Science.gov

Sample records for khalatnikov theory

  1. Hamiltonian formulation of the Belinskii-Khalatnikov-Lifshitz conjecture

    SciTech Connect

    Ashtekar, Abhay; Henderson, Adam; Sloan, David

    2011-04-15

    The Belinskii, Khalatnikov, and Lifshitz conjecture [V. A. Belinskii, I. M. Khalatnikov, and E. M. Lifshitz, Adv. Phys. 19, 525 (1970)] posits that on approach to a spacelike singularity in general relativity the dynamics are well approximated by ''ignoring spatial derivatives in favor of time derivatives.'' In A. Ashtekar, A. Henderson, and D. Sloan, Classical Quantum Gravity 26, 052 001 (2009), we examined this idea from within a Hamiltonian framework and provided a new formulation of the conjecture in terms of variables well suited to loop quantum gravity. We now present the details of the analytical part of that investigation. While our motivation came from quantum considerations, thanks to some of its new features, our formulation should be useful also for future analytical and numerical investigations within general relativity.

  2. Landau-Khalatnikov-Fradkin transformations in reduced quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Ahmad, A.; Cobos-Martínez, J. J.; Concha-Sánchez, Y.; Raya, A.

    2016-05-01

    We derive the Landau-Khalatnikov-Frandkin transformation (LKFT) for the fermion propagator in quantum electrodynamics (QED) described within a brane-world inspired framework where photons are allowed to move in dγ space-time (bulk) dimensions, while electrons remain confined to a de -dimensional brane, with de

  3. Local gauge transformation for the quark propagator in an SU(N) gauge theory

    NASA Astrophysics Data System (ADS)

    Aslam, M. Jamil; Bashir, A.; Gutiérrez-Guerrero, L. X.

    2016-04-01

    In an S U (N ) gauge field theory, the n -point Green functions, namely, propagators and vertices, transform under the simultaneous local gauge variations of the gluon vector potential and the quark matter field in such a manner that the physical observables remain invariant. In this article, we derive this intrinsically nonperturbative transformation law for the quark propagator within the system of covariant gauges. We carry out its explicit perturbative expansion up to O (gs6) and, for some terms, up to O (gs8) . We study the implications of this transformation for the quark-antiquark condensate, multiplicative renormalizability of the massless quark propagator, as well as its relation with the quark-gluon vertex at the one-loop order. Setting the color factors CF=1 and CA=0 , Landau-Khalatnikov-Fradkin transformation for the Abelian case of quantum electrodynamics is trivially recovered. We also test whether the usually employed proposals for the truncations of Schwinger-Dyson equations are consistent with what the Landau-Khalatnikov-Fradkin transformations entail for the massless quark propagator.

  4. Quantum phase transitions in the Belinsky-Khalatnikov-Lifshitz universe

    NASA Astrophysics Data System (ADS)

    D'Odorico, Giulio; Saueressig, Frank

    2015-12-01

    We study quantum corrections to the classical Bianchi I and Bianchi IX universes. The modified dynamics is well motivated from the asymptotic safety program where the short-distance behavior of gravity is governed by a nontrivial renormalization group fixed point. The correction terms induce a phase transition in the dynamics of the model, changing the classical, chaotic Kasner oscillations into a uniform approach to a point singularity. The resulting implications for the microscopic structure of spacetime are discussed.

  5. Quantitative analysis and prediction of experimental observations on quasi-static hysteretic metal-ferroelectric-metal-insulator-semiconductor FET and its dynamic behaviour based on Landau theory

    NASA Astrophysics Data System (ADS)

    Li, Yang; Lian, Yong; Samudra, Ganesh S.

    2015-04-01

    Due to internal voltage amplification induced by the negative capacitance of ferroelectrics, the metal-ferroelectric-metal-insulator-semiconductor (MFMIS) FET has been widely investigated to explore its potential application in low power devices. Based on Landau theory and stability criterion, a simulation program is implemented and MFMIS structure is quantitatively analyzed. The results show that it can be appropriately designed for both integrated circuits and memory devices by tuning capacitances contributed by MOSFET dielectric stack and ferroelectrics. Our simulation results on electrical characteristics of ferroelectric devices agree well with both quasi-static and dynamic experimental observations. The influence of the ferroelectric/dielectric layer thickness and area as well as temperature on hysteretic polarization-electric field characteristic of a ferroelectric are successfully explained. For a C-V loop sweeping over the gate voltage in MFMIS, possible asymmetry in the accessible negative capacitance region is also interpreted. Moreover, experimentally observed reduction in the equivalent capacitance of the ferroelectric-dielectric bilayer at high frequency is confirmed by Landau-Khalatnikov theory based simulation. Our work provides a more complete and explicit analytical treatment to understand the effect of negative capacitance of a ferroelectric on device performance.

  6. String Theory and Gauge Theories

    SciTech Connect

    Maldacena, Juan

    2009-02-20

    We will see how gauge theories, in the limit that the number of colors is large, give string theories. We will discuss some examples of particular gauge theories where the corresponding string theory is known precisely, starting with the case of the maximally supersymmetric theory in four dimensions which corresponds to ten dimensional string theory. We will discuss recent developments in this area.

  7. Packaging Theory.

    ERIC Educational Resources Information Center

    Williams, Jeffrey

    1994-01-01

    Considers the recent flood of anthologies of literary criticism and theory as exemplifications of the confluence of pedagogical concerns, economics of publishing, and other historical factors. Looks specifically at how these anthologies present theory. Cites problems with their formatting theory and proposes alternative ways of organizing theory…

  8. [Phenomenological theory of the recuperative period of the living organism].

    PubMed

    Zaĭtsev, A A; Sazonov, S V

    1997-01-01

    A phenomenological nonlinear model, describing a reconstruction of the living organism after strong loading have been proposed. This model is describing a restitution dynamics of the organism functional state to the initial state, including a supercompensation stage. In a simplest (one-component) case this model is overdamping Duffing oscillator. It is shown that the mutation phenomena may be described as the phase transition within the framework of Landau-Khalatnikov approach. A generalized many-component nonlinear reconstruction model is proposed. PMID:9172700

  9. Graph Theory

    SciTech Connect

    Sanfilippo, Antonio P.

    2005-12-27

    Graph theory is a branch of discrete combinatorial mathematics that studies the properties of graphs. The theory was pioneered by the Swiss mathematician Leonhard Euler in the 18th century, commenced its formal development during the second half of the 19th century, and has witnessed substantial growth during the last seventy years, with applications in areas as diverse as engineering, computer science, physics, sociology, chemistry and biology. Graph theory has also had a strong impact in computational linguistics by providing the foundations for the theory of features structures that has emerged as one of the most widely used frameworks for the representation of grammar formalisms.

  10. Confabulation Theory

    NASA Astrophysics Data System (ADS)

    Solari, Soren; Smith, Andrew; Minnett, Rupert; Hecht-Nielsen, Robert

    2008-06-01

    Confabulation Theory [Hecht-Nielsen R. Confabulation theory. Springer-Verlag; 2007] is the first comprehensive theory of human and animal cognition. Here, we briefly describe Confabulation Theory and discuss experimental results that suggest the theory is correct. Simply put, Confabulation Theory proposes that thinking is like moving. In humans, the theory postulates that there are roughly 4000 thalamocortical modules, the “muscles of thought”. Each module performs an internal competition ( confabulation) between its symbols, influenced by inputs delivered via learned axonal associations with symbols in other modules. In each module, this competition is controlled, as in an individual muscle, by a single graded (i.e., analog) thought control signal. The final result of this confabulation process is a single active symbol, the expression of which also results in launching of action commands that trigger and control subsequent movements and/or thought processes. Modules are manipulated in groups under coordinated, event-contingent control, in a similar manner to our 700 muscles. Confabulation Theory hypothesizes that the control of thinking is a direct evolutionary outgrowth of the control of movement. Establishing a complete understanding of Confabulation Theory will require launching and sustaining a massive new phalanx of confabulation neuroscience research.

  11. String Theory

    NASA Astrophysics Data System (ADS)

    Susskind, Leonard

    2013-01-01

    After reviewing the original motivation for the formulation of string theory and what we learned from it, I discuss some of the implications of the holographic principle and of string dualities for the question of the building blocks of nature.

  12. Quantum Theory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    A theory based on the premise that, on the microscopic scale, physical quantities have discrete, rather than a continuous range of, values. The theory was devised in the early part of the twentieth century to account for certain phenomena that could not be explained by classical physics. In 1900, the German physicist, Max Planck (1858-1947), was able precisely to describe the previously unexplaine...

  13. Effective theories of universal theories

    NASA Astrophysics Data System (ADS)

    Wells, James D.; Zhang, Zhengkang

    2016-01-01

    It is well-known but sometimes overlooked that constraints on the oblique parameters (most notably S and T parameters) are generally speaking only applicable to a special class of new physics scenarios known as universal theories. In the effective field theory (EFT) framework, the oblique parameters should not be associated with Wilson coefficients in a particular operator basis, unless restrictions have been imposed on the EFT so that it describes universal theories. We work out these restrictions, and present a detailed EFT analysis of universal theories. We find that at the dimension-6 level, universal theories are completely characterized by 16 parameters. They are conveniently chosen to be: 5 oblique parameters that agree with the commonly-adopted ones, 4 anomalous triple-gauge couplings, 3 rescaling factors for the h 3, hf f , hV V vertices, 3 parameters for hV V vertices absent in the Standard Model, and 1 four-fermion coupling of order y f 2 . All these parameters are defined in an unambiguous and basis-independent way, allowing for consistent constraints on the universal theories parameter space from precision electroweak and Higgs data.

  14. Elasticity theory

    NASA Astrophysics Data System (ADS)

    Moraru, Gheorghe; Mursa, Condrat

    2006-12-01

    In this book we present the basic concepts of the theory of elasticity: stress and deformation states (plane and three-dimensional) and generalized Hooke's law. We present a number of problems which have applications in strength analysis. The book includes a synthesis of the theory of elasticity and modern methods of applied mathematics. This book is designed for students, post graduate students and specialists in strength analysis. the book contains a number of appendixes which includes: elements of matrix-calculation, concepts of tensorial calculation, the Fourier transform, the notion of improper integrals,singular and hypersingular integrals, generalized functions, the Dirac Delta function

  15. Theory Queries.

    ERIC Educational Resources Information Center

    Moorman, Thomas

    1992-01-01

    Students experience the distinction between observable fact and scientific theory by taking a critical look at how spaghetti can be sucked up into the mouth. A demonstration shows that air is needed to suck up the spaghetti but that the scientific explanation is not as simple. (MDH)

  16. Control Theory.

    ERIC Educational Resources Information Center

    Toso, Robert B.

    2000-01-01

    Inspired by William Glasser's Reality Therapy ideas, Control Theory (CT) is a disciplinary approach that stresses people's ability to control only their own behavior, based on internal motivations to satisfy five basic needs. At one North Dakota high school, CT-trained teachers are the program's best recruiters. (MLH)

  17. Electroweak Theory

    NASA Astrophysics Data System (ADS)

    Paschos, E. A.

    2005-01-01

    The electroweak theory unifies two basic forces of nature: the weak force and electromagnetism. This book is a concise introduction to the structure of the electroweak theory and its applications. It describes the structure and properties of field theories with global and local symmetries, leading to the construction of the standard model. It describes the new particles and processes predicted by the theory, and compares them with experimental results. It also covers neutral currents, the properties of W and Z bosons, the properties of quarks and mesons containing heavy quarks, neutrino oscillations, CP-asymmetries in K, D, and B meson decays, and the search for Higgs particles. Each chapter contains problems, stemming from the long teaching experience of the author, to supplement the text. This will be of great interest to graduate students and researchers in elementary particle physics. Password protected solutions are available to lecturers at www.cambridge.org/9780521860987. Each chapter has an introduction highlighting its contents and giving a historical perspective. Chapters are cross-referenced, interrelating concepts and sections of the book. Contains 49 exercises

  18. Theory Survey or Survey Theory?

    ERIC Educational Resources Information Center

    Dean, Jodi

    2010-01-01

    Matthew Moore's survey of political theorists in U.S. American colleges and universities is an impressive contribution to political science (Moore 2010). It is the first such survey of political theory as a subfield, the response rate is very high, and the answers to the survey questions provide new information about how political theorists look…

  19. Helicopter theory

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1980-01-01

    A comprehensive presentation is made of the engineering analysis methods used in the design, development and evaluation of helicopters. After an introduction covering the fundamentals of helicopter rotors, configuration and operation, rotary wing history, and the analytical notation used in the text, the following topics are discussed: (1) vertical flight, including momentum, blade element and vortex theories, induced power, vertical drag and ground effect; (2) forward flight, including in addition to momentum and vortex theory for this mode such phenomena as rotor flapping and its higher harmonics, tip loss and root cutout, compressibility and pitch-flap coupling; (3) hover and forward flight performance assessment; (4) helicopter rotor design; (5) rotary wing aerodynamics; (6) rotary wing structural dynamics, including flutter, flap-lag dynamics ground resonance and vibration and loads; (7) helicopter aeroelasticity; (8) stability and control (flying qualities); (9) stall; and (10) noise.

  20. Theory and Vocational Education.

    ERIC Educational Resources Information Center

    Swanson, Gordon I.

    1988-01-01

    The search for an explanation of day-to-day problems is the appropriate framework for describing theory. Theory and research have reciprocal relationships: Theory gives direction to research and research refines theory. Vocational education occurs in the context of many theoretical frames. Understanding this theory relatedness is important to…

  1. Chaos in superstring cosmology

    PubMed

    Damour; Henneaux

    2000-07-31

    It is shown that the general solution near a spacelike singularity of the Einstein-dilaton- p-form field equations relevant to superstring theories and M theory exhibits an oscillatory behavior of the Belinskii-Khalatnikov-Lifshitz type. String dualities play a significant role in the analysis. PMID:10991439

  2. Decidability of formal theories and hyperincursivity theory

    NASA Astrophysics Data System (ADS)

    Grappone, Arturo G.

    2000-05-01

    This paper shows the limits of the Proof Standard Theory (briefly, PST) and gives some ideas of how to build a proof anticipatory theory (briefly, PAT) that has no such limits. Also, this paper considers that Gödel's proof of the undecidability of Principia Mathematica formal theory is not valid for axiomatic theories that use a PAT to build their proofs because the (hyper)incursive functions are self-representable.

  3. String Theory and M-Theory

    NASA Astrophysics Data System (ADS)

    Becker, Katrin; Becker, Melanie; Schwarz, John H.

    String theory is one of the most exciting and challenging areas of modern theoretical physics. This book guides the reader from the basics of string theory to recent developments. It introduces the basics of perturbative string theory, world-sheet supersymmetry, space-time supersymmetry, conformal field theory and the heterotic string, before describing modern developments, including D-branes, string dualities and M-theory. It then covers string geometry and flux compactifications, applications to cosmology and particle physics, black holes in string theory and M-theory, and the microscopic origin of black-hole entropy. It concludes with Matrix theory, the AdS/CFT duality and its generalizations. This book is ideal for graduate students and researchers in modern string theory, and will make an excellent textbook for a one-year course on string theory. It contains over 120 exercises with solutions, and over 200 homework problems with solutions available on a password protected website for lecturers at www.cambridge.org/9780521860697. Comprehensive coverage of topics from basics of string theory to recent developments Ideal textbook for a one-year course in string theory Includes over 100 exercises with solutions Contains over 200 homework problems with solutions available to lecturers on-line

  4. Foundations for a theory of gravitation theories

    NASA Technical Reports Server (NTRS)

    Thorne, K. S.; Lee, D. L.; Lightman, A. P.

    1972-01-01

    A foundation is laid for future analyses of gravitation theories. This foundation is applicable to any theory formulated in terms of geometric objects defined on a 4-dimensional spacetime manifold. The foundation consists of (1) a glossary of fundamental concepts; (2) a theorem that delineates the overlap between Lagrangian-based theories and metric theories; (3) a conjecture (due to Schiff) that the Weak Equivalence Principle implies the Einstein Equivalence Principle; and (4) a plausibility argument supporting this conjecture for the special case of relativistic, Lagrangian-based theories.

  5. Theories and Modes

    ERIC Educational Resources Information Center

    Apsche, Jack A.

    2005-01-01

    In his work on the Theory of Modes, Beck (1996) suggested that there were flaws with his cognitive theory. He suggested that though there are shortcomings to his cognitive theory, there were not similar shortcomings to the practice of Cognitive Therapy. The author suggests that if there are shortcomings to cognitive theory the same shortcomings…

  6. The Offence of Theory

    ERIC Educational Resources Information Center

    MacLure, Maggie

    2010-01-01

    Theory frequently offends. The paper argues that this is its strength: the value of theory lies in its power to get in the way. Theory is needed to block the reproduction of banality, and thereby, hopefully, open new possibilities for thinking and doing. However, I also note that theory has become somewhat disengaged from its objects, diminishing…

  7. Quantum Theory is an Information Theory

    NASA Astrophysics Data System (ADS)

    D'Ariano, Giacomo M.; Perinotti, Paolo

    2016-03-01

    In this paper we review the general framework of operational probabilistic theories (OPT), along with the six axioms from which quantum theory can be derived. We argue that the OPT framework along with a relaxed version of five of the axioms, define a general information theory. We close the paper with considerations about the role of the observer in an OPT, and the interpretation of the von Neumann postulate and the Schrödinger-cat paradox.

  8. Nonrelativistic superstring theories

    SciTech Connect

    Kim, Bom Soo

    2007-12-15

    We construct a supersymmetric version of the critical nonrelativistic bosonic string theory [B. S. Kim, Phys. Rev. D 76, 106007 (2007).] with its manifest global symmetry. We introduce the anticommuting bc conformal field theory (CFT) which is the super partner of the {beta}{gamma} CFT. The conformal weights of the b and c fields are both 1/2. The action of the fermionic sector can be transformed into that of the relativistic superstring theory. We explicitly quantize the theory with manifest SO(8) symmetry and find that the spectrum is similar to that of type IIB superstring theory. There is one notable difference: the fermions are nonchiral. We further consider noncritical generalizations of the supersymmetric theory using the superspace formulation. There is an infinite range of possible string theories similar to the supercritical string theories. We comment on the connection between the critical nonrelativistic string theory and the lightlike linear dilaton theory.

  9. Teaching Theory X and Theory Y in Organizational Communication

    ERIC Educational Resources Information Center

    Noland, Carey

    2014-01-01

    The purpose of the activity described here is to integrate McGregor's Theory X and Theory Y into a group application: design a syllabus that embodies either Theory X or Theory Y tenets. Students should be able to differentiate between Theory X and Theory Y, create a syllabus based on Theory X or Theory Y tenets, evaluate the different syllabi…

  10. Separation-individuation theory and attachment theory.

    PubMed

    Blum, Harold P

    2004-01-01

    Separation-individuation and attachment theories are compared and assessed in the context of psychoanalytic developmental theory and their application to clinical work. As introduced by Margaret Mahler and John Bowlby, respectively, both theories were initially regarded as diverging from traditional views. Separation-individuation theory, though it has had to be corrected in important respects, and attachment theory, despite certain limitations, have nonetheless enriched psychoanalytic thought. Without attachment an infant would die, and with severely insecure attachment is at greater risk for serious disorders. Development depends on continued attachment to a responsive and responsible caregiver. Continued attachment to the primary object was regarded by Mahler as as intrinsic to the process of separation-individuation. Attachment theory does not account for the essential development of separateness, and separation-individuation is important for the promotion of autonomy, independence, and identity. Salient historical and theoretical issues are addressed, including the renewed interest in attachment theory and the related decline of interest in separation-individuation theory. PMID:15222460

  11. Generalizability Theory and Classical Test Theory

    ERIC Educational Resources Information Center

    Brennan, Robert L.

    2011-01-01

    Broadly conceived, reliability involves quantifying the consistencies and inconsistencies in observed scores. Generalizability theory, or G theory, is particularly well suited to addressing such matters in that it enables an investigator to quantify and distinguish the sources of inconsistencies in observed scores that arise, or could arise, over…

  12. Equivalency Theory and Distance Education.

    ERIC Educational Resources Information Center

    Simonson, Michael

    1999-01-01

    Discusses distance education and the need for an accepted theory. Highlights include theories of independent study; theory of industrialization of teaching; theory of interaction and communication; and equivalency theory that is based on local control, personalized instruction, and telecommunications. (LRW)

  13. [Mathematics and string theory

    SciTech Connect

    Jaffe, A.; Yau, Shing-Tung.

    1993-01-01

    Work on this grant was centered on connections between non- commutative geometry and physics. Topics covered included: cyclic cohomology, non-commutative manifolds, index theory, reflection positivity, space quantization, quantum groups, number theory, etc.

  14. Dissipative Field Theory

    SciTech Connect

    Kheirandish, F.; Amooshahi, M.

    2008-11-18

    Quantum field theory of a damped vibrating string as the simplest dissipative scalar field theory is investigated by introducing a minimal coupling method. The rate of energy flowing between the system and its environment is obtained.

  15. Theories of Career Development. A Comparison of the Theories.

    ERIC Educational Resources Information Center

    Osipow, Samuel H.

    These seven theories of career development are examined in previous chapters: (1) Roe's personality theory, (2) Holland's career typology theory, (3) the Ginzberg, Ginsburg, Axelrod, and Herma Theory, (4) psychoanalytic conceptions, (5) Super's developmental self-concept theory, (6) other personality theories, and (7) social systems theories.…

  16. Modern Theories of Language.

    ERIC Educational Resources Information Center

    Davis, Philip W.

    This volume explores objectively the essential characteristic of nine twentieth-century linguistic theories with the theoretical variant for discussion based on one closely representative of work within a given approach or usually associated with the name of the theory. First, the theory of Ferdinand de Saussure is discussed based on his book,…

  17. Constructor theory of probability

    PubMed Central

    2016-01-01

    Unitary quantum theory, having no Born Rule, is non-probabilistic. Hence the notorious problem of reconciling it with the unpredictability and appearance of stochasticity in quantum measurements. Generalizing and improving upon the so-called ‘decision-theoretic approach’, I shall recast that problem in the recently proposed constructor theory of information—where quantum theory is represented as one of a class of superinformation theories, which are local, non-probabilistic theories conforming to certain constructor-theoretic conditions. I prove that the unpredictability of measurement outcomes (to which constructor theory gives an exact meaning) necessarily arises in superinformation theories. Then I explain how the appearance of stochasticity in (finitely many) repeated measurements can arise under superinformation theories. And I establish sufficient conditions for a superinformation theory to inform decisions (made under it) as if it were probabilistic, via a Deutsch–Wallace-type argument—thus defining a class of decision-supporting superinformation theories. This broadens the domain of applicability of that argument to cover constructor-theory compliant theories. In addition, in this version some of the argument's assumptions, previously construed as merely decision-theoretic, follow from physical properties expressed by constructor-theoretic principles. PMID:27616914

  18. Testing Theory through Theatrics.

    ERIC Educational Resources Information Center

    Sellers, Sandra Courtney

    2002-01-01

    In a nursing theory course, the final exam consists of a role play in which students assume the identity of a theorist they have studied and answer questions in the context of that role. Questions are designed demonstrate their knowledge of major nursing theories and models and the relevance of theory to practice. (SK)

  19. Whither Social Theory?

    ERIC Educational Resources Information Center

    Pais, Alexandre; Valero, Paola

    2014-01-01

    What is the place of social theory in mathematics education research, and what is it for? This special issue of "Educational Studies in Mathematics" offers insights on what could be the role of some sociological theories in a field that has historically privileged learning theories coming from psychology and mathematics as the main…

  20. Comparing Measurement Theories.

    ERIC Educational Resources Information Center

    Schumacker, Randall E.

    In comparing measurement theories, it is evident that the awareness of the concept of measurement error during the time of Galileo has lead to the formulation of observed scores comprising a true score and error (classical theory), universe score and various random error components (generalizability theory), or individual latent ability and error…

  1. Reflections on Activity Theory

    ERIC Educational Resources Information Center

    Bakhurst, David

    2009-01-01

    It is sometimes suggested that activity theory represents the most important legacy of Soviet philosophy and psychology. But what exactly "is" activity theory? The canonical account in the West is given by Engestrom, who identifies three stages in the theory's development: from Vygotsky's insights, through Leontiev's articulation of the…

  2. Activity Theory and Ontology

    ERIC Educational Resources Information Center

    Peim, Nick

    2009-01-01

    This paper seeks to re-examine Yrio Engestrom's activity theory as a technology of knowledge designed to enable positive transformations of specific practices. The paper focuses on a key paper where Engestrom defines the nature and present state of activity theory. Beginning with a brief account of the relations between activity theory and…

  3. Frankl's Theory and Therapy.

    ERIC Educational Resources Information Center

    Missinne, Leo E.; Wilcox, Victoria

    This paper discusses the life, theories, and therapeutic techniques of psychotherapist, Viktor E. Frankl. A brief biography of Frankl is included discussing the relationship of his early experiences as a physician to his theory of personality. Frankl's theory focusing on man's need for meaning and emphasizing the spiritual dimension in each human…

  4. La theorie autrement (Theory in Another Light).

    ERIC Educational Resources Information Center

    Bertocchini, Paola; Costanzo, Edwige

    1985-01-01

    Outlines a technique using articles from "Le Francais dans le Monde" to teach reading comprehension and theory simultaneously to teachers of French as a second language. Describes a program in Italy using this approach. (MSE)

  5. Theory Interpretations in PVS

    NASA Technical Reports Server (NTRS)

    Owre, Sam; Shankar, Natarajan; Butler, Ricky W. (Technical Monitor)

    2001-01-01

    The purpose of this task was to provide a mechanism for theory interpretations in a prototype verification system (PVS) so that it is possible to demonstrate the consistency of a theory by exhibiting an interpretation that validates the axioms. The mechanization makes it possible to show that one collection of theories is correctly interpreted by another collection of theories under a user-specified interpretation for the uninterpreted types and constants. A theory instance is generated and imported, while the axiom instances are generated as proof obligations to ensure that the interpretation is valid. Interpretations can be used to show that an implementation is a correct refinement of a specification, that an axiomatically defined specification is consistent, or that a axiomatically defined specification captures its intended models. In addition, the theory parameter mechanism has been extended with a notion of theory as parameter so that a theory instance can be given as an actual parameter to an imported theory. Theory interpretations can thus be used to refine an abstract specification or to demonstrate the consistency of an axiomatic theory. In this report we describe the mechanism in detail. This extension is a part of PVS version 3.0, which will be publicly released in mid-2001.

  6. Rate theories for biologists

    PubMed Central

    Zhou, Huan-Xiang

    2012-01-01

    Some of the rate theories that are most useful for modeling biological processes are reviewed. By delving into some of the details and subtleties in the development of the theories, the review will hopefully help the reader gain a more than superficial perspective. Examples are presented to illustrate how rate theories can be used to generate insight at the microscopic level into biomolecular behaviors. Attempt is made to clear up a number of misconceptions in the literature regarding popular rate theories, including the appearance of Planck’s constant in the transition-state theory and the Smoluchowski result as an upper limit for protein-protein and protein-DNA association rate constants. Future work in combining the implementation of rate theories through computer simulations with experimental probes of rate processes, and in modeling effects of intracellular environments so theories can be used for generating rate constants for systems biology studies is particularly exciting. PMID:20691138

  7. Supersymmetry and String Theory

    NASA Astrophysics Data System (ADS)

    Dine, Michael

    2016-01-01

    Preface to the first edition; Preface to the second edition; A note on choice of metric; Text website; Part I. Effective Field Theory: The Standard Model, Supersymmetry, Unification: 1. Before the Standard Model; 2. The Standard Model; 3. Phenomenology of the Standard Model; 4. The Standard Model as an effective field theory; 5. Anomalies, instantons and the strong CP problem; 6. Grand unification; 7. Magnetic monopoles and solitons; 8. Technicolor: a first attempt to explain hierarchies; Part II. Supersymmetry: 9. Supersymmetry; 10. A first look at supersymmetry breaking; 11. The Minimal Supersymmetric Standard Model; 12. Supersymmetric grand unification; 13. Supersymmetric dynamics; 14. Dynamical supersymmetry breaking; 15. Theories with more than four conserved supercharges; 16. More supersymmetric dynamics; 17. An introduction to general relativity; 18. Cosmology; 19. Astroparticle physics and inflation; Part III. String Theory: 20. Introduction; 21. The bosonic string; 22. The superstring; 23. The heterotic string; 24. Effective actions in ten dimensions; 25. Compactification of string theory I. Tori and orbifolds; 26. Compactification of string theory II. Calabi–Yau compactifications; 27. Dynamics of string theory at weak coupling; 28. Beyond weak coupling: non-perturbative string theory; 29. Large and warped extra dimensions; 30. The landscape: a challenge to the naturalness principle; 31. Coda: where are we headed?; Part IV. The Appendices: Appendix A. Two-component spinors; Appendix B. Goldstone's theorem and the pi mesons; Appendix C. Some practice with the path integral in field theory; Appendix D. The beta function in supersymmetric Yang–Mills theory; References; Index.

  8. Domains and Naive Theories

    PubMed Central

    Gelman, Susan A.; Noles, Nicholaus S.

    2013-01-01

    Human cognition entails domain-specific cognitive processes that influence memory, attention, categorization, problem-solving, reasoning, and knowledge organization. This review examines domain-specific causal theories, which are of particular interest for permitting an examination of how knowledge structures change over time. We first describe the properties of commonsense theories, and how commonsense theories differ from scientific theories, illustrating with children’s classification of biological and non-biological kinds. We next consider the implications of domain-specificity for broader issues regarding cognitive development and conceptual change. We then examine the extent to which domain-specific theories interact, and how people reconcile competing causal frameworks. Future directions for research include examining how different content domains interact, the nature of theory change, the role of context (including culture, language, and social interaction) in inducing different frameworks, and the neural bases for domain-specific reasoning. PMID:24187603

  9. Generalized higher gauge theory

    NASA Astrophysics Data System (ADS)

    Ritter, Patricia; Sämann, Christian; Schmidt, Lennart

    2016-04-01

    We study a generalization of higher gauge theory which makes use of generalized geometry and seems to be closely related to double field theory. The local kinematical data of this theory is captured by morphisms of graded manifolds between the canonical exact Courant Lie 2-algebroid T M ⊕ T ∗ M over some manifold M and a semistrict gauge Lie 2-algebra. We discuss generalized curvatures and infinitesimal gauge transformations. Finite gauge transformation as well as global kinematical data are then obtained from principal 2-bundles over 2-spaces. As dynamical principle, we consider first the canonical Chern-Simons action for such a gauge theory. We then show that a previously proposed 3-Lie algebra model for the six-dimensional (2,0) theory is very naturally interpreted as a generalized higher gauge theory.

  10. Galileo's tidal theory.

    PubMed

    Naylor, Ron

    2007-03-01

    The aim of Galileo's tidal theory was to show that the tides were produced entirely by the earth's motion and thereby to demonstrate the physical truth of Copernicanism. However, in the Dialogue Concerning the Two Chief World Systems Galileo did not explain some of the most significant aspects of the theory completely. As a consequence, the way the theory works has long been disputed. Though there exist a number of interpretations in the literature, the most widely accepted are based on ideas that are not explicitly articulated by Galileo in the Dialogue. This essay attempts to understand the way the theory functions in terms of Galilean physics. It is an interpretation of the theory based solely on Galileo's arguments--and one that reveals it to have had some unrecognized consequences. This interpretation indicates that Galileo's theory would not have worked in the manner he described in the Dialogue. PMID:17539198

  11. Extended theories of gravitation

    NASA Astrophysics Data System (ADS)

    Fatibene, Lorenzo; Garruto, Simon

    2016-04-01

    In this paper, we shall review the equivalence between Palatini-f(ℛ) theories and Brans-Dicke (BD) theories at the level of action principles. We shall define the Helmholtz Lagrangian associated to Palatini-f(ℛ) theory and we will define some transformations which will be useful to recover Einstein frame and BD frame. We shall see an explicit example of matter field and we will discuss how the conformal factor affects the physical quantities.

  12. Theory Modeling and Simulation

    SciTech Connect

    Shlachter, Jack

    2012-08-23

    Los Alamos has a long history in theory, modeling and simulation. We focus on multidisciplinary teams that tackle complex problems. Theory, modeling and simulation are tools to solve problems just like an NMR spectrometer, a gas chromatograph or an electron microscope. Problems should be used to define the theoretical tools needed and not the other way around. Best results occur when theory and experiments are working together in a team.

  13. Automated Lattice Perturbation Theory

    SciTech Connect

    Monahan, Christopher

    2014-11-01

    I review recent developments in automated lattice perturbation theory. Starting with an overview of lattice perturbation theory, I focus on the three automation packages currently "on the market": HiPPy/HPsrc, Pastor and PhySyCAl. I highlight some recent applications of these methods, particularly in B physics. In the final section I briefly discuss the related, but distinct, approach of numerical stochastic perturbation theory.

  14. The theory of flotation

    NASA Technical Reports Server (NTRS)

    Ostwald, Wolfgang

    1988-01-01

    A brief summary of the fundamentals of the Linear theory of flotation is given. The theory by no means contradicts the previous Laminar theory or even the thermodynamics (Wark-Siedler), rather it is a refinement of the known Hardy-Langmuir-Harkin conceptions for the case when there are not two phases and phase boundaries, but rather three phases and corresponding phase boundary edges. The appearance of such three-phase boundaries (ore, water, air) is characteristic for modern flotation methods.

  15. Between Theory and Observations

    NASA Astrophysics Data System (ADS)

    Wepster, Steven

    Three great mathematicians dominate the history of lunar theory in the middle of the eighteenth century: Leonhard Euler, Alexis Clairaut, and Jean le Rond d’Alembert. Each of them made a lasting contribution to the theory of celestial mechanics and their results had a broader impact than on lunar theory alone. To name but a few examples, Euler codified the trigonometric functions and pioneered the method of variation of orbital constants; Clairaut solved the arduous problem of the motion of the lunar apogee, thereby dealing a decisive blow to the sceptics of Newton’s law of gravitation; and d’Alembert worked out an accurate theory of precession and nutation.

  16. The Big Bang Theory

    SciTech Connect

    Lincoln, Don

    2014-09-30

    The Big Bang is the name of the most respected theory of the creation of the universe. Basically, the theory says that the universe was once smaller and denser and has been expending for eons. One common misconception is that the Big Bang theory says something about the instant that set the expansion into motion, however this isn’t true. In this video, Fermilab’s Dr. Don Lincoln tells about the Big Bang theory and sketches some speculative ideas about what caused the universe to come into existence.

  17. Ostwald ripening theory

    NASA Technical Reports Server (NTRS)

    Baird, J. K.

    1986-01-01

    The Ostwald-ripening theory is deduced and discussed starting from the fundamental principles such as Ising model concept, Mayer cluster expansion, Langer condensation point theory, Ginzburg-Landau free energy, Stillinger cutoff-pair potential, LSW-theory and MLSW-theory. Mathematical intricacies are reduced to an understanding version. Comparison of selected works, from 1949 to 1984, on solution of diffusion equation with and without sink/sources term(s) is presented. Kahlweit's 1980 work and Marqusee-Ross' 1954 work are more emphasized. Odijk and Lekkerkerker's 1985 work on rodlike macromolecules is introduced in order to simulate interested investigators.

  18. Why Do We Have Theories?

    ERIC Educational Resources Information Center

    Costley, Kevin C.

    2006-01-01

    University professors teaching pre-service teachers base much of their philosophies on theories. Students often ask "Why do we have theories?" "What is the purpose of theories?" "If we like a theory, do we have to use all of the theory?" The most frequent controversial issue is how to use a particular theory in a practical way. In the quest for…

  19. Theories and Methodologies.

    ERIC Educational Resources Information Center

    Skemp, Richard R.

    Provided is an examination of the methodology used to study the problems of learning addition and subtraction skills used by developmental researchers. The report has sections on categories of theory and their methodologies, which review: (1) Behaviorist, Neo-Behaviorist and Piagetian Theories; (2) the Behaviorist and Piagetian Paradigms; (3)…

  20. Universality and string theory

    NASA Astrophysics Data System (ADS)

    Bachlechner, Thomas Christian

    The first run at the Large Hadron Collider has deeply challenged conventional notions of naturalness, and CMB polarization experiments are about to open a new window to early universe cosmology. As a compelling candidate for the ultraviolet completion of the standard model, string theory provides a prime opportunity to study both early universe cosmology and particle physics. However, relating low energy observations to ultraviolet physics requires knowledge of the metastable states of string theory through the study of vacua. While it is difficult to directly obtain infrared data from explicit string theory constructions, string theory imposes constraints on low energy physics. The study of ensembles of low energy theories consistent with ultra-violet constraints provides insight on generic features we might expect to occur in string compactifications. In this thesis we present a statistical treatment of vacuum stability and vacuum properties in the context of random supergravity theories motivated by string theory. Early universe cosmology provides another avenue to high energy physics. From the low energy perspective large field inflation is typically considered highly unnatural: the scale relevant for the diameter of flat regions in moduli space is sub-Planckian in regions of perturbative control. To approach this problem, we consider generic Calabi-Yau compactifications of string theory and find that super-Planckian diameters of axion fundamental domains in fact arise generically. We further demonstrate that such super-Planckian flat regions are plausibly consistent with theWeak Gravity Conjecture.

  1. Organization Theory as Ideology.

    ERIC Educational Resources Information Center

    Greenfield, Thomas B.

    The theory that organizations are ideological inventions of the human mind is discussed. Organizational science is described as an ideology which is based upon social concepts and experiences. The main justification for organizational theory is that it attempts to answer why we behave as we do in social organizations. Ways in which ideas and…

  2. Put Theory into Practice

    ERIC Educational Resources Information Center

    Jaeger, Audrey J.; Dunstan, Stephany; Thornton, Courtney; Rockenbach, Alyssa B.; Gayles, Joy G.; Haley, Karen J.

    2013-01-01

    When making decisions that impact student learning, college educators often consider previous experiences, precedent, common sense, and advice from colleagues. But how often do they consider theory? At a recent state-level educators' meeting, the authors of this article asked 50 student affairs educators about the use of theory in their practice.…

  3. Sexual Murderers' Implicit Theories

    ERIC Educational Resources Information Center

    Beech, Anthony; Fisher, Dawn; Ward, Tony

    2005-01-01

    Interviews with 28 sexual murderers were subjected to grounded theory analysis. Five implicit theories (ITs) were identified: dangerous world, male sex drive is uncontrollable, entitlement, women as sexual objects, and women as unknowable. These ITs were found to be identical to those identified in the literature as being present in rapists. The…

  4. Game Theory .net.

    ERIC Educational Resources Information Center

    Shor, Mikhael

    2003-01-01

    States making game theory relevant and accessible to students is challenging. Describes the primary goal of GameTheory.net is to provide interactive teaching tools. Indicates the site strives to unite educators from economics, political and computer science, and ecology by providing a repository of lecture notes and tests for courses using…

  5. Theory of thermoelasticity

    NASA Technical Reports Server (NTRS)

    Iesan, D.

    1980-01-01

    The development of the theory of thermoelasticity, which examines the interactions between the deformation of elastic media and the thermal field, is traced and the fundamental problems of the theory are presented. Results of recent studies on the subject are presented. Emphasis is primarily on media with generalized anisotropy, or isotropy media. Thermomechanical problems and mathematical formulations and resolutions are included.

  6. Theory and Motivational Psychology.

    ERIC Educational Resources Information Center

    Atkinson, John W.

    Motivational psychology and test theory are compared in this discussion, which focuses on distinguishing the effects of motivation and of ability on test performance and educational achievement. Recent theory in achievement motivation considers the motivational significance of future goals as they affect present activities that are instrumental in…

  7. Elementary Particle Theory

    SciTech Connect

    Catterall, Simon; Hubisz, Jay; Balachandran, Aiyalam; Schechter, Joe

    2013-01-05

    This final report describes the activities of the high energy theory group at Syracuse University for the period 1 January 2010 through April 30 2013. The research conducted by the group includes lattice gauge theory, non-commutative geometry, phenomenology and mathematical physics.

  8. The Structure of Theory

    ERIC Educational Resources Information Center

    Skabelund, Donald E.

    1974-01-01

    Presents an analysis of scientific theory which is applicable to the full range of historical situations. Indicates that theory can be resolved into three generalization levels, one neutral element, and two modes. Included are examples illustrating the constituency of the three levels in two modes. (CC)

  9. Theory is personal.

    PubMed

    Siegel, Allen M

    2009-04-01

    In "Theory Is Personal," Allen Siegel MD, a Chicago psychoanalyst and Assistant Professor of Clinical Psychiatry at Rush University Medical Center, shares the very personal story of how he came to his theory. Sometimes we find our theory. Other times, Siegel argues, it is our theory that finds us. In this article Siegel catalogues his early encounters with figures--contemporary and real--from Sigmund Freud to influential department chairs to an analyst who would become legendary for introducing a bold new theory into the psychoanalytic canon. Charting key experiences that shaped his adoption of this new approach--a depression in response to his first patient, a clinical treatment with Heinz Kohut, and exposure to others who dared to challenge Freud--Siegel describes the theory that brought both himself and his patients to life. After outlining the principles that guide the new theory and practice known as self psychology, Siegel tells of the empathic ambiance that can now emerge in the consulting room. Finally, he shows how this new theory of human motivation provides not merely a rationale for psychotherapy but an explanatory apparatus for understanding human action in the world beyond the consulting room. He turns to a brief study of aggression and war, as expressed in a 1932 correspondence between Albert Einstein and Sigmund Freud, to illustrate how the understanding of aggression and war changes significantly when empathy is the field's data collecting instrument. PMID:19379249

  10. Evolution: Theory or Dogma?

    ERIC Educational Resources Information Center

    Mayer, William V.

    In this paper the author examines the question of whether evolution is a theory or a dogma. He refutes the contention that there is a monolithic scientific conspiracy to present evolution as dogma and suggests that his own presentation might be more appropriately entitled "Creationism: Theory or Dogma." (PEB)

  11. Greek Atomic Theory.

    ERIC Educational Resources Information Center

    Roller, Duane H. D.

    1981-01-01

    Focusing on history of physics, which began about 600 B.C. with the Ionian Greeks and reaching full development within three centuries, suggests that the creation of the concept of the atom is understandable within the context of Greek physical theory; so is the rejection of the atomic theory by the Greek physicists. (Author/SK)

  12. French Theory's American Adventures

    ERIC Educational Resources Information Center

    Cusset, Francois

    2008-01-01

    In this article, the author discusses how it is simply too late to be still speaking about French theory and its role in the intellectual life of the United States today. It seems to many observers that the gap between real-life politics and theory's guerrillas is much too wide already, after 30 years of academic fever, for the two worlds to even…

  13. Reimagining Critical Theory

    ERIC Educational Resources Information Center

    Rexhepi, Jevdet; Torres, Carlos Alberto

    2011-01-01

    This paper discusses Critical Theory, a model of theorizing in the field of the political sociology of education. We argue for a "reimagined" Critical Theory to herald an empowering, liberatory education that fosters curiosity and critical thinking, and a means for successful bottom-up, top-down political engagement. We present arguments at a…

  14. Evolution - A Theory Evolving

    ERIC Educational Resources Information Center

    Weinberg, Janet H.

    1975-01-01

    Presented is an explanation of a non-Darwinian theory of evolution based on the premise that functional differences are the result of many small mutations such as the substitution of one amino acid for another in a large protein molecule. A brief overview of Darwinian evolution and other theories are presented. (EB)

  15. Evaluating Conceptual Metaphor Theory

    ERIC Educational Resources Information Center

    Gibbs, Raymond W., Jr.

    2011-01-01

    A major revolution in the study of metaphor occurred 30 years ago with the introduction of "conceptual metaphor theory" (CMT). Unlike previous theories of metaphor and metaphorical meaning, CMT proposed that metaphor is not just an aspect of language, but a fundamental part of human thought. Indeed, most metaphorical language arises from…

  16. The Learning Theory Jungle

    ERIC Educational Resources Information Center

    Minter, Robert L.

    2011-01-01

    This article addresses the myriad of pedagogical and andragogical issues facing university educators in the student learning process. It briefly explores the proliferation of learning theories in an attempt to develop awareness among faculty who teach at the university/college levels that not all theories of learning apply to the adult learner. In…

  17. Greek atomic theory

    NASA Astrophysics Data System (ADS)

    Roller, Duane H. D.

    1981-03-01

    Physics began about 600 B.C. with the Ionian Greeks and reached full development within three centuries. The creation of the concept of the atom is understandable within the context of Greek physical theory; so is the rejection of the atomic theory by the Greek physicists.

  18. Towards Extended Vantage Theory

    ERIC Educational Resources Information Center

    Glaz, Adam

    2010-01-01

    The applicability of Vantage Theory (VT), a model of (colour) categorization, to linguistic data largely depends on the modifications and adaptations of the model for the purpose. An attempt to do so proposed here, called Extended Vantage Theory (EVT), slightly reformulates the VT conception of vantage by capitalizing on some of the entailments of…

  19. Dual double field theory

    NASA Astrophysics Data System (ADS)

    Bergshoeff, Eric A.; Hohm, Olaf; Penas, Victor A.; Riccioni, Fabio

    2016-06-01

    We present the dual formulation of double field theory at the linearized level. This is a classically equivalent theory describing the duals of the dilaton, the Kalb-Ramond field and the graviton in a T-duality or O( D, D) covariant way. In agreement with previous proposals, the resulting theory encodes fields in mixed Young-tableau representations, combining them into an antisymmetric 4-tensor under O( D, D). In contrast to previous proposals, the theory also requires an antisymmetric 2-tensor and a singlet, which are not all pure gauge. The need for these additional fields is analogous to a similar phenomenon for "exotic" dualizations, and we clarify this by comparing with the dualizations of the component fields. We close with some speculative remarks on the significance of these observations for the full non-linear theory yet to be constructed.

  20. Algebraic Mean Field Theory

    NASA Astrophysics Data System (ADS)

    Dankova, T. S.; Rosensteel, G.

    1998-10-01

    Mean field theory has an unexpected group theoretic mathematical foundation. Instead of representation theory which applies to most group theoretic quantum models, Hartree-Fock and Hartree-Fock-Bogoliubov have been formulated in terms of coadjoint orbits for the groups U(n) and O(2n). The general theory of mean fields is formulated for an arbitrary Lie algebra L of fermion operators. The moment map provides the correspondence between the Hilbert space of microscopic wave functions and the dual space L^* of densities. The coadjoint orbits of the group in the dual space are phase spaces on which time-dependent mean field theory is equivalent to a classical Hamiltonian dynamical system. Indeed it forms a finite-dimensional Lax system. The mean field theories for the Elliott SU(3) and symplectic Sp(3,R) algebras are constructed explicitly in the coadjoint orbit framework.

  1. Catastrophe theory in physics

    NASA Astrophysics Data System (ADS)

    Stewart, I.

    1982-02-01

    A discussion is presented of catastrophe theory, with attention to the developmental feedback between this field of mathematics and its applications in the physical sciences. Prominent concepts of catastrophe theory are co-dimension, determinacy, unfoldings, and organizing centers. The ways in which these concepts may be used are shown in light of specific applications taken from the literature, and the methods are generalized to areas not yet recognized to be within the purview of catastrophe theory. Note is taken of the philosophical background provided for this body of theory by the topological dynamics concept of structural stability. Catastrophe theory is in conclusion characterized as an important contribution to the understanding of nonlinear phenomena.

  2. Dempster-Shafer theory and connections to information theory

    NASA Astrophysics Data System (ADS)

    Peri, Joseph S. J.

    2013-05-01

    The Dempster-Shafer theory is founded on probability theory. The entire machinery of probability theory, and that of measure theory, is at one's disposal for the understanding and the extension of the Dempster-Shafer theory. It is well known that information theory is also founded on probability theory. Claude Shannon developed, in the 1940's, the basic concepts of the theory and demonstrated their utility in communications and coding. Shannonian information theory is not, however, the only type of information theory. In the 1960's and 1970's, further developments in this field were made by French and Italian mathematicians. They developed information theory axiomatically, and discovered not only the Wiener- Shannon composition law, but also the hyperbolic law and the Inf-law. The objective of this paper is to demonstrate the mathematical connections between the Dempster Shafer theory and the various types of information theory. A simple engineering example will be used to demonstrate the utility of the concepts.

  3. Quantum Theory and Beyond

    NASA Astrophysics Data System (ADS)

    Bastin, Ted

    2009-07-01

    List of participants; Preface; Part I. Introduction: 1. The function of the colloquium - editorial; 2. The conceptual problem of quantum theory from the experimentalist's point of view O. R. Frisch; Part II. Niels Bohr and Complementarity: The Place of the Classical Language: 3. The Copenhagen interpretation C. F. von Weizsäcker; 4. On Bohr's views concerning the quantum theory D. Bohm; Part III. The Measurement Problem: 5. Quantal observation in statistical interpretation H. J. Groenewold; 6. Macroscopic physics, quantum mechanics and quantum theory of measurement G. M. Prosperi; 7. Comment on the Daneri-Loinger-Prosperi quantum theory of measurement Jeffrey Bub; 8. The phenomenology of observation and explanation in quantum theory J. H. M. Whiteman; 9. Measurement theory and complex systems M. A. Garstens; Part IV. New Directions within Quantum Theory: What does the Quantum Theoretical Formalism Really Tell Us?: 10. On the role of hidden variables in the fundamental structure of physics D. Bohm; 11. Beyond what? Discussion: space-time order within existing quantum theory C. W. Kilmister; 12. Definability and measurability in quantum theory Yakir Aharonov and Aage Petersen; 13. The bootstrap idea and the foundations of quantum theory Geoffrey F. Chew; Part V. A Fresh Start?: 14. Angular momentum: an approach to combinatorial space-time Roger Penrose; 15. A note on discreteness, phase space and cohomology theory B. J. Hiley; 16. Cohomology of observations R. H. Atkin; 17. The origin of half-integral spin in a discrete physical space Ted Bastin; Part VI. Philosophical Papers: 18. The unity of physics C. F. von Weizsäcker; 19. A philosophical obstacle to the rise of new theories in microphysics Mario Bunge; 20. The incompleteness of quantum mechanics or the emperor's missing clothes H. R. Post; 21. How does a particle get from A to B?; Ted Bastin; 22. Informational generalization of entropy in physics Jerome Rothstein; 23. Can life explain quantum mechanics? H. H

  4. Theory of Multiple Intelligences: Is It a Scientific Theory?

    ERIC Educational Resources Information Center

    Chen, Jie-Qi

    2004-01-01

    This essay discusses the status of multiple intelligences (MI) theory as a scientific theory by addressing three issues: the empirical evidence Gardner used to establish MI theory, the methodology he employed to validate MI theory, and the purpose or function of MI theory.

  5. Introduction to string theory and conformal field theory

    SciTech Connect

    Belavin, A. A. Tarnopolsky, G. M.

    2010-05-15

    A concise survey of noncritical string theory and two-dimensional conformal field theory is presented. A detailed derivation of a conformal anomaly and the definition and general properties of conformal field theory are given. Minimal string theory, which is a special version of the theory, is considered. Expressions for the string susceptibility and gravitational dimensions are derived.

  6. Field-theory methods in coagulation theory

    SciTech Connect

    Lushnikov, A. A.

    2011-08-15

    Coagulating systems are systems of chaotically moving particles that collide and coalesce, producing daughter particles of mass equal to the sum of the masses involved in the respective collision event. The present article puts forth basic ideas underlying the application of methods of quantum-field theory to the theory of coagulating systems. Instead of the generally accepted treatment based on the use of a standard kinetic equation that describes the time evolution of concentrations of particles consisting of a preset number of identical objects (monomers in the following), one introduces the probability W(Q, t) to find the system in some state Q at an instant t for a specific rate of transitions between various states. Each state Q is characterized by a set of occupation numbers Q = (n{sub 1}, n{sub 2}, ..., n{sub g}, ...), where n{sub g} is the total number of particles containing precisely g monomers. Thereupon, one introduces the generating functional {Psi} for the probability W(Q, t). The time evolution of {Psi} is described by an equation that is similar to the Schroedinger equation for a one-dimensional Bose field. This equation is solved exactly for transition rates proportional to the product of the masses of colliding particles. It is shown that, within a finite time interval, which is independent of the total mass of the entire system, a giant particle of mass about the mass of the entire system may appear in this system. The particle in question is unobservable in the thermodynamic limit, and this explains the well-known paradox of mass-concentration nonconservation in classical kinetic theory. The theory described in the present article is successfully applied in studying the time evolution of random graphs.

  7. Field-theory methods in coagulation theory

    NASA Astrophysics Data System (ADS)

    Lushnikov, A. A.

    2011-08-01

    Coagulating systems are systems of chaotically moving particles that collide and coalesce, producing daughter particles of mass equal to the sum of the masses involved in the respective collision event. The present article puts forth basic ideas underlying the application of methods of quantum-field theory to the theory of coagulating systems. Instead of the generally accepted treatment based on the use of a standard kinetic equation that describes the time evolution of concentrations of particles consisting of a preset number of identical objects (monomers in the following), one introduces the probability W( Q, t) to find the system in some state Q at an instant t for a specific rate of transitions between various states. Each state Q is characterized by a set of occupation numbers Q = { n 1, n 2, ..., n g , ...}, where n g is the total number of particles containing precisely g monomers. Thereupon, one introduces the generating functional Ψ for the probability W( Q, t). The time evolution of Ψ is described by an equation that is similar to the Schrödinger equation for a one-dimensional Bose field. This equation is solved exactly for transition rates proportional to the product of the masses of colliding particles. It is shown that, within a finite time interval, which is independent of the total mass of the entire system, a giant particle of mass about the mass of the entire system may appear in this system. The particle in question is unobservable in the thermodynamic limit, and this explains the well-known paradox of mass-concentration nonconservation in classical kinetic theory. The theory described in the present article is successfully applied in studying the time evolution of random graphs.

  8. Set theory and physics

    NASA Astrophysics Data System (ADS)

    Svozil, K.

    1995-11-01

    Inasmuch as physical theories are formalizable, set theory provides a framework for theoretical physics. Four speculations about the relevance of set theoretical modeling for physics are presented: the role of transcendental set theory (i) in chaos theory, (ii) for paradoxical decompositions of solid three-dimensional objects, (iii) in the theory of effective computability (Church-Turing thesis) related to the possible “solution of supertasks,” and (iv) for weak solutions. Several approaches to set theory and their advantages and disadvatages for physical applications are discussed: Canlorian “naive” (i.e., nonaxiomatic) set theory, contructivism, and operationalism. In the author's opinion, an attitude of “suspended attention” (a term borrowed from psychoanalysis) seems most promising for progress. Physical and set theoretical entities must be operationalized wherever possible. At the same time, physicists should be open to “bizarre” or “mindboggling” new formalisms, which need not be operationalizable or testable at the lime of their creation, but which may successfully lead to novel fields of phenomenology and technology.

  9. Set theory and physics

    SciTech Connect

    Svozil, K.

    1995-11-01

    Inasmuch as physical theories are formalizable, set theory provides a framework for theoretical physics. Four speculations about the relevance of set theoretical modeling for physics are presented: the role of transcendental set theory (i) in chaos theory, (ii) for paradoxical decompositions of solid three-dimensional objects, (iii) in the theory of effective computability (Church-Turing thesis) related to the possible {open_quotes}solution of supertasks,{close_quotes} and (iv) for weak solutions. Several approaches to set theory and their advantages and disadvantages for physical applications are discussed: Cantorian {open_quotes}naive{close_quotes} (i.e., nonaxiomatic) set theory, contructivism, and operationalism. In the author`s opinion, an attitude, of {open_quotes}suspended attention{close_quotes} (a term borrowed from psychoanalysis) seems most promising for progress. Physical and set theoretical entities must be operationalized wherever possible. At the same time, physicists should be open to {open_quotes}bizarre{close_quotes} or {open_quotes}mindboggling{close_quotes} new formalisms, which need not be operationalizable or testable at the time of their creation, but which may successfully lead to novel fields of phenomenology and technology.

  10. theories of class

    NASA Astrophysics Data System (ADS)

    Gaiotto, Davide; Razamat, Shlomo S.

    2015-07-01

    We construct classes of superconformal theories elements of which are labeled by punctured Riemann surfaces. Degenerations of the surfaces correspond, in some cases, to weak coupling limits. Different classes are labeled by two integers ( N, k). The k = 1 case coincides with A N - 1 theories of class and simple examples of theories with k > 1 are orbifolds of some of the A N - 1 class theories. For the space of theories to be complete in an appropriate sense we find it necessary to conjecture existence of new strongly coupled SCFTs. These SCFTs when coupled to additional matter can be related by dualities to gauge theories. We discuss in detail the A 1 case with k = 2 using the supersymmetric index as our analysis tool. The index of theories in classes with k > 1 can be constructed using eigenfunctions of elliptic quantum mechanical models generalizing the Ruijsenaars-Schneider integrable model. When the elliptic curve of the model degenerates these eigenfunctions become polynomials with coefficients being algebraic expressions in fugacities, generalizing the Macdonald polynomials with rational coefficients appearing when k = 1.

  11. Quaternionic quantum field theory

    SciTech Connect

    Adler, S.L.

    1985-08-19

    We show that a quaternionic quantum field theory can be formulated when the numbers of bosonic and fermionic degrees of freedom are equal and the fermions, as well as the bosons, obey a second-order wave equation. The theory is initially defined in terms of a quaternion-imaginary Lagrangian using the Feynman sum over histories. A Schroedinger equation can be derived from the functional integral, which identifies the quaternion-imaginary quantum Hamiltonian. Conversely, the transformation theory based on this Hamiltonian can be used to rederive the functional-integral formulation.

  12. Splines and control theory

    NASA Technical Reports Server (NTRS)

    Zhang, Zhimin; Tomlinson, John; Martin, Clyde

    1994-01-01

    In this work, the relationship between splines and the control theory has been analyzed. We show that spline functions can be constructed naturally from the control theory. By establishing a framework based on control theory, we provide a simple and systematic way to construct splines. We have constructed the traditional spline functions including the polynomial splines and the classical exponential spline. We have also discovered some new spline functions such as trigonometric splines and the combination of polynomial, exponential and trigonometric splines. The method proposed in this paper is easy to implement. Some numerical experiments are performed to investigate properties of different spline approximations.

  13. CONSTRUCTION OF EDUCATIONAL THEORY MODELS.

    ERIC Educational Resources Information Center

    MACCIA, ELIZABETH S.; AND OTHERS

    THIS STUDY DELINEATED MODELS WHICH HAVE POTENTIAL USE IN GENERATING EDUCATIONAL THEORY. A THEORY MODELS METHOD WAS FORMULATED. BY SELECTING AND ORDERING CONCEPTS FROM OTHER DISCIPLINES, THE INVESTIGATORS FORMULATED SEVEN THEORY MODELS. THE FINAL STEP OF DEVISING EDUCATIONAL THEORY FROM THE THEORY MODELS WAS PERFORMED ONLY TO THE EXTENT REQUIRED TO…

  14. Theories of galaxy formation

    SciTech Connect

    Jones, B.J.T.

    1980-01-01

    The current status of some theories of galaxy formation that are consistent with the hot big bang origin of the universe is reviewed. In the cosmic turbulence theory, an attempt is made to explain not only the characteristic masses and angular momenta of galaxies, but to describe in detail the spectrum of galaxy clustering problems with regard to the observed abundances of the light elements, a Kolmogorov spectrum of turbulence and the fireball are discussed. Attention is given to a primordial chaotic magnetic field, the comparison between baryon-symmetric cosmologies, the origin of galactic spin and theories starting from isothermal perturbations. Also considered are the dilemma of the initial conditions with respect to the era after 10 to the -4th s, and the pancake theory, in which the planar structures that arise provide a natural explanation for filamentary structures.

  15. Electromagnetic scattering theory

    NASA Technical Reports Server (NTRS)

    Bird, J. F.; Farrell, R. A.

    1986-01-01

    Electromagnetic scattering theory is discussed with emphasis on the general stochastic variational principle (SVP) and its applications. The stochastic version of the Schwinger-type variational principle is presented, and explicit expressions for its integrals are considered. Results are summarized for scalar wave scattering from a classic rough-surface model and for vector wave scattering from a random dielectric-body model. Also considered are the selection of trial functions and the variational improvement of the Kirchhoff short-wave approximation appropriate to large size-parameters. Other applications of vector field theory discussed include a general vision theory and the analysis of hydromagnetism induced by ocean motion across the geomagnetic field. Levitational force-torque in the magnetic suspension of the disturbance compensation system (DISCOS), now deployed in NOVA satellites, is also analyzed using the developed theory.

  16. Wormholes in string theory

    SciTech Connect

    Lyons, A. ); Hawking, S.W. )

    1991-12-15

    We discuss the wormhole effective interactions in string theory, thought of as a sum over two-dimensional field theories on different world sheets. The effective interactions are calculated in the dilute wormhole approximation,'' initially by considering the Green's functions on higher-genus Riemann surfaces, and then by calculating the effect of a complete basis of wave functions on scattering amplitudes for a surface with a boundary. The sum over wormholes is equivalent to having a world sheet of trivial topology and summing over different space-time and matter-field backgrounds. To leading order these consist of the massless fluctuations, since the tachyon cancels out when a sum is done over different spin structures going through the wormhole. In this way we recover quantized general relativity as an effective theory, from a sum over field theories on higher-genus Riemann surfaces.

  17. Why We "Knead" Theory

    ERIC Educational Resources Information Center

    Gunter, Helen M.

    2013-01-01

    This article reports on a seminar by the Critical Educational Policy and Leadership Research Interest Group in June 2012. The article reports on the papers and our engagement with the need to use theory to develop descriptions and understandings.

  18. Little M-theory

    NASA Astrophysics Data System (ADS)

    Cheng, Hsin-Chia; Thaler, Jesse; Wang, Lian-Tao

    2006-09-01

    Using the language of theory space, i.e. moose models, we develop a unified framework for studying composite Higgs models at the LHC. This framework — denoted little M-theory — is conveniently described by a theoretically consistent three-site moose diagram which implements minimal flavor and isospin violation. By taking different limits of the couplings, one can interpolate between simple group-like and minimal moose-like models with and without T-parity. In this way, little M-theory reveals a large model space for composite Higgs theories. We argue that this framework is suitable as a starting point for a comprehensive study of composite Higgs scenarios. The rich collider phenomenology of this framework is briefly discussed.

  19. Classical Aerodynamic Theory

    NASA Technical Reports Server (NTRS)

    Jones, R. T. (Compiler)

    1979-01-01

    A collection of papers on modern theoretical aerodynamics is presented. Included are theories of incompressible potential flow and research on the aerodynamic forces on wing and wing sections of aircraft and on airship hulls.

  20. Lectures on Dispersion Theory

    DOE R&D Accomplishments Database

    Salam, A.

    1956-04-01

    Lectures with mathematical analysis are given on Dispersion Theory and Causality and Dispersion Relations for Pion-nucleon Scattering. The appendix includes the S-matrix in terms of Heisenberg Operators. (F. S.)

  1. Combining Theory With Practice

    ERIC Educational Resources Information Center

    Houa, Souen

    1975-01-01

    Using specific examples, the author discusses how the Chinese educators link theory with practice in order to associate education with the three great revolutionary motive forces--the class struggle, the drive towards productivity, and scientific experimentation. (Author/RM)

  2. Motherhood: a discrepancy theory.

    PubMed

    Adams, Mary

    2015-01-01

    Motherhood is a highly anticipated and positive event for most women. Society has constructed many ideal images of motherhood, giving women standards to live up to, and many times setting them up for disappointment. When this disappointment occurs, an emotional reaction follows, which may be fear, guilt, or shame. However, some women are able to experience this mismatch between an ideal and actual self and adapt with minimal emotional reaction. There was not a nursing theory that described this phenomenon. "Self-Discrepancy: A Theory Relating Self and Affect" (Higgins, 1987), from the psychology discipline provided concepts and definitions that could be used to derive a nursing theory. The derivation resulted in a testable mid-range theory that could have a significant impact on nursing interventions for postpartum mood disorders. PMID:26062291

  3. Leonardo's Tree Theory.

    ERIC Educational Resources Information Center

    Werner, Suzanne K.

    2003-01-01

    Describes a series of activities exploring Leonardo da Vinci's tree theory that are designed to strengthen 8th grade students' data collection and problem solving skills in physical science classes. (KHR)

  4. Instantons in string theory

    SciTech Connect

    Ahlén, Olof

    2015-12-17

    These proceedings from the second Caesar Lattes meeting in Rio de Janeiro 2015 are a brief introduction to how automorphic forms appear in the low energy effective action of maximally supersymmetric string theory. The explicit example of the R{sup 4}-interaction of type IIB string theory in ten dimensions is discussed. Its Fourier expansion is interpreted in terms of perturbative and non-perturbative contributions to the four graviton amplitude.

  5. Instantons in string theory

    NASA Astrophysics Data System (ADS)

    Ahlén, Olof

    2015-12-01

    These proceedings from the second Caesar Lattes meeting in Rio de Janeiro 2015 are a brief introduction to how automorphic forms appear in the low energy effective action of maximally supersymmetric string theory. The explicit example of the R4-interaction of type IIB string theory in ten dimensions is discussed. Its Fourier expansion is interpreted in terms of perturbative and non-perturbative contributions to the four graviton amplitude.

  6. Leadership and attachment theory.

    PubMed

    Bresnahan, Christopher G; Mitroff, Ian I

    2007-09-01

    Comments on the six articles contained in the special issue of the American Psychologist (January 2007) devoted to leadership, written by W. Bennis; S. J. Zaccaro; V. H. Vroom and A. G. Yago; B. J. Avolio; R. J. Sternberg; and R. J. Hackman and R. Wageman. The current authors opine that the inclusion of attachment theory in the study of leadership could strengthen leadership theories as a whole. PMID:17874909

  7. Nodal Diffusion & Transport Theory

    Energy Science and Technology Software Center (ESTSC)

    1992-02-19

    DIF3D solves multigroup diffusion theory eigenvalue, adjoint, fixed source, and criticality (concentration, buckling, and dimension search) problems in 1, 2, and 3-space dimensions for orthogonal (rectangular or cylindrical), triangular, and hexagonal geometries. Anisotropic diffusion theory coefficients are permitted. Flux and power density maps by mesh cell and regionwise balance integrals are provided. Although primarily designed for fast reactor problems, upscattering and internal black boundary conditions are also treated.

  8. Hell of a theory.

    PubMed

    Krueger, Joachim I

    2016-01-01

    The theory of group-selected Big God religions is a master narrative of cultural evolution. The evidence is a positive manifold of correlated assumptions and variables. Although provocative, the theory is overly elastic. Its critical ingredient - belief in Big Gods - is neither necessary nor sufficient to account for in-group prosociality and discipline. Four specific issues illustrate this elasticity. PMID:26948734

  9. Leadership styles and theories.

    PubMed

    Giltinane, Charlotte Louise

    It is useful for healthcare professionals to be able to identify the leadership styles and theories relevant to their nursing practice. Being adept in recognising these styles enables nurses to develop their skills to become better leaders, as well as improving relationships with colleagues and other leaders, who have previously been challenging to work with. This article explores different leadership styles and theories, and explains how they relate to nursing practice. PMID:23905259

  10. Constructor theory of life

    PubMed Central

    Marletto, Chiara

    2015-01-01

    Neo-Darwinian evolutionary theory explains how the appearance of purposive design in the adaptations of living organisms can have come about without their intentionally being designed. The explanation relies crucially on the possibility of certain physical processes: mainly, gene replication and natural selection. In this paper, I show that for those processes to be possible without the design of biological adaptations being encoded in the laws of physics, those laws must have certain other properties. The theory of what these properties are is not part of evolution theory proper, yet without it the neo-Darwinian theory does not fully achieve its purpose of explaining the appearance of design. To this end, I apply constructor theory's new mode of explanation to express exactly within physics the appearance of design, no-design laws, and the logic of self-reproduction and natural selection. I conclude that self-reproduction, replication and natural selection are possible under no-design laws, the only non-trivial condition being that they allow digital information to be physically instantiated. This has an exact characterization in the constructor theory of information. I also show that under no-design laws an accurate replicator requires the existence of a ‘vehicle’ constituting, together with the replicator, a self-reproducer. PMID:25589566

  11. Warped conformal field theory

    NASA Astrophysics Data System (ADS)

    Detournay, Stéphane; Hartman, Thomas; Hofman, Diego M.

    2012-12-01

    We study field theories in two spacetime dimensions invariant under a chiral scaling symmetry that acts only on right-movers. The local symmetries include one copy of the Virasoro algebra and a U(1) current algebra. This differs from the two-dimensional conformal group but in some respects is equally powerful in constraining the theory. In particular, the symmetries on a torus lead to modular covariance of the partition function, which is used to derive a universal formula for the asymptotic density of states. For an application we turn to the holographic description of black holes in quantum gravity, motivated by the fact that the symmetries in the near-horizon geometry of any extremal black hole are identical to those of a two-dimensional field theory with chiral scaling. We consider two examples: black holes in warped AdS3 in topologically massive gravity and in string theory. In both cases, the density of states in the two-dimensional field theory reproduces the Bekenstein-Hawking entropy of black holes in the gravity theory.

  12. Theory of hydromagnetic turbulence

    NASA Technical Reports Server (NTRS)

    Montgomery, D.

    1983-01-01

    The present state of MHD turbulence theory as a possible solar wind research tool is surveyed. The theory is statistical, and does not make statements about individual events. The ensembles considered typically have individual realizations which differ qualitatively, unlike equilibrium statistical mechanics. Most of the theory deals with highly symmetric situations; most of these symmetries have yet to be tested in the solar wind. The applicability of MHD itself to solar wind parameters is highly questionable; yet it has no competitors, as a potentially comprehensive dynamical description. The purpose of solar wind research require sharper articulation. If they are to understand radial turbulent plasma flows from spheres, laboratory experiments and numerical solution of equations of motion may be cheap alternative to spacecraft. If "real life" information is demanded, multiple spacecraft with variable separation may be necessary to go further. The principal emphasis in the theory so far has been on spectral behavior for spatial covariances in wave number space. There is no respectable theory of these for highly anisotropic situations. A rather slow development of theory acts as a brake on justifiable measurement, at this point.

  13. Parity in knot theory

    SciTech Connect

    Manturov, Vassily O

    2010-06-29

    In this work we study knot theories with a parity property for crossings: every crossing is declared to be even or odd according to a certain preassigned rule. If this rule satisfies a set of simple axioms related to the Reidemeister moves, then certain simple invariants solving the minimality problem can be defined, and invariant maps on the set of knots can be constructed. The most important example of a knot theory with parity is the theory of virtual knots. Using the parity property arising from Gauss diagrams we show that even a gross simplification of the theory of virtual knots, namely, the theory of free knots, admits simple and highly nontrivial invariants. This gives a solution to a problem of Turaev, who conjectured that all free knots are trivial. In this work we show that free knots are generally not invertible, and provide invariants which detect the invertibility of free knots. The passage to ordinary virtual knots allows us to strengthen known invariants (such as the Kauffman bracket) using parity considerations. We also discuss other examples of knot theories with parity. Bibliography: 27 items.

  14. On complicity theory.

    PubMed

    Kline, A David

    2006-04-01

    The received account of whistleblowing, developed over the last quarter century, is identified with the work of Norman Bowie and Richard DeGeorge. Michael Davis has detailed three anomalies for the received view: the paradoxes of burden, missing harm and failure. In addition, he has proposed an alternative account of whistleblowing, viz., the Complicity Theory. This paper examines the Complicity Theory. The supposed anomalies rest on misunderstandings of the received view or misreadings of model cases of whistleblowing, for example, the Challenger disaster and the Ford Pinto. Nevertheless, the Complicity Theory is important for as in science the contrast with alternative competing accounts often helps us better understand the received view. Several aspects of the received view are reviewed and strengthened through comparison with Complicity Theory, including why whistleblowing needs moral justification. Complicity Theory is also critiqued. The fundamental failure of Complicity Theory is its failure to explain why government and the public encourage and protect whistleblowers despite the possibility of considerable harm to the relevant company in reputation, lost jobs, and lost shareholder value. PMID:16609713

  15. Who Needs Learning Theory Anyway?

    ERIC Educational Resources Information Center

    Zemke, Ron

    2002-01-01

    Looks at a variety of learning theories: andragogy, behaviorism, cognitivism, conditions of learning, Gestalt, and social learning. Addresses the difficulty of selecting an appropriate theory for training. (JOW)

  16. Relating theories via renormalization

    NASA Astrophysics Data System (ADS)

    Kadanoff, Leo P.

    2013-02-01

    The renormalization method is specifically aimed at connecting theories describing physical processes at different length scales and thereby connecting different theories in the physical sciences. The renormalization method used today is the outgrowth of 150 years of scientific study of thermal physics and phase transitions. Different phases of matter show qualitatively different behaviors separated by abrupt phase transitions. These qualitative differences seem to be present in experimentally observed condensed-matter systems. However, the "extended singularity theorem" in statistical mechanics shows that sharp changes can only occur in infinitely large systems. Abrupt changes from one phase to another are signaled by fluctuations that show correlation over infinitely long distances, and are measured by correlation functions that show algebraic decay as well as various kinds of singularities and infinities in thermodynamic derivatives and in measured system parameters. Renormalization methods were first developed in field theory to get around difficulties caused by apparent divergences at both small and large scales. However, no renormalization gives a fully satisfactory formulation of field theory. The renormalization (semi-)group theory of phase transitions was put together by Kenneth G. Wilson in 1971 based upon ideas of scaling and universality developed earlier in the context of phase transitions and of couplings dependent upon spatial scale coming from field theory. Correlations among regions with fluctuations in their order underlie renormalization ideas. Wilson's theory is the first approach to phase transitions to agree with the extended singularity theorem. Some of the history of the study of these correlations and singularities is recounted, along with the history of renormalization and related concepts of scaling and universality. Applications, particularly to condensed-matter physics and particle physics, are summarized. This note is partially a

  17. No Drama Quantum Theory?

    NASA Astrophysics Data System (ADS)

    Akhmeteli, Andrey

    2013-03-01

    Is it possible to offer a ``no drama'' quantum theory? Something as simple (in principle) as classical electrodynamics - a theory described by a system of partial differential equations (PDE) in 3+1 dimensions, but reproducing unitary evolution of a quantum field theory in the Fock space? The following results suggest an affirmative answer: 1. The scalar field can be algebraically eliminated from scalar electrodynamics; the resulting equations describe independent evolution of the electromagnetic field (EMF). 2. After introduction of a complex 4-potential (producing the same EMF as the standard real 4-potential), the spinor field can be algebraically eliminated from spinor electrodynamics; the resulting equations describe independent evolution of EMF. 3. The resulting theories for EMF can be embedded into quantum field theories. Another fundamental result: in a general case, the Dirac equation is equivalent to a 4th order PDE for just one component, which can be made real by a gauge transform. Issues related to the Bell theorem are discussed. A. Akhmeteli, Int'l Journal of Quantum Information, Vol. 9, Suppl., 17-26 (2011) A. Akhmeteli, Journal of Mathematical Physics, Vol. 52, 082303 (2011) A. Akhmeteli, quant-ph/1111.4630 A. Akhmeteli, J. Phys.: Conf. Ser., Vol. 361, 012037 (2012)

  18. No Drama Quantum Theory?

    NASA Astrophysics Data System (ADS)

    Akhmeteli, Andrey

    2012-02-01

    Is it possible to offer a ``no drama'' quantum theory? Something as simple (in principle) as classical electrodynamics - a theory described by a system of partial differential equations (PDE) in 3+1 dimensions, but reproducing unitary evolution of a quantum field theory in the configuration space? The following results suggest an affirmative answer: 1. The scalar field can be algebraically eliminated from scalar electrodynamics; the resulting equations describe independent evolution of the electromagnetic field (EMF). 2. After introduction of a complex 4-potential (producing the same EMF as the standard real 4-potential), the spinor field can be algebraically eliminated from spinor electrodynamics; the resulting equations describe independent evolution of EMF. 3. The resulting theories for EMF can be embedded into quantum field theories. Another fundamental result: in a general case, the Dirac equation is equivalent to a 4th order PDE for just one component, which can be made real by a gauge transform. Issues related to the Bell theorem are discussed. A. Akhmeteli, Int'l Journal of Quantum Information, Vol. 9, Suppl., 17-26 (2011) A. Akhmeteli, Journal of Mathematical Physics, Vol. 52, 082303 (2011) A. Akhmeteli, quant-ph/1108.1588

  19. No Drama Quantum Theory?

    NASA Astrophysics Data System (ADS)

    Akhmeteli, Andrey

    2012-05-01

    Is it possible to offer a "no drama" quantum theory? Something as simple (in principle) as classical electrodynamics - a theory described by a system of partial differential equations in 3+1 dimensions, but reproducing unitary evolution of a quantum field theory in the configuration space? The following results suggest an affirmative answer: 1. The scalar field can be algebraically eliminated from scalar electrodynamics; the resulting equations describe independent evolution of the electromagnetic field. 2. After introduction of a complex 4-potential (producing the same electromagnetic field as the standard real 4-potential), the spinor field can be algebraically eliminated from spinor electrodynamics; the resulting equations describe independent evolution of the electromagnetic field. 3. The resulting theories for the electromagnetic field can be embedded into quantum field theories. Another fundamental result: in a general case, the Dirac equation is equivalent to a 4th order partial differential equations for just one component, which can be made real by a gauge transform. Issues related to the Bell theorem are discussed.

  20. Beyond generalized Proca theories

    NASA Astrophysics Data System (ADS)

    Heisenberg, Lavinia; Kase, Ryotaro; Tsujikawa, Shinji

    2016-09-01

    We consider higher-order derivative interactions beyond second-order generalized Proca theories that propagate only the three desired polarizations of a massive vector field besides the two tensor polarizations from gravity. These new interactions follow the similar construction criteria to those arising in the extension of scalar-tensor Horndeski theories to Gleyzes-Langlois-Piazza-Vernizzi (GLPV) theories. On the isotropic cosmological background, we show the existence of a constraint with a vanishing Hamiltonian that removes the would-be Ostrogradski ghost. We study the behavior of linear perturbations on top of the isotropic cosmological background in the presence of a matter perfect fluid and find the same number of propagating degrees of freedom as in generalized Proca theories (two tensor polarizations, two transverse vector modes, and two scalar modes). Moreover, we obtain the conditions for the avoidance of ghosts and Laplacian instabilities of tensor, vector, and scalar perturbations. We observe key differences in the scalar sound speed, which is mixed with the matter sound speed outside the domain of generalized Proca theories.

  1. Chiral Perturbation Theory

    NASA Astrophysics Data System (ADS)

    Tiburzi, Brian C.

    The era of high-precision lattice QCD has led to synergy between lattice computations and phenomenological input from chiral perturbation theory. We provide an introduction to chiral perturbation theory with a bent towards understanding properties of the nucleon and other low-lying baryons. Four main topics are the basis for this chapter. We begin with a discussion of broken symmetries and the procedure to construct the chiral Lagrangian. The second topic concerns specialized applications of chiral perturbation theory tailored to lattice QCD, such as partial quenching, lattice discretization, and finite-volume effects. We describe inclusion of the nucleon in chiral perturbation theory using a heavy-fermion Euclidean action. Issues of convergence are taken up as our final topic. We consider expansions in powers of the strange-quark mass, and the appearance of unphysical singularities in the heavy-particle formulation. Our aim is to guide lattice practitioners in understanding the predictions chiral perturbation theory makes for baryons, and show how the lattice will play a role in testing the rigor of the chiral expansion at physical values of the quark masses.

  2. Generalized teleparallel theory

    NASA Astrophysics Data System (ADS)

    Junior, Ednaldo L. B.; Rodrigues, Manuel E.

    2016-07-01

    We construct a theory in which the gravitational interaction is described only by torsion, but that generalizes the teleparallel theory still keeping the invariance of local Lorentz transformations in one particular case. We show that our theory falls, in a certain limit of a real parameter, under f(bar{R}) gravity or, in another limit of the same real parameter, under modified f( T) gravity; on interpolating between these two theories it still can fall under several other theories. We explicitly show the equivalence with f(bar{R}) gravity for the cases of a Friedmann-Lemaître-Robertson-Walker flat metric for diagonal tetrads, and a metric with spherical symmetry for diagonal and non-diagonal tetrads. We study four applications, one in the reconstruction of the de Sitter universe cosmological model, for obtaining a static spherically symmetric solution of de Sitter type for a perfect fluid, for evolution of the state parameter ω _{DE}, and for the thermodynamics of the apparent horizon.

  3. Finite quantum gauge theories

    NASA Astrophysics Data System (ADS)

    Modesto, Leonardo; Piva, Marco; Rachwał, Lesław

    2016-07-01

    We explicitly compute the one-loop exact beta function for a nonlocal extension of the standard gauge theory, in particular, Yang-Mills and QED. The theory, made of a weakly nonlocal kinetic term and a local potential of the gauge field, is unitary (ghost-free) and perturbatively super-renormalizable. Moreover, in the action we can always choose the potential (consisting of one "killer operator") to make zero the beta function of the running gauge coupling constant. The outcome is a UV finite theory for any gauge interaction. Our calculations are done in D =4 , but the results can be generalized to even or odd spacetime dimensions. We compute the contribution to the beta function from two different killer operators by using two independent techniques, namely, the Feynman diagrams and the Barvinsky-Vilkovisky traces. By making the theories finite, we are able to solve also the Landau pole problems, in particular, in QED. Without any potential, the beta function of the one-loop super-renormalizable theory shows a universal Landau pole in the running coupling constant in the ultraviolet regime (UV), regardless of the specific higher-derivative structure. However, the dressed propagator shows neither the Landau pole in the UV nor the singularities in the infrared regime (IR).

  4. Astronomy and political theory

    NASA Astrophysics Data System (ADS)

    Campion, Nicholas

    2011-06-01

    This paper will argue that astronomical models have long been applied to political theory, from the use of the Sun as a symbol of the emperor in Rome to the application of Copernican theory to the needs of absolute monarchy. We will begin with consideration of astral divination (the use of astronomy to ascertain divine intentions) in the ancient Near East. Particular attention will be paid to the use of Newton's discovery that the universe operates according to a single set of laws in order to support concepts of political quality and eighteenth century Natural Rights theory. We will conclude with consideration of arguments that the discovery of the expanding, multi-galaxy universe, stimulated political uncertainty in the 1930s, and that photographs of the Earth from Apollo spacecraft encouraged concepts of the `global village'.

  5. Canonical Floquet theory

    NASA Astrophysics Data System (ADS)

    Wiesel, William E.; Pohlen, David J.

    1994-01-01

    Classical Floquet theory is reviewed with careful attention to the case of repeated eigenvalues common in Hamiltonian systems. Floquet theory generates a canonical transformation to modal variables if the periodic matrix can be made symplectic at the initial time. It is shown that this symplectic normalization can always be carried out, again with careful attention to the degenerate case. The periodic modal vectors and canonical modal variables can always be chosen to be purely real. It is possible to introduce real valued action-angle variables for all modes. Physical interpretation of the canonical degenerate normal modal variables are offered. Finally, it is shown that this transformation enables canonical perturbation theory to be carried out using Floquet modal variables.

  6. Supersymmetric Quantum Field Theories

    NASA Astrophysics Data System (ADS)

    Grigore, D. R.

    2005-03-01

    We consider some supersymmetric multiplets in a purely quantum framework. A crucial point is to ensure the positivity of the scalar product in the Hilbert space of the quantum system. For the vector multiplet we obtain some discrepancies with respect to the literature in the expression of the super-propagator and we prove that the model is consistent only for positive mass. The gauge structure is constructed purely deductive and leads to the necessity of introducing scalar ghost superfields, in analogy to the usual gauge theories. Then we consider a supersymmetric extension of quantum gauge theory based on a vector multiplet containing supersymmetric partners of spin 3/2 for the vector fields. As an application we consider the supersymmetric electroweak theory. The resulting self-couplings of the gauge bosons agree with the standard model up to a divergence.

  7. Little Higgs Theories

    NASA Astrophysics Data System (ADS)

    Schmaltz, Martin; Tucker-Smith, David

    2005-12-01

    Recently there has been renewed interest in the possibility that the Higgs particle of the Standard Model is a pseudo-Nambu-Goldstone boson. This development was spurred by the observation that if certain global symmetries are broken only by the interplay between two or more coupling constants, then the Higgs mass-squared is free from quadratic divergences at one loop. This collective symmetry breaking is the essential ingredient in little Higgs theories, which are weakly coupled extensions of the Standard Model with little or no fine tuning, describing physics up to an energy scale 10 TeV. Here we give a pedagogical introduction to little Higgs theories. We review their structure and phenomenology, focusing mainly on the SU(3) theory, the Minimal Moose, and the littlest Higgs as concrete examples.

  8. Density perturbation theory

    SciTech Connect

    Palenik, Mark C.; Dunlap, Brett I.

    2015-07-28

    Despite the fundamental importance of electron density in density functional theory, perturbations are still usually dealt with using Hartree-Fock-like orbital equations known as coupled-perturbed Kohn-Sham (CPKS). As an alternative, we develop a perturbation theory that solves for the perturbed density directly, removing the need for CPKS. This replaces CPKS with a true Hohenberg-Kohn density perturbation theory. In CPKS, the perturbed density is found in the basis of products of occupied and virtual orbitals, which becomes ever more over-complete as the size of the orbital basis set increases. In our method, the perturbation to the density is expanded in terms of a series of density basis functions and found directly. It is possible to solve for the density in such a way that it makes the total energy stationary even if the density basis is incomplete.

  9. History of pain theories.

    PubMed

    Chen, Jun

    2011-10-01

    The concept of pain has remained a topic of long debate since its emergence in ancient times. The initial ideas of pain were formulated in both the East and the West before 1800. Since 1800, due to the development of experimental sciences, different theories of pain have emerged and become central topics of debate. However, the existing theories of pain may be appropriate for the interpretation of some aspects of pain, but are not yet comprehensive. The history of pain problems is as long as that of human beings; however, the understanding of pain mechanisms is still far from sufficient. Thus, intensive research is required. This historical review mainly focuses on the development of pain theories and the fundamental discoveries in this field. Other historical events associated with pain therapies and remedies are beyond the scope of this review. PMID:21934730

  10. Popper and nursing theory.

    PubMed

    Allmark, Peter

    2003-04-01

    Science seems to develop by inducing new knowledge from observation. However, it is hard to find a rational justification for induction. Popper offers one attempt to resolve this problem. Nursing theorists have tended to ignore or reject Popper, often on the false belief that he is a logical positivist (and hence hostile to qualitative research). Logical positivism claims that meaningful sentences containing any empirical content should ultimately be reducible to simple, observation statements. Popper refutes positivism by showing that there are no such simple statements. He is not a positivist. For Popper, the scientist begins with problems and puts forward trial solutions. These are subjected to rigorous testing aimed at falsifying them. A new theoretical position is then reached in which the scientist knows either that the trial solutions are false or that they have not yet been falsified. Science is characterized by the fact that it tests its ideas through attempted falsification. Non-science tests its ideas through attempted refutation. Nursing theory is a mixture of science and non-science. Popper's method requires rigorous testing of theory in both realms. As such, some nursing theory should be discarded. Popper's view faces at least two important criticisms. One is that a scientist can always reject an apparent falsification by instead altering some auxiliary hypothesis (e.g. denying the accuracy of the falsifying observation). Popper can deal with this argument by saying that defence of a theory in this way will eventually break down if the theory is false. The second criticism is that Popper's method does ultimately draw upon induction. This criticism is true, but his method can be usefully adapted. An adapted from of Popper's philosophy of science provides a good basis for nursing theory. PMID:14498963

  11. Sequestering in String Theory

    SciTech Connect

    Kachru, Shamit; McAllister, Liam; Sundrum, Raman

    2007-04-04

    We study sequestering, a prerequisite for flavor-blind supersymmetry breaking in several high-scale mediation mechanisms, in compactifications of type IIB string theory. We find that although sequestering is typically absent in unwarped backgrounds, strongly warped compactifications do readily sequester. The AdS/CFT dual description in terms of conformal sequestering plays an important role in our analysis, and we establish how sequestering works both on the gravity side and on the gauge theory side. We pay special attention to subtle compactification effects that can disrupt sequestering. Our result is a step toward realizing an appealing pattern of soft terms in a KKLT compactification.

  12. Many body theory program

    SciTech Connect

    Balatsky, A.V.; Scalapino, D.; Wilkins, J.; Pines, D.; Bedell, K.; Schrieffer, J.R.; Fisk, Z.

    1998-12-01

    This is the final report of a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors have obtained a description of symmetry of the order parameter and pairing state in high-Tc superconductors. They developed a theory of ferromagnetic instability of Fermi-liquid. They have conducted an experimental investigation of the intermetallic compounds and Zintl-type compound. They investigated the properties of Cu-0 ladders. They have developed the theory of liftshitz tails in superconductors. They have conducted a number of summer workshops.

  13. Diagrammatic semiclassical laser theory

    SciTech Connect

    Zaitsev, Oleg; Deych, Lev

    2010-02-15

    We derive semiclassical laser equations valid in all orders of nonlinearity. With the help of a diagrammatic representation, the perturbation series in powers of electric field can be resummed in terms of a certain class of diagrams. The resummation makes it possible to take into account a weak effect of population pulsations in a controlled way while treating the nonlinearity exactly. The proposed laser theory reproduces the all-order nonlinear equations in the approximation of constant population inversion and the third-order equations with population-pulsation terms as special cases. The theory can be applied to arbitrarily open and irregular lasers, such as random lasers.

  14. [The theory of migration].

    PubMed

    Delbruck, C; Raffelhuschen, B

    1993-09-01

    "The present and expected migration flows in Europe require a detailed analysis of determinants and elements of migration decisions. This survey encompasses a view on classical--labor market and demand side oriented--theories, the more recent human capital approach as well as on migration under asymmetric information. Since these theories so far yield an unsatisfactory basis for description and forecasting of multilateral migration flows, a closer look at empirical methods of migration research is taken. Consequently, a description of possible policy oriented applications of the gravity model and the random utility approach, with their descriptive and normative characteristics, is given." (SUMMARY IN ENG) PMID:12319309

  15. Kinetic theory viscosity

    NASA Astrophysics Data System (ADS)

    Clarke, C. J.; Pringle, J. E.

    2004-07-01

    We show how the viscous evolution of Keplerian accretion discs can be understood in terms of simple kinetic theory. Although standard physics texts give a simple derivation of momentum transfer in a linear shear flow using kinetic theory, many authors, as detailed by Hayashi & Matsuda, have had difficulties applying the same considerations to a circular shear flow. We show here how this may be done, and note that the essential ingredients are to take proper account of, first, isotropy locally in the frame of the fluid and, secondly, the geometry of the mean flow.

  16. Salinas : theory manual.

    SciTech Connect

    Walsh, Timothy Francis; Reese, Garth M.; Bhardwaj, Manoj Kumar

    2004-08-01

    This manual describes the theory behind many of the constructs in Salinas. For a more detailed description of how to use Salinas , we refer the reader to Salinas, User's Notes. Many of the constructs in Salinas are pulled directly from published material. Where possible, these materials are referenced herein. However, certain functions in Salinas are specific to our implementation. We try to be far more complete in those areas. The theory manual was developed from several sources including general notes, a programer-notes manual, the user's notes and of course the material in the open literature.

  17. Holographic effective field theories

    NASA Astrophysics Data System (ADS)

    Martucci, Luca; Zaffaroni, Alberto

    2016-06-01

    We derive the four-dimensional low-energy effective field theory governing the moduli space of strongly coupled superconformal quiver gauge theories associated with D3-branes at Calabi-Yau conical singularities in the holographic regime of validity. We use the dual supergravity description provided by warped resolved conical geometries with mobile D3-branes. Information on the baryonic directions of the moduli space is also obtained by using wrapped Euclidean D3-branes. We illustrate our general results by discussing in detail their application to the Klebanov-Witten model.

  18. String Theory and Turbulence

    NASA Astrophysics Data System (ADS)

    Jejjala, Vishnu; Minic, Djordje; Ng, Y. Jack; Tze, Chia-Hsiung

    We propose a string theory of turbulence that explains the Kolmogorov scaling in 3+1 dimensions and the Kraichnan and Kolmogorov scalings in 2+1 dimensions. This string theory of turbulence should be understood in light of the AdS/CFT dictionary. Our argument is crucially based on the use of Migdal's loop variables and the self-consistent solutions of Migdal's loop equations for turbulence. In particular, there is an area law for turbulence in 2+1 dimensions related to the Kraichnan scaling.

  19. Baryon chiral perturbation theory

    NASA Astrophysics Data System (ADS)

    Scherer, S.

    2012-03-01

    We provide a short introduction to the one-nucleon sector of chiral perturbation theory and address the issue of power counting and renormalization. We discuss the infrared regularization and the extended on-mass-shell scheme. Both allow for the inclusion of further degrees of freedom beyond pions and nucleons and the application to higher-loop calculations. As applications we consider the chiral expansion of the nucleon mass to order Script O(q6) and the inclusion of vector and axial-vector mesons in the calculation of nucleon form factors. Finally, we address the complex-mass scheme for describing unstable particles in effective field theory.

  20. The electroweak theory

    SciTech Connect

    Chris Quigg

    2001-08-10

    After a short essay on the current state of particle physics, the author reviews the antecedents of the modern picture of the weak and electromagnetic interactions and then undertakes a brief survey of the SU(2){sub L} {circle_times} U(1){sub Y} electroweak theory. The authors reviews the features of electroweak phenomenology at tree level and beyond, presents an introduction to the Higgs boson and the 1-TeV scale, and examines arguments for enlarging the electroweak theory. The author concludes with a brief look at low-scale gravity.

  1. Splitting a default theory

    SciTech Connect

    Turner, H.

    1996-12-31

    This paper presents mathematical results that can sometimes be used to simplify the task of reasoning about a default theory, by {open_quotes}splitting it into parts.{close_quotes} These so-called Splitting Theorems for default logic are related in spirit to {open_quotes}partial evaluation{close_quotes} in logic programming, in which results obtained from one part of a program are used to simplify the remainder of the program. In this paper we focus primarily on the statement and proof of the Splitting Theorems for default logic. We illustrate the usefulness of the results by applying them to an example default theory for commonsense reasoning about action.

  2. Perspective: Nonadiabatic dynamics theory

    NASA Astrophysics Data System (ADS)

    Tully, John C.

    2012-12-01

    Nonadiabatic dynamics—nuclear motion evolving on multiple potential energy surfaces—has captivated the interest of chemists for decades. Exciting advances in experimentation and theory have combined to greatly enhance our understanding of the rates and pathways of nonadiabatic chemical transformations. Nevertheless, there is a growing urgency for further development of theories that are practical and yet capable of reliable predictions, driven by fields such as solar energy, interstellar and atmospheric chemistry, photochemistry, vision, single molecule electronics, radiation damage, and many more. This Perspective examines the most significant theoretical and computational obstacles to achieving this goal, and suggests some possible strategies that may prove fruitful.

  3. Dempster-Shafer theory and connections to Choquet's theory of capacities and information theory

    NASA Astrophysics Data System (ADS)

    Peri, Joseph S. J.

    2014-06-01

    The axiomatic development of information theory, during the 1960's, led to the discovery of various composition laws. The Wiener-Shannon law is well understood, but the Inf law holds particular interest because it creates a connection with the Dempster-Shafer theory. Proceeding along these lines, in a previous paper, I demonstrated the connection between the Dempster-Shafer theory and Information theory. In 1954, Gustave Choquet developed the theory of capacities in connection with potential theory. The basic concepts of capacity theory arise from electrostatics, but a capacity is a generalization of the concept of measure in Analysis. It is well known that Belief and Plausibility in the Dempster-Shafer theory are Choquet capacities. However, it is not well known that the inverse of an information measure is a Choquet capacity. The objective of this paper is to demonstrate the connections among the Dempster- Shafer theory, Information theory and Choquet's theory of capacities.

  4. Self Psychology as Feminist Theory.

    ERIC Educational Resources Information Center

    Gardiner, Judith Kegan

    1987-01-01

    Although the "self psychology" theories of Heinz Kohut tend to neglect gender, they hold promise for feminist theory because they avoid some problems and limitations of the object-relations theory, especially its conflation of femininity with heterosexuality and apparent closure to historical change. Feminist self-psychology theory, in contrast,…

  5. Theory-Based Stakeholder Evaluation

    ERIC Educational Resources Information Center

    Hansen, Morten Balle; Vedung, Evert

    2010-01-01

    This article introduces a new approach to program theory evaluation called theory-based stakeholder evaluation or the TSE model for short. Most theory-based approaches are program theory driven and some are stakeholder oriented as well. Practically, all of the latter fuse the program perceptions of the various stakeholder groups into one unitary…

  6. A new theory of gravity

    NASA Technical Reports Server (NTRS)

    Ni, W.

    1972-01-01

    A new relativistic theory of gravity is presented. This theory agrees with all experiments to date. It is a metric theory, it is Lagrangian-based, and it possesses a preferred frame with conformally-flat space slices. With an appropriate choice of certain adjustable functions and parameters, this theory possesses precisely the same post-Newtonian limit as general relativity.

  7. Vector field theories in cosmology

    SciTech Connect

    Tartaglia, A.; Radicella, N.

    2007-10-15

    Recently proposed theories based on the cosmic presence of a vectorial field are compared and contrasted. In particular the so-called Einstein aether theory is discussed in parallel with a recent proposal of a strained space-time theory (cosmic defect theory). We show that the latter fits reasonably well the cosmic observed data with only one, or at most two, adjustable parameters, while other vector theories use much more. The Newtonian limits are also compared. Finally we show that the cosmic defect theory may be considered as a special case of the aether theories, corresponding to a more compact and consistent paradigm.

  8. Intelligence: Theories and Testing.

    ERIC Educational Resources Information Center

    Papanastasiou, Elena C.

    This paper reviews what is known about intelligence and the use of intelligence tests. Environmental and hereditary factors that affect performance on intelligence tests are reviewed, along with various theories that have been proposed about the basis of intelligence. Intelligence tests do not test intelligence per se but make inferences about a…

  9. Theory into Practice

    ERIC Educational Resources Information Center

    Kaplan, Sandra N.

    2012-01-01

    The importance of putting theory into practice can be addressed and advocated to educators and gifted students through the presentation of a Continuum of Practice. Articulating the sequence and phases of practice can underscore how practice can take place; it also can change the perspective and meaning of practice.

  10. Colloquium: Topological band theory

    NASA Astrophysics Data System (ADS)

    Bansil, A.; Lin, Hsin; Das, Tanmoy

    2016-04-01

    The first-principles band theory paradigm has been a key player not only in the process of discovering new classes of topologically interesting materials, but also for identifying salient characteristics of topological states, enabling direct and sharpened confrontation between theory and experiment. This review begins by discussing underpinnings of the topological band theory, which involve a layer of analysis and interpretation for assessing topological properties of band structures beyond the standard band theory construct. Methods for evaluating topological invariants are delineated, including crystals without inversion symmetry and interacting systems. The extent to which theoretically predicted properties and protections of topological states have been verified experimentally is discussed, including work on topological crystalline insulators, disorder and interaction driven topological insulators (TIs), topological superconductors, Weyl semimetal phases, and topological phase transitions. Successful strategies for new materials discovery process are outlined. A comprehensive survey of currently predicted 2D and 3D topological materials is provided. This includes binary, ternary, and quaternary compounds, transition metal and f -electron materials, Weyl and 3D Dirac semimetals, complex oxides, organometallics, skutterudites, and antiperovskites. Also included is the emerging area of 2D atomically thin films beyond graphene of various elements and their alloys, functional thin films, multilayer systems, and ultrathin films of 3D TIs, all of which hold exciting promise of wide-ranging applications. This Colloquium concludes by giving a perspective on research directions where further work will broadly benefit the topological materials field.

  11. Children's Theories of Motivation

    ERIC Educational Resources Information Center

    Gurland, Suzanne T.; Glowacky, Victoria C.

    2011-01-01

    To investigate children's theories of motivation, we asked 166 children (8-12 years of age) to rate the effect of various motivational strategies on task interest, over the short and long terms, in activities described as appealing or unappealing. Children viewed the rewards strategy as resulting in greatest interest except when implemented over…

  12. Attachment Theory and Mindfulness

    ERIC Educational Resources Information Center

    Snyder, Rose; Shapiro, Shauna; Treleaven, David

    2012-01-01

    We initiate a dialog between two central areas in the field of psychology today: attachment theory/research and mindfulness studies. The impact of the early mother-infant relationship on child development has been well established in the literature, with attachment theorists having focused on the correlation between a mother's capacity for…

  13. Weak Value Theory

    SciTech Connect

    Shikano, Yutaka

    2011-03-28

    I show that the weak value theory is useful from the viewpoints of the experimentally verifiability, consistency, capacity for explanation as to many quantum paradoxes, and practical advantages. As an example, the initial state in the Hardy paradox can be experimentally verified using the weak value via the weak measurement.

  14. Quantum theory of friction

    SciTech Connect

    Barnett, Stephen M.; Cresser, James D.

    2005-08-15

    We present a Markovian quantum theory of friction. Our approach is based on the idea that collisions between a Brownian particle and single molecules of the surrounding medium constitute, as far as the particle is concerned, instantaneous simultaneous measurements of its position and momentum.

  15. Informed Grounded Theory

    ERIC Educational Resources Information Center

    Thornberg, Robert

    2012-01-01

    There is a widespread idea that in grounded theory (GT) research, the researcher has to delay the literature review until the end of the analysis to avoid contamination--a dictum that might turn educational researchers away from GT. Nevertheless, in this article the author (a) problematizes the dictum of delaying a literature review in classic…

  16. What Is Theory?

    ERIC Educational Resources Information Center

    Stewart, Jim; Harte, Victoria; Sambrook, Sally

    2011-01-01

    Purpose: The aim of the paper is to examine the meaning and value of the notion of theory as a basis for other papers in the special issue which examine facets of theorising HRD. Design/methodology/approach: A small scale and targeted literature review was conducted which focused on writings in the philosophy and sociology of science in order to…

  17. Theories of Modern Management.

    ERIC Educational Resources Information Center

    Knight, W. Hal

    This chapter of "Principles of School Business Management" identifies management theories that provide a fundamental conceptual knowledge base that school business officials can use to understand the school organizational setting and its influences on the day-to-day operation of the educational process. Particular attention is paid to aspects of…

  18. MFIX documentation theory guide

    SciTech Connect

    Syamlal, M.; Rogers, W.; O`Brien, T.J.

    1993-12-01

    This report describes the MFIX (Multiphase Flow with Interphase exchanges) computer model. MFIX is a general-purpose hydrodynamic model that describes chemical reactions and heat transfer in dense or dilute fluid-solids flows, flows typically occurring in energy conversion and chemical processing reactors. MFIX calculations give detailed information on pressure, temperature, composition, and velocity distributions in the reactors. With such information, the engineer can visualize the conditions in the reactor, conduct parametric studies and what-if experiments, and, thereby, assist in the design process. The MFIX model, developed at the Morgantown Energy Technology Center (METC), has the following capabilities: mass and momentum balance equations for gas and multiple solids phases; a gas phase and two solids phase energy equations; an arbitrary number of species balance equations for each of the phases; granular stress equations based on kinetic theory and frictional flow theory; a user-defined chemistry subroutine; three-dimensional Cartesian or cylindrical coordinate systems; nonuniform mesh size; impermeable and semi-permeable internal surfaces; user-friendly input data file; multiple, single-precision, binary, direct-access, output files that minimize disk storage and accelerate data retrieval; and extensive error reporting. This report, which is Volume 1 of the code documentation, describes the hydrodynamic theory used in the model: the conservation equations, constitutive relations, and the initial and boundary conditions. The literature on the hydrodynamic theory is briefly surveyed, and the bases for the different parts of the model are highlighted.

  19. New Theory of Flight

    NASA Astrophysics Data System (ADS)

    Hoffman, Johan; Jansson, Johan; Johnson, Claes

    2016-06-01

    We present a new mathematical theory explaining the fluid mechanics of subsonic flight, which is fundamentally different from the existing boundary layer-circulation theory by Prandtl-Kutta-Zhukovsky formed 100 year ago. The new theory is based on our new resolution of d'Alembert's paradox showing that slightly viscous bluff body flow can be viewed as zero-drag/lift potential flow modified by 3d rotational slip separation arising from a specific separation instability of potential flow, into turbulent flow with nonzero drag/lift. For a wing this separation mechanism maintains the large lift of potential flow generated at the leading edge at the price of small drag, resulting in a lift to drag quotient of size 15-20 for a small propeller plane at cruising speed with Reynolds number {Re≈ 107} and a jumbojet at take-off and landing with {Re≈ 108} , which allows flight at affordable power. The new mathematical theory is supported by computed turbulent solutions of the Navier-Stokes equations with a slip boundary condition as a model of observed small skin friction of a turbulent boundary layer always arising for {Re > 106} , in close accordance with experimental observations over the entire range of angle of attacks including stall using a few millions of mesh points for a full wing-body configuration.

  20. From Practice to Theory.

    ERIC Educational Resources Information Center

    Langberg, Arnold

    1984-01-01

    Describes the individualized program of Mountain Open High School which at first coincidentally resembed Maurice Gibbons'"Walkabout" concept and was subsequently more consciously shaped by theory. Students move through three phases culminating in challenging independent projects of practical use. (MJL)

  1. Variational transition state theory

    SciTech Connect

    Truhlar, D.G.

    1993-12-01

    This research program involves the development of variational transition state theory (VTST) and semiclassical tunneling methods for the calculation of gas-phase reaction rates and selected applications. The applications are selected for their fundamental interest and/or their relevance to combustion.

  2. Big Bang Theory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The theory which asserts that the universe originated a finite time ago by expanding from an infinitely compressed state. According to this model, space, time and matter originated together, and the universe has been expanding ever since. Key stages in the history of the Big Bang universe are summarized below....

  3. Potential theory of radiation

    NASA Technical Reports Server (NTRS)

    Chiu, Huei-Huang

    1989-01-01

    A theoretical method is being developed by which the structure of a radiation field can be predicted by a radiation potential theory, similar to a classical potential theory. The introduction of a scalar potential is justified on the grounds that the spectral intensity vector is irrotational. The vector is also solenoidal in the limits of a radiation field in complete radiative equilibrium or in a vacuum. This method provides an exact, elliptic type equation that will upgrade the accuracy and the efficiency of the current CFD programs required for the prediction of radiation and flow fields. A number of interesting results emerge from the present study. First, a steady state radiation field exhibits an optically modulated inverse square law distribution character. Secondly, the unsteady radiation field is structured with two conjugate scalar potentials. Each is governed by a Klein-Gordon equation with a frictional force and a restoring force. This steady potential field structure and the propagation of radiation potentials are consistent with the well known results of classical electromagnetic theory. The extension of the radiation potential theory for spray combustion and hypersonic flow is also recommended.

  4. Extended conformal field theories

    NASA Astrophysics Data System (ADS)

    Taormina, Anne

    1990-08-01

    Some extended conformal field theories are briefly reviewed. They illustrate how non minimal models of the Virasoro algebra (c≥1) can become minimal with respect to a larger algebra. The accent is put on N-extended superconformal algebras, which are relevant in superstring compactification.

  5. ADVANCES IN IMPEDANCE THEORY

    SciTech Connect

    Stupakov, G.; /SLAC

    2009-06-05

    We review recent progress in the following areas of the impedance theory: calculation of impedance of tapers and small angle collimators; optical approximation and parabolic equation for the high-frequency impedance; impedance due to resistive inserts in a perfectly conducting pipe.

  6. The Theory of Inflation

    NASA Astrophysics Data System (ADS)

    Shandera, Sarah

    2015-04-01

    I will discuss the importance of measurements or improved constraints of primordial tensor modes for theories of the primordial universe. In particular, I will review the implications of the amplitude of the tensor fluctuations for inflation and discuss what an era of B-mode cosmology could teach us about particle physics near the Planck scale.

  7. Theory of orthodontic motions

    NASA Technical Reports Server (NTRS)

    Pepe, S.; Pepe, W. D.; Strauss, A. M.

    1976-01-01

    A general theory of orthodontic motion is developed that can be applied to determine the forces necessary to induce a given tooth to move to the predetermined desirable position. It is assumed that the natural (nonorthodontic) forces may be represented by a periodic function and the orthodontic forces may be superimposed upon the natural forces. A simple expression is derived for the applied stress.

  8. William James's Moral Theory

    ERIC Educational Resources Information Center

    Cooper, Wesley

    2003-01-01

    James's moral theory, primarily as set out in "The Moral Philosopher and the Moral Life" (in his "The Will To Believe" (1897)), is presented here as having a two-level structure, an empirical or historical level where progress toward greater moral inclusiveness is central, and a metaphysical or end-of-history level--James's "kingdom of…

  9. Apprentice Machine Theory Outline.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Div. of Vocational-Technical Schools.

    This volume contains outlines for 16 courses in machine theory that are designed for machine tool apprentices. Addressed in the individual course outlines are the following topics: basic concepts; lathes; milling machines; drills, saws, and shapers; heat treatment and metallurgy; grinders; quality control; hydraulics and pneumatics;…

  10. Handicapping Social Exchange Theory.

    ERIC Educational Resources Information Center

    Mishler, Barbara

    The economic theory of social exchange has some serious shortcomings when applied to minorities--especially the disabled. First, it assumes dyads comprise the basic unit where exchange occurs and that rewards and costs must occur at that level. Second, the model standardizes the experience of white, Western European and American males. The model…

  11. Intuitive Test Theory

    ERIC Educational Resources Information Center

    Braun, Henry I.; Mislevy, Robert

    2005-01-01

    Many of us have an intuitive understanding of physics that works surprisingly well to guide everyday action, but we would not attempt to send a rocket to the moon with it. Unfortunately, the authors argue, our policy makers are not as cautious when it comes to basing our school accountability system on intuitive test theory. Intuitive physics…

  12. Nonlinear Theory and Breakdown

    NASA Technical Reports Server (NTRS)

    Smith, Frank

    2007-01-01

    The main points of recent theoretical and computational studies on boundary-layer transition and turbulence are to be highlighted. The work is based on high Reynolds numbers and attention is drawn to nonlinear interactions, breakdowns and scales. The research focuses in particular on truly nonlinear theories, i.e. those for which the mean-flow profile is completely altered from its original state. There appear to be three such theories dealing with unsteady nonlinear pressure-displacement interactions (I), with vortex/wave interactions (II), and with Euler-scale flows (III). Specific recent findings noted for these three, and in quantitative agreement with experiments, are the following. Nonlinear finite-time break-ups occur in I, leading to sublayer eruption and vortex formation; here the theory agrees with experiments (Nishioka) regarding the first spike. II gives rise to finite-distance blowup of displacement thickness, then interaction and break-up as above; this theory agrees with experiments (Klebanoff, Nishioka) on the formation of three-dimensional streets. III leads to the prediction of turbulent boundary-layer micro-scale, displacement-and stress-sublayer-thicknesses.

  13. Sustaining Writing Theory

    ERIC Educational Resources Information Center

    Patrick, Amy M.

    2010-01-01

    This article examines ways in which the fundamentals of both writing studies and sustainability studies overlap and complement each other, ultimately moving toward a theory of writing that not only is sustainable, but that also sustains writing practice across a variety of areas. For example, in order to be sustainable, both writing and…

  14. Evolutionary Theory under Fire.

    ERIC Educational Resources Information Center

    Lewin, Roger

    1980-01-01

    Summarizes events of a conference on evolutionary biology in Chicago entitled: "Macroevolution." Reviews the theory of modern synthesis, a term used to explain Darwinism in terms of population biology and genetics. Issues presented at the conference are discussed in detail. (CS)

  15. Durkheim's Theory of Anomie

    ERIC Educational Resources Information Center

    Marks, Stephen R.

    1974-01-01

    Durkheim's theory of anomie is traced and argued to be a major development that followed the publication of "Suicide." Recognition of anomie as a macrosociological problem rendered it insoluble by Durkeheim's practical-humanistic orientation. In this connection his remedial proposals -- occupational, political, education, and "creation and…

  16. Canonical field theory

    NASA Astrophysics Data System (ADS)

    You, Setthivoine

    2015-11-01

    A new canonical field theory has been developed to help interpret the interaction between plasma flows and magnetic fields. The theory augments the Lagrangian of general dynamical systems to rigourously demonstrate that canonical helicity transport is valid across single particle, kinetic and fluid regimes, on scales ranging from classical to general relativistic. The Lagrangian is augmented with two extra terms that represent the interaction between the motion of matter and electromagnetic fields. The dynamical equations can then be re-formulated as a canonical form of Maxwell's equations or a canonical form of Ohm's law valid across all non-quantum regimes. The field theory rigourously shows that helicity can be preserved in kinetic regimes and not only fluid regimes, that helicity transfer between species governs the formation of flows or magnetic fields, and that helicity changes little compared to total energy only if density gradients are shallow. The theory suggests a possible interpretation of particle energization partitioning during magnetic reconnection as canonical wave interactions. This work is supported by US DOE Grant DE-SC0010340.

  17. Refiguring Composition through Theory

    ERIC Educational Resources Information Center

    Lynch-Biniek, Amy

    2009-01-01

    In this dissertation, I argue that curricular choices in Composition are overdetermined by the academic labor system and its negative effect on the status of composition theory. Despite the growth of disciplinary knowledge, composition programs are still staffed largely with underpaid and under supported faculty and graduate students, many of whom…

  18. (Mathematics and string theory)

    SciTech Connect

    Not Available

    1992-01-01

    Over the past year our research activities concentrated around: (1) non-commutative differential geometry and its connections with quantum physics and (2) 2-dimensional(super) conformal quantum field theories and related non-linear {sigma}-models. This paper discusses these topics.

  19. VSEPR Theory Demo.

    ERIC Educational Resources Information Center

    Parker, Janice

    1997-01-01

    Presents an easy and inexpensive method to demonstrate VSEPR theory that involves the use of only a ring stand, clamp, cow magnets, and a ball bearing. Has the advantage of producing a series of models using invisible magnetic repulsion forces to show the orientations occurring in molecules where similarly invisible electron repulsion forces are…

  20. Personality Theory and Psychotherapy

    ERIC Educational Resources Information Center

    Fagan, Joen; And Others

    1974-01-01

    This group of articles discusses various aspects of Gestalt Therapy including its major contributions, role in psychotherapy, and contributions of Gestalt psychology in general. There is some discussion of the philosophical background of Gestalt therapy along with Gestalt theory of emotion. A case study and an annotated bibliography are included…

  1. Theory. [SITE 2002 Section].

    ERIC Educational Resources Information Center

    Christensen, Paula, Ed.

    This document contains the following papers on theory from the SITE (Society for Information Technology & Teacher Education) 2002 conference: (1) "The Emerging Ecological Contribution of Online Resources and Tools to K-12 Classrooms" (Therese Laferriere, Robert Bracewell, Alain Breuleux); (2) "Pedagogical Ethnotechnography: A Bifocal Lens To…

  2. Theory. [SITE 2001 Section].

    ERIC Educational Resources Information Center

    Christensen, Paula, Ed.

    This document contains the following papers on theory from the SITE (Society for Information Technology & Teacher Education) 2001 Conference: (1) "IT with Integrity" (Savilla Banister); (2) "Applications of Knowledge Based Evaluation in Educational Technology" (Michael Connell); (3) "A Tutor's Advice Trains a Student's Self-Regulation Skill"…

  3. Personality Theory and TESOL

    ERIC Educational Resources Information Center

    Al Shalabi, M. Fadi; Nodoushan, Mohammad Ali Salmani

    2009-01-01

    In this paper, it is argued, based on evidence from psychological literature, that there are three major approaches to the study of personality, namely (a) situationism, (b) interactionism, and (c) constructivism. It is also noticed that these approached have resulted in the emergence of three major types of personality theories: (1) type…

  4. Personality Theory and TESOL

    ERIC Educational Resources Information Center

    Al Shalabi, M. Fadi; Salmani Nodoushan, Mohammad Ali

    2009-01-01

    In this paper, it is argued, based on evidence from psychological literature, that there are three major approaches to the study of personality, namely (1) situationism, (2) interactionism, and (3) constructivism. It is also noticed that these approaches have resulted in the emergence of three major types of personality theories: (i) type…

  5. Benchmarking nuclear fission theory

    SciTech Connect

    Bertsch, G. F.; Loveland, W.; Nazarewicz, W.; Talou, P.

    2015-05-14

    We suggest a small set of fission observables to be used as test cases for validation of theoretical calculations. Thus, the purpose is to provide common data to facilitate the comparison of different fission theories and models. The proposed observables are chosen from fission barriers, spontaneous fission lifetimes, fission yield characteristics, and fission isomer excitation energies.

  6. A carrier-based analytical theory for negative capacitance symmetric double-gate field effect transistors and its simulation verification

    NASA Astrophysics Data System (ADS)

    Jiang, Chunsheng; Liang, Renrong; Wang, Jing; Xu, Jun

    2015-09-01

    A carrier-based analytical drain current model for negative capacitance symmetric double-gate field effect transistors (NC-SDG FETs) is proposed by solving the differential equation of the carrier, the Pao-Sah current formulation, and the Landau-Khalatnikov equation. The carrier equation is derived from Poisson’s equation and the Boltzmann distribution law. According to the model, an amplified semiconductor surface potential and a steeper subthreshold slope could be obtained with suitable thicknesses of the ferroelectric film and insulator layer at room temperature. Results predicted by the analytical model agree well with those of the numerical simulation from a 2D simulator without any fitting parameters. The analytical model is valid for all operation regions and captures the transitions between them without any auxiliary variables or functions. This model can be used to explore the operating mechanisms of NC-SDG FETs and to optimize device performance.

  7. U-duality between NCOS theory and matrix theory

    NASA Astrophysics Data System (ADS)

    Hyun, Seungjoon

    2001-03-01

    We show that the NCOS (noncommutative open string) theories on torus T p ( p⩽5) are U-dual to matrix theory on torus with electric flux background. Under U-duality, the number of D-branes and the number of units of electric flux get interchanged. Furthermore, under the same U-duality the decoupling limit taken in the NCOS theory maps to the decoupling limit taken in the matrix theory, thus ensure the U-duality between those two class of theories. We consider the energy needed for Higgsing process and some bound states with finite energy and find agreements in both theories.

  8. Non-Relativistic Superstring Theories

    SciTech Connect

    Kim, Bom Soo

    2007-12-14

    We construct a supersymmetric version of the 'critical' non-relativistic bosonic string theory [1] with its manifest global symmetry. We introduce the anticommuting bc CFT which is the super partner of the {beta}{gamma} CFT. The conformal weights of the b and c fields are both 1/2. The action of the fermionic sector can be transformed into that of the relativistic superstring theory. We explicitly quantize the theory with manifest SO(8) symmetry and find that the spectrum is similar to that of Type IIB superstring theory. There is one notable difference: the fermions are non-chiral. We further consider 'noncritical' generalizations of the supersymmetric theory using the superspace formulation. There is an infinite range of possible string theories similar to the supercritical string theories. We comment on the connection between the critical non-relativistic string theory and the lightlike Linear Dilaton theory.

  9. Whole Trait Theory

    PubMed Central

    Fleeson, William; Jayawickreme, Eranda

    2014-01-01

    Personality researchers should modify models of traits to include mechanisms of differential reaction to situations. Whole Trait Theory does so via five main points. First, the descriptive side of traits should be conceptualized as density distributions of states. Second, it is important to provide an explanatory account of the Big 5 traits. Third, adding an explanatory account to the Big 5 creates two parts to traits, an explanatory part and a descriptive part, and these two parts should be recognized as separate entities that are joined into whole traits. Fourth, Whole Trait Theory proposes that the explanatory side of traits consists of social-cognitive mechanisms. Fifth, social-cognitive mechanisms that produce Big-5 states should be identified. PMID:26097268

  10. Redox theory of aging

    PubMed Central

    Jones, Dean P.

    2015-01-01

    Metazoan genomes encode exposure memory systems to enhance survival and reproductive potential by providing mechanisms for an individual to adjust during lifespan to environmental resources and challenges. These systems are inherently redox networks, arising during evolution of complex systems with O2 as a major determinant of bioenergetics, metabolic and structural organization, defense, and reproduction. The network structure decreases flexibility from conception onward due to differentiation and cumulative responses to environment (exposome). The redox theory of aging is that aging is a decline in plasticity of genome–exposome interaction that occurs as a consequence of execution of differentiation and exposure memory systems. This includes compromised mitochondrial and bioenergetic flexibility, impaired food utilization and metabolic homeostasis, decreased barrier and defense capabilities and loss of reproductive fidelity and fecundity. This theory accounts for hallmarks of aging, including failure to maintain oxidative or xenobiotic defenses, mitochondrial integrity, proteostasis, barrier structures, DNA repair, telomeres, immune function, metabolic regulation and regenerative capacity. PMID:25863726

  11. Vector theories in cosmology

    SciTech Connect

    Esposito-Farese, Gilles; Pitrou, Cyril; Uzan, Jean-Philippe

    2010-03-15

    This article provides a general study of the Hamiltonian stability and the hyperbolicity of vector field models involving both a general function of the Faraday tensor and its dual, f(F{sup 2},FF-tilde), as well as a Proca potential for the vector field, V(A{sup 2}). In particular it is demonstrated that theories involving only f(F{sup 2}) do not satisfy the hyperbolicity conditions. It is then shown that in this class of models, the cosmological dynamics always dilutes the vector field. In the case of a nonminimal coupling to gravity, it is established that theories involving Rf(A{sup 2}) or Rf(F{sup 2}) are generically pathologic. To finish, we exhibit a model where the vector field is not diluted during the cosmological evolution, because of a nonminimal vector field-curvature coupling which maintains second-order field equations. The relevance of such models for cosmology is discussed.

  12. Topology and perturbation theory

    NASA Astrophysics Data System (ADS)

    Manjavidze, J.

    2000-08-01

    This paper contains description of the fields nonlinear modes successive quantization scheme. It is shown that the path integrals for absorption part of amplitudes are defined on the Dirac (δ-like) functional measure. This permits arbitrary transformation of the functional integral variables. New form of the perturbation theory achieved by mapping the quantum dynamics in the space WG of the (action, angle)-type collective variables. It is shown that the transformed perturbation theory contributions are accumulated exactly on the boundary ∂WG. Abilities of the developed formalism are illustrated by the Coulomb problem. This model is solved in the WC=(angle, angular momentum, Runge-Lentz vector) space and the reason of its exact integrability is emptiness of ∂WC.

  13. Geometry from Gauge Theory

    NASA Astrophysics Data System (ADS)

    Correa, Diego H.; Silva, Guillermo A.

    2008-07-01

    We discuss how geometrical and topological aspects of certain 1/2-BPS type IIB geometries are captured by their dual operators in N = 4 Super Yang-Mills theory. The type IIB solutions are characterized by arbitrary droplet pictures in a plane and we consider, in particular, axially symmetric droplets. The 1-loop anomalous dimension of the dual gauge theory operators probed with single traces is described by some bosonic lattice Hamiltonians. These Hamiltonians are shown to encode the topology of the droplets. In appropriate BMN limits, the Hamiltonians spectrum reproduces the spectrum of near-BPS string excitations propagating along each of the individual edges of the droplet. We also study semiclassical regimes for the Hamiltonians. For droplets having disconnected constituents, the Hamiltonian admits different complimentary semiclassical descriptions, each one replicating the semiclassical description for closed strings extending in each of the constituents.

  14. Geometry from Gauge Theory

    SciTech Connect

    Correa, Diego H.; Silva, Guillermo A.

    2008-07-28

    We discuss how geometrical and topological aspects of certain (1/2)-BPS type IIB geometries are captured by their dual operators in N = 4 Super Yang-Mills theory. The type IIB solutions are characterized by arbitrary droplet pictures in a plane and we consider, in particular, axially symmetric droplets. The 1-loop anomalous dimension of the dual gauge theory operators probed with single traces is described by some bosonic lattice Hamiltonians. These Hamiltonians are shown to encode the topology of the droplets. In appropriate BMN limits, the Hamiltonians spectrum reproduces the spectrum of near-BPS string excitations propagating along each of the individual edges of the droplet. We also study semiclassical regimes for the Hamiltonians. For droplets having disconnected constituents, the Hamiltonian admits different complimentary semiclassical descriptions, each one replicating the semiclassical description for closed strings extending in each of the constituents.

  15. Panarchy: theory and application

    USGS Publications Warehouse

    Allen, Craig R.; Angeler, David G.; Garmestani, Ahjond S.; Gunderson, Lance H.; Holling, Crawford S.

    2014-01-01

    The concept of panarchy provides a framework that characterizes complex systems of people and nature as dynamically organized and structured within and across scales of space and time. It has been more than a decade since the introduction of panarchy. Over this period, its invocation in peer-reviewed literature has been steadily increasing, but its use remains primarily descriptive and abstract. Here, we discuss the use of the concept in the literature to date, highlight where the concept may be useful, and discuss limitations to the broader applicability of panarchy theory for research in the ecological and social sciences. Finally, we forward a set of testable hypotheses to evaluate key propositions that follow from panarchy theory.

  16. Salinas : theory manual.

    SciTech Connect

    Walsh, Timothy Francis; Reese, Garth M.; Bhardwaj, Manoj Kumar

    2011-11-01

    Salinas provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of structural systems. This manual describes the theory behind many of the constructs in Salinas. For a more detailed description of how to use Salinas, we refer the reader to Salinas, User's Notes. Many of the constructs in Salinas are pulled directly from published material. Where possible, these materials are referenced herein. However, certain functions in Salinas are specific to our implementation. We try to be far more complete in those areas. The theory manual was developed from several sources including general notes, a programmer notes manual, the user's notes and of course the material in the open literature.

  17. Concepts and folk theories

    PubMed Central

    Gelman, Susan A.; Legare, Cristine H.

    2013-01-01

    Human cognition is characterized by enormous variability and structured by universal psychological constraints. The focus of this chapter is on the development of knowledge acquisition because it provides important insight into how the mind interprets new information and constructs new ways of understanding. We propose that mental content can be productively approached by examining the intuitive causal explanatory “theories” that people construct to explain, interpret, and intervene on the world around them, including theories of mind, of biology, or of physics. A substantial amount of research in cognitive developmental psychology supports the integral role of intuitive theories in human learning and provides evidence that they structure, constrain, and guide the development of human cognition. PMID:23436950

  18. Theory on acoustic sources

    NASA Technical Reports Server (NTRS)

    Wright, S. E.

    1978-01-01

    A theory is described for the radiation emission emission from acoustic multipole sources. The sources can be stationary or moving at speeds including supersonic and experience stationary or moving disturbances. The effect of finite source distributions and disturbances is investigated as well as the manner in which they interact. Distinction is made between source distributions that responsed as a function of time and those that respond as a function of space.

  19. Linear system theory

    NASA Technical Reports Server (NTRS)

    Callier, Frank M.; Desoer, Charles A.

    1991-01-01

    The aim of this book is to provide a systematic and rigorous access to the main topics of linear state-space system theory in both the continuous-time case and the discrete-time case; and the I/O description of linear systems. The main thrusts of the work are the analysis of system descriptions and derivations of their properties, LQ-optimal control, state feedback and state estimation, and MIMO unity-feedback systems.

  20. Astrophysical materials science: Theory

    NASA Technical Reports Server (NTRS)

    Ashcroft, N. W.

    1984-01-01

    A method of structural expansions for use in determining the equation of state of metallic hydrogen (and indeed other metals) up to the 4th order in the perturbation theory was developed. The electrical and thermal transport properties of the planetary interior of Jupiter were calculated. The nature of the interaction between molecules at short range and the importance of multicenter terms in arriving at an adequate description of the thermodynamic functions of condensed molecular hydrogen were also investigated.

  1. Physics and proof theory

    PubMed Central

    Paleo, Bruno Woltzenlogel

    2012-01-01

    Axiomatization of Physics (and science in general) has many drawbacks that are correctly criticized by opposing philosophical views of science. This paper shows that, by giving formal proofs a more prominent role in the formalization, many of the drawbacks can be solved and many of the opposing views are naturally conciliated. Moreover, this approach allows, by means of proof theory, to open new conceptual bridges between the disciplines of Physics and Computer Science. PMID:24976655

  2. Dielectronic recombination theory

    SciTech Connect

    LaGattuta, K.J.

    1991-12-31

    A theory now in wide use for the calculation of dielectronic recombination cross sections ({sigma}{sup DR}) and rate coefficients ({alpha}{sup DR}) was one introduced originally by Feshbach for nuclear physics applications, and then later adapted for atomic scattering problems by Hahn. In the following, we briefly review this theory in a very general form, which allows one to account for the effects of overlapping and interacting resonances, as well as continuum-continuum coupling. An extension of our notation will then also allow for the inclusion of the effects of direct radiative recombination, along with a treatment of the interference between radiative and dielectronic recombination. Other approaches to the calculation of {sigma}{sup DR} have been described by Fano and by Seaton. We will not consider those theories here. Calculations of {alpha}{sup DR} have progressed considerably over the last 25 years, since the early work of Burgess. Advances in the reliability of theoretical predictions have also been promoted recently b a variety of direct laboratory measurements of {sigma}{sup DR}. While the measurements of {sigma}{sup DR} for {delta}n {ne} 0 excitations have tended to agree very well with calculations, the case of {delta}n = 0 has been much problematic. However, by invoking a mechanism originally proposed by Jacobs, which takes into account the effect of stray electric fields on high Rydberg states (HRS) participating in the DR process, new calculations have improved the agreement between theory and experiment for these cases. Nevertheless, certain discrepancies still remain.

  3. Situational theory of leadership.

    PubMed

    Waller, D J; Smith, S R; Warnock, J T

    1989-11-01

    The situational theory of leadership and the LEAD instruments for determining leadership style are explained, and the application of the situational leadership theory to the process of planning for and implementing organizational change is described. Early studies of leadership style identified two basic leadership styles: the task-oriented autocratic style and the relationship-oriented democratic style. Subsequent research found that most leaders exhibited one of four combinations of task and relationship behaviors. The situational leadership theory holds that the difference between the effectiveness and ineffectiveness of the four leadership styles is the appropriateness of the leader's behavior to the particular situation in which it is used. The task maturity of the individual or group being led must also be accounted for; follower readiness is defined in terms of the capacity to set high but attainable goals, willingness or ability to accept responsibility, and possession of the necessary education or experience for a specific task. A person's leadership style, range, and adaptability can be determined from the LEADSelf and LEADOther questionnaires. By applying the principles of the situational leadership theory and adapting their managerial styles to specific tasks and levels of follower maturity, the authors were successful in implementing 24-hour pharmacokinetic dosing services provided by staff pharmacists with little previous experience in clinical services. The situational leadership model enables a leader to identify a task, set goals, determine the task maturity of the individual or group, select an appropriate leadership style, and modify the style as change occurs. Pharmacy managers can use this model when implementing clinical pharmacy services. PMID:2589352

  4. Predictive Game Theory

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.

    2005-01-01

    Probability theory governs the outcome of a game; there is a distribution over mixed strat.'s, not a single "equilibrium". To predict a single mixed strategy must use our loss function (external to the game's players. Provides a quantification of any strategy's rationality. Prove rationality falls as cost of computation rises (for players who have not previously interacted). All extends to games with varying numbers of players.

  5. The Least Particle Theory

    NASA Astrophysics Data System (ADS)

    Hartsock, Robert

    2011-10-01

    The Least Particle Theory states that the universe was cast as a great sea of energy. MaX Planck declared a quantum of energy to be the least value in the universe. We declare the quantum of energy to be the least particle in the universe. Stephen Hawking declared quantum mechanics to be of no value in todays gross mechanics. That's like saying the number 1 has no place in mathematics.

  6. k/not theory.

    PubMed

    Chowdhry, M

    2000-01-01

    SUMMARY This paper discusses the role of the personal experience in the writing process. Using a personal/journal writing style the author charts the journey of a recent play Skin into Rainbows from first draft to production. The author plays with the constructs of writing and juxtapositions these against a form of Knot Theory to measure their value, playing with math and language techniques in a search for truth. PMID:24802683

  7. Relativistic theory of gravitation

    SciTech Connect

    Logunov, A.A.; Mestvirishvili, M.A.

    1986-01-01

    In the present paper a relativistic theory of gravitation (RTG) is unambiguously constructed on the basis of the special relativity and geometrization principle. In this a gravitational field is treated as the Faraday--Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG the conservation laws are strictly fulfilled for the energy-moment and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravity. By virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTG leads to an exceptionally strong prediction: The universe is not closed but just ''flat.'' This suggests that in the universe a ''missing mass'' should exist in a form of matter.

  8. Probabilistic theories with purification

    SciTech Connect

    Chiribella, Giulio; D'Ariano, Giacomo Mauro; Perinotti, Paolo

    2010-06-15

    We investigate general probabilistic theories in which every mixed state has a purification, unique up to reversible channels on the purifying system. We show that the purification principle is equivalent to the existence of a reversible realization of every physical process, that is, to the fact that every physical process can be regarded as arising from a reversible interaction of the system with an environment, which is eventually discarded. From the purification principle we also construct an isomorphism between transformations and bipartite states that possesses all structural properties of the Choi-Jamiolkowski isomorphism in quantum theory. Such an isomorphism allows one to prove most of the basic features of quantum theory, like, e.g., existence of pure bipartite states giving perfect correlations in independent experiments, no information without disturbance, no joint discrimination of all pure states, no cloning, teleportation, no programming, no bit commitment, complementarity between correctable channels and deletion channels, characterization of entanglement-breaking channels as measure-and-prepare channels, and others, without resorting to the mathematical framework of Hilbert spaces.

  9. The Theories of Turbulence

    NASA Technical Reports Server (NTRS)

    Bass, J; Agostini, L

    1955-01-01

    The theory of turbulence reached its full growth at the end of the 19th century as a result of the work by Boussinesq and Reynolds. It then underwent a long period of stagnation which ended under the impulse given to it by the development of wind tunnels caused by the needs of aviation. Numerous researchers, attempted to put Reynolds' elementary statistical theory into a more precise form. During the war, some isolated scientists - von Weizsacker and Heisenberg in Germany, Kolmogoroff in Russia, Onsager in the U.S.A. - started a program of research. By a system of assumptions which make it possible to approach the structure of turbulence in well-defined limiting conditions quantitatively, they obtained a certain number of laws on the correlations and the spectrum. Since the late reports have improved the mathematical language of turbulence, it was deemed advisable to start with a detailed account of the mathematical methods applicable to turbulence, inspired at first by the work of the French school, above all for the basic principles, then the work of the foreigners, above all for the theory of the spectrum.

  10. Fairbairn's Theory of Change.

    PubMed

    Celani, David P

    2016-06-01

    Fairbairn's unique structural theory with its three pairs of selves and objects has proven to be a highly usable and practical model of the human psyche, yet it has remained a minor player in the world of psychoanalysis. There are a number of factors that account for its lack of popularity, foremost among them the timing of the model's introduction to the analytic community. Fairbairn's four successive papers that described his metapsychology (1940, 1941, 1943, and 1944) were published just after Freud's death, when his theory was the dominant model of psychoanalysis. Additionally, Fairbairn's model was incomplete, used unfamiliar terminology, and, in its singularity, forced the analyst to abandon drive theory, the heart of Freud's metapsychology. This paper will examine and update Fairbairn's unique model of change-from the outset of pathology that begins with attachment to bad objects, to their metamorphosis into internal structures and finally to techniques of treatment that reduce their influence on the patients' internal world. The treatment section carefully follows Fairbairn's metapsychology, and focuses first on the analyst becoming a good object in the eyes of the patient, then unearthing bad object memories in a safe and compassionate interpersonal environment, engaging the patient's substructures in a manner that does not intensify preexisting internal templates, and finally aiding the patient in resuming his or her stalled emotional development. This exegesis of Fairbairn original model, along with recent modifications that have been made to it, demonstrates the consistency, clear focus, and utility of this little-known metapsychology. PMID:27248039

  11. Constructor theory of information

    PubMed Central

    Deutsch, David; Marletto, Chiara

    2015-01-01

    We propose a theory of information expressed solely in terms of which transformations of physical systems are possible and which are impossible—i.e. in constructor-theoretic terms. It includes conjectured, exact laws of physics expressing the regularities that allow information to be physically instantiated. Although these laws are directly about information, independently of the details of particular physical instantiations, information is not regarded as an a priori mathematical or logical concept, but as something whose nature and properties are determined by the laws of physics alone. This theory solves a problem at the foundations of existing information theory, namely that information and distinguishability are each defined in terms of the other. It also explains the relationship between classical and quantum information, and reveals the single, constructor-theoretic property underlying the most distinctive phenomena associated with the latter, including the lack of in-principle distinguishability of some states, the impossibility of cloning, the existence of pairs of variables that cannot simultaneously have sharp values, the fact that measurement processes can be both deterministic and unpredictable, the irreducible perturbation caused by measurement, and locally inaccessible information (as in entangled systems). PMID:25663803

  12. Hot conformal gauge theories

    NASA Astrophysics Data System (ADS)

    Mojaza, Matin; Pica, Claudio; Sannino, Francesco

    2010-12-01

    We compute the nonzero temperature free energy up to the order g6ln⁡(1/g) in the coupling constant for vectorlike SU(N) gauge theories featuring matter transforming according to different representations of the underlying gauge group. The number of matter fields, i.e. flavors, is arranged in such a way that the theory develops a perturbative stable infrared fixed point at zero temperature. Because of large distance conformality we trade the coupling constant with its fixed point value and define a reduced free energy which depends only on the number of flavors, colors, and matter representation. We show that the reduced free energy changes sign, at the second, fifth, and sixth order in the coupling, when decreasing the number of flavors from the upper end of the conformal window. If the change in sign is interpreted as a signal of an instability of the system then we infer a critical number of flavors. Surprisingly this number, if computed to the order g2, agrees with previous predictions for the lower boundary of the conformal window for nonsupersymmetric gauge theories. The higher order results tend to predict a higher number of critical flavors. These are universal properties, i.e. they are independent of the specific matter representation.

  13. Beyond mean field theory: statistical field theory for neural networks

    PubMed Central

    Buice, Michael A; Chow, Carson C

    2014-01-01

    Mean field theories have been a stalwart for studying the dynamics of networks of coupled neurons. They are convenient because they are relatively simple and possible to analyze. However, classical mean field theory neglects the effects of fluctuations and correlations due to single neuron effects. Here, we consider various possible approaches for going beyond mean field theory and incorporating correlation effects. Statistical field theory methods, in particular the Doi–Peliti–Janssen formalism, are particularly useful in this regard. PMID:25243014

  14. Singularity theory and N = 2 superconformal field theories

    SciTech Connect

    Warner, N.P.

    1989-01-01

    The N = 2 superconformal field theories that appear at the fixed points of the renormalization group flows of Landau-Ginsburg models are discussed. Some of the techniques of singularity theory are employed to deduce properties of these superconformal theories. These ideas are then used to deduce the relationship between Calabi-Yau compactifications and tensored discrete series models. The chiral rings of general N = 2 superconformal theories are also described. 14 refs.

  15. Critical Theory: Implications for School Leadership Theory and Practice.

    ERIC Educational Resources Information Center

    Peca, Kathy

    The school leader's behaviors are inspired by theories, and theories are intrinsic to practice. This paper provides an overview of an emerging perspective in educational administration, critical theory. The paper first highlights the philosophies of Immanuel Kant, Fichte, Hegel, Marx, and the Frankfurt School. It then discusses critical theory…

  16. Informal Theory: The Ignored Link in Theory-to-Practice

    ERIC Educational Resources Information Center

    Love, Patrick

    2012-01-01

    Applying theory to practice in student affairs is dominated by the assumption that formal theory is directly applied to practice. Among the problems with this assumption is that many practitioners believe they must choose between their lived experiences and formal theory, and that graduate students are taught that their experience "does not…

  17. Contrasting Ohlsson's Resubsumption Theory with Chi's Categorical Shift Theory

    ERIC Educational Resources Information Center

    Chi, Michelene T. H.; Brem, Sarah K.

    2009-01-01

    Ohlsson's proposal of resubsumption as the dominant process in conceptual, or nonmonotonic, change presents a worthy challenge to more established theories, such as Chi's theory of ontological shift. The two approaches differ primarily in that Ohlsson's theory emphasizes a process of learning in which narrower, more specific concepts are subsumed…

  18. Targeting the Teaching of Theory.

    ERIC Educational Resources Information Center

    Walton, Charles W.

    1981-01-01

    Suggests that six target areas in the teaching of theory and musicianship need more attention and emphasis: listening, analysis, music reading, creativity, music writing, and keyboard harmony. Discusses content and sequence in music theory and presents two sample applications. (SJL)

  19. Theories Supporting Transfer of Training.

    ERIC Educational Resources Information Center

    Yamnill, Siriporn; McLean, Gary N.

    2001-01-01

    Reviews theories about factors affecting the transfer of training, including theories on motivation (expectancy, equity, goal setting), training transfer design (identical elements, principle, near and far), and transfer climate (organizational). (Contains 36 references.) (SK)

  20. From superstrings to M theory

    SciTech Connect

    Schwarz, John H.

    1999-07-15

    In this talk I will survey some of the basic facts about superstring theories in 10 dimensions and the dualities that relate them to M theory in 11 dimensions. Then I will mention some important unresolved issues.

  1. A new theory of gravity.

    NASA Technical Reports Server (NTRS)

    Ni, W.-T.

    1973-01-01

    A new relativistic theory of gravity is presented. This theory agrees with all experiments to date. It is a metric theory; it is Lagrangian-based; and it possesses a preferred frame with conformally flat space slices. With an appropriate choice of certain adjustable functions and parameters and of the cosmological model, this theory possesses precisely the same post-Newtonian limit as general relativity.

  2. Inquiry Calculus and Information Theory

    NASA Astrophysics Data System (ADS)

    Center, Julian L.

    2009-12-01

    We consider the relationship between information theory and a calculus of inquiries. We show how an inquiry calculus can be constructed using lattice theory, and how the inquiry calculus relates to information theory. The key idea is to identify both inquiries and variables with partitions of the state space. We also show an approach to extending information theory that deals with the problem of negative entropies on questions that do not correspond to partitions.

  3. Modern Biological Theories of Aging

    PubMed Central

    Jin, Kunlin

    2010-01-01

    Despite recent advances in molecular biology and genetics, the mysteries that control human lifespan are yet to be unraveled. Many theories, which fall into two main categories: programmed and error theories, have been proposed to explain the process of aging, but neither of them appears to be fully satisfactory. These theories may interact with each other in a complex way. By understanding and testing the existing and new aging theories, it may be possible to promote successful aging. PMID:21132086

  4. Logarithmic conformal field theory

    NASA Astrophysics Data System (ADS)

    Gainutdinov, Azat; Ridout, David; Runkel, Ingo

    2013-12-01

    Conformal field theory (CFT) has proven to be one of the richest and deepest subjects of modern theoretical and mathematical physics research, especially as regards statistical mechanics and string theory. It has also stimulated an enormous amount of activity in mathematics, shaping and building bridges between seemingly disparate fields through the study of vertex operator algebras, a (partial) axiomatisation of a chiral CFT. One can add to this that the successes of CFT, particularly when applied to statistical lattice models, have also served as an inspiration for mathematicians to develop entirely new fields: the Schramm-Loewner evolution and Smirnov's discrete complex analysis being notable examples. When the energy operator fails to be diagonalisable on the quantum state space, the CFT is said to be logarithmic. Consequently, a logarithmic CFT is one whose quantum space of states is constructed from a collection of representations which includes reducible but indecomposable ones. This qualifier arises because of the consequence that certain correlation functions will possess logarithmic singularities, something that contrasts with the familiar case of power law singularities. While such logarithmic singularities and reducible representations were noted by Rozansky and Saleur in their study of the U (1|1) Wess-Zumino-Witten model in 1992, the link between the non-diagonalisability of the energy operator and logarithmic singularities in correlators is usually ascribed to Gurarie's 1993 article (his paper also contains the first usage of the term 'logarithmic conformal field theory'). The class of CFTs that were under control at this time was quite small. In particular, an enormous amount of work from the statistical mechanics and string theory communities had produced a fairly detailed understanding of the (so-called) rational CFTs. However, physicists from both camps were well aware that applications from many diverse fields required significantly more

  5. Chaos Theory and Post Modernism

    ERIC Educational Resources Information Center

    Snell, Joel

    2009-01-01

    Chaos theory is often associated with post modernism. However, one may make the point that both terms are misunderstood. The point of this article is to define both terms and indicate their relationship. Description: Chaos theory is associated with a definition of a theory dealing with variables (butterflies) that are not directly related to a…

  6. Theories of the Alcoholic Personality.

    ERIC Educational Resources Information Center

    Cox, W. Miles

    Several theories of the alcoholic personality have been devised to determine the relationship between the clusters of personality characteristics of alcoholics and their abuse of alcohol. The oldest and probably best known theory is the dependency theory, formulated in the tradition of classical psychoanalysis, which associates the alcoholic's…

  7. Play Theories: A Contemporary Review.

    ERIC Educational Resources Information Center

    Mellou, Eleni

    1994-01-01

    Reviews two sets of play theories, classical and modern, noting that the reason and purpose for play are explained by classical theories; the role of play in child development, determined by modern theories. States that process of play has dual functions of personal expression and social adaptation. Examines the relationship between play and…

  8. Informational derivation of quantum theory

    NASA Astrophysics Data System (ADS)

    Chiribella, Giulio; D'Ariano, Giacomo Mauro; Perinotti, Paolo

    2011-07-01

    We derive quantum theory from purely informational principles. Five elementary axioms—causality, perfect distinguishability, ideal compression, local distinguishability, and pure conditioning—define a broad class of theories of information processing that can be regarded as standard. One postulate—purification—singles out quantum theory within this class.

  9. Knot Theory with Young Children

    ERIC Educational Resources Information Center

    Handa, Yuichi; Mattman, Thomas

    2008-01-01

    There are many interesting explorations that can be done in knot theory, the study of mathematical knots. This article offers some knot theory activities that are appropriate for elementary grade children. These activities teach some basic concepts from knot theory as a natural extension of commonly-taught geometric ideas. (Contains 10 figures.)

  10. Networking Theories by Iterative Unpacking

    ERIC Educational Resources Information Center

    Koichu, Boris

    2014-01-01

    An iterative unpacking strategy consists of sequencing empirically-based theoretical developments so that at each step of theorizing one theory serves as an overarching conceptual framework, in which another theory, either existing or emerging, is embedded in order to elaborate on the chosen element(s) of the overarching theory. The strategy is…

  11. Coding Issues in Grounded Theory

    ERIC Educational Resources Information Center

    Moghaddam, Alireza

    2006-01-01

    This paper discusses grounded theory as one of the qualitative research designs. It describes how grounded theory generates from data. Three phases of grounded theory--open coding, axial coding, and selective coding--are discussed, along with some of the issues which are the source of debate among grounded theorists, especially between its…

  12. Program Theory Evaluation: Logic Analysis

    ERIC Educational Resources Information Center

    Brousselle, Astrid; Champagne, Francois

    2011-01-01

    Program theory evaluation, which has grown in use over the past 10 years, assesses whether a program is designed in such a way that it can achieve its intended outcomes. This article describes a particular type of program theory evaluation--logic analysis--that allows us to test the plausibility of a program's theory using scientific knowledge.…

  13. The Chaos Theory of Careers.

    ERIC Educational Resources Information Center

    Pryor, Robert G. L.; Bright, Jim

    2003-01-01

    Four theoretical streams--contexualism/ecology, systems theory, realism/constructivism, and chaos theory--contributed to a theory of individuals as complex, unique, nonlinear, adaptive chaotic and open systems. Individuals use purposive action to construct careers but can make maladaptive and inappropriate choices. (Contains 42 references.) (SK)

  14. Dualities in M-theory and Born-Infeld Theory

    SciTech Connect

    Brace, Daniel, M

    2001-08-01

    We discuss two examples of duality. The first arises in the context of toroidal compactification of the discrete light cone quantization of M-theory. In the presence of nontrivial moduli coming from the M-theory three form, it has been conjectured that the system is described by supersymmetric Yang-Mills gauge theory on a noncommutative torus. We are able to provide evidence for this conjecture, by showing that the dualities of this M-theory compactification, which correspond to T-duality in Type IIA string theory, are also dualities of the noncommutative supersymmetric Yang-Mills description. One can also consider this as evidence for the accuracy of the Matrix Theory description of M-theory in this background. The second type of duality is the self-duality of theories with U(1) gauge fields. After discussing the general theory of duality invariance for theories with complex gauge fields, we are able to find a generalization of the well known U(1) Born-Infeld theory that contains any number of gauge fields and which is invariant under the maximal duality group. We then find a supersymmetric extension of our results, and also show that our results can be extended to find Born-Infeld type actions in any even dimensional spacetime.

  15. Field theory of Mottness

    NASA Astrophysics Data System (ADS)

    Choy, Ting-Pong

    One of the leading problems in condensed matter physics is what state of matter obtain when there is a strong Coulomb repulsion between the electrons. One of the exotic examples is the high temperature superconductivity which was discovered in copper-oxide ceramics (cuprates) over twenty years ago. Thus far, a satisfactory theory is absent. In particular, the nature of the electron state outside the superconducting phase remains controversial. In analogy with the BCS theory of a conventional superconductor, in which the metal is well known to be a Fermi liquid, a complete understanding of the normal state of cuprate is necessary prior to the study of the superconducting mechanism in the high temperature superconductors. In this thesis, we will provide a theory for these exotic normal state properties by studying the minimal microscopic model which captures the physics of strong electron correlation. Even in such a simple microscopic model, striking properties including charge localization and presence of a Luttinger surface resemble the normal state properties of cuprate. An exact low energy theory of a doped Mott insulator will be constructed by explicitly integrating (rather than projecting) out the degrees of freedom far away from the chemical potential. The exact low energy theory contains degrees of freedom that cannot be obtained from projective schemes. In particular, a charge 2e bosonic field which is not made out of elemental excitations emerges at low energies. Such a field accounts for dynamical spectral weight transfer across the Mott gap. At half-filling, we show that two such excitations emerge which play a crucial role in preserving the Luttinger surface along which the single-particle Green function vanishes. We also apply this method to the Anderson-U impurity and show that in addition to the Kondo interaction, bosonic degrees of freedom appear as well. We show that many of the normal state properties of the cuprates can result from this new charge

  16. Sintering Theory and Practice

    NASA Astrophysics Data System (ADS)

    German, Randall M.

    1996-01-01

    Although sintering is an essential process in the manufacture of ceramics and certain metals, as well as several other industrial operations, until now, no single book has treated both the background theory and the practical application of this complex and often delicate procedure. In Sintering Theory and Practice, leading researcher and materials engineer Randall M. German presents a comprehensive treatment of this subject that will be of great use to manufacturers and scientists alike. This practical guide to sintering considers the fact that while the bonding process improves strength and other engineering properties of the compacted material, inappropriate methods of control may lead to cracking, distortion, and other defects. It provides a working knowledge of sintering, and shows how to avoid problems while accounting for variables such as particle size, maximum temperature, time at that temperature, and other problems that may cause changes in processing. The book describes the fundamental atomic events that govern the transformation from particles to solid, covers all forms of the sintering process, and provides a summary of many actual production cycles. Building from the ground up, it begins with definitions and progresses to measurement techniques, easing the transition, especially for students, into advanced topics such as single-phase solid-state sintering, microstructure changes, the complications of mixed particles, and pressure-assisted sintering. German draws on some six thousand references to provide a coherent and lucid treatment of the subject, making scientific principles and practical applications accessible to both students and professionals. In the process, he also points out and avoids the pitfalls found in various competing theories, concepts, and mathematical disputes within the field. A unique opportunity to discover what sintering is all about--both in theory and in practice What is sintering? We see the end product of this thermal

  17. Logarithmic conformal field theory

    NASA Astrophysics Data System (ADS)

    Gainutdinov, Azat; Ridout, David; Runkel, Ingo

    2013-12-01

    Conformal field theory (CFT) has proven to be one of the richest and deepest subjects of modern theoretical and mathematical physics research, especially as regards statistical mechanics and string theory. It has also stimulated an enormous amount of activity in mathematics, shaping and building bridges between seemingly disparate fields through the study of vertex operator algebras, a (partial) axiomatisation of a chiral CFT. One can add to this that the successes of CFT, particularly when applied to statistical lattice models, have also served as an inspiration for mathematicians to develop entirely new fields: the Schramm-Loewner evolution and Smirnov's discrete complex analysis being notable examples. When the energy operator fails to be diagonalisable on the quantum state space, the CFT is said to be logarithmic. Consequently, a logarithmic CFT is one whose quantum space of states is constructed from a collection of representations which includes reducible but indecomposable ones. This qualifier arises because of the consequence that certain correlation functions will possess logarithmic singularities, something that contrasts with the familiar case of power law singularities. While such logarithmic singularities and reducible representations were noted by Rozansky and Saleur in their study of the U (1|1) Wess-Zumino-Witten model in 1992, the link between the non-diagonalisability of the energy operator and logarithmic singularities in correlators is usually ascribed to Gurarie's 1993 article (his paper also contains the first usage of the term 'logarithmic conformal field theory'). The class of CFTs that were under control at this time was quite small. In particular, an enormous amount of work from the statistical mechanics and string theory communities had produced a fairly detailed understanding of the (so-called) rational CFTs. However, physicists from both camps were well aware that applications from many diverse fields required significantly more

  18. Theory and spectroscopy

    NASA Astrophysics Data System (ADS)

    Stanton, John F.

    2015-05-01

    The interaction between quantum-mechanical theory and spectroscopy is one of the most fertile interfaces in all of science, and has a richly storied history. Of course it was spectroscopy that provided essentially all of the evidence that not all was well (or, perhaps more correctly put, complete) with the world of 19th century classical physics. From the discoveries of the dark lines in the solar spectrum by Fraunhöfer in 1814 to the curiously simple geometric formula discovered seventy years later that described the hydrogen atom spectrum, spectroscopy and spectroscopists have consistently identified the areas of atomic and molecular science that are most in need of hard thinking by theoreticians. The rest of the story, of course, is well-known: spectroscopic results were used to understand and motivate the theory of radioactivity and ultimately the quantum theory, first in its immature form that was roughly contemporaneous with the first World War, and then the Heisenberg-Schrödinger-Dirac version that has withstood the test of time. Since the basic principles of quantum mechanics ware first understood, the subject has been successfully used to understand the patterns found in spectra, and how these relate to molecular structure, symmetry, energy levels, and dynamics. But further understanding required to attain these intellectual achievements has often come only as a result of vital and productive interactions between theoreticians and spectroscopists (of course, many people have strengths in both areas). And indeed, a field that might be termed "theoretical spectroscopy" was cultivated and is now an important part of modern molecular science.

  19. A theory of deterrence

    SciTech Connect

    Erickson, S.A. Jr.

    1991-03-20

    The purpose of this monograph is to start a theory of deterrence which has the capability of quantitatively answering the question of what is required to deter a nation or alliance from certain acts. Despite the existence of voluminous writing on deterrence, from the beginning of the nuclear age and even before, none of it attempts a theoretical discussion of how to calculate what it takes to deter a country from committing some acts which are objectionable to another country. Many theories of deterrence have already been created. They have exclusively been of two separate forms -- those of the social scientists, which deal with political questions, and how the concept of mass destruction psychological deters the initiation of war; and those of the mathematicians, who model the quantities of one country`s arsenal of strategic systems needed to destroy a certain portion of another country`s. Only the latter is quantitative, but they lack an essential element added to answer the question ``How much is enough?`` In order to use the techniques of operations research on the questions of what type and amount of weapons are adequate for deterrence, the definitions of quantities occurring in the calculations need to be made in quantifiable way. Numbers of weapons have been the only quantified parameter in previous deterrence calculations. Yet weapons alone do not deter. The threat of destruction and damage does. How is that threatenable damage to be measured, and as through defensive system construction, counterforce capability improvement, arms control, or other means, it becomes less when is the threshold for deterrence met and crossed? The calculation of this damage, and the implication of that damage to decision-makers capable of making a war initiation decision, is a complicated process, and it is what constitutes a theory of deterrence. 36 refs.

  20. Theory of wing rock

    NASA Technical Reports Server (NTRS)

    Hsu, C. H.; Lan, C. E.

    1984-01-01

    A theory is developed for predicting wing rock characteristics. From available data, it can be concluded that wing rock is triggered by flow asymmetries, developed by negative or weakly positive roll damping, and sustained by nonlinear aerodynamic roll damping. A new nonlinear aerodynamic model that includes all essential aerodynamic nonlinearities is developed. The Beecham-Titchener method is applied to obtain approximate analytic solutions for the amplitude and frequency of the limit cycle based on the three degree-of-freedom equations of motion. An iterative scheme is developed to calculate the average aerodynamic derivatives and dynamic characteristics at limit cycle conditions. Good agreement between theoretical and experimental results is obtained.

  1. Theory of optical flashes

    SciTech Connect

    London, R.A.

    1983-09-30

    The theory of optical flashes created by x- and ..gamma..-ray burst heating of stars in binaries is reviewed. Calculations of spectra due to steady-state x-ray reprocessing and estimates of the fundamental time scales for the non-steady case are discussed. The results are applied to the extant optical data from x-ray and ..gamma..-ray bursters. Finally, I review predictions of flashes from ..gamma..-ray bursters detectable by a state of the art all-sky optical monitor.

  2. Nucleus from string theory

    NASA Astrophysics Data System (ADS)

    Hashimoto, Koji; Morita, Takeshi

    2011-08-01

    In generic holographic QCD, we find that baryons are bound to form a nucleus, and that its radius obeys the empirically-known mass-number (A) dependence r∝A1/3 for large A. Our result is robust, since we use only a generic property of D-brane actions in string theory. We also show that nucleons are bound completely in a finite volume. Furthermore, employing a concrete holographic model (derived by Hashimoto, Iizuka, and Yi, describing a multibaryon system in the Sakai-Sugimoto model), the nuclear radius is evaluated as O(1)×A1/3[fm], which is consistent with experiments.

  3. Theory and modeling group

    NASA Astrophysics Data System (ADS)

    Holman, Gordon D.

    The primary purpose of the Theory and Modeling Group meeting was to identify scientists engaged or interested in theoretical work pertinent to the Max '91 program, and to encourage theorists to pursue modeling which is directly relevant to data which can be expected to result from the program. A list of participants and their institutions is presented. Two solar flare paradigms were discussed during the meeting -- the importance of magnetic reconnection in flares and the applicability of numerical simulation results to solar flare studies.

  4. Unifying Theories of Confidentiality

    NASA Astrophysics Data System (ADS)

    Banks, Michael J.; Jacob, Jeremy L.

    This paper presents a framework for reasoning about the security of confidential data within software systems. A novelty is that we use Hoare and He's Unifying Theories of Programming (UTP) to do so and derive advantage from this choice. We identify how information flow between users can be modelled in the UTP and devise conditions for verifying that system designs may not leak secret information to untrusted users. We also investigate how these conditions can be combined with existing notions of refinement to produce refinement relations suitable for deriving secure implementations of systems.

  5. Theory and modeling group

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.

    1989-01-01

    The primary purpose of the Theory and Modeling Group meeting was to identify scientists engaged or interested in theoretical work pertinent to the Max '91 program, and to encourage theorists to pursue modeling which is directly relevant to data which can be expected to result from the program. A list of participants and their institutions is presented. Two solar flare paradigms were discussed during the meeting -- the importance of magnetic reconnection in flares and the applicability of numerical simulation results to solar flare studies.

  6. Theories of the self.

    PubMed

    Mann, D W

    1996-01-01

    This paper reviews the historical and conceptual development of theories concerning the nature of the self, highlighting both common themes and differences among representative theorists and their systems. The evolution of the concept of the self is traced from its ancient foundations in Vedic thought through its classical period (Socrates) and into the present century, where the work of James, Freud, Klein, Fairbairn, Sullivan, Winnicott, and Kohut illustrate the major modern refinements of the concept. The paper concludes with my own recent work toward a synthesis of these developments. PMID:9384992

  7. Theory of ultracold superstrings

    SciTech Connect

    Snoek, Michiel; Vandoren, S.; Stoof, H. T. C.

    2006-09-15

    The combination of a vortex line in a one-dimensional optical lattice with fermions bound to the vortex core makes up an ultracold superstring. We give a detailed derivation of the way to make this supersymmetric string in the laboratory. In particular, we discuss the presence of a fermionic bound state in the vortex core and the tuning of the laser beams needed to achieve supersymmetry. Moreover, we discuss experimental consequences of supersymmetry and identify the precise supersymmetry in the problem. Finally, we make the mathematical connection with string theory.

  8. Neutrinos: Theory and Phenomenology

    SciTech Connect

    Parke, Stephen

    2013-10-22

    The theory and phenomenology of neutrinos will be addressed, especially that relating to the observation of neutrino flavor transformations. The current status and implications for future experiments will be discussed with special emphasis on the experiments that will determine the neutrino mass ordering, the dominant flavor content of the neutrino mass eigenstate with the smallest electron neutrino content and the size of CP violation in the neutrino sector. Beyond the neutrino Standard Model, the evidence for and a possible definitive experiment to confirm or refute the existence of light sterile neutrinos will be briefly discussed.

  9. Theory of gearing

    NASA Technical Reports Server (NTRS)

    Litvin, Faydor L.

    1989-01-01

    Basic mathematical problems on the theory of gearing are covered in this book, such as the necessary and sufficient conditions of envelope existence, relations between principal curvatures and directions for surfaces of mating gears. Also included are singularities of surfaces accompanied by undercutting the process of generation, the phenomena of envelope of lines of contact, and the principles for generation of conjugate surfaces. Special attention is given to the algorithms for computer aided simulation of meshing and tooth contact. This edition was complemented with the results of research recently performed by the author and his doctoral students. The book contains sample problems and also problems for the reader to solve.

  10. Resolutions in Cotorsion Theories

    NASA Astrophysics Data System (ADS)

    Akinci, Karen; Alizade, Rafail

    2010-11-01

    We consider the λ- (μ-) and λ¯- (μ¯-) dimensions of modules taken under a cotorsion theory (F, C) satisfying the Hereditary Condition, and establish some inequalities between the dimensions of the modules of a short exact sequence, not necessarily Hom (F, -) exact. We investigate the question of whether the property of having a (special) F- or C-resolution of length n is resolving, closed under extensions or coresolving and establish some inequalities connecting the λ- (μ-) and λ¯- (μ¯-) dimensions of modules in a short exact sequence.

  11. Antenna theory and design

    NASA Astrophysics Data System (ADS)

    Stutzman, W. L.; Thiele, G. A.

    Antenna fundamentals and definitions are examined, taking into account electromagnetic fundamentals, the solution of Maxwell's equations for radiation problems, the ideal dipole, the radiation pattern, directivity and gain, reciprocity and antenna pattern measurements, antenna impedance and radiation efficiency, antenna polarization, antennas in communication links and radar, and the receiving properties of antennas. Some simple radiating systems are considered along with arrays, line sources, wire antennas, broadband antennas, moment methods, and aperture antennas. High-frequency methods and aspects of antenna synthesis are discussed, giving attention to geometrical optics, physical optics, wedge diffraction theory, the ray-fixed coordinate system, the cylindrical parabolic antenna, and linear array methods.

  12. Vector Theory of Ultrasonic Imaging

    NASA Astrophysics Data System (ADS)

    Gan, W. S.

    So far, works on ultrasonic diffraction imaging are based on scalar theory of sound wave. This is not correct as sound has vector nature. But when sound propagates in solids, its vector nature has to be considered as polarization occurs and transverse wave as well as longitudinal wave will appear. Vector theory is especially needed when the obstacle size is smaller than the wavelength. We use the Smythe-Kirchhoff approach for the vector theory of diffraction. We derive the image formation theory based on the vector diffraction theory. The effect of polarization on acoustical imaging is discussed.

  13. A Transversely Isotropic Thermoelastic Theory

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.

    1989-01-01

    A continuum theory is presented for representing the thermoelastic behavior of composites that can be idealized as transversely isotropic. This theory is consistent with anisotropic viscoplastic theories being developed presently at NASA Lewis Research Center. A multiaxial statement of the theory is presented, as well as plane stress and plane strain reductions. Experimental determination of the required material parameters and their theoretical constraints are discussed. Simple homogeneously stressed elements are examined to illustrate the effect of fiber orientation on the resulting strain distribution. Finally, the multiaxial stress-strain relations are expressed in matrix form to simplify and accelerate implementation of the theory into structural analysis codes.

  14. Endochronic theory of dynamic viscoplasticity

    SciTech Connect

    Lin, H.C.

    1983-06-01

    This report summarizes the work completed on a project concerned with engineering models in dyanmic plasticity. The concept of the endochronic theory of viscoplasticity and its subsequent improvement are discussed briefly. Applications and extensions of the theory to various dynamic problems are presented. In particular, the strain-rate effect in the improved endochronic theory and its application to wave propagation problems are discussed. Comparing the numerical results with other calculations and experimental data, it appears that endochronic theory provides a promising representation of realistic material behavior. At the same time endochronic theory is often numerically more efficient than other formulations.

  15. Recent developments in superstring theory

    PubMed Central

    Schwarz, John H.

    1998-01-01

    There have been many remarkable developments in our understanding of superstring theory in the past few years, a period that has been described as “the second superstring revolution.” In particular, what once appeared to be five distinct theories are now recognized to be different manifestations of a single (unique) underlying theory. Some of the evidence for this, based on dualities and the appearance of an eleventh dimension, is presented. Also, a specific proposal for the underlying theory, called “Matrix Theory,” is described. The presentation is intended primarily for the benefit of nonexperts. PMID:9501161

  16. Recent developments in superstring theory.

    PubMed

    Schwarz, J H

    1998-03-17

    There have been many remarkable developments in our understanding of superstring theory in the past few years, a period that has been described as "the second superstring revolution." In particular, what once appeared to be five distinct theories are now recognized to be different manifestations of a single (unique) underlying theory. Some of the evidence for this, based on dualities and the appearance of an eleventh dimension, is presented. Also, a specific proposal for the underlying theory, called "Matrix Theory," is described. The presentation is intended primarily for the benefit of nonexperts. PMID:9501161

  17. Foundations of Satisfiability Modulo Theories

    NASA Astrophysics Data System (ADS)

    Tinelli, Cesare

    Satisfiability Modulo Theories (SMT) studies methods for checking the (un)- satisfiability of first-order formulas with respect to a given logical theory T . Distinguishing features of SMT, as opposed to traditional theorem proving, are that the background theory T need not be finitely or even first-order axiomatizable, and that specialized inference methods are used for each theory of interest. By being theory-specific and restricting their language to certain classes of formulas (such as, typically but not exclusively, quantifier-free formulas), these methods can be implemented into solvers that are more efficient in practice than general-purpose theorem provers.

  18. [Polyvagal theory and emotional trauma].

    PubMed

    Leikola, Anssi; Mäkelä, Jukka; Punkanen, Marko

    2016-01-01

    According to the polyvagal theory, the autonomic nervous system can, in deviation from the conventional theory, be divided in three distinct parts that are in hierarchical relationship with each other. The most-primitive autonomic control results in depression of vital functions, the more evolved one in fighting or escape and the most evolved one in social involvement. Practical application of the polyvagal theory has resulted in positive results above all in the treatment of emotional trauma. in Finland, therapy of complex trauma is founded on the theory of structural dissociation of the personality, which together with the polyvagal theory forms a practical frame of reference for psychotherapeutic work. PMID:27044181

  19. CME Theory and Models

    NASA Astrophysics Data System (ADS)

    Forbes, T. G.; Linker, J. A.; Chen, J.; Cid, C.; Kóta, J.; Lee, M. A.; Mann, G.; Mikić, Z.; Potgieter, M. S.; Schmidt, J. M.; Siscoe, G. L.; Vainio, R.; Antiochos, S. K.; Riley, P.

    This chapter provides an overview of current efforts in the theory and modeling of CMEs. Five key areas are discussed: (1) CME initiation; (2) CME evolution and propagation; (3) the structure of interplanetary CMEs derived from flux rope modeling; (4) CME shock formation in the inner corona; and (5) particle acceleration and transport at CME driven shocks. In the section on CME initiation three contemporary models are highlighted. Two of these focus on how energy stored in the coronal magnetic field can be released violently to drive CMEs. The third model assumes that CMEs can be directly driven by currents from below the photosphere. CMEs evolve considerably as they expand from the magnetically dominated lower corona into the advectively dominated solar wind. The section on evolution and propagation presents two approaches to the problem. One is primarily analytical and focuses on the key physical processes involved. The other is primarily numerical and illustrates the complexity of possible interactions between the CME and the ambient medium. The section on flux rope fitting reviews the accuracy and reliability of various methods. The section on shock formation considers the effect of the rapid decrease in the magnetic field and plasma density with height. Finally, in the section on particle acceleration and transport, some recent developments in the theory of diffusive particle acceleration at CME shocks are discussed. These include efforts to combine self-consistently the process of particle acceleration in the vicinity of the shock with the subsequent escape and transport of particles to distant regions.

  20. CME Theory and Models

    NASA Astrophysics Data System (ADS)

    Forbes, T. G.; Linker, J. A.; Chen, J.; Cid, C.; Kóta, J.; Lee, M. A.; Mann, G.; Mikić, Z.; Potgieter, M. S.; Schmidt, J. M.; Siscoe, G. L.; Vainio, R.; Antiochos, S. K.; Riley, P.

    2006-03-01

    This chapter provides an overview of current efforts in the theory and modeling of CMEs. Five key areas are discussed: (1) CME initiation; (2) CME evolution and propagation; (3) the structure of interplanetary CMEs derived from flux rope modeling; (4) CME shock formation in the inner corona; and (5) particle acceleration and transport at CME driven shocks. In the section on CME initiation three contemporary models are highlighted. Two of these focus on how energy stored in the coronal magnetic field can be released violently to drive CMEs. The third model assumes that CMEs can be directly driven by currents from below the photosphere. CMEs evolve considerably as they expand from the magnetically dominated lower corona into the advectively dominated solar wind. The section on evolution and propagation presents two approaches to the problem. One is primarily analytical and focuses on the key physical processes involved. The other is primarily numerical and illustrates the complexity of possible interactions between the CME and the ambient medium. The section on flux rope fitting reviews the accuracy and reliability of various methods. The section on shock formation considers the effect of the rapid decrease in the magnetic field and plasma density with height. Finally, in the section on particle acceleration and transport, some recent developments in the theory of diffusive particle acceleration at CME shocks are discussed. These include efforts to combine self-consistently the process of particle acceleration in the vicinity of the shock with the subsequent escape and transport of particles to distant regions.

  1. Deadman theory revisited12.

    PubMed

    Itoi, Eiji; Nagamoto, Hideaki; Sano, Hirotaka; Yamamoto, Nobuyuki; Kawakami, Jun

    2016-08-12

    The deadman theory is composed of two angles: θ1 and θ2, and it is recommended that both be less than or equal to 45°. Based on this theory, surgeons insert the anchor at 45°. However, the biomechanical studies show controversial data. We reviewed the original article and the biomechanical studies in the literature. We further performed three additional studies: 1) a finite element analysis to calculate the pullout strength of thread-less anchors inserted at 45°, 90°, and 135° to the polyurethane foam; 2) the same pullout test using thread-less anchors and the polyurethane foam; and 3) the same pullout test using metal threaded suture anchors and the simulated cortical bone. From the review and the additional studies, we came to the following explanations for the controversy: #1, the trigonometric calculation is not always applicable because of bone deformation; #2, insertion angle of 45° is the best for a thread-less anchor, but not for a threaded anchor; #3, θ1⩽45° is true, but it is not equivalent to inserting an anchor at 45°. In conclusion, insertion angle of 45° is the strongest for a thread-less anchor, but 90° is the strongest for a threaded anchor. The pullout strength depends on the inclination of the anchor, friction of the anchor-bone interface, and quality of the bone. PMID:27567773

  2. Aspects of Quantum Theory

    NASA Astrophysics Data System (ADS)

    Salam, Abdus; Wigner, E. P.

    2010-03-01

    Preface; List of contributors; Bibliography of P. A. M. Dirac; 1. Dirac in Cambridge R. J. Eden and J. C. Polkinghorne; 2. Travels with Dirac in the Rockies J. H. Van Vleck; 3. 'The golden age of theoretical physics': P. A. M. Dirac's scientific work from 1924 to 1933 Jagdish Mehra; 4. Foundation of quantum field theory Res Jost; 5. The early history of the theory of electron: 1897-1947 A. Pais; 6. The Dirac equation A. S. Wightman; 7. Fermi-Dirac statistics Rudolph Peierls; 8. Indefinite metric in state space W. Heisenberg; 9. On bras and kets J. M. Jauch; 10. The Poisson bracket C. Lanczos; 11. La 'fonction' et les noyaux L. Schwartz; 12. On the Dirac magnetic poles Edoardo Amadli and Nicola Cabibbo; 13. The fundamental constants and their time variation Freeman J. Dyson; 14. On the time-energy uncertainty relation Eugene P. Wigner; 15. The path-integral quantisation of gravity Abdus Salam and J. Strathdee; Index; Plates.

  3. Consistent Quantum Theory

    NASA Astrophysics Data System (ADS)

    Griffiths, Robert B.

    2001-11-01

    Quantum mechanics is one of the most fundamental yet difficult subjects in physics. Nonrelativistic quantum theory is presented here in a clear and systematic fashion, integrating Born's probabilistic interpretation with Schrödinger dynamics. Basic quantum principles are illustrated with simple examples requiring no mathematics beyond linear algebra and elementary probability theory. The quantum measurement process is consistently analyzed using fundamental quantum principles without referring to measurement. These same principles are used to resolve several of the paradoxes that have long perplexed physicists, including the double slit and Schrödinger's cat. The consistent histories formalism used here was first introduced by the author, and extended by M. Gell-Mann, J. Hartle and R. Omnès. Essential for researchers yet accessible to advanced undergraduate students in physics, chemistry, mathematics, and computer science, this book is supplementary to standard textbooks. It will also be of interest to physicists and philosophers working on the foundations of quantum mechanics. Comprehensive account Written by one of the main figures in the field Paperback edition of successful work on philosophy of quantum mechanics

  4. Disorder in large- N theories

    NASA Astrophysics Data System (ADS)

    Aharony, Ofer; Komargodski, Zohar; Yankielowicz, Shimon

    2016-04-01

    We consider Euclidean Conformal Field Theories perturbed by quenched disorder, namely by random fluctuations in their couplings. Such theories are relevant for second-order phase transitions in the presence of impurities or other forms of disorder. Theories with quenched disorder often flow to new fixed points of the renormalization group. We begin with disorder in free field theories. Imry and Ma showed that disordered free fields can only exist for d > 4. For d > 4 we show that disorder leads to new fixed points which are not scale-invariant. We then move on to large- N theories (vector models or gauge theories in the `t Hooft limit). We compute exactly the beta function for the disorder, and the correlation functions of the disordered theory. We generalize the results of Imry and Ma by showing that such disordered theories exist only when disorder couples to operators of dimension Δ > d/4. Sometimes the disordered fixed points are not scale-invariant, and in other cases they have unconventional dependence on the disorder, including non-trivial effects due to irrelevant operators. Holography maps disorder in conformal theories to stochastic differential equations in a higher dimensional space. We use this dictionary to reproduce our field theory results. We also study the leading 1 /N corrections, both by field theory methods and by holography. These corrections are particularly important when disorder scales with the number of degrees of freedom.

  5. Forgetting and remembering alienation theory.

    PubMed

    Yuill, Chris

    2011-01-01

    Alienation theory has acted as the stimulus for a great deal of research and writing in the history of sociology. It has formed the basis of many sociological "classics" focused on the workplace and the experiences of workers, and has also been mobilized to chart wider social malaise and individual troubles. Alienation theory usage has, however, declined significantly since its heyday of the 1960s and 1970s. Here, the reasons why alienation theory was "forgotten" and what can be gained by "remembering" alienation theory are explored. to realize this ambition this article proceeds by (1) briefly visiting differing definitions of alienation theory, before charting its high point, and the various debates and tensions of the time, during the 1960s and 1970s; (2) analysing the reasons why alienation theory fell from grace from the 1980s onwards; (3) elaborating how and why alienation theory is still relevant for sociology and the wider social sciences today. PMID:21809508

  6. M theory fivebrane and SQCD

    SciTech Connect

    Ooguri, H. |

    1997-09-01

    A low energy effective theory of parallel D(irichlet) branes is a gauge theory with sixteen supercharges, but one can consider a web of brane to realize situations with reduced number of supersymmetry. In this talk, the authors discusses four-dimensional theories with N = 1 and 2 supersymmetry (i.e. four and eight supercharges). In the case of theories with N = 2 supersymmetry, the exact description of the Coulomb branch is given by reinterpreting the web of branes as a configuration of a single fivebrane in the IIA theory. Recently the authors studied the case with N = 1 supersymmetry, and found that description in terms of the fivebrane in M Theory captures strong coupling dynamics of the N = 1 gauge theory in four dimensions. In particular, they found that the configuration of the fivebrane geometrically encodes information on the Affleck-Dine-Seiberg superpotential and the structure of the quantum moduli space of vacua.

  7. [Shedding light on chaos theory].

    PubMed

    Chou, Shieu-Ming

    2004-06-01

    Gleick (1987) said that only three twentieth century scientific theories would be important enough to continue be of use in the twenty-first century: The Theory of Relativity, Quantum Theory, and Chaos Theory. Chaos Theory has become a craze which is being used to forge a new scientific system. It has also been extensively applied in a variety of professions. The purpose of this article is to introduce chaos theory and its nursing applications. Chaos is a sign of regular order. This is to say that chaos theory emphasizes the intrinsic potential for regular order within disordered phenomena. It is to be hoped that this article will inspire more nursing scientists to apply this concept to clinical, research, or administrative fields in our profession. PMID:15211774

  8. Relevance theory: pragmatics and cognition.

    PubMed

    Wearing, Catherine J

    2015-01-01

    Relevance Theory is a cognitively oriented theory of pragmatics, i.e., a theory of language use. It builds on the seminal work of H.P. Grice(1) to develop a pragmatic theory which is at once philosophically sensitive and empirically plausible (in both psychological and evolutionary terms). This entry reviews the central commitments and chief contributions of Relevance Theory, including its Gricean commitment to the centrality of intention-reading and inference in communication; the cognitively grounded notion of relevance which provides the mechanism for explaining pragmatic interpretation as an intention-driven, inferential process; and several key applications of the theory (lexical pragmatics, metaphor and irony, procedural meaning). Relevance Theory is an important contribution to our understanding of the pragmatics of communication. PMID:26263065

  9. Changing theories of change: strategic shifting in implicit theory endorsement.

    PubMed

    Leith, Scott A; Ward, Cindy L P; Giacomin, Miranda; Landau, Enoch S; Ehrlinger, Joyce; Wilson, Anne E

    2014-10-01

    People differ in their implicit theories about the malleability of characteristics such as intelligence and personality. These relatively chronic theories can be experimentally altered, and can be affected by parent or teacher feedback. Little is known about whether people might selectively shift their implicit beliefs in response to salient situational goals. We predicted that, when motivated to reach a desired conclusion, people might subtly shift their implicit theories of change and stability to garner supporting evidence for their desired position. Any motivated context in which a particular lay theory would help people to reach a preferred directional conclusion could elicit shifts in theory endorsement. We examine a variety of motivated situational contexts across 7 studies, finding that people's theories of change shifted in line with goals to protect self and liked others and to cast aspersions on disliked others. Studies 1-3 demonstrate how people regulate their implicit theories to manage self-view by more strongly endorsing an incremental theory after threatening performance feedback or memories of failure. Studies 4-6 revealed that people regulate the implicit theories they hold about favored and reviled political candidates, endorsing an incremental theory to forgive preferred candidates for past gaffes but leaning toward an entity theory to ensure past failings "stick" to opponents. Finally, in Study 7, people who were most threatened by a previously convicted child sex offender (i.e., parents reading about the offender moving to their neighborhood) gravitated most to the entity view that others do not change. Although chronic implicit theories are undoubtedly meaningful, this research reveals a previously unexplored source of fluidity by highlighting the active role people play in managing their implicit theories in response to goals. PMID:25222649

  10. DUSEL Theory White Paper

    SciTech Connect

    Raby, S.; Walker, T.; Babu, K.S.; Baer, H.; Balantekin, A.B.; Barger, V.; Berezhiani, Z.; de Gouvea, A.; Dermisek, R.; Dolgov, A.; Fileviez Perez, P.; Gabadadze, G.; Gal, A.; Gondolo, P.; Haxton, W.; Kamyshkov, Y.; Kayser, B.; Kearns, E.; Kopeliovich, B.; Lande, K.; Marfatia, D.; /Kansas U. /Maryland U. /Northeastern U. /UC, Berkeley /LBL, Berkeley /Minnesota U. /SLAC /UC, Santa Cruz /SUNY, Stony Brook /Oklahoma State U. /Iowa State U. /Carnegie Mellon U.

    2011-11-14

    The scientific case for a Deep Underground Science and Engineering Laboratory [DUSEL] located at the Homestake mine in Lead, South Dakota is exceptional. The site of this future laboratory already claims a discovery for the detection of solar neutrinos, leading to a Nobel Prize for Ray Davis. Moreover this work provided the first step to our present understanding of solar neutrino oscillations and a chink in the armor of the Standard Model of particle physics. We now know, from several experiments located in deep underground experimental laboratories around the world, that neutrinos have mass and even more importantly this mass appears to fit into the framework of theories which unify all the known forces of nature, i.e. the strong, weak, electromagnetic and gravitational. Similarly, DUSEL can forge forward in the discovery of new realms of nature, housing six fundamental experiments that will test the frontiers of our knowledge: (1) Searching for nucleon decay (the decay of protons and neutrons predicted by grand unified theories of nature); (2) Searching for neutrino oscillations and CP violation by detecting neutrinos produced at a neutrino source (possibly located at Brookhaven National Laboratory and/or Fermi National Laboratory); (3) Searching for astrophysical neutrinos originating from the sun, from cosmic rays hitting the upper atmosphere or from other astrophysical sources, such a supernovae; (4) Searching for dark matter particles (the type of matter which does not interact electromagnetically, yet provides 24% of the mass of the Universe); (5) Looking for the rare process known as neutrino-less double beta decay which is predicted by most theories of neutrino mass and allows two neutrons in a nucleus to spontaneously change into two protons and two electrons; and (6) Searching for the rare process of neutron- anti-neutron oscillations, which would establish violation of baryon number symmetry. A large megaton water Cherenkov detector for neutrinos and

  11. Gauge Coupling Unification in F-Theory Grand Unified Theories

    SciTech Connect

    Blumenhagen, Ralph

    2009-02-20

    We investigate gauge coupling unification for F-theory type IIB orientifold constructions of SU(5) grand unified theories (GUT) with gauge symmetry breaking via nontrivial hypercharge flux. This flux has the nontrivial effect that it splits the values of the three minimal supersymmetric standard model gauge couplings at the string scale, thus potentially spoiling the celebrated one-loop gauge coupling unification. It is shown how F-theory can evade this problem in a natural way.

  12. Gauge coupling unification in F-theory grand unified theories.

    PubMed

    Blumenhagen, Ralph

    2009-02-20

    We investigate gauge coupling unification for F-theory type IIB orientifold constructions of SU(5) grand unified theories (GUT) with gauge symmetry breaking via nontrivial hypercharge flux. This flux has the nontrivial effect that it splits the values of the three minimal supersymmetric standard model gauge couplings at the string scale, thus potentially spoiling the celebrated one-loop gauge coupling unification. It is shown how F-theory can evade this problem in a natural way. PMID:19257658

  13. An Integrated Higgs Force Theory

    NASA Astrophysics Data System (ADS)

    Colella, Antonio

    2016-03-01

    An Integrated Higgs force theory (IHFT) was based on 2 key requirement amplifications: a matter particle/Higgs force was one and inseparable; a matter particle/Higgs force bidirectionally condensed/evaporated from/to super force. These were basis of 5 theories: particle creation, baryogenesis, superpartner/quark decays, spontaneous symmetry breaking, and stellar black holes. Our universe's 129 matter/force particles contained 64 supersymmetric Higgs particles; 9 transient matter particles/Higgs forces decayed to 8 permanent matter particles/Higgs forces; mass was given to a matter particle by its Higgs force and gravitons; and sum of 8 Higgs force energies of 8 permanent matter particles was dark energy. An IHFT's essence is the intimate physical relationships between 8 theories. These theories are independent because physicists in one theory worked independently of physicists in the other seven. An IHFT's premise is without sacrificing their integrities, 8 independent existing theories are replaced by 8 interrelated amplified theories. Requirement amplifications provide interfaces between the 8 theories. Intimate relationships between 8 theories including the above 5 and string, Higgs forces, and Super Universe are described. The sorting category selected was F. PARTICLES AND FIELDS (e.g., F1 Higgs Physics, F10 Alternative Beyond the Standard Model Physics, F11 Dark Sector Theories and Searches, and F12 Particle Cosmology).

  14. Crack layer theory

    NASA Technical Reports Server (NTRS)

    Chudnovsky, A.

    1987-01-01

    A damage parameter is introduced in addition to conventional parameters of continuum mechanics and consider a crack surrounded by an array of microdefects within the continuum mechanics framework. A system consisting of the main crack and surrounding damage is called crack layer (CL). Crack layer propagation is an irreversible process. The general framework of the thermodynamics of irreversible processes are employed to identify the driving forces (causes) and to derive the constitutive equation of CL propagation, that is, the relationship between the rates of the crack growth and damage dissemination from one side and the conjugated thermodynamic forces from another. The proposed law of CL propagation is in good agreement with the experimental data on fatigue CL propagation in various materials. The theory also elaborates material toughness characterization.

  15. Theory of wing rock

    NASA Technical Reports Server (NTRS)

    Hsu, C.-H.; Lan, C. E.

    1985-01-01

    Wing rock is one type of lateral-directional instabilities at high angles of attack. To predict wing rock characteristics and to design airplanes to avoid wing rock, parameters affecting wing rock characteristics must be known. A new nonlinear aerodynamic model is developed to investigate the main aerodynamic nonlinearities causing wing rock. In the present theory, the Beecham-Titchener asymptotic method is used to derive expressions for the limit-cycle amplitude and frequency of wing rock from nonlinear flight dynamics equations. The resulting expressions are capable of explaining the existence of wing rock for all types of aircraft. Wing rock is developed by negative or weakly positive roll damping, and sustained by nonlinear aerodynamic roll damping. Good agreement between theoretical and experimental results is obtained.

  16. Semistrict higher gauge theory

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav; Sämann, Christian; Wolf, Martin

    2015-04-01

    We develop semistrict higher gauge theory from first principles. In particular, we describe the differential Deligne cohomology underlying semistrict principal 2-bundles with connective structures. Principal 2-bundles are obtained in terms of weak 2-functors from the Čech groupoid to weak Lie 2-groups. As is demonstrated, some of these Lie 2-groups can be differentiated to semistrict Lie 2-algebras by a method due to Ševera. We further derive the full description of connective structures on semistrict principal 2-bundles including the non-linear gauge transformations. As an application, we use a twistor construction to derive superconformal constraint equations in six dimensions for a non-Abelian tensor multiplet taking values in a semistrict Lie 2-algebra.

  17. Intermolecular perturbation theory

    NASA Astrophysics Data System (ADS)

    Hayes, I. C.; Hurst, G. J. B.; Stone, A. J.

    The new intermolecular perturbation theory described in the preceding papers is applied to some van der Waals molecules. HeBe is used as a test case, and the perturbation method converges well at interatomic distances down to about 4 a0, giving results in excellent agreement with supermolecule calculations. ArHF and ArHCl have been studied using large basis sets, and the results agree well with experimental data. The ArHX configuration is favoured over the ArXH configuration mainly because of larger polarization and charge-transfer contributions. In NeH2 the equilibrium geometry is determined by a delicate balance between opposing effects; with a double-zeta-polarization basis the correct configuration is predicted.

  18. Greek theories on eugenics.

    PubMed Central

    Galton, D J

    1998-01-01

    With the recent developments in the Human Genome Mapping Project and the new technologies that are developing from it there is a renewal of concern about eugenic applications. Francis Galton (b1822, d1911), who developed the subject of eugenics, suggested that the ancient Greeks had contributed very little to social theories of eugenics. In fact the Greeks had a profound interest in methods of supplying their city states with the finest possible progeny. This paper therefore reviews the works of Plato (The Republic and Politics) and Aristotle (The Politics and The Athenian Constitution) which have a direct bearing on eugenic techniques and relates them to methods used in the present century. PMID:9752630

  19. Towers of Gravitational Theories

    NASA Astrophysics Data System (ADS)

    Goldberger, Walter D.; Rothstein, Ira Z.

    In this essay, we introduce a theoretical framework designed to describe black hole dynamics. The difficulties in understanding such dynamics stems from the proliferation of scales involved when one attempts to simultaneously describe all of the relevant dynamical degrees of freedom. These range from the modes that describe the black hole horizon, which are responsible for dissipative effects, to the long wavelength gravitational radiation that drains mechanical energy from macroscopic black hole bound states. We approach the problem from a Wilsonian point of view, by building a tower of theories of gravity each of which is valid at different scales. The methodology leads to multiple new results in diverse topics including phase transitions of Kaluza-Klein black holes and the interactions of spinning black hole in non-relativistic orbits. Moreover, our methods tie together speculative ideas regarding dualities for black hole horizons to real physical measurements in gravitational wave detectors.

  20. Towers of gravitational theories

    NASA Astrophysics Data System (ADS)

    Goldberger, Walter D.; Rothstein, Ira Z.

    2006-11-01

    In this essay we introduce a theoretical framework designed to describe black hole dynamics. The difficulties in understanding such dynamics stems from the proliferation of scales involved when one attempts to simultaneously describe all of the relevant dynamical degrees of freedom. These range from the modes that describe the black hole horizon, which are responsible for dissipative effects, to the long wavelength gravitational radiation that drains mechanical energy from macroscopic black hole bound states. We approach the problem from a Wilsonian point of view, by building a tower of theories of gravity each of which is valid at different scales. The methodology leads to multiple new results in diverse topics including phase transitions of Kaluza-Klein black holes and the interactions of spinning black hole in non-relativistic orbits. Moreover, our methods tie together speculative ideas regarding dualities for black hole horizons to real physical measurements in gravitational wave detectors.

  1. Greek theories on eugenics.

    PubMed

    Galton, D J

    1998-08-01

    With the recent developments in the Human Genome Mapping Project and the new technologies that are developing from it there is a renewal of concern about eugenic applications. Francis Galton (b1822, d1911), who developed the subject of eugenics, suggested that the ancient Greeks had contributed very little to social theories of eugenics. In fact the Greeks had a profound interest in methods of supplying their city states with the finest possible progeny. This paper therefore reviews the works of Plato (The Republic and Politics) and Aristotle (The Politics and The Athenian Constitution) which have a direct bearing on eugenic techniques and relates them to methods used in the present century. PMID:9752630

  2. Constrained sensitivity theory

    SciTech Connect

    Greenspan, E.; Williams, M.L.

    1980-01-01

    In sensitivity and uncertainty analysis of to-be-built reactors it is customary to use k-reset sensitivity functions - accounting for the combined effects of the change (or uncertainty) in the input data and of the alteration in some design variable applied to maintain criticality. Critical reactors are usually subjected to several constraints, such as power peaking factor and breeding ratio constraints, in addition to the criticality constraint. Perturbation theory formulations which can account, simultaneously, for several constraints both in critical reactors and in source driven systems (such as radiation shields and blankets of fusion devices) are presented. All the sensitivity and uncertainty analyses of source driven systems carried out so far used unconstrained sensitivity functions despite the fact that such systems can be also subjected to a variety of constraints.

  3. Crack layer theory

    NASA Technical Reports Server (NTRS)

    Chudnovsky, A.

    1984-01-01

    A damage parameter is introduced in addition to conventional parameters of continuum mechanics and consider a crack surrounded by an array of microdefects within the continuum mechanics framework. A system consisting of the main crack and surrounding damage is called crack layer (CL). Crack layer propagation is an irreversible process. The general framework of the thermodynamics of irreversible processes are employed to identify the driving forces (causes) and to derive the constitutive equation of CL propagation, that is, the relationship between the rates of the crack growth and damage dissemination from one side and the conjugated thermodynamic forces from another. The proposed law of CL propagation is in good agreement with the experimental data on fatigue CL propagation in various materials. The theory also elaborates material toughness characterization.

  4. Axions in String Theory

    SciTech Connect

    Svrcek, Peter; Witten, Edward; /Princeton, Inst. Advanced Study

    2006-06-09

    In the context of string theory, axions appear to provide the most plausible solution of the strong CP problem. However, as has been known for a long time, in many string-based models, the axion coupling parameter Fa is several orders of magnitude higher than the standard cosmological bounds. We re-examine this problem in a variety of models, showing that Fa is close to the GUT scale or above in many models that have GUT-like phenomenology, as well as some that do not. On the other hand, in some models with Standard Model gauge fields supported on vanishing cycles, it is possible for Fa to be well below the GUT scale.

  5. Tribology theory versus experiment

    NASA Technical Reports Server (NTRS)

    Ferrante, John

    1987-01-01

    Tribology, the study of friction and wear of materials, has achieved a new interest because of the need for energy conservation. Fundamental understanding of this field is very complex and requires a knowledge of solid-state physics, material science, chemistry, and mechanical engineering. This paper is meant to be didactic in nature and outlines some of the considerations needed for a tribology research program. The approach is first to present a simple model, a field emission tip in contact with a flat surface, in order to elucidate important considerations, such as contact area, mechanical deformations, and interfacial bonding. Then examples from illustrative experiments are presented. Finally, the current status of physical theories concerning interfacial bonding are presented.

  6. Seismic Ray Theory

    NASA Astrophysics Data System (ADS)

    Cerveny, V.

    2001-07-01

    The seismic ray method plays an important role in seismology, seismic exploration, and in the interpretation of seismic measurements. Seismic Ray Theory presents the most comprehensive treatment of the method available. Many new concepts that extend the possibilities and increase the method's efficiency are included. The book has a tutorial character: derivations start with a relatively simple problem, in which the main ideas are easier to explain, and then advance to more complex problems. Most of the derived equations are expressed in algorithmic form and may be used directly for computer programming. This book will prove to be an invaluable advanced text and reference in all academic institutions in which seismology is taught or researched.

  7. Theory of epigenetic coding.

    PubMed

    Elder, D

    1984-06-01

    The logic of genetic control of development may be based on a binary epigenetic code. This paper revises the author's previous scheme dealing with the numerology of annelid metamerism in these terms. Certain features of the code had been deduced to be combinatorial, others not. This paradoxical contrast is resolved here by the interpretation that these features relate to different operations of the code; the combinatiorial to coding identity of units, the non-combinatorial to coding production of units. Consideration of a second paradox in the theory of epigenetic coding leads to a new solution which further provides a basis for epimorphic regeneration, and may in particular throw light on the "regeneration-duplication" phenomenon. A possible test of the model is also put forward. PMID:6748695

  8. Partition density functional theory

    NASA Astrophysics Data System (ADS)

    Nafziger, Jonathan

    Partition density functional theory (PDFT) is a method for dividing a molecular electronic structure calculation into fragment calculations. The molecular density and energy corresponding to Kohn Sham density-functional theory (KS-DFT) may be exactly recovered from these fragments. Each fragment acts as an isolated system except for the influence of a global one-body 'partition' potential which deforms the fragment densities. In this work, the developments of PDFT are put into the context of other fragment-based density functional methods. We developed three numerical implementations of PDFT: One within the NWChem computational chemistry package using basis sets, and the other two developed from scratch using real-space grids. It is shown that all three of these programs can exactly reproduce a KS-DFT calculation via fragment calculations. The first of our in-house codes handles non-interacting electrons in arbitrary one-dimensional potentials with any number of fragments. This code is used to explore how the exact partition potential changes for different partitionings of the same system and also to study features which determine which systems yield non-integer PDFT occupations and which systems are locked into integer PDFT occupations. The second in-house code, CADMium, performs real-space calculations of diatomic molecules. Features of the exact partition potential are studied for a variety of cases and an analytical formula determining singularities in the partition potential is derived. We introduce an approximation for the non-additive kinetic energy and show how this quantity can be computed exactly. Finally a PDFT functional is developed to address the issues of static correlation and delocalization errors in approximations within DFT. The functional is applied to the dissociation of H2 + and H2.

  9. F-theory and 2d (0, 2) theories

    NASA Astrophysics Data System (ADS)

    Schäfer-Nameki, Sakura; Weigand, Timo

    2016-05-01

    F-theory compactified on singular, elliptically fibered Calabi-Yau five-folds gives rise to two-dimensional gauge theories preserving N = (0 , 2) supersymmetry. In this paper we initiate the study of such compactifications and determine the dictionary between the geometric data of the elliptic fibration and the 2d gauge theory such as the matter content in terms of (0 , 2) superfields and their supersymmetric couplings. We study this setup both from a gauge-theoretic point of view, in terms of the partially twisted 7-brane theory, and provide a global geometric description based on the structure of the elliptic fibration and its singularities. Global consistency conditions are determined and checked against the dual M-theory compactification to one dimension. This includes a discussion of gauge anomalies, the structure of the Green-Schwarz terms and the Chern-Simons couplings in the dual M-theory supersymmetric quantum mechanics. Furthermore, by interpreting the resulting 2d (0 , 2) theories as heterotic worldsheet theories, we propose a correspondence between the geometric data of elliptically fibered Calabi-Yau five-folds and the target space of a heterotic gauged linear sigma-model (GLSM). In particular the correspondence between the Landau-Ginsburg and sigma-model phase of a 2d (0 , 2) GLSM is realized via different T-branes or gluing data in F-theory.

  10. Applying Lakatos' Theory to the Theory of Mathematical Problem Solving.

    ERIC Educational Resources Information Center

    Nunokawa, Kazuhiko

    1996-01-01

    The relation between Lakatos' theory and issues in mathematics education, especially mathematical problem solving, is investigated by examining Lakatos' methodology of a scientific research program. (AIM)

  11. Gauge Theories of Vector Particles

    DOE R&D Accomplishments Database

    Glashow, S. L.; Gell-Mann, M.

    1961-04-24

    The possibility of generalizing the Yang-Mills trick is examined. Thus we seek theories of vector bosons invariant under continuous groups of coordinate-dependent linear transformations. All such theories may be expressed as superpositions of certain "simple" theories; we show that each "simple theory is associated with a simple Lie algebra. We may introduce mass terms for the vector bosons at the price of destroying the gauge-invariance for coordinate-dependent gauge functions. The theories corresponding to three particular simple Lie algebras - those which admit precisely two commuting quantum numbers - are examined in some detail as examples. One of them might play a role in the physics of the strong interactions if there is an underlying super-symmetry, transcending charge independence, that is badly broken. The intermediate vector boson theory of weak interactions is discussed also. The so-called "schizon" model cannot be made to conform to the requirements of partial gauge-invariance.

  12. Learning theory and intrapsychic conflict.

    PubMed

    Gillett, E

    1996-08-01

    This paper is one in a series (Gillett, 1990, 1994) attempting to explore the implications of modern ideas about learning for psychoanalytic theories of treatment and pathogenesis. The key concept is that of learned expectations, which establishes links with Freud's 1926 theory of neurotic anxiety as caused by the expectation of danger. The new understanding of classical Pavlovian conditioning entails changes in the basic theory of intrapsychic conflict described in previous papers (1990, 1994). The relationship of learning theory to Freud's 1926 theory of intrapsychic conflict has received insufficient attention in the psychoanalytic literature because of insufficient familiarity with the repudiation of behaviourism by psychologists in favour of a representational theory of the mind. PMID:8876330

  13. Conservation laws in embedding theory

    NASA Astrophysics Data System (ADS)

    Murillo, Oscar; Mustafaev, Alexander

    2015-09-01

    In this work is considered embedding theory, a theory in which independent variables which describe gravity are functions of the space-time embedding into a ten-dimensional pseudo-Euclidean space. Neother's theorem is used to find conservation laws for energy and angular momentum as a result from the action's invariance in relation to the rotation and translation of the system. The form of these conservation laws and their consequences depending on the different formulations of embedding theory is discussed. It is also analyzed a transition from embedding theory to a field theory in a flat space-time with a number of dimensions greater than four. The same procedure is followed in this case to find conservation laws, resulting in the solution of the problem of time present in Einstein's theory of general relativity.

  14. Exploring gravitational theories beyond Horndeski

    SciTech Connect

    Gleyzes, Jérôme; Vernizzi, Filippo; Langlois, David; Piazza, Federico E-mail: langlois@apc.univ-partis7.fr E-mail: filippo.vernizzi@cea.fr

    2015-02-01

    We have recently proposed a new class of gravitational scalar-tensor theories free from Ostrogradski instabilities, in ref. [1]. As they generalize Horndeski theories, or ''generalized'' galileons, we call them G{sup 3}. These theories possess a simple formulation when the time hypersurfaces are chosen to coincide with the uniform scalar field hypersurfaces. We confirm that they contain only three propagating degrees of freedom by presenting the details of the Hamiltonian formulation. We examine the coupling between these theories and matter. Moreover, we investigate how they transform under a disformal redefinition of the metric. Remarkably, these theories are preserved by disformal transformations that depend on the scalar field gradient, which also allow to map subfamilies of G{sup 3} into Horndeski theories.

  15. A succession of theories: purging redundancy from disturbance theory.

    PubMed

    Pulsford, Stephanie A; Lindenmayer, David B; Driscoll, Don A

    2016-02-01

    The topics of succession and post-disturbance ecosystem recovery have a long and convoluted history. There is extensive redundancy within this body of theory, which has resulted in confusion, and the links among theories have not been adequately drawn. This review aims to distil the unique ideas from the array of theory related to ecosystem change in response to disturbance. This will help to reduce redundancy, and improve communication and understanding between researchers. We first outline the broad range of concepts that have developed over the past century to describe community change in response to disturbance. The body of work spans overlapping succession concepts presented by Clements in 1916, Egler in 1954, and Connell and Slatyer in 1977. Other theories describing community change include state and transition models, biological legacy theory, and the application of functional traits to predict responses to disturbance. Second, we identify areas of overlap of these theories, in addition to highlighting the conceptual and taxonomic limitations of each. In aligning each of these theories with one another, the limited scope and relative inflexibility of some theories becomes apparent, and redundancy becomes explicit. We identify a set of unique concepts to describe the range of mechanisms driving ecosystem responses to disturbance. We present a schematic model of our proposed synthesis which brings together the range of unique mechanisms that were identified in our review. The model describes five main mechanisms of transition away from a post-disturbance community: (i) pulse events with rapid state shifts; (ii) stochastic community drift; (iii) facilitation; (iv) competition; and (v) the influence of the initial composition of a post-disturbance community. In addition, stabilising processes such as biological legacies, inhibition or continuing disturbance may prevent a transition between community types. Integrating these six mechanisms with the functional

  16. Invariants from classical field theory

    SciTech Connect

    Diaz, Rafael; Leal, Lorenzo

    2008-06-15

    We introduce a method that generates invariant functions from perturbative classical field theories depending on external parameters. By applying our methods to several field theories such as Abelian BF, Chern-Simons, and two-dimensional Yang-Mills theory, we obtain, respectively, the linking number for embedded submanifolds in compact varieties, the Gauss' and the second Milnor's invariant for links in S{sup 3}, and invariants under area-preserving diffeomorphisms for configurations of immersed planar curves.

  17. Recent Progress in Superstring Theory

    NASA Astrophysics Data System (ADS)

    Schwarz, John H.

    2002-12-01

    Superstring theory has continued to develop at a rapid clip in the past few years. Following a quick review of some of the major discoveries prior to 1998, this talk focuses on a few of the more recent developments. The topics I have chosen to present are 1) the use of K-theory to classify conserved charges carried by D-branes; 2) tachyon condensation on unstable D-brane systems; and 3) an introduction to noncommutative field theories and their solitons.

  18. Gravitational scalar-tensor theory

    NASA Astrophysics Data System (ADS)

    Naruko, Atsushi; Yoshida, Daisuke; Mukohyama, Shinji

    2016-05-01

    We consider a new form of gravity theories in which the action is written in terms of the Ricci scalar and its first and second derivatives. Despite the higher derivative nature of the action, the theory is ghost-free under an appropriate choice of the functional form of the Lagrangian. This model possesses 2 + 2 physical degrees of freedom, namely 2 scalar degrees and 2 tensor degrees. We exhaust all such theories with the Lagrangian of the form f(R,{({{\

  19. Soliton Theory and Its Applications

    NASA Astrophysics Data System (ADS)

    Gu, Chaohao

    Soliton theory is an important branch of applied mathematics and mathematical physics. An active and productive field of research, it has important applications in fluid mechanics, nonlinear optics, classical and quantum fields theories etc. This book presents a broad view of soliton theory. It gives an expository survey of the most basic ideas and methods, such as physical background, inverse scattering, Backlünd transformations, finite-dimensional completely integrable systems, symmetry, Kac-moody algebra, solitons and differential geometry, numerical analysis for nonlinear waves, and gravitational solitons. Besides the essential points of the theory, several applications are sketched and some recent developments, partly by the authors and their collaborators, are presented.

  20. Anatomy of a gauge theory

    SciTech Connect

    Kreimer, Dirk . E-mail: kreimer@ihes.fr

    2006-12-15

    We exhibit the role of Hochschild cohomology in quantum field theory with particular emphasis on gauge theory and Dyson-Schwinger equations, the quantum equations of motion. These equations emerge from Hopf- and Lie algebra theory and free quantum field theory only. In the course of our analysis, we exhibit an intimate relation between the Slavnov-Taylor identities for the couplings and the existence of Hopf sub-algebras defined on the sum of all graphs at a given loop order, surpassing the need to work on single diagrams.

  1. What's wrong with relativity theory?

    NASA Astrophysics Data System (ADS)

    Zhang, Meggie

    2014-03-01

    Relativity theory is the most successful theory in modern physics but insofar we have not be able to reconcile relativity theory and quantum physics. Through reevaluation results in literature we found hints leading to a new understanding of the basics of quantum physics. By reinterpretation quantum physic we have successfully conduced a photon-photon collision experiment which gives us support on our reinterpretation of quantum physics which in turn suggested relativity theory is in-complete and fell into a paradoxical trap. This helps us a new understanding of mass and gravity.

  2. Nonstationary statistical theory for multipactor

    SciTech Connect

    Anza, S.; Vicente, C.; Gil, J.

    2010-06-15

    This work presents a new and general approach to the real dynamics of the multipactor process: the nonstationary statistical multipactor theory. The nonstationary theory removes the stationarity assumption of the classical theory and, as a consequence, it is able to adequately model electron exponential growth as well as absorption processes, above and below the multipactor breakdown level. In addition, it considers both double-surface and single-surface interactions constituting a full framework for nonresonant polyphase multipactor analysis. This work formulates the new theory and validates it with numerical and experimental results with excellent agreement.

  3. Duality symmetries in string theory

    SciTech Connect

    Nunez, Carmen A.

    1999-10-25

    The search for a unified theory of quantum gravity and gauge interactions leads naturally to string theory. This field of research has received a revival of interest after the discovery of duality symmetries in recent years. We present a self contained account of some non-perturbative aspects of string theory which have been recently understood. The spectrum and interactions of the five consistent superstring theories in ten dimensions are recollected and the fundamental principles underlying this initial stage in the construction of the theory are briefly reviewed. We next discuss some evidences that these apparently different superstrings are just different aspects of one unique theory. The key to this development is given by the non-perturbative duality symmetries which have modified and improved our understanding of string dynamics in many ways. In particular, by relating the fundamental objects of one theory to solitons of another theory, they have unraveled the presence of extended objects in the theory which stand on an equal footing with strings. We introduce these higher dimensional objects, named D-branes, and discuss applications of D-brane physics.

  4. Inflation from asymptotically safe theories

    NASA Astrophysics Data System (ADS)

    Nielsen, Niklas Grønlund; Sannino, Francesco; Svendsen, Ole

    2015-05-01

    We investigate models in which inflation is driven by an ultraviolet safe and interacting scalar sector stemming from a new class of nonsupersymmetric gauge field theories. These new theories, different from generic scalar models, are well defined to arbitrary short distances because of the existence of a controllable ultraviolet interacting fixed point. The scalar couplings at the ultraviolet fixed point and their overall running are predicted by the geometric structure of the underlying theory. We analyze the minimal and nonminimal coupling to gravity of these theories and the consequences for inflation. In the minimal coupling case the theory requires large nonperturbative quantum corrections to the quantum potential for the theory to agree with the data, while in the nonminimal coupling case the perturbative regime in the couplings of the theory is preferred. Requiring the theory to reproduce the observed amplitude of density perturbations constrains the geometric data of the theory such as the number of colors and flavors for generic values of the nonminimal coupling.

  5. Canonical density matrix perturbation theory.

    PubMed

    Niklasson, Anders M N; Cawkwell, M J; Rubensson, Emanuel H; Rudberg, Elias

    2015-12-01

    Density matrix perturbation theory [Niklasson and Challacombe, Phys. Rev. Lett. 92, 193001 (2004)] is generalized to canonical (NVT) free-energy ensembles in tight-binding, Hartree-Fock, or Kohn-Sham density-functional theory. The canonical density matrix perturbation theory can be used to calculate temperature-dependent response properties from the coupled perturbed self-consistent field equations as in density-functional perturbation theory. The method is well suited to take advantage of sparse matrix algebra to achieve linear scaling complexity in the computational cost as a function of system size for sufficiently large nonmetallic materials and metals at high temperatures. PMID:26764847

  6. Introduction to Statistical Field Theory

    NASA Astrophysics Data System (ADS)

    Brézin, Edouard

    2010-07-01

    1. A few well-known basic results; 2. Introduction: order parameters, broken symmetries; 3. Examples of physical situations modelled by the Ising model; 4. A few results about the Ising model; 5. High temperature and low temperature expansions; 6. Some geometric problems related to phase transitions; 7. Phenomenological description of the critical behaviour; 8. Mean field theory; 9. Beyond mean field theory; 10. Introduction to the renormalization group; 11. Renormalization group for the φ4 theory; 12. Renormalized theory; 13. Goldstone modes; 14. Large n; Index.

  7. Quantum set theory and applications

    SciTech Connect

    Rodriguez, E.

    1984-01-01

    The work of von Neumann tells us that the logic of quantum mechanics is not Boolenan. This suggests the formulation of a quantum theory of sets based on quantum logic much as modern set theory is based on Boolean logic. In the first part of this dissertation such a quantum set theory is developed. In the second part, quantum set theory is proposed as a universal language for physics. A quantum topology and the beginnings of a quantum geometry are developed in this language. Finally, a toy model is studied. It gives indications of possible lines for progress in this program.

  8. Theories of Motivation--Borrowing the Best.

    ERIC Educational Resources Information Center

    Terpstra, David E.

    1979-01-01

    Five theories of motivation are discussed: Maslow's Need Hierarchy, Herzberg's dual-factor or motivation-hygiene theory, goal setting or task motivation, expectancy/valence-theory (also known as instrumentality theory, valence-instrumentality-expectancy theory, or expectancy theory), and reinforcement. (JH)

  9. Theories of Serial Flow in Intergenerational Transfers.

    ERIC Educational Resources Information Center

    Cheal, David J.

    1988-01-01

    Presents and compares underlying assumptions of these theories as they might expand understanding of intergenerational transfers: social exchange theory, kin selection theory of altruism, human capital theory, social constructivist theory, and rational transfers theory. Recommends comparative studies to gain insight into strengths and weaknesses…

  10. Management Theories and Broadcasting: A Handbook.

    ERIC Educational Resources Information Center

    Craig, J. Robert; Hindmarsh, Wayne A.

    Today's contemporary management and motivation theories, as applied to the business of broadcasting, are the focus of the first section of this paper. It deals with the kinds and reactions of employees in broadcasting stations in relation to 11 motivational theories: (1) Theories X and Y, (2) Immaturity-Maturity Theory, (3) V Theory, (4) Z Theory,…

  11. Particle Theory & Cosmology

    SciTech Connect

    Shafi, Qaisar; Barr, Steven; Gaisser, Thomas; Stanev, Todor

    2015-03-31

    1. Executive Summary (April 1, 2012 - March 31, 2015) Title: Particle Theory, Particle Astrophysics and Cosmology Qaisar Shafi University of Delaware (Principal Investigator) Stephen M. Barr, University of Delaware (Co-Principal Investigator) Thomas K. Gaisser, University of Delaware (Co-Principal Investigator) Todor Stanev, University of Delaware (Co-Principal Investigator) The proposed research was carried out at the Bartol Research included Professors Qaisar Shafi Stephen Barr, Thomas K. Gaisser, and Todor Stanev, two postdoctoral fellows (Ilia Gogoladze and Liucheng Wang), and several graduate students. Five students of Qaisar Shafi completed their PhD during the period August 2011 - August 2014. Measures of the group’s high caliber performance during the 2012-2015 funding cycle included pub- lications in excellent refereed journals, contributions to working groups as well as white papers, and conference activities, which together provide an exceptional record of both individual performance as well as overall strength. Another important indicator of success is the outstanding quality of the past and current cohort of graduate students. The PhD students under our supervision regularly win the top departmental and university awards, and their publications records show excellence both in terms of quality and quantity. The topics covered under this grant cover the frontline research areas in today’s High Energy Theory & Phenomenology. For Professors Shafi and Barr they include LHC related topics including supersymmetry, collider physics, fl vor physics, dark matter physics, Higgs boson and seesaw physics, grand unifi and neutrino physics. The LHC two years ago discovered the Standard Model Higgs boson, thereby at least partially unlocking the secrets behind electroweak symmetry breaking. We remain optimistic that new and exciting physics will be found at LHC 14, which explain our focus on physics beyond the Standard Model. Professors Shafi continued his

  12. Acquisition by Processing Theory: A Theory of Everything?

    ERIC Educational Resources Information Center

    Carroll, Susanne E.

    2004-01-01

    Truscott and Sharwood Smith (henceforth T&SS) propose a novel theory of language acquisition, "Acquisition by Processing Theory" (APT), designed to account for both first and second language acquisition, monolingual and bilingual speech perception and parsing, and speech production. This is a tall order. Like any theoretically ambitious…

  13. Relevance Theory, Action Theory and Second Language Communication Strategies

    ERIC Educational Resources Information Center

    Foster-Cohen, Susan H.

    2004-01-01

    The discussion in this article offers a comparison between Relevance Theory as an account of human communication and Herbert Clark's (1996) sociocognitive Action Theory approach. It is argued that the differences are fundamental and impact analysis of all kinds of naturally occurring communicative data, including that produced by non-native…

  14. Introduction to conformal field theory and string theory

    SciTech Connect

    Dixon, L.J.

    1989-12-01

    These lectures are meant to provide a brief introduction to conformal field theory (CFT) and string theory for those with no prior exposure to the subjects. There are many excellent reviews already available, and most of these go in to much more detail than I will be able to here. 52 refs., 11 figs.

  15. The Theory Forum: Teaching Social Theory through Interactive Practice

    ERIC Educational Resources Information Center

    Osnowitz, Debra; Jenkins, Kathleen E.

    2014-01-01

    Common concerns in required theory courses are student disengagement when encountering difficult texts and hesitation to engage in theorizing. To address these challenges, we have developed an interactive exercise, which we call the theory forum. Students work in groups to develop questions from the perspective(s) of one or more theorists, and…

  16. Theories and theorizers: a contextual approach to theories of cognition.

    PubMed

    Barutta, Joaquín; Cornejo, Carlos; Ibáñez, Agustín

    2011-06-01

    An undisputable characteristic of cognitive science is its enormous diversity of theories. Not surprisingly, these often belong to different paradigms that focus on different processes and levels of analysis. A related problem is that researchers of cognition frequently seem to ascribe to incompatible approaches to research, creating a Tower of Babel of cognitive knowledge. This text presents a pragmatic model of meta-theoretical analysis, a theory conceived of to examine other theories, which allows cognitive theories to be described, integrated and compared. After a brief introduction to meta-theoretical analysis in cognitive science, the dynamic and structural components of a theory are described. The analysis of conceptual mappings between components and explanation strategies is also described, as well as the processes of intra-theory generalization and inter-theory comparison. The various components of the meta-theoretical model are presented with examples of different cognitive theories, mainly focusing on two current approaches to research: The dynamical approach to cognition and the computer metaphor of mind. Finally, two potential counter arguments to the model are presented and discussed. PMID:21344197

  17. Double Exponential Relativity Theory Coupled Theoretically with Quantum Theory?

    SciTech Connect

    Montero Garcia, Jose de la Luz; Novoa Blanco, Jesus Francisco

    2007-04-28

    Here the problem of special relativity is analyzed into the context of a new theoretical formulation: the Double Exponential Theory of Special Relativity with respect to which the current Special or Restricted Theory of Relativity (STR) turns to be a particular case only.

  18. The Lorentz Theory of Electrons and Einstein's Theory of Relativity

    ERIC Educational Resources Information Center

    Goldberg, Stanley

    1969-01-01

    Traces the development of Lorentz's theory of electrons as applied to the problem of the electrodynamics of moving bodies. Presents evidence that the principle of relativity did not play an important role in Lorentz's theory, and that though Lorentz eventually acknowledged Einstein's work, he was unwilling to completely embrace the Einstein…

  19. Tree Theory: A Theory-Generative Measurement Model.

    ERIC Educational Resources Information Center

    Airasian, Peter W.; Bart, William M.

    The inadequacies in present measurement models are indicated and a description is given of how tree theory, a theory-generative model, overcomes these inadequacies. Among the weaknesses cited in many measurement models are their untested assumptions of linear order and unidimensionality and their inability to generate non-associational…

  20. String Theory on Elliptic Curve Orientifolds and KR-Theory

    NASA Astrophysics Data System (ADS)

    Doran, Charles; Méndez-Diez, Stefan; Rosenberg, Jonathan

    2015-04-01

    We analyze the brane content and charges in all of the orientifold string theories on space-times of the form , where E is an elliptic curve with holomorphic or anti-holomorphic involution. Many of these theories involve "twistings" coming from the B-field and/or sign choices on the orientifold planes. A description of these theories from the point of view of algebraic geometry, using the Legendre normal form, naturally divides them into three groupings. The physical theories within each grouping are related to one another via sequences of T-dualities. Our approach agrees with both previous topological calculations of twisted KR-theory and known physics arguments, and explains how the twistings originate from both a mathematical and a physical perspective.

  1. Theory of epithelial elasticity

    NASA Astrophysics Data System (ADS)

    Krajnc, Matej; Ziherl, Primož

    2015-11-01

    We propose an elastic theory of epithelial monolayers based on a two-dimensional discrete model of dropletlike cells characterized by differential surface tensions of their apical, basal, and lateral sides. We show that the effective tissue bending modulus depends on the apicobasal differential tension and changes sign at the transition from the flat to the fold morphology. We discuss three mechanisms that stabilize the finite-wavelength fold structures: Physical constraint on cell geometry, hard-core interaction between non-neighboring cells, and bending elasticity of the basement membrane. We show that the thickness of the monolayer changes along the waveform and thus needs to be considered as a variable rather than a parameter. Next we show that the coupling between the curvature and the thickness is governed by the apicobasal polarity and that the amplitude of thickness modulation along the waveform is proportional to the apicobasal differential tension. This suggests that intracellular stresses can be measured indirectly by observing easily measurable morphometric parameters. We also study the mechanics of three-dimensional structures with cylindrical symmetry.

  2. Paleoanthropology and evolutionary theory.

    PubMed

    Tattersall, Ian

    2012-01-01

    Paleoanthropologists of the first half of the twentieth century were little concerned either with evolutionary theory or with the technicalities and broader implications of zoological nomenclature. In consequence, the paleoanthropological literature of the period consisted largely of a series of descriptions accompanied by authoritative pronouncements, together with a huge excess of hominid genera and species. Given the intellectual flimsiness of the resulting paleoanthropological framework, it is hardly surprising that in 1950 the ornithologist Ernst Mayr met little resistance when he urged the new postwar generation of paleoanthropologists to accept not only the elegant reductionism of the Evolutionary Synthesis but a vast oversimplification of hominid phylogenetic history and nomenclature. Indeed, the impact of Mayr's onslaught was so great that even when developments in evolutionary biology during the last quarter of the century brought other paleontologists to the realization that much more has been involved in evolutionary histories than the simple action of natural selection within gradually transforming lineages, paleoanthropologists proved highly reluctant to follow. Even today, paleoanthropologists are struggling to reconcile an intuitive realization that the burgeoning hominid fossil record harbors a substantial diversity of species (bringing hominid evolutionary patterns into line with that of other successful mammalian families), with the desire to cram a huge variety of morphologies into an unrealistically minimalist systematic framework. As long as this theoretical ambivalence persists, our perception of events in hominid phylogeny will continue to be distorted. PMID:23272602

  3. Theory of polyampholyte solutions

    NASA Astrophysics Data System (ADS)

    Higgs, Paul G.; Joanny, Jean-François

    1991-01-01

    We consider polyampholyte polymers containing both positive and negative monomers randomly dispersed along the chain. Neutral chains collapse into a globule due to attractive electrostatic interactions. The behavior of the charges inside the globule is similar to that of charges in a small volume of simple electrolyte. A screening length κ-1p coming from the polymeric charge may be defined as in Debye-Hückel theory. The internal structure of the globule is that of close packed blobs of radius equal to the screening length. When salt is added this further screens the interactions and reduces the attractions. The globule begins to increase in size when the concentration of salt becomes larger than the concentration of charge on the polymer itself. Screened Coulomb interactions in a neutral chain behave like a negative contribution to excluded volume. For a chain in a good solvent there is a θ salt concentration at which the net excluded volume becomes zero. Chains are swollen above this concentration of salt, and collapsed below this concentration. For small sections of chain the Coulomb interactions are unscreened and cannot be treated as a modification to excluded volume. Chains with a strong net charge of one sign tend to behave as conventional polyelectrolyte with charges of only one sign. We determine the criterion for the value of the net charge at which the repulsions (polyelectrolyte effect) begin to dominate the attractions (polyampholyte effect). The predictions are found to be in good qualitative agreement with experiments.

  4. The theory of sunspots

    NASA Technical Reports Server (NTRS)

    Thomas, John H.; Weiss, Nigel O.

    1992-01-01

    This review covers the present state of our theoretical understanding of the physics of sunspots, along with the principal observational results that need to be explained. The topics covered range from the detailed structure of an individual sunspot to the broad connection between sunspots and the global solar magnetic field and the solar cycle. Our aim is to give a critical discussion of the theoretical ideas and models without presenting mathematical details. After outlining the historical development of the basic concepts associated with the magnetohydrodynamic theory of sunspots, we discuss recent treatments of their properties and structure, placing special emphasis on developments that have occurred within the last ten years. There have been remarkable improvements in the theoretical modelling of sunspots, led by new ideas and by more elaborate and realistic numerical simulations. At the same time, new observations have raised new theoretical questions or caused old ones to be reconsidered. In particular, measurements of oscillations in and around sunspots have opened up the new field of sunspot seismology, while recent high-resolution observations have forced us to rethink the structure of a sunspot penumbra.

  5. Theory of gaseous detonations.

    PubMed

    Clavin, Paul

    2004-09-01

    The objective of the present paper is to review some developments that have occurred in detonation theory over the last ten years. They concern nonlinear dynamics of detonation fronts, namely patterns of pulsating and/or cellular fronts, selection of the cell size, dynamical self-quenching, direct (blast) or spontaneous initiation, and transition from deflagration to detonation. These phenomena are all well documented by experiments since the sixties but remained unexplained until recently. In the first part of the paper, the patterns of cellular detonations are described by an asymptotic solution to nonlinear hyperbolic equations (reactive Euler equations) in the form of unsteady (sometime chaotic) and multidimensional traveling-waves. In the second part, turning points of quasi-steady solutions are shown to correspond to critical conditions of fully unsteady problems, either for (direct or spontaneous) initiation or for spontaneous failure (self-quenching). Physical insights are tentatively presented rather than technical aspects. The challenge is to identify the physical mechanisms with their relevant parameters, and more specifically to explain how the length-scales involved in detonation dynamics are larger by two order of magnitude (at least) than the length-scale involved in the steady planar traveling-wave solution (detonation thickness). PMID:15446993

  6. New Pulsar Theory

    NASA Astrophysics Data System (ADS)

    Kebede, Legesse

    2015-08-01

    Standard pulsar theory is based on fields that are conserved from progenitor stars. This has limited the scope of pulsar astronomy to a kind of study very much confined to a limited type of pulsars, so called field pulsars. The large majority of pulsars are technically eliminated from statistical studies because they are either too massive, or are of very high magnetic field with no mechanism yet known which forces them to decay to very low frequency rotators in a matter of a few thousands of years. This is one distinct property of these highly magnetized pulsars. The current presentation focuses on a new source for the generation of pulsar fields namely spinning separated surface charges and it shows that pulsar fields are strictly mass dependent. Massive neutron stars are strongly magnetized ( ≥ 1018 G) and less massive ones are weakly magnetized (1011 - 1013 G). This work therefore dismisses the current belief that there have to be two classes of pulsars (field pulsars and anomalous pulsars). It leads to a decay law that provides results that are consistent with observations from these two so called distinct classes of pulsars. This work also suggests that pulsar fields should be infinitely multi-polar which helps to successfully addresses the longtime issues of pulse shape and promises that the current problem of pulsar radiation could be solvable..

  7. Theory of Chemical Modeling

    NASA Astrophysics Data System (ADS)

    Kühn, Michael

    In order to deal with the complexity of natural systems simplified models are employed to illustrate the principal and regulatory factors controlling a chemical system. Following the aphorism of Albert Einstein: Everything should be made as simple as possible, but not simpler, models need not to be completely realistic to be useful (Stumm and Morgan 1996), but need to meet a successful balance between realism and practicality. Properly constructed, a model is neither too simplified that it is unrealistic nor too detailed that it cannot be readily evaluated and applied to the problem of interest (Bethke 1996). The results of a model have to be at least partially observable or experimentally verifiable (Zhu and Anderson 2002). Geochemical modeling theories are presented here in a sequence of increasing complexity from geochemical equilibrium models to kinetic, reaction path, and finally coupled transport and reaction models. The description is far from complete but provides the needs for the set up of reactive transport models of hydrothermal systems as done within subsequent chapters. Extensive reviews of geochemical models in general can be found in the literature (Appelo and Postma 1999, Bethke 1996, Melchior and Bassett 1990, Nordstrom and Ball 1984, Paschke and van der Heijde 1996).

  8. Canonical floquet perturbation theory

    NASA Astrophysics Data System (ADS)

    Pohlen, David J.

    1992-12-01

    Classical Floquet theory is examined in order to generate a canonical transformation to modal variables for periodic system. This transformation is considered canonical if the periodic matrix of eigenvectors is symplectic at the initial time. Approaches for symplectic normalization of the eigenvectors had to be examined for each of the different Poincare eigenvalue cases. Particular attention was required in the degenerate case, which depended on the solution of a generalized eigenvector. Transformation techniques to ensure real modal variables and real periodic eigenvectors were also needed. Periodic trajectories in the restricted three-body case were then evaluated using the canonical Floquet solution. The system used for analyses is the Sun-Jupiter system. This system was especially useful since it contained two of the more difficult Poincare eigenvalue cases, the degenerate case and the imaginary eigenvalue case. The perturbation solution to the canonical modal variables was examined using both an expansion of the Hamiltonian and using a representation that was considered exact. Both methods compared quite well for small perturbations to the initial condition. As expected, the expansion solution failed first due to truncation after the third order term of the expansion.

  9. Theory of cascade refrigeration

    NASA Astrophysics Data System (ADS)

    Quack, Hans H.

    2012-06-01

    The maximum difference between the warm and cold temperature of a refrigeration cycle is limited by properties of the refrigerant and/or losses associated with the transport of the refrigerant. For larger temperature differences, one has to arrange several refrigeration cycles "above" each other, each cycle spanning a certain temperature difference. This approach is called cascade refrigeration and has played an important role in the history of cryogenics. For a theory of cascade refrigeration it is helpful to define a general one-stage non-reversible refrigeration step and to visualize it within the temperature-entropy diagram. Then one can combine several one-stage cycles to a cascade. There exist two types of cascades: "Full" cascades, where all entropy gains of a lower stage are transferred to the next higher temperature stage, and "partial" cascades, where each single cycle goes up to ambient temperature, where a part of the entropy gain is removed, and only the rest of the entropy gain is transferred to the next higher temperature stage. In cryogenic refrigeration "partial" cascades are generally more efficient than "full" cascades.

  10. Chain entanglements. I. Theory

    NASA Astrophysics Data System (ADS)

    Fixman, Marshall

    1988-09-01

    A model of concentrated polymer solution dynamics is described. The forces in a linear generalized Langevin equation for the motion of a probe chain are derived on the assumption that all relaxation of the forces is due to motion of the surrounding matrix. Vicinal chain displacements are classified as viscoelastic deformation, reptation, and minor residual fluctuations. The latter provide a torsional relaxation of the primitive path that minimizes the significance of transverse forces on the probe chain. All displacements of vicinal segments are assumed proportional to the forces that they exert on the probe chain. In response to an external force, the displacement of the probe chain relative to a laboratory frame is increased by viscoelastic deformation of the matrix, but reptative diffusion relative to the deforming matrix is slowed down. The net effect on translational diffusion is negligible if the probe and vicinal chains have the same chain length N, but the friction constant for reptative motion is increased by a factor N1-xs. xs=1/2 if Gaussian conformational statistics applies during the disengagement process, while xs =0.6 if excluded volume statistics applies. The translational friction constant is βp ˜N2, as in reptation theory, but the viscosity is η˜N4-xs . The persistence of entanglements during the translational diffusion of the probe chain across many radii of gyration is rationalized pictorially in terms of correlated reptative motion of the probe and vicinal chains.

  11. Slender-ribbon theory

    NASA Astrophysics Data System (ADS)

    Koens, Lyndon; Lauga, Eric

    2016-01-01

    Ribbons are long narrow strips possessing three distinct material length scales (thickness, width, and length) which allow them to produce unique shapes unobtainable by wires or filaments. For example, when a ribbon has half a twist and is bent into a circle it produces a Möbius strip. Significant effort has gone into determining the structural shapes of ribbons but less is know about their behavior in viscous fluids. In this paper, we determine, asymptotically, the leading-order hydrodynamic behavior of a slender ribbon in Stokes flows. The derivation, reminiscent of slender-body theory for filaments, assumes that the length of the ribbon is much larger than its width, which itself is much larger than its thickness. The final result is an integral equation for the force density on a mathematical ruled surface, termed as the ribbon plane, located inside the ribbon. A numerical implementation of our derivation shows good agreement with the known hydrodynamics of long flat ellipsoids and successfully captures the swimming behavior of artificial microscopic swimmers recently explored experimentally. We also study the asymptotic behavior of a ribbon bent into a helix, that of a twisted ellipsoid, and we investigate how accurately the hydrodynamics of a ribbon can be effectively captured by that of a slender filament. Our asymptotic results provide the fundamental framework necessary to predict the behavior of slender ribbons at low Reynolds numbers in a variety of biological and engineering problems.

  12. [Chronotherapy and relativity theory].

    PubMed

    Polishchuk, N A

    2008-01-01

    The course of time itself in alive organisms is treated from positions of the special theory of the relativity created by A. Einstein in 1905 and added by the Nobel winners H.A.Lorentsem, M. Plankom, M. fon Laue. These achievements of fundamental physics have been put in a basis of special medical technology "Resonant chronophytotherapy" (SMT RCPT) which is applied in practice of treatment of chronic diseases for 27 years. Grass tinctures in various dosages are used in SMT RCPT, which patients take once a day during precisely designated time. Parameters "dosage-time" daily vary. SMT RCPT have been conducted in treatment of epilepsy bronchial asthma, rheumatism, sclerodermia, hypertension, chronic glomerulonephritis, vegeto-vascular dystonia, female sterility, circular alopecia, vitiligo, eczema, psoriasis, onychomycosis. SMT RCPT does have adverse events, has no contra-indications to its use, directed, first of all, on elimination of nonspecific signs of a disease, reduces dependence and complications of the use of chemical synthetic preparations. SMT RCPT can be combined with any kind of specific treatment. Internet-variant of SMT RCPT has been developed. Chronomedicine is priority tendency in industrialized countries of the world--the USA, the Great Britain, Germany, France, Russia, China, Japan and appears on lead positions among alternative methods of treatment, both traditional, and non-traditional. PMID:19145832

  13. Milky Way's Structure: Theory

    NASA Astrophysics Data System (ADS)

    Bartlett, D. F.

    2005-12-01

    The cover of the August issue of the Astronomical Journal is stunningly simple. The basic structure of the Milky Way appears as a central bar surrounded by four evenly-spaced logarithmic spirals. (Vallée 2005). Modern density wave theory can accommodate such spirals, but only by using arbitrary functions of time (Bertin 2000). Perhaps the problem is Newton's gravitational law itself. With or without dark matter, this law allows the potential to have only two kinds of extrema: dimples and saddle points. In contrast, the proposed sinusoidal potential also permits potential maxima or pimples. (In the sinusoidal potential φ (r)=-(GM/r) cos(ko r) where ko = 2 π /λ o and the universal 'wavelength' λ o is 425 pc (Bartlett 2004). I will show how the sinusoidal potential permits the spiral structure of the Galaxy to be stable. Deep ridges in the radial direction confine stars to circular orbits. A broad potential maximum in the z-direction suppresses the normally deep minimum at z=0 caused by matter in the local disk. Alternating minima and maxima in the φ -direction give spirals that are keyed to the central bar.

  14. Polymer parametrized field theory

    SciTech Connect

    Laddha, Alok; Varadarajan, Madhavan

    2008-08-15

    Free scalar field theory on 2-dimensional flat spacetime, cast in diffeomorphism invariant guise by treating the inertial coordinates of the spacetime as dynamical variables, is quantized using loop quantum gravity (LQG) type 'polymer' representations for the matter field and the inertial variables. The quantum constraints are solved via group averaging techniques and, analogous to the case of spatial geometry in LQG, the smooth (flat) spacetime geometry is replaced by a discrete quantum structure. An overcomplete set of Dirac observables, consisting of (a) (exponentials of) the standard free scalar field creation-annihilation modes and (b) canonical transformations corresponding to conformal isometries, are represented as operators on the physical Hilbert space. None of these constructions suffer from any of the 'triangulation'-dependent choices which arise in treatments of LQG. In contrast to the standard Fock quantization, the non-Fock nature of the representation ensures that the group of conformal isometries as well as that of the gauge transformations generated by the constraints are represented in an anomaly free manner. Semiclassical states can be analyzed at the gauge invariant level. It is shown that 'physical weaves' necessarily underlie such states and that such states display semiclassicality with respect to, at most, a countable subset of the (uncountably large) set of observables of type (a). The model thus offers a fertile testing ground for proposed definitions of quantum dynamics as well as semiclassical states in LQG.

  15. Slender Ribbon Theory

    NASA Astrophysics Data System (ADS)

    Koens, Lyndon; Lauga, Eric

    2015-11-01

    Ribbons are long narrow strips possessing three distinct material length scales (thickness, width, and length) which allow them to produce unique shapes unobtainable by wires or filaments. Significant effort has gone into determining the structural shapes of ribbons but less is know about their behavior in viscous fluids. Here we determine asymptotically the leading-order hydrodynamic behavior of a slender ribbon in Stokes flows. The derivation, reminiscent of slender-body theory for filaments, assumes that the length of the ribbon is much larger than its width, which itself is much larger than its thickness. The final result is an integral equation for the force density on a mathematical surface located inside the ribbon. Our derivation agrees very well with the known hydrodynamics of long flat ellipsoids, and successfully captures the swimming behavior of artificial microscopic swimmers recently explored experimentally. Our asymptotic results provide the fundamental framework necessary to predict the behavior of slender ribbons at low Reynolds numbers in a variety of biological and engineering problems.

  16. Theory of wind accretion

    NASA Astrophysics Data System (ADS)

    Shakura, N. I.; Postnov, K. A.; Kochetkova, A. Yu.; Hjalmarsdotter, L.

    2014-01-01

    A review of wind accretion in high-mass X-ray binaries is presented. We focus attention to different regimes of quasi-spherical accretion onto the neutron star: the supersonic (Bondi) accretion, which takes place when the captured matter cools down rapidly and falls supersonically toward NS magnetospghere, and subsonic (settling) accretion which occurs when plasma remains hot until it meets the magnetospheric boundary. Two regimes of accretion are separated by an X-ray luminosity of about 4 × 1036 erg/s. In the subsonic case, which sets in at low luminosities, a hot quasi-spherical shell must be formed around the magnetosphere, and the actual accretion rate onto NS is determined by ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instability. We calculate the rate of plasma entry the magnetopshere and the angular momentum transfer in the shell due to turbulent viscosity appearing in the convective differentially rotating shell. We also discuss and calculate the structure of the magnetospheric boundary layer where the angular momentum between the rotating magnetosphere and the base of the differentially rotating quasi-spherical shell takes place. We show how observations of equilibrium X-ray pulsars Vela X-1 and GX 301-2 can be used to estimate dimensionless parameters of the subsonic settling accretion theory, and obtain the width of the magnetospheric boundary layer for these pulsars.

  17. Microlesions - Theory and reality

    NASA Technical Reports Server (NTRS)

    Worgul, Basil V.; Koniarek, Jan P.; Krebs, Wolf

    1989-01-01

    Efforts to assess radiation risk in space have been complicated by the considerable unknowns regarding the biological effects of the heavy ion component (HZE particles) of the cosmic rays. The attention has focused primarily on the assignation of a quality factor (Q) which would take into account the greater effectiveness of heavy ions vis-a-vis other forms of ionizing radiation. If, however, as the so-called 'microlesion theory' allows, the passage of HZE particles through living tissue produces unique biological damage, the traditional use of Q becomes meaningless. Therefore, it is critical to determine if microlesions, in fact, do exist. While the concept does not necessarily require detectable morphological damage, 'tunnel-lesions' or holes in ocular tissues have been cited as evidence of microlesions. These data, however, are open to reinterpretation. Ongoing light, scanning and transmission electron microscopic studies of the corneas, lenses and retinas of rat eyes exposed to 450 MeV/amu Fe-56 ions thus far have not revealed tunnel-lesion damage. The morphological effects of the heavy ions have been found to be qualitatively similar to the changes following other kinds of ionizing radiation.

  18. THEORY IN RELIGION AND AGING: AN OVERVIEW

    PubMed Central

    Levin, Jeff; Chatters, Linda M.; Taylor, Robert Joseph

    2011-01-01

    This paper provides an overview of theory in religion, aging, and health. It offers both a primer on theory and a roadmap for researchers. Four “tenses” of theory are described—distinct ways that theory comes into play in this field: grand theory, mid-range theory, use of theoretical models, and positing of constructs which mediate or moderate putative religious effects. Examples are given of both explicit and implicit uses of theory. Sources of theory for this field are then identified, emphasizing perspectives of sociologists and psychologists, and discussion is given to limitations of theory. Finally, reflections are offered as to why theory matters. PMID:20087662

  19. A Relational Theory of Working

    ERIC Educational Resources Information Center

    Blustein, David L.

    2011-01-01

    Building on diverse influences from critical perspectives in vocational psychology and the relational movement in contemporary psychological discourse, this article introduces the relational theory of working. Attending to the full array of people who work and who want to work, the relational theory conceptualizes working as an inherently…

  20. Holland's Theory and Career Assessment.

    ERIC Educational Resources Information Center

    Reardon, Robert C.; Lenz, Janet G.

    1999-01-01

    Career assessment activities in the Self-Directed Search and constructs in Holland's theory increase understanding of an individual's personal career theory (PCT). The PCT provides information about a person's readiness for career decision making and the types of career interventions that might be effective. (Author/SK)

  1. Some Ideas About Number Theory.

    ERIC Educational Resources Information Center

    Barnett, I. A.

    The material in this booklet is designed for non-professional mathematicians who have an interest in the theory of numbers. The author presents some elementary results of number theory without involving detailed proofs. Much of the material has direct application for secondary school mathematics teachers. A brief account of the nature of number…

  2. Theory "W": The Corporate Warrior.

    ERIC Educational Resources Information Center

    Morris, David J., Jr.

    1986-01-01

    Describes power structure of corporations functioning under Theory W in which single leaders, in partnership with trusted followers, achieve corporate success. Basis of this industrial structure is attributed to social and developmental structures of prehistoric man and city states. Dimensions of W, X, Y, and Z theories are discussed. (MBR)

  3. Cognitive Load: Updating the Theory?

    ERIC Educational Resources Information Center

    Valcke, Martin

    2002-01-01

    Comments on this special issue on cognitive load theory and suggests three new basic directions for research: (1) the potential of cognitive load theory (CLT) to ground approaches to learning and instruction; (2) monitoring activities that occur in the learning process; and (3) the study of the notion of prior knowledge in the context of CLT. (SLD)

  4. Lunar Ephemeris: Delaunay's Theory Revisited.

    PubMed

    Deprit, A; Henrard, J; Rom, A

    1970-06-26

    Delaunay's reduced Hamiltonian of the main problem in lunar theory is checked against a new analytical theory based on Lie transforms. It is found to be correct up to order 9 with the exception of one error in addition at order 7. PMID:17759336

  5. Critical Social Theory: A Portrait

    ERIC Educational Resources Information Center

    Torres, Carlos A.

    2012-01-01

    The term Critical Social Theory is employed in this article following the tradition of the Frankfurt School, and particularly the work of Herbert Marcuse and his interpretation of the political and social philosophy of Hegel and Marx. Discussing the contribution of G.W.F. Hegel to social theory Marcuse argued that: "Hegel's system brings to a…

  6. Theory of Test Translation Error

    ERIC Educational Resources Information Center

    Solano-Flores, Guillermo; Backhoff, Eduardo; Contreras-Nino, Luis Angel

    2009-01-01

    In this article, we present a theory of test translation whose intent is to provide the conceptual foundation for effective, systematic work in the process of test translation and test translation review. According to the theory, translation error is multidimensional; it is not simply the consequence of defective translation but an inevitable fact…

  7. Kants Theorie der Sonne: Physikgeschichte

    NASA Astrophysics Data System (ADS)

    Jacobi, Manfred

    2005-01-01

    Im Rahmen seiner Kosmogonie entwickelte der junge Immanuel Kant eine Theorie der Sonne. Sie ist ein einzigartiges Zeugnis seiner intuitiven Vorstellungskraft und beweist auch die Leistungsfähigkeit der damaligen, vorwiegend von Newton geprägten Weltsicht. Entstehung, Aufbau und Dynamik der Sonne werden in Kants Theorie ebenso erklärt wie etwa das Phänomen der Sonnenflecken.

  8. Organizational Theory and Leadership Navigation

    ERIC Educational Resources Information Center

    Brazer, S. David; Kruse, Sharon D.; Conley, Sharon

    2014-01-01

    Teaching organizational theory in a way that bridges to leadership practice is vital to preparing deft educational leaders who understand the organizational behavior of schools and districts. Organizational theory guides understanding of the complexities of schools and districts and can be a basis for collaborative and effective decision making.…

  9. Theory of nuclear magnetic relaxation

    NASA Technical Reports Server (NTRS)

    Mcconnell, J.

    1983-01-01

    A theory of nuclear magnetic interaction is based on the study of the stochastic rotation operator. The theory is applied explicitly to relaxation by anisotropic chemical shift and to spin-rotational interactions. It is applicable also to dipole-dipole and quadrupole interactions.

  10. Neoclassical Theory and Its Applications

    SciTech Connect

    Shaing, Ker-Chung

    2015-11-20

    The grant entitled Neoclassical Theory and Its Applications started on January 15 2001 and ended on April 14 2015. The main goal of the project is to develop neoclassical theory to understand tokamak physics, and employ it to model current experimental observations and future thermonuclear fusion reactors. The PI had published more than 50 papers in refereed journals during the funding period.

  11. Antecedents of the Theory Movement.

    ERIC Educational Resources Information Center

    Culbertson, Jack A.

    1981-01-01

    Traces the conceptual roots of the theory movement in educational administration, highlighting the ideas of Auguste Comte and the logical positivists. Explains how core concepts that shaped the theory movement were diffused into educational administration and sets forth implications for future study. (Author/WD)

  12. Teachers' Theories in Grammar Teaching.

    ERIC Educational Resources Information Center

    Borg, Simon

    1999-01-01

    Considers how research into researchers' theories in English language teaching (ELT) can enhance our understanding of instruction and provide the basis of effective teacher-development work. The nature of teachers' theories is illustrated with examples from classroom research on grammar teaching. Discusses a study conducted with five…

  13. Writing Centers: Theory and Administration.

    ERIC Educational Resources Information Center

    Olson, Gary A., Ed.

    Prepared by writing center directors, the articles in this book examine the pedagogical theories of tutorial services and relate them to actual center practices. The 19 articles are arranged into three categories: writing center theory, writing center administration, and special concerns. Specific topics discussed in the articles include the…

  14. Constraints on galaxy formation theories

    NASA Technical Reports Server (NTRS)

    Szalay, A. S.

    1986-01-01

    The present theories of galaxy formation are reviewed. The relation between peculiar velocities, temperature fluctuations of the microwave background and the correlation function of galaxies point to the possibility that galaxies do not form uniformly everywhere. The velocity data provide strong constraints on the theories even in the case when light does not follow mass of the universe.

  15. Perspectives on global change theory

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global changes in ecological drivers, such as CO2 concentrations, climate, and nitrogen deposition, are increasingly recognized as key to understanding contemporary ecosystem dynamics, but a coherent theory of global change has not yet been developed. We outline the characteristics of a theory of gl...

  16. Stasis Theory and Paleontology Discourse

    ERIC Educational Resources Information Center

    Northcut, Kathryn M.

    2007-01-01

    Stasis theory is a powerful tool for rhetorical analysis, recently under fresh consideration by rhetorical theorists (e.g. Gross) and scholars who identify its utility in the writing classroom (e.g. Carroll). In this study, the author applies stasis theory to a paleontological argument involving a controversial fossil, "Protoavis texensis."…

  17. Dance Theory and Dance Education.

    ERIC Educational Resources Information Center

    Snoeyenbos, Milton H.; Knapp, Carole A.

    1979-01-01

    The authors argue that the expression theory of dance is subjectivistic and false, thus failing to provide an adequate rationale for criticism and dance education. They sketch out a theory of dance which focuses squarely on movement itself, and claim this provides a coherent, objective basis for dance education. (KC)

  18. The Theory of International Development.

    ERIC Educational Resources Information Center

    Zuchelli, Lisa

    Noting that the theory of international development is a paradigm, a model by which researchers guide their studies, this paper reviews various concepts of international development theory and proposes a research study that would examine mass media use in Georgia, one of the new republics born out of the death of the Soviet Union. The paper begins…

  19. Feminist Film Theory and Criticism.

    ERIC Educational Resources Information Center

    Mayne, Judith

    1985-01-01

    Discusses Laura Mulvey's 1975 essay, "Visual Pleasure and Narrative Cinema," and the ideas about feminist film theory and psychoanalysis as a critical tool which it raises. Suggests contradiction is the central issue in feminist film theory. Explores definitions of women's cinema. (SA)

  20. Basics of QCD perturbation theory

    SciTech Connect

    Soper, D.E.

    1997-06-01

    This is an introduction to the use of QCD perturbation theory, emphasizing generic features of the theory that enable one to separate short-time and long-time effects. The author also covers some important classes of applications: electron-positron annihilation to hadrons, deeply inelastic scattering, and hard processes in hadron-hadron collisions. 31 refs., 38 figs.

  1. Evaluation Theory, Models, and Applications

    ERIC Educational Resources Information Center

    Stufflebeam, Daniel L.; Shinkfield, Anthony J.

    2007-01-01

    "Evaluation Theory, Models, and Applications" is designed for evaluators and students who need to develop a commanding knowledge of the evaluation field: its history, theory and standards, models and approaches, procedures, and inclusion of personnel as well as program evaluation. This important book shows how to choose from a growing array of…

  2. Control Theory and Statistical Generalizations.

    ERIC Educational Resources Information Center

    Powers, William T.

    1990-01-01

    Contrasts modeling methods in control theory to the methods of statistical generalizations in empirical studies of human or animal behavior. Presents a computer simulation that predicts behavior based on variables (effort and rewards) determined by the invariable (desired reward). Argues that control theory methods better reflect relationships to…

  3. Curriculum: From Theory to Practice

    ERIC Educational Resources Information Center

    Null, Wesley

    2011-01-01

    "Curriculum: From Theory to Practice" introduces readers to curriculum theory and how it relates to classroom practice. Wesley Null provides a unique organization of the curriculum field into five traditions: systematic, existential, radical, pragmatic, and deliberative. He discusses the philosophical foundations of curriculum as well as…

  4. Foundations of Distinctive Feature Theory.

    ERIC Educational Resources Information Center

    Baltaxe, Christiane A. M.

    This treatise on the theoretical and historical foundations of distinctive feature theory traces the evolution of the distinctive features concept in the context of related notions current in linguistic theory, discusses the evolution of individual distinctive features, and criticizes certain acoustic and perceptual correlates attributed to these…

  5. Comparative Theories of Social Change.

    ERIC Educational Resources Information Center

    Peter, Hollis W.; And Others

    This symposium report contains various statements of the theory of change and societal growth and maintenance viewed from the perspectives of major social disciplines. Comparative theories in these areas can provide guidelines for predicting, planning, and carrying out social development programs. The theme of the symposium was the problem of…

  6. Instructional Theory for Teaching Statistics.

    ERIC Educational Resources Information Center

    Atwood, Jan R.; Dinham, Sarah M.

    Metatheoretical analysis of Ausubel's Theory of Meaningful Verbal Learning and Gagne's Theory of Instruction using the Dickoff and James paradigm produced two instructional systems for basic statistics. The systems were tested with a pretest-posttest control group design utilizing students enrolled in an introductory-level graduate statistics…

  7. Toward a Unified Communication Theory.

    ERIC Educational Resources Information Center

    McMillan, Saundra

    After discussing the nature of theory itself, the author explains her concept of the Unified Communication Theory, which rests on the assumption that there exists in all living structures a potential communication factor which is delimited by species and ontogeny. An organism develops "symbol fixation" at the level where its perceptual abilities…

  8. Theory and Pragmatics in Composition.

    ERIC Educational Resources Information Center

    Nold, Ellen W.

    This discussion delineates five criteria for judging the usefulness of linguistic and psycholinguistic theories. To be of value, a theory must suggest ways of teaching and evaluating language use, it must account both for the meaning of sentences in context and for meaning generated by the relationship between sentences in text, it must allow for…

  9. [Learning theories and medical education].

    PubMed

    Gonçalves, E L

    1996-01-01

    The author analyses the most important aspects of learning theories: the behaviorist, the gestaltic and the construtivist ones and concludes that the most effective attitude assimilates all positive constributions of each theory. Examining three basic learning principles, the author also presents their relation to medical educative components: knowledge retainment, psycho-motor habilities breeding and interpersonal attitudes development. PMID:9035502

  10. Reading Hertz's Own Dipole Theory

    ERIC Educational Resources Information Center

    Anicin, B. A.

    2008-01-01

    It is well known that the discoverer of radio waves, Heinrich Hertz, was the first man to apply Maxwell's electrodynamic theory to a problem in radio wave propagation. In this paper, we scrutinize his near-field lines of force using computers and his theory. In one of his four figures, a feature was found which was not to be obtained by…

  11. Children's Working Theories: Invoking Disequilibrium

    ERIC Educational Resources Information Center

    Lovatt, Daniel; Hedges, Helen

    2015-01-01

    One of the outcomes of the New Zealand early childhood curriculum, "Te Whariki", is "working theories". Prior research on this concept has primarily utilised sociocultural theoretical underpinnings and neglected Piagetian constructivist theories. This paper explores ways the Piagetian concepts of equilibrium and disequilibrium…

  12. Implicit Theories of Peer Relationships

    ERIC Educational Resources Information Center

    Rudolph, Karen D.

    2010-01-01

    This research investigated the role of children's implicit theories of peer relationships in their psychological, emotional, and behavioral adjustment. Participants included 206 children (110 girls; 96 boys; M age = 10.13 years, SD = 1.16) who reported on their implicit theories of peer relationships, social goal orientation, need for approval,…

  13. Agent-Based Literacy Theory

    ERIC Educational Resources Information Center

    McEneaney, John E.

    2006-01-01

    The purpose of this theoretical essay is to explore the limits of traditional conceptualizations of reader and text and to propose a more general theory based on the concept of a literacy agent. The proposed theoretical perspective subsumes concepts from traditional theory and aims to account for literacy online. The agent-based literacy theory…

  14. The Theory of Conceptual Fields

    ERIC Educational Resources Information Center

    Vergnaud, Gerard

    2009-01-01

    The theory of conceptual fields is a developmental theory. It has two aims: (1) to describe and analyse the progressive complexity, on a long- and medium-term basis, of the mathematical competences that students develop inside and outside school, and (2) to establish better connections between the operational form of knowledge, which consists in…

  15. Prospect Theory and Coercive Bargaining

    ERIC Educational Resources Information Center

    Butler, Christopher K.

    2007-01-01

    Despite many applications of prospect theory's concepts to explain political and strategic phenomena, formal analyses of strategic problems using prospect theory are rare. Using Fearon's model of bargaining, Tversky and Kahneman's value function, and an existing probability weighting function, I construct a model that demonstrates the differences…

  16. Field theory and particle physics

    SciTech Connect

    Eboli, O.J.P.; Gomes, M.; Santoro, A.

    1990-01-01

    This book contains the proceedings of the topics covered during the fifth Jorge Andre Swieca Summer School. The first part of the book collects the material devoted to quantum field theory. There were four courses on methods in Field Theory; H. O. Girotti lectured on constrained dynamics, R. Jackiw on the Schrodinger representation in Field Theory, S.-Y. Pi on the application of this representation to quantum fields in a Robertson-Walker spacetime, and L. Vinet on Berry Connections. There were three courses on Conformal Field Theory: I. Todorov focused on the problem of construction and classification of conformal field theories. Lattice models, two-dimensional S matrices and conformal field theory were looked from the unifying perspective of the Yang-Baxter algebras in the lectures given by M. Karowski. Parasupersymmetric quantum mechanics was discussed in the lectures by L. Vinet. Besides those courses, there was an introduction to string field theory given by G. Horowitz. There were also three seminars: F. Schaposnik reported on recent applications of topological methods in field theory, P. Gerbert gave a seminar on three dimensional gravity and V. Kurak talked on two dimensional parafermionic models. The second part of this proceedings is devoted to phenomenology. There were three courses on Particle Physics: Dan Green lectured on collider physics, E. Predrazzi on strong interactions and G. Cohen-Tanoudji on the use of strings in strong interactions.

  17. Galilean Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Bagchi, Arjun; Basu, Rudranil; Kakkar, Ashish; Mehra, Aditya

    2016-04-01

    We investigate the symmetry structure of the non-relativistic limit of Yang-Mills theories. Generalising previous results in the Galilean limit of electrodynamics, we discover that for Yang-Mills theories there are a variety of limits inside the Galilean regime. We first explicitly work with the SU(2) theory and then generalise to SU( N) for all N, systematising our notation and analysis. We discover that the whole family of limits lead to different sectors of Galilean Yang-Mills theories and the equations of motion in each sector exhibit hitherto undiscovered infinite dimensional symmetries, viz. infinite Galilean Conformal symmetries in D = 4. These provide the first examples of interacting Galilean Conformal Field Theories (GCFTs) in D > 2.

  18. M theory on deformed superspace

    NASA Astrophysics Data System (ADS)

    Faizal, Mir

    2011-11-01

    In this paper we will analyze a noncommutative deformation of the Aharony-Bergman-Jafferis-Maldacena (ABJM) theory in N=1 superspace formalism. We will then analyze the Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetries for this deformed ABJM theory, and its linear as well as nonlinear gauges. We will show that the sum of the gauge fixing term and the ghost term for this deformed ABJM theory can be expressed as a combination of the total BRST and the total anti-BRST variation, in Landau and nonlinear gauges. We will show that in Landau and Curci-Ferrari gauges deformed ABJM theory is invariant under an additional set of symmetry transformations. We will also discuss the effect that the addition of a bare mass term has on this theory.

  19. Effective methods for quantum theories

    NASA Astrophysics Data System (ADS)

    Brahma, Suddhasattwa

    Whenever a full theory is unavailable, effective frameworks serve as powerful tools for examining physical phenomena below some energy scale. However, standard quantum field theory techniques are not always applicable in various exotic, yet physically relevant, systems. This thesis presents a new effective method for quantum theories, which is particularly tailored towards background independent theories such as gravity. Our main motivation is to utilize these techniques to extract the semi-classical dynamics from canonical quantum gravity theories. Application to field theoretic toy models of loop quantum gravity and non-associative quantum mechanics is elaborated in detail. We also extend this framework to fully constrained systems, as is required for gravity, and discuss several consequences for quantum gravity.

  20. Media Effects: Theory and Research.

    PubMed

    Valkenburg, Patti M; Peter, Jochen; Walther, Joseph B

    2016-01-01

    This review analyzes trends and commonalities among prominent theories of media effects. On the basis of exemplary meta-analyses of media effects and bibliometric studies of well-cited theories, we identify and discuss five features of media effects theories as well as their empirical support. Each of these features specifies the conditions under which media may produce effects on certain types of individuals. Our review ends with a discussion of media effects in newer media environments. This includes theories of computer-mediated communication, the development of which appears to share a similar pattern of reformulation from unidirectional, receiver-oriented views, to theories that recognize the transactional nature of communication. We conclude by outlining challenges and promising avenues for future research. PMID:26331344

  1. Structure of a viscoplastic theory

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.

    1988-01-01

    The general structure of a viscoplastic theory is developed from physical and thermodynamical considerations. The flow equation is of classical form. The dynamic recovery approach is shown to be superior to the hardening function approach for incorporating nonlinear strain hardening into the material response through the evolutionary equation for back stress. A novel approach for introducing isotropic strain hardening into the theory is presented, which results in a useful simplification. In particular, the limiting stress for the kinematic saturation of state (not the drag stress) is the chosen scalar-valued state variable. The resulting simplification is that there is no coupling between dynamic and thermal recovery terms in each evolutionary equation. The derived theory of viscoplasticity has the structure of a two-surface plasticity theory when the response is plasticlike, and the structure of a Bailey-Orowan creep theory when the response is creeplike.

  2. Geometric scalar theory of gravity

    SciTech Connect

    Novello, M.; Bittencourt, E.; Goulart, E.; Salim, J.M.; Toniato, J.D.; Moschella, U. E-mail: eduhsb@cbpf.br E-mail: egoulart@cbpf.br E-mail: toniato@cbpf.br

    2013-06-01

    We present a geometric scalar theory of gravity. Our proposal will be described using the ''background field method'' introduced by Gupta, Feynman, Deser and others as a field theory formulation of general relativity. We analyze previous criticisms against scalar gravity and show how the present proposal avoids these difficulties. This concerns not only the theoretical complaints but also those related to observations. In particular, we show that the widespread belief of the conjecture that the source of scalar gravity must be the trace of the energy-momentum tensor — which is one of the main difficulties to couple gravity with electromagnetic phenomenon in previous models — does not apply to our geometric scalar theory. From the very beginning this is not a special relativistic scalar gravity. The adjective ''geometric'' pinpoints its similarity with general relativity: this is a metric theory of gravity. Some consequences of this new scalar theory are explored.

  3. Unified theory of effective interaction

    NASA Astrophysics Data System (ADS)

    Takayanagi, Kazuo

    2016-09-01

    We present a unified description of effective interaction theories in both algebraic and graphic representations. In our previous work, we have presented the Rayleigh-Schrödinger and Bloch perturbation theories in a unified fashion by introducing the main frame expansion of the effective interaction. In this work, we start also from the main frame expansion, and present various nonperturbative theories in a coherent manner, which include generalizations of the Brandow, Brillouin-Wigner, and Bloch-Horowitz theories on the formal side, and the extended Krenciglowa-Kuo and the extended Lee-Suzuki methods on the practical side. We thus establish a coherent and comprehensive description of both perturbative and nonperturbative theories on the basis of the main frame expansion.

  4. Coleridge's "theory of life".

    PubMed

    Smith, C U

    1999-01-01

    Coleridge has been seen by some not so much as a poet spoiled by philosophy, but as a philosopher who was also a poet. It could be argued that his major endeavor was an attempt to save the life sciences form the mechanistic interpretation which he saw as the outcome of Lockean "mechanico-corpuscularian" philosophy. This contribution describes that endeavour. It shows its connection to the social circumstances of the time. It discusses its relationship to the poetic sensibility of the "Lake poets" and to the German thought which Coleridge absorbed during and after his sojourn in Gottingen in 1798-99. It describes the nature of his "Theory of Life" as seen not only from the posthumous publication itself, but also from the numerous hints and struggles recorded in his voluminous notebooks, letters and lecture notes. It is concluded that, although never adequately assembled, it forms the only serious attempt to construct a profound alternative to the ultimately mechanistic biology of Charles Darwin and the psysiologists of the second half of the century. As such it strongly influenced the young Richard Owen and, as is well known, was eventually overwhelmed by the Darwin-Huxley synthesis of the 1860s. Nevertheless, insofar as Coleridge's concept of life ultimately derived from his ambition to find a way of healing the Cartesian divide, we may wonder whether the recent upsurge in consciousness studies may cause us to look again at his panentheistic ideas and, discarding the obsolete and fanciful metaphysics, recast them into a more acceptable form. PMID:11623814

  5. Theory of Collective Intelligence

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.

    2003-01-01

    In this chapter an analysis of the behavior of an arbitrary (perhaps massive) collective of computational processes in terms of an associated "world" utility function is presented We concentrate on the situation where each process in the collective can be viewed as though it were striving to maximize its own private utility function. For such situations the central design issue is how to initialize/update the collective's structure, and in particular the private utility functions, so as to induce the overall collective to behave in a way that has large values of the world utility. Traditional "team game" approaches to this problem simply set each private utility function equal to the world utility function. The "Collective Intelligence" (COIN) framework is a semi-formal set of heuristics that recently have been used to construct private utility. functions that in many experiments have resulted in world utility values up to orders of magnitude superior to that ensuing from use of the team game utility. In this paper we introduce a formal mathematics for analyzing and designing collectives. We also use this mathematics to suggest new private utilities that should outperform the COIN heuristics in certain kinds of domains. In accompanying work we use that mathematics to explain previous experimental results concerning the superiority of COIN heuristics. In that accompanying work we also use the mathematics to make numerical predictions, some of which we then test. In this way these two papers establish the study of collectives as a proper science, involving theory, explanation of old experiments, prediction concerning new experiments, and engineering insights.

  6. [From the cell theory to the neuron theory].

    PubMed

    Tixier-Vidal, Andrée

    2010-01-01

    The relationship between the cell theory formulated by Schwann (1839) and by Virchow (1855) on the one hand, and, on the other hand, the neuron theory, as formulated by Waldeyer (1891) and by Cajal (1906), are discussed from a historical point of view. Both of them are the result of technical and conceptuel progress. Both of them had to fight against the dominant dogma before being accepted. The cell theory opposed the school of Bichat, the vitalist philosophy and the positivist philosophy of Auguste Comte. The neuron theory, which is clearly based on the cell theory, was mostly concerned with the mode of interneuronal communication; it opposed the concept of contiguity to Golgi's concept of continuity. At present, the cell theory remains central in every field of Biology. By contrast, the neuron theory, which until the middle of the XXth century opened the study of the nervous system to a necessary reductionnist approach, is no longer central to recent developments of neurosciences. PMID:21215242

  7. Milankovitch Theory and climate

    NASA Astrophysics Data System (ADS)

    Berger, A.

    1988-11-01

    Among the longest astrophysical and astronomical cycles that might influence climate (and even among all forcing mechanisms external to the climatic system itself), only those involving variations in the elements of the Earth's orbit have been found to be significantly related to the long-term climatic data deduced from the geological record. The aim of the astronomical theory of paleoclimates, a particular version of which being due to Milankovitch, is to study this relationship between insolation and climate at the global scale. It comprises four different parts: the orbital elements, the insolation, the climate model, and the geological data. In the nineteenth century, Croll and Pilgrim stressed the importance of severe winters as a cause of ice ages. Later, mainly during the first half of the twentieth century, Köppen, Spitaler, and Milankovitch regarded mild winters and cool summers as favoring glaciation. After Köppen and Wegener related the Milankovitch new radiation curve to Penck and Brückner's subdivision of the Quaternary, there was a long-lasting debate on whether or not such changes in the insolation can explain the Quaternary glacial-interglacial cycles. In the 1970s, with the improvements in dating, in acquiring, and in interpreting the geological data, with the advent of computers, and with the development of astronomical and climate models, the Milankovitch theory revived. Over the last 5 years it overcame most of the geological, astronomical, and climatological difficulties. The accuracy of the long-term variations of the astronomical elements and of the insolation values and the stability of their spectra have been analyzed by comparing seven different astronomical solutions and four different time spans (0-0.8 million years before present (Myr B.P.), 0.8-1.6 Myr B.P., 1.6-2.4 Myr B.P., and 2.4-3.2 Myr B.P.). For accuracy in the time domain, improvements are necessary for periods earlier than 2 Myr B.P. As for the stability of the frequencies

  8. A Computational Theory of Modelling

    NASA Astrophysics Data System (ADS)

    Rossberg, Axel G.

    2003-04-01

    A metatheory is developed which characterizes the relationship between a modelled system, which complies with some ``basic theory'', and a model, which does not, and yet reproduces important aspects of the modelled system. A model is represented by an (in a certain sense, s.b.) optimal algorithm which generates data that describe the model's state or evolution complying with a ``reduced theory''. Theories are represented by classes of (in a similar sense, s.b.) optimal algorithms that test if their input data comply with the theory. The metatheory does not prescribe the formalisms (data structure, language) to be used for the description of states or evolutions. Transitions to other formalisms and loss of accuracy, common to theory reduction, are explicitly accounted for. The basic assumption of the theory is that resources such as the code length (~ programming time) and the computation time for modelling and testing are costly, but the relative cost of each recourse is unknown. Thus, if there is an algorithm a for which there is no other algorithm b solving the same problem but using less of each recourse, then a is considered optimal. For tests (theories), the set X of wrongly admitted inputs is treated as another resource. It is assumed that X1 is cheaper than X2 when X1 ⊂ X2 (X1 ≠ X2). Depending on the problem, the algorithmic complexity of a reduced theory can be smaller or larger than that of the basic theory. The theory might help to distinguish actual properties of complex systems from mere mental constructs. An application to complex spatio-temporal patterns is discussed.

  9. Noncommutative Geometry in M-Theory and Conformal Field Theory

    SciTech Connect

    Morariu, Bogdan

    1999-05-01

    In the first part of the thesis I will investigate in the Matrix theory framework, the subgroup of dualities of the Discrete Light Cone Quantization of M-theory compactified on tori, which corresponds to T-duality in the auxiliary Type II string theory. After a review of matrix theory compactification leading to noncommutative supersymmetric Yang-Mills gauge theory, I will present solutions for the fundamental and adjoint sections on a two-dimensional twisted quantum torus and generalize to three-dimensional twisted quantum tori. After showing how M-theory T-duality is realized in supersymmetric Yang-Mills gauge theories on dual noncommutative tori I will relate this to the mathematical concept of Morita equivalence of C*-algebras. As a further generalization, I consider arbitrary Ramond-Ramond backgrounds. I will also discuss the spectrum of the toroidally compactified Matrix theory corresponding to quantized electric fluxes on two and three tori. In the second part of the thesis I will present an application to conformal field theory involving quantum groups, another important example of a noncommutative space. First, I will give an introduction to Poisson-Lie groups and arrive at quantum groups using the Feynman path integral. I will quantize the symplectic leaves of the Poisson-Lie group SU(2)*. In this way we obtain the unitary representations of U{sub q}(SU(2)). I discuss the X-structure of SU(2)* and give a detailed description of its leaves using various parametrizations. Then, I will introduce a new reality structure on the Heisenberg double of Fun{sub q} (SL(N,C)) for q phase, which can be interpreted as the quantum phase space of a particle on the q-deformed mass-hyperboloid. I also present evidence that the above real form describes zero modes of certain non-compact WZNW-models.

  10. Transition operators in electromagnetic-wave diffraction theory - General theory

    NASA Technical Reports Server (NTRS)

    Hahne, G. E.

    1992-01-01

    A formal theory is developed for the scattering of time-harmonic electromagnetic waves from impenetrable immobile obstacles with given linear, homogeneous, and generally nonlocal boundary conditions of Leontovich (impedance) type for the wave of the obstacle's surface. The theory is modeled on the complete Green's function and the transition (T) operator in time-independent formal scattering theory of nonrelativistic quantum mechanics. An expression for the differential scattering cross section for plane electromagnetic waves is derived in terms of certain matrix elements of the T operator for the obstacle.

  11. The Birth of String Theory

    NASA Astrophysics Data System (ADS)

    Cappelli, Andrea; Castellani, Elena; Colomo, Filippo; Di Vecchia, Paolo

    2012-04-01

    Part I. Overview: 1. Introduction and synopsis; 2. Rise and fall of the hadronic string G. Veneziano; 3. Gravity, unification, and the superstring J. H. Schwarz; 4. Early string theory as a challenging case study for philosophers E. Castellani; Part II. The Prehistory: The Analytic S-Matrix: 5. Introduction to Part II; 6. Particle theory in the sixties: from current algebra to the Veneziano amplitude M. Ademollo; 7. The path to the Veneziano model H. R. Rubinstein; 8. Two-component duality and strings P. G. O. Freund; 9. Note on the prehistory of string theory M. Gell-Mann; Part III. The Dual Resonance Model: 10. Introduction to Part III; 11. From the S-matrix to string theory P. Di Vecchia; 12. Reminiscence on the birth of string theory J. A. Shapiro; 13. Personal recollections D. Amati; 14. Early string theory at Fermilab and Rutgers L. Clavelli; 15. Dual amplitudes in higher dimensions: a personal view C. Lovelace; 16. Personal recollections on dual models R. Musto; 17. Remembering the 'supergroup' collaboration F. Nicodemi; 18. The '3-Reggeon vertex' S. Sciuto; Part IV. The String: 19. Introduction to Part IV; 20. From dual models to relativistic strings P. Goddard; 21. The first string theory: personal recollections L. Susskind; 22. The string picture of the Veneziano model H. B. Nielsen; 23. From the S-matrix to string theory Y. Nambu; 24. The analogue model for string amplitudes D. B. Fairlie; 25. Factorization in dual models and functional integration in string theory S. Mandelstam; 26. The hadronic origins of string theory R. C. Brower; Part V. Beyond the Bosonic String: 27. Introduction to Part V; 28. From dual fermion to superstring D. I. Olive; 29. Dual models with fermions: memoirs of an early string theorist P. Ramond; 30. Personal recollections A. Neveu; 31. Aspects of fermionic dual models E. Corrigan; 32. The dual quark models K. Bardakci and M. B. Halpern; 33. Remembering the dawn of relativistic strings J.-L. Gervais; 34. Early string theory in

  12. Corners in M-theory

    NASA Astrophysics Data System (ADS)

    Sati, Hisham

    2011-06-01

    M-theory can be defined on closed manifolds as well as on manifolds with boundary. As an extension, we show that manifolds with corners appear naturally in M-theory. We illustrate this with four situations: the lift to bounding 12 dimensions of M-theory on anti-de Sitter spaces, ten-dimensional heterotic string theory in relation to 12 dimensions, and the two M-branes within M-theory in the presence of a boundary. The M2-brane is taken with (or as) a boundary and the worldvolume of the M5-brane is viewed as a tubular neighborhood. We then concentrate on the (variant) of the heterotic theory as a corner and explore analytical and geometric consequences. In particular, we formulate and study the phase of the partition function in this setting and identify the corrections due to the corner(s). The analysis involves considering M-theory on disconnected manifolds and makes use of the extension of the Atiyah-Patodi-Singer index theorem to manifolds with corners and the b-calculus of Melrose.

  13. Propensity, Probability, and Quantum Theory

    NASA Astrophysics Data System (ADS)

    Ballentine, Leslie E.

    2016-08-01

    Quantum mechanics and probability theory share one peculiarity. Both have well established mathematical formalisms, yet both are subject to controversy about the meaning and interpretation of their basic concepts. Since probability plays a fundamental role in QM, the conceptual problems of one theory can affect the other. We first classify the interpretations of probability into three major classes: (a) inferential probability, (b) ensemble probability, and (c) propensity. Class (a) is the basis of inductive logic; (b) deals with the frequencies of events in repeatable experiments; (c) describes a form of causality that is weaker than determinism. An important, but neglected, paper by P. Humphreys demonstrated that propensity must differ mathematically, as well as conceptually, from probability, but he did not develop a theory of propensity. Such a theory is developed in this paper. Propensity theory shares many, but not all, of the axioms of probability theory. As a consequence, propensity supports the Law of Large Numbers from probability theory, but does not support Bayes theorem. Although there are particular problems within QM to which any of the classes of probability may be applied, it is argued that the intrinsic quantum probabilities (calculated from a state vector or density matrix) are most naturally interpreted as quantum propensities. This does not alter the familiar statistical interpretation of QM. But the interpretation of quantum states as representing knowledge is untenable. Examples show that a density matrix fails to represent knowledge.

  14. Recent developments in bimetric theory

    NASA Astrophysics Data System (ADS)

    Schmidt-May, Angnis; von Strauss, Mikael

    2016-05-01

    This review is dedicated to recent progress in the field of classical, interacting, massive spin-2 theories, with a focus on ghost-free bimetric theory. We will outline its history and its development as a nontrivial extension and generalisation of nonlinear massive gravity. We present a detailed discussion of the consistency proofs of both theories, before we review Einstein solutions to the bimetric equations of motion in vacuum as well as the resulting mass spectrum. We introduce couplings to matter and then discuss the general relativity and massive gravity limits of bimetric theory, which correspond to decoupling the massive or the massless spin-2 field from the matter sector, respectively. More general classical solutions are reviewed and the present status of bimetric cosmology is summarised. An interesting corner in the bimetric parameter space which could potentially give rise to a nonlinear theory for partially massless spin-2 fields is also discussed. Relations to higher-curvature theories of gravity are explained and finally we give an overview of possible extensions of the theory and review its formulation in terms of vielbeins.

  15. Establish Theory Study Sessions for Cadres and Train Theory Tutors

    ERIC Educational Resources Information Center

    Chinese Education, 1977

    1977-01-01

    Three courses in Marxist-Leninist theory have been established for students at revolutionary cadre training schools in Hunan Province. Through primary source readings and discussion, students understand the revolutionary line and are able to tutor others. (AV)

  16. Erroneous theories of sex determination.

    PubMed Central

    Mittwoch, U

    1985-01-01

    Throughout the major part of history, theories of sex determination had to be formulated in the absence of knowledge of ova and spermatozoa. The most persistent theory postulated that males are associated with the right parental side and females with the left side. At the end of the 19th century, sex was thought to be determined by nutrition. Recent findings regarding bilateral asymmetry in human hermaphrodites and of temperature dependent sex determination in reptiles may restore a small degree of credibility to certain theories predating the discovery of sex chromosomes. Images PMID:3892005

  17. Non-supersymmetric string theory

    NASA Astrophysics Data System (ADS)

    Martinec, Emil J.; Robbins, Daniel; Sethi, Savdeep

    2011-10-01

    A class of non-supersymmetric string backgrounds can be constructed using twists that involve space-time fermion parity. We propose a non-perturbative definition of string theory in these backgrounds via gauge theories with supersymmetry softly broken by twisted boundary conditions. The perturbative string spectrum is reproduced, and qualitative effects of the interactions are discussed. Along the way, we find an interesting mechanism for inflation. The end state of closed string tachyon condensation is a highly excited state in the gauge theory which, in all likelihood, does not have a geometric interpretation.

  18. Machines for lattice gauge theory

    SciTech Connect

    Mackenzie, P.B.

    1989-05-01

    The most promising approach to the solution of the theory of strong interactions is large scale numerical simulation using the techniques of lattice gauge theory. At the present time, computing requirements for convincing calculations of the properties of hadrons exceed the capabilities of even the most powerful commercial supercomputers. This has led to the development of massively parallel computers dedicated to lattice gauge theory. This talk will discuss the computing requirements behind these machines, and general features of the components and architectures of the half dozen major projects now in existence. 20 refs., 1 fig.

  19. Big bang theory under fire.

    NASA Astrophysics Data System (ADS)

    Mitchell, W. C.

    The very old big bang (BB) problems (of the singularity, smoothness, horizon, and flatness) and the failed solutions of inflation theory; newer BB problems relating to missing mass (as required for a flat inflationary universe), the age of the universe, radiation from the "decoupling" ("smearing" of blackbody spectrum), a contrived BB chronology, the abundances of light elements, and redshift anomalies; and problems, newer yet regarding inconsistencies of redshift interpretation, curved space, inflation theory, the decelerating expansion of a BB universe, and some additional logical inconsistencies of BB theory are presented.

  20. Methods of Contemporary Gauge Theory

    NASA Astrophysics Data System (ADS)

    Makeenko, Yuri

    2002-08-01

    Preface; Part I. Path Integrals: 1. Operator calculus; 2. Second quantization; 3. Quantum anomalies from path integral; 4. Instantons in quantum mechanics; Part II. Lattice Gauge Theories: 5. Observables in gauge theories; 6. Gauge fields on a lattice; 7. Lattice methods; 8. Fermions on a lattice; 9. Finite temperatures; Part III. 1/N Expansion: 10. O(N) vector models; 11. Multicolor QCD; 12. QCD in loop space; 13. Matrix models; Part IV. Reduced Models: 14. Eguchi-Kawai model; 15. Twisted reduced models; 16. Non-commutative gauge theories.

  1. Methods of Contemporary Gauge Theory

    NASA Astrophysics Data System (ADS)

    Makeenko, Yuri

    2005-11-01

    Preface; Part I. Path Integrals: 1. Operator calculus; 2. Second quantization; 3. Quantum anomalies from path integral; 4. Instantons in quantum mechanics; Part II. Lattice Gauge Theories: 5. Observables in gauge theories; 6. Gauge fields on a lattice; 7. Lattice methods; 8. Fermions on a lattice; 9. Finite temperatures; Part III. 1/N Expansion: 10. O(N) vector models; 11. Multicolor QCD; 12. QCD in loop space; 13. Matrix models; Part IV. Reduced Models: 14. Eguchi-Kawai model; 15. Twisted reduced models; 16. Non-commutative gauge theories.

  2. Studies in quantum field theory

    NASA Astrophysics Data System (ADS)

    Polmar, S. K.

    The theoretical physics group at Washington University has been devoted to the solution of problems in theoretical and mathematical physics. All of the personnel on this task have a similar approach to their research in that they apply sophisticated analytical and numerical techniques to problems primarily in quantum field theory. Specifically, this group has worked on quantum chromodynamics, classical Yang-Mills fields, chiral symmetry breaking condensates, lattice field theory, strong-coupling approximations, perturbation theory in large order, nonlinear waves, 1/N expansions, quantum solitons, phase transitions, nuclear potentials, and early universe calculations.

  3. Nonequilibrium statistical field theory for classical particles: Basic kinetic theory

    NASA Astrophysics Data System (ADS)

    Viermann, Celia; Fabis, Felix; Kozlikin, Elena; Lilow, Robert; Bartelmann, Matthias

    2015-06-01

    Recently Mazenko and Das and Mazenko [Phys. Rev. E 81, 061102 (2010), 10.1103/PhysRevE.81.061102; J. Stat. Phys. 149, 643 (2012), 10.1007/s10955-012-0610-y; J. Stat. Phys. 152, 159 (2013), 10.1007/s10955-013-0755-3; Phys. Rev. E 83, 041125 (2011), 10.1103/PhysRevE.83.041125] introduced a nonequilibrium field-theoretical approach to describe the statistical properties of a classical particle ensemble starting from the microscopic equations of motion of each individual particle. We use this theory to investigate the transition from those microscopic degrees of freedom to the evolution equations of the macroscopic observables of the ensemble. For the free theory, we recover the continuity and Jeans equations of a collisionless gas. For a theory containing two-particle interactions in a canonical perturbation series, we find the macroscopic evolution equations to be described by the Born-Bogoliubov-Green-Kirkwood-Yvon hierarchy with a truncation criterion depending on the order in perturbation theory. This establishes a direct link between the classical and the field-theoretical approaches to kinetic theory that might serve as a starting point to investigate kinetic theory beyond the classical limits.

  4. Understanding conformal field theory through parafermions and Chern Simons theory

    SciTech Connect

    Hotes, S.A.

    1992-11-19

    Conformal field theories comprise a vast class of exactly solvable two dimensional quantum field theories. Conformal theories with an enlarged symmetry group, the current algebra symmetry, axe a key ingredient to possible string compactification models. The following work explores a Lagrangian approach to these theories. In the first part of this thesis, a large class of conformal theories, the so-called coset models, are derived semi-classically from a gauged version Of the Wess-Zumino-Witten functional. A non-local field transformation to the parafermionic field description is employed in the quantization procedure. Classically, these parafermionic fields satisfy non-trivial Poisson brackets, providing insight into the fractional spin nature of the conformal theory. The W-algebra symmetry is shown to appear naturally in this approach. In the second part of this thesis, the connection between the fusion algebra structure of Wess-Zumino-Witten models and the quantization of the Chern-Simons action on the torus is made explicit. The modular properties of the conformal model are also derived in this context, giving a natural demonstration of the Verlinde conjecture. The effects of background gauge fields and monopoles are also discussed.

  5. Beyond Simulation-Theory and Theory-Theory: Why Social Cognitive Neuroscience Should Use Its Own Concepts to Study "Theory of Mind"

    ERIC Educational Resources Information Center

    Apperly, Ian A.

    2008-01-01

    The debate between Simulation-Theory (ST) and Theory-Theory (TT) provides the dominant theoretical framework for research on "theory of mind" (ToM). Behavioural research has failed to provide clear methods for discriminating between these theories, but a number of recent studies have claimed that neuroimaging methods do allow key predictions of ST…

  6. Moral Exemplars in Theory and Practice

    ERIC Educational Resources Information Center

    Zagzebski, Linda

    2013-01-01

    In this article I outline an original form of ethical theory that I call exemplarist virtue theory. The theory is intended to serve the philosophical purposes of a comprehensive moral theory, but it is also intended to serve the practical purpose of moral education by structuring the theory around a motivating emotion--the emotion of admiration.…

  7. Valence-Bond Theory and Chemical Structure.

    ERIC Educational Resources Information Center

    Klein, Douglas J.; Trinajstic, Nenad

    1990-01-01

    Discussed is the importance of valence bond theory on the quantum-mechanical theory of chemical structure and the nature of the chemical bond. Described briefly are early VB theory, development of VB theory, modern versions, solid-state applications, models, treatment in textbooks, and flaws in criticisms of valence bond theory. (KR)

  8. Gestalt Therapy and General System Theory.

    ERIC Educational Resources Information Center

    Whitner, Phillip A.

    While General Systems Theory (GST) concepts appear to be applicable in explaining some of the phenomena that occur in a Gestalt Therapy group, research is needed to support this assumption. General Systems Theory may not be a group theory per se. Instead, GST may be a theory about groups. A meta-theory exists where its value and usefulness is…

  9. Notoph gauge theory: Superfield formalism

    NASA Astrophysics Data System (ADS)

    Malik, R. P.

    2011-05-01

    We derive absolutely anticommuting Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry transformations for the 4D free Abelian 2-form gauge theory by exploiting the superfield approach to BRST formalism. The antisymmetric tensor gauge field of the above theory was christened as the "notoph" (i.e. the opposite of "photon") gauge field by Ogievetsky and Palubarinov way back in 1966-67. We briefly outline the problems involved in obtaining the absolute anticonimutativity of the (anti-) BRST transformations and their resolution within the framework of geometrical superfield approach to BRST formalism. One of the highlights of our results is the emergence of a Curci-Ferrari type of restriction in the context of 4D Abelian 2-form (notoph) gauge theory which renders the nilpotent (anti-) BRST symmetries of the theory to be absolutely anticommutative in nature.

  10. Wavelet theory and its applications

    SciTech Connect

    Faber, V.; Bradley, JJ.; Brislawn, C.; Dougherty, R.; Hawrylycz, M.

    1996-07-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). We investigated the theory of wavelet transforms and their relation to Laboratory applications. The investigators have had considerable success in the past applying wavelet techniques to the numerical solution of optimal control problems for distributed- parameter systems, nonlinear signal estimation, and compression of digital imagery and multidimensional data. Wavelet theory involves ideas from the fields of harmonic analysis, numerical linear algebra, digital signal processing, approximation theory, and numerical analysis, and the new computational tools arising from wavelet theory are proving to be ideal for many Laboratory applications. 10 refs.

  11. Learning theories made easy: behaviourism.

    PubMed

    McKenna, G

    The last few years have witnessed many developments in nurse education, particularly as links with higher education are strengthened. The clinical environment, however, remains a key area for learning, and practitioners continue to make a huge contribution to the education of both pre- and post-registration students. In order to maximise opportunities, a knowledge of learning theories is useful. This is the first of three articles explaining the different theories of learning. This week the behaviourist theories are described. The following weeks will discuss cognitive and humanist perspectives. The series of three articles uses a creative approach to explain the theories, and to highlight their relevance for teaching in clinical practice. PMID:7766509

  12. Ergodic theory, randomness, and "chaos".

    PubMed

    Ornstein, D S

    1989-01-13

    Ergodic theory is the theory of the long-term statistical behavior of dynamical systems. The baker's transformation is an object of ergodic theory that provides a paradigm for the possibility of deterministic chaos. It can now be shown that this connection is more than an analogy and that at some level of abstraction a large number of systems governed by Newton's laws are the same as the baker's transformation. Going to this level of abstraction helps to organize the possible kinds of random behavior. The theory also gives new concrete results. For example, one can show that the same process could be produced by a mechanism governed by Newton's laws or by a mechanism governed by coin tossing. It also gives a statistical analog of structural stability. PMID:17747421

  13. Elementary Concepts of Quantum Theory

    ERIC Educational Resources Information Center

    Warren, J. W.

    1974-01-01

    Discusses the importance and difficulties of teaching basic quantum theory. Presents a discussion of wave-particle duality, indeterminacy, the nature of a quantized state of a system, and the exclusion principle. (MLH)

  14. Evolution as Fact and Theory.

    ERIC Educational Resources Information Center

    Gould, Stephen Jay

    1981-01-01

    This essay by a Harvard evolutionist presents viewpoints concerning the creationists' arguments against evolutionary biology. Semantics regarding "facts" and "theory" of evolution are examined, examples are cited of creationist argument, and arguments for evolution are presented. (CS)

  15. Theory of superconductivity in oxides

    NASA Astrophysics Data System (ADS)

    Anderson, Philip W.

    1991-11-01

    During the period of this grant the theory of superconductivity in high Technetium cuprates matured into a reasonable, consistent, complete theory which has the capability, often realized, of confronting all of the puzzling experimental properties of the materials. During the period of the grant occurred the Cargese NATO Summer School (June 1990) attended by several of us who were being funded by the grant, and at that school I summarized progress up to that time. B. Doucot who had been one of our group was the local organizer. Perhaps the best summary of the situation at that time was given in my Chapter 2 setting out what I called the Central Dogmas of the theory, which is enclosed. At that meeting was formulated the justification of the Luttinger liquid hypothesis via a finite Fermi surface phase shift which led to several papers, especially the PRL and 'response' on the subject showing how the Fermi liquid theory breaks down.

  16. Noncommutative potential theory: A survey

    NASA Astrophysics Data System (ADS)

    Cipriani, Fabio

    2016-07-01

    The aim of these notes is to provide an introduction to Noncommutative Potential Theory as given at I.N.D.A.M.-C.N.R.S. "Noncommutative Geometry and Applications" Lectures, Villa Mondragone-Frascati June 2014.

  17. Critical Theory in Historical Perspective.

    ERIC Educational Resources Information Center

    Hardt, Hanno

    1986-01-01

    Reviews two books by Martin Jay on the intellectual history of Western Marxism and critical theory "in exile" that detail the complex foundations of an ideological critique of culture and society and evaluates their meaning for communications scholarship. (JD)

  18. Cosmic censorship in Lovelock theory

    NASA Astrophysics Data System (ADS)

    Camanho, Xián O.; Edelstein, José D.

    2013-11-01

    In analyzing maximally symmetric Lovelock black holes with non-planar horizon topologies, many novel features have been observed. The existence of finite radius singularities, a mass gap in the black hole spectrum and solutions displaying multiple horizons are noteworthy examples. Naively, in all these cases, the appearance of naked singularities seems unavoidable, leading to the question of whether these theories are consistent gravity theories. We address this question and show that whenever the cosmic censorship conjecture is threaten, an instability generically shows up driving the system to a new configuration with presumably no naked singularities. Also, the same kind of instability shows up in the process of spherical black holes evaporation in these theories, suggesting a new phase for their decay. We find circumstantial evidence indicating that, contrary to many claims in the literature, the cosmic censorship hypothesis holds in Lovelock theory.

  19. Administrative Law and Organization Theory

    ERIC Educational Resources Information Center

    Evan, William M.

    1977-01-01

    Considered are some trends in American administrative law, some trends in organization theory, a model of the administrative process, and several potentially useful research strategies. The analysis has implications for comparative research on legal systems. (Author/LBH)

  20. Generalized Brans-Dicke theories

    SciTech Connect

    De Felice, Antonio; Tsujikawa, Shinji E-mail: shinji@rs.kagu.tus.ac.jp

    2010-07-01

    In Brans-Dicke theory a non-linear self interaction of a scalar field φ allows a possibility of realizing the late-time cosmic acceleration, while recovering the General Relativistic behavior at early cosmological epochs. We extend this to more general modified gravitational theories in which a de Sitter solution for dark energy exists without using a field potential. We derive a condition for the stability of the de Sitter point and study the background cosmological dynamics of such theories. We also restrict the allowed region of model parameters from the demand for the avoidance of ghosts and instabilities. A peculiar evolution of the field propagation speed allows us to distinguish those theories from the ΛCDM model.

  1. A Pattern Theory of Self

    PubMed Central

    Gallagher, Shaun

    2013-01-01

    I argue for a pattern theory of self as a useful way to organize an interdisciplinary approach to discussions of what constitutes a self. According to the pattern theory, a self is constituted by a number of characteristic features or aspects that may include minimal embodied, minimal experiential, affective, intersubjective, psychological/cognitive, narrative, extended, and situated aspects. A pattern theory of self helps to clarify various interpretations of self as compatible or commensurable instead of thinking them in opposition, and it helps to show how various aspects of self may be related across certain dimensions. I also suggest that a pattern theory of self can help to adjudicate (or at least map the differences) between the idea that the self correlates to self-referential processing in the cortical midline structures of the brain and other narrower or wider conceptions of self. PMID:23914173

  2. A review of IMF theories

    NASA Astrophysics Data System (ADS)

    Cayrel, R.

    An overview is presented of theories of the initial mass function (IMF), starting from those essentially based on stochastic arguments to those involving more physics. Consideration is given to the scheme of Auluck and Kothari (1960, 1965), hierarchical theories, the predicted IMF, coalescence theories, DiFazio's theory (1986), fragmentation from sheets and filaments (bimodal star formation), and the criteria for determining stellar masses. The following concepts are proposed as being the most likely to survive: the general statistical arguments supporting log-normal laws, or power laws; the opacity-limited fragmentation concept; and the concept that the IMF is not a pure product of cloud fragmentation processes but also depends on internal properties of the object itself.

  3. Nonlocal and quasilocal field theories

    NASA Astrophysics Data System (ADS)

    Tomboulis, E. T.

    2015-12-01

    We investigate nonlocal field theories, a subject that has attracted some renewed interest in connection with nonlocal gravity models. We study, in particular, scalar theories of interacting delocalized fields, the delocalization being specified by nonlocal integral kernels. We distinguish between strictly nonlocal and quasilocal (compact support) kernels and impose conditions on them to insure UV finiteness and unitarity of amplitudes. We study the classical initial value problem for the partial integro-differential equations of motion in detail. We give rigorous proofs of the existence but accompanying loss of uniqueness of solutions due to the presence of future, as well as past, "delays," a manifestation of acausality. In the quantum theory we derive a generalization of the Bogoliubov causality condition equation for amplitudes, which explicitly exhibits the corrections due to nonlocality. One finds that, remarkably, for quasilocal kernels all acausal effects are confined within the compact support regions. We briefly discuss the extension to other types of fields and prospects of such theories.

  4. A mathematical theory of climbing

    NASA Astrophysics Data System (ADS)

    Villaggio, Piero

    2007-10-01

    Is it possible to develop a theory of climbing? The answer is no. Mountains are so different in quality of rock and geometry of their faces that any wall would require a specific theory on the best strategy for being climbed. For this reason, climbing schools, so precise in teaching belaying, rappelling and prusiking, are instead vague in instructing how one must progress along an irregular wall. This paper suggests a rough model for grasping this complex problem.

  5. Resolving Witten's superstring field theory

    NASA Astrophysics Data System (ADS)

    Erler, Theodore; Konopka, Sebastian; Sachs, Ivo

    2014-04-01

    We regulate Witten's open superstring field theory by replacing the picturechanging insertion at the midpoint with a contour integral of picture changing insertions over the half-string overlaps of the cubic vertex. The resulting product between string fields is non-associative, but we provide a solution to the A ∞ relations defining all higher vertices. The result is an explicit covariant superstring field theory which by construction satisfies the classical BV master equation.

  6. Vantage Theory and Linguistic Relativity

    ERIC Educational Resources Information Center

    Allan, Keith

    2010-01-01

    Rob MacLaury's Vantage Theory, VT, models the way in which a cognizer constructs, recalls, uses, and modifies a category in terms of point of view or vantage. Alongside of VT, there is place for the kind of semantic specification found in the lexicon. VT2 [Allan, Keith, 2002. "Vantage theory, VT2, and number." "Language Sciences" 24(5-6), 679-703…

  7. Blackbody Theory for Hyperbolic Materials

    NASA Astrophysics Data System (ADS)

    Biehs, Svend-Age; Lang, Slawa; Petrov, Alexander Yu.; Eich, Manfred; Ben-Abdallah, Philippe

    2015-10-01

    The blackbody theory is revisited in the case of thermal electromagnetic fields inside uniaxial anisotropic media in thermal equilibrium with a heat bath. When these media are hyperbolic, we show that the spectral energy density of these fields radically differs from that predicted by Planck's blackbody theory and that the maximum of the spectral energy density determined by Wien's law is redshifted. Finally, we derive the Stefan-Boltzmann law for hyperbolic media which becomes a quadratic function of the heat bath temperature.

  8. Recent work on airfoil theory

    NASA Technical Reports Server (NTRS)

    Prandtl, L

    1940-01-01

    The basic ideas of a new method for treating the problem of the airfoil are presented, and a review is given of the problems thus far computed for incompressible and supersonic flows. Test results are reported for the airfoil of circular plan form and the results are shown to agree well with the theory. As a supplement, a theory based on the older methods is presented for the rectangular of small aspect ratio.

  9. Aspects of Two Measures Theory

    NASA Astrophysics Data System (ADS)

    Guendelman, Eduardo I.; Vasihoun, Mahary

    2015-01-01

    Two Measures Field Theory (TMT) uses both the Riemannian volume element √ { - gd^4 x} and a new one Φd4x, this new measure of integration Φ can be build of four scalar fields or a totally antisymmetric three index field. Here we summarize the basic idea of the theory, present some arguments in favour, and present applications of TMT to cosmology and particle physics.

  10. Fluctuation theory of starlight polarization

    SciTech Connect

    Nee, S.F.

    1980-04-15

    The average and the variance of absolute polarization of starlight are calculated as a function of distance based on the fluctuation theory of Langevin's scheme. The computed curves from the theory agree with the sample observational data. It estimates a correlation length of 225 pc and a fluctuating angle of 22./sup 0/5 for the fluctuation of interstellar magnetic field for the observation direction within 60/sup 0/

  11. On Restructurable Control System Theory

    NASA Technical Reports Server (NTRS)

    Athans, M.

    1983-01-01

    The state of stochastic system and control theory as it impacts restructurable control issues is addressed. The multivariable characteristics of the control problem are addressed. The failure detection/identification problem is discussed as a multi-hypothesis testing problem. Control strategy reconfiguration, static multivariable controls, static failure hypothesis testing, dynamic multivariable controls, fault-tolerant control theory, dynamic hypothesis testing, generalized likelihood ratio (GLR) methods, and adaptive control are discussed.

  12. Exceptional field theory: SL(5)

    NASA Astrophysics Data System (ADS)

    Musaev, Edvard T.

    2016-02-01

    In this work the exceptional field theory formulation of supergravity with SL (5) gauge group is considered. This group appears as a U-duality group of D = 7 maximal supergravity. In the formalism presented the hidden global duality group is promoted into a gauge group of a theory in dimensions 7+number of extended directions. This work is a continuation of the series of works for E 8,7,6 , SO (5 , 5) and SL (3) × SL (2) duality groups.

  13. SU(9) grand unified theory

    SciTech Connect

    Fujimoto, Y.; Sodano, P.

    1981-04-01

    Frampton's SU(9) model is considered in detail as a grand unified theory with SU(4) horizontal symmetry. We find a correlation among neutrino, horizontal-gauge-boson, and new-fermion masses. With neutrino mass around 10 eV, the horizontal gauge boson is estimated to be as heavy as 6 x 10/sup 10/ GeV. The theory also contains new charged-current processes, which are B+L conserving and ..delta..L=2.

  14. The sociology of superstring theory

    NASA Astrophysics Data System (ADS)

    Dick, Brian Douglas

    This dissertation carefully tracks the historical origins of superstring theory in high energy particle physics, its subsequent decline under the guise of the "dual model" in the mid-1970s, and its reemergence in the mid-1980s in what came to be known as the "first superstring revolution." I then explore the scientific controversy that emerged after the first superstring revolution due to superstring theory's lack of contact with experiment, and the set of institutional pressures felt by string theorists that they refer to as the "sociology" of superstring theory. I employ and develop the concept of "scientific legitimacy" to organize the historical analysis of superstring theory and the subsequent scientific controversy. My study emphasizes the interpretive flexibility of theory selection, the role of scientific judgment in the acceptance of scientific knowledge, and the ways in which boundary work operates in scientific controversies. A careful analysis of the empirical case of superstring theory indicates some of the limitations associated with the ways in which the closure of scientific controversies has traditionally been conceptualized by social researchers. To help overcome these difficulties, I propose a four-fold typology that I refer to as the "epistemic space of rejected science."

  15. The Nonlinear Field Space Theory

    NASA Astrophysics Data System (ADS)

    Mielczarek, Jakub; Trześniewski, Tomasz

    2016-08-01

    In recent years the idea that not only the configuration space of particles, i.e. spacetime, but also the corresponding momentum space may have nontrivial geometry has attracted significant attention, especially in the context of quantum gravity. The aim of this letter is to extend this concept to the domain of field theories, by introducing field spaces (i.e. phase spaces of field values) that are not affine spaces. After discussing the motivation and general aspects of our approach we present a detailed analysis of the prototype (quantum) Nonlinear Field Space Theory of a scalar field on the Minkowski background. We show that the nonlinear structure of a field space leads to numerous interesting predictions, including: non-locality, generalization of the uncertainty relations, algebra deformations, constraining of the maximal occupation number, shifting of the vacuum energy and renormalization of the charge and speed of propagation of field excitations. Furthermore, a compact field space is a natural way to implement the "Principle of finiteness" of physical theories, which once motivated the Born-Infeld theory. Thus the presented framework has a variety of potential applications in the theories of fundamental interactions (e.g. quantum gravity), as well as in condensed matter physics (e.g. continuous spin chains), and can shed new light on the issue of divergences in quantum field theories.

  16. Concerning interpretations of activity theory.

    PubMed

    Mironenko, Irina A

    2013-09-01

    Activity theory (AT) is the most recognised part of Russian psychology outside Russia. However the general view of AT in international science is rather unilateral, lacking substantial aspects and areas necessary for proper understanding. This article is aimed at expanding the image of AT dominant in the mainstream which reduces the AT trend to A.N. Leontiev's theory. This reduction impoverishes the creative potentialities of the trend, and decreases the ability of AT to contribute to international science. We aim to reveal that AT is not limited to Leontiev's approach, to explain which ideas of the founders of AT, S.L. Rubinstein and L.S. Vygotsky, were pursued and which were rejected by A.N. Leontiev, and to assess another important contribution to the AT trend - the theory of B.G. Ananiev, where the ideas of AT's founders were developed which were not succeeded by A.N. Leontiev. Historical causes and consequences of the general reduction of the image of AT in the mainstream to Leontiev's theory are considered: why the discrepancies between views of Rubinstein, Vygotsky and Leontiev were hardly ever discussed in public and why other theories contemporary to Leontiev's theory were never given account appropriate to their value in Russia and remain almost unknown abroad. PMID:23512520

  17. New theory of uterovaginal embryogenesis

    PubMed Central

    Makiyan, Zograb

    2016-01-01

    ABSTRACT Background: The explanation of uterine and vaginal embryogenesis in humans still poses many controversies, because it is difficult to assess early stages of an embryo. The literature review revealed many disagreements in Mullerian theory, inciting some authors to propose new embryological hypotheses. In the original Mullerian theory: the paramesonephral ducts form the Fallopian tubes, uterus and vagina; the mesonephral ducts regress in female embryos. Aims: The aim of this article is to investigate the development of Mullerian ducts in humans, using comparative analysis of fundamental embryological theory and various utero-vaginal anomalies. Material and methods: Between 1998 and 2015, 434 patients with various uterovaginal malformations had been operated on at the Scientific Centre of Obstetrics Gynaecology and Perynatology in Moscow. The anatomies of the uterovaginal malformations in these patients were diagnosed with ultrasound and MRI and then verified during surgical correction by laparoscopy. Results: A systematic comparison of uterovaginal malformations to those in the literature has allowed us to formulate a new theory of embryonic morphogenesis. The new theory is significantly different: ovary, ovarian ligamentum proprium, and ligamentum teres uteri derive from gonadal ridges; Fallopian tubes and vagina completely develop from mesonephral ducts. The uterus develops in the area of intersection between the mesonephral ducts with gonadal ridges by the fusion of the two. Conclusions: The new theory may to induce future embryological studies. The hypothetic possibility that the ovary and endometrium derive from the gonadal ridges could be the key to understanding the enigmatic aetiologies of extragenital and ovarian endometriosis. PMID:26900909

  18. (Studies in quantum field theory)

    SciTech Connect

    Not Available

    1990-01-01

    During the period 4/1/89--3/31/90 the theoretical physics group supported by Department of Energy Contract No. AC02-78ER04915.A015 and consisting of Professors Bender and Shrauner, Associate Professor Papanicolaou, Assistant Professor Ogilvie, and Senior Research Associate Visser has made progress in many areas of theoretical and mathematical physics. Professors Bender and Shrauner, Associate Professor Papanicolaou, Assistant Professor Ogilvie, and Research Associate Visser are currently conducting research in many areas of high energy theoretical and mathematical physics. These areas include: strong-coupling approximation; classical solutions of non-Abelian gauge theories; mean-field approximation in quantum field theory; path integral and coherent state representations in quantum field theory; lattice gauge calculations; the nature of perturbation theory in large order; quark condensation in QCD; chiral symmetry breaking; the 1/N expansion in quantum field theory; effective potential and action in quantum field theories, including OCD; studies of the early universe and inflation, and quantum gravity.

  19. Keldysh theory re-examined

    NASA Astrophysics Data System (ADS)

    Bauer, Jarosław H.

    2016-07-01

    A derivation of the ionization rate for a hydrogen atom in its ground state (or a hydrogen-like positive ion) in a strong linearly polarized laser field is presented. The derivation utilizes the famous Keldysh probability amplitude in the length gauge (in the dipole approximation) and without Coulomb effects in the final state of the ionized electron. No further approximations are made, because the amplitude has been expanded in the double Fourier series in a time domain (with the help of the generalized Bessel functions). Thus, our theory has no other limitations that are characteristic of the original Keldysh theory. We compare our ‘exact’ theory with the original Keldysh one by studying photoionization energy spectra and total ionization rates. We show a breakdown of the original Keldysh theory for higher frequencies (when the photon energy approaches the binding energy). We also compare our theory with the analogous result in the velocity gauge. In the barrier-suppression regime, the ‘exact’ Keldysh theory gives results which are close to the well-known empirical formula and close to some other numerical or theoretical results. Numerous comparisons of total ionization rates are limited to photons of energies lower or much lower than the binding energy of the atom.

  20. Creating Theory: Moving Tutors to the Center.

    ERIC Educational Resources Information Center

    Dinitz, Sue; Kiedaisch, Jean

    2003-01-01

    Presents three tutors' contributions to writing center theory. Shows how writing center theory can be enriched by including tutor voices and perspectives. Discusses the importance of including tutors in the construction of writing center theory. (SG)

  1. [Consanguinity between meridian theory and Bianque's pulse theory].

    PubMed

    Huang, Longxiang

    2015-05-01

    The integral meridian theory is composed of five parts, including meridian course, syndrome, diagnostic method, treating principle and treatment, and the core of it is meridian syndrome. It has been proved by multiple evidences that the meridian syndrome induced by the pathological change in meridian and the death syndrome of pulse penetrating or attaching to the syndrome are all originated from Bianque' s facial color and pulse diagnosis. And regarding the pulse syndrome,there are many different interpretations based on the theory of yin-yang in four seasons before the Han Dynasty. The emerging of Biaoben diagnostic method in Bianque's pulse method and its extensive clinical application promote a new theoretic interpretation the connection of meridians interpreting pulse syndrome directly. Besides, along with the new development of blood-pulse theory of Bianque's medicine, the revolution on meridian theory is aroused as well its theoretical paradigm turning from "tree" type to "ring" type. In other words, Bianque's medicine not only gives birth to meridian theory, but also decides its final development. PMID:26255535

  2. Quantum theory of measurements as quantum decision theory

    NASA Astrophysics Data System (ADS)

    Yukalov, V. I.; Sornette, D.

    2015-03-01

    Theory of quantum measurements is often classified as decision theory. An event in decision theory corresponds to the measurement of an observable. This analogy looks clear for operationally testable simple events. However, the situation is essentially more complicated in the case of composite events. The most difficult point is the relation between decisions under uncertainty and measurements under uncertainty. We suggest a unified language for describing the processes of quantum decision making and quantum measurements. The notion of quantum measurements under uncertainty is introduced. We show that the correct mathematical foundation for the theory of measurements under uncertainty, as well as for quantum decision theory dealing with uncertain events, requires the use of positive operator-valued measure that is a generalization of projection-valued measure. The latter is appropriate for operationally testable events, while the former is necessary for characterizing operationally uncertain events. In both decision making and quantum measurements, one has to distinguish composite nonentangled events from composite entangled events. Quantum probability can be essentially different from classical probability only for entangled events. The necessary condition for the appearance of an interference term in the quantum probability is the occurrence of entangled prospects and the existence of an entangled strategic state of a decision maker or of an entangled statistical state of a measuring device.

  3. Structuration Theory, Habitus and Complexity Theory: Elective Affinities or Old Wine in New Bottles?

    ERIC Educational Resources Information Center

    Morrison, Keith

    2005-01-01

    This paper examines similarities and differences between structuration theory, habitus and complexity theory, as theories of social change. The paper suggests that structuration theory and habitus can theorize change, but that complexity theory offers a more complete theory of change because it focuses on social production rather than…

  4. Optical Abelian lattice gauge theories

    SciTech Connect

    Tagliacozzo, L.; Celi, A.; Zamora, A.; Lewenstein, M.

    2013-03-15

    We discuss a general framework for the realization of a family of Abelian lattice gauge theories, i.e., link models or gauge magnets, in optical lattices. We analyze the properties of these models that make them suitable for quantum simulations. Within this class, we study in detail the phases of a U(1)-invariant lattice gauge theory in 2+1 dimensions, originally proposed by P. Orland. By using exact diagonalization, we extract the low-energy states for small lattices, up to 4 Multiplication-Sign 4. We confirm that the model has two phases, with the confined entangled one characterized by strings wrapping around the whole lattice. We explain how to study larger lattices by using either tensor network techniques or digital quantum simulations with Rydberg atoms loaded in optical lattices, where we discuss in detail a protocol for the preparation of the ground-state. We propose two key experimental tests that can be used as smoking gun of the proper implementation of a gauge theory in optical lattices. These tests consist in verifying the absence of spontaneous (gauge) symmetry breaking of the ground-state and the presence of charge confinement. We also comment on the relation between standard compact U(1) lattice gauge theory and the model considered in this paper. - Highlights: Black-Right-Pointing-Pointer We study the quantum simulation of dynamical gauge theories in optical lattices. Black-Right-Pointing-Pointer We focus on digital simulation of abelian lattice gauge theory. Black-Right-Pointing-Pointer We rediscover and discuss the puzzling phase diagram of gauge magnets. Black-Right-Pointing-Pointer We detail the protocol for time evolution and ground-state preparation in any phase. Black-Right-Pointing-Pointer We provide two experimental tests to validate gauge theory quantum simulators.

  5. Quantum field perturbation theory revisited

    NASA Astrophysics Data System (ADS)

    Matone, Marco

    2016-03-01

    Schwinger's formalism in quantum field theory can be easily implemented in the case of scalar theories in D dimension with exponential interactions, such as μDexp (α ϕ ). In particular, we use the relation exp (α δ/δ J (x ) )exp (-Z0[J ])=exp (-Z0[J +αx]) with J the external source, and αx(y )=α δ (y -x ). Such a shift is strictly related to the normal ordering of exp (α ϕ ) and to a scaling relation which follows by renormalizing μ . Next, we derive a new formulation of perturbation theory for the potentials V (ϕ )=λ/n ! :ϕn: , using the generating functional associated to :exp (α ϕ ):. The Δ (0 )-terms related to the normal ordering are absorbed at once. The functional derivatives with respect to J to compute the generating functional are replaced by ordinary derivatives with respect to auxiliary parameters. We focus on scalar theories, but the method is general and similar investigations extend to other theories.

  6. Some directions in ecological theory.

    PubMed

    Kendall, Bruce E

    2015-12-01

    The role of theory within ecology has changed dramatically in recent decades. Once primarily a source of qualitative conceptual framing, ecological theories and models are now often used to develop quantitative explanations of empirical patterns and to project future dynamics of specific ecological systems. In this essay, I recount my own experience of this transformation, in which accelerating computing power and the widespread incorporation of stochastic processes into ecological theory combined to create some novel integration of mathematical and statistical models. This stronger integration drives theory towards incorporating more biological realism, and I explore ways in which we can grapple with that realism to generate new general theoretical insights. This enhanced realism, in turn, may lead to frameworks for projecting ecological responses to anthropogenic change, which is, arguably, the central challenge for 21st-century ecology. In an era of big data and synthesis, ecologists are increasingly seeking to infer causality from observational data; but conventional biometry provides few tools for this project. This is a realm where theorists can and should play an important role, and I close by pointing towards some analytical and philosophical approaches developed in our sister discipline of economics that address this very problem. While I make no grand prognostications about the likely discoveries of ecological theory over the coming century, you will find in this essay a scattering of more or less far-fetched ideas that I, at least, think are interesting and (possibly) fruitful directions for our field. PMID:26909419

  7. Multipactor theory for multicarrier signals

    SciTech Connect

    Anza, S.; Vicente, C.; Gil, J.; Raboso, D.; Boria, V. E.

    2011-03-15

    This work presents a new theory of multipactor under multicarrier signals for parallel-plate geometries, assuming a homogeneous electric field and one-dimensional electron motion. It is the generalization of the nonstationary multipactor theory for single-carrier signals [S. Anza et al.,Phys. Plasmas 17, 062110 (2010)]. It is valid for multicarrier signals with an arbitrary number of carriers with different amplitude, arbitrary frequency, and phase conditions and for any material coating. This new theory is able to model the real dynamics of the electrons during the multipactor discharge for both single and double surface interactions. Among other parameters of the discharge, it calculates the evolution in time of the charge growth, electron absorption, and creation rates as well as the instantaneous secondary emission yield and order. An extensive set of numerical tests with particle-in-cell software has been carried out in order to validate the theory under many different conditions. This theoretical development constitutes the first multipactor theory which completely characterizes the multipactor discharge for arbitrary multicarrier signals, setting the first step for further investigations in the field.

  8. Biological atomism and cell theory.

    PubMed

    Nicholson, Daniel J

    2010-09-01

    Biological atomism postulates that all life is composed of elementary and indivisible vital units. The activity of a living organism is thus conceived as the result of the activities and interactions of its elementary constituents, each of which individually already exhibits all the attributes proper to life. This paper surveys some of the key episodes in the history of biological atomism, and situates cell theory within this tradition. The atomistic foundations of cell theory are subsequently dissected and discussed, together with the theory's conceptual development and eventual consolidation. This paper then examines the major criticisms that have been waged against cell theory, and argues that these too can be interpreted through the prism of biological atomism as attempts to relocate the true biological atom away from the cell to a level of organization above or below it. Overall, biological atomism provides a useful perspective through which to examine the history and philosophy of cell theory, and it also opens up a new way of thinking about the epistemic decomposition of living organisms that significantly departs from the physicochemical reductionism of mechanistic biology. PMID:20934641

  9. Knot theory and statistical mechanics

    SciTech Connect

    Jones, V.F.R. )

    1990-11-01

    Certain algebraic relations used to solve models in statistical mechanics were key to describing a mathematical property of knots known as a polynomial invariant. This connection, tenuous at first, has since developed into a significant flow of ideas. The appearance of such common ground is not atypical of recent developments in mathematics and physics--ideas from different fields interact and produce unexpected results. Indeed, the discovery of the connection between knots and statistical mechanics passed through a theory intimately related to the mathematical structure of quantum physics. This theory, called von Neumann algebras, is distinguished by the idea of continuous dimensionality. Spaces typically have dimensions that are natural numbers, such as 2, 3 or 11, but in von Neumann algebras dimensions such as 2 or {pi} are equally possible. This possibility for continuous dimension played a key role in joining knot theory and statistical mechanics. In another direction, the knot invariants were soon found to occur in quantum field theory. Indeed, Edward Witten of the Institute for Advanced Study in Princeton, N.J., has shown that topological quantum field theory provides a natural way of expressing the new ideas about knots. This advance, in turn, has allowed a beautiful generalization about the invariants of knots in more complicated three-dimensional spaces known as three-manifolds, in which space itself may contain holes and loops.

  10. Introduction to lattice gauge theory

    NASA Astrophysics Data System (ADS)

    Gupta, R.

    The lattice formulation of Quantum Field Theory (QFT) can be exploited in many ways. We can derive the lattice Feynman rules and carry out weak coupling perturbation expansions. The lattice then serves as a manifestly gauge invariant regularization scheme, albeit one that is more complicated than standard continuum schemes. Strong coupling expansions: these give us useful qualitative information, but unfortunately no hard numbers. The lattice theory is amenable to numerical simulations by which one calculates the long distance properties of a strongly interacting theory from first principles. The observables are measured as a function of the bare coupling g and a gauge invariant cut-off approx. = 1/alpha, where alpha is the lattice spacing. The continuum (physical) behavior is recovered in the limit alpha yields 0, at which point the lattice artifacts go to zero. This is the more powerful use of lattice formulation, so in these lectures the author focuses on setting up the theory for the purpose of numerical simulations to get hard numbers. The numerical techniques used in Lattice Gauge Theories have their roots in statistical mechanics, so it is important to develop an intuition for the interconnection between quantum mechanics and statistical mechanics.

  11. Lectures of Fermi liquid theory

    SciTech Connect

    Bedell, K.S.

    1993-01-01

    The Fermi liquid theory was first introduced by Landau in 1956 to provide a theoretical basis for the properties of strongly correlated Fermi systems. This theory has proven to be crucial for our understanding of a broad range of materials. These include liquid [sup 3]He, [sup 3]He-[sup 4]He mixtures, simple metals, heavy-fermions, and nuclear matter to name a few. In the high temperature superconductors questions have been raised regarding the applicability of Fermi liquid theory to the normal state behavior of these materials. I will not address this issue in these lectures. My focus will be to summarize the foundations of this theory and to explore the consequences. These lectures are in part a summary of the excellent review article by Baym and Pethick and the books by Pines and Nozieres and Baym and Pethick. They include as well a summary of some articles that I have authored and co-authored. In the main body of the lectures I will not make any additional references to the books or articles. In the absence of reading the original materials, my lectures should provide the essentials of a mini-course in Fermi liquid theory.

  12. Lectures of Fermi liquid theory

    SciTech Connect

    Bedell, K.S.

    1993-07-01

    The Fermi liquid theory was first introduced by Landau in 1956 to provide a theoretical basis for the properties of strongly correlated Fermi systems. This theory has proven to be crucial for our understanding of a broad range of materials. These include liquid {sup 3}He, {sup 3}He-{sup 4}He mixtures, simple metals, heavy-fermions, and nuclear matter to name a few. In the high temperature superconductors questions have been raised regarding the applicability of Fermi liquid theory to the normal state behavior of these materials. I will not address this issue in these lectures. My focus will be to summarize the foundations of this theory and to explore the consequences. These lectures are in part a summary of the excellent review article by Baym and Pethick and the books by Pines and Nozieres and Baym and Pethick. They include as well a summary of some articles that I have authored and co-authored. In the main body of the lectures I will not make any additional references to the books or articles. In the absence of reading the original materials, my lectures should provide the essentials of a mini-course in Fermi liquid theory.

  13. AeroDyn Theory Manual

    SciTech Connect

    Moriarty, P. J.; Hansen, A. C.

    2005-01-01

    AeroDyn is a set of routines used in conjunction with an aeroelastic simulation code to predict the aerodynamics of horizontal axis wind turbines. These subroutines provide several different models whose theoretical bases are described in this manual. AeroDyn contains two models for calculating the effect of wind turbine wakes: the blade element momentum theory and the generalized dynamic-wake theory. Blade element momentum theory is the classical standard used by many wind turbine designers and generalized dynamic wake theory is a more recent model useful for modeling skewed and unsteady wake dynamics. When using the blade element momentum theory, various corrections are available for the user, such as incorporating the aerodynamic effects of tip losses, hub losses, and skewed wakes. With the generalized dynamic wake, all of these effects are automatically included. Both of these methods are used to calculate the axial induced velocities from the wake in the rotor plane. The user also has the option of calculating the rotational induced velocity. In addition, AeroDyn contains an important model for dynamic stall based on the semi-empirical Beddoes-Leishman model. This model is particularly important for yawed wind turbines. Another aerodynamic model in AeroDyn is a tower shadow model based on potential flow around a cylinder and an expanding wake. Finally, AeroDyn has the ability to read several different formats of wind input, including single-point hub-height wind files or multiple-point turbulent winds.

  14. Endosymbiotic theories for eukaryote origin

    PubMed Central

    Martin, William F.; Garg, Sriram; Zimorski, Verena

    2015-01-01

    For over 100 years, endosymbiotic theories have figured in thoughts about the differences between prokaryotic and eukaryotic cells. More than 20 different versions of endosymbiotic theory have been presented in the literature to explain the origin of eukaryotes and their mitochondria. Very few of those models account for eukaryotic anaerobes. The role of energy and the energetic constraints that prokaryotic cell organization placed on evolutionary innovation in cell history has recently come to bear on endosymbiotic theory. Only cells that possessed mitochondria had the bioenergetic means to attain eukaryotic cell complexity, which is why there are no true intermediates in the prokaryote-to-eukaryote transition. Current versions of endosymbiotic theory have it that the host was an archaeon (an archaebacterium), not a eukaryote. Hence the evolutionary history and biology of archaea increasingly comes to bear on eukaryotic origins, more than ever before. Here, we have compiled a survey of endosymbiotic theories for the origin of eukaryotes and mitochondria, and for the origin of the eukaryotic nucleus, summarizing the essentials of each and contrasting some of their predictions to the observations. A new aspect of endosymbiosis in eukaryote evolution comes into focus from these considerations: the host for the origin of plastids was a facultative anaerobe. PMID:26323761

  15. Schubert calculus and singularity theory

    NASA Astrophysics Data System (ADS)

    Gorbounov, Vassily; Petrov, Victor

    2012-02-01

    Schubert calculus has been in the intersection of several fast developing areas of mathematics for a long time. Originally invented as the description of the cohomology of homogeneous spaces, it has to be redesigned when applied to other generalized cohomology theories such as the equivariant, the quantum cohomology, K-theory, and cobordism. All this cohomology theories are different deformations of the ordinary cohomology. In this note, we show that there is, in some sense, the universal deformation of Schubert calculus which produces the above mentioned by specialization of the appropriate parameters. We build on the work of Lerche Vafa and Warner. The main conjecture these authors made was that the classical cohomology of a Hermitian symmetric homogeneous manifold is a Jacobi ring of an appropriate potential. We extend this conjecture and provide a simple proof. Namely, we show that the cohomology of the Hermitian symmetric space is a Jacobi ring of a certain potential and the equivariant and the quantum cohomology and the K-theory is a Jacobi ring of a particular deformation of this potential. This suggests to study the most general deformations of the Frobenius algebra of cohomology of these manifolds by considering the versal deformation of the appropriate potential. The structure of the Jacobi ring of such potential is a subject of well developed singularity theory. This gives a potentially new way to look at the classical, the equivariant, the quantum and other flavors of Schubert calculus.

  16. Endosymbiotic theories for eukaryote origin.

    PubMed

    Martin, William F; Garg, Sriram; Zimorski, Verena

    2015-09-26

    For over 100 years, endosymbiotic theories have figured in thoughts about the differences between prokaryotic and eukaryotic cells. More than 20 different versions of endosymbiotic theory have been presented in the literature to explain the origin of eukaryotes and their mitochondria. Very few of those models account for eukaryotic anaerobes. The role of energy and the energetic constraints that prokaryotic cell organization placed on evolutionary innovation in cell history has recently come to bear on endosymbiotic theory. Only cells that possessed mitochondria had the bioenergetic means to attain eukaryotic cell complexity, which is why there are no true intermediates in the prokaryote-to-eukaryote transition. Current versions of endosymbiotic theory have it that the host was an archaeon (an archaebacterium), not a eukaryote. Hence the evolutionary history and biology of archaea increasingly comes to bear on eukaryotic origins, more than ever before. Here, we have compiled a survey of endosymbiotic theories for the origin of eukaryotes and mitochondria, and for the origin of the eukaryotic nucleus, summarizing the essentials of each and contrasting some of their predictions to the observations. A new aspect of endosymbiosis in eukaryote evolution comes into focus from these considerations: the host for the origin of plastids was a facultative anaerobe. PMID:26323761

  17. Unification of quantum information theory

    NASA Astrophysics Data System (ADS)

    Abeyesinghe, Anura

    We present the unification of many previously disparate results in noisy quantum Shannon theory and the unification of all of noiseless quantum Shannon theory. More specifically we deal here with bipartite, unidirectional, and memoryless quantum Shannon theory. We find all the optimal protocols and quantify the relationship between the resources used, both for the one-shot and for the ensemble case, for what is arguably the most fundamental task in quantum information theory: sharing entangled states between a sender and a receiver. We find that all of these protocols are derived from our one-shot superdense coding protocol and relate nicely to each other. We then move on to noisy quantum information theory and give a simple, direct proof of the "mother" protocol, or rather her generalization to the Fully Quantum Slepian-Wolf protocol (FQSW). FQSW simultaneously accomplishes two goals: quantum communication-assisted entanglement distillation, and state transfer from the sender to the receiver. As a result, in addition to her other "children," the mother protocol generates the state merging primitive of Horodecki, Oppenheim, and Winter as well as a new class of distributed compression protocols for correlated quantum sources, which are optimal for sources described by separable density operators. Moreover, the mother protocol described here is easily transformed into the so-called "father" protocol, demonstrating that the division of single-sender/single-receiver protocols into two families was unnecessary: all protocols in the family are children of the mother.

  18. Dual instantons in antimembranes theory

    SciTech Connect

    Imaanpur, A.; Naghdi, M.

    2011-04-15

    We introduce two ansatzs for the 3-form potential of Euclidean 11d supergravity on skew-whiffed AdS{sub 4}xS{sup 7} background which results in two scalar modes with m{sup 2}=-2 on AdS{sub 4}. Being conformally coupled with a quartic interaction, it is possible to find the exact solutions of the scalar equation on this background. These modes turn out to be invariant under the SU(4) subgroup of the SO(8) isometry group, whereas there are no corresponding SU(4) singlet Bogomol'nyi-Prasad-Sommerfeld operators of dimensions one or two on the boundary theory constructed by Aharony, Bergman, Jafferis, and Maldacena. Noticing the interchange of 8{sub s} and 8{sub c} representations under skew-whiffing in the bulk, we propose the theory of antimembranes should similarly be obtained from Aharony, Bergman, Jafferis, and Maldacena's theory by swapping these representations. In particular, this enables us to identify the dual boundary operators of the two scalar modes. We deform the boundary theory by the dual operators and examine the fermionic field equations, and compare the solutions of the deformed theory with those of the bulk.

  19. Double field theory inspired cosmology

    SciTech Connect

    Wu, Houwen; Yang, Haitang E-mail: hyanga@scu.edu.cn

    2014-07-01

    Double field theory proposes a generalized spacetime action possessing manifest T-duality on the level of component fields. We calculate the cosmological solutions of double field theory with vanishing Kalb-Ramond field. It turns out that double field theory provides a more consistent way to construct cosmological solutions than the standard string cosmology. We construct solutions for vanishing and non-vanishing symmetry preserving dilaton potentials. The solutions assemble the pre- and post-big bang evolutions in one single line element. Our results show a smooth evolution from an anisotropic early stage to an isotropic phase without any special initial conditions in contrast to previous models. In addition, we demonstrate that the contraction of the dual space automatically leads to both an inflation phase and a decelerated expansion of the ordinary space during different evolution stages.

  20. A theory of human error

    NASA Technical Reports Server (NTRS)

    Mcruer, D. T.; Clement, W. F.; Allen, R. W.

    1981-01-01

    Human errors tend to be treated in terms of clinical and anecdotal descriptions, from which remedial measures are difficult to derive. Correction of the sources of human error requires an attempt to reconstruct underlying and contributing causes of error from the circumstantial causes cited in official investigative reports. A comprehensive analytical theory of the cause-effect relationships governing propagation of human error is indispensable to a reconstruction of the underlying and contributing causes. A validated analytical theory of the input-output behavior of human operators involving manual control, communication, supervisory, and monitoring tasks which are relevant to aviation, maritime, automotive, and process control operations is highlighted. This theory of behavior, both appropriate and inappropriate, provides an insightful basis for investigating, classifying, and quantifying the needed cause-effect relationships governing propagation of human error.

  1. Nuclear Force from String Theory

    NASA Astrophysics Data System (ADS)

    Hashimoto, Koji

    2010-04-01

    Recent "technology" called holography, or gauge/string duality (AdS/CFT correspondence) found in string theory, makes it possible to compute various quantities of strongly coupled gauge theories. This technology was applied to QCD, and it was found that it describes surprisingly well important properties of low energy QCD, the hadron physics. We apply it further to nuclear physics. In this talk, I review a part of the developments of the holographic QCD, and show a computation of nuclear force at short distance, derived using the holographic QCD, which was done in collaboration with T. Sakai and S. Sugimoto [K. Hashimoto, T. Sakai, and S. Sugimoto, "Holographic Baryons: Static Properties and Form Factors from Gauge/String Duality," Prog. Theor. Phys. 120 (2008) 1093-1137, arXiv:0806.3122 [hep-th]; K. Hashimoto, T. Sakai, and S. Sugimoto, "Nuclear Force from String Theory," arXiv:0901.4449 [hep-th

  2. The origins of vibration theory

    NASA Astrophysics Data System (ADS)

    Dimarogonas, A. D.

    1990-07-01

    The Ionian School of natural philosophy introduced the scientific method of dealing with natural phenomena and the rigorous proofs for abstract propositions. Vibration theory was initiated by the Pythagoreans in the fifth century BC, in association with the theory of music and the theory of acoustics. They observed the natural frequency of vibrating systems and proved that it is a system property and that it does not depend on the excitation. Pythagoreans determined the fundamental natural frequencies of several simple systems, such as vibrating strings, pipes, vessels and circular plates. Aristoteles and the Peripatetic School founded mechanics and developed a fundamental understanding of statics and dynamics. In Alexandrian times there were substantial engineering developments in the field of vibration. The pendulum as a vibration, and probably time, measuring device was known in antiquity, and was further developed by the end of the first millennium AD.

  3. A history of chaos theory.

    PubMed

    Oestreicher, Christian

    2007-01-01

    Whether every effect can be precisely linked to a given cause or to a list of causes has been a matter of debate for centuries, particularly during the 17th century, when astronomers became capable of predicting the trajectories of planets. Recent mathematical models applied to physics have included the idea that given phenomena cannot be predicted precisely, although they can be predicted to some extent, in line with the chaos theory. Concepts such as deterministic models, sensitivity to initial conditions, strange attractors, and fractal dimensions are inherent to the development of this theory A few situations involving normal or abnormal endogenous rhythms in biology have been analyzed following the principles of chaos theory. This is particularly the case with cardiac arrhythmias, but less so with biological clocks and circadian rhythms. PMID:17969865

  4. A history of chaos theory

    PubMed Central

    Oestreicher, Christian

    2007-01-01

    Whether every effect can be precisely linked to a given cause or to a list of causes has been a matter of debate for centuries, particularly during the 17th century when astronomers became capable of predicting the trajectories of planets. Recent mathematical models applied to physics have included the idea that given phenomena cannot be predicted precisely although they can be predicted to some extent in line with the chaos theory Concepts such as deterministic models, sensitivity to initial conditions, strange attractors, and fractal dimensions are inherent to the development of this theory, A few situations involving normal or abnormal endogenous rhythms in biology have been analyzed following the principles of chaos theory This is particularly the case with cardiac arrhythmias, but less so with biological clocks and circadian rhythms. PMID:17969865

  5. The Psychology of Working Theory.

    PubMed

    Duffy, Ryan D; Blustein, David L; Diemer, Matthew A; Autin, Kelsey L

    2016-03-01

    In the current article, we build on research from vocational psychology, multicultural psychology, intersectionality, and the sociology of work to construct an empirically testable Psychology of Working Theory (PWT). Our central aim is to explain the work experiences of all individuals, but particularly people near or in poverty, people who face discrimination and marginalization in their lives, and people facing challenging work-based transitions for which contextual factors are often the primary drivers of the ability to secure decent work. The concept of decent work is defined and positioned as the central variable within the theory. A series of propositions is offered concerning (a) contextual predictors of securing decent work, (b) psychological and economic mediators and moderators of these relations, and (c) outcomes of securing decent work. Recommendations are suggested for researchers seeking to use the theory and practical implications are offered concerning counseling, advocacy, and public policy. PMID:26937788

  6. Equivalent crystal theory of alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Ferrante, John

    1991-01-01

    Equivalent Crystal Theory (ECT) is a new, semi-empirical approach to calculating the energetics of a solid with defects. The theory has successfully reproduced surface energies in metals and semiconductors. The theory of binary alloys to date, both with first-principles and semi-empirical models, has not been very successful in predicting the energetics of alloys. This procedure is used to predict the heats of formation, cohesive energy, and lattice parameter of binary alloys of Cu, Ni, Al, Ag, Au, Pd, and Pt as functions of composition. The procedure accurately reproduces the heats of formation versus composition curves for a variety of binary alloys. The results are then compared with other approaches such as the embedded atom and lattice parameters of alloys from pure metal properties more accurately than Vegard's law is presented.

  7. Massive supersymmetric quantum gauge theory

    NASA Astrophysics Data System (ADS)

    Grigore, D. R.; Gut, M.; Scharf, G.

    2005-08-01

    We continue the study of the supersymmetric vector multiplet in a purely quantum framework. We obtain some new results which make the connection with the standard literature. First we construct the one-particle physical Hilbert space taking into account the (quantum) gauge structure of the model. Then we impose the condition of positivity for the scalar product only on the physical Hilbert space. Finally we obtain a full supersymmetric coupling which is gauge invariant in the supersymmetric sense in the first order of perturbation theory. By integrating out the Grassmann variables we get an interacting Lagrangian for a massive Yang-Mills theory related to ordinary gauge theory; however the number of ghost fields is doubled so we do not obtain the same ghost couplings as in the standard model Lagrangian.

  8. Boltzmann, Darwin and Directionality theory

    NASA Astrophysics Data System (ADS)

    Demetrius, Lloyd A.

    2013-09-01

    Boltzmann’s statistical thermodynamics is a mathematical theory which relates the macroscopic properties of aggregates of interacting molecules with the laws of their interaction. The theory is based on the concept thermodynamic entropy, a statistical measure of the extent to which energy is spread throughout macroscopic matter. Macroscopic evolution of material aggregates is quantitatively explained in terms of the principle: Thermodynamic entropy increases as the composition of the aggregate changes under molecular collision. Darwin’s theory of evolution is a qualitative theory of the origin of species and the adaptation of populations to their environment. A central concept in the theory is fitness, a qualitative measure of the capacity of an organism to contribute to the ancestry of future generations. Macroscopic evolution of populations of living organisms can be qualitatively explained in terms of a neo-Darwinian principle: Fitness increases as the composition of the population changes under variation and natural selection. Directionality theory is a quantitative model of the Darwinian argument of evolution by variation and selection. This mathematical theory is based on the concept evolutionary entropy, a statistical measure which describes the rate at which an organism appropriates energy from the environment and reinvests this energy into survivorship and reproduction. According to directionality theory, microevolutionary dynamics, that is evolution by mutation and natural selection, can be quantitatively explained in terms of a directionality principle: Evolutionary entropy increases when the resources are diverse and of constant abundance; but decreases when the resource is singular and of variable abundance. This report reviews the analytical and empirical support for directionality theory, and invokes the microevolutionary dynamics of variation and selection to delineate the principles which govern macroevolutionary dynamics of speciation and

  9. Field theory for string fluids

    NASA Astrophysics Data System (ADS)

    Schubring, Daniel; Vanchurin, Vitaly

    2015-08-01

    We develop a field theory description of nondissipative string fluids and construct an explicit mapping between field theory degrees of freedom and hydrodynamic variables. The theory generalizes both a perfect particle fluid and pressureless string fluid to what we call a perfect string fluid. Ideal magnetohydrodynamics is shown to be an example of the perfect string fluid whose equations of motion can be obtained from a particular choice of the Lagrangian. The Lagrangian framework suggests a straightforward extension of the perfect string fluid to more general anisotropic fluids describing higher dimensional branes such as domain walls. Other modifications of the Lagrangian are discussed which may be useful in describing relativistic superfluids and fluids containing additional currents.

  10. On lattice chiral gauge theories

    NASA Technical Reports Server (NTRS)

    Maiani, L.; Rossi, G. C.; Testa, M.

    1991-01-01

    The Smit-Swift-Aoki formulation of a lattice chiral gauge theory is presented. In this formulation the Wilson and other non invariant terms in the action are made gauge invariant by the coupling with a nonlinear auxilary scalar field, omega. It is shown that omega decouples from the physical states only if appropriate parameters are tuned so as to satisfy a set of BRST identities. In addition, explicit ghost fields are necessary to ensure decoupling. These theories can give rise to the correct continuum limit. Similar considerations apply to schemes with mirror fermions. Simpler cases with a global chiral symmetry are discussed and it is shown that the theory becomes free at decoupling. Recent numerical simulations agree with those considerations.

  11. Climate change and game theory.

    PubMed

    Wood, Peter John

    2011-02-01

    This paper examines the problem of achieving global cooperation to reduce greenhouse gas emissions. Contributions to this problem are reviewed from noncooperative game theory, cooperative game theory, and implementation theory. We examine the solutions to games where players have a continuous choice about how much to pollute, as well as games where players make decisions about treaty participation. The implications of linking cooperation on climate change with cooperation on other issues, such as trade, are also examined. Cooperative and noncooperative approaches to coalition formation are investigated in order to examine the behavior of coalitions cooperating on climate change. One way to achieve cooperation is to design a game, known as a mechanism, whose equilibrium corresponds to an optimal outcome. This paper examines some mechanisms that are based on conditional commitments, and their policy implications. These mechanisms could make cooperation on climate change mitigation more likely. PMID:21332497

  12. Game theory and water resources

    NASA Astrophysics Data System (ADS)

    Madani, Kaveh

    2010-02-01

    SummaryManaging water resources systems usually involves conflicts. Behaviors of stakeholders, who might be willing to contribute to improvements and reach a win-win situation, sometimes result in worse conditions for all parties. Game theory can identify and interpret the behaviors of parties to water resource problems and describe how interactions of different parties who give priority to their own objectives, rather than system's objective, result in a system's evolution. Outcomes predicted by game theory often differ from results suggested by optimization methods which assume all parties are willing to act towards the best system-wide outcome. This study reviews applicability of game theory to water resources management and conflict resolution through a series of non-cooperative water resource games. The paper illustrates the dynamic structure of water resource problems and the importance of considering the game's evolution path while studying such problems.

  13. Electroweak Theory: Proceedings of the Advanced School on Electroweak Theory

    NASA Astrophysics Data System (ADS)

    Espriu, D.; Pich, A.

    1998-04-01

    The Table of Contents for the full book PDF is as follows: * Foreword * Quark Mixing and CP Violation * Heavy Quark Effective Theory * Introduction to Low-Energy Supersymmetry * An Introduction to Dynamical Electroweak Symmetry Breaking * Hadron Colliders, the Top Quark, and the Higgs Sector * Physics Potential of LEP2 and NLC * List of Participants

  14. A Theory for Educational Research: Socialisation Theory and Symbolic Interaction

    ERIC Educational Resources Information Center

    Potts, Anthony

    2015-01-01

    This article develops a theory of socialisation based on the Chicago School of symbolic interactionism but infused with new and important insights offered by contemporary scholars and their writings on roles and relationships in the twenty first century and life in the informational, network and global world. While still rooted in the seminal…

  15. Queer Theory in Education. Studies in Curriculum Theory Series.

    ERIC Educational Resources Information Center

    Pinar, William F., Ed.

    This collection of papers discusses homophobia in the field of education and challenges established practices and theories. Chapters are: (1) "Constructing Knowledge: Educational Research and Gay and Lesbian Studies" (W. G. Tierney, P. Dilley); (2) "A Generational and Theoretical Analysis of Culture and Male (Homo)sexuality" (J. T. Sears); (3)…

  16. The Theory of Practice and the Practice of Theory

    ERIC Educational Resources Information Center

    McIntyre, Michael L.; Murphy, Steven A.

    2016-01-01

    As academics who interact with senior and mid-level business managers on a regular basis, both informally and as consultants, the authors often note that ideas of theory and practice are not well developed among people outside of academia. It is posited that this deficit offers the prospect of less than optimal approaches to matters such as…

  17. Living Theory: Principles and Practices for Teaching Social Theory Ethnographically

    ERIC Educational Resources Information Center

    Herring, Chris; Rosaldo, Manuel; Seim, Josh; Shestakofsky, Benjamin

    2016-01-01

    This article details the principles and practices animating an "ethnographic" method of teaching social theory. As opposed to the traditional "survey" approach that aims to introduce students to the historical breadth of social thought, the primary objective of teaching ethnographically is to cultivate students as participant…

  18. Blackbody Theory for Hyperbolic Materials.

    PubMed

    Biehs, Svend-Age; Lang, Slawa; Petrov, Alexander Yu; Eich, Manfred; Ben-Abdallah, Philippe

    2015-10-23

    The blackbody theory is revisited in the case of thermal electromagnetic fields inside uniaxial anisotropic media in thermal equilibrium with a heat bath. When these media are hyperbolic, we show that the spectral energy density of these fields radically differs from that predicted by Planck's blackbody theory and that the maximum of the spectral energy density determined by Wien's law is redshifted. Finally, we derive the Stefan-Boltzmann law for hyperbolic media which becomes a quadratic function of the heat bath temperature. PMID:26551116

  19. Web life: Just A Theory

    NASA Astrophysics Data System (ADS)

    2010-04-01

    After a few months of physics videos, amateur science sites and educational games, the website we are highlighting in this month's column is a straightforward blog. Just A Theory was started in 2008 by freelance science journalist Jacob Aron while he was studying for a Master's degree in science communication at Imperial College London. The blog's title, Aron explains, reflects a popular misconception that scientific theories are "dreamed up by mad scientists in laboratories somewhere" rather than well-crafted explanations based on observations and experiments. To combat this impression, the site aims to highlight good and bad science coverage in the mainstream media, and to provide original commentary on current scientific events.

  20. Issues in Optical Diffraction Theory

    PubMed Central

    Mielenz, Klaus D.

    2009-01-01

    This paper focuses on unresolved or poorly documented issues pertaining to Fresnel’s scalar diffraction theory and its modifications. In Sec. 2 it is pointed out that all thermal sources used in practice are finite in size and errors can result from insufficient coherence of the optical field. A quarter-wave criterion is applied to show how such errors can be avoided by placing the source at a large distance from the aperture plane, and it is found that in many cases it may be necessary to use collimated light as on the source side of a Fraunhofer experiment. If these precautions are not taken the theory of partial coherence may have to be used for the computations. In Sec. 3 it is recalled that for near-zone computations the Kirchhoff or Rayleigh-Sommerfeld integrals are applicable, but fail to correctly describe the energy flux across the aperture plane because they are not continuously differentiable with respect to the assumed geometrical field on the source side. This is remedied by formulating an improved theory in which the field on either side of a semi-reflecting screen is expressed as the superposition of mutually incoherent components which propagate in the opposite directions of the incident and reflected light. These components are defined as linear combinations of the Rayleigh-Sommerfeld integrals, so that they are rigorous solutions of the wave equation as well as continuously differentiable in the aperture plane. Algorithms for using the new theory for computing the diffraction patterns of circular apertures and slits at arbitrary distances z from either side of the aperture (down to z = ± 0.0003 λ) are presented, and numerical examples of the results are given. These results show that the incident geometrical field is modulated by diffraction before it reaches the aperture plane while the reflected field is spilled into the dark space. At distances from the aperture which are large compared to the wavelength λ these field expressions are

  1. Projector Method: theory and examples

    SciTech Connect

    Dahl, E.D.

    1985-01-01

    The Projector Method technique for numerically analyzing lattice gauge theories was developed to take advantage of certain simplifying features of gauge theory models. Starting from a very general notion of what the Projector Method is, the techniques are applied to several model problems. After these examples have traced the development of the actual algorithm from the general principles of the Projector Method, a direct comparison between the Projector and the Euclidean Monte Carlo is made, followed by a discussion of the application to Periodic Quantum Electrodynamics in two and three spatial dimensions. Some methods for improving the efficiency of the Projector in various circumstances are outlined. 10 refs., 7 figs. (LEW)

  2. Io. [theories concerning volcanic activity

    NASA Technical Reports Server (NTRS)

    Johnson, T. V.; Soderblom, L. A.

    1983-01-01

    A report on the continuing investigation of Io is presented. Gravitational resonance is discussed as the cause of Io's volcanism, and the volcanic activity is explained in terms of sulfur chemistry. Theories concerning the reasons for the two main types of volcanic eruptions on Io are advanced and correlated with geographical features of the satellite. The sulfur and silicate models of the calderas are presented, citing the strengths and weaknesses of each. Problems of the gravitational resonance theory of Io's heat source are then described. Finally, observations of Io planned for the Galileo mission are summarized.

  3. Geometry, topology, and string theory

    SciTech Connect

    Varadarajan, Uday

    2003-07-10

    A variety of scenarios are considered which shed light upon the uses and limitations of classical geometric and topological notions in string theory. The primary focus is on situations in which D-brane or string probes of a given classical space-time see the geometry quite differently than one might naively expect. In particular, situations in which extra dimensions, non-commutative geometries as well as other non-local structures emerge are explored in detail. Further, a preliminary exploration of such issues in Lorentzian space-times with non-trivial causal structures within string theory is initiated.

  4. A theory of human error

    NASA Technical Reports Server (NTRS)

    Mcruer, D. T.; Clement, W. F.; Allen, R. W.

    1980-01-01

    Human error, a significant contributing factor in a very high proportion of civil transport, general aviation, and rotorcraft accidents is investigated. Correction of the sources of human error requires that one attempt to reconstruct underlying and contributing causes of error from the circumstantial causes cited in official investigative reports. A validated analytical theory of the input-output behavior of human operators involving manual control, communication, supervisory, and monitoring tasks which are relevant to aviation operations is presented. This theory of behavior, both appropriate and inappropriate, provides an insightful basis for investigating, classifying, and quantifying the needed cause-effect relationships governing propagation of human error.

  5. Theory of the antibubble collapse.

    PubMed

    Sob'yanin, Denis Nikolaevich

    2015-03-13

    A theory of the collapse of a punctured antibubble is developed. The motion of the rim of air formed at the edge of the collapsing air film cannot be described by a potential flow and is characterized by high Reynolds numbers. The rim velocity is not constant but gradually decreases with time and is determined by the balance between the surface tension and hydrodynamic drag forces. A collapse equation is derived and solved. The agreement between the theory and existing experiments is shown. PMID:25815936

  6. On task and theory specificity.

    PubMed

    Newell, K M

    1989-03-01

    One of the significant limitations of the motor control and skill acquisition domain is that the theories, models, and hypotheses are, in most cases, task specific. Many lines of theorizing fail to hold up under even small changes in task constraints, although clearly the field does have some robust phenomena. It is proposed that a broader consideration of the role of task constraints, which is grounded in the methodology of nonlinear dynamics, may help to formulate a more general action theory of coordination and control. PMID:15117675

  7. Continuum limit of quenched theories

    SciTech Connect

    Holdom, B.

    1989-02-27

    We study chiral-symmetry breaking in quenched gauge theories with ultraviolet cutoff ..lambda.., to all orders in the gauge coupling. For large ..lambda../kappa, where kappa is the chiral-symmetry-breaking scale, we derive ..lambda../kappaproportionalexp(const/ ..sqrt..(..cap alpha..-..cap alpha../sub c/) as ..cap alpha --> cap alpha../sub c/+. This is a gauge-invariant, universal consequence of quenched theories. But we argue that this relation does not define a ..beta.. function. We also obtain an explicit expression for the self-energy ..sigma..(p) which applies over most of the range kappa

  8. Inclusive fitness theory and eusociality.

    PubMed

    Abbot, Patrick; Abe, Jun; Alcock, John; Alizon, Samuel; Alpedrinha, Joao A C; Andersson, Malte; Andre, Jean-Baptiste; van Baalen, Minus; Balloux, Francois; Balshine, Sigal; Barton, Nick; Beukeboom, Leo W; Biernaskie, Jay M; Bilde, Trine; Borgia, Gerald; Breed, Michael; Brown, Sam; Bshary, Redouan; Buckling, Angus; Burley, Nancy T; Burton-Chellew, Max N; Cant, Michael A; Chapuisat, Michel; Charnov, Eric L; Clutton-Brock, Tim; Cockburn, Andrew; Cole, Blaine J; Colegrave, Nick; Cosmides, Leda; Couzin, Iain D; Coyne, Jerry A; Creel, Scott; Crespi, Bernard; Curry, Robert L; Dall, Sasha R X; Day, Troy; Dickinson, Janis L; Dugatkin, Lee Alan; El Mouden, Claire; Emlen, Stephen T; Evans, Jay; Ferriere, Regis; Field, Jeremy; Foitzik, Susanne; Foster, Kevin; Foster, William A; Fox, Charles W; Gadau, Juergen; Gandon, Sylvain; Gardner, Andy; Gardner, Michael G; Getty, Thomas; Goodisman, Michael A D; Grafen, Alan; Grosberg, Rick; Grozinger, Christina M; Gouyon, Pierre-Henri; Gwynne, Darryl; Harvey, Paul H; Hatchwell, Ben J; Heinze, Jürgen; Helantera, Heikki; Helms, Ken R; Hill, Kim; Jiricny, Natalie; Johnstone, Rufus A; Kacelnik, Alex; Kiers, E Toby; Kokko, Hanna; Komdeur, Jan; Korb, Judith; Kronauer, Daniel; Kümmerli, Rolf; Lehmann, Laurent; Linksvayer, Timothy A; Lion, Sébastien; Lyon, Bruce; Marshall, James A R; McElreath, Richard; Michalakis, Yannis; Michod, Richard E; Mock, Douglas; Monnin, Thibaud; Montgomerie, Robert; Moore, Allen J; Mueller, Ulrich G; Noë, Ronald; Okasha, Samir; Pamilo, Pekka; Parker, Geoff A; Pedersen, Jes S; Pen, Ido; Pfennig, David; Queller, David C; Rankin, Daniel J; Reece, Sarah E; Reeve, Hudson K; Reuter, Max; Roberts, Gilbert; Robson, Simon K A; Roze, Denis; Rousset, Francois; Rueppell, Olav; Sachs, Joel L; Santorelli, Lorenzo; Schmid-Hempel, Paul; Schwarz, Michael P; Scott-Phillips, Tom; Shellmann-Sherman, Janet; Sherman, Paul W; Shuker, David M; Smith, Jeff; Spagna, Joseph C; Strassmann, Beverly; Suarez, Andrew V; Sundström, Liselotte; Taborsky, Michael; Taylor, Peter; Thompson, Graham; Tooby, John; Tsutsui, Neil D; Tsuji, Kazuki; Turillazzi, Stefano; Ubeda, Francisco; Vargo, Edward L; Voelkl, Bernard; Wenseleers, Tom; West, Stuart A; West-Eberhard, Mary Jane; Westneat, David F; Wiernasz, Diane C; Wild, Geoff; Wrangham, Richard; Young, Andrew J; Zeh, David W; Zeh, Jeanne A; Zink, Andrew

    2011-03-24

    Arising from M. A. Nowak, C. E. Tarnita & E. O. Wilson 466, 1057-1062 (2010); Nowak et al. reply. Nowak et al. argue that inclusive fitness theory has been of little value in explaining the natural world, and that it has led to negligible progress in explaining the evolution of eusociality. However, we believe that their arguments are based upon a misunderstanding of evolutionary theory and a misrepresentation of the empirical literature. We will focus our comments on three general issues. PMID:21430721

  9. TOWARDS A THEORY OF THE EDUCATIONAL FIRM.

    ERIC Educational Resources Information Center

    SIEGEL, BARRY N.

    THIS PAPER DEVELOPS AN ECONOMIC THEORY OF INSTITUTIONS OF HIGHER EDUCATION (IHE) FROM WHICH IT MIGHT BE POSSIBLE TO EXTRACT A THEORY OF ENROLLMENT SUPPLY. SUCH A THEORY MUST DIFFER RADICALLY FROM THE THEORY OF THE BUSINESS FIRM BECAUSE OF TWO KEY ASSUMPTIONS WHICH CANNOT BE MADE ABOUT THE IHE--PROFIT MAXIMIZATION AND A PRODUCTION FUNCTION WHICH…

  10. Theory Building. Symposium 21. [AHRD Conference, 2001].

    ERIC Educational Resources Information Center

    2001

    This symposium on theory building consists of three presentations. "A Multilevel Theory of Organizational Performance: Seeing the Forest and the Trees" (Susan Reynolds Fisher) presents the process used to develop this theory and analyzes emergent insights. It discusses how the theory succeeds in mapping relationships across aspects and levels of…

  11. Theory Matters: Representation and Experimentation in Education

    ERIC Educational Resources Information Center

    Edwards, Richard

    2012-01-01

    This article provides a material enactment of educational theory to explore how we might do educational theory differently by defamiliarising the familiar. Theory is often assumed to be abstract, located solely in the realm of ideas and separate from practice. However, this view of theory emerges from a set of ontological and epistemological…

  12. Physical Theory of the Immune System

    NASA Astrophysics Data System (ADS)

    Deem, Michael

    2012-10-01

    I will discuss to theories of the immune system and describe a theory of the immune response to vaccines. I will illustrate this theory by application to design of the annual influenza vaccine. I will use this theory to explain limitations in the vaccine for dengue fever and to suggest a transport-inspired amelioration of these limitations.

  13. The Future of Piaget's Theory in Education.

    ERIC Educational Resources Information Center

    Murray, Frank B.

    This paper assesses the utility of Piagetian theory for educational practice. Educational practice cannot be formally deduced from psychological theory, but may be theory-compatible if the theory does not specifically forbid the practice. Piaget's genetic epistemology has provided a theoretical justification for longstanding educational…

  14. Creativity Theories and Related Teachers' Beliefs

    ERIC Educational Resources Information Center

    Saracho, Olivia

    2012-01-01

    Creativity theories have been investigated in relation to explicit or implicit theories, which have dominated the field. The flourishing attention about creativity motivated many researchers to examine implicit and explicit theories to understand creativity in their studies. Explicit theories are those formulated by psychologists or other social…

  15. On the Status of Critical Theory.

    ERIC Educational Resources Information Center

    Nielsen, Kai

    1992-01-01

    Describes the nature and distinctiveness of critical theory and discusses it according to the viewpoints of Raymond Geuss and Jurgen Habermas. The logical status of a Habermasian critical theory is examined, defended from some traditional criticisms, and contrasted with both historical versions of critical theory and purely scientific theories.…

  16. Theory and Distance Education: A New Discussion.

    ERIC Educational Resources Information Center

    Simonson, Michael; Schlosser, Charles; Hanson, Dan

    1999-01-01

    Discusses the need for theory in the field of distance education, reviews several traditional theoretical approaches, and describes a new theory called Equivalency Theory that incorporates telecommunications. Compares theories of independence and autonomy, industrialization of teaching, and interaction and communication. (LRW)

  17. String Theory: Big Problem for Small Size

    ERIC Educational Resources Information Center

    Sahoo, S.

    2009-01-01

    String theory is the most promising candidate theory for a unified description of all the fundamental forces that exist in nature. It provides a mathematical framework that combines quantum theory with Einstein's general theory of relativity. The typical size of a string is of the order of 10[superscript -33] cm, called the Planck length. But due…

  18. Critical Social Theory: Core Tenets, Inherent Issues

    ERIC Educational Resources Information Center

    Freeman, Melissa; Vasconcelos, Erika Franca S.

    2010-01-01

    This chapter outlines the core tenets of critical social theory and describes inherent issues facing evaluators conducting critical theory evaluation. Using critical pedagogy as an example, the authors describe the issues facing evaluators by developing four of the subtheories that comprise a critical social theory: (a) a theory of false…

  19. Theories of class and new = 1 SCFTs

    NASA Astrophysics Data System (ADS)

    McGrane, James; Wecht, Brian

    2015-06-01

    We describe an infinite two-parameter subfamily of theories of class where dialing one of the parameters interpolates between Gaiotto's T N theory and a theory of N 2 free hypermultiplets. After using the reduced superconformal index to study the operator content, we use these theories to construct new = 1 SCFTs and then examine the flows between them.

  20. An Affect Control Theory of Technology

    ERIC Educational Resources Information Center

    Shank, Daniel B.

    2010-01-01

    Affect control theory is a theory of interaction that takes into account cultural meanings. Affect control research has previously considered interaction with technology, but there remains a lack of theorizing about inclusion of technology within the theory. This paper lays a foundation for an affect control theory of technology by addressing key…