Science.gov

Sample records for key structural analogues

  1. Structural Analogues of Selfotel.

    PubMed

    Dziuganowska, Zofia A; Ślepokura, Katarzyna; Volle, Jean-Noël; Virieux, David; Pirat, Jean-Luc; Kafarski, Paweł

    2016-06-17

    A small library of phosphonopiperidylcarboxylic acids, analogues of NMDA antagonist selfotel (CGS 19755), was synthesized. First, the series of aromatic esters was obtained via a palladium-catalyzed cross-coupling reaction (Hirao coupling) of dialkyl phosphites with bromopyridinecarboxylates, followed by their hydrolysis. Then, hydrogenation of the resulting phosphonopyridylcarboxylic acids over PtO2 yielded the desired phosphonopiperidylcarboxylic acids. NMR studies indicated that the hydrogenation reaction proceeds predominantly by cis addition. Several compounds were obtained as monocrystal structures. Preliminary biological studies performed on cultures of neurons suggest that the obtained compounds possess promising activity toward NMDA receptors. PMID:27187758

  2. Materials analogue of zero-stiffness structures

    NASA Astrophysics Data System (ADS)

    Kumar, Arun; Subramaniam, Anandh

    2011-04-01

    Anglepoise lamps and certain tensegrities are examples of zero-stiffness structures. These structures are in a state of neutral equilibrium with respect to changes in configuration of the system. Using Eshelby's example of an edge dislocation in a thin plate that can bend, we report the discovery of a non-trivial new class of material structures as an analogue to zero-stiffness structures. For extended positions of the edge dislocation in these structures, the dislocation experiences a zero image force. Salient features of these material structures along with the key differences from conventional zero-stiffness structures are pointed out.

  3. Total synthesis of vinblastine, related natural products, and key analogues and development of inspired methodology suitable for the systematic study of their structure-function properties.

    PubMed

    Sears, Justin E; Boger, Dale L

    2015-03-17

    Biologically active natural products composed of fascinatingly complex structures are often regarded as not amenable to traditional systematic structure-function studies enlisted in medicinal chemistry for the optimization of their properties beyond what might be accomplished by semisynthetic modification. Herein, we summarize our recent studies on the Vinca alkaloids vinblastine and vincristine, often considered as prototypical members of such natural products, that not only inspired the development of powerful new synthetic methodology designed to expedite their total synthesis but have subsequently led to the discovery of several distinct classes of new, more potent, and previously inaccessible analogues. With use of the newly developed methodology and in addition to ongoing efforts to systematically define the importance of each embedded structural feature of vinblastine, two classes of analogues already have been discovered that enhance the potency of the natural products >10-fold. In one instance, remarkable progress has also been made on the refractory problem of reducing Pgp transport responsible for clinical resistance with a series of derivatives made accessible only using the newly developed synthetic methodology. Unlike the removal of vinblastine structural features or substituents, which typically has a detrimental impact, the additions of new structural features have been found that can enhance target tubulin binding affinity and functional activity while simultaneously disrupting Pgp binding, transport, and functional resistance. Already analogues are in hand that are deserving of full preclinical development, and it is a tribute to the advances in organic synthesis that they are readily accessible even on a natural product of a complexity once thought refractory to such an approach. PMID:25586069

  4. Stereocontrolled Synthesis of Key Advanced Intermediates toward Simplified Acetogenin Analogues.

    PubMed

    Le Huérou, Yvan; Doyon, Julien; Grée, René L.

    1999-09-01

    The stereo- and enantiocontrolled synthesis of substituted beta-hydroxy ethers based on glycol and catechol bearing an alkyne group and a series of substituents is reported. These substrates were designed to mimic the bis-THF array of annonaceous acetogenins and to provide an access to simplified and modified analogues. The key steps of the synthesis involve the condensation of the nonracemic mesylate of solketal with ethylene glycol and catechol, followed by an alkylation with a glycidyl derivative. Under appropriate conditions, the reaction is completely stereoselective and allows the synthesis of all the diastereomers. After the epoxide was opened with triethylsilylacetylene, the second epoxide was unmasked and reacted with a series of alkyl, aryl, amine, and alcohol reagents. A series of 28 analogues was prepared having a glycol or a catechol core, a stereodefined configuration of the flanking hydroxyl groups, and an acetylenic appendage suitable for a coupling to a lactone-bearing fragment. PMID:11674687

  5. The Relationship Between Water Structure and Blood Compatibility in Poly(2-methoxyethyl Acrylate) (PMEA) Analogues.

    PubMed

    Sato, Kazuhiro; Kobayashi, Shingo; Kusakari, Miho; Watahiki, Shogo; Oikawa, Masahiko; Hoshiba, Takashi; Tanaka, Masaru

    2015-09-01

    Six types of poly(2-methoxyethyl acrylate) (PMEA) analogues were synthesized and the water structure in the hydrated polymers was characterized using differential scanning calorimetry (DSC). The hydrated PMEA analogues exhibited the different amounts of intermediate water. Non-thrombogenicity evaluation was performed on PMEA analogues for platelet adhesion and protein adsorption. Platelet adhesion was suppressed on PMEA analogues. In addition, the protein adsorption and deformation were suppressed by increasing the amount of intermediate water. This study demonstrates that the amount of intermediate water might play a key role in expressing the blood compatibility of polymeric materials. PMID:26017931

  6. Structural analogues of diosgenyl saponins: synthesis and anticancer activity.

    PubMed

    Kaskiw, Matthew J; Tassotto, Mary Lynn; Mok, Mac; Tokar, Stacey L; Pycko, Roxanne; Th'ng, John; Jiang, Zi-Hua

    2009-11-15

    Saponins display various biological activities including anti-tumor activity. Recently intensive research has been focused on developing saponins for tumor therapies. The diosgenyl saponin dioscin is one of the most common steroidal saponins and exhibits potent anticancer activity in several human cancer cells through apoptosis-inducing pathways. In this paper, we describe the synthesis of several diosgenyl saponin analogues containing either a 2-amino-2-deoxy-beta-d-glucopyranosyl residue or an alpha-l-rhamnopyranosyl-(1-->4)-2-amino-2-deoxy-beta-d-glucopyranosyl residue with different acyl substituents on the amino group. The cytotoxic activity of these compounds was evaluated in MCF-7 breast cancer cells and HeLa cervical cancer cells. Structure-activity relationship studies show that the disaccharide saponin analogues are in general less active than their corresponding monosaccharide analogues. The incorporation of an aromatic nitro functionality into these saponin analogues does not exhibit significant effect on their cytotoxic activity. PMID:19819703

  7. Component-based syntheses of trioxacarcin A, DC-45-A1 and structural analogues

    NASA Astrophysics Data System (ADS)

    Magauer, Thomas; Smaltz, Daniel J.; Myers, Andrew G.

    2013-10-01

    The trioxacarcins are polyoxygenated, structurally complex natural products that potently inhibit the growth of cultured human cancer cells. Here we describe syntheses of trioxacarcin A, DC-45-A1 and structural analogues by late-stage stereoselective glycosylation reactions of fully functionalized, differentially protected aglycon substrates. Key issues addressed in this work include the identification of an appropriate means to activate and protect each of the two 2-deoxysugar components, trioxacarcinose A and trioxacarcinose B, as well as a viable sequencing of the glycosidic couplings. The convergent, component-based sequence we present allows for rapid construction of structurally diverse, synthetic analogues that would be inaccessible by any other means, in amounts required to support biological evaluation. Analogues that arise from the modification of four of five modular components are assembled in 11 steps or fewer. The majority of these are found to be active in antiproliferative assays using cultured human cancer cells.

  8. The International Space Analogue Rock Store (ISAR): A key tool for future planetary exploration.

    NASA Astrophysics Data System (ADS)

    Bost, N.; Westall, F.; Ramboz, C.; Foucher, F.

    2012-04-01

    In order to prepare the next in situ space missions we have created a « lithothèque » of analogue rocks for calibrating and testing future (and existing) space flight instruments. This rock collection is called the International Space Analogue Rockstore (ISAR) and is hosted in the CNRS and the Observatoire des Sciences de l'Univers en Region Centre (OSUC) in Orléans. For maximum science return, all instruments on a single mission should ideally be tested with the same suite of relevant analogue materials. The ISAR lithothéque aims to fulfill this role by providing suitable materials to instrument teams [1]. The lithothèque is accompanied by an online database of all relevant structural, textural, and geochemical data (www.isar.cnrs-orleans.fr).The data base will also be available during missions to aid interpretation of data obtained in situ. Mars is the immediate goal for MSL-2011 and the new international Mars 2018 mission. The lithothèque thus presently contains relevant Mars-analogue rock and mineral samples, a preliminary range of which is now available to the scientific community for instrument testing [2]. The preliminary group of samples covers a range of lithologies to be found on Mars, especially those in Noachain/Hesperian terrains where MSL will land (Gale Crater) and where the 2018 landing site will most likely be located. It includes a variety of basalts (tephrite, primitive basalt, silicified basalt; plus cumulates), komatiites, artificially synthesized martian basalts [3], volcanic sands, a banded iron formation, carbonates associated with volcanic lithologies and hydrothermalism, the clay Nontronite, and hydrothermal cherts. Some of the silicified volcanic sands contain traces of early life that are good analogues for potential martian life [4]. [1] Westall F. et al., LPI contribution 1608, 1346, 42nd LPSC, 2011; [2] Bost N. et al., in review (Icarus); [3] Bost N. et al., in review (Meteoritics); [4] Westall et al., 2011, Planetary and Space

  9. Polychlorinated biphenyls as hormonally active structural analogues

    SciTech Connect

    McKinney, J.D. ); Waller, C.L. )

    1994-03-01

    Among the environmental chemicals that may be able to disrupt the endocrine systems of animals and humans, the polychlorinated biphenyls (PCBs) are a chemical class of considerable concern. One possible mechanism by which PCBs may interfere with endocrine function is their ability to mimic natural hormones. These actions reflect a close relationship between the physicochemical properties encoded in the PCB molecular structure and the responses they evoke in biological systems. These physiocochemical properties determine the molecular reactivities of PCBs and are responsible for their recognition as biological acceptors and receptors, as well as for triggering molecular mechanisms that lead to tissue response. [open quotes]Coplanarity[close quotes] of PCB phenyl rings and [open quotes]laterality[close quotes] of chlorine atoms are important structural features determining specific binding behavior with proteins and certain toxic responses in biological systems. We compare qualitative structure-activity relationships for PCBs with the limited information on the related non-coplanar chlorinated diphenyl ethers, providing further insights into the nature of the molecular recognition processes and support for the structural relationship of PCBs to thyroid hormones. Steriodlike activity requires conformational restriction and possibility hydroxylation. We offer some simple molecular recognition models to account for the importance of these different structural features in the structure-activity relationships that permit one to express PCB reactivities in terms of dioxin, thyroxine, and estradiol equivalents. The available data support the involvement of PCBs as mimics of thyroid and other steroidal hormones. The potential for reproductive and developmental toxicity associated with human exposure to PCBs is of particular concern. 53 refs., 6 figs.

  10. A comparative study on the crystal structure of bicycle analogues to the natural phytotoxin helminthosporins

    NASA Astrophysics Data System (ADS)

    Barbosa, Luiz Cláudio de Almeida; Teixeira, Robson Ricardo; Nogueira, Leonardo Brandão; Maltha, Celia Regina Alvares; Doriguetto, Antônio Carlos; Martins, Felipe Terra

    2016-02-01

    Herein we described structural insights of a series of analogues to helminthosporin phytotoxins. The key reaction used to prepare the compounds corresponded to the [3 + 4] cycloaddition between the oxyallyl cation generated from 2,4-dibromopentan-3-one and different furans. Their structures were confirmed upon IR, NMR and X-ray diffraction analyses. While bicycles 7, 8 and 9 crystallize in the centrosymmetric monoclinic space group P21/c, compound 10 was solved in the noncentrosymmetric orthorhombic space group P212121. The solid materials obtained were shown to be racemic crystals (7, 8, 9) or racemic conglomerate (10). In all compounds, there is formation of a bicycle featured by fused tetrahydropyranone and 2,5-dihydrofuran rings. They adopt chair and envelope conformations, respectively. Crystal packing of all compounds is stabilized through C-H•••O contacts. Conformational aspects as well as similarities and differences among the crystal structures of the synthesized analogues are discussed.

  11. Structural Insights Lead to a Negamycin Analogue with Improved Antimicrobial Activity against Gram-Negative Pathogens

    PubMed Central

    2015-01-01

    Negamycin is a natural product with antibacterial activity against a broad range of Gram-negative pathogens. Recent revelation of its ribosomal binding site and mode of inhibition has reinvigorated efforts to identify improved analogues with clinical potential. Translation-inhibitory potency and antimicrobial activity upon modification of different moieties of negamycin were in line with its observed ribosomal binding conformation, reaffirming stringent structural requirements for activity. However, substitutions on the N6 amine were tolerated and led to N6-(3-aminopropyl)-negamycin (31f), an analogue showing 4-fold improvement in antibacterial activity against key bacterial pathogens. This represents the most potent negamycin derivative to date and may be a stepping stone toward clinical development of this novel antibacterial class. PMID:26288696

  12. Structural Insights Lead to a Negamycin Analogue with Improved Antimicrobial Activity against Gram-Negative Pathogens.

    PubMed

    McKinney, David C; Basarab, Gregory S; Cocozaki, Alexis I; Foulk, Melinda A; Miller, Matthew D; Ruvinsky, Anatoly M; Scott, Clay W; Thakur, Kumar; Zhao, Liang; Buurman, Ed T; Narayan, Sridhar

    2015-08-13

    Negamycin is a natural product with antibacterial activity against a broad range of Gram-negative pathogens. Recent revelation of its ribosomal binding site and mode of inhibition has reinvigorated efforts to identify improved analogues with clinical potential. Translation-inhibitory potency and antimicrobial activity upon modification of different moieties of negamycin were in line with its observed ribosomal binding conformation, reaffirming stringent structural requirements for activity. However, substitutions on the N6 amine were tolerated and led to N6-(3-aminopropyl)-negamycin (31f), an analogue showing 4-fold improvement in antibacterial activity against key bacterial pathogens. This represents the most potent negamycin derivative to date and may be a stepping stone toward clinical development of this novel antibacterial class. PMID:26288696

  13. Divergent regulation of the key enzymes of polyamine metabolism by chiral alpha-methylated polyamine analogues.

    PubMed

    Hyvönen, Mervi T; Howard, Michael T; Anderson, Christine B; Grigorenko, Nikolay; Khomutov, Alex R; Vepsäläinen, Jouko; Alhonen, Leena; Jänne, Juhani; Keinänen, Tuomo A

    2009-09-01

    The natural polyamines are ubiquitous multifunctional organic cations which play important roles in regulating cellular proliferation and survival. Here we present a novel approach to investigating polyamine functions by using optical isomers of MeSpd (alpha-methylspermidine) and Me2Spm (alpha,omega-bismethylspermine), metabolically stable functional mimetics of natural polyamines. We studied the ability of MeSpd and Me2Spm to alter the normal polyamine regulation pathways at the level of polyamine uptake and the major control mechanisms known to affect the key polyamine metabolic enzymes. These include: (i) ODC (ornithine decarboxylase), which catalyses the rate-limiting step of polyamine synthesis; (ii) ODC antizyme, an inhibitor of ODC and polyamine uptake; (iii) SSAT (spermidine/spermine N1-acetyltransferase), the major polyamine catabolic enzyme; and (iv) AdoMetDC (S-adenosyl-L-methionine decarboxylase), which is required for the conversion of putrescine into spermidine, and spermidine into spermine. We show that the stereoisomers differ in their cellular uptake and ability to downregulate ODC and AdoMetDC, and to induce SSAT. These effects are mediated by the ability of the enantiomers to induce +1 ribosomal frameshifting on ODC antizyme mRNA, to suppress the translation of AdoMetDC uORF (upstream open reading frame) and to regulate the alternative splicing of SSAT pre-mRNA. The unique effects of chiral polyamine analogues on polyamine metabolism may offer novel possibilities for studying the physiological functions, control mechanisms, and targets of the natural polyamines, as well as advance therapeutic drug development in cancer and other human health-related issues. PMID:19522702

  14. Solution structures of purine base analogues 9-deazaguanine and 9-deazahypoxanthine.

    PubMed

    Karnawat, Vishakha; Puranik, Mrinalini

    2016-03-01

    Deaza analogues of nucleobases are potential drugs against infectious diseases caused by parasites. A caveat is that apart from binding their target parasite enzymes, they also bind and inhibit enzymes of the host. In order to design derivatives of deaza analogues which specifically bind target enzymes, knowledge of their molecular structure, protonation state, and predominant tautomers at physiological conditions is essential. We have employed resonance Raman spectroscopy at an excitation wavelength of 260 nm, to decipher solution structure of 9-deazaguanine (9DAG) and 9-deazahypoxanthine (9DAH). These are analogues of guanine and hypoxanthine, respectively, and have been exploited to study static complexes of nucleobase binding enzymes. Such enzymes are known to perturb pKa of their ligands, and thus, we also determined solution structures of these analogues at two, acidic and alkaline, pH. Structure of each possible protonation state and tautomer was computed using density functional theoretical calculations. Species at various pHs were identified based on isotopic shifts in experimental wavenumbers and by comparing these shifts with corresponding computed isotopic shifts. Our results show that at physiological pH, N1 of pyrimidine ring in 9DAG and 9DAH bears a proton. At lower pH, N3 is place of protonation, and at higher pH, deprotonation occurs at N1 position. The proton at N7 of purine ring remains intact even at pH 12.5. We have further compared these results with naturally occurring nucleotides. Our results identify key vibrational modes which can report on hydrogen bonding interactions, protonation and deprotonation in purine rings upon binding to the active site of enzymes. PMID:25894214

  15. [Insulin analogues: modifications in the structure, molecular and metabolic consequences].

    PubMed

    de Luis, D A; Romero, E

    2013-01-01

    Recombinant DNA technology has provided insulin analogues for the treatment of diabetes mellitus, with an efficacy and safety that has improved the treatment of this disease. We briefly review the principal characteristics of the insulin analogues currently available. Both rapid-acting (lispro, aspart and glulisine) and long acting (glargine and determir) insulin analogues are included in this review. We describe the pharmacology of each insulin analogue, their differences with the human insulin, the administration, indication, efficacy and safety. In addition we discussed the main controversies of the use of these insulin analogues. In particular, those related with the risk of cancer and retinopathy, and their use in pregnant women. PMID:23517895

  16. 1'-Homonucleosides and their structural analogues: A review.

    PubMed

    Wróblewski, Andrzej E; Głowacka, Iwona E; Piotrowska, Dorota G

    2016-08-01

    Nucleoside analogues belong to an important class of antiviral and anticancer drugs. Insertion of a methylene fragment between the anomeric carbon and pyrimidine or purine bases transforms nucleosides into 1'-homonucleosides. When compared with nucleosides this modification lengthens the separation between HO-C5' of pentofuranoside fragments and nitrogen (N1 or N9) atoms of nucleobases, lowers the steric and electronic interactions between nucleobases and sugar rings, introduces greater flexibility around a CH2-Base bond and thus allows for more rotational freedom, and since the anomeric effect no longer operates any sugar or pseudosugar moiety exists in its unique conformation and experiences specific conformational mobility and hydrolysis of the C1'-CH2Base bond by cellular enzymes is no longer feasible. This review covers 1'-homonucleosides with a tetrahydrofuran ring and its nitrogen and sulfur analogues as well as those containing a cyclopentane moiety as a sugar replacer. Achievements in syntheses of sugar or pseudosugar scaffolds are of primary interest since pathways to install nucleobases are well recognized. Whenever possible, the biological activity, mostly antiviral and antitumor but sometimes as inhibitors of specific enzymes, will be presented and discussed to help identify structural features responsible for the particular mode of action and thus possible therapeutic significance. PMID:27128178

  17. Modern freshwater microbialite analogues for ancient dendritic reef structures

    NASA Technical Reports Server (NTRS)

    Laval, B.; Cady, S. L.; Pollack, J. C.; McKay, C. P.; Bird, J. S.; Grotzinger, J. P.; Ford, D. C.; Bohm, H. R.

    2000-01-01

    Microbialites are organosedimentary structures that can be constructed by a variety of metabolically distinct taxa. Consequently, microbialite structures abound in the fossil record, although the exact nature of the biogeochemical processes that produced them is often unknown. One such class of ancient calcareous structures, Epiphyton and Girvanella, appear in great abundance during the Early Cambrian. Together with Archeocyathids, stromatolites and thrombolites, they formed major Cambrian reef belts. To a large extent, Middle to Late Cambrian reefs are similar to Precambrian reefs, with the exception that the latter, including terminal Proterozoic reefs, do not contain Epiphyton or Girvanella. Here we report the discovery in Pavilion Lake, British Columbia, Canada, of a distinctive assemblage of freshwater calcite microbialites, some of which display microstructures similar to the fabrics displayed by Epiphyton and Girvanella. The morphologies of the modern microbialites vary with depth, and dendritic microstructures of the deep water (> 30 m) mounds indicate that they may be modern analogues for the ancient calcareous structures. These microbialites thus provide an opportunity to study the biogeochemical interactions that produce fabrics similar to those of some enigmatic Early Cambrian reef structures.

  18. Antithyroid drugs and their analogues: synthesis, structure, and mechanism of action.

    PubMed

    Manna, Debasish; Roy, Gouriprasanna; Mugesh, Govindasamy

    2013-11-19

    Thyroid hormones are essential for the development and differentiation of all cells of the human body. They regulate protein, fat, and carbohydrate metabolism. In this Account, we discuss the synthesis, structure, and mechanism of action of thyroid hormones and their analogues. The prohormone thyroxine (T4) is synthesized on thyroglobulin by thyroid peroxidase (TPO), a heme enzyme that uses iodide and hydrogen peroxide to perform iodination and phenolic coupling reactions. The monodeiodination of T4 to 3,3',5-triiodothyronine (T3) by selenium-containing deiodinases (ID-1, ID-2) is a key step in the activation of thyroid hormones. The type 3 deiodinase (ID-3) catalyzes the deactivation of thyroid hormone in a process that removes iodine selectively from the tyrosyl ring of T4 to produce 3,3',5'-triiodothyronine (rT3). Several physiological and pathological stimuli influence thyroid hormone synthesis. The overproduction of thyroid hormones leads to hyperthyroidism, which is treated by antithyroid drugs that either inhibit the thyroid hormone biosynthesis and/or decrease the conversion of T4 to T3. Antithyroid drugs are thiourea-based compounds, which include propylthiouracil (PTU), methimazole (MMI), and carbimazole (CBZ). The thyroid gland actively concentrates these heterocyclic compounds against a concentration gradient. Recently, the selenium analogues of PTU, MMI, and CBZ attracted significant attention because the selenium moiety in these compounds has a higher nucleophilicity than that of the sulfur moiety. Researchers have developed new methods for the synthesis of the selenium compounds. Several experimental and theoretical investigations revealed that the selone (C═Se) in the selenium analogues is more polarized than the thione (C═S) in the sulfur compounds, and the selones exist predominantly in their zwitterionic forms. Although the thionamide-based antithyroid drugs have been used for almost 70 years, the mechanism of their action is not completely

  19. Generation of crystal structures using known crystal structures as analogues

    PubMed Central

    Cole, Jason C.; Groom, Colin R.; Read, Murray G.; Giangreco, Ilenia; McCabe, Patrick; Reilly, Anthony M.; Shields, Gregory P.

    2016-01-01

    This analysis attempts to answer the question of whether similar molecules crystallize in a similar manner. An analysis of structures in the Cambridge Structural Database shows that the answer is yes – sometimes they do, particularly for single-component structures. However, one does need to define what we mean by similar in both cases. Building on this observation we then demonstrate how this correlation between shape similarity and packing similarity can be used to generate potential lattices for molecules with no known crystal structure. Simple intermolecular interaction potentials can be used to minimize these potential lattices. Finally we discuss the many limitations of this approach. PMID:27484374

  20. Total synthesis, stereochemical assignment, and biological activity of chamuvarinin and structural analogues.

    PubMed

    Florence, Gordon J; Morris, Joanne C; Murray, Ross G; Vanga, Raghava R; Osler, Jonathan D; Smith, Terry K

    2013-06-17

    A highly stereocontrolled synthesis of (+)-chamuvarinin has been completed in 1.5% overall yield over 20 steps. The key fragment coupling reactions were the addition of alkyne 8 to aldehyde 7 (under Felkin-Anh control), followed by the two step activation/cyclization to close the C20-C23 2,5-cis-substituted tetrahydrofuran ring and a Julia-Kocienski olefination at C8-C9 to introduce the terminal butenolide. The inherent flexibility of our coupling strategy led to a streamlined synthesis with 17 steps in the longest sequence (2.2% overall yield), in which the key bond couplings are reversed. In addition, a series of structural analogues of chamuvarinin have been prepared and screened for activity against HeLa cancer cell lines and both the bloodstream and insect forms of Trypanosoma brucei, the parasitic agent responsible for African sleeping sickness. PMID:23630031

  1. DNA information: from digital code to analogue structure.

    PubMed

    Travers, A A; Muskhelishvili, G; Thompson, J M T

    2012-06-28

    The digital linear coding carried by the base pairs in the DNA double helix is now known to have an important component that acts by altering, along its length, the natural shape and stiffness of the molecule. In this way, one region of DNA is structurally distinguished from another, constituting an additional form of encoded information manifest in three-dimensional space. These shape and stiffness variations help in guiding and facilitating the DNA during its three-dimensional spatial interactions. Such interactions with itself allow communication between genes and enhanced wrapping and histone-octamer binding within the nucleosome core particle. Meanwhile, interactions with proteins can have a reduced entropic binding penalty owing to advantageous sequence-dependent bending anisotropy. Sequence periodicity within the DNA, giving a corresponding structural periodicity of shape and stiffness, also influences the supercoiling of the molecule, which, in turn, plays an important facilitating role. In effect, the super-helical density acts as an analogue regulatory mode in contrast to the more commonly acknowledged purely digital mode. Many of these ideas are still poorly understood, and represent a fundamental and outstanding biological question. This review gives an overview of very recent developments, and hopefully identifies promising future lines of enquiry. PMID:22615471

  2. Antimicrobial Activity of Xanthohumol and Its Selected Structural Analogues.

    PubMed

    Stompor, Monika; Żarowska, Barbara

    2016-01-01

    The objective of this study was to evaluate the antimicrobial activity of structural analogues of xanthohumol 1, a flavonoid compound found in hops (Humulus lupulus). The agar-diffusion method using filter paper disks was applied. Biological tests performed for selected strains of Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria, fungi (Alternaria sp.), and yeasts (Rhodotorula rubra, Candida albicans) revealed that compounds with at least one hydroxyl group-all of them have it at the C-4 position-demonstrated good activity. Our research showed that the strain S. aureus was more sensitive to chalcones than to the isomers in which the heterocyclic ring C is closed (flavanones). The strain R. rubra was moderately sensitive to only one compound: 4-hydroxy-4'-methoxychalcone 8. Loss of the hydroxyl group in the B-ring of 4'-methoxychalcones or its replacement by a halogen atom (-Cl, -Br), nitro group (-NO₂), ethoxy group (-OCH₂CH₃), or aliphatic substituent (-CH₃, -CH₂CH₃) resulted in the loss of antimicrobial activity towards both R. rubra yeast and S. aureus bacteria. Xanthohumol 1, naringenin 5, and chalconaringenin 7 inhibited growth of S. aureus, whereas 4-hydroxy-4'-methoxychalcone 8 was active towards two strains: S. aureus and R. rubra. PMID:27187329

  3. Isolation and structural elucidation of a new tadalafil analogue in health supplements: bisprenortadalafil.

    PubMed

    Lee, Ji Hyun; Park, Han Na; Ganganna, Bogonda; Jeong, Ji Hye; Park, Sung-Kwan; Lee, Jongkook; Baek, Sun Young

    2016-06-01

    A new tadalafil analogue was found, along with nortadalafil, using HPLC-DAD during the inspection of a health product sold without official approval. The analogue was separated using a semi-preparative HPLC system and its structure was determined by a combination of mass spectrometry and NMR spectroscopy. The compound was identified as a tadalafil analogue in which the N-methyl group of tadalafil was replaced with a tadalafil precursor moiety. Nuclear Overhauser effect spectroscopy experiments suggested a cis-relationship between the substituents on a piperidine ring in the tadalafil moiety. PMID:27167568

  4. Preparing to return to the Moon: Lessons from science-driven analogue missions to the Mistastin Lake impact structure, Canada, a unique lunar analogue site

    NASA Astrophysics Data System (ADS)

    Osinski, G. R.; Barfoot, T.; Chanou, A.; Daly, M. G.; Francis, R.; Hodges, K. V.; Jolliff, B. L.; Mader, M. M.; McCullough, E. M.; Moores, J. E.; Pickersgill, A.; Pontefract, A.; Preston, L.; Shankar, B.; Singleton, A.; Sylvester, P.; Tornabene, L. L.; Young, K. E.

    2013-12-01

    Impact cratering is the dominant geological process on the Moon, Near Earth Asteroids (NEAs) and the moons of Mars - the objectives for the new Solar System Exploration Research Virtual Institute (SSERVI). Led by members of the Canadian Lunar Research Network (CLRN), funded by the Canadian Space Agency, and with participants from the U.S., we carried out a series of analogue missions on Earth in order to prepare and train for future potential robotic and human sample return missions. Critically, these analogue missions were driven by the paradigm that operational and technical objectives are conducted while conducting new science and addressing real overarching scientific objectives. An overarching operational goal was to assess the utility of a robotic field reconnaissance mission as a precursor to a human sortie sample return mission. Here, we focus on the results and lessons learned from a robotic precursor mission and follow on human-robotic mission to the Mistastin Lake impact structure in Labrador, northern Canada (55°53'N; 63°18'W). The Mistastin structure was chosen because it represents an exceptional analogue for lunar craters. This site includes both an anorthositic target, a central uplift, well-preserved impact melt rocks - mostly derived from melting anorthosite - and is (or was) relatively unexplored. This crater formed ~36 million years ago and has a diameter of ~28 km. The scientific goals for these analogue missions were to further our understanding of impact chronology, shock processes, impact ejecta and potential resources within impact craters. By combining these goals in an analogue mission campaign key scientific requirements for a robotic precursor were determined. From the outset, these analogue missions were formulated and executed like an actual space mission. Sites of interest were chosen using remote sensing imagery without a priori knowledge of the site through a rigorous site selection process. The first deployment occurred in

  5. Membrane structure and interactions of a short Lycotoxin I analogue.

    PubMed

    Adão, R; Seixas, R; Gomes, P; Pessoa, J Costa; Bastos, M

    2008-04-01

    Lycotoxin I and Lycotoxin II are natural anti-microbial peptides that were identified in the venom of the Wolf Spider Lycosa carolinensis. These peptides were found to be potent growth inhibitors for bacteria (Escherichia coli) and yeast (Candida glabrata) at micromolar concentrations. Recently, shortened analogues of LycoI and LycoII have been reported to have decreased haemolytic effects. A shorter Lyco-I analogue studied, LycoI 1-15 (H-IWLTALKFLGKHAAK-NH2), was active only above 10 microM, but was also the least haemolytic. On the basis of these findings, we became interested in obtaining a deeper insight into the membrane activity of LycoI 1-15, as this peptide may represent the first major step for the future development of selective, i.e. non-haemolytic, Lycotoxin-based antibiotics. The interaction of this peptide with liposomes of different composition was studied by microcalorimetry [differential scanning calorimetry (DSC) and isothermal titration calorimetry (ITC)] and CD. The results obtained from the calorimetric and spectroscopic techniques were jointly discussed in an attempt to further understand the interaction of this peptide with model membranes. PMID:18098329

  6. Dipolar Quinoidal Acene Analogues as Stable Isoelectronic Structures of Pentacene and Nonacene.

    PubMed

    Shi, Xueliang; Kueh, Weixiang; Zheng, Bin; Huang, Kuo-Wei; Chi, Chunyan

    2015-11-23

    Quinoidal thia-acene analogues, as the respective isoelectronic structures of pentacene and nonacene, were synthesized and an unusual 1,2-sulfur migration was observed during the Friedel-Crafts alkylation reaction. The analogues display a closed-shell quinoidal structure in the ground state with a distinctive dipolar character. In contrast to their acene isoelectronic structures, both compounds are stable because of the existence of more aromatic sextet rings, a dipolar character, and kinetic blocking. They exhibit unique packing in single crystals resulting from balanced dipole-dipole and [C-H⋅⋅⋅π]/[C-H⋅⋅⋅S] interactions. PMID:26447720

  7. Structural basis of thiamine pyrophosphate analogues binding to the eukaryotic riboswitch.

    PubMed

    Thore, Stéphane; Frick, Christian; Ban, Nenad

    2008-07-01

    The thiamine pyrophosphate (TPP)-sensing riboswitch is the only riboswitch found in eukaryotes. In plants, TPP regulates its own production by binding to the 3' untranslated region of the mRNA encoding ThiC, a critical enzyme in thiamine biosynthesis, which promotes the formation of an unstable splicing variant. In order to better understand the molecular basis of TPP-analogue binding to the eukaryotic TPP-responsive riboswitch, we have determined the crystal structures of the Arabidopsis thaliana TPP-riboswitch in complex with oxythiamine pyrophosphate (OTPP) and with the antimicrobial compound pyrithiamine pyrophosphate (PTPP). The OTPP-riboswitch complex reveals that the pyrimidine ring of OTPP is stabilized in its enol form in order to retain key interactions with guanosine 28 of the riboswitch previously observed in the TPP complex. The structure of PTPP in complex with the riboswitch shows that the base moiety of guanosine 60 undergoes a conformational change to cradle the pyridine ring of the PTPP. Structural information from these complexes has implications for the design of novel antimicrobials targeting TPP-sensing riboswitches. PMID:18533652

  8. Total Synthesis of Viridicatumtoxin B and Analogues Thereof: Strategy Evolution, Structural Revision, and Biological Evaluation

    PubMed Central

    2015-01-01

    The details of the total synthesis of viridicatumtoxin B (1) are described. Initial synthetic strategies toward this intriguing tetracycline antibiotic resulted in the development of key alkylation and Lewis acid-mediated spirocyclization reactions to form the hindered EF spirojunction, as well as Michael–Dieckmann reactions to set the A and C rings. The use of an aromatic A-ring substrate, however, was found to be unsuitable for the introduction of the requisite hydroxyl groups at carbons 4a and 12a. Applying these previous tactics, we developed stepwise approaches to oxidize carbons 12a and 4a based on enol- and enolate-based oxidations, respectively, the latter of which was accomplished after systematic investigations that revealed critical reactivity patterns. The herein described synthetic strategy resulted in the total synthesis of viridicatumtoxin B (1), which, in turn, formed the basis for the revision of its originally assigned structure. The developed chemistry facilitated the synthesis of a series of viridicatumtoxin analogues, which were evaluated against Gram-positive and Gram-negative bacterial strains, including drug-resistant pathogens, revealing the first structure–activity relationships within this structural type. PMID:25317739

  9. Structure activity relationship study of curcumin analogues toward the amyloid-beta aggregation inhibitor.

    PubMed

    Endo, Hitoshi; Nikaido, Yuri; Nakadate, Mamiko; Ise, Satomi; Konno, Hiroyuki

    2014-12-15

    Inhibition of the amyloid β aggregation process could possibly prevent the onset of Alzheimer's disease. In this article, we report a structure-activity relationship study of curcumin analogues for anti amyloid β aggregation activity. Compound 7, the ideal amyloid β aggregation inhibitor in vitro among synthesized curcumin analogues, has not only potent anti amyloid β aggregation effects, but also water solubility more than 160 times that of curcumin. In addition, new approaches to improve water solubility of curcumin-type compounds are proposed. PMID:25467149

  10. Natural and semisynthetic analogues of manadoperoxide B reveal new structural requirements for trypanocidal activity.

    PubMed

    Chianese, Giuseppina; Scala, Fernando; Calcinai, Barbara; Cerrano, Carlo; Dien, Henny A; Kaiser, Marcel; Tasdemir, Deniz; Taglialatela-Scafati, Orazio

    2013-09-01

    Chemical analysis of the Indonesian sponge Plakortis cfr. lita afforded two new analogues of the potent trypanocidal agent manadoperoxide B (1), namely 12-isomanadoperoxide B (2) and manadoperoxidic acid B (3). These compounds were isolated along with a new short chain dicarboxylate monoester (4), bearing some interesting relationships with the polyketide endoperoxides found in this sponge. Some semi-synthetic analogues of manadoperoxide B (6-8) were prepared and evaluated for antitrypanosomal activity and cytotoxicity. These studies revealed crucial structure-activity relationships that should be taken into account in the design of optimized and simplified endoperoxyketal trypanocidal agents. PMID:23989650

  11. Structural and Spectroscopic Characterizations of Amide-AlCl3-Based Ionic Liquid Analogues.

    PubMed

    Hu, Pengcheng; Zhang, Rui; Meng, Xianghai; Liu, Haiyan; Xu, Chunming; Liu, Zhichang

    2016-03-01

    Several amide-AlCl3-based ionic liquid (IL) analogues were synthesized through a one-step method using three different structure amides as donor molecules. The effects of the steric and inductive effects of the methyl group substituted on the N atom on the asymmetric splitting of AlCl3 and the coordination site of the amide were investigated by (27)Al NMR, Raman, in situ IR, and UV-vis spectra for these IL analogues. Bidentate coordination through both the O and N atoms was dominant in the N-methylacetamide-AlCl3- and N,N-dimethylacetamide-AlCl3-based IL analogues because of the inductive effect of the methyl group. By contrast, the acetamide-AlCl3-based IL analogue presented mainly in the form of monodentate coordination via the O atom. Compared with monodentate coordination, bidentate coordination was favorable to the asymmetric splitting of AlCl3 with the same amide-AlCl3 molar ratio. Under the influence of the steric and inductive effects of the methyl group, the ionic species percentages in these IL analogues ranked in the following order: N-methylacetamide > N,N-dimethylacetamide > acetamide. PMID:26848508

  12. Structure--antiadenoviral activity of nitrogen containing macroheterocycles and their analogues.

    PubMed

    Dyachenko, N S; Nosach, L N; Povnitsa, O Y; Kuz'min, V E; Artemenko, A G; Lozitskaya, R N; Basok, S S; Alexeeva, I V; Zhovnovataya, V L; Vanden Eynde, J J

    2006-01-01

    The search for the inhibitors of adenoviruses has been performed among the substances of new class NCM (nitrogen containing macroheterocycles) and their analogues that have high potential of pharmacological properties. We have found a number of NCM and their derivatives that inhibit the reproduction of adenoviruses to various degrees. For the prediction of NCM structure with antiadenoviral activity we have performed the computer modeling using QSAR approach on the basis of simplex representation of molecular structure (SiRMS). PMID:17388122

  13. The development of structures in analogue and natural debris avalanches

    NASA Astrophysics Data System (ADS)

    Paguican, Engielle Mae; van Wyk de Vries, Benjamin; Mahar Francisco Lagmay, Alfredo; Grosse, Pablo

    2010-05-01

    All types of rockslide-debris avalanches present a plethora of internal structures that are also well observed on the surface. Many of these are seen as faults and folds that can be used to determine deformation history and kinematics. We present two sets of simple and well-constrained experiments of reduced basal friction laboratory rockslides, equivalent to a highly deformed simple shear layer, with plug-flow. These follow the original ramp-slide work of Shea and van Wyk de Vries (Geosphere, 2008). The experiments used a curved ramp where materials accelerate until reaching a gently-sloped depositional surface and a constantly inclined ramp with a more regular slope and longer slides. A detailed description of deposit structures, their sequential formation and morphology is then used to investigate the transport type and deformation chronology from slide initiation to runout stopping of avalanches. Results using a curved ramp show accumulation and thickening at where the slope decreases. The thickened mass then further remobilises and advances by secondary collapse of the mass. Such a stop-start process may be important in many mountainous avalanches where there are rapid changes in slope. The constantly inclined ramp shows shearing and extensional structures at the levees and a set of compression and extension structures in the middle. We noted that frontal accumulation during flow occurs as materials at the front move slower relative to those in the medial and proximal zones. This also leads to secondary frontal collapse, and helps to maintain a thicker mass that can flow further. Descriptions and analyses of these structures are then applied to the kinematics and dynamics of natural examples. We study the 2006 Guinsaugon Rockslide event in the Philippines and find that frontal accumulation and secondary avalanching had also occurred and were important in determining the distribution and runout of the mass. Frontal bulking and collapse may also have occurred at

  14. The Beta Environmental Fine Structure (BEFS): The XAFS Nuclear Analogue

    SciTech Connect

    Monfardini, A.; Benedek, G.; Cremonesi, O.; Nucciotti, A.; Sisti, M.; Filipponi, A.

    2007-02-02

    The Beta Environmental Fine Structure (BEFS) effect is an oscillatory modulation on the otherwise smooth spectrum of electrons emitted by beta-decaying nuclei. The existence of this effect was theoretically proposed in 1991, for condensed emitters, in analogy with XAFS. In BEFS the electron, playing the role of the XAFS photoelectron, originates directly from the nucleus and an anti-neutrino is emitted at the same time. We present evidence for BEFS oscillations observed in Silver Perrhenate (AgReO4) low-temperature (0.1K) microbolometers, together with a XAFS-like analysis that allowed for the first time a direct measurement of the anti-neutrino angular momentum. We discuss the physical analogies and differences between BEFS and XAFS and the implications for the next generation experiments aimed at measuring the neutrino mass on purely kinematic grounds. Moreover, we briefly discuss the potential and the limits of BEFS-based techniques with respect to the classical XAFS.

  15. Structural Insights into 5-HT1A/D4 Selectivity of WAY-100635 Analogues: Molecular Modeling, Synthesis, and in Vitro Binding.

    PubMed

    Dilly, Sébastien; Liégeois, Jean-François

    2016-07-25

    The resurgence of interest in 5-HT1A receptors as a therapeutic target requires the existence of highly selective 5-HT1A ligands. To date, WAY-100635 has been the prototypical antagonist of these receptors. However, this compound also has significant affinity for and activity at D4 dopamine receptors. In this context, this work was aimed at better understanding the 5-HT1A/D4 selectivity of WAY-100635 and analogues from a structural point of view. In silico investigations revealed two key interactions for the 5-HT1A/D4 selectivity of WAY-100635 and analogues. First, a hydrogen bond only found with the Ser 7.36 of D4 receptor appeared to be the key for a higher D4 affinity for newly synthesized aza analogues. The role of Ser 7.36 was confirmed as the affinity of aza analogues for the mutant D4 receptor S7.36A was reduced. Then, the formation of another hydrogen bond with the conserved Ser 5.42 residue appeared to be also critical for D4 binding. PMID:27331407

  16. The solution structure of a superpotent B-chain-shortened single-replacement insulin analogue.

    PubMed Central

    Kurapkat, G.; Siedentop, M.; Gattner, H. G.; Hagelstein, M.; Brandenburg, D.; Grötzinger, J.; Wollmer, A.

    1999-01-01

    This paper reports on an insulin analogue with 12.5-fold receptor affinity, the highest increase observed for a single replacement, and on its solution structure, determined by NMR spectroscopy. The analogue is [D-AlaB26]des-(B27-B30)-tetrapeptide-insulin-B26-amide. C-terminal truncation of the B-chain by four (or five) residues is known not to affect the functional properties of insulin, provided the new carboxylate charge is neutralized. As opposed to the dramatic increase in receptor affinity caused by the substitution of D-Ala for the wild-type residue TyrB26 in the truncated molecule, this very substitution reduces it to only 18% of that of the wild-type hormone when the B-chain is present in full length. The insulin molecule in solution is visualized as an ensemble of conformers interrelated by a dynamic equilibrium. The question is whether the "active" conformation of the hormone, sought after in innumerable structure/function studies, is or is not included in the accessible conformational space, so that it could be adopted also in the absence of the receptor. If there were any chance for the active conformation, or at least a predisposed state to be populated to a detectable extent, this chance should be best in the case of a superpotent analogue. This was the motivation for the determination of the three-dimensional structure of [D-AlaB26]des-(B27-B30)-tetrapeptide-insulin-B26-amide. However, neither the NMR data nor CD spectroscopic comparison of a number of related analogues provided a clue concerning structural features predisposing insulin to high receptor affinity. After the present study it seems more likely than before that insulin will adopt its active conformation only when exposed to the force field of the receptor surface. PMID:10091652

  17. Structure of Mandelate Racemase with Bound Intermediate Analogues Benzohydroxamate and Cupferron

    SciTech Connect

    Lietzan, Adam D.; Nagar, Mitesh; Pellmann, Elise A.; Bourque, Jennifer R.; Bearne, Stephen L.; Maurice, Martin St.

    2012-05-09

    Mandelate racemase (MR, EC 5.1.2.2) from Pseudomonas putida catalyzes the Mg{sup 2+}-dependent interconversion of the enantiomers of mandelate, stabilizing the altered substrate in the transition state by 26 kcal/mol relative to the substrate in the ground state. To understand the origins of this binding discrimination, we determined the X-ray crystal structures of wild-type MR complexed with two analogues of the putative aci-carboxylate intermediate, benzohydroxamate and Cupferron, to 2.2-{angstrom} resolution. Benzohydroxamate is shown to be a reasonable mimic of the transition state and/or intermediate because its binding affinity for 21 MR variants correlates well with changes in the free energy of transition state stabilization afforded by these variants. Both benzohydroxamate and Cupferron chelate the active site divalent metal ion and are bound in a conformation with the phenyl ring coplanar with the hydroxamate and diazeniumdiolate moieties, respectively. Structural overlays of MR complexed with benzohydroxamate, Cupferron, and the ground state analogue (S)-atrolactate reveal that the para carbon of the substrate phenyl ring moves by 0.8-1.2 {angstrom} between the ground state and intermediate state, consistent with the proposal that the phenyl ring moves during MR catalysis while the polar groups remain relatively fixed. Although the overall protein structure of MR with bound intermediate analogues is very similar to that of MR with bound (S)-atrolactate, the intermediate-Mg{sup 2+} distance becomes shorter, suggesting a tighter complex with the catalytic Mg{sup 2+}. In addition, Tyr 54 moves closer to the phenyl ring of the bound intermediate analogues, contributing to an overall constriction of the active site cavity. However, site-directed mutagenesis experiments revealed that the role of Tyr 54 in MR catalysis is relatively minor, suggesting that alterations in enzyme structure that contribute to discrimination between the altered substrate in the

  18. Structural and Biochemical Studies of Actin in Complex with Synthetic Macrolide Tail Analogues

    SciTech Connect

    Pereira, Jose H.; Petchprayoon, Chutima; Hoepker, Alexander C.; Moriarty, Nigel W.; Fink, Sarah J.; Cecere, Giuseppe; Paterson, Ian; Adams, Paul D.; Marriott, Gerard

    2014-07-22

    The actin filament-binding and filament-severing activities of the aplyronine, kabiramide, and reidispongiolide families of marine macrolides are located within the hydrophobic tail region of the molecule. Two synthetic tail analogues of aplyronine C (SF-01 and GC-04) are shown to bind to G-actin with dissociation constants of (285±33) and (132±13) nM, respectively. The crystal structures of actin complexes with GC-04, SF-01, and kabiramide C reveal a conserved mode of tail binding within the cleft that forms between subdomains (SD) 1 and 3. Our studies support the view that filament severing is brought about by specific binding of the tail region to the SD1/SD3 cleft on the upper protomer, which displaces loop-D from the lower protomer on the same half-filament. With previous studies showing that the GC-04 analogue can sever actin filaments, it is argued that the shorter complex lifetime of tail analogues with F-actin would make them more effective at severing filaments compared with plasma gelsolin. In conclusion, structure-based analyses are used to suggest more reactive or targetable forms of GC-04 and SF-01, which may serve to boost the capacity of the serum actin scavenging system, to generate antibody conjugates against tumor cell antigens, and to decrease sputum viscosity in children with cystic fibrosis.

  19. Structural and Biochemical Studies of Actin in Complex with Synthetic Macrolide Tail Analogues

    DOE PAGESBeta

    Pereira, Jose H.; Petchprayoon, Chutima; Hoepker, Alexander C.; Moriarty, Nigel W.; Fink, Sarah J.; Cecere, Giuseppe; Paterson, Ian; Adams, Paul D.; Marriott, Gerard

    2014-07-22

    The actin filament-binding and filament-severing activities of the aplyronine, kabiramide, and reidispongiolide families of marine macrolides are located within the hydrophobic tail region of the molecule. Two synthetic tail analogues of aplyronine C (SF-01 and GC-04) are shown to bind to G-actin with dissociation constants of (285±33) and (132±13) nM, respectively. The crystal structures of actin complexes with GC-04, SF-01, and kabiramide C reveal a conserved mode of tail binding within the cleft that forms between subdomains (SD) 1 and 3. Our studies support the view that filament severing is brought about by specific binding of the tail region tomore » the SD1/SD3 cleft on the upper protomer, which displaces loop-D from the lower protomer on the same half-filament. With previous studies showing that the GC-04 analogue can sever actin filaments, it is argued that the shorter complex lifetime of tail analogues with F-actin would make them more effective at severing filaments compared with plasma gelsolin. In conclusion, structure-based analyses are used to suggest more reactive or targetable forms of GC-04 and SF-01, which may serve to boost the capacity of the serum actin scavenging system, to generate antibody conjugates against tumor cell antigens, and to decrease sputum viscosity in children with cystic fibrosis.« less

  20. Characterization of electronic structure and physicochemical properties of antiparasitic nifurtimox analogues: A theoretical study

    NASA Astrophysics Data System (ADS)

    Soriano-Correa, Catalina; Raya, A.; Esquivel, Rodolfo O.

    American trypanosomiasis, also known as Chagas' disease, is caused by Trypanosoma cruzi (T. cruzi). It is well known that trypanosomes, and particularly T. cruzi, are highly sensitive towards oxidative stress, i.e., to compounds than are able to produce free radicals. Generally, nifurtimox (NFX) and benznidazol are most effective in the acute phase of the disease; therefore, nitroheterocycles constitute good models to design other nitrocompounds with specific biological characteristics. Thus, we have performed an ab initio study at the Hartree-Fock and Density Functional Theory levels of theory of several NFX analogues recently synthesized, to characterize them by obtaining their electronic, structural, and physicochemical properties, which might be linked to the observed antichagasic activity. The antitrypanosomal activity scale previously reported for the NFX analogues studied in this work is in good agreement with our theoretical results, from which we can conclude that the activity seems to be related to the reactivity along with the acidity observed for the most active molecules.

  1. Antihyperglycemic activities of cryptolepine analogues: an ethnobotanical lead structure isolated from Cryptolepis sanguinolenta.

    PubMed

    Bierer, D E; Dubenko, L G; Zhang, P; Lu, Q; Imbach, P A; Garofalo, A W; Phuan, P W; Fort, D M; Litvak, J; Gerber, R E; Sloan, B; Luo, J; Cooper, R; Reaven, G M

    1998-07-16

    Cryptolepine (1) is a rare example of a natural product whose synthesis was reported prior to its isolation from nature. In the previous paper we reported the discovery of cryptolepine's antihyperglycemic properties. As part of a medicinal chemistry program designed to optimize natural product lead structures originating from our ethnobotanical and ethnomedical field research, a series of substituted and heterosubstituted cryptolepine analogues was synthesized. Antihyperglycemic activity was measured in vitro and in an NIDDM mouse model to generate the first structure-bioactivity study about the cryptolepine nucleus. PMID:9667966

  2. Geometry, Electronic Structure, and Pseudo Jahn-Teller Effect in Tetrasilacyclobutadiene Analogues

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Wang, Ya; Bersuker, Isaac B.

    2016-03-01

    We revealed the origin of the structural features of a series of tetrasilacyclobutadiene analogues based on a detailed study of their electronic structure and the pseudo Jahn-Teller effect (PJTE). Starting with the D4h symmetry of the Si4R4 system with a square four-membered silicon ring as a reference geometry, and employing ab initio calculations of energy profiles along lower-symmetry nuclear displacements in the ground and several excited states, we show that the ground-state boat-like and chair-like equilibrium configurations are produced by the PJT interaction with appropriate excited sates. For Si4F4 a full two-mode b1g‑b2g adiabatic potential energy surface is calculated showing explicitly the way of transformation from the unstable D4h geometry to the two equilibrium C2h configurations via the D2h saddle point. The PJTE origin of these structural features is confirmed also by estimates of the vibronic coupling parameters. For Si4R4 with large substituents the origin of their structure is revealed by analyzing the PJT interaction between the frontier molecular orbitals. The preferred chair-like structures of Si4R4 analogues with amido substituents, and heavier germanium-containing systems Ge4R4 (potential precursors for semiconducting materials) are predicted.

  3. Topographic modelling of caldera analogues using Structure from Motion - Multiview stereo-photogrammetry

    NASA Astrophysics Data System (ADS)

    Ulusoy, İnan; Aydın, Eda; Evren Çubukçu, H.

    2016-04-01

    Analogue caldera models have long been used in volcanology to investigate structural evolution of volcanoes during tumescence and collapse periods. Influence of tectonic forces on volcanic features are also in the scope of those experiments. As well as interior modelling of the caldera experiments, topographic modelling is essential for digital monitoring and quantification purposes. Topographic modelling of those sandbox models is possible using laser scanning techniques. Particle tracking using still images is another way to demonstrate and quantify the structure and movement during the experiment. The quantum leap in the digital photography and computation tools and ease of access to both, provides the use of a new modelling technique in various scales and applications in Geology. Although the roots are older, Structure from Motion - Multiview stereo-photogrammetry (SfM-MVS) is a relatively new technique for surface modelling via several high resolution photographs. We have used SfM-MVS to digitally model the elevation of the tumescence and collapse cycles in analogue caldera experiments. Several sandbox experiments have been modelled using SfM-MVS technique stage by stage during tumescence and collapse periods. It has been possible to evaluate the structural evolution of the collapse models. Additionally, using particle tracking via still images acquired during the experiments, we have modelled the superficial evolution of the caldera structure. SfM-MVS is an effective low budget method for modelling in decimetric scale down to millimetre/micrometre precision.

  4. Geometry, Electronic Structure, and Pseudo Jahn-Teller Effect in Tetrasilacyclobutadiene Analogues.

    PubMed

    Liu, Yang; Wang, Ya; Bersuker, Isaac B

    2016-01-01

    We revealed the origin of the structural features of a series of tetrasilacyclobutadiene analogues based on a detailed study of their electronic structure and the pseudo Jahn-Teller effect (PJTE). Starting with the D4h symmetry of the Si4R4 system with a square four-membered silicon ring as a reference geometry, and employing ab initio calculations of energy profiles along lower-symmetry nuclear displacements in the ground and several excited states, we show that the ground-state boat-like and chair-like equilibrium configurations are produced by the PJT interaction with appropriate excited sates. For Si4F4 a full two-mode b1g-b2g adiabatic potential energy surface is calculated showing explicitly the way of transformation from the unstable D4h geometry to the two equilibrium C2h configurations via the D2h saddle point. The PJTE origin of these structural features is confirmed also by estimates of the vibronic coupling parameters. For Si4R4 with large substituents the origin of their structure is revealed by analyzing the PJT interaction between the frontier molecular orbitals. The preferred chair-like structures of Si4R4 analogues with amido substituents, and heavier germanium-containing systems Ge4R4 (potential precursors for semiconducting materials) are predicted. PMID:26996445

  5. Geometry, Electronic Structure, and Pseudo Jahn-Teller Effect in Tetrasilacyclobutadiene Analogues

    PubMed Central

    Liu, Yang; Wang, Ya; Bersuker, Isaac B.

    2016-01-01

    We revealed the origin of the structural features of a series of tetrasilacyclobutadiene analogues based on a detailed study of their electronic structure and the pseudo Jahn-Teller effect (PJTE). Starting with the D4h symmetry of the Si4R4 system with a square four-membered silicon ring as a reference geometry, and employing ab initio calculations of energy profiles along lower-symmetry nuclear displacements in the ground and several excited states, we show that the ground-state boat-like and chair-like equilibrium configurations are produced by the PJT interaction with appropriate excited sates. For Si4F4 a full two-mode b1g−b2g adiabatic potential energy surface is calculated showing explicitly the way of transformation from the unstable D4h geometry to the two equilibrium C2h configurations via the D2h saddle point. The PJTE origin of these structural features is confirmed also by estimates of the vibronic coupling parameters. For Si4R4 with large substituents the origin of their structure is revealed by analyzing the PJT interaction between the frontier molecular orbitals. The preferred chair-like structures of Si4R4 analogues with amido substituents, and heavier germanium-containing systems Ge4R4 (potential precursors for semiconducting materials) are predicted. PMID:26996445

  6. Photoelectron spectra and electronic structure of nitrogen analogues of boron β-diketonates

    NASA Astrophysics Data System (ADS)

    Tikhonov, Sergey A.; Vovna, Vitaliy I.; Borisenko, Aleksandr V.

    2016-07-01

    The electronic structure of the valence levels of seven nitrogen-containing boron complexes was investigated using methods of ultraviolet photoelectron spectroscopy and density functional theory. The ionization energies of π- and σ-levels were obtained from photoelectron spectra. The electronic structure of nitrogen-containing compounds was compared with the electronic structure of β-diketonates. It was shown the influence of various substituents on carbon and nitrogen atoms of six-membered ring on the electronic structure of complexes. The changes in the electronic structure after the substitution of atoms in condensed cycles have been identified. In order to compare the experimental vertical ionization energies IEi with Kohn-Sham orbital energies εi we used the analogue of Koopmans theorem and average amendment to the orbital energy of the electrons (δbari). For 26 electronic levels of seven studied complexes, the calculated values are in good accordance with experimental energy intervals between electron levels.

  7. Synthesis of Silicate Zeolite Analogues Using Organic Sulfonium Compounds as Structure-Directing Agents.

    PubMed

    Jo, Changbum; Lee, Sungjune; Cho, Sung June; Ryoo, Ryong

    2015-10-19

    A microporous crystalline silica zeolite of the MEL structure type and three other zeolite analogues composed of germanosilicate frameworks were synthesized using tributylsulfonium, triphenylsulfonium, or tri(para-tolyl)sulfonium as the structure-directing agent. The germanosilicates thus obtained had ISV, ITT, or a new zeolite structure depending on the synthesis conditions. The structure of the new germanosilicate was solved using X-ray powder diffraction data with the aid of a charge-flipping method. The solution indicated a crystal structure belonging to the P63/mmc space group with cell parameters of a=16.2003 Å and c=21.8579 Å. After calcination, the new germanosilicate material exhibited two types of accessible micropores with diameters of 0.61 and 0.78 nm. PMID:26302889

  8. Synthesis and glutathione S-transferase structure-affinity relationships of nonpeptide and peptidase-stable glutathione analogues.

    PubMed

    Klotz, P; Slaoui-Hasnaoui, A; Banères, J L; Duckert, J F; Rossi, J C; Kerbal, A

    1998-06-18

    A series of nonpeptidic glutathione analogues where the peptide bonds were replaced by simple carbon-carbon bonds or isosteric E double bonds were prepared. The optimal length for the two alkyl chains on either side of the mercaptomethyl group was evaluated using structure-affinity relationships. Affinities of the analogues 14a-f, 23, and 25 were evaluated for a recombinant GST enzyme using a new affinity chromatography method previously developed in our laboratory. Analysis of these analogues gives an additional understanding for GST affinity requirements: (a) the carbon skeleton must conserve that of glutathione since analogue 14a showed the best affinity (IC50 = 5.2 microM); (b) the GST G site is not able to accommodate a chain length elongation of one methylene group (no affinity for analogues 14c,f); (c) a one-methylene group chain length reduction is tolerated, much more for the "Glu side" (14d, IC50 = 10.1 microM) than for the "Gly side" (14b, IC50 = 1800 microM); (d) the mercaptomethyl group must remain at position 5 as shown from the null affinity of the 6-mercaptomethyl analogue 14e; (e) the additional peptide isosteric E double bond (25) or hydroxyl derivative (23) in 14e did not help to retrieve affinity. This work reveals useful information for the design of new selective nonpeptidic and peptidase-stable glutathione analogues. PMID:9632361

  9. Relationship between structure of phenothiazine analogues and their activity on platelet calcium fluxes.

    PubMed Central

    Enouf, J.; Lévy-Toledano, S.

    1984-01-01

    Phenothiazine analogues have been tested for their effect on calcium uptake into platelet membrane vesicles and on ionophore-induced platelet activation, both phenomena being Ca2+-dependent. Both calcium uptake into membrane vesicles and ionophore-induced platelet activation were inhibited by the drugs. Evidence for two inhibitors as potent as chlorpromazine and trifluoperazine was found. These drugs are apparently competitive inhibitors of calcium uptake. A structure-activity relationship has been established. The data suggest that the phenothiazines are able to inhibit calmodulin-insensitive calcium uptake of platelet membrane vesicles and that therefore they cannot be assumed to be selective inhibitors of calmodulin interactions under all circumstances. PMID:6697061

  10. Analogue and numerical models coupled with structural analysis to investigate the runout of dry granular flows.

    NASA Astrophysics Data System (ADS)

    Céline, Longchamp; Irène, Manzella; Abellan, Antonio; Caspar, Olivier; Podladchikov, Yury; Jaboyedoff, Michel

    2016-04-01

    The objective of this research is to better understand the propagation of dry granular flows by coupling analogue modelling, structural analysis of deposit and numerical modelling, as follows: (a) The analogue modelling use laboratory experiments to investigate both the fluid-like flow of a granular mass falling down a slope and the influence of certain parameters such as the basal roughness, mobilized volume and slope angle. The experimental setup allows unconfined flow which spreads freely on a horizontal surface. Different grainsizes (115, 545 and 2605 μm) and substratum roughness (simulates by aluminium and sandpapers with grainsize from 16 to 425 μm) were used in order to understand their influence on the motion of a granular mass. During our experiments, the runout varied between 4.5cm and 11cm, with an increase of the basal roughness. When the volume varied between 300 and 600cm3 the runout was comprised between 9.2cm and 11.7cm. Finally when the slope angle was increased from 35° to 60°, the observed runout was between 5.3cm and 20cm. (b) Rock avalanche dynamic is analysed by means of a detailed structural analysis of the analogue modelling deposits. A series of 3D measurements were carried out on the deposit and a median filter and a gradient operator along the direction of propagation were applied to the 3D datasets. Treatment yield a more precise mapping of the longitudinal and transversal displacement features observed at the surface of the deposits. (c) The numerical modelling performed during this research is based both on continuum mechanics approach and on solving the shallow water equations. The avalanche was described from an Eulerian point of view within a continuum framework as single phase of incompressible granular material following Mohr-Coulomb friction law. The results obtained with the numerical model resemble those observed with the analogue modelling mentioned above. By coupling these three approaches, we obtained a complete scheme

  11. Design, structure activity relationship, cytotoxicity and evaluation of antioxidant activity of curcumin derivatives/analogues.

    PubMed

    Sahu, Pramod K

    2016-10-01

    New fourteen 3,4-dihydropyrimidine derivatives/analogues of curcumin (2a-2n) were designed, synthesized and biologically evaluated for their cytotoxicity and antioxidant activity. Cytotoxicity effect has been evaluated against three cell lines HeLa, HCT-116 and QG-56 by MTT assay method. From SAR study, it has been revealed that particularly, compound 2e and 2j (IC50 value 12.5 μM) have shown better cytotoxicity effect against three cell lines. According to results of SAR study, it was found that 3,4-dihydropyrimidines of curcumin, 2c, 2d, 2j and 2n exhibited better antioxidant activity than curcumin. A correlation of structure and activities relationship of these compounds with respect to drug score profiles and other physico-chemical properties of drugs are described and verified experimentally. Therefore, we conclude that physico-chemical analyses may prove structural features of curcumin analogues with their promising combined cytotoxicity/antioxidant activity and it is also concluded from virtual and practical screening that the compounds were varied to possess a broad range of lipophilic character, revealed by Log P values. PMID:27318975

  12. Band gap and chemically ordered domain structure of a graphene analogue BCN

    NASA Astrophysics Data System (ADS)

    Venu, K.; Kanuri, S.; Raidongia, K.; Hembram, K. P. S. S.; Waghmare, U. V.; Datta, R.

    2010-12-01

    Chemically synthesized few layer graphene analogues of B xC yN z are characterized by aberration corrected transmission electron microscopy and high resolution electron energy loss spectroscopy (HREELS) to determine the local phase, electronic structure and band gap. HREELS band gap studies of a B xC yN z composition reveal absorption edges at 2.08, 3.43 and 6.01 eV, indicating that the B xC yN z structure may consist of domains of different compositions. The K-absorption edge energy position of the individual elements in B xC yN z is determined and compared with h-BN and graphite. An understanding of these experimental findings is developed with complementary first-principles based calculations of the various ordered configurations of B xC yN z.

  13. Structural correlation of some heterocyclic chalcone analogues and evaluation of their antioxidant potential.

    PubMed

    Kumar, C S Chidan; Loh, Wan-Sin; Ooi, Chin Wei; Quah, Ching Kheng; Fun, Hoong-Kun

    2013-01-01

    A series of six novel heterocyclic chalcone analogues 4(a-f) has been synthesized by condensing 2-acetyl-5-chlorothiophene with benzaldehyde derivatives in methanol at room temperature using a catalytic amount of sodium hydroxide. The newly synthesized compounds are characterized by IR, mass spectra, elemental analysis and melting point. Subsequently; the structures of these compounds were determined using single crystal X-ray diffraction. All the synthesized compounds were screened for their antioxidant potential by employing various in vitro models such as DPPH free radical scavenging assay, ABTS radical scavenging assay, ferric reducing antioxidant power and cupric ion reducing antioxidant capacity. Results reflect the structural impact on the antioxidant ability of the compounds. The IC₀ values illustrate the mild to good antioxidant activities of the reported compounds. Among them, 4f with a p-methoxy substituent was found to be more potent as antioxidant agent. PMID:24077177

  14. Implications for the active form of human insulin based on the structural convergence of highly active hormone analogues

    PubMed Central

    Jiráček, Jiří; Žáková, Lenka; Antolíková, Emília; Watson, Christopher J.; Turkenburg, Johan P.; Dodson, Guy G.; Brzozowski, Andrzej M.

    2010-01-01

    Insulin is a key protein hormone that regulates blood glucose levels and, thus, has widespread impact on lipid and protein metabolism. Insulin action is manifested through binding of its monomeric form to the Insulin Receptor (IR). At present, however, our knowledge about the structural behavior of insulin is based upon inactive, multimeric, and storage-like states. The active monomeric structure, when in complex with the receptor, must be different as the residues crucial for the interactions are buried within the multimeric forms. Although the exact nature of the insulin’s induced-fit is unknown, there is strong evidence that the C-terminal part of the B-chain is a dynamic element in insulin activation and receptor binding. Here, we present the design and analysis of highly active (200–500%) insulin analogues that are truncated at residue 26 of the B-chain (B26). They show a structural convergence in the form of a new β-turn at B24-B26. We propose that the key element in insulin’s transition, from an inactive to an active state, may be the formation of the β-turn at B24-B26 associated with a trans to cis isomerisation at the B25-B26 peptide bond. Here, this turn is achieved with N-methylated L-amino acids adjacent to the trans to cis switch at the B25-B26 peptide bond or by the insertion of certain D-amino acids at B26. The resultant conformational changes unmask previously buried amino acids that are implicated in IR binding and provide structural details for new approaches in rational design of ligands effective in combating diabetes. PMID:20133841

  15. Isolated magnetic field structures in Mercury's magnetosheath as possible analogues for terrestrial magnetosheath plasmoids and jets

    NASA Astrophysics Data System (ADS)

    Karlsson, Tomas; Liljeblad, Elisabet; Kullen, Anita; Raines, Jim M.; Slavin, James A.; Sundberg, Torbjörn

    2016-09-01

    We have investigated MESSENGER magnetic field data from the Mercury magnetosheath and near solar wind, to identify isolated magnetic field structures (defined as clear, isolated changes in the field magnitude). Their properties are studied in order to determine if they may be considered as analogues to plasmoids and jets known to exist in Earth's magnetosheath. Both isolated decreases of the magnetic field absolute value ('negative magnetic field structures') and increases ('positive structures') are found in the magnetosheath, whereas only negative structures are found in the solar wind. The similar properties of the solar wind and magnetosheath negative magnetic field structures suggests that they are analogous to diamagnetic plasmoids found in Earth's magnetosheath and near solar wind. The latter have earlier been identified with solar wind magnetic holes. Positive magnetic field structures are only found in the magnetosheath, concentrated to a region relatively close to the magnetopause. Their proximity to the magnetopause, their scale sizes, and the association of a majority of the structures with bipolar magnetic field signatures identify them as flux transfer events (which generally are associated with a decrease of plasma density in the magnetosheath). The positive magnetic field structures are therefore not likely to be analogous to terrestrial paramagnetic plasmoids but possibly to a sub-population of magnetosheath jets. At Earth, a majority of magnetosheath jets are associated with the quasi-parallel bow shock. We discuss some consequences of the findings of the present investigation pertaining to the different nature of the quasi-parallel bow shock at Mercury and Earth.

  16. Transition state analogues in structures of ricin and saporin ribosome-inactivating proteins

    SciTech Connect

    Ho, Meng-Chiao; Sturm, Matthew B.; Almo, Steven C.; Schramm, Vern L.

    2010-01-12

    Ricin A-chain (RTA) and saporin-L1 (SAP) catalyze adenosine depurination of 28S rRNA to inhibit protein synthesis and cause cell death. We present the crystal structures of RTA and SAP in complex with transition state analogue inhibitors. These tight-binding inhibitors mimic the sarcin-ricin recognition loop of 28S rRNA and the dissociative ribocation transition state established for RTA catalysis. RTA and SAP share unique purine-binding geometry with quadruple {pi}-stacking interactions between adjacent adenine and guanine bases and 2 conserved tyrosines. An arginine at one end of the {pi}-stack provides cationic polarization and enhanced leaving group ability to the susceptible adenine. Common features of these ribosome-inactivating proteins include adenine leaving group activation, a remarkable lack of ribocation stabilization, and conserved glutamates as general bases for activation of the H{sub 2}O nucleophile. Catalytic forces originate primarily from leaving group activation evident in both RTA and SAP in complex with transition state analogues.

  17. Structural Basis for Recognition of Guanosine by a Synthetic Tricyclic Cytosine Analogue: Guanidinium G-Clamp

    SciTech Connect

    Wilds, C.J.; Maier, M.A.; Manoharan, M.; Egli, M.

    2010-03-08

    An oligonucleotide analogue containing a novel heterocyclic analogue, the guanidinium G-clamp, was designed to allow formation of five H-bonds to guanosine. The guanidinium group was introduced postsynthetically by treatment of the deprotected oligonucleotide containing a free amino group with a solution of 1H-pyrazole-1-carboxamidine and purified by a combination of size-exclusion chromatography and reversed-phase HPLC. A single incorporation of this modification into an oligodeoxynucleotide sequence was found to increase duplex stability by 13{sup o} and 16{sup o} per modification to RNA and DNA, respectively. Crystals of a self-complementary decamer sequence containing this modification were grown and diffracted to 1-{angstrom} resolution. The structure was solved by molecular replacement and revealed that the modification forms additional H-bonds to O(6) and N(7) of guanosine through the amino and imino N-atoms, respectively. The origins of enhanced duplex stability are also attributed to increased stacking interactions mediated by the phenoxazine moiety of the G-clamp and formation of H-bond networks between the positively charged guanidinium group, H{sub 2}O molecules, and negatively charged O-atoms from phosphates on the adjacent strand.

  18. Electronic structure and vibrational spectra of cis-diammine(orotato)platinum(II), a potential cisplatin analogue: DFT and experimental study

    NASA Astrophysics Data System (ADS)

    Wysokiński, Rafał; Hernik, Katarzyna; Szostak, Roman; Michalska, Danuta

    2007-03-01

    Orotic acid (vitamin B 13) is a key intermediate in biosynthesis of the pyrimidine nucleotides in living organisms, moreover, it may serve as the biological carrier for some metal ions. cis-Diammine(orotato)platinum(II), cis-[Pt(C 5H 2N 2O 4)(NH 3) 2] can be considered as a new potential cisplatin analogue. The FT-Raman and FT-IR spectra of the title complex are reported, for the first time. The molecular structure, vibrational frequencies, and the theoretical infrared and Raman intensities have been calculated by the density functional mPW1PW91 method. The detailed vibrational assignment has been made on the basis of the calculated potential energy distribution. The theoretically predicted IR and Raman spectra show very good agreement with experiment. Natural bond orbital (NBO) analyses were performed for cisplatin, carboplatin and the title complex. The results provided new data on the nature of platinum-ligand bonding in these compounds. Strong intramolecular hydrogen bond between the orotate ligand and the coordinated ammonia group stabilizes the structure of the platinum(II) complex. Thus, it is suggested that the orotate ligand in the title complex is more inert to the substitution reactions than the chloride ligands in cisplatin.

  19. Inhibition of Mycobacterium tuberculosis dihydrodipicolinate synthase by alpha-ketopimelic acid and its other structural analogues

    PubMed Central

    Shrivastava, Priyanka; Navratna, Vikas; Silla, Yumnam; Dewangan, Rikeshwer P.; Pramanik, Atreyi; Chaudhary, Sarika; Rayasam, GeethaVani; Kumar, Anuradha; Gopal, Balasubramanian; Ramachandran, Srinivasan

    2016-01-01

    The Mycobacterium tuberculosis dihydrodipicolinate synthase (Mtb-dapA) is an essential gene. Mtb-DapA catalyzes the aldol condensation between pyruvate and L-aspartate-beta-semialdehyde (ASA) to yield dihydrodipicolinate. In this work we tested the inhibitory effects of structural analogues of pyruvate on recombinant Mtb-DapA (Mtb-rDapA) using a coupled assay with recombinant dihydrodipicolinate reductase (Mtb-rDapB). Alpha-ketopimelic acid (α-KPA) showed maximum inhibition of 88% and IC50 of 21 μM in the presence of pyruvate (500 μM) and ASA (400 μM). Competition experiments with pyruvate and ASA revealed competition of α-KPA with pyruvate. Liquid chromatography-mass spectrometry (LC-MS) data with multiple reaction monitoring (MRM) showed that the relative abundance peak of final product, 2,3,4,5-tetrahydrodipicolinate, was decreased by 50%. Thermal shift assays showed 1 °C Tm shift of Mtb-rDapA upon binding α-KPA. The 2.4 Å crystal structure of Mtb-rDapA-α-KPA complex showed the interaction of critical residues at the active site with α-KPA. Molecular dynamics simulations over 500 ns of pyruvate docked to Mtb-DapA and of α-KPA-bound Mtb-rDapA revealed formation of hydrogen bonds with pyruvate throughout in contrast to α-KPA. Molecular descriptors analysis showed that ligands with polar surface area of 91.7 Å2 are likely inhibitors. In summary, α-hydroxypimelic acid and other analogues could be explored further as inhibitors of Mtb-DapA. PMID:27501775

  20. Inhibition of Mycobacterium tuberculosis dihydrodipicolinate synthase by alpha-ketopimelic acid and its other structural analogues.

    PubMed

    Shrivastava, Priyanka; Navratna, Vikas; Silla, Yumnam; Dewangan, Rikeshwer P; Pramanik, Atreyi; Chaudhary, Sarika; Rayasam, GeethaVani; Kumar, Anuradha; Gopal, Balasubramanian; Ramachandran, Srinivasan

    2016-01-01

    The Mycobacterium tuberculosis dihydrodipicolinate synthase (Mtb-dapA) is an essential gene. Mtb-DapA catalyzes the aldol condensation between pyruvate and L-aspartate-beta-semialdehyde (ASA) to yield dihydrodipicolinate. In this work we tested the inhibitory effects of structural analogues of pyruvate on recombinant Mtb-DapA (Mtb-rDapA) using a coupled assay with recombinant dihydrodipicolinate reductase (Mtb-rDapB). Alpha-ketopimelic acid (α-KPA) showed maximum inhibition of 88% and IC50 of 21 μM in the presence of pyruvate (500 μM) and ASA (400 μM). Competition experiments with pyruvate and ASA revealed competition of α-KPA with pyruvate. Liquid chromatography-mass spectrometry (LC-MS) data with multiple reaction monitoring (MRM) showed that the relative abundance peak of final product, 2,3,4,5-tetrahydrodipicolinate, was decreased by 50%. Thermal shift assays showed 1 °C Tm shift of Mtb-rDapA upon binding α-KPA. The 2.4 Å crystal structure of Mtb-rDapA-α-KPA complex showed the interaction of critical residues at the active site with α-KPA. Molecular dynamics simulations over 500 ns of pyruvate docked to Mtb-DapA and of α-KPA-bound Mtb-rDapA revealed formation of hydrogen bonds with pyruvate throughout in contrast to α-KPA. Molecular descriptors analysis showed that ligands with polar surface area of 91.7 Å(2) are likely inhibitors. In summary, α-hydroxypimelic acid and other analogues could be explored further as inhibitors of Mtb-DapA. PMID:27501775

  1. Extrapolating surface structures to depth in transpressional systems: the role of rheology and convergence angle deduced from analogue experiments

    NASA Astrophysics Data System (ADS)

    Hsieh, Shang Yu; Neubauer, Franz; Cloetingh, Sierd; Willingshofer, Ernst; Sokoutis, Dimitrios

    2014-05-01

    The internal structure of major strike-slip faults is still poorly understood, particularly how the deep structure could be inferred from its surface expression (Molnar and Dayem, 2011 and references therein). Previous analogue experiments suggest that the convergence angle is the most influential factor (Leever et al., 2011). Further analogue modeling may allow a better understanding how to extrapolate surface structures to the subsurface geometry of strike-slip faults. Various scenarios of analogue experiments were designed to represent strike-slip faults in nature from different geological settings. As such key parameters, which are investigated in this study include: (a) the angle of convergence, (b) the thickness of brittle layer, (c) the influence of a rheological weak layer within the crust, and (d) influence of a thick and rheologically weak layer at the base of the crust. The latter aimed to simulate the effect of a hot metamorphic core complex or an alignment of uprising plutons bordered by a transtensional/transpressional strike-slip fault. The experiments are aimed to explain first order structures along major transcurrent strike-slip faults such as the Altyn, Kunlun, San Andrea and Greendale (Darfield earthquake 2010) faults. The preliminary results show that convergence angle significantly influences the overall geometry of the transpressive system with greater convergence angles resulting in wider fault zones and higher elevation. Different positions, densities and viscosities of weak rheological layers have not only different surface expressions but also affect the fault geometry in the subsurface. For instance, rheological weak material in the bottom layer results in stretching when experiment reaches a certain displacement and a buildup of a less segmented, wide positive flower structure. At the surface, a wide fault valley in the middle of the fault zone is the reflection of stretching along the velocity discontinuity at depth. In models with a

  2. Structural Insight into Methyl-Coenzyme M Reductase Chemistry Using Coenzyme B Analogues

    SciTech Connect

    Cedervall, Peder E.; Dey, Mishtu; Pearson, Arwen R.; Ragsdale, Stephen W.; Wilmot, Carrie M.

    2010-09-07

    Methyl-coenzyme M reductase (MCR) catalyzes the final and rate-limiting step in methane biogenesis: the reduction of methyl-coenzyme M (methyl-SCoM) by coenzyme B (CoBSH) to methane and a heterodisulfide (CoBS-SCoM). Crystallographic studies show that the active site is deeply buried within the enzyme and contains a highly reduced nickel-tetrapyrrole, coenzyme F430. Methyl-SCoM must enter the active site prior to CoBSH, as species derived from methyl-SCoM are always observed bound to the F430 nickel in the deepest part of the 30 {angstrom} long substrate channel that leads from the protein surface to the active site. The seven-carbon mercaptoalkanoyl chain of CoBSH binds within a 16 {angstrom} predominantly hydrophobic part of the channel close to F430, with the CoBSH thiolate lying closest to the nickel at a distance of 8.8 {angstrom}. It has previously been suggested that binding of CoBSH initiates catalysis by inducing a conformational change that moves methyl-SCoM closer to the nickel promoting cleavage of the C-S bond of methyl-SCoM. In order to better understand the structural role of CoBSH early in the MCR mechanism, we have determined crystal structures of MCR in complex with four different CoBSH analogues: pentanoyl, hexanoyl, octanoyl, and nonanoyl derivatives of CoBSH (CoB5SH, CoB6SH, CoB8SH, and CoB9SH, respectively). The data presented here reveal that the shorter CoB5SH mercaptoalkanoyl chain overlays with that of CoBSH but terminates two units short of the CoBSH thiolate position. In contrast, the mercaptoalkanoyl chain of CoB6SH adopts a different conformation, such that its thiolate is coincident with the position of the CoBSH thiolate. This is consistent with the observation that CoB6SH is a slow substrate. A labile water in the substrate channel was found to be a sensitive indicator for the presence of CoBSH and HSCoM. The longer CoB8SH and CoB9SH analogues can be accommodated in the active site through exclusion of this water. These analogues

  3. The action of structural analogues of ethidium bromide on the mitochondrial genome of yeast.

    PubMed

    Hall, R M; Mattick, J S; Nagley, P; Cobon, G S; Eastwood, F W; Linnane, A W

    1977-12-01

    We have studied the effects on the yeast mitochondrial genome of four analogues of ethidium bromide, in which the phenyl moieyt has been replaced by linear alkyl chains of lengths varying from seven to fifteen carbon atoms. These analogues are more efficient than ethidium bromide in inducing petite mutants in Saccharomyces cervisiae. The drugs also cause a loss of mtDNA from the cells in vivo; however these analogues are in fact less effective inhibitors of mitochondrial DNA replication per se, as shown by direct in vitro studies. It is concluded that these analogues are more efficient than ethidium bromide in causing the fragmentation of mitochondrial DNA in S. cervisiae. PMID:339057

  4. Adherence to RIASEC Structure as a Key Career Decision Construct

    ERIC Educational Resources Information Center

    Tracey, Terence J. G.

    2008-01-01

    The present study examined the relation between individual cognitive structure and several key career decision variables. Specifically, in a sample of college students enrolled in a career development class, the usage of the RIASEC (Realistic, Investigative, Artistic, Social, Enterprising, and Conventional) circumplex (adherence) was examined as…

  5. Morpho-structural criteria for the identification of volcano deformation processes from analogue modeling

    NASA Astrophysics Data System (ADS)

    Rincon, Marta; Marquez, Alvaro; van Wyk de Vries, Benjamin; Herrera, Raquel; Granja Bruña, Jose Luis; Llanes, Pilar

    2014-05-01

    The morphology of volcanoes provides important information about edifice evolution. Volcanoes can deform by gravitational instability and intrusions. This deformation can compromise volcano structural stability, promoting flank collapse even at dormant edifices. Identification of past/active deformation processes is therefore important not only for the understanding of volcano evolution but also for volcanic hazards. Both deformation due to the flank spreading of a volcano over its weak core and due to the intrusion of a cryptodome in the volcano edifice can produce faulting and changes in the morphology of volcano flanks. These morpho-structural changes in the volcano open the possibility to identify potential deformed and unstable volcanoes using remote sensing techniques and DEMs. We have used analogue models of flank spreading and intrusion processes to make progress in the morpho-structural identification of deformation features which can provide criteria for distinguishing processes. We have geometrically and mechanically scaled two different sets of experiments using a sand-plaster mixture for volcano materials, silicone putty for weak core rocks and Golden Syrup for magma intrusions. For monitoring changes in the volcano morphology we have used a Kinect sensor (Microsoft), which provides us vertical displacements of volcano flanks several times per second with a 1 mm precision. We have synchronized the Kinect sensor with a digital camera for monitoring the spatio-temporal evolution of tectonic structures together with morphology. All experiments produce asymmetrical changes in volcano morphology, developing convex-concave geometries in the deformed flank. However, the spatial relationships of structures with changes in volcano flank curvature are different for the two processes, as noted by previous authors. The morphometric tools developed for analyzing volcano topography allow us to identify intrusion processes due to volcano volume increase. We have

  6. An NHC-Stabilized Silicon Analogue of Acylium Ion: Synthesis, Structure, Reactivity, and Theoretical Studies.

    PubMed

    Ahmad, Syed Usman; Szilvási, Tibor; Irran, Elisabeth; Inoue, Shigeyoshi

    2015-05-01

    The silicon analogues of an acylium ion, namely, sila-acylium ions 2a and 2b [RSi(O)(NHC)2]Cl stabilized by two N-heterocyclic carbenes (NHC = 1,3,4,5-tetramethylimidazol-2-ylidene), and having chloride as a countercation were successfully synthesized by the reduction of CO2 using the donor stabilized silyliumylidene cations 1a and 1b [RSi(NHC)2]Cl (1a, 2a; R = m-Ter = 2,6-Mes2C6H3, Mes = 2,4,6-Me3C6H2 and 1b, 2b; R = Tipp = 2,4,6-iPr3C6H2). Structurally, compound 2a features a four coordinate silicon center together with a double bond between silicon and oxygen atoms. The reaction of sila-acylium ions 2a and 2b with water afforded different products which depend on the bulkiness of aryl substituents. Although the exposure of 2a to H2O afforded a stable silicon analogue of carboxylate anion as a dimer form, [m-TerSi(O)O]2(2-)·2[NHC-H](+) (3), the same reaction with the less bulkier triisopropylphenyl substituted sila-acylium ion 2b afforded cyclotetrasiloxanediol dianion [{TippSi(O)}4{(O)OH}2](2-)·2[NHC-H](+) (4). Metric and DFT (Density Functional Theory) evidence support that 2a and 2b possess strong Si═O double bond character, while 3 and 4 contain more ionic terminal Si-O bonds. Mechanistic details of the formation of different (SiO)n (n = 2, 3, 4) core rings were explored using DFT to explain the experimentally characterized products and a proposed stable intermediate was identified with mass spectrometry. PMID:25871835

  7. Combretastatin A-4 analogues with benzoxazolone scaffold: Synthesis, structure and biological activity.

    PubMed

    Gerova, Mariana S; Stateva, Silviya R; Radonova, Elena M; Kalenderska, Rositsa B; Rusew, Rusi I; Nikolova, Rositsa P; Chanev, Christo D; Shivachev, Boris L; Apostolova, Margarita D; Petrov, Ognyan I

    2016-09-14

    In order to design and synthesize a new class of heterocyclic analogues of natural combretastatin A-4 and its synthetic derivative AVE8062, the benzoxazolone ring was selected as a scaffold for a bioisosteric replacement of the ring B of both molecules. A library of 28 cis- and trans-styrylbenzoxazolones was obtained by a modified Wittig reaction under Boden's conditions. Structures of the newly synthesized compounds bearing the 3,4,5-trimethoxy-, 3,4-dimethoxy-, 3,5-dimethoxy-, and 4-methoxystyryl fragment at position 4, 5, 6 or 7 of benzoxazolone core were determined on the basis of spectral and X ray data. The in vitro cytotoxicity of styrylbenzoxazolones against different cell lines was examined. Stilbene derivative 16Z, (Z)-3-methyl-6-(3,4,5-trimethoxystyryl)-2(3H)-benzoxazolone, showed highest antiproliferative potential of the series, with IC50 of 0.25 μM against combretastatin resistant cell line HT-29, 0.19 μM against HepG2, 0.28 μM against EA.hy926 and 0.73 μM against K562 cells. Furthermore, the results of flow cytometric analysis confirmed that 16Z induced cell cycle arrest in G2/M phase in the cell lines like combretastatin A-4. This arrest is followed by an abnormal exit of cells from mitosis without cytokinesis into a pseudo G1-like multinucleate state leading to late apoptosis and cell death. Accordingly, synthetic analogue 16Z was identified as the most promising potential anticancer agent in present study, and was selected as lead compound for further detailed investigations. PMID:27187864

  8. Nano-Self-Assemblies Based on Synthetic Analogues of Mycobacterial Monomycoloyl Glycerol and DDA: Supramolecular Structure and Adjuvant Efficacy.

    PubMed

    Martin-Bertelsen, Birte; Korsholm, Karen S; Roces, Carla B; Nielsen, Maja H; Christensen, Dennis; Franzyk, Henrik; Yaghmur, Anan; Foged, Camilla

    2016-08-01

    The mycobacterial cell-wall lipid monomycoloyl glycerol (MMG) is a potent immunostimulator, and cationic liposomes composed of a shorter synthetic analogue (MMG-1) and dimethyldioctadecylammonium (DDA) bromide represent a promising adjuvant that induces strong antigen-specific Th1 and Th17 responses. In the present study, we investigated the supramolecular structure and in vivo adjuvant activity of dispersions based on binary mixtures of DDA and an array of synthetic MMG-1 analogues (MMG-2/3/5/6) displaying longer (MMG-2) or shorter (MMG-3) alkyl chain lengths, or variations in stereochemistry of the polar headgroup (MMG-5) or of the hydrophobic moiety (MMG-6). Synchrotron small-angle X-ray scattering experiments and cryo transmission electron microscopy revealed that DDA:MMG-1/2/5/6 dispersions consisted of unilamellar and multilamellar vesicles (ULVs/MLVs), whereas a coexistence of both ULVs and hexosomes was observed for DDA:MMG-3, depending on the DDA:MMG molar ratio. The studies also showed that ULVs were formed, regardless of the structural characteristics of the neat MMG analogues in excess buffer [lamellar (MMG-1/2/5) or inverse hexagonal (MMG-3/6) phases]. Immunization of mice with a chlamydia antigen surface-adsorbed to DDA:MMG-1/3/6 dispersions revealed that all tested adjuvants were immunoactive and induced strong Th1 and Th17 responses with a potential for a central effector memory profile. The MMG-1 and MMG-6 analogues were equally immunoactive in vivo upon incorporation into DDA liposomes, despite the reported highly different immunostimulatory properties of the neat analogues in vitro, which were attributed to the different nanostructural characteristics. This clearly demonstrates that optimal formulation and delivery of MMG analogues to the immune system is of major importance and challenges the use of in vitro screening assays with nondispersed compounds to identify potential new vaccine adjuvants. PMID:27377146

  9. Experimental and Theoretical Studies of the Structures and Interactions of Vancomycin Antibiotics with Cell Wall Analogues

    SciTech Connect

    Yang, Zhibo; Vorpagel, Erich R.; Laskin, Julia

    2008-10-01

    Surface-induced dissociation (SID) of the singly protonated complex of vancomycin antibiotic with cell wall peptide analogue (Nα,Nε-diacetyl-L-Lys-D-Ala-D-Ala) was studied using a 6 T Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (FT-ICR MS) specially configured for SID experiments. The binding energy between the vancomycin and the peptide was obtained from the RRKM modeling of the time- and energy resolved fragmentation efficiency curves (TFECs) of the precursor ion and its fragments. Electronic structure calculations of the geometries, proton affinities and binding energies were performed for several model systems including vancomycin (V), vancomycin aglycon (VA), Nα,Nε-diacetyl-L-Lys-D-Ala-D-Ala, and non-covalent complexes of VA with N-acetyl-D-Ala-D-Ala and Nα,Nε-diacetyl-L-Lys-D-Ala-D-Ala at the B3LYP/6-31G(d) level of theory. Comparison between the experimental and computational results suggests that the most probable structure of the complex observed in our experiments corresponds to the neutral peptide bound to the vancomycin protonated at the secondary amino group of the N-methyl-leucine residue. The experimental binding energy of 30.9 ± 1.8 kcal/mol is in good agreement with the binding energy of 29.3 ± 2.5 kcal/mol calculated for the model system representing the preferred structure of the complex.

  10. Structural organisation and phase behaviour of a stratum corneum lipid analogue: ceramide 3A.

    PubMed

    Garidel, Patrick

    2006-05-21

    The thermotropic phase behaviour and structural organisation of ceramide N-linoeoyl-phytosphingosine (ceramide 3A) is investigated by means of differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). Its polymorphism and structural properties are compared with two ceramides of the type III class with various hydrocarbon chain saturation degrees. After hydration the main phase transition temperature of ceramide 3A is found at 76 degrees C with a phase transition enthalpy of +29 kJ mol(-1). Analysing the frequency of methylene stretching vibrations (by infrared spectroscopy) reveals that the fluidity (amount of trans-gauche isomers) is strongly increased for ceramide 3A compared to its stearoyl ceramide type III analogue. After lipid hydration, the acyl chains of all investigated phytosphingosine ceramides of type III adopt a hexagonal-like chain packing. The amide I and amide II vibrations are quite sensitive to the phase transition of the ceramide. The corresponding band analysis reveals strong inter- and intramolecular hydrogen bonds between the amide and hydroxyl groups in the ceramide head groups. The H-bonding network and conformation of the head group of ceramide 3A is only slightly influenced by hydration. The water penetration capacity of ceramide 3A is, however, considerably larger compared to other phytosphingosine derivatives. The structural and organisational properties of ceramides of type III class are discussed with respect to their physiological relevancies for the stratum corneum lipid barrier property of the skin. PMID:16688309

  11. Lumenal gating mechanism revealed in calcium pump crystal structures with phosphate analogues.

    PubMed

    Toyoshima, Chikashi; Nomura, Hiromi; Tsuda, Takeo

    2004-11-18

    P-type ion transporting ATPases are ATP-powered ion pumps that establish ion concentration gradients across biological membranes. Transfer of bound cations to the lumenal or extracellular side occurs while the ATPase is phosphorylated. Here we report at 2.3 A resolution the structure of the calcium-ATPase of skeletal muscle sarcoplasmic reticulum, a representative P-type ATPase that is crystallized in the absence of Ca2+ but in the presence of magnesium fluoride, a stable phosphate analogue. This and other crystal structures determined previously provide atomic models for all four principal states in the reaction cycle. These structures show that the three cytoplasmic domains rearrange to move six out of ten transmembrane helices, thereby changing the affinity of the Ca2+-binding sites and the gating of the ion pathway. Release of ADP triggers the opening of the lumenal gate and release of phosphate its closure, effected mainly through movement of the A-domain, the actuator of transmembrane gates. PMID:15448704

  12. Structure and Properties of a Synthetic Analogue of Bacterial Iron-Sulfur Proteins

    PubMed Central

    Herskovitz, T.; Averill, B. A.; Holm, R. H.; Ibers, James A.; Phillips, W. D.; Weiher, J. F.

    1972-01-01

    The compound (Et4N)2[Fe4S4(SCH2Ph)4] has been prepared and its structure determined by x-ray diffraction. The Fe4S4 core of the anion possesses a configuration of D2d symmetry that is closely related to the Fe4S4 active-site structures of the high-potential iron protein from Chromatium and the ferredoxin from Micrococcus aerogenes. Electronic properties of the tetrameric anion have been partially characterized by measurement of proton magnetic resonance, Mössbauer, photoelectron, and electronic spectra, and magnetic susceptibility. Comparison of corresponding properties of [Fe4S4(SCH2Ph)4]2- and the proteins implies that the oxidation levels of the synthetic tetramer, the reduced form of the high-potential protein, and the oxidized form of the 8-Fe ferredoxins are equivalent. The tetramer possesses the one-electron redox capacity associated with the 4-Fe centers of the ferredoxins. The structural and collective electronic features of [Fe4S4(SCH2Ph)4]2- reveal it to be the first well-defined synthetic analogue of the active site of an iron-sulfur protein. PMID:4506765

  13. Conformational studies of synthetic lipid A analogues and partial structures by infrared spectroscopy.

    PubMed

    Brandenburg, K; Kusumoto, S; Seydel, U

    1997-10-01

    Synthetic lipid A analogues and partial structures were analyzed and compared with natural hexaacyl lipid A from E. coli applying Fourier transform infrared spectroscopy. The investigations comprised (i) the measurement of the beta <=> alpha phase transition of the acyl chains via monitoring of the symmetric stretching vibration of the methylene groups, (ii) an estimation of the supramolecular aggregate structures evaluating vibrations from the interface like ester carbonyl and applying theoretical calculations (iii) a determination of the inter- and intramolecular conformations monitoring functional groups from the interface and the diglucosamine backbone (ester carbonyl, phosphate). The phase transition temperature Tc was found to be nearly a linear function of the number of acyl chains for most bisphosphoryl compounds indicating comparable packing density, whereas the deviating behaviour of some samples indicated a higher packing density. From the determination of the supramolecular aggregate structures (cubic, HII) of natural hexaacyl lipid A by X-ray small-angle diffraction, the existence of the same aggregate structures also for the synthetic hexaacyl lipid A was deduced from the nearly identical thermotropism of the ester carbonyl band. From this, a good approximation of the supramolecular structures of all synthetic samples was possible on the basis of the theory of Israelachvili. The analysis of the main phosphate band, together with that of the Tc data and former colorimetric results, allowed the establishment of a model of the intermolecular conformations of neighbouring lipid A/LPS molecules. The biological relevance of the findings is discussed in terms of the strongly varying biological activity (between high and no activity) of the samples. PMID:9370256

  14. Energetics, electronic structures and geometries of naphthalene, quinoline and isoquinoline analogues of 1,2-didehydrobenzene

    NASA Astrophysics Data System (ADS)

    Cioslowski, Jerzy; Szarecka, Agnieszka; Moncrieff, David

    2003-01-01

    B3LYP/cc-pVTZ electronic structure calculations employed in conjunction with additive corrections derived from experimental data for 1,2-didehydrobenzene predict the standard enthalpies of formation of 1,2- and 2,3-didehydronaphthalenes to be equal to 121.0 and 123.7 kcal mol -1 , respectively. The corresponding singlet-triplet splittings amount to 40.1 and 35.4 kcal mol -1 . The positional dependence of both of these quantities is preserved in those didehydroquinolines and didehydroisoquinolines in which the didehydrogenation sites are separated by at least one carbon from the heteroatoms. The effect of the adjacent heteroatoms on the singlet-triplet splittings is significantly more pronounced than that on the standard enthalpies of formation. Test G3 calculations on 2,3-didehydronaphthalene confirm the reliability of the additive correction scheme in the prediction of properties of annelated analogues of 1,2-didehydrobenzene. Such a scheme opens an avenue to facile electronic structure calculations on didehydrogenation reactions of polycondensed heterocyclic compounds with six-membered rings.

  15. XAFS and XEOL of tetramesityldigermene - An electronic structure study of a heavy group 14 ethylene analogue

    SciTech Connect

    Ward, Matthew J.; Rupar, Paul A.; Murphy, Michael W.; Yiu, Yun-Mui; Baines, Kim M.; Sham, Tsun-Kong

    2013-05-29

    Digermene, the germanium analogue of ethylene, has a multiple bonding motif that differs greatly from that of alkenes and exhibits no pure σ or π type bonds. The electronic structure of digermenes is difficult to study experimentally due to their reactivity, and is computationally challenging because of their shallow potential energy surfaces. Using X-ray absorption near edge structures at both the germanium K and L edges we have been able to directly probe the unoccupied electronic states, or the lowest unoccupied molecular orbital (LUMO), and LUMO+ etc. in the Ge=Ge bond of tetramesityldigermene. We have demonstrated that the LUMO, LUMO+, etc. are composed of hybrid Ge 4s and 4p orbitals. Additionally, our data suggest that the LUMO exhibits relatively more Ge 4s character, whereas the LUMO+ and LUMO+2 exhibit relatively more Ge 4p character. An X-ray excited optical luminescence study of Ge2Mes4 revealed one broad optical emission band at 620 nm, which is significantly red shifted compared to the known energy gap of this molecular germanium compound.

  16. How oblique extension and structural inheritance control rift segment linkage: Insights from 4D analogue models

    NASA Astrophysics Data System (ADS)

    Zwaan, Frank; Schreurs, Guido

    2016-04-01

    INTRODUCTION During the early stages of rifting, rift segments may form along non-continuous and/or offset pre-existing weaknesses. It is important to understand how these initial rift segments interact and connect to form a continuous rift system. A previous study of ours (Zwaan et al., in prep) investigated the influence of dextral oblique extension and rift offset on rift interaction. Here we elaborate upon our previous work by using analogue models to assess the added effects of 1) sinistral oblique extension as observed along the East African Rift and 2) the geometry of linked and non-linked inherited structures. METHODS Our set-up involves a base of foam and plexiglass that forces distributed extension in the overlying model materials: a sand layer for the brittle upper crust and a viscous sand/silicone mixture for ductile lower crust. A mobile base plate allows lateral motion for oblique extension. We create inherited structures, along which rift segments develop, with right-stepping offset lines of silicone (seeds) on top of the basal viscous layer. These seeds can be connected by an additional weak seed that represents a secondary inherited structural grain (model series 1) or disconnected and laterally discontinuous (over/underlap, model series 2). Selected models are run in an X-ray computer topographer (CT) to reveal the 3D evolution of internal structures with time that can be quantified with particle image velocitmetry (PIV) techniques. RESULTS Models in both series show that rift segments initially form along the main seeds and then generally propagate approximately perpendicular to the extension direction: with orthogonal extension they propagate in a parallel fashion, dextral oblique extension causes them to grow towards each other and connect, while with sinistral oblique extension they grow away from each other. However, sinistral oblique extension can also promote rift linkage through an oblique- or strike-slip zone oriented almost parallel to

  17. Structure-based approach to the identification of a novel group of selective glucosamine analogue inhibitors of Trypanosoma cruzi glucokinase.

    PubMed

    D'Antonio, Edward L; Deinema, Mason S; Kearns, Sean P; Frey, Tyler A; Tanghe, Scott; Perry, Kay; Roy, Timothy A; Gracz, Hanna S; Rodriguez, Ana; D'Antonio, Jennifer

    2015-12-01

    Glucokinase and hexokinase from pathogenic protozoa Trypanosoma cruzi are potential drug targets for antiparasitic chemotherapy of Chagas' disease. These glucose kinases phosphorylate d-glucose with co-substrate ATP and yield glucose 6-phosphate and are involved in essential metabolic pathways, such as glycolysis and the pentose phosphate pathway. An inhibitor class was conceived that is selective for T. cruzi glucokinase (TcGlcK) using structure-based drug design involving glucosamine having a linker from the C2 amino that terminates with a hydrophobic group either being phenyl, p-hydroxyphenyl, or dioxobenzo[b]thiophenyl groups. The synthesis and characterization for two of the four compounds are presented while the other two compounds were commercially available. Four high-resolution X-ray crystal structures of TcGlcK inhibitor complexes are reported along with enzyme inhibition constants (Ki) for TcGlcK and Homo sapiens hexokinase IV (HsHxKIV). These glucosamine analogue inhibitors include three strongly selective TcGlcK inhibitors and a fourth inhibitor, benzoyl glucosamine (BENZ-GlcN), which is a similar variant exhibiting a shorter linker. Carboxybenzyl glucosamine (CBZ-GlcN) was found to be the strongest glucokinase inhibitor known to date, having a Ki of 0.71±0.05μM. Also reported are two biologically active inhibitors against in vitro T. cruzi culture that were BENZ-GlcN and CBZ-GlcN, with intracellular amastigote growth inhibition IC50 values of 16.08±0.16μM and 48.73±0.69μM, respectively. These compounds revealed little to no toxicity against mammalian NIH-3T3 fibroblasts and provide a key starting point for further drug development with this class of compound. PMID:26778112

  18. Structure-activity studies on the potentiation of benzodiazepine receptor binding by ethylenediamine analogues and derivatives.

    PubMed Central

    Morgan, P. F.; Stone, T. W.

    1983-01-01

    The effect of ethylenediamine analogues on in vitro binding of [3H]-diazepam to crude cerebral cortical synaptosomal membranes in the rat was studied. Ethylenediamine significantly increased [3H]-diazepam binding to a maximum potentiation of 154% control (EC50 = 1.8 X 10(-4) M) and was the most active compound studied in terms of both potency and the maximum potentiation observed. Potentiation of [3H]-diazepam binding by ethylenediamine analogues is dependent on carbon-chain length, appears to require two terminal amino groups, and is not observed in the rigid analogues studied. Potentiation of [3H]-diazepam binding by ethylenediamine analogues is mediated largely by a change in receptor number and not receptor affinity. Results are discussed in terms of the possible nature of the ethylenediamine binding site. PMID:6317124

  19. Exogenous ceramide-1-phosphate (C1P) and phospho-ceramide analogue-1 (PCERA-1) regulate key macrophage activities via distinct receptors

    PubMed Central

    Katz, Sebastián; Ernst, Orna; Avni, Dorit; Athamna, Muhammad; Philosoph, Amir; Arana, Lide; Ouro, Alberto; Hoeferlin, L. Alexis; Meijler, Michael M.; Chalfant, Charles E.; Gómez-Muñoz, Antonio; Zor, Tsaffrir

    2016-01-01

    Inflammation is an ensemble of tightly regulated steps, in which macrophages play an essential role. Previous reports showed that the natural sphingolipid ceramide 1-phosphate (C1P) stimulates macrophages migration, while the synthetic C1P mimic, phospho-ceramide analogue-1 (PCERA-1), suppresses production of the key pro-inflammatory cytokine TNFα and amplifies production of the key anti-inflammatory cytokine IL-10 in LPS-stimulated macrophages, via one or more unidentified G-protein coupled receptors. We show that C1P stimulated RAW264.7 macrophages migration via the NFκB pathway and MCP-1 induction, while PCERA-1 neither mimicked nor antagonized these activities. Conversely, PCERA-1 synergistically elevated LPS-dependent IL-10 expression in RAW264.7 macrophages via the cAMP-PKA-CREB signaling pathway, while C1P neither mimicked nor antagonized these activities. Interestingly, both compounds have the capacity to additively inhibit TNFα secretion; PCERA-1, but not C1P, suppressed LPS-induced TNFα expression in macrophages in a CREB-dependent manner, while C1P, but not PCERA-1, directly inhibited recombinant TNFα converting enzyme (TACE). Finally, PCERA-1 failed to interfere with binding of C1P to either the cell surface receptor or to TACE. These results thus indicate that the natural sphingolipid C1P and its synthetic analog PCERA-1 bind and activate distinct receptors expressed in RAW264.7 macrophages. Identification of these receptors will be instrumental for elucidation of novel activities of extra-cellular sphingolipids, and may pave the way for the design of new sphingolipid mimics for the treatment of inflammatory diseases, and pathologies which depend on cell migration, as in metastatic tumors. PMID:26656944

  20. Structural and Biochemical Characterization of the Interaction of Tubulin with Potent Natural Analogues of Podophyllotoxin.

    PubMed

    Antúnez-Mojica, Mayra; Rodríguez-Salarichs, Javier; Redondo-Horcajo, Mariano; León, Alejandra; Barasoain, Isabel; Canales, Ángeles; Cañada, F J; Jiménez-Barbero, Jesús; Alvarez, Laura; Díaz, J Fernando

    2016-08-26

    Four natural analogues of podophyllotoxin obtained from the Mexican medicinal plant Bursera fagaroides, namely, acetyl podophyllotoxin (2), 5'-desmethoxy-β-peltatin A methyl ether (3), 7',8'-dehydro acetyl podophyllotoxin (4), and burseranin (5), have been characterized, and their interactions with tubulin have been investigated. Cytotoxic activity measurements, followed by immunofluorescence microscopy and flow cytometry studies, demonstrated that these compounds disrupt microtubule networks in cells and cause cell cycle arrest in the G2/M phase in the A549 cell line. A tubulin binding assay showed that compounds 1-4 were potent assembly inhibitors, displaying binding to the colchicine site with Kb values ranging from 11.75 to 185.0 × 10(5) M(-1). In contrast, burseranin (5) was not able to inhibit tubulin assembly. From the structural perspective, the ligand-binding epitopes of compounds 1-3 have been mapped using STD-NMR, showing that B and E rings are the major points for interaction with the protein. The obtained results indicate that the inhibition of tubulin assembly of this family of compounds is more effective when there are at least two methoxyl groups at the E ring, along with a trans configuration of the lactone ring in the aryltetralin lignan core. PMID:27518758

  1. Intraparticle mass transfer kinetics on molecularly imprinted polymers of structural analogues of a template

    SciTech Connect

    Kim, Hyunjung; Kaczmarski, Krzysztof; Guiochon, Georges A

    2005-09-01

    The intraparticle mass transfer kinetics of the structural analogues of a template on a Fmoc-L-Tryptophan (Fmoc-L-Trp) imprinted polymer (MIP) and on the corresponding non-imprinted polymer (NIP) were quantitatively studied using the lumped pore diffusion model (POR) of chromatography. The best equilibrium isotherm models of these compounds were used to calculate the high-concentration band profiles of different substrates on the MIP and the NIP with the POR model. These profiles were compared to experimental band profiles. The numerical values of the intraparticle pore and surface diffusion coefficients were adjusted to determine those that minimized the differences between calculated and experimental profiles. The results of this exercise show that surface diffusion is the dominant intraparticle mass transfer process for the substrates on the polymers and that the energetic heterogeneity of the surface should be considered in accounting for the surface diffusion of the L-enantiomers on the MIP. The surface diffusion coefficient increases with decreasing overall affinity of each substrate for the polymers.

  2. Structural analysis of specificity: alpha-lytic protease complexes with analogues of reaction intermediates.

    PubMed

    Bone, R; Frank, D; Kettner, C A; Agard, D A

    1989-09-19

    To better understand the structural basis of enzyme specificity, the structures of complexes formed between alpha-lytic protease, an extracellular serine protease of Lysobacter enzymogenes, and five inhibitory peptide boronic acids (R2-boroX, where R2 is methoxysuccinyl-Ala-Ala-Pro- and boroX is the alpha-aminoboronic acid analogue of Ala, Val, Ile, Norleu, or Phe) have been studied at high resolution by X-ray crystallography. The enzyme has primary specificity for Ala in the P1 position of peptide substrates with catalytic efficiency decreasing with increasing side-chain volume. Enzyme affinity for inhibitors with boroVal, boroIle, and boroPhe residues is much higher than expected on the basis of the catalytic efficiencies of homologous substrates. Covalent tetrahedral adducts are formed between the active-site serine and the boronic acid moieties of R2-boroAla, R2-boroVal R2-boroIle, and R2-boroNorleu. Though R2-boroVal is a slowly bound inhibitor and R2-boroAla is rapidly bound [Kettner, C. A., Bone, R., Agard, D. A., & Bachovchin, W. W. (1988) Biochemistry 27, 7682-7688], there appear to be no structural differences that could account for slow binding. The removal from solution of 20% more hydrophobic surface on binding accounts for the improved affinity of alpha-lytic protease for R2-boroVal relative to R2-boroAla. The high affinity of the enzyme for R2-boroIle derives from the selective binding of the L-allo stereoisomer of the boroIle residue, which can avoid bad steric interactions in the binding pocket.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2611204

  3. Elucidation of Structural Elements for Selectivity across Monoamine Transporters: Novel 2-[(Diphenylmethyl)sulfinyl]acetamide (Modafinil) Analogues

    PubMed Central

    2015-01-01

    2-[(Diphenylmethyl)sulfinyl]acetamide (modafinil, (±)-1) is a unique dopamine uptake inhibitor that binds the dopamine transporter (DAT) differently than cocaine and may have potential for the treatment of psychostimulant abuse. To further investigate structural requirements for this divergent binding mode, novel thio- and sulfinylacetamide and ethanamine analogues of (±)-1 were synthesized wherein (1) the diphenyl rings were substituted with methyl, trifluoromethyl, and halogen substituents and (2) substituents were added to the terminal amide/amine nitrogen. Halogen substitution of the diphenyl rings of (±)-1 gave several amide analogues with improved binding affinity for DAT and robust selectivity over the serotonin transporter (SERT), whereas affinity improved at SERT over DAT for the p-halo-substituted amine analogues. Molecular docking studies, using a subset of analogues with DAT and SERT homology models, and functional data obtained with DAT (A480T) and SERT (T497A) mutants defined a role for TM10 in the substrate/inhibitor S1 binding sites of DAT and SERT. PMID:24494745

  4. Mutagenicity and DNA damage of bisphenol A and its structural analogues in HepG2 cells.

    PubMed

    Fic, Anja; Žegura, Bojana; Sollner Dolenc, Marija; Filipič, Metka; Peterlin Mašič, Lucija

    2013-06-01

    Environmental oestrogen bisphenol A (BPA) and its analogues are widespread in our living environment. Because their production and use are increasing, exposure of humans to bisphenols is becoming a significant issue. We evaluated the mutagenic and genotoxic potential of eight BPA structural analogues (BPF, BPAF, BPZ, BPS, DMBPA, DMBPS, BP-1, and BP-2) using the Ames and comet assay, respectively. None of the tested bisphenols showed a mutagenic effect in Salmonella typhimurium strains TA98 and TA100 in either the presence or absence of external S9-mediated metabolic activation (Aroclor 1254-induced male rat liver). Potential genotoxicity of bisphenols was determined in the human hepatoma cell line (HepG2) at non-cytotoxic concentrations (0.1 μmol L(-1) to 10 μmol L(-1)) after 4-hour and 24-hour exposure. In the comet assay, BPA and its analogue BPS induced significant DNA damage only after the 24-hour exposure, while analogues DMBPS, BP-1, and BP-2 induced a transient increase in DNA strand breaks. PMID:23819927

  5. Solution-phase parallel synthesis of a pharmacophore library of HUN-7293 analogues: a general chemical mutagenesis approach to defining structure-function properties of naturally occurring cyclic (depsi)peptides.

    PubMed

    Chen, Yan; Bilban, Melitta; Foster, Carolyn A; Boger, Dale L

    2002-05-15

    HUN-7293 (1), a naturally occurring cyclic heptadepsipeptide, is a potent inhibitor of cell adhesion molecule expression (VCAM-1, ICAM-1, E-selectin), the overexpression of which is characteristic of chronic inflammatory diseases. Representative of a general approach to defining structure-function relationships of such cyclic (depsi)peptides, the parallel synthesis and evaluation of a complete library of key HUN-7293 analogues are detailed enlisting solution-phase techniques and simple acid-base liquid-liquid extractions for isolation and purification of intermediates and final products. Significant to the design of the studies and unique to solution-phase techniques, the library was assembled superimposing a divergent synthetic strategy onto a convergent total synthesis. An alanine scan and N-methyl deletion of each residue of the cyclic heptadepsipeptide identified key sites responsible for or contributing to the biological properties. The simultaneous preparation of a complete set of individual residue analogues further simplifying the structure allowed an assessment of each structural feature of 1, providing a detailed account of the structure-function relationships in a single study. Within this pharmacophore library prepared by systematic chemical mutagenesis of the natural product structure, simplified analogues possessing comparable potency and, in some instances, improved selectivity were identified. One potent member of this library proved to be an additional natural product in its own right, which we have come to refer to as HUN-7293B (8), being isolated from the microbial strain F/94-499709. PMID:11996584

  6. Reworking of structural inheritance at strike-slip restraining-bends: templates from sandbox analogue models

    NASA Astrophysics Data System (ADS)

    Nestola, Yago; Storti, Fabrizio; Cavozzi, Cristian; Magistroni, Corrado; Meda, Marco; Piero Righetti, Fabrizio

    2016-04-01

    Structural inheritance plays a fundamental role during crustal deformation because pre-existing fault and shear zones typically provide weakness zone suitable to fail again when affected by a new regional stress field. Re-activation of structural inheritance is expected to unavoidably increase the complexity of structural architectures, whose geometric and kinematic patterns can significantly deviate from what expected in newly deformed crustal sectors. Availability of templates from analogue models can provide a very effective tool to help unraveling such a structural complexity. For this purpose, we simulated the reworking of a set of basement hosted pre-existing fault zones at strike-slip restraining fault bends. In the models, the mechanical stratigraphy consists of a basement, made of a mixture of dry kaolin and sand to slightly increase cohesion, and a sedimentary cover made by pure dry sand. Inherited fault zones are confined to the basement and coated by a thin veneer of silicone putty. In the experimental programme, the geometry of the left-lateral restraining bend is maintained the same, with a bending angle of 30° of the restraining fault segment. The strike of the inherited fault zones, measured counterclockwise with respect to that of the master strike-slip fault zone outside the restraining bend, was 0°, 30°, and 60° in different experiments, respectively. An end member experiment without inheritance was also run for comparison. Our experimental results show that the angle that the inherited fault zones make with the restraining bend plays a fundamental role in governing the deformation pattern. When structural inheritance is near parallel to the master strike-slip fault zone, synthetic shears form and severely compartmentalize the transpressional pop-up anticline growing on top of the restraining bend. Fault-bounded blocks undergo sinistral escape during transpression. On the other hand, when structural inheritance makes a high angle to the

  7. Biofunctional constituent isolated from Citrullus colocynthis fruits and structure-activity relationships of its analogues show acaricidal and insecticidal efficacy.

    PubMed

    Jeon, Ju-Hyun; Lee, Hoi-Seon

    2014-08-27

    The acaricidal and insecticidal potential of the active constituent isolated from Citrullus colocynthis fruits and its structurally related analogues was evaluated by performing leaf disk, contact toxicity, and fumigant toxicity bioassays against Tetranychus urticae, Sitophilus oryzae, and Sitophilus zeamais adults. The active constituent of C. colocynthis fruits was isolated by chromatographic techniques and was identified as 4-methylquinoline on the basis of spectroscopic analyses. To investigate the structure-activity relationships, 4-methylquinoline and its structural analogues were tested against mites and two insect pests. On the basis of the LC50 values, 7,8-benzoquinoline was the most effective against T. urticae. Quinoline, 8-hydroxyquinoline, 2-methylquinoline, 4-methylquinoline, 6-methylquinoline, 8-methylquinoline, and 7,8-benzoquinoline showed high insecticidal activities against S. oryzae and S. zeamais regardless of the application method. These results indicate that introduction of a functional group into the quinoline skeleton and changing the position of the group have an important influence on the acaricidal and insecticidal activities. Furthermore, 4-methylquinoline isolated from C. colocynthis fruits, along with its structural analogues, could be effective natural pesticides for managing spider mites and stored grain weevils. PMID:25110971

  8. Formation of dome and basin structures: Results from scaled experiments using non-linear rock analogues

    NASA Astrophysics Data System (ADS)

    Zulauf, J.; Zulauf, G.; Zanella, F.

    2016-09-01

    Dome and basin folds are structures with circular or slightly elongate outcrop patterns, which can form during single- and polyphase deformation in various tectonic settings. We used power-law viscous rock analogues to simulate single-phase dome-and-basin folding of rocks undergoing dislocation creep. The viscosity ratio between a single competent layer and incompetent matrix was 5, and the stress exponent of both materials was 7. The samples underwent layer-parallel shortening under bulk pure constriction. Increasing initial layer thickness resulted in a decrease in the number of domes and basins and an increase in amplitude, A, arc-length, L, wavelength, λ, and layer thickness, Hf. Samples deformed incrementally show progressive development of domes and basins until a strain of eY=Z = -30% is attained. During the dome-and-basin formation the layer thickened permanently, while A, L, and λ increased. A dominant wavelength was not attained. The normalized amplitude (A/λ) increased almost linearly reaching a maximum of 0.12 at eY=Z = -30%. During the last increment of shortening (eY=Z = -30 to -40%) the domes and basins did not further grow, but were overprinted by a second generation of non-cylindrical folds. Most of the geometrical parameters of the previously formed domes and basins behaved stable or decreased during this phase. The normalized arc-length (L/Hf) of domes and basins is significantly higher than that of 2D cylindrical folds. For this reason, the normalized arc length can probably be used to identify domes and basins in the field, even if these structures are not fully exposed in 3D.

  9. Adsorption on molecularly imprinted polymers of structural analogues of a template. Single-component adsorption isotherm data

    SciTech Connect

    Kim, Hyunjung; Guiochon, Georges A

    2005-10-01

    The equilibrium adsorption isotherms on two otherwise identical polymers, one imprinted with Fmoc-L-tryptophan (Fmoc-L-Trp) (MIP), the other nonimprinted (NIP), of compounds that are structural analogues of the template were acquired by frontal analysis (FA) in an acetonitrile/acetic acid (99/1 v/v) mobile phase, over a wide concentration range (from 0.005 to 50 mM). These analogues were Fmoc-L-tyrosine, Fmoc-L-serine, Fmoc-L-phenyalanine, Fmoc-glycine (Fmoc-Gly), Fmoc-L-tryptophan pentafluorophenyl ester (Fmoc-L-Trp(OPfp)), and their antipodes. These substrates have different numbers of functional groups able to interact with the 4-vinylpyridine groups of the polymer. For a given number of the functional groups, these substrates have different hydrophobicities of their side groups (as indicated by their partition coefficients (log P{sub ow}) in the octanol-water system (e.g., from 4.74 for Fmoc-Trp to 2.53 for Fmoc-Gly)). Statistical results from the fitting of the FA data to Langmuirian isotherm models, the calculation of the affinity energy distribution, and the comparison of calculated and experimental band profiles show that all these sets of FA data are best accounted for by a tri-Langmuir isotherm model, except for the data of Fmoc-L-Trp(OPfp) that are best modeled by a simple Langmuir isotherm. So, all compounds but Fmoc-L-Trp(OPfp) find three different types of adsorption sites on both the MIP and the NIP. The properties of these different types of sites were studied systematically. The results show that the affinity of the structural analogues for the NIP is controlled mostly by the number of the functional groups on the substrates and somewhat by the hydrophobicity of their side groups. These two factors control also the MIP affinity toward the enantiomers of the structural analogues that have a stereochemistry different from that of the template. In contrast, the affinity of the highest affinity sites of the MIP toward the enantiomers of these

  10. Inhibition and structure of Trichomonas vaginalis purine nucleoside phosphorylase with picomolar transition state analogues.

    PubMed

    Rinaldo-Matthis, Agnes; Wing, Corin; Ghanem, Mahmoud; Deng, Hua; Wu, Peng; Gupta, Arti; Tyler, Peter C; Evans, Gary B; Furneaux, Richard H; Almo, Steven C; Wang, Ching C; Schramm, Vern L

    2007-01-23

    Trichomonas vaginalis is a parasitic protozoan purine auxotroph possessing a unique purine salvage pathway consisting of a bacterial type purine nucleoside phosphorylase (PNP) and a purine nucleoside kinase. Thus, T. vaginalis PNP (TvPNP) functions in the reverse direction relative to the PNPs in other organisms. Immucillin-A (ImmA) and DADMe-Immucillin-A (DADMe-ImmA) are transition state mimics of adenosine with geometric and electrostatic features that resemble early and late transition states of adenosine at the transition state stabilized by TvPNP. ImmA demonstrates slow-onset tight-binding inhibition with TvPNP, to give an equilibrium dissociation constant of 87 pM, an inhibitor release half-time of 17.2 min, and a Km/Kd ratio of 70,100. DADMe-ImmA resembles a late ribooxacarbenium ion transition state for TvPNP to give a dissociation constant of 30 pM, an inhibitor release half-time of 64 min, and a Km/Kd ratio of 203,300. The tight binding of DADMe-ImmA supports a late SN1 transition state. Despite their tight binding to TvPNP, ImmA and DADMe-ImmA are weak inhibitors of human and P. falciparum PNPs. The crystal structures of the TvPNP x ImmA x PO4 and TvPNP x DADMe-ImmA x PO4 ternary complexes differ from previous structures with substrate analogues. The tight binding with DADMe-ImmA is in part due to a 2.7 A ionic interaction between a PO4 oxygen and the N1' cation of the hydroxypyrrolidine and is weaker in the TvPNP x ImmA x PO4 structure at 3.5 A. However, the TvPNP x ImmA x PO4 structure includes hydrogen bonds between the 2'-hydroxyl and the protein that are not present in TvPNP x DADMe-ImmA x PO4. These structures explain why DADMe-ImmA binds tighter than ImmA. Immucillin-H is a 12 nM inhibitor of TvPNP but a 56 pM inhibitor of human PNP. And this difference is explained by isotope-edited difference infrared spectroscopy with [6-18O]ImmH to establish that O6 is the keto tautomer in TvPNP x ImmH x PO4, causing an unfavorable leaving-group interaction

  11. Nucleic acid-like structures II. Polynucleotide analogues as possible primitive precursors of nucleic acids

    NASA Astrophysics Data System (ADS)

    Schwartz, Alan W.; Visscher, J.; Bakker, C. G.; Niessen, J.

    1987-09-01

    Activated derivatives of purine-containing deoxynucleoside- diphosphates spontaneously oligomerize to produce pyrophosphate- linked oligodeoxynucleotide analogues. These analogues are of potential interest as models of primitive, polynucleotide precursors. The efficiency of oligomerization (ImpdGpIm and ImpdApIm much greater than ImpdIpIm) appears to reflect a combination of stacking forces and the specific geometric orientations of the stacked units. Under favorable conditions, chain lengths greater than 20 have been obtained for oligomers containing pdGp in the absence of a template. In the presence of a complementary template, the activated derivatives of pdGp and pdAp oligomerize much more extensively. An acyclo-analogue of G has also been shown to undergo template-directed oligomerization on poly(C). These observations suggest the possibility that primitive information transfer might have evolved in much simpler systems and that this function was taken over by polynucleotides at a later stage in evolution.

  12. Extracellular cellobiose lipid from yeast and their analogues: structures and fungicidal activities.

    PubMed

    Kulakovskaya, Tatyana; Shashkov, Alexander; Kulakovskaya, Ekaterina; Golubev, Wladyslav; Zinin, Alexander; Tsvetkov, Yury; Grachev, Alexey; Nifantiev, Nikolay

    2009-01-01

    Basidiomycetous yeasts Cryptococcus humicola and Pseudozyma fusiformata secrete cellobiose lipids into the culture broth. In the case of Cr. humicola, 16-(tetra-O-acetyl-beta-cellobiosyloxy)-2-hydroxyhexadecanoic acid was defined as major product and 16-(tetra-O-acetyl-beta-cellobiosyloxy)-2,15-dihydrohexadecanoic acid was defined as minor product, while Ps. fusiformata secreted mainly 16-[6-O-acetyl-2'-O-(3-hydroxyhexanoyl)-beta-cellobiosyloxy)-2,15-dihydroxyhexadecanoic acid. These compounds exhibit similar fungicidal activities against different yeasts including pathogenic Cryptococcus and Candida species. The cells of Filobasidiella neoformans causing systemic cryptococcosis completely died after 30-min incubation with 0.02 mg mL(-1) of cellobiose lipids. The same effect on ascomycetous yeast, including pathogenic Candida species, is achieved at 0.1-0.3 mg mL(-1) of cellobiose lipids depending on the test culture used. Cellobiose lipid of Ps. fusiformata inhibits the growth of phytopathogenic fungi Sclerotinia sclerotiorum and Phomopsis helianthi more efficiently than cellobiose lipids from Cr. humicola. Fully O-deacylated analogue, namely 16-(beta-cellobiosyloxy)-2-hydroxyhexadecanoic acid, and totally synthetic compound, 16-(beta-cellobiosyloxy)-hexadecanoic acid, do not inhibit the growth of F. neoformans and Saccharomyces cerevisiae, while 16-(beta-cellobiosyloxy)-2,15-dihydroxyhexadecanoic acid inhibits the growth of both test cultures but at higher concentrations than cellobiose lipids of Cr. humicola and Ps. fusiformata. The amide of 16-(beta-cellobiosyloxy)-2,15-dihydroxyhexadecanoic acid possessed no fungicide activity. Thus, the structures of both the carbohydrate part and fatty acid aglycon moiety are important for the fungicidal activity of cellobiose lipids. PMID:19202311

  13. Carbocyclic nucleoside analogues: classification, target enzymes, mechanisms of action and synthesis

    NASA Astrophysics Data System (ADS)

    Matyugina, E. S.; Khandazhinskaya, A. P.; Kochetkov, Sergei N.

    2012-08-01

    Key biological targets (S-adenosyl-L-homocysteine hydrolase, telomerase, human immunodeficiency virus reverse transcriptase, herpes virus DNA polymerase and hepatitis B virus DNA polymerase) and the mechanisms of action of carbocyclic nucleoside analogues are considered. Structural types of analogues are discussed. Methods of synthesis for the most promising compounds and the spectrum of their biological activities are described. The bibliography includes 126 references.

  14. New Atglistatin closely related analogues: Synthesis and structure-activity relationship towards adipose triglyceride lipase inhibition.

    PubMed

    Roy, Pierre-Philippe; D'Souza, Kenneth; Cuperlovic-Culf, Miroslava; Kienesberger, Petra C; Touaibia, Mohamed

    2016-08-01

    Adipose Triglyceride Lipase (ATGL) performs the first and rate-limiting step in lipolysis by hydrolyzing triacylglycerols stored in lipid droplets to diacylglycerols. By mediating lipolysis in adipose and non-adipose tissues, ATGL is a major regulator of overall energy metabolism and plasma lipid levels. Since chronically high levels of plasma lipids are linked to metabolic disorders including insulin resistance and type 2 diabetes, ATGL is an interesting therapeutic target. In the present study, fourteen closely related analogues of Atglistatin (1), a newly discovered ATGL inhibitor, were synthesized, and their ATGL inhibitory activity was evaluated. The effect of these analogues on lipolysis in 3T3-L1 adipocytes clearly shows that inhibition of the enzyme by Atglistatin (1) is due to the presence of the carbamate and N,N-dimethyl moieties on the biaryl central core at meta and para position, respectively. Mono carbamate-substituted analogue C2, in which the carbamate group was in the meta position as in Atglistatin (1), showed slight inhibition. Low dipole moment of Atglistatin (1) compared to the synthesized analogues possibly explains the lower inhibitory activities. PMID:27155760

  15. [Peculiarities of the Brevundimonas diminuta Gl7ACA-Acylase quaternary structure formation and obtaining stable enzyme analogues].

    PubMed

    2013-01-01

    The physicochemical and enzymatic properties of hybrid analogues of the Brevundimonas diminuta Gl7ACA-acylase (BrdGIA), containing the N-terminal chitin-binding domain of the bacterial chitinase (BrdG1A/NmChBD) or the C-terminal oligohistidine sequence (BrdGIA/H), were studied. An enhanced thermostability level of BrdG1A/NmChBD could suggest the stabilizing effect of the chitin-binding domain. An analysis of pH profiles of the enzymatic activity of recombinat BrdGIA analogues did not reveal significant differences: the catalytic activity of both variants changed slightly in the.interval ofpH values from 6.0 to 9.0 but drastically decreased at lower pH values. Both analogues demonstrated similar sensitivity towards denaturing agents: addition of 2.0 M ofguanidine chloride resulted in the complete inactivation of both enzymes. A scheme was developed for obtaining isolated recombinant alpha- and beta-subunits of BrdGLA. In vitro enzyme reconstructions indicated that the alpha-subunit was necessary for the formation of a correct spatial structure of the beta-subunit and for the formation of a functionally active enzyme. PMID:25507777

  16. [Peculiarities of the Brevundimonas diminuta Gl7ACA-Acylase quaternary structure formation and obtaining stable enzyme analogues].

    PubMed

    Zakirova, S A; Mikhaĭlova, T V; Él'darov, M A

    2013-01-01

    The physicochemical and enzymatic properties of hybrid analogues of the Brevundimonas diminuta Gl7ACA-acylase (BrdGIA), containing the N-terminal chitin-binding domain of the bacterial chitinase (BrdG1A/NmChBD) or the C-terminal oligohistidine sequence (BrdGIA/H), were studied. An enhanced thermostability level of BrdG1A/NmChBD could suggest the stabilizing effect of the chitin-binding domain. An analysis of pH profiles of the enzymatic activity of recombinat BrdGIA analogues did not reveal significant differences: the catalytic activity of both variants changed slightly in the.interval ofpH values from 6.0 to 9.0 but drastically decreased at lower pH values. Both analogues demonstrated similar sensitivity towards denaturing agents: addition of 2.0 M ofguanidine chloride resulted in the complete inactivation of both enzymes. A scheme was developed for obtaining isolated recombinant alpha- and beta-subunits of BrdGLA. In vitro enzyme reconstructions indicated that the alpha-subunit was necessary for the formation of a correct spatial structure of the beta-subunit and for the formation of a functionally active enzyme. PMID:25434179

  17. Synthesis, properties and structures of NbOF3 complexes and comparisons with NbOCl3 analogues.

    PubMed

    Levason, William; Reid, Gillian; Trayer, Jonathan; Zhang, Wenjian

    2014-03-01

    The first series of complexes of niobium(v) oxide trifluoride, [NbOF3(OPR3)2] (R = Me or Ph), [NbOF3(dppmO2)] (dppmO2 = Ph2P(O)CH2P(O)Ph2), [NbOF3(dmso)2], [NbOF3(tmeda)] (tmeda = Me2N(CH2)2NMe2) and [NbOF3(diimine)] (diimine = 2,2'-bipy, 1,10-phen) have been prepared, either by reaction of the corresponding complexes of NbF5 and hexamethyldisiloxane (HMDSO) in CH2Cl2-MeCN solution, or directly from NbF5, ligand and HMDSO. They were characterised by IR, (1)H, (31)P{(1)H} and (19)F{(1)H} NMR spectroscopy, and X-ray crystal structures are reported for [NbOF3(OPR3)2] (R = Me or Ph) and [NbOF3(dppmO2)]. Complexes of NbOCl3, [NbOCl3(OPPh3)2], [NbOCl3(dppmO2)], [NbOCl3(dppeO2)] (dppeO2 = Ph2P(O)(CH2)2P(O)Ph2), [NbOCl3(tmeda)] and [NbOCl3(diimine)] were made from NbCl5 and HMDSO in MeCN (which forms [NbOCl3(MeCN)2] in situ), followed by addition of the neutral ligand. Their properties are compared with the oxide fluoride analogues. X-ray structures are reported for [NbOCl3(dppmO2)], [NbOCl3(dppeO2)], [NbOCl3(tmeda)] and [NbOCl3(2,2'-bipy)]. The synthesis and spectroscopic characterisation of [MF5L] (M = Nb or Ta; L = OPR3, OAsPh3) and [MF4(diimine)2][MF6] are also described, and the key properties of the four series of complexes compared. PMID:24413623

  18. Structural bisphenol analogues differentially target steroidogenesis in murine MA-10 Leydig cells as well as the glucocorticoid receptor.

    PubMed

    Roelofs, Maarke J E; van den Berg, Martin; Bovee, Toine F H; Piersma, Aldert H; van Duursen, Majorie B M

    2015-03-01

    Although much information on the endocrine activity of bisphenol A (BPA) is available, a proper human hazard assessment of analogues that are believed to have a less harmful toxicity profile is lacking. Here the possible effects of BPA, bisphenol F (BPF), bisphenol S (BPS), as well as the brominated structural analogue and widely used flame retardant tetrabromobisphenol A (TBBPA) on human glucocorticoid and androgen receptor (GR and AR) activation were assessed. BPA, BPF, and TBBPA showed clear GR and AR antagonism with IC50 values of 67 μM, 60 μM, and 22 nM for GR, and 39 μM, 20 μM, and 982 nM for AR, respectively, whereas BPS did not affect receptor activity. In addition, murine MA-10 Leydig cells exposed to the bisphenol analogues were assessed for changes in secreted steroid hormone levels. Testicular steroidogenesis was altered by all bisphenol analogues tested. TBBPA effects were more directed towards the male end products and induced testosterone synthesis, while BPF and BPS predominantly increased the levels of progestagens that are formed in the beginning of the steroidogenic pathway. The MA-10 Leydig cell assay shows added value over the widely used H295R steroidogenesis assay because of its fetal-like characteristics and specificity for the physiologically more relevant testicular Δ4 steroidogenic pathway. Therefore, adding an in vitro assay covering fetal testicular steroidogenesis, such as the MA-10 cell line, to the panel of tests used to screen potential endocrine disruptors, is highly recommendable. PMID:25576683

  19. Insights into the electronic structure of Cu(II) bound to an imidazole analogue of westiellamide.

    PubMed

    Comba, Peter; Dovalil, Nina; Hanson, Graeme R; Harmer, Jeffrey R; Noble, Christopher J; Riley, Mark J; Seibold, Bjoern

    2014-12-01

    Three synthetic analogues of westiallamide, H3L(wa), have previously been synthesized (H3L(1-3)) that have a common backbone (derived from l-valine) with H3L(wa) but differ in their heterocyclic rings (imidazole, oxazole, thiazole, and oxazoline). Herein we explore in detail through high-resolution pulsed electron paramagnetic resonance (EPR) and magnetic circular dichroism (MCD) spectroscopy in conjunction with density functional theory (DFT) the geometric and electronic structures of the mono- and dinuclear Cu(II) complexes of these cyclic pseudo hexapeptides. Orientation-selective hyperfine sublevel correlation, electron nuclear double resonance, and three-pulse electron spin echo envelope modulation spectroscopy of [Cu(II)(H2L(1))(MeOH)2](+) reveal delocalization of the unpaired electron spin onto the ligating and distal nitrogens of the coordinated heterocyclic rings and that they are magnetically inequivalent. DFT calculations confirm this and show similar spin densities on the distal heteroatoms in the heterocyclic rings coordinated to the Cu(II) ion in the other cyclic pseudo hexapeptide [Cu(II)(H2L(2,3,wa))(MeOH)2](+) complexes. The magnetic inequivalencies in [Cu(II)(H2L(1))(MeOH)2](+) arise from different orientations of the heterocyclic rings coordinated to the Cu(II) ion, and the delocalization of the unpaired electron onto the distal heteroatoms within these N-methylimidazole rings depends upon their location with respect to the Cu(II) d(x(2)-y(2)) orbital. A systematic study of DFT functionals and basis sets was undertaken to examine the ability to reproduce the experimentally determined spin Hamiltonian parameters. Inclusion of spin-orbit coupling (SOC) using MAG-ReSpect or ORCA with a BHLYP/IGLO-II Wachters setup with SOC corrections and ∼38% Hartree-Fock exchange gave the best predictions of the g and A((63)Cu) matrices. DFT calculations of the (14)N hyperfine and quadrupole parameters for the distal nitrogens of the coordinated heterocyclic

  20. Effect of gambierol and its tetracyclic and heptacyclic analogues in cultured cerebellar neurons: a structure-activity relationships study.

    PubMed

    Pérez, Sheila; Vale, Carmen; Alonso, Eva; Fuwa, Haruhiko; Sasaki, Makoto; Konno, Yu; Goto, Tomomi; Suga, Yuto; Vieytes, Mercedes R; Botana, Luis M

    2012-09-17

    The polycyclic ether class of marine natural products has attracted the attention of researchers due to their complex and large chemical structures and diverse biological activities. Gambierol is a marine polycyclic ether toxin, first isolated along with ciguatoxin congeners from the dinoflagellate Gambierdiscus toxicus. The parent compound gambierol and the analogues evaluated in this work share the main crucial elements for biological activity, previously described to be the C28=C29 double bond within the H ring and the unsaturated side chain [Fuwa, H., Kainuma, N., Tachibana, K., Tsukano, C., Satake, M., and Sasaki, M. (2004) Diverted total synthesis and biological evaluation of gambierol analogues: Elucidation of crucial structural elements for potent toxicity. Chem. Eur. J. 10, 4894-4909]. With the aim to gain a deeper understanding of the cellular mechanisms involved in the biological activity of these compounds, we compared its activity in primary cultured neurons. The three compounds inhibited voltage-gated potassium channels (Kv) in a concentration-dependent manner and with similar potency, caused a small inhibition of voltage-gated sodium channels (Nav), and evoked cytosolic calcium oscillations. Moreover, the three compounds elicited a "loss of function" effect on Kv channels at concentrations of 0.1 nM. Additionally, both the tetracyclic and the heptacyclic derivatives of gambierol elicited synchronous calcium oscillations similar to those previously described for gambierol in cultured cerebellar neurons. Neither gambierol nor its tetracyclic derivative elicited cell toxicity, while the heptacyclic analogue caused a time-dependent decrease in cell viability. Neither the tetracyclic nor the heptacyclic analogues of gambierol exhibited lethality in mice after ip injection of 50 or 80 μg/kg of each compound. Altogether, the results presented in this work support an identical mechanism of action for gambierol and its tetracyclic and heptacyclic analogues

  1. Parrots as key multilinkers in ecosystem structure and functioning.

    PubMed

    Blanco, Guillermo; Hiraldo, Fernando; Rojas, Abraham; Dénes, Francisco V; Tella, José L

    2015-09-01

    Mutually enhancing organisms can become reciprocal determinants of their distribution, abundance, and demography and thus influence ecosystem structure and dynamics. In addition to the prevailing view of parrots (Psittaciformes) as plant antagonists, we assessed whether they can act as plant mutualists in the dry tropical forest of the Bolivian inter-Andean valleys, an ecosystem particularly poor in vertebrate frugivores other than parrots (nine species). We hypothesised that if interactions between parrots and their food plants evolved as primarily or facultatively mutualistic, selection should have acted to maximize the strength of their interactions by increasing the amount and variety of resources and services involved in particular pairwise and community-wide interaction contexts. Food plants showed different growth habits across a wide phylogenetic spectrum, implying that parrots behave as super-generalists exploiting resources differing in phenology, type, biomass, and rewards from a high diversity of plants (113 species from 38 families). Through their feeding activities, parrots provided multiple services acting as genetic linkers, seed facilitators for secondary dispersers, and plant protectors, and therefore can be considered key mutualists with a pervasive impact on plant assemblages. The number of complementary and redundant mutualistic functions provided by parrots to each plant species was positively related to the number of different kinds of food extracted from them. These mutually enhancing interactions were reflected in species-level properties (e.g., biomass or dominance) of both partners, as a likely consequence of the temporal convergence of eco-(co)evolutionary dynamics shaping the ongoing structure and organization of the ecosystem. A full assessment of the, thus far largely overlooked, parrot-plant mutualisms and other ecological linkages could change the current perception of the role of parrots in the structure, organization, and

  2. Information Theoretic Secret Key Generation: Structured Codes and Tree Packing

    ERIC Educational Resources Information Center

    Nitinawarat, Sirin

    2010-01-01

    This dissertation deals with a multiterminal source model for secret key generation by multiple network terminals with prior and privileged access to a set of correlated signals complemented by public discussion among themselves. Emphasis is placed on a characterization of secret key capacity, i.e., the largest rate of an achievable secret key,…

  3. Exploring Microstructural Changes in Structural Analogues of Ibuprofen-Hosted In Situ Gelling System and Its Influence on Pharmaceutical Performance.

    PubMed

    Patil, Sharvil S; Venugopal, Edakkal; Bhat, Suresh; Mahadik, Kakasaheb R; Paradkar, Anant R

    2015-10-01

    The present work explores inner structuration of in situ gelling system consisting of glyceryl monooleate (GMO) and oleic acid (OA). The system under study involves investigation of microstructural changes which are believed to govern the pharmaceutical performance of final formulation. The changes which are often termed mesophasic transformation were analysed by small angle X-ray scattering (SAXS), differential scanning calorimetry (DSC), rheology and plane polarised light (PPL) microscopy. The current work revealed transformation of blank system from W/O emulsion to reverse hexagonal structure upon addition of structural analogues of ibuprofen. Such transformations are believed to occur due to increased hydrophobic volume within system as probed by SAXS analysis. The findings of SAXS studies were well supported by DSC, rheology and PPL microscopy. The study established inverse relationship between log P value of structural analogues of ibuprofen and the degree of binding of water molecules to surfactant chains. Such relationship had pronounced effect on sol-gel transformation process. The prepared in situ gelling system showed sustained drug release which followed Higuchi model. PMID:25716330

  4. Constrained nucleoside analogues - Crystal and molecular structure of 6,5‧-O-anhydrouridines fixed in the anti conformation

    NASA Astrophysics Data System (ADS)

    Gajda, Roman; Bagiński, Maciej; Tomczyk, Ewelina; Mieczkowski, Adam; Woźniak, Krzysztof

    2015-10-01

    A series of analogues of anhydrouridine have been synthesized and their crystal structures established using X-ray diffraction. For all cases, the ribose ring has O(4‧)-exo, C(4‧)-endo pucker and the pyrimidine base is in the anti conformation. Investigated compounds crystallize in different crystal systems (monoclinic, orthorhombic), have different space group symmetry (P21, P212121) and exhibit different intermolecular interactions (halogen and hydrogen bonds) among molecules in their crystal lattices. Moreover, in the case of the 5-benzyl-6,5‧-O-anhydrouridine a significant positional disorder is present with the phenyl rings existing in two orientations.

  5. Structural differences in diarylheptanoids analogues from Alnus viridis and Alnus glutinosa influence their activity and selectivity towards cancer cells.

    PubMed

    Dinić, Jelena; Novaković, Miroslav; Podolski-Renić, Ana; Vajs, Vlatka; Tešević, Vele; Isaković, Aleksandra; Pešić, Milica

    2016-04-01

    Diarylheptanoids represent a group of plant secondary metabolites that possess multiple biological properties and are increasingly recognized for their therapeutic potential. A comparative study was performed on structurally analogous diarylheptanoids isolated from the bark of green (Alnus viridis) and black alder (Alnus glutinosa) to address their biological effects and determine structure-activity relationship. The structures and configurations of all compounds were elucidated by NMR, HR-ESI-MS, UV and IR. Diarylheptanoids actions were studied in human non-small cell lung carcinoma cells (NCI-H460) and normal keratinocytes (HaCaT). A. viridis compounds 3v, 5v, 8v and 9v that possess a carbonyl group at C-3 were considerably more potent than compounds without this group. A. viridis/A. glutinosa analogue pairs, 5v/5g and 9v/9g, which differ in the presence of 3' and 3″-OH groups, were evaluated for anticancer activity and selectivity. 5v and 9v that do not possess 3' and 3″-OH groups showed significantly higher cytotoxicity compared to analogues 5g and 9g. In addition, these two A. viridis compounds induced a more prominent apoptosis in both cell lines and an increase in subG0 cell cycle phase, compared to their A. glutinosa analogues. 5v and 9v treatment triggered intracellular superoxide anion accumulation and notably decreased mitochondrial transmembrane potential. In HaCaT cells, 9v and 9g with a 4,5 double bond caused a more prominent loss of mitochondrial transmembrane potential compared to 5v and 5g which possess a 5-methoxy group instead. Although green alder diarylheptanoids 5v and 9v displayed higher cytotoxicity, their analogues from black alder 5g and 9g could be more favorable for therapeutic use since they were more active in cancer cells than in normal keratinocytes. These results indicate that minor differences in the chemical structure can greatly influence the effect of diarylheptanoids on apoptosis and redox status and determine their

  6. Comparison of the structural stability and dynamic properties of recombinant anthrax protective antigen and its 2-fluorohistidine-labeled analogue.

    PubMed

    Hu, Lei; Joshi, Sangeeta B; Andra, Kiran K; Thakkar, Santosh V; Volkin, David B; Bann, James G; Middaugh, C Russell

    2012-11-01

    Protective antigen (PA) is the primary protein antigenic component of both the currently used anthrax vaccine and related recombinant vaccines under development. An analogue of recombinant PA (2-FHis rPA) has been recently shown to block the key steps of pore formation in the process of inducing cytotoxicity in cells, and thus can potentially be used as an antitoxin or a vaccine. This rPA analogue was produced by fermentation to incorporate the unnatural amino acid 2-fluorohistidine (2-FHis). In this study, the effects of 2-FHis labeling on rPA antigen's conformational stability and dynamic properties were investigated by various biophysical techniques. Temperature/pH stability profiles of rPA and 2-FHis rPA were analyzed by the empirical phase diagram (EPD) approach, and physical stability differences between them were identified. Results showed that rPA and 2-FHis rPA had similar stability at pH 7-8. With decreasing solution pH, however, 2-FHis rPA was found to be more stable. Dynamic sensitive measurements of the two proteins at pH 5 found that 2-FHis rPA was more dynamic and/or differentially hydrated under acidic pH conditions. The biophysical characterization and stability data provide information useful for the potential development of 2-FHis rPA as a more stable rPA vaccine candidate. PMID:22911632

  7. The Crystal Structure of the Leishmania major Deoxyuridine Triphosphate Nucleotidohydrolase in Complex with Nucleotide Analogues, dUMP, and Deoxyuridine*

    PubMed Central

    Hemsworth, Glyn R.; Moroz, Olga V.; Fogg, Mark J.; Scott, Benjamin; Bosch-Navarrete, Cristina; González-Pacanowska, Dolores; Wilson, Keith S.

    2011-01-01

    Members of the Leishmania genus are the causative agents of the life-threatening disease leishmaniasis. New drugs are being sought due to increasing resistance and adverse side effects with current treatments. The knowledge that dUTPase is an essential enzyme and that the all α-helical dimeric kinetoplastid dUTPases have completely different structures compared with the trimeric β-sheet type dUTPase possessed by most organisms, including humans, make the dimeric enzymes attractive drug targets. Here, we present crystal structures of the Leishmania major dUTPase in complex with substrate analogues, the product dUMP and a substrate fragment, and of the homologous Campylobacter jejuni dUTPase in complex with a triphosphate substrate analogue. The metal-binding properties of both enzymes are shown to be dependent upon the ligand identity, a previously unseen characteristic of this family. Furthermore, structures of the Leishmania enzyme in the presence of dUMP and deoxyuridine coupled with tryptophan fluorescence quenching indicate that occupation of the phosphate binding region is essential for induction of the closed conformation and hence for substrate binding. These findings will aid in the development of dUTPase inhibitors as potential new lead anti-trypanosomal compounds. PMID:21454646

  8. Effects of adenosine, adenosine triphosphate and structural analogues on glucagon secretion from the perfused pancreas of rat in vitro.

    PubMed Central

    Chapal, J.; Loubatières-Mariani, M. M.; Roye, M.; Zerbib, A.

    1984-01-01

    The effects of adenosine, adenosine triphosphate (ATP) and structural analogues have been studied on glucagon secretion from the isolated perfused pancreas of the rat in the presence of glucose (2.8 mM). Adenosine induced a transient increase of glucagon secretion. This effect was concentration-dependent in the range of 0.165 to 165 microM. ATP also induced an increase, but the effect was no greater at 165 microM than at 16.5 microM. 2-Chloroadenosine, an analogue more resistant to metabolism or uptake systems than adenosine, was more effective. Among the three structural analogues of ATP or ADP studied, beta, gamma-methylene ATP which can be hydrolyzed into AMP and adenosine had an effect similar to adenosine or ATP at the same concentrations (1.65 and 16.5 microM); in contrast alpha, beta-methylene ATP and alpha, beta-methylene ADP (resistant to hydrolysis into AMP and adenosine) were ineffective. Theophylline (50 microM) a specific blocker of the adenosine receptor, suppressed the glucagon peak induced by adenosine, 2-chloroadenosine, ATP and beta, gamma-methylene ATP (1.65 microM). An inhibitor of 5' nucleotidase, alpha, beta-methylene ADP (16.5 microM), reduced the glucagon increase induced by ATP and did not affect the response to adenosine (1.65 microM). These results support the hypothesis of adenosine receptors (P1-purinoceptors) on the pancreatic glucagon secretory cells and indicate that ATP acts after hydrolysis to adenosine. PMID:6097328

  9. Three-dimensional quantitative structure-activity relationship study on antioxidant capacity of curcumin analogues

    NASA Astrophysics Data System (ADS)

    Chen, Bohong; Zhu, Zhibo; Chen, Min; Dong, Wenqi; Li, Zhen

    2014-03-01

    A comparative molecular similarity indices analysis (CoMSIA) was performed on a set of 27 curcumin-like diarylpentanoid analogues with the radical scavenging activities. A significant cross-validated correlation coefficient Q2 (0.784), SEP (0.042) for CoMSIA were obtained, indicating the statistical significance of the correlation. Further we adopt a rational approach toward the selection of substituents at various positions in our scaffold,and finally find the favored and disfavoured regions for the enhanced antioxidative activity. The results have been used as a guide to design compounds that, potentially, have better activity against oxidative damage.

  10. Two Active Site Divalent Ions in the Crystal Structure of the Hammerhead Ribozyme Bound to a Transition State Analogue.

    PubMed

    Mir, Aamir; Golden, Barbara L

    2016-02-01

    The crystal structure of the hammerhead ribozyme bound to the pentavalent transition state analogue vanadate reveals significant rearrangements relative to the previously determined structures. The active site contracts, bringing G10.1 closer to the cleavage site and repositioning a divalent metal ion such that it could, ultimately, interact directly with the scissile phosphate. This ion could also position a water molecule to serve as a general acid in the cleavage reaction. A second divalent ion is observed coordinated to O6 of G12. This metal ion is well-placed to help tune the pKA of G12. On the basis of this crystal structure as well as a wealth of biochemical studies, we propose a mechanism in which G12 serves as the general base and a magnesium-bound water serves as a general acid. PMID:26551631

  11. 3CAPS – a structural AP–site analogue as a tool to investigate DNA base excision repair

    PubMed Central

    Schuermann, David; Scheidegger, Simon P.; Weber, Alain R.; Bjørås, Magnar; Leumann, Christian J.; Schär, Primo

    2016-01-01

    Abasic sites (AP-sites) are frequent DNA lesions, arising by spontaneous base hydrolysis or as intermediates of base excision repair (BER). The hemiacetal at the anomeric centre renders them chemically reactive, which presents a challenge to biochemical and structural investigation. Chemically more stable AP-site analogues have been used to avoid spontaneous decay, but these do not fully recapitulate the features of natural AP–sites. With its 3′–phosphate replaced by methylene, the abasic site analogue 3CAPS was suggested to circumvent some of these limitations. Here, we evaluated the properties of 3CAPS in biochemical BER assays with mammalian proteins. 3CAPS-containing DNA substrates were processed by APE1, albeit with comparably poor efficiency. APE1-cleaved 3CAPS can be extended by DNA polymerase β but repaired only by strand displacement as the 5′–deoxyribophosphate (dRP) cannot be removed. DNA glycosylases physically and functionally interact with 3CAPS substrates, underlining its structural integrity and biochemical reactivity. The AP lyase activity of bifunctional DNA glycosylases (NTH1, NEIL1, FPG), however, was fully inhibited. Notably, 3CAPS-containing DNA also effectively inhibited the activity of bifunctional glycosylases on authentic substrates. Hence, the chemically stable 3CAPS with its preserved hemiacetal functionality is a potent tool for BER research and a potential inhibitor of bifunctional DNA glycosylases. PMID:26733580

  12. Quantitative structure-activity analysis of acetylcholinesterase inhibition by oxono and thiono analogues of organophosphorus compounds. (Reannouncement with new availability information)

    SciTech Connect

    Maxwell, D.M.; Brecht, K.M.

    1992-02-01

    A comparison of the bimolecular rate constants (ki) for inhibition of electric eel acetylcholinesterase (AChE) by the oxono (i.e., P=O) and thiono (i.e., P=S) analogues of parathion, methylparathion, leptophos, fonofos, sarin, and soman revealed that the oxono/thiono ratios of ki values varied from 14 for soman to 1240 for parathion. Analysis of the relative importance of the dissociation equilibrium constant and the phosphorylation rate constant in producing this variation in ki values indicated that the oxono analogues had phosphorylation rate constant values that varied in a narrow range from 8- to 14-fold greater than their thiono counterparts, while the oxono/thiono ratios for dissociation constants varied widely from 1 for soman to 82 for fonofos. The lower affinities of thiono analogues for AChE probably resulted from differences in the hydrophobic binding of oxono and thiono analogues to the active site of AChE, inasmuch as the hydrophobicities (i.e., octanol/water partition coefficients) of thiono organophosphorus compounds were much greater than the hydrophobicities of their oxono analogues. Quantitative structure-activity analysis indicated that the hydrophobic effects of oxono and thiono moieties correlated with log ki for AChE inhibition to a greater extent (r2 = 0.79) than their electronic effects (r2 equal to or less than 0.48). These observations suggest that the differences in hydrophobicity of oxono and thiono analogues of organophosphorus compounds may be as important as their electronic differences in determining their effectiveness as AChE inhibitors. Acetylcholinesterase, soman (GD), structure-activity analysis inhibition, oxono analogues, thiono analogues.

  13. A 4D Analogue Modeling Study Assessing the Effects of Transtension and Inherited Structures on Rift Interaction

    NASA Astrophysics Data System (ADS)

    Zwaan, F.; Schreurs, G.; Naliboff, J.; Buiter, S. J.

    2015-12-01

    The interaction of individual rift segments determines the evolution of a rift system and subsequent continental break-up. Inherited heterogeneities control where initial rifts will form and since these are often not properly aligned, rift segments form separately and need to interact. Another important factor affecting rift-segment interaction is the obliquity of plate divergence (transtension), which also promotes eventual continent break-up (Brune et al., 2012). Both analogue and numerical techniques have been used to model rift interaction (e.g. Acocella et al., 1999; Allken et al., 2012) but transtension has never been applied. Here we present a first-order analogue study that elaborates upon earlier studies by assessing the effects of (1) transtension, (2) rift offset and (3) presence and geometry of inherited weak zones that link rift segments. An improved analogue set-up allows more freedom in inherited structure geometry and model analysis with X-Ray Computer Tomography (CT) techniques reveals internal structures with time (Fig. 2 and 3). Our experiments yield the following conclusions: Increasing the degree of transtension (decreasing angle α in Fig. 1) controls general rift structures: from wide rifts in orthogonal divergence settings to narrower rifts with oblique internal structures under transtensional conditions to narrow strike-slip dominated systems towards the strike-slip domain; Rift linkage through transfer zones (hard linkage) is generally promoted by 1) decreasing rift offset and 2) increasing the degree of transtension. However, initial rift linkage might involve relay ramps (soft linkage) due to the interplay of divergence direction and rift offset; Inherited rift-linking weak zones have little effect on rift interaction unless they are oriented ca. perpendicular to the divergence direction; Since the orthogonal divergence models resemble natural examples (Fig. 3), our transtension models might predict what structures can be expected in

  14. Crystal Structure of Baeyer−Villiger Monooxygenase MtmOIV, the Key Enzyme of the Mithramycin Biosynthetic Pathway

    SciTech Connect

    Beam, Miranda P.; Bosserman, Mary A.; Noinaj, Nicholas; Wehenkel, Marie; Rohr, Jurgen; Kentucky

    2009-06-01

    Baeyer-Villiger monooxygenases (BVMOs), mostly flavoproteins, were shown to be powerful biocatalysts for synthetic organic chemistry applications and were also suggested to play key roles for the biosyntheses of various natural products. Here we present the three-dimensional structure of MtmOIV, a 56 kDa homodimeric FAD- and NADPH-dependent monooxygenase, which catalyzes the key frame-modifying step of the mithramycin biosynthetic pathway and currently the only BVMO proven to react with its natural substrate via a Baeyer-Villiger reaction. MtmOIV's structure was determined by X-ray crystallography using molecular replacement to a resolution of 2.9 A. MtmOIV cleaves a C-C bond, essential for the conversion of the biologically inactive precursor, premithramycin B, into the active drug mithramycin. The MtmOIV structure combined with substrate docking calculations and site-directed mutagenesis experiments identifies several residues that participate in cofactor and substrate binding. Future experimentation aimed at broadening the substrate specificity of the enzyme could facilitate the generation of chemically diverse mithramycin analogues through combinatorial biosynthesis.

  15. Crystal Structure of Baeyer-Villiger Monooxygenase MtmOIV, the Key Enzyme of the Mithramycin Biosynthetic Pathway†

    PubMed Central

    Beam, Miranda P.; Bosserman, Mary A.; Noinaj, Nicholas; Wehenkel, Marie; Rohr, Jürgen

    2009-01-01

    Baeyer-Villiger monooxygenases (BVMOs), mostly flavoproteins, were shown to be powerful biocatalysts for synthetic organic chemistry applications and were also suggested to play key roles for the biosyntheses of various natural products. Here we present the three-dimensional structure of MtmOIV, a 56 kD homo-dimeric FAD- and NADPH-dependent monooxygenase, which catalyzes the key frame-modifying step of the mithramycin biosynthetic pathway and currently the only BVMO proven to react with its natural substrate via a Baeyer-Villiger reaction. MtmOIV’s structure was determined by X-ray crystallography using molecular replacement to a resolution of 2.9Å. MtmOIV cleaves a C-C bond, essential for the conversion of the biologically inactive precursor, premithramycin B, into the active drug mithramycin. The MtmOIV structure combined with substrate docking calculations and site-directed mutagenesis experiments implicate several residues to participate in co-factor and substrate binding. Future experimentation aimed at broadening the substrate specificity of the enzyme could facilitate the generation of chemically diverse mithramycin analogues through combinatorial biosynthesis. PMID:19364090

  16. Crystal structure of Baeyer-Villiger monooxygenase MtmOIV, the key enzyme of the mithramycin biosynthetic pathway .

    PubMed

    Beam, Miranda P; Bosserman, Mary A; Noinaj, Nicholas; Wehenkel, Marie; Rohr, Jürgen

    2009-06-01

    Baeyer-Villiger monooxygenases (BVMOs), mostly flavoproteins, were shown to be powerful biocatalysts for synthetic organic chemistry applications and were also suggested to play key roles for the biosyntheses of various natural products. Here we present the three-dimensional structure of MtmOIV, a 56 kDa homodimeric FAD- and NADPH-dependent monooxygenase, which catalyzes the key frame-modifying step of the mithramycin biosynthetic pathway and currently the only BVMO proven to react with its natural substrate via a Baeyer-Villiger reaction. MtmOIV's structure was determined by X-ray crystallography using molecular replacement to a resolution of 2.9 A. MtmOIV cleaves a C-C bond, essential for the conversion of the biologically inactive precursor, premithramycin B, into the active drug mithramycin. The MtmOIV structure combined with substrate docking calculations and site-directed mutagenesis experiments identifies several residues that participate in cofactor and substrate binding. Future experimentation aimed at broadening the substrate specificity of the enzyme could facilitate the generation of chemically diverse mithramycin analogues through combinatorial biosynthesis. PMID:19364090

  17. Structure-based design, synthesis and preliminary anti-inflammatory activity of bolinaquinone analogues.

    PubMed

    Petronzi, Carmen; Filosa, Rosanna; Peduto, Antonella; Monti, Maria Chiara; Margarucci, Luigi; Massa, Antonio; Ercolino, Simona Francesca; Bizzarro, Valentina; Parente, Luca; Riccio, Raffaele; de Caprariis, Paolo

    2011-02-01

    As a part of our drug discovery efforts we developed a series of simplified derivatives of bolinaquinone (BLQ), a hydroxyquinone marine metabolite, showing potent anti-inflammatory activity. Thirteen new hydroxyquinone derivatives closely related to BLQ were synthesized and tested on mouse macrophage-like RAW 264.7 cell line in order to investigate their ability to modulate the production of Prostaglandin E2 (PGE2). This optimization process led to the identification of three strictly correlated compounds with comparable and higher inhibitory potency than BLQ on PGE2 production. To evaluate the affinity of BLQ and its analogues for hsPLA2, surface plasmon resonance (SPR) experiments were performed. PMID:21163556

  18. Valles Marineris as a Cryokarstic Structure Formed by a Giant Dyke System: Support From New Analogue Experiments

    NASA Astrophysics Data System (ADS)

    Ozeren, M. S.; Sengor, A. M. C.; Acar, D.; Ülgen, S. C.; Onsel, I. E.

    2014-12-01

    Valles Marineris is the most significant near-linear depression on Mars. It is some 4000 km long, up to about 200 km wide and some 7 km deep. Although its margins look parallel at first sight, the entire structure has a long spindle shape with significant enlargement in its middle (Melas Chasma) caused by cuspate slope retreat mechanisms. Farther to its north is Hebes Chasma which is an entirely closed depression with a more pronounced spindle shape. Tithonium Chasma is a parallel, but much narrower depression to its northeast. All these chasmae have axes parallel with one another and such structures occur nowhere else on Mars. A scabland surface exists to the east of the Valles Marineris and the causative water mass seems to have issued from it. The great resemblance of these chasmae on mars to poljes in the karstic regions on earth have led us to assume that they owed their existence to dissolution of rock layers underlying them. We assumed that the dissolving layer consisted of water ice forming substantial layers, in fact entirely frozen seas of several km depth. We have simulated this geometry by using bentonite and flour layers (in different experiments) overlying layers of ice in which a resistant coil was used to simulate a dyke. We used different thicknesses of bentonite and flour overlying ice layers again of various thicknesses. The flour seems to simulate the Martian crust better because on Mars, g is only about 3/8ths of its value on Earth, so (for equal crustal density) the depth to which the cohesion term C remains important in the Mohr-Coulomb shear failure criterion is about 8/3 times greater. As examples we show two of those experiments in which both the rock analogue and ice layers were of 1.5 cm. thick. Perfect analogues of the Valles Marineris formed above the dyke analogue thermal source complete with the near-linear structure, overall flat spindle shape, cuspate margins, a central ridge, parallel side faults, parallel depressions resembling

  19. An analogue-sensitive approach identifies basal body rotation and flagellum attachment zone elongation as key functions of PLK in Trypanosoma brucei

    PubMed Central

    Lozano-Núñez, Ana; Ikeda, Kyojiro N.; Sauer, Thomas; de Graffenried, Christopher L.

    2013-01-01

    Polo-like kinases are important regulators of cell division, playing diverse roles in mitosis and cytoskeletal inheritance. In the parasite Trypanosoma brucei, the single PLK homologue TbPLK is necessary for the assembly of a series of essential organelles that position and adhere the flagellum to the cell surface. Previous work relied on RNA interference or inhibitors of undefined specificity to inhibit TbPLK, both of which have significant experimental limitations. Here we use an analogue-sensitive approach to selectively and acutely inhibit TbPLK. T. brucei cells expressing only analogue-sensitive TbPLK (TbPLKas) grow normally, but upon treatment with inhibitor develop defects in flagellar attachment and cytokinesis. TbPLK cannot migrate effectively when inhibited and remains trapped in the posterior of the cell throughout the cell cycle. Using synchronized cells, we show that active TbPLK is a direct requirement for the assembly and extension of the flagellum attachment zone, which adheres the flagellum to the cell surface, and for the rotation of the duplicated basal bodies, which positions the new flagellum so that it can extend without impinging on the old flagellum. This approach should be applicable to the many kinases found in the T. brucei genome that lack an ascribed function. PMID:23447704

  20. Modified Method of rRNA Structure Analysis Reveals Novel Characteristics of Box C/D RNA Analogues.

    PubMed

    Filippova, J A; Stepanov, G A; Semenov, D V; Koval, O A; Kuligina, E V; Rabinov, I V; Richter, V A

    2015-01-01

    Ribosomal RNA (rRNA) maturation is a complex process that involves chemical modifications of the bases or sugar residues of specific nucleotides. One of the most abundant types of rRNA modifications, ribose 2'-O-methylation, is guided by ribonucleoprotein complexes containing small nucleolar box C/D RNAs. Since the majority of 2'-O-methylated nucleotides are located in the most conserved regions of rRNA that comprise functionally important centers of the ribosome, an alteration in a 2'-O-methylation profile can affect ribosome assembly and function. One of the key approaches for localization of 2'-O-methylated nucleotides in long RNAs is a method based on the termination of reverse transcription. The current study presents an adaptation of this method for the use of fluorescently labeled primers and analysis of termination products by capillary gel electrophoresis on an automated genetic analyzer. The developed approach allowed us to analyze the influence of the synthetic analogues of box C/D RNAs on post-transcriptional modifications of human 28S rRNA in MCF-7 cells. It has been established that the transfection of MCF-7 cells with a box C/D RNA analogue leads to an enhanced modification level of certain native sites of 2'-O-methylation in the target rRNA. The observed effect of synthetic RNAs on the 2'-O-methylation of rRNA in human cells demonstrates a path towards targeted regulation of rRNA post-transcriptional maturation. The described approach can be applied in the development of novel diagnostic methods for detecting diseases in humans. PMID:26085946

  1. Titan's organic aerosols: Molecular composition and structure of laboratory analogues inferred from pyrolysis gas chromatography mass spectrometry analysis

    NASA Astrophysics Data System (ADS)

    Morisson, Marietta; Szopa, Cyril; Carrasco, Nathalie; Buch, Arnaud; Gautier, Thomas

    2016-10-01

    Analogues of Titan's aerosols are of primary interest in the understanding of Titan's atmospheric chemistry and climate, and in the development of in situ instrumentation for future space missions. Numerous studies have been carried out to characterize laboratory analogues of Titan aerosols (tholins), but their molecular composition and structure are still poorly known. If pyrolysis gas chromatography mass spectrometry (pyr-GCMS) has been used for years to give clues about their chemical composition, highly disparate results were obtained with this technique. They can be attributed to the variety of analytical conditions used for pyr-GCMS analyses, and/or to differences in the nature of the analogues analyzed, that were produced with different laboratory set-ups under various operating conditions. In order to have a better description of Titan's tholin's molecular composition by pyr-GCMS, we carried out a systematic study with two major objectives: (i) exploring the pyr-GCMS analytical parameters to find the optimal ones for the detection of a wide range of chemical products allowing a characterization of the tholins composition as comprehensive as possible, and (ii) highlighting the role of the CH4 ratio in the gaseous reactive medium on the tholin's molecular structure. We used a radio-frequency plasma discharge to synthetize tholins with different concentrations of CH4 diluted in N2. The samples were pyrolyzed at temperatures covering the 200-700°C range. The extracted gases were then analyzed by GCMS for their molecular identification. The optimal pyrolysis temperature for characterizing the molecular composition of our tholins by GCMS analysis is found to be 600°C. This temperature choice results from the best compromise between the number of compounds released, the quality of the signal and the appearance of pyrolysis artifacts. About a hundred molecules are identified as pyrolysates. A common major chromatographic pattern appears clearly for all the

  2. Heterogeneous Diastereoselective Catalysis--A Powerful Strategy Toward C(15) Stereoselectivity from PGF2α Analogues Structure.

    PubMed

    Coman, Simona M; Parvulescu, Vasile I

    2015-01-01

    A major trend in fine chemicals and pharmaceuticals is the synthesis of molecules with increased complexity. This trend translates the aim of organic syntheses to conditions in which high degrees of chemo-, regio- and stereoselectivity can be provided. In this context, the chemoselective hydrogenation of one functional group in the presence of other reactive groups is a frequently encountered problem in fine chemicals manufacture. This study provides a critical analysis including elegant examples of reactions in which high chemo- and diastereoselectivities were achieved in the hydrogenation of a C=O group in the presence of C=C double bond. A particular emphasis is addressed to the stereoselective C(15) synthesis from Cloprostenol--a PGF2α structural analogue. PMID:26553252

  3. Improved thrombin binding aptamer analogues containing inversion of polarity sites: structural effects of extra-residues at the ends.

    PubMed

    Virgilio, A; Amato, T; Petraccone, L; Filosa, R; Varra, M; Mayol, L; Esposito, V; Galeone, A

    2016-08-10

    In this paper, we report the investigations, based on NMR, molecular modelling, CD measurements and electrophoresis, of thrombin binding aptamer (TBA) analogues containing an extra-residue at the 3'-end or at both the ends of the original TBA sequence, linked through 3'-3' or 5'-5' phosphodiester bonds. The data indicate that most of the modified aptamers investigated adopt chair-like G-quadruplex structures very similar to that of the TBA and that stacking interactions occur between the 3'-3' or 5'-5' extra residues and the deoxyguanosines of the upper G-tetrad. A comparison of the thermodynamic data of TBA-A and TBA-T containing a 3'-3' extra residue and their canonical versions clearly indicates that the 3'-3' phosphodiester bond is fundamental in endowing the modified aptamers with remarkably higher thermal stabilities than the original TBA. PMID:27461474

  4. Kinetic, thermodynamic and X-ray structural insights into the interaction of melatonin and analogues with quinone reductase 2

    SciTech Connect

    Calamini, Barbara; Santarsiero, Bernard D.; Boutin, Jean A.; Mesecar, Andrew D.

    2008-09-12

    Melatonin exerts its biological effects through at least two transmembrane G-protein-coupled receptors, MT1 and MT2, and a lower-affinity cytosolic binding site, designated MT3. MT3 has recently been identified as QR2 (quinone reductase 2) (EC 1.10.99.2) which is of significance since it links the antioxidant effects of melatonin to a mechanism of action. Initially, QR2 was believed to function analogously to QR1 in protecting cells from highly reactive quinones. However, recent studies indicate that QR2 may actually transform certain quinone substrates into more highly reactive compounds capable of causing cellular damage. Therefore it is hypothesized that inhibition of QR2 in certain cases may lead to protection of cells against these highly reactive species. Since melatonin is known to inhibit QR2 activity, but its binding site and mode of inhibition are not known, we determined the mechanism of inhibition of QR2 by melatonin and a series of melatonin and 5-hydroxytryptamine (serotonin) analogues, and we determined the X-ray structures of melatonin and 2-iodomelatonin in complex with QR2 to between 1.5 and 1.8 {angstrom} (1 {angstrom} = 0.1 nm) resolution. Finally, the thermodynamic binding constants for melatonin and 2-iodomelatonin were determined by ITC (isothermal titration calorimetry). The kinetic results indicate that melatonin is a competitive inhibitor against N-methyldihydronicotinamide (K{sub i} = 7.2 {mu}M) and uncompetitive against menadione (K{sub i} = 92 {mu}M), and the X-ray structures shows that melatonin binds in multiple orientations within the active sites of the QR2 dimer as opposed to an allosteric site. These results provide new insights into the binding mechanisms of melatonin and analogues to QR2.

  5. Structures and synthesis of framework Rb and Cs uranyl arsenates and their relationships with their phosphate analogues

    NASA Astrophysics Data System (ADS)

    Locock, Andrew J.; Burns, Peter C.

    2003-11-01

    Two hydrated uranyl arsenates, Cs 2(UO 2)[(UO 2)(AsO 4)] 4(H 2O) 2 ( CsUAs) and Rb 2(UO 2)[(UO 2)(AsO 4)] 4(H 2O) 4.5 ( RbUAs), were synthesized by hydrothermal methods. Intensity data were collected at room temperature using Mo Kα radiation and a CCD-based area detector. The crystal structure of RbUAs was solved by direct methods, whereas the structure model of the phosphate Cs 2(UO 2)[(UO 2)(PO 4)] 4(H 2O) 2 was used for CsUAs; both were refined by full-matrix least-squares techniques on the basis of F2 to agreement indices ( CsUAs, RbUAs) w R2=0.061,0.041, for all data, and R1=0.032,0.021, calculated for 5098, 4991 unique observed reflections (| Fo|>4 σF), respectively. The compound CsUAs is orthorhombic, space group Cmc2 1, Z=4, a=15.157(2), b=14.079(2), c=13.439(2) Å, V=2867.9(1) Å 3. RbUAs is monoclinic, space group C2/ m, Z=4, a=13.4619(4), b=15.8463(5), c=14.0068(4) Å, β=92.311(1)°, V=2985.52(2) Å 3. The structures consist of sheets of arsenate tetrahedra and uranyl pentagonal bipyramids, with composition [(UO 2)(AsO 4)] -, that are topologically identical to the uranyl silicate sheets in uranophane-beta. These sheets are connected by a uranyl pentagonal bipyramid in the interlayer that shares corners with two arsenate tetrahedra on each of two adjacent sheets and whose fifth equatorial vertex is an H 2O group, resulting in an open framework with alkali metal cations in the larger cavities of the structures. CsUAs is isostructural with its phosphate analogue, and has two Cs atoms and a H 2O group in its structural cavities. RbUAs is not isostructural with its phosphate analogue, although it has a homeotypic framework. Its structural cavities are occupied by three Rb atoms and four H 2O groups; one Rb position and three of the interstitial H 2O groups are half-occupied. The partial occupancies of these positions probably result from the accommodation of the larger As atoms (relative to P) in the framework and resultant larger cavities.

  6. Synthesis, biological activities and structure-activity relationships for new avermectin analogues.

    PubMed

    Zhang, Jian; Nan, Xiang; Yu, Hai-Tao; Cheng, Pi-Le; Zhang, Yan; Liu, Ying-Qian; Zhang, Shao-Yong; Hu, Guan-Fang; Liu, Huanxiang; Chen, An-Liang

    2016-10-01

    In an effort to discover new molecules with good insecticidal activities, more than 40 new avermectin derivatives were synthesized and evaluated for their biological activities against three species of arachnids, insects and nematodes, namely, Tetranychus Cinnabarinus, Aphis craccivora and Bursaphelenchus xylophilus. All the tested compounds showed potent inhibitory activities against three insect species. Notably, the majority of compounds exhibited high selectivity against T. cinnabarinus, some of which were much better in comparison with avermectin. Especially compounds 9j (LC50: 0.005 μM) and 16d (LC50: 0.002 μM) were 2.5- and 4.7-fold more active than avermectin (LC50: 0.013 μM), respectively, against T. cinnabarinus. Moreover, compounds 9b, 9d-f, 9h, 9j, 9l, 9n, 9p, 9r, 9v and 17d showed superior activities with LC50 values of 2.959-5.013 μM compared to that of 1 (LC50: 6.746 μM) against B. xylophilus. Meanwhile, the insecticidal activities of compounds 9f, 9g, 9h, and 9m against A. craccivora were 7-8 times better than that of avermectin, with LC50 values of 7.744, 5.634, 6.809, 7.939 and 52.234 μM, respectively. Furthermore, QSAR analysis showed that the molecular shape, size, connectivity degree and electronic distribution of avermectin analogues had substantial effects on insecticidal potency. These preliminary results provided useful insight in guiding further modifications of avermectin in the development of potential new insecticides. PMID:27318119

  7. The shell model approach: Key to hadron structure

    SciTech Connect

    Lipkin, H.J. . Dept. of Nuclear Physics)

    1989-08-14

    A shell model approach leads to a simple constituent quark model for hadron structure in which mesons and baryons consist only of constituent quarks. Hadron masses are the sums of the constituent quark effective masses and a hyperfine interaction inversely proportional to the product of these same masses. Hadron masses and magnetic moments are related by the assumption that the same effective mass parameter appears in the additive mass term, the hyperfine interaction, and the quark magnetic moment, both in mesons and baryons. The analysis pinpoints the physical assumptions needed for each relation and gives two new mass relations. Application to weak decays and recent polarized EMC data confirms conclusions previously obtained that the current quark contribution to the spin structure of the proton vanishes, but without need for the questionable assumption of SU(3) symmetry relating hyperon decays and proton structure. SU(3) symmetry breaking is clarified. 24 refs.

  8. COMPARATIVE ANALYSIS OF THE ELECTROSTATIC POTENTIALS OF SOME STRUCTURAL ANALOGUES OF 2,3,7,8-TETRACHLORODIBENZO-P-DIOXIN AND OF RELATED AROMATIC SYSTEMS

    EPA Science Inventory

    We have carried out an ab initio STO-5G computational analysis of the electrostatic potential of four structural analogues of the highly toxic 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and four related aromatic systems: benzo[a]pyrene, benz[a]anthracene and two isomeric benzofla...

  9. Modulation of Activity by Arg407: Structure of a Fungal [alpha]-1,2-Mannosidase in Complex with a Substrate Analogue

    SciTech Connect

    Lobsanov,Y.; Yoshida, T.; Desmet, T.; Nerinckx, W.; Yip, P.; Claeyssens, M.; Herscovics, A.; Howell, P.

    2008-01-01

    Class I {alpha}-mannosidases (glycoside hydrolase family GH47) play key roles in the maturation of N-glycans and the ER-associated degradation of unfolded glycoproteins. The 1.95 Angstroms resolution structure of a fungal {alpha}-1,2-mannosidase in complex with the substrate analogue methyl-{alpha}-D-lyxopyranosyl-(1',2)-{alpha}-D-mannopyranoside (LM) shows the intact disaccharide spanning the -1/+1 subsites, with the D-lyxoside ring in the -1 subsite in the 1C4 chair conformation, and provides insight into the mechanism of catalysis. The absence of the C5' hydroxymethyl group on the D-lyxoside moiety results in the side chain of Arg407 adopting two alternative conformations: the minor one interacting with Asp375 and the major one interacting with both the D-lyxoside and the catalytic base Glu409, thus disrupting its function. Chemical modification of Asp375 has previously been shown to inactivate the enzyme. Taken together, the data suggest that Arg407, which belongs to the conserved sequence motif RPExxE, may act to modulate the activity of the enzyme. The proposed mechanism for modulating the activity is potentially a general mechanism for this superfamily.

  10. The structures of thymidine kinase from herpes simplex virus type 1 in complex with substrates and a substrate analogue.

    PubMed Central

    Wild, K.; Bohner, T.; Folkers, G.; Schulz, G. E.

    1997-01-01

    Thymidine kinase from Herpes simplex virus type 1 (TK) was crystallized in an N-terminally truncated but fully active form. The structures of TK complexed with ADP at the ATP-site and deoxythymidine-5'-monophosphate (dTMP), deoxythymidine (dT), or idoxuridine-5'-phosphate (5-iodo-dUMP) at the substrate-site were refined to 2.75 A, 2.8 A, and 3.0 A resolution, respectively. TK catalyzes the phosphorylation of dT resulting in an ester, and the phosphorylation of dTMP giving rise to an anhydride. The presented TK structures indicate that there are only small differences between these two modes of action. Glu83 serves as a general base in the ester reaction. Arg163 parks at an internal aspartate during ester formation and binds the alpha-phosphate of dTMP during anhydride formation. The bound deoxythymidine leaves a 35 A3 cavity at position 5 of the base and two sequestered water molecules at position 2. Cavity and water molecules reduce the substrate specificity to such an extent that TK can phosphorylate various substrate analogues useful in pharmaceutical applications. TK is structurally homologous to the well-known nucleoside monophosphate kinases but contains large additional peptide segments. PMID:9336833

  11. CONSIDERATION OF REACTION INTERMEDIATES IN STRUCTURE-ACTIVITY RELATIONSHIPS: A KEY TO UNDERSTANDING AND PREDICTION

    EPA Science Inventory

    Consideration of Reaction Intermediates in Structure- Activity Relationships: A Key to Understanding and Prediction

    A structure-activity relationship (SAR) represents an empirical means for generalizing chemical information relative to biological activity, and is frequent...

  12. DATA NORMALIZATION : A KEY FOR STRUCTURAL HEALTH MONITORING

    SciTech Connect

    Farrar, C. R.; Sohn, H.; Worden, K.

    2001-01-01

    Structural health monitoring (SHM) is the implementation of a damage detection strategy for aerospace, civil and mechanical engineering infrastructure. Typical damage experienced by this infrastructure might be the development of fatigue cracks, degradation of structural connections, or bearing wear in rotating machinery. For SHM strategies that rely on vibration response measurements, the ability to normalize the measured data with respect to varying operational and environmental conditions is essential if one is to avoid false-positive indications of damage. Examples of common normalization procedure include normalizing the response measurements by the measured inputs as is commonly done when extracting modal parameters. When environmental cycles influence the measured data, a temporal normalization scheme may be employed. This paper will summarize various strategies for performing this data normalization task. These strategies fall into two general classes: (1) Those employed when measures of the varying environmental and operational parameters are available; (2) Those employed when such measures are not available. Whenever data normalization is performed, one runs the risk that the damage sensitive features to be extracted from the data will be obscured by the data normalization procedure. This paper will summarize several normalization procedures that have been employed by the authors and issues that have arose when trying to implement them on experimental and numerical data.

  13. Analysis of Wave Propagation in Stratified Structures Using Circuit Analogues, with Application to Electromagnetic Absorbers

    ERIC Educational Resources Information Center

    Sjoberg, Daniel

    2008-01-01

    This paper presents an overview of how circuit models can be used for analysing wave propagation in stratified structures. Relatively complex structures can be analysed using models which are accessible to undergraduate students. Homogeneous slabs are modelled as transmission lines, and thin sheets between the slabs are modelled as lumped…

  14. Multilevel polarization shift keying: Optimum receiver structure and performance evaluation

    SciTech Connect

    Benedetto, S.; Poggiolini, P.T.

    1994-02-01

    Multilevel digital coherent optical modulation schemes based on the state of polarization of a fully polarized lightwave are proposed and analyzed. Based on the complete statistical characterization of the Stokes parameters, extracted though appropriate signal processing in the presence of shot and additive gaussian noise, the optimum maximum likelihood receiver operating symbol by symbol is derived. The exact performance in terms of the average symbol error probability is found. Optimum constellations for the case of equipower 4, 8, 16 and 32 signals are found on the basis of the minimization of the error probability for a given average power. Their performance turns out to be promising as compared to other standard modulation techniques. The spectral analysis of polarization modulated signals is presented. A new receiver structure, which solves the problem of the excess penalties incurred in the presence of channel dichroism, is proposed and analyzed. 22 refs.

  15. Detecting Key Structural Features within Highly Recombined Genes

    PubMed Central

    Wertz, John E; McGregor, Karen F; Bessen, Debra E

    2007-01-01

    Many microorganisms exhibit high levels of intragenic recombination following horizontal gene transfer events. Furthermore, many microbial genes are subject to strong diversifying selection as part of the pathogenic process. A multiple sequence alignment is an essential starting point for many of the tools that provide fundamental insights on gene structure and evolution, such as phylogenetics; however, an accurate alignment is not always possible to attain. In this study, a new analytic approach was developed in order to better quantify the genetic organization of highly diversified genes whose alleles do not align. This BLAST-based method, denoted BLAST Miner, employs an iterative process that places short segments of highly similar sequence into discrete datasets that are designated “modules.” The relative positions of modules along the length of the genes, and their frequency of occurrence, are used to identify sequence duplications, insertions, and rearrangements. Partial alleles of sof from Streptococcus pyogenes, encoding a surface protein under host immune selection, were analyzed for module content. High-frequency Modules 6 and 13 were identified and examined in depth. Nucleotide sequences corresponding to both modules contain numerous duplications and inverted repeats, whereby many codons form palindromic pairs. Combined with evidence for a strong codon usage bias, data suggest that Module 6 and 13 sequences are under selection to preserve their nucleic acid secondary structure. The concentration of overlapping tandem and inverted repeats within a small region of DNA is highly suggestive of a mechanistic role for Module 6 and 13 sequences in promoting aberrant recombination. Analysis of pbp2X alleles from Streptococcus pneumoniae, encoding cell wall enzymes that confer antibiotic resistance, supports the broad applicability of this tool in deciphering the genetic organization of highly recombined genes. BLAST Miner shares with phylogenetics the

  16. Functional and structural analysis of a key region of the cell wall inhibitor moenomycin.

    PubMed

    Fuse, Shinichiro; Tsukamoto, Hirokazu; Yuan, Yanqiu; Wang, Tsung-Shing Andrew; Zhang, Yi; Bolla, Megan; Walker, Suzanne; Sliz, Piotr; Kahne, Daniel

    2010-07-16

    Moenomycin A (MmA) belongs to a family of natural products that inhibit peptidoglycan biosynthesis by binding to the peptidoglycan glycosyltransferases, the enzymes that make the glycan chains of peptidoglycan. MmA is remarkably potent, but its clinical utility has been hampered by poor physicochemical properties. Moenomycin contains three structurally distinct regions: a pentasaccharide, a phosphoglycerate, and a C25 isoprenyl (moenocinyl) lipid tail that gives the molecule its name. The phosphoglycerate moiety links the pentasaccharide to the moenocinyl chain. This moiety contains two negatively charged groups, a phosphoryl group and a carboxylate. Both the phosphoryl group and the carboxylate have previously been implicated in target binding but the role of the carboxylate has not been explored in detail. Here we report the synthesis of six MmA analogues designed to probe the importance of the phosphoglycerate. These analogues were evaluated for antibacterial and enzyme inhibitory activity; the specific contacts between the phosphoglycerate and the protein target were assessed by X-ray crystallography in conjunction with molecular modeling. Both the phosphoryl group and the carboxylate of the phosphoglycerate chain play roles in target binding. The negative charge of the carboxylate, and not its specific structure, appears to be the critical feature in binding since replacing it with a negatively charged acylsulfonamide group produces a more active compound than replacing it with the isosteric amide. Analysis of the ligand-protein contacts suggests that the carboxylate makes a critical contact with an invariant lysine in the active site. The reported work provides information and validated computational methods critical for the design of analogues based on moenomycin scaffolds. PMID:20496948

  17. Bisphenol A and Its Analogues Activate Human Pregnane X Receptor

    PubMed Central

    Sui, Yipeng; Ai, Ni; Park, Se-Hyung; Rios-Pilier, Jennifer; Perkins, Jordan T.; Welsh, William J.

    2012-01-01

    Background: Bisphenol A (BPA) is a base chemical used extensively in many consumer products. BPA and its analogues are present in environmental and human samples. Many endocrine-disrupting chemicals, including BPA, have been shown to activate the pregnane X receptor (PXR), a nuclear receptor that functions as a master regulator of xenobiotic metabolism. However, the detailed mechanism by which these chemicals activate PXR remains unknown. Objective: We investigated the mechanism by which BPA interacts with and activates PXR and examined selected BPA analogues to determine whether they bind to and activate PXR. Methods: Cell-based reporter assays, in silico ligand–PXR docking studies, and site-directed mutagenesis were combined to study the interaction between BPA and PXR. We also investigated the influence of BPA and its analogues on the regulation of PXR target genes in human LS180 cells. Results: We found that BPA and several of its analogues are potent agonists for human PXR (hPXR) but do not affect mouse PXR activity. We identified key residues within hPXR’s ligand-binding pocket that constitute points of interaction with BPA. We also deduced the structural requirements of BPA analogues that activate hPXR. BPA and its analogues can also induce PXR target gene expression in human LS180 cells. Conclusions: The present study advances our understanding of the mechanism by which BPA interacts with and activates human PXR. Activation of PXR by BPA may explain some of the adverse effects of BPA in humans. PMID:22214767

  18. Total synthesis and biological evaluation of tubulysin U, tubulysin V, and their analogues.

    PubMed

    Balasubramanian, Ranganathan; Raghavan, Bhooma; Begaye, Adrian; Sackett, Dan L; Fecik, Robert A

    2009-01-22

    A stereoselective total synthesis of the cytotoxic natural products tubulysin U, tubulysin V, and its unnatural epimer epi-tubulysin V, is reported. Simplified analogues containing N,N-dimethyl-D-alanine as a replacement for the N-terminal N-Me-pipecolinic acid residue of the tubulysins are also disclosed. Biological evaluation of these natural products and analogues provided key information with regard to structural and stereochemical requirements for antiproliferative activity and tubulin polymerization inhibition. PMID:19102699

  19. Non-natural acetogenin analogues as potent Trypanosoma brucei inhibitors

    PubMed Central

    Florence, Gordon J.; Fraser, Andrew L.; Gould, Eoin R.; King, Elizabeth F.; Menzies, Stefanie K.; Morris, Joanne C.; Tulloch, Lindsay B.; Smith, Terry K.

    2015-01-01

    A series of novel bis-tetrahydropyran 1,4-triazole analogues based on the acetogenin framework display low micromolar trypanocidal activities towards both bloodstream and insect forms of Trypanosoma brucei, the causative agent of African sleeping sickness. A divergent synthetic strategy was adopted for the synthesis of the key tetrahydropyran intermediates to enable rapid access to diastereochemical variation either side of the 1,4-triazole core. The resulting diastereomeric analogues displayed varying degrees of trypanocidal activity and selectivity in structure activity relationship studies. PMID:25145275

  20. Functional and structural analysis of mice TRPC6 with human analogue through homology modelling.

    PubMed

    Chigurupati, Soumya; Bhasin, Arnima; Inampudi, Krishna Kishore; Asuthkar, Swapna; Madarampalli, Bhanupriya; Kammili, Ramana Kumar; Velpula, Kiran Kumar

    2014-01-01

    Homology models are increasingly used to determine structural and functional relationships of genes and proteins in biomedical research. In the current study, for the first time, we compared the TRPC6 gene in mouse and human. The protein encoded by this gene forms a receptor activated calcium channel in cell membrane. Defects in this gene have been implicated in a wide range of diseases including glioblastomas. To determine the structural similarities in mouse and human TRPC6, we used standard bioinformatics tools such as fold prediction to identify the protein 3D structure, sequence-structure comparison, and prediction of template and protein structure. We also used glioblastoma cell line U373MG and human glioblastoma tumour tissues to study the expression of TRPC6 in disease conditions to implicate this gene in pathological ailment. Based on the results we conclude that human TRPC6 contains 90% identity and 93% similarity with mouse TRPC6, suggesting that this protein is well conserved in these two species. These isoforms likely demonstrate similar mechanisms in regulating gene expression; thus TRPC6 studies in mice may be extrapolated to humans. PMID:24589838

  1. Aspartame and Its Analogues

    NASA Astrophysics Data System (ADS)

    Pavlova, L. A.; Komarova, T. V.; Davidovich, Yurii A.; Rogozhin, S. V.

    1981-04-01

    The results of studies on the biochemistry of the sweet taste are briefly reviewed. The methods of synthesis of "aspartame" — a sweet dipeptide — are considered, its structural analogues are described, and quantitative estimates are made of the degree of sweetness relative to sucrose. Attention is concentrated mainly on problems of the relation between the structure of the substance and its taste in the series of aspartyl derivatives. The bibliography includes 118 references.

  2. Interactions of taurine and structurally related analogues with the GABAergic system and taurine binding sites of rabbit brain

    PubMed Central

    Frosini, Maria; Sesti, Casilde; Dragoni, Stefania; Valoti, Massimo; Palmi, Mitri; Dixon, Henry B F; Machetti, Fabrizio; Sgaragli, Giampietro

    2003-01-01

    The aim of this study was to find taurinergic compounds that do not interact with brain GABA ergic systems. Washed synaptic membranes (SM) from whole rabbit brain were able to bind [3H]muscimol. Saturation experiments of the binding of [3H]GABA to GABAB receptors showed that SM possess two binding components; twice Triton X-100-treated SM contained 0.048 mmol endogenous taurine/kg protein and bound [3H]taurine in a saturable manner (Kd=249.0±6.3 nM and Bmax=3.4±1.0 pmol mg−1 prot). Among the 19 structural analogues of taurine, 6-aminomethyl-3-methyl-4H-1,2,4-benzothiadiazine 1,1-dioxide (TAG), 2-aminoethylarsonic (AEA), 2-hydroxyethanesulfonic (ISE) and (±)cis-2-aminocyclohexane sulfonic acids (CAHS) displaced [3H]taurine binding (Ki=0.13, 0.13, 13.5 and 4.0 μM, respectively). These analogues did not interact with GABAA and GABAB receptors and did not affect taurine- and GABA-uptake systems and GABA-transaminase activity. 3-Aminopropanesulfonic acid (OMO), β-alanine, pyridine-3-sulfonic acid, N,N,N-trimethyltaurine (TMT), 2-(guanidino)ethanesulfonic acid (GES), ethanolamine-O-sulphate, N,N-dimethyltaurine (DMT), taurine and (±)piperidine-3-sulfonic acid (PSA) inhibited [3H]muscimol binding to GABAA receptors with different affinities (Ki=0.013, 7.9, 24.6, 47.5, 52.0, 91.0, 47.5, 118.1 and 166.3 μM, respectively). Taurine, 2-aminoethylphosphonic acid, DMT, TMT and OMO inhibited the binding of [3H]GABA to GABAB receptors with Ki's in the μM range (0.8, 3.5, 4.4, 11.3 and 5.0, respectively). GES inhibited taurine uptake (IC50=3.72 μM) and PSA GABA transaminase activity (IC50=103.0 μM). In conclusion, AEA, TAG, ISE and CAHS fulfill the criteria for taurinergic agents. PMID:12684273

  3. Structural perturbation of a dipalmitoylphosphatidylcholine (DPPC) bilayer by warfarin and its bolaamphiphilic analogue: A molecular dynamics study.

    PubMed

    Ayee, Manuela Aseye Ayele; Roth, Charles William; Akpa, Belinda Sena

    2016-04-15

    Compounds with nominally similar biological activity may exhibit differential toxicity due to differences in their interactions with cell membranes. Many pharmaceutical compounds are amphiphilic and can be taken up by phospholipid bilayers, interacting strongly with the lipid-aqueous interface whether or not subsequent permeation through the bilayer is possible. Bolaamphiphilic compounds, which possess two hydrophilic ends and a hydrophobic linker, can likewise undergo spontaneous uptake by bilayers. While membrane-spanning bolaamphiphiles can stabilize membranes, small molecules with this characteristic have the potential to create membrane defects via disruption of bilayer structure and dynamics. When compared to the amphiphilic therapeutic anticoagulant, warfarin, the bolaamphiphilic analogue, brodifacoum, exhibits heightened toxicity that goes beyond superior inhibition of the pharmacological target enzyme. We explore, herein, the consequences of anticoagulant accumulation in a dipalmitoylphosphatidylcholine (DPPC) bilayer. Coarse-grained molecular dynamics simulations reveal that permeation of phospholipid bilayers by brodifacoum causes a disruption of membrane barrier function that is driven by the bolaamphiphilic nature and size of this molecule. We find that brodifacoum partitioning into bilayers causes membrane thinning and permeabilization and promotes lipid flip-flop - phenomena that are suspected to play a role in triggering cell death. These phenomena are either absent or less pronounced in the case of the less toxic, amphiphilic compound, warfarin. PMID:26852346

  4. Structure Activity Relationship and Mechanism of Action Studies of Manzamine Analogues for the Control of Neuroinflammation and Cerebral Infections

    PubMed Central

    Peng, Jiangnan; Kudrimoti, Sucheta; Prasanna, Sivaprakasam; Odde, Srinivas; Doerksen, Robert J.; Pennaka, Hari K; Choo, Yeun-Mun; Rao, Karumanchi V.; Tekwani, Babu L.; Madgula, Vamsi; Khan, Shabana I.; Wang, Bin; Mayer, Alejandro M. S.; Jacob, Melissa R.; Tu, Lan Chun; Gertsch, Jürg; Hamann, Mark T.

    2010-01-01

    Structure-activity relationship studies were carried out by chemical modification of manzamine A (1), 8-hydroxymanzamine A (2), manzamine F (14), and ircinol isolated from the sponge Acanthostrongylophora. The derived analogues were evaluated for antimalarial, antimicrobial, and antineuroinflammatory activities. Several modified products exhibited potent and improved in vitro antineuroinflammatory, antimicrobial, and antimalarial activity. 1 showed improved activity against malaria compared to chloroquine in both multi- and single-dose in vivo experiments. The significant antimalarial potential was revealed by a 100% cure rate of malaria in mice with one administration of 100 mg/kg of 1. The potent antineuroinflammatory activity of the manzamines will provide great benefit for the prevention and treatment of cerebral infections (e.g. Cryptococcus and Plasmodium). In addition, 1 was shown to permeate across the blood-brain barrier (BBB) in an in vitro model using a MDR-MDCK monolayer. Docking studies support that 2 binds to the ATP-noncompetitive pocket of glycogen synthesis kinase-3β (GSK-3β), which is a putative target of manzamines. Based on the results presented here it will be possible to initiate rational drug design efforts around this natural product scaffold for the treatment of several different diseases. PMID:20017491

  5. Thermodynamic functions and intraparticle mass transfer kinetics of structural analogues of a template on molecularly imprinted polymers in liquid chromatography

    SciTech Connect

    Kim, Hyunjung; Guiochon, Georges A

    2005-08-01

    The parameters of the thermodynamics and mass transfer kinetics of the structural analogues (L-enantiomers) of the template were measured on an Fmoc-L-tryptophan (Fmoc-L-Trp) imprinted polymer, at different temperatures. The equilibrium isotherm data and the overloaded band profiles of these compounds were measured at temperatures of 298, 313, 323, and 333 K. The isotherm data were modeled. The thermodynamic functions of the different adsorption sites were derived from the isotherm parameters, using van't Hoff plots. The mass transfer parameters were derived by comparing the experimental peak profiles and profiles calculated using the lumped pore diffusion (POR) model for chromatography. These data show that (1) the strength between the substrate molecules and the MIP increases with increasing number of functional groups on the substrates; (2) enthalpy is the driving force for the affinity of the substrates for the MIP; (3) surface diffusion is the dominant mass transfer mechanism of the substrates through the porous MIP. For those substrate molecules that have the same stereochemistry as the template, the energetic surface heterogeneity needs to be incorporated into the surface diffusion coefficients. Heterogeneous surface diffusivities decrease with increasing affinity of the substrates for the MIP.

  6. Crystal structure of Pb 3O 2(OH)Br, a Br-analogue of damaraite

    NASA Astrophysics Data System (ADS)

    Krivovichev, Sergey V.; Burns, Peter C.

    2001-05-01

    The crystal structure of Pb 3O 2(OH)Br (orthorhombic, Pmc2 1, a=5.8447(8), b=7.0715(10), c=15.309(2) Å, V=632.75(15) Å 3) has been solved by direct methods and refined to R1=0.046 ( wR=0.077). The structure is based on [O 2Pb 3] chains of edge-sharing OPb 4 oxocentered tetrahedra that extend parallel to the a axis and occur in two orientations inclined to each other by ˜50°. The [O 2Pb 3] chains are linked through OH(3) groups to form an [Pb 3O 2](OH) sheet that is parallel to (010). Additional OH(4) groups are attached to the [O 2Pb 3] chains. The OH groups form two short (OH)Pb bonds that results in (OH)Pb 2 dimers.

  7. Synthesis, biological activities, and quantitative structure-activity relationship (QSAR) study of novel camptothecin analogues.

    PubMed

    Wu, Dan; Zhang, Shao-Yong; Liu, Ying-Qian; Wu, Xiao-Bing; Zhu, Gao-Xiang; Zhang, Yan; Wei, Wei; Liu, Huan-Xiang; Chen, An-Liang

    2015-01-01

    In continuation of our program aimed at the development of natural product-based pesticidal agents, three series of novel camptothecin derivatives were designed, synthesized, and evaluated for their biological activities against T. Cinnabarinus, B. brassicae, and B. xylophilus. All of the derivatives showed good-to-excellent activity against three insect species tested, with LC50 values ranging from 0.00761 to 0.35496 mmol/L. Remarkably, all of the compounds were more potent than CPT against T. Cinnabarinus, and compounds 4d and 4c displayed superior activity (LC50 0.00761 mmol/L and 0.00942 mmol/L, respectively) compared with CPT (LC50 0.19719 mmol/L) against T. Cinnabarinus. Based on the observed bioactivities, preliminary structure-activity relationship (SAR) correlations were also discussed. Furthermore, a three-dimensional quantitative structure-activity relationship (3D-QSAR) model using comparative molecular field analysis (CoMFA) was built. The model gave statistically significant results with the cross-validated q2 values of 0.580 and correlation coefficient r2 of 0.991 and  of 0.993. The QSAR analysis indicated that the size of the substituents play an important in the activity of 7-modified camptothecin derivatives. These findings will pave the way for further design, structural optimization, and development of camptothecin-derived compounds as pesticidal agents. PMID:25985362

  8. Inhibition and Structure of Trichomonas vaginalis Purine Nucleoside Phosphorylase with Picomolar Transition State Analogues

    SciTech Connect

    Rinaldo-Matthis,A.; Wing, C.; Ghanem, M.; Deng, H.; Wu, P.; Gupta, A.; Tyler, P.; Evans, G.; Furneaux, R.; et al.

    2007-01-01

    Trichomonas vaginalis is a parasitic protozoan purine auxotroph possessing a unique purine salvage pathway consisting of a bacterial type purine nucleoside phosphorylase (PNP) and a purine nucleoside kinase. Thus, T. vaginalis PNP (TvPNP) functions in the reverse direction relative to the PNPs in other organisms. Immucillin-A (ImmA) and DADMe-Immucillin-A (DADMe-ImmA) are transition stte mimics of adenosine with geometric and electrostatic features that resemble early and late transition states of adenosine at the transition state stabilized by TvPNP. ImmA demonstrates slow-onset tight-binding inhibition with TvPNP, to give an equilibrium dissociation constant of 87 pM, an inhibitor release half-time of 17.2 min, and a K{sub m}/K{sub d} ratio of 70,100. DADMe-ImmA resembles a late ribooxacarbenium ion transition state for TvPNP to give a dissociation constant of 30 pM, an inhibitor release half-time of 64 min, and a K{sub m}/K{sub d} ratio of 203,300. The tight binding of DADMe-ImmA supports a late S{sub N}1 transition state. Despite their tight binding to TvPNP, ImmA and DADMe-ImmA are weak inhibitors of human and P. falciparum PNPs. The crystal structures of the TvPNP-ImmA{center_dot}PO{sub 4} and TvPNP{center_dot}DADMe-ImmA{center_dot}PO{sub 4} ternary complexes differ from previous structures with substrate anologues. The tight binding with DADMe-ImmA is in part due to a 2.7 {angstrom} ionic interaction between a PO{sub 4} oxygen and the N1 cation of the hydroxypyrrolidine and is weaker in the TvPNP{center_dot}ImmA{center_dot}PO{sub 4} structure at 3.5 {angstrom}. However, the TvPNP{center_dot}ImmA{center_dot}PO{sub 4} structure includes hydrogen bonds between the 2'-hydroxyl and the protein that are not present in TvPNP{center_dot}DADMe-ImmA{center_dot}PO{sub 4}. These structures explain why DADMe-ImmA binds tighter than ImmA. Immucillin-H is a 12 nM inhibitor of TvPNP but a 56 pM inhibitor of human PNP. And this difference is explained by isotope

  9. Structure Determination of Cisplatin-Amino Acid Analogues by Infrared Multiple Photon Dissociation Action Spectroscopy

    NASA Astrophysics Data System (ADS)

    He, Chenchen; Bao, Xun; Zhu, Yanlong; Strobehn, Stephen; Kimutai, Bett; Nei, Y.-W.; Chow, C. S.; Rodgers, M. T.; Gao, Juehan; Oomens, J.

    2015-06-01

    To gain a better understanding of the binding mechanism and assist in the optimization of relevant drug and chemical probe design, both experimental and theoretical studies were performed on a series of amino acid-linked cisplatin derivatives, including glycine-, lysine-, and ornithine-linked cisplatin, Gplatin, Kplatin, and Oplatin, respectively. Cisplatin, the first FDA-approved platinum-based anticancer drug, has been widely used in cancer chemotherapy. Its pharmacological mechanism has been identified as its ability to coordinate to genomic DNA, and guanine is its major target. In previous reports, cisplatin was successfully utilized as a chemical probe to detect solvent accessible sites in ribosomal RNA (rRNA). Among the amino-acid-linked cisplatin derivatives, Oplatin exhibits preference for adenine over guanine. The mechanism behind its different selectivity compared to cisplatin may relate to its potential of forming a hydrogen bond between the carboxylate group in Pt (II) complex and the 6-amino moiety of adenosine stabilizes A-Oplatin products. Tandem mass spectrometry analysis also indicates that different coordination sites of Oplatin on adenosine affect glycosidic bond stability. Infrared multiple photon dissociation (IRMPD) action spectroscopy experiments were performed on all three amino acid-linked cisplatin to characterize their structures. An extensive theoretical study has been performed on Gplatin to guide the selection of the most effective theory and basis set based on its geometric information. The results for Gplatin provide the foundation for characterization of the more complex amino acid-linked cisplatin derivatives, Oplatin and Kplatin. Structural and energetic information elucidated for these compounds, particularly Oplatin reveal the reason for its alternative selectivity compared to cisplatin.

  10. Synthesis, Nitric Oxide Release, and Anti-Leukemic Activity of Glutathione-Activated Nitric Oxide Prodrugs: Structural Analogues of PABA/NO, an Anti-Cancer Lead Compound

    PubMed Central

    Chakrapani, Harinath; Wilde, Thomas C.; Citro, Michael L.; Goodblatt, Michael M.; Keefer, Larry K.; Saavedra, Joseph E.

    2008-01-01

    Diazeniumdiolate anions and their prodrug forms are reliable sources of nitric oxide (NO) that have generated interest as promising therapeutic agents. A number of structural analogues of O2-(2,4-dinitro-5-(4-(N-methylamino)benzoyloxy)phenyl) 1-(N,N-dimethylamino)diazen-1-ium-1,2-diolate (PABA/NO), an anti-cancer lead compound that is designed to release NO upon activation by glutathione, were prepared. The nitric oxide release patterns of these O2-(2,4-dinitrophenyl) diazeniumdiolates in the presence of glutathione were tested and it was found that in the absence of competing pathways, these compounds release nearly quantitative amounts of NO. The ability of PABA/NO and its structural analogues to inhibit human leukemia cell proliferation was determined and it was found that compounds releasing elevated amounts of NO displayed superior cytotoxic effects. PMID:18060792

  11. The structure-AChE inhibitory activity relationships study in a series of pyridazine analogues.

    PubMed

    Saracoglu, M; Kandemirli, F

    2009-07-01

    The structure-activity relationships (SAR) are investigated by means of the Electronic-Topological Method (ETM) followed by the Neural Networks application (ETM-NN) for a class of anti-cholinesterase inhibitors (AChE, 53 molecules) being pyridazine derivatives. AChE activities of the series were measured in IC(50) units, and relative to the activity levels, the series was partitioned into classes of active and inactive compounds. Based on pharmacophores and antipharmacophores calculated by the ETM-software as sub-matrices containing important spatial and electronic characteristics, a system for the activity prognostication is developed. Input data for the ETM were taken as the results of conformational and quantum-mechanics calculations. To predict the activity, we used one of the most well known neural networks, namely, the feed-forward neural networks (FFNNs) trained with the back propagation algorithm. The supervised learning was performed using a variant of FFNN known as the Associative Neural Networks (ASNN). The result of the testing revealed that the high ETM's ability of predicting both activity and inactivity of potential AChE inhibitors. Analysis of HOMOs for the compounds containing Ph1 and APh1 has shown that atoms with the highest values of the atomic orbital coefficients are mainly those atoms that enter into the pharmacophores. Thus, the set of pharmacophores and antipharmacophores found as the result of this study forms a basis for a system of the anti-cholinesterase activity prediction. PMID:19689389

  12. Structure-Activity Relationships in Human Toll-like Receptor 7-Active Imidazoquinoline Analogues

    PubMed Central

    Shukla, Nikunj M.; Malladi, Subbalakshmi S.; Mutz, Cole A.; Balakrishna, Rajalakshmi; David, Sunil A.

    2010-01-01

    Engagement of toll-like receptors serve to link innate immune responses with adaptive immunity and can be exploited as powerful vaccine adjuvants for eliciting both primary and anamnestic immune responses. TLR7 agonists are highly immunostimulatory without inducing dominant proinflammatory cytokine responses. A structure-activity study was conducted on the TLR7-agonistic imidazoquinolines, starting with 1-(4-amino-2-((ethylamino)methyl)-1H-imidazo[4,5-c]quinolin-1-yl)-2-methylpropan-2-ol as a lead. Modifications of the secondary amine of the C2 ethylaminomethylene sidechain are poorly tolerated. The 4-amino group must be retained for activity. Replacement of the imidazole ring of the scaffold with triazole or cyclic urea led to complete loss of activity. A systematic exploration of N1-benzyl-C2-alkyl substituents showed a very distinct relationship between alkyl length and TLR7-agonistic potency with the optimal compound bearing a C2-n-butyl group. Transposition of the N1 and C2 substituents led to the identification of an extremely active TLR7-agonistic compound with an EC50 value of 8.6 nM. The relative potencies in human TLR7-based primary reporter gene assays were paralleled by interferon-α induction activities in whole human blood models. PMID:20481492

  13. The influence of cooling on the advance of lava flows: insights from analogue experiments on the feedbacks between flow dynamics and thermal structure

    NASA Astrophysics Data System (ADS)

    Garel, F.; Kaminski, E.; Tait, S.; Limare, A.

    2012-12-01

    During an effusive volcanic eruption, the crisis management is mainly based on the prediction of lava flows advance and its velocity. The spreading of a lava flow, seen as a gravity current, depends on its "effective rheology" and the eruptive mass flux. These two parameters are not known a priori during an eruption and a key question is how to evaluate them in near real-time (rather than afterwards.) There is no generic macroscopic model for the rheology of an advancing lava flow, and analogue modelling is a precious tool to empirically estimate the rheology of a complex flow. We investigate through laboratory experiments the simultaneous spreading and cooling of horizontal currents fed at constant rate from a point source. The materials used are silicone oil (isoviscous), and poly-ethylene glycol (PEG) wax injected in liquid state and solidiying during its advance. In the isoviscous case, the temperature field is a passive tracer of the flow dynamics, whereas in the PEG experiments there is a feedback between the cooling of the flow and its effective rheology. We focus on the evolution of the current area and of the surface thermal structure, imaged with an infrared camera, to assess how the thermal structure can be related to the flow rate. The flow advance is continuous in the viscous case, and follows the predictions of Huppert (1982); in that case the surface temperature become steady after a transient time and the radiated heat flux is shown to be proportional to the input rate. For the PEG experiments, the spreading occurs through an alternation of stagnation and overflow phases, with a mean spreading rate decreasing as the experiment goes on. As in the case of lava flows, these experiments can exhibit a compound flow field, solid levees, thermal erosion, liquid overflows and channelization. A key observation is that the effective rheology of the solifying PEG material depends on the input flow rate, with high input rates yielding a rheology closer to the

  14. Synthesis and cytotoxic activities of semisynthetic zearalenone analogues.

    PubMed

    Tadpetch, Kwanruthai; Kaewmee, Benyapa; Chantakaew, Kittisak; Kantee, Kawalee; Rukachaisirikul, Vatcharin; Phongpaichit, Souwalak

    2016-08-01

    Zearalenone is a β-resorcylic acid macrolide with various biological activities. Herein we report the synthesis and cytotoxic activities of 34 zearalenone analogues against human oral epidermoid carcinoma (KB) and human breast adenocarcinoma (MCF-7) cells as well as noncancerous Vero cells. Some zearalenone analogues showed moderately enhanced cytotoxic activities against the two cancer cell lines. We have discovered the potential lead compounds with diminished or no cytotoxicity to Vero cells. Preliminary structure-activity relationship studies revealed that the double bond at the 1' and 2' positions of zearalenone core was crucial for cytotoxic activities on both cell lines. In addition, for zearalenol analogues, the unprotected hydroxyl group at C-2 and an alkoxy substituent at C-4 played key roles on cytotoxic effects of both cell lines. PMID:27311894

  15. Bispidin-9,9-diol Analogues of Cisplatin, Carboplatin, and Oxaliplatin: Synthesis, Structures, and Cytotoxicity.

    PubMed

    Cui, Huiling; Goddard, Richard; Pörschke, Klaus-Richard; Hamacher, Alexandra; Kassack, Matthias U

    2016-03-21

    3,7-Diallyl-bispidin-9-one (6) (bispidin-9-one = 3,7-diazabicyclo[3.3.1]nonan-9-one) is converted to N-unsubstituted spiro[bispidin-9,2'-[1,3]dioxolane] (12; 35%). The ketal crystallizes in the forms of anhydrous 12a and the dihydrate 12b. The molecules in anhydrous 12a are linked to each other, forming N1-H1···N2-H2···N1* hydrogen-bond chiral helices of alternating chirality. In the dihydrate 12b, the ketal molecules are connected to a central string of water molecules by O3-H···O1 and O4-H···N1 hydrogen bonds, but not to themselves. Reaction of 12 with (1,5-hexadiene)PtCl2 affords almost quantitatively spiro[bispidin-9,2'-[1,3]dioxolane]PtCl2 (13). Cleavage of the ketal to retrieve the ketone produces the geminal diol (bispidin-9,9-diol)PtCl2 (14; 85%). Compound 14 reacts with Ag2cbdca (cbdca = 1,1-cyclobutanedicarboxylate) to give the dihydrate (bispidin-9,9-diol)Pt(cbdca)·2H2O (15b), which can be dehydrated to obtain anhydrous (bispidin-9,9-diol)Pt(cbdca) (15a). Similarly, anhydrous (bispidin-9,9-diol)Pt(oxalate) (16) is obtained. Crystal structures of 14 and 15b reveal association by various forms of O-H···O, O-H···Cl, N-H···Cl, and N-H···O hydrogen bonds. Biological studies showed a moderate cytotoxic activity of the bispidin-9,9-diol complexes 14-16, compared to the 9,9-unsubstituted bispidine complexes. No unspecific cytotoxicity of 14-16 up to 316 μM was found against the noncancer cell line HEK293. PMID:26918619

  16. The role of pre-existing tectonic structures and magma chamber shape on the geometry of resurgent blocks: Analogue models

    NASA Astrophysics Data System (ADS)

    Marotta, Enrica; de Vita, Sandro

    2014-02-01

    A set of analogue models has been carried out to understand the role of an asymmetric magma chamber on the resurgence-related deformation of a previously deformed crustal sector. The results are then compared with those of similar experiments, previously performed using a symmetric magma chamber. Two lines of experiments were performed to simulate resurgence in an area with a simple graben-like structure and resurgence in a caldera that collapsed within the previously generated graben-like structure. On the basis of commonly accepted scaling laws, we used dry-quartz sand to simulate the brittle behaviour of the crust and Newtonian silicone to simulate the ductile behaviour of the intruding magma. An asymmetric shape of the magma chamber was simulated by moulding the upper surface of the silicone. The resulting empty space was then filled with sand. The results of the asymmetric-resurgence experiments are similar to those obtained with symmetrically shaped silicone. In the sample with a simple graben-like structure, resurgence occurs through the formation of a discrete number of differentially displaced blocks. The most uplifted portion of the deformed depression floor is affected by newly formed, high-angle, inward-dipping reverse ring-faults. The least uplifted portion of the caldera is affected by normal faults with similar orientation, either newly formed or resulting from reactivation of the pre-existing graben faults. This asymmetric block resurgence is also observed in experiments performed with a previous caldera collapse. In this case, the caldera-collapse-related reverse ring-fault is completely erased along the shortened side, and enhances the effect of the extensional faults on the opposite side, so facilitating the intrusion of the silicone. The most uplifted sector, due to an asymmetrically shaped intrusion, is always in correspondence of the thickest overburden. These results suggest that the stress field induced by resurgence is likely dictated by

  17. Titan's Organic Aerosols : Molecular Composition And Structure Inferred From Systematic Pyrolysis Gas Chromatography Mass Spectrometry Analysis of Analogues

    NASA Astrophysics Data System (ADS)

    Morisson, Marietta; Szopa, Cyril; Buch, Arnaud; Carrasco, Nathalie; Gautier, Thomas

    2015-04-01

    In spite of numerous studies carried out to characterize the chemical composition of laboratory analogues of Titan aerosols (tholins), their molecular composition as well as their structuration are still little known. If Pyrolysis gas chromatography mass spectrometry (Pyr-GCMS) has been used for years to give clues about this composition, the highly disparate results obtained show that they can be attributed to the analytical conditions used, to differences in the nature of the analogues studied, or both. In order to have a better description of Titan's tholins molecular composition, we led a systematic analysis of these materials by pyr-GCMS, exploring the analytical parameters to estimate the biases this technique can induce. With this aim, we used the PAMPRE experiment, a capacitively coupled RF cold plasma reactor (Szopa et al. 2006), to synthetize tholins with 2%, 5% and 10% of CH4 in N2. The three samples were systematically pyrolyzed in the temperature range 200-600°C with a 100°C step. The evolved gases were then injected into a GC-MS device for molecular identification. This systematic pyr-GC-MS analysis had two major objectives: (i) optimizing all the analytical parameters for the detection of a wide range of compounds and thus a characterization of the tholins composition as comprehensive as possible, and (ii) highlighting the role of the CH4 ratio on the tholins molecular structure. About a hundred of molecules have been identified in the pyrolysis products. Although an identical major pattern of nitriles and ethylene appears clearly for the three samples, some discriminant signatures were highlighted. The samples mainly differ by the number of released compounds. The results show especially an increase in the hydrocarbonaceous chains when the CH4 ratio increases. At the opposite, the formation of poly-nitrogenous compounds seems to be easier for lower CH4 ratios. We also performed a semi-quantitative study on the best represented chemical family in

  18. Structure of beta-crystallite assemblies formed by Alzheimer beta-amyloid protein analogues: analysis by x-ray diffraction.

    PubMed Central

    Inouye, H.; Fraser, P. E.; Kirschner, D. A.

    1993-01-01

    To elucidate the relation between amyloid fibril formation in Alzheimer disease and the primary structure of the beta/A4 protein, which is the major component of the amyloid, we have been investigating the ability of peptides sharing sequences with beta/A4 to form fibrils in vitro. In previous studies we focused on the macroscopic morphology of the assemblies formed by synthetic peptides corresponding in sequence to different regions of this protein. In the present study we analyze the x-ray diffraction patterns obtained from these assemblies. All specimens showed wide angle reflections that could be indexed by an orthogonal lattice of beta-crystallites having unit cell dimensions a = 9.4 A, b = 7 A, and c = 10 A, where a refers to hydrogen bonding direction, b to polypeptide chain direction, and c to intersheet direction. Given the amino acid sequence of beta/A4 as NH2-DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIAT-COOH, we found that, based on their orientation and assembly, the analogues could be classified into three groups: Group A, residues 19-28, 13-28, 12-28, 11-28, 9-28, 1-28, 1-38, 1-40, 6-25, 11-25 and 34-42; Group B, residues 18-28, 17-28, and 15-28; and Group C, residues 22-35 and 26-33. For Groups A and C, the sharpest reflections were (h00), indicating that the assemblies were fibrillar, i.e., elongated in a single direction. Lateral alignment of the crystallites in Group A account for its cross-beta pattern, in which the hydrogen bonding (H-bonding) direction is the fiber (rotation) axis. By comparison, the beta-crystallites of Group C had no preferential orientation, thus giving circular scattering. For Group B, the sharpest reflections were (h0l) on the meridian, indicating that the assemblies were plate-like, i.e., extended in two directions. A series of equatorial Bragg reflections having a 40 A period indicated regular stacking of the plates, and the rotation axis was normal to the surface of the plates. Of the Group A peptides, the analogues 11

  19. A dinaphtho[8,1,2-cde:2',1',8'-uva]pentacene derivative and analogues: synthesis, structures, photophysical and electrochemical properties.

    PubMed

    Li, Xiao-Jun; Li, Meng; Lu, Hai-Yan; Chen, Chuan-Feng

    2015-07-28

    Dinaphtho[8,1,2-cde:2',1',8'-uva]pentacene and analogues as a new type of acene derivatives with scorpion-shaped structures were conveniently synthesized. Their structures, photophysical and electrochemical properties were experimentally and theoretically investigated. It was found that the pentacene derivative has a twisted configuration, but shows marked intermolecular π-π interactions, strong electronic delocalization, and a small HOMO-LUMO bandgap, which are different from those of pentacene and pentatwistacene derivatives with similar structures. PMID:26104736

  20. Combined Quantum Chemistry and Photoelectron Spectroscopy Study of the Electronic Structure and Reduction Potentials of Rubredoxin Redox Site Analogues

    SciTech Connect

    Niu, Shuqiang; Wang, Xue B.; Nichols, J. A.; Wang, Lai S.; Ichiye, Toshiko

    2003-04-24

    Iron-sulfur proteins are an important class of electron carriers in a wide variety of biological reactions. Determining the intrinsic contribution of the metal site to the redox potential is crucial in understanding how the protein environment influences the overall redox properties of the Fe-S proteins. Here we combine density functional theory and coupled cluster methods with photodetachment spectroscopy to study the electronic structures and gas-phase redox potentials of the [Fe(SCH3)(4)](2-/-/0) and [Fe(SCH3)(3)](-/0) analogues of the rubredoxin redox site. The calculations show that oxidations of [Fe(SCH3)(4)](2-) and [Fe(SCH3)(4)](-) involve mainly the Fe 3d and S 3p orbitals, respectively. The calculated adiabatic and vertical detachment energies are in good agreement with the experiment for [Fe(SCH3)(3)](-) and [Fe(SCH3)(4)](-). The current results further confirm the "inverted level scheme" for the high-spin [1Fe] systems. The redox couple, [Fe(SCH3)(4)](- /2), which is the one found in rubredoxin, but cannot be accessed experimentally in the gas phase, was investigated using a thermodynamic cycle that relates it to the [Fe(SCH3)(3)](-/0) couple and the ligand association reaction, [Fe(SCH3)(3)](0/-) + SCH3- --> [Fe(SCH3)(4)](-/2-). The calculated reduction energy of [Fe(SCH3)(4)](-) (1.7 eV) compares well with the value (1.6 eV) estimated from the calculated bond energies and the experimental detachment energy of [Fe(SCH3)(3)](-). Thus, this thermodynamic cycle method can be used to estimate metal-ligand bonding energies and determine intrinsic reduction potentials from photodetachment experiments when the reduced forms are not stable in the gas phase.

  1. Isatin Derived Spirocyclic Analogues with α-Methylene-γ-butyrolactone as Anticancer Agents: A Structure-Activity Relationship Study.

    PubMed

    Rana, Sandeep; Blowers, Elizabeth C; Tebbe, Calvin; Contreras, Jacob I; Radhakrishnan, Prakash; Kizhake, Smitha; Zhou, Tian; Rajule, Rajkumar N; Arnst, Jamie L; Munkarah, Adnan R; Rattan, Ramandeep; Natarajan, Amarnath

    2016-05-26

    Design, synthesis, and evaluation of α-methylene-γ-butyrolactone analogues and their evaluation as anticancer agents is described. SAR identified a spirocyclic analogue 19 that inhibited TNFα-induced NF-κB activity, cancer cell growth and tumor growth in an ovarian cancer model. A second iteration of synthesis and screening identified 29 which inhibited cancer cell growth with low-μM potency. Our data suggest that an isatin-derived spirocyclic α-methylene-γ-butyrolactone is a suitable core for optimization to identify novel anticancer agents. PMID:27077228

  2. Antimicrobial Peptide from the Wild Bee Hylaeus signatus Venom and Its Analogues: Structure-Activity Study and Synergistic Effect with Antibiotics.

    PubMed

    Nešuta, Ondřej; Hexnerová, Rozálie; Buděšínský, Miloš; Slaninová, Jiřina; Bednárová, Lucie; Hadravová, Romana; Straka, Jakub; Veverka, Václav; Čeřovský, Václav

    2016-04-22

    Venoms of hymenopteran insects have attracted considerable interest as a source of cationic antimicrobial peptides (AMPs). In the venom of the solitary bee Hylaeus signatus (Hymenoptera: Colletidae), we identified a new hexadecapeptide of sequence Gly-Ile-Met-Ser-Ser-Leu-Met-Lys-Lys-Leu-Ala-Ala-His-Ile-Ala-Lys-NH2. Named HYL, it belongs to the category of α-helical amphipathic AMPs. HYL exhibited weak antimicrobial activity against several strains of pathogenic bacteria and moderate activity against Candida albicans, but its hemolytic activity against human red blood cells was low. We prepared a set of HYL analogues to evaluate the effects of structural modifications on its biological activity and to increase its potency against pathogenic bacteria. This produced several analogues exhibiting significantly greater activity compared to HYL against strains of both Staphylococcus aureus and Pseudomonas aeruginosa even as their hemolytic activity remained low. Studying synergism of HYL peptides and conventional antibiotics showed the peptides act synergistically and preferentially in combination with rifampicin. Fluorescent dye propidium iodide uptake showed the tested peptides were able to facilitate entrance of antibiotics into the cytoplasm by permeabilization of the outer and inner bacterial cell membrane of P. aeruginosa. Transmission electron microscopy revealed that treatment of P. aeruginosa with one of the HYL analogues caused total disintegration of bacterial cells. NMR spectroscopy was used to elucidate the structure-activity relationship for the effect of amino acid residue substitution in HYL. PMID:26998557

  3. 3D modelling of a dolomitized syn-sedimentary structure: an exhumed potential analogue of hydrocarbon reservoir.

    NASA Astrophysics Data System (ADS)

    Martinelli, Mattia; Franceschi, Marco; Massironi, Matteo; Bistacchi, Andrea; Di Cuia, Raffaele; Rizzi, Alessandro

    2016-04-01

    The decrease in discoveries of new hydrocarbon reservoirs has twofold implications: i) the need to improve our knowledge of classic reservoirs, such as traps within extensional syn-sedimentary structures, and ii) enhanced efforts aimed at better understanding complex type of reservoirs. In particular, in the last few years, fault related dolomitized bodies, often associated to extensional faults, received worldwide attention thanks to the capability of dolomitizing fluids to improve the pore network. However, the shape and geometries of the dolomitized bodies within complex fault network as well as the related porosity distribution and evolution is difficult to predict. The study of outcrop analogues can help to solve these issues. In this work, we focused our attention on the Early Jurassic carbonate sediments of the Calcari Grigi Group deposited on the Trento Platform (Italian Southern Alps). The stratigraphic succession encompasses (from bottom to top): the peritidal limestones of the Monte Zugna Formation, the initially highly porous Loppio Oolitic Limestone and the nearly tight marls and marly limestones of the lower Rotzo Formation. During Early Jurassic, after the deposition of the Loppio Oolitic Limestone, the Trento Platform underwent syn-sedimentary extensional tectonics, which caused the formation of numerous tilted blocks. Differential subsidence of these blocks is testified by abrupt thickness changes in Rotzo Formation. This created a structural framework favourable to the formation of syn-sedimentary extensional traps (with the Loppio Oolitic Limestone as reservoir and Rotzo Formation as seal). In the Tertiary, Alpine compressional tectonics caused the reactivation of the Jurassic faults with a strike slip kinematics and was associated with the circulation of dolomitizing fluids. The combination of these events led to the formation of secondary fault-related dolomitized bodies. The enhanced pore network in correspondence of the dolomitized dykes

  4. Structural insights into the interactions of xpt riboswitch with novel guanine analogues: a molecular dynamics simulation study.

    PubMed

    Jain, Swapan S; Sonavane, Uddhavesh B; Uppuladinne, Mallikarjunachari V N; McLaughlin, Emily C; Wang, Weiqing; Black, Sheneil; Joshi, Rajendra R

    2015-01-01

    Ligand recognition in purine riboswitches is a complex process requiring different levels of conformational changes. Recent efforts in the area of purine riboswitch research have focused on ligand analogue binding studies. In the case of the guanine xanthine phosphoribosyl transferase (xpt) riboswitch, synthetic analogues that resemble guanine have the potential to tightly bind and subsequently influence the genetic expression of xpt mRNA in prokaryotes. We have carried out 25 ns Molecular Dynamics (MD) simulation studies of the aptamer domain of the xpt G-riboswitch in four different states: guanine riboswitch in free form, riboswitch bound with its cognate ligand guanine, and with two guanine analogues SJ1 and SJ2. Our work reveals novel interactions of SJ1 and SJ2 ligands with the binding core residues of the riboswitch. The ligands proposed in this work bind to the riboswitch with greater overall stability and lower root mean square deviations and fluctuations compared to guanine ligand. Reporter gene assay data demonstrate that the ligand analogues, upon binding to the RNA, lower the genetic expression of the guanine riboswitch. Our work has important implications for future ligand design and binding studies in the exciting field of riboswitches. PMID:24404773

  5. Synthesis and high-throughput characterization of structural analogues of molecular glassformers: 1,3,5-trisarylbenzenes.

    PubMed

    Liu, Tianyi; Cheng, Kevin; Salami-Ranjbaran, Elmira; Gao, Feng; Glor, Ethan C; Li, Mu; Walsh, Patrick J; Fakhraai, Zahra

    2015-10-14

    We report the synthesis and characterization of an analogous series of small organic molecules derived from a well-known glass former, 1,3-bis(1-naphthyl)-5-(2-naphthyl)benzene (α,α,β-TNB). Synthesized molecules include α,α,β-TNB, 3,5-di(naphthalen-1-yl)-1-phenylbenzene (α,α-P), 9-(3,5-di(naphthalen-1-yl)phenyl)anthracene (α,α-A), 9,9'-(5-(naphthalen-2-yl)-1,3-phenylene)dianthracene (β-AA) and 3,3',5,5'-tetra(naphthalen-1-yl)-1,1'-biphenyl (α,α,α,α-TNBP). The design of molecules was based on increasing molecular weight with varied π-π interactions in one or more substituents. The synthesis is based on Suzuki cross-coupling of 1-bromo-3-chloro-5-iodobenzene with arylboronic acids, which allows attachment of various substituents to tailor the chemical structure. The bulk compounds were characterized using NMR spectroscopy and differential scanning calorimetry (DSC). Thin films of these compounds were produced using physical vapor deposition and were subsequently annealed above the glass transition temperatures (Tg). For each molecular glass, cooling rate-dependent glass transition temperature measurements (CR-Tg) were performed using ellipsometry as a high-throughput method to characterize thin film properties. CR-Tg allows rapid characterization of glassy properties, such as Tg, apparent thermal expansion coefficients, apparent activation energy at Tg and fragility. DSC measurements confirmed the general trend that increasing molecular weight leads to increasing melting point (Tm) and Tg. Furthermore, CR-Tg provided evidence that the introduction of stronger π-interacting substituents in the chosen set of structural analogues increases fragility and decreases the ability to form glasses, such that β-AA has the largest fragility and highest tendency to crystallize among all the compounds. These strong interactions also significantly elevate Tg and promote more harmonic intermolecular potentials, as observed by decreasing value of the apparent

  6. Design, Synthesis and Structure-Activity Relationship Studies of Novel 4 (1-adamantyl) Phenyl Analogues as HIF-1α Inhibitors.

    PubMed

    Xia, Yan; Duan, Qiong; Zhao, Bao-Hua; Li, Dong-Feng; Hou, Rui-Bin

    2016-01-01

    Hypoxia inducible factor-1 (HIF-1) is a key mediator during cancer cells to adapt tumor hypoxic condition. In this study, a series of adamantane-based compounds were synthesized and evaluated as potential inhibitors of HIF-1α. Examination of their structure-activity relationship (SAR) identified the adamantane-containing indole derivative 20a as a potent inhibitor of HIF-1α in Hep3B cell lines under tumor hypoxia (IC50 = 0.02 µM). The study herein may provide valuable information for the development of novel therapeutics against cancer and tumor angiogenesis. PMID:26548744

  7. Maximum key-profile correlation (MKC) as a measure of tonal structure in music.

    PubMed

    Takeuchi, A H

    1994-09-01

    Tonal structure is musical organization on the basis of pitch, in which pitches vary in importance and rate of occurrence according to their relationship to a tonal center. Experiment 1 evaluated the maximum key-profile correlation (MKC), a product of Krumhansl and Schmuckler's key-finding algorithm (Krumhansl, 1990), as a measure of tonal structure. The MKC is the maximum correlation coefficient between the pitch class distribution in a musical sample and key profiles, which indicate the stability of pitches with respect to particular tonal centers. The MKC values of melodies correlated strongly with listeners' ratings of tonal structure. To measure the influence of the temporal order of pitches on perceived tonal structure, three measures (fifth span, semitone span, and pitch contour) taken from previous studies of melody perception were also correlated with tonal structure ratings. None of the temporal measures correlated as strongly or as consistently with tonal structure ratings as did the MKC, and nor did combining them with the MKC improve prediction of tonal structure ratings. In Experiment 2, the MKC did not correlate with recognition memory of melodies. However, melodies with very low MKC values were recognized less accurately than melodies with very high MKC values. Although it does not incorporate temporal, rhythmic, or harmonic factors that may influence perceived tonal structure, the MKC can be interpreted as a measure of tonal structure, at least for brief melodies. PMID:7971133

  8. Structure-Activity Studies of Brassinosteroids and the Search for Novel Analogues and Mimetics with Improved Bioactivity.

    PubMed

    Back, Thomas G.; Pharis, Richard P.

    2003-12-01

    A number of novel brassinosteroid analogues were synthesized and subjected to the rice leaf lamina inclination bioassay. Modified B-ring analogues included lactam, thiolactone, cyclic ether, ketone, hydroxyl, and exocyclic methylene derivatives of brassinolide. Those derivatives containing polar functional groups retained considerable bioactivity, whereas the exocyclic methylene compounds were devoid of activity. Analogues containing normal alkyl and cycloalkyl substituents at C-24 (in place of the isopropyl group of brassinolide) showed an inverse relationship between activity and chain length or ring size, respectively. The corresponding cyclopropyl and cyclobutyl derivatives were significantly more active than brassinolide and appear to be the most potent brassinosteroids reported to date. When synergized with the auxin indole-3-acetic acid (IAA), their bioactivity can be further enhanced by 1-2 orders of magnitude. The cyclopropyl derivative, when coapplied with the auxin naphthaleneacetic acid, gave a significant increase in yield of wheat in a field trial. Certain 25- and 26-hydroxy derivatives are known metabolites of brassinosteroids. All of the C-25 stereoisomers of 25-hydroxy, 26-hydroxy, and 25,26-dihydroxy derivatives of brassinolide were prepared and shown to be much less active than brassinolide. This indicates that they are likely metabolic deactivation products of the parent phytohormone. A series of methyl ethers of brassinolide was synthesized to block deactivation by glucosylation of the free hydroxyl groups. The most significant finding was that the compound where three of the four hydroxyl groups (at C-3, C-22, and C-23) had been converted to methyl ethers retained substantial bioactivity. This type of modification could, in theory, allow brassinolide or 24-epibrassinolide to resist deactivation and thus offer greater persistence in field applications. A series of nonsteroidal mimetics of brassinolide was designed and synthesized. Two of the

  9. Erythrocyte membrane modifying agents and the inhibition of Plasmodium falciparum growth: structure-activity relationships for betulinic acid analogues.

    PubMed

    Ziegler, Hanne L; Franzyk, Henrik; Sairafianpour, Majid; Tabatabai, Mehrnoush; Tehrani, Mahboubeh D; Bagherzadeh, Karim; Hägerstrand, Henry; Staerk, Dan; Jaroszewski, Jerzy W

    2004-01-01

    The natural triterpene betulinic acid and its analogues (betulinic aldehyde, lupeol, betulin, methyl betulinate and betulinic acid amide) caused concentration-dependent alterations of erythrocyte membrane shape towards stomatocytes or echinocytes according to their hydrogen bonding properties. Thus, the analogues with a functional group having a capacity of donating a hydrogen bond (COOH, CH(2)OH, CONH(2)) caused formation of echinocytes, whereas those lacking this ability (CH(3), CHO, COOCH(3)) induced formation of stomatocytes. Both kinds of erythrocyte alterations were prohibitive with respect to Plasmodium falciparum invasion and growth; all compounds were inhibitory with IC(50) values in the range 7-28 microM, and the growth inhibition correlated well with the extent of membrane curvature changes assessed by transmission electron microscopy. Erythrocytes pre-loaded with betulinic acid or its analogues and extensively washed in order to remove excess of the chemicals could not serve as hosts for P. falciparum parasites. Betulinic acid and congeners can be responsible for in vitro antiplasmodial activity of plant extracts, as shown for Zataria multiflora Boiss. (Labiatae) and Zizyphus vulgaris Lam. (Rhamnaceae). The activity is evidently due to the incorporation of the compounds into the lipid bilayer of erythrocytes, and may be caused by modifications of cholesterol-rich membrane rafts, recently shown to play an important role in parasite vacuolization. The established link between erythrocyte membrane modifications and antiplasmodial activity may provide a novel target for potential antimalarial drugs. PMID:14697777

  10. Raman spectroscopic characterisations and analytical discrimination between caffeine and demethylated analogues of pharmaceutical relevance

    NASA Astrophysics Data System (ADS)

    Edwards, H. G. M.; Munshi, T.; Anstis, M.

    2005-05-01

    The FT Raman spectrum of caffeine was analysed along with that of its demethylated analogues, theobromine and theophylline. The similar but not identical structures of these three compounds allowed a more detailed assignment of the Raman bands. Noticeable differences in the Raman spectra of these compounds were apparent and key marker bands have been identified for the spectroscopic identification of these three compounds.

  11. One-step separation of nine structural analogues from Poria cocos (Schw.) Wolf. via tandem high-speed counter-current chromatography.

    PubMed

    Zeng, Hualiang; Liu, Qi; Yu, Jingang; Jiang, Xinyu; Wu, Zhiliang; Wang, Meiling; Chen, Miao; Chen, Xiaoqing

    2015-11-01

    A novel one-step separation strategy-tandem high-speed counter-current chromatography (HSCCC) was developed with a six-port valve serving as the switch interface. Nine structural analogues including three isomers were successfully isolated from Poria cocos (Schw.) Wolf. by one step. Compared with conventional HSCCC, peak resolution of target compounds was effectively improved in tandem one. Purities of isolated compounds were all over 90% as determined by HPLC. Their structures were then identified via UV, MS and (1)H NMR, and eventually assigned as poricoic acid B (1), poricoic acid A (2), 3β,16α-dihydroxylanosta-7, 9(11), 24-trien-21-oic acid (3), dehydrotumulosic acid (4), polyporenic acid C (5), 3-epi-dehydrotumulosic acid (6), 3-o-acetyl-16α-hydroxydehydrotrametenolic acid (7), dehydropachymic acid (8) and dehydrotrametenolic acid (9) respectively. The results indicated that tandem HSCCC can effectively improve peak resolution of target compounds, and can be a good candidate for HSCCC separation of structural analogues. PMID:26435185

  12. Recent advances in topoisomerase I-targeting agents, camptothecin analogues.

    PubMed

    Kim, Dae-Kee; Lee, Namkyu

    2002-12-01

    The present review concentrates on camptothecin (CPT) analogues, the most extensively studied topoisomerase I (topo I) inhibitors, and provides concise information on the structural features of human topo I enzyme, mechanisms of interaction of CPT with topo I, structure-activity relationship study of CPT analogues including the influence of lactone stability on antitumor activity, and recent updates of valuable CPT analogues. PMID:12370044

  13. Structure-activity relationships of new analogues of arecaidine propargyl ester at muscarinic M1 and M2 receptor subtypes.

    PubMed Central

    Moser, U.; Lambrecht, G.; Wagner, M.; Wess, J.; Mutschler, E.

    1989-01-01

    1. The potency of arecaidine propargyl ester (APE) and of several analogues containing a modified ester side chain has been assessed at M1 and M2 muscarinic receptor subtypes. APE was shown to act as a potent agonist at ganglionic M1 receptors in the pithed rat, at M2 receptors in guinea-pig isolated atria (-log EC50 = 8.22) and ileum (-log EC50 = 7.77). 2. The arecaidine 2-butynyl and 2-pentynyl esters were approximately equipotent with APE at M1 and M2 receptors, whereas the 2-hexynyl derivative was found to be less potent than APE in atria (-log EC50 = 6.80) and ileum (-log EC50 = 6.70) by about one order of magnitude. The 2-heptynyl and 3-phenyl propargyl esters exhibited no agonist actions in atria and ileum. 3. Shifting the triple bond from the 2 to the 3 position and introducing a bulky group at position 1 of the ester side chain of APE and analogues resulted in competitive antagonists (pA2 ranging from 4.9 to 7.3). 4. APE and its 2-butynyl analogue showed some agonistic selectivity for cardiac M2 receptors (potency ratio, ileum/atria = 2.8 and 4.6 respectively). All antagonists in this series of compounds were not selective in terms of affinity since their pA2 values at cardiac and ileal M2 receptors were similar (potency ratios, ileum/atria = 0.4 to 1.2). PMID:2924082

  14. Synthesis of cyclic N 1-pentylinosine phosphate, a new structurally reduced cADPR analogue with calcium-mobilizing activity on PC12 cells

    PubMed Central

    Borbone, Nicola; Pinto, Brunella; Secondo, Agnese; Costantino, Valeria; Tedeschi, Valentina; Piccialli, Vincenzo; Piccialli, Gennaro

    2015-01-01

    Summary Cyclic N 1-pentylinosine monophosphate (cpIMP), a novel simplified inosine derivative of cyclic ADP-ribose (cADPR) in which the N 1-pentyl chain and the monophosphate group replace the northern ribose and the pyrophosphate moieties, respectively, was synthesized. The role played by the position of the phosphate group in the key cyclization step, which consists in the formation of a phosphodiester bond, was thoroughly investigated. We have also examined the influence of the phosphate bridge on the ability of cpIMP to mobilize Ca2+ in PC12 neuronal cells in comparison with the pyrophosphate bridge present in the cyclic N 1-pentylinosine diphosphate analogue (cpIDP) previously synthesized in our laboratories. The preliminary biological tests indicated that cpIMP and cpIDP induce a rapid increase of intracellular Ca2+ concentration in PC12 neuronal cells. PMID:26877790

  15. Crystal Structures of the Iron-Sulfur Cluster-Dependent Quinolinate Synthase in Complex with Dihydroxyacetone Phosphate, Iminoaspartate Analogues, and Quinolinate.

    PubMed

    Fenwick, Michael K; Ealick, Steven E

    2016-08-01

    The quinolinate synthase of prokaryotes and photosynthetic eukaryotes, NadA, contains a [4Fe-4S] cluster with unknown function. We report crystal structures of Pyrococcus horikoshii NadA in complex with dihydroxyacetone phosphate (DHAP), iminoaspartate analogues, and quinolinate. DHAP adopts a nearly planar conformation and chelates the [4Fe-4S] cluster via its keto and hydroxyl groups. The active site architecture suggests that the cluster acts as a Lewis acid in enediolate formation, like zinc in class II aldolases. The DHAP and putative iminoaspartate structures suggest a model for a condensed intermediate. The ensemble of structures suggests a two-state system, which may be exploited in early steps. PMID:27404889

  16. Structural characterization of the full-length response regulator spr1814 in complex with a phosphate analogue reveals a novel conformational plasticity of the linker region.

    PubMed

    Park, Ae Kyung; Lee, Jeong Hye; Chi, Young Min; Park, Hyun

    2016-04-29

    Spr1814 of Streptococcus pneumoniae is a response regulator (RR) that belongs to the NarL/FixJ subfamily and has a four-helix helix-turn-helix DNA-binding domain. Here, the X-ray crystal structure of the full-length spr1814 in complex with a phosphate analogue beryllium fluoride (BeF3(-)) was determined at 2.0 Å. This allows for a structural comparison with the previously reported full-length unphosphorylated spr1814. The phosphorylation of conserved aspartic acid residue of N-terminal receiver domain triggers a structural perturbation at the α4-β5-α5 interface, leading to the domain reorganization of spr1814, and this is achieved by a rotational change in the C-terminal DNA-binding domain. PMID:27038544

  17. The crystal structure of an isopenicillin N synthase complex with an ethereal substrate analogue reveals water in the oxygen binding site.

    PubMed

    Clifton, Ian J; Ge, Wei; Adlington, Robert M; Baldwin, Jack E; Rutledge, Peter J

    2013-08-19

    Isopenicillin N synthase (IPNS) is a non-heme iron oxidase central to the biosynthesis of β-lactam antibiotics. IPNS converts the tripeptide δ-(L-α-aminoadipoyl)-L-cysteinyl-D-valine (ACV) to isopenicillin N while reducing molecular oxygen to water. The substrate analogue δ-(L-α-aminoadipoyl)-L-cysteinyl-O-methyl-D-threonine (ACmT) is not turned over by IPNS. Epimeric δ-(L-α-aminoadipoyl)-L-cysteinyl-O-methyl-D-allo-threonine (ACmaT) is converted to a bioactive penam product. ACmT and ACmaT differ from each other only in the stereochemistry at the β-carbon atom of their third residue. These substrates both contain a methyl ether in place of the isopropyl group of ACV. We report an X-ray crystal structure for the anaerobic IPNS:Fe(II):ACmT complex. This structure reveals an additional water molecule bound to the active site metal, held by hydrogen-bonding to the ether oxygen atom of the substrate analogue. PMID:23860486

  18. One pot synthesis, structural and spectral analysis of some symmetrical curcumin analogues catalyzed by calcium oxide under microwave irradiation

    NASA Astrophysics Data System (ADS)

    Elavarasan, S.; Bhakiaraj, D.; Chellakili, B.; Elavarasan, T.; Gopalakrishnan, M.

    2012-11-01

    A series of sixteen number of curcumin analogues have been synthesized under microwave irradiation using calcium oxide as a catalyst. The synthesized compounds have been characterized using FT-IR, MS, elemental analysis, 1H and 13C NMR spectroscopic techniques. The UV-Vis absorption studies for these compounds have been studied in order to provide the electronic transitions taking place in the molecule. When compared to the curcumin ((1E,4Z,6E)-5-hydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,4,6-trien-3-one), the absorption maxima, λmax for all the synthesized curcumin analogues with a variety of substituents gets blue shifted i.e., hypsochromic shift was observed. This shift may be assigned to the change of dipole moment within the solvated molecule. Theoretical calculations regarding the optimization of the synthesized molecules, electronic properties like highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) and mapped electron density surface diagrams were done. The geometrical energy, dipole moments and heat of formation values have also been calculated using the ArgusLab package by AM1 semi-empirical method.

  19. Synthesis and structure--activity relationships of substituted cinnamic acids and amide analogues: a new class of herbicides.

    PubMed

    Vishnoi, Shipra; Agrawal, Vikash; Kasana, Virendra K

    2009-04-22

    In the present investigation, substituted cinnamic acids (3-hydroxy, 4-hydroxy, 2-nitro, 3-nitro, 4-nitro, 3-chloro, and 4-methoxy) and their amide analogues with four different types of substituted anilines have been synthesized. The synthesized compounds have been screened for their germination inhibition activity on radish (Raphanus sativus L. var. Japanese White) seeds at 50, 100, and 200 ppm concentrations, and the activity was compared with standard herbicide, metribuzin formulation (sencor). Significant activity was exhibited by all of the compounds. It was observed that with the increase in concentration of the test solution, the activity also increased. All of the compounds showed more than 70% inhibition at 100 ppm concentration except 4-hydroxy cinnamanilide. The compound, 2-chloro (4'-hydroxy) cinnamanilide was the best among the tested compounds, and it was found to be at par with the standard, metribuzin at all concentrations. Thus, it can be concluded that substituted cinnamic acids and their amide analogues may be developed as potential herbicides. PMID:19368353

  20. Effect of inherited structures on strike-slip plate boundaries: insight from analogue modelling of the central Levant Fracture System, Lebanon

    NASA Astrophysics Data System (ADS)

    Ghalayini, Ramadan; Daniel, Jean-Marc; Homberg, Catherine; Nader, Fadi

    2015-04-01

    Analogue sandbox modeling is a tool to simulate deformation style and structural evolution of sedimentary basins. The initial goal is to test what is the effect of inherited and crustal structures on the propagation, evolution, and final geometry of major strike-slip faults at the boundary between two tectonic plates. For this purpose, we have undertaken a series of analogue models to validate and reproduce the structures of the Levant Fracture System, a major NNE-SSW sinistral strike-slip fault forming the boundary between the Arabian and African plates. Onshore observations and recent high quality 3D seismic data in the Levant Basin offshore Lebanon demonstrated that Mesozoic ENE striking normal faults were reactivated into dextral strike-slip faults during the Late Miocene till present day activity of the plate boundary which shows a major restraining bend in Lebanon with a ~ 30°clockwise rotation in its trend. Experimental parameters consisted of a silicone layer at the base simulating the ductile crust, overlain by intercalated quartz sand and glass sand layers. Pre-existing structures were simulated by creating a graben in the silicone below the sand at an oblique (>60°) angle to the main throughgoing strike-slip fault. The latter contains a small stepover at depth to create transpression during sinistral strike-slip movement and consequently result in mountain building similarly to modern day Lebanon. Strike-slip movement and compression were regulated by steady-speed computer-controlled engines and the model was scanned using a CT-scanner continuously while deforming to have a final 4D model of the system. Results showed that existing normal faults were reactivated into dextral strike-slip faults as the sinistral movement between the two plates accumulated. Notably, the resulting restraining bend is asymmetric and segmented into two different compartments with differing geometries. One compartment shows a box fold anticline, while the second shows an

  1. Phytoplankton community structure defined by key environmental variables in Tagus estuary, Portugal.

    PubMed

    Brogueira, Maria José; Oliveira, Maria do Rosário; Cabeçadas, Graça

    2007-12-01

    In this work, we analyze environmental (physical and chemical) and biological (phytoplankton) data obtained along Tagus estuary during three surveys, carried out in productive period (May/June/July) at ebb tide. The main objective of this study was to identify the key environmental factors affecting phytoplankton structure in the estuary. BIOENV analysis revealed that, in study period, temperature, salinity, silicate and total phosphorus were the variables that best explained the phytoplankton spatial pattern in the estuary (Spearman correlation, rho=0.803). A generalized linear model (GLM) also identified salinity, silicate and phosphate as having a high explanatory power (63%) of phytoplankton abundance. These selected nutrients appear to be consistent with the requirements of the dominant phytoplankton group, Baccilariophyceae. Apparently, phytoplankton community is adapted to fluctuations in light intensity, as suspended particulate matter did not come out as a key factor in shaping phytoplankton structure along Tagus estuary. PMID:17884159

  2. Structure-Odor Activity Studies on Monoterpenoid Mercaptans Synthesized by Changing the Structural Motifs of the Key Food Odorant 1-p-Menthene-8-thiol.

    PubMed

    Schoenauer, Sebastian; Schieberle, Peter

    2016-05-18

    1-p-Menthene-8-thiol (1) has been discovered as the key odorant in grapefruit juice several decades ago and contributes to the overall odor of the fruit with an extremely low odor threshold of 0.000034 ng/L in air. This value is among the lowest odor thresholds ever reported for a food odorant. To check whether modifications in the structure of 1 would lead to changes in odor threshold and odor quality, 34 mercapto-containing p-menthane and 1-p-menthene derivatives as well as several aromatic and open-chain mercapto monoterpenoids were synthesized. Eighteen of them are reported for the first time in the literature, and their odor thresholds and odor qualities as well as analytical data are supplied. A comparison of the sensory data with those of 1 showed that hydrogenation of the double bond led to a clear increase in the odor threshold. Furthermore, moving the mercapto group into the ring always resulted in higher odor thresholds compared to thiols with a mercapto group in the side chains. Although all tertiary thiols always exhibited low odor thresholds, none of the 31 compounds reached the extremely low threshold of 1. Also, none of the synthesized mercapto monoterpenoids showed a similar odor quality resembling grapefruit. Although the saturated and aromatic analogues exhibited similar scents as 1, the aromas of the majority of the other compounds were described as sulfury, rubber-like, burned, soapy, or even mushroom-like. NMR and MS data as well as retention indices of the 23 newly reported sulfur-containing compounds might aid in future research to identify terpene-derived mercaptans possibly present in trace levels in foods. PMID:27121638

  3. Issues of geologically-focused situational awareness in robotic planetary missions: Lessons from an analogue mission at Mistastin Lake impact structure, Labrador, Canada

    NASA Astrophysics Data System (ADS)

    Antonenko, I.; Osinski, G. R.; Battler, M.; Beauchamp, M.; Cupelli, L.; Chanou, A.; Francis, R.; Mader, M. M.; Marion, C.; McCullough, E.; Pickersgill, A. E.; Preston, L. J.; Shankar, B.; Unrau, T.; Veillette, D.

    2013-07-01

    Remote robotic data provides different information than that obtained from immersion in the field. This significantly affects the geological situational awareness experienced by members of a mission control science team. In order to optimize science return from planetary robotic missions, these limitations must be understood and their effects mitigated to fully leverage the field experience of scientists at mission control.Results from a 13-day analogue deployment at the Mistastin Lake impact structure in Labrador, Canada suggest that scale, relief, geological detail, and time are intertwined issues that impact the mission control science team's effectiveness in interpreting the geology of an area. These issues are evaluated and several mitigation options are suggested. Scale was found to be difficult to interpret without the reference of known objects, even when numerical scale data were available. For this reason, embedding intuitive scale-indicating features into image data is recommended. Since relief is not conveyed in 2D images, both 3D data and observations from multiple angles are required. Furthermore, the 3D data must be observed in animation or as anaglyphs, since without such assistance much of the relief information in 3D data is not communicated. Geological detail may also be missed due to the time required to collect, analyze, and request data.We also suggest that these issues can be addressed, in part, by an improved understanding of the operational time costs and benefits of scientific data collection. Robotic activities operate on inherently slow time-scales. This fact needs to be embraced and accommodated. Instead of focusing too quickly on the details of a target of interest, thereby potentially minimizing science return, time should be allocated at first to more broad data collection at that target, including preliminary surveys, multiple observations from various vantage points, and progressively smaller scale of focus. This operational model

  4. Non-scaled analogue modelling of AMS development during viscous flow: A simulation on diapir-like structures

    NASA Astrophysics Data System (ADS)

    Kratinová, Zuzana; Závada, Prokop; Hrouda, František; Schulmann, Karel

    2006-05-01

    Development of magnetic fabric within a diapirically ascending columnar body was investigated using non-scaled analogue model made of plaster of Paris containing small amount of fine-grained homogeneously mixed magnetite. The apparatus for the modelling consists of a manual squeezer with calibrated spring and a Perspex container. Set of weak coloured layers at the bottom of the container was forced to intrude overlying fine-grained sand through a hole in a board attached to the squeezer. The development of AMS fabric is correlated with complex flow pattern indicated by coloured and originally horizontal plaster layers. Strongly constrictional and vertical fabric in the base and in the lower domain of the diapir resulting from convergent and upwards flows is overprinted by subhorizontal oblate fabrics due to vertical flattening and initial divergent flow in the apical parts. The measured AMS fabrics are compared with natural examples of magmatic stocks and dykes.

  5. Crystal structure of Streptococcus pneumoniae pneumolysin provides key insights into early steps of pore formation

    PubMed Central

    Lawrence, Sara L.; Feil, Susanne C.; Morton, Craig J.; Farrand, Allison J.; Mulhern, Terrence D.; Gorman, Michael A.; Wade, Kristin R.; Tweten, Rodney K.; Parker, Michael W.

    2015-01-01

    Pore-forming proteins are weapons often used by bacterial pathogens to breach the membrane barrier of target cells. Despite their critical role in infection important structural aspects of the mechanism of how these proteins assemble into pores remain unknown. Streptococcus pneumoniae is the world’s leading cause of pneumonia, meningitis, bacteremia and otitis media. Pneumolysin (PLY) is a major virulence factor of S. pneumoniae and a target for both small molecule drug development and vaccines. PLY is a member of the cholesterol-dependent cytolysins (CDCs), a family of pore-forming toxins that form gigantic pores in cell membranes. Here we present the structure of PLY determined by X-ray crystallography and, in solution, by small-angle X-ray scattering. The crystal structure reveals PLY assembles as a linear oligomer that provides key structural insights into the poorly understood early monomer-monomer interactions of CDCs at the membrane surface. PMID:26403197

  6. Crystal structure of Streptococcus pneumoniae pneumolysin provides key insights into early steps of pore formation.

    PubMed

    Lawrence, Sara L; Feil, Susanne C; Morton, Craig J; Farrand, Allison J; Mulhern, Terrence D; Gorman, Michael A; Wade, Kristin R; Tweten, Rodney K; Parker, Michael W

    2015-01-01

    Pore-forming proteins are weapons often used by bacterial pathogens to breach the membrane barrier of target cells. Despite their critical role in infection important structural aspects of the mechanism of how these proteins assemble into pores remain unknown. Streptococcus pneumoniae is the world's leading cause of pneumonia, meningitis, bacteremia and otitis media. Pneumolysin (PLY) is a major virulence factor of S. pneumoniae and a target for both small molecule drug development and vaccines. PLY is a member of the cholesterol-dependent cytolysins (CDCs), a family of pore-forming toxins that form gigantic pores in cell membranes. Here we present the structure of PLY determined by X-ray crystallography and, in solution, by small-angle X-ray scattering. The crystal structure reveals PLY assembles as a linear oligomer that provides key structural insights into the poorly understood early monomer-monomer interactions of CDCs at the membrane surface. PMID:26403197

  7. Scale-integrated observations of morphological biosignatures and associated relict structures: Addressing the practicalities of in situ astrobiology using martian analogue "field" specimens and space instrumentation

    NASA Astrophysics Data System (ADS)

    Pullan, D.; Cockell, C. S.; Pafs-Net

    We investigate how morphological biosignatures 1 could be identified with an array of viable instruments of choice in the framework of robotic planetary surface operations For purposes of the study a modest number of geological hand specimens from our archive of planetary analogues were selected on the basis of feature morphology scale and analogy Three morphological criteria were considered preserved microbial filaments 2 crypto-chasmoendoliths 3 and relict sedimentatry structures 4 The materials originate from a variety of topical martian analogue localities on Earth including impact craters high latitude deserts ancient epochs i e Early Archaean and hydrothermal deposits Instrumentation and techniques available to us included flight spare assets from the Beagle2 deployable package aka the PAW panoramic camera microscope M o ssbauer spectrometer X-ray spectrometer soil sampling Mole aka Planetary Underground Tool PLUTO and rock corer In addition selected commercial equipment served as emulators of potential future instruments including a multi-spectral imager Nuance system a micro-Raman spectrometer Bruker NIR non-confocal and Renishaw VNIR VIS Raman microscopes and a bespoke in situ X-Ray diffractometer Basic requirements for identifying morphological biosignatures are scale-integrated imaging spatial and spectral characterization of host material by analytical means and accessibility to features sample preparation We introduce a scaling philosophy that defines practical working distances for

  8. Synthesis and SAR of vinca alkaloid analogues.

    PubMed

    Voss, Matthew E; Ralph, Jeffery M; Xie, Dejian; Manning, David D; Chen, Xinchao; Frank, Anthony J; Leyhane, Andrew J; Liu, Lei; Stevens, Jason M; Budde, Cheryl; Surman, Matthew D; Friedrich, Thomas; Peace, Denise; Scott, Ian L; Wolf, Mark; Johnson, Randall

    2009-02-15

    Versatile intermediates 12'-iodovinblastine, 12'-iodovincristine and 11'-iodovinorelbine were utilized as substrates for transition metal based chemistry which led to the preparation of novel analogues of the vinca alkaloids. The synthesis of key iodo intermediates, their transformation into final products, and the SAR based upon HeLa and MCF-7 cell toxicity assays is presented. Selected analogues 27 and 36 show promising anticancer activity in the P388 murine leukemia model. PMID:19147348

  9. VIRION MORPHOLOGY AND STRUCTURAL ORGANIZATION OF POLYVALENT BACTERIOPHAGES TT10-27 AND KEY.

    PubMed

    Faidiuk, I V; Boyko, A A; Muchnyk, F V; Tovkach, F I

    2015-01-01

    Fine ultrastructure of polyvalent bacteriophages TT10-27 and KEY isolated from affected with fire blight disease plant tissues, was studied using electron microscopy. Phages have isometric heads connected to short complex tail (TT10-27, C1-morphotype) or long non-contractile tail (KEY B-1 morphotype). Maximum diameter of TT10-27 head, measured as the distance between opposite vertices, is 71.3 nm; tail tube of 22 nm in diameter and 9.0 nm in width is framed with 12 appendages that form flabellate structure of 47.0-58.6 nm in diameter. KEY features capsid of 78.6 nm in diameter and flexible non-contractile tail of 172.5 nm long, which ends with a conical tip. Due to a number of features phage TT10-27 was assigned to a group of N4-like phages of Podoviridae family. KEY is a representative of family Siphoviridae, the least freaquent group of Erwinia amylovora phages. PMID:26214897

  10. Key Players in I-DmoI Endonuclease Catalysis Revealed from Structure and Dynamics.

    PubMed

    Molina, Rafael; Besker, Neva; Marcaida, Maria Jose; Montoya, Guillermo; Prieto, Jesús; D'Abramo, Marco

    2016-05-20

    Homing endonucleases, such as I-DmoI, specifically recognize and cleave long DNA target sequences (∼20 bp) and are potentially powerful tools for genome manipulation. However, inefficient and off-target DNA cleavage seriously limits specific editing in complex genomes. One approach to overcome these limitations is to unambiguously identify the key structural players involved in catalysis. Here, we report the E117A I-DmoI mutant crystal structure at 2.2 Å resolution that, together with the wt and Q42A/K120M constructs, is combined with computational approaches to shed light on protein cleavage activity. The cleavage mechanism was related both to key structural effects, such as the position of water molecules and ions participating in the cleavage reaction, and to dynamical effects related to protein behavior. In particular, we found that the protein perturbation pattern significantly changes between cleaved and noncleaved DNA strands when the ions and water molecules are correctly positioned for the nucleophilic attack that initiates the cleavage reaction, in line with experimental enzymatic activity. The proposed approach paves the way for an effective, general, and reliable procedure to analyze the enzymatic activity of endonucleases from a very limited data set, i.e., structure and dynamics. PMID:26909878

  11. An optimized structure on FPGA of key point description in SIFT algorithm

    NASA Astrophysics Data System (ADS)

    Xu, Chenyu; Peng, Jinlong; Zhu, En; Zou, Yuxin

    2015-12-01

    SIFT algorithm is one of the most significant and effective algorithms to describe the features of image in the field of image matching. To implement SIFT algorithm to hardware environment is apparently considerable and difficult. In this paper, we mainly discuss the realization of Key Point Description in SIFT algorithm, along with Matching process. In Key Point Description, we have proposed a new method of generating histograms, to avoid the rotation of adjacent regions and insure the rotational invariance. In Matching, we replace conventional Euclidean distance with Hamming distance. The results of the experiments fully prove that the structure we propose is real-time, accurate, and efficient. Future work is still needed to improve its performance in harsher conditions.

  12. Pseudocyanides of sanguinarine and chelerythrine and their series of structurally simple analogues as new anticancer lead compounds: Cytotoxic activity, structure-activity relationship and apoptosis induction.

    PubMed

    Cao, Fang-Jun; Yang, Rui; Lv, Chao; Ma, Qun; Lei, Ming; Geng, Hui-Ling; Zhou, Le

    2015-01-25

    6-Cyano dihydrosanguinarine (CNS) and 6-cyano dihydrochelerythrine (CNC) are respectively artificial derivatives of sanguinarine and chelerythrine, two anticancer quaternary benzo[c]phenanthridine alkaloids (QBAs) while 1-cyano-2-aryl-1,2,3,4-tetrahydroisoquinolines (CATHIQs) are a class of structurally simple analogues of CNS or CNC. This study investigated the inhibition activity of CNS, CNC and CATHIQs on cancer cells, apoptosis induction as well as their preliminary SAR. The results showed that CNS and 18 out of CATHIQs showed IC50 values of 0.53 and 0.62-2.24μM against NB4 and 1.53 and 2.99-11.17μM against MKN-45 cells, respectively, superior to a standard anticancer drug cis-platinum with IC50 of 2.39 and 11.36μM. CNC showed a higher activity against NB4 cells (IC50=1.85μM) and a moderate activity against MKN-45 cells (IC50=12.72μM). Among all CATHIQs, 2 and 17 gave the highest activity against NB4 cells and MKN-45 cells (IC50=0.62 and 2.99μM), respectively. DAPI staining, AO/EB staining and ultrastructure analysis of cells demonstrated that CATHIQs were able to induce apoptosis of the cells in a concentration-dependent manner. SAR showed that substitution patterns on the N-aromatic ring significantly influenced the activity of CATHIQs. The general trend was that the introduction of electron-withdrawing substituents like halogen atom, nitro, trifluoromethyl led to a significant improvement of the activity, while the presence of electron-donating groups like methyl, methoxyl caused a reduction of the activity. In most cases, the 2' site was the most favorable substitution position for the improvement of the activity. Thus, the present results strongly suggested that QBA-type pseudocyanides may serve as potential alternatives of anticancer QBAs while CATHIQs should be a class of promising lead compounds for the development of new QBA-like-type anticancer drugs. CNS exhibited the highest cytotoxicities with IC50 values of 0.53μM on NB4 cells and 1.53

  13. B38: an all-boron fullerene analogue

    NASA Astrophysics Data System (ADS)

    Lv, Jian; Wang, Yanchao; Zhu, Li; Ma, Yanming

    2014-09-01

    Fullerene-like structures formed by elements other than carbon have long been sought. Finding all-boron (B) fullerene-like structures is challenging due to the geometrical frustration arising from competitions among various structural motifs. We report here the prediction of a B38 fullerene analogue found through first-principles swarm structure searching calculations. The structure is highly symmetric and consists of 56 triangles and four hexagons, which provide an optimal void in the center of the cage. Energetically, it is more favorable than the planar and tubular structures, and possesses an unusually high chemical stability: a large energy gap (~2.25 eV) and a high double aromaticity, superior to those of most aromatic quasi-planar B12 and double-ring B20 clusters. Our findings represent a key step forward towards to the understanding of structures of medium-sized B clusters and map out the experimental direction of the synthesis of an all-B fullerene analogue.Fullerene-like structures formed by elements other than carbon have long been sought. Finding all-boron (B) fullerene-like structures is challenging due to the geometrical frustration arising from competitions among various structural motifs. We report here the prediction of a B38 fullerene analogue found through first-principles swarm structure searching calculations. The structure is highly symmetric and consists of 56 triangles and four hexagons, which provide an optimal void in the center of the cage. Energetically, it is more favorable than the planar and tubular structures, and possesses an unusually high chemical stability: a large energy gap (~2.25 eV) and a high double aromaticity, superior to those of most aromatic quasi-planar B12 and double-ring B20 clusters. Our findings represent a key step forward towards to the understanding of structures of medium-sized B clusters and map out the experimental direction of the synthesis of an all-B fullerene analogue. Electronic supplementary information

  14. Antizyme induction by polyamine analogues as a factor of cell growth inhibition.

    PubMed Central

    Mitchell, John L A; Leyser, Aviva; Holtorff, Michelle S; Bates, Jill S; Frydman, Benjamin; Valasinas, Aldonia L; Reddy, Venodhar K; Marton, Laurence J

    2002-01-01

    The polyamines spermidine and spermine and their diamine precursor putrescine are essential for mammalian cell growth and viability, and strategies are sought for reducing polyamine levels in order to inhibit cancer growth. Several structural analogues of the polyamines have been found to decrease natural polyamine levels and inhibit cell growth, probably by stimulating normal feedback mechanisms. In the present study, a large selection of spermine analogues has been tested for their effectiveness in inducing the production of antizyme, a key protein in feedback inhibition of putrescine synthesis and cellular polyamine uptake. Bisethylnorspermine, bisethylhomospermine, 1,19-bis-(ethylamino)-5,10,15-triazanonadecane, longer oligoamine constructs and many conformationally constrained analogues of these compounds were found to stimulate antizyme synthesis to different levels in rat liver HTC cells, with some producing far more antizyme than the natural polyamine spermine. Uptake of the tested compounds was found to be dependent on, and limited by, the polyamine transport system, for which all these have approximately equal affinity. These analogues differed in their ability to inhibit HTC cell growth during 3 days of exposure, and this ability correlated with their antizyme-inducing potential. This is the first direct evidence that antizyme is induced by several polyamine analogues. Selection of analogues with this potential may be an effective strategy for maximizing polyamine deprivation and growth inhibition. PMID:11972449

  15. Structural comparison of complexes of methotrexate analogues with Lactobacillus casei dihydrofolate reductase by two-dimensional /sup 1/H NMR at 500 MHz

    SciTech Connect

    Hammond, S.J.; Birdsall, B.; Feeney, J.; Searle, M.S.; Roberts, G.C.K.; Cheung, H.T.A.

    1987-12-29

    The authors have used two-dimensional (2D) NMR methods to examine complexes of Lactobacillus casei dihydrofolate reductase and methotrexate (MTX) analogues having structural modifications of the benzoyl ring and also the glutamic acid moiety. Assignments of the /sup 1/H signals in the spectra of the various complexes were made by comparison of their 2D spectra with those complexes containing methotrexate where we have previously assigned resonances from 32 of the 162 amino acid residues. In the complexes formed with the dihalomethotrexate analogues, the glutamic acid and pteridine ring moieties were shown to bind to the enzyme in a manner similar to that found in the methotrexate-enzyme complex. Perturbations in /sup 1/H chemical shifts of protons in Phe-49, Leu-54, and Leu-27 and the methotrexate H7 and NMe protons were observed in the different complexes and were accounted for by changes in orientation of the benzoyl ring in the various complexes. Binding of oxidized or reduced coenzyme to the binary complexes did not result in different shifts for Leu-27, Leu-54, or Leu-19 protons, and thus, the orientation of the benzoyl ring of the methotrexate analogues is not perturbed greatly by the presence of either oxidized or reduced coenzyme. In the complex with the ..gamma..-monoamide analog, the /sup 1/H signals of assigned residues in the protein had almost identical shifts with the corresponding protons in the methotrexate-enzyme complex for all residues except His-28 and, to a lesser extent, Leu-27. This indicates that while the His-28 interaction with the MTX ..gamma..-CO/sub 2//sup -/ is no longer present in this complex with the ..gamma..-amide, there has not been a major change in the overall structure of the two complexes. This behavior contrasts to that of the ..cap alpha..-amide complex where /sup 1/H signals from protons in several amino acid residues are different compared with their values in the complex formed with methotrexate.

  16. Larvicidal activity and structure activity relationship of cinnamoyl amides from Zanthoxylum armatum and their synthetic analogues against diamondback moth, Plutella xylostella

    PubMed Central

    Kumar, Vishal; Reddy, S. G. Eswara; Bhardwaj, Anuja; Dolma, Shudh Kirti; Kumar, Neeraj

    2016-01-01

    Cinnamoyl amides isolated from Zanthoxylum armatum (Rutaceae) and their synthetic analogues were tested for their insecticidal activity against the second instar larvae of diamondback moth, Plutella xylostella (L.) (Lepidoptera: Yponomeutidae) to determine the promising structures with insecticidal activity. Most of the test compounds showed promising activity against larvae of P. xylostella. However, the activities of different compounds varied depending on the presence of different substituents at various positions of both the aromatic rings A and B. Among the tested compounds, 8, N-(3-bromo-4-methoxyphenethyl)cinnamamide showed best larvicidal activity with an LC50 = 62.13 mg/L followed by 6, N-(3׳-bromophenethyl)cinnamamide (LC50=128.49 mg/L) and 2 N-(4׳-methoxyphenylethyl)cinnamamide (LC50 = 225.65 mg/L). PMID:27231477

  17. Loratadine and analogues: discovery and preliminary structure-activity relationship of inhibitors of the amino acid transporter B(0)AT2.

    PubMed

    Cuboni, Serena; Devigny, Christian; Hoogeland, Bastiaan; Strasser, Andrea; Pomplun, Sebastian; Hauger, Barbara; Höfner, Georg; Wanner, Klaus T; Eder, Matthias; Buschauer, Armin; Holsboer, Florian; Hausch, Felix

    2014-11-26

    B(0)AT2, encoded by the SLC6A15 gene, is a transporter for neutral amino acids that has recently been implicated in mood and metabolic disorders. It is predominantly expressed in the brain, but little is otherwise known about its function. To identify inhibitors for this transporter, we screened a library of 3133 different bioactive compounds. Loratadine, a clinically used histamine H1 receptor antagonist, was identified as a selective inhibitor of B(0)AT2 with an IC50 of 4 μM while being less active or inactive against several other members of the SLC6 family. Reversible inhibition of B(0)AT2 was confirmed by electrophysiology. A series of loratadine analogues were synthesized to gain insight into the structure-activity relationships. Our studies provide the first chemical tool for B(0)AT2. PMID:25318072

  18. Drug design by machine learning: the use of inductive logic programming to model the structure-activity relationships of trimethoprim analogues binding to dihydrofolate reductase.

    PubMed

    King, R D; Muggleton, S; Lewis, R A; Sternberg, M J

    1992-12-01

    The machine learning program GOLEM from the field of inductive logic programming was applied to the drug design problem of modeling structure-activity relationships. The training data for the program were 44 trimethoprim analogues and their observed inhibition of Escherichia coli dihydrofolate reductase. A further 11 compounds were used as unseen test data. GOLEM obtained rules that were statistically more accurate on the training data and also better on the test data than a Hansch linear regression model. Importantly machine learning yields understandable rules that characterized the chemistry of favored inhibitors in terms of polarity, flexibility, and hydrogen-bonding character. These rules agree with the stereochemistry of the interaction observed crystallographically. PMID:1454814

  19. Simultaneous evaluation of multiple key material properties of complex stratified structures with large spatial extent

    NASA Astrophysics Data System (ADS)

    Fallahpour, M.; Kajbaf, H.; Ghasr, M. T.; Case, J. T.; Zoughi, R.

    2012-05-01

    Measured complex reflection coefficient of a spatially-extended stratified composite structure, using an open-ended waveguide, can be effectively used to extract key material and geometrical characteristics of any given layer. This is accomplished using a combination of an electromagnetic model and corresponding measurement data. Previously, it was shown that one parameter can be extracted if all others are known. However, practically it is desirable to extract as many pieces of information as possible. To this end the model must be "inverted". However, there is no closed-form solution for the inverse problem, given the mathematical complexity of the forward model. Consequently, we introduce a forward-iterative optimization method to simultaneously extract several pieces of information about the structure. This method defines key unknowns and uses an analytical approach to estimate the reflection coefficient by minimizing a cost-function using conjugate gradient descent (CGD) as optimizer. This paper presents this method along with an experimental result. Information such as thickness and dielectric properties of a layer in a stratified structure is shown to be extracted concurrently.

  20. Insights into the substrate specificity of the MutT pyrophosphohydrolase using structural analogues of 8-oxo-2'-deoxyguanosine nucleotide.

    PubMed

    Hamm, Michelle L; McFadden, Emily J; Ghio, Michael; Lindell, Maria A M; Gerien, Kenneth S; O'Handley, Suzanne F

    2016-04-15

    The bacterial repair enzyme MutT hydrolyzes the damaged nucleotide OdGTP (the 5'-triphosphate derivative of 8-oxo-2'-deoxyguanosine; OdG), which is a known mutagen and has been linked to antibacterial action. Previous work has indicated important roles for the C8-oxygen, N7-hydrogen, and C2-exocyclic amine during OdGTP recognition by MutT. In order to gain a more nuanced understanding of the contribution of these three sites to the overall activity of MutT, we determined the reaction parameters for dGTP, OdGTP, and nine of their analogues using steady state kinetics. Our results indicate that overall high reaction efficiencies can be achieved despite altering any one of these sites. However, altering two or more sites leads to a significant decrease in efficiency. The data also suggest that, similar to another bacterial OdG repair enzyme, MutM, a specific carbonyl in the enzyme can not only promote activity by forming an active site hydrogen bond with the N7-hydrogen of OdGTP, but can also hinder activity through electrostatic repulsion with the N7-lone pair of dGTP. PMID:26965860

  1. An all sulfur analogue of the smallest subunit of F420-non-reducing hydrogenase from Methanococcus voltae--metal binding and structure.

    PubMed

    Pfeiffer, M; Klein, A; Steinert, P; Schomburg, D

    The 25 amino acid long subunit VhuU of the F420-non-reducing hydrogenase from Methanococcus voltae contains selenocysteine within the consensus sequence of known [NiFe] hydrogenases DP(C or U)CxxCxxH (U = selenocysteine). The sulfur-analogue VhuUc was chemically synthesized, purified and its metal binding capability, the catalytic properties, and structural features were investigated. The polypeptide was able to bind nickel, but did not catalyse the heterolytic activation of H2. 2D-NMR spectroscopy revealed an alpha-helical secondary structure for the 15 N-terminal amino acids in 50% TFE. Nickel only binds to the C-terminus, which contains the conserved amino acid motif. Structures derived from the NMR data are compatible with the participation of both sulfur atoms from the conserved cysteine residues in a metal ion binding. Structures obtained from the data sets for Ni.VhuUc as well as Zn.VhuUc showed no further ligands. The informational value for Ni.VhuUc was low due to paramagnetism. PMID:9084873

  2. Heterocyclic chalcone analogues as potential anticancer agents.

    PubMed

    Sharma, Vikas; Kumar, Vipin; Kumar, Pradeep

    2013-03-01

    Chalcones, aromatic ketones and enones acting as the precursor for flavonoids such as Quercetin, are known for their anticancer effects. Although, parent chalcones consist of two aromatic rings joined by a three-carbon α,β-unsaturated carbonyl system, various synthetic compounds possessing heterocyclic rings like pyrazole, indole etc. are well known and proved to be effective anticancer agents. In addition to their use as anticancer agents in cancer cell lines, heterocyclic analogues are reported to be effective even against resistant cell lines. In this connection, we hereby highlight the potential of various heterocyclic chalcone analogues as anticancer agents with a brief summary about therapeutic potential of chalcones, mechanism of anticancer action of various chalcone analogues, and current and future prospects related to the chalcones-derived anticancer research. Furthermore, some key points regarding chalcone analogues have been reviewed by analyzing their medicinal properties. PMID:22721390

  3. Geometry and field dependence of the formation of magnetic antivortices in pound-key-like structures

    NASA Astrophysics Data System (ADS)

    Asmat-Uceda, Martin; Li, Lin; Haldar, Arabinda; Shaw, Brian; Buchanan, Kristen S.

    2015-05-01

    In this work, we assess the effects of field history and structure shape on the formation of magnetic antivortices. The magnetic reversal process was investigated for a series of patterned micron-sized permalloy pound-key structures with varying degrees of asymmetry using magneto-optical Kerr effect hysteresis measurements combined with magnetic force microscopy. The largest number of antivortices was observed in the structures with the highest level of structure asymmetry, which also show an intermediate state in the hysteresis loop. A significant enhancement of the antivortex formation rate—from 5% to almost 80%—was achieved by adjusting the structure dimensions. Images of the magnetic states obtained at various points in the hysteresis loop show that the highest rate of antivortex formation occurs near the coercive field, also the nucleation field, and that the antivortex formation is also sensitive to the angle of the applied field, where the highest antivortex formation rate is observed when the field is aligned along the structure diagonal. A comparison of the experimental results with micromagnetic simulations shows that the areas with lower shape anisotropy lead the reversal in the formation step and the upper field limit for the antivortex stability is related to the reversal of the regions with higher shape anisotropy, although the simulations suggest that the annihilation mechanism will change to one that involves domain wall propagation when the smallest structure dimensions are below ˜60 nm. These results demonstrate how shape anisotropy can be used to promote the formation of isolated magnetic antivortices, which will facilitate future investigations of this topological magnetic state.

  4. X-ray crystal structures of rabbit N-acetylglucosaminyltransferase I (GnT I) in complex with donor substrate analogues.

    PubMed

    Gordon, Roni D; Sivarajah, Prashanth; Satkunarajah, Malathy; Ma, Dengbo; Tarling, Chris A; Vizitiu, Dragos; Withers, Stephen G; Rini, James M

    2006-06-30

    The Golgi-resident glycosyltransferase, UDP-N-acetyl-d-glucosamine:alpha-3-d-mannoside beta-1,2-N-acetylglucosaminyltransferase I (GnT I), initiates the conversion of high-mannose oligosaccharides to complex and hybrid structures in the biosynthesis of N-linked glycans. Reported here are the X-ray crystal structures of GnT I in complex with UDP-CH2-GlcNAc (a non-hydrolyzable C-glycosidic phosphonate), UDP-2-deoxy-2-fluoro-glucose, UDP-glucose and UDP. Collectively, these structures provide evidence for the importance of the GlcNAc moiety and its N-acetyl group in donor substrate binding, as well as insight into the role played by the flexible 318-330 loop in substrate binding and product release. In addition, the UDP-CH2-GlcNAc complex reveals a well-defined glycerol molecule poised for nucleophilic attack on the C1 atom of the donor substrate analogue. The position and orientation of this glycerol molecule have allowed us to model the binding of the Manalpha1,3Manbeta1 moiety of the acceptor substrate and, based on the model, to suggest a rationalization for the main determinants of GnT I acceptor specificity. PMID:16769084

  5. Structured Benefit-risk assessment: a review of key publications and initiatives on frameworks and methodologies.

    PubMed

    Mt-Isa, Shahrul; Ouwens, Mario; Robert, Veronique; Gebel, Martin; Schacht, Alexander; Hirsch, Ian

    2016-07-01

    Introduction The conduct of structured benefit-risk assessment (BRA) of pharmaceutical products is a key area of interest for regulatory agencies and the pharmaceutical industry. However, the acceptance of a standardized approach and implementation are slow. Statisticians play major roles in these organizations, and have a great opportunity to be involved and drive the shaping of future BRA. Method We performed a literature search of recent reviews and initiatives assessing BRA methodologies, and grouped them to assist those new to BRA in learning, understanding, and choosing methodologies. We summarized the key points and discussed the impact of this emerging field on various stakeholders, particularly statisticians in the pharmaceutical industry. Results We provide introductory, essential, special interest, and further information and initiatives materials that direct readers to the most relevant materials, which were published between 2000 and 2013.  Based on recommendations in these materials we supply a toolkit of advocated BRA methodologies. Discussion Despite initiatives promoting these methodologies, there are still barriers, one of which being the lack of a consensus on the most appropriate methodologies among stakeholders. However, this opens up opportunities, for statisticians in the pharmaceutical industry especially, to champion appropriate BRA methodology use throughout the pharmaceutical product lifecycle. Conclusions This article may serve as a starting point for discussions and to reach a mutual consensus for methodology selection in a particular situation. Regulators and pharmaceutical industry should continue to collaborate to develop and take forward BRA methodologies, and by clear communication develop a mutual understanding of the key issues. Copyright © 2015 John Wiley & Sons, Ltd. PMID:25981683

  6. Natural analogues of nuclear waste glass corrosion.

    SciTech Connect

    Abrajano, T.A. Jr.; Ebert, W.L.; Luo, J.S.

    1999-01-06

    This report reviews and summarizes studies performed to characterize the products and processes involved in the corrosion of natural glasses. Studies are also reviewed and evaluated on how well the corrosion of natural glasses in natural environments serves as an analogue for the corrosion of high-level radioactive waste glasses in an engineered geologic disposal system. A wide range of natural and experimental corrosion studies has been performed on three major groups of natural glasses: tektite, obsidian, and basalt. Studies of the corrosion of natural glass attempt to characterize both the nature of alteration products and the reaction kinetics. Information available on natural glass was then compared to corresponding information on the corrosion of nuclear waste glasses, specifically to resolve two key questions: (1) whether one or more natural glasses behave similarly to nuclear waste glasses in laboratory tests, and (2) how these similarities can be used to support projections of the long-term corrosion of nuclear waste glasses. The corrosion behavior of basaltic glasses was most similar to that of nuclear waste glasses, but the corrosion of tektite and obsidian glasses involves certain processes that also occur during the corrosion of nuclear waste glasses. The reactions and processes that control basalt glass dissolution are similar to those that are important in nuclear waste glass dissolution. The key reaction of the overall corrosion mechanism is network hydrolysis, which eventually breaks down the glass network structure that remains after the initial ion-exchange and diffusion processes. This review also highlights some unresolved issues related to the application of an analogue approach to predicting long-term behavior of nuclear waste glass corrosion, such as discrepancies between experimental and field-based estimates of kinetic parameters for basaltic glasses.

  7. Structure of the key species in the enzymatic oxidation of methane to methanol

    PubMed Central

    Banerjee, Rahul; Proshlyakov, Yegor; Lipscomb, John D.; Proshlyakov, Denis A.

    2015-01-01

    Methane monooxygenase (MMO) catalyses the O2-dependent conversion of methane to methanol in methanotrophic bacteria, thereby preventing the atmospheric egress of approximately one billion tons of this potent greenhouse gas annually. The key reaction cycle intermediate of the soluble form of MMO (sMMO) is termed compound Q (Q). Q contains a unique dinuclear FeIV cluster that reacts with methane to break an exceptionally strong 105 kcal mol−1 C-H bond and insert one oxygen atom1,2. No other biological oxidant, except that found in the particulate form of MMO, is capable of such catalysis. The structure of Q remains controversial despite numerous spectroscopic, computational and synthetic model studies2–7. A definitive structural assignment can be made from resonance Raman vibrational spectroscopy but, despite efforts over the past two decades, no vibrational spectrum of Q has yet been obtained. Here we report the core structures of Q and the following product complex, compound T, using time-resolved resonance Raman spectroscopy (TR3). TR3 permits fingerprinting of intermediates by their unique vibrational signatures through extended signal averaging for short-lived species. We report unambiguous evidence that Q possesses a bis-μ-oxo diamond core structure and show that both bridging oxygens originate from O2. This observation strongly supports a homolytic mechanism for O-O bond cleavage. We also show that T retains a single oxygen atom from O2 as a bridging ligand, while the other oxygen atom is incorporated into the product8. Capture of the extreme oxidizing potential of Q is of great contemporary interest for bioremediation and the development of synthetic approaches to methane-based alternative fuels and chemical industry feedstocks. Insight into the formation and reactivity of Q from the structure reported here is an important step towards harnessing this potential. PMID:25607364

  8. eIF2B: recent structural and functional insights into a key regulator of translation.

    PubMed

    Wortham, Noel C; Proud, Christopher G

    2015-12-01

    The eukaryotic translation initiation factor (eIF) eIF2B is a key regulator of mRNA translation, being the guanine nt exchange factor (GEF) responsible for the recycling of the heterotrimeric G-protein, eIF2, which is required to allow translation initiation to occur. Unusually for a GEF, eIF2B is a multi-subunit protein, comprising five different subunits termed α through ε in order of increasing size. eIF2B is subject to tight regulation in the cell and may also serve additional functions. Here we review recent insights into the subunit organization of the mammalian eIF2B complex, gained both from structural studies of the complex and from studies of mutations of eIF2B that result in the neurological disorder leukoencephalopathy with vanishing white matter (VWM). We will also discuss recent data from yeast demonstrating a novel function of the eIF2B complex key for translational regulation. PMID:26614666

  9. A key factor to the spin parameter of uniformly rotating compact stars: crust structure

    NASA Astrophysics Data System (ADS)

    Qi, Bin; Zhang, Nai-Bo; Sun, Bao-Yuan; Wang, Shou-Yu; Gao, Jian-Hua

    2016-04-01

    We study the dimensionless spin parameter j ≡ cJ/(GM2) of different kinds of uniformly rotating compact stars, including traditional neutron stars, hyperonic neutron stars and hybrid stars, based on relativistic mean field theory and the MIT bag model. It is found that jmax ∼ 0.7, which had been suggested in traditional neutron stars, is sustained for hyperonic neutron stars and hybrid stars with M > 0.5 M⊙. Not the interior but rather the crust structure of the stars is a key factor to determine jmax for three kinds of selected compact stars. Furthermore, a universal formula j = 0.63(f/fK) ‑ 0.42(f/fK)2 + 0.48(f/fK)3 is suggested to determine the spin parameter at any rotational frequency f smaller than the Keplerian frequency fK.

  10. Potassium as a key modulator of tropical woody vegetation structure and function

    NASA Astrophysics Data System (ADS)

    Lloyd, Jonathan

    2015-04-01

    Sampling a range of tropical vegetation types across Africa, Australia and South America we find - other things being equal - lower soil and plant potassium concentrations in savanna as opposed to forest species. There is also a trend- similarly observed in cross-continental comparisons, for foliar [K] to increase with declining precipitation. Moreover, when considered in a multivariate context with mean annual precipitation and soil plant available water storage capacity as covariates, soil exchangeable K turns to be an excellent predictor of stand-level canopy areas across vegetation types, providing drastically improved predictions as compared to models considering just precipitation or soil water storage potential alone This underlying basis of an important role for potassium as a modulator of tropical vegetation structure and function will be considered in terms of its role in plant water relations as well as in relation to recent key findings implicating potassium to have an important role in many root-shoot signalling pathways.

  11. Structural Revisions of a Class of Natural Products: Scaffolds of Aglycon Analogues of Fusicoccins and Cotylenins Isolated from Fungi.

    PubMed

    Tang, Ying; Xue, Yongbo; Du, Guang; Wang, Jianping; Liu, Junjun; Sun, Bin; Li, Xiao-Nian; Yao, Guangmin; Luo, Zengwei; Zhang, Yonghui

    2016-03-14

    The reisolation and structural revision of brassicicene D is described, and inspired us to reassign the core skeletons of brassicicenes C-H, J and K, ranging from dicyclopenta[a,d]cyclooctane to tricyclo[9.2.1.0(3,7)]tetradecane using quantum-chemical predictions and experimental validation strategies. Three novel, highly modified fusicoccanes, brassicicenes L-N, were also isolated from the fungus Alternaria brassicicola, and their structures were unequivocally established by spectroscopic data, ECD calculations, and crystallography. The reassigned structures represent the first class of bridgehead double-bond-containing natural products with a bicyclo[6.2.1]undecane carbon skeleton. Furthermore, their stabilities were first predicted with olefin strain energy calculations. Collectively, these findings extend our view of the application of computational predictions and biosynthetic logic-based structure elucidation to address problems related to the structure and stability of natural products. PMID:26916098

  12. Paleoproterozoic structural evolution of the Man-Leo Shield (West Africa). Key structures for vertical to transcurrent tectonics

    NASA Astrophysics Data System (ADS)

    Lompo, Martin

    2010-08-01

    In the Man-Leo Shield, Paleoproterozoic (Birimian) belts crop out in nine countries of West Africa. Dominant domains include: (i) greenstone belts composed of plutono-volcanic, volcano-clastic and sedimentary rocks, deformed and weakly metamorphosed under regional greenschist facies conditions; (ii) widespread granitoid batholiths. The domains display a basin and dome-like architecture, and are overprinted by partitioned structures from successively shallower crustal depth. Analyses of key ductile and brittle structures has shown that the structural evolution of Man-Leo Shield is characterized by early vertical magmato-tectonics and subsequently, horizontal transcurrent tectonics with progression from ductile to brittle behavior. Basin and dome-like architectures, and the formation of an ubiquitous vertical foliation (MF) formed during emplacement of early amphibole-bearing (PAG) granite plutons at ca. 2.2 Ga by diapirism during NW-SE crustal shortening. Subsequent to a late stage of predominantly NW-SE shortening that created steeply-dipping mylonite zones (Mz1), transcurrent faults became predominant. The formation of transcurrent faults began transpressively, with development of N-S trending regional-scale mylonite zones (Mz1), and a steeply-plunging stretching lineation that probably formed during emplacement of PAG-type granitoids ca. 2.15 Ga. NNE-SSW transpressive sinistral horsetail faults and many NW-SE trending tension veins are interpreted to have formed at this stage. After cooling of the upper crust ca. 2.1 Ga, transcurrent faults became strike-slip in character with formation of dominantly NE-SW dextral faults (Mz2) and the passive emplacement of biotite (PBG) granitoids. Clockwise rotation of the extensional stress axis ( σ3) from NNE-SSW trending to ENE-SSW trending assisted the propagation of dextral NE-SW and sinistral NW-SE extensional en echelon horsetail faults. WNW-ESE trending extension jogs (Egz) are interpreted to have been initiated under

  13. Designer DNA-binding drugs: the crystal structure of a meta-hydroxy analogue of Hoechst 33258 bound to d(CGCGAATTCGCG)2.

    PubMed Central

    Clark, G R; Squire, C J; Gray, E J; Leupin, W; Neidle, S

    1996-01-01

    An analogue of the DNA binding compound Hoechst 33258, which has the para hydroxyl group altered to be at the meta position, together with the replacement of one benzimidazole group by pyridylimidazole, has been cocrystallized with the dodecanucleotide sequence d(CGCGAATTCGCG)2. The X-ray structure has been determined at 2.2 A resolution and refined to an R factor of 20.1%. The ligand binds in the minor groove at the sequence 5'-AATTC with the bulky piperazine group extending over the CxG base pair. This binding is stabilised by hydrogen bonding and numerous close van der Waals contacts to the surface of the groove walls. The meta-hydroxyl group was found in two distinct orientations, neither of which participates in direct hydrogen bonds to the exocyclic amino group of a guanine base. The conformation of the drug differs from that found previously in other X-ray structures of Hoechst 33258-DNA complexes. There is significant variation between the minor groove widths in the complexes of Hoechst 33258 and the meta-hydroxyl derivative as a result of these conformational differences. Reasons are discussed for the inability of this derivative to actively recognise guanine. PMID:9017011

  14. Structural and magnetic properties of Prussian blue analogue molecular magnet Fe1.5[Cr(CN)6].mH2O

    NASA Astrophysics Data System (ADS)

    Bhatt, Pramod; Meena, S. S.; Mukadam, M. D.; Yusuf, S. M.

    2016-05-01

    Molecular magnets, based on Prussian blue analogues, Fe1.5[Cr(CN)6].mH2O have been synthesized in the bulk as well as nanoparticle forms using a co-precipitation method, and their structural and magnetic properties have been investigated using x-ray diffraction (XRD) Mössbauer spectroscopy and dc magnetization. The XRD study confirms the single phase crystalline and nanoparticle nature of the compounds with a face centered cubic (fcc) structure of space group Fm3m. The values of lattice constant are found to be ~10.18(5) Å and ~9.98(9)Å, for the bulk and nanoparticle samples, respectively. The dc magnetization shows a Curie temperature (TC) of ~17 K and ~5 K for the bulk and nanopartcile samples, respectively. The Mossouber spectroscopy reveal that the compound shows spin flipping from the high spin (HS) Fe (CrIII-C≡N-FeII) to low spin (LS) FeII ions (CrIII-N≡C-FeII). Moreover, the TC and the HS state of the Fe ions decreases (converts to its LS states) with time as well as in the nanoparticle form compared to bulk.

  15. Demystifying fluorine chemical shifts: electronic structure calculations address origins of seemingly anomalous (19)F-NMR spectra of fluorohistidine isomers and analogues.

    PubMed

    Kasireddy, Chandana; Bann, James G; Mitchell-Koch, Katie R

    2015-11-11

    Fluorine NMR spectroscopy is a powerful tool for studying biomolecular structure, dynamics, and ligand binding, yet the origins of (19)F chemical shifts are not well understood. Herein, we use electronic structure calculations to describe the changes in (19)F chemical shifts of 2F- and 4F-histidine/(5-methyl)-imidazole upon acid titration. While the protonation of the 2F species results in a deshielded chemical shift, protonation of the 4F isomer results in an opposite, shielded chemical shift. The deshielding of 2F-histidine/(5-methyl)-imidazole upon protonation can be rationalized by concomitant decreases in charge density on fluorine and a reduced dipole moment. These correlations do not hold for 4F-histidine/(5-methyl)-imidazole, however. Molecular orbital calculations reveal that for the 4F species, there are no lone pair electrons on the fluorine until protonation. Analysis of a series of 4F-imidazole analogues, all with delocalized fluorine electron density, indicates that the deshielding of (19)F chemical shifts through substituent effects correlates with increased C-F bond polarity. In summary, the delocalization of fluorine electrons in the neutral 4F species, with gain of a lone pair upon protonation may help explain the difficulty in developing a predictive framework for fluorine chemical shifts. Ideas debated by chemists over 40 years ago, regarding fluorine's complex electronic effects, are shown to have relevance for understanding and predicting fluorine NMR spectra. PMID:26524669

  16. Synthesis, crystal structure, high-temperature behavior and magnetic properties of CoBiO(AsO4), a Co analogue of paganoite

    NASA Astrophysics Data System (ADS)

    Aliev, Almaz; Kozin, Michael S.; Colmont, Marie; Siidra, Oleg I.; Krivovichev, Sergey V.; Mentré, Olivier

    2015-09-01

    Single crystals and powder samples of Co analogue of paganoite CoBiO(AsO4) have been obtained by high-temperature solid-state reactions. Crystal structure [triclinic, , a = 5.2380(3), b = 6.8286(4), c = 7.6150(4) Å, α = 111.631(2), β = 108.376(2), γ = 108.388(2)°, V = 209.55(2) Å3] has been refined to R 1 = 0.018 on the basis of 1524 unique observed reflections. CoBiO(AsO4) is isotypic to paganoite, NiBiO(AsO4). The crystal structure can be described as based upon [OCoBi]3+ chains of edge-sharing (OBi2Co2) tetrahedra linked via (AsO4) groups. Differential thermal analysis reveals no phase decomposition till 850 °C, when the compound starts to melt. A small endothermic peak is observed near 330 °C. Thermal expansion has been studied by high-temperature powder X-ray diffraction. Thermal expansion coefficients ( α a = 10.1 × 10-6, α b = 12.6 × 10-6, α c = 10.5 × 10-6 K-1) indicate a relatively isotropic behavior with the less intense expansion direction parallel to the direction of the chains of oxocentered tetrahedra. Magnetic susceptibility of CoBiO(AsO4) reveals the presence of an antiferromagnetic ordering at T N = 15.4 K.

  17. STRUCTURE-ACTIVITY STUDY OF PARACETAMOL ANALOGUES: INHIBITION OF REPLICATIVE DNA SYNTHESIS IN V79 CHINESE HAMSTER CELLS

    EPA Science Inventory

    Experimental and theoretical evidence pertaining to cytotoxic and genotoxic activity of paracetamol in biological systems was used to formulate a simple mechanistic hypothesis to explain the relative inhibition of replicative DNA synthesis by a series of 19 structurally similar p...

  18. Structural style of a compressive wedge with salt and coal shale decollement levels: Analogue and seismic modelling of the Kuqa Thrust Belt (North Tarim, China)

    NASA Astrophysics Data System (ADS)

    Callot, Jean Paul; Guichong, Wang; Moretti, Isabelle; Yongxing, Gu; Letouzey, Jean; Wu, Shengyu

    2013-04-01

    The Kuqa foreland fold and thrust belt developed at the contact between the uplifted basement block of the Tien Shan and the Tarim basin in foreland setting, since early Oligocene. It is mainly controlled by two major decollement levels. Thin skin deformation and Mesozoic thrust sheet develop above the Triassic and Jurassic coal and shale layers. The Paleogene and Neogene salt ridges and synclines developed above the stacked thrust sheets through the Paleogene salt layer. 4D Analogue models imaged with X-ray tomography are used to analyse the relative importance several parameters such as (1) the kinematic boundary conditions, (2) the rheological behaviour of the main decollement levels, and (3) erosion and sedimentation, on the present structure evolution. The experiments demonstrate that the geometry of the belt is controlled by the regional distribution of both decollement levels. The lower decollement requires a weak frictional behaviour, pinching toward the south, whereas the viscous Paleogene salt layer, pinching regularly to the South and passing gradually to clastic deposits to the North close to the Tien Shan boundary. The geometry of salt ridges and diapirs dvlopped during the early tectonic phase associated with a low sedimentation rate controls the shape and localisation of the future foreland synclines and boundaries. The synclines grow during the late stage of evolution with a rapid increase in flexure and sedimentation rate. The backstop geometry is the second major element, controlling the dip of the Mesozoic stacked thrust sheet below the salt. Inverted basement block associated to a basement short cut emplaced during the late stage of evolution are both needed to generate the overall geometry of these units. Based on the analogue models, the geometry of the thrust sheet and foreland syncline is used to perform a synthetic seismic profile in order to test the ability to image the deep parts of the thrust sheets below complex structures. The

  19. Key factors limiting carbon nanotube yarn strength: exploring processing-structure-property relationships.

    PubMed

    Beese, Allison M; Wei, Xiaoding; Sarkar, Sourangsu; Ramachandramoorthy, Rajaprakash; Roenbeck, Michael R; Moravsky, Alexander; Ford, Matthew; Yavari, Fazel; Keane, Denis T; Loutfy, Raouf O; Nguyen, SonBinh T; Espinosa, Horacio D

    2014-11-25

    Studies of carbon nanotube (CNT) based composites have been unable to translate the extraordinary load-bearing capabilities of individual CNTs to macroscale composites such as yarns. A key challenge lies in the lack of understanding of how properties of filaments and interfaces across yarn hierarchical levels govern the properties of macroscale yarns. To provide insight required to enable the development of superior CNT yarns, we investigate the fabrication-structure-mechanical property relationships among CNT yarns prepared by different techniques and employ a Monte Carlo based model to predict upper bounds on their mechanical properties. We study the correlations between different levels of alignment and porosity and yarn strengths up to 2.4 GPa. The uniqueness of this experimentally informed modeling approach is the model's ability to predict when filament rupture or interface sliding dominates yarn failure based on constituent mechanical properties and structural organization observed experimentally. By capturing this transition and predicting the yarn strengths that could be obtained under ideal fabrication conditions, the model provides critical insights to guide future efforts to improve the mechanical performance of CNT yarn systems. This multifaceted study provides a new perspective on CNT yarn design that can serve as a foundation for the development of future composites that effectively exploit the superior mechanical performance of CNTs. PMID:25353651

  20. Cations Stiffen Actin Filaments by Adhering a Key Structural Element to Adjacent Subunits.

    PubMed

    Hocky, Glen M; Baker, Joseph L; Bradley, Michael J; Sinitskiy, Anton V; De La Cruz, Enrique M; Voth, Gregory A

    2016-05-26

    Ions regulate the assembly and mechanical properties of actin filaments. Recent work using structural bioinformatics and site-specific mutagenesis favors the existence of two discrete and specific divalent cation binding sites on actin filaments, positioned in the long axis between actin subunits. Cation binding at one site drives polymerization, while the other modulates filament stiffness and plays a role in filament severing by the regulatory protein, cofilin. Existing structural methods have not been able to resolve filament-associated cations, and so in this work we turn to molecular dynamics simulations to suggest a candidate binding pocket geometry for each site and to elucidate the mechanism by which occupancy of the "stiffness site" affects filament mechanical properties. Incorporating a magnesium ion in the "polymerization site" does not seem to require any large-scale change to an actin subunit's conformation. Binding of a magnesium ion in the "stiffness site" adheres the actin DNase-binding loop (D-loop) to its long-axis neighbor, which increases the filament torsional stiffness and bending persistence length. Our analysis shows that bound D-loops occupy a smaller region of accessible conformational space. Cation occupancy buries key conserved residues of the D-loop, restricting accessibility to regulatory proteins and enzymes that target these amino acids. PMID:27146246

  1. OptZyme: Computational Enzyme Redesign Using Transition State Analogues

    PubMed Central

    Grisewood, Matthew J.; Gifford, Nathanael P.; Pantazes, Robert J.; Li, Ye; Cirino, Patrick C.; Janik, Michael J.; Maranas, Costas D.

    2013-01-01

    OptZyme is a new computational procedure for designing improved enzymatic activity (i.e., kcat or kcat/KM) with a novel substrate. The key concept is to use transition state analogue compounds, which are known for many reactions, as proxies for the typically unknown transition state structures. Mutations that minimize the interaction energy of the enzyme with its transition state analogue, rather than with its substrate, are identified that lower the transition state formation energy barrier. Using Escherichia coli β-glucuronidase as a benchmark system, we confirm that KM correlates (R2 = 0.960) with the computed interaction energy between the enzyme and the para-nitrophenyl- β, D-glucuronide substrate, kcat/KM correlates (R2 = 0.864) with the interaction energy of the transition state analogue, 1,5-glucarolactone, and kcat correlates (R2 = 0.854) with a weighted combination of interaction energies with the substrate and transition state analogue. OptZyme is subsequently used to identify mutants with improved KM, kcat, and kcat/KM for a new substrate, para-nitrophenyl- β, D-galactoside. Differences between the three libraries reveal structural differences that underpin improving KM, kcat, or kcat/KM. Mutants predicted to enhance the activity for para-nitrophenyl- β, D-galactoside directly or indirectly create hydrogen bonds with the altered sugar ring conformation or its substituents, namely H162S, L361G, W549R, and N550S. PMID:24116038

  2. The analysis of structure-anticancer and antiviral activity relationships for macrocyclic pyridinophanes and their analogues on the basis of 4D QSAR models (simplex representation of molecular structure).

    PubMed

    Kuz'min, Victor E; Artemenko, Anatoly G; Lozitsky, Victor P; Muratov, Eugene N; Fedtchouk, Alla S; Dyachenko, Natalia S; Nosach, Lidiya N; Gridina, Tatiyana L; Shitikova, Larisa I; Mudrik, Liubov M; Mescheriakov, Aleksey K; Chelombitko, Vladislav A; Zheltvay, Andrey I; Vanden Eynde, Jean-Jaques

    2002-01-01

    A new 4D-QSAR approach has been considered. For all investigated molecules the 3D structural models have been created and the set of conformers (fourth dimension) have been used. Each conformer is represented as a system of different simplexes (tetratomic fragments of fixed structure, chirality and symmetry). The investigation of influence of molecular structure of macrocyclic pyridinophanes, their analogues and certain other compounds on anticancer and antiviral (anti-influenza, antiherpes and antiadenovirus) activity has been carried out by means of the 4D-QSAR. Statistic characteristics for QSAR of PLS (partial least squares) models are satisfactory (R = 0.92-0.97; CVR = 0.63-0.83). Molecular fragments increasing and decreasing biological activity were defined. This information may be useful for design, and direct synthesis of novel anticancer and antiviral agents. PMID:12136936

  3. Chemical Synthesis, Crystal Structure and Enzymatic Evaluation of a Dinucleotide Spore Photoproduct Analogue Containing a Formacetal Linker

    PubMed Central

    Lin, Gengjie; Chen, Chun-Hsing; Pink, Maren; Pu, Jingzhi; Li, Lei

    2011-01-01

    Spore photoproduct (SP) is the exclusive DNA photodamage product found in bacterial endospores. Its photoformation and repair by a metal-loenzyme spore photoproduct lyase (SPL) composes the unique SP biochemistry. Despite the fact that the SP was discovered almost 50 years ago, its crystal structure is still unknown and the lack of structural information greatly hinders the study of SP biochemistry. Employing a formacetal linker and organic synthesis, we successfully prepared a dinucleotide SP isostere 5R-CH2SP, which contains a neutral CH2 moiety between the two thymine residues instead of a phosphate. The neutral linker dramatically facilitates the crystallization process, allowing us to obtain the crystal structure for this intriguing thymine dimer half a century after its discovery. Further ROESY spectroscopic, DFT computational, and enzymatic studies of this 5R-CH2SP compound prove that it possesses similar properties with the 5R-SP species, suggesting that the revealed structure truly reflects that of SP generated in Nature. PMID:21780208

  4. Augmenting the activity of antifungal agents against aspergilli using structural analogues of benzoic acid as chemosensitizing agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several benzoic acid analogs showed antifungal activity against strains of Aspergillus flavus, A. fumigatus and A. terreus, causative agents of human aspergillosis. Structure-activity analysis revealed that antifungal activities of benzoic and gallic acids increased by addition of a methyl, methoxyl...

  5. Augmenting the activity of antifungal agents against aspergilli using structural analogues of benzoic acid as chemosensitizing agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Structure-activity analysis revealed that antifungal activities of benzoic and gallic acids were increased against strains of Aspergillus flavus, A. fumigatus and A. terreus, causative agents of human aspergillosis, by addition of a methyl, methoxyl or a chloro group at position 4 of the aromatic ri...

  6. Crystal structures and hydrogen bonding in the morpholinium salts of four phen­oxy­acetic acid analogues

    PubMed Central

    Smith, Graham; Lynch, Daniel E.

    2015-01-01

    The anhydrous salts morpholinium (tetra­hydro-2-H-1,4-oxazin-4-ium) phen­oxy­acetate, C4H10NO+·C8H7O3 −, (I), morpholinium (4-fluoro­phen­oxy)acetate, C4H10NO+·C8H6 FO3 −, (II), and isomeric morpholinium (3,5-di­chloro­phen­oxy)acetate (3,5-D), (III), and morpholinium (2,4-di­chloro­phen­oxy)acetic acid (2,4-D), C4H10NO+·C8H5Cl2O3 −, (IV), have been determined and their hydrogen-bonded structures are described. In the crystals of (I), (III) and (IV), one of the the aminium H atoms is involved in a three-centre asymmetric cation–anion N—H⋯O,O′ R 1 2(4) hydrogen-bonding inter­action with the two carboxyl O-atom acceptors of the anion. With the structure of (II), the primary N—H⋯O inter­action is linear. In the structures of (I), (II) and (III), the second N—H⋯Ocarbox­yl hydrogen bond generates one-dimensional chain structures extending in all cases along [100]. With (IV), the ion pairs are linked though inversion-related N—H⋯O hydrogen bonds [graph set R 4 2(8)], giving a cyclic hetero­tetra­meric structure. PMID:26594518

  7. Evaluating minimalist mimics by exploring key orientations on secondary structures (EKOS)☟

    PubMed Central

    Xin, Dongyue; Ko, Eunhwa; Perez, Lisa M.; Ioerger, Thomas R.; Burgess, Kevin

    2013-01-01

    Peptide mimics that display amino acid side-chains on semi-rigid scaffolds (not peptide polyamides) can be referred to as minimalist mimics. Accessible conformations of these scaffolds may overlay with secondary structures giving, for example, “minimalist helical mimics”. It is difficult for researchers who want to apply minimalist mimics to decide which one to use because there is no widely accepted protocol for calibrating how closely these compounds mimic secondary structures. Moreover, it is also difficult for potential practitioners to evaluate which ideal minimalist helical mimics are preferred for a particular set of side-chains. For instance, what mimic presents i, i+4, i+7 side-chains in orientations that best resemble an ideal α-helix, and is a different mimic required for a i, i+3, i+7 helical combination? This article describes a protocol for fitting each member of an array of accessible scaffold conformations on secondary structures. The protocol involves: (i) use quenched molecular dynamics (QMD) to generate an ensemble consisting of hundreds of accessible, low energy conformers of the mimics; (ii) representation of each of these as a set of Cα and Cβ coordinates corresponding to three amino acid side-chains displayed by the scaffolds;(iii) similar representation of each combination of three side-chains in each ideal secondary structure as a set of Cα and Cβ coordinates corresponding to three amino acid side-chains displayed by the scaffolds; and, (iv) overlay Cα and Cβ coordinates of all the conformers on all the sets of side-chain “triads” in the ideal secondary structures and express the goodness of fit in terms of root mean squared deviation (RMSD, Å) for each overlay. We refer to this process as Exploring Key Orientations on Secondary structures (EKOS). Application of this procedure reveals the relative bias of a scaffold to overlay on different secondary structures, the “side-chain correspondences” (eg i, i+4, i+7 or i, i+3

  8. Evaluation of Cancer Preventive Activity and Structure-Activity Relationships of 3-Demethylubiquinone Q2, Isolated from the Ascidian Aplidium glabrum, and its Synthetic Analogues

    PubMed Central

    Fedorov, Sergey N.; Radchenko, Oleg S.; Shubina, Larisa K.; Balaneva, Nadezhda N.; Bode, Ann M.; Stonik, Valentin A.; Dong, Zigang

    2006-01-01

    Purpose 3-Demethylubiquinone Q2 (1) was isolated from the ascidian Aplidium glabrum. The cancer preventive properties and the structure-activity relationship for 3-demethylubiquinone Q2 (1) and 12 of its synthetic analogues (3–14) are reported. Methods Compounds 3–14, having one or several di- or triprenyl substitutions and quinone moieties with methoxyls in different positions, were synthesized. The cancer preventive properties of compounds 1 and 3–14 were tested in JB6 Cl41 mouse skin cells, using a variety of assessments, including the MTS assay, flow cytometry, and soft agar assay. Statistical nonparametric methods were used to confirm statistical significance. Results All quinones tested were shown to inhibit JB6 Cl41 cell transformation, to induce apoptosis, AP-1 and NF-κB activity, and to inhibit p53 activity. The most promising effects were indicated for compounds containing two isoprene units in a side chain and a methoxyl group at the para-position to a polyprenyl substitution. Conclusions Quinones 1 and 3–14 demonstrated cancer preventive activity in JB6 Cl41 cells, which may be attributed to the induction of p53-independent apoptosis. These activities depended on the length of side chains and on the positions of the methoxyl groups in the quinone part of the molecule. PMID:16320003

  9. Fluorous Analogue of Chloramine-T: Preparation, X-ray Structure Determination, and Use as an Oxidant for Radioiodination and s-Tetrazine Synthesis.

    PubMed

    Dzandzi, James P K; Beckford Vera, Denis R; Genady, Afaf R; Albu, Silvia A; Eltringham-Smith, Louise J; Capretta, Alfredo; Sheffield, William P; Valliant, John F

    2015-07-17

    A fluorous oxidant that can be used to introduce radioiodine into small molecules and proteins and generate iodinated tetrazines for bioorthogonal chemistry has been developed. The oxidant was prepared in 87% overall yield by combining a fluorous amine with tosyl chloride, followed by chlorination using aqueous sodium hypochlorite. A crystal structure of the oxidant, which is a fluorous analogue of chloramine-T, was obtained. The compound was shown to be stable for 7 days in EtOH and for longer than three months as a solid. The oxidant was effective at promoting the labeling of arylstannanes using [(125)I]NaI, where products were isolated in high specific activity in yields ranging from 46% to 86%. Similarly, iodinated biologically active proteins (e.g., thrombin) were successfully produced, as well as a radioiodinated tetrazine, through a concomitant oxidation-halodemetalation reaction. Because of its fluorous nature, unreacted oxidant and associated reaction byproducts can be removed quantitatively from reaction mixtures by passing solutions through fluorous solid phase extraction cartridges. This feature enables rapid and facile purification, which is critical when working with radionuclides and is similarly beneficial for general synthetic applications. PMID:26030355

  10. Structure of Bacillus subtilis γ-glutamyltranspeptidase in complex with acivicin: diversity of the binding mode of a classical and electrophilic active-site-directed glutamate analogue

    SciTech Connect

    Ida, Tomoyo; Suzuki, Hideyuki; Fukuyama, Keiichi; Hiratake, Jun; Wada, Kei

    2014-02-01

    The binding modes of acivicin, a classical and an electrophilic active-site-directed glutamate analogue, to bacterial γ-glutamyltranspeptidases were found to be diverse. γ-Glutamyltranspeptidase (GGT) is an enzyme that plays a central role in glutathione metabolism, and acivicin is a classical inhibitor of GGT. Here, the structure of acivicin bound to Bacillus subtilis GGT determined by X-ray crystallography to 1.8 Å resolution is presented, in which it binds to the active site in a similar manner to that in Helicobacter pylori GGT, but in a different binding mode to that in Escherichia coli GGT. In B. subtilis GGT, acivicin is bound covalently through its C3 atom with sp{sup 2} hybridization to Thr403 O{sup γ}, the catalytic nucleophile of the enzyme. The results show that acivicin-binding sites are common, but the binding manners and orientations of its five-membered dihydroisoxazole ring are diverse in the binding pockets of GGTs.

  11. Quantitative Structure of an Acetate Dye Molecule Analogue at the TiO2–Acetic Acid Interface

    PubMed Central

    2016-01-01

    The positions of atoms in and around acetate molecules at the rutile TiO2(110) interface with 0.1 M acetic acid have been determined with a precision of ±0.05 Å. Acetate is used as a surrogate for the carboxylate groups typically employed to anchor monocarboxylate dye molecules to TiO2 in dye-sensitized solar cells (DSSC). Structural analysis reveals small domains of ordered (2 × 1) acetate molecules, with substrate atoms closer to their bulk terminated positions compared to the clean UHV surface. Acetate is found in a bidentate bridge position, binding through both oxygen atoms to two 5-fold titanium atoms such that the molecular plane is along the [001] azimuth. Density functional theory calculations provide adsorption geometries in excellent agreement with experiment. The availability of these structural data will improve the accuracy of charge transport models for DSSC. PMID:27110318

  12. NMR structure determination of a synthetic analogue of bacillomycin Lc reveals the strategic role of L-Asn1 in the natural iturinic antibiotics

    NASA Astrophysics Data System (ADS)

    Volpon, Laurent; Tsan, Pascale; Majer, Zsuzsa; Vass, Elemer; Hollósi, Miklós; Noguéra, Valérie; Lancelin, Jean-Marc; Besson, Françoise

    2007-08-01

    Iturins are a group of antifungal produced by Bacillus subtilis. All are cyclic lipopeptides with seven α-amino acids of configuration LDDLLDL and one β-amino fatty acid. The bacillomycin L is a member of this family and its NMR structure was previously resolved using the sequence Asp-Tyr-Asn-Ser-Gln-Ser-Thr. In this work, we carefully examined the NMR spectra of this compound and detected an error in the sequence. In fact, Asp1 and Gln5 need to be changed into Asn1 and Glu5, which therefore makes it identical to bacillomycin Lc. As a consequence, it now appears that all iturinic peptides with antibiotic activity share the common β-amino fatty acid 8- L-Asn1- D-Tyr2- D-Asn3 sequence. To better understand the conformational influence of the acidic residue L-Asp1, present, for example in the inactive iturin C, the NMR structure of the synthetic analogue SCP [cyclo ( L-Asp1- D-Tyr2- D-Asn3- L-Ser4- L-Gln5- D-Ser6- L-Thr7-β-Ala8)] was determined and compared with bacillomycin Lc recalculated with the corrected sequence. In both cases, the conformers obtained were separated into two families of similar energy which essentially differ in the number and type of turns. A detailed analysis of both cyclopeptide structures is presented here. In addition, CD and FTIR spectra were performed and confirmed the conformational differences observed by NMR between both cyclopeptides.

  13. Biological activity in Technosols as a key factor of their structure

    NASA Astrophysics Data System (ADS)

    Watteau, Françoise; Villemin, Geneviève; Bouchard, Adeline; Monserié, Marie-France; Séré, Geoffroy; Schwartz, Christophe; Morel, Jean-Louis

    2010-05-01

    )availability. HAP also contributed to the aggregation of technogenic constituents in Technosol 1. The biological activity generated by the presence of exogenous organic matter is thus in short (0-2 years) and mean (30 years) terms, a key factor of the structuration and by there of the pedogenesis of Technosols.

  14. Encoding complexity within supramolecular analogues of frustrated magnets.

    PubMed

    Cairns, Andrew B; Cliffe, Matthew J; Paddison, Joseph A M; Daisenberger, Dominik; Tucker, Matthew G; Coudert, François-Xavier; Goodwin, Andrew L

    2016-05-01

    The solid phases of gold(I) and/or silver(I) cyanides are supramolecular assemblies of inorganic polymer chains in which the key structural degrees of freedom-namely, the relative vertical shifts of neighbouring chains-are mathematically equivalent to the phase angles of rotating planar ('XY') spins. Here, we show how the supramolecular interactions between chains can be tuned to mimic different magnetic interactions. In this way, the structures of gold(I) and/or silver(I) cyanides reflect the phase behaviour of triangular XY magnets. Complex magnetic states predicted for this family of magnets-including collective spin-vortices of relevance to data storage applications-are realized in the structural chemistry of these cyanide polymers. Our results demonstrate how chemically simple inorganic materials can behave as structural analogues of otherwise inaccessible 'toy' spin models and also how the theoretical understanding of those models allows control over collective ('emergent') phenomena in supramolecular systems. PMID:27102677

  15. Electronic structure and photoelectron spectra of nickel (II) acetylacetonate and its thio- and amino-substituted analogues

    NASA Astrophysics Data System (ADS)

    Vovna, Vitaliy V.; Korochentsev, Vladimir V.; Komissarov, Aleksandr A.; L'vov, Igor B.; Myshakina, Nataliya S.

    2015-11-01

    Using ultraviolet photoelectron spectroscopy and electron density functional theory (DFT), we investigated the electronic structure of the d8 complex acetylacetonate Ni(a\\scsim a\\scsim)2 and its NH, S and NCH2-substitutes: nickel bis(acetylacetoneiminate) (Ni(acim)2), Ni(Sacac)2 and nickel N,N‧-Ethylene-bis(acetylacetoneiminate) (NiEcim), respectively. Based on the spectral regularities and calculated results for these four compounds, we interpreted the PE spectra to approximate the extended Koopmans' theorem IEi = -ɛi + δi using the δi relationship to the molecular orbital type, which differs substantially from earlier published interpretations. We determined the vertical ionization energies for the four pairs of ligand n- and π-levels and four d-type orbitals for the metal. We further discussed the regularities established both experimentally and theoretically for the influence that substituting S, NH and NCH2- for O exerted on the electronic and spatial structure of the complexes, effective atomic charges and intra-complex coordinate bonds.

  16. New bitter-masking compounds: hydroxylated benzoic acid amides of aromatic amines as structural analogues of homoeriodictyol.

    PubMed

    Ley, Jakob P; Blings, Maria; Paetz, Susanne; Krammer, Gerhard E; Bertram, Heinz-Jürgen

    2006-11-01

    Starting from the known bitter-masking flavanones eriodictyol and homoeriodictyol from herba santa some structurally related hydroxybenzoic acid amides of benzylamines were synthesized and evaluated as masking agents toward bitterness of caffeine by sensory methods. The closest structural relatives of homoeriodictyol, the hydroxybenzoic acid vanillylamides 5-9, were the most active and were able to reduce the bitterness of a 500 mg L(-1) caffeine solution by about 30% at a concentration of 100 mg L(-1). 2,4-Dihydroxybenzoic acid vanillylamide 7 showed a clear dose-dependent activity as inhibitor of the bitter taste of caffein between 5 and 500 mg L(-1). Additionally, it was possible to reduce the bitterness of quinine and salicine but not of the bitter peptide N-l-leucyl-l-tryptophan. Combinations of homoeriodictyol and amide 7 showed no synergistic or antagonistic changes in activity. The results for model compound 7 suggested that the hitherto unknown masking mechanism is probably the same for flavanones and the new amides. In the future, the new amides may be alternatives for the expensive flavanones to create flavor solutions to mask bitterness of pharmaceuticals or foodstuffs. PMID:17061836

  17. Crystal structure of farnesyl protein transferase complexed with a CaaX peptide and farnesyl diphosphate analogue.

    PubMed

    Strickland, C L; Windsor, W T; Syto, R; Wang, L; Bond, R; Wu, Z; Schwartz, J; Le, H V; Beese, L S; Weber, P C

    1998-11-24

    The crystallographic structure of acetyl-Cys-Val-Ile-selenoMet-COOH and alpha-hydroxyfarnesylphosphonic acid (alphaHFP) complexed with rat farnesyl protein transferase (FPT) (space group P61, a = b = 174. 13 A, c = 69.71 A, alpha = beta = 90 degrees, gamma = 120 degrees, Rfactor = 21.8%, Rfree = 29.2%, 2.5 A resolution) is reported. In the ternary complex, the bound substrates are within van der Waals contact of each other and the FPT enzyme. alphaHFP binds in an extended conformation in the active-site cavity where positively charged side chains and solvent molecules interact with the phosphate moiety and aromatic side chains pack adjacent to the isoprenoid chain. The backbone of the bound CaaX peptide adopts an extended conformation, and the side chains interact with both FPT and alphaHFP. The cysteine sulfur of the bound peptide coordinates the active-site zinc. Overall, peptide binding and recognition appear to be dominated by side-chain interactions. Comparison of the structures of the ternary complex and unliganded FPT [Park, H., Boduluri, S., Moomaw, J., Casey, P., and Beese, L. (1997) Science 275, 1800-1804] shows that major rearrangements of several active site side chains occur upon substrate binding. PMID:9843427

  18. A thiamin-bound, pre-decarboxylation reaction intermediate analogue in the pyruvate dehydrogenase E1 subunit induces large scale disorder-to-order transformations in the enzyme and reveals novel structural features in the covalently bound adduct.

    PubMed

    Arjunan, Palaniappa; Sax, Martin; Brunskill, Andrew; Chandrasekhar, Krishnamoorthy; Nemeria, Natalia; Zhang, Sheng; Jordan, Frank; Furey, William

    2006-06-01

    The crystal structure of the E1 component from the Escherichia coli pyruvate dehydrogenase multienzyme complex (PDHc) has been determined with phosphonolactylthiamin diphosphate (PLThDP) in its active site. PLThDP serves as a structural and electrostatic analogue of the natural intermediate alpha-lactylthiamin diphosphate (LThDP), in which the carboxylate from the natural substrate pyruvate is replaced by a phosphonate group. This represents the first example of an experimentally determined, three-dimensional structure of a thiamin diphosphate (ThDP)-dependent enzyme containing a covalently bound, pre-decarboxylation reaction intermediate analogue and should serve as a model for the corresponding intermediates in other ThDP-dependent decarboxylases. Regarding the PDHc-specific reaction, the presence of PLThDP induces large scale conformational changes in the enzyme. In conjunction with the E1-PLThDP and E1-ThDP structures, analysis of a H407A E1-PLThDP variant structure shows that an interaction between His-407 and PLThDP is essential for stabilization of two loop regions in the active site that are otherwise disordered in the absence of intermediate analogue. This ordering completes formation of the active site and creates a new ordered surface likely involved in interactions with the lipoyl domains of E2s within the PDHc complex. The tetrahedral intermediate analogue is tightly held in the active site through direct hydrogen bonds to residues His-407, Tyr-599, and His-640 and reveals a new, enzyme-induced, strain-related feature that appears to aid in the decarboxylation process. This feature is almost certainly present in all ThDP-dependent decarboxylases; thus its inclusion in our understanding of general thiamin catalysis is important. PMID:16531404

  19. Crystal Structure of Insulin-Regulated Aminopeptidase with Bound Substrate Analogue Provides Insight on Antigenic Epitope Precursor Recognition and Processing.

    PubMed

    Mpakali, Anastasia; Saridakis, Emmanuel; Harlos, Karl; Zhao, Yuguang; Papakyriakou, Athanasios; Kokkala, Paraskevi; Georgiadis, Dimitris; Stratikos, Efstratios

    2015-09-15

    Aminopeptidases that generate antigenic peptides influence immunodominance and adaptive cytotoxic immune responses. The mechanisms that allow these enzymes to efficiently process a vast number of different long peptide substrates are poorly understood. In this work, we report the structure of insulin-regulated aminopeptidase, an enzyme that prepares antigenic epitopes for cross-presentation in dendritic cells, in complex with an antigenic peptide precursor analog. Insulin-regulated aminopeptidase is found in a semiclosed conformation with an extended internal cavity with limited access to the solvent. The N-terminal moiety of the peptide is located at the active site, positioned optimally for catalysis, whereas the C-terminal moiety of the peptide is stabilized along the extended internal cavity lodged between domains II and IV. Hydrophobic interactions and shape complementarity enhance peptide affinity beyond the catalytic site and support a limited selectivity model for antigenic peptide selection that may underlie the generation of complex immunopeptidomes. PMID:26259583

  20. The role of structural inheritance in oblique rifting: Insights from analogue models and application to the Gulf of Aden

    NASA Astrophysics Data System (ADS)

    Autin, Julia; Bellahsen, Nicolas; Leroy, Sylvie; Husson, Laurent; Beslier, Marie-Odile; d'Acremont, Elia

    2013-11-01

    The geometry and kinematics of rifts are strongly controlled by pre-existing structures that may be present in both the crust and the mantle lithosphere. In the Gulf of Aden, the Tertiary oblique rift developed through inherited Mesozoic extensional basins that trend orthogonal to the direction of Oligo-Miocene divergence. Such inheritance may produce lateral variations in crustal thickness and thus in rheology of the crust and mantle lithosphere. How can such variations influence the present-day geometry of oblique rifts? May they locally overcome the impact of the oblique rheological weaknesses that in certain cases control the overall trend of the rift system? Moreover, we observe that major fracture zones systematically crosscut the inherited basins: may such inheritance influence the localization of major fracture zones by shifting the initial spreading centers?

  1. Simulated ΛCDM analogues of the thin Plane of Satellites around the Andromeda galaxy are not kinematically coherent structures

    NASA Astrophysics Data System (ADS)

    Buck, Tobias; Dutton, Aaron A.; Macciò, Andrea V.

    2016-05-01

    A large fraction of the dwarf satellites orbiting the Andromeda galaxy are surprisingly aligned in a thin, extended and apparently kinematically coherent planar structure. Such a structure is not easily found in simulations based on the Cold Dark Matter model (ΛCDM). Using 21 high resolution cosmological simulations we analyse the kinematics of planes of satellites similar to the one around Andromeda. We find good agreement when co-rotation is characterized by the line-of-sight velocity. At the same time, when co-rotation is inferred by the angular momenta of the satellites, the planes are in agreement with the plane around our Galaxy. We find such planes to be common in our high concentration haloes. The number of co-rotating satellites obtained from the sign of the line-of-sight velocity shows large variations depending on the viewing angle and is consistent with that obtained from a sample with random velocities. We find that the clustering of angular momentum vectors of the satellites in the plane is a better measure of the kinematic coherence. Thus we conclude that the line-of-sight velocity is not well suited as a proxy for the kinematical coherence of the plane. Analysis of the kinematics of our planes shows a fraction of ˜30% chance aligned satellites. Tracking the satellites in the plane back in time reveals that these planes are a transient feature and not kinematically coherent as would appear at first sight. Thus we expect some of the satellites in the plane around Andromeda to have high velocities perpendicular to the plane.

  2. Simulated ΛCDM analogues of the thin plane of satellites around the Andromeda galaxy are not kinematically coherent structures

    NASA Astrophysics Data System (ADS)

    Buck, Tobias; Dutton, Aaron A.; Macciò, Andrea V.

    2016-08-01

    A large fraction of the dwarf satellites orbiting the Andromeda galaxy are surprisingly aligned in a thin, extended and apparently kinematically coherent planar structure. Such a structure is not easily found in simulations based on the cold dark matter model (ΛCDM). Using 21 high-resolution cosmological simulations, we analyse the kinematics of planes of satellites similar to the one around Andromeda. We find good agreement when co-rotation is characterized by the line-of-sight velocity. At the same time, when co-rotation is inferred by the angular momenta of the satellites, the planes are in agreement with the plane around our Galaxy. We find such planes to be common in our high-concentration haloes. The number of co-rotating satellites obtained from the sign of the line-of-sight velocity shows large variations depending on the viewing angle and is consistent with that obtained from a sample with random velocities. We find that the clustering of angular momentum vectors of the satellites in the plane is a better measure of the kinematic coherence. Thus we conclude that the line-of-sight velocity is not well suited as a proxy for the kinematical coherence of the plane. Analysis of the kinematics of our planes shows a fraction of ˜30 per cent chance-aligned satellites. Tracking the satellites in the plane back in time reveals that these planes are a transient feature and not kinematically coherent as would appear at first sight. Thus we expect some of the satellites in the plane around Andromeda to have high velocities perpendicular to the plane.

  3. The fluorite related modulated structures of the Gd2(Zr2-xCex)O7 solid solution: An analogue for Pu disposition

    NASA Astrophysics Data System (ADS)

    Reid, D. P.; Stennett, M. C.; Hyatt, N. C.

    2012-07-01

    We present an overview of the Gd2(Zr2-xCex)O7 phase diagram, of interest as a model system for ceramic disposition of Pu (with Ce as a Pu surrogate). The fluorite related structures of this solid solution were determined using a modulated structure approach, to identify the underlying cation and vacancy ordering mechanisms from analysis of key satellite reflections in selected zone axis electron diffraction patterns. This revealed the formation of four structure types: pyrochlore for x<0.25, defect fluorite for 0.5structure for x=1.00, and a C-type structure for x>1.50. X-ray absorption (XAS) and electron energy loss (EELS) spectra confirmed the presence of Ce4+ as the dominant species in compositions across this system, remaining analogous to Pu4+.

  4. Syntheses of phosphatidyl-beta-D-glucoside analogues to probe antigen selectivity of monoclonal antibody 'DIM21'.

    PubMed

    Greimel, Peter; Lapeyre, Milaine; Nagatsuka, Yasuko; Hirabayashi, Yoshio; Ito, Yukishige

    2008-08-01

    Herein, we report the chemical syntheses of a series of phosphatidyl-beta-D-glucoside (PtdGlc) analogues, including 6-O-Ac, sn-2-O-Me, phosphorothioate as well as phosphatidylgalactoside and -mannoside derivatives. In the key step, beta-glycosyl H-phosphonate was condensed with enantiomerically pure diacylglycerol. Comparison of spectroscopic data with mono-acetylated PtdGlc from natural source confirmed the presence of an acetyl moiety at position 6. Furthermore, the reactivity of PtdGlc and its analogues toward monoclonal antibody 'DIM21' (MAb DIM21) was evaluated, revealing the crucial structural antigen features for successful MAb DIM21 binding. PMID:18625561

  5. Three Efficient Methods for Preparation of Coelenterazine Analogues.

    PubMed

    Shakhmin, Anton; Hall, Mary P; Walker, Joel R; Machleidt, Thomas; Binkowski, Brock F; Wood, Keith V; Kirkland, Thomas A

    2016-07-18

    The growing popularity of bioluminescent assays has highlighted the need for coelenterazine analogues possessing properties tuned for specific applications. However, the structural diversity of known coelenterazine analogues has been limited by current syntheses. Known routes for the preparation of coelenterazine analogues employ harsh reaction conditions that limit access to many substituents and functional groups. Novel synthetic routes reported here establish simple and robust methods for synthesis and investigation of structurally diverse marine luciferase substrates. Specifically, these new routes allow synthesis of coelenterazine analogues containing various heterocyclic motifs and substituted aromatic groups with diverse electronic substituents at the R(2) position. Interesting analogues described herein were characterized by their physicochemical properties, bioluminescent half-life, light output, polarity and cytotoxicity. Some of the analogues represent leads that can be utilized in the development of improved bioluminescent systems. PMID:27305599

  6. Novel sorafenib-based structural analogues: in-vitro anticancer evaluation of t-MTUCB and t-AUCMB.

    PubMed

    Wecksler, Aaron T; Hwang, Sung Hee; Wettersten, Hiromi I; Gilda, Jennifer E; Patton, Amy; Leon, Leonardo J; Carraway, Kermit L; Gomes, Aldrin V; Baar, Keith; Weiss, Robert H; Hammock, Bruce D

    2014-04-01

    In the current work, we carried out a mechanistic study on the cytotoxicity of two compounds, trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-N-methyl-benzamide (t-AUCMB) and trans-N-methyl-4-{4-[3-(4-trifluoromethoxy-phenyl)-ureido]-cyclohexyloxy}-benzamide (t-MTUCB), that are structurally similar to sorafenib. These compounds show strong cytotoxic responses in various cancer cell lines, despite significant differences in the induction of apoptotic events such as caspase activation and lactate dehydrogenase release in hepatoma cells. Both compounds induce autophagosome formation and LC3I cleavage, but there was little observable effect on mTORC1 or the downstream targets, S6K1 and 4E-binding protein. In addition, there was an increase in the activity of upstream signaling through the IRS1/PI3K/Akt-signaling pathway, suggesting that, unlike sorafenib, both compounds induce mammalian target of rapamycin (mTOR)-independent autophagy. The autophagy observed correlates with mitochondrial membrane depolarization, apoptosis-inducing factor release, and oxidative stress-induced glutathione depletion. However, there were no observable changes in the endoplasmic reticulum-stress markers such as binding immunoglobulin protein, inositol-requiring enzyme-α, phosphorylated eukaryotic initiation factor 2, and the lipid peroxidation marker, 4-hydroxynonenal, suggesting endoplasmic reticulum-independent oxidative stress. Finally, these compounds do not have the multikinase inhibitory activity of sorafenib, which may be reflected in their difference in the ability to halt cell cycle progression compared with sorafenib. Our findings indicate that both compounds have anticancer effects comparable with sorafenib in multiple cell lines, but they induce significant differences in apoptotic responses and appear to induce mTOR-independent autophagy. t-AUCMB and t-MTUCB represent novel chemical probes that are capable of inducing mTOR-independent autophagy and apoptosis to differing

  7. Novel Sorafenib-Based Structural Analogues: In Vitro Anticancer Evaluation of t-MTUCB and t-AUCMB

    PubMed Central

    Wecksler, Aaron T.; Hwang, Sung Hee; Wettersten, Hiromi I.; Gilda, Jennifer E.; Patton, Amy; Leon, Leonardo J.; Carraway, Kermit L.; Gomes, Aldrin V.; Baar, Keith; Weiss, Robert H.; Hammock, Bruce D.

    2014-01-01

    In the current study, we performed a mechanistic study on the cytotoxicity of two compounds, t-AUCMB and t-MTUCB, that are structurally similar to sorafenib. These compounds display strong cytotoxic responses in various cancer cell lines, despite significant differences in the induction of apoptotic events such as caspase activation and lactate dehydrogenase release in hepatoma cells. Both compounds induce autophagosome formation and LC3I cleavage, but there was little observable effect on mTORC1 or the downstream targets, S6K1 and 4E-BP1. In addition, there was an increase in activity of upstream signaling through the IRS1/PI3K/Akt signaling pathway, suggesting that unlike sorafenib, both compounds induce mTOR-independent autophagy. The observed autophagy correlates with mitochondrial membrane depolarization, AIF release, and oxidative stress-induced glutathione depletion. However, there were no observable changes in the ER-stress markers such as, Bip, IREα, p-eIP2, and the lipid peroxidation marker, 4-HNE, suggesting ER-independent oxidative stress. Finally, these compounds do not possess the multikinase inhibitory activity of sorafenib, which may be reflected in their difference in ability to halt cell cycle progression compared to sorafenib. Our findings indicate that both compounds have anti-cancer effects comparable to sorafenib in multiple cell line, but they induce significant differences in apoptotic responses and appear to induce mTOR-independent autophagy. t-AUCMB and t-MTUCB, represent novel chemical probes that are capable of inducing mTOR-independent autophagy and apoptosis to differing degrees, and thus may be potential tools for further understanding the link between these two cellular stress responses. PMID:24525589

  8. Planetary habitability: lessons learned from terrestrial analogues

    NASA Astrophysics Data System (ADS)

    Preston, Louisa J.; Dartnell, Lewis R.

    2014-01-01

    they emulate their intended target locale. We also outline key issues associated with the existing documentation of analogue research and the constraints this has on the efficiency of discoveries in this field. This review thus highlights the need for a global open access database for planetary analogues.

  9. U.S. Nuclear Regulatory Commission natural analogue research program

    SciTech Connect

    Kovach, L.A.; Ott, W.R.

    1995-09-01

    This article describes the natural analogue research program of the U.S. Nuclear Regulatory Commission (US NRC). It contains information on the regulatory context and organizational structure of the high-level radioactive waste research program plan. It also includes information on the conditions and processes constraining selection of natural analogues, describes initiatives of the US NRC, and describes the role of analogues in the licensing process.

  10. Responses of Aquatic Bacteria to Terrestrial Runoff: Effects on Community Structure and Key Taxonomic Groups.

    PubMed

    Le, Huong T; Ho, Cuong T; Trinh, Quan H; Trinh, Duc A; Luu, Minh T N; Tran, Hai S; Orange, Didier; Janeau, Jean L; Merroune, Asmaa; Rochelle-Newall, Emma; Pommier, Thomas

    2016-01-01

    Organic fertilizer application is often touted as an economical and effective method to increase soil fertility. However, this amendment may increase dissolved organic carbon (DOC) runoff into downstream aquatic ecosystems and may consequently alter aquatic microbial community. We focused on understanding the effects of DOC runoff from soils amended with compost, vermicompost, or biochar on the aquatic microbial community of a tropical reservoir. Runoff collected from a series of rainfall simulations on soils amended with different organic fertilizers was incubated for 16 days in a series of 200 L mesocosms filled with water from a downstream reservoir. We applied 454 high throughput pyrosequencing for bacterial 16S rRNA genes to analyze microbial communities. After 16 days of incubation, the richness and evenness of the microbial communities present decreased in the mesocosms amended with any organic fertilizers, except for the evenness in the mesocosms amended with compost runoff. In contrast, they increased in the reservoir water control and soil-only amended mesocosms. Community structure was mainly affected by pH and DOC concentration. Compared to the autochthonous organic carbon produced during primary production, the addition of allochthonous DOC from these organic amendments seemed to exert a stronger effect on the communities over the period of incubation. While the Proteobacteria and Actinobacteria classes were positively associated with higher DOC concentration, the number of sequences representing key bacterial groups differed between mesocosms particularly between the biochar runoff addition and the compost or vermi-compost runoff additions. The genera of Propionibacterium spp. and Methylobacterium spp. were highly abundant in the compost runoff additions suggesting that they may represent sentinel species of complex organic carbon inputs. Overall, this work further underlines the importance of studying the off-site impacts of organic fertilizers as

  11. Responses of Aquatic Bacteria to Terrestrial Runoff: Effects on Community Structure and Key Taxonomic Groups

    PubMed Central

    Le, Huong T.; Ho, Cuong T.; Trinh, Quan H.; Trinh, Duc A.; Luu, Minh T. N.; Tran, Hai S.; Orange, Didier; Janeau, Jean L.; Merroune, Asmaa; Rochelle-Newall, Emma; Pommier, Thomas

    2016-01-01

    Organic fertilizer application is often touted as an economical and effective method to increase soil fertility. However, this amendment may increase dissolved organic carbon (DOC) runoff into downstream aquatic ecosystems and may consequently alter aquatic microbial community. We focused on understanding the effects of DOC runoff from soils amended with compost, vermicompost, or biochar on the aquatic microbial community of a tropical reservoir. Runoff collected from a series of rainfall simulations on soils amended with different organic fertilizers was incubated for 16 days in a series of 200 L mesocosms filled with water from a downstream reservoir. We applied 454 high throughput pyrosequencing for bacterial 16S rRNA genes to analyze microbial communities. After 16 days of incubation, the richness and evenness of the microbial communities present decreased in the mesocosms amended with any organic fertilizers, except for the evenness in the mesocosms amended with compost runoff. In contrast, they increased in the reservoir water control and soil-only amended mesocosms. Community structure was mainly affected by pH and DOC concentration. Compared to the autochthonous organic carbon produced during primary production, the addition of allochthonous DOC from these organic amendments seemed to exert a stronger effect on the communities over the period of incubation. While the Proteobacteria and Actinobacteria classes were positively associated with higher DOC concentration, the number of sequences representing key bacterial groups differed between mesocosms particularly between the biochar runoff addition and the compost or vermi-compost runoff additions. The genera of Propionibacterium spp. and Methylobacterium spp. were highly abundant in the compost runoff additions suggesting that they may represent sentinel species of complex organic carbon inputs. Overall, this work further underlines the importance of studying the off-site impacts of organic fertilizers as

  12. Structural, Spectroscopic, and Computational Characterization of the Azide Adduct of FeIII(2,6-diacetylpyridinebis(semioxamazide)), a Functional Analogue of Iron Superoxide Dismutase

    PubMed Central

    Gutman, Craig T.; Guzei, Ilia A.; Brunold, Thomas C.

    2013-01-01

    We have prepared and thoroughly characterized, using X-ray crystallographic, spectroscopic, and computational methods, the diazide adduct of [FeIII(dapsox)(H2O)2]1+ [dapsox=2,6-diacetylpyridinebis(semioxamazide)] (1), alow-molecular weight, functional analogue of iron superoxide dismutase (FeSOD). The X-ray crystal structure of the dimeric form of 1, (Na[FeIII(dapsox)(N3)2] DMF)2 (2) shows two axially coordinated, symmetry inequivalent azides with differing Fe–N3 bond lengths and Fe–N–N2 bond angles. This inequivalence of the azide ligands likely reflects the presence of an inter-dimer H-bonding interaction between a dapsox NH group and the coordinated nitrogen of one of the two azide ligands. Resonance Raman (rR) data obtained for frozen aqueous solution and solid-state samples of 2 indicate that the azides remain inequivalent in solution, suggesting that one of the azide ligands of 1 engages in an intermolecular hydrogen bonding interaction with a water molecule. Density functional theory (DFT) and time-dependent DFT calculations have been used to study two different computational models of 1, one using coordinates taken from the X-ray crystal structure of 2, and the other generated via DFT geometry optimization. An evaluation of these models on the basis of electronic absorption, magnetic circular dichroism, and rR data indicates that the crystal structure based model provides a more accurate electronic structure description of 1, providing further support for the proposed intermolecular hydrogen bonding of 1 in the solid state and in solution. An analysis of the experimentally validated DFT results for this model reveals that the azides have both σ- and π-bonding interactions with the FeIII center and that more negative charge is located on the Fe-bound, rather than on the terminal, nitrogen atom of each azide. These observations are reminiscent of the results previously reported for the azide adduct of FeSOD and provide clues regarding the origin the

  13. The structure and composition of Holocene coral reefs in the Middle Florida Keys

    USGS Publications Warehouse

    Toth, Lauren T.; Stathakopoulos, Anastasios; Kuffner, Ilsa B.

    2016-01-01

    The Florida Keys reef tract (FKRT) is the largest coral-reef ecosystem in the continental United States. The modern FKRT extends for 362 kilometers along the coast of South Florida from Dry Tortugas National Park in the southwest, through the Florida Keys National Marine Sanctuary (FKNMS), to Fowey Rocks reef in Biscayne National Park in the northeast. Most reefs along the FKRT are sheltered by the exposed islands of the Florida Keys; however, large channels are located between the islands of the Middle Keys. These openings allow for tidal transport of water from Florida Bay onto reefs in the area. The characteristics of the water masses coming from Florida Bay, which can experience broad swings in temperature, salinity, nutrients, and turbidity over short periods of time, are generally unfavorable or “inimical” to coral growth and reef development.Although reef habitats are ubiquitous throughout most of the Upper and Lower Keys, relatively few modern reefs exist in the Middle Keys most likely because of the impacts of inimical waters from Florida Bay. The reefs that are present in the Middle Keys generally are poorly developed compared with reefs elsewhere in the region. For example, Acropora palmata has been the dominant coral on shallow-water reefs in the Caribbean over the last 1.5 million years until populations of the coral declined throughout the region in recent decades. Although A. palmata was historically abundant in the Florida Keys, it was conspicuously absent from reefs in the Middle Keys. Instead, contemporary reefs in the Middle Keys have been dominated by occasional massive (that is, boulder or head) corals and, more often, small, non-reef-building corals.Holocene reef cores have been collected from many locations along the FKRT; however, despite the potential importance of the history of reefs in the Middle Florida Keys to our understanding of the environmental controls on reef development throughout the FKRT, there are currently no published

  14. Liquid chromatography coupled to quadrupole-time of flight tandem mass spectrometry based quantitative structure-retention relationships of amino acid analogues derivatized via n-propyl chloroformate mediated reaction.

    PubMed

    Kritikos, Nikolaos; Tsantili-Kakoulidou, Anna; Loukas, Yannis L; Dotsikas, Yannis

    2015-07-17

    In the current study, quantitative structure-retention relationships (QSRR) were constructed based on data obtained by a LC-(ESI)-QTOF-MS/MS method for the determination of amino acid analogues, following their derivatization via chloroformate esters. Molecules were derivatized via n-propyl chloroformate/n-propanol mediated reaction. Derivatives were acquired through a liquid-liquid extraction procedure. Chromatographic separation is based on gradient elution using methanol/water mixtures from a 70/30% composition to an 85/15% final one, maintaining a constant rate of change. The group of examined molecules was diverse, including mainly α-amino acids, yet also β- and γ-amino acids, γ-amino acid analogues, decarboxylated and phosphorylated analogues and dipeptides. Projection to latent structures (PLS) method was selected for the formation of QSRRs, resulting in a total of three PLS models with high cross-validated coefficients of determination Q(2)Y. For this reason, molecular structures were previously described through the use of descriptors. Through stratified random sampling procedures, 57 compounds were split to a training set and a test set. Model creation was based on multiple criteria including principal component significance and eigenvalue, variable importance, form of residuals, etc. Validation was based on statistical metrics Rpred(2),QextF2(2),QextF3(2) for the test set and Roy's metrics rm(Av)(2) and rm(δ)(2), assessing both predictive stability and internal validity. Based on aforementioned models, simplified equivalent were then created using a multi-linear regression (MLR) method. MLR models were also validated with the same metrics. The suggested models are considered useful for the estimation of retention times of amino acid analogues for a series of applications. PMID:26044385

  15. Effects of Oblique Extension and Inherited Structure Geometry on Transfer Zone Development in Continental Rifts: A 4D Analogue Modeling Approach

    NASA Astrophysics Data System (ADS)

    Zwaan, Frank; Schreurs, Guido

    2015-04-01

    -connecting inherited zones, whose strike is at an angle of >15° with respect to the divergence direction. CT-analysis indicates that faulting initiated shortly after the start of the experiments, while structures become only clearly visible at the surface only after 1:30h (4% extension). Rift boundary fault angles tend to decrease from an initial 70° to ca. 55° after 4:00h (10% extension). Further CT-analysis will reveal the 3D evolution of the transform zones in more detail. REFERENCES Acocella, V., Faccenna, C., Funiciello, R., Rossetti, F., 1999. Sand-box modelling of basement-controlled transfer zones in extensional domains. Terra Nova, Vol. 11, No. 4, pp 149-156 Allken, V., Huismans, R. S., Thieulot, C., 2012. Factors controlling the mode of rift interaction in brittle-ductile coupled systems: A 3D numerical study, Geochem. Geophys. Geosyst. Vol. 13, Q05010 Schreurs, G., Colletta, B. (1998) Analogue modelling of faulting in zones of continental transpression and transtension. In: Holdsworth, R. E., Strachan R. A., Dewey, J. F., (eds.) 1998. Continental Transpressional and Transtensional Tectonics. Geological Society, London, Special Publications. No. 135, pp 59-79

  16. Ecstasy analogues found in cacti.

    PubMed

    Bruhn, Jan G; El-Seedi, Hesham R; Stephanson, Nikolai; Beck, Olof; Shulgin, Alexander T

    2008-06-01

    Human interest in psychoactive phenethylamines is known from the use of mescaline-containing cacti and designer drugs such as Ecstasy. From the alkaloid composition of cacti we hypothesized that substances resembling Ecstasy might occur naturally. In this article we show that lophophine, homopiperonylamine and lobivine are new minor constituents of two cactus species, Lophophora williamsii (peyote) and Trichocereus pachanoi (San Pedro). This is the first report of putatively psychoactive phenethylamines besides mescaline in these cacti. A search for further biosynthetic analogues may provide new insights into the structure-activity relationships of mescaline. An intriguing question is whether the new natural compounds can be called "designer drugs." PMID:18720674

  17. The Response of Greek Key Proteins to Changes in Connectivity Depends on the Nature of Their Secondary Structure

    PubMed Central

    Kemplen, Katherine R.; De Sancho, David; Clarke, Jane

    2015-01-01

    What governs the balance between connectivity and topology in regulating the mechanism of protein folding? We use circular permutation to vary the order of the helices in the all-α Greek key protein FADD (Fas-associated death domain) to investigate this question. Unlike all-β Greek key proteins, where changes in the order of secondary structure cause a shift in the folding nucleus, the position of the nucleus in FADD is unchanged, even when permutation reduces the complexity significantly. We suggest that this is because local helical contacts are so dominant that permutation has little effect on the entropic cost of forming the folding nucleus whereas, in all-β Greek key proteins, all interactions in the nucleus are long range. Thus, the type of secondary structure modulates the sensitivity of proteins to changes in connectivity. PMID:25861761

  18. A tandem regression-outlier analysis of a ligand cellular system for key structural modifications around ligand binding

    PubMed Central

    2013-01-01

    Background A tandem technique of hard equipment is often used for the chemical analysis of a single cell to first isolate and then detect the wanted identities. The first part is the separation of wanted chemicals from the bulk of a cell; the second part is the actual detection of the important identities. To identify the key structural modifications around ligand binding, the present study aims to develop a counterpart of tandem technique for cheminformatics. A statistical regression and its outliers act as a computational technique for separation. Results A PPARγ (peroxisome proliferator-activated receptor gamma) agonist cellular system was subjected to such an investigation. Results show that this tandem regression-outlier analysis, or the prioritization of the context equations tagged with features of the outliers, is an effective regression technique of cheminformatics to detect key structural modifications, as well as their tendency of impact to ligand binding. Conclusions The key structural modifications around ligand binding are effectively extracted or characterized out of cellular reactions. This is because molecular binding is the paramount factor in such ligand cellular system and key structural modifications around ligand binding are expected to create outliers. Therefore, such outliers can be captured by this tandem regression-outlier analysis. PMID:23627990

  19. Mobilizing Communities around HIV Prevention for Youth: How Three Coalitions Applied Key Strategies to Bring about Structural Changes

    ERIC Educational Resources Information Center

    Chutuape, Kate S.; Willard, Nancy; Sanchez, Kenia; Straub, Diane M.; Ochoa, Tara N.; Howell, Kourtney; Rivera, Carmen; Ramos, Ibrahim; Ellen, Jonathan M.

    2010-01-01

    Increasingly, HIV prevention efforts must focus on altering features of the social and physical environment to reduce risks associated with HIV acquisition and transmission. Community coalitions provide a vehicle for bringing about sustainable structural changes. This article shares lessons and key strategies regarding how three community…

  20. Structure Activity Relationship of (N)-Methanocarba Phosphonate Analogues of 5’-AMP as Cardioprotective Agents Acting Through a Cardiac P2X Receptor

    PubMed Central

    Kumar, T. Santhosh; Zhou, Si-Yuan; Joshi, Bhalchandra V.; Balasubramanian, Ramachandran; Yang, Tiehong; Liang, Bruce T.; Jacobson, Kenneth A.

    2010-01-01

    P2X receptor activation protects in heart failure models. MRS2339 3, a 2-chloro-AMP derivative containing a (N)-methanocarba (bicyclo[3.1.0]hexane) system, activates this cardioprotective channel. Michaelis–Arbuzov and Wittig reactions provided phosphonate analogues of 3, expected to be stable in vivo due to the C-P bond. After chronic administration via a mini-osmotic pump (Alzet), some analogues significantly increased intact heart contractile function in calsequestrin-overexpressing mice (genetic model of heart failure) compared to vehicle-infused mice (all inactive at the vasodilatory P2Y1 receptor). Two phosphonates, (1’S,2’R,3’S,4’R,5’S)-4’-(6-amino-2-chloropurin-9-yl)-2’,3’-(dihydroxy)-1’-(phosphonomethylene)-bicyclo[3.1.0]hexane 4 and its homologue 9, both 5’-saturated, containing a 2-Cl substitution, improved echocardiography-derived fractional shortening (20.25% and 19.26%, respectively, versus 13.78% in controls), while unsaturated 5’-extended phosphonates, all 2-H analogues, and a CH3-phosphonate were inactive. Thus, chronic administration of nucleotidase-resistant phosphonates conferred a beneficial effect, likely via cardiac P2X receptor activation. Thus, we have greatly expanded the range of carbocyclic nucleotide analogues that represent potential candidates for the treatment of heart failure. PMID:20192270

  1. Differential inhibition of restriction enzyme cleavage by chromophore-modified analogues of the antitumour antibiotics mithramycin and chromomycin reveals structure-activity relationships.

    PubMed

    Mansilla, Sylvia; Garcia-Ferrer, Irene; Méndez, Carmen; Salas, José A; Portugal, José

    2010-05-15

    Differential cleavage at three restriction enzyme sites was used to determine the specific binding to DNA of the antitumour antibiotics mithramycin A (MTA), chromomycin A(3) (CRO) and six chromophore-modified analogues bearing shorter side chains attached at C-3, instead of the pentyl chain. All these antibiotics were obtained through combinatorial biosynthesis in the producer organisms. MTA, CRO and their six analogues showed differences in their capacity for inhibiting the rate of cleavage by restriction enzymes that recognize C/G-rich tracts. Changes in DNA melting temperature produced by these molecules were also analyzed, as well as their antiproliferative activities against a panel of colon, ovarian and prostate human carcinoma cell lines. Moreover, the cellular uptake of several analogues was examined to identify whether intracellular retention was related to cytotoxicity. These experimental approaches provided mutually consistent evidence of a seeming correlation between the strength of binding to DNA and the antiproliferative activity of the chromophore-modified molecules. Four of the analogues (mithramycin SK, mithramycin SDK, chromomycin SK and chromomycin SDK) showed promising biological profiles. PMID:20093108

  2. Key Role of Rutile Structure for Layered Magnetism in Chromium Compounds

    NASA Astrophysics Data System (ADS)

    Kondo, Yasuhiro; Hotta, Takashi

    CrCl2 and CrF2 with the distorted Rutile-type crystal structure are known to exhibit different antiferromagnetic (AF) structures at low temperatures. CrF2 has a simple N_eel structure in common with other uorides, whereas CrCl2 exhibits a characteristic layered AF structure. We provide a simple scenario to understand the emergence of such layered AF structure on the basis of an orbital degenerate double-exchange model on the Rutile-type structure lattice.

  3. Analogue modeling of 3-D structural segmentation in fold-and-thrust belts: interactions between frictional and viscous provinces in foreland basins

    NASA Astrophysics Data System (ADS)

    Borderie, Sandra; Graveleau, Fabien; Witt, César; Vendeville, Bruno C.

    2016-04-01

    Accretionary wedges are generally segmented both across and along strike because of diverse factors including tectonic and stratigraphic inheritance. In fold-and-thrust belts, along-strike stratigraphic changes in the foreland sequence are classically observed and cause a curvature of the deformation front. Although the parameters controlling this curvature are well documented, the structural interactions and mutual influences between adjacent provinces are much less analyzed. To investigate this question, we deformed analogue models in a compressional box equipped with digital cameras and a topographic measurement apparatus. Models where shortened above a basal frictional detachment (glass microbeads) and segmentation was tested by having a region in which we added an interbedded viscous level (silicone polymer) within the sedimentary cover (dry sand). By changing the number (2 or 3) and the relative width of the purely frictional and viscous provinces, our goal was to characterize geometrically and kinematically the interactions between the viscous and the purely frictional provinces. We used a commercial geomodeller to generate 3-D geometrical models. The results indicate that regardless of the relative width of the purely frictional vs. viscous provinces, the deformation style in the frictional province is not influenced by the presence of the adjacent viscous province. On the contrary, the structural style and the deformation kinematics in the viscous province is significantly impacted by the presence or absence of an adjacent purely frictional province. At first order, the deformation style in the viscous province depends on its width, and three structural styles can be defined along strike. Far from the frictional area, structures are primarily of salt-massif type, and they do not seem to be influenced by the frictional wedge province. Towards the frictional province, deformation changes gradually to a zone of purely forethrusts (foreland verging), and

  4. Impact melt-bearing breccias of the Mistastin Lake impact structure: A unique planetary analogue for ground-truthing proximal ejecta emplacement

    NASA Astrophysics Data System (ADS)

    Mader, M. M.; Osinski, G. R.

    2013-12-01

    Impact craters are the dominant geological landform on rocky planetary surfaces; however, relationships between specific craters and their ejecta are typically poorly constrained. With limited planetary samples, scientists look to terrestrial craters as analogues. Impact ejecta is defined here as any target material, regardless of its physical state, that is transported beyond the rim of the transient cavity [1]. The original transient cavity reaches its maximum size during the excavation stage of crater formation, before rim collapse begins in the modification stage [2]. In complex craters, during the modification stage, rocks around the periphery of the bowl-shaped transient crater collapse downward and inward to form a series of terraces along the outer margin of the crater structure [3]. Proximal impact ejecta, can therefore be found on the terraces of the modified rim of a complex crater, interior to the final crater rim [1]. Although typically poorly preserved on Earth due to post-impact erosional processes, impact ejecta have been identified in the terraced rim region of the Mistastin Lake impact structure, located in northern Labrador, Canada (55°53'N; 63°18'W) [4]. The Mistastin Lake impact structure is an intermediate-size, complex crater (28 km apparent crater diameter) formed by a meteorite impact ~36 Ma in crystalline target rocks. The original crater has been differentially eroded; however, a terraced rim and distinct central uplift are still observed [5]. The inner portion of the structure is covered by the Mistastin Lake and the surrounding area is locally covered by soil/glacial deposits and vegetation. Locally, allochthonous impactites overlying fractured target rocks are exposed along the lakeshore and along banks of radially cutting streams. They define a consistent stratigraphy, including, from bottom to top: monomict, lithic breccias, allochthonous polymict lithic breccias, and allochthonous impact melt rocks. Mistastin impact breccias range

  5. Synthesis and Cytoxicity of Sempervirine and Analogues.

    PubMed

    Pan, Xiaohong; Yang, Chunying; Cleveland, John L; Bannister, Thomas D

    2016-03-01

    Sempervirine and analogues were synthesized using a route featuring Sonogashira and Larock Pd-catalyzed reactions. Structure-activity relationships were investigated using three human cancer cell lines. 10-Fluorosempervirine is the most potently cytotoxic member of the family yet described. PMID:26828413

  6. Solanapyrone analogues from a Hawaiian fungicolous fungus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four new solanayrone analogues (solanapyrones J-M; 1-4) have been isolated from an unidentified fungicolous fungus collected in Hawaii. The structures and relative configurations of these compounds were determined by analysis of ID NMR, 2D NMR, and MS data. Solanapyrone J(1) showed antifungal acti...

  7. Soil Surface Structure: A key factor for the degree of soil water repellency

    NASA Astrophysics Data System (ADS)

    Ahn, S.; Doerr, S. H.; Douglas, P.; Bryant, R.; Hamlett, C.; McHale, G.; Newton, M.; Shirtcliffe, N.

    2012-04-01

    Despite of considerable efforts, the degree of water repellency has not always been fully explained by chemical property of soil (termed hydrophobicity). That might be because the structure of a soil surface was not considered properly, which is another main factor determining the severity of soil water repellency. Surface structure has only recently been considered in soil science, whilst it has been paid attention for several decades in materials science due to its relevance to industrial applications. In this contribution, comparison of critical contact angles measured on different surface structures (made with glass beads, glass shards and beach sands) is presented and the effect of surface structure on manifestation of soil water repellency is discussed in terms of several different variables such as the individual particles shape, and areal and structural factors of the actual surface.

  8. Structure-guided design and biosynthesis of a novel FR-900098 analogue as a potent Plasmodium falciparum 1-deoxy-D-xylulose-5-phosphate reductoisomerase (Dxr) inhibitor

    PubMed Central

    Cobb, Ryan E.; Bae, Brian; Li, Zhi; DeSieno, Matthew A.; Nair, Satish K.; Zhao, Huimin

    2015-01-01

    We report here the enzymatic biosynthesis of FR-900098 analogues and establish an in vivo platform for the biosynthesis of N-propionyl derivative FR-900098P. FR-900098P is found to be a significantly more potent inhibitor of Plasmodium falciparum 1-deoxy-d-xylulose 5-phosphate reductoisomerase (PfDxr) than the parent compound, and thus a more promising antimalarial drug candidate. PMID:25567100

  9. Structure-guided design and biosynthesis of a novel FR-900098 analogue as a potent Plasmodium falciparum 1-deoxy-D-xylulose-5-phosphate reductoisomerase (Dxr) inhibitor.

    PubMed

    Cobb, Ryan E; Bae, Brian; Li, Zhi; DeSieno, Matthew A; Nair, Satish K; Zhao, Huimin

    2015-02-14

    We report here the enzymatic biosynthesis of FR-900098 analogues and establish an in vivo platform for the biosynthesis of an N-propionyl derivative FR-900098P. FR-900098P is found to be a significantly more potent inhibitor of Plasmodium falciparum 1-deoxy-D-xylulose 5-phosphate reductoisomerase (PfDxr) than the parent compound, and thus a more promising antimalarial drug candidate. PMID:25567100

  10. Key parameters governing the dynamic response of long-period structures

    NASA Astrophysics Data System (ADS)

    Fukuwa, N.; Tobita, J.

    2008-04-01

    The present study describes the important factors (period, duration, and intensity) involved in evaluating input ground motion and structural response for the design of long-period structures such as high-rise buildings and base-isolated buildings. First, the fundamental dynamic properties of high-rise buildings are explained based on the results of newly introduced vibration observations programs. Next, the distribution of the predominant period and duration of seismic ground motion within the Nobi Plain, one of the largest sedimentary plains in Japan, is discussed with respect to the possibility of resonance of long-period structures. Finally, we introduce a recently developed long-stroke shaking table that is intended to convince structural engineers and building owners to take adequate countermeasures against large floor response in high-rise buildings because of resonance.

  11. Particle trapping: A key requisite of structure formation and stability of Vlasov–Poisson plasmas

    SciTech Connect

    Schamel, Hans

    2015-04-15

    Particle trapping is shown to control the existence of undamped coherent structures in Vlasov–Poisson plasmas and thereby affects the onset of plasma instability beyond the realm of linear Landau theory.

  12. RNA structure is a key regulatory element in pathological ATM and CFTR pseudoexon inclusion events

    PubMed Central

    Buratti, Emanuele; Dhir, Ashish; Lewandowska, Marzena A.; Baralle, Francisco E.

    2007-01-01

    Genomic variations deep in the intronic regions of pre-mRNA molecules are increasingly reported to affect splicing events. However, there is no general explanation why apparently similar variations may have either no effect on splicing or cause significant splicing alterations. In this work we have examined the structural architecture of pseudoexons previously described in ATM and CFTR patients. The ATM case derives from the deletion of a repressor element and is characterized by an aberrant 5′ss selection despite the presence of better alternatives. The CFTR pseudoexon instead derives from the creation of a new 5′ss that is used while a nearby pre-existing donor-like sequence is never selected. Our results indicate that RNA structure is a major splicing regulatory factor in both cases. Furthermore, manipulation of the original RNA structures can lead to pseudoexon inclusion following the exposure of unused 5′ss already present in their wild-type intronic sequences and prevented to be recognized because of their location in RNA stem structures. Our data show that intrinsic structural features of introns must be taken into account to understand the mechanism of pseudoexon activation in genetic diseases. Our observations may help to improve diagnostics prediction programmes and eventual therapeutic targeting. PMID:17580311

  13. Miniaturized supercapacitors: key materials and structures towards autonomous and sustainable devices and systems

    NASA Astrophysics Data System (ADS)

    Soavi, Francesca; Bettini, Luca Giacomo; Piseri, Paolo; Milani, Paolo; Santoro, Carlo; Atanassov, Plamen; Arbizzani, Catia

    2016-09-01

    Supercapacitors (SCs) are playing a key role for the development of self-powered and self-sustaining integrated systems for different fields ranging from remote sensing, robotics and medical devices. SC miniaturization and integration into more complex systems that include energy harvesters and functional devices are valuable strategies that address system autonomy. Here, we discuss about novel SC fabrication and integration approaches. Specifically, we report about the results of interdisciplinary activities on the development of thin, flexible SCs by an additive technology based on Supersonic Cluster Beam Deposition (SCBD) to be implemented into supercapacitive electrolyte gated transistors and supercapacitive microbial fuel cells. Such systems integrate at materials level the specific functions of devices, like electric switch or energy harvesting with the reversible energy storage capability. These studies might open new frontiers for the development and application of new multifunction-energy storage elements.

  14. Evaporation of water droplets on "lock-and-key" structures with nanoscale features.

    PubMed

    Zhu, Xiaolong; Zhang, Chi; Liu, Xiaohan; Hansen, Ole; Xiao, Sanshui; Mortensen, N A; Zi, Jian

    2012-06-26

    Highly ordered poly(dimethylsiloxane) microbowl arrays (MBAs) and microcap arrays (MCAs) with "lock-and-key" properties are successfully fabricated by self-assembly and electrochemical deposition. The wetting properties and evaporation dynamics of water droplets for both cases have been investigated. For the MBAs case, the wetting radius of the droplets remains unchanged until the portion of the droplet completely dries out at the end of the evaporation process. The pinning state extends for more than 99.5% of the total evaporation time, and the pinning-shrinking transition is essentially prevented whereas in the case of the MCAs the contact radius exhibits distinct stages during evaporation and the contact line retreats significantly in the middle of the evaporation process. We explain the phenomenon by a qualitative energy balance argument based on the different shrinkage types of the nanoscale-folded contact line. PMID:22662879

  15. Millennial climatic fluctuations are key to the structure of last glacial ecosystems.

    PubMed

    Huntley, Brian; Allen, Judy R M; Collingham, Yvonne C; Hickler, Thomas; Lister, Adrian M; Singarayer, Joy; Stuart, Anthony J; Sykes, Martin T; Valdes, Paul J

    2013-01-01

    Whereas fossil evidence indicates extensive treeless vegetation and diverse grazing megafauna in Europe and northern Asia during the last glacial, experiments combining vegetation models and climate models have to-date simulated widespread persistence of trees. Resolving this conflict is key to understanding both last glacial ecosystems and extinction of most of the mega-herbivores. Using a dynamic vegetation model (DVM) we explored the implications of the differing climatic conditions generated by a general circulation model (GCM) in "normal" and "hosing" experiments. Whilst the former approximate interstadial conditions, the latter, designed to mimic Heinrich Events, approximate stadial conditions. The "hosing" experiments gave simulated European vegetation much closer in composition to that inferred from fossil evidence than did the "normal" experiments. Given the short duration of interstadials, and the rate at which forest cover expanded during the late-glacial and early Holocene, our results demonstrate the importance of millennial variability in determining the character of last glacial ecosystems. PMID:23613985

  16. Molecular, Cellular, and Structural Mechanisms of Cocaine Addiction: A Key Role for MicroRNAs

    PubMed Central

    Jonkman, Sietse; Kenny, Paul J

    2013-01-01

    The rewarding properties of cocaine play a key role in establishing and maintaining the drug-taking habit. However, as exposure to cocaine increases, drug use can transition from controlled to compulsive. Importantly, very little is known about the neurobiological mechanisms that control this switch in drug use that defines addiction. MicroRNAs (miRNAs) are small non-protein coding RNA transcripts that can regulate the expression of messenger RNAs that code for proteins. Because of their highly pleiotropic nature, each miRNA has the potential to regulate hundreds or even thousands of protein-coding RNA transcripts. This property of miRNAs has generated considerable interest in their potential involvement in complex psychiatric disorders such as addiction, as each miRNA could potentially influence the many different molecular and cellular adaptations that arise in response to drug use that are hypothesized to drive the emergence of addiction. Here, we review recent evidence supporting a key role for miRNAs in the ventral striatum in regulating the rewarding and reinforcing properties of cocaine in animals with limited exposure to the drug. Moreover, we discuss evidence suggesting that miRNAs in the dorsal striatum control the escalation of drug intake in rats with extended cocaine access. These findings highlight the central role for miRNAs in drug-induced neuroplasticity in brain reward systems that drive the emergence of compulsive-like drug use in animals, and suggest that a better understanding of how miRNAs control drug intake will provide new insights into the neurobiology of drug addiction. PMID:22968819

  17. The Genomic Threading Database: a comprehensive resource for structural annotations of the genomes from key organisms.

    PubMed

    McGuffin, Liam J; Street, Stefano A; Bryson, Kevin; Sørensen, Søren-Aksel; Jones, David T

    2004-01-01

    Currently, the Genomic Threading Database (GTD) contains structural assignments for the proteins encoded within the genomes of nine eukaryotes and 101 prokaryotes. Structural annotations are carried out using a modified version of GenTHREADER, a reliable fold recognition method. The Gen THREADER annotation jobs are distributed across multiple clusters of processors using grid technology and the predictions are deposited in a relational database accessible via a web interface at http://bioinf.cs.ucl.ac.uk/GTD. Using this system, up to 84% of proteins encoded within a genome can be confidently assigned to known folds with 72% of the residues aligned. On average in the GTD, 64% of proteins encoded within a genome are confidently assigned to known folds and 58% of the residues are aligned to structures. PMID:14681393

  18. Insights into the DNA stabilizing contributions of a bicyclic cytosine analogue: crystal structures of DNA duplexes containing 7,8-dihydropyrido [2,3-d]pyrimidin-2-one

    PubMed Central

    Magat Juan, Ella Czarina; Shimizu, Satoru; Ma, Xiao; Kurose, Taizo; Haraguchi, Tsuyoshi; Zhang, Fang; Tsunoda, Masaru; Ohkubo, Akihiro; Sekine, Mitsuo; Shibata, Takayuki; Millington, Christopher L.; Williams, David M.; Takénaka, Akio

    2010-01-01

    The incorporation of the bicyclic cytosine analogue 7,8-dihydropyrido[2,3-d]pyrimidin-2-one (X) into DNA duplexes results in a significant enhancement of their stability (3–4 K per modification). To establish the effects of X on the local hydrogen-bonding and base stacking interactions and the overall DNA conformation, and to obtain insights into the correlation between the structure and stability of X-containing DNA duplexes, the crystal structures of [d(CGCGAATT-X-GCG)]2 and [d(CGCGAAT-X-CGCG)]2 have been determined at 1.9–2.9 Å resolutions. In all of the structures, the analogue X base pairs with the purine bases on the opposite strands through Watson–Crick and/or wobble type hydrogen bonds. The additional ring of the X base is stacked on the thymine bases at the 5′-side and overall exhibits greatly enhanced stacking interactions suggesting that this is a major contribution to duplex stabilization. PMID:20554855

  19. Structured-Exercise-Program (SEP): An Effective Training Approach to Key Healthcare Professionals

    ERIC Educational Resources Information Center

    Miazi, Mosharaf H.; Hossain, Taleb; Tiroyakgosi, C.

    2014-01-01

    Structured exercise program is an effective approach to technology dependent resource limited healthcare area for professional training. The result of a recently conducted data analysis revealed this. The aim of the study is to know the effectiveness of the applied approach that was designed to observe the level of adherence to newly adopted…

  20. Comparing Religious Education in Canadian and Australian Catholic High Schools: Identifying Some Key Structural Issues

    ERIC Educational Resources Information Center

    Rymarz, Richard

    2013-01-01

    Religious education (RE) in Catholic high schools in Australia and Canada is compared by examining some of the underlying structural factors that shape the delivery of RE. It is argued that in Canadian Catholic schools RE is diminished by three factors that distinguish it from the Australian experience. These are: the level and history of…

  1. Deciphering key features in protein structures with the new ENDscript server

    PubMed Central

    Robert, Xavier; Gouet, Patrice

    2014-01-01

    ENDscript 2 is a friendly Web server for extracting and rendering a comprehensive analysis of primary to quaternary protein structure information in an automated way. This major upgrade has been fully re-engineered to enhance speed, accuracy and usability with interactive 3D visualization. It takes advantage of the new version 3 of ESPript, our well-known sequence alignment renderer, improved to handle a large number of data with reduced computation time. From a single PDB entry or file, ENDscript produces high quality figures displaying multiple sequence alignment of proteins homologous to the query, colored according to residue conservation. Furthermore, the experimental secondary structure elements and a detailed set of relevant biophysical and structural data are depicted. All this information and more are now mapped on interactive 3D PyMOL representations. Thanks to its adaptive and rigorous algorithm, beginner to expert users can modify settings to fine-tune ENDscript to their needs. ENDscript has also been upgraded as an open platform for the visualization of multiple biochemical and structural data coming from external biotool Web servers, with both 2D and 3D representations. ENDscript 2 and ESPript 3 are freely available at http://endscript.ibcp.fr and http://espript.ibcp.fr, respectively. PMID:24753421

  2. Strong Nonadditivity as a Key Structure–Activity Relationship Feature: Distinguishing Structural Changes from Assay Artifacts

    PubMed Central

    2015-01-01

    Nonadditivity in protein–ligand affinity data represents highly instructive structure–activity relationship (SAR) features that indicate structural changes and have the potential to guide rational drug design. At the same time, nonadditivity is a challenge for both basic SAR analysis as well as many ligand-based data analysis techniques such as Free-Wilson Analysis and Matched Molecular Pair analysis, since linear substituent contribution models inherently assume additivity and thus do not work in such cases. While structural causes for nonadditivity have been analyzed anecdotally, no systematic approaches to interpret and use nonadditivity prospectively have been developed yet. In this contribution, we lay the statistical framework for systematic analysis of nonadditivity in a SAR series. First, we develop a general metric to quantify nonadditivity. Then, we demonstrate the non-negligible impact of experimental uncertainty that creates apparent nonadditivity, and we introduce techniques to handle experimental uncertainty. Finally, we analyze public SAR data sets for strong nonadditivity and use recourse to the original publications and available X-ray structures to find structural explanations for the nonadditivity observed. We find that all cases of strong nonadditivity (ΔΔpKi and ΔΔpIC50 > 2.0 log units) with sufficient structural information to generate reasonable hypothesis involve changes in binding mode. With the appropriate statistical basis, nonadditivity analysis offers a variety of new attempts for various areas in computer-aided drug design, including the validation of scoring functions and free energy perturbation approaches, binding pocket classification, and novel features in SAR analysis tools. PMID:25760829

  3. Synthesis and biological evaluation of novel FK228 analogues as potential isoform selective HDAC inhibitors.

    PubMed

    Narita, Koichi; Matsuhara, Keisuke; Itoh, Jun; Akiyama, Yui; Dan, Singo; Yamori, Takao; Ito, Akihiro; Yoshida, Minoru; Katoh, Tadashi

    2016-10-01

    Novel C4- and C7-modified FK228 analogues were efficiently synthesized in a highly convergent and unified manner. This synthesis features the amide condensation of glycine-d-cysteine-containing segments with d-valine-containing segments for the direct assembly of the corresponding seco-acids, which are key precursors of macrolactones. The HDAC inhibition assay and cell-growth inhibition analysis of the synthesized analogues revealed novel aspects of their structure-activity relationship. This study demonstrated that simple modification at the C4 and C7 side chains in FK228 is effective for improving both HDAC inhibitory activity and isoform selectivity; moreover, potent and highly isoform-selective class I HDAC1 inhibitors were identified. PMID:27318982

  4. Design and synthesis of novel arctigenin analogues for the amelioration of metabolic disorders.

    PubMed

    Duan, Shudong; Huang, Suling; Gong, Jian; Shen, Yu; Zeng, Limin; Feng, Ying; Ren, Wenming; Leng, Ying; Hu, Youhong

    2015-04-01

    Analogues of the natural product (-)-arctigenin, an activator of adenosine monophosphate activated protein kinase, were prepared in order to evaluate their effects on 2-deoxyglucose uptake in L6 myotubes and possible use in ameliorating metabolic disorders. Racemic arctigenin 2a was found to display a similar uptake enhancement as does (-)-arctigenin. As a result, the SAR study was conducted utilizing racemic compounds. The structure-activity relationship study led to the discovery of key substitution patterns on the lactone motif that govern 2-deoxyglucose uptake activities. The results show that replacement of the para-hydroxyl group of the C-2 benzyl moiety of arctigenin by Cl has a pronounced effect on uptake activity. Specifically, analogue 2p, which contains the p-Cl substituent, stimulates glucose uptake and fatty acid oxidation in L6 myotubes. PMID:25941553

  5. Development of new mitomycin C and porfiromycin analogues.

    PubMed

    Iyengar, B S; Lin, H J; Cheng, L; Remers, W A; Bradner, W T

    1981-08-01

    New mitomycin C and porfiromycin analogues were prepared by treating mitomycin A and N-methylmitomycin A with a variety of amines, including aziridines, allylamines, propargylamines, chloroalkylamines, hydroxyalkylamines, glycine derivatives, aralkylamines, and heterocyclic amines. All analogues were evaluated against P-388 murine leukemia and selected ones were examined for their leukopenic properties. Certain analogues were found to be superior to mitomycin C in potency, efficacy, and therapeutic ratio in the P-388 assay. The most active substituents at the mitosane 7 position included aziridine, 2-methylaziridine, propargylamine, furfurylamine, methyl glycinate, and 3-aminopyridine. Mitomycin A and the 7-aziridino, 7-(2-methylaziridino), and 3-aminopyridine analogues were less leukopenic than mitomycin C. Certain other analogues, including propargylamino and methyl glycinate, were highly leukopenic. The three compounds tested against B-16 melanoma in mice were significantly more effective than mitomycin C in this assay. Previously established structure--activity relationships were found inadequate to account for all of the new data. PMID:7328599

  6. Synthesis and biological activity of tetralone abscisic acid analogues.

    PubMed

    Nyangulu, James M; Nelson, Ken M; Rose, Patricia A; Gai, Yuanzhu; Loewen, Mary; Lougheed, Brenda; Quail, J Wilson; Cutler, Adrian J; Abrams, Suzanne R

    2006-04-01

    Bicyclic analogues of the plant hormone abscisic acid (ABA) were designed to incorporate the structural elements and functional groups of the parent molecule that are required for biological activity. The resulting tetralone analogues were predicted to have enhanced biological activity in plants, in part because oxidized products would not cyclize to forms corresponding to the inactive catabolite phaseic acid. The tetralone analogues were synthesized in seven steps from 1-tetralone and a range of analogues were accessible through a second route starting with 2-methyl-1-naphthol. Tetralone ABA 8 was found to have greater activity than ABA in two bioassays. The absolute configuration of (+)-8 was established by X-ray crystallography of a RAMP hydrazone derivative. The hydroxymethyl compounds 10 and 11, analogues for studying the roles of 8- and 9-hydroxy ABA 3 and 6, were also synthesized and found to be active. PMID:16557330

  7. Key structure-activity relationships in the vanadium phosphorus oxide catalyst system

    SciTech Connect

    Thompson, M.R. ); Ebner, J.R. )

    1990-04-01

    The crystal structure of vanadyl pyrophosphate has been redetermined using single crystals obtained from a near solidified melt of a microcrystalline catalyst sample. Crystals that index as vanadyl pyrophosphate obtained from this melt are variable in color. Crystallographic refinement of the single crystal x-ray diffraction data indicates that structural differences among these materials can be described in terms of crystal defects associated with linear disorder of the vanadium atoms. The importance of the disorder is outlined in the context of its effect on the proposed surface topology parallel to (1,0,0). Models of the surface topology simply and intuitively account for the non-stoichometric surface atomic P/V ratio exhibited by selective catalysts of this phase. These models also point to the possible role of the excess phosphorus in providing site isolation of reactive centers at the surface. 33 refs., 7 figs.

  8. Millennial Climatic Fluctuations Are Key to the Structure of Last Glacial Ecosystems

    PubMed Central

    Huntley, Brian; Allen, Judy R. M.; Collingham, Yvonne C.; Hickler, Thomas; Lister, Adrian M.; Singarayer, Joy; Stuart, Anthony J.; Sykes, Martin T.; Valdes, Paul J.

    2013-01-01

    Whereas fossil evidence indicates extensive treeless vegetation and diverse grazing megafauna in Europe and northern Asia during the last glacial, experiments combining vegetation models and climate models have to-date simulated widespread persistence of trees. Resolving this conflict is key to understanding both last glacial ecosystems and extinction of most of the mega-herbivores. Using a dynamic vegetation model (DVM) we explored the implications of the differing climatic conditions generated by a general circulation model (GCM) in “normal” and “hosing” experiments. Whilst the former approximate interstadial conditions, the latter, designed to mimic Heinrich Events, approximate stadial conditions. The “hosing” experiments gave simulated European vegetation much closer in composition to that inferred from fossil evidence than did the “normal” experiments. Given the short duration of interstadials, and the rate at which forest cover expanded during the late-glacial and early Holocene, our results demonstrate the importance of millennial variability in determining the character of last glacial ecosystems. PMID:23613985

  9. Adjoint-tomography Inversion of the Small-scale Surface Sedimentary Structures: Key Methodological Aspects

    NASA Astrophysics Data System (ADS)

    Kubina, Filip; Moczo, Peter; Kristek, Jozef; Michlik, Filip

    2016-04-01

    Adjoint tomography has proven an irreplaceable useful tool in exploring Earth's structure in the regional and global scales. It has not been widely applied for improving models of local surface sedimentary structures (LSSS) in numerical predictions of earthquake ground motion (EGM). Anomalous earthquake motions and corresponding damage in earthquakes are often due to site effects in local surface sedimentary basins. Because majority of world population is located atop surface sedimentary basins, it is important to predict EGM at these sites during future earthquakes. A major lesson learned from dedicated international tests focused on numerical prediction of EGM in LSSS is that it is hard to reach better agreement between data and synthetics without an improved structural model. If earthquake records are available for sites atop a LSSS it is natural to consider them for improving the structural model. Computationally efficient adjoint tomography might be a proper tool. A seismic wavefield in LSSS is relatively very complex due to diffractions, conversions, interference and often also resonant phenomena. In shallow basins, the first arrivals are not suitable for inversion due to almost vertical incidence and thus insufficient vertical resolution. Later wavefield consists mostly of local surface waves often without separated wave groups. Consequently, computed kernels are complicated and not suitable for inversion without pre-processing. The spatial complexity of a kernel can be dramatic in a typical situation with relatively low number of sources (local earthquakes) and surface receivers. This complexity can be simplified by directionally-dependent smoothing and spatially-dependent normalization that condition reasonable convergence. A multiscale approach seems necessary given the usual difference between the available and true models. Interestingly, only a successive inversion of μ and λ elastic moduli, and different scale sequences lead to good results.

  10. A Gallium-Substituted Distibene and an Antimony-Analogue Bicyclo[1.1.0]butane: Synthesis and Solid-State Structures.

    PubMed

    Tuscher, Lars; Ganesamoorthy, Chelladurai; Bläser, Dieter; Wölper, Christoph; Schulz, Stephan

    2015-09-01

    RGa {R=HC[C(Me)N(2,6-iPr2C6H3)]2} reacts with Sb(NMe2)3 with insertion into the Sb-N bond and elimination of RGa(NMe2)2 (2), yielding the Ga-substituted distibene R(Me2N)GaSb=SbGa(NMe2 )R (1). Thermolysis of 1 proceeded with elimination of RGa and 2 and subsequent formation of the bicyclo[1.1.0]butane analogue [R(Me2N)Ga]2Sb4 (3). PMID:26248643

  11. Laboratory study of cometary analogues

    NASA Astrophysics Data System (ADS)

    Colangeli, L.; Brucato, J.; Mennella, V.; Palumbo, P.

    In situ exploration (e.g., GIOTTO mission) and astronomical observations (e.g., ISO) of comets have provided fundamental information about the structure, chemistry and physical properties of materials present in such primordial bodies of the Solar System. Moreover, it is known that cosmic materials evolve, depending on the efficiency of active processes (e.g., thermal annealing, UV irradiation, ion bombardment, gassolid interactions) in different space environments. Thus, the properties of cometary constituents must be considered in a wider perspective, including cosmic dust formation around cold stars and evolution in the interstellar medium until the formation of proto-planetary nebulae. In this scenario, laboratory experiments provide important hints to clarify the status of cometary compounds. The laboratory work is aimed at both reproducing material properties and at simulating their evolution based on the most effective mechanisms active in space. Several techniques are used to synthesise "analogues" of cometary compounds with controlled chemical and physical characteristics. The study of optical properties, complemented by other analytical techniques, is applied to investigate the products of synthesis in the experiments. The monitoring of the effects produced by processing methods, similar to those active in space, provides information both on the reactivity of materials and on the efficiency of treatments. Such an approach is able to provide quantitative information on chemical and structural modifications produced on organic and refractory materials. The comparison of laboratory results with data coming from space observations and in situ measurements provides a powerful tool to understand the real nature of comets and to place constraints on formation and evolution pathways. The laboratory experiments on analogues gain even more relevance as a sort of training in the future perspective of analysing cometary samples returned to Earth by space missions (e

  12. Synthesis and Biological Evaluation of Manassantin Analogues for Hypoxia-Inducible Factor 1α Inhibition

    PubMed Central

    2015-01-01

    To cope with hypoxia, tumor cells have developed a number of adaptive mechanisms mediated by hypoxia-inducible factor 1 (HIF-1) to promote angiogenesis and cell survival. Due to significant roles of HIF-1 in the initiation, progression, metastasis, and resistance to treatment of most solid tumors, a considerable amount of effort has been made to identify HIF-1 inhibitors for treatment of cancer. Isolated from Saururus cernuus, manassantins A (1) and B (2) are potent inhibitors of HIF-1 activity. To define the structural requirements of manassantins for HIF-1 inhibition, we prepared and evaluated a series of manassantin analogues. Our SAR studies examined key regions of manassantin’s structure in order to understand the impact of these regions on biological activity and to define modifications that can lead to improved performance and drug-like properties. Our efforts identified several manassantin analogues with reduced structural complexity as potential lead compounds for further development. Analogues MA04, MA07, and MA11 down-regulated hypoxia-induced expression of the HIF-1α protein and reduced the levels of HIF-1 target genes, including cyclin-dependent kinase 6 (Cdk6) and vascular endothelial growth factor (VEGF). These findings provide an important framework to design potent and selective HIF-1α inhibitors, which is necessary to aid translation of manassantin-derived natural products to the clinic as novel therapeutics for cancers. PMID:26394152

  13. Structural Insights into Maize Viviparous14, a Key Enzyme in the Biosynthesis of the Phytohormone Abscisic Acid

    SciTech Connect

    Messing, Simon A.J.; Gabelli, Sandra B.; Echeverria, Ignacia; Vogel, Jonathan T.; Guan, Jiahn Chou; Tan, Bao Cai; Klee, Harry J.; McCarty, Donald R.; Amzel, L. Mario

    2011-09-06

    The key regulatory step in the biosynthesis of abscisic acid (ABA), a hormone central to the regulation of several important processes in plants, is the oxidative cleavage of the 11,12 double bond of a 9-cis-epoxycarotenoid. The enzyme viviparous14 (VP14) performs this cleavage in maize (Zea mays), making it a target for the rational design of novel chemical agents and genetic modifications that improve plant behavior through the modulation of ABA levels. The structure of VP14, determined to 3.2-{angstrom} resolution, provides both insight into the determinants of regio- and stereospecificity of this enzyme and suggests a possible mechanism for oxidative cleavage. Furthermore, mutagenesis of the distantly related CCD1 of maize shows how the VP14 structure represents a template for all plant carotenoid cleavage dioxygenases (CCDs). In addition, the structure suggests how VP14 associates with the membrane as a way of gaining access to its membrane soluble substrate.

  14. Structural Insights into Maize Viviparous14, a Key Enzyme in the Biosynthesis of the Phytohormone Abscisic Acid W

    SciTech Connect

    Messing, S.; Gabelli, S; Echeverria, I; Vogel, J; Guan, J; Tan, B; Klee, H; McCarty, D; Amzela, M

    2010-01-01

    The key regulatory step in the biosynthesis of abscisic acid (ABA), a hormone central to the regulation of several important processes in plants, is the oxidative cleavage of the 11,12 double bond of a 9-cis-epoxycarotenoid. The enzyme viviparous14 (VP14) performs this cleavage in maize (Zea mays), making it a target for the rational design of novel chemical agents and genetic modifications that improve plant behavior through the modulation of ABA levels. The structure of VP14, determined to 3.2-{angstrom} resolution, provides both insight into the determinants of regio- and stereospecificity of this enzyme and suggests a possible mechanism for oxidative cleavage. Furthermore, mutagenesis of the distantly related CCD1 of maize shows how the VP14 structure represents a template for all plant carotenoid cleavage dioxygenases (CCDs). In addition, the structure suggests how VP14 associates with the membrane as a way of gaining access to its membrane soluble substrate.

  15. The current structure of key actors involved in research on land and soil degradation

    NASA Astrophysics Data System (ADS)

    Escadafal, Richard; Barbero, Celia; Exbrayat, Williams; Marques, Maria Jose; Ruiz, Manuel; El Haddadi, Anass; Akhtar-Schuster, Mariam

    2013-04-01

    Land and soil conservation topics, the final mandate of the United Convention to Combat desertification in drylands, have been diagnosed as still suffering from a lack of guidance. On the contrary, climate change and biodiversity issues -the other two big subjects of the Rio Conventions- seem to progress and may benefit from the advice of international panels. Arguably the weakness of policy measures and hence the application of scientific knowledge by land users and stakeholders could be the expression of an inadequate research organization and a lack of ability to channel their findings. In order to better understand the size, breadth and depth of the scientific communities involved in providing advice to this convention and to other bodies, this study explores the corpus of international publications dealing with land and/or with soils. A database of several thousands records including a significant part of the literature published so far was performed using the Web of Science and other socio-economic databases such as FRANCIS and CAIRN. We extracted hidden information using bibliometric methods and data mining applied to these scientific publications to map the key actors (laboratories, teams, institutions) involved in research on land and on soils. Several filters were applied to the databases in combination with the word "desertification". The further use of Tetralogie software merges databases, analyses similarities and differences between keywords, disciplines, authors and regions and identifies obvious clusters. Assessing their commonalities and differences, the visualisation of links and gaps between scientists, organisations, policymakers and other stakeholders is possible. The interpretation of the 'clouds' of disciplines, keywords, and techniques will enhance the understanding of interconnections between them; ultimately this will allow diagnosing some of their strengths and weaknesses. This may help explain why land and soil degradation remains a

  16. Utilizing a Key Aptamer Structure-Switching Mechanism for the Ultrahigh Frequency Detection of Cocaine.

    PubMed

    Neves, Miguel A D; Blaszykowski, Christophe; Thompson, Michael

    2016-03-15

    Aptasensing of small molecules remains a challenge as detection often requires the use of labels or signal amplification methodologies, resulting in both difficult-to-prepare sensor platforms and multistep, complex assays. Furthermore, many aptasensors rely on the binding mechanism or structural changes associated with target capture by the aptameric probe, resulting in a detection scheme customized to each aptamer. It is in this context that we report herein a sensitive cocaine aptasensor that offers both real-time and label-free measurement capabilities. Detection relies on the electromagnetic piezoelectric acoustic sensor (EMPAS) platform. The sensing interface consists of a S-(11-trichlorosilyl-undecanyl)benzenethiosulfonate (BTS) adlayer-coated quartz disc onto which a structure-switching cocaine aptamer (MN6) is immobilized, completing the preparation of the MN6 cocaine aptasensor (M6CA). The EMPAS system has recently been employed as the foundation of a cocaine aptasensor based on a structurally rigid cocaine aptamer variant (MN4), an aptasensor referred to by analogy as M4CA. M6CA represents a significant increase in terms of analytical performance, compared to not only M4CA but also other cocaine aptamer-based sensors that do not rely on signal amplification, producing an apparent K(d) of 27 ± 6 μM and a 0.3 μM detection limit. Remarkably, the latter is in the range of that achieved by cocaine aptasensors relying on signal amplification. Furthermore, M6CA proved to be capable not only of regaining its cocaine-binding ability via simple buffer flow over the sensing interface (i.e., without the necessity to implement an additional regeneration step, such as in the case of M4CA), but also of detecting cocaine in a multicomponent matrix possessing potentially assay-interfering species. Finally, through observation of the distinct shape of its response profiles to cocaine injection, demonstration was made that the EMPAS system in practice offers the

  17. Key Role of the Cation Interstitial Structure in the Radiation Resistance of Pyrochlores

    SciTech Connect

    Chartier, Alain; Catillon, Gilles; Crocombette, Jean-Paul

    2009-04-17

    The annealing of the B cation interstitial is shown to drive the thermokinetic of the response to irradiations of A{sub 2}B{sub 2}O{sub 7} pyrochlores. Molecular dynamics simulations evidenced that the annealing of interstitials created by irradiations depends upon the nature of B. As the coordination number of B decreases, the dumbbell interstitial is stabilized at the expense of the isolated interstitial. Unlike the isolated interstitials, the recombination of the dumbbells is thermally activated and hindered at low temperatures. The occurrence of dumbbells drives the structure towards the amorphous state.

  18. John T. Edsall: his key role in the determination of the structure of proteins.

    PubMed

    Low, Barbara W

    2003-01-01

    A letter, written in 1947 by John Edsall, outlined a declared intent to set up an X-ray crystallographic laboratory devoted to the study of crystalline heavy atom derivatives of proteins in an attempt to learn more about their structure. The fundamental idea, to the recipient (B.W.L.) totally new, revolutionary, and wholly contrary to all learned certainties, led to a correspondence, presented here in excerpt. Detailed plans were made for the laboratory to be built in the Department of Physical Chemistry at the Harvard Medical School. The proteins to be studied were reviewed and debated. The work of the laboratory is briefly described. Lack of success, the fatal consequence of a then unknown feature of the protein first chosen for study, is now only recently understood. The history of the Edsall idea and initiative is explored, from its beginnings to its acceptance and exploitation. John Edsall is here recognized as prime proponent and developer of the fundamental idea behind the most powerful and, for more than three decades, the only successful approach to the determination of protein structure. PMID:12646349

  19. Structural insights into key sites of vulnerability on HIV-1 Env and influenza HA.

    PubMed

    Julien, Jean-Philippe; Lee, Peter S; Wilson, Ian A

    2012-11-01

    Human immunodeficiency virus-1 (HIV-1) envelope protein (Env) and influenza hemagglutinin (HA) are the surface glycoproteins responsible for viral entry into host cells, the first step in the virus life cycle necessary to initiate infection. These glycoproteins exhibit a high degree of sequence variability and glycosylation, which are used as strategies to escape host immune responses. Nonetheless, antibodies with broadly neutralizing activity against these viruses have been isolated that have managed to overcome these barriers. Here, we review recent advances in the structural characterization of these antibodies with their viral antigens that defines a few sites of vulnerability on these viral spikes. These broadly neutralizing antibodies tend to focus their recognition on the sites of similar function between the two viruses: the receptor-binding site and membrane fusion machinery. However, some sites of recognition are unique to the virus neutralized, such as the dense shield of oligomannose carbohydrates on HIV-1 Env. These observations are discussed in the context of structure-based design strategies to aid in vaccine design or development of antivirals. PMID:23046130

  20. Key Structural Motifs To Predict the Cage Topology in Endohedral Metallofullerenes.

    PubMed

    Wang, Yang; Díaz-Tendero, Sergio; Martín, Fernando; Alcamí, Manuel

    2016-02-10

    We show that the relative isomer stability of fullerene anions is essentially governed by a few simple structural motifs, requiring only the connectivity information between atoms. Relative energies of a large number of isomers of fullerene anions, C(2n)(q) (2n = 68-104; q = -2, -4, -6), can be satisfactorily reproduced by merely counting the numbers of seven kinds of hexagon-based motifs. The dependence of stability on these motifs varies with the charge state, which reflects the fact that the isomeric form of the carbon cage in endohedral metallofullerenes (EMFs) often differs from that in neutral empty fullerenes. The chemical origin of the stabilization differences between motifs is discussed on the basis of electronic and strain effects as well as aromaticity. On the basis of this simple model, the extraordinary abundance of the icosahedral C80 cage in EMFs can be easily understood. We also provide an explanation for why the well-known isolated pentagon rule is often violated in smaller EMFs. Finally, simple topological indices are proposed for quantitatively predicting the relative stability of fullerene anions, allowing a rapid determination of suitable hosting cages in EMFs by just counting three simple structural motifs. PMID:26762322

  1. Tertiary Lymphoid Structure-Associated B Cells are Key Players in Anti-Tumor Immunity

    PubMed Central

    Germain, Claire; Gnjatic, Sacha; Dieu-Nosjean, Marie-Caroline

    2015-01-01

    It is now admitted that the immune system plays a major role in tumor control. Besides the existence of tumor-specific T cells and B cells, many studies have demonstrated that high numbers of tumor-infiltrating lymphocytes are associated with good clinical outcome. In addition, not only the density but also the organization of tumor-infiltrating immune cells has been shown to determine patient survival. Indeed, more and more studies describe the development within the tumor microenvironment of tertiary lymphoid structures (TLS), whose presence has a positive impact on tumor prognosis. TLS are transient ectopic lymphoid aggregates displaying the same organization and functionality as canonical secondary lymphoid organs, with T-cell-rich and B-cell-rich areas that are sites for the differentiation of effector and memory T cells and B cells. However, factors favoring the emergence of such structures within tumors still need to be fully characterized. In this review, we survey the state of the art of what is known about the general organization, induction, and functionality of TLS during chronic inflammation, and more especially in cancer, with a particular focus on the B-cell compartment. We detail the role played by TLS B cells in anti-tumor immunity, both as antigen-presenting cells and tumor antigen-specific antibody-secreting cells, and raise the question of the capacity of chemotherapeutic and immunotherapeutic agents to induce the development of TLS within tumors. Finally, we explore how to take advantage of our knowledge on TLS B cells to develop new therapeutic tools. PMID:25755654

  2. Tertiary Lymphoid Structure-Associated B Cells are Key Players in Anti-Tumor Immunity.

    PubMed

    Germain, Claire; Gnjatic, Sacha; Dieu-Nosjean, Marie-Caroline

    2015-01-01

    It is now admitted that the immune system plays a major role in tumor control. Besides the existence of tumor-specific T cells and B cells, many studies have demonstrated that high numbers of tumor-infiltrating lymphocytes are associated with good clinical outcome. In addition, not only the density but also the organization of tumor-infiltrating immune cells has been shown to determine patient survival. Indeed, more and more studies describe the development within the tumor microenvironment of tertiary lymphoid structures (TLS), whose presence has a positive impact on tumor prognosis. TLS are transient ectopic lymphoid aggregates displaying the same organization and functionality as canonical secondary lymphoid organs, with T-cell-rich and B-cell-rich areas that are sites for the differentiation of effector and memory T cells and B cells. However, factors favoring the emergence of such structures within tumors still need to be fully characterized. In this review, we survey the state of the art of what is known about the general organization, induction, and functionality of TLS during chronic inflammation, and more especially in cancer, with a particular focus on the B-cell compartment. We detail the role played by TLS B cells in anti-tumor immunity, both as antigen-presenting cells and tumor antigen-specific antibody-secreting cells, and raise the question of the capacity of chemotherapeutic and immunotherapeutic agents to induce the development of TLS within tumors. Finally, we explore how to take advantage of our knowledge on TLS B cells to develop new therapeutic tools. PMID:25755654

  3. Key structural and functional differences between early and advanced glycation products.

    PubMed

    Paradela-Dobarro, Beatriz; Rodiño-Janeiro, Bruno K; Alonso, Jana; Raposeiras-Roubín, Sergio; González-Peteiro, Mercedes; González-Juanatey, José R; Álvarez, Ezequiel

    2016-01-01

    Most of the studies on advanced glycation end products (AGE) have been carried out with uncharacterized mixtures of AGE, so the observed effects cannot be linked to defined structures. Therefore, we analysed the structural differences between glycated human serum albumin (gHSA), a low glycated protein, and AGE-human serum albumin (AGE-HSA), a high glycated protein, and we compared their effects on endothelial functionality. Specifically, we characterized glycation and composition on both early and advanced stage glycation products of gHSA and AGE-HSA by using the MALDI-TOF-mass spectrometry assay. Furthermore, we studied the effects of both types of glycation products on reactive oxygen species (ROS) production and in the expression of vascular and intercellular cell adhesion molecules (VCAM-1 and ICAM-1) on human umbilical endothelial cells (HUVEC). We also measured the adhesion of peripheral blood mononuclear cells (PBMC) to HUVEC. Low concentrations of gHSA enhanced long-lasting ROS production in HUVEC, whereas lower concentrations of AGE-HSA caused the anticipation of the induced extracellular ROS production. Both gHSA and AGE-HSA up-regulated the expression of VCAM-1 and ICAM-1 at mRNA levels. Nevertheless, only AGE-HSA increased protein levels and enhanced the adhesion of PBMC to HUVEC monolayers. Functional differences were observed between gHSA and AGE-HSA, causing the latter an anticipation of the pro-oxidant effects in comparison to gHSA. Moreover, although both molecules induced genetic up-regulation of adhesion molecules in HUVEC, only the high glycated protein functionally increased mononuclear cell adhesion to endothelial monolayers. These observations could have important clinical consequences in the development of diabetic vascular complications. PMID:26581238

  4. Protective activity of (1S,2E,4R,6R,7E,11E)-2,7,11-cembratriene-4,6-diol analogues against diisopropylfluorophosphate neurotoxicity: Preliminary structure-activity relationship and pharmacophore modeling

    PubMed Central

    Eterović, Vesna A.; Valle-Rodriguez, Angelie Del; Pérez, Dinely; Carrasco, Marimée; Khanfar, Mohammad A.; El Sayed, Khalid A.; Ferchmin, Pedro A.

    2013-01-01

    Diisopropylfluorophosphate (DFP) is an organophosphorous insecticide used as a surrogate for the more toxic chemical warfare nerve agent sarin. DFP produces neurotoxicity in vivo and irreversibly decreases the area of population spikes recorded from the CA1 region of acute hippocampal slices. (1S,2E,4R,6R,7E,11E)-2,7,11-Cembratriene-4,6-diol (1) is a neuroprotective natural cembranoid that reverses DFP-induced damage both in vivo and in the hippocampal slice. Cembranoid 1 acts by noncompetitive inhibition of the α7 nicotinic acetylcholine receptor. This study aims at establishing a preliminary structure-activity relationship to define the neuroprotective cembranoid pharmacophores using the hippocampal slice assay and pharmacophore modeling. Fourteen natural, semisyntheti or biocatalytic cembranoid analogues 2-15 related to 1 were tested for their capacity to protect the population spikes from DFP-induced damage and intrinsic toxicity. Twelve cembranoids caused significant reversal of DFP toxicity; only 3 active analogues displayed minor intrinsic toxicity at 10 μM. The C-4 epimer of 1 (2) and the 4-O-methyl ether analogue of 1 (3), were totally devoid of neuroprotective activity. The results suggested a model for cembranoid binding where the hydrophobic ring surface binds to a hydrophobic (Hbic) patch on the receptor molecule and an electronegative atom (oxygen or sulfur) in proper spatial relationship to the ring surface interacts with an electropositive group in the receptor binding site. A pharmacophore model consisting of 1 hydrogen bond acceptor (HBA), 2 Hbic, and 10 exclusion spheres was established using HipHop-REFINE and supported the above mentioned pharmacophoric hypothesis. PMID:23769165

  5. Protective activity of (1S,2E,4R,6R,7E,11E)-2,7,11-cembratriene-4,6-diol analogues against diisopropylfluorophosphate neurotoxicity: preliminary structure-activity relationship and pharmacophore modeling.

    PubMed

    Eterović, Vesna A; Del Valle-Rodriguez, Angelie; Pérez, Dinely; Carrasco, Marimée; Khanfar, Mohammad A; El Sayed, Khalid A; Ferchmin, Pedro A

    2013-08-01

    Diisopropylfluorophosphate (DFP) is an organophosphorous insecticide used as a surrogate for the more toxic chemical warfare nerve agent sarin. DFP produces neurotoxicity in vivo and irreversibly decreases the area of population spikes recorded from the CA1 region of acute hippocampal slices. (1S,2E,4R,6R,7E,11E)-2,7,11-Cembratriene-4,6-diol (1) is a neuroprotective natural cembranoid that reverses DFP-induced damage both in vivo and in the hippocampal slice. Cembranoid 1 acts by noncompetitive inhibition of the α7 nicotinic acetylcholine receptor. This study aims at establishing a preliminary structure-activity relationship to define the neuroprotective cembranoid pharmacophores using the hippocampal slice assay and pharmacophore modeling. Fourteen natural, semisynthetic, or biocatalytic cembranoid analogues 2-15 related to 1 were tested for their capacity to protect the population spikes from DFP-induced damage and intrinsic toxicity. Twelve cembranoids caused significant reversal of DFP toxicity; only 3 active analogues displayed minor intrinsic toxicity at 10 μM. The C-4 epimer of 1 (2) and the 4-O-methyl ether analogue of 1 (3), were totally devoid of neuroprotective activity. The results suggested a model for cembranoid binding where the hydrophobic ring surface binds to a hydrophobic (Hbic) patch on the receptor molecule and an electronegative atom (oxygen or sulfur) in proper spatial relationship to the ring surface interacts with an electropositive group in the receptor binding site. A pharmacophore model consisting of 1 hydrogen bond acceptor (HBA), 2 Hbic, and 10 exclusion spheres was established using HipHop-REFINE and supported the above mentioned pharmacophoric hypothesis. PMID:23769165

  6. Myelin structure is a key difference in the x-ray scattering signature between meningioma, schwannoma and glioblastoma multiforme

    NASA Astrophysics Data System (ADS)

    Falzon, G.; Pearson, S.; Murison, R.; Hall, C.; Siu, K.; Round, A.; Schültke, E.; Kaye, A. H.; Lewis, R.

    2007-11-01

    Small angle x-ray scattering (SAXS) patterns of benign and malignant brain tumour tissue were examined. Independent component analysis was used to find a feature set representing the images collected. A set of coefficients was then used to describe each image, which allowed the use of the statistical technique of flexible discriminant analysis to discover a hidden order in the data set. The key difference was found to be in the intensity and spectral content of the second and fourth order myelin scattering peaks. This has clearly demonstrated that significant differences in the structure of myelin exist in the highly malignant glioblastoma multiforme as opposed to the benign: meningioma and schwannoma.

  7. Key Sites for P2X Receptor Function and Multimerization: Overview of Mutagenesis Studies on a Structural Basis

    PubMed Central

    Hausmann, Ralf; Kless, Achim; Schmalzing, Günther

    2015-01-01

    P2X receptors constitute a seven-member family (P2X1-7) of extracellular ATP-gated cation channels of widespread expression. Because P2X receptors have been implicated in neurological, inflammatory and cardiovascular diseases, they constitute promising drug targets. Since the first P2X cDNA sequences became available in 1994, numerous site-directed mutagenesis studies have been conducted to disclose key sites of P2X receptor function and oligomerization. The publication of the 3-Å crystal structures of the zebrafish P2X4 (zfP2X4) receptor in the homotrimeric apo-closed and ATP-bound open states in 2009 and 2012, respectively, has ushered a new era by allowing for the interpretation of the wealth of molecular data in terms of specific three-dimensional models and by paving the way for designing more-decisive experiments. Thanks to these structures, the last five years have provided invaluable insight into our understanding of the structure and function of the P2X receptor class of ligandgated ion channels. In this review, we provide an overview of mutagenesis studies of the pre- and post-crystal structure eras that identified amino acid residues of key importance for ligand binding, channel gating, ion flow, formation of the pore and the channel gate, and desensitization. In addition, the sites that are involved in the trimerization of P2X receptors are reviewed based on mutagenesis studies and interface contacts that were predicted by the zfP2X4 crystal structures. PMID:25439586

  8. Analogue-to-Digital and Digital-to-Analogue Conversion.

    ERIC Educational Resources Information Center

    Gregory, Martin

    1997-01-01

    Discusses circuits for three-bit and four-bit analogue digital converters and digital analogue converters. These circuits feature slow operating speeds that enable the circuitry to be used to demonstrate the mode of operation using oscilloscopes and signal generators. (DDR)

  9. Structural and functional conservation of key domains in InsP[subscript 3] and ryanodine receptors

    SciTech Connect

    Seo, Min-Duk; Velamakanni, Saroj; Ishiyama, Noboru; Stathopulos, Peter B.; Rossi, Ana M.; Khan, Samir A.; Dale, Philippa; Li, Congmin; Ames, James B.; Ikura, Mitsuhiko; Taylor, Colin W.

    2012-07-11

    Inositol-1,4,5-trisphosphate receptors (InsP{sub 3}Rs) and ryanodine receptors (RyRs) are tetrameric intracellular Ca{sup 2+} channels. In each of these receptor families, the pore, which is formed by carboxy-terminal transmembrane domains, is regulated by signals that are detected by large cytosolic structures. InsP{sub 3}R gating is initiated by InsP{sub 3} binding to the InsP{sub 3}-binding core (IBC, residues 224-604 of InsP{sub 3}R1) and it requires the suppressor domain (SD, residues 1-223 of InsP{sub 3}R1). Here we present structures of the amino-terminal region (NT, residues 1-604) of rat InsP{sub 3}R1 with (3.6 {angstrom}) and without (3.0 {angstrom}) InsP{sub 3} bound. The arrangement of the three NT domains, SD, IBC-{beta} and IBC-{alpha}, identifies two discrete interfaces ({alpha} and {beta}) between the IBC and SD. Similar interfaces occur between equivalent domains (A, B and C) in RyR1 (ref. 9). The orientations of the three domains when docked into a tetrameric structure of InsP{sub 3}R and of the ABC domains docked into RyR are remarkably similar. The importance of the {alpha}-interface for activation of InsP{sub 3}R and RyR is confirmed by mutagenesis and, for RyR, by disease-causing mutations. Binding of InsP{sub 3} causes partial closure of the clam-like IBC, disrupting the {beta}-interface and pulling the SD towards the IBC. This reorients an exposed SD loop ('hotspot' (HS) loop) that is essential for InsP{sub 3}R activation. The loop is conserved in RyR and includes mutations that are associated with malignant hyperthermia and central core disease. The HS loop interacts with an adjacent NT, suggesting that activation re-arranges inter-subunit interactions. The A domain of RyR functionally replaced the SD in full-length InsP{sub 3}R, and an InsP{sub 3}R in which its C-terminal transmembrane region was replaced by that from RyR1 was gated by InsP{sub 3} and blocked by ryanodine. Activation mechanisms are conserved between InsP{sub 3}R and Ry

  10. Hidden Tree Structure is a Key to the Emergence of Scaling in the World Wide Web

    NASA Astrophysics Data System (ADS)

    Zheng, Bo-Jin; Wang, Jian-Min; Chen, Gui-Sheng; Jiang, Jian; Shen, Xian-Jun

    2011-01-01

    Preferential attachment is the most popular explanation for the emergence of scaling behavior in the World Wide Web, but this explanation has been challenged by the global information hypothesis, the existence of linear preference and the emergence of new big internet companies in the real world. We notice that most websites have an obvious feature that their pages are organized as a tree (namely hidden tree) and hence propose a new model that introduces a hidden tree structure into the Erdös—Rényi model by adding a new rule: when one node connects to another, it should also connect to all nodes in the path between these two nodes in the hidden tree. The experimental results show that the degree distribution of the generated graphs would obey power law distributions and have variable high clustering coefficients and variable small average lengths of shortest paths. The proposed model provides an alternative explanation to the emergence of scaling in the World Wide Web without the above-mentioned difficulties, and also explains the “preferential attachment" phenomenon.

  11. Limitations and Extensions of the Lock-and-Key Principle: Differences between Gas State, Solution and Solid State Structures

    PubMed Central

    Schneider, Hans-Jörg

    2015-01-01

    The lock-and-key concept is discussed with respect to necessary extensions. Formation of supramolecular complexes depends not only, and often not even primarily on an optimal geometric fit between host and guest. Induced fit and allosteric interactions have long been known as important modifications. Different binding mechanisms, the medium used and pH effects can exert a major influence on the affinity. Stereoelectronic effects due to lone pair orientation can lead to variation of binding constants by orders of magnitude. Hydrophobic interactions due to high-energy water inside cavities modify the mechanical lock-and-key picture. That optimal affinities are observed if the cavity is only partially filled by the ligand can be in conflict with the lock-and-key principle. In crystals other forces than those between host and guest often dominate, leading to differences between solid state and solution structures. This is exemplified in particular with calixarene complexes, which by X-ray analysis more often than other hosts show guest molecules outside their cavity. In view of this the particular problems with the identification of weak interactions in crystals is discussed. PMID:25815592

  12. On the mechanics of mother-of-pearl: A key feature in the material hierarchical structure

    NASA Astrophysics Data System (ADS)

    Barthelat, F.; Tang, H.; Zavattieri, P. D.; Li, C.-M.; Espinosa, H. D.

    2007-02-01

    Mother-of-pearl, also known as nacre, is the iridescent material which forms the inner layer of seashells from gastropods and bivalves. It is mostly made of microscopic ceramic tablets densely packed and bonded together by a thin layer of biopolymer. The hierarchical microstructure of this biological material is the result of millions of years of evolution, and it is so well organized that its strength and toughness are far superior to the ceramic it is made of. In this work the structure of nacre is described over several length scales. The tablets were found to have wavy surfaces, which were observed and quantified using various experimental techniques. Tensile and shear tests performed on small samples revealed that nacre can withstand relatively large inelastic strains and exhibits strain hardening. In this article we argue that the inelastic mechanism responsible for this behavior is sliding of the tablets on one another accompanied by transverse expansion in the direction perpendicular to the tablet planes. Three dimensional representative volume elements, based on the identified nacre microstructure and incorporating cohesive elements with a constitutive response consistent with the interface material and nanoscale features were numerically analyzed. The simulations revealed that even in the absence of nanoscale hardening mechanism at the interfaces, the microscale waviness of the tablets could generate strain hardening, thereby spreading the inelastic deformation and suppressing damage localization leading to material instability. The formation of large regions of inelastic deformations around cracks and defects in nacre are believed to be an important contribution to its toughness. In addition, it was shown that the tablet junctions (vertical junctions between tablets) strengthen the microstructure but do not contribute to the overall material hardening. Statistical variations within the microstructure were found to be beneficial to hardening and to the

  13. A structured elicitation method to identify key direct risk factors for the management of natural resources.

    PubMed

    Smith, Michael; Wallace, Ken; Lewis, Loretta; Wagner, Christian

    2015-11-01

    The high level of uncertainty inherent in natural resource management requires planners to apply comprehensive risk analyses, often in situations where there are few resources. In this paper, we demonstrate a broadly applicable, novel and structured elicitation approach to identify important direct risk factors. This new approach combines expert calibration and fuzzy based mathematics to capture and aggregate subjective expert estimates of the likelihood that a set of direct risk factors will cause management failure. A specific case study is used to demonstrate the approach; however, the described methods are widely applicable in risk analysis. For the case study, the management target was to retain all species that characterise a set of natural biological elements. The analysis was bounded by the spatial distribution of the biological elements under consideration and a 20-year time frame. Fourteen biological elements were expected to be at risk. Eleven important direct risk factors were identified that related to surrounding land use practices, climate change, problem species (e.g., feral predators), fire and hydrological change. In terms of their overall influence, the two most important risk factors were salinisation and a lack of water which together pose a considerable threat to the survival of nine biological elements. The described approach successfully overcame two concerns arising from previous risk analysis work: (1) the lack of an intuitive, yet comprehensive scoring method enabling the detection and clarification of expert agreement and associated levels of uncertainty; and (2) the ease with which results can be interpreted and communicated while preserving a rich level of detail essential for informed decision making. PMID:27441228

  14. Synthesis, evaluation and structure-activity relationships of 5-alkyl-2,3-dihydroimidazo[1,2-c] quinazoline, 2,3-dihydroimidazo[1,2-c]quinazolin-5(6H)-thiones and their oxo-analogues as new potential bronchodilators.

    PubMed

    Bahekar, R H; Rao, A R

    2001-01-01

    With an aim to obtain potent bronchodilators, two series of 5-alkyl-2,3-dihydroimidazo[1,2-c]quinazolines (Va-1), 2,3-dihydroimidazo[1,2-c]quinazolin-5-(6H)-thiones (VIIIa-d) and their oxo-analogues (IXa-d) have been designed. The compounds Va-1 were synthesized by two alternative routes. The former (Method A) based on the dehydrocyclization of 4-(1-hydroxyethyl)-aminoquinazoline (IV) and the latter (Method B) involves the usage of 2-aminobenzonitrile (VI) which on reaction with ethylenediamine leads to the formation of the key intermediate 2-(2-aminophenyl)-4,5-dihydro-1H-imidazoles (VII). Finally the intermediate VII on condensation with different acidanhydrides yielded the title compound V. In general method-A resulted the compound V in quantitatively higher yields. 2,3-Dihydroimidazo[1,2-c]quinazolin-5 (6H)-thiones (VIII) were obtained by condensing VII with carbon disulfide and a further oxidation of VIII gave their corresponding oxo-analogues (IX). The title compounds V, VIII and IX were evaluated for their bronchodilator activity using in vitro and in vivo (standard animal models) methods. All the test compounds exhibited bronchodilatory activity. The structure activity relationship studies indicated good correlation between the nature of the substituent and bronchodilatory activity. In the 5-alkyl substituted compounds V, a longer alkyl chain showed higher bronchodilatory activity. Compounds VIII and IX were found to be less potent and replacement of sulphur with oxygen showed no significant effect on the biological activity. The presence of halogens altered the biological activity in both the series. Among the compounds tested, 9-lodo-5-(n-propyl)-2,3-dihydroimidazo[1,2-c]quinazoline (VI) was found to be the most potent (percentage protection = 87.1%; relative activity = 1.1 compared to the standard aminophylline). PMID:11367868

  15. Mobilizing communities around HIV prevention for youth: how three coalitions applied key strategies to bring about structural changes.

    PubMed

    Chutuape, Kate S; Willard, Nancy; Sanchez, Kenia; Straub, Diane M; Ochoa, Tara N; Howell, Kourtney; Rivera, Carmen; Ramos, Ibrahim; Ellen, Jonathan M

    2010-02-01

    Increasingly, HIV prevention efforts must focus on altering features of the social and physical environment to reduce risks associated with HIV acquisition and transmission. Community coalitions provide a vehicle for bringing about sustainable structural changes. This article shares lessons and key strategies regarding how three community coalitions located in Miami and Tampa, Florida, and San Juan, Puerto Rico engaged their respective communities in bringing about structural changes affecting policies, practices and programs related to HIV prevention for 12-24-year-olds. Outcomes of this work include increased access to HIV testing and counseling in the juvenile correctional system (Miami), increased monitoring of sexual abuse between young women and older men within public housing, and support services to deter age discordant relationships (Tampa) and increased access to community-based HIV testing (San Juan). PMID:20166784

  16. Binding-induced fluorescence of serotonin transporter ligands: A spectroscopic and structural study of 4-(4-(dimethylamino)phenyl)-1-methylpyridinium (APP(+)) and APP(+) analogues.

    PubMed

    Wilson, James N; Ladefoged, Lucy Kate; Babinchak, W Michael; Schiøtt, Birgit

    2014-04-16

    The binding-induced fluorescence of 4-(4-(dimethylamino)-phenyl)-1-methylpyridinium (APP(+)) and two new serotonin transporter (SERT)-binding fluorescent analogues, 1-butyl-4-[4-(1-dimethylamino)phenyl]-pyridinium bromide (BPP(+)) and 1-methyl-4-[4-(1-piperidinyl)phenyl]-pyridinium (PPP(+)), has been investigated. Optical spectroscopy reveals that these probes are highly sensitive to their chemical microenvironment, responding to variations in polarity with changes in transition energies and responding to changes in viscosity or rotational freedom with emission enhancements. Molecular docking calculations reveal that the probes are able to access the nonpolar and conformationally restrictive binding pocket of SERT. As a result, the probes exhibit previously not identified binding-induced turn-on emission that is spectroscopically distinct from dyes that have accumulated intracellularly. Thus, binding and transport dynamics of SERT ligands can be resolved both spatially and spectroscopically. PMID:24460204

  17. Binding-Induced Fluorescence of Serotonin Transporter Ligands: A Spectroscopic and Structural Study of 4-(4-(Dimethylamino)phenyl)-1-methylpyridinium (APP+) and APP+ Analogues

    PubMed Central

    2014-01-01

    The binding-induced fluorescence of 4-(4-(dimethylamino)-phenyl)-1-methylpyridinium (APP+) and two new serotonin transporter (SERT)-binding fluorescent analogues, 1-butyl-4-[4-(1-dimethylamino)phenyl]-pyridinium bromide (BPP+) and 1-methyl-4-[4-(1-piperidinyl)phenyl]-pyridinium (PPP+), has been investigated. Optical spectroscopy reveals that these probes are highly sensitive to their chemical microenvironment, responding to variations in polarity with changes in transition energies and responding to changes in viscosity or rotational freedom with emission enhancements. Molecular docking calculations reveal that the probes are able to access the nonpolar and conformationally restrictive binding pocket of SERT. As a result, the probes exhibit previously not identified binding-induced turn-on emission that is spectroscopically distinct from dyes that have accumulated intracellularly. Thus, binding and transport dynamics of SERT ligands can be resolved both spatially and spectroscopically. PMID:24460204

  18. Synthesis, structure, and properties of a mixed-valent triiron complex of tetramethyl reductic acid, an ascorbic acid analogue, and its relationship to a functional non-heme iron oxidation catalyst system.

    PubMed

    Kim, YooJin; Feng, Xudong; Lippard, Stephen J

    2007-07-23

    The purple triiron(II,III,III) complex, [Fe(3)Cl(2)(TMRASQ)(4)(HTMRA)(2)] x C(5)H(12) (1 x C(5)H(12)), where H(2)TMRA is a tetramethyl reductic acid, 4,4,5,5-tetramethyl-2,3-dihydroxy-2-cyclopenten-1-one, and HTMRASQ is the semiquinone form of this ligand, was prepared from (Et(4)N)(2)[Fe(2)OCl(6)] and H(2)TMRA and characterized by X-ray crystallography, Mössbauer spectroscopy, and redox titrations. The physical properties of the complex in solution are consistent with its mixed-valent character, as delineated by a solid-state structure analysis. Assignments of the iron and ligand oxidation states in the crystal were made on the basis of a valence bond sum analysis and the internal ligand geometry. As the first well-characterized iron complex of an ascorbic acid H(2)AA analogue, 1 provides insight into the possible coordination geometry of the family of complexes containing H(2)AA and its analogues. In the presence of air and H(2)TMRA, 1 is able to catalyze the oxidation of cyclohexane to cyclohexanol with remarkable selectivity, but the nature of the true catalyst remains unknown. PMID:17579400

  19. Structural Re-arrangement and Peroxidase Activation of Cytochrome c by Anionic Analogues of Vitamin E, Tocopherol Succinate and Tocopherol Phosphate*

    PubMed Central

    Yanamala, Naveena; Kapralov, Alexander A.; Djukic, Mirjana; Peterson, Jim; Mao, Gaowei; Klein-Seetharaman, Judith; Stoyanovsky, Detcho A.; Stursa, Jan; Neuzil, Jiri; Kagan, Valerian E.

    2014-01-01

    Cytochrome c is a multifunctional hemoprotein in the mitochondrial intermembrane space whereby its participation in electron shuttling between respiratory complexes III and IV is alternative to its role in apoptosis as a peroxidase activated by interaction with cardiolipin (CL), and resulting in selective CL peroxidation. The switch from electron transfer to peroxidase function requires partial unfolding of the protein upon binding of CL, whose specific features combine negative charges of the two phosphate groups with four hydrophobic fatty acid residues. Assuming that other endogenous small molecule ligands with a hydrophobic chain and a negatively charged functionality may activate cytochrome c into a peroxidase, we investigated two hydrophobic anionic analogues of vitamin E, α-tocopherol succinate (α-TOS) and α-tocopherol phosphate (α-TOP), as potential inducers of peroxidase activity of cytochrome c. NMR studies and computational modeling indicate that they interact with cytochrome c at similar sites previously proposed for CL. Absorption spectroscopy showed that both analogues effectively disrupt the Fe-S(Met80) bond associated with unfolding of cytochrome c. We found that α-TOS and α-TOP stimulate peroxidase activity of cytochrome c. Enhanced peroxidase activity was also observed in isolated rat liver mitochondria incubated with α-TOS and tBOOH. A mitochondria-targeted derivative of TOS, triphenylphosphonium-TOS (mito-VES), was more efficient in inducing H2O2-dependent apoptosis in mouse embryonic cytochrome c+/+ cells than in cytochrome c−/− cells. Essential for execution of the apoptotic program peroxidase activation of cytochrome c by α-TOS may contribute to its known anti-cancer pharmacological activity. PMID:25278024

  20. Synthesis of novel spinosyn A analogues by Pd-mediated transformations.

    PubMed

    Tietze, Lutz F; Brasche, Gordon; Grube, Alexander; Böhnke, Niels; Stadler, Christian

    2007-01-01

    The concept of modern crop protection demands for a continuous supply of new or modified established pesticides to avoid the development of serious resistances. Recent reports on the insecticidal spinosyns 1 and 2 show that also this class of pest managing agents is increasingly exposed to the formation of resistances. The synthesis of new derivatives is therefore highly desirable. We describe in this paper a convergent approach towards novel enantiopure spinosyn A analogues of type 3, which is based on investigations of structure-activity relationships and employs a twofold Heck reaction as key step for the preparation of the tricyclic backbone assembly. PMID:17654624

  1. Phosphonate analogues of aminoacyl adenylates.

    PubMed Central

    Southgate, C C; Dixon, H B

    1978-01-01

    Phosphonomethyl analogues of glycyl phosphate and valyl phosphate, i.e. NH2-CHR-CO-CH2-PO(OH)2, were synthesized and esterified with adenosine to give analogues of aminoacyl adenylates. The interaction of these adenylate analogues with valyl-tRNA synthetase from Escherichia coli was studied by fluorescence titration. The analogue of valyl phosphate has an affinity for the enzyme comparable with that of valine, but that of valyl adenylate is bound much less tightly than either valyl adenylate or corresponding derivative of valinol. The affinity of the analogue of glycyl adenylate was too low to be measured. We conclude that this enzyme interacts specifically with both the side chain and the anhydride linkage of the adenylate intermediate. PMID:743207

  2. Structurally complex habitats provided by Acropora palmata influence ecosystem processes on a reef in the Florida Keys National Marine Sanctuary

    NASA Astrophysics Data System (ADS)

    Lemoine, N. P.; Valentine, J. F.

    2012-09-01

    The disappearance of Acropora palmata from reefs in the Florida Keys National Marine Sanctuary (FKNMS) represents a significant loss in the amount of structurally complex habitat available for reef-associated species. The consequences of such a widespread loss of complex structure on ecosystem processes are still unclear. We sought to determine whether the disappearance of complex structure has adversely affected grazing and invertebrate predation rates on a shallow reef in the FKNMS. Surprisingly, we found grazing rates and invertebrate predation rates were lower in the structurally complex A. palmata branches than on the topographically simple degraded reefs. We attribute these results to high densities of aggressively territorial damselfish, Stegastes planifrons, living within A. palmata. Our study suggests the presence of agonistic damselfish can cause the realized spatial patterns of ecosystem processes to deviate from the expected patterns. Reef ecologists must therefore carefully consider the assemblage of associate fish communities when assessing how the mortality of A. palmata has affected coral reef ecosystem processes.

  3. The investigation of blind continental earthquake sources through analogue and numerical models

    NASA Astrophysics Data System (ADS)

    Bonini, L.; Toscani, G.; Seno, S.

    2012-04-01

    One of the most challenging topic in earthquake geology is to characterize the seismogenic sources, i.e. the potential causative faults of earthquakes. The main seismogenic layer is located in the upper brittle crust. Nevertheless it does not mean that a fault take up the whole schizosphere: i.e. from the brittle-plastic transition to the surface. Indeed, latest damaging earthquakes were generated by blind or "hidden" faults: 23 Oct. 2011, Van earthquake (Mw 7.1, Turkey); 3 Sep 2010, Darfield earthquake (Mw 7.1, New Zealand); 12 January 2010 Haiti earthquake (Mw 7.0); 6 April 2009 L'Aquila earthquake (Mw 6.3, Italy). Therefore understand how a fault grows and develops is a key question to evaluate the seismogenic potential of an area. Analogue model was used to understand kinematics and geometry of the geological structures since the beginning of the modern geology. On the other hand, numerical model develops much more during the last thirty years. Nowadays we can use these two methods working together providing mutual interactions. In the two-three most recent years we tried to use both numerical and analogue models to investigate the long-term and short-term evolution of a blind normal fault. To do this we improved the Analogue Model Laboratory of the University of Pavia with a laser scanner, a stepper motor and other high resolution tools in order to detect the distribution of the deformation mainly induced by blind faults. The goal of this kind of approach is to mimic the effects of the faults movements in a scaled model. We selected two seismogenic source cases: the causative fault of the 1908 Messina earthquake (Mw 7.1) and that of the 2009 L'Aquila earthquake (Mw 6.3). In the first case we investigate the long term evolution of this structure using a set of analogue models and afterwards a numerical model of our sandbox allow us to investigate stress and strain partitioning. In the second case we performed only an analogue model of short-term evolution of

  4. The superficial white matter in temporal lobe epilepsy: a key link between structural and functional network disruptions.

    PubMed

    Liu, Min; Bernhardt, Boris C; Hong, Seok-Jun; Caldairou, Benoit; Bernasconi, Andrea; Bernasconi, Neda

    2016-09-01

    Drug-resistant temporal lobe epilepsy is increasingly recognized as a system-level disorder affecting the structure and function of large-scale grey matter networks. While diffusion magnetic resonance imaging studies have demonstrated deep fibre tract alterations, the superficial white matter immediately below the cortex has so far been neglected despite its proximity to neocortical regions and key role in maintaining cortico-cortical connectivity. Using multi-modal 3 T magnetic resonance imaging, we mapped the topography of superficial white matter diffusion alterations in 61 consecutive temporal lobe epilepsy patients relative to 38 healthy controls and studied the relationship to large-scale structural as well as functional networks. Our approach continuously sampled mean diffusivity and fractional anisotropy along surfaces running 2 mm below the cortex. Multivariate statistics mapped superficial white matter diffusion anomalies in patients relative to controls, while correlation and mediation analyses evaluated their relationship to structural (cortical thickness, mesiotemporal volumetry) and functional parameters (resting state functional magnetic resonance imaging amplitude) and clinical variables. Patients presented with overlapping anomalies in mean diffusivity and anisotropy, particularly in ipsilateral temporo-limbic regions. Diffusion anomalies did not relate to cortical thinning; conversely, they mediated large-scale functional amplitude decreases in patients relative to controls in default mode hub regions (i.e. anterior and posterior midline regions, lateral temporo-parietal cortices), and were themselves mediated by hippocampal atrophy. With respect to clinical variables, we observed more marked diffusion anomalies in patients with a history of febrile convulsions and those with longer disease duration. Similarly, more marked diffusion alterations were associated with seizure-free outcome. Bootstrap analyses indicated high reproducibility of our

  5. Structure and functioning of Mediterranean lagoon fish assemblages: A key for the identification of water body types

    NASA Astrophysics Data System (ADS)

    Franco, Anita; Franzoi, Piero; Torricelli, Patrizia

    2008-09-01

    Knowledge on the structure and functioning variability of transitional water fish assemblages may help in finding out the main descriptors for identifying different water body types for which specific biological reference conditions can be reliably derived. Fish assemblages from 19 Mediterranean lagoons were therefore investigated by evaluating the variability of their structure and functioning, and by relating it to the lagoons' environmental features. Fish assemblage structure was measured by its species richness. Functioning was measured by categorizing fish species into functional categories (or guilds) according to their use of lagoon habitat, feeding and reproduction, and by defining the functional structure of fish assemblages as the relative number of species per guild in each lagoon. Mediterranean lagoons' fish assemblages were found to be more similar to each other in their functional structure than in the taxonomical composition, thus confirming a shared functional role of these environments for biological communities. Lagoon local features, such as the lagoon area, its habitat heterogeneity and average salinity, significantly affected the total species richness and the different use that fish make of the lagoon environment, hence playing a primary role in the assessment of these water body types. Latitude also influenced the variability of fish assemblages in the Mediterranean lagoons investigated, with particular regard to their functioning as feeding and reproductive grounds for fish. These results are compared with previous studies and, although this limited the investigation to structural aspects only, were found to confirm in part the previous results and also added new insights about the key factors affecting the functioning of transitional water systems.

  6. NASA/ESMD Analogue Mission Plans

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.

    2007-01-01

    A viewgraph presentation exploring Earth and its analogues is shown. The topics include: 1) ESMD Goals for the Use of Earth Analogues; 2) Stakeholders Summary; 3) Issues with Current Analogue Situation; 4) Current state of Analogues; 5) External Implementation Plan (Second Step); 6) Recent Progress in Utilizing Analogues; 7) Website Layout Example-Home Page; 8) Website Layout Example-Analogue Site; 9) Website Layout Example-Analogue Mission; 10) Objectives of ARDIG Analog Initiatives; 11) Future Plans; 12) Example: Cold-Trap Sample Return; 13) Example: Site Characterization Matrix; 14) Integrated Analogue Studies-Prerequisites for Human Exploration; and 15) Rating Scale Definitions.

  7. Synthesis and acetylcholinesterase inhibitory activity of several pyrimidone analogues of huperzine A

    SciTech Connect

    Kozlkowski, A.P.; Campiani, G.; Saxena, A.; Doctor, S.P.

    1995-12-31

    Synthesis of four new pyrimidone analogues of the acetyicholinesterase (AChE) inhibitor huperzine A are reported together with the inhibitory potendes of these compounds for foetal bovine calf serum AChE; t3-lactone formation followed by a thermal cycloreversion reaction serves as the key step for introduction of the ethylidene appendage of analogue 12 in the stereochemically correct form.

  8. Immunogold Localization of Key Metabolic Enzymes in the Anammoxosome and on the Tubule-Like Structures of Kuenenia stuttgartiensis

    PubMed Central

    de Almeida, Naomi M.; Neumann, Sarah; Mesman, Rob J.; Ferousi, Christina; Keltjens, Jan T.; Jetten, Mike S. M.; van Niftrik, Laura

    2015-01-01

    ABSTRACT Anaerobic ammonium-oxidizing (anammox) bacteria oxidize ammonium with nitrite as the terminal electron acceptor to form dinitrogen gas in the absence of oxygen. Anammox bacteria have a compartmentalized cell plan with a central membrane-bound “prokaryotic organelle” called the anammoxosome. The anammoxosome occupies most of the cell volume, has a curved membrane, and contains conspicuous tubule-like structures of unknown identity and function. It was suggested previously that the catalytic reactions of the anammox pathway occur in the anammoxosome, and that proton motive force was established across its membrane. Here, we used antibodies raised against five key enzymes of the anammox catabolism to determine their cellular location. The antibodies were raised against purified native hydroxylamine oxidoreductase-like protein kustc0458 with its redox partner kustc0457, hydrazine dehydrogenase (HDH; kustc0694), hydroxylamine oxidase (HOX; kustc1061), nitrite oxidoreductase (NXR; kustd1700/03/04), and hydrazine synthase (HZS; kuste2859-61) of the anammox bacterium Kuenenia stuttgartiensis. We determined that all five protein complexes were exclusively located inside the anammoxosome matrix. Four of the protein complexes did not appear to form higher-order protein organizations. However, the present data indicated for the first time that NXR is part of the tubule-like structures, which may stretch the whole length of the anammoxosome. These findings support the anammoxosome as the locus of catabolic reactions of the anammox pathway. IMPORTANCE Anammox bacteria are environmentally relevant microorganisms that contribute significantly to the release of fixed nitrogen in nature. Furthermore, the anammox process is applied for nitrogen removal from wastewater as an environment-friendly and cost-effective technology. These microorganisms feature a unique cellular organelle, the anammoxosome, which was proposed to contain the energy metabolism of the cell and

  9. Preliminary structural design and key technology demonstration of cryogenic assembly in the next-generation infrared space telescope SPICA

    NASA Astrophysics Data System (ADS)

    Mizutani, Tadahito; Yamawaki, Toshihiko; Komatsu, Keiji; Goto, Ken; Takeuchi, Shinsuke; Shinozaki, Keisuke; Matsuhara, Hideo; Nakagawa, Takao

    2015-04-01

    The infrared space telescope SPICA (Space Infrared Telescope for Cosmology and Astrophysics) is a next-generation astronomical project of the Japan Aerospace Exploration Agency, which features a 3 m class and 6 K cryogenically cooled space telescope. This paper outlines the current status for the preliminary structural design of the SPICA payload module. Dedicated studies were conducted for key technologies to enhance the design accuracy of the SPICA cryogenic assembly and mitigate the development risk. One of the results is described for the concept of the on-orbit truss separation mechanisms, which aim to both reduce the heat load from the main truss assembly and isolate the microvibration by changing the natural frequency of the spacecraft.

  10. Preliminary structural design and key technology demonstration of cryogenic assembly in the next-generation infrared space telescope SPICA

    NASA Astrophysics Data System (ADS)

    Mizutani, Tadahito; Yamawaki, Toshihiko; Komatsu, Keiji; Goto, Ken; Takeuchi, Shinsuke; Shinozaki, Keisuke

    2014-08-01

    The infrared space telescope SPICA, Space Infrared Telescope for Cosmology and Astrophysics, is a next-generation astronomical project of the Japanese Aerospace Exploration Agency (JAXA), which features a 3m-class and 6K cryogenically- cooled space telescope. This paper outlines the current status for the preliminary structural design of the SPICA payload module. Dedicated studies were conducted for key technologies to enhance the design accuracy of the SPICA cryogenic assembly and mitigate the development risk. One of the results is described in this paper for the concept of the on-orbit truss separation mechanisms, which aim to both reduce the heat load from the main truss assembly and isolate the micro-vibration by changing the natural frequency of the spacecraft.

  11. Network structure and the role of key players in a translational cancer research network: a study protocol

    PubMed Central

    Cunningham, Frances C; Braithwaite, Jeffrey

    2012-01-01

    Introduction Translational research networks are a deliberate strategy to bridge the gulf between biomedical research and clinical practice through interdisciplinary collaboration, supportive funding and infrastructure. The social network approach examines how the structure of the network and players who hold important positions within it constrain or enable function. This information can be used to guide network management and optimise its operations. The aim of this study was to describe the structure of a translational cancer research network (TCRN) in Australia over its first year, identify the key players within the network and explore these players' opportunities and constraints in maximising important network collaborations. Methods and analysis This study deploys a mixed-method longitudinal design using social network analysis augmented by interviews and review of TCRN documents. The study will use network documents and interviews with governing body members to explore the broader context into which the network is embedded as well as the perceptions and expectations of members. Of particular interest are the attitudes and perceptions of clinicians compared with those of researchers. A co-authorship network will be constructed of TCRN members using journal and citation databases to assess the success of past pre-network collaborations. Two whole network social network surveys will be administered 12 months apart and parameters such as density, clustering, centrality and betweenness centrality computed and compared using UCINET and Netdraw. Key players will be identified and interviewed to understand the specific activities, barriers and enablers they face in that role. Ethics and dissemination Ethics approvals were obtained from the University of New South Wales, South Eastern Sydney Northern Sector Local Health Network and Calvary Health Care Sydney. Results will be discussed with members of the TCRN, submitted to relevant journals and presented as oral

  12. Design and synthesis of new fluconazole analogues.

    PubMed

    Pore, Vandana S; Agalave, Sandip G; Singh, Pratiksha; Shukla, Praveen K; Kumar, Vikash; Siddiqi, Mohammad I

    2015-06-21

    We have synthesized new fluconazole analogues containing two different 1,2,3-triazole units in the side chain. The synthesis of new amide analogues using a variety of acids is also described. All the compounds showed very good antifungal activity. A hemolysis study of the most active compounds 6e and 13j showed that both compounds did not cause any hemolysis at the dilutions tested. These compounds did not exhibit any toxicity to L929 cells at MIC and lower concentrations. In the docking study, the overall binding mode of 6e and 13j appeared to be reasonable and provided a good insight into the structural basis of inhibition of Candida albicans Cyp51 by these compounds. PMID:25975803

  13. Simple analogues of qinghaosu (artemisinin).

    PubMed

    Li, Yun; Hao, Hong-Dong; Wittlin, Sergio; Wu, Yikang

    2012-08-01

    A series of 1,2,4-trioxanes were synthesized in which the key peroxy bonds were installed through a molybdenum-catalyzed perhydrolysis of the epoxy rings. A core structure was identified that may serve as a promising lead structure for further investigations because of its high antimalarial activity (comparable to that of artesunate and chloroquine), apparent potential for scale-up and derivatization, and facile monitoring/tracing by using UV light. PMID:22588969

  14. Subtle Structural Differences Trigger Inhibitory Activity of Propafenone Analogues at the Two Polyspecific ABC Transporters: P‐Glycoprotein (P‐gp) and Breast Cancer Resistance Protein (BCRP)

    PubMed Central

    Schwarz, Theresa; Montanari, Floriane; Cseke, Anna; Wlcek, Katrin; Visvader, Lene; Palme, Sarah; Chiba, Peter; Kuchler, Karl; Urban, Ernst

    2016-01-01

    Abstract The transmembrane ABC transporters P‐glycoprotein (P‐gp) and breast cancer resistance protein (BCRP) are widely recognized for their role in cancer multidrug resistance and absorption and distribution of compounds. Furthermore, they are linked to drug–drug interactions and toxicity. Nevertheless, due to their polyspecificity, a molecular understanding of the ligand‐transporter interaction, which allows designing of both selective and dual inhibitors, is still in its infancy. This study comprises a combined approach of synthesis, in silico prediction, and in vitro testing to identify molecular features triggering transporter selectivity. Synthesis and testing of a series of 15 propafenone analogues with varied rigidity and basicity of substituents provide first trends for selective and dual inhibitors. Results indicate that both the flexibility of the substituent at the nitrogen atom, as well as the basicity of the nitrogen atom, trigger transporter selectivity. Furthermore, inhibitory activity of compounds at P‐gp seems to be much more influenced by logP than those at BCRP. Exploiting these differences further should thus allow designing specific inhibitors for these two polyspecific ABC‐transporters. PMID:26970257

  15. Subtle Structural Differences Trigger Inhibitory Activity of Propafenone Analogues at the Two Polyspecific ABC Transporters: P-Glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP).

    PubMed

    Schwarz, Theresa; Montanari, Floriane; Cseke, Anna; Wlcek, Katrin; Visvader, Lene; Palme, Sarah; Chiba, Peter; Kuchler, Karl; Urban, Ernst; Ecker, Gerhard F

    2016-06-20

    The transmembrane ABC transporters P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) are widely recognized for their role in cancer multidrug resistance and absorption and distribution of compounds. Furthermore, they are linked to drug-drug interactions and toxicity. Nevertheless, due to their polyspecificity, a molecular understanding of the ligand-transporter interaction, which allows designing of both selective and dual inhibitors, is still in its infancy. This study comprises a combined approach of synthesis, in silico prediction, and in vitro testing to identify molecular features triggering transporter selectivity. Synthesis and testing of a series of 15 propafenone analogues with varied rigidity and basicity of substituents provide first trends for selective and dual inhibitors. Results indicate that both the flexibility of the substituent at the nitrogen atom, as well as the basicity of the nitrogen atom, trigger transporter selectivity. Furthermore, inhibitory activity of compounds at P-gp seems to be much more influenced by logP than those at BCRP. Exploiting these differences further should thus allow designing specific inhibitors for these two polyspecific ABC-transporters. PMID:26970257

  16. Encoding complexity within supramolecular analogues of frustrated magnets

    NASA Astrophysics Data System (ADS)

    Cairns, Andrew B.; Cliffe, Matthew J.; Paddison, Joseph A. M.; Daisenberger, Dominik; Tucker, Matthew G.; Coudert, François-Xavier; Goodwin, Andrew L.

    2016-05-01

    The solid phases of gold(I) and/or silver(I) cyanides are supramolecular assemblies of inorganic polymer chains in which the key structural degrees of freedom—namely, the relative vertical shifts of neighbouring chains—are mathematically equivalent to the phase angles of rotating planar (‘XY’) spins. Here, we show how the supramolecular interactions between chains can be tuned to mimic different magnetic interactions. In this way, the structures of gold(I) and/or silver(I) cyanides reflect the phase behaviour of triangular XY magnets. Complex magnetic states predicted for this family of magnets—including collective spin-vortices of relevance to data storage applications—are realized in the structural chemistry of these cyanide polymers. Our results demonstrate how chemically simple inorganic materials can behave as structural analogues of otherwise inaccessible ‘toy’ spin models and also how the theoretical understanding of those models allows control over collective (‘emergent’) phenomena in supramolecular systems.

  17. Structure of the Trehalose-6-phosphate Phosphatase from Brugia malayi Reveals Key Design Principles for Anthelmintic Drugs

    PubMed Central

    Farelli, Jeremiah D.; Galvin, Brendan D.; Li, Zhiru; Liu, Chunliang; Aono, Miyuki; Garland, Megan; Hallett, Olivia E.; Causey, Thomas B.; Ali-Reynolds, Alana; Saltzberg, Daniel J.; Carlow, Clotilde K. S.; Dunaway-Mariano, Debra; Allen, Karen N.

    2014-01-01

    Parasitic nematodes are responsible for devastating illnesses that plague many of the world's poorest populations indigenous to the tropical areas of developing nations. Among these diseases is lymphatic filariasis, a major cause of permanent and long-term disability. Proteins essential to nematodes that do not have mammalian counterparts represent targets for therapeutic inhibitor discovery. One promising target is trehalose-6-phosphate phosphatase (T6PP) from Brugia malayi. In the model nematode Caenorhabditis elegans, T6PP is essential for survival due to the toxic effect(s) of the accumulation of trehalose 6-phosphate. T6PP has also been shown to be essential in Mycobacterium tuberculosis. We determined the X-ray crystal structure of T6PP from B. malayi. The protein structure revealed a stabilizing N-terminal MIT-like domain and a catalytic C-terminal C2B-type HAD phosphatase fold. Structure-guided mutagenesis, combined with kinetic analyses using a designed competitive inhibitor, trehalose 6-sulfate, identified five residues important for binding and catalysis. This structure-function analysis along with computational mapping provided the basis for the proposed model of the T6PP-trehalose 6-phosphate complex. The model indicates a substrate-binding mode wherein shape complementarity and van der Waals interactions drive recognition. The mode of binding is in sharp contrast to the homolog sucrose-6-phosphate phosphatase where extensive hydrogen-bond interactions are made to the substrate. Together these results suggest that high-affinity inhibitors will be bi-dentate, taking advantage of substrate-like binding to the phosphoryl-binding pocket while simultaneously utilizing non-native binding to the trehalose pocket. The conservation of the key residues that enforce the shape of the substrate pocket in T6PP enzymes suggest that development of broad-range anthelmintic and antibacterial therapeutics employing this platform may be possible. PMID:24992307

  18. Novel analogues of the therapeutic complement inhibitor compstatin with significantly improved affinity and potency1

    PubMed Central

    Qu, Hongchang; Magotti, Paola; Ricklin, Daniel; Wu, Emilia L.; Kourtzelis, Ioannis; Wu, You-Qiang; Kaznessis, Yiannis N.; Lambris, John D.

    2010-01-01

    Compstatin is a 13-residue disulfide-bridged peptide that inhibits a key step in the activation of the human complement system. Compstatin and its derivatives have shown great promise for the treatment of many clinical disorders associated with unbalanced complement activity. To obtain more potent compstatin analogues, we have now performed an N-methylation scan of the peptide backbone and amino acid substitutions at position 13. One analogue (Ac-I[CVW(Me)QDW-Sar-AHRC](NMe)I-NH2) displayed a 1,000-fold increase in both potency (IC50=62 nM) and binding affinity for C3b (KD=2.3 nM) over that of the original compstatin. Biophysical analysis using surface plasmon resonance and isothermal titration calorimetry suggests that the improved binding originates from more favorable free conformation and stronger hydrophobic interactions. This study provides a series of significantly improved drug leads for therapeutic applications in complement-related diseases, and offers new insights into the structure-activity relationships of compstatin analogues. PMID:21067811

  19. From BPA to its analogues: Is it a safe journey?

    PubMed

    Usman, Afia; Ahmad, Masood

    2016-09-01

    Bisphenol-A (BPA) is one of the most abundant synthetic chemicals in the world due to its uses in plastics. Its widespread exposure vis-a-vis low dose effects led to a reduction in its safety dose and imposition of ban on its use in infant feeding bottles. This restriction paved the way for the gradual market entry of its analogues. However, their structural similarity to BPA has put them under surveillance for endocrine disrupting potential. The application of these analogues is increasing and so are the studies reporting their toxicity. This review highlights the reasons which led to the ban of BPA and also reports the exposure and toxicological data available on its analogues. Hence, this compilation is expected to answer in a better way whether the replacement of BPA by these analogues is safer or more harmful? PMID:27262103

  20. The structure of the human RNase H2 complex defines key interaction interfaces relevant to enzyme function and human disease.

    PubMed

    Reijns, Martin A M; Bubeck, Doryen; Gibson, Lucien C D; Graham, Stephen C; Baillie, George S; Jones, E Yvonne; Jackson, Andrew P

    2011-03-25

    Ribonuclease H2 (RNase H2) is the major nuclear enzyme involved in the degradation of RNA/DNA hybrids and removal of ribonucleotides misincorporated in genomic DNA. Mutations in each of the three RNase H2 subunits have been implicated in a human auto-inflammatory disorder, Aicardi-Goutières Syndrome (AGS). To understand how mutations impact on RNase H2 function we determined the crystal structure of the human heterotrimer. In doing so, we correct several key regions of the previously reported murine RNase H2 atomic model and provide biochemical validation for our structural model. Our results provide new insights into how the subunits are arranged to form an enzymatically active complex. In particular, we establish that the RNASEH2A C terminus is a eukaryotic adaptation for binding the two accessory subunits, with residues within it required for enzymatic activity. This C-terminal extension interacts with the RNASEH2C C terminus and both are necessary to form a stable, enzymatically active heterotrimer. Disease mutations cluster at this interface between all three subunits, destabilizing the complex and/or impairing enzyme activity. Altogether, we locate 25 out of 29 residues mutated in AGS patients, establishing a firm basis for future investigations into disease pathogenesis and function of the RNase H2 enzyme. PMID:21177854

  1. Effect of chirality and lipophilicity in the functional activity of evodiamine and its analogues at TRPV1 channels

    PubMed Central

    De Petrocellis, Luciano; Schiano Moriello, Aniello; Fontana, Gabriele; Sacchetti, Alessandro; Passarella, Daniele; Appendino, Giovanni; Di Marzo, Vincenzo

    2014-01-01

    Background and Purpose Evodiamine, a racemic quinazolinocarboline alkaloid isolated from the traditional Chinese medicine Evodiae fructus, has been reported to act as an agonist of the transient receptor potential vanilloid type-1 (TRPV1) cation channel both in vitro and in vivo. Evodiamine is structurally different from all known TRPV1 activators, and has significant clinical potential as a thermogenic agent. Nevertheless, the molecular bases for its actions are still poorly understood. Experimental Approach To investigate the structure-activity relationships of evodiamine, the natural racemate was resolved, and a series of 23 synthetic analogues was prepared, using as the end point the intracellular Ca2+ elevation in HEK-293 cells stably overexpressing either the human or the rat recombinant TRPV1. Key Results S-(+) evodiamine was more efficacious and potent than R-(−) evodiamine, and a new potent lead (Evo30) was identified, more potent than the reference TRPV1 agonist, capsaicin. In general, potency and efficacy correlated with the lipophilicity of the analogues. Like other TRPV1 agonists, several synthetic analogues could efficiently desensitize TRPV1 to activation by capsaicin. Conclusions and Implications Evodiamine qualifies as structurally unique lead structure to develop new potent TRPV1 agonists/desensitizers. Linked Articles This article is part of a themed section on the pharmacology of TRP channels. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-10 PMID:23902373

  2. Antimicrobial activity of resveratrol analogues.

    PubMed

    Chalal, Malik; Klinguer, Agnès; Echairi, Abdelwahad; Meunier, Philippe; Vervandier-Fasseur, Dominique; Adrian, Marielle

    2014-01-01

    Stilbenes, especially resveratrol and its derivatives, have become famous for their positive effects on a wide range of medical disorders, as indicated by a huge number of published studies. A less investigated area of research is their antimicrobial properties. A series of 13 trans-resveratrol analogues was synthesized via Wittig or Heck reactions, and their antimicrobial activity assessed on two different grapevine pathogens responsible for severe diseases in the vineyard. The entire series, together with resveratrol, was first evaluated on the zoospore mobility and sporulation level of Plasmopara viticola (the oomycete responsible for downy mildew). Stilbenes displayed a spectrum of activity ranging from low to high. Six of them, including the most active ones, were subsequently tested on the development of Botrytis cinerea (fungus responsible for grey mold). The results obtained allowed us to identify the most active stilbenes against both grapevine pathogens, to compare the antimicrobial activity of the evaluated series of stilbenes, and to discuss the relationship between their chemical structure (number and position of methoxy and hydroxy groups) and antimicrobial activity. PMID:24918540

  3. Influence of the Charge State on the Structures and Interactions of Vancomycin Antibiotics with Cell-Wall Analogue Peptides: Experimental and Theoretical Studies

    SciTech Connect

    Yang, Zhibo; Vorpagel, Erich R.; Laskin, Julia

    2009-02-16

    In this study we examined the effect of the charge state on the energetics and dynamics of dissociation of the non-covalent complex between the vancomycin and the cell wall peptide analogue Nα,Nε-diacetyl-L-Lys-D-Ala-D-Ala (V-Ac2KDADA). The binding energies between the vancomycin and the peptide were obtained from the RRKM modeling of the time- and energy resolved surface-induced dissociation (SID) experiments. Our results demonstrate that the stability of the complex toward fragmentation increases in the order: [V+Ac2KDADA+H]+2 < [V+Ac2KDADA+H]+ < [V+Ac2KDADA-H]-. Dissociation of the singly protonated and singly deprotonated complex is characterized by very large entropy effects indicating substantial increase in the conformational flexibility of the resulting products. The experimental threshold energies of 1.75 eV and 1.34 eV obtained for the [V+Ac2KDADA-H]- and [V+Ac2KDADA+H]+ , respectively, are in excellent agreement with the results of density functional theory (DFT) calculations. The increased stability of the deprotonated complex observed experimentally is attributed to the presence of three charged sites in the deprotonated complex as compared to only one charged site in the singly protonated complex. The low binding energy of 0.93 eV obtained for the doubly protonated complex suggests that this ion is destabilized by Coulomb repulsion between the singly protonated vancomycin and the singly protonated peptide comprising the complex.

  4. Analogue Missions on Earth, a New Approach to Prepare Future Missions on the Moon

    NASA Astrophysics Data System (ADS)

    Lebeuf, Martin

    Human exploration of the Moon is a target by 2020 with an initial lunar outpost planned in polar regions. Current architectures maintain a capability for sorties to other latitudes for science activities. In the early stages of design of lunar outpost infrastructure and science activity planning, it has been recognized that analogue missions could play a major role in Moon mission design. Analogue missions, as high fidelity simulations of human and robotic surface operations, can help field scientists and engineers develop and test strategies as well as user requirements, as they provide opportunities to groundtruth measurements, and for the team to share understanding of key science needs and key engineering trades. These types of missions also provide direct training in planning science operations, and in team building and communication. The Canadian Space Agency's Exploration Core Program targets the development of technology infrastructure elements in key areas of science, technology and robotics in preparation for its role in the future exploration of the Moon and Mars. Within this Program, Analogue Missions specifically target the operations requirements and lessons learned that will reduce costs and lower the risk of planetary surface missions. Analogue missions are simulations of planetary surface operations that take place at analogue sites on Earth. A terrestrial analogue site resembles in some key way: eg. geomorphologically or geochemically, a surface environment of another planet. An analogue mission can, therefore, be defined as an integrated set of activities that represent (or simulate) entire mission designs or narrowly focus on specific aspects of planned or potential future planetary exploration missions. Within the CSA's Exploration Core Program, Analogue Missions facilitate the maturation of science instruments and mission concepts by integrating ongoing space instrument and technology development programs with science and analogue elements. As

  5. Condensed matter analogues of cosmology

    NASA Astrophysics Data System (ADS)

    Kibble, Tom; Srivastava, Ajit

    2013-10-01

    liveliest. A number of new experiments are reported here studying the dynamical evolution of domains and defects. Another phenomenon that played a key early role was the formation of vortices in the normal-to-superfluid transition in liquid helium-3. The complicated nature of the order parameter energy surface gives rise to a variety of intriguing effects. This too is still a vigorous field. Superconductivity is a special case because the symmetry that is broken is a gauge symmetry. This is also true in fundamental particle physics theories of relevance to cosmology, and for that reason experiments on superconductors are of particular interest to cosmologists. The situation in this case is more complicated because there are competing mechanisms of defect formation. Experiments in the field have not proved easy, either to perform or to interpret, but the papers in this collection show that good progress has been made of late. In recent years a new type of system has proved immensely fruitful, namely atomic Bose-Einstein or Fermi-gas condensates. Experiments on condensates with tunable parameters have in general provided broad support for the theory, and have also revealed a wide range of interesting and novel features, with intriguing possible analogues in cosmology (e.g. causal horizons and particle creation). The basic idea of the Kibble-Zurek mechanism has been shown to be relevant in this whole range of systems. But numerous complexities have also emerged, concerned for example with the role of inhomogeneity or the existence of composite defects. The field is still developing rapidly. Acknowledgments Finally, we would like to thank all the authors who have contributed to this issue, and the staff of Journal of Physics: Condensed Matter who have made it possible. Condensed matter analogues of cosmology contents Condensed matter analogues of cosmologyTom Kibble and Ajit Srivastava Symmetry breaking in nematic liquid crystals: analogy with cosmology and magnetismR Repnik, A

  6. Making Connections in Math: Activating a Prior Knowledge Analogue Matters for Learning

    ERIC Educational Resources Information Center

    Sidney, Pooja G.; Alibali, Martha W.

    2015-01-01

    This study investigated analogical transfer of conceptual structure from a prior-knowledge domain to support learning in a new domain of mathematics: division by fractions. Before a procedural lesson on division by fractions, fifth and sixth graders practiced with a surface analogue (other operations on fractions) or a structural analogue (whole…

  7. Synthesis and pharmacological studies of new pyrazole analogues of podophyllotoxin.

    PubMed

    Umesha, B; Basavarajuk, Y B

    2014-01-01

    The pyrazole analogues of podophyllotoxin were synthesized by the chalcone route. This route attracts the attention because of its simple operating conditions and easy availability ofthe chemicals. Initially, benzylide-neacetophenones (chalcones) were prepared in high yields by Claisen-Schmidt reaction of acetophenones with 4-(methylthio)benzaldehyde. The cyclopropyl ketones were prepared in good yields by the reaction of chalcones with trimethylsulfoxonium iodide. Tetralones were prepared in good yields by the Friedel-Craft's intramolecular cyclization reaction of cyclopropyle ketones in the presence of anhyd. stannic chloride and acetic anhydride. The tetralones on formylation to give substituted hydroxylmethylene tetralones. Condensation of substituted hydroxylmethylene tetralones with hydrazine hydrate afforded target compounds. The structures of the synthesized compounds were confirmed by IR, 'H-NMR and Mass spectral technique. The title compounds were screened for their antimitotic and antimicrobial activities. Among the synthesized compounds cyclopropyl ketones and pyrazole analogues of podophyllotoxin, compound 7-(Methytthio)-5-(4-(methylthio)phe- nyl)-4,5.-dihydro-2H-benzo[g]indazole is more active than 5-(4-(Methylthio)phenyl)-4,5-dihydro-2H-ben- zo[g]indazole, 7-Methyl-5-(4-(methylthio)phenyl)-4,5-dihydro-2H-benzo[g]indazole, 7-Methoxy-5-(4-(meth- ylthio)phenyl)-4,5-dihydro-2H-benzo[g]indazole and the key intermediate tetralones in 100, 200 and 400 ppm at 12, 18 and 24 hrs and also showed very good activity against screened bacteria and fungi compared to their standard. PMID:25898761

  8. Inhibition of ATP Synthase by Chlorinated Adenosine Analogue

    PubMed Central

    Chen, Lisa S.; Nowak, Billie J.; Ayres, Mary L.; Krett, Nancy L.; Rosen, Steven T.; Zhang, Shuxing; Gandhi, Varsha

    2009-01-01

    8-Chloroadenosine (8-Cl-Ado) is a ribonucleoside analogue that is currently in clinical trial for chronic lymphocytic leukemia. Based on the decline in cellular ATP pool following 8-Cl-Ado treatment, we hypothesized that 8-Cl-ADP and 8-Cl-ATP may interfere with ATP synthase, a key enzyme in ATP production. Mitochondrial ATP synthase is composed of two major parts; FO intermembrane base and F1 domain, containing α and β subunits. Crystal structures of both α and β subunits that bind to the substrate, ADP, are known in tight binding (αdpβdp) and loose binding (αtpβtp) states. Molecular docking demonstrated that 8-Cl-ADP/8-Cl-ATP occupied similar binding modes as ADP/ATP in the tight and loose binding sites of ATP synthase, respectively, suggesting that the chlorinated nucleotide metabolites may be functional substrates and inhibitors of the enzyme. The computational predictions were consistent with our whole cell biochemical results. Oligomycin, an established pharmacological inhibitor of ATP synthase, decreased both ATP and 8-Cl-ATP formation from exogenous substrates, however, did not affect pyrimidine nucleoside analogue triphosphate accumulation. Synthesis of ATP from ADP was inhibited in cells loaded with 8-Cl-ATP. These biochemical studies are in consent with the computational modeling; in the αtpβtp state 8-Cl-ATP occupies similar binding as ANP, a non-hydrolyzable ATP mimic that is a known inhibitor. Similarly, in the substrate binding site (αdpβdp) 8-Cl-ATP occupies a similar position as ATP mimic ADP-BeF3 −. Collectively, our current work suggests that 8-Cl-ADP may serve as a substrate and the 8-Cl-ATP may be an inhibitor of ATP synthase. PMID:19477165

  9. Analogue modelling of syntectonic leucosomes in migmatitic schists

    NASA Astrophysics Data System (ADS)

    Druguet, Elena; Carreras, Jordi

    2006-10-01

    Migmatites from the Cap de Creus tectonometamorphic belt display a wide variety of structures, from those formed when the leucosomes were melt-bearing, to those developed during solid-state deformation. The observed field structures have been modelled by means of analogue experiments. The materials used in the models are layered plasticine as a schist analogue, and chocolate as analogue of the crystallizing leucosome. A model for the development of syntectonic migmatites is proposed in which initial melt-bearing patches, preferentially formed within fertile pelitic layers, progressively evolve towards lens-shaped veins. Furthermore, heterogeneous deformation of anisotropic metasediments facilitates formation of extensional sites for further melt accumulation and transport. Melt crystallization implies a rapid increase in effective viscosity of leucosomes producing a reversal in competence contrast with respect to the enclosing schists. During the whole process, deformation localizes around crystallizing veins, giving rise to different and contrasting structures for melt-bearing and for solid-state stages.

  10. Understanding complex structures in fold-and-thrust belts. Integration of geometric and growth strata analyses, paleomagnetism, AMS and analogue models in the Western termination of the Southern Pyrenees

    NASA Astrophysics Data System (ADS)

    Pueyo, Emilio L.; Sánchez, Elisa; Oliva-Urcia, Belén; José Ramón, Ma

    2014-05-01

    Classic 2D approaches have helped the understanding of the geometry and kinematics of fold-and-thrust belts belts (FAT belts) but are insufficient to unravel many natural cases. This is because deformation is 3D from the geometric point of view and, thus, cylindrical features may be considered as a simplification. On the other hand, deformation kinematics is usually complex, diachronic and poliphasic in real cases. Therefore, FAT belts have to be always considered in 4D. In this sense, the Southern Pyrenees is a perfect location to study the evolution of FAT belts because of the exceptional outcropping conditions of growth strata, the proven diachronic kinematics and the non-coaxial interference of deformation events. Within the vast catalogue of complex structures that includes superposed folding, conical and plunging folds, oblique thrust ramps, etc here, we have selected the westernmost termination of the South Pyrenean sole thrust to illustrate how the integration of geometric and kinematic analysis can help unraveling complex structures in FAT belts. The San Marzal pericline (4 km2 surface extension) is the lateral termination of the Sto. Domingo deca-kilometric fold. San Marzal looks like a large 70° plunging cylindrical structure. However the large magnitude (≡ 60-70°) of vertical axis rotations accommodated between its flanks cannot be explained without a conical geometry. In this work we will show how the structural analysis performed on this structure has disentangled its complex geometry. This analyses comprises several hundreds of bedding data, joints and veins and more than 150 standard paleomagnetic and AMS sites. Besides, we will show how the kinematic information derived from magnetostratigraphic sections (more than 8 km of sampled profiles) has helped to constraint the folding and rotation ages and velocities. Finally, all these complex geometric and kinematic features have inspired us to build an analogue model where we can explore the 3D

  11. The 'Vertical Structure and Diabatic Processes of the Madden-Julian Oscillation' model evaluation project: Overview and key results (Invited)

    NASA Astrophysics Data System (ADS)

    Klingaman, N. P.; Jiang, X.; Xavier, P.; Petch, J.; Waliser, D. E.; Woolnough, S.

    2013-12-01

    The Madden-Julian oscillation (MJO) is the dominant mode of tropical sub-seasonal (30-60 day) variability. By modulating regional monsoon circulation and precipitation, interacting with ENSO and influences modes of extra-tropical variability (e.g., the NAO), the MJO provides a key source of weekly and monthly predictability globally. Despite this, most weather and climate models exhibit large biases in their simulations of the MJO. We will introduce a model evaluation project, endorsed by YoTC and GASS, designed to identify and reduce sources of error in the models' MJO representations. A key advantage of this project over previous intercomparisons is that temperature, moisture and momentum tendencies have been requested from all sub-grid parameterization schemes. This allows detailed analysis of the links between biases in MJO activity and biases in the vertical profiles of diabatic heating, moistening and momentum. The project comprises three components: 20-year simulations, from which the overall level of MJO activity can be assessed; serial 2-day hindcasts of two strong events in winter 2009-2010, in which the behavior of model parameterizations can be evaluated close to the initial, observed state; and serial 20-day hindcasts of the same two MJO events, which bridge the gap between the other two components by permitting analysis of the degradation of the simulated MJO from the initial state towards the model's climatology. Analysis of the 20-year simulations suggests that many proposed process-oriented MJO metrics, such as the relationship between precipitation and the vertical structure of relative humidity, do not sufficiently distinguish between those models that simulate the MJO well and those that simulate it poorly. It is assumed that the processes described by these metrics are necessary, but not sufficient, for an adequate simulation of the MJO in GCMs. Analysis of the 2-day hindcasts demonstrates that models develop substantial biases in upper

  12. Phonon analogue of topological nodal semimetals

    NASA Astrophysics Data System (ADS)

    Po, Hoi Chun; Bahri, Yasaman; Vishwanath, Ashvin

    2015-03-01

    Recently, Kane and Lubensky proposed a mapping between bosonic phonon problems on isostatic lattices to chiral fermion systems based on factorization of the dynamical matrix [Nat. Phys. 10, 39 (2014)]. The existence of topologically protected zero modes in such mechanical problems is related to their presence in the fermionic system and is dictated by a local index theorem. Here we adopt the proposed mapping to construct a two-dimensional mechanical analogue of a fermionic topological nodal semimetal that hosts a robust bulk node in its linearized phonon spectrum. Such topologically protected soft modes with tunable wavevector may be useful in designing mechanical structures with fault-tolerant properties.

  13. Digitoxin Analogues with Improved Anticytomegalovirus Activity

    PubMed Central

    2014-01-01

    Cardiac glycosides are potent inhibitors of cancer cell growth and possess antiviral activities at nanomolar concentrations. In this study we evaluated the anticytomegalovirus (CMV) activity of digitoxin and several of its analogues. We show that sugar type and sugar length attached to the steroid core structure affects its anticytomegalovirus activity. Structure–activity relationship (SAR) studies identified the l-sugar containing cardiac glycosides as having improved anti-CMV activity and may lead to better understanding of how these compounds inhibit CMV replication. PMID:24900847

  14. Phosphonomethyl analogues of hexose phosphates.

    PubMed

    Webster, D; Jondorf, W R; Dixon, H B

    1976-05-01

    The analogue of fructose 1,6-bisphosphate in which the phosphate group, -O-PO3H2, on C-6 is replaced by the phosphonomethyl group, -CH2-PO3H2, was made enzymically from the corresponding analogue of 3-phosphoglycerate. It was a substrate for aldolase, which was used to form it, but not for fructose 1,6-bisphosphatase. It was hydrolysed chemically to yield the corresponding analogue of fructose 6-phosphate [i.e. 6-deoxy-6-(phosphonomethyl)-D-fructose, or, more strictly, 6,7-dideoxy-7-phosphono-D-arabino-2-heptulose]. This proved to be a substrate for the sequential actions of glucose 6-phosphate isomerase, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. Thus seven out of the nine enzymes of the glycolytic and pentose phosphate pathways so far tested catalyse the reactions of the phosphonomethyl isosteres of their substrates. PMID:7247

  15. Dimetallaborane analogues of pentaborane.

    PubMed

    Brânzanic, Adrian M V; Lupan, Alexandru; King, R Bruce

    2015-04-28

    The structures of five-vertex dimetallaboranes Cp2M2B3H7 (Cp = η(5)-C5H5) of the second and third row transition metals, including the experimentally known Cp*2Rh2B3H7 (Cp* = η(5)-Me5C5), have been investigated by density functional theory. The predicted low-energy structures for Cp2M2B3H7 (M = Rh, Ir) are tetragonal pyramids similar to Cp*2Rh2B3H7 and pentaborane-9 B5H9 and consistent with their 14 Wadean skeletal electrons. Two Cp*2Rh2B3H7 structures with the same central Rh2B3 tetragonal prism are found with energies within ∼1 kcal mol(-1) of each other, consistent with the experimental observation of two isomers in solution. The electron-richer Cp2M2B3H7 (M = Pd, Pt) systems having 16 Wadean skeletal electrons are predicted to exhibit more open structures analogous to the known structure for the valence isoelectronic pentaborane-11 B5H11. Trigonal bipyramids with the metal atoms at equatorial vertices are typically found to be low-energy structures for the hypoelectronic Cp2M2B3H7 systems (M = Ru, Os, Re, Mo, W, Ta). In addition, the low-energy Cp2Re2B3H7 structures of the rhenium derivatives Cp2Re2B3H7 provide examples of structures based on a central Re2B2 tetrahedron with the Re-Re edge bridged by the third boron atom. Such structures can be derived from a trigonal bipyramid by the rupture of one of the axial-equatorial edges. PMID:25797320

  16. Vertical structure and physical processes of the Madden-Julian oscillation: Exploring key model physics in climate simulations

    NASA Astrophysics Data System (ADS)

    Jiang, Xianan; Waliser, Duane E.; Xavier, Prince K.; Petch, Jon; Klingaman, Nicholas P.; Woolnough, Steven J.; Guan, Bin; Bellon, Gilles; Crueger, Traute; DeMott, Charlotte; Hannay, Cecile; Lin, Hai; Hu, Wenting; Kim, Daehyun; Lappen, Cara-Lyn; Lu, Mong-Ming; Ma, Hsi-Yen; Miyakawa, Tomoki; Ridout, James A.; Schubert, Siegfried D.; Scinocca, John; Seo, Kyong-Hwan; Shindo, Eiki; Song, Xiaoliang; Stan, Cristiana; Tseng, Wan-Ling; Wang, Wanqiu; Wu, Tongwen; Wu, Xiaoqing; Wyser, Klaus; Zhang, Guang J.; Zhu, Hongyan

    2015-05-01

    Aimed at reducing deficiencies in representing the Madden-Julian oscillation (MJO) in general circulation models (GCMs), a global model evaluation project on vertical structure and physical processes of the MJO was coordinated. In this paper, results from the climate simulation component of this project are reported. It is shown that the MJO remains a great challenge in these latest generation GCMs. The systematic eastward propagation of the MJO is only well simulated in about one fourth of the total participating models. The observed vertical westward tilt with altitude of the MJO is well simulated in good MJO models but not in the poor ones. Damped Kelvin wave responses to the east of convection in the lower troposphere could be responsible for the missing MJO preconditioning process in these poor MJO models. Several process-oriented diagnostics were conducted to discriminate key processes for realistic MJO simulations. While large-scale rainfall partition and low-level mean zonal winds over the Indo-Pacific in a model are not found to be closely associated with its MJO skill, two metrics, including the low-level relative humidity difference between high- and low-rain events and seasonal mean gross moist stability, exhibit statistically significant correlations with the MJO performance. It is further indicated that increased cloud-radiative feedback tends to be associated with reduced amplitude of intraseasonal variability, which is incompatible with the radiative instability theory previously proposed for the MJO. Results in this study confirm that inclusion of air-sea interaction can lead to significant improvement in simulating the MJO.

  17. A comparison of scytonemin and its carbon analogue in terms of antioxidant properties through free radical mechanisms and conformational analysis: a DFT investigation.

    PubMed

    Varnali, Tereza

    2016-09-01

    Scytonemin is a UV absorbing sheath pigment synthesized uniquely by cyanobacteria. Its biological features has attracted interest ecologically (in microbial mat systems), medically (for therapeutic activity) and astrobiologically (as a key biomarker). Recently, a carbon analogue of scytonemin, in which two nitrogen atoms are replaced by carbon atoms was synthesized to elucidate the origin of biological activity by comparison with scytonemin. In this work, their structural/conformational aspects and relative antioxidant capacity are compared making use of DFT calculations to provide insight about the similarities and differences between the two. The carbon analogue of scytonemin, isoelectronic with scytonemin, has the same structural skeleton and a similar potential energy surface but the hydrogens on the carbons that replace the nitrogens cause the phenolic rings to rotate out of the plane which is obseved for scytonemin. Thermochemically, the carbon analogue of scytonemin prefers the same radical scavenging mechanism scytonemin does, the HAT mechanism, and has a lower homolytic bond dissociation enthalpy for the OH group than that of scytonemin and other known antioxidants like ascorbic acid. The carbon analogue of scytonemin is suggested to be a novel synthetic antioxidant. PMID:27544141

  18. C(16)-C(22) oxygen-bridged analogues of ceDAF-12 and LXR ligands.

    PubMed

    Del Fueyo, M Celeste; Dansey, M Virginia; Paolo, Luciano S; Pecci, Adalí; Veleiro, Adriana S; Burton, Gerardo

    2016-08-01

    The DAF-12 receptor in nematodes and the Liver X Receptor (LXR) in mammals are structurally related transcription factors that play key roles in determining the life span of the organism. Both types of receptors are activated by oxysterols, cholesterol metabolites with oxidized side chains. Restricting the movement of the oxysterol side chain to certain orientations may have profound effects in the activity profile, however this has not been explored so far. In a first attempt to obtain analogues of natural ligands of DAF-12 and LXR with restricted side chain mobility we introduced a 16,22-oxygen bridge in 26-hydroxycholesterol, a cholestenoic acid and a dafachronic acid (5-7). Diosgenin was used as starting material, the key step to obtain the 16,22 epoxy functionality was the one pot formation and reduction of a cyclic hemiketal via the oxocarbenium ion using sodium cyanoborohydride. All new compounds were characterized by NMR and mass spectrometry and assayed as ceDAF-12 or LXR ligands in transactivation cell-based assays. The dafachronic acid analogue 7 behaved as a ceDAF-12 agonist. PMID:27235856

  19. Dimetallaborane analogues of the octaboranes of the type Cp2M2B6H10: structural variations with changes in the skeletal electron count.

    PubMed

    Brânzanic, Adrian M V; Lupan, Alexandru; King, R Bruce

    2016-05-31

    The structures and energetics of the complete series of hydrogen-rich dimetallaboranes Cp2M2B6H10 and Cp*2M2B6H10 (Cp = η(5)-C5H5; Cp* = η(5)-Me5C5; M = Pd, Pt; Rh, Ir; Ru, Os; Re; Mo, W; Ta), including the experimentally known Cp*2Rh2B6H10 and Cp*2W2B6H10 (Cp* = η(5)-Me5C5), have been investigated by density functional theory. The lowest energy structures of the hyperelectronic Cp2M2B6H10 (M = Pd, Pt; Rh, Ir) systems have central M2B6 frameworks with a hexagonal open face similar to the B8 networks in arachno-B8H14 and nido-B8H12. The two lowest energy structures for Cp2Rh2B6H10 and Cp*2Rh2B6H10, lying within 1 kcal mol(-1) of energy, differ only in the locations of the bridging hydrogen atoms around the hexagonal hole consistent with the experimentally observed fluxionality of the hydrogen atoms in Cp*2Rh2B6H10. Most of the lowest energy Cp2M2B6H10 (M = Ru, Os) structures also have a central M2B6 framework similar to B8H12, typically with such additional features as an additional metal-metal bond or a formal metal-metal double bond. A common motif for the low-energy structures of the hypoelectronic Cp2M2B6H10 (M = Re; Mo, W; Ta) systems, including the experimentally known Cp*2W2B6H10, is a central M2B4 octahedron with its two M2B faces capped by the remaining boron atoms and with four M-B edges bridged by hydrogen atoms. Such structures can also be considered as oblatonido structures derived from the experimentally known 9-vertex oblatocloso Cp*2Re2B7H7 structure by removal of the unique degree 4 vertex atom. PMID:27186632

  20. Models and Analogues

    ERIC Educational Resources Information Center

    Maloney, Jane; Curtis, Sheila

    2012-01-01

    How do teachers help children understand the difference between the structure of a flower and that of a root? Depending on the time of year this activity is quite easy. Get a bunch of flowers, germinate some chickpeas and raid the kitchen for carrots and beetroots--the children can experience the "real thing". But what if teachers want the…

  1. Synthetic analogues of the histidine-chlorophyll complex: a NMR study to mimic structural features of the photosynthetic reaction center and the light-harvesting complex.

    PubMed

    van Gammeren, Adriaan J; Hulsbergen, Frans B; Erkelens, Cornelis; De Groot, Huub J M

    2004-01-01

    Mg(II)-porphyrin-ligand and (bacterio)chlorophyl-ligand coordination interactions have been studied by solution and solid-state MAS NMR spectroscopy. (1)H, (13)C and (15)N coordination shifts due to ring currents, electronic perturbations and structural effects are resolved for imidazole (Im) and 1-methylimidazole (1-MeIm) coordinated axially to Mg(II)-OEP and (B)Chl a. As a consequence of a single axial coordination of Im or 1-MeIm to the Mg(II) ion, 0.9-5.2 ppm (1)H, 0.2-5.5 ppm (13)C and 2.1-27.2 ppm (15)N coordination shifts were measured for selectively labeled [1,3-(15)N]-Im, [1,3-(15)N,2-(13)C]-Im and [1,3-(15)N,1,2-(13)C]-1-MeIm. The coordination shifts depend on the distance of the nuclei to the porphyrin plane and the perturbation of the electronic structure. The signal intensities in the (1)H NMR spectrum reveal a five-coordinated complex, and the isotropic chemical shift analysis shows a close analogy with the electronic structure of the BChl a-histidine in natural light harvesting 2 complexes. The line broadening of the ligand responses support the complementary IR data and provide evidence for a dynamic coordination bond in the complex. PMID:14663650

  2. Inheritance of earthquake hazard from suturing: the Himalayas as an analogue for the structural architecture and seismic potential of the Greater Caucasus

    NASA Astrophysics Data System (ADS)

    Trexler, C.; Cowgill, E.; Forte, A. M.; Mumladze, T.; Sokhadze, G.; Elashvili, M.; Niemi, N. A.

    2013-12-01

    The nascent collision between the Arabian and Eurasian continents has created the second-largest active collisional orogen on Earth and provides a rare opportunity to investigate how structures formed during initial suturing influence and even control the subsequent first-order structural architecture of the evolving orogen. Between the Caspian and Black Seas, the Greater Caucasus Mountains form both the northern margin of the Arabia-Eurasia collision and the main locus of orogen-perpendicular shortening, despite being located some 700 km north of the Bitlis suture. A better understanding of active structures in the range is critical for understanding the mechanics and evolution of this collisional orogen. Developing such a structural model of the Greater Caucasus is also essential for assessing earthquake hazards. Here we begin to address these problems by using geologic maps, digital topographic data, and structural measurements to create preliminary geologic cross sections across the southern flank of the central and western Greater Caucasus. These sections span both a low-elevation foreland fold-thrust belt in the south and the main topographic front of the range ~15-40 km to the north. In addition, we investigate active deformation using topographic surveys of river terraces in the foreland south of the western Greater Caucasus range front near the city of Zugdidi. Based on these observations, we suggest that the neotectonic architecture of the range is broadly analogous to that of the Himalayas, where active deformation is not focused along a range-front-defining fault but instead is localized tens of kilometers to the south, along the south edge of a low-elevation, low-relief foreland fold-thrust belt. We infer that active faults within the fold-thrust belt sole into a shallow (~5-10 km deep), north-dipping basal decollement that roots into a crustal-scale ramp which lies beneath the main topography of the Greater Caucasus. Based on prior work on the

  3. Investigation of Pre-Service English Language Teachers' Cognitive Structures about Some Key Concepts in Approaches and Methods in Language Teaching Course through Word Association Test

    ERIC Educational Resources Information Center

    Ersanli, Ceylan Yangin

    2016-01-01

    This study aims to map the cognitive structure of pre-service English language (EL) teachers about three key concepts related to approaches and methods in language teaching so as to discover their learning process and misconceptions. The study involves both qualitative and quantitative data. The researcher administrated a Word Association Test…

  4. Synthesis and crystal structure of new temephos analogues as cholinesterase inhibitor: molecular docking, QSAR study, and hydrogen bonding analysis of solid state.

    PubMed

    Gholivand, Khodayar; Ebrahimi Valmoozi, Ali Asghar; Bonsaii, Mahyar

    2014-06-25

    A series of temephos (Tem) derivatives were synthesized and characterized by 31P, 13C, and 1H NMR and FT-IR spectral techniques. Also, the crystal structure of compound 9 was investigated. The hydrogen bonding energies (E2) were calculated by NBO analysis of the crystal cluster. The activities and the mixed-type mechanism of Tem derivatives were evaluated using the modified Ellman's and Lineweaver-Burk's methods on cholinesterase (ChE) enzymes. The inhibitory activities of Tem derivatives with a P═S moiety were higher than those with a P═O moiety. Docking analysis disclosed that the hydrogen bonds occurred between the OR (R=CH3 and C2H5) oxygen and N-H nitrogen atoms of the selected compounds and the receptor site (GLN and GLU) of ChEs. PCA-QSAR indicated that the correlation coefficients of the electronic variables were dominant compared to the structural descriptors. MLR-QSAR models clarified that the net charges of nitrogen and phosphorus atoms contribute important electronic function in the inhibition of ChEs. The validity of the QSAR model was confirmed by a LOO cross-validation method with q2=0.965 between the training and testing sets. PMID:24893121

  5. High-definition NMR structure of PED/PEA-15 death effector domain reveals details of key polar side chain interactions.

    PubMed

    Twomey, Edward C; Wei, Yufeng

    2012-07-20

    Death effector domain (DED) proteins constitute a subfamily of the large death domain superfamily that is primarily involved in apoptosis pathways. DED structures have characteristic side chain-side chain interactions among polar residues on the protein surface, forming a network of hydrogen bonds and salt bridges. The polar interaction network is functionally important in promoting protein-protein interactions by maintaining optimal side chain orientations. We have refined the solution DED structure of the PED/PEA-15 protein, a representative member of DED subfamily, using traditional NMR restraints with the addition of residual dipolar coupling (RDC) restraints from two independent alignment media, and employed the explicit solvent refinement protocol. The newly refined DED structure of PED/PEA-15 possesses higher structural quality as indicated by WHAT IF Z-scores, with most significant improvement in the backbone conformation normality quality factor. This higher quality DED structure of PED/PEA-15 leads to the identification of a number of key polar side chain interactions, which are not typically observed in NMR protein structures. The elucidation of polar side chain interactions is a key step towards the understanding of protein-protein interactions involving the death domain superfamily. The NMR structures with extensive details of protein structural features are thereby termed high-definition (HD) NMR structures. PMID:22732408

  6. Naturally occurring crystalline phases: analogues for radioactive waste forms

    SciTech Connect

    Haaker, R.F.; Ewing, R.C.

    1981-01-01

    Naturally occurring mineral analogues to crystalline phases that are constituents of crystalline radioactive waste forms provide a basis for comparison by which the long-term stability of these phases may be estimated. The crystal structures and the crystal chemistry of the following natural analogues are presented: baddeleyite, hematite, nepheline; pollucite, scheelite;sodalite, spinel, apatite, monazite, uraninite, hollandite-priderite, perovskite, and zirconolite. For each phase in geochemistry, occurrence, alteration and radiation effects are described. A selected bibliography for each phase is included.

  7. Review of insulin and its analogues in diabetes mellitus.

    PubMed

    Mane, Krishnappa; Chaluvaraju, Kc; Niranjan, Ms; Zaranappa, Tr; Manjuthej, Tr

    2012-03-01

    Diabetes is a metabolic disorder where in human body does not produce or properly uses insulin, a hormone that is required to convert sugar, starches and other food into energy. Diabetes finally leads to more complications and to prevent these complications insulin and its analogues are used. After more than half a century of treating diabetics with animal insulin's, recombinant DNA technologies and advanced protein chemistry made human insulin preparations available in the early 1980s. As the next step, over the last decade, insulin analogues were constructed by changing the structure of the native protein with the goal of improving the therapeutic properties of it, because the pharmacokinetic characteristics of rapid, intermediate and long-acting preparations of human insulin make it almost impossible to achieve sustained normoglycemia. The first clinically available insulin analogue, lispro, confirmed the hopes by showing that improved glycaemic control can be achieved without an increase in hypoglycaemic events. Two new insulin analogues, insulin glargine and insulin aspart, have recently been approved for clinical use in the United States and several other analogues are being intensively tested. PMID:24826038

  8. New metabolically stabilized analogues of lysophosphatidic acid: agonists, antagonists and enzyme inhibitors.

    PubMed

    Prestwich, G D; Xu, Y; Qian, L; Gajewiak, J; Jiang, G

    2005-12-01

    Lysophosphatidic acid (LPA) is a metabolically labile natural phospholipid with a bewildering array of physiological effects. We describe herein a variety of long-lived receptor-specific agonists and antagonists for LPA receptors. Several LPA and PA (phosphatidic acid) analogues also inhibit LPP (lipid phosphate phosphatase). The sn-1 or sn-2 hydroxy groups have been replaced by fluorine, difluoromethyl, difluoroethyl, O-methyl or O-hydroxyethoxy groups to give non-migrating LPA analogues that resist acyltransferases. Alkyl ether replacement of acyl esters produced lipase and acyltransferase-resistant analogues. Replacement of the bridging oxygen in the monophosphate by an alpha-monofluoromethylene-, alpha-bromomethylene- or alpha,alpha-difluoromethylenephosphonate gave phosphatase-resistant analogues. Phosphorothioate analogues with O-acyl and O-alkyl chains are potent, long-lived agonists for LPA1 and LPA3 receptors. Most recently, we have (i) prepared stabilized O-alkyl analogues of lysobisphosphatidic acid, (ii) explored the structure-activity relationship of stabilized cyclic LPA analogues and (iii) synthesized neutral head group trifluoromethylsulphonamide analogues of LPA. Through collaborative studies, we have collected data for these stabilized analogues as selective LPA receptor (ant)agonists, LPP inhibitors, TREK (transmembrane calcium channel) K+ channel agonists, activators of the nuclear transcription factor PPAR-gamma (peroxisome-proliferator-activated receptor-gamma), promoters of cell motility and survival, and radioprotectants for human B-cells. PMID:16246118

  9. New phosphorus analogues of nitrogen classics--no carbon copies.

    PubMed

    Gudat, Dietrich

    2014-05-01

    Getting heavy: The recently prepared phosphorus analogues of two old acquaintances, urea and dinitrogen tetroxide, bear some structural resemblance to their archetypes but are no carbon copies. Their syntheses and chemical properties reveal rather certain peculiarities, which back the doctrine that the electronic properties of the heavier elements in a group differ from those of the lightest congener. PMID:24718995

  10. Synthesis and Temperature-Induced Structural Phase and Spin Transitions in Hexadecylboron-Capped Cobalt(II) Hexachloroclathrochelate and Its Diamagnetic Iron(II)-Encapsulating Analogue.

    PubMed

    Vologzhanina, Anna V; Belov, Alexander S; Novikov, Valentin V; Dolganov, Alexander V; Romanenko, Galina V; Ovcharenko, Victor I; Korlyukov, Alexander A; Buzin, Mikhail I; Voloshin, Yan Z

    2015-06-15

    Template condensation of dichloroglyoxime with n-hexadecylboronic acid on the corresponding metal ion as a matrix under vigorous reaction conditions afforded n-hexadecylboron-capped iron and cobalt(II) hexachloroclathrochelates. The complexes obtained were characterized using elemental analysis, MALDI-TOF mass spectrometry, IR, UV-vis, (1)H and (13)C{(1)H} NMR, (57)Fe Mössbauer spectroscopies, SQUID magnetometry, electron paramagnetic resonance, and cyclic voltammetry (CV) and by X-ray crystallography. The multitemperature single-crystal X-ray diffraction, SQUID magnetometry, and differential scanning calorimetry experiments were performed to study the temperature-induced spin-crossover [for the paramagnetic cobalt(II) complex] and the crystal-to-crystal phase transitions (for both of these clathrochelates) in the solid state. Analysis of their crystal packing using the molecular Voronoi polyhedra and the Hirshfeld surfaces reveals the structural rearrangements of the apical long-chain alkyl substituents resulting from such phase transitions being more pronounced for a macrobicyclic cobalt(II) complex. Its fine-crystalline sample undergoes the gradual and fully reversible spin transition centered at approximately 225 K. The density functional theory calculated parameters for an isolated molecule of this cobalt(II) hexachloroclathrochelate in its low- and high-spin states were found to be in excellent agreement with the experimental data and allowed to localize the spin density within a macrobicyclic framework. CV of the cobalt(II) complex in the cathodic range contains one reversible wave assigned to the Co(2+/+) redox couple with the reduced anionic cobalt(I)-containing species stabilized by the electronic effect of six strong electron-withdrawing chlorine substituents. The quasireversible character of the Fe(2+/+) wave suggests that the anionic iron(I)-containing macrobicyclic species undergo substantial structural changes and side chemical reactions after such

  11. Migrastatin analogues target fascin to block tumour metastasis

    SciTech Connect

    Chen, L.; Jakoncic, J.; Yang, S.; Zhang, J.; Huang, X.Y.

    2010-04-15

    Tumour metastasis is the primary cause of death of cancer patients. Development of new therapeutics preventing tumour metastasis is urgently needed. Migrastatin is a natural product secreted by Streptomyces, and synthesized migrastatin analogues such as macroketone are potent inhibitors of metastatic tumour cell migration, invasion and metastasis. Here we show that these migrastatin analogues target the actin-bundling protein fascin to inhibit its activity. X-ray crystal structural studies reveal that migrastatin analogues bind to one of the actin-binding sites on fascin. Our data demonstrate that actin cytoskeletal proteins such as fascin can be explored as new molecular targets for cancer treatment, in a similar manner to the microtubule protein tubulin.

  12. Synthesis and Biological Evaluation of New (-)-Englerin Analogues.

    PubMed

    López-Suárez, Laura; Riesgo, Lorena; Bravo, Fernando; Ransom, Tanya T; Beutler, John A; Echavarren, Antonio M

    2016-05-01

    We report the synthesis and biological evaluation of a series of (-)-englerin A analogues obtained along our previously reported synthetic route based on a stereoselective gold(I) cycloaddition process. This synthetic route is a convenient platform to access analogues with broad structural diversity and has led us to the discovery of unprecedented and easier-to-synthesize derivatives with an unsaturation in the cyclopentyl ring between C4 and C5. We also introduce novel analogues in which the original isopropyl motif has been substituted with cyclohexyl, phenyl, and cyclopropyl moieties. The high selectivity and growth-inhibitory activity shown by these new derivatives in renal cancer cell lines opens new ways toward the final goal of finding effective drugs for the treatment of renal cell carcinoma (RCC). PMID:27005578

  13. Expeditious synthesis of Mycobacterium tuberculosis sulfolipids SL-1 and Ac2SGL analogues.

    PubMed

    Sarpe, Vikram A; Kulkarni, Suvarn S

    2014-11-01

    M. tuberculosis sulfoglycolipids SL-1 and Ac2SGL are highly immunogenic and potential vaccine candidates. A short and efficient methodology is reported for the synthesis of SL-1 and Ac2SGL analogues via regioselective functionalization of α,α-D-trehalose employing a highly regioselective late stage sulfation, as a key step. The SL-1 analogues 3a and 4 were obtained in 10 and 9 steps in 13.4% and 23.9% overall yields, respectively. The Ac2SGL analogue 5 was synthesized in 5 steps in 18.4% yield. PMID:25322198

  14. Discovery and structure-activity relationships study of novel thieno[2,3-b]pyridine analogues as hepatitis C virus inhibitors.

    PubMed

    Wang, Ning-Yu; Zuo, Wei-Qiong; Xu, Ying; Gao, Chao; Zeng, Xiu-Xiu; Zhang, Li-Dan; You, Xin-Yu; Peng, Cui-Ting; Shen, Yang; Yang, Sheng-Yong; Wei, Yu-Quan; Yu, Luo-Ting

    2014-03-15

    Current treatment for hepatitis C is barely satisfactory, there is an urgent need to develop novel agents for combating hepatitis C virus infection. This study discovered a new class of thieno[2,3-b]pyridine derivatives as HCV inhibitors. First, a hit compound characterized by a thienopyridine core was identified in a cell-based screening of our privileged small molecule library. And then, structure activity relationship study of the hit compound led to the discovery of several potent compounds without obvious cytotoxicity in vitro (12c, EC50=3.3μM, SI >30.3, 12b, EC50=3.5μM, SI >28.6, 10l, EC50=3.9μM, SI >25.6, 12o, EC50=4.5μM, SI >22.2, respectively). Although the mechanism of them had not been clearly elucidated, our preliminary optimization of this class of compounds had provided us a start point to develop new anti-HCV agents. PMID:24529869

  15. Comparative analysis of the electrostatic potentials of some structural analogues of 2,3,7,8-tetrachlorodibenzo-p-dioxin and of related aromatic systems

    SciTech Connect

    Murray, J.S.; Evans, P.; Politzer, P.

    1990-01-01

    An ab initio STO-5G computational analysis of the electrostatic potentials of four structural analogs of the highly toxic 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and four related aromatic systems (benzo(a)pyrene, benz(a)anthracene and two isomeric benzoflavones) was carried out. The systems, to varying degrees, induce aryl hydrocarbon hydroxylase activity and are believed to interact with the same cytosolic receptor in initiating their biochemical responses. It was found that a high degree of activity appears to require negative potentials that are non-overlapping above all or most of the lateral regions, with an observed optimum range of magnitudes. In systems with central oxygens, it is required that the negative oxygen potentials be small and weak; however, oxygen negative regions in the molecule are not necessary for high activity. The observed differences between the potential patterns of the four aromatic systems and those of TCDD and its active analogs may reflect an inherent dissimilarity in the nature of their interactions with the cytosolic receptor.

  16. Biointeractions of C.I. Acid Red 2 and its structural analogues with transporter albumin: Fluorescence, circular dichroism, and ligand docking approaches.

    PubMed

    Peng, Wei; Ding, Fei; Xie, Yong

    2016-01-01

    In this contribution, the toxicological effects of C.I. Acid Red 2 and 1-(2-pyridylazo)-2-naphthol (PAN) have been elucidated by utilizing plasma albumin as a biological model. Fluorescence data indicated that the Trp-214 residue was quenched by both azo compounds, but the quenching degree of C.I. Acid Red 2 is less than PAN. According to the results of time-resolved fluorescence decay, it may be observed that the quenching of Trp-214 residue is controlled by static type; this corroborates the Stern-Volmer analyses and the conformational transition of protein was concurred. The experiments also found that azo colorants are situated within subdomain IIA, several amino acid residues, such as Ser-202, Ala-210, and Trp-214 were believed to be yielded direct interaction with the two chemicals, yet the operating distances between C.I. Acid Red 2 and relevant residues are greater than PAN. Interestingly, we may ascertain that the azo colorants with naphthalene ring possess stronger affinity with protein than those just having benzene ring in their molecular structure. This suggested that the existence of naphthalene ring substituent could hold relatively great risk for the human body due to large hydrophobicity (cLogP); therefore, the hydrophobicity of azo colorants can probably be a major element of its toxicological activities. PMID:26682933

  17. Synthesis, in vitro antitumor activity, dihydrofolate reductase inhibition, DNA intercalation and structure-activity relationship studies of 1,3,5-triazine analogues.

    PubMed

    Singla, Prinka; Luxami, Vijay; Paul, Kamaldeep

    2016-01-15

    A series of triazine-benzimidazoles with 4-fluoroaniline substitution has been designed and synthesized. These compounds were further substituted with different primary and secondary amines. The structures of newly synthesized compounds were confirmed by (1)H, (13)C NMR, mass spectrometry and, in case of compound 18, by single crystal X-ray diffraction analysis. The newly synthesized compounds were evaluated against 60 human tumor cell lines at one dose and five dose concentration levels. Compounds 7, 8 and 22 have been found to be the most active antitumor agents with GI50 values of 1.77, 1.94 and 2.87μM, respectively. The synthesized compounds were then evaluated for their inhibitory activity to mammalian dihydrofolate reductase. Compound 22 was depicted as the most active compound for the inhibition of dihydrofolate reductase with IC50 value of 2.0nM. DNA binding studies were also revealed strong interacting properties of triazine derivatives towards calf thymus-DNA. PMID:26670841

  18. Direct Observation of Short-Range Structural Coherence During a Charge Transfer Induced Spin Transition in a CoFe Prussian Blue Analogue by Transmission Electron Microscopy.

    PubMed

    Itoi, Miho; Jike, Toyoharu; Nishio-Hamane, Daisuke; Udagawa, Seiichi; Tsuda, Tetsuya; Kuwabata, Susumu; Boukheddaden, Kamel; Andrus, Matthew J; Talham, Daniel R

    2015-11-25

    The local structure within the Co-Fe atomic array of the photoswitchable coordination polymer magnet, K0.3Co[Fe(CN)6]0.77·nH2O, is directly observed during charge transfer induced spin transition (CTIST), a solid-solid phase change, using high-resolution transmission electron microscopy (HRTEM). Along with the low-spin (LS) or thermally quenched high-spin (HS) states normally observed in CTIST solids at low temperature, slow cooling of K0.3Co[Fe(CN)6]0.77·nH2O results in an intermediate phase containing both HS and LS domains with short coherence length. By mapping individual metal-metal distances, the nanometer-scale HS domains are directly visualized within the LS array. Temperature-dependent analyses allow monitoring of HS domain coarsening along the warming branch of the CTIST, providing direct visualization of the elastic process and insight into the mechanism of phase propagation. Normally sensitive to electron beam damage, the low-temperature TEM measurements of the porous coordination polymer are enabled by using appropriate ionic liquids instead of usual conductive thin-film coatings, an approach that should find general utility in related classes of materials. PMID:26510096

  19. First synthetic analogues of diphosphoinositol polyphosphates: interaction with PP-InsP5 kinase† †Electronic supplementary information (ESI) available: Data deposition: the atomic coordinates and structure factors have been deposited in the Protein Data Bank, www.pdb.org (PDB ID code 4GB4). See DOI: 10.1039/c2cc36044f Click here for additional data file.

    PubMed Central

    Riley, Andrew M.; Wang, Huanchen; Weaver, Jeremy D.; Shears, Stephen B.

    2012-01-01

    We synthesised analogues of diphosphoinositol polyphosphates (PP-InsPs) in which the diphosphate is replaced by an α-phosphonoacetic acid (PA) ester. Structural analysis revealed that 5-PA-InsP5 mimics 5-PP-InsP5 binding to the kinase domain of PPIP5K2; both molecules were phosphorylated by the enzyme. PA-InsPs are promising candidates for further studies into the biology of PP-InsPs. PMID:23032903

  20. Hexanuclear, heterometallic, Ni₃Ln₃ complexes possessing O-capped homo- and heterometallic structural subunits: SMM behavior of the dysprosium analogue.

    PubMed

    Goura, Joydeb; Guillaume, Rogez; Rivière, Eric; Chandrasekhar, Vadapalli

    2014-08-01

    The reaction of hetero donor chelating mannich base ligand 6,6'-{(2-(dimethylamino)ethylazanediyl)bis(methylene)}bis(2-methoxy-4-methylphenol) with Ni(ClO4)2·6H2O and lanthanide(III) salts [Dy(III) (1); Tb(III) (2); Gd (III) (3); Ho(III) (4); and Er(III) (5)] in the presence of triethylamine and pivalic acid afforded a series of heterometallic hexanuclear Ni(II)-Ln(III) coordination compounds, [Ni3Ln3(μ3-O)(μ3-OH)3(L)3(μ-OOCCMe3)3]·(ClO4)·wCH3CN·xCH2Cl2·yCH3OH·zH2O [for 1, w = 8, x = 3, y = 0, z = 5.5; for 2, w = 0, x = 5, y = 0, z = 6.5; for 3, w = 15, x = 18, y = 3, z = 7.5; for 4, w = 15, x = 20, y = 6, z = 9.5; and for 5, w = 0, x = 3, y = 2, z = 3]. The molecular structure of these complexes reveals the presence of a monocationic hexanuclear derivative containing one perchlorate counteranion. The asymmetric unit of each of the hexanuclear derivatives comprises the dinuclear motif [NiLn(L)(μ3-O)(μ3-OH)(μ-Piv)]. The cation contains three interlinked O-capped clusters: one Ln(III)3O and three Ni(II)Ln(III)2O. Each of the lanthanide centers is eight- coordinated (distorted trigonal-dodecahedron), while the nickel centers are hexacoordinate (distorted octahedral). The study of the magnetic properties of all compounds are reported and suggests single molecule magnet behavior for the Dy(III) derivative (1). PMID:25050753

  1. Muscarinic interactions of bisindolylmaleimide analogues.

    PubMed

    Lazareno, S; Popham, A; Birdsall, N J

    1998-11-01

    We have used radioligand binding studies to determine the affinities of seven bisindolylmaleimide analogues, six of which are selective inhibitors of protein kinase C, at human muscarinic M1-M4 receptors. The compounds were most potent at M1 receptors, and Ro-31-8220 was the most potent analogue, with a Kd of 0.6 microM at M1 receptors. The weakest compounds, bisindolylmaleimide IV and bisindolylmaleimide V, had Kd values of 100 microM. If it is necessary to use protein kinase C inhibitors at concentrations of 10 microM or more in studies involving muscarinic receptors then bisindolylmaleimide IV may be the most appropriate inhibitor to use. PMID:9851596

  2. Analogue experiments applied to active tectonics studies: the case of seismogenic normal faults

    NASA Astrophysics Data System (ADS)

    Seno, S.; Bonini, L.; Toscani, G.

    2010-12-01

    Lithosphere can be divided into three main zones as a function of increasing depth: an aseismic updip zone, the seismogenic zone and a deep aseismic zone. Identifying the location of these zones is a key goal to understand how a specific seismogenic fault works. The evaluation of the seismogenic structures potential in tectonically active regions needs an accurate knowledge of the geometries and kinematic of the faults. In many cases, large seismogenic faults are not clearly and unambiguously expressed at the surface, whereas in other regions with higher deformation rates a clear geological surface evidence is often associated with large earthquakes. Therefore, the characterization of the seismogenic faults and of their mutual interactions it is not always straightforward; in this case, analogue modeling can provide an independent and useful tool for the interpretation of the surface geological data. Analogue modeling applied to earthquake geology is a quite innovative technique: when combined with other datasets (e.g.: seismic tomography, seismic profiles, well-logging data, field geology, morphotectonic and palaeo-seismological data) it can provide significant insights on the long term (i.e. Quaternary) evolution of a seismogenic fault. We carried out a set of analogue models at 1 : 100,000 scale that reproduce in 2D a normal fault with a relatively low dip angle (45°-50°). In our experimental approach different materials have been used to simulate the three main zones in which the lithosphere is separated. Dry sand and wet clay simulate different mechanical behaviour of rocks during seismic cycle. The dry sand, with its negligible cohesion and ductility, represents brittle rocks that deformed by localized faulting during earthquakes. Wet clay, with its slightly greater cohesion and ductility, mimics aseismic updip zone. Glass microbeads simulate aseismic plastic zone. Preliminary results are highlighting a mutual control among the three analogue materials

  3. Substrate analogues for isoprenoid enzymes

    SciTech Connect

    Stremler, K.E.

    1987-01-01

    Diphosphonate analogues of geranyl diphosphate, resistant to degradation by phosphatases, were found to be alternate substrates for the reaction with farnesyl diphosphate synthetase isolated from avian liver. The difluoromethane analogue was shown to be the better alternate substrate, in agreement with solvolysis results which indicate that the electronegativity of the difluoromethylene unit more closely approximates that of the normal bridging oxygen. The usefulness of the C/sub 10/ difluoro analogue, for detecting low levels of isoprenoid enzymes in the presence of high levels of phosphatase activity, was demonstrated with a cell-free preparation from lemon peel. A series of C/sub 5/ through C/sub 15/ homoallylic and allylic diphosphonates, as well as two 5'-nucleotide diphosphonates, was prepared in high overall yield using the activation-displacement sequence. Radiolabeled samples of several of the allylic diphosphonates were prepared with tritium located at C1. A series of geraniols, stereospecifically deuterated at C1, was prepared. The enantiomeric purities and absolute configurations were determined by derivatization as the mandelate esters for analysis by /sup 1/H NMR. The stereochemistry of the activation-displacement sequence was examined using C1-deuterated substrates.

  4. Policy issues in space analogues

    NASA Astrophysics Data System (ADS)

    Auger, Robin N.; Facktor, Debra D.

    Space mission planning is increasingly focusing on destinations beyond Earth orbit. Advancements in technology will inevitably be required to enable long-duration human spaceflight missions, and breakthroughs in the policy arena will also be needed to achieve success in such missions. By exploring how policy issues have been addressed in analogous extreme environments, policymakers can develop a framework for addressing these issues as they apply to long-term human spaceflight. Policy issues that need to be addressed include: crew selection, training, organization, and activities, medical testing, illness, injury, and death; communication; legal accountability and liability; mission safety and risk management; and environmental contamination. This paper outlines the approach of a study underway by The George Washington University and ANSER to examine how these policy issues have been addressed in several analogues and how the experiences of these analogues can help formulate policies for long-duration human spaceflight missions. Analogues being studied include Antarctic bases, submarine voyages, undersea stations, Biosphere 2, and the U.S. Skylab and Russian Mir space stations.

  5. Phosphonate analogue substrates for enolase.

    PubMed

    Anderson, V E; Cleland, W W

    1990-11-20

    Phosphonate analogues in which the bridge between C-2 and phosphorus is a CH2 group are slow substrates for yeast enolase. The pH variation of the kinetic parameters for the methylene analogue of 2-phosphoglycerate suggests that the substrate binds as a dianion and that Mg2+ can bind subsequently only if a metal ligand and the catalytic base are unprotonated. Primary deuterium isotope effects of 4-8 on V/KMg, but ones of only 1.15-1.32 on V for dehydration, show that proton removal to give the carbanion intermediate largely limits V/KMg and that a slow step follows which largely limits V (presumably carbanion breakdown). Since there is a D2O solvent isotope effect on V for the reverse reaction of 5, but not an appreciable one on the forward reaction, it appears that the slow rates with phosphonate analogues result from the fact that the carbanion intermediate is more stable than that formed from the normal substrates, and its reaction in both directions limits V. Increased stability as a result of replacement of oxygen by carbon at C-2 of the carbanion is the expected chemical behavior. PMID:2271661

  6. Farnesyl Diphosphate Analogues with Aryl Moieties are Efficient Alternate Substrates for Protein Farnesyltransferase

    PubMed Central

    Subramanian, Thangaiah; Pais, June E.; Liu, Suxia; Troutman, Jerry M.; Suzuki, Yuta; Subramanian, Karunai Leela; Fierke, Carol; Andres, Douglas A.; Spielmann, H. Peter

    2012-01-01

    Farnesylation is an important post-translational modification essential for proper localization and function of many proteins. Transfer of the farnesyl group from farnesyl diphosphate (FPP) to proteins is catalyzed by protein farnesyltransferase (FTase). We employed a library of FPP analogues with a range of aryl groups substituting for individual isoprene moieties to examine some of the structural and electronic properties of analogue transfer to peptide catalyzed by FTase. Analysis of steady-state kinetics for modification of peptide substrates revealed that the multiple turnover activity depends on the analogue structure. Analogues where the first isoprene is replaced by a benzyl group and an analogue where each isoprene is replaced by an aryl group are good substrates. In sharp contrast with the steady-state reaction, the single turnover rate constant for dansyl-GCVLS alkylation was found to be the same for all analogues, despite the increased chemical reactivity of the benzyl analogues and the increased steric bulk of other analogues. However, the single turnover rate constant for alkylation does depend on the Ca1a2X peptide sequence. These results suggest that the isoprenoid transition state conformation is preferred over the inactive E•FPP• Ca1a2X ternary complex conformation. Furthermore, these data suggest that the farnesyl binding site in the exit groove may be significantly more selective for the farnesyl diphosphate substrate than the active site binding pocket and therefore might be a useful site for design of novel inhibitors. PMID:22989235

  7. Synthetic Analogues of the Active Site of the A-cluster of Acetyl Coenzyme A Synthase/CO Dehydrogenase: Syntheses, Structures, and Reactions with CO

    PubMed Central

    Harrop, Todd C.; Olmstead, Marilyn M.; Mascharak, Pradip K.

    2016-01-01

    Two metallosynthons, namely (Et4N)2[Ni(NpPepS)] (1) and (Et4N)2[Ni(PhPepS)] (2) containing carboxamido-N and thiolato-S as donors have been used to model the bimetallic Mp-Nid subsite of the A-cluster of the enzyme ACS/CODH. A series of sulfurbridged Ni/Cu dinuclear and trinuclear complexes (3-10) have been synthesized to explore their redox properties and affinity of the metal centers toward CO. The structures of (Et4N)2[Ni(PhPepS)] (2), (Et4N)[Cu(neo)Ni(NpPepS)]•0.5Et2O•0.5H2O (3•0.5Et2O•0.5H2O), (Et4N)[Cu(neo)Ni(PhPepS)]•H2O (4•H2O), (Et4N)2[Ni{Ni(NpPepS)}2]•DMF (5•DMF), (Et4N)2[Ni(DMF)2{Ni(NpPepS)}2]•3DMF (6•3DMF), (Et4N)2[Ni(DMF)2{Ni(PhPepS)}2] (8), and [Ni(dppe)Ni(PhPepS)]•CH2Cl2 (10•CH2Cl2) have been determined by crystallography. The Nid mimics 1 and 2 resist reduction and exhibit no affinity toward CO. In contrast, the sulfur-bridged Ni center (designated NiC) in the trinuclear models 5–8 are amenable to reduction and binds CO in the Ni(I) state. Also, the sulfur-bridged NiC center can be removed from the trimers (5–8) by treatment with 1,10-phenanthroline much like the “labile Ni” from the enzyme. The dinuclear Ni-Ni models 9 and 10 resemble the Nip-Nid subsite of the A-cluster more closely and only the modeled Nip site of the dimers can be reduced. The Ni(I)-Ni(II) species display EPR spectra typical of a Ni(I) center in distorted trigonal bipyramidal and distorted tetrahedral geometries for 9red and 10red, respectively. Both species bind CO and the CO-adducts 9red-CO and 10red-CO display strong νco at 2044 and 1997 cm-1, respectively. The reduction of 10 is reversible. The CO-affinity of 10 in the reduced state and the νco value of 10red-CO closely resemble the CO-bound reduced A-cluster (νco = 1996 cm-1). PMID:16602803

  8. Tris(2,2'-azobispyridine) complexes of copper(II): X-ray structures, reactivities, and the radical nonradical bis(ligand) analogues.

    PubMed

    Maity, Suvendu; Kundu, Suman; Weyhermüller, Thomas; Ghosh, Prasanta

    2015-02-16

    Tris(abpy) complexes of types mer-[Cu(II)(abpy)3][PF6]2 (mer-1(2+)[PF6(–)]2) and ctc-[Cu(II)(abpy)2(bpy)][PF6]2 (ctc-2(2+)[PF6(–)]2) were successfully isolated and characterized by spectra and single-crystal X-ray structure determinations (abpy = 2,2′-azobispyridine; bpy = 2,2′-bipyridine). Reactions of mer-1(2+) and ctc-2(2+) ions with catechol, o-aminophenol, p-phenylenediamine, and diphenylamine (Ph–NH–Ph) in 2:1 molar ratio afford [CuI(abpy)2](+) (3(+)) and corresponding quinone derivatives. The similar reactions of [Cu(II)(bpy)3](2+) and [Cu(II)(phen)3](2+) with these substrates yielding [Cu(I)(bpy)2](+) and [Cu(I)(phen)2](+) imply that these complexes undergo reduction-induced ligand dissociation reactions (phen = 1,10-phenanthroline). The average −N═N– lengths in mer-1(2+)[PF6(–)]2 and ctc-2(2+)[PF6(–)]2 are 1.248(4), while that in 3(+)[PF6(–)]·2CH2Cl2 is relatively longer, 1.275(2) Å, due to dCu → πazo* back bonding. In cyclic voltammetry, mer-1(2+) exhibits one quasi-reversible wave at −0.42 V due to Cu(II)/Cu(I) and abpy/abpy(•–) couples and two reversible waves at −0.90 and −1.28 V due to abpy/abpy(•–) couple, while those of ctc-2(2+) ion appear at −0.44, −0.86, and −1.10 V versus Fc(+)/Fc couple. The anodic 3(2+)/3(+) and the cathodic 3(+)/3 redox waves at +0.33 and −0.40 V are reversible. The electron paramagnetic resonance spectra and density functional theory (DFT) calculations authenticated the existence of abpy anion radical (abpy(•–)) in 3, which is defined as a hybrid state of [Cu(I)(abpy(0.5•–))(abpy(0.5•–))] and [Cu(II)(abpy(•–))(abpy(•–))] states. 3(2+) ion is a neutral abpy complex of copper(II) of type [Cu(II)(abpy)2](2+). 3 exhibits a near-IR absorption band at 2400–3000 nm because of the intervalence ligand-to-ligand charge transfer, elucidated by time-dependent DFT calculations in CH2Cl2. PMID:25650719

  9. Florida Keys

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Florida Keys are a chain of islands, islets and reefs extending from Virginia Key to the Dry Tortugas for about 309 kilometers (192 miles). The keys are chiefly limestone and coral formations. The larger islands of the group are Key West (with its airport), Key Largo, Sugarloaf Key, and Boca Chica Key. A causeway extends from the mainland to Key West.

    This image was acquired on October 28, 2001, by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA's Earth Science Enterprise, a long- term research effort to understand and protect our home planet. Through the study of Earth, NASA will help to provide sound science to policy and economic

  10. An evaluation of indirubin analogues as phosphorylase kinase inhibitors.

    PubMed

    Begum, Jaida; Skamnaki, Vassiliki T; Moffatt, Colin; Bischler, Nicolas; Sarrou, Josephine; Skaltsounis, Alexios-Leandros; Leonidas, Demetres D; Oikonomakos, Nikos G; Hayes, Joseph M

    2015-09-01

    Phosphorylase kinase (PhK) has been linked with a number of conditions such as glycogen storage diseases, psoriasis, type 2 diabetes and more recently, cancer (Camus et al., 2012 [6]). However, with few reported structural studies on PhK inhibitors, this hinders a structure based drug design approach. In this study, the inhibitory potential of 38 indirubin analogues have been investigated. 11 of these ligands had IC50 values in the range 0.170-0.360μM, with indirubin-3'-acetoxime (1c) the most potent. 7-Bromoindirubin-3'-oxime (13b), an antitumor compound which induces caspase-independent cell-death (Ribas et al., 2006 [20]) is revealed as a specific inhibitor of PhK (IC50=1.8μM). Binding assay experiments performed using both PhK-holo and PhK-γtrnc confirmed the inhibitory effects to arise from binding at the kinase domain (γ subunit). High level computations using QM/MM-PBSA binding free energy calculations were in good agreement with experimental binding data, as determined using statistical analysis, and support binding at the ATP-binding site. The value of a QM description for the binding of halogenated ligands exhibiting σ-hole effects is highlighted. A new statistical metric, the 'sum of the modified logarithm of ranks' (SMLR), has been defined which measures performance of a model for both the "early recognition" (ranking earlier/higher) of active compounds and their relative ordering by potency. Through a detailed structure activity relationship analysis considering other kinases (CDK2, CDK5 and GSK-3α/β), 6'(Z) and 7(L) indirubin substitutions have been identified to achieve selective PhK inhibition. The key PhK binding site residues involved can also be targeted using other ligand scaffolds in future work. PMID:26364215

  11. Identifying Key Structural Features and Spatial Relationships in Archean Microbialites Using 2D and 3D Visualization Methods

    NASA Astrophysics Data System (ADS)

    Stevens, E. W.; Sumner, D. Y.

    2009-12-01

    Microbialites in the 2521 ± 3 Ma Gamohaan Formation, South Africa, have several different end-member morphologies which show distinct growth structures and spatial relationships. We characterized several growth structures and spatial relationships in two samples (DK20 and 2_06) using a combination of 2D and 3D analytical techniques. There are two main goals in studying complicated microbialites with a combination of 2D and 3D methods. First, one can better understand microbialite growth by identifying important structures and structural relationships. Once structures are identified, the order in which the structures formed and how they are related can be inferred from observations of crosscutting relationships. Second, it is important to use both 2D and 3D methods to correlate 3D observations with those in 2D that are more common in the field. Combining analysis provides significantly more insight into the 3D morphology of microbial structures. In our studies, 2D analysis consisted of describing polished slabs and serial sections created by grinding down the rock 100 microns at a time. 3D analysis was performed on serial sections visualized in 3D using Vrui and 3DVisualizer software developed at KeckCAVES, UCD (http://keckcaves.org). Data were visualized on a laptop and in an immersive cave system. Both samples contain microbial laminae and more vertically orients microbial "walls" called supports. The relationships between these features created voids now filled with herringbone and blocky calcite crystals. DK20, a classic plumose structure, contains two types of support structures. Both are 1st order structures (1st order structures with organic inclusions and 1st without organic inclusions) interpreted as planar features based on 2D analysis. In the 2D analysis the 1st order structures show v branching relationships as well as single cuspate relationships (two 1st order structures with inclusions merging upward), and single tented relationships (three supports

  12. Non-robust numerical simulations of analogue extension experiments

    NASA Astrophysics Data System (ADS)

    Naliboff, John; Buiter, Susanne

    2016-04-01

    Numerical and analogue models of lithospheric deformation provide significant insight into the tectonic processes that lead to specific structural and geophysical observations. As these two types of models contain distinct assumptions and tradeoffs, investigations drawing conclusions from both can reveal robust links between first-order processes and observations. Recent studies have focused on detailed comparisons between numerical and analogue experiments in both compressional and extensional tectonics, sometimes involving multiple lithospheric deformation codes and analogue setups. While such comparisons often show good agreement on first-order deformation styles, results frequently diverge on second-order structures, such as shear zone dip angles or spacing, and in certain cases even on first-order structures. Here, we present finite-element experiments that are designed to directly reproduce analogue "sandbox" extension experiments at the cm-scale. We use material properties and boundary conditions that are directly taken from analogue experiments and use a Drucker-Prager failure model to simulate shear zone formation in sand. We find that our numerical experiments are highly sensitive to numerous numerical parameters. For example, changes to the numerical resolution, velocity convergence parameters and elemental viscosity averaging commonly produce significant changes in first- and second-order structures accommodating deformation. The sensitivity of the numerical simulations to small parameter changes likely reflects a number of factors, including, but not limited to, high angles of internal friction assigned to sand, complex, unknown interactions between the brittle sand (used as an upper crust equivalent) and viscous silicone (lower crust), highly non-linear strain weakening processes and poor constraints on the cohesion of sand. Our numerical-analogue comparison is hampered by (a) an incomplete knowledge of the fine details of sand failure and sand

  13. Key Nutrients.

    ERIC Educational Resources Information Center

    Federal Extension Service (USDA), Washington, DC.

    Lessons written to help trainer agents prepare aides for work with families in the Food and Nutrition Program are presented in this booklet. The key nutrients discussed in the 10 lessons are protein, carbohydrates, fat, calcium, iron, iodine, and Vitamins A, B, C, and D. the format of each lesson is as follows: Purpose, Presentation, Application…

  14. Key Problems in Organizing and Structuring University Research in Vietnam: The Lack of an Effective Research "Behaviour Formalization" System

    ERIC Educational Resources Information Center

    Nguyen, Huong Thi Lan; Meek, Vincent Lynn

    2016-01-01

    Structure and organization seems to be at the root of many of the questions raised about institutional behaviour; however, with respect to research on university capacity building, few studies have examined research organizational problems, particularly in developing countries. This study investigates academic reactions to the structure and…

  15. Synthesis and bioactivity of analogues of the marine antibiotic tropodithietic acid

    PubMed Central

    Rabe, Patrick; Klapschinski, Tim A; Brock, Nelson L; Citron, Christian A; D’Alvise, Paul; Gram, Lone

    2014-01-01

    Summary Tropodithietic acid (TDA) is a structurally unique sulfur-containing antibiotic from the Roseobacter clade bacterium Phaeobacter inhibens DSM 17395 and a few other related species. We have synthesised several structural analogues of TDA and used them in bioactivity tests against Staphylococcus aureus and Vibrio anguillarum for a structure–activity relationship (SAR) study, revealing that the sulfur-free analogue of TDA, tropone-2-carboxylic acid, has an antibiotic activity that is even stronger than the bioactivity of the natural product. The synthesis of this compound and of several analogues is presented and the bioactivity of the synthetic compounds is discussed. PMID:25161739

  16. Biodegradation of bisphenol A and its halogenated analogues by Cunninghamella elegans ATCC36112.

    PubMed

    Keum, Young Soo; Lee, Hye Ri; Park, Hee Won; Kim, Jeong-Han

    2010-11-01

    Bisphenol A and its halogenated analogues are commonly used industrial chemicals with strong toxicological effects over many organisms. In this study, metabolic fate of bisphenol A and its halogenated analogues were evaluated with Cunninghamella elegans ATCC36112. Bisphenol A and related analogues were rapidly transformed into several metabolites by C. elegans within 2-4 days. Detailed analysis of metabolites reveals that both phase I and II metabolism occurred in C. elegans. Cytochrome P450-dependent hydroxylation was observed in BPA. However, major reaction with bisphenol A and analogues with 1-2 halogen atoms were the formation of glucose-conjugate, not being inhibited by cytochrome P450 inhibitor. Overall metabolic rates decreased with increasing number of substitution at 2- and 6-position of BPA structures, which may be consequences of limited bioavailability or steric hindrance to conjugate-forming reaction. Information from the current study will provide detailed insights over the fungal metabolism of BPA and analogues. PMID:20455075

  17. Design, Synthesis and Evaluation of Triazole-Pyrimidine Analogues as SecA Inhibitors.

    PubMed

    Cui, Jianmei; Jin, Jinshan; Chaudhary, Arpana Sagwal; Hsieh, Ying-hsin; Zhang, Hao; Dai, Chaofeng; Damera, Krishna; Chen, Weixuan; Tai, Phang C; Wang, Binghe

    2016-01-01

    SecA, a key component of the bacterial Sec-dependent secretion pathway, is an attractive target for the development of new antimicrobial agents. Through a combination of virtual screening and experimental exploration of the surrounding chemical space, we identified a hit bistriazole SecA inhibitor, SCA-21, and studied a series of analogues by systematic dissections of the core scaffold. Evaluation of these analogues allowed us to establish an initial structure-activity relationship in SecA inhibition. The best compounds in this group are potent inhibitors of SecA-dependent protein-conducting channel activity and protein translocation activity at low- to sub-micromolar concentrations. They also have minimal inhibitory concentration (MIC) values against various strains of bacteria that correlate well with the SecA and protein translocation inhibition data. These compounds are effective against methicillin-resistant Staphylococcus aureus strains with various levels of efflux pump activity, indicating the capacity of SecA inhibitors to null the effect of multidrug resistance. Results from studies of drug-affinity-responsive target stability and protein pull-down assays are consistent with SecA as a target for these compounds. PMID:26607404

  18. Nonmetabolizable analogue of 2-oxoglutarate elicits heterocyst differentiation under repressive conditions in Anabaena sp. PCC 7120

    PubMed Central

    Laurent, Sophie; Chen, Han; Bédu, Sylvie; Ziarelli, Fabio; Peng, Ling; Zhang, Cheng-Cai

    2005-01-01

    In response to combined nitrogen starvation in the growth medium, the filamentous cyanobacterium Anabaena sp. PCC 7120 is able to develop a particular cell type, called a heterocyst, specialized in molecular nitrogen fixation. Heterocysts are regularly intercalated among vegetative cells and represent 5–10% of all cells along each filament. In unicellular cyanobacteria, the key Krebs cycle intermediate, 2-oxoglutarate (2-OG), has been suggested as a nitrogen status signal, but in vivo evidence is still lacking. In this study we show that nitrogen starvation causes 2-OG to accumulate transiently within cells of Anabaena PCC 7120, reaching a maximal intracellular concentration of ≈0.1 mM 1 h after combined nitrogen starvation. A nonmetabolizable fluorinated 2-OG derivative, 2,2-difluoropentanedioic acid (DFPA), was synthesized and used to demonstrate the signaling function of 2-OG in vivo. DFPA is shown to be a structural analogue of 2-OG and the process of its uptake and accumulation in vivo can be followed by 19F magic angle spinning NMR because of the presence of the fluorine atom and its chemical stability. DFPA at a threshold concentration of 0.3 mM triggers heterocyst differentiation under repressing conditions. The multidisciplinary approaches using synthetic fluorinated analogues, magic angle spinning NMR for their analysis in vivo, and techniques of molecular biology provide a powerful means to identify the nature of the signals that remain unknown or poorly defined in many signaling pathways. PMID:15985552

  19. POLYCHLORINATED BIPHENYLS AS HORMONALLY ACTIVE STRUCTURAL ANALOGUES

    EPA Science Inventory

    Among the environmental chemicals believed to have the potential to disrupt the endocrine systems of animals including humans, the polychlorinated biphenyls are a chemical class of considerable concern. Possible mechanisms by which these chemicals may interfere with endocrine fun...

  20. Self-assembly of coordination molecular baskets as inorganic analogues of cyclotriveratrylenes (CTV).

    PubMed

    Li, Sheng-Hui; Huang, Hai-Ping; Yu, Shu-Yan; Li, Yi-Zhi; Huang, Hui; Sei, Yoshihisa; Yamaguchi, Kentaro

    2005-07-21

    A [3 + 3] modular self-assembly gives rise to the formation of basket-shaped, crown ether-functionalized, nano-sized trimetallo-macrocycles, which function as structural analogues of cyclotriveratrylenes (CTV). PMID:15995740

  1. Discovery of Desketoraloxifene Analogues as Inhibitors of Mammalian, Pseudomonas aeruginosa, and NAPE Phospholipase D Enzymes

    PubMed Central

    2015-01-01

    Phospholipase D (PLD) hydrolyses cellular lipids to produce the important lipid second messenger phosphatidic acid. A PLD enzyme expressed by Pseudomonas aeruginosa (PldA) has been shown to be important in bacterial infection, and NAPE-PLD has emerged as being key in the synthesis of endocannabinoids. In order to better understand the biology and therapeutic potential of these less explored PLD enzymes, small molecule tools are required. Selective estrogen receptor modulators (SERMs) have been previously shown to inhibit mammalian PLD (PLD1 and PLD2). By targeted screening of a library of SERM analogues, additional parallel synthesis, and evaluation in multiple PLD assays, we discovered a novel desketoraloxifene-based scaffold that inhibited not only the two mammalian PLDs but also structurally divergent PldA and NAPE-PLD. This finding represents an important first step toward the development of small molecules possessing universal inhibition of divergent PLD enzymes to advance the field. PMID:25384256

  2. Analogue Sites for Mars Missions - A report from two workshops

    NASA Astrophysics Data System (ADS)

    Hipkin, V.; Voytek, M. A.; Glamoclija, M.

    2014-12-01

    Fieldwork, at terrestrial sites that are analogous in some way to Mars, has a key role in defining questions addressed by Mars missions. For MSL, the question is whether its landing site was habitable, and for Mars 2020, the question is how do we search for and what are signs of life in ancient habitable environments. Implementing these investigations by means of a rover mission on a distant planetary surface has challenges due to a limited set of tools and period of operations. Using this context of planetary missions is important in shaping how analog research can be used to advance planetary science. Following a successful 2010 AGU fall meeting session entitled "Analogue Sites for Mars Missions", two community workshops were held at The Woodlands, TX March 2011 and the Carnegie Institute of Washington in July 2013. These activities represent an ongoing dialogue with the analogue and mission communities. The AGU session solicited presentations of current analogue research relevant to MSL, at which time the landing site selection process was still considering four final sites. The 2011 Woodlands workshop solicited details on representative science questions and analogue sites by means of an abstract template. The output from The Woodlands workshop was an initial metric to assess the utility of analogue sites against specific science questions, as well as recommendations for future activities. The 2013 Carnegie workshop, followed up on some of the recommendations from 2011. Both on-line interactive dialogue and in person discussions targeted broad topics, including 'the advantages and problems of using a great terrestrial analog for field testing', and 'knowing what we currently do about Mars, what would be the best place on the planet to collect the first suite of samples to be returned to Earth? What would be appropriate analog sites on Earth?'. The results and recommendations from both workshops are summarized to publicize and stimulate this ongoing discussion.

  3. Biological evaluation of a novel sorafenib analogue, t-CUPM.

    PubMed

    Wecksler, Aaron T; Hwang, Sung Hee; Liu, Jun-Yan; Wettersten, Hiromi I; Morisseau, Christophe; Wu, Jian; Weiss, Robert H; Hammock, Bruce D

    2015-01-01

    Sorafenib (Nexavar®) is currently the only FDA-approved small molecule targeted therapy for advanced hepatocellular carcinoma. The use of structural analogues and derivatives of sorafenib has enabled the elucidation of critical targets and mechanism(s) of cell death for human cancer lines. We previously performed a structure-activity relationship study on a series of sorafenib analogues designed to investigate the inhibition overlap between the major targets of sorafenib Raf-1 kinase and VEGFR-2, and an enzyme shown to be a potent off-target of sorafenib, soluble epoxide hydrolase. In the current work, we present the biological data on our lead sorafenib analogue, t-CUPM, demonstrating that this analogue retains cytotoxicity similar to sorafenib in various human cancer cell lines and strongly inhibits growth in the NCI-60 cell line panel. Co-treatment with the pan-caspase inhibitor, Z-VAD-FMK, failed to rescue the cell viability responses of both sorafenib and t-CUPM, and immunofluorescence microscopy shows similar mitochondrial depolarization and apoptosis-inducing factor release for both compounds. These data suggest that both compounds induce a similar mechanism of caspase-independent apoptosis in hepatoma cells. In addition, t-CUPM displays anti-proliferative effects comparable to sorafenib as seen by a halt in G0/G1 in cell cycle progression. The structural difference between sorafenib and t-CUPM significantly reduces inhibitory spectrum of kinases by this analogue, and pharmacokinetic characterization demonstrates a 20-fold better oral bioavailability of t-CUPM than sorafenib in mice. Thus, t-CUPM may have the potential to reduce the adverse events observed from the multikinase inhibitory properties and the large dosing regimens of sorafenib. PMID:25413440

  4. Structure of Rhodococcus equi virulence-associated protein B (VapB) reveals an eight-stranded antiparallel β-barrel consisting of two Greek-key motifs

    SciTech Connect

    Geerds, Christina; Wohlmann, Jens; Haas, Albert; Niemann, Hartmut H.

    2014-06-18

    The structure of VapB, a member of the Vap protein family that is involved in virulence of the bacterial pathogen R. equi, was determined by SAD phasing and reveals an eight-stranded antiparallel β-barrel similar to avidin, suggestive of a binding function. Made up of two Greek-key motifs, the topology of VapB is unusual or even unique. Members of the virulence-associated protein (Vap) family from the pathogen Rhodococcus equi regulate virulence in an unknown manner. They do not share recognizable sequence homology with any protein of known structure. VapB and VapA are normally associated with isolates from pigs and horses, respectively. To contribute to a molecular understanding of Vap function, the crystal structure of a protease-resistant VapB fragment was determined at 1.4 Å resolution. The structure was solved by SAD phasing employing the anomalous signal of one endogenous S atom and two bound Co ions with low occupancy. VapB is an eight-stranded antiparallel β-barrel with a single helix. Structural similarity to avidins suggests a potential binding function. Unlike other eight- or ten-stranded β-barrels found in avidins, bacterial outer membrane proteins, fatty-acid-binding proteins and lysozyme inhibitors, Vaps do not have a next-neighbour arrangement but consist of two Greek-key motifs with strand order 41238567, suggesting an unusual or even unique topology.

  5. Structural analysis of key gap junction domains-Lessons from genome data and disease-linked mutants.

    PubMed

    Bai, Donglin

    2016-02-01

    A gap junction (GJ) channel is formed by docking of two GJ hemichannels and each of these hemichannels is a hexamer of connexins. All connexin genes have been identified in human, mouse, and rat genomes and their homologous genes in many other vertebrates are available in public databases. The protein sequences of these connexins align well with high sequence identity in the same connexin across different species. Domains in closely related connexins and several residues in all known connexins are also well-conserved. These conserved residues form signatures (also known as sequence logos) in these domains and are likely to play important biological functions. In this review, the sequence logos of individual connexins, groups of connexins with common ancestors, and all connexins are analyzed to visualize natural evolutionary variations and the hot spots for human disease-linked mutations. Several gap junction domains are homologous, likely forming similar structures essential for their function. The availability of a high resolution Cx26 GJ structure and the subsequently-derived homology structure models for other connexin GJ channels elevated our understanding of sequence logos at the three-dimensional GJ structure level, thus facilitating the understanding of how disease-linked connexin mutants might impair GJ structure and function. This knowledge will enable the design of complementary variants to rescue disease-linked mutants. PMID:26658099

  6. The Ketamine Analogue Methoxetamine and 3- and 4-Methoxy Analogues of Phencyclidine Are High Affinity and Selective Ligands for the Glutamate NMDA Receptor

    PubMed Central

    Roth, Bryan L.; Gibbons, Simon; Arunotayanun, Warunya; Huang, Xi-Ping; Setola, Vincent; Treble, Ric; Iversen, Les

    2013-01-01

    In this paper we determined the pharmacological profiles of novel ketamine and phencyclidine analogues currently used as ‘designer drugs’ and compared them to the parent substances via the resources of the National Institute of Mental Health Psychoactive Drug Screening Program. The ketamine analogues methoxetamine ((RS)-2-(ethylamino)-2-(3-methoxyphenyl)cyclohexanone) and 3-MeO-PCE (N-ethyl-1-(3-methoxyphenyl)cyclohexanamine) and the 3- and 4-methoxy analogues of phencyclidine, (1-[1-(3-methoxyphenyl)cyclohexyl]piperidine and 1-[1-(4-methoxyphenyl)cyclohexyl]piperidine), were all high affinity ligands for the PCP-site on the glutamate NMDA receptor. In addition methoxetamine and PCP and its analogues displayed appreciable affinities for the serotonin transporter, whilst the PCP analogues exhibited high affinities for sigma receptors. Antagonism of the NMDA receptor is thought to be the key pharmacological feature underlying the actions of dissociative anaesthetics. The novel ketamine and PCP analogues had significant affinities for the NMDA receptor in radioligand binding assays, which may explain their psychotomimetic effects in human users. Additional actions on other targets could be important for delineating side-effects. PMID:23527166

  7. Synthesis of Methylenecyclopropane Analogues of Antiviral Nucleoside Phosphonates

    PubMed Central

    Yan, Zhaohua; Zhou, Shaoman; Kern, Earl R.; Zemlicka, Jiri

    2006-01-01

    Synthesis of methylenecyclopropane analogues of nucleoside phosphonates 6a, 6b, 7a and 7b is described. Cyclopropyl phosphonate 8 was transformed in four steps to methylenecyclopropane phosphonate 16. The latter intermediate was converted in seven steps to the key Z- and E-methylenecyclopropane alcohols 23 and 24 separated by chromatography. Selenoxide eliminations (15 → 16 and 22 → 23 + 24) were instrumental in the synthesis. The Z- and E-isomers 23 and 24 were transformed to bromides 25a and 25b which were used for alkylation of adenine and 2-amino-6-chloropurine to give intermediates 26a, 26b, 26c and 26d. Acid hydrolysis provided the adenine and guanine analogues 6a, 6b, 7a and 7b. Phosphonates 6b and 7b are potent inhibitors of replication of Epstein-Barr virus (EBV). PMID:16758001

  8. FUNCTION GENERATOR FOR ANALOGUE COMPUTERS

    DOEpatents

    Skramstad, H.K.; Wright, J.H.; Taback, L.

    1961-12-12

    An improved analogue computer is designed which can be used to determine the final ground position of radioactive fallout particles in an atomic cloud. The computer determines the fallout pattern on the basis of known wind velocity and direction at various altitudes, and intensity of radioactivity in the mushroom cloud as a function of particle size and initial height in the cloud. The output is then displayed on a cathode-ray tube so that the average or total luminance of the tube screen at any point represents the intensity of radioactive fallout at the geographical location represented by that point. (AEC)

  9. Crystal structure of tyrosine decarboxylase and identification of key residues involved in conformational swing and substrate binding.

    PubMed

    Zhu, Haixia; Xu, Guochao; Zhang, Kai; Kong, Xudong; Han, Ruizhi; Zhou, Jiahai; Ni, Ye

    2016-01-01

    Tyrosine decarboxylase (TDC) is a pyridoxal 5-phosphate (PLP)-dependent enzyme and is mainly responsible for the synthesis of tyramine, an important biogenic amine. In this study, the crystal structures of the apo and holo forms of Lactobacillus brevis TDC (LbTDC) were determined. The LbTDC displays only 25% sequence identity with the only reported TDC structure. Site-directed mutagenesis of the conformationally flexible sites and catalytic center was performed to investigate the potential catalytic mechanism. It was found that H241 in the active site plays an important role in PLP binding because it has different conformations in the apo and holo structures of LbTDC. After binding to PLP, H241 rotated to the position adjacent to the PLP pyridine ring. Alanine scanning mutagenesis revealed several crucial regions that determine the substrate specificity and catalytic activity. Among the mutants, the S586A variant displayed increased catalytic efficiency and substrate affinity, which is attributed to decreased steric hindrance and increased hydrophobicity, as verified by the saturation mutagenesis at S586. Our results provide structural information about the residues important for the protein engineering of TDC to improve catalytic efficiency in the green manufacturing of tyramine. PMID:27292129

  10. Crystal structure of tyrosine decarboxylase and identification of key residues involved in conformational swing and substrate binding

    PubMed Central

    Zhu, Haixia; Xu, Guochao; Zhang, Kai; Kong, Xudong; Han, Ruizhi; Zhou, Jiahai; Ni, Ye

    2016-01-01

    Tyrosine decarboxylase (TDC) is a pyridoxal 5-phosphate (PLP)-dependent enzyme and is mainly responsible for the synthesis of tyramine, an important biogenic amine. In this study, the crystal structures of the apo and holo forms of Lactobacillus brevis TDC (LbTDC) were determined. The LbTDC displays only 25% sequence identity with the only reported TDC structure. Site-directed mutagenesis of the conformationally flexible sites and catalytic center was performed to investigate the potential catalytic mechanism. It was found that H241 in the active site plays an important role in PLP binding because it has different conformations in the apo and holo structures of LbTDC. After binding to PLP, H241 rotated to the position adjacent to the PLP pyridine ring. Alanine scanning mutagenesis revealed several crucial regions that determine the substrate specificity and catalytic activity. Among the mutants, the S586A variant displayed increased catalytic efficiency and substrate affinity, which is attributed to decreased steric hindrance and increased hydrophobicity, as verified by the saturation mutagenesis at S586. Our results provide structural information about the residues important for the protein engineering of TDC to improve catalytic efficiency in the green manufacturing of tyramine. PMID:27292129

  11. Hippocampal Structure and Human Cognition: Key Role of Spatial Processing and Evidence Supporting the Efficiency Hypothesis in Females

    ERIC Educational Resources Information Center

    Colom, Roberto; Stein, Jason L.; Rajagopalan, Priya; Martinez, Kenia; Hermel, David; Wang, Yalin; Alvarez-Linera, Juan; Burgaleta, Miguel; Quiroga, Ma. Angeles; Shih, Pei Chun; Thompson, Paul M.

    2013-01-01

    Here we apply a method for automated segmentation of the hippocampus in 3D high-resolution structural brain MRI scans. One hundred and four healthy young adults completed twenty one tasks measuring abstract, verbal, and spatial intelligence, along with working memory, executive control, attention, and processing speed. After permutation tests…

  12. Probing High School Students' Cognitive Structures and Key Areas of Learning Difficulties on Ethanoic Acid Using the Flow Map Method

    ERIC Educational Resources Information Center

    Zhou, Qing; Wang, Tingting; Zheng, Qi

    2015-01-01

    The purpose of this study was primarily to explore high school students' cognitive structures and to identify their learning difficulties on ethanoic acid through the flow map method. The subjects of this study were 30 grade 1 students from Dong Yuan Road Senior High School in Xi'an, China. The interviews were conducted a week after the students…

  13. Hookworm SCP/TAPS protein structure--A key to understanding host-parasite interactions and developing new interventions.

    PubMed

    Osman, Asiah; Wang, Conan K; Winter, Anja; Loukas, Alex; Tribolet, Leon; Gasser, Robin B; Hofmann, Andreas

    2012-01-01

    SCP/TAPS proteins are a diverse family of molecules in eukaryotes, including parasites. Despite their abundant occurrence in parasite secretomes, very little is known about their functions in parasitic nematodes, including blood-feeding hookworms. Current information indicates that SCP/TAPS proteins (called Ancylostoma-secreted proteins, ASPs) of the canine hookworm, Ancylostoma caninum, represent at least three distinct groups of proteins. This information, combined with comparative modelling, indicates that all known ASPs have an equatorial groove that binds extended structures, such as peptides or glycans. To elucidate structure-function relationships, we explored the three-dimensional crystal structure of an ASP (called Ac-ASP-7), which is highly up-regulated in expression in the transition of A. caninum larvae from a free-living to a parasitic stage. The topology of the N-terminal domain is consistent with pathogenesis-related proteins, and the C-terminal extension that resembles the fold of the Hinge domain. By anomalous diffraction, we identified a new metal binding site in the C-terminal extension of the protein. Ac-ASP-7 is in a monomer-dimer equilibrium, and crystal-packing analysis identified a dimeric structure which might resemble the homo-dimer in solution. The dimer interaction interface includes a novel binding site for divalent metal ions, and is proposed to serve as a binding site for proteins involved in the parasite-host interplay at the molecular level. Understanding this interplay and the integration of structural and functional data could lead to the design of new approaches for the control of parasitic diseases, with biotechnological outcomes. PMID:22120067

  14. Structure and dynamics of the kinase IKK-β--A key regulator of the NF-kappa B transcription factor.

    PubMed

    Kalia, Munishikha; Kukol, Andreas

    2011-11-01

    The inhibitor κB kinase-β (IKK-β) phosphorylates the NF-κB inhibitor protein IκB leading to the translocation of the transcription factor NF-κB to the nucleus. The transcription factor NF-κB and consequently IKK-β are central to signal transduction pathways of mammalian cells. The purpose of this research was to develop a 3D structural model of the IKK-β kinase domain with its ATP cofactor and investigate its dynamics and ligand binding potential. Through a combination of comparative modelling and simulated heating/annealing molecular dynamics (SAMD) simulation in explicit water the model accuracy could be substantially improved compared to comparative modelling on its own as shown by model validation measures. The structure revealed the details of ATP/Mg(2+) binding indicating hydrophobic interactions with the adenine base and a significant contribution of Mg(2+) as a bridge between ATP phosphate groups and negatively charged side chains. The molecular dynamics trajectories of the ATP-bound and free enzyme showed two conformations in each case, which contributed to the majority of the trajectory. The ATP-free enzyme revealed a novel binding site distant from the ATP binding site that was not encountered in the ATP bound enzyme. Based on the overall structural flexibility, it is suggested that a truncated version of the kinase domain from Ala14 to Leu265 should be subjected to crystallisation trials. The 3D structure of this enzyme will enable rational design of new ligands and analysis of protein-protein interactions. Furthermore, our results may provide a new impetus for wet-lab based structural investigation focussing on a truncated kinase domain. PMID:21820058

  15. Depth keying

    NASA Astrophysics Data System (ADS)

    Gvili, Ronen; Kaplan, Amir; Ofek, Eyal; Yahav, Giora

    2003-05-01

    We present a new solution to the known problem of video keying in a natural environment. We segment foreground objects from background objects using their relative distance from the camera, which makes it possible to do away with the use of color for keying. To do so, we developed and built a novel depth video camera, capable of producing RGB and D signals, where D stands for the distance to each pixel. The new RGBD camera enables the creation of a whole new gallery of effects and applications such as multi-layer background substitutions. This new modality makes the production of real time mixed reality video possible, as well as post-production manipulation of recorded video. We address the problem of color spill -- in which the color of the foreground object is mixed, along its boundary, with the background color. This problem prevents an accurate separation of the foreground object from its background, and it is most visible when compositing the foreground objects to a new background. Most existing techniques are limited to the use of a constant background color. We offer a novel general approach to the problem with enabling the use of the natural background, based upon the D channel generated by the camera.

  16. Crystal structure of γ-glutamylcysteine synthetase: Insights into the mechanism of catalysis by a key enzyme for glutathione homeostasis

    PubMed Central

    Hibi, Takao; Nii, Hiroshi; Nakatsu, Toru; Kimura, Akira; Kato, Hiroaki; Hiratake, Jun; Oda, Jun'ichi

    2004-01-01

    γ-Glutamylcysteine synthetase (γGCS), a rate-limiting enzyme in glutathione biosynthesis, plays a central role in glutathione homeostasis and is a target for development of potential therapeutic agents against parasites and cancer. We have determined the crystal structures of Escherichia coli γGCS unliganded and complexed with a sulfoximine-based transition-state analog inhibitor at resolutions of 2.5 and 2.1 Å, respectively. In the crystal structure of the complex, the bound inhibitor is phosphorylated at the sulfoximido nitrogen and is coordinated to three Mg2+ ions. The cysteine-binding site was identified; it is formed inductively at the transition state. In the unliganded structure, an open space exists around the representative cysteine-binding site and is probably responsible for the competitive binding of glutathione. Upon inhibitor binding, the side chains of Tyr-241 and Tyr-300 turn, forming a hydrogen-bonding triad with the carboxyl group of the inhibitor's cysteine moiety, allowing this moiety to fit tightly into the cysteine-binding site with concomitant accommodation of its side chain into a shallow pocket. This movement is caused by a conformational change of a switch loop (residues 240–249). Based on this crystal structure, the cysteine-binding sites of mammalian and parasitic γGCSs were predicted by multiple sequence alignment, although no significant sequence identity exists between the E. coli γGCS and its eukaryotic homologues. The identification of this cysteine-binding site provides important information for the rational design of novel γGCS inhibitors. PMID:15477603

  17. Structural Characterisation of FabG from Yersinia pestis, a Key Component of Bacterial Fatty Acid Synthesis.

    PubMed

    Nanson, Jeffrey D; Forwood, Jade K

    2015-01-01

    Ketoacyl-acyl carrier protein reductases (FabG) are ubiquitously expressed enzymes that catalyse the reduction of acyl carrier protein (ACP) linked thioesters within the bacterial type II fatty acid synthesis (FASII) pathway. The products of these enzymes, saturated and unsaturated fatty acids, are essential components of the bacterial cell envelope. The FASII reductase enoyl-ACP reductase (FabI) has been the focus of numerous drug discovery efforts, some of which have led to clinical trials, yet few studies have focused on FabG. Like FabI, FabG appears to be essential for survival in many bacteria, similarly indicating the potential of this enzyme as a drug target. FabG enzymes are members of the short-chain alcohol dehydrogenase/reductase (SDR) family, and like other SDRs, exhibit highly conserved secondary and tertiary structures, and contain a number of conserved sequence motifs. Here we describe the crystal structures of FabG from Yersinia pestis (YpFabG), the causative agent of bubonic, pneumonic, and septicaemic plague, and three human pandemics. Y. pestis remains endemic in many parts of North America, South America, Southeast Asia, and Africa, and a threat to human health. YpFabG shares a high degree of structural similarity with bacterial homologues, and the ketoreductase domain of the mammalian fatty acid synthase from both Homo sapiens and Sus scrofa. Structural characterisation of YpFabG, and comparison with other bacterial FabGs and the mammalian fatty acid synthase, provides a strong platform for virtual screening of potential inhibitors, rational drug design, and the development of new antimicrobial agents to combat Y. pestis infections. PMID:26539719

  18. Structural Insights into the Quaternary Catalytic Mechanism of Hexameric Human Quinolinate Phosphoribosyltransferase, a Key Enzyme in de novo NAD Biosynthesis

    PubMed Central

    Youn, Hyung-Seop; Gyun Kim, Tae; Kim, Mun-Kyoung; Bu Kang, Gil; Youn Kang, Jung; Lee, Jung-Gyu; Yop An, Jun; Ryoung Park, Kyoung; Lee, Youngjin; Jun Im, Young; Hyuck Lee, Jun; Hyun Eom, Soo

    2016-01-01

    Quinolinate phosphoribosyltransferase (QPRT) catalyses the production of nicotinic acid mononucleotide, a precursor of de novo biosynthesis of the ubiquitous coenzyme nicotinamide adenine dinucleotide. QPRT is also essential for maintaining the homeostasis of quinolinic acid in the brain, a possible neurotoxin causing various neurodegenerative diseases. Although QPRT has been extensively analysed, the molecular basis of the reaction catalysed by human QPRT remains unclear. Here, we present the crystal structures of hexameric human QPRT in the apo form and its complexes with reactant or product. We found that the interaction between dimeric subunits was dramatically altered during the reaction process by conformational changes of two flexible loops in the active site at the dimer-dimer interface. In addition, the N-terminal short helix α1 was identified as a critical hexamer stabilizer. The structural features, size distribution, heat aggregation and ITC studies of the full-length enzyme and the enzyme lacking helix α1 strongly suggest that human QPRT acts as a hexamer for cooperative reactant binding via three dimeric subunits and maintaining stability. Based on our comparison of human QPRT structures in the apo and complex forms, we propose a drug design strategy targeting malignant glioma. PMID:26805589

  19. Structural Insights into the Quaternary Catalytic Mechanism of Hexameric Human Quinolinate Phosphoribosyltransferase, a Key Enzyme in de novo NAD Biosynthesis.

    PubMed

    Youn, Hyung-Seop; Kim, Tae Gyun; Kim, Mun-Kyoung; Kang, Gil Bu; Kang, Jung Youn; Lee, Jung-Gyu; An, Jun Yop; Park, Kyoung Ryoung; Lee, Youngjin; Im, Young Jun; Lee, Jun Hyuck; Eom, Soo Hyun

    2016-01-01

    Quinolinate phosphoribosyltransferase (QPRT) catalyses the production of nicotinic acid mononucleotide, a precursor of de novo biosynthesis of the ubiquitous coenzyme nicotinamide adenine dinucleotide. QPRT is also essential for maintaining the homeostasis of quinolinic acid in the brain, a possible neurotoxin causing various neurodegenerative diseases. Although QPRT has been extensively analysed, the molecular basis of the reaction catalysed by human QPRT remains unclear. Here, we present the crystal structures of hexameric human QPRT in the apo form and its complexes with reactant or product. We found that the interaction between dimeric subunits was dramatically altered during the reaction process by conformational changes of two flexible loops in the active site at the dimer-dimer interface. In addition, the N-terminal short helix α1 was identified as a critical hexamer stabilizer. The structural features, size distribution, heat aggregation and ITC studies of the full-length enzyme and the enzyme lacking helix α1 strongly suggest that human QPRT acts as a hexamer for cooperative reactant binding via three dimeric subunits and maintaining stability. Based on our comparison of human QPRT structures in the apo and complex forms, we propose a drug design strategy targeting malignant glioma. PMID:26805589

  20. The Valles natural analogue project

    SciTech Connect

    Stockman, H.; Krumhansl, J.; Ho, C.; McConnell, V.

    1994-12-01

    The contact between an obsidian flow and a steep-walled tuff canyon was examined as an analogue for a highlevel waste repository. The analogue site is located in the Valles Caldera in New Mexico, where a massive obsidian flow filled a paleocanyon in the Battleship Rock tuff. The obsidian flow provided a heat source, analogous to waste panels or an igneous intrusion in a repository, and caused evaporation and migration of water. The tuff and obsidian samples were analyzed for major and trace elements and mineralogy by INAA, XRF, X-ray diffraction; and scanning electron microscopy and electron microprobe. Samples were also analyzed for D/H and {sup 39}Ar/{sup 4O} isotopic composition. Overall,the effects of the heating event seem to have been slight and limited to the tuff nearest the contact. There is some evidence of devitrification and migration of volatiles in the tuff within 10 meters of the contact, but variations in major and trace element chemistry are small and difficult to distinguish from the natural (pre-heating) variability of the rocks.

  1. Trehalose Analogues: Latest Insights in Properties and Biocatalytic Production

    PubMed Central

    Walmagh, Maarten; Zhao, Renfei; Desmet, Tom

    2015-01-01

    Trehalose (α-d-glucopyranosyl α-d-glucopyranoside) is a non-reducing sugar with unique stabilizing properties due to its symmetrical, low energy structure consisting of two 1,1-anomerically bound glucose moieties. Many applications of this beneficial sugar have been reported in the novel food (nutricals), medical, pharmaceutical and cosmetic industries. Trehalose analogues, like lactotrehalose (α-d-glucopyranosyl α-d-galactopyranoside) or galactotrehalose (α-d-galactopyranosyl α-d-galactopyranoside), offer similar benefits as trehalose, but show additional features such as prebiotic or low-calorie sweetener due to their resistance against hydrolysis during digestion. Unfortunately, large-scale chemical production processes for trehalose analogues are not readily available at the moment due to the lack of efficient synthesis methods. Most of the procedures reported in literature suffer from low yields, elevated costs and are far from environmentally friendly. “Greener” alternatives found in the biocatalysis field, including galactosidases, trehalose phosphorylases and TreT-type trehalose synthases are suggested as primary candidates for trehalose analogue production instead. Significant progress has been made in the last decade to turn these into highly efficient biocatalysts and to broaden the variety of useful donor and acceptor sugars. In this review, we aim to provide an overview of the latest insights and future perspectives in trehalose analogue chemistry, applications and production pathways with emphasis on biocatalysis. PMID:26084050

  2. Trehalose Analogues: Latest Insights in Properties and Biocatalytic Production.

    PubMed

    Walmagh, Maarten; Zhao, Renfei; Desmet, Tom

    2015-01-01

    Trehalose (α-D-glucopyranosyl α-D-glucopyranoside) is a non-reducing sugar with unique stabilizing properties due to its symmetrical, low energy structure consisting of two 1,1-anomerically bound glucose moieties. Many applications of this beneficial sugar have been reported in the novel food (nutricals), medical, pharmaceutical and cosmetic industries. Trehalose analogues, like lactotrehalose (α-D-glucopyranosyl α-D-galactopyranoside) or galactotrehalose (α-D-galactopyranosyl α-D-galactopyranoside), offer similar benefits as trehalose, but show additional features such as prebiotic or low-calorie sweetener due to their resistance against hydrolysis during digestion. Unfortunately, large-scale chemical production processes for trehalose analogues are not readily available at the moment due to the lack of efficient synthesis methods. Most of the procedures reported in literature suffer from low yields, elevated costs and are far from environmentally friendly. "Greener" alternatives found in the biocatalysis field, including galactosidases, trehalose phosphorylases and TreT-type trehalose synthases are suggested as primary candidates for trehalose analogue production instead. Significant progress has been made in the last decade to turn these into highly efficient biocatalysts and to broaden the variety of useful donor and acceptor sugars. In this review, we aim to provide an overview of the latest insights and future perspectives in trehalose analogue chemistry, applications and production pathways with emphasis on biocatalysis. PMID:26084050

  3. Structure-activity relationships at the monoamine transporters and sigma receptors for a novel series of 9-[3-(cis-3, 5-dimethyl-1-piperazinyl)propyl]carbazole (rimcazole) analogues.

    PubMed

    Husbands, S M; Izenwasser, S; Kopajtic, T; Bowen, W D; Vilner, B J; Katz, J L; Newman, A H

    1999-10-21

    9-[3-(cis-3,5-Dimethyl-1-piperazinyl)propyl]carbazole (rimcazole) has been characterized as a sigma receptor antagonist that binds to the dopamine transporter with moderate affinity (K(i) = 224 nM). Although the binding affinities at the dopamine transporter of rimcazole and cocaine are comparable, rimcazole only depressed locomotor activity in mice and antagonized the stimulant effects produced by cocaine. The neurochemical mechanisms underlying the attenuation of cocaine's effects are not understood, although interaction at a low affinity site/state of the dopamine transporter has been suggested. To explore further this class of compounds, a series of rimcazole analogues was designed and synthesized. Displacement of [(3)H]WIN 35,428 binding at the dopamine transporter in rat caudate-putamen revealed that aromatic substitutions on rimcazole were not well tolerated, generally, with significant reductions in affinity for the 3,6-dibromo (5; K(i) = 3890 nM), 1,3, 6-tribromo (6; K(i) = 30300 nM), 3-amino (8; K(i) = 2400 nM), and 3, 6-dinitro (9; K(i) = 174000 nM) analogues. The N-phenylpropyl group was the only terminal piperazine nitrogen substituent that retained moderate affinity at the dopamine transporter (11; K(i) = 263 nM). Analogues in which the carbazole ring was replaced with a freely rotating diphenylamine moiety were also prepared. Although the diphenylamino analogue in which the terminal piperazine nitrogen was unsubstituted, as in rimcazole, demonstrated relatively low binding affinity at the dopamine transporter (24; K(i) = 813 nM), the N-phenylpropyl analogue was found to have the highest affinity for the dopamine transporter within the series (25; K(i) = 61.0 nM). All of the analogues that had affinity for the dopamine transporter inhibited [(3)H]dopamine uptake in synaptosomes, and potencies for these two effects showed a positive correlation (r(2) = 0.7731, p = 0.0018). Several of the analogues displaced [(3)H]paroxetine from serotonin transporters

  4. Keys to Lipid Selection in Fatty Acid Amide Hydrolase Catalysis: Structural Flexibility, Gating Residues and Multiple Binding Pockets

    PubMed Central

    Palermo, Giulia; Bauer, Inga; Campomanes, Pablo; Cavalli, Andrea; Armirotti, Andrea; Girotto, Stefania; Rothlisberger, Ursula; De Vivo, Marco

    2015-01-01

    The fatty acid amide hydrolase (FAAH) regulates the endocannabinoid system cleaving primarily the lipid messenger anandamide. FAAH has been well characterized over the years and, importantly, it represents a promising drug target to treat several diseases, including inflammatory-related diseases and cancer. But its enzymatic mechanism for lipid selection to specifically hydrolyze anandamide, rather than similar bioactive lipids, remains elusive. Here, we clarify this mechanism in FAAH, examining the role of the dynamic paddle, which is formed by the gating residues Phe432 and Trp531 at the boundary between two cavities that form the FAAH catalytic site (the “membrane-access” and the “acyl chain-binding” pockets). We integrate microsecond-long MD simulations of wild type and double mutant model systems (Phe432Ala and Trp531Ala) of FAAH, embedded in a realistic membrane/water environment, with mutagenesis and kinetic experiments. We comparatively analyze three fatty acid substrates with different hydrolysis rates (anandamide > oleamide > palmitoylethanolamide). Our findings identify FAAH’s mechanism to selectively accommodate anandamide into a multi-pocket binding site, and to properly orient the substrate in pre-reactive conformations for efficient hydrolysis that is interceded by the dynamic paddle. Our findings therefore endorse a structural framework for a lipid selection mechanism mediated by structural flexibility and gating residues between multiple binding cavities, as found in FAAH. Based on the available structural data, this exquisite catalytic strategy for substrate specificity seems to be shared by other lipid-degrading enzymes with similar enzymatic architecture. The mechanistic insights for lipid selection might assist de-novo enzyme design or drug discovery efforts. PMID:26111155

  5. Crystal Structure and Substrate Recognition of Cellobionic Acid Phosphorylase, Which Plays a Key Role in Oxidative Cellulose Degradation by Microbes*

    PubMed Central

    Nam, Young-Woo; Nihira, Takanori; Arakawa, Takatoshi; Saito, Yuka; Kitaoka, Motomitsu; Nakai, Hiroyuki; Fushinobu, Shinya

    2015-01-01

    The microbial oxidative cellulose degradation system is attracting significant research attention after the recent discovery of lytic polysaccharide mono-oxygenases. A primary product of the oxidative and hydrolytic cellulose degradation system is cellobionic acid (CbA), the aldonic acid form of cellobiose. We previously demonstrated that the intracellular enzyme belonging to glycoside hydrolase family 94 from cellulolytic fungus and bacterium is cellobionic acid phosphorylase (CBAP), which catalyzes reversible phosphorolysis of CbA into glucose 1-phosphate and gluconic acid (GlcA). In this report, we describe the biochemical characterization and the three-dimensional structure of CBAP from the marine cellulolytic bacterium Saccharophagus degradans. Structures of ligand-free and complex forms with CbA, GlcA, and a synthetic disaccharide product from glucuronic acid were determined at resolutions of up to 1.6 Å. The active site is located near the dimer interface. At subsite +1, the carboxylate group of GlcA and CbA is recognized by Arg-609 and Lys-613. Additionally, one residue from the neighboring protomer (Gln-190) is involved in the carboxylate recognition of GlcA. A mutational analysis indicated that these residues are critical for the binding and catalysis of the aldonic and uronic acid acceptors GlcA and glucuronic acid. Structural and sequence comparisons with other glycoside hydrolase family 94 phosphorylases revealed that CBAPs have a unique subsite +1 with a distinct amino acid residue conservation pattern at this site. This study provides molecular insight into the energetically efficient metabolic pathway of oxidized sugars that links the oxidative cellulolytic pathway to the glycolytic and pentose phosphate pathways in cellulolytic microbes. PMID:26041776

  6. Crystal Structure Analysis of Human Glutamine : Fructose 6-Phosphate Amidotransferase, a Key Regulator in Type 2 Diabetes

    NASA Astrophysics Data System (ADS)

    Nakaishi, Yuichiro; Bando, Masahiko

    Glutamine : fructose 6-phosphate amidotransferase (GFAT) is a rate-limiting enzyme in the hexoamine biosythetic pathway and plays an important role in type 2 diabetes. We now report the first structures of the isomerase domain of the human GFAT in the presence of cyclic glucose 6-phosphate and linear glucosamine 6-phosphate. The C-terminal tail including the active site displays a rigid conformation, similar to the corresponding Escherichia coli enzyme. The diversity of the CF helix near the active site suggests the helix is a major target for drug design. Our study provides insights into the development of therapeutic drugs for type 2 diabetes.

  7. Deciphering the Structural Requirements of Nucleoside Bisubstrate Analogues for Inhibition of MbtA in Mycobacterium tuberculosis: A FB-QSAR Study and Combinatorial Library Generation for Identifying Potential Hits.

    PubMed

    Maganti, Lakshmi; Das, Sanjit Kumar; Mascarenhas, Nahren Manuel; Ghoshal, Nanda

    2011-10-01

    The re-emergence of tuberculosis infections, which are resistant to conventional drug therapy, has steadily risen in the last decade. Inhibitors of aryl acid adenylating enzyme known as MbtA, involved in siderophore biosynthesis in Mycobacterium tuberculosis, are being explored as potential antitubercular agents. The ability to identify fragments that interact with a biological target is a key step in fragment based drug design (FBDD). To expand the boundaries of quantitative structure activity relationship (QSAR) paradigm, we have proposed a Fragment Based QSAR methodology, referred here in as FB-QSAR, for deciphering the structural requirements of a series of nucleoside bisubstrate analogs for inhibition of MbtA, a key enzyme involved in siderophore biosynthetic pathway. For the development of FB-QSAR models, statistical techniques such as stepwise multiple linear regression (SMLR), genetic function approximation (GFA) and GFAspline were used. The predictive ability of the generated models was validated using different statistical metrics, and similarity-based coverage estimation was carried out to define applicability boundaries. To aid the creation of novel antituberculosis compounds, a bioisosteric database was enumerated using the combichem approach endorsed mining in a lead-like chemical space. The generated library was screened using an integrated in-silico approach and potential hits identified. PMID:27468106

  8. Structural Dissection of the Active Site of Thermotoga maritima β-Galactosidase Identifies Key Residues for Transglycosylating Activity.

    PubMed

    Talens-Perales, David; Polaina, Julio; Marín-Navarro, Julia

    2016-04-13

    Glycoside hydrolases, specifically β-galactosidases, can be used to synthesize galacto-oligosaccharides (GOS) due to the transglycosylating (secondary) activity of these enzymes. Site-directed mutagenesis of a thermoresistant β-galactosidase from Thermotoga maritima has been carried out to study the structural basis of transgalactosylation and to obtain enzymatic variants with better performance for GOS biosynthesis. Rational design of mutations was based on homologous sequence analysis and structural modeling. Analysis of mutant enzymes indicated that residue W959, or an alternative aromatic residue at this position, is critical for the synthesis of β-3'-galactosyl-lactose, the major GOS obtained with the wild-type enzyme. Mutants W959A and W959C, but not W959F, showed an 80% reduced synthesis of this GOS. Other substitutions, N574S, N574A, and F571L, increased the synthesis of β-3'-galactosyl-lactose about 40%. Double mutants F571L/N574S and F571L/N574A showed an increase of about 2-fold. PMID:26998654

  9. Synthetic analogues of chymostatin. Inhibition of chymotrypsin and Streptomyces griseus proteinase A.

    PubMed Central

    Tomkinson, N P; Galpin, I J; Beynon, R J

    1992-01-01

    A series of analogues of chymostatin, including Z-Arg-Leu-Phe-aldehyde (Z-Arg-Leu-Phe-H), have been synthesized. Analysis of the inhibitory potential of these analogues permits identification of residues and interactions that are important for inhibitory activity. Moreover, the structure-function relationship for Z-Arg-Leu-Phe-H and chymostatin inhibition of chymotrypsin and Streptomyces griseus proteinase A (SGPA) was probed further with the aid of molecular mechanics. This analysis identified interactions that provide an explanation for the enhanced activity of the natural product, chymostatin, over the synthetic analogues in the inhibition of chymotrypsin but not SGPA. PMID:1530579

  10. New Insight into the Transcarbamylase Family: The Structure of Putrescine Transcarbamylase, a Key Catalyst for Fermentative Utilization of Agmatine

    PubMed Central

    Polo, Luis Mariano; Gil-Ortiz, Fernando; Cantín, Angel; Rubio, Vicente

    2012-01-01

    Transcarbamylases reversibly transfer a carbamyl group from carbamylphosphate (CP) to an amine. Although aspartate transcarbamylase and ornithine transcarbamylase (OTC) are well characterized, little was known about putrescine transcarbamylase (PTC), the enzyme that generates CP for ATP production in the fermentative catabolism of agmatine. We demonstrate that PTC (from Enterococcus faecalis), in addition to using putrescine, can utilize L-ornithine as a poor substrate. Crystal structures at 2.5 Å and 2.0 Å resolutions of PTC bound to its respective bisubstrate analog inhibitors for putrescine and ornithine use, N-(phosphonoacetyl)-putrescine and δ-N-(phosphonoacetyl)-L-ornithine, shed light on PTC preference for putrescine. Except for a highly prominent C-terminal helix that projects away and embraces an adjacent subunit, PTC closely resembles OTCs, suggesting recent divergence of the two enzymes. Since differences between the respective 230 and SMG loops of PTC and OTC appeared to account for the differential preference of these enzymes for putrescine and ornithine, we engineered the 230-loop of PTC to make it to resemble the SMG loop of OTCs, increasing the activity with ornithine and greatly decreasing the activity with putrescine. We also examined the role of the C-terminal helix that appears a constant and exclusive PTC trait. The enzyme lacking this helix remained active but the PTC trimer stability appeared decreased, since some of the enzyme eluted as monomers from a gel filtration column. In addition, truncated PTC tended to aggregate to hexamers, as shown both chromatographically and by X-ray crystallography. Therefore, the extra C-terminal helix plays a dual role: it stabilizes the PTC trimer and, by shielding helix 1 of an adjacent subunit, it prevents the supratrimeric oligomerizations of obscure significance observed with some OTCs. Guided by the structural data we identify signature traits that permit easy and unambiguous annotation of PTC

  11. CO2 Capture with Enzyme Synthetic Analogue

    SciTech Connect

    Cordatos, Harry

    2010-11-08

    Overview of an ongoing, 2 year research project partially funded by APRA-E to create a novel, synthetic analogue of carbonic anhydrase and incorporate it into a membrane for removal of CO2 from flue gas in coal power plants. Mechanism background, preliminary feasibility study results, molecular modeling of analogue-CO2 interaction, and program timeline are provided.

  12. Radiolabeled Somatostatin Analogue Therapy Of Gastroenteropancreatic Cancer.

    PubMed

    Bodei, Lisa; Kwekkeboom, Dik J; Kidd, Mark; Modlin, Irvin M; Krenning, Eric P

    2016-05-01

    Peptide receptor radionuclide therapy (PRRT) has been utilized for more than two decades and has been accepted as an effective therapeutic modality in the treatment of inoperable or metastatic gastroenteropancreatic neuroendocrine neoplasms (NENs) or neuroendocrine tumors (NETs). The two most commonly used radiopeptides for PRRT, (90)Y-octreotide and (177)Lu-octreotate, produce disease-control rates of 68%-94%, with progression-free survival rates that compare favorably with chemotherapy, somatostatin analogues, and newer targeted therapies. In addition, biochemical and symptomatic responses are commonly observed. In general, PRRT is well tolerated with only low to moderate toxicity in most individuals. In line with the need to place PRRT in the therapeutic sequence of gastroenteropancreatic NENs, a recently sponsored phase III randomized trial in small intestine NENs treated with (177)Lu-octreotate vs high-dose octreotide long-acting release demonstrated that (177)Lu-octreotate significantly improved progression-free survival. Other strategies that are presently being developed include combinations with targeted therapies or chemotherapy, intra-arterial PRRT, and salvage treatments. Sophisticated molecular tools need to be incorporated into the management strategy to more effectively define therapeutic efficacy and for an early identification of adverse events. The strategy of randomized controlled trials is a key issue to standardize the treatment and establish the position of PRRT in the therapeutic algorithm of NENs. PMID:27067503

  13. Crystal Structure and Identification of Two Key Amino Acids Involved in AI-2 Production and Biofilm Formation in Streptococcus suis LuxS

    PubMed Central

    Wang, Yang; Yi, Li; Wang, Shaohui; Fan, Hongjie; Ding, Chan; Mao, Xiang; Lu, Chengping

    2015-01-01

    Streptococcus suis has emerged as an important zoonotic pathogen that causes meningitis, arthritis, septicemia and even sudden death in pigs and humans. Quorum sensing is the signaling network for cell-to-cell communication that bacterial cells can use to monitor their own population density through production and exchange of signal molecules. S-Ribosylhomocysteinase (LuxS) is the key enzyme involved in the activated methyl cycle. Autoinducer 2 (AI-2) is the adduct of borate and a ribose derivative and is produced from S-adenosylhomocysteine (SAH). AI-2 can mediate interspecies communication and in some species facilitate the bacterial behavior regulation such as biofilm formation and virulence in both Gram-positive and Gram-negative bacteria. Here, we reported the overexpression, purification and crystallographic structure of LuxS from S. suis. Our results showed the catalytically active LuxS exists as a homodimer in solution. Inductively coupled plasma-mass spectrometry (ICP-MS) revealed the presence of Zn2+ in LuxS. Although the core structure shares the similar topology with LuxS proteins from other bacterial species, structural analyses and comparative amino acid sequence alignments identified two key amino acid differences in S. suis LuxS, Phe80 and His87, which are located near the substrate binding site. The results of site-directed mutagenesis and enzymology studies confirmed that these two residues affect the catalytic activity of the enzyme. These in vitro results were corroborated in vivo by expression of the LuxS variants in a S. suis ΔluxS strain. The single and two amino acid of LuxS variant decreased AI-2 production and biofilm formation significantly compared to that of the parent strain. Our findings highlight the importance of key LuxS residues that influence the AI-2 production and biofilm formation in S.suis. PMID:26484864

  14. Crystal Structure and Identification of Two Key Amino Acids Involved in AI-2 Production and Biofilm Formation in Streptococcus suis LuxS.

    PubMed

    Wang, Yang; Yi, Li; Wang, Shaohui; Fan, Hongjie; Ding, Chan; Mao, Xiang; Lu, Chengping

    2015-01-01

    Streptococcus suis has emerged as an important zoonotic pathogen that causes meningitis, arthritis, septicemia and even sudden death in pigs and humans. Quorum sensing is the signaling network for cell-to-cell communication that bacterial cells can use to monitor their own population density through production and exchange of signal molecules. S-Ribosylhomocysteinase (LuxS) is the key enzyme involved in the activated methyl cycle. Autoinducer 2 (AI-2) is the adduct of borate and a ribose derivative and is produced from S-adenosylhomocysteine (SAH). AI-2 can mediate interspecies communication and in some species facilitate the bacterial behavior regulation such as biofilm formation and virulence in both Gram-positive and Gram-negative bacteria. Here, we reported the overexpression, purification and crystallographic structure of LuxS from S. suis. Our results showed the catalytically active LuxS exists as a homodimer in solution. Inductively coupled plasma-mass spectrometry (ICP-MS) revealed the presence of Zn2+ in LuxS. Although the core structure shares the similar topology with LuxS proteins from other bacterial species, structural analyses and comparative amino acid sequence alignments identified two key amino acid differences in S. suis LuxS, Phe80 and His87, which are located near the substrate binding site. The results of site-directed mutagenesis and enzymology studies confirmed that these two residues affect the catalytic activity of the enzyme. These in vitro results were corroborated in vivo by expression of the LuxS variants in a S. suis ΔluxS strain. The single and two amino acid of LuxS variant decreased AI-2 production and biofilm formation significantly compared to that of the parent strain. Our findings highlight the importance of key LuxS residues that influence the AI-2 production and biofilm formation in S.suis. PMID:26484864

  15. Ring closing metathesis reactions of α-methylene-β-lactams: application to the synthesis of a simplified phyllostictine analogue with herbicidal activity.

    PubMed

    Coe, Samuel; Pereira, Nicole; Geden, Joanna V; Clarkson, Guy J; Fox, David J; Napier, Richard M; Neve, Paul; Shipman, Michael

    2015-07-28

    Ring closing metathesis (RCM) reactions of α-methylene-β-lactams are used to construct strained 11- and 12-membered macrocycles that mimic key structural elements of phyllostictine A. The highest yield and stereoselectivity was achieved making 12-membered macrocycle Z-19 with use of a p-methoxyphenyl group on the lactam nitrogen. Interestingly, substrate concentration had an important influence on the stereochemical course of the reaction. A simplified analogue produced using this approach displays phytotoxic activity against Chlamydomonas reinhardtii suggesting that the α-methylene-β-lactam subunit is responsible, at least in part, for the herbicidal activity of phyllostictine A. PMID:26081012

  16. Endiandric Acid Analogues from the Roots of Beilschmiedia erythrophloia.

    PubMed

    Yang, Ping-Shin; Cheng, Ming-Jen; Peng, Chien-Fang; Chen, Jih-Jung; Chen, Ih-Sheng

    2009-01-01

    Investigation of the roots of Beilschmiedia erythrophloia has led to the isolation of seven new endiandric acid analogues, erythrophloins A-F (1-6) and beilcyclone A (7), together with 11 known compounds. The structures of 1-7 were determined using spectroscopic techniques. Two constituents, erythrophloin C (3) and suberosol B (8), exhibited antitubercular activity against Mycobacterium tuberculosis H37Rv, showing MIC values of 50 and 28.9 microg/mL, respectively. PMID:19072217

  17. Fully analogue photonic reservoir computer.

    PubMed

    Duport, François; Smerieri, Anteo; Akrout, Akram; Haelterman, Marc; Massar, Serge

    2016-01-01

    Introduced a decade ago, reservoir computing is an efficient approach for signal processing. State of the art capabilities have already been demonstrated with both computer simulations and physical implementations. If photonic reservoir computing appears to be promising a solution for ultrafast nontrivial computing, all the implementations presented up to now require digital pre or post processing, which prevents them from exploiting their full potential, in particular in terms of processing speed. We address here the possibility to get rid simultaneously of both digital pre and post processing. The standalone fully analogue reservoir computer resulting from our endeavour is compared to previous experiments and only exhibits rather limited degradation of performances. Our experiment constitutes a proof of concept for standalone physical reservoir computers. PMID:26935166

  18. An analogue study of intrusions.

    PubMed

    Laposa, Judith M; Alden, Lynn E

    2006-07-01

    According to cognitive theorists, intrusive trauma memories have their origin in how information during the event is processed. Two studies investigated functional cognitive strategies during medical crises that might protect against intrusions. In Study 1, interviews with health-care professionals were used to identify cognitive strategies judged to be effective in controlling emotions and dealing with medical crises. Study 2 systematically manipulated the use of those strategies in a trauma analogue film paradigm. Experimental participants reported fewer intrusions, and less fear and avoidance of film-related stimuli during the subsequent week than controls. The manipulation did not affect anxiety during the film or memory disorganization. Implications for cognitive theories of intrusion development are discussed. PMID:16125135

  19. Fully analogue photonic reservoir computer

    PubMed Central

    Duport, François; Smerieri, Anteo; Akrout, Akram; Haelterman, Marc; Massar, Serge

    2016-01-01

    Introduced a decade ago, reservoir computing is an efficient approach for signal processing. State of the art capabilities have already been demonstrated with both computer simulations and physical implementations. If photonic reservoir computing appears to be promising a solution for ultrafast nontrivial computing, all the implementations presented up to now require digital pre or post processing, which prevents them from exploiting their full potential, in particular in terms of processing speed. We address here the possibility to get rid simultaneously of both digital pre and post processing. The standalone fully analogue reservoir computer resulting from our endeavour is compared to previous experiments and only exhibits rather limited degradation of performances. Our experiment constitutes a proof of concept for standalone physical reservoir computers. PMID:26935166

  20. Contact zones and hydrothermal systems as analogues to repository conditions

    SciTech Connect

    Wollenberg, H.A.; Flexser, S.

    1984-10-01

    Radioactive waste isolation efforts in the US are currently focused on examining basalt, tuff, salt, and crystalline rock as candidate rock types to encompass waste repositories. As analogues to near-field conditions, the distributions of radio- and trace-elements have been examined across contacts between these rocks and dikes and stocks that have intruded them. The intensive study of the Stripa quartz monzonite has also offered the opportunity to observe the distribution of uranium and its daughters in groundwater and its relationship to U associated with fracture-filling and alteration minerals. Investigations of intrusive contact zones to date have included (1) a tertiary stock into Precambrian gneiss, (2) a stock into ash flow tuff, (3) a rhyodacite dike into Columbia River basalt, and (4) a kimberlite dike into salt. With respect to temperature and pressure, these contact zones may be considered "worst-case scenario" analogues. Results indicate that there has been no appreciable migration of radioelements from the more radioactive intrusives into the less radioactive country rocks, either in response to the intrusions or in the fracture-controlled hydrological systems that developed following emplacement. In many cases, the radioelements are locked up in accessory minerals, suggesting that artificial analogues to these would make ideal waste forms. Emphasis should now shift to examination of active hydrothermal systems, studying the distribution of key elements in water, fractures, and alteration minerals under pressure and temperature conditions most similar to those expected in the near-field environment of a repository. 14 refs.

  1. Copper(II) Ions Increase Plasminogen Activator Inhibitor Type 1 Dynamics in Key Structural Regions That Govern Stability.

    PubMed

    Bucci, Joel C; Trelle, Morten Beck; McClintock, Carlee S; Qureshi, Tihami; Jørgensen, Thomas J D; Peterson, Cynthia B

    2016-08-01

    Plasminogen activator inhibitor type 1 (PAI-1) regulates the fibrinolysis pathway by inhibiting the protease activity of plasminogen activators. PAI-1 works in concert with vitronectin (VN), an extracellular protein that aids in localization of active PAI-1 to tissues. The Peterson laboratory demonstrated that Cu(II) and other transition metals modulate the stability of PAI-1, exhibiting effects that are dependent on the presence or absence of the somatomedin B (SMB) domain of VN. The study presented here dissects the changes in molecular dynamics underlying the destabilizing effects of Cu(II) on PAI-1. We utilize backbone amide hydrogen/deuterium exchange monitored by mass spectrometry to assess PAI-1 dynamics in the presence and absence of Cu(II) ions with and without the SMB domain of VN. We show that Cu(II) produces an increase in dynamics in regions important for the function and overall stability of PAI-1, while the SMB domain elicits virtually the opposite effect. A mutant form of PAI-1 lacking two N-terminal histidine residues at positions 2 and 3 exhibits similar increases in dynamics upon Cu(II) binding compared to that of active wild-type PAI-1, indicating that the observed structural effects are not a result of coordination of Cu(II) to these histidine residues. Finally, addition of Cu(II) results in an acceleration of the local unfolding kinetics of PAI-1 presumed to be on pathway to the latency conversion. The effect of ligands on the dynamics of PAI-1 adds another intriguing dimension to the mechanisms for regulation of PAI-1 stability and function. PMID:27416303

  2. Syntheses and Biological Evaluation of Costunolide, Parthenolide, and Their Fluorinated Analogues.

    PubMed

    Yang, Zhong-Jin; Ge, Wei-Zhi; Li, Qiu-Ying; Lu, Yaxin; Gong, Jian-Miao; Kuang, Bei-Jia; Xi, Xiaonan; Wu, Haiting; Zhang, Quan; Chen, Yue

    2015-09-10

    Inspired by the biosynthesis of sesquiterpene lactones (SLs), herein we report the asymmetric total synthesis of the germacrane ring (24). The synthetic strategy features a selective aldol reaction between β,γ-unsaturated chiral sulfonylamide 15a and aldehyde 13, as well as the intramolecular α-alkylation of sulfone 21 to construct a 10-membered carbocylic ring. The key intermediate 24 can be used to prepare the natural products costunolide and parthenolide (PTL), which are the key precursors for transformation into other SLs. Furthermore, the described synthetic sequences are amenable to the total synthesis of SL analogues, such as trifluoromethylated analogues 32 and 45. Analogues 32 and 45 maintained high activities against a series of cancer cell lines compared to their parent PTL and costunolide, respectively. In addition, 32 showed enhanced tolerance to acidic media compared with PTL. To our surprise, PTL and 32 showed comparable half-lives in rat plasma and in the presence of human liver microsomes. PMID:26226279

  3. The Nisi Fault as a key structure for understanding the active deformation of the NW Peloponnese, Greece

    NASA Astrophysics Data System (ADS)

    Zygouri, V.; Koukouvelas, I. K.; Kokkalas, S.; Xypolias, P.; Papadopoulos, G. A.

    2015-05-01

    The previously unknown Nisi Fault in NW Peloponnese was ruptured during the 2008 Movri Mountain earthquake attaining a maximum offset of 25 cm. The fault is interpreted as a branch of a flower structure above a blind strike-slip fault. We investigate the Nisi Fault seismotectonic evolution using morphotectonic analysis in order to determine whether the landscape is affected by tectonic forcing and paleoseismology to determine earthquake recurrence interval and fault slip rates. We applied several geomorphic indices, such as the asymmetry factor (AF), the stream length-gradient index (SL), the valley floor width to valley height ratio (Vf), the mountain-front sinuosity (Smf), the drainage basin shape (Bs) and the hypsometric curve (Hc), in four large drainage basins of the study area. The results show that fault-related vertical motions and the associated tilting influenced the drainage geometry and the landscape development. Values of stream-gradient indices (SL) are relatively high close to the fault trace. Mountain-front sinuosity (Smf) mean values along the fault zones range from 1.12 to 1.23. Valley floor width to valley height ratios (Vf) mean values along the studied fault range between 0.21 and 2.50. Drainage basin shape (BS) mean values along the fault range from 1.04 to 3.72. Lateral fault growth was likely achieved by propagation primarily towards north-northwestward. The paleoseismic history of the fault, investigated by a trench and 14C dating of seven samples, indicates two morphogenic earthquakes in the last 1 kyr. Therefore, we suggest that the Nisi Fault displays a slip rate on the order of 1 mm/yr and a recurrence interval ranging between 300 and 600 years. From a seismotectonic point of view, the fault is classified as high activity rate, with abundant but discontinuous geomorphic evidence of its activity. Other similar faults affecting the western Peloponnese can be envisaged with a similar procedure. Additionally, the seismic history and surface

  4. Quinlobelane: A water-soluble lobelane analogue and inhibitor of VMAT2

    PubMed Central

    Vartak, Ashish P.; Deaciuc, A. Gabriela; Dwoskin, Linda P.; Crooks, Peter A.

    2013-01-01

    Replacing the phenyl groups in the structure of the VMAT2 inhibitor, lobelane with either pyridyl, quinolyl or indolyl groups affords novel analogues with improved water solubility. The synthetic methodologies reported herein also underscore the paucity of hydrogenation methods that offer selectivity in the synthesis of the different classes of heteroaromatic lobelane analogues. The quinolyl group was the only replacement for the phenyl group in lobelane that retained VMAT2 inhibition. PMID:20494575

  5. Synthesis of chamaecypanone C analogues from in situ-generated cyclopentadienones and their biological evaluation.

    PubMed

    Dong, Suwei; Qin, Tian; Hamel, Ernest; Beutler, John A; Porco, John A

    2012-12-01

    A rhodium-catalyzed dehydrogenation protocol for the conversion of 3,5-diarylcyclopentenones to the corresponding 2,4-diarylcyclopentadienones has been developed. With this protocol, analogues of the cytotoxic agent chamaecypanone C have been synthesized via Diels-Alder cycloaddition between the cyclopentadienones and in situ-generated o-quinols. Biological evaluation of these analogues revealed a compound with higher activity as a microtubule inhibitor and cytotoxic agent in comparison with the parent structure. PMID:23110297

  6. Synthesis of Chamaecypanone C Analogues from in situ-Generated Cyclopentadienones and their Biological Evaluation

    PubMed Central

    Dong, Suwei; Qin, Tian; Hamel, Ernest; Beutler, John A.; Porco, John A.

    2012-01-01

    A rhodium-catalyzed dehydrogenation protocol has been developed for conversion of 3,5-diarylcyclopentenones to the corresponding 2,4-diarylcyclopentadienones. Using this protocol, analogues of the cytotoxic agent chamaecypanone C have been synthesized via Diels-Alder cycloaddition between the cyclopentadienones and in situ-generated ortho-quinols. Biological evaluation of these analogues revealed a compound with higher activity as a microtubule inhibitor and cytotoxic agent in comparison with the parent structure. PMID:23110297

  7. Cryo-EM reveals the conformation of a substrate analogue in the human 20S proteasome core

    NASA Astrophysics Data System (ADS)

    da Fonseca, Paula C. A.; Morris, Edward P.

    2015-07-01

    The proteasome is a highly regulated protease complex fundamental for cell homeostasis and controlled cell cycle progression. It functions by removing a wide range of specifically tagged proteins, including key cellular regulators. Here we present the structure of the human 20S proteasome core bound to a substrate analogue inhibitor molecule, determined by electron cryo-microscopy (cryo-EM) and single-particle analysis at a resolution of around 3.5 Å. Our map allows the building of protein coordinates as well as defining the location and conformation of the inhibitor at the different active sites. These results open new prospects to tackle the proteasome functional mechanisms. Moreover, they also further demonstrate that cryo-EM is emerging as a realistic approach for general structural studies of protein-ligand interactions.

  8. Cryo-EM reveals the conformation of a substrate analogue in the human 20S proteasome core

    PubMed Central

    da Fonseca, Paula C.A.; Morris, Edward P.

    2015-01-01

    The proteasome is a highly regulated protease complex fundamental for cell homeostasis and controlled cell cycle progression. It functions by removing a wide range of specifically tagged proteins, including key cellular regulators. Here we present the structure of the human 20S proteasome core bound to a substrate analogue inhibitor molecule, determined by electron cryo-microscopy (cryo-EM) and single-particle analysis at a resolution of around 3.5 Å. Our map allows the building of protein coordinates as well as defining the location and conformation of the inhibitor at the different active sites. These results open new prospects to tackle the proteasome functional mechanisms. Moreover, they also further demonstrate that cryo-EM is emerging as a realistic approach for general structural studies of protein–ligand interactions. PMID:26133119

  9. Towards bottom-up nanopatterning of Prussian blue analogues

    PubMed Central

    Trannoy, Virgile; Faustini, Marco; Grosso, David; Mazerat, Sandra; Brisset, François; Dazzi, Alexandre

    2014-01-01

    Summary Ordered nanoperforated TiO2 monolayers fabricated through sol–gel chemistry were used to grow isolated particles of Prussian blue analogues (PBA). The elaboration of the TiO2/CoFe PBA nanocomposites involves five steps. The samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), infrared spectroscopy and X-ray photoelectron spectroscopy (XPS) all along the synthesis process. Selected physico-chemical parameters have been varied in order to determine the key steps of the synthesis process and to optimize it. This study is an important step towards the full control of the fabrication process. PMID:25383305

  10. Astrobiology Field Research in Moon/Mars Analogue Environments: Preface

    NASA Technical Reports Server (NTRS)

    Foing, B. H.; Stoker, C.; Ehrenfreund, P.

    2011-01-01

    Extreme environments on Earth often provide similar terrain conditions to landing/operation sites on Moon and Mars. Several field campaigns (EuroGeoMars2009 and DOMMEX/ILEWG EuroMoonMars from November 2009 to March 2010) were conducted at the Mars Desert Research Station (MDRS) in Utah. Some of the key astrobiology results are presented in this special issue on Astrobiology field research in Moon/Mars analogue environments relevant to investigate the link between geology, minerals, organics and biota. Preliminary results from a multidisciplinary field campaign at Rio Tinto in Spain are presented.

  11. Synthesis, biological activity, and conformational study of N-methylated allatostatin analogues inhibiting juvenile hormone biosynthesis.

    PubMed

    Xie, Yong; Zhang, Li; Zhang, Chuanliang; Wu, Xiaoqing; Deng, Xile; Yang, Xinling; Tobe, Stephen S

    2015-03-25

    An allatostatin (AST) neuropeptide mimic (H17) is a potential insect growth regulator, which inhibits the production of juvenile hormone (JH) by the corpora allata. To determine the effect of conformation of novel AST analogues and their ability to inhibit JH biosynthesis, eight insect AST analogues were synthesized using H17 as the lead compound by N-methylation scanning, which is a common strategy for improving the biological properties of peptides. A bioassay using JH production by corpora allata of the cockroach Diploptera punctata indicated that single N-methylation mimics (analogues 1-4) showed more activity than double N-methylation mimics (analogues 5-8). Especially, analogues 1 and 4 showed roughly equivalent activity to that of H17, with IC50 values of 5.17 × 10(-8) and 6.44 × 10(-8) M, respectively. Molecular modeling based on nuclear magnetic resonance data showed that the conformation of analogues 1 and 4 seems to be flexible, whereas analogues 2 and 3 showed a type IV β-turn. This flexible linear conformation was hypothesized to be a new important and indispensable structural element beneficial to the activity of AST mimics. PMID:25751662

  12. Using fuzzy sets for data interpretation in natural analogue studies

    SciTech Connect

    De Lemos, F.L.; Sullivan, T.; Hellmuth, K.H.

    2008-07-01

    Natural analogue studies can play a key role in deep geological radioactive disposal systems safety assessment. These studies can help develop a better understanding of complex natural processes and, therefore, provide valuable means of confidence building in the safety assessment. In evaluation of natural analogues, there are, however, several sources of uncertainties that stem from factors such as complexity; lack of data; and ignorance. Often, analysts have to simplify the mathematical models in order to cope with the various sources of complexity and this ads uncertainty to the model results. The uncertainties reflected in model predictions must be addressed to understand their impact on safety assessment and therefore, the utility of natural analogues. Fuzzy sets can be used to represent the information regarding the natural processes and their mutual connections. With this methodology we are able to quantify and propagate the epistemic uncertainties in both processes and, thereby, assign degrees of truth to the similarities between them. An example calculation with literature data is provided. In conclusion: Fuzzy sets are an effective way of quantifying semi-quantitative information such as natural analogues data. Epistemic uncertainty that stems from complexity and lack of knowledge regarding natural processes are represented by the degrees of membership. It also facilitates the propagation of this uncertainty throughout the performance assessment by the extension principle. This principle allows calculation with fuzzy numbers, where fuzzy input results in fuzzy output. This may be one of the main applications of fuzzy sets theory to radioactive waste disposal facility performance assessment. Through the translation of natural data into fuzzy numbers, the effect of parameters in important processes in one site can be quantified and compared to processes in other sites with different conditions. The approach presented in this paper can be extended to

  13. Plant volatile analogues strengthen attractiveness to insect.

    PubMed

    Sun, Yufeng; Yu, Hao; Zhou, Jing-Jiang; Pickett, John A; Wu, Kongming

    2014-01-01

    Green leaf bug Apolygus lucorum (Meyer-Dür) is one of the major pests in agriculture. Management of A. lucorum was largely achieved by using pesticides. However, the increasing population of A. lucorum since growing Bt cotton widely and the increased awareness of ecoenvironment and agricultural product safety makes their population-control very challenging. Therefore this study was conducted to explore a novel ecological approach, synthetic plant volatile analogues, to manage the pest. Here, plant volatile analogues were first designed and synthesized by combining the bioactive components of β-ionone and benzaldehyde. The stabilities of β-ionone, benzaldehyde and analogue 3 g were tested. The electroantennogram (EAG) responses of A. lucorum adult antennae to the analogues were recorded. And the behavior assay and filed experiment were also conducted. In this study, thirteen analogues were acquired. The analogue 3 g was demonstrated to be more stable than β-ionone and benzaldehyde in the environment. Many of the analogues elicited EAG responses, and the EAG response values to 3 g remained unchanged during seven-day period. 3 g was also demonstrated to be attractive to A. lucorum adults in the laboratory behavior experiment and in the field. Its attractiveness persisted longer than β-ionone and benzaldehyde. This indicated that 3 g can strengthen attractiveness to insect and has potential as an attractant. Our results suggest that synthetic plant volatile analogues can strengthen attractiveness to insect. This is the first published study about synthetic plant volatile analogues that have the potential to be used in pest control. Our results will support a new ecological approach to pest control and it will be helpful to ecoenvironment and agricultural product safety. PMID:24911460

  14. Plant Volatile Analogues Strengthen Attractiveness to Insect

    PubMed Central

    Sun, Yufeng; Yu, Hao; Zhou, Jing-Jiang; Pickett, John A.; Wu, Kongming

    2014-01-01

    Green leaf bug Apolygus lucorum (Meyer-Dür) is one of the major pests in agriculture. Management of A. lucorum was largely achieved by using pesticides. However, the increasing population of A. lucorum since growing Bt cotton widely and the increased awareness of ecoenvironment and agricultural product safety makes their population-control very challenging. Therefore this study was conducted to explore a novel ecological approach, synthetic plant volatile analogues, to manage the pest. Here, plant volatile analogues were first designed and synthesized by combining the bioactive components of β-ionone and benzaldehyde. The stabilities of β-ionone, benzaldehyde and analogue 3 g were tested. The electroantennogram (EAG) responses of A. lucorum adult antennae to the analogues were recorded. And the behavior assay and filed experiment were also conducted. In this study, thirteen analogues were acquired. The analogue 3 g was demonstrated to be more stable than β-ionone and benzaldehyde in the environment. Many of the analogues elicited EAG responses, and the EAG response values to 3 g remained unchanged during seven-day period. 3 g was also demonstrated to be attractive to A. lucorum adults in the laboratory behavior experiment and in the field. Its attractiveness persisted longer than β-ionone and benzaldehyde. This indicated that 3 g can strengthen attractiveness to insect and has potential as an attractant. Our results suggest that synthetic plant volatile analogues can strengthen attractiveness to insect. This is the first published study about synthetic plant volatile analogues that have the potential to be used in pest control. Our results will support a new ecological approach to pest control and it will be helpful to ecoenvironment and agricultural product safety. PMID:24911460

  15. Structure of Rhodococcus equi virulence-associated protein B (VapB) reveals an eight-stranded antiparallel β-barrel consisting of two Greek-key motifs.

    PubMed

    Geerds, Christina; Wohlmann, Jens; Haas, Albert; Niemann, Hartmut H

    2014-07-01

    Members of the virulence-associated protein (Vap) family from the pathogen Rhodococcus equi regulate virulence in an unknown manner. They do not share recognizable sequence homology with any protein of known structure. VapB and VapA are normally associated with isolates from pigs and horses, respectively. To contribute to a molecular understanding of Vap function, the crystal structure of a protease-resistant VapB fragment was determined at 1.4 Å resolution. The structure was solved by SAD phasing employing the anomalous signal of one endogenous S atom and two bound Co ions with low occupancy. VapB is an eight-stranded antiparallel β-barrel with a single helix. Structural similarity to avidins suggests a potential binding function. Unlike other eight- or ten-stranded β-barrels found in avidins, bacterial outer membrane proteins, fatty-acid-binding proteins and lysozyme inhibitors, Vaps do not have a next-neighbour arrangement but consist of two Greek-key motifs with strand order 41238567, suggesting an unusual or even unique topology. PMID:25005079

  16. Structure of Rhodococcus equi virulence-associated protein B (VapB) reveals an eight-stranded antiparallel β-barrel consisting of two Greek-key motifs

    PubMed Central

    Geerds, Christina; Wohlmann, Jens; Haas, Albert; Niemann, Hartmut H.

    2014-01-01

    Members of the virulence-associated protein (Vap) family from the pathogen Rhodococcus equi regulate virulence in an unknown manner. They do not share recognizable sequence homology with any protein of known structure. VapB and VapA are normally associated with isolates from pigs and horses, respectively. To contribute to a molecular understanding of Vap function, the crystal structure of a protease-resistant VapB fragment was determined at 1.4 Å resolution. The structure was solved by SAD phasing employing the anomalous signal of one endogenous S atom and two bound Co ions with low occupancy. VapB is an eight-stranded antiparallel β-barrel with a single helix. Structural similarity to avidins suggests a potential binding function. Unlike other eight- or ten-stranded β-barrels found in avidins, bacterial outer membrane proteins, fatty-acid-binding proteins and lysozyme inhibitors, Vaps do not have a next-neighbour arrangement but consist of two Greek-key motifs with strand order 41238567, suggesting an unusual or even unique topology. PMID:25005079

  17. Flux Synthesis, Structure, Properties, and Theoretical Magnetic Study of Uranium(IV)-Containing A2USi6O15 (A = K, Rb) with an Intriguing Green-to-Purple, Crystal-to-Crystal Structural Transition in the K Analogue.

    PubMed

    Morrison, Gregory; Ramanantoanina, Harry; Urland, Werner; Smith, Mark D; zur Loye, Hans-Conrad

    2015-06-01

    The flux growth of uranium(IV) oxides presents several challenges, and to the best of our knowledge, only one example has ever been reported. We succeeded in growing two new reduced uranium silicates A2USi6O15 (A = K, Rb) under flux growth conditions in sealed copper tubes. The compounds crystallize in a new structure type with space group C2/c and lattice parameters a = 24.2554(8) Å, b = 7.0916(2) Å, c = 17.0588(6) Å, β = 97.0860(6) ° (K) and a = 24.3902(8) Å, b = 7.1650(2) Å, c = 17.2715(6) Å, β = 96.8600(6) ° (Rb). A2USi6O15 (A = K, Rb) are isocompositional to a previously reported Cs2USi6O15, and the two structures are compared. K2USi6O15 undergoes an interesting crystal-to-crystal structural phase transition at T ≈ 225 K to a triclinic structure, which is accompanied by an intense color change. The magnetic properties of A2USi6O15 (A = K, Rb, Cs) are reported and differ from the magnetism observed in other U(4+) compounds. Calculations are performed on the (UO6)(-8) clusters of K2USi6O15 to study the cause of these unique magnetic properties. PMID:25978501

  18. Natural analogue studies as supplements to biomineralization research

    SciTech Connect

    McNeil, M.B.

    1995-09-01

    Chemical reactions can alter the chemistry and crystal structure of solid objects over archeological or geological times, while preserving external physical shapes. The reactions resulting in these structures offer natural analogues to laboratory experiments in biomineralization and to biologically influenced alteration of nuclear waste packages, and thus, they offer the only available way of validating models that purport waste package behavior over archaeological or geological times. Potential uses of such analogues in the construction and validation of hypothetical mechanisms of microbiological corrosion and biomineralization are reviewed. Evidence from such analogues suggests that biofilms can control materials alteration in ways usually overlooked. The newly hypothesized mechanisms involve control by biofilms of the cation flow near the solid surface and offer plausible mechanisms for the formation of mixed-cation minerals under conditions that would lead to dealloying in abiotic experiments; they also account for the formation of unusual minerals [such as posnjakite, Cu{sub 4}SO{sub 4}(OH){sub 6{center_dot}}H{sub 2}O] and mineral morphologies unusual in corrosion [malachite, Cu{sub 2}CO{sub 3}(OH){sub 2}, rarely forms botryoidally under corrosion conditions and its occasional presence on archaeological objects that appear to have undergone microbiological corrosion may be related to biofilm phenomena].

  19. Analogue Transformations in Physics and their Application to Acoustics

    PubMed Central

    García-Meca, C.; Carloni, S.; Barceló, C.; Jannes, G.; Sánchez-Dehesa, J.; Martínez, A.

    2013-01-01

    Transformation optics has shaped up a revolutionary electromagnetic design paradigm, enabling scientists to build astonishing devices such as invisibility cloaks. Unfortunately, the application of transformation techniques to other branches of physics is often constrained by the structure of the field equations. We develop here a complete transformation method using the idea of analogue spacetimes. The method is general and could be considered as a new paradigm for controlling waves in different branches of physics, from acoustics in quantum fluids to graphene electronics. As an application, we derive an “analogue transformation acoustics” formalism that naturally allows the use of transformations mixing space and time or involving moving fluids, both of which were impossible with the standard approach. To demonstrate the power of our method, we give explicit designs of a dynamic compressor, a spacetime cloak for acoustic waves and a carpet cloak for a moving aircraft. PMID:23774575

  20. Analogue transformations in physics and their application to acoustics.

    PubMed

    García-Meca, C; Carloni, S; Barceló, C; Jannes, G; Sánchez-Dehesa, J; Martínez, A

    2013-01-01

    Transformation optics has shaped up a revolutionary electromagnetic design paradigm, enabling scientists to build astonishing devices such as invisibility cloaks. Unfortunately, the application of transformation techniques to other branches of physics is often constrained by the structure of the field equations. We develop here a complete transformation method using the idea of analogue spacetimes. The method is general and could be considered as a new paradigm for controlling waves in different branches of physics, from acoustics in quantum fluids to graphene electronics. As an application, we derive an "analogue transformation acoustics" formalism that naturally allows the use of transformations mixing space and time or involving moving fluids, both of which were impossible with the standard approach. To demonstrate the power of our method, we give explicit designs of a dynamic compressor, a spacetime cloak for acoustic waves and a carpet cloak for a moving aircraft. PMID:23774575

  1. Expanding Diversity without Protecting Groups: (+)-Sclareolide to Indolosesquiterpene Alkaloid Mycoleptodiscin A and Analogues.

    PubMed

    Nagaraju, Karre; Chegondi, Rambabu; Chandrasekhar, Srivari

    2016-06-01

    Short and scalable synthesis of the complex pentacyclic indolosesquiterpene natural product mycoleptodiscin A has been achieved from commercially available diterpenoid (+)-sclareolide in 19% overall yield. This approach allows one to prepare various analogues of mycoleptodiscin using McMurry cyclization as a key reaction with just three chromatographic purifications. PMID:27181938

  2. Lock and key colloids.

    PubMed

    Sacanna, S; Irvine, W T M; Chaikin, P M; Pine, D J

    2010-03-25

    New functional materials can in principle be created using colloids that self-assemble into a desired structure by means of a programmable recognition and binding scheme. This idea has been explored by attaching 'programmed' DNA strands to nanometre- and micrometre- sized particles and then using DNA hybridization to direct the placement of the particles in the final assembly. Here we demonstrate an alternative recognition mechanism for directing the assembly of composite structures, based on particles with complementary shapes. Our system, which uses Fischer's lock-and-key principle, employs colloidal spheres as keys and monodisperse colloidal particles with a spherical cavity as locks that bind spontaneously and reversibly via the depletion interaction. The lock-and-key binding is specific because it is controlled by how closely the size of a spherical colloidal key particle matches the radius of the spherical cavity of the lock particle. The strength of the binding can be further tuned by adjusting the solution composition or temperature. The composite assemblies have the unique feature of having flexible bonds, allowing us to produce flexible dimeric, trimeric and tetrameric colloidal molecules as well as more complex colloidal polymers. We expect that this lock-and-key recognition mechanism will find wider use as a means of programming and directing colloidal self-assembly. PMID:20336142

  3. Space analogue studies in Antarctica

    NASA Astrophysics Data System (ADS)

    Lugg, D.; Shepanek, M.

    1999-09-01

    Medical research has been carried out on the Australian National Antarctic Research Expeditions (ANARE) for 50 years. As an extension of this program collaborative Australian/United States research on immunology, microbiology, psychology and remote medicine has produced important data and insight on how humans adapt to the stress of extreme isolation, confinement and the harsh environment of Antarctica. An outstanding analogue for the isolation and confinement of space missions (especially planetary outposts), ANARE has been used as an international research platform by Australia and the United States since 1993. Collaborative research has demonstrated a lowered responsiveness of the immune system under the isolation and confinement of Antarctic winter-over; a reduction of almost 50% in T cell proliferation to mltogen phytohaemogglutinin, as well as changes in latent herpesvirus states and the expansion of the polyclonal latent Epstein-Barr virus infected B cell populations. Although no clinically significant disease has been found to result from these immune changes, research is currently assessing the effects of psychological factors on the immune system. This and associated research performed to date and its relevance to both organisations is discussed, and comment made on possible extensions to the program in both medical and other fields.

  4. Space analogue studies in Antarctica

    NASA Technical Reports Server (NTRS)

    Lugg, D.; Shepanek, M.

    1999-01-01

    Medical research has been carried out on the Australian National Antarctic Research Expeditions (ANARE) for 50 years. As an extension of this program collaborative Australian/United States research on immunology, microbiology, psychology and remote medicine has produced important data and insight on how humans adapt to the stress of extreme isolation, confinement and the harsh environment of Antarctica. An outstanding analogue for the isolation and confinement of space missions (especially planetary outposts), ANARE has been used as an international research platform by Australia and the United States since 1993. Collaborative research has demonstrated a lowered responsiveness of the immune system under the isolation and confinement of Antarctic winter-over; a reduction of almost 50% in T cell proliferation to mitogen phytohaemogglutinin, as well as changes in latent herpesvirus states and the expansion of the polyclonal latent Epstein-Barr virus infected B cell populations. Although no clinically significant disease has been found to result from these immune changes, research is currently assessing the effects of psychological factors on the immune system. This and associated research performed to date and its relevance to both organisations is discussed, and comment made on possible extensions to the program in both medical and other fields.

  5. 20(S)-Protopanaxadiol (PPD) analogues chemosensitize multidrug-resistant cancer cells to clinical anticancer drugs.

    PubMed

    Liu, Junhua; Wang, Xu; Liu, Peng; Deng, Rongxin; Lei, Min; Chen, Wantao; Hu, Lihong

    2013-07-15

    Novel 20(S)-protopanoxadiol (PPD) analogues were designed, synthesized, and evaluated for the chemosensitizing activity against a multidrug resistant (MDR) cell line (KBvcr) overexpressing P-glycoprotein (P-gp). Structure-activity relationship analysis showed that aromatic substituted aliphatic amine at the 24-positions (groups V) effectively and significantly sensitized P-gp overexpressing multidrug resistant (MDR) cells to anticancer drugs, such as docetaxel (DOC), vincristine (VCR), and adriamycin (ADM). PPD derivatives 12 and 18 showed 1.3-2.6 times more effective reversal ability than verapamil (VER) for DOC and VCR. Importantly, no cytotoxicity was observed by the active PPD analogues (5μM) against both non-MDR and MDR cells, suggesting that PPD analogues serve as novel lead compounds toward a potent and safe resistance modulator. Moreover, a preliminary mechanism study demonstrated that the chemosensitizing activity of PPD analogues results from inhibition of P-glycoprotein (P-gp) overexpressed in MDR cancer cells. PMID:23683834

  6. Characterization of photophysical and base-mimicking properties of a novel fluorescent adenine analogue in DNA

    PubMed Central

    Dierckx, Anke; Dinér, Peter; El-Sagheer, Afaf H.; Kumar, Joshi Dhruval; Brown, Tom; Grøtli, Morten; Wilhelmsson, L. Marcus

    2011-01-01

    To increase the diversity of fluorescent base analogues with improved properties, we here present the straightforward click-chemistry-based synthesis of a novel fluorescent adenine-analogue triazole adenine (AT) and its photophysical characterization inside DNA. AT shows promising properties compared to the widely used adenine analogue 2-aminopurine. Quantum yields reach >20% and >5% in single- and double-stranded DNA, respectively, and show dependence on neighbouring bases. Moreover, AT shows only a minor destabilization of DNA duplexes, comparable to 2-aminopurine, and circular dichroism investigations suggest that AT only causes minimal structural perturbations to normal B-DNA. Furthermore, we find that AT shows favourable base-pairing properties with thymine and more surprisingly also with normal adenine. In conclusion, AT shows strong potential as a new fluorescent adenine analogue for monitoring changes within its microenvironment in DNA. PMID:21278417

  7. [Luliberin analogues exhibiting a cytotoxic effect on tumor cells in vitro].

    PubMed

    Burov, S V; Iablokova, T V; Dorosh, M Iu; Shkarubskaia, Z P; Blank, M; Epshteĭn, N; Fridkin, M

    2006-01-01

    Luliberin analogues modified at the N-terminus were synthesized to search for drugs exerting a cytotoxic effect on cells of hormone-dependent tumors. A synthetic scheme effective in the preparation of analogues containing fatty acid residues was proposed. The cytotoxic effect of the peptides was studied on a number of cell lines of human tumors in vitro. The dependence of the antitumor effect on the length of peptide chain, amino acid sequence, and structure of the N-terminal group was demonstrated. Modification with palmitic acid was found to result in highly active compounds in the case of analogues containing more than ten aa, whereas modifications with lauric, caproic, or trimethylacetic acid led to compounds with significantly lower activities. Analogues of luliberin containing a palmitic acid residue and effectively inhibiting the growth of tumor cells in vitro were synthesized. PMID:17042263

  8. Quantitative Assessment of Protein Interaction with Methyl-Lysine Analogues by Hybrid Computational and Experimental Approaches

    PubMed Central

    2011-01-01

    In cases where binding ligands of proteins are not easily available, structural analogues are often used. For example, in the analysis of proteins recognizing different methyl-lysine residues in histones, methyl-lysine analogues based on methyl-amino-alkylated cysteine residues have been introduced. Whether these are close enough to justify quantitative interpretation of binding experiments is however questionable. To systematically address this issue, we developed, applied, and assessed a hybrid computational/experimental approach that extracts the binding free energy difference between the native ligand (methyl-lysine) and the analogue (methyl-amino-alkylated cysteine) from a thermodynamic cycle. Our results indicate that measured and calculated binding differences are in very good agreement and therefore allow the correction of measured affinities of the analogues. We suggest that quantitative binding parameters for defined ligands in general can be derived by this method with remarkable accuracy. PMID:21991995

  9. Computer-aided rational design of novel EBF analogues with an aromatic ring.

    PubMed

    Wang, Shanshan; Sun, Yufeng; Du, Shaoqing; Qin, Yaoguo; Duan, Hongxia; Yang, Xinling

    2016-06-01

    Odorant binding proteins (OBPs) are important in insect olfactory recognition. These proteins bind specifically to insect semiochemicals and induce their seeking, mating, and alarm behaviors. Molecular docking and molecular dynamics simulations were performed to provide computational insight into the interaction mode between AgamOBP7 and novel (E)-β-farnesene (EBF) analogues with an aromatic ring. The ligand-binding cavity in OBP7 was found to be mostly hydrophobic due to the presence of several nonpolar residues. The interactions between the EBF analogues and the hydrophobic residues in the binding cavity increased in strength as the distance between them decreased. The EBF analogues with an N-methyl formamide or ester linkage had higher docking scores than those with an amide linkage. Moreover, delocalized π-π and electrostatic interactions were found to contribute significantly to the binding between the ligand benzene ring and nearby protein residues. To design new compounds with higher activity, four EBF analogues D1-D4 with a benzene ring were synthesized and evaluated based on their docking scores and binding affinities. D2, which had an N-methyl formamide group linkage, exhibited stronger binding than D1, which had an amide linkage. D4 exhibited particularly strong binding due to multiple hydrophobic interactions with the protein. This study provides crucial foundations for designing novel EBF analogues based on the OBP structure. Graphical abstract The design strategy of new EBF analogues based on the OBP7 structure. PMID:27251400

  10. Inhibition of receptor/G protein coupling by suramin analogues.

    PubMed

    Beindl, W; Mitterauer, T; Hohenegger, M; Ijzerman, A P; Nanoff, C; Freissmuth, M

    1996-08-01

    Suramin analogues act as direct antagonists of heterotrimeric G proteins because they block the rate-limiting step of G protein activation (i.e., the dissociation of GDP prebound to the G protein alpha subunit). We have used the human brain A1 adenosine receptor and the rat striatal D2 dopamine receptor, two prototypical Gi/G(o)-coupled receptors, as a model system to test whether the following analogues suppress the receptor-dependent activation of G proteins: 8-(3-nitrobenzamido)-1,3,5-naphthalenetrisulfonic acid (NF007), 8-(3-(3-nitrobenzamido)-benzamido)-1,3,5-naphthalenetrisulfonic acid (NF018); 8,8'-(carbonylbis(imino-3,1-phenylene))bis-(1,3,5-naphthalenetr isulfonic acid) (NF023); 8,8'-(carbonylbis(imino-3,1-phenylene)carbonylimino-(3,1- phenylene)) bis(1,3,5-naphthalenetrisulfonic acid) (NF037); and suramin. Suramin and its analogues inhibit the formation of the agonist-specific ternary complex (agonist/receptor/G protein). This inhibition is (i) quasicompetitive with respect to agonist binding in that it can be overcome by increasing receptor occupancy but (ii) does not result from an interaction of the analogues with the ligand binding pocket of the receptors because the binding of antagonists or of agonists in the absence of functional receptor/G protein interaction is not affected. In addition to suppressing the spontaneous release of GDP from defined G protein alpha subunits, suramin and its analogues reduce receptor-catalyzed guanine nucleotide exchange. The site, to which suramin analogues bind, overlaps with the docking site for the receptor on the G protein alpha subunit. The structure-activity relationships for inhibition of agonist binding to the A1 adenosine receptor (suramin > NF037 > NF023) and of agonist binding to the inhibition D2 dopamine receptor (suramin = NF037 > NF023 > NF018) differ. Thus, NF037 discriminates between the ternary complexes formed by the agonist-liganded D2 dopamine receptors and those formed by the A1 adenosine

  11. Structural Studies of Cinnamoyl-CoA Reductase and Cinnamyl-Alcohol Dehydrogenase, Key Enzymes of Monolignol Biosynthesis[C][W

    PubMed Central

    Pan, Haiyun; Zhou, Rui; Louie, Gordon V.; Mühlemann, Joëlle K.; Bomati, Erin K.; Bowman, Marianne E.; Dudareva, Natalia; Dixon, Richard A.; Noel, Joseph P.; Wang, Xiaoqiang

    2014-01-01

    The enzymes cinnamoyl-CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) catalyze the two key reduction reactions in the conversion of cinnamic acid derivatives into monolignol building blocks for lignin polymers in plant cell walls. Here, we describe detailed functional and structural analyses of CCRs from Medicago truncatula and Petunia hybrida and of an atypical CAD (CAD2) from M. truncatula. These enzymes are closely related members of the short-chain dehydrogenase/reductase (SDR) superfamily. Our structural studies support a reaction mechanism involving a canonical SDR catalytic triad in both CCR and CAD2 and an important role for an auxiliary cysteine unique to CCR. Site-directed mutants of CAD2 (Phe226Ala and Tyr136Phe) that enlarge the phenolic binding site result in a 4- to 10-fold increase in activity with sinapaldehyde, which in comparison to the smaller coumaraldehyde and coniferaldehyde substrates is disfavored by wild-type CAD2. This finding demonstrates the potential exploitation of rationally engineered forms of CCR and CAD2 for the targeted modification of monolignol composition in transgenic plants. Thermal denaturation measurements and structural comparisons of various liganded and unliganded forms of CCR and CAD2 highlight substantial conformational flexibility of these SDR enzymes, which plays an important role in the establishment of catalytically productive complexes of the enzymes with their NADPH and phenolic substrates. PMID:25217505

  12. Past and present of analogue modelling, and its future trend

    NASA Astrophysics Data System (ADS)

    Koyi, Hemin

    2015-04-01

    Since Hull (1815) published his article on modelling, analogue modelling has expanded to simulate both a wider range of tectonic regimes and target more challenging set-ups, and has become an integrated part of the fields of tectonics and structural geology. Establishment of new laboratories testifies for the increased attention the technique receives. The ties between modellers and field geoscientists have become stronger with the focus being on understanding the parameters that govern the evolution of a tectonic regime and the processes that dominate it. Since the first sand castle was built with damp sand on a beach, sand has proven to be an appropriate material analogue. Even though granular materials is the most widely used analogue material, new materials are also (re)introduced as rock analogues. Emphasis has been on more precise measurements of the mechanical properties of the materials and on minimizing the preparation effects, which have a great impact on scaling, interpretations and benchmarking. The analytical technique used to quantify model results has also seen a great deal of improvement. In addition to X-ray tomography used to visualise internal structures of models, new techniques (e.g. PIV, high-resolution laser scanning, and interferometry) have enabled monitoring kinematics with a higher precision. Benchmarking exercises have given modelling an additional checking tool by outlining, in addition to the rheology of the modelling materials, the impact of different preparation approaches, the effect of boundary conditions, and the human factor on model results. However, despite the different approaches and deformation rigs, results of models of different tectonic laboratories have shown a great deal of similarities. Even with the introduction of more sophisticated numerical codes and usage of more powerful computers which enable the simulation of more challenging material properties and combinations of those, and 3D model set-up, analogue modelling

  13. Phosphonate analogues of carboxypeptidase A substrates are potent transition-state analogue inhibitors.

    PubMed

    Hanson, J E; Kaplan, A P; Bartlett, P A

    1989-07-25

    Analogues of tri- and tetrapeptide substrates of carboxypeptidase A in which the scissile peptide linkage is replaced with a phosphonate moiety (-PO2--O-) were synthesized and evaluated as inhibitors of the enzyme. The inhibitors terminated with either L-lactate or L-phenyllactate [designated (O) Ala and (O) Phe, respectively] in the P1' position. Transition-state analogy was shown for a series of 14 tri- and tetrapeptide derivatives containing the structure RCO-AlaP-(O)Ala [RCO-AP(O)A, AP indicates the phosphonic acid analogue of alanine] by the correlation of the Ki values for the inhibitors and the Km/kcat values for the corresponding amide substrates. This correlation supports a transition state for the enzymatic reaction that resembles the tetrahedral intermediate formed upon addition of water to the scissile carbonyl group. The inhibitors containing (O) Phe at the P1' position proved to be the most potent reversible inhibitors of carboxypeptidase A reported to date: the dissociation constants of ZAFP(O)F, ZAAP(O)F, and ZFAP(O)F are 4, 3, and 1 pM, respectively. Because of the high affinity of these inhibitors, their dissociation constants could not be determined by steady-state methods. Instead, the course of the association and dissociation processes was monitored for each inhibitor as its equilibrium with the enzyme was established in both the forward and reverse directions. A phosphonamidate analogue, ZAAPF, in which the peptide linkage is replaced with a -PO2-NH- moiety, was prepared and shown to hydrolyze rapidly at neutral pH (t1/2 = 20 min at pH 7.5). This inhibitor is bound an order of magnitude less tightly than the corresponding phosphonate, ZAAP(O)F, a result that contrasts with the 840-fold higher affinity of phosphonamidates for thermolysin [Bartlett, P. A., & Marlowe, C. K. (1987) Science 235, 569-571], a zinc peptidase with a similar arrangement of active-site catalytic residues. PMID:2790000

  14. Synthesis and biological evaluation of a potent salicylihalamide A lactam analogue.

    PubMed

    Balan, Dan; Burns, Christopher J; Fisk, Nicholas G; Hügel, Helmut; Huang, David C S; Segal, David; White, Charlotte; Wagler, Jörg; Rizzacasa, Mark A

    2012-10-28

    The first synthesis of a lactam analogue of salicylihalamide A (1) is reported. A key step in the approach was a photochemical acylation coupling between amine 10 and dioxinone 9 to form the amide 19. Acetylation followed by RCM with Grubbs 1st generation catalyst gave the desired E-lactam 23 (E : Z ratio 87 : 13) as the major compound. Conversion of macrolactam 23 into the vinyl iodide 26 followed by Cu catalysed cross coupling with the diene amide 7 gave aza-salicylihalamide analogue 3 in good yield. This compound demonstrated potent activity against several human leukaemia cell lines. PMID:22964776

  15. Noble gas encapsulation: clathrate hydrates and their HF doped analogues.

    PubMed

    Mondal, Sukanta; Chattaraj, Pratim Kumar

    2014-09-01

    The significance of clathrate hydrates lies in their ability to encapsulate a vast range of inert gases. Although the natural abundance of a few noble gases (Kr and Xe) is poor their hydrates are generally abundant. It has already been reported that HF doping enhances the stability of hydrogen hydrates and methane hydrates, which prompted us to perform a model study on helium, neon and argon hydrates with their HF doped analogues. For this purpose 5(12), 5(12)6(8) and their HF doped analogues are taken as the model clathrate hydrates, which are among the building blocks of sI, sII and sH types of clathrate hydrate crystals. We use the dispersion corrected and gradient corrected hybrid density functional theory for the calculation of thermodynamic parameters as well as conceptual density functional theory based reactivity descriptors. The method of the ab initio molecular dynamics (AIMD) simulation is used through atom centered density matrix propagation (ADMP) techniques to envisage the structural behaviour of different noble gas hydrates on a 500 fs timescale. Electron density analysis is carried out to understand the nature of Ng-OH2, Ng-FH and Ng-Ng interactions. The current results noticeably demonstrate that the noble gas (He, Ne, and Ar) encapsulation ability of 5(12), 5(12)6(8) and their HF doped analogues is thermodynamically favourable. PMID:25047071

  16. Stereochemical Assignment of Strigolactone Analogues Confirms Their Selective Biological Activity.

    PubMed

    Artuso, Emma; Ghibaudi, Elena; Lace, Beatrice; Marabello, Domenica; Vinciguerra, Daniele; Lombardi, Chiara; Koltai, Hinanit; Kapulnik, Yoram; Novero, Mara; Occhiato, Ernesto G; Scarpi, Dina; Parisotto, Stefano; Deagostino, Annamaria; Venturello, Paolo; Mayzlish-Gati, Einav; Bier, Ariel; Prandi, Cristina

    2015-11-25

    Strigolactones (SLs) are new plant hormones with various developmental functions. They are also soil signaling chemicals that are required for establishing beneficial mycorrhizal plant/fungus symbiosis. In addition, SLs play an essential role in inducing seed germination in root-parasitic weeds, which are one of the seven most serious biological threats to food security. There are around 20 natural SLs that are produced by plants in very low quantities. Therefore, most of the knowledge on SL signal transduction and associated molecular events is based on the application of synthetic analogues. Stereochemistry plays a crucial role in the structure-activity relationship of SLs, as compounds with an unnatural D-ring configuration may induce biological effects that are unrelated to SLs. We have synthesized a series of strigolactone analogues, whose absolute configuration has been elucidated and related with their biological activity, thus confirming the high specificity of the response. Analogues bearing the R-configured butenolide moiety showed enhanced biological activity, which highlights the importance of this stereochemical motif. PMID:26502774

  17. Structure-Function Analysis of a Mixed-linkage β-Glucanase/Xyloglucanase from the Key Ruminal Bacteroidetes Prevotella bryantii B(1)4.

    PubMed

    McGregor, Nicholas; Morar, Mariya; Fenger, Thomas Hauch; Stogios, Peter; Lenfant, Nicolas; Yin, Victor; Xu, Xiaohui; Evdokimova, Elena; Cui, Hong; Henrissat, Bernard; Savchenko, Alexei; Brumer, Harry

    2016-01-15

    The recent classification of glycoside hydrolase family 5 (GH5) members into subfamilies enhances the prediction of substrate specificity by phylogenetic analysis. However, the small number of well characterized members is a current limitation to understanding the molecular basis of the diverse specificity observed across individual GH5 subfamilies. GH5 subfamily 4 (GH5_4) is one of the largest, with known activities comprising (carboxymethyl)cellulases, mixed-linkage endo-glucanases, and endo-xyloglucanases. Through detailed structure-function analysis, we have revisited the characterization of a classic GH5_4 carboxymethylcellulase, PbGH5A (also known as Orf4, carboxymethylcellulase, and Cel5A), from the symbiotic rumen Bacteroidetes Prevotella bryantii B14. We demonstrate that carboxymethylcellulose and phosphoric acid-swollen cellulose are in fact relatively poor substrates for PbGH5A, which instead exhibits clear primary specificity for the plant storage and cell wall polysaccharide, mixed-linkage β-glucan. Significant activity toward the plant cell wall polysaccharide xyloglucan was also observed. Determination of PbGH5A crystal structures in the apo-form and in complex with (xylo)glucan oligosaccharides and an active-site affinity label, together with detailed kinetic analysis using a variety of well defined oligosaccharide substrates, revealed the structural determinants of polysaccharide substrate specificity. In particular, this analysis highlighted the PbGH5A active-site motifs that engender predominant mixed-linkage endo-glucanase activity vis à vis predominant endo-xyloglucanases in GH5_4. However the detailed phylogenetic analysis of GH5_4 members did not delineate particular clades of enzymes sharing these sequence motifs; the phylogeny was instead dominated by bacterial taxonomy. Nonetheless, our results provide key enzyme functional and structural reference data for future bioinformatics analyses of (meta)genomes to elucidate the biology of

  18. Dimerization and DNA recognition rules of mithramycin and its analogues.

    PubMed

    Weidenbach, Stevi; Hou, Caixia; Chen, Jhong-Min; Tsodikov, Oleg V; Rohr, Jürgen

    2016-03-01

    The antineoplastic and antibiotic natural product mithramycin (MTM) is used against cancer-related hypercalcemia and, experimentally, against Ewing sarcoma and lung cancers. MTM exerts its cytotoxic effect by binding DNA as a divalent metal ion (Me(2+))-coordinated dimer and disrupting the function of transcription factors. A precise molecular mechanism of action of MTM, needed to develop MTM analogues selective against desired transcription factors, is lacking. Although it is known that MTM binds G/C-rich DNA, the exact DNA recognition rules that would allow one to map MTM binding sites remain incompletely understood. Towards this goal, we quantitatively investigated dimerization of MTM and several of its analogues, MTM SDK (for Short side chain, DiKeto), MTM SA-Trp (for Short side chain and Acid), MTM SA-Ala, and a biosynthetic precursor premithramycin B (PreMTM B), and measured the binding affinities of these molecules to DNA oligomers of different sequences and structural forms at physiological salt concentrations. We show that MTM and its analogues form stable dimers even in the absence of DNA. All molecules, except for PreMTM B, can bind DNA with the following rank order of affinities (strong to weak): MTM=MTM SDK>MTM SA-Trp>MTM SA-Ala. An X(G/C)(G/C)X motif, where X is any base, is necessary and sufficient for MTM binding to DNA, without a strong dependence on DNA conformation. These recognition rules will aid in mapping MTM sites across different promoters towards development of MTM analogues as useful anticancer agents. PMID:26760230

  19. Edaphic, structural and physiological contrasts across Amazon Basin forest-savanna ecotones suggest a role for potassium as a key modulator of tropical woody vegetation structure and function

    NASA Astrophysics Data System (ADS)

    Lloyd, J.; Domingues, T. F.; Schrodt, F.; Ishida, F. Y.; Feldpausch, T. R.; Saiz, G.; Quesada, C. A.; Schwarz, M.; Torello-Raventos, M.; Gilpin, M.; Marimon, B. S.; Marimon-Junior, B. H.; Ratter, J. A.; Grace, J.; Nardoto, G. B.; Veenendaal, E.; Arroyo, L.; Villarroel, D.; Killeen, T. J.; Steininger, M.; Phillips, O. L.

    2015-11-01

    Sampling along a precipitation gradient in tropical South America extending from ca. 0.8 to 2.0 m a-1, savanna soils had consistently lower exchangeable cation concentrations and higher C / N ratios than nearby forest plots. These soil differences were also reflected in canopy averaged leaf traits with savanna trees typically having higher leaf mass per unit area but lower mass-based nitrogen (Nm) and potassium (Km). Both Nm and Km also increased with declining mean annual precipitation (PA), but most area-based leaf traits such as leaf photosynthetic capacity showed no systematic variation with PA or vegetation type. Despite this invariance, when taken in conjunction with other measures such as mean canopy height, area-based soil exchangeable potassium content, [K]sa , proved to be an excellent predictor of several photosynthetic properties (including 13C isotope discrimination). Moreover, when considered in a multivariate context with PA and soil plant available water storage capacity (θP) as covariates, [K]sa also proved to be an excellent predictor of stand-level canopy area, providing drastically improved fits as compared to models considering just PA and/or θP. Neither calcium, nor magnesium, nor soil pH could substitute for potassium when tested as alternative model predictors (ΔAIC > 10). Nor for any model could simple soil texture metrics such as sand or clay content substitute for either [K]sa or θP. Taken in conjunction with recent work in Africa and the forests of the Amazon Basin, this suggests - in combination with some newly conceptualised interacting effects of PA and θP also presented here - a critical role for potassium as a modulator of tropical vegetation structure and function.

  20. Synthesis and characterization of mitoQ and idebenone analogues as mediators of oxygen consumption in mitochondria

    PubMed Central

    Duveau, Damien Y.; Arce, Pablo M.; Schoenfeld, Robert A.; Raghav, Nidhi; Cortopassi, Gino A.; Hecht, Sidney M.

    2013-01-01

    Analogues of mitoQ and idebenone were synthesized to define the structural elements that support oxygen consumption in the mitochondrial respiratory chain. Eight analogues were prepared and fully characterized, then evaluated for their ability to support oxygen consumption in the mitochondrial respiratory chain. While oxygen consumption was strongly inhibited by mitoQ analogues 2–4 in a chain length-dependent manner, modification of idebenone by replacement of the quinone methoxy groups by methyl groups (analogues 6 – 8) reduced, but did not eliminate, oxygen consumption. Idebenone analogues 6 – 8 also displayed significant cytoprotective properties toward cultured mammalian cells in which glutathione had been depleted by treatment with diethyl maleate. PMID:20691600

  1. Structural requirements for recognition of the HLA-Dw14 class II epitope: A key HLA determinant associated with rheumatoid arthritis

    SciTech Connect

    Hiraiwa, Akikazu; Yamanaka, Katsuo; Kwok, W.W.; Nepom, G.T. ); Mickelson, E.M.; Masewicz, S.; Hansen, J.A. ); Radka, S.F. )

    1990-10-01

    Although HLA genes have been shown to be associated with certain diseases, the basis for this association is unknown. Recent studies, however, have documented patterns of nucleotide sequence variation among some HLA genes associated with a particular disease. For rheumatoid arthritis, HLA genes in most patients have a shared nucleotide sequence encoding a key structural element of an HLA class II polypeptide; this sequence element is critical for the interaction of the HLA molecule with antigenic peptides and with responding T cells, suggestive of a direct role for this sequence element in disease susceptibility. The authors describe the serological and cellular immunologic characteristics encoded by this rheumatoid arthritis-associated sequence element. Site-directed mutagenesis of the DRB1 gene was used to define amino acids critical for antibody and T-cell recognition of this structural element, focusing on residues that distinguish the rheumatoid arthritis-associated alleles Dw4 and Dw14 from a closely related allele, Dw10, not associated with disease. Both the gain and loss of rheumatoid arthritis-associated epitopes were highly dependent on three residues within a discrete domain of the HLA-DR molecule. Recognition was most strongly influenced by the following amino acids (in order): 70 > 71 > 67. Some alloreactive T-cell clones were also influenced by amino acid variation in portions of the DR molecule lying outside the shared sequence element.

  2. Crystal structure of the γ-hydroxymuconic semialdehyde dehydrogenase from Pseudomonas sp. strainWBC-3, a key enzyme involved in para-Nitrophenol degradation

    PubMed Central

    2013-01-01

    Background para-Nitrophenol (PNP) is a highly toxic compound with threats to mammalian health. The pnpE-encoded γ-hydroxymuconic semialdehyde dehydrogenase catalyzes the reduction of γ-hydroxymuconic semialdehyde to maleylacetate in Pseudomonas sp. strain WBC-3, playing a key role in the catabolism of PNP to Krebs cycle intermediates. However, the catalyzing mechanism by PnpE has not been well understood. Results Here we report the crystal structures of the apo and NAD bound PnpE. In the PnpE-NAD complex structure, NAD is situated in a cleft of PnpE. The cofactor binding site is composed of two pockets. The adenosine and the first ribose group of NAD bind in one pocket and the nicotinamide ring in the other. Conclusions Six amino acids have interactions with the cofactor. They are C281, E247, Q210, W148, I146 and K172. Highly conserved residues C281 and E247 were identified to be critical for its catalytic activity. In addition, flexible docking studies of the enzyme-substrate system were performed to predict the interactions between PnpE and its substrate γ-hydroxymuconic semialdehyde. Amino acids that interact extensively with the substrate and stabilize the substrate in an orientation suitable for enzyme catalysis were identified. The importance of these residues for catalytic activity was confirmed by the relevant site-directed mutagenesis and their biochemical characterization. PMID:24252642

  3. Hydrophobic surfactant proteins and their analogues.

    PubMed

    Walther, Frans J; Waring, Alan J; Sherman, Mark A; Zasadzinski, Joseph A; Gordon, Larry M

    2007-01-01

    Lung surfactant is a complex mixture of phospholipids and four surfactant-associated proteins (SP-A, SP-B, SP-C and SP-D). Its major function in the lung alveolus is to reduce surface tension at the air-water interface in the terminal airways by the formation of a surface-active film enriched in surfactant lipids, hence preventing cellular collapse during respiration. Surfactant therapy using bovine or porcine lung surfactant extracts, which contain only polar lipids and native SP-B and SP-C, has dramatically improved the therapeutic outcomes of preterm infants with respiratory distress syndrome (RDS). One important goal of surfactant researchers is to replace animal-derived therapies with fully synthetic preparations based on SP-B and SP-C, produced by recombinant technology or peptide synthesis, and reconstituted with selected synthetic lipids. Here, we review recent research developments with peptide analogues of SP-B and SP-C, designed using either the known primary sequence and three-dimensional (3D) structure of the native proteins or, alternatively, the known 3D structures of closely homologous proteins. Such SP-B and SP-C mimics offer the possibility of studying the mechanisms of action of the respective native proteins, and may allow the design of optimized surfactant formulations for specific pulmonary diseases (e.g., acute lung injury (ALI) or acute respiratory distress syndrome (ARDS)). These synthetic surfactant preparations may also be a cost-saving therapeutic approach, with better quality control than may be obtained with animal-based treatments. PMID:17575474

  4. Opioid profiles of Cys2-containing enkephalin analogues.

    PubMed

    Pencheva, Nevena; Milanov, Peter; Vezenkov, Lubomir; Pajpanova, Tamara; Naydenova, Emilia

    2004-09-13

    To elucidate the structural features determining delta-opioid receptor properties of enkephalin analogues containing Cys(O2NH2) in position 2, a series of Cys2-containing derivatives were synthesized and tested for their effectiveness in depressing electrically evoked contractions of the mouse vas deferens (predominantly enkephalin-selective delta-opioid receptors) and the guinea-pig ileum (mu- and kappa-opioid receptors). The peptidase resistance of the compounds was also tested. The ratio IC50 in the guinea-pig ileum/IC50 in the mouse vas deferens, indicating selectivity for delta-opioid receptors, was high for Cys(O2NH2)2-containing analogues and especially for [Cys(O2NH2)2, Leu5]enkephalin, which was about seven times more selective than delta-opioid receptor selective ligand cyclic [D-Pen2, D-Pen5]enkephalin (DPDPE). The dissociation constant (KA) and relative efficacy (e(rel)) of the compounds in the mouse-isolated vas deferens were determined using explicit formulae derived by fitting of the data points with two-parametric hyperbolic function. The obtained values for KA and e(rel) suggest that: (i) incorporation of Cys(O2NH2)2 in the molecule of [Leu5]enkephalin highly increases the efficacy and does not change significantly the affinity of the respective analogues to delta-opioid receptors; [Cys(O2NH2)2, Leu5]enkephalin has higher affinity than DPDPE, but is less resistant to enzyme degradation; the effect of this modification on the efficacy is decreased when methionine is in position 5; (ii) D-configuration of Cys(O2NH2)2-containing analogues increases their peptidase resistance, but reduces efficacy and affinity of the peptides towards delta-opioid receptors; (iii) the substitution of Cys(O2NH2) with Hcy(O2NH2) reduces the efficacy, affinity and potency of the respective analogues and maintains their sensitivity to endogenous peptidases; (iv) the substitution of the sulfonamide group with benzyl group in the molecule of Cys in position 2 decreases their

  5. Novel synthesis of cyclic amide-linked analogues of angiotensins II and III.

    PubMed

    Matsoukas, J M; Hondrelis, J; Agelis, G; Barlos, K; Gatos, D; Ganter, R; Moore, D; Moore, G J

    1994-09-01

    Cyclic amide-linked angiotension II (ANGII) analogues have been synthesized by novel strategies, in an attempt to test the ring clustering and the charge relay bioactive conformation recently suggested. These analogues were synthesized by connecting side chain amino and carboxyl groups at positions 1 and 8, 2 and 8, 3 and 8, and 3 and 5, N-terminal amino and C-terminal carboxyl groups at positions 1 and 8, 2 and 8, and 4 and 8, and side chain amino to C-terminal carboxyl group at positions 1 and 8. All these analogues were biologically inactive, except for cyclic [Sar1, Asp3, Lys5]ANGII (analogue 10) which had high contractile activity in the rat uterus assay (30% of ANGII) and [Lys1, Tyr(Me)4, Glu8]ANGII (analogue 7) which had weak antagonist activity (PA2 approximately 6). Precyclic linear peptides synthesized using 2-chlorotrityl chloride resin and N alpha-Fmoc-amino acids with suitable side chain protection were obtained in high yield and purity and were readily cyclized with benzotriazol-1-yloxytris(dimethylamino)-phosphonium hexafluorophosphate as coupling reagent. Molecular modeling suggests that the ring structure of the potent analogue can be accommodated in the charge relay conformation proposed for ANGII. PMID:8071943

  6. Indomethacin Analogues that Enhance Doxorubicin Cytotoxicity in Multidrug Resistant Cells without Cox Inhibitory Activity.

    PubMed

    Arisawa, Mitsuhiro; Kasaya, Yayoi; Obata, Tohru; Sasaki, Takuma; Ito, Mika; Abe, Hiroshi; Ito, Yoshihiro; Yamano, Akihito; Shuto, Satoshi

    2011-05-12

    Conformationally restricted indomethacin analogues were designed and prepared from the corresponding 2-substituted indoles, which were synthesized by a one-pot isomerization/enamide-ene metathesis as the key reaction. Conformational analysis by calculations, NMR studies, and X-ray crystallography suggested that these analogues were conformationally restricted in the s-cis or the s-trans form due to the 2-substituent as expected. Their biological activities on cyclooxygenase-1 (COX-1) inhibition, cyclooxygenase-2 (COX-2) inhibition, and modulation of MRP-1-mediated multidrug resistance (MDR) are described. Some of these indomethacin analogues enhanced doxorubicin cytotoxicity, although they do not have any COX inhibitory activity, which suggests that the MDR-modulating effect of an NSAID can be unassociated with its COX-inhibitory activity. This may be an entry into the combination chemotherapy of doxorubicin with a MDR modulator. PMID:24900317

  7. Protonation states of the key active site residues and structural dynamics of glmS riboswitch as reveled by molecular dynamics

    PubMed Central

    Banáš, Pavel; Walter, Nils G.

    2010-01-01

    The glmS catalytic riboswitch is part of the 5'-untranslated region of mRNAs encoding glucosamine-6-phosphate (GlcN6P) synthetase (glmS) in numerous Gram-positive bacteria. Binding of the cofactor GlcN6P induces site-specific self-cleavage of the RNA. However, detailed reaction mechanism as well as protonation state of glmS reactive form remains still elusive. To probe the dominant protonation states of key active site residues, we carried out explicit solvent molecular dynamic simulations involving various protonation states of three crucial active site moieties observed in the available crystal structures: (i) guanine G40 (following the T. tengcongensis numbering), (ii) the GlcN6P amino/ammonium group, and (iii) the GlcN6P phosphate moiety. We found that a deprotonated G40− seems incompatible with the observed glmS active site architecture. Our data suggest that the canonical form of G40 plays a structural role by stabilizing an in-line attack conformation of the cleavage site A-1(2'-OH) nucleophile, rather than a more direct chemical role. In addition, we observe weakened cofactor binding upon protonation of the GlcN6P phosphate moiety, which explains the experimentally observed increase of Km with decreasing pH. Finally, we discuss a possible role of cofactor binding and its interaction with the G65 and G1 purines in structural stabilization of the A-1(2'-OH) in-line attack conformation. Based on the identified dominant protonation state of the reaction precursor, we propose a hypothesis of self-cleavage mechanism, in which A-1(2'-OH) is activated as nucleophile by the G1(pro-Rp) non-bridging oxygen of the scissile phosphate, whereas the ammonium group of GlcN6P acts as the general acid protonating the G1(O5') leaving group. PMID:20536206

  8. Chromophoric Nucleoside Analogues: Synthesis and Characterization of 6-Aminouracil-Based Nucleodyes.

    PubMed

    Freeman, Noam S; Moore, Curtis E; Wilhelmsson, L Marcus; Tor, Yitzhak

    2016-06-01

    Nucleodyes, visibly colored chromophoric nucleoside analogues, are reported. Design criteria are outlined and the syntheses of cytidine and uridine azo dye analogues derived from 6-aminouracil are described. Structural analysis shows that the nucleodyes are sound structural analogues of their native nucleoside counterparts, and photophysical studies demonstrate that the nucleodyes are sensitive to microenvironmental changes. Quantum chemical calculations are presented as a valuable complementary tool for the design of strongly absorbing nucleodyes, which overlap with the emission of known fluorophores. Förster critical distance (R0) calculations determine that the nucleodyes make good FRET pairs with both 2-aminopurine (2AP) and pyrrolocytosine (PyC). Additionally, unique tautomerization features exhibited by 5-(4-nitrophenylazo)-6-oxocytidine (8) are visualized by an extraordinary crystal structure. PMID:27128151

  9. Glucagonlike Peptide 2 Analogue Teduglutide

    PubMed Central

    Chaturvedi, Lakshmi S.; Basson, Marc D.

    2015-01-01

    IMPORTANCE Short bowel syndrome occurs when a shortened intestine cannot absorb sufficient nutrients or fluids. Teduglutide is a recombinant analogue of human glucagonlike peptide 2 that reduces dependence on parenteral nutrition in patients with short bowel syndrome by promoting enterocytic proliferation, increasing the absorptive surface area. However, enterocyte function depends not only on the number of cells that are present but also on differentiated features that facilitate nutrient absorption and digestion. OBJECTIVE To test the hypothesis that teduglutide impairs human intestinal epithelial differentiation. DESIGN AND SETTING We investigated the effects of teduglutide in the modulation of proliferation and differentiation in human Caco-2 intestinal epithelial cells at a basic science laboratory. This was an in vitro study using Caco-2 cells, a human-derived intestinal epithelial cell line commonly used to model enterocytic biology. EXPOSURE Cells were exposed to teduglutide or vehicle control. MAINOUTCOMESAND MEASURES We analyzed the cell cycle by bromodeoxyuridine incorporation or propidium iodide staining and flow cytometry and measured cell proliferation by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay. We used quantitative reverse transcription–polymerase chain reaction to assay the expression of the enterocytic differentiation markers villin, sucrase-isomaltase, glucose transporter 2 (GLUT2), and dipeptidyl peptidase 4 (DPP-4), as well as that of the putative differentiation signals schlafen 12 (SLFN12) and caudal-related homeobox intestine-specific transcription factor (Cdx2). Villin promoter activity was measured by a luciferase-based assay. RESULTS The MTS assay demonstrated that teduglutide increased cell numbers by a mean (SD) of 10% (2%) over untreated controls at a maximal 500nM (n = 6, P < .05). Teduglutide increased bromodeoxyuridine-positive cells vs untreated controls by a mean (SD

  10. Whole structure-activity relationships of the fat-accumulation inhibitor (-)-ternatin: recognition of the importance of each amino acid residue.

    PubMed

    Shimokawa, Kenichiro; Iwase, Yoshiaki; Miwa, Ryoka; Yamada, Kaoru; Uemura, Daisuke

    2008-10-01

    A series of Ala and Aoc analogues of (-)-ternatin were prepared, and their bioactivities were assessed by a fat-accumulation inhibition assay using 3T3-L1 adipocytes, which led to the discovery of key structure-activity relationships (SAR). PMID:18798610

  11. Convergent syntheses of LeX analogues

    PubMed Central

    Wang, An; Hendel, Jenifer

    2010-01-01

    Summary The synthesis of three Lex derivatives from one common protected trisaccharide is reported. These analogues will be used respectively for competitive binding experiments, conjugation to carrier proteins and immobilization on gold. An N-acetylglucosamine monosaccharide acceptor was first glycosylated at O-4 with a galactosyl imidate. This coupling was performed at 40 °C under excess of BF3·OEt2 activation and proceeded best if the acceptor carried a 6-chlorohexyl rather than a 6-azidohexyl aglycon. The 6-chlorohexyl disaccharide was then converted to an acceptor and submitted to fucosylation yielding the corresponding protected 6-chlorohexyl Lex trisaccharide. This protected trisaccharide was used as a precursor to the 6-azidohexyl, 6-acetylthiohexyl and 6-benzylthiohexyl trisaccharide analogues which were obtained in excellent yields (70–95%). In turn, we describe the deprotection of these intermediates in one single step using dissolving metal conditions. Under these conditions, the 6-chlorohexyl and 6-azidohexyl intermediates led respectively to the n-hexyl and 6-aminohexyl trisaccharide targets. Unexpectedly, the 6-acetylthiohexyl analogue underwent desulfurization and gave the n-hexyl glycoside product, whereas the 6-benzylthiohexyl analogue gave the desired disulfide trisaccharide dimer. This study constitutes a particularly efficient and convergent preparation of these three Lex analogues. PMID:20485599

  12. Chemical Synthesis and Molecular Recognition of Phosphatase-Resistant Analogues of Phosphatidylinositol-3-phosphate

    PubMed Central

    Xu, Yong; Lee, Stephanie A.; Kutateladze, Tatiana G.; Sbrissa, Diego; Shisheva, Assia; Prestwich, Glenn D.

    2008-01-01

    The remodeling of phosphatidylinositol polyphosphates in cellular membranes by phosphatases and kinases orchestrates the signaling by these lipids in space and time. In order to provide chemical tools to study of the changes in cell physiology mediated by these lipids, three new metabolically-stabilized (ms) analogues of phosphatidylinositol-3-phosphate (PtdIns(3)P were synthesized. We describe herein the total asymmetric synthesis of 3-methylphosphonate, 3-monofluoromethylphosphonate and 3-phosphorothioate analogues of PtdIns(3)P. From differentially protected D-myo-inositol key intermediates, a versatile phosphoramidite reagent was employed in the synthesis of PtdIns(3)P analogues with diacylglyceryl moieties containing dioleoyl, dipalmitoyl and dibutyryl chains. In addition, we introduce a new phosphorlyation reagent, monofluoromethylphosphonyl chloride, which has general applications for the preparation of “pKa-matched” monofluorophosphonates. These ms-PtdIns(3)P analogues exhibited reduced binding activities with 15N-labelled FYVE and PX domains, as significant 1H and 15N chemical shift changes in the FYVE domain were induced by titrating ms-PtdIns(3)Ps into membrane-mimetic dodecylphosphocholine (DPC) micelles. In addition, the PtdIns(3)P analogues with dioleyl and dipalmitoyl chains were substrates for the 5-kinase enzyme PIKfyve; the corresponding phosphorylated ms-PI(3,5)P2 products were detected by radio-TLC analysis. PMID:16417379

  13. Antihyperuricemic effects of thiadiazolopyrimidin-5-one analogues in oxonate treated rats.

    PubMed

    Sathisha, Kadanuru R; Gopal, Shubha; Rangappa, Kanchugarakoppal S

    2016-04-01

    Hyperuricemia is a risk factor for not only gout, but also to a variety of disorders that affect the vital organ systems of the human body. The xanthine oxidase (XO) is the key enzyme in the production of uric acid and its inhibition can inhibit hyperuricemia. Although, XO inhibitor allopurinol is widely prescribed antigout agent but its use is not without any side effects. Previously, we described the synthesis of four novel thiadiazolopyrimidin-5-one analogues as effective XO inhibitors and molecular docking studies also confirmed this. When these analogues were tested in potassium oxonate treated rats, their serum uric acid and creatinine levels were dropped significantly from 4.85±0.03mg/dl to 1.21±0.01mg/dl and 0.92±0.02mg/dl to 0.40±0.02mg/dl respectively. Among the pyrimidine analogues tested, 6a was most potent. Histological examinations of both liver and kidney tissues exhibited severe necrosis in oxonate treated rats and pyrimidine analogues could significantly attenuate this with a correlative inhibitory profile of hepatic XO from the same rats. Our results demonstrate antihyperuricemic effect of novel thiadiazolopyrimidin-5-one analogues in oxonate treated rats, which can be further explored not only as antigout therapeutics but also in other systems where hyperuricemia is the driving cause of the disease. PMID:26875636

  14. Model Membrane and Cell Studies of Antimicrobial Activity of Melittin Analogues.

    PubMed

    Jamasbi, Elaheh; Mularski, Anna; Separovic, Frances

    2016-01-01

    Melittin is a 26 residue peptide and the major component of bee (Apis mellifera) venom. Although melittin has both anticancer and antimicrobial properties, utilization has been limited due to its high lytic activity against eukaryotic cells. The mechanism of this lytic activity remains unclear but several mechanisms have been proposed, including pore formation or a detergent like mechanism, which result in lysis of cell membranes. Several analogues of melittin have been synthesized to further understand the role of specific residues in its antimicrobial and lytic activity. Melittin analogues that have a proline residue substituted for an alanine, lysine or cysteine have been studied with both model membrane systems and living cells. These studies have revealed that the proline residue plays a critical role in antimicrobial activity and cytotoxicity. Analogues lacking the proline residue and dimers of these analogues displayed decreased cytotoxicity and minimum inhibition concentrations. Several mutant studies have shown that, when key substitutions are made, the resultant peptides have more activity in terms of pore formation than the native melittin. Designing analogues that retain antimicrobial and anticancer activity while minimizing haemolytic activity will be a promising way to utilize melittin as a potential therapeutic agent. PMID:26139117