-glucopyranoside. These results indicate that the ?-primeverosidase selectively recognizes the ?-primeverosides as substrates and specifically hydrolyzes the ?-glycosidic bond between the disaccharide and the aglycons. The stereochemistry for enzymatic hydrolysis of 2-phenylethyl ?-primeveroside by the ?-primeverosidase was followed by 1H-nuclear magnetic resonance spectroscopy, revealing that the enzyme hydrolyzes the ?-primeveroside by a retaining mechanism. The roles of the ?-primeverosidase in the defense mechanism in tea plants and the floral aroma formation during tea manufacturing process are also discussed. PMID:12481100

Mizutani, Masaharu; Nakanishi, Hidemitsu; Ema, Jun-ichi; Ma, Seung-Jin; Noguchi, Etsuko; Inohara-Ochiai, Misa; Fukuchi-Mizutani, Masako; Nakao, Masahiro; Sakata, Kanzo

2002-01-01

271

Toxicology in the Fast Lane: Application of High-Throughput Bioassays to Detect Modulation of Key Enzymes and Receptors  

PubMed Central

Background Legislation at state, federal, and international levels is requiring rapid evaluation of the toxicity of numerous chemicals. Whole-animal toxicologic studies cannot yield the necessary throughput in a cost-effective fashion, leading to a critical need for a faster and more cost-effective toxicologic evaluation of xenobiotics. Objectives We tested whether mechanistically based screening assays can rapidly provide information on the potential for compounds to affect key enzymes and receptor targets, thus identifying those compounds requiring further in-depth analysis. Methods A library of 176 synthetic chemicals was prepared and examined in a high-throughput screening (HTS) manner using nine enzyme-based and five receptor-based bioassays. Results All the assays have high Z? values, indicating good discrimination among compounds in a reliable fashion, and thus are suitable for HTS assays. On average, three positive hits were obtained per assay. Although we identified compounds that were previously shown to inhibit a particular enzyme class or receptor, we surprisingly discovered that triclosan, a microbiocide present in personal care products, inhibits carboxylesterases and that dichlone, a fungicide, strongly inhibits the ryanodine receptors. Conclusions Considering the need to rapidly screen tens of thousands of anthropogenic compounds, our study shows the feasibility of using combined HTS assays as a novel approach toward obtaining toxicologic data on numerous biological end points. The HTS assay approach is very useful to quickly identify potentially hazardous compounds and to prioritize them for further in-depth studies. PMID:20049205

Morisseau, Christophe; Merzlikin, Oleg; Lin, Amy; He, Guochun; Feng, Wei; Padilla, Isela; Denison, Michael S.; Pessah, Isaac N.; Hammock, Bruce D.

2009-01-01

272

In Helicobacter pylori, LuxS Is a Key Enzyme in Cysteine Provision through a Reverse Transsulfuration Pathway?  

PubMed Central

In many bacteria, LuxS functions as a quorum-sensing molecule synthase. However, it also has a second, more central metabolic function in the activated methyl cycle (AMC), which generates the S-adenosylmethionine required by methyltransferases and recycles the product via methionine. Helicobacter pylori lacks an enzyme catalyzing homocysteine-to-methionine conversion, rendering the AMC incomplete and thus making any metabolic role of H. pylori LuxS (LuxSHp) unclear. Interestingly, luxSHp is located next to genes annotated as cysKHp and metBHp, involved in other bacteria in cysteine and methionine metabolism. We showed that isogenic strains carrying mutations in luxSHp, cysKHp, and metBHp could not grow without added cysteine (whereas the wild type could), suggesting roles in cysteine synthesis. Growth of the ?luxSHp mutant was restored by homocysteine or cystathionine and growth of the ?cysKHp mutant by cystathionine only. The ?metBHp mutant had an absolute requirement for cysteine. Metabolite analyses showed that S-ribosylhomocysteine accumulated in the ?luxSHp mutant, homocysteine in the ?cysKHp mutant, and cystathionine in the ?metBHp mutant. This suggests that S-ribosylhomocysteine is converted by LuxSHp to homocysteine (as in the classic AMC) and thence by CysKHp to cystathionine and by MetBHp to cysteine. In silico analysis suggested that cysK-metB-luxS were acquired by H. pylori from a Gram-positive source. We conclude that cysK-metB-luxS encode the capacity to generate cysteine from products of the incomplete AMC of H. pylori in a process of reverse transsulfuration. We recommend that the misnamed genes cysKHp and metBHp be renamed mccA (methionine-to-cysteine-conversion gene A) and mccB, respectively. PMID:20061483

Doherty, Neil C.; Shen, Feifei; Halliday, Nigel M.; Barrett, David A.; Hardie, Kim R.; Winzer, Klaus; Atherton, John C.

2010-01-01

273

Metabolism of monoterpenes: oxidation of isopiperitenol to isopiperitenone, and subsequent isomerization to piperitenone by soluble enzyme preparations from peppermint (Mentha piperita) leaves  

SciTech Connect

Soluble enzyme extracts from peppermint leaves, when treated with polystyrene resin to remove endogenous monoterpenes and assayed with unlabeled substrates coupled with capillary gas-liquid chromatographic/mass spectrometric detection methods, were shown to oxidize isopiperitenol to isopiperitenone, and to isomerize isopiperitenone to piperitenone. The enzymes responsible for the monoterpenol dehydrogenation and the subsequent allylic isomerization were separated and partially purified by chromatography on Sephadex G-150, and were shown to have molecular weights of approximately 66,000 and 54,000, respectively. The general properties of the NAD-dependent dehydrogenase were examined, and specificity studies indicated that a double bond adjacent to the carbinol carbon was a required structural feature of the monoterpenol substrate. General properties of the isomerase were also determined, and it was demonstrated that the double bond migration catalyzed by this enzyme involved an intramolecular 1,3-hydrogen transfer. These enzymatic transformations represent two key steps in the metabolic pathway for the conversion of the initially formed cyclic olefin, (+/-)-limonene, to (-)-menthol and related monoterpenes characteristic of peppermint. Some stereochemical features of these reactions, and of the overall biogenetic scheme, are described. 39 references, 5 figures.

Kjonaas, R.B.; Venkatachalam, K.V.; Croteau, R.

1985-04-01

274

Enzymes of Adenylate Metabolism and Their Role in Hibernation of the White-Tailed Prairie Dog, Cynomys leucurus  

Microsoft Academic Search

AMP deaminase (AMPD) and adenylate kinase (AK) were purified from skeletal muscle of the white-tailed prairie dog, Cynomus leucurus, and enzyme properties were assayed at temperatures characteristic of euthermia (37°C) and hibernation (5°C) to analyze their role in adenylate metabolism during hibernation. Total adenylates decreased in muscle of torpid individuals from 6.97 ± 0.31 to 4.66 ± 0.58 ?mol\\/g of

Tamara E. English; Kenneth B. Storey

2000-01-01

275

Effect of Graded Nrf2 Activation on Phase-I and -II Drug Metabolizing Enzymes and Transporters in Mouse Liver  

PubMed Central

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that induces a battery of cytoprotective genes in response to oxidative/electrophilic stress. Kelch-like ECH associating protein 1 (Keap1) sequesters Nrf2 in the cytosol. The purpose of this study was to investigate the role of Nrf2 in regulating the mRNA of genes encoding drug metabolizing enzymes and xenobiotic transporters. Microarray analysis was performed in livers of Nrf2-null, wild-type, Keap1-knockdown mice with increased Nrf2 activation, and Keap1-hepatocyte knockout mice with maximum Nrf2 activation. In general, Nrf2 did not have a marked effect on uptake transporters, but the mRNAs of organic anion transporting polypeptide 1a1, sodium taurocholate cotransporting polypeptide, and organic anion transporter 2 were decreased with Nrf2 activation. The effect of Nrf2 on cytochrome P450 (Cyp) genes was minimal, with only Cyp2a5, Cyp2c50, Cyp2c54, and Cyp2g1 increased, and Cyp2u1 decreased with enhanced Nrf2 activation. However, Nrf2 increased mRNA of many other phase-I enzymes, such as aldo-keto reductases, carbonyl reductases, and aldehyde dehydrogenase 1. Many genes involved in phase-II drug metabolism were induced by Nrf2, including glutathione S-transferases, UDP- glucuronosyltransferases, and UDP-glucuronic acid synthesis enzymes. Efflux transporters, such as multidrug resistance-associated proteins, breast cancer resistant protein, as well as ATP-binding cassette g5 and g8 were induced by Nrf2. In conclusion, Nrf2 markedly alters hepatic mRNA of a large number of drug metabolizing enzymes and xenobiotic transporters, and thus Nrf2 plays a central role in xenobiotic metabolism and detoxification. PMID:22808024

Wu, Kai Connie; Cui, Julia Yue; Klaassen, Curtis D.

2012-01-01

276

Berries and Ellagic Acid Prevent Estrogen-Induced Mammary Tumorigenesis by Modulating Enzymes of Estrogen Metabolism  

PubMed Central

In order to determine whether dietary berries and ellagic acid prevent 17? estradiol (E2) -induced mammary tumors by altering estrogen metabolism, we randomized ACI rats (n=6/group) into 5 groups ? sham implant + control diet (SH-CD), E2 ? implant + control diet (E2-CD), E2+2.5% black raspberry (E2-BRB); E2+2.5% blueberry (E2-BB) and E2+ 400ppm ellagic acid (E2-EA). Animals were euthanized at early (6wk), intermediate (18wk) and late (24wk) phases of E2-carcinogenesis and the mammary tissue analyzed for gene-expression changes using quantitative real-time PCR. At 6 weeks, E2-treatment caused 48-fold increase in cytochrome P4501A1(CYP1A1) (p<0.0001), which was attenuated by both BRB and BB diets to 12- and 21-fold, respectively (p<0.001). E2 did not alter CYP1B1 levels, but both berry and EA diets significantly suppressed it by 11- and 3.5-fold, respectively from baseline (p<0.05). There was a 5-fold increase in 17?-Hydroxysteroid dehyrdogenase(17?HSD7) and this was moderately abrogated to about 2-fold by all supplementation (p<0.05). At 18 weeks, CYP1A1 was elevated by 15-fold in E2-CD and only E2-BB reduced this increase to 7-fold (p<0.05). Catechol-O-methyl transferase(COMT) expression was elevated 2-fold by E2-treatment (p<0.05) and all supplementation reversed this. At 24 weeks, CYP1A1 expression was less pronounced, but still high (8-fold) in E2-treated rats. This increase was reduced to 3.2 and 4.6-fold, by E2-BRB and E2-EA, respectively (p<0.05), but not by E2-BB. Supplementation did not alter the effect of E2 on steroid receptors. The diets also significantly suppressed mammary tumor incidence (10–30%), volume (41–67%) and multiplicity (38 to 51%) (p<0.05). Berries may prevent mammary tumors by suppressing the levels of E2-metabolizing enzymes during the early phase of E2-carcinogenesis. PMID:20501861

Aiyer, Harini S.; Gupta, Ramesh C.

2010-01-01

277

Identification of Neutral Cholesterol Ester Hydrolase, a Key Enzyme Removing Cholesterol from Macrophages*S?  

PubMed Central

Unstable lipid-rich plaques in atherosclerosis are characterized by the accumulation of macrophage foam cells loaded with cholesterol ester (CE). Although hormone-sensitive lipase and cholesteryl ester hydrolase (CEH) have been proposed to mediate the hydrolysis of CE in macrophages, circumstantial evidence suggests the presence of other enzymes with neutral cholesterol ester hydrolase (nCEH) activity. Here we show that the murine orthologue of KIAA1363, designated as neutral cholesterol ester hydrolase (NCEH), is a microsomal nCEH with high expression in murine and human macrophages. The effect of various concentrations of NaCl on its nCEH activity resembles that on endogenous nCEH activity of macrophages. RNA silencing of NCEH decreases nCEH activity at least by 50%; conversely, its overexpression inhibits the CE formation in macrophages. Immunohistochemistry reveals that NCEH is expressed in macrophage foam cells in atherosclerotic lesions. These data indicate that NCEH is responsible for a major part of nCEH activity in macrophages and may be a potential therapeutic target for the prevention of atherosclerosis. PMID:18782767

Okazaki, Hiroaki; Igarashi, Masaki; Nishi, Makiko; Sekiya, Motohiro; Tajima, Makiko; Takase, Satoru; Takanashi, Mikio; Ohta, Keisuke; Tamura, Yoshiaki; Okazaki, Sachiko; Yahagi, Naoya; Ohashi, Ken; Amemiya-Kudo, Michiyo; Nakagawa, Yoshimi; Nagai, Ryozo; Kadowaki, Takashi; Osuga, Jun-ichi; Ishibashi, Shun

2008-01-01

278

Correlations among antral follicular echotexture, apoptosis and expression of key steroidogenic enzymes in sheep  

PubMed Central

Nineteen cycling ewes underwent transrectal ultrasonography of ovaries followed by ovariectomies during the growth phase of the first follicular wave of the interovulatory interval or the proestrus/estrus phase of the cycle. Quantitative ultrasonographic characteristics of the antrum and follicular wall in a total of forty-three ovine antral follicles were examined for correlations with the protein expression of three steroidogenic enzymes (cytochrome P450 17?-hydroxylase, CYP17; cytochrome P450 aromatase, CYP19; and 3?-hydroxysteroid dehydrogenase, 3?-HSD) determined by densitometric analysis of immunohistochemical slides, follicular dimensions, granulosa layer thickness and the percentage of apoptotic granulosa cells. Significant correlations were found between echotextural attributes of ovine antral follicles and the percentage of apoptotic granulosa cells, CYP17 expression (theca), CYP19 expression (granulosa) and 3?-HSD expression (theca cells). Computer-aided analyses of ultrasonographic images can be beneficial to the development of assisted reproductive technologies and diagnosis of hormonal imbalances without the need for ovarian biopsies or hormone assays.

VANDUZER, Taylor; DUGGAVATHI, Raj; MURAWSKI, Maciej; ZIEBA, Dorota A.; SROKA, Patrycja; BARTLEWSKI, Pawel M.

2014-01-01

279

Correlations among Antral Follicular Echotexture, Apoptosis and Expression of Key Steroidogenic Enzymes in Sheep.  

PubMed

Nineteen cycling ewes underwent transrectal ultrasonography of the ovaries followed by ovariectomies during the growth phase of the first follicular wave of the interovulatory interval or the proestrus/estrus phase of the cycle. Quantitative ultrasonographic characteristics of the antrum and follicular wall in a total of forty-three ovine antral follicles were examined for correlations with the protein expression of three steroidogenic enzymes (cytochrome P450 17?-hydroxylase, CYP17; cytochrome P450 aromatase, CYP19; and 3?-hydroxysteroid dehydrogenase, 3?-HSD) determined by densitometric analysis of immunohistochemical slides, follicular dimensions, granulosa layer thickness and the percentage of apoptotic granulosa cells. Significant correlations were found between echotextural attributes of ovine antral follicles and the percentage of apoptotic granulosa cells, CYP17 expression (theca), CYP19 expression (granulosa) and 3?-HSD expression (theca cells). Computer-aided analyses of ultrasonographic images can be beneficial to the development of assisted reproductive technologies and diagnosis of hormonal imbalances without the need for ovarian biopsies or hormone assays. PMID:25109269

Vanduzer, Taylor; Duggavathi, Raj; Murawski, Maciej; Zieba, Dorota A; Sroka, Patrycja; Bartlewski, Pawel M

2014-08-11

280

[Antioxidative enzymes play key roles in cadmium tolerance of Phytolacca americana].  

PubMed

Phytolacca americana L. has the capacity to take up and accumulate to very high levels heavy metals such as Mn and Cd, and is used for phytoextraction of heavy metal contaminated soils. The role of antioxidative enzyme of Phytolacca americana in response to Cd stress is unknown. The 6-week-old seedlings of Phytolacca americana were exposed to half strength Hoagland solution with 200 micromol/L CdCl2 or 400 micromol/L CdCl2 for 4 days. The content of H2O2 and MDA, and electrolyte leakage increased, while the photosynthetic rate decreased, indicated that the oxidative damage induced by Cd stress in Phytolacca americana was one of the metal toxicity mechanism. The activities of SOD and POD increased rapidly with elevated Cd concentration and exposure time, CAT activity was stable in response to 200 micromol/L CdCl2 stress, and increased only at 3 d later upon 400 micromol/L CdCl2, treatment. Suggested that the enzymatic antioxidation capacity played important role in Cd tolerance of hyperaccumulator plant. PMID:21634194

Zhang, Yu-Xiu; Zhang, Hong-Mei; Huang, Zhi-Bo; Li, Lin-Feng; Liu, Jin-Guang; Li, Xia

2011-03-01

281

Myogenin Induces a Shift of Enzyme Activity from Glycolytic to Oxidative Metabolism in Muscles of Transgenic Mice  

PubMed Central

Physical training regulates muscle metabolic and contractile properties by altering gene expression. Electrical activity evoked in muscle fiber membrane during physical activity is crucial for such regulation, but the subsequent intracellular pathway is virtually unmapped. Here we investigate the ability of myogenin, a muscle-specific transcription factor strongly regulated by electrical activity, to alter muscle phenotype. Myogenin was overexpressed in transgenic mice using regulatory elements that confer strong expression confined to differentiated post-mitotic fast muscle fibers. In fast muscles from such mice, the activity levels of oxidative mitochondrial enzymes were elevated two- to threefold, whereas levels of glycolytic enzymes were reduced to levels 0.3–0.6 times those found in wild-type mice. Histochemical analysis shows widespread increases in mitochondrial components and glycogen accumulation. The changes in enzyme content were accompanied by a reduction in fiber size, such that many fibers acquired a size typical of oxidative fibers. No change in fiber type-specific myosin heavy chain isoform expression was observed. Changes in metabolic properties without changes in myosins are observed after moderate endurance training in mammals, including humans. Our data suggest that myogenin regulated by electrical activity may mediate effects of physical training on metabolic capacity in muscle. PMID:10225962

Hughes, Simon M.; Chi, Maggie M.-Y.; Lowry, Oliver H.; Gundersen, Kristian

1999-01-01

282

Enhanced enzymatic reactivity for electrochemically driven drug metabolism by confining cytochrome P450 enzyme in TiO? nanotube arrays.  

PubMed

Understanding the enzymatic reaction kinetics that occur within a confined space or interface is a significant challenge. Herein, a nanotube array enzymatic reactor (CYP2C9/Au/TNA) was constructed by electrostatically adsorbing enzyme on the inner wall of TiO2 nanotube arrays (TNAs). TNAs with different dimensions could be fabricated by the anodization of titanium foil through varying the anodization potential or time. The electrical conductivity of TNAs was improved by electrodepositing Au nanoparticles on the inner wall of TNAs. The cytochrome P450 2C9 enzyme (CYP2C9) was confined inside TNAs as a model. The enzymatic activity of CYP2C9 and tolbutamide metabolic yield could be effectively regulated by changing the nanotube diameter and length of TNAs. The enzymatic rate constant k(cat) and apparent Michaelis constant K(m)(app) were determined to be 9.89 s(-1) and 4.8 ?M at the tube inner diameter of about 64 nm and length of 1.08 ?m. The highest metabolic yield of tolbutamide reached 14.6%. Furthermore, the designed nanotube array enzymatic reactor could be also used in situ to monitor the tolbutamide concentration with sensitivity of 28.8 ?A mM(-1) and detection limit of 0.52 ?M. Therefore, the proposed nanotube array enzymatic reactor was a good vessel for studying enzyme biocatalysis and drug metabolism, and has potential applications including efficient biosensors and bioreactors for chemical synthesis. PMID:25014006

Lu, Jusheng; Li, Henan; Cui, Dongmei; Zhang, Yuanjian; Liu, Songqin

2014-08-01

283

Effects of Sublethal Exposure to a Glyphosate-Based Herbicide Formulation on Metabolic Activities of Different Xenobiotic-Metabolizing Enzymes in Rats.  

PubMed

The activities of different xenobiotic-metabolizing enzymes in liver subcellular fractions from Wistar rats exposed to a glyphosate (GLP)-based herbicide (Roundup full II) were evaluated in this work. Exposure to the herbicide triggered protective mechanisms against oxidative stress (increased glutathione peroxidase activity and total glutathione levels). Liver microsomes from both male and female rats exposed to the herbicide had lower (45%-54%, P < 0.01) hepatic cytochrome P450 (CYP) levels compared to their respective control animals. In female rats, the hepatic 7-ethoxycoumarin O-deethylase (a general CYP-dependent enzyme activity) was 57% higher (P < 0.05) in herbicide-exposed compared to control animals. Conversely, this enzyme activity was 58% lower (P < 0.05) in male rats receiving the herbicide. Lower (P < 0.05) 7-ethoxyresorufin O-deethlyase (EROD, CYP1A1/2 dependent) and oleandomycin triacetate (TAO) N-demethylase (CYP3A dependent) enzyme activities were observed in liver microsomes from exposed male rats. Conversely, in females receiving the herbicide, EROD increased (123%-168%, P < 0.05), whereas TAO N-demethylase did not change. A higher (158%-179%, P < 0.01) benzyloxyresorufin O-debenzylase (a CYP2B-dependent enzyme activity) activity was only observed in herbicide-exposed female rats. In herbicide-exposed rats, the hepatic S-oxidation of methimazole (flavin monooxygenase dependent) was 49% to 62% lower (P < 0.001), whereas the carbonyl reduction of menadione (a cytosolic carbonyl reductase-dependent activity) was higher (P < 0.05). Exposure to the herbicide had no effects on enzymatic activities dependent on carboxylesterases, glutathione transferases, and uridinediphospho-glucuronosyltransferases. This research demonstrated certain biochemical modifications after exposure to a GLP-based herbicide. Such modifications may affect the metabolic fate of different endobiotic and xenobiotic substances. The pharmacotoxicological significance of these findings remains to be clarified. PMID:24985121

Larsen, Karen; Najle, Roberto; Lifschitz, Adrián; Maté, María L; Lanusse, Carlos; Virkel, Guillermo L

2014-07-01

284

Carbonic anhydrase: a key regulatory and detoxifying enzyme for Karst plants.  

PubMed

Karstification is a rapid process during which calcidic stones/limestones undergo dissolution with the consequence of a desertification of karst regions. A slow-down of those dissolution processes of Ca-carbonate can be approached by a reforestation program using karst-resistant plants that can resist alkaline pH and higher bicarbonate (HCO??) concentrations in the soil. Carbonic anhydrases (CA) are enzymes that mediate a rapid and reversible interconversion of CO? and HCO??. In the present study, the steady-state expression of a CA gene, encoding for the plant carbonic anhydrase from the parsley Petroselinum crispum, is monitored. The studies were primarily been performed during germination of the seeds up to the 12/14-day-old embryos. The CA cDNA was cloned. Quantitative polymerase chain reaction (qPCR) analysis revealed that the gene expression level of the P. crispum CA is strongly and significantly affected at more alkaline pH in the growth medium (pH 8.3). This abolishing effect is counteracted both by addition of HCO?? and by addition of polyphosphate (polyP) to the culture medium. In response to polyP, the increased pH in the vacuoles of the growing plants is normalized. The effect of polyP let us to propose that this polymer acts as a buffer system that facilitates the adjustment of the pH in the cytoplasm. In addition, it is proposed that polyP has the potential to act, especially in the karst, as a fertilizer that allows the karstic plants to cope with the adverse pH and HCO?? condition in the soil. PMID:24385198

Müller, Werner E G; Qiang, Li; Schröder, Heinz C; Hönig, Natalie; Yuan, Daoxian; Grebenjuk, Vlad A; Mussino, Francesca; Giovine, Marco; Wang, Xiaohong

2014-01-01

285

Apolipoprotein B RNA editing enzyme-deficient mice are viable despite alterations in lipoprotein metabolism.  

PubMed Central

RNA editing in the nucleus of higher eukaryotes results in subtle changes to the RNA sequence, with the ability to effect dramatic changes in biological function. The first example to be described and among the best characterized, is the cytidine-to-uridine editing of apolipoprotein B (apo-B) RNA. The editing of apo-B RNA is mediated by a novel cytidine deaminase, apobec-1, which has acquired the ability to bind RNA. The stop translation codon generated by the editing of apo-B RNA truncates the full-length apo-B100 to form apo-B48. The recent observations of tumor formation in Apobec-1 transgenic animals, together with the fact that Apobec-1 is expressed in numerous tissues lacking apo-B, raises the issue of whether this enzyme is essential for a variety of posttranscriptional editing events. To directly test this, mice were created with a null mutation in Apobec-1 using homologous recombination in embryonic stem cells. Mice, homozygous for this mutation, were viable and made apo-B100 but not apo-B48. The null animals were fertile, and a variety of histological, behavioral, and morphological analyses revealed no phenotype other than abnormalities in lipoprotein metabolism, which included an increased low density lipoprotein fraction and a reduction in high density lipoprotein cholesterol. These studies demonstrate that neither apobec-1 nor apo-B48 is essential for viability and suggest that the major role of apobec-1 may be confined to the modulation of lipid transport. Images Fig. 1 Fig. 2 Fig. 3 PMID:8692961

Morrison, J R; Pászty, C; Stevens, M E; Hughes, S D; Forte, T; Scott, J; Rubin, E M

1996-01-01

286

Transcription factor Nrf1 negatively regulates the cystine/glutamate transporter and lipid-metabolizing enzymes.  

PubMed

Liver-specific Nrf1 (NF-E2-p45-related factor 1) knockout mice develop nonalcoholic steatohepatitis. To identify postnatal mechanisms responsible for this phenotype, we generated an inducible liver-specific Nrf1 knockout mouse line using animals harboring an Nrf1(flox) allele and a rat CYP1A1-Cre transgene (Nrf1(flox/flox)::CYP1A1-Cre mice). Administration of 3-methylcholanthrene (3-MC) to these mice (Nrf1(flox/flox)::CYP1A1-Cre+3MC mice) resulted in loss of hepatic Nrf1 expression. The livers of mice lacking Nrf1 accumulated lipid, and the hepatic fatty acid (FA) composition in such animals differed significantly from that in the Nrf1(flox/flox)::CYP1A1-Cre control. This change was provoked by upregulation of several FA metabolism genes. Unexpectedly, we also found that the level of glutathione was increased dramatically in livers of Nrf1(flox/flox)::CYP1A1-Cre+3MC mice. While expression of glutathione biosynthetic enzymes was unchanged, xCT, a component of the cystine/glutamate antiporter system x(c)(-), was significantly upregulated in livers of Nrf1(flox/flox)::CYP1A1-Cre+3MC mice, suggesting that Nrf1 normally suppresses xCT. Thus, stress-inducible expression of xCT is a two-step process: under homeostatic conditions, Nrf1 effectively suppresses nonspecific transactivation of xCT, but when cells encounter severe oxidative/electrophilic stress, Nrf1 is displaced from an antioxidant response element (ARE) in the gene promoter while Nrf2 is recruited to the ARE. Thus, Nrf1 controls both the FA and the cystine/cysteine content of hepatocytes by participating in an elaborate regulatory network. PMID:25092871

Tsujita, Tadayuki; Peirce, Vivian; Baird, Liam; Matsuyama, Yuka; Takaku, Misaki; Walsh, Shawn V; Griffin, Julian L; Uruno, Akira; Yamamoto, Masayuki; Hayes, John D

2014-10-01

287

Mitochondrial dysfunction in obesity: potential benefit and mechanism of Co-enzyme Q10 supplementation in metabolic syndrome  

PubMed Central

Co-enzyme Q10 (Co-Q10) is an essential component of the mitochondrial electron transport chain. Most cells are sensitive to co-enzyme Q10 (Co-Q10) deficiency. This deficiency has been implicated in several clinical disorders such as heart failure, hypertension, Parkinson’s disease and obesity. The lipid lowering drug statin inhibits conversion of HMG-CoA to mevalonate and lowers plasma Co-Q10 concentrations. However, supplementation with Co-Q10 improves the pathophysiological condition of statin therapy. Recent evidence suggests that Co-Q10 supplementation may be useful for the treatment of obesity, oxidative stress and the inflammatory process in metabolic syndrome. The anti-inflammatory response and lipid metabolizing effect of Co-Q10 is probably mediated by transcriptional regulation of inflammation and lipid metabolism. This paper reviews the evidence showing beneficial role of Co-Q10 supplementation and its potential mechanism of action on contributing factors of metabolic and cardiovascular complications. PMID:24932457

2014-01-01

288

In vitro metabolism of ?7 neuronal nicotinic receptor agonist AZD0328 and enzyme identification for its N-oxide metabolite.  

PubMed

1. AZD0328 was pharmacologically characterized as a ?7 neuronal nicotinic receptor agonist intended for treatment of Alzheimer's disease. In vitro AZD0328 cross species metabolite profile and enzyme identification for its N-oxide metabolite were evaluated in this study. 2. AZD0328 was very stable in the human hepatocyte incubation, whereas extensively metabolized in rat, dog and guinea pig hepatocyte incubations. The N-oxidation metabolite (M6) was the only metabolite detected in human hepatocyte incubations, and it also appeared to be the major in vitro metabolic pathway in a number of preclinical species. In addition, N-glucuronide metabolite of AZD0328 was observed in human liver microsomes. 3. Other metabolic pathways in the preclinical species include hydroxylation in azabicyclo octane or furopyridine part of the molecule. Pyridine N-methylation of AZD0328 (M2) was identified as a dog specific metabolite, not observed in human or other preclinical species. 4. Multiple enzymes including CYP2D6, CYP3A4/5, FMO1 and FMO3 catalyzed AZD0328 metabolism. The potential for AZD0328 to be inhibited clinically by co-administered drugs or genetic polymorphism is relative low. PMID:21226652

Zhou, Diansong; Zhang, Minli; Ye, Xiaomei; Gu, Chungang; Piser, Timothy M; Lanoue, Bernard A; Schock, Sara A; Cheng, Yi-Fang; Grimm, Scott W

2011-03-01

289

The impact of drug metabolizing enzyme polymorphisms on outcomes after antenatal corticosteroid use  

PubMed Central

Objective To determine the impact of maternal and fetal single nucleotide polymorphisms (SNPs) in key betamethasone (BMZ) pathways on neonatal outcomes. Study design DNA was obtained from women given BMZ and their infants. Samples were genotyped for 73 exploratory drug metabolism and glucocorticoid pathway SNPs. Clinical variables and neonatal outcomes were obtained. Logistic regression analysis using relevant clinical variables and genotypes to model for associations with neonatal respiratory distress syndrome (RDS) was performed. Results 109 women delivering 117 babies were analyzed. Sixty-four babies (49%) developed RDS. Multivariable analysis revealed that RDS was associated with maternal SNPs in CYP3A5 (OR 1.63, 95%CI 1.16–2.30) and the glucocorticoid receptor (OR 0.28, 95%CI0.08–0.95) and fetal SNPs in ADCY9 (OR 0.17, 95%CI 0.03–0.80) and CYP3A7*1E (rs28451617, OR 23.68, 95%CI 1.33–420.6). Conclusion Maternal and fetal genotypes are independently associated with neonatal RDS after treatment with BMZ for preterm labor. PMID:22445700

Haas, David M.; Lehmann, Amalia S.; Skaar, Todd; Philips, Santosh; McCormick, Catherine L.; Beagle, Kyle; Hebbring, Scott J.; Dantzer, Jessica; Li, Lang; Jung, Jeesun

2012-01-01

290

Accumulation of phenolic acid conjugates and betacyanins, and changes in the activities of enzymes involved in feruloylglucose metabolism in cell-suspension cultures of Chenopodium rubrum L.  

PubMed

Cell-suspension cultures of Chenopodium rubrum accumulate various soluble secondary phenolic metabolites such as the hydroxybenzoic acid glycosides 4-hydroxybenzoic acid-?-glucoside, vanillic acid-?-glucoside, the hydroxycinnamic acid acylglycosides 1-O-(4-coumaroyl)-?-glucose, 1-O-feruloyl-?-glucose, 1-O-sinapoyl-?-glucose and 1-O-feruloyl-(?-1,2-glucuronosyl)-?-glucose, the hydroxycinnamic acid amide N-feruloylaspartate, and the betacyanins betanin, amaranthin and celosianin II. In addition, accumulation of the insoluble cell wall-bound hydroxycinnamic acids with ferulic acid as the major component occurs parallel to culture growth. The changes of three pivotal enzymatic activities, all O-transferases which are involved in the formation of the dominant ferulic acid conjugates, were determined. These are (i) uridine 5'-diphosphate(UDP)glucose-hydroxycinnamic acid O-glucosyltransferase (EC 2.4.1), (ii) UDP-glucuronic acid:1-O-hydroxycin-namoyl-?-glucose O-glucuronosyltransferase (EC 2.4.1) and (iii) 1-O-hydroxycinnamoyl-?-glucose:amaranthin O-hydroxycinnamoyltransferase (EC 2.3.1). The patterns of metabolite accumulation associated with these enzyme activities show that the hydroxycinnamic acid-glucose esters play a central role as metabolically active intermediates in the secondary metabolism of Ch. rubrum. Two cell lines of this culture (CH, CHN), differing in their betacyanin content, were compared with respect to this metabolism. A markedly higher total betacyanin content in the CHN line might possibly be the consequence of an increased supply of the key precursor for betalain biosynthesis, i.e. 3,4-dihydroxyphenylalanine (DOPA). In addition, the enhanced accumulation of celosianin II in the CHN line correlates well with a higher activity of the enzyme catalyzing the transfer of ferulic acid from 1-O-feruloyl-?-glucose to amaranthin. PMID:24194079

Bokern, M; Wray, V; Strack, D

1991-05-01

291

Chromium picolinate does not improve key features of metabolic syndrome in obese nondiabetic adults  

Technology Transfer Automated Retrieval System (TEKTRAN)

The use of chromium-containing dietary supplements is widespread among patients with type 2 diabetes as a means of improving glucose metabolism. However, chromium’s role as a potential therapy for patients at high risk for developing type 2 diabetes, specifically those with metabolic syndrome, is n...

292

A key enzyme for flavin synthesis is required for nitric oxide and reactive oxygen species production in disease resistance.  

PubMed

Nitric oxide (NO) and reactive oxygen species (ROS) play key roles in plant immunity. However, the regulatory mechanisms of the production of these radicals are not fully understood. Hypersensitive response (HR) cell death requires the simultaneous and balanced production of NO and ROS. In this study we indentified NbRibAencoding a bifunctional enzyme, guanosine triphosphate cyclohydrolase II/3,4-dihydroxy-2-butanone-4-phosphate synthase, which participates in the biosynthesis of flavin, by screening genes related to mitogen-activated protein kinase-mediated cell death, using virus-induced gene silencing. Levels of endogenous riboflavin and its derivatives, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), which are important prosthetic groups for several enzymes participating in redox reactions, decreased in NbRibA-silenced Nicotiana benthamiana. Silencing NbRibA compromised not only HR cell death, but also the NO and ROS production induced by INF1 elicitin and a constitutively active form of NbMEK2 (NbMEK2DD), and also induced high susceptibility to oomycete Phytophthora infestans and ascomycete Colletotrichum orbiculare. Compromised radical production and HR cell death induced by INF1 in NbRibA-silenced leaves were rescued by adding riboflavin, FMN or FAD. These results indicate that flavin biosynthesis participates in regulating NO and ROS production, and HR cell death. PMID:20230506

Asai, Shuta; Mase, Keisuke; Yoshioka, Hirofumi

2010-06-01

293

In vitro liver metabolism of aclidinium bromide in preclinical animal species and humans: identification of the human enzymes involved in its oxidative metabolism.  

PubMed

The metabolism of aclidinium bromide, a novel long-acting antimuscarinic drug for the maintenance treatment of chronic obstructive pulmonary disorder, has been investigated in liver microsomes and hepatocytes of mice, rats, rabbits, dogs, and humans. Due to the rapid hydrolysis of this ester compound, two distinct radiolabeled forms of aclidinium were studied. The main biotransformation route of aclidinium was the hydrolytic cleavage of the ester moiety, resulting in the formation of the alcohol metabolite (M2, LAS34823) and carboxylic acid metabolite (m3, LAS34850), which mainly occurred non-enzymatically. By comparison, the oxidative metabolism was substantially lower and the metabolite profiles were similar across all five species examined. Aclidinium was metabolized oxidatively to four minor primary metabolites that were identified as monohydroxylated derivatives of aclidinium at the phenyl (M4) and glycolyl (m6 and m7) moieties of the molecule. The NADPH-dependent metabolite m4 involved the loss of one of the thiophene rings of aclidinium. Incubations with human recombinant P450 isoforms and inhibition studies with selective chemical inhibitors and antibodies of human P450 enzymes demonstrated that the oxidative metabolism of aclidinium is primarily mediated by CYP3A4 and CYP2D6. Additionally, up to eight secondary metabolites were also characterized, involving further hydrolysis, oxidation, or glucuronidation of the primary metabolites. Also, the liver oxidative metabolism of the alcohol metabolite (LAS34823) resulted in the production of one hydroxylated metabolite (M1) mediated by human CYP2D6, whereas the acid metabolite (LAS34850) was not metabolized enzymatically, although a minor non-enzymatic and NADPH-dependent reduction was observed. PMID:21184745

Albertí, Joan J; Sentellas, Sňnia; Salvŕ, Miquel

2011-03-15

294

Persistent Overexpression of Phosphoglycerate Mutase, a Glycolytic Enzyme, Modifies Energy Metabolism and Reduces Stress Resistance of Heart in Mice  

PubMed Central

Background Heart failure is associated with changes in cardiac energy metabolism. Glucose metabolism in particular is thought to be important in the pathogenesis of heart failure. We examined the effects of persistent overexpression of phosphoglycerate mutase 2 (Pgam2), a glycolytic enzyme, on cardiac energy metabolism and function. Methods and Results Transgenic mice constitutively overexpressing Pgam2 in a heart-specific manner were generated, and cardiac energy metabolism and function were analyzed. Cardiac function at rest was normal. The uptake of analogs of glucose or fatty acids and the phosphocreatine/?ATP ratio at rest were normal. A comprehensive metabolomic analysis revealed an increase in the levels of a few metabolites immediately upstream and downstream of Pgam2 in the glycolytic pathway, whereas the levels of metabolites in the initial few steps of glycolysis and lactate remained unchanged. The levels of metabolites in the tricarboxylic acid (TCA) cycle were altered. The capacity for respiration by isolated mitochondria in vitro was decreased, and that for the generation of reactive oxygen species (ROS) in vitro was increased. Impaired cardiac function was observed in response to dobutamine. Mice developed systolic dysfunction upon pressure overload. Conclusions Constitutive overexpression of Pgam2 modified energy metabolism and reduced stress resistance of heart in mice. PMID:23951293

Shioi, Tetsuo; Kato, Takao; Inuzuka, Yasutaka; Kawashima, Tsuneaki; Tamaki, Yodo; Kawamoto, Akira; Tanada, Yohei; Iwanaga, Yoshitaka; Narazaki, Michiko; Matsuda, Tetsuya; Adachi, Souichi; Soga, Tomoyoshi; Takemura, Genzou; Kondoh, Hiroshi; Kita, Toru; Kimura, Takeshi

2013-01-01

295

Caffeine as a metabolic probe: Exploration of the enzyme-inducing effect of cigarette smoking  

Microsoft Academic Search

It has been realized recently that the primary metabolism of caffeine in humans is catalyzed by P-450IA2 and that the rate of caffeine metabolism can be estimated from a metabolic ratio in a single urine sample. A population of 178 students including 19 smokers were subjected to this caffeine test to establish their P-450IA2 index. Both stated numbers of cigarettes

Werner Kalow; Bing-Kou Tang

1991-01-01

296

Total solids content: a key parameter of metabolic pathways in dry anaerobic digestion  

PubMed Central

Background In solid-state anaerobic digestion (AD) bioprocesses, hydrolytic and acidogenic microbial metabolisms have not yet been clarified. Since these stages are particularly important for the establishment of the biological reaction, better knowledge could optimize the process performances by process parameters adjustment. Results This study demonstrated the effect of total solids (TS) content on microbial fermentation of wheat straw with six different TS contents ranging from wet to dry conditions (10 to 33% TS). Three groups of metabolic behaviors were distinguished based on wheat straw conversion rates with 2,200, 1,600, and 1,400 mmol.kgVS-1 of fermentative products under wet (10 and 14% TS), dry (19 to 28% TS), and highly dry (28 to 33% TS) conditions, respectively. Furthermore, both wet and dry fermentations showed acetic and butyric acid metabolisms, whereas a mainly butyric acid metabolism occurred in highly dry fermentation. Conclusion Substrate conversion was reduced with no changes of the metabolic pathways until a clear limit at 28% TS content, which corresponded to the threshold value of free water content of wheat straw. This study suggested that metabolic pathways present a limit of TS content for high-solid AD. PMID:24261971

2013-01-01

297

Taenia solium: antioxidant metabolism enzymes as targets for cestocidal drugs and vaccines.  

PubMed

This review focuses in the role that antioxidant enzymes play in protection and other important physiological functions such as signal transduction, cell differentiation, growth and apoptosis. Parasites use these enzymes to evade ROS produced by the host immune response and for development inside the host. In the cestoda Taenia solium, three antioxidant enzymes have been studied: a cystosolic Cu,Zn superoxide dismutase that is a target of cestocidal drugs (bencimidazoles); a 2-Cys peroxiredoxin that is a regulatory enzyme of H(2)O(2), molecule essential for several physiological functions; and two isoforms of glutathione transferases that are immunological targets, since they protect immunized mice against cysticercosis. Moreover, all these enzymes are present in all stages of the parasite. These findings suggest that antioxidant enzymes have an important role in T. solium physiology and infection, therefore they might represent the Achilles' heel of the parasite. PMID:18393902

Vaca-Paniagua, F; Torres-Rivera, A; Parra-Unda, R; Landa, A

2008-01-01

298

Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes  

PubMed Central

BACKGROUND AND PURPOSE Cannabidiol (CBD) and ?9-tetrahydrocannabinol (THC) interact with transient receptor potential (TRP) channels and enzymes of the endocannabinoid system. EXPERIMENTAL APPROACH The effects of 11 pure cannabinoids and botanical extracts [botanical drug substance (BDS)] from Cannabis varieties selected to contain a more abundant cannabinoid, on TRPV1, TRPV2, TRPM8, TRPA1, human recombinant diacylglycerol lipase ? (DAGL?), rat brain fatty acid amide hydrolase (FAAH), COS cell monoacylglycerol lipase (MAGL), human recombinant N-acylethanolamine acid amide hydrolase (NAAA) and anandamide cellular uptake (ACU) by RBL-2H3 cells, were studied using fluorescence-based calcium assays in transfected cells and radiolabelled substrate-based enzymatic assays. Cannabinol (CBN), cannabichromene (CBC), the acids (CBDA, CBGA, THCA) and propyl homologues (CBDV, CBGV, THCV) of CBD, cannabigerol (CBG) and THC, and tetrahydrocannabivarin acid (THCVA) were also tested. KEY RESULTS CBD, CBG, CBGV and THCV stimulated and desensitized human TRPV1. CBC, CBD and CBN were potent rat TRPA1 agonists and desensitizers, but THCV-BDS was the most potent compound at this target. CBG-BDS and THCV-BDS were the most potent rat TRPM8 antagonists. All non-acid cannabinoids, except CBC and CBN, potently activated and desensitized rat TRPV2. CBDV and all the acids inhibited DAGL?. Some BDS, but not the pure compounds, inhibited MAGL. CBD was the only compound to inhibit FAAH, whereas the BDS of CBC > CBG > CBGV inhibited NAAA. CBC = CBG > CBD inhibited ACU, as did the BDS of THCVA, CBGV, CBDA and THCA, but the latter extracts were more potent inhibitors. CONCLUSIONS AND IMPLICATIONS These results are relevant to the analgesic, anti-inflammatory and anti-cancer effects of cannabinoids and Cannabis extracts. LINKED ARTICLES This article is part of a themed issue on Cannabinoids in Biology and Medicine. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2011.163.issue-7 PMID:21175579

De Petrocellis, Luciano; Ligresti, Alessia; Moriello, Aniello Schiano; Allarŕ, Marco; Bisogno, Tiziana; Petrosino, Stefania; Stott, Colin G; Di Marzo, Vincenzo

2011-01-01

299

Metabolic Enzymes from Psychrophilic Bacteria: Challenge of Adaptation to Low Temperatures in Ornithine Carbamoyltransferase from Moritellaabyssi  

Microsoft Academic Search

The enzyme ornithine carbamoyltransferase (OTCase) of Moritella abyssi (OTCaseMab), a new, strictly psychrophilic and piezophilic bacterial species, was purified. OTCaseMab displays maximal activity at rather low temperatures (23 to 25°C) compared to other cold-active enzymes and is much less thermoresistant than its homologues from Escherichia coli or thermophilic procaryotes. In vitro the enzyme is in equilibrium between a trimeric state

Ying Xu; Georges Feller; Charles Gerday; Nicolas Glansdorff

2003-01-01

300

The action of antidiabetic plants of the canadian james bay cree traditional pharmacopeia on key enzymes of hepatic glucose homeostasis.  

PubMed

We determined the capacity of putative antidiabetic plants used by the Eastern James Bay Cree (Canada) to modulate key enzymes of gluconeogenesis and glycogen synthesis and key regulating kinases. Glucose-6-phosphatase (G6Pase) and glycogen synthase (GS) activities were assessed in cultured hepatocytes treated with crude extracts of seventeen plant species. Phosphorylation of AMP-dependent protein kinase (AMPK), Akt, and Glycogen synthase kinase-3 (GSK-3) were probed by Western blot. Seven of the seventeen plant extracts significantly decreased G6Pase activity, Abies balsamea and Picea glauca, exerting an effect similar to insulin. This action involved both Akt and AMPK phosphorylation. On the other hand, several plant extracts activated GS, Larix laricina and A. balsamea, far exceeding the action of insulin. We also found a significant correlation between GS stimulation and GSK-3 phosphorylation induced by plant extract treatments. In summary, three Cree plants stand out for marked effects on hepatic glucose homeostasis. P. glauca affects glucose production whereas L. laricina rather acts on glucose storage. However, A. balsamea has the most promising profile, simultaneously and powerfully reducing G6Pase and stimulating GS. Our studies thus confirm that the reduction of hepatic glucose production likely contributes to the therapeutic potential of several antidiabetic Cree traditional medicines. PMID:23864882

Nachar, Abir; Vallerand, Diane; Musallam, Lina; Lavoie, Louis; Badawi, Alaa; Arnason, John; Haddad, Pierre S

2013-01-01

301

Identification of the rat liver cytochrome P450 enzymes involved in the metabolism of the calcium channel blocker dipfluzine hydrochloride.  

PubMed

This study aimed to identify the specific cytochrome P450 (CYP450) enzymes involved in the metabolism of dipfluzine hydrochloride using the combination of a chemical inhibition study, a correlation analysis and a panel of recombinant rat CYP450 enzymes. The incubation of Dip with rat liver microsomes yielded four metabolites, which were identified by liquid chromatography-coupled tandem mass spectrometry (LC/MS/MS). The results from the assays involving eight selective inhibitors indicated that CYP3A and CYP2A1 contributed most to the metabolism of Dip, followed by CYP2C11, CYP2E1 and CYP1A2; however, CYP2B1, CYP2C6 and CYP2D1 did not contribute to the formation of the metabolites. The results of the correlation analysis and the assays involving the recombinant CYP450 enzymes further confirmed the above results and concluded that CYP3A2 contributed more than CYP3A1. The results will be valuable in understanding drug-drug interactions when Dip is coadministered with other drugs. PMID:25461550

Guo, Wei; Shi, Xiaowei; Wang, Wei; Zhang, Weili; Li, Junxia

2014-11-01

302

Functional Conservation of Plant Secondary Metabolic Enzymes Revealed by Complementation of Arabidopsis Flavonoid Mutants with Maize Genes1  

PubMed Central

Mutations in the transparent testa (tt) loci abolish pigment production in Arabidopsis seed coats. The TT4, TT5, and TT3 loci encode chalcone synthase, chalcone isomerase, and dihydroflavonol 4-reductase, respectively, which are essential for anthocyanin accumulation and may form a macromolecular complex. Here, we show that the products of the maize (Zea mays) C2, CHI1, and A1 genes complement Arabidopsis tt4, tt5, and tt3 mutants, restoring the ability of these mutants to accumulate pigments in seed coats and seedlings. Overexpression of the maize genes in wild-type Arabidopsis seedlings does not result in increased anthocyanin accumulation, suggesting that the steps catalyzed by these enzymes are not rate limiting in the conditions assayed. The expression of the maize A1 gene in the flavonoid 3? hydroxylase Arabidopsis tt7 mutant resulted in an increased accumulation of pelargonidin. We conclude that enzymes involved in secondary metabolism can be functionally exchangeable between plants separated by large evolutionary distances. This is in sharp contrast to the notion that the more relaxed selective constrains to which secondary metabolic pathways are subjected is responsible for the rapid divergence of the corresponding enzymes. PMID:11553733

Dong, Xiaoyun; Braun, Edward L.; Grotewold, Erich

2001-01-01

303

Cytochrome P450 2E1 is the primary enzyme responsible for low-dose carbon tetrachloride metabolism in human liver microsomes  

Microsoft Academic Search

We examined which human CYP450 forms contribute to carbon tetrachloride (CCl4) bioactivation using hepatic microsomes, heterologously expressed enzymes, inhibitory antibodies and selective chemical inhibitors. CCl4 metabolism was determined by measuring chloroform formation under anaerobic conditions. Pooled human microsomes metabolized CCl4 with a Km of 57 ?M and a Vmax of 2.3 nmol CHCl3\\/min\\/mg protein. Expressed CYP2E1 metabolized CCl4 with a

Richard C. Zangar; Janet M. Benson; Vicki L. Burnett; David L. Springer

2000-01-01

304

A comparative study on the metabolism of Epimedium koreanum Nakai-prenylated flavonoids in rats by an intestinal enzyme (lactase phlorizin hydrolase) and intestinal flora.  

PubMed

The aim of this study was to compare the significance of the intestinal hydrolysis of prenylated flavonoids in Herba Epimedii by an intestinal enzyme and flora. Flavonoids were incubated at 37 °C with rat intestinal enzyme and intestinal flora. HPLC-UV was used to calculate the metabolic rates of the parent drug in the incubation and LC/MS/MS was used to determine the chemical structures of metabolites generated by different flavonoid glycosides. Rates of flavonoid metabolism by rat intestinal enzyme were quicker than those of intestinal flora. The sequence of intestinal flora metabolic rates was icariin>epimedin B>epimedin A>epimedin C>baohuoside I, whereas the order of intestinal enzyme metabolic rates was icariin>epimedin A>epimedin C>epimedin B>baohuoside I. Meanwhile, the LC/MS/MS graphs showed that icariin produced three products, epimedin A/B/C had four and baohuoside I yielded one product in incubations of both intestinal enzyme and flora, which were more than the results of HPLC-UV due to the fact LC/MS/MS has lower detectability and higher sensitivity. Moreover, the outcomes indicated that the rate of metabolization of flavonoids by intestinal enzyme were faster than those of intestinal flora, which was consistent with the HPLC-UV results. In conclusion, the metabolic pathways of the same components by intestinal flora and enzyme were the same. What's more, an intestinal enzyme such as lactase phlorizin hydrolase exhibited a more significant metabolic role in prenylated flavonoids of Herba Epimedi compared with intestinal flora. PMID:24368601

Zhou, Jing; Chen, Yan; Wang, Ying; Gao, Xia; Qu, Ding; Liu, Congyan

2013-01-01

305

GENE EXPRESSION PROFILING OF XENOBIOTIC METABOLIZING ENZYMES (XMES) IN THE AGING MALE FISHER RAT  

EPA Science Inventory

Detoxification and elimination of xenobiotics is a major function of the liver and is important in maintaining the metabolic homeostasis of the organism. The degree to which aging affects hepatic metabolism is not known. The expression of XMEs, in part, determines the fate of the...

306

COMPARATIVE ENZYME INDUCTION AND LINDANE METABOLISM IN RATS PRE-TREATED WITH VARIOUS ORGANOCHLORINE PESTICIDES  

EPA Science Inventory

The comparative effect of 7 days pre-treatment with one of seven organochlorine pesticides on the metabolism of lindane in vivo and on the metabolism of EPN, p-nitroanisole and methyl orange in vitro was investigated. Mirex was the most potent inducer of the oxidative hydrolysis ...

307

AtzC Is a New Member of the Amidohydrolase Protein Superfamily and Is Homologous to Other Atrazine-Metabolizing Enzymes  

Microsoft Academic Search

Pseudomonas sp. strain ADP metabolizes atrazine to cyanuric acid via three plasmid-encoded enzymes, AtzA, AtzB, and AtzC. The first enzyme, AtzA, catalyzes the hydrolytic dechlorination of atrazine, yielding hy- droxyatrazine. The second enzyme, AtzB, catalyzes hydroxyatrazine deamidation, yielding N-isopropylam- melide. In this study, the third gene in the atrazine catabolic pathway, atzC, was cloned from a Pseudomonas sp. strain ADP

MICHAEL J. SADOWSKY; ZHAOKUN TONG; MERVYN DE SOUZA; LAWRENCE P. WACKETT

1998-01-01

308

The Terminal Enzymes of Sialic Acid Metabolism: Acylneuraminate Pyruvate-Lyases  

Microsoft Academic Search

The acylneuraminate pyruvate-lyase gene from Clostridium perfringens was sequenced and found to be most similar to the lyase gene from Haemophilus influenzae. Both the recombinant clostridial enzyme and the native enzyme from pig kidney were purified in larger amounts and characterized. The properties of the porcine lyase are similar to the microbial ones. However, the much higher degree of similarity

Roland Schauer; Ulf Sommer; Dorothea Krüger; Henrieke van Unen; Christina Traving

1999-01-01

309

Study of 'Redhaven' peach and its white-fleshed mutant suggests a key role of CCD4 carotenoid dioxygenase in carotenoid and norisoprenoid volatile metabolism  

PubMed Central

Background Carotenoids are plant metabolites which are not only essential in photosynthesis but also important quality factors in determining the pigmentation and aroma of flowers and fruits. To investigate the regulation of carotenoid metabolism, as related to norisoprenoids and other volatile compounds in peach (Prunus persica L. Batsch.), and the role of carotenoid dioxygenases in determining differences in flesh color phenotype and volatile composition, the expression patterns of relevant carotenoid genes and metabolites were studied during fruit development along with volatile compound content. Two contrasted cultivars, the yellow-fleshed 'Redhaven' (RH) and its white-fleshed mutant 'Redhaven Bianca' (RHB) were examined. Results The two genotypes displayed marked differences in the accumulation of carotenoid pigments in mesocarp tissues. Lower carotenoid levels and higher levels of norisoprenoid volatiles were observed in RHB, which might be explained by differential activity of carotenoid cleavage dioxygenase (CCD) enzymes. In fact, the ccd4 transcript levels were dramatically higher at late ripening stages in RHB with respect to RH. The two genotypes also showed differences in the expression patterns of several carotenoid and isoprenoid transcripts, compatible with a feed-back regulation of these transcripts. Abamine SG - an inhibitor of CCD enzymes - decreased the levels of both isoprenoid and non-isoprenoid volatiles in RHB fruits, indicating a complex regulation of volatile production. Conclusions Differential expression of ccd4 is likely to be the major determinant in the accumulation of carotenoids and carotenoid-derived volatiles in peach fruit flesh. More in general, dioxygenases appear to be key factors controlling volatile composition in peach fruit, since abamine SG-treated 'Redhaven Bianca' fruits had strongly reduced levels of norisoprenoids and other volatile classes. Comparative functional studies of peach carotenoid cleavage enzymes are required to fully elucidate their role in peach fruit pigmentation and aroma. PMID:21269483

2011-01-01

310

PPAR? via HNF4? regulates the expression of genes encoding hepatic amino acid catabolizing enzymes to maintain metabolic homeostasis.  

PubMed

The liver is the main organ involved in the metabolism of amino acids (AA), which are oxidized by amino acid catabolizing enzymes (AACE). Peroxisome proliferator-activated receptor-? (PPAR?) stimulates fatty acid ?-oxidation, and there is evidence that it can modulate hepatic AA oxidation during the transition of energy fuels. To understand the role and mechanism of PPAR?'s regulation of AA catabolism, the metabolic and molecular adaptations of Ppara-null mice were studied. The role of PPAR? on AA metabolism was examined by in vitro and in vivo studies. In wild-type and Ppara-null mice, fed increasing concentrations of the dietary protein/carbohydrate ratio, we measured metabolic parameters, and livers were analyzed by microarray analysis, histology and Western blot. Functional enrichment analysis, EMSA and gene reporter assays were performed. Ppara-null mice presented increased expression of AACE in liver affecting AA, lipid and carbohydrate metabolism. Ppara-null mice had increased glucagon/insulin ratio (7.2-fold), higher serum urea (73.1 %), lower body protein content (19.7 %) and decreased several serum AA in response to a high-protein/low-carbohydrate diet. A functional network of differentially expressed genes, suggested that changes in the expression of AACE were regulated by an interrelationship between PPAR? and HNF4?. Our data indicated that the expression of AACE is down-regulated through PPAR? by attenuating HNF4? transcriptional activity as observed in the serine dehydratase gene promoter. PPAR? via HNF4? maintains body protein metabolic homeostasis by down-regulating genes involved in amino acid catabolism for preserving body nitrogen. PMID:25576393

Contreras, Alejandra V; Rangel-Escareńo, Claudia; Torres, Nimbe; Alemán-Escondrillas, Gabriela; Ortiz, Victor; Noriega, Lilia G; Torre-Villalvazo, Ivan; Granados, Omar; Velázquez-Villegas, Laura A; Tobon-Cornejo, Sandra; González-Hirschfeld, Diana; Recillas-Targa, Félix; Tejero-Barrera, Elizabeth; Gonzalez, Frank J; Tovar, Armando R

2015-03-01

311

Phosphotransferase protein EIIANtr interacts with SpoT, a key enzyme of the stringent response, in Ralstonia eutropha H16.  

PubMed

EIIA(Ntr) is a member of a truncated phosphotransferase (PTS) system that serves regulatory functions and exists in many Proteobacteria in addition to the sugar transport PTS. In Escherichia coli, EIIA(Ntr) regulates K(+) homeostasis through interaction with the K(+) transporter TrkA and sensor kinase KdpD. In the ?-Proteobacterium Ralstonia eutropha H16, EIIA(Ntr) influences formation of the industrially important bioplastic poly(3-hydroxybutyrate) (PHB). PHB accumulation is controlled by the stringent response and induced under conditions of nitrogen deprivation. Knockout of EIIA(Ntr) increases the PHB content. In contrast, absence of enzyme I or HPr, which deliver phosphoryl groups to EIIA(Ntr), has the opposite effect. To clarify the role of EIIA(Ntr) in PHB formation, we screened for interacting proteins that co-purify with Strep-tagged EIIA(Ntr) from R. eutropha cells. This approach identified the bifunctional ppGpp synthase/hydrolase SpoT1, a key enzyme of the stringent response. Two-hybrid and far-Western analyses confirmed the interaction and indicated that only non-phosphorylated EIIA(Ntr) interacts with SpoT1. Interestingly, this interaction does not occur between the corresponding proteins of E. coli. Vice versa, interaction of EIIA(Ntr) with KdpD appears to be absent in R. eutropha, although R. eutropha EIIA(Ntr) can perfectly substitute its homologue in E. coli in regulation of KdpD activity. Thus, interaction with KdpD might be an evolutionary 'ancient' task of EIIA(Ntr) that was subsequently replaced by interaction with SpoT1 in R. eutropha. In conclusion, EIIA(Ntr) might integrate information about nutritional status, as reflected by its phosphorylation state, into the stringent response, thereby controlling cellular PHB content in R. eutropha. PMID:24515609

Karstens, Katja; Zschiedrich, Christopher P; Bowien, Botho; Stülke, Jörg; Görke, Boris

2014-04-01

312

Insulin enhances metabolic capacities of cancer cells by dual regulation of glycolytic enzyme pyruvate kinase M2  

PubMed Central

Background Insulin is tightly associated with cancer progression; however, mechanistic insights into such observations are poorly understood. Recent studies show that metabolic transformation is critical to cancer cell proliferation. Here, we attempt to understand the role of insulin in promotion of cancer metabolism. To this end, the role of insulin in regulating glycolytic enzyme pyruvate kinase M2 (PKM2) was examined. Results We observed that insulin up-regulated PKM2 expression, through PI3K/mTOR mediated HIF1? induction, but significantly reduced PKM2 activity independent of this pathway. Drop in PKM2 activity was attributed to subunit dissociation leading to formation of low activity PKM2 oligomers, as assessed by density gradient centrifugation. However, tyrosine 105 phosphorylation of PKM2, known for inhibiting PKM2 activity, remained unaffected on insulin treatment. Interestingly, insulin-induced ROS was found responsible for PKM2 activity reduction. The observed changes in PKM2 status led to augmented cancer metabolism. Insulin-induced PKM2 up-regulation resulted in enhanced aerobic glycolysis as confirmed by PKM2 knockdown studies. Further, PKM2 activity reduction led to characteristic pooling of glycolytic intermediates and increased accumulation of NADPH; suggesting diversion of glucose flux towards macromolecular synthesis, necessary for cancer cell growth. Conclusion The study identifies new PKM2-mediated effects of insulin on cancer metabolism, thus, advancing the understanding of insulin’s role in cancer. PMID:23837608

2013-01-01

313

The Key to Acetate: Metabolic Fluxes of Acetic Acid Bacteria under Cocoa Pulp Fermentation-Simulating Conditions  

PubMed Central

Acetic acid bacteria (AAB) play an important role during cocoa fermentation, as their main product, acetate, is a major driver for the development of the desired cocoa flavors. Here, we investigated the specialized metabolism of these bacteria under cocoa pulp fermentation-simulating conditions. A carefully designed combination of parallel 13C isotope labeling experiments allowed the elucidation of intracellular fluxes in the complex environment of cocoa pulp, when lactate and ethanol were included as primary substrates among undefined ingredients. We demonstrate that AAB exhibit a functionally separated metabolism during coconsumption of two-carbon and three-carbon substrates. Acetate is almost exclusively derived from ethanol, while lactate serves for the formation of acetoin and biomass building blocks. Although this is suboptimal for cellular energetics, this allows maximized growth and conversion rates. The functional separation results from a lack of phosphoenolpyruvate carboxykinase and malic enzymes, typically present in bacteria to interconnect metabolism. In fact, gluconeogenesis is driven by pyruvate phosphate dikinase. Consequently, a balanced ratio of lactate and ethanol is important for the optimum performance of AAB. As lactate and ethanol are individually supplied by lactic acid bacteria and yeasts during the initial phase of cocoa fermentation, respectively, this underlines the importance of a well-balanced microbial consortium for a successful fermentation process. Indeed, AAB performed the best and produced the largest amounts of acetate in mixed culture experiments when lactic acid bacteria and yeasts were both present. PMID:24837393

Adler, Philipp; Frey, Lasse Jannis; Berger, Antje; Bolten, Christoph Josef; Hansen, Carl Erik

2014-01-01

314

Metabolic capabilities of cytochrome P450 enzymes in Chinese liver microsomes compared with those in Caucasian liver microsomes  

PubMed Central

AIM The most common causes of variability in drug response include differences in drug metabolism, especially when the hepatic cytochrome P450 (CYP) enzymes are involved. The current study was conducted to assess the differences in CYP activities in human liver microsomes (HLM) of Chinese or Caucasian origin. METHODS The metabolic capabilities of CYP enzymes in 30 Chinese liver microsomal samples were compared with those of 30 Caucasian samples utilizing enzyme kinetics. Phenacetin O-deethylation, coumarin 7-hydroxylation, bupropion hydroxylation, amodiaquine N-desethylation, diclofenac 4?-hydroxylation (S)-mephenytoin 4?-hydroxylation, dextromethorphan O-demethylation, chlorzoxazone 6-hydroxylation and midazolam 1?-hydroxylation/testosterone 6?-hydroxylation were used as probes for activities of CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A, respectively. Mann-Whitney U test was used to assess the differences. RESULTS The samples of the two ethnic groups were not significantly different in cytochrome-b5 concentrations but were significantly different in total CYP concentrations and NADPH-P450 reductase activity (P < 0.05). Significant ethnic differences in intrinsic clearance were observed for CYP1A2, CYP2C9, CYP2C19 and CYP2E1; the median values of the Chinese group were 54, 58, 26, and 35% of the corresponding values of the Caucasian group, respectively. These differences were associated with differences in Michaelis constant or maximum velocity. Despite negligible difference in intrinsic clearance, the Michaelis constant of CYP2B6 appeared to have a significant ethnic difference. No ethnic difference was observed for CYP2A6, CYP2C8, CYP2D6 and CYP3A. CONCLUSIONS These data extend our knowledge on the ethnic differences in CYP enzymes and will have implications for drug discovery and drug therapy for patients from different ethnic origins. PMID:21815912

Yang, Junling; He, Minxia M; Niu, Wei; Wrighton, Steven A; Li, Li; Liu, Yang; Li, Chuan

2012-01-01

315

Metabolism of Hydroxypyruvate in a Mutant of Barley Lacking NADH-Dependent Hydroxypyruvate Reductase, an Important Photorespiratory Enzyme Activity 1  

PubMed Central

A mutant of barley (Hordeum vulgare L.), LaPr 88/29, deficient in NADH-dependent hydroxypyruvate reductase (HPR) activity has been isolated. The activities of both NADH (5%) and NADPH-dependent (19%) HPR were severely reduced in this mutant compared to the wild type. Although lacking an enzyme in the main carbon pathway of photorespiration, this mutant was capable of CO2 fixation rates equivalent to 75% of that of the wild type, in normal atmospheres and 50% O2. There also appeared to be little disruption to the photorespiratory metabolism as ammonia release, CO2 efflux and 14CO2 release from l-[U-14C]serine feeding were similar in both mutant and wild-type leaves. When leaves of LaPr 88/29 were fed either [14C]serine or 14CO2, the accumulation of radioactivity was in serine and not in hydroxypyruvate, although the mutant was still able to metabolize over 25% of the supplied [14C]serine into sucrose. After 3 hours in air the soluble amino acid pool was almost totally dominated by serine and glycine. LaPr 88/29 has also been used to show that NADH-glyoxylate reductase and NADH-HPR are probably not catalyzed by the same enzyme in barley and that over 80% of the NADPH-dependent HPR activity is due to the NADH-dependent enzyme. We also suggest that the alternative NADPH activity can metabolise a proportion, but not all, of the hydroxypyruvate produced during photorespiration and may thus form a useful backup to the NADH-dependent enzyme under conditions of maximal photorespiration. Images Figure 1 PMID:16667032

Murray, Alan J. S.; Blackwell, Ray D.; Lea, Peter J.

1989-01-01

316

Regulation of the expression of key genes involved in HDL metabolism by unsaturated fatty acids  

Technology Transfer Automated Retrieval System (TEKTRAN)

The aim of this study was to determine the effects, and possible mechanisms of action, of unsaturated fatty acids on the expression of genes involved in HDL metabolism in HepG2 cells. The mRNA concentration of target genes was assessed by real time PCR. Protein concentrations were determined by wes...

317

The protein kinase Sch9 is a key regulator of sphingolipid metabolism in Saccharomyces cerevisiae  

PubMed Central

The Saccharomyces cerevisiae protein kinase Sch9 is an in vitro and in vivo effector of sphingolipid signaling. This study examines the link between Sch9 and sphingolipid metabolism in S. cerevisiae in vivo based on the observation that the sch9? mutant displays altered sensitivity to different inhibitors of sphingolipid metabolism, namely myriocin and aureobasidin A. Sphingolipid profiling indicates that sch9? cells have increased levels of long-chain bases and long-chain base-1 phosphates, decreased levels of several species of (phyto)ceramides, and altered ratios of complex sphingolipids. We show that the target of rapamycin complex 1–Sch9 signaling pathway functions to repress the expression of the ceramidase genes YDC1 and YPC1, thereby revealing, for the first time in yeast, a nutrient-dependent transcriptional mechanism involved in the regulation of sphingolipid metabolism. In addition, we establish that Sch9 affects the activity of the inositol phosphosphingolipid phospholipase C, Isc1, which is required for ceramide production by hydrolysis of complex sphingolipids. Given that sphingolipid metabolites play a crucial role in the regulation of stress tolerance and longevity of yeast cells, our data provide a model in which Sch9 regulates the latter phenotypes by acting not only as an effector but also as a regulator of sphingolipid metabolism. PMID:24196832

Swinnen, Erwin; Wilms, Tobias; Idkowiak-Baldys, Jolanta; Smets, Bart; De Snijder, Pepijn; Accardo, Sabina; Ghillebert, Ruben; Thevissen, Karin; Cammue, Bruno; De Vos, Dirk; Bielawski, Jacek; Hannun, Yusuf A.; Winderickx, Joris

2014-01-01

318

Metabolism of delta-9-Tetrahydrocannabinol catalyzed by cytochrome P450 2C enzymes.  

E-print Network

??delta-9-Tetrahydrocannabinol (delta-9-THC), the primary psychoactive constituent of marijuana, is subject to first pass hepatic metabolism primarily by hydroxylation to yield both active and inactive oxygenated… (more)

Bland, Tina Marie.

2004-01-01

319

The evolution of new enzyme function: lessons from xenobiotic metabolizing bacteria versus insecticide-resistant insects  

PubMed Central

Here, we compare the evolutionary routes by which bacteria and insects have evolved enzymatic processes for the degradation of four classes of synthetic chemical insecticide. For insects, the selective advantage of such degradative activities is survival on exposure to the insecticide, whereas for the bacteria the advantage is simply a matter of access to additional sources of nutrients. Nevertheless, bacteria have evolved highly efficient enzymes from a wide variety of enzyme families, whereas insects have relied upon generalist esterase-, cytochrome P450- and glutathione-S-transferase-dependent detoxification systems. Moreover, the mutant insect enzymes are less efficient kinetically and less diverged in sequence from their putative ancestors than their bacterial counterparts. This presumably reflects several advantages that bacteria have over insects in the acquisition of new enzymatic functions, such as a broad biochemical repertoire from which new functions can be evolved, large population sizes, high effective mutation rates, very short generation times and access to genetic diversity through horizontal gene transfer. Both the insect and bacterial systems support recent theory proposing that new biochemical functions often evolve from ‘promiscuous’ activities in existing enzymes, with subsequent mutations then enhancing those activities. Study of the insect enzymes will help in resistance management, while the bacterial enzymes are potential bioremediants of insecticide residues in a range of contaminated environments. PMID:25567970

Russell, Robyn J; Scott, Colin; Jackson, Colin J; Pandey, Rinku; Pandey, Gunjan; Taylor, Matthew C; Coppin, Christopher W; Liu, Jian-Wei; Oakeshott, John G

2011-01-01

320

Phase I to II Cross-Induction of Xenobiotic Metabolizing Enzymes: a Feedforward Control Mechanism for Potential Hormetic Responses  

PubMed Central

Hormetic responses to xenobiotic exposure likely occur as a result of overcompensation by the homeostatic control systems operating in biological organisms. However, the mechanisms underlying overcompensation that leads to hormesis are still unclear. A well-known homeostatic circuit in the cell is the gene induction network comprising phase I, II and III metabolizing enzymes, which are responsible for xenobiotic detoxification, and in many cases, bioactivation. By formulating a differential equation-based computational model, we investigated in this study whether hormesis can arise from the operation of this gene/enzyme network. The model consists of two feedback and one feedforward controls. With the phase I negative feedback control, xenobiotic X activates nuclear receptors to induce cytochrome P450 enzyme, which bioactivates X into a reactive metabolite X?. With the phase II negative feedback control, X? activates transcription factor Nrf2 to induce phase II enzymes such as glutathione S-transferase and glutamate cysteine ligase, etc., which participate in a set of reactions that lead to the metabolism of X? into a less toxic conjugate X?. The feedforward control involves phase I to II cross-induction, in which the parent chemical X can also induce phase II enzymes directly through the nuclear receptor and indirectly through transcriptionally upregulating Nrf2. As a result of the active feedforward control, a steady-state hormetic relationship readily arises between the concentrations of the reactive metabolite X? and the extracellular parent chemical X to which the cell is exposed. The shape of dose response evolves over time from initially monotonically increasing to J-shaped at the final steady state - a temporal sequence consistent with adaptation-mediated hormesis. The magnitude of the hormetic response is enhanced by increases in the feedforward gain, but attenuated by increases in the bioactivation or phase II feedback loop gains. Our study suggests a possibly common mechanism for the hormetic responses observed with many mutagens/carcinogens whose activities require bioactivation by phase I enzymes. Feedforward control, often operating in combination with negative feedback regulation in a homeostatic system, may be a general control theme responsible for steady-state hormesis. PMID:19371757

Zhang, Qiang; Pi, Jingbo; Woods, Courtney G.; Andersen, Melvin E.

2009-01-01

321

Key intestinal genes involved in lipoprotein metabolism are downregulated in dyslipidemic men with insulin resistance[S  

PubMed Central

Insulin resistance (IR) is associated with elevated plasma levels of triglyceride-rich lipoproteins (TRLs) of intestinal origin. However, the mechanisms underlying the overaccumulation of apolipoprotein (apo)B-48-containing TRLs in individuals with IR are not yet fully understood. This study examined the relationships between apoB-48-containing TRL kinetics and the expression of key intestinal genes and proteins involved in lipid/lipoprotein metabolism in 14 obese nondiabetic men with IR compared with 10 insulin-sensitive (IS) men matched for waist circumference. The in vivo kinetics of TRL apoB-48 were assessed using a primed-constant infusion of L-[5,5,5-D3]leucine for 12 h with the participants in a constantly fed state. The expression of key intestinal genes and proteins involved in lipid/lipoprotein metabolism was assessed by performing real-time PCR quantification and LC-MS/MS on duodenal biopsy specimens. The TRL apoB-48 pool size and production rate were 102% (P < 0.0001) and 87% (P = 0.01) greater, respectively, in the men with IR versus the IS men. On the other hand, intestinal mRNA levels of sterol regulatory element binding factor-2, hepatocyte nuclear factor-4?, and microsomal triglyceride transfer protein were significantly lower in the men with IR than in the IS men. These data indicate that IR is associated with intestinal overproduction of lipoproteins and significant downregulation of key intestinal genes involved in lipid/lipoprotein metabolism. PMID:24142110

Couture, Patrick; Tremblay, André J.; Kelly, Isabelle; Lemelin, Valéry; Droit, Arnaud; Lamarche, Benoît

2014-01-01

322

Many of the enzymes, receptors and eicosanoid metabo-lites of the arachidonate cascade (FIG. 1) are key thera-  

E-print Network

Many of the enzymes, receptors and eicosanoid metabo- lites of the arachidonate cascade (FIG. 1 of cardiovascular diseases such as hypertension and stroke13­16 . The epoxygenase CYP enzymes generate diminishing their beneficial cardiovascular properties20,21 . Inhibition of this enzyme is therefore

Hammock, Bruce D.

323

Unlocking the Key to Personalized Cancer Medicine Using Tumor Metabolism | Physical Sciences in Oncology  

Cancer.gov

Identifying genetic alterations in cancer patients to predict clinical outcome has been the cornerstone of cancer research for nearly three decades, but now researchers at the Kimmel Cancer Center at the Thomas Jefferson University have come up with a new approach that instead links cancer cell metabolism with poor clinical outcome. This approach can now be applied to virtually any type of human cancer cell.

324

PPAR-? as a Key Nutritional and Environmental Sensor for Metabolic Adaptation12  

PubMed Central

Peroxisome proliferator-activated receptors (PPARs) are transcription factors that belong to the superfamily of nuclear hormone receptors and regulate the expression of several genes involved in metabolic processes that are potentially linked to the development of some diseases such as hyperlipidemia, diabetes, and obesity. One type of PPAR, PPAR-?, is a transcription factor that regulates the metabolism of lipids, carbohydrates, and amino acids and is activated by ligands such as polyunsaturated fatty acids and drugs used to treat dyslipidemias. There is evidence that genetic variants within the PPAR? gene have been associated with a risk of the development of dyslipidemia and cardiovascular disease by influencing fasting and postprandial lipid concentrations; the gene variants have also been associated with an acceleration of the progression of type 2 diabetes. The interactions between genetic PPAR? variants and the response to dietary factors will help to identify individuals or populations who can benefit from specific dietary recommendations. Interestingly, certain nutritional conditions, such as the prolonged consumption of a protein-restricted diet, can produce long-lasting effects on PPAR? gene expression through modifications in the methylation of a specific locus surrounding the PPAR? gene. Thus, this review underlines our current knowledge about the important role of PPAR-? as a mediator of the metabolic response to nutritional and environmental factors. PMID:23858092

Contreras, Alejandra V.; Torres, Nimbe; Tovar, Armando R.

2013-01-01

325

Myostatin is a key mediator between energy metabolism and endurance capacity of skeletal muscle.  

PubMed

Myostatin (Mstn) participates in the regulation of skeletal muscle size and has emerged as a regulator of muscle metabolism. Here, we hypothesized that lack of myostatin profoundly depresses oxidative phosphorylation-dependent muscle function. Toward this end, we explored Mstn(-/-) mice as a model for the constitutive absence of myostatin and AAV-mediated overexpression of myostatin propeptide as a model of myostatin blockade in adult wild-type mice. We show that muscles from Mstn(-/-) mice, although larger and stronger, fatigue extremely rapidly. Myostatin deficiency shifts muscle from aerobic toward anaerobic energy metabolism, as evidenced by decreased mitochondrial respiration, reduced expression of PPAR transcriptional regulators, increased enolase activity, and exercise-induced lactic acidosis. As a consequence, constitutively reduced myostatin signaling diminishes exercise capacity, while the hypermuscular state of Mstn(-/-) mice increases oxygen consumption and the energy cost of running. We wondered whether these results are the mere consequence of the congenital fiber-type switch toward a glycolytic phenotype of constitutive Mstn(-/-) mice. Hence, we overexpressed myostatin propeptide in adult mice, which did not affect fiber-type distribution, while nonetheless causing increased muscle fatigability, diminished exercise capacity, and decreased Pparb/d and Pgc1a expression. In conclusion, our results suggest that myostatin endows skeletal muscle with high oxidative capacity and low fatigability, thus regulating the delicate balance between muscle mass, muscle force, energy metabolism, and endurance capacity. PMID:24965795

Mouisel, Etienne; Relizani, Karima; Mille-Hamard, Laurence; Denis, Raphaël; Hourdé, Christophe; Agbulut, Onnik; Patel, Ketan; Arandel, Ludovic; Morales-Gonzalez, Susanne; Vignaud, Alban; Garcia, Luis; Ferry, Arnaud; Luquet, Serge; Billat, Véronique; Ventura-Clapier, Renée; Schuelke, Markus; Amthor, Helge

2014-08-15

326

Modulation of carcinogen metabolizing enzymes by chromanone A; a new chromone derivative from algicolous marine fungus Penicillium sp.  

PubMed

A marine fungal isolate, Penicillium sp. fungus isolated from seaweed, Ulva sp., led to the isolation of a new chromone derivatives, 2-(hydroxymethyl)-8-methoxy-3-methyl-4H-chromen-4-one (chromanone A). The structure was determined by interpretation of their spectroscopic data (1D and 2D NMR, MS, UV and IR). At the nitiation stage of carcinogenesis, carcinogens is activated by cytochrome P-450 1A (CYP1A) and detoxified by glutathione S-transferases (GST), quinine reductase (QR), and epoxide hydrolase (mEH). We tested the modulatory effect of chromanone A on these carcinogen metabolizing enzymes. The results indicated that chromanone A (4?g/ml) is a promising inhibitor of CYP1A activity up to 60% of the stimulated-CYP1A in murine hepatoma cells (Hepa1c1c7), and it significantly induced GST but not total thiols at low concentrations. Chromanone A had no influence on QR activity, while it resulted in a significant dose-dependant enhancement mEH activity in Hepa1c1c7 cells (P<0.05-0.01). Additionally, chromanone A possessed a potent specific radical scavenging activity against hydroxyl radicals more than peroxyl radicals that may be responsible for the inhibitory effect of chromanone A on the induced-DNA damage in cells. In conclusion, this study proved that chromanone A may act as an active tumor anti-initiating via modulation of carcinogen metabolizing enzymes and protection from DNA damage. PMID:21784022

Gamal-Eldeen, Amira M; Abdel-Lateff, Ahmed; Okino, Tatsufumi

2009-11-01

327

Effect of geraniol, a plant derived monoterpene on lipids and lipid metabolizing enzymes in experimental hyperlipidemic hamsters.  

PubMed

Hyperlipidemia is a major, modifiable risk factor for atherosclerosis and cardiovascular disease. In the present study, we have focused on the effect of different doses of geraniol (GOH) on the lipid profile and lipid metabolizing enzymes in atherogenic diet (AD) fed hamsters. Male Syrian hamsters were grouped into seven: group 1 were control animals; group 2 were animals fed GOH alone (200 mg/kg b.w); group 3 were animals fed AD (10 % coconut oil, 0.25 % cholesterol, and 0.25 % cholic acid); group 4 were animals fed AD + corn oil (2.5 ml/kg b.w); and groups 5, 6, and 7 were fed AD as in group 3 + different doses of GOH (50, 100, and 200 mg/kg b.w), respectively, for 12 weeks. At the end of the experimental period, animals were sacrificed by cervical dislocation and various assays were performed in the plasma and tissues. The AD hamsters showed marked changes in lipid profile and lipid metabolizing enzymes. However, supplementation with GOH counteracted the hyperlipidemia by inhibiting HMG CoA reductase and suppressing lipogenesis. The antihyperlipidemic efficacy of GOH was found to be effective at the dose of 100 mg/kg b.w. This study illustrates that GOH is effective in lowering the risk of hyperlipidemia in AD fed hamsters. PMID:25218494

Jayachandran, Muthukumaran; Chandrasekaran, Balaji; Namasivayam, Nalini

2015-01-01

328

[Regulation of terpene metabolism]. [Mentha piperita, Mentha spicata  

SciTech Connect

Progress in understanding of the metabolism of monoterpenes by peppermint and spearmint is recorded including the actions of two key enzymes, geranyl pyrophosphate:limonene cyclase and a UDP-glucose dependent glucosyl transferase; concerning the ultrastructure of oil gland senescence; enzyme subcellular localization; regulation of metabolism; and tissue culture systems.

Croteau, R.

1989-01-01

329

Sucrose non-fermenting related kinase enzyme is essential for cardiac metabolism  

PubMed Central

ABSTRACT In this study, we have identified a novel member of the AMPK family, namely Sucrose non-fermenting related kinase (Snrk), that is responsible for maintaining cardiac metabolism in mammals. SNRK is expressed in the heart, and brain, and in cell types such as endothelial cells, smooth muscle cells and cardiomyocytes (CMs). Snrk knockout (KO) mice display enlarged hearts, and die at postnatal day 0. Microarray analysis of embryonic day 17.5 Snrk hearts, and blood profile of neonates display defect in lipid metabolic pathways. SNRK knockdown CMs showed altered phospho-acetyl-coA carboxylase and phospho-AMPK levels similar to global and endothelial conditional KO mouse. Finally, adult cardiac conditional KO mouse displays severe cardiac functional defects and lethality. Our results suggest that Snrk is essential for maintaining cardiac metabolic homeostasis, and shows an autonomous role for SNRK during mammalian development. PMID:25505152

Cossette, Stephanie M.; Gastonguay, Adam J.; Bao, Xiaoping; Lerch-Gaggl, Alexandra; Zhong, Ling; Harmann, Leanne M.; Koceja, Christopher; Miao, Robert Q.; Vakeel, Padmanabhan; Chun, Changzoon; Li, Keguo; Foeckler, Jamie; Bordas, Michelle; Weiler, Hartmut; Strande, Jennifer; Palecek, Sean P.; Ramchandran, Ramani

2015-01-01

330

Natural variations in xenobiotic-metabolizing enzymes: developing tools for coral monitoring  

NASA Astrophysics Data System (ADS)

The continued deterioration of coral reefs worldwide demonstrates the need to develop diagnostic tools for corals that go beyond general ecological monitoring and can identify specific stressors at sublethal levels. Cellular diagnostics present an approach to defining indicators (biomarkers) that have the potential to reflect the impact of stress at the cellular level, allowing for the detection of intracellular changes in corals prior to outright mortality. Detoxification enzymes, which may be readily induced or inhibited by environmental stressors, present such a set of indicators. However, in order to apply these diagnostic tools for the detection of stress, a detailed understanding of their normal, homeostatic levels within healthy corals must first be established. Herein, we present molecular and biochemical evidence for the expression and activity of major Phase I detoxification enzymes cytochrome P450 (CYP450), CYP2E1, and CYP450 reductase, as well as the Phase II enzymes UDP, glucuronosyltransferase (UGT), ?-glucuronidase, glutathione- S-transferase (GST), and arylsulfatase C (ASC) in the coral Pocillopora damicornis. Additionally, we characterized enzyme expression and activity variations over a reproductive cycle within a coral's life history to determine natural endogenous changes devoid of stress exposure. Significant changes in enzyme activity over the coral's natural lunar reproductive cycle were observed for CYP2E1 and CYP450 reductase as well as UGT and GST, while ?-glucuronidase and ASC did not fluctuate significantly. The data represent a baseline description of `health' for the expression and activity of these enzymes that can be used toward understanding the impact of environmental stressors on corals. Such knowledge can be applied to address causes of coral reef ecosystem decline and to monitor effectiveness of mitigation strategies. Achieving a better understanding of cause-and-effect relationships between putative stressors and biological responses in corals, and other marine invertebrates, can guide and evaluate mitigation and conservation approaches for marine ecosystem protection.

Rougée, L. R. A.; Richmond, R. H.; Collier, A. C.

2014-06-01

331

? 5 -3?-Hydroxysteroid dehydrogenase from Digitalis lanata Ehrh. – a multifunctional enzyme in steroid metabolism?  

Microsoft Academic Search

.  ?5-3?-?ydroxysteroid dehydrogenase (?5-3?-HSD; EC 1.1.1.145), an enzyme converting pregn-5-ene-3?-ol-20-one (pregnenolone) to pregn-5-ene-3,20-dione (isoprogesterone),\\u000a was isolated from the soluble fraction of suspension-cultured cells of Digitalis lanata L. strain VIII. Starting with acetone dry powder the enzyme was purified in three steps using column chromatography on Fractogel-TSK\\u000a DEAE, hydroxyapatite and Sephacryl G-200. Fractions with highest ?5-3?-HSD activity were separated by sodium dodecyl

Anja Finsterbusch; Peter Lindemann; Rudolf Grimm; Christoph Eckerskorn; Martin Luckner

1999-01-01

332

Enzymic Capacities of Purified Cauliflower Bud Plastids for Lipid Synthesis and Carbohydrate Metabolism 1  

PubMed Central

Isolated cauliflower (Brassica oleracea) bud plastids, purified by isopycnic centrifugation in density gradients of Percoll, were found to be highly intact, to be practically devoid of extraplastidial contaminations, and to retain all the enzymes involved in fatty acid, phosphatidic acid, and monogalactosyldiacylglycerol synthesis. Purified plastids possess all the enzymes needed to convert triose phosphate to starch and vice versa, and are capable of conversion of glycerate 3-phosphate to pyruvate for fatty acid synthesis. They are also capable of oxidation of hexose phosphate and conversion to triose phosphate via the oxidative pentosephosphate pathway. Cauliflower bud plastids prove to be, therefore, biochemically very flexible organelles. Images Fig. 1 PMID:16664432

Journet, Etienne-Pascal; Douce, Roland

1985-01-01

333

Effects of oregano essential oil with or without feed enzymes on growth performance, digestive enzyme, nutrient digestibility, lipid metabolism and immune response of broilers fed on wheat–soybean meal diets  

Microsoft Academic Search

1.?The study was conducted to determine the effects of dietary supplementation of enzyme and oregano essential oil at two levels, alone or together, on performance, digestive enzyme, nutrient digestibility, lipid metabolism and immune response of broilers fed on wheat–soybean meal based diets.2.?The following dietary treatments were used from d 0 to 21. Diet 1 (control, CONT): a commercial diet containing

H. Basmacio?lu Malayo?lu; ?. Baysal; Z. Misirlio?lu; M. Polat; H. Yilmaz; N. Turan

2010-01-01

334

Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast  

Microsoft Academic Search

Under laboratory conditions 80% of yeast genes seem not to be essential for viability. This raises the question of what the mechanistic basis for dispensability is, and whether it is the result of selection for buffering or an incidental side product. Here we analyse these issues using an in silico flux model of the yeast metabolic network. The model correctly

Balázs Papp; Csaba Pál; Laurence D. Hurst

2004-01-01

335

Gene–environmental interaction regarding alcohol-metabolizing enzymes in the Japanese general population  

Microsoft Academic Search

Epidemiological studies have shown that excessive alcohol consumption is a potent risk factor to develop hypertension. In addition, some polymorphisms of the alcohol metabolism genes have been reported to exert significant impacts on the risk of alcoholism. We investigate the relevance of genetic susceptibility to drinking behavior and its influence on the sensitivity to pressor effects of alcohol in the

Miyuki Tsuchihashi-Makaya; Masakuni Serizawa; Kazuyuki Yanai; Tomohiro Katsuya; Fumihiko Takeuchi; Akihiro Fujioka; Yukio Yamori; Toshio Ogihara; Norihiro Kato

2009-01-01

336

Thermophilic and thermoacidophilic metabolism genes and enzymes from Alicyclobacillus acidocaldarius and related organisms, methods  

SciTech Connect

Isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius are provided. Further provided are methods for modulating or altering metabolism in a cell using isolated and/or purified polypeptides and nucleic acid sequences from Alicyclobacillus acidocaldarius.

Thompson, Vicki S; Apel, William A; Reed, David W; Lee, Brady D; Thompson, David N; Roberto, Francisco F; Lacey, Jeffrey A

2014-05-20

337

Availability of the key metabolic substrates dictates the respiratory response of cancer cells to the mitochondrial uncoupling.  

PubMed

Active glycolysis and glutaminolysis provide bioenergetic stability of cancer cells in physiological conditions. Under hypoxia, metabolic and mitochondrial disorders, or pharmacological treatment, a deficit of key metabolic substrates may become life-threatening to cancer cells. We analysed the effects of mitochondrial uncoupling by FCCP on the respiration of cells fed by different combinations of Glc, Gal, Gln and Pyr. In cancer PC12 and HCT116 cells, a large increase in O2 consumption rate (OCR) upon uncoupling was only seen when Gln was combined with either Glc or Pyr. Inhibition of glutaminolysis with BPTES abolished this effect. Despite the key role of Gln, addition of FCCP inhibited respiration and induced apoptosis in cells supplied with Gln alone or Gal/Gln. For all substrate combinations, amplitude of respiratory responses to FCCP did not correlate with Akt, Erk and AMPK phosphorylation, cellular ATP, and resting OCR, mitochondrial Ca(2+) or membrane potential. However, we propose that proton motive force could modulate respiratory response to FCCP by regulating mitochondrial transport of Gln and Pyr, which decreases upon mitochondrial depolarisation. As a result, an increase in respiration upon uncoupling is abolished in cells, deprived of Gln or Pyr (Glc). Unlike PC12 or HCT116 cells, mouse embryonic fibroblasts were capable of generating pronounced response to FCCP when deprived of Gln, thus exhibiting lower dependence on glutaminolysis. Overall, the differential regulation of the respiratory response to FCCP by metabolic environment suggests that mitochondrial uncoupling has a potential for substrate-specific inhibition of cell function, and can be explored for selective cancer treatment. PMID:23891695

Zhdanov, Alexander V; Waters, Alicia H C; Golubeva, Anna V; Dmitriev, Ruslan I; Papkovsky, Dmitri B

2014-01-01

338

Serotonin (5-HT) Affects Expression of Liver Metabolic Enzymes and Mammary Gland Glucose Transporters during the Transition from Pregnancy to Lactation  

PubMed Central

The aim of this experiment was to demonstrate the ability of feeding serotonin (5-HT; 5-hydroxytryptamine) precursors to increase 5-HT production during the transition from pregnancy to lactation and the effects this has on maternal energy metabolism in the liver and mammary gland. Pregnant rats (n?=?45) were fed one of three diets: I) control (CON), II) CON supplemented with 0.2% 5-hydroxytryptophan (5-HTP) or III) CON supplemented with 1.35% L-tryptophan (L-TRP), beginning on d13 of pregnancy through d9 of lactation (d9). Serum (pre and post-partum), milk (daily), liver and mammary gland tissue (d9) were collected. Serum 5-HT was increased in the 5-HTP fed dams beginning on d20 of gestation and remained elevated through d9, while it was only increased on d9 in the L-TRP fed dams. 5-HT levels were increased in mammary gland and liver of both groups. Additionally, 5-HTP fed dams had serum and milk glucose levels similar to the CON, while L-TRP had decreased serum (d9) and milk glucose (all dates evaluated). Feeding 5-HTP resulted in increased mRNA expression of key gluconeogenic and glycolytic enzymes in liver and glucose transporters 1 and 8 (GLUT-1, -8) in the mammary gland. We demonstrated the location of GLUT-8 in the mammary gland both in the epithelial and vascular endothelial cells. Finally, phosphorylated 5? AMP-activated protein kinase (pAMPK), a known regulator of intracellular energy status, was elevated in mammary glands of 5-HTP fed dams. Our results suggest that increasing 5-HT production during the transition from pregnancy to lactation increases mRNA expression of enzymes involved in energy metabolism in the liver, and mRNA abundance and distribution of glucose transporters within the mammary gland. This suggests the possibility that 5-HT may be involved in regulating energy metabolism during the transition from pregnancy to lactation. PMID:23469086

Laporta, Jimena; Peters, Tonia L.; Merriman, Kathryn E.; Vezina, Chad M.; Hernandez, Laura L.

2013-01-01

339

Differential contribution of key metabolic substrates and cellular oxygen in HIF signalling.  

PubMed

Changes in availability and utilisation of O2 and metabolic substrates are common in ischemia and cancer. We examined effects of substrate deprivation on HIF signalling in PC12 cells exposed to different atmospheric O2. Upon 2-4h moderate hypoxia, HIF-? protein levels were dictated by the availability of glutamine and glucose, essential for deep cell deoxygenation and glycolytic ATP flux. Nuclear accumulation of HIF-1? dramatically decreased upon inhibition of glutaminolysis or glutamine deprivation. Elevation of HIF-2? levels was transcription-independent and associated with the activation of Akt and Erk1/2. Upon 2h anoxia, HIF-2? levels strongly correlated with cellular ATP, produced exclusively via glycolysis. Without glucose, HIF signalling was suppressed, giving way to other regulators of cell adaptation to energy crisis, e.g. AMPK. Consequently, viability of cells deprived of O2 and glucose decreased upon inhibition of AMPK with dorsomorphin. The capacity of cells to accumulate HIF-2? decreased after 24h glucose deprivation. This effect, associated with increased AMPK? phosphorylation, was sensitive to dorsomorphin. In chronically hypoxic cells, glutamine played no major role in HIF-2? accumulation, which became mainly glucose-dependent. Overall, the availability of O2 and metabolic substrates intricately regulates HIF signalling by affecting cell oxygenation, ATP levels and pathways involved in production of HIF-?. PMID:25447307

Zhdanov, Alexander V; Waters, Alicia H C; Golubeva, Anna V; Papkovsky, Dmitri B

2015-01-01

340

Pulmonary metabolism of foreign compounds: its role in metabolic activation.  

PubMed Central

The lung has the potential of metabolizing many foreign chemicals to a vast array of metabolites with different pharmacological and toxicological properties. Because many chemicals require metabolic activation in order to exert their toxicity, the cellular distribution of the drug-metabolizing enzymes in a heterogeneous tissue, such as the lung, and the balance of metabolic activation and deactivation pathways in any particular cell are key factors in determining the cellular specificity of many pulmonary toxins. Environmental factors such as air pollution, cigarette smoking, and diet markedly affect the pulmonary metabolism of some chemicals and, thereby, possibly affect their toxicity. PMID:2200668

Cohen, G M

1990-01-01

341

Inhibition of 17beta-hydroxysteroid dehydrogenases by phytoestrogens: Comparison with other steroid metabolizing enzymes  

Microsoft Academic Search

Effects of phytoestrogens on human health have been reported for decades. These include not only beneficial action in cancer prevention but also endocrine disruption in males. Since then many molecular mechanisms underlying these effects have been identified. Targets of phytoestrogens comprise steroid receptors, steroid metabolising enzymes, elements of signal transduction and apoptosis pathways, and even the DNA processing machinery. Understanding

D. Deluca; A. Krazeisen; R. Breitling; C. Prehn; G. Möller; J. Adamski

2005-01-01

342

A gold-containing drug against parasitic polyamine metabolism: the X-ray structure of trypanothione reductase from Leishmania infantum in complex with auranofin reveals a dual mechanism of enzyme inhibition.  

PubMed

Auranofin is a gold(I)-containing drug in clinical use as an antiarthritic agent. Recent studies showed that auranofin manifests interesting antiparasitic actions very likely arising from inhibition of parasitic enzymes involved in the control of the redox metabolism. Trypanothione reductase is a key enzyme of Leishmania infantum polyamine-dependent redox metabolism, and a validated target for antileishmanial drugs. As trypanothione reductase contains a dithiol motif at its active site and gold(I) compounds are known to be highly thiophilic, we explored whether auranofin might behave as an effective enzyme inhibitor and as a potential antileishmanial agent. Notably, enzymatic assays revealed that auranofin causes indeed a pronounced enzyme inhibition. To gain a deeper insight into the molecular basis of enzyme inhibition, crystals of the auranofin-bound enzyme, in the presence of NADPH, were prepared, and the X-ray crystal structure of the auranofin-trypanothione reductase-NADPH complex was solved at 3.5 Ĺ resolution. In spite of the rather low resolution, these data were of sufficient quality as to identify the presence of the gold center and of the thiosugar of auranofin, and to locate them within the overall protein structure. Gold binds to the two active site cysteine residues of TR, i.e. Cys52 and Cys57, while the thiosugar moiety of auranofin binds to the trypanothione binding site; thus auranofin appears to inhibit TR through a dual mechanism. Auranofin kills the promastigote stage of L. infantum at micromolar concentration; these findings will contribute to the design of new drugs against leishmaniasis. PMID:21833767

Ilari, Andrea; Baiocco, Paola; Messori, Luigi; Fiorillo, Annarita; Boffi, Alberto; Gramiccia, Marina; Di Muccio, Trentina; Colotti, Gianni

2012-02-01

343

Nitrogen transformations as inferred from the activities of key enzymes in the Arabian Sea oxygen minimum zone  

NASA Astrophysics Data System (ADS)

Vertical distributions of the potential activities of some key enzymes mediating nitrification and denitrification were investigated within the oxygen (O 2) minimum zone of the Arabian Sea at a number of locations between latitudes 17°N and 21°N and longitudes 63°E and 68°E so as to get an insight into the predominant biochemical mode(s) of production and consumption of nitrous oxide (N 2O). Results revealed that the dissimilatory nitrate (NO -3) reduction activity was generally very low or absent within the ? ? range 26.6-26.8, which corresponds to the Persian Gulf Watermass (PGW). Depth profiles of nitrate reductase (NaR), nitrite reductase (NiR) and ammonia monooxygenase (AMO) activities were compared with those of O 2, NO -3, nitrite (NO -2) and N 2O, and it is concluded that nitrifier denitrification rather than heterotrophic denitrification is active within the core of PGW. The presence of multiple peaks of AMO activity coinciding with distinct maxima in the O 2 profile and with a trend opposite to that of NaR activity indicates that the two processes, viz., classical and nitrifier denitrification, occur in discrete layers, probably determined by the variations in the ambient O 2 concentrations at various depths surrounding the PGW core. Further, it appears that at the depths where nitrifier denitrification is active in the absence of heterotrophic denitrification, N 2O builds up as its consumption may be inhibited by O 2. Possible reasons for the occurrence of appreciable nitrate deficit within the core of PGW, where dissimilatory NO -3 reduction is lacking, are discussed.

Shailaja, M. S.; Narvekar, P. V.; Alagarsamy, R.; Naqvi, S. W. A.

2006-06-01

344

Identification of key components in the energy metabolism of the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus by transcriptome analyses  

PubMed Central

Energy conservation via the pathway of dissimilatory sulfate reduction is present in a diverse group of prokaryotes, but is most comprehensively studied in Deltaproteobacteria. In this study, whole-genome microarray analyses were used to provide a model of the energy metabolism of the sulfate-reducing archaeon Archaeoglobus fulgidus, based on comparative analysis of litoautotrophic growth with H2/CO2 and thiosulfate, and heterotrophic growth on lactate with sulfate or thiosulfate. Only 72 genes were expressed differentially between the cultures utilizing sulfate or thiosulfate, whereas 269 genes were affected by a shift in energy source. We identified co-located gene cluster encoding putative lactate dehydrogenases (LDHs; lldD, dld, lldEFG), also present in sulfate-reducing bacteria. These enzymes may take part in energy conservation in A. fulgidus by specifically linking lactate oxidation with APS reduction via the Qmo complex. High transcriptional levels of Fqo confirm an important role of F420H2, as well as a menaquinone-mediated electron transport chain, during heterotrophic growth. A putative periplasmic thiosulfate reductase was identified by specific up-regulation. Also, putative genes for transport of sulfate and sulfite are discussed. We present a model for hydrogen metabolism, based on the probable bifurcation reaction of the Mvh:Hdl hydrogenase, which may inhibit the utilization of Fdred for energy conservation. Energy conservation is probably facilitated via menaquinone to multiple membrane-bound heterodisulfide reductase (Hdr) complexes and the DsrC protein—linking periplasmic hydrogenase (Vht) to the cytoplasmic reduction of sulfite. The ambiguous roles of genes corresponding to fatty acid metabolism induced during growth with H2 are discussed. Putative co-assimilation of organic acids is favored over a homologous secondary carbon fixation pathway, although both mechanisms may contribute to conserve the amount of Fdred needed during autotrophic growth with H2. PMID:24672515

Hocking, William P.; Stokke, Runar; Roalkvam, Irene; Steen, Ida H.

2014-01-01

345

NAD(P)H-Hydrate Dehydratase- A Metabolic Repair Enzyme and Its Role in Bacillus subtilis Stress Adaptation  

PubMed Central

Background One of the strategies for survival stress conditions in bacteria is a regulatory adaptive system called general stress response (GSR), which is dependent on the SigB transcription factor in Bacillus sp. The GSR is one of the largest regulon in Bacillus sp., including about 100 genes; however, most of the genes that show changes in expression during various stresses have not yet been characterized or assigned a biochemical function for the encoded proteins. Previously, we characterized the Bacillus subtilis168 osmosensitive mutant, defective in the yxkO gene (encoding a putative ribokinase), which was recently assigned in vitro as an ADP/ATP-dependent NAD(P)H-hydrate dehydratase and was demonstrated to belong to the SigB operon. Methods and Results We show the impact of YxkO on the activity of SigB-dependent Pctc promoter and adaptation to osmotic and ethanol stress and potassium limitation respectively. Using a 2DE approach, we compare the proteomes of WT and mutant strains grown under conditions of osmotic and ethanol stress. Both stresses led to changes in the protein level of enzymes that are involved in motility (flagellin), citrate cycle (isocitrate dehydrogenase, malate dehydrogenase), glycolysis (phosphoglycerate kinase), and decomposition of Amadori products (fructosamine-6-phosphate deglycase). Glutamine synthetase revealed a different pattern after osmotic stress. The patterns of enzymes for branched amino acid metabolism and cell wall synthesis (L-alanine dehydrogenase, aspartate-semialdehyde dehydrogenase, ketol-acid reductoisomerase) were altered after ethanol stress. Conclusion We performed the first characterization of a Bacillus subtilis168 knock-out mutant in the yxkO gene that encodes a metabolite repair enzyme. We show that such enzymes could play a significant role in the survival of stressed cells. PMID:25393291

Dvoracek, Lukas; Streitova, Eliska; Licha, Irena

2014-01-01

346

Cell size as a key determinant of phytoplankton metabolism and community structure.  

PubMed

Phytoplankton size structure controls the trophic organization of planktonic communities and their ability to export biogenic materials toward the ocean's interior. Our understanding of the mechanisms that drive the variability in phytoplankton size structure has been shaped by the assumption that the pace of metabolism decreases allometrically with increasing cell size. However, recent field and laboratory evidence indicates that biomass-specific production and growth rates are similar in both small and large cells but peak at intermediate cell sizes. The maximum nutrient uptake rate scales isometrically with cell volume and superisometrically with the minimum nutrient quota. The unimodal size scaling of phytoplankton growth arises from ataxonomic, size-dependent trade-off processes related to nutrient requirement, acquisition, and use. The superior ability of intermediate-size cells to exploit high nutrient concentrations explains their biomass dominance during blooms. Biogeographic patterns in phytoplankton size structure and growth rate are independent of temperature and driven mainly by changes in resource supply. PMID:25062405

Marańón, Emilio

2015-01-01

347

Stable Carbon Isotope Discrimination by Form IC Rubisco Enzymes of the Extremely Metabolically Versatile Rhodobacter sphaeroides and Ralstonia eutropha}  

NASA Astrophysics Data System (ADS)

Variations in the relative amounts of 12C and 13C in microbial biomass can be used to infer the pathway(s) autotrophs use to fix and assimilate dissolved inorganic carbon. Discrimination against 13C by the enzymes catalyzing autotrophic carbon fixation is a major factor dictating biomass stable carbon isotopic compositions (?13C = {[13C/12Csample/13C/12Cstandard] - 1} × 1000). Five different forms of RubisCO (IA, IB, IC, ID, and II) are utilized by algae and autotrophic bacteria reliant on the Calvin-Benson cycle for carbon fixation. To date, isotope discrimination has been measured for form IA, IB, and II RubisCOs, and their ? values (={[12k/13k] - 1} × 1000; 12k and 13k = rates of 12C and 13C fixation) range from 18 to 29‰, explaining the variation in biomass ?13C values of autotrophs utilizing these enzymes. Isotope discrimination by form IC RubisCO has not been measured, despite the presence of this enzyme in many proteobacteria of ecological interest, including marine manganese-oxidizing bacteria, some nitrifying and nitrogen-fixing bacteria, and extremely metabolically versatile organisms such as Rhodobacter sphaeroides and Ralstonia eutropha. The purpose of this work was to determine the ? values for form IC RubisCO enzymes from R. sphaeroides and R. eutropha. Recombinant form IC RubisCOs were purified by conventional column chromatography procedures. Assay conditions (pH, dissolved inorganic carbon concentration) were tested to determine which parameters were conducive to the high rates of carbon fixation necessary for ? determination. Under standard conditions (pH 8.5 and 5 mM DIC), form IC RubisCO activities were sufficient for ? determination. Experiments are currently being conducted to measure the ? values of these enzymes. Sampling the full phylogenetic breadth of RubisCO enzymes for isotopic discrimination makes it possible to constrain the range of ?13C values of organisms fixing carbon via the Calvin-Benson cycle. These results are critical for determining the degree to which Calvin cycle carbon fixation contributes to primary and secondary productivity in microbially-dominated food webs.

Thomas, P. J.; Boller, A. J.; Zhao, Z.; Tabita, F. R.; Cavanaugh, C. M.; Scott, K. M.

2006-12-01

348

Experiment K-7-21: Effect of Microgravity on 1: Metabolic Enzymes of Type 1 and Type 2 Muscle Fibers, and on 2: Metabolic Enzymes, Neurotransmitter Amino Acids, and Neurotransmitter Associated Enzymes in Selected Regions of the Central Nervous System. Part 1; Metabolic Enzymes of Individual Muscle Fibers  

NASA Technical Reports Server (NTRS)

Individual fibers of any given muscle vary widely in enzyme composition, a fact obscured when enzyme levels of whole muscle are measured. Therefore, the purpose of this part of the study was to assess the effects of microgravity and hind limb suspension on the enzyme patterns within a slow twitch muscle (soleus) and a fast twitch muscle (tibialis anterior).

Lowry, O. H.; Ilyina-Kakueva, E. I.; Krasnov, I. B.; Carter, J. G.; Chi, M. M.-Y.; Choksi, R.; Manchester, J. K.; McDougal, D. B.; Nemeth, P. M.; Pusateri, M. E.

1994-01-01

349

[Influence of 3,5,3'-triiodo-L-thyronine on the hepatic enzyme activities responsible for the metabolism of xenobiotics during the development of the chick embryo].  

PubMed

The influence of thyroid hormones on microsomal drug metabolizing enzymes was studied in hypothyroid newborn rats and chick embryos. Administration of 3,5,3'-triiodo-L-thyronine strongly decreased the microsomal cytochrome P 450 content in hypothyroid new-born rats and thus could render the rat pup more susceptible to hepatotoxicity from drugs. The drug metabolizing system in 20 days old chick embryos was less sensitive to the effects of thyroid hormone, but administration of phenobarbital was accompanied by a strongly induction effect on microsomal enzyme activities. PMID:2976299

Goudonnet, H; Mounié, J; Escousse, A; Truchot, R C

1988-01-01

350

METABOLIC SOURCES OF HEAT AND POWER IN TUNA MUSCLES II. ENZYME AND METABOLITE PROFILES  

Microsoft Academic Search

SUMMARY Tuna appear able to maintain their muscles at 5~io°C above ambient by balancing heat produced in situ and conserved by a counter-current heat exchanger with heat lost to the sea. Metabolite profiles under three different activity states (rest, burst swimming, and steady state swimming during feed- ing frenzies at sea) were used to identify which metabolic processes in white

M. GUPPY; P. W. HOCHACHKA

351

The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases  

PubMed Central

The MetaCyc database (http://metacyc.org/) provides a comprehensive and freely accessible resource for metabolic pathways and enzymes from all domains of life. The pathways in MetaCyc are experimentally determined, small-molecule metabolic pathways and are curated from the primary scientific literature. MetaCyc contains more than 1800 pathways derived from more than 30?000 publications, and is the largest curated collection of metabolic pathways currently available. Most reactions in MetaCyc pathways are linked to one or more well-characterized enzymes, and both pathways and enzymes are annotated with reviews, evidence codes and literature citations. BioCyc (http://biocyc.org/) is a collection of more than 1700 organism-specific Pathway/Genome Databases (PGDBs). Each BioCyc PGDB contains the full genome and predicted metabolic network of one organism. The network, which is predicted by the Pathway Tools software using MetaCyc as a reference database, consists of metabolites, enzymes, reactions and metabolic pathways. BioCyc PGDBs contain additional features, including predicted operons, transport systems and pathway-hole fillers. The BioCyc website and Pathway Tools software offer many tools for querying and analysis of PGDBs, including Omics Viewers and comparative analysis. New developments include a zoomable web interface for diagrams; flux-balance analysis model generation from PGDBs; web services; and a new tool called Web Groups. PMID:22102576

Caspi, Ron; Altman, Tomer; Dreher, Kate; Fulcher, Carol A.; Subhraveti, Pallavi; Keseler, Ingrid M.; Kothari, Anamika; Krummenacker, Markus; Latendresse, Mario; Mueller, Lukas A.; Ong, Quang; Paley, Suzanne; Pujar, Anuradha; Shearer, Alexander G.; Travers, Michael; Weerasinghe, Deepika; Zhang, Peifen; Karp, Peter D.

2012-01-01

352

Thermostable lipoxygenase, a key enzyme in bioconversion of linoleic acid to trihycroxy-octadecenoic acid by Pseudomonas aeruginosa PR3  

Technology Transfer Automated Retrieval System (TEKTRAN)

Lipoxygenases, enzymes that contain non-heme iron, catalyze the oxidation of unsaturated fatty acids with a (1Z,4Z)-pentadiene moiety leading to conjugated (Z,E)-hydroperoxydienoic acids. These enzymes are widely distributed in plants and animals, and a few microorganisms are reported as well. It ...

353

Short-term hepatic effects of depleted uranium on xenobiotic and bile acid metabolizing cytochrome P450 enzymes in the rat  

Microsoft Academic Search

The toxicity of uranium has been demonstrated in different organs, including the kidneys, skeleton, central nervous system,\\u000a and liver. However, few works have investigated the biological effects of uranium contamination on important metabolic function\\u000a in the liver. In vivo studies were conducted to evaluate its effects on cytochrome P450 (CYP) enzymes involved in the metabolism\\u000a of cholesterol and xenobiotics in

Y. Guéguen; M. Souidi; C. Baudelin; N. Dudoignon; S. Grison; I. Dublineau; C. Marquette; P. Voisin; P. Gourmelon; J. Aigueperse

2006-01-01

354

Metabolic flux analysis of pykF gene knockout Escherichia coli based on 13 C-labeling experiments together with measurements of enzyme activities and intracellular metabolite concentrations  

Microsoft Academic Search

Metabolic flux analysis based on 13C-labeling experiments followed by the measurement of intracellular isotope distribution using both 2D NMR and GC-MS was carried out to investigate the effect of pyruvate kinase (pyk) gene knockout on the metabolism of Escherichia coli in continuous culture. In addition, the activities of 16 enzymes, and the concentrations of 5 intracellular metabolites, were measured as

K. Al Zaid Siddiquee; M. J. Arauzo-Bravo; K. Shimizu

2004-01-01

355

Effects of conjugated linoleic acid isomers on lipid-metabolizing enzymes in male rats  

Microsoft Academic Search

Male weanling Wistar rats (n=15), weighing 200–220 g, were allocated for 6 wk to diets containing 1% (by weight) of conjugated linoleic acid (CLA), either\\u000a as the 9c,11t-isomer, the 10t,12c-isomer, or as a mixture containing 45% of each of these isomers. The five rats of the control group received 1% of oleic\\u000a acid instead. Selected enzyme activities were determined in

Jean-Charles Martin; Stéphane Grégoire; Marie-Hélčne Siess; Martine Genty; Jean-Michel Chardigny; Olivier Berdeaux; Pierre Juaneda; Jean-Louis Sébédio

2000-01-01

356

Simultaneous Preparation from Human Placenta of Several Enzymes of Glucose Metabolism  

Microsoft Academic Search

A procedure for the simultaneous purification to homogeneity of hexokinase, phosphoglucomutase 1 and 2, aldolase, phosphoglucose isomerase and glucose-6-phosphate dehydrogenase from human origin has been developed. Human placenta homogenate was first chromatographed on DE-52 column which retains hexokinase and glucose-6-phosphate dehydrogenase while the other enzymes are recovered in the unabsorbed protein fraction. The other steps in the purification involve Matrex

A. Fazi; M. Magnani; A. Accorsi; P. Ninfali; G. Fornaini

1988-01-01

357

Enzymes of phenylpropanoid metabolism in the important medicinal plant Melissa officinalis L  

Microsoft Academic Search

Lemon balm (Melissa officinalis, Lamiaceae) is a well-known medicinal plant. Amongst the biologically active ingredients are a number of phenolic compounds,\\u000a the most prominent of which is rosmarinic acid. To obtain better knowledge of the biosynthesis of these phenolic compounds,\\u000a two enzymes of the general phenylpropanoid pathway, phenylalanine ammonia-lyase (PAL) and 4-coumarate:coenzyme A-ligase (4CL),\\u000a were investigated in suspension cultures of

Corinna Weitzel; Maike Petersen

2010-01-01

358

Enzymes Related to Lactate Metabolism in Green Algae and Lower Land Plants 1  

PubMed Central

Cell-free extracts of Chlorella pyrenoidosa contained two enzymes capable of oxidizing d-lactate; these were glycolate dehydrogenase and NAD+-dependent d-lactate dehydrogenase. The two enzymes could be distinguished by differential centrifugation, glycolate dehydrogenase being largely particulate and NAD+-d-lactate dehydrogenase being soluble. The reduction of pyruvate by NADH proceeded more rapidly than the reverse reaction, and the apparent Michaelis constants for pyruvate and NADH were lower than for d-lactate and NAD+. These data indicated that under physiological conditions, the NAD+-linked d-lactate dehydrogenase probably functions to produce d-lactate from pyruvate. Lactate dehydrogenase activity dependent on NAD+ was found in a number of other green algae and in the green tissues of a few lower land plants. When present in species which contain glycolate oxidase rather than glycolate dehydrogenase, the enzyme was specific for l-lactate rather than d-lactate. A cyclic system revolving around the production and utilization of d-lactate in some species and l-lactate in certain others is proposed. PMID:16658670

Gruber, Peter J.; Frederick, Sue Ellen; Tolbert, N. E.

1974-01-01

359

Enzymes of phenylpropanoid metabolism in the important medicinal plant Melissa officinalis L.  

PubMed

Lemon balm (Melissa officinalis, Lamiaceae) is a well-known medicinal plant. Amongst the biologically active ingredients are a number of phenolic compounds, the most prominent of which is rosmarinic acid. To obtain better knowledge of the biosynthesis of these phenolic compounds, two enzymes of the general phenylpropanoid pathway, phenylalanine ammonia-lyase (PAL) and 4-coumarate:coenzyme A-ligase (4CL), were investigated in suspension cultures of lemon balm. MoPAL1 and Mo4CL1 cDNAs were cloned and heterologously expressed in Escherichia coli and the enzymes characterised. Expression analysis of both genes showed a correlation with the enzyme activities and rosmarinic acid content during a cultivation period of the suspension culture. Southern-blot analysis suggested the presence of most probably two gene copies in the M. officinalis genome of both PAL and 4CL. The genomic DNA sequences of MoPAL1 and Mo4CL1 were amplified and sequenced. MoPAL1 contains one phase 2 intron of 836 bp at a conserved site, whilst Mo4CL1 was devoid of introns. PMID:20563822

Weitzel, Corinna; Petersen, Maike

2010-08-01

360

Structure-Function Mapping of Key Determinants for Hydrocarbon Biosynthesis by Squalene and Squalene Synthase-like Enzymes from the Green Alga Botryococcus braunii Race B.  

PubMed

Squalene and botryococcene are branched-chain, triterpene compounds that arise from the head-to-head condensation of two molecules of farnesyl diphosphate to yield 1'-1 and 1'-3 linkages, respectively. The enzymes that catalyze their formation have attracted considerable interest from the medical field as potential drug targets and the renewable energy sector for metabolic engineering efforts. Recently, the enzymes responsible for botryococcene and squalene biosynthesis in the green alga Botryococcus braunii race B were characterized. To better understand how the specificity for the 1'-1 and 1'-3 linkages was controlled, we attempted to identify the functional residues and/or domains responsible for this step in the catalytic cascade. Existing crystal structures for the mammalian squalene synthase and Staphylococcus dehydrosqualene synthase enzymes were exploited to develop molecular models for the B. braunii botryococcene and squalene synthase enzymes. Residues within the active sites that could mediate catalytic specificity were identified, and reciprocal mutants were created in an attempt to interconvert the reaction product specificity of the enzymes. We report here the identification of several amino acid positions contributing to the rearrangement of the cyclopropyl intermediate to squalene, but these same positions do not appear to be sufficient to account for the cyclopropyl rearrangement to give botryococcene. PMID:25393512

Bell, Stephen A; Niehaus, Thomas D; Nybo, S Eric; Chappell, Joseph

2014-12-01

361

Final Project Report - Coupled Biogeochemical Process Evaluation for Conceptualizing Trichloriethylene Co-Metabolism: Co-Metabolic Enzyme Activity Probes and Modeling Co-Metabolism and Attenuation  

SciTech Connect

Trichloroethene (TCE) (also known as trichloroethylene) is a common contaminant in groundwater. TCE is regulated in drinking water at a concentration of 5 µg/L, and a small mass of TCE has the potential to contaminant large volumes of water. The physical and chemical characteristics of TCE allow it to migrate quickly in most subsurface environments, and thus large plumes of contaminated groundwater can form from a single release. The migration and persistence of TCE in groundwater can be limited by biodegradation. TCE can be biodegraded via different processes under either anaerobic or aerobic conditions. Anaerobic biodegradation is widely recognized, but aerobic degradation is less well recognized. Under aerobic conditions, TCE can be oxidized to non hazardous conditions via cometabolic pathways. This study applied enzyme activity probes to demonstrate that cometabolic degradation of TCE occurs in aerobic groundwater at several locations, used laboratory microcosm studies to determine aerobic degradation rates, and extrapolated lab-measured rates to in situ rates based on concentrations of microorganisms with active enzymes involved in cometabolic TCE degradation. Microcosms were constructed using basalt chips that were inoculated with microorganisms to groundwater at the Idaho National Laboratory Test Area North TCE plume by filling a set of Flow-Through In Situ Reactors (FTISRs) with chips and placing the FTISRs into the open interval of a well for several months. A parametric study was performed to evaluate predicted degradation rates and concentration trends using a competitive inhibition kinetic model, which accounts for competition for enzyme active sites by both a growth substrate and a cometabolic substrate. The competitive inhibition kinetic expression was programmed for use in the RT3D reactive transport package. Simulations of TCE plume evolution using both competitive inhibition kinetics and first order decay were performed.

Starr, Robert C; Orr, Brennon R; Lee, M Hope; Delwiche, Mark

2010-02-26

362

Glutathione metabolism enzymes in brain and liver of hyperphenylalaninemic rats and the effect of lipoic acid treatment.  

PubMed

Phenylketonuria (PKU) is a disorder caused by a deficiency in phenylalanine hydroxylase activity, which converts phenylalanine (Phe) to tyrosine, leading to hyperphenylalaninemia (HPA) with accumulation of Phe in tissues of patients. The neuropathophysiology mechanism of disease remains unknown. However, recently the involvement of oxidative stress with decreased glutathione levels in PKU has been reported. Intracellular glutathione (GSH) levels may be maintained by the antioxidant action of lipoic acid (LA). The aim of this study was to evaluate the activity of the enzymes involved in the metabolism and function of GSH, such as glutathione peroxidase (GSH-Px), glucose-6-phosphate dehydrogenase (G6PD), glutathione reductase (GR), glutamate-cysteine ligase (GCL), glutathione-S-transferase (GST) and GSH content in brain and liver of young rats subjected to a chemically induced model of HPA and the effect of LA for a week. In brain, the administration of Phe reduced the activity of the GSH-Px, GR and G6PD and LA prevented these effects totally or partially. GCL activity was increased by HPA and was not affect by LA antioxidant treatment. GST activity did not differ between groups. GSH content was increased by LA and decreased by HPA treatment in brain samples. Considering the liver, all parameters analyzed were increased in studied HPA animals and LA was able to hinder some effects except for the GCL, GST enzymes and GSH content. These results suggested that HPA model alter the metabolism of GSH in rat brain and liver, which may have an important role in the maintenance of GSH function in PKU although liver is not a directly affected organ in this disease. So, an antioxidant therapy with LA may be useful in the treatment of oxidative stress in HPA. PMID:24488205

Moraes, Tarsila Barros; Dalazen, Giovana Reche; Jacques, Carlos Eduardo; de Freitas, Raylane Silva; Rosa, Andrea Pereira; Dutra-Filho, Carlos Severo

2014-09-01

363

Modulation of the expression of folate cycle enzymes and polyamine metabolism by berberine in cisplatin-sensitive and -resistant human ovarian cancer cells.  

PubMed

Berberine is a natural isoquinoline alkaloid with significant antitumor activity against many types of cancer cells, including ovarian tumors. This study investigated the molecular mechanisms by which berberine differently affects cell growth of cisplatin (cDDP)-sensitive and -resistant and polyamine analogue cross-resistant human ovarian cancer cells. The results show that berberine suppresses the growth of cDDP-resistant cells more than the sensitive counterparts, by interfering with the expression of folate cycle enzymes, dihydrofolate reductase (DHFR) and thymidylate synthase (TS). In addition, the impairment of the folate cycle also seems partly ascribable to a reduced accumulation of folate, a vitamin which plays an essential role in the biosynthesis of nucleic acids and amino acids. This effect was observed in both lines, but especially in the resistant cells, correlating again with the reduced tolerance to this isoquinoline alkaloid. The data also indicate that berberine inhibits cellular growth by affecting polyamine metabolism, in particular through the upregulation of the key catabolic enzyme, spermidine/spermine N1-acetyltransferase (SSAT). In this regard, berberine is shown to stimulate the SSAT induction by the spermine analogue N1, N12 bisethylspermine (BESpm), which alone was also able to downregulate DHFR mRNA more than TS mRNA. We report that the sensitivity of resistant cells to cisplatin or to BESpm is reverted to the levels of sensitive cells by the co-treatment with berberine. These data confirm the intimate inter-relationships between folate cycle and polyamine pathways and suggest that this isoquinoline plant alkaloid could be a useful adjuvant therapeutic agent in the treatment of ovarian carcinoma. PMID:23903781

Marverti, Gaetano; Ligabue, Alessio; Lombardi, Paolo; Ferrari, Stefania; Monti, Maria Giuseppina; Frassineti, Chiara; Costi, Maria Paola

2013-10-01

364

Enzymes involved in metabolism of extracellular nucleotides and nucleosides: functional implications and measurement of activities.  

PubMed

Extracellular nucleotides and nucleosides mediate diverse signaling effects in virtually all organs and tissues. Most models of purinergic signaling depend on functional interactions between distinct processes, including (i) the release of endogenous ATP and other nucleotides, (ii) triggering of signaling events via a series of nucleotide-selective ligand-gated P2X and metabotropic P2Y receptors as well as adenosine receptors and (iii) ectoenzymatic interconversion of purinergic agonists. The duration and magnitude of purinergic signaling is governed by a network of ectoenzymes, including the enzymes of the nucleoside triphosphate diphosphohydrolase (NTPDase) family, the nucleotide pyrophosphatase/phosphodiesterase (NPP) family, ecto-5'-nucleotidase/CD73, tissue-nonspecific alkaline phosphatase (TNAP), prostatic acid phosphatase (PAP) and other alkaline and acid phosphatases, adenosine deaminase (ADA) and purine nucleoside phosphorylase (PNP). Along with "classical" inactivating ectoenzymes, recent data provide evidence for the co-existence of a counteracting ATP-regenerating pathway comprising the enzymes of the adenylate kinase (AK) and nucleoside diphosphate kinase (NDPK/NME/NM23) families and ATP synthase. This review describes recent advances in this field, with special emphasis on purine-converting ectoenzymes as a complex and integrated network regulating purinergic signaling in such (patho)physiological states as immunomodulation, inflammation, tumorigenesis, arterial calcification and other diseases. The second part of this review provides a comprehensive overview and basic principles of major approaches employed for studying purinergic activities, including spectrophotometric Pi-liberating assays, high-performance liquid chromatographic (HPLC) and thin-layer chromatographic (TLC) analyses of purine substrates and metabolites, capillary electrophoresis, bioluminescent, fluorometric and electrochemical enzyme-coupled assays, histochemical staining, and further emphasizes their advantages, drawbacks and suitability for assaying a particular catalytic reaction. PMID:25418535

Yegutkin, Gennady G

2014-01-01

365

Multilocus Genotypes of Relevance for Drug Metabolizing Enzymes and Therapy with Thiopurines in Patients with Acute Lymphoblastic Leukemia  

PubMed Central

Multilocus genotypes have been shown to be of relevance for using pharmacogenomic principles to individualize drug therapy. As it relates to thiopurine therapy, genetic polymorphisms of TPMT are strongly associated with the pharmacokinetics and clinical effects of thiopurines (mercaptopurine and azathioprine), influencing their toxicity and efficacy. We have recently demonstrated that TPMT and ITPA genotypes constitute a multilocus genotype of pharmacogenetic relevance for children with acute lymphoblastic leukemia (ALL) receiving thiopurine therapy. The use of high-throughput genomic analysis allows identification of additional candidate genetic factors associated with pharmacogenetic phenotypes, such as TPMT enzymatic activity: PACSIN2 polymorphisms have been identified by a genome-wide analysis, combining evaluation of polymorphisms and gene expression, as a significant determinant of TPMT activity in the HapMap CEU cell lines and the effects of PACSIN2 on TPMT activity and mercaptopurine induced adverse effects were confirmed in children with ALL. Combination of genetic factors of relevance for thiopurine metabolizing enzyme activity, based on the growing understanding of their association with drug metabolism and efficacy, is particularly promising for patients with pediatric ALL. The knowledge basis and clinical applications for multilocus genotypes of importance for therapy with mercaptopurine in pediatric ALL is discussed in the present review. PMID:23335936

Stocco, Gabriele; Franca, Raffaella; Verzegnassi, Federico; Londero, Margherita; Rabusin, Marco; Decorti, Giuliana

2013-01-01

366

The Effects of Space Flight on Some Liver Enzymes Concerned with Carbohydrate and Lipid Metabolism in Rats  

NASA Technical Reports Server (NTRS)

The activities of about 30 enzymes concerned with carbohydrate and lipid metabolism and the levels of glycogen and of individual fatty acids were measured in livers of rats ex- posed to prolonged space flight (18.5 days) aboard COSMOS 986 Biosatellite. When flight stationary, (FS) and flight centrifuged (FC) rats were compared at recovery (R(sub 0)), decrceases in the activities of glycogen phosphorylase, alpha glycerphosphate, acyl transferase, diglyceride acyl transferase, acconitase and Epsilon-phosphogluconate dehydrogenase were noted in the weightless group (FS). The significance of these findings was strengthened since all activities, showing alterations at R(sub 0), returned to normal 25 days post-flight. Differences were also seen in levels of two liver constituents. When glycogen and total fatty acids of the two groups of flight animals were determined, differences that could be attributed to reduced gravity were observed, the FS group at R(sub 0) contained, on the average, more than twice the amount of glycogen than did controls ad a remarkable shift in the ratio of palmitate to palmitoleate were noted. These metabolic alterations appear to be unique to the weightless condition. Our data justify the conclusion that centrifugation during space flight is equivalent to terrestrial gravity.

Abraham, S.; Lin, C. Y.; Klein, H. P.; Volkmann, C.

1978-01-01

367

Multilocus genotypes of relevance for drug metabolizing enzymes and therapy with thiopurines in patients with acute lymphoblastic leukemia.  

PubMed

Multilocus genotypes have been shown to be of relevance for using pharmacogenomic principles to individualize drug therapy. As it relates to thiopurine therapy, genetic polymorphisms of TPMT are strongly associated with the pharmacokinetics and clinical effects of thiopurines (mercaptopurine and azathioprine), influencing their toxicity and efficacy. We have recently demonstrated that TPMT and ITPA genotypes constitute a multilocus genotype of pharmacogenetic relevance for children with acute lymphoblastic leukemia (ALL) receiving thiopurine therapy. The use of high-throughput genomic analysis allows identification of additional candidate genetic factors associated with pharmacogenetic phenotypes, such as TPMT enzymatic activity: PACSIN2 polymorphisms have been identified by a genome-wide analysis, combining evaluation of polymorphisms and gene expression, as a significant determinant of TPMT activity in the HapMap CEU cell lines and the effects of PACSIN2 on TPMT activity and mercaptopurine induced adverse effects were confirmed in children with ALL. Combination of genetic factors of relevance for thiopurine metabolizing enzyme activity, based on the growing understanding of their association with drug metabolism and efficacy, is particularly promising for patients with pediatric ALL. The knowledge basis and clinical applications for multilocus genotypes of importance for therapy with mercaptopurine in pediatric ALL is discussed in the present review. PMID:23335936

Stocco, Gabriele; Franca, Raffaella; Verzegnassi, Federico; Londero, Margherita; Rabusin, Marco; Decorti, Giuliana

2012-01-01

368

Alterations in brush border membrane enzymes, carbohydrate metabolism and oxidative damage to rat intestine by potassium bromate.  

PubMed

The acute toxicity of potassium bromate (KBrO(3)) on rat small intestine was studied in this work. Animals were given a single oral dose of KBrO(3) (100 mg/kg body weight) and sacrificed 12, 24, 48, 96 and 168 h after the treatment; control animals were not given KBrO(3). The administration of KBrO(3) resulted in a reversible decline in the specific activities of several BBM enzymes. Lipid peroxidation, protein oxidation and hydrogen peroxide levels increased while total sulfhydryl groups and reduced glutathione decreased in KBrO(3)-treated rats indicating induction of oxidative stress in the intestinal mucosa. The activities of anti-oxidant and carbohydrate metabolic enzymes were also altered upon KBrO(3) treatment. The maximum changes in all the parameters were 48 h after administration of KBrO(3) after which recovery took place, in many cases almost to control values after 168 h. Histopathological studies supported the biochemical findings showing extensive damage to the intestine at 48 h and recovery at 168 h. These results show that a single oral dose of KBrO(3) causes reversible oxidative damage to the intestine. PMID:22974983

Ahmad, Mir Kaisar; Khan, Aijaz Ahmed; Mahmood, Riaz

2012-12-01

369

Metabolomic Analysis of Key Central Carbon Metabolism Carboxylic Acids as Their 3-Nitrophenylhydrazones by UPLC/ESI-MS  

PubMed Central

Multiple hydroxy-, keto-, di-, and tri-carboxylic acids are among the cellular metabolites of central carbon metabolism (CCM). Sensitive and reliable analysis of these carboxylates is important for many biological and cell engineering studies. In this work, we examined 3-nitrophenylhydrazine as a derivatizing reagent and optimized the reaction conditions for the measurement of ten CCM related carboxylic compounds, including glycolate, lactate, malate, fumarate, succinate, citrate, isocitrate, pyruvate, oxaloacetate, and ?-ketoglutarate as their 3-nitrophenylhydrazones using LC/MS with electrospray ionization. With the derivatization protocol which we have developed, and using negative-ion multiple reaction monitoring on a triple-quadrupole instrument, all of the carboxylates showed good linearity within a dynamic range of ca. 200 to more than 2000. The on-column limits of detection and quantitation were from high femtomoles to low picomoles. The analytical accuracies for eight of the ten analytes were determined to be between 89.5 to 114.8% (CV?7.4%, n=6). Using a quadrupole time-of-flight instrument, the isotopic distribution patterns of these carboxylates, extracted from a 13C-labeled mouse heart, were successfully determined by UPLC/MS with full-mass detection, indicating the possible utility of this analytical method for metabolic flux analysis. In summary, this work demonstrates an efficient chemical derivatization LC/MS method for metabolomic analysis of these key CCM intermediates in a biological matrix. PMID:23580203

Han, Jun; Gagnon, Susannah; Eckle, Tobias; Borchers, Christoph H.

2014-01-01

370

Xenobiotic-metabolizing enzymes in the skin of rat, mouse, pig, guinea pig, man, and in human skin models.  

PubMed

The exposure of the skin to medical drugs, skin care products, cosmetics, and other chemicals renders information on xenobiotic-metabolizing enzymes (XME) in the skin highly interesting. Since the use of freshly excised human skin for experimental investigations meets with ethical and practical limitations, information on XME in models comes in the focus including non-human mammalian species and in vitro skin models. This review attempts to summarize the information available in the open scientific literature on XME in the skin of human, rat, mouse, guinea pig, and pig as well as human primary skin cells, human cell lines, and reconstructed human skin models. The most salient outcome is that much more research on cutaneous XME is needed for solid metabolism-dependent efficacy and safety predictions, and the cutaneous metabolism comparisons have to be viewed with caution. Keeping this fully in mind at least with respect to some cutaneous XME, some models may tentatively be considered to approximate reasonable closeness to human skin. For dermal absorption and for skin irritation among many contributing XME, esterase activity is of special importance, which in pig skin, some human cell lines, and reconstructed skin models appears reasonably close to human skin. With respect to genotoxicity and sensitization, activating XME are not yet judgeable, but reactive metabolite-reducing XME in primary human keratinocytes and several reconstructed human skin models appear reasonably close to human skin. For a more detailed delineation and discussion of the severe limitations see the "Overview and Conclusions" section in the end of this review. PMID:25370008

Oesch, F; Fabian, E; Guth, K; Landsiedel, R

2014-12-01

371

Localization of key enzymes in alkaloid producing plants: Tryptophan synthase [Beta] in Camptotheca acuminata and tyrosine decarboxylase in Papaver somniferum  

E-print Network

enzymes, tryptophan synthase ? (TSB) and tyrosine decarboxylase (TyDC), have been localized in Camptotheca acuminata and Papaver somniferum respectively. In C. acuminata, TSB plays a role in the biosynthesis of the monoterpene indole alkaloid camptothecin...

El-Ahmady, Sherweit Hamed

2012-06-07

372

Enzymes of adenylate metabolism and their role in hibernation of the white-tailed prairie dog, Cynomys leucurus.  

PubMed

AMP deaminase (AMPD) and adenylate kinase (AK) were purified from skeletal muscle of the white-tailed prairie dog, Cynomus leucurus, and enzyme properties were assayed at temperatures characteristic of euthermia (37 degrees C) and hibernation (5 degrees C) to analyze their role in adenylate metabolism during hibernation. Total adenylates decreased in muscle of torpid individuals from 6.97 +/- 0. 31 to 4.66 +/- 0.58 micromol/g of wet weight due to a significant drop in ATP but ADP, AMP, IMP, and energy charge were unchanged. The affinity of prairie dog AMPD for AMP was not affected by temperature and did not differ from that of rabbit muscle AMPD, used for comparison. However, both prairie dog and rabbit AMPD showed much stronger inhibition by ions and GTP at 5 degrees C, versus 37 degrees C, and inhibition by inorganic phosphate, NH(4)Cl, and (NH(4))(2)SO(4) was much stronger at 5 degrees C for the prairie dog enzyme. Furthermore, ATP and ADP, which activated AMPD at 37 degrees C, were strong inhibitors of prairie dog AMPD at 5 degrees C, with I(50) values of 1 and 14 microM, respectively. ATP also inhibited rabbit AMPD at 5 degrees C (I(50) = 103 microM). Strong inhibition of AMPD at 5 degrees C by several effectors suggests that enzyme function is specifically suppressed in muscle of hibernating animals. By contrast, AK showed properties that would maintain or even enhance its function at low temperature. K(m) values for substrates (ATP, ADP, AMP) decreased with decreasing temperature, the change in K(m) ATP paralleling the decrease in muscle ATP concentration. AK inhibition by ions was also reduced at 5 degrees C. The data suggest that adenylate degradation via AMPD is blocked during hibernation but that AK maintains its function in stabilizing energy charge. PMID:10729194

English, T E; Storey, K B

2000-04-01

373

The multifaceted roles of metabolic enzymes in the Paracoccidioides species complex  

PubMed Central

Paracoccidioides species are dimorphic fungi and are the etiologic agents of paracoccidioidomycosis, which is a serious disease that involves multiple organs. The many tissues colonized by this fungus suggest a variety of surface molecules involved in adhesion. A surprising finding is that most enzymes in the glycolytic pathway, tricarboxylic acid (TCA) cycle and glyoxylate cycle in Paracoccidioides spp. have adhesive properties that aid in interacting with the host extracellular matrix and thus act as ‘moonlighting’ proteins. Moonlighting proteins have multiple functions, which adds a dimension to cellular complexity and benefit cells in several ways. This phenomenon occurs in both eukaryotes and prokaryotes. For example, moonlighting proteins from the glycolytic pathway or TCA cycle can play a role in bacterial pathogenesis by either acting as proteins secreted in a conventional pathway and/or as cell surface components that facilitate adhesion or adherence. This review outlines the multifunctionality exhibited by many Paracoccidioides spp. enzymes, including aconitase, aldolase, glyceraldehyde-3-phosphate dehydrogenase, isocitrate lyase, malate synthase, triose phosphate isomerase, fumarase, and enolase. We discuss the roles that moonlighting activities play in the virulence characteristics of this fungus and several other human pathogens during their interactions with the host.

Marcos, Caroline M.; de Oliveira, Haroldo C.; da Silva, Julhiany de F.; Assato, Patrícia A.; Fusco-Almeida, Ana M.; Mendes-Giannini, Maria J. S.

2014-01-01

374

Mathematica program: its use to simulate metabolic irreversible pathways and inhibition of the first enzyme of a pathway by its end product as visualized with the reservoir model.  

PubMed

The main objective of this report is to show the usefulness and versatility of the Mathematica program to simulate enzyme linear pathways and to depict the effect of changing the Vmax and/or Km values of one or more enzymes on the course of the reaction. In addition, analysis of the different types of inhibition of the first enzyme of the pathway by its end product is viewed with the reservoir model for enzyme kinetics. All the data shown here are quantitatively related to the kinetic constants of the implicated enzymes. Particular attention has been paid to calculate the time needed to achieve half of the possible total synthesis of the final product of a metabolic pathway. PMID:23746727

López-Cánovas, Francisco; Gomes, Paula J F; Sillero, Antonio

2013-08-01

375

Isolation and characterization of cDNA sequences of l-gulono-gamma-lactone oxidase, a key enzyme for biosynthesis of ascorbic acid, from extant primitive fish groups  

Microsoft Academic Search

Most advanced teleosts lack l-gulono-gamma-lactone oxidase (GULO), a key enzyme required for the biosynthesis of ascorbic acid. However, extant representatives of primitive species including sturgeon and many cartilaginous fishes, are exceptional in their ability to synthesize ascorbic acid de novo. In the present study, full-length GULO cDNAs were isolated from white sturgeon (Acipenser transmontanus) and two shark species belonging to

Young Sun Cho; Susan E. Douglas; Jeffrey W. Gallant; Keun Yong Kim; Dong Soo Kim; Yoon Kwon Nam

2007-01-01

376

COMPARISON OF IN VIVO AND IN VITRO METHODS FOR ASSESSING THE EFFECTS OF REPEATED DOSING WITH CARBON TETRACHLORIDE ON THE HEPATIC DRUG-METABOLIZING ENZYME SYSTEM (JOURNAL VERSION)  

EPA Science Inventory

The effect of a single i.p. injection of 0, 20, 200, and 1000 microliters/kg carbon tetrachloride on the activity of the hepatic drug-metabolizing enzyme system was measured in the rat by a model substrate assay, employing lindane (gamma-hexachlorocyclohexane), and by a battery o...

377

Metabolic Noise, Vestigial Metabolites or the Raw Material of Ecological Adaptation? Opportunitistic Enzymes, Catalytic Promiscuity and the Evolution of chemodiversity in Nature (2010 JGI User Meeting)  

SciTech Connect

Joseph Noel from the Salk Institute on "Metabolic Noise, Vestigial Metabolites or the Raw Material of Ecological Adaptation? Enzymes, Catalytic Promiscuity and the Evolution of Chemodiversity in Nature" on March 26, 2010 at the 5th Annual DOE JGI User Meeting

Noel, Joseph

2010-03-26

378

THE IMPORTANCE OF OBTAINING INFORMATION ON THE SPECIFIC CONTENT OF TISSUE ENZYMES METABOLIZING ORGANOPHOSPHORUS PESTICIDES, PRIOR TO DETERMINING VMAX, KM VALUES FOR USE IN PBPK MODELS  

EPA Science Inventory

Physiological pharmacokinetic\\pharmacodynamic models require Vmax, Km values for the metabolism of OPs by tissue enzymes. Current literature values cannot be easily used in OP PBPK models (i.e., parathion and chlorpyrifos) because standard methodologies were not used in their ...