Science.gov

Sample records for kidney damage caused

  1. Guanidino compounds as cause of cardiovascular damage in chronic kidney disease: an in vitro evaluation.

    PubMed

    Schepers, Eva; Glorieux, Griet; Dou, Laetitia; Cerini, Claire; Gayrard, Nathalie; Louvet, Loïc; Maugard, Charlotte; Preus, Pierre; Rodriguez-Ortiz, Maria; Argiles, Angel; Brunet, Philippe; Cohen, Gerald; Jankowski, Joachim; Jankowski, Vera; Massy, Ziad; Rodriguez, Mariano; Vanholder, Raymond

    2010-01-01

    Chronic kidney disease is considered a major cause of cardiovascular risk and non-traditional risk factors remain largely unknown. The in vitro toxicity of 10 guanidino compounds (GCs) was evaluated via a standardized approach on different cell systems of relevance in cardiovascular disease. The parameters evaluated were production of reactive oxygen species, expression of surface molecules, cell proliferation, cytotoxicity and calcification. Several GCs had a stimulatory effect on monocytes and granulocytes (SDMA, creatine and guanidinobutyric acid (GBA)). Some GCs (guandine (G), guanidinosuccinic acid (GSA) and SDMA) inhibited endothelial cell proliferation or reduced calcification in osteoblast-like human VSMC (ADMA, GSA and SDMA). Stimulation of osteoclastogenesis could be demonstrated for ADMA, G, guanidinoacetic acid and GBA in a RAW264.7 cell line. No compounds were cytotoxic to AoSMC or endothelial cells, nor influenced their viability. GCs, especially SDMA, likely contribute to cardiovascular complications in uremia, mainly those related to microinflammation and leukocyte activation. PMID:21079396

  2. Hereditary Causes of Kidney Stones and Chronic Kidney Disease

    PubMed Central

    Edvardsson, Vidar O.; Goldfarb, David S.; Lieske, John C.; Beara-Lasic, Lada; Anglani, Franca; Milliner, Dawn S.; Palsson, Runolfur

    2013-01-01

    Adenine phosphoribosyltransferase (APRT) deficiency, cystinuria, Dent disease, familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC) and primary hyperoxaluria (PH) are rare but important causes of severe kidney stone disease and/or chronic kidney disease in children. Recurrent kidney stone disease and nephrocalcinosis, particularly in pre-pubertal children, should alert the physician to the possibility of an inborn error of metabolism as the underlying cause. Unfortunately, the lack of recognition and knowledge of the five disorders has frequently resulted in an unacceptable delay in diagnosis and treatment, sometimes with grave consequences. A high index of suspicion coupled with early diagnosis may reduce or even prevent the serious long-term complications of these diseases. In this paper, we review the epidemiology, clinical features, diagnosis, treatment and outcome of patients with APRT deficiency, cystinuria, Dent disease, FHHNC and PH with emphasis on childhood manifestations. PMID:23334384

  3. [Kidney damage in multiple myeloma and other monoclonal gammopathies].

    PubMed

    Adam, Z; Pour, L; Krejcí, M; Stĕpánková, S; Svobodová, I; Veselý, K; Hájek, R

    2008-09-01

    Multiple myeloma typically damages the skeleton in the form of osteolytic lesions or diffuse osteoporosis and causes a decrease in blood production. Renal insufficiency is diagnosed immediately at the onset of illness when establishing diagnosis in up to 20% of patients. Where patients suffer from an advanced form of the illness, it occurs in up to 40%. The predominant cause of damage to the kidneys is the monoclonal light chains. Most frequently, nephropathy is caused by the precipitation of light chains with the Tamm-Horsfall protein in the distal part of the loop of Henle and subsequent tubular ruptures and the creation of fibrous changes in the interstitium. Less frequently, there is clinically serious damage to tubular functions without indication of renal insufficiency. In some patients monoclonal immunoglobulin induces changes in the glomeruli. A rare type of damage is deposits of light chains in the form of AL-amyloid and subsequent nephritic syndrome. A very rare form is the deposition of monoclonal immunoglobulin in the form of amorphous matter (light-chain deposition disease) or in the form of crystals within tissue histiocytes (crystal storing histiocytosis). Both of these disorders cause renal insufficiency and less frequently nephritic syndrome such as AL amyloidosis. With timely and intensive treatment of multiple myeloma, which quickly suppresses the creation of light chains, a significant proportion of patients experience reparative changes and improved kidney function. The benefit of plasmapheresis for patients with severe kidney damage has not been confirmed by randomised studies. At the present time the first positive results are becoming available from tests of the use of pre-emptive haemodialysis with special columns that are permeable for light chains. The aim of the text is to provide information on the various forms of nephropathy whose closer analysis can reveal multiple myeloma and contribute to the timely diagnosis of the cause of the

  4. Biomarkers in chronic kidney disease, from kidney function to kidney damage

    PubMed Central

    Lopez-Giacoman, Salvador; Madero, Magdalena

    2015-01-01

    Chronic kidney disease (CKD) typically evolves over many years, with a long latent period when the disease is clinically silent and therefore diagnosis, evaluation and treatment is based mainly on biomarkers that assess kidney function. Glomerular filtration rate (GFR) remains the ideal marker of kidney function. Unfortunately measuring GFR is time consuming and therefore GFR is usually estimated from equations that take into account endogenous filtration markers like serum creatinine (SCr) and cystatin C (CysC). Other biomarkers such as albuminuria may precede kidney function decline and have demonstrated to have strong associations with disease progression and outcomes. New potential biomarkers have arisen with the promise of detecting kidney damage prior to the currently used markers. The aim of this review is to discuss the utility of the GFR estimating equations and biomarkers in CKD and the different clinical settings where these should be applied. The CKD-Epidemiology Collaboration equation performs better than the modification of diet in renal disease equation, especially at GFR above 60 mL/min per 1.73 m2. Equations combining CysC and SCr perform better than the equations using either CysC or SCr alone and are recommended in situations where CKD needs to be confirmed. Combining creatinine, CysC and urine albumin to creatinine ratio improves risk stratification for kidney disease progression and mortality. Kidney injury molecule and neutrophil gelatinase-associated lipocalin are considered reasonable biomarkers in urine and plasma to determine severity and prognosis of CKD. PMID:25664247

  5. Acute kidney injury: A rare cause.

    PubMed

    Mendonca, Satish; Barki, Satish; Mishra, Mayank; Kumar, R S V; Gupta, Devika; Gupta, Pooja

    2015-09-01

    We present a young lady who consumed hair dye, which contained paraphenylene diamine (PPD), as a means of deliberate self-harm. This resulted in severe angio-neurotic edema for which she had to be ventilated, and thereafter developed rhabdomyolysis leading to acute kidney injury (AKI). The unusual aspect was that the patient continued to have flaccid quadriparesis and inability to regain kidney function. Renal biopsy performed 10 weeks after the dye consumption revealed severe acute tubular necrosis with myoglobin pigment casts. This suggests that PPD has a long-term effect leading to ongoing myoglobinuria, causing flaccid paralysis to persist and preventing the recovery of AKI. In such instances, timely treatment to prevent AKI in the form alkalinization of urine should be initiated promptly. Secondly, because PPD is a nondialyzable toxin, and its long-term effect necessitates its speedy removal, hemoperfusion might be helpful and is worth considering. PMID:26354573

  6. Acute kidney injury caused by bothrops snake venom.

    PubMed

    Rodrigues Sgrignolli, Lívia; Florido Mendes, Glória Elisa; Carlos, Carla Patricia; Burdmann, Emmanuel A

    2011-01-01

    Medically important venomous snakes in Latin America belong to the genus Bothrops, Crotalus, Lachesis and Micrurus. The Bothrops genus is responsible for the majority of accidents. The WHO globally estimates 2,500,000 poisonous snakebites and 125,000 deaths annually. In its last report in 2001, the Brazilian Ministry of Health accounted 359 deaths due to snakebites, of which the Bothrops genus was responsible for 185. Snake venoms cause local and systemic damage, including acute kidney injury, which is the most important cause of death among patients surviving the early effects of envenoming by the Crotalus and Bothrops genuses. Venom-induced acute kidney injury is a frequent complication of Bothrops snakebite, carrying relevant morbidity and mortality. PMID:21757950

  7. Endothelial Glycocalyx Damage Is Associated with Leptospirosis Acute Kidney Injury

    PubMed Central

    Libório, Alexandre Braga; Braz, Marcelo Boecker Munoz; Seguro, Antonio Carlos; Meneses, Gdayllon C.; Neves, Fernanda Macedo de Oliveira; Pedrosa, Danielle Carvalho; Cavalcanti, Luciano Pamplona de Góes; Martins, Alice Maria Costa; Daher, Elizabeth de Francesco

    2015-01-01

    Leptospirosis is a common disease in tropical countries, and the kidney is one of the main target organs. Membrane proteins of Leptospira are capable of causing endothelial damage in vitro, but there have been no studies in humans evaluating endothelial glycocalyx damage and its correlation with acute kidney injury (AKI). We performed a cohort study in an outbreak of leptospirosis among military personnel. AKI was diagnosed in 14 of 46 (30.4%) patients. Leptospirosis was associated with higher levels of intercellular adhesion molecule-1 (ICAM-1; 483.1 ± 31.7 versus 234.9 ± 24.4 mg/L, P < 0.001) and syndecan-1 (73.7 ± 15.9 versus 21.2 ± 7.9 ng/mL, P < 0.001) compared with exposed controls. Patients with leptospirosis-associated AKI had increased level of syndecan-1 (112.1 ± 45.4 versus 41.5 ± 11.7 ng/mL, P = 0.021) and ICAM-1 (576.9 ± 70.4 versus 434.9 ± 35.3, P = 0.034) compared with leptospirosis patients with no AKI. Association was verified between syndecan-1 and ICAM-1 with serum creatinine elevation and neutrophil gelatinase-associated lipocalin (NGAL) levels. This association remained even after multivariate analysis including other AKI-associated characteristics. Endothelial injury biomarkers are associated with leptospirosis-associated renal damage. PMID:25624405

  8. Factors predicting kidney damage in Puumala virus infected patients in Southern Denmark.

    PubMed

    Skarphedinsson, S; Thiesson, H C; Shakar, S A; Tepel, M

    2015-10-01

    In Europe, infections with Puumala hantavirus cause nephropathia epidemica. Presently the risk factors predicting severe kidney damage after Puumala virus infection are not well known. The objective of the study was to investigate environmental and individual factors predicting severe kidney damage caused by serologically established Puumala infections. In a nationwide cohort study we investigated all serologically established Puumala infections in Southern Denmark from 1996 to 2012. A total of 184 patients had serologically verified Puumala virus infection. In patients with Puumala virus infections the decrease of platelet counts preceded acute kidney failure. Multivariable logistic regression demonstrated that recent activities in the forest, platelet counts, and flu-like symptoms predicted estimated glomerular filtration rates less than 30 mL/min/1.73 m(²), but not age, gender, fever, nor abdominal pain. Severe kidney damage in Puumala infections in Southern Denmark is associated with the risk of recent activities in the forest. PMID:26205664

  9. Damage Caused by the Rogue Trustee

    ERIC Educational Resources Information Center

    O'Banion, Terry

    2009-01-01

    Fifty-nine community college presidents and chancellors in 16 states report on the damage caused by rogue trustees. While the damage to presidents, other trustees, and faculty and staff is alarming, the damage these trustees cause the college suggests that the rogue trustee may be the single most destructive force ever to plague an educational…

  10. Kidney Disease Basics

    MedlinePlus

    ... Links Take the first step Alternate Language URL Kidney Disease Basics Page Content Your kidneys filter extra water ... blood pressure are the most common causes of kidney disease. ​These conditions can slowly damage the kidneys over ...

  11. damages learning and memory in Alzheimer's disease rats with kidney-yang deficiency.

    PubMed

    Qi, Dongmei; Qiao, Yongfa; Zhang, Xin; Yu, Huijuan; Cheng, Bin; Qiao, Haifa

    2012-01-01

    Previous studies demonstrated that Alzheimer's disease was considered as the consequence produced by deficiency of Kidney essence. However, the mechanism underlying the symptoms also remains elusive. Here we report that spatial learning and memory, escape, and swimming capacities were damaged significantly in Kidney-yang deficiency rats. Indeed, both hippocampal Aβ(40) and 42 increases in Kidney-yang deficiency contribute to the learning and memory impairments. Specifically, damage of synaptic plasticity is involved in the learning and memory impairment of Kidney-yang deficiency rats. We determined that the learning and memory damage in Kidney-yang deficiency due to synaptic plasticity impairment and increases of Aβ(40) and 42 was not caused via NMDA receptor internalization induced by Aβ increase. β-Adrenergic receptor agonist can rescue the impaired long-term potential (LTP) in Kidney-yang rats. Taken together, our results suggest that spatial learning and memory inhibited in Kidney-yang deficiency might be induced by Aβ increase and the decrease of β(2) receptor function in glia. PMID:22645624

  12. Do We Know What Causes Kidney Cancer?

    MedlinePlus

    ... kidney cells to become cancerous. Changes (mutations) in genes Researchers are starting to understand how certain changes ... oncogenes or turn off tumor suppressor genes. Inherited gene mutations Certain inherited DNA changes can lead to ...

  13. Ochratoxin A induces oxidative DNA damage in liver and kidney after oral dosing to rats.

    PubMed

    Kamp, Hennicke G; Eisenbrand, Gerhard; Janzowski, Christine; Kiossev, Jetchko; Latendresse, John R; Schlatter, Josef; Turesky, Robert J

    2005-12-01

    The nephrotoxic/carcinogenic mycotoxin ochratoxin A (OTA) occurs as a contaminant in food and feed and may be linked to human endemic Balkan nephropathy. The mechanism of OTA-derived carcinogenicity is still under debate, since reactive metabolites of OTA and DNA adducts have not been unambiguously identified. Oxidative DNA damage, however, has been observed in vitro after incubation of mammalian cells with OTA. In this study, we investigated whether OTA induces oxidative DNA damage in vivo as well. Male F344 rats were dosed with 0, 0.03, 0.1, 0.3 mg/kg bw per day OTA for 4 wk (gavage, 7 days/wk, five animals per dose group). Subsequently, oxidative DNA damage was determined in liver and kidney by the comet assay (single cell gel electrophoresis) with/without use of the repair enzyme formamido-pyrimidine-DNA-glycosylase (FPG). The administration of OTA had no effect on basic DNA damage (determined without FPG); however, OTA-mediated oxidative damage was detected with FPG treatment in kidney and liver DNA of all dose groups. Since the doses were in a range that had caused kidney tumors in a 2-year carcinogenicity study with rats, the oxidative DNA damage induced by OTA may help to explain its mechanism of carcinogenicity. For the selective induction of tumors in the kidney, increased oxidative stress in connection with severe cytotoxicity and increased cell proliferation might represent driving factors. PMID:16302199

  14. Therapeutic Effects of Melatonin On Liver And Kidney Damages In Intensive Exercise Model of Rats.

    PubMed

    Gedikli, Semin; Gelen, Volkan; Sengul, Emin; Ozkanlar, Seckin; Gur, Cihan; Agırbas, Ozturk; Cakmak, Fatih; Kara, Adem

    2015-01-01

    Extensive exercise induces inflammatory reactions together with high production of free radicals and subsequent liver and kidney tissues damage. This study was designed to investigate for effects of melatonin on liver and kidney tissues in the extensive exercise exposed rats and non-exercised rats. In this research, 24-male Sprague-Dawley rats were divided into four groups. For exercise rat model, the rats were exposed to slow pace running with the velocity of 10 m/min for 5 minutes for five days just before the study. And for last ten days after adaptation period, the exercise was improved as 15 min with the speed of 20 m/min and intra-peritoneal melatonin injection has been performed to the melatonin treated groups with the dose of 10 mg/kg. Biochemical results revealed a decrease in the parameters of kidney and liver enzymes in exercise-group and an increase in the parameters of serum, liver and kidney enzymes in the group that melatonin-exercise-group. As for histological analysis, while it is observed that there are cellular degenerations in the liver and kidney tissues with exercise application, a decrease has been observed in these degenerations in the group that melatonin was applied. At the end of the research, it has been determined that exercise application causes some damages on liver and kidney, and these damages were ameliorated with melatonin treatment. PMID:26310355

  15. Acute kidney failure

    MedlinePlus

    Kidney failure; Renal failure; Renal failure - acute; ARF; Kidney injury - acute ... There are many possible causes of kidney damage. They include: ... cholesterol (cholesterol emboli) Decreased blood flow due to very ...

  16. Indoxyl sulphate and kidney disease: Causes, consequences and interventions.

    PubMed

    Ellis, Robert J; Small, David M; Vesey, David A; Johnson, David W; Francis, Ross; Vitetta, Luis; Gobe, Glenda C; Morais, Christudas

    2016-03-01

    In the last decade, chronic kidney disease (CKD), defined as reduced renal function (glomerular filtration rate (GFR) < 60 mL/min per 1.73 m(2) ) and/or evidence of kidney damage (typically manifested as albuminuria) for at least 3 months, has become one of the fastest-growing public health concerns worldwide. CKD is characterized by reduced clearance and increased serum accumulation of metabolic waste products (uremic retention solutes). At least 152 uremic retention solutes have been reported. This review focuses on indoxyl sulphate (IS), a protein-bound, tryptophan-derived metabolite that is generated by intestinal micro-organisms (microbiota). Animal studies have demonstrated an association between IS accumulation and increased fibrosis, and oxidative stress. This has been mirrored by in vitro studies, many of which report cytotoxic effects in kidney proximal tubular cells following IS exposure. Clinical studies have associated IS accumulation with deleterious effects, such as kidney functional decline and adverse cardiovascular events, although causality has not been conclusively established. The aims of this review are to: (i) establish factors associated with increased serum accumulation of IS; (ii) report effects of IS accumulation in clinical studies; (iii) critique the reported effects of IS in the kidney, when administered both in vivo and in vitro; and (iv) summarize both established and hypothetical therapeutic options for reducing serum IS or antagonizing its reported downstream effects in the kidney. PMID:26239363

  17. A model for damage of microheterogeneous kidney stones

    NASA Astrophysics Data System (ADS)

    Szeri, Andrew J.; Zohdi, Tarek I.; Blake, John R.

    2005-04-01

    In this paper, a theoretical framework is developed for the mechanics of kidney stones with an isotropic, random microstructure-such as those comprised of cystine or struvite. The approach is based on a micromechanical description of kidney stones comprised of crystals in a binding matrix. Stress concentration functions are developed to determine load sharing of the particle phase and the binding matrix phase. As an illustration of the theory, the fatigue of kidney stones subject to shock wave lithotripsy is considered. Stress concentration functions are used to construct fatigue life estimates for each phase, as a function of the volume fraction and of the mechanical properties of the constituents, as well as the loading from SWL. The failure of the binding matrix is determined explicitly in a model for the accumulation of distributed damage. Also considered is the amount of material damaged in a representative non-spherical collapse of a cavitation bubble near the stone surface. The theory can be used to assess the importance of microscale heterogeneity on the comminution of renal calculi and to estimate the number of cycles to failure in terms of measurable material properties.

  18. Digestive system damage caused by substance abuse.

    PubMed

    Dimitrijević, I; Kalezić, N; Ristić, J; Bojović, O; Dimitrijević, N

    2008-01-01

    Substance abuse and addiction represent a worldwide problem and cause a number of family, social and health problems. Digestive system damage caused by substance intake is an increasing problem amoung drug addicts. Many studies show that substances can cause cancer of all parts of the digestive system. Alcohol consumption was significantly associated with colon and rectal cancer. For rectal cancer, the risk was increased in association with drinking of alcoholic beverages, specialy for beer consumption. Sinthetic drugs such as ecstasy may lead also to digestive and hepatic damage, as well as vascular complications of the stomach. Many studies show the existance of supstance associated enterocolitis as well as ishemic colitis. Diagnosis of ishemic colitis is based on the presence of rectal bleeding, abdominal pain, a history of substance use, supportive endoscopic and histopathologic findings, and the absence of other etiologic mechanisms of ischemic colitis. Great damage to the digestive system is also produced by smuggling narcotics packed into small pages that are afterwards been swallowed or implemented on other sorts of ways inside the smugglers natural body spaces as the rectum or vagina. In the paper authors reviewed literature conserning digestive system damage caused by substance abuse and drug smuggling. PMID:19069706

  19. Superoxide dismutase derivative prevents oxidative damage in liver and kidney of rats induced by exhausting exercise.

    PubMed

    Radák, Z; Asano, K; Inoue, M; Kizaki, T; Oh-Ishi, S; Suzuki, K; Taniguchi, N; Ohno, H

    1996-01-01

    To prevent oxidative tissue damage induced by strenuous exercise in the liver and kidney superoxide dismutase derivative (SM-SOD), which circulated bound to albumin with a half-life of 6 h, was injected intraperitoneally into rats. Exhausting treadmill running caused a significant increase in the activities of xanthine oxidase (XO), and glutathione peroxidase (GPX) in addition to concentrations of thiobarbituric acid-reactive substances (TBARS) in hepatic tissue immediately after running. There was a definite increase in the immunoreactive content of mitochondrial superoxide dismutase (Mn-SOD) 1 day after the running. Meanwhile, the TBARS concentration in the kidney was markedly elevated 3 days after running. The activities of GPX, and catalase in the kidney increased significantly immediately and on days 1 and 3 following the test. The immunoreactive content of Mn-SOD also increased 1 day after running. The exercise induced no significant changes in immunoreactive Cu, Zn-SOD content in either tissue. The administration of SM-SOD provided effective protection against lipid peroxidation, and significantly attenuated the alterations in XO and all the anti-oxidant enzymes, measured. In summary, the present data would suggest that exhausting exercise may induce XO-derived oxidative damage in the liver, while the increase in lipid peroxidation in the kidney might be the result of washout-dependent accumulation of peroxidised metabolites. We found that the administration of SM-SOD provided excellent protection against exercise-induced oxidative stress in both liver and kidney. PMID:8820884

  20. Islet1 deletion causes kidney agenesis and hydroureter resembling CAKUT.

    PubMed

    Kaku, Yusuke; Ohmori, Tomoko; Kudo, Kuniko; Fujimura, Sayoko; Suzuki, Kentaro; Evans, Sylvia M; Kawakami, Yasuhiko; Nishinakamura, Ryuichi

    2013-07-01

    Islet1 (Isl1) is a transcription factor transiently expressed in a subset of heart and limb progenitors. During studies of limb development, conditional Isl1 deletion produced unexpected kidney abnormalities. Here, we studied the renal expression of Isl1 and whether it has a role in kidney development. In situ hybridization revealed Isl1 expression in the mesenchymal cells surrounding the base of the ureteric bud in mice. Conditional deletion of Isl1 caused kidney agenesis or hypoplasia and hydroureter, a phenotype resembling human congenital anomalies of the kidney and urinary tract (CAKUT). The absence of Isl1 led to ectopic branching of the ureteric bud out from the nephric duct or to the formation of accessory buds, both of which could lead to obstruction of the ureter-bladder junction and consequent hydroureter. The abnormal elongation and poor branching of the ureteric buds were the likely causes of the kidney agenesis or hypoplasia. Furthermore, the lack of Isl1 reduced the expression of Bmp4, a gene implicated in the CAKUT-like phenotype, in the metanephric region before ureteric budding. In conclusion, Isl1 is essential for proper development of the kidney and ureter by repressing the aberrant formation of the ureteric bud. These observations call for further studies to investigate whether Isl1 may be a causative gene for human CAKUT. PMID:23641053

  1. Cocaine causes atrial Purkinje fiber damage.

    PubMed

    Gilloteaux, Jacques; Ekwedike, Nelson N

    2010-04-01

    Comparisons of atrial tissues from Syrian hamster offspring born from cocaine-treated mothers during the last days of pregnancy with sham-treated ones demonstrate irreversible focal ischemic damage in the Purkinje myofibers and minor endocardial damages as well as minute cardiomyocyte vacuolization. These defects are consistent with the pharmacotoxicity of cocaine or its metabolites. The damaged Purkinje myocytes apparently remain in contact with adjacent cardiomyocytes but undergo autolytic process similar to that found in autoschizic cell death. Adjacent cell type(s) appear to segregate or engulf the injured cells. Data collected in this report demonstrate why clinical bradyarrhythmias, arrhythmias, or sudden death as cardiac arrest can be found in pre- and postnatal cocaine-abused babies as well as those found in young individuals caused by acute or chronic cocaine abuse. PMID:20192706

  2. DNA Damage in Chronic Kidney Disease: Evaluation of Clinical Biomarkers

    PubMed Central

    Schupp, Nicole; Stopper, Helga; Heidland, August

    2016-01-01

    Patients with chronic kidney disease (CKD) exhibit an increased cancer risk compared to a healthy control population. To be able to estimate the cancer risk of the patients and to assess the impact of interventional therapies thereon, it is of particular interest to measure the patients' burden of genomic damage. Chromosomal abnormalities, reduced DNA repair, and DNA lesions were found indeed in cells of patients with CKD. Biomarkers for DNA damage measurable in easily accessible cells like peripheral blood lymphocytes are chromosomal aberrations, structural DNA lesions, and oxidatively modified DNA bases. In this review the most common methods quantifying the three parameters mentioned above, the cytokinesis-block micronucleus assay, the comet assay, and the quantification of 8-oxo-7,8-dihydro-2′-deoxyguanosine, are evaluated concerning the feasibility of the analysis and regarding the marker's potential to predict clinical outcomes. PMID:27313827

  3. PLASMID DNA DAMAGE CAUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN

    EPA Science Inventory

    Plasmid DNA damage caused by methylated arsenicals, ascorbic acid and human liver ferritin.

    Arsenic causes cancer in human skin, urinary bladder, lung, liver and kidney and is a significant world-wide public health problem. Although the metabolism of inorganic arsenic is ...

  4. Textile damage caused by vapour cloud explosions.

    PubMed

    Was-Gubala, J; Krauss, W

    2004-01-01

    The aim of the project was to investigate the damage to garments caused by particular vapour cloud explosions. The authors would like to be able to provide investigators with specific information on how to link clothes to a specific type of crime: a particular case study was the inspiration for the examinations. Experiments were carried out in the fire reconstruction chamber of the laboratory using a selection of 26 clothes and 15 household garments differing in colour, fibre composition and textile construction. PMID:15527183

  5. Loss of Glis2/NPHP7 causes kidney epithelial cell senescence and suppresses cyst growth in the Kif3a mouse model of cystic kidney disease.

    PubMed

    Lu, Dongmei; Rauhauser, Alysha; Li, Binghua; Ren, Chongyu; McEnery, Kayla; Zhu, Jili; Chaki, Moumita; Vadnagara, Komal; Elhadi, Sarah; Jetten, Anton M; Igarashi, Peter; Attanasio, Massimo

    2016-06-01

    Enlargement of kidney tubules is a common feature of multiple cystic kidney diseases in humans and mice. However, while some of these pathologies are characterized by cyst expansion and organ enlargement, in others, progressive interstitial fibrosis and kidney atrophy prevail. The Kif3a knockout mouse is an established non-orthologous mouse model of cystic kidney disease. Conditional inactivation of Kif3a in kidney tubular cells results in loss of primary cilia and rapid cyst growth. Conversely, loss of function of the gene GLIS2/NPHP7 causes progressive kidney atrophy, interstitial inflammatory infiltration, and fibrosis. Kif3a null tubular cells have unrestrained proliferation and reduced stabilization of p53 resulting in a loss of cell cycle arrest in the presence of DNA damage. In contrast, loss of Glis2 is associated with activation of checkpoint kinase 1, stabilization of p53, and induction of cell senescence. Interestingly, the cystic phenotype of Kif3a knockout mice is partially rescued by genetic ablation of Glis2 and pharmacological stabilization of p53. Thus, Kif3a is required for cell cycle regulation and the DNA damage response, whereas cell senescence is significantly enhanced in Glis2 null cells. Hence, cell senescence is a central feature in nephronophthisis type 7 and Kif3a is unexpectedly required for efficient DNA damage response and cell cycle arrest. PMID:27181777

  6. Ammonium dichromate poisoning: A rare cause of acute kidney injury

    PubMed Central

    Radhakrishnan, H.; Gopi, M.; Arumugam, A.

    2014-01-01

    Ammonium dichromate is an inorganic compound frequently used in screen and color printing. Being a strong oxidizing agent, it causes oxygen free radical injury resulting in organ failure. We report a 25-year-old female who presented with acute kidney injury after consumption of ammonium dichromate. She was managed successfully with hemodialysis and supportive measures. This case is reported to highlight the toxicity of ammonium dichromate. PMID:25484533

  7. Oxidative DNA Damage in Kidneys and Heart of Hypertensive Mice Is Prevented by Blocking Angiotensin II and Aldosterone Receptors

    PubMed Central

    Brand, Susanne; Amann, Kerstin; Mandel, Philipp; Zimnol, Anna; Schupp, Nicole

    2014-01-01

    Introduction Recently, we could show that angiotensin II, the reactive peptide of the blood pressure-regulating renin-angiotensin-aldosterone-system, causes the formation of reactive oxygen species and DNA damage in kidneys and hearts of hypertensive mice. To further investigate on the one hand the mechanism of DNA damage caused by angiotensin II, and on the other hand possible intervention strategies against end-organ damage, the effects of substances interfering with the renin-angiotensin-aldosterone-system on angiotensin II-induced genomic damage were studied. Methods In C57BL/6-mice, hypertension was induced by infusion of 600 ng/kg • min angiotensin II. The animals were additionally treated with the angiotensin II type 1 receptor blocker candesartan, the mineralocorticoid receptor blocker eplerenone and the antioxidant tempol. DNA damage and the activation of transcription factors were studied by immunohistochemistry and protein expression analysis. Results Administration of angiotensin II led to a significant increase of blood pressure, decreased only by candesartan. In kidneys and hearts of angiotensin II-treated animals, significant oxidative stress could be detected (1.5-fold over control). The redox-sensitive transcription factors Nrf2 and NF-κB were activated in the kidney by angiotensin II-treatment (4- and 3-fold over control, respectively) and reduced by all interventions. In kidneys and hearts an increase of DNA damage (3- and 2-fold over control, respectively) and of DNA repair (3-fold over control) was found. These effects were ameliorated by all interventions in both organs. Consistently, candesartan and tempol were more effective than eplerenone. Conclusion Angiotensin II-induced DNA damage is caused by angiotensin II type 1 receptor-mediated formation of oxidative stress in vivo. The angiotensin II-mediated physiological increase of aldosterone adds to the DNA-damaging effects. Blocking angiotensin II and mineralocorticoid receptors therefore

  8. Chronic kidney disease of uncertain etiology in Sri Lanka: Are leptospirosis and Hantaviral infection likely causes?

    PubMed

    Gamage, Chandika Damesh; Sarathkumara, Yomani Dilukshi

    2016-06-01

    Chronic kidney disease of uncertain etiology (CKDu) has been a severe burden and a public health crisis in Sri Lanka over the past two decades. Many studies have established hypotheses to identify potential risk factors although causative agents, risk factors and etiology of this disease are still uncertain. Several studies have postulated that fungal and bacterial nephrotoxins are a possible etiological factor; however, the precise link between hypothesized risk factors and the pathogenesis of chronic kidney disease has yet to be proven in prior studies. Leptospirosis and Hantavirus infections are important zoonotic diseases that are naturally maintained and transmitted via infected rodent populations and which present similar clinical and epidemiological features. Both infections are known to be a cause of acute kidney damage that can proceed into chronic renal failure. Several studies have reported presence of both infections in Sri Lanka. Therefore, we hypothesized that pathogenic Leptospira or Hantavirus are possible causative agents of acute kidney damage which eventually progresses to chronic kidney disease in Sri Lanka. The proposed hypothesis will be evaluated by means of an observational study design. Past infection will be assessed by a cross-sectional study to detect the presence of IgG antibodies with further confirmatory testing among chronic kidney disease patients and individuals from the community in selected endemic areas compared to low prevalence areas. Identification of possible risk factors for these infections will be followed by a case-control study and causality will be further determined with a cohort study. If the current hypothesis is true, affected communities will be subjected for medical interventions related to the disease for patient management while considering supportive therapies. Furthermore and possibly enhance their preventive and control measures to improve vector control to decrease the risk of infection. PMID:27142134

  9. Carbon tetrachloride-induced kidney damage and protective effect of Amaranthus lividus L. in rats.

    PubMed

    Yilmaz-Ozden, Tugba; Can, Ayse; Karatug, Ayse; Pala-Kara, Zeliha; Okyar, Alper; Bolkent, Sehnaz

    2016-06-01

    This study was designed to evaluate the protective effect of water extract of Amaranthus lividus L. (A. lividus) (Amaranthaceae) on carbon tetrachloride (CCl4)-induced toxicity in kidneys of rats. For this purpose, male albino Wistar rats were pretreated with A. lividus (250 and 500 mg/kg body weight (b.w.)) daily for 9 days and a single dose of CCl4 was applied intraperitoneally (50% in olive oil; 1.5 mL/kg b.w.) on the 10th day. All rats were killed 24 h after CCl4 administration, and kidneys were excised and used for determination of histopathological and biochemical parameters. CCl4 administration caused a remarkable increase in lipid peroxidation (LPO) and glutathione levels and glutathione-S-transferase, glutathione peroxidase, glutathione reductase, superoxide dismutase, myeloperoxidase (MPO) activities and a decrease in catalase (CAT) activity when compared to the control group. Pretreatment with A. lividus (250 and 500 mg/kg b.w.) significantly prevented the elevation in LPO level and MPO activity as well as protected the decrease in CAT activity but did not alter other biochemical parameters. The protective effect of A. lividus was further evident through the decreased histological alterations in kidneys. In conclusion, this study has indicated that A. lividus possesses protective and antioxidant effects against CCl4-induced oxidative kidney damage. PMID:25415872

  10. Liquid methionine hydroxy analog (free acid) and DL-methionine attenuate calcium-induced kidney damage in domestic fowl.

    PubMed

    Wideman, R F; Ford, B C; Leach, R M; Wise, D F; Robey, W W

    1993-07-01

    To evaluate the possibility that kidney damage may be induced by the commercial practice of feeding high-Ca (HCa) prelayer rations, and to evaluate the protective efficacy of supplementing HCa diets with liquid methionine hydroxy analog free acid or DL-methionine, 12-wk-old female Single Comb White Leghorn pullets were fed one of the following corn-soybean meal-based diets until they reached 22 wk of age: normal-Ca (NC, 1% Ca); HCa (HC, 3.5% Ca); HCa supplemented with .34 or .68% liquid methionine hydroxy analog free acid (HC3A or HC6A); or HCa supplemented with .3 or .6% DL-methionine (HC3DL or HC6DL). The unsupplemented HC diet caused a significant reduction in kidney mass and a significant increase in the incidence of gross kidney damage and urolithiasis in pullets necropsied at 22 wk of age. Calcium-induced kidney damage was attenuated in a dose-response fashion by supplementing the HC diet with liquid methionine hydroxy analog and DL-methionine. None of the diets caused a significant metabolic acidosis. Plasma uric acid concentrations were not predictive of the extent of Ca-induced kidney damage. Analyses of glomerular size distributions indicated that subclinical or "hidden" kidney damage may not progressively develop into urolithiasis as hens mature. When compared with hens reared on the NC diet, rearing hens on the HC, HC3A, HC3DL, HC6A, or HC6DL diets did not consistently affect hen-day egg production, egg mass, eggshell mass, percentage eggshell, or bone mineralization. PMID:8346150

  11. From the nephrologist's point of view: diversity of causes and clinical features of acute kidney injury

    PubMed Central

    Bienholz, Anja; Wilde, Benjamin; Kribben, Andreas

    2015-01-01

    Acute kidney injury (AKI) is a clinical syndrome with multiple entities. Although AKI implies renal damage, functional impairment or both, diagnosis is solely based on the functional parameters of serum creatinine and urine output. The latest definition was provided by the Kidney Disease Improving Global Outcomes (KDIGO) working group in 2012. Independent of the underlying disease, and even in the case of full recovery, AKI is associated with an increased morbidity and mortality. Awareness of the patient's individual risk profile and the diversity of causes and clinical features of AKI is pivotal for optimization of prophylaxes, diagnosis and therapy of each form of AKI. A differentiated and individualized approach is required to improve patient mortality, morbidity, long-term kidney function and eventually the quality of life. In this review, we provide an overview of the different clinical settings in which specific forms of AKI may occur and point out possible diagnostic as well as therapeutic approaches. Secifically AKI is discussed in the context of non-kidney organ failure, organ transplantation, sepsis, malignancy and autoimmune disease. PMID:26251707

  12. Kidney damage in extracorporeal shock wave lithotripsy: a numerical approach for different shock profiles.

    PubMed

    Weinberg, Kerstin; Ortiz, Michael

    2009-08-01

    In shock-wave lithotripsy--a medical procedure to fragment kidney stones--the patient is subjected to hypersonic waves focused at the kidney stone. Although this procedure is widely applied, the physics behind this medical treatment, in particular the question of how the injuries to the surrounding kidney tissue arise, is still under investigation. To contribute to the solution of this problem, two- and three-dimensional numerical simulations of a human kidney under shock-wave loading are presented. For this purpose a constitutive model of the bio-mechanical system kidney is introduced, which is able to map large visco-elastic deformations and, in particular, material damage. The specific phenomena of cavitation induced oscillating bubbles is modeled here as an evolution of spherical pores within the soft kidney tissue. By means of large scale finite element simulations, we study the shock-wave propagation into the kidney tissue, adapt unknown material parameters and analyze the resulting stress states. The simulations predict localized damage in the human kidney in the same regions as observed in animal experiments. Furthermore, the numerical results suggest that in first instance the pressure amplitude of the shock wave impulse (and not so much its exact time-pressure profile) is responsible for damaging the kidney tissue. PMID:18807077

  13. Modulatory effect of Mangifera indica against carbon tetrachloride induced kidney damage in rats

    PubMed Central

    Adeneye, Adejuwon Adewale; Aiyeola, Sheriff Aboyade; Benebo, Adokiye Senibo

    2015-01-01

    There is little scientific evidence on the local use of Mangifera indica in kidney diseases. This study investigated the reno-modulatory roles of the aqueous stem bark extract of Mangifera indica (MIASE) against CCl4-induced renal damage. Rats were treated intragastrically with 125, 250 and 500 mg/kg/day MIASE for 7 days before and after the administration of CCl4 (3 ml/kg of 30% CCl4, i.p.). Serum levels of electrolytes (Na+, K+, Cl−, HCO3−), urea and creatinine were determined. Renal tissue reduced glutathione (GSH), malondialdehyde (MDA), catalase (CAT), superoxide (SOD) activities were also assessed. The histopathological changes in kidneys were determined using standard methods. In CCl4 treated rats the results showed significant (p<0.05) increases in serum Na+, K+, Cl−, urea and creatinine. CCl4 also caused significant (p<0.05) decreases in renal tissue SOD, CAT and GSH and significant (p<0.05) increases in MDA. The oral MIASE treatment (125-500 mg/kg) was found to significantly (p<0.05) attenuate the increase in serum electrolytes, urea and creatinine. Similarly, MIASE significantly (p<0.05) attenuated the decrease in SOD, CAT and GSH levels and correspondingly attenuated increases in MDA. Mangifera indica may present a great prospect for drug development in the management of kidney disease with lipid peroxidation as its etiology. PMID:27486379

  14. Modulatory effect of Mangifera indica against carbon tetrachloride induced kidney damage in rats.

    PubMed

    Awodele, Olufunsho; Adeneye, Adejuwon Adewale; Aiyeola, Sheriff Aboyade; Benebo, Adokiye Senibo

    2015-12-01

    There is little scientific evidence on the local use of Mangifera indica in kidney diseases. This study investigated the reno-modulatory roles of the aqueous stem bark extract of Mangifera indica (MIASE) against CCl4-induced renal damage. Rats were treated intragastrically with 125, 250 and 500 mg/kg/day MIASE for 7 days before and after the administration of CCl4 (3 ml/kg of 30% CCl4, i.p.). Serum levels of electrolytes (Na+, K+, Cl(-), HCO3(-)), urea and creatinine were determined. Renal tissue reduced glutathione (GSH), malondialdehyde (MDA), catalase (CAT), superoxide (SOD) activities were also assessed. The histopathological changes in kidneys were determined using standard methods. In CCl4 treated rats the results showed significant (p<0.05) increases in serum Na+, K+, Cl(-), urea and creatinine. CCl4 also caused significant (p<0.05) decreases in renal tissue SOD, CAT and GSH and significant (p<0.05) increases in MDA. The oral MIASE treatment (125-500 mg/kg) was found to significantly (p<0.05) attenuate the increase in serum electrolytes, urea and creatinine. Similarly, MIASE significantly (p<0.05) attenuated the decrease in SOD, CAT and GSH levels and correspondingly attenuated increases in MDA. Mangifera indica may present a great prospect for drug development in the management of kidney disease with lipid peroxidation as its etiology. PMID:27486379

  15. Careful: Acetaminophen in Pain Relief Medicines Can Cause Liver Damage

    MedlinePlus

    ... Careful: Acetaminophen in pain relief medicines can cause liver damage Share Tweet Linkedin Pin it More sharing ... word or may have the abbreviation "APAP." Severe liver damage may occur and may lead to death ...

  16. Landslide Caused Damages in a Gallery

    NASA Astrophysics Data System (ADS)

    Poisel, R.; Mair am Tinkhof, K.; Preh, A.

    2016-06-01

    On October 5th, 2010, cracks were found in a gallery 1.8 m high and 1.4 m wide. The gallery is 100 years old, runs parallel to a valley flank and was excavated in a tectonically strongly stressed, weathered and slightly dipping sandwich of clayey shales, sandstones and marls. The cracks in the roof as well as in the invert ran parallel to the axis of the gallery. Monitoring showed that crack widths were increasing 1.5 mm per year, sidewall distances were increasing 3.5 mm per year, whereas the height of the gallery was decreasing 2.5 mm per year. After eliminating several possible causes of cracking, a landslide producing the damages had to be taken into consideration. Monitoring of the valley flank surface as well as inclinometer readings revealed that a landslide was occurring, loading the gallery lining. Most probably the landslide had been reactivated by excessive rainfall in 2009 as well as by works for the renewal of a weir in the valley bottom. As stabilization of the slope was not an option for several reasons, it was decided to replace the gallery by a new one deeper inside the slope, which will be ready for operation in 2017. Thus the old gallery has to be kept in operation till then and it was decided to reinforce the old gallery by a heavily reinforced shotcrete lining 10 cm thick. As slope displacements went on, cracks in the shotcrete lining developed with a completely different pattern: in the section where the gallery lies completely in the landslide shear zone no cracks formed until now due to heavy reinforcement, whereas in the transition sections stable ground-landslide and landslide-stable ground diagonal tension cracks in the roof due to shear by the landslide developed. Numerical models showed that cracking and spalling of the shotcrete lining would occur only after some centimetres of additional displacements of the slope, which hopefully will not occur before 2017.

  17. Chronic Kidney Disease Influences Multiple Systems: Describing the Relationship between Oxidative Stress, Inflammation, Kidney Damage, and Concomitant Disease

    PubMed Central

    Tucker, Patrick S.; Scanlan, Aaron T.; Dalbo, Vincent J.

    2015-01-01

    Chronic kidney disease (CKD) is characterized by increased levels of oxidative stress and inflammation. Oxidative stress and inflammation promote renal injury via damage to molecular components of the kidney. Unfortunately, relationships between inflammation and oxidative stress are cyclical in that the inflammatory processes that exist to repair radical-mediated damage may be a source of additional free radicals, resulting in further damage to renal tissue. Oxidative stress and inflammation also have the ability to become systemic, serving to injure tissues distal to the site of original insult. This review describes select mediators in the exacerbatory relationship between oxidative stress, inflammation, and CKD. This review also discusses oxidative stress, inflammation, and CKD as they pertain to the development and progression of common CKD-associated comorbidities. Lastly, the utility of several widely accessible and cost-effective lifestyle interventions and their ability to reduce oxidative stress and inflammation are discussed and recommendations for future research are provided. PMID:25861414

  18. Hypercalcemia as a Cause of Kidney Failure: Case Report

    PubMed Central

    Stojceva-Taneva, Olivera; Taneva, Borjanka; Selim, Gjulsen

    2016-01-01

    BACKGROUND: Hypercalcemia is a common manifestation in clinical practice and occurs as a result of primary hyperparathyroidism, malignancy, milk-alkali syndrome, hyper or hypothyroidism, sarcoidosis and other known and unknown causes. Patients with milk-alkali syndrome typically are presented with renal failure, hypercalcemia, and metabolic alkalosis caused by the ingestion of calcium and absorbable alkali. This syndrome is caused by high intake of milk and sodium bicarbonate. CASE PRESENTATION: We present a 28-year old male admitted to hospital with a one-month history of nausea, vomiting, epigastric pain, increased blood pressure and worsening of renal function with hypercalcemia. His serum PTH level was almost undetectable; he had mild alkalosis, renal failure with eGFR of 42 ml/min, anemia, hypertension and abnormal ECG with shortened QT interval and ST elevation in V1-V4. He had a positive medical history for calcium-containing antacids intake and after ruling out primary hyperparathyroidism, malignancy, multiple myelomas, sarcoidosis, and thyroid dysfunction, it seemed plausible to diagnose him as having the milk-alkali syndrome. CONCLUSION: Although milk-alkali syndrome currently may be more probably a result of calcium and vitamin D intake in postmenopausal women, or in elderly men with reduced kidney function taking calcium-containing medications, one should not exclude the possibility of its appearance in younger patients taking calcium-containing medications and consider it a serious condition taking into account its possibility of inducing renal insufficiency. PMID:27335601

  19. Eucalyptus globulus extract protects upon acetaminophen-induced kidney damages in male rat

    PubMed Central

    Dhibi, Sabah; Mbarki, Sakhria; Elfeki, Abdelfettah; Hfaiedh, Najla

    2014-01-01

    Plants have historically been used in treating many diseases. Eucalyptus globules, a rich source of bioactive compounds, and have been shown to possess antioxidative properties. The purpose of this study, carried out on male Wistar rats, was to evaluate the beneficial effects of Eucalyptus globulus extract upon acetaminophen-induced damages in kidney. Our study is realized in the Department of Biology, Faculty of Sciences of Sfax (Tunisia). 32 Wistar male rats; were divided into 4 batches: a control group (n=8), a group of rats treated with acetaminophen (goomg/kg) by intraperitoneal injection during 4 days (n=8), a group receiving Eucalyptus globulus extract (130 mg of dry leaves/kg/day) in drinking water during 42 days after 2 hours of acetaminophen administration (during 4 days) (n=8) and group received only Eucalyptus (n=8) during 42 days. After 6 weeks, animals from each group were rapidly sacrificed by decapitation. Blood serum was obtained by centrifugation. Under our experimental conditions, acetaminophen poisoning resulted in an oxidative stress evidenced by statistically significant losses in the activities of catalase (CAT), superoxide-dismutase (SOD), glutathione-peroxidase (GPX) activities and an increase in lipids peroxidation level in renal tissue of acetaminophen-treated group compared with the control group. Acetaminophen also caused kidney damage as evident by statistically significant (p<0.05) increase in levels of creatinine and urea and decreased levels of uric acid and proteins in blood. Histological analysis demonstrated alteration of proximal tubules, atrophy of the glomerule and dilatation of urinary space. Previous administration of plant extract is found to alleviate this acetaminophen-induced damage. PMID:24856382

  20. Eucalyptus globulus extract protects upon acetaminophen-induced kidney damages in male rat.

    PubMed

    Dhibi, Sabah; Mbarki, Sakhria; Elfeki, Abdelfettah; Hfaiedh, Najla

    2014-05-01

    Plants have historically been used in treating many diseases. Eucalyptus globules, a rich source of bioactive compounds, and have been shown to possess antioxidative properties. The purpose of this study, carried out on male Wistar rats, was to evaluate the beneficial effects of Eucalyptus globulus extract upon acetaminophen-induced damages in kidney. Our study is realized in the Department of Biology, Faculty of Sciences of Sfax (Tunisia). 32 Wistar male rats; were divided into 4 batches: a control group (n=8), a group of rats treated with acetaminophen (900 mg/kg) by intraperitoneal injection during 4 days (n=8), a group receiving Eucalyptus globulus extract (130 mg of dry leaves/kg/day) in drinking water during 42 days after 2 hours of acetaminophen administration (during 4 days) (n=8) and group received only Eucalyptus (n=8) during 42 days. After 6 weeks, animals from each group were rapidly sacrificed by decapitation. Blood serum was obtained by centrifugation. Under our experimental conditions, acetaminophen poisoning resulted in an oxidative stress evidenced by statistically significant losses in the activities of catalase (CAT), superoxide-dismutase (SOD), glutathione-peroxidase (GPX) activities and an increase in lipids peroxidation level in renal tissue of acetaminophen-treated group compared with the control group. Acetaminophen also caused kidney damage as evident by statistically significant (p<0.05) increase in levels of creatinine and urea and decreased levels of uric acid and proteins in blood. Histological analysis demonstrated alteration of proximal tubules, atrophy of the glomerule and dilatation of urinary space. Previous administration of plant extract is found to alleviate this acetaminophen-induced damage. PMID:24856382

  1. Multiple organ damage caused by tumor necrosis factor and prevented by prior neutrophil depletion

    SciTech Connect

    Mallick, A.A.; Ishizaka, A.; Stephens, K.E.; Hatherill, J.R.; Tazelaar, H.D.; Raffin, T.A. )

    1989-05-01

    The effect of TNF on nonpulmonary multiple organ damage (MOD) was studied. Since polymorphonuclear leukocytes (PMN) are thought to play an important role in septic or TNF-induced MOD, we investigated both neutrophil sufficient (PMN+) and neutropenic (PMN-) guinea pigs. Sepsis was induced by Escherichia coli administration (2 x 10(9)/kg) or recombinant human TNF (1.4 x 10(6) U/kg) was infused into PMN+ and PMN- guinea pigs. During necropsy, the PMN+/TNF and PMN+/E coli animals exhibited marked damage in the adrenal glands, kidneys and liver as evidenced by hemorrhage, congestion, and PMN sequestration on histopathologic examination. There was also increased tissue albumin accumulation in the adrenal glands, kidneys, spleen, heart, and liver as demonstrated by {sup 125}I-labeled albumin determinations. In contrast, the PMN-/TNF group did not reveal histopathologic damage in any organ system and there was no abnormal organ accumulation of {sup 125}I-albumin. However, in PMN-/E coli animals, marked histopathologic damage in the adrenal glands and liver was evident. Furthermore, there were marked accumulations of {sup 125}I-albumin in the adrenals, heart, kidneys, liver, and spleen. Moreover, the PMN-/E coli guinea pigs had a much greater accumulation (p less than 0.01) of {sup 125}I-albumin in the kidneys than any other group including the PMN+/E coli group. Thus, nonpulmonary MOD in guinea pigs is caused by TNF administration and can be prevented by PMN depletion. However, while E coli administration also caused marked nonpulmonary MOD in neutrophil sufficient guinea pigs, equivalent or greater damage was produced in neutropenic animals. This suggests that while TNF-induced MOD may be primarily mediated by PMN, E coli-induced MOD seems to be mediated by more than PMN.

  2. Thalidomide Ameliorates Inflammation and Vascular Injury but Aggravates Tubular Damage in the Irradiated Mouse Kidney

    SciTech Connect

    Scharpfenecker, Marion; Floot, Ben; Russell, Nicola S.; Coppes, Rob P.; Stewart, Fiona A.

    2014-07-01

    Purpose: The late side effects of kidney irradiation include vascular damage and fibrosis, which are promoted by an irradiation-induced inflammatory response. We therefore treated kidney-irradiated mice with the anti-inflammatory and angiogenesis-modulating drug thalidomide in an attempt to prevent the development of late normal tissue damage and radiation nephropathy in the mouse kidney. Methods and Materials: Kidneys of C57Bl/6 mice were irradiated with a single dose of 14 Gy. Starting from week 16 after irradiation, the mice were fed with thalidomide-containing chow (100 mg/kg body weight/day). Gene expression and kidney histology were analyzed at 40 weeks and blood samples at 10, 20, 30, and 40 weeks after irradiation. Results: Thalidomide improved the vascular structure and vessel perfusion after irradiation, associated with a normalization of pericyte coverage. The drug also reduced infiltration of inflammatory cells but could not suppress the development of fibrosis. Irradiation-induced changes in hematocrit and blood urea nitrogen levels were not rescued by thalidomide. Moreover, thalidomide worsened tubular damage after irradiation and also negatively affected basal tubular function. Conclusions: Thalidomide improved the inflammatory and vascular side effects of kidney irradiation but could not reverse tubular toxicity, which probably prevented preservation of kidney function.

  3. A Novel Therapy to Attenuate Acute Kidney Injury and Ischemic Allograft Damage after Allogenic Kidney Transplantation in Mice

    PubMed Central

    Gueler, Faikah; Shushakova, Nelli; Mengel, Michael; Hueper, Katja; Chen, Rongjun; Liu, Xiaokun; Park, Joon-Keun; Haller, Hermann

    2015-01-01

    Ischemia followed by reperfusion contributes to the initial damage to allografts after kidney transplantation (ktx). In this study we tested the hypothesis that a tetrapeptide EA-230 (AQGV), might improve survival and attenuate loss of kidney function in a mouse model of renal ischemia/reperfusion injury (IRI) and ischemia-induced delayed graft function after allogenic kidney transplantation. IRI was induced in male C57Bl/6N mice by transient bilateral renal pedicle clamping for 35 min. Treatment with EA-230 (20–50mg/kg twice daily i.p. for four consecutive days) was initiated 24 hours after IRI when acute kidney injury (AKI) was already established. The treatment resulted in markedly improved survival in a dose dependent manner. Acute tubular injury two days after IRI was diminished and tubular epithelial cell proliferation was significantly enhanced by EA-230 treatment. Furthermore, CTGF up-regulation, a marker of post-ischemic fibrosis, at four weeks after IRI was significantly less in EA-230 treated renal tissue. To learn more about these effects, we measured renal blood flow (RBF) and glomerular filtration rate (GFR) at 28 hours after IRI. EA-230 improved both GFR and RBF significantly. Next, EA-230 treatment was tested in a model of ischemia-induced delayed graft function after allogenic kidney transplantation. The recipients were treated with EA-230 (50 mg/kg) twice daily i.p. which improved renal function and allograft survival by attenuating ischemic allograft damage. In conclusion, EA-230 is a novel and promising therapeutic agent for treating acute kidney injury and preventing IRI-induced post-transplant ischemic allograft injury. Its beneficial effect is associated with improved renal perfusion after IRI and enhanced regeneration of tubular epithelial cells. PMID:25617900

  4. [Traumatic nerve damage: causes, approaches and prognosis].

    PubMed

    Müller-Vahl, H

    2015-02-01

    Whereas minor injuries to peripheral nerves merely lead to a circumscribed damage of the myelin sheath which is completely healed within 3 months, penetrating injuries lead to degeneration of the distal axonal fragment (Waller degeneration) and simultaneously to time-dependent alterations in the effector organs, in the perikarya in the medulla and spinal ganglia as well as in the brain. Animal experimental studies and also findings in humans confirm that the conditions for regeneration of nerve fibers are most favorable in the first days and weeks following injury. Therefore, for optimal therapy it should be clarified as early as possible whether there is a chance for reinnervation using exclusively conservative therapy or whether an operative reconstruction is necessary due to the severity of structural damage. Imaging investigation procedures, such as neurosonography and magnetic resonance (MR) neurography can provide decisive information on this aspect. As a rule, the decision on the indications for a nerve operation should be made within the first 3 months. Even with optimal therapy the healing process of severe neural injuries is often unsatisfactory. For some years novel procedures for improvement of nerve regeneration have been tested in animal experiments which involve totally different points in the healing process. It is hoped that with these approaches procedures for improvement in the treatment of nerve injuries in humans can be developed in the near future. PMID:25627807

  5. A Possible Zebrafish Model of Polycystic Kidney Disease: Knockdown of wnt5a Causes Cysts in Zebrafish Kidneys

    PubMed Central

    Huang, Liwei; Xiao, An; Wecker, Andrea; McBride, Daniel A.; Choi, Soo Young; Zhou, Weibin; Lipschutz, Joshua H.

    2015-01-01

    Polycystic kidney disease (PKD) is one of the most common causes of end-stage kidney disease, a devastating disease for which there is no cure. The molecular mechanisms leading to cyst formation in PKD remain somewhat unclear, but many genes are thought to be involved. Wnt5a is a non-canonical glycoprotein that regulates a wide range of developmental processes. Wnt5a works through the planar cell polarity (PCP) pathway that regulates oriented cell division during renal tubular cell elongation. Defects of the PCP pathway have been found to cause kidney cyst formation. Our paper describes a method for developing a zebrafish cystic kidney disease model by knockdown of the wnt5a gene with wnt5a antisense morpholino (MO) oligonucleotides. Tg(wt1b:GFP) transgenic zebrafish were used to visualize kidney structure and kidney cysts following wnt5a knockdown. Two distinct antisense MOs (AUG - and splice-site) were used and both resulted in curly tail down phenotype and cyst formation after wnt5a knockdown. Injection of mouse Wnt5a mRNA, resistant to the MOs due to a difference in primary base pair structure, rescued the abnormal phenotype, demonstrating that the phenotype was not due to “off-target” effects of the morpholino. This work supports the validity of using a zebrafish model to study wnt5a function in the kidney. PMID:25489842

  6. The protective effect of Malva sylvestris on rat kidney damaged by vanadium

    PubMed Central

    2011-01-01

    Background The protective effect of the common mallow (Malva sylvestris) decoction on renal damages in rats induced by ammonium metavanadate poisoning was evaluated. On the one hand, vanadium toxicity is associated to the production of reactive oxygen species, causing a lipid peroxidation and an alteration in the enzymatic antioxidant defence. On the other hand, many medicinal plants are known to possess antioxidant and radical scavenging properties, thanks to the presence of flavonoids. These properties were confirmed in Malva sylvestris by two separate methods; namely, the Diphenyl-2-picrylhydrazyl assay and the Nitroblue Tetrazolium reduction assay. Results In 80 rats exposed to ammonium metavanadate (0.24 mmol/kg body weight in drinking water) for 90 days, lipid peroxidation levels and superoxide dismutase, catalase and glutathione peroxidase activities were measured in kidney. A significant increase in the formation of free radicals and antioxidant enzyme activities was noticed. In addition, a histological examination of kidney revealed a structural deterioration of the renal cortical capsules and a shrinking of the Bowman space. In animals intoxicated by metavanadate but also given a Malva sylvestris decoction (0.2 g dry mallow/kg body weight), no such pathologic features were observed: lipid peroxidation levels, antioxidant enzyme activities and histological features appeared normal as compared to control rats. Conclusion Malva sylvestris is proved to have a high antioxidative potential thanks to its richness in phenolic compounds. PMID:21513564

  7. Complete staghorn calculus in polycystic kidney disease: infection is still the cause

    PubMed Central

    2013-01-01

    Background Kidney stones in patients with autosomal dominant polycystic kidney disease are common, regarded as the consequence of the combination of anatomic abnormality and metabolic risk factors. However, complete staghorn calculus is rare in polycystic kidney disease and predicts a gloomy prognosis of kidney. For general population, recent data showed metabolic factors were the dominant causes for staghorn calculus, but for polycystic kidney disease patients, the cause for staghorn calculus remained elusive. Case presentation We report a case of complete staghorm calculus in a polycystic kidney disease patient induced by repeatedly urinary tract infections. This 37-year-old autosomal dominant polycystic kidney disease female with positive family history was admitted in this hospital for repeatedly upper urinary tract infection for 3 years. CT scan revealed the existence of a complete staghorn calculus in her right kidney, while there was no kidney stone 3 years before, and the urinary stone component analysis showed the composition of calculus was magnesium ammonium phosphate. Conclusion UTI is an important complication for polycystic kidney disease and will facilitate the formation of staghorn calculi. As staghorn calculi are associated with kidney fibrosis and high long-term renal deterioration rate, prompt control of urinary tract infection in polycystic kidney disease patient will be beneficial in preventing staghorn calculus formation. PMID:24070202

  8. [DIABETIC NEPHROPATHY AS A CAUSE OF CHRONIC KIDNEY DISEASE].

    PubMed

    Kos, Ivan; Prkačin, Ingrid

    2014-12-01

    Diabetic nephropathy is the leading cause of end-stage chronic kidney disease in most developed countries. Hyperglycemia, hypertension and genetic predisposition are the main risk factors for the development of diabetic nephropathy. Elevated serum lipids, smoking habits, and the amount and origin of dietary protein also seem to play a role as risk factors. Clinical picture includes a progressive increase in albuminuria, decline in glomerular filtration, hypertension, and a high risk of cardiovascular morbidity and mortality. Screening for albuminuria should be performed yearly, starting 5 years after diagnosis in type 1 diabetes or earlier in the presence of adolescence or poor metabolic control. In patients with type 2 diabetes, screening should be performed at diagnosis and yearly thereafter. Patients with albuminuria should undergo evaluation regarding the presence of associated comorbidities, especially retinopathy and macrovascular disease. Achieving the best metabolic control (HbA1c < 7%), treating hypertension (target blood pressure < 140/85 mm Hg), using drugs with blockade effect on the renin-angiotensin-aldosterone system, treating dyslipidemia and anemia are effective strategies for preventing the development of albuminuria, delaying the progression to more advanced stages of nephropathy and reducing cardiovascular mortality in patients with type 1 and type 2 diabetes. PMID:26285470

  9. Unilateral nephrectomy 24 hours after bilateral kidney irradiation reduces damage to the function and structure of the remaining kidney

    SciTech Connect

    Liao, Z.X.; Travis, E.L.

    1994-09-01

    The effect of unilateral nephrectomy 24 h after irradiation on renal function and death with renal insufficiency as well as histopathological changes in the kidney was assessed. Single doses totaling 8-18 Gy were given bilaterally to unanesthetized female and male C3Hf/Kam mice. Renal function damage was assayed by blood urea nitrogen (BUN) and hematocrit (Hct). Histological damage was quantified by two parameters: kidney area and number of surviving tubule cells along the renal capsule. The number of glomeruli was scored as an indication of the number of nephrons. Changes in the two functional parameters did not appear sooner after irradiation in the nephrectomized mice than in the non-nephrectomized mice. Rather, less impairment of function was measured by both parameters in the nephrectomized mice but only after radiation doses greater than 12 Gy. The LD{sub 50} at 424 days after irradiation was also higher in the nephrectomized mice than in the mice receiving only irradiation, 13.98 Gy (95% confidence limits = 12.03, 15.93) and 11.71 Gy (95% confidence limits = 10.4, 13.1), respectively, in agreement with the data on function. Unilateral nephrectomy alone induced a 10% increase in size of the contralateral kidney. The dose-response curve for the kidney area from nephrectomized mice was parallel to and displaced above that for non-nephrectomized mice, indicating that the increase in renal mass occurred independent of and was not compromised by radiation. Unilateral nephrectomy alone induced no increase in the number of proximal tubules in the contralateral kidney. 30 refs., 9 figs., 1 tab.

  10. 6. 'ROCKFILLED CRIB 350 FEET LONG, REPAIRING DAMAGES CAUSED BY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. 'ROCK-FILLED CRIB 350 FEET LONG, REPAIRING DAMAGES CAUSED BY FLOODS DURING SEASON OF 1927 TO THE DRY GULCH CANAL HEADING.' 1928 - Irrigation Canals in the Uinta Basin, Duchesne, Duchesne County, UT

  11. Can graphene oxide cause damage to eyesight?

    PubMed

    Yan, Lu; Wang, Yaping; Xu, Xu; Zeng, Chao; Hou, Jiangping; Lin, Mimi; Xu, Jingzhou; Sun, Fei; Huang, Xiaojie; Dai, Liming; Lu, Fan; Liu, Yong

    2012-06-18

    As graphene becomes one of the most exciting candidates for multifunctional biomedical applications, contact between eyes and graphene-based materials is inevitable. On the other hand, eyes, as a special organ in the human body, have unique advantages to be used for testing new biomedical research and development, such as drug delivery. Intraocular biocompatible studies on graphene-related materials are thus essential. Here, we report our recent studies on intraocular biocompatibility and cytotoxicity of graphene oxide (GO) both in vitro and in vivo. The successful preparation of GO nanosheets was confirmed using atomic force microscopy, contact angle analyzer, Fourier transform infrared spectroscopy, and Raman spectroscopy. The influence of GO on human retinal pigment epithelium (RPE) cells in terms of the cell morphology, viability, membrane integrity, and apoptosis was investigated using various techniques, including optical micrography, cell counting kit-8 (CCK-8) assay, lactate dehydrogenase (LDH) assay, and apoptosis assay. The addition of GO had little influence on cell morphology, but the change was visible after long-time culturing. RPE cells showed higher than 60% cell viability by CCK-8 assay in GO solutions and less than 8% LDH release, although a small amount of apoptosis (1.5%) was observed. In vitro results suggested good biocompatibility of GO to RPE cells with slight adverse influence, on the cell viability and morphology in long-time periods, along with aggregation of GO. Thus, some further studies are needed to clarify the cytotoxicity mechanism of GO. GO intravitreally injected eyes showed few changes in eyeball appearance, intraocular pressure (IOP), eyesight, and histological photos. Our results suggested that GO did not cause any significant toxicity to the cell growth and proliferation. Intravitreal injection of GO into rabbits' eyes did not lead to much change in the eyeball appearance, IOP, electroretinogram, and histological examination

  12. A case of life-threatening acute kidney injury with toxic encephalopathy caused by Dioscorea quinqueloba.

    PubMed

    Kang, Kyung-Sik; Heo, Sang Taek

    2015-01-01

    Some herbal medications induce acute kidney injury. The acute kidney injuries caused by herbal medications are mild and commonly treated by palliative care. A 51-years-old man who drank the juice squeezed from the raw tubers of Dioscorea quinqueloba (D. quinqueloba) was admitted with nausea, vomiting and chilling. He developed a seizure with decreased level of consciousness. He was diagnosed with acute kidney injury, which was cured by continuous venovenous hemodialfiltration. Non-detoxified D. quinqueloba can cause severe acute kidney injury with toxic encephalopathy. It is critical to inform possible adverse effects of the medicinal herbs and to implement more strict regulation of these products. PMID:25510780

  13. Vitamin D3 Reduces Tissue Damage and Oxidative Stress Caused by Exhaustive Exercise

    PubMed Central

    Ke, Chun-Yen; Yang, Fwu-Lin; Wu, Wen-Tien; Chung, Chen-Han; Lee, Ru-Ping; Yang, Wan-Ting; Subeq, Yi-Maun; Liao, Kuang-Wen

    2016-01-01

    Exhaustive exercise results in inflammation and oxidative stress, which can damage tissue. Previous studies have shown that vitamin D has both anti-inflammatory and antiperoxidative activity. Therefore, we aimed to test if vitamin D could reduce the damage caused by exhaustive exercise. Rats were randomized to one of four groups: control, vitamin D, exercise, and vitamin D+exercise. Exercised rats received an intravenous injection of vitamin D (1 ng/mL) or normal saline after exhaustive exercise. Blood pressure, heart rate, and blood samples were collected for biochemical testing. Histological examination and immunohistochemical (IHC) analyses were performed on lungs and kidneys after the animals were sacrificed. In comparison to the exercise group, blood markers of skeletal muscle damage, creatine kinase and lactate dehydrogenase, were significantly (P < 0.05) lower in the vitamin D+exercise group. The exercise group also had more severe tissue injury scores in the lungs (average of 2.4 ± 0.71) and kidneys (average of 3.3 ± 0.6) than the vitamin D-treated exercise group did (1.08 ± 0.57 and 1.16 ± 0.55). IHC staining showed that vitamin D reduced the oxidative product 4-Hydroxynonenal in exercised animals from 20.6% to 13.8% in the lungs and from 29.4% to 16.7% in the kidneys. In summary, postexercise intravenous injection of vitamin D can reduce the peroxidation induced by exhaustive exercise and ameliorate tissue damage, particularly in the kidneys and lungs. PMID:26941574

  14. Vitamin D3 Reduces Tissue Damage and Oxidative Stress Caused by Exhaustive Exercise.

    PubMed

    Ke, Chun-Yen; Yang, Fwu-Lin; Wu, Wen-Tien; Chung, Chen-Han; Lee, Ru-Ping; Yang, Wan-Ting; Subeq, Yi-Maun; Liao, Kuang-Wen

    2016-01-01

    Exhaustive exercise results in inflammation and oxidative stress, which can damage tissue. Previous studies have shown that vitamin D has both anti-inflammatory and antiperoxidative activity. Therefore, we aimed to test if vitamin D could reduce the damage caused by exhaustive exercise. Rats were randomized to one of four groups: control, vitamin D, exercise, and vitamin D+exercise. Exercised rats received an intravenous injection of vitamin D (1 ng/mL) or normal saline after exhaustive exercise. Blood pressure, heart rate, and blood samples were collected for biochemical testing. Histological examination and immunohistochemical (IHC) analyses were performed on lungs and kidneys after the animals were sacrificed. In comparison to the exercise group, blood markers of skeletal muscle damage, creatine kinase and lactate dehydrogenase, were significantly (P < 0.05) lower in the vitamin D+exercise group. The exercise group also had more severe tissue injury scores in the lungs (average of 2.4 ± 0.71) and kidneys (average of 3.3 ± 0.6) than the vitamin D-treated exercise group did (1.08 ± 0.57 and 1.16 ± 0.55). IHC staining showed that vitamin D reduced the oxidative product 4-Hydroxynonenal in exercised animals from 20.6% to 13.8% in the lungs and from 29.4% to 16.7% in the kidneys. In summary, postexercise intravenous injection of vitamin D can reduce the peroxidation induced by exhaustive exercise and ameliorate tissue damage, particularly in the kidneys and lungs. PMID:26941574

  15. Monosodium glutamate-induced oxidative kidney damage and possible mechanisms: a mini-review.

    PubMed

    Sharma, Amod

    2015-01-01

    Animal studies suggest that chronic monosodium glutamate (MSG) intake induces kidney damage by oxidative stress. However, the underlying mechanisms are still unclear, despite the growing evidence and consensus that α-ketoglutarate dehydrogenase, glutamate receptors and cystine-glutamate antiporter play an important role in up-regulation of oxidative stress in MSG-induced renal toxicity. This review summaries evidence from studies into MSG-induced renal oxidative damage, possible mechanisms and their importance from a toxicological viewpoint. PMID:26493866

  16. Renal Damage Frequency in Patients with Solitary Kidney and Factors That Affect Progression

    PubMed Central

    Basturk, T.; Koc, Y.; Ucar, Z.; Sakaci, T.; Ahbap, E.; Kara, E.; Bayraktar, F.; Sevinc, M.; Sahutoglu, T.; Kayalar, A.; Sinangil, A.; Akgol, C.; Unsal, A.

    2015-01-01

    Background. The aim of this study is to assess renal damage incidence in patients with solitary kidney and to detect factors associated with progression. Methods. Medical records of 75 patients with solitary kidney were investigated retrospectively and divided into two groups: unilateral nephrectomy (group 1) and unilateral renal agenesis/dysplasia (group 2). According to the presence of kidney damage, each group was divided into two subgroups: group 1a/b and group 2a/b. Results. Patients in group 1 were older than those in group 2 (p = 0.001). 34 patients who comprise group 1a had smaller kidney size (p = 0.002) and higher uric acid levels (p = 0.028) than those in group 1b at presentation. Uric acid levels at first and last visit were associated with renal damage progression (p = 0.004, 0.019). 18 patients who comprise group 2a were compared with those in group 2b in terms of presence of DM (p = 0.038), HT (p = 0.003), baseline proteinuria (p = 0.014), and uric acid (p = 0.032) levels and group 2a showed higher rates for each. Progression was more common in patients with DM (p = 0.039), HT (p = 0.003), higher initial and final visit proteinuria (p = 0.014, for both), and higher baseline uric acid levels (p = 0.047). Conclusions. The majority of patients with solitary kidney showed renal damage at presentation. Increased uric acid level is a risk factor for renal damage and progression. For early diagnosis of renal damage and reducing the risk of progression, patients should be referred to a nephrologist as early as possible. PMID:26783458

  17. Dyselectrolytemia in acute kidney injury causing tetany and quadriparesis.

    PubMed

    Palkar, Atul Vijay; Mewada, Mayur; Thakur, Sonal; Shrivastava, Makardhwaj Sarvadaman

    2011-01-01

    A 40-year-old female, presented with prerenal acute kidney injury secondary to diarrhoea. With appropriate hydration, she went into diuretic phase and subsequently developed hypokalemic quadriparesis with hypocalcaemic tetany due to hypomagnesemia and subclinical vitamin D deficiency. The patient improved with oral potassium, magnesium, calcium and vitamin D supplementation. PMID:22674589

  18. [Leiomyoma of the bladder causing the destruction of a kidney].

    PubMed

    Kehila, Mehdi; Mekni, Karima; Abouda, Hassine Saber; Chtourou, Maher; Zeghal, Dorra; Chanoufi, Mohamed Badis

    2016-01-01

    Leiomyoma of the bladder is a rare benign tumor deemed to have a good prognosis after surgical treatment. This is unfortunately not always true. We report the case of a 33 year-old patient who consulted for lumbar pain on right side. Exploration of patient revealed bladder floor solid tumor with non-functioning right kidney and left urinary tract dilation. Cystoscopy objectified solid tumor of the right perimeatal bladder. Tumor biopsies were performed together with the insertion of a left double J stent. Anatomo-pathologic study showed leiomyoma of the bladder. The patient underwent laparoscopic myomectomy. The postoperative course was uneventful. Pathological effect and sequelae was complete distruction of kidney. PMID:27583074

  19. Oxidative Stress and DNA Damage Induced by Chromium in Liver and Kidney of Goldfish, Carassius auratus

    PubMed Central

    Velma, Venkatramreddy; Tchounwou, Paul B.

    2013-01-01

    Chromium (Cr) is an abundant element in the Earth’s crust. It exhibits various oxidation states, from divalent to hexavalent forms. Cr has diverse applications in various industrial processes and inadequate treatment of the industrial effluents leads to the contamination of the surrounding water resources. Hexavalent chromium (Cr (VI)) is the most toxic form, and its toxicity has been associated with oxidative stress. The present study was designed to investigate the toxic potential of Cr (VI) in fish. In this research, we investigated the role of oxidative stress in chromium-induced genotoxicity in the liver and kidney cells of goldfish, Carassius auratus. Goldfish were acclimatized to the laboratory conditions and exposed them to 5% and 10% of 96 hr-LC50 (85.7 mg/L) of aqueous Cr (VI) in a continuous flow through system. Fish were sampled every 7 days for a period of 28 days to analyze the lipid hydroperoxides (LHP) levels and genotoxic potentials in the liver and kidney. LHP levels were analyzed by spectrophotometry while genotoxicity was assessed by single cell gel electrophoresis (comet) assay. LHP levels in the liver increased significantly at week 1, followed by a decrease. LHP levels in the kidney increased significantly at weeks 1, 2, and 3, and decreased at week 4 compared to the control. The percentage of DNA damage increased in both liver and kidney at both test concentrations. The results clearly indicate that Cr (VI) induces significant levels of DNA damage in liver and kidney cells of goldfish. The induced LHP levels in both organs were concentration-dependent and were directly correlated with the levels of DNA damage. The two tested Cr (VI) concentrations induced significant levels of oxidative stress in both organs, however the kidney appears to be more vulnerable and sensitive to Cr-induced toxicity than the liver. PMID:23700361

  20. Oxidative damage lipid peroxidation in the kidney of choline-deficient rats.

    PubMed

    Ossani, Georgina; Dalghi, Marianela; Repetto, Marisa

    2007-01-01

    Phosphatidylcholine is the most abundant phospholipid constituent of cell membranes and choline is a quaternary amine required for phosphatidylcholine synthesis. The impairment of membrane functions is considered as an indication of oxidative damage. In order to kinetically analyze the time course of the pathogenesis of renal necrosis following to choline deficiency in weanling rats, we determined markers of membrane lipid peroxidation (thiobarbituric acid reactive substances; TBARS and hydroperoxide-induced chemiluminescence (BOOH-CL) ) and studied the histopathological damage. Plasma TBARS (t(1/2) = 2.5 days) was an early indicator of systemic oxidative stress, likely involving liver and kidney. The levels of TBARS an BOOH-CL increased by 80% and by 183%, respectively, in kidney homogenates with t(1/2) = 1.5 days and 4 days, respectively. The levels of BOOH-CL were statistically higher in rats fed a choline-deficient diet at day 6, in a mixture of membranes (from plasmatic, smooth and rough endoplasmic reticulum and Golgi), in mitochondrial membranes and in lysosomal membranes. The results indicate that choline deficiency produces oxidative damage in kidney subcellular membranes. Necrosis involved mainly convoluted tubules and appeared with a t(1/2) = 5.5 days. An increase in the production of reactive oxygen species, triggered by NADH overproduction in the mitochondrial dysfunction associated with choline deficiency appears as one of the pathogenic mechanism of mitochondrial and cellular oxidative damage in choline-deficiency. PMID:17127370

  1. Osteoprotegerin in Chronic Kidney Disease: Associations with Vascular Damage and Cardiovascular Events.

    PubMed

    Yilmaz, Mahmut Ilker; Siriopol, Dimitrie; Saglam, Mutlu; Unal, Hilmi Umut; Karaman, Murat; Gezer, Mustafa; Kilinc, Ali; Eyileten, Tayfun; Guler, Ahmet Kerem; Aydin, İbrahim; Vural, Abdulgaffar; Oguz, Yusuf; Covic, Adrian; Ortiz, Alberto; Kanbay, Mehmet

    2016-08-01

    Vascular injury and dysfunction contribute to cardiovascular disease, the leading cause of death in patients with chronic kidney disease (CKD). Osteoprotegerin (OPG) is a soluble member of the tumor necrosis factor receptor superfamily that has been linked to atherogenesis and endothelial dysfunction. Elevated circulating OPG levels predict future cardiovascular events (CVE). Our aim was to evaluate the determinants of circulating OPG levels, to investigate the relationship between OPG and markers of vascular damage and to test whether OPG improves risk stratification for future CVE beyond traditional and renal-specific risk factors in a CKD population. 291 patients with CKD stage 1-5 not on dialysis were included in the study. In the multivariate analysis, OPG was a significant predictor for flow-mediated dilatation, but not for carotid intima media thickness levels. During follow-up (median 36 months, IQR = 32-42 months), 87 patients had CVE. In the Cox survival analysis, OPG levels were independently associated with CVE even after adjustment for traditional and renal-specific cardiovascular risk factors. The addition of OPG to a model based on commonly used cardiovascular factors significantly improved the reclassification abilities of the model for predicting CVE. We show for the first time that OPG improves risk stratification for CVE in a non-dialysis CKD population, above and beyond a model with established traditional and renal-specific cardiovascular risk factors, including estimated glomerular filtration rate and fibroblast growth factor 23. PMID:27016924

  2. Bilateral ureteric stones: an unusual cause of acute kidney injury.

    PubMed

    Sumner, Daniel; Rehnberg, Lucas; Kler, Aaron

    2016-01-01

    A 49-year-old man presented to the accident and emergency department, with a short history of vague abdominal pain, abdominal distension and two episodes of frank haematuria. A plain chest film showed dilated loops of large bowel and blood results on admission showed an acute kidney injury (stage 3). A diagnosis of bowel obstruction was made initially but a CT scan of the abdomen showed bilateral obstructing calculi. After initial resuscitation, the patient had bilateral ultrasound-guided nephrostomies and haemofiltration. He later underwent bilateral antegrade ureteric stenting. A decision will later be made on whether or not he is fit enough to undergo ureteroscopy and laser stone fragmentation. PMID:27030462

  3. Finding the cause of acute kidney injury: which index of fractional excretion is better?

    PubMed

    Gotfried, Jonathan; Wiesen, Jonathan; Raina, Rupesh; Nally, Joseph V

    2012-02-01

    The fractional excretion of urea (FEU) is a useful index for differentiating the main categories of causes of acute kidney injury, ie, prerenal causes and intrinsic causes. It may be used in preference to the more widely used fractional excretion of sodium (FENa) in situations in which the validity of the latter is limited, such as in patients taking a diuretic. PMID:22301562

  4. PCNA Damage Caused by Anti-Neoplastic Drugs

    PubMed Central

    Bae, Soo In; Zhao, Ran; Snapka, Robert M.

    2008-01-01

    Structurally diverse chemotherapeutic and chemopreventive drugs, including camptothecin, doxorubicin, sanguinarine, and others, were found to cause covalent crosslinking of proliferating cell nuclear antigen (PCNA) trimers in mammalian cells exposed to fluorescent light. This PCNA damage was caused by both nuclear and cytoplasmically localizing drugs. For some drugs, the PCNA crosslinking was evident even with very brief exposures to laboratory room lighting. In the absence of drugs, there was no detectable covalent crosslinking of PCNA trimers. Other proteins were photo-crosslinked to PCNA at much lower levels, including crosslinking of additional PCNA to the PCNA trimer. The proteins photo-crosslinked to PCNA did not vary with cell type or drug. PCNA was not crosslinked to itself or to other proteins by superoxide, hydrogen peroxide or hydroxyl radicals, but hydrogen peroxide caused mono-ubiquitination of PCNA. Quenching of PCNA photo-crosslinking by histidine, and enhancement by deuterium oxide, suggest a role for singlet oxygen in the crosslinking. SV40 large T antigen hexamers were also efficiently covalently photo-crosslinked by drugs and light. Photodynamic crosslinking of nuclear proteins by cytoplasmically localizing drugs, together with other evidence, argues that these drugs may reach the nucleoplasm in amounts sufficient to photodamage important chromosomal enzymes. The covalent crosslinking of PCNA trimers provides an extremely sensitive biomarker for photodynamic damage. The damage to PCNA and large T antigen raises the possibility that DNA damage signaling and repair mechanisms may be compromised when cells treated with antineoplastic drugs are exposed to visible light. PMID:18823950

  5. Single-Gene Causes of Congenital Anomalies of the Kidney and Urinary Tract (CAKUT) in Humans

    PubMed Central

    Vivante, Asaf; Kohl, Stefan; Hwang, Daw-Yang; Dworschak, Gabriel C.; Hildebrandt, Friedhelm

    2015-01-01

    Congenital anomalies of the kidney and urinary tract (CAKUT) cover a wide range of structural malformations that result from defects in the morphogenesis of the kidney and/or urinary tract. These anomalies account for about 40–50% of children with chronic kidney disease worldwide. Knowledge from genetically modified mouse models suggests that single gene mutations in renal developmental genes may lead to CAKUT in humans. However, until recently only a handful of CAKUT-causing genes were reported, most of them in familial syndromic cases. Recent findings suggest that CAKUT may arise from mutations in a multitude of different single gene causes. We focus here on single gene causes of CAKUT and their developmental origin. Currently more than 20 monogenic CAKUT-causing genes have been identified. High-throughput sequencing techniques make it likely that additional CAKUT-causing genes will be identified in the near future. PMID:24398540

  6. Candidate gene associated with a mutation causing recessive polycystic kidney disease in mice

    SciTech Connect

    Moyer, J.H.; Lee-Tischler, M.J.; Kwon, H.Y.; Schrick, J.J. ); Avner, E.D.; Sweeney, W.E. ); Godfrey, V.L.; Cacheiro, N.L.A.; Woychik, R.P. ); Wilkinson, J.E. )

    1994-05-27

    A line of transgenic mice was generated that contains an insertional mutation causing a phenotype similar to human autosomal recessive polycystic kidney disease. Homozygotes displayed a complex phenotype that included bilateral polycystic kidneys and an unusual liver lesion. The mutant locus was cloned and characterized through use of the transgene as a molecular marker. Additionally, a candidate polycystic kidney disease (PKD) gene was identified whose structure and expression are directly associated with the mutant locus. A complementary DNA derived from this gene predicted a peptide containing a motif that was originally identified in several genes involved in cell cycle control.

  7. Permeability damage to natural fractures caused by fracturing fluid polymers

    SciTech Connect

    Gall, B.L.; Sattler, A.R.; Maloney, D.R.; Raible, C.J.

    1988-04-01

    Formation damage studies using artificially fractured, low-permeability sandstone cores indicate that viscosified fracturing fluids can severely restrict gas flow through these types of narrow fractures. These studies were performed in support of the Department of Energy's Multiwell Experiment (MWX). Extensive geological and production evaluations at the MWX site indicate that the presence of a natural fracture system is largely responsible for unstimulated gas production. The laboratory formation damage studies were designed to examine changes in cracked core permeability to gas caused by fracturing fluid residues introduced into such narrow fractures during fluid leakoff. Polysaccharide polymers caused significant reduction (up to 95%) to gas flow through cracked cores. Polymer fracturing fluid gels used in this study included hydroxypropyl guar, hydroxyethyl cellulose, and xanthan gum. In contrast, polyacrylamide gels caused little or no reduction in gas flow through cracked cores after liquid cleanup. Other components of fracturing fluids (surfactants, breakers, etc.) caused less damage to gas flows. Other factors affecting gas flow through cracked cores were investigated, including the effects of net confining stress and non-Darcy flow parameters. Results are related to some of the problems observed during the stimulation program conducted for the MWX. 24 refs., 4 figs., 7 tabs.

  8. Multifocal phaeohyphomycosis caused by Exophiala xenobiotica in a kidney transplant recipient.

    PubMed

    Palmisano, A; Morio, F; Le Pape, P; Degli Antoni, A M; Ricci, R; Zucchi, A; Vaglio, A; Piotti, G; Antoniotti, R; Cremaschi, E; Buzio, C; Maggiore, U

    2015-04-01

    In recent years, black fungi have been increasingly reported as causing opportunistic infections after solid organ transplantation. Here, we report a case of insidious, relentless, and multifocal Exophiala xenobiotica infection in a kidney transplant recipient that eventually required multiple surgical excisions along with oral and intravenous antifungal combination therapy using liposomal amphotericin B and posaconazole. We compare the present case with all previously reported cases of Exophiala infection after kidney transplantation. PMID:25651934

  9. Ileal Neobladder With Mucous Plugs as a Cause of Obstructive Acute Kidney Injury Requiring Emergent Hemodialysis.

    PubMed

    Singla, Montish; Shikha, Deep; Lee, Sunggeun; Baumstein, Donald; Chaudhari, Ashok; Carbajal, Roger

    2016-01-01

    Ileal neobladder is the preferred technique in the management of urinary diversion postradical cystectomy for bladder malignancy. The common complications associated with this procedure are atrophied kidney, chronic pyelonephritis, decreased renal function, ureteroileal or urethral anastomotic site stricture, urinary tract stones, incontinence, and hyperchloremic metabolic acidosis. Mucous plugs are also seen in 2%-3% patients. We present a rare presentation of a patient who required hemodialysis for severe hyperkalemia and acute kidney injury caused by mucous plugging of ileal neobladder. PMID:25420078

  10. Can graphene quantum dots cause DNA damage in cells?

    NASA Astrophysics Data System (ADS)

    Wang, Dan; Zhu, Lin; Chen, Jian-Feng; Dai, Liming

    2015-05-01

    Graphene quantum dots (GQDs) have attracted tremendous attention for biological applications. We report the first study on cytotoxicity and genotoxicity of GQDs to fibroblast cell lines (NIH-3T3 cells). The NIH-3T3 cells treated with GQDs at dosages over 50 μg mL-1 showed no significant cytotoxicity. However, the GQD-treated NIH-3T3 cells exhibited an increased expression of proteins (p53, Rad 51, and OGG1) related to DNA damage compared with untreated cells, indicating the DNA damage caused by GQDs. The GQD-induced release of reactive oxygen species (ROS) was demonstrated to be responsible for the observed DNA damage. These findings should have important implications for future applications of GQDs in biological systems.Graphene quantum dots (GQDs) have attracted tremendous attention for biological applications. We report the first study on cytotoxicity and genotoxicity of GQDs to fibroblast cell lines (NIH-3T3 cells). The NIH-3T3 cells treated with GQDs at dosages over 50 μg mL-1 showed no significant cytotoxicity. However, the GQD-treated NIH-3T3 cells exhibited an increased expression of proteins (p53, Rad 51, and OGG1) related to DNA damage compared with untreated cells, indicating the DNA damage caused by GQDs. The GQD-induced release of reactive oxygen species (ROS) was demonstrated to be responsible for the observed DNA damage. These findings should have important implications for future applications of GQDs in biological systems. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01734c

  11. Bath salt intoxication causing acute kidney injury requiring hemodialysis.

    PubMed

    Regunath, Hariharan; Ariyamuthu, Venkatesh Kumar; Dalal, Pranavkumar; Misra, Madhukar

    2012-10-01

    Traditional bath salts contain a combination of inorganic salts like Epsom salts, table salt, baking soda, sodium metaphosphate, and borax that have cleansing properties. Since 2010, there have been rising concerns about a new type of substance abuse in the name of "bath salts." They are beta-ketone amphetamine analogs and are derivates of cathinone, a naturally occurring amphetamine analog found in the "khat" plant (Catha edulis). Effects reported with intake included increased energy, empathy, openness, and increased libido. Serious adverse effects reported with intoxication included cardiac, psychiatric, and neurological signs and symptoms. Not much is known about the toxicology and metabolism of these compounds. They inhibit monoamine reuptake (dopamine, nor epinephrine, etc.) and act as central nervous system stimulants with high additive and abuse potential because of their clinical and biochemical similarities to effects from use of cocaine, amphetamine, and 3,4-methylenedioxy-N-methylamphetamine. Deaths associated with use of these compounds have also been reported. We report a case of acute kidney injury associated with the use of "bath salt" pills that improved with hemodialysis. PMID:23036036

  12. Chronic Kidney Disease Induced Intestinal Mucosal Barrier Damage Associated with Intestinal Oxidative Stress Injury

    PubMed Central

    Yu, Chao; Wang, Qiang; Zhou, Chunyu; Kang, Xin; Zhao, Shuang; Liu, Shuai; Fu, Huijun; Yu, Zhen; Peng, Ai

    2016-01-01

    Background. To investigate whether intestinal mucosal barrier was damaged or not in chronic kidney disease progression and the status of oxidative stress. Methods. Rats were randomized into two groups: a control group and a uremia group. The uremia rat model was induced by 5/6 kidney resection. In postoperative weeks (POW) 4, 6, 8, and 10, eight rats were randomly selected from each group to prepare samples for assessing systemic inflammation, intestinal mucosal barrier changes, and the status of intestinal oxidative stress. Results. The uremia group presented an increase trend over time in the serum tumor necrosis factor-alpha, interleukin-6 (IL-6) and IL-10, serum D-lactate and diamine oxidase, and intestinal permeability, and these biomarkers were significantly higher than those in control group in POW 8 and/or 10. Chiu's scores in uremia group were also increased over time, especially in POW 8 and 10. Furthermore, the intestinal malondialdehyde, superoxide dismutase, and glutathione peroxidase levels were significantly higher in uremia group when compared with those in control group in POW 8 and/or 10. Conclusions. The advanced chronic kidney disease could induce intestinal mucosal barrier damage and further lead to systemic inflammation. The underlying mechanism may be associated with the intestinal oxidative stress injury. PMID:27493661

  13. Hepatoprotective and nephroprotective effects of Cnidoscolus aconitifolius in protein energy malnutrition induced liver and kidney damage

    PubMed Central

    Oyagbemi, Ademola A.; Odetola, Adebimpe A.

    2013-01-01

    Introduction: This study was designed to evaluate the ameliorative and hypocholesterolemic effects of dietary supplementation of Cnidoscolus aconitifolius leaf meal (CALM) on hepatic injury and kidney injury associated with protein energy malnutrition (PEM). Materials and Methods: In this study, PEM was induced in weaning male Wistar albino rats by feeding them with low protein diet for 2 weeks. The effects of several recovery diets containing 20% soya protein or 20% C. aconitifolius in place of soya protein or 10% soya proteins with 10% C. aconitifolius or commercial rat feed were assessed in PEM rats. Plasma biochemical parameters were assessed as well. Results: After the induction of PEM, results obtained showed significant increase in alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), total proteins (T.P), total bilirubin (T.Bil), triglycerides, total cholesterol, low density lipoproteins (LDL), blood urea nitrogen (BUN), and creatinine with significant reduction in plasma high density lipoproteins (HDL), albumin, sodium (Na+), potassium (K+), chloride (Cl−), bicarbonate (HC03−), and phosphate (P042−) in PEM rats. Upon introduction of recovery diets containing 20% soya protein or 20% C. aconitifolius in place of soya protein or 10% soya proteins with 10% C. aconitifolius or commercial rat feed for 4 weeks caused significant (P < 0.05) reduction in plasma values of ALP, ALT, AST, T.bil, T.P., LDL, total cholesterol, triglycerides, BUN, creatinine, and significant increase in HDL and complete restoration of plasma electrolytes. Conclusions: C. aconitifolius in protein deficient diets has a protective role against hepatic injury and renal damage associated with PEM. PMID:24174819

  14. Disruption of IFT Complex A Causes Cystic Kidneys without Mitotic Spindle Misorientation

    PubMed Central

    Jonassen, Julie A.; SanAgustin, Jovenal; Baker, Stephen P.

    2012-01-01

    Intraflagellar transport (IFT) complexes A and B build and maintain primary cilia. In the mouse, kidney-specific or hypomorphic mutant alleles of IFT complex B genes cause polycystic kidneys, but the influence of IFT complex A proteins on renal development is not well understood. In the present study, we found that HoxB7-Cre–driven deletion of the complex A gene Ift140 from collecting ducts disrupted, but did not completely prevent, cilia assembly. Mutant kidneys developed collecting duct cysts by postnatal day 5, with rapid cystic expansion and renal dysfunction by day 15 and little remaining parenchymal tissue by day 20. In contrast to many models of polycystic kidney disease, precystic Ift140-deleted collecting ducts showed normal centrosomal positioning and no misorientation of the mitotic spindle axis, suggesting that disruption of oriented cell division is not a prerequisite to cyst formation in these kidneys. Precystic collecting ducts had an increased mitotic index, suggesting that cell proliferation may drive cyst expansion even with normal orientation of the mitotic spindle. In addition, we observed significant increases in expression of canonical Wnt pathway genes and mediators of Hedgehog and tissue fibrosis in highly cystic, but not precystic, kidneys. Taken together, these studies indicate that loss of Ift140 causes pronounced renal cystic disease and suggest that abnormalities in several different pathways may influence cyst progression. PMID:22282595

  15. An unusual cause of acute kidney injury due to oxalate nephropathy in systemic scleroderma.

    PubMed

    Mascio, Heather M; Joya, Christie A; Plasse, Richard A; Baker, Thomas P; Flessner, Michael F; Nee, Robert

    2015-08-01

    Oxalate nephropathy is an uncommon cause of acute kidney injury. Far rarer is its association with scleroderma, with only one other published case report in the literature. We report a case of a 75-year-old African-American female with a history of systemic scleroderma manifested by chronic pseudo-obstruction and small intestinal bacterial overgrowth (SIBO) treated with rifaximin, who presented with acute kidney injury with normal blood pressure. A renal biopsy demonstrated extensive acute tubular injury with numerous intratubular birefringent crystals, consistent with oxalate nephropathy. We hypothesize that her recent treatment with rifaximin for SIBO and decreased intestinal transit time in pseudo-obstruction may have significantly increased intestinal oxalate absorption, leading to acute kidney injury. Oxalate nephropathy should be considered in the differential diagnosis of acute kidney injury in scleroderma with normotension, and subsequent evaluation should be focused on bowel function to include alterations in gut flora due to antibiotic administration. PMID:25500295

  16. Kidney Diseases

    MedlinePlus

    ... until you go to the bathroom. Most kidney diseases attack the nephrons. This damage may leave kidneys ... medicines. You have a higher risk of kidney disease if you have diabetes, high blood pressure, or ...

  17. Kidney Diseases

    MedlinePlus

    ... until you go to the bathroom. Most kidney diseases attack the nephrons. This damage may leave kidneys ... medicines. You are at greater risk for kidney disease if you have diabetes, high blood pressure, or ...

  18. Diffuse vascular damage in a transplanted kidney: an indication for nuclear magnetic resonance?

    PubMed

    Burdese, M; Consiglio, V; Mezza, E; Savio, D; Guarena, C; Rossetti, M; Messina, M; Soragna, G; Suriani, C; Rabbia, C; Segoloni, G P; Piccoli, G B

    2005-06-01

    Vascular lesions are an increasing challenge after renal transplantation due to the wider indications for recipients and acceptance criteria for donors. Diagnostic approach and prognostic interpretation are still matter of controversy. The case reported herein may summarize some of the issues in this regard. A 54-year-old woman, on renal replacement therapy since 1974, and a kidney graft recipient from 1975 to 1999, received a second graft in 2001. The donor age was 65 years (cold ischemia 22 hours; two mismatches). The early posttransplant follow-up was characterized by delayed graft function, hypertension, and diabetes. During the initial hypertension workup, renal graft ultrasound (US) Doppler demonstrated increased vascular resistances, stable over time (resistance index 0.74 to 0.77); renal scintiscan displayed homogeneously parenchymoa and angio-magnetic resonance imaging (MRI), an homogeneous parenchymal vascularization. Initial immunosuppression with tacrolimus and steroids was modulated by adding mycophenolate mofetil to taper tacrolimus (to reduce nephrotoxicity and hypertension). Despite this, kidney function slowly deteriorated; serum creatinine reached 3 to 3.5 mg/dL by the second year. After a severe hypertensive crisis with unchanged scintiscan and US doppler examinations, angio-MRI revealed the almost complete disappearance of parenchymal enhancement beyond the lobar arteries. A renal biopsy confirmed the severe vascular damage. The patient was switched to rapamycine and a low-dose of an angiotension converting enzyme (ACE) inhibitor. She did relatively well (serum creatinine 2.2 to 3 mg/dL) for 6 months, when rapid functional impairment forced her to restart hemodialysis. This case, almost paradigmatic of the problems occurring when the rigid vasculature of long-term dialysis patients is matched with "marginal kidneys," suggests that MRI may be a sensible good to define vascular damage in the grafted kidney. PMID:15964339

  19. A Mathematical Model for Estimating Biological Damage Caused by Radiation

    NASA Astrophysics Data System (ADS)

    Manabe, Yuichiro; Ichikawa, Kento; Bando, Masako

    2012-10-01

    We propose a mathematical model for estimating biological damage caused by low-dose irradiation. We understand that the linear non threshold (LNT) hypothesis is realized only in the case of no recovery effects. In order to treat the realistic living objects, our model takes into account various types of recovery as well as proliferation mechanism, which may change the resultant damage, especially for the case of lower dose rate irradiation. It turns out that the lower the radiation dose rate, the safer the irradiated system of living object (which is called symbolically ``tissue'' hereafter) can have chances to survive, which can reproduce the so-called dose and dose-rate effectiveness factor (DDREF).

  20. Associations among environmental exposure to manganese, neuropsychological performance, oxidative damage and kidney biomarkers in children.

    PubMed

    Nascimento, Sabrina; Baierle, Marília; Göethel, Gabriela; Barth, Anelise; Brucker, Natália; Charão, Mariele; Sauer, Elisa; Gauer, Bruna; Arbo, Marcelo Dutra; Altknecht, Louise; Jager, Márcia; Dias, Ana Cristina Garcia; de Salles, Jerusa Fumagalli; Saint' Pierre, Tatiana; Gioda, Adriana; Moresco, Rafael; Garcia, Solange Cristina

    2016-05-01

    Environmental exposure to manganese (Mn) results in several toxic effects, mainly neurotoxicity. This study investigated associations among Mn exposure, neuropsychological performance, biomarkers of oxidative damage and early kidney dysfunction in children aged 6-12 years old. Sixty-three children were enrolled in this study, being 43 from a rural area and 20 from an urban area. Manganese was quantified in blood (B-Mn), hair (H-Mn) and drinking water using inductively coupled plasma mass spectrometry (ICP-MS). The neuropsychological functions assessed were attention, perception, working memory, phonological awareness and executive functions - inhibition. The Intelligence quotient (IQ) was also evaluated. The biomarkers malondialdehyde (MDA), protein carbonyls (PCO), δ-aminolevulinate dehydratase (ALA-D), reactivation indexes with dithiothreitol (ALA-RE/DTT) and ZnCl2 (ALA-RE/ZnCl2), non-protein thiol groups, as well as microalbuminuria (mALB) level and N-acetyl-β-D-glucosaminidase (NAG) activity were assessed. The results demonstrated that Mn levels in blood, hair and drinking water were higher in rural children than in urban children (p<0.01). Adjusted for potential confounding factors, IQ, age, gender and parents' education, significant associations were observed mainly between B-Mn and visual attention (β=0.649; p<0.001). Moreover, B-Mn was negatively associated with visual perception and phonological awareness. H-Mn was inversely associated with working memory, and Mn levels from drinking water with written language and executive functions - inhibition. Rural children showed a significant increase in oxidative damage to proteins and lipids, as well as alteration in kidney function biomarkers (p<0.05). Moreover, significant associations were found between B-Mn, H-Mn and Mn levels in drinking water and biomarkers of oxidative damage and kidney function, besides between some oxidative stress biomarkers and neuropsychological tasks (p<0.05). The findings of this

  1. Iatrogenic Damage to the Periodontium Caused by Periodontal Treatment Procedures

    PubMed Central

    Latheef, P; Sirajuddin, Syed; Gundapaneni, Veenadharini; MN, Kumuda; Apine, Ashwini

    2015-01-01

    Periodontitis is an inflammatory disease affecting the periodontium i.e. the tissues that surround and support the teeth. Periodontitis manifests as progressive loss of the alveolar bone around the teeth, and if left untreated, can cause loosening and subsequent loss of teeth. Periodontitis is initiated by microorganisms that adhere to and grow on the tooth's surfaces, besides an over -aggressive immune response against these microorganisms. The primary goal of periodontal therapy is to preserve the natural dentition by accomplishing and preserving a healthy functional periodontium. Many treatment modalities have been introduced to improve the therapeutic result of periodontal treatment which may also damage the periodontiumiatrogenically. PMID:26312087

  2. Variable Clinical Presentation of an MUC1 Mutation Causing Medullary Cystic Kidney Disease Type 1

    PubMed Central

    Kmoch, Stanislav; Antignac, Corinne; Robins, Vicki; Kidd, Kendrah; Kelsoe, John R.; Hladik, Gerald; Klemmer, Philip; Knohl, Stephen J.; Scheinman, Steven J.; Vo, Nam; Santi, Ann; Harris, Alese; Canaday, Omar; Weller, Nelson; Hulick, Peter J.; Vogel, Kristen; Rahbari-Oskoui, Frederick F.; Tuazon, Jennifer; Deltas, Constantinos; Somers, Douglas; Megarbane, Andre; Kimmel, Paul L.; Sperati, C. John; Orr-Urtreger, Avi; Ben-Shachar, Shay; Waugh, David A.; McGinn, Stella; Hodaňová, Kateřina; Vylet'al, Petr; Živná, Martina; Hart, Thomas C.; Hart, P. Suzanne

    2014-01-01

    Background and objectives The genetic cause of medullary cystic kidney disease type 1 was recently identified as a cytosine insertion in the variable number of tandem repeat region of MUC1 encoding mucoprotein-1 (MUC1), a protein that is present in skin, breast, and lung tissue, the gastrointestinal tract, and the distal tubules of the kidney. The purpose of this investigation was to analyze the clinical characteristics of families and individuals with this mutation. Design, setting, participants, & measurements Families with autosomal dominant interstitial kidney disease were referred for genetic analysis over a 14-year period. Families without UMOD or REN mutations prospectively underwent genotyping for the presence of the MUC1 mutation. Clinical characteristics were retrospectively evaluated in individuals with the MUC1 mutation and historically affected individuals (persons who were both related to genetically affected individuals in such a way that ensured that they could be genetically affected and had a history of CKD stage IV or kidney failure resulting in death, dialysis, or transplantation). Results Twenty-four families were identified with the MUC1 mutation. Of 186 family members undergoing MUC1 mutational analysis, the mutation was identified in 95 individuals, 91 individuals did not have the mutation, and111 individuals were identified as historically affected. Individuals with the MUC1 mutation suffered from chronic kidney failure with a widely variable age of onset of end stage kidney disease ranging from 16 to >80 years. Urinalyses revealed minimal protein and no blood. Ultrasounds of 35 individuals showed no medullary cysts. There were no clinical manifestations of the MUC1 mutation detected in the breasts, skin, respiratory system, or gastrointestinal tract. Conclusion MUC1 mutation results in progressive chronic kidney failure with a bland urinary sediment. The age of onset of end stage kidney disease is highly variable, suggesting that gene

  3. Protective effect of Salvia miltiorrhizae injection on N(G)-nitro-D-arginine induced nitric oxide deficient and oxidative damage in rat kidney.

    PubMed

    You, Zhenqiang; Xin, Yanfei; Liu, Yan; Han, Bin; Zhang, Lijiang; Chen, Ying; Chen, Yunxiang; Gu, Liqiang; Gao, Haiyan; Xuan, Yaoxian

    2012-07-01

    N(G)-nitro-D-arginine (d-NNA) could convert into N(G)-nitro-L-arginine (l-NNA) in vivo, and kidney is the major target organ. In the chiral inversion process, a number of reactive oxygen species (ROS) were generated and NOS activity was inhibited, which may cause renal damage. Salvia miltiorrhiza (SM), a traditional Chinese drug, was used in the treatment of cardiovascular diseases and chronic renal failure. The aim of the present study was to investigate the kidney damage caused by D-NNA administration for 12 weeks and to evaluate the effects of treatment with SM on D-NNA-induced kidney damage. The rats, induced with D-NNA for period of 12 weeks, showed significant elevation of Blood Urea Nitrogen (BUN), Creatinine (Crea) and MDA levels, and significant decrease of SOD and GSH-Px activities, as compared with control group. In addition, the kidney of rats induced with D-NNA only showed remarkable histopathology, including severe mononuclear cell infiltration, mild tubular dilatation and congestion, and moderate interstitial desmoplasia. After 4 weeks SM treatment, the activity of SOD, GSH-Px and iNOS and the production of NO were significantly higher (P<0.05), and the levels of BUN, Crea and MDA were significantly lower than that of D-NNA only group (P<0.05). In addition, treatment with SM showed histopathological protection in tubular dilatation, congestion, mononuclear cell infiltration and interstitial desmoplasia. The present results indicate that the toxicity of D-NNA relates to its ability to generate oxidative stress and upregulate NOS activity in rat kidney. SM probably ameliorates D-NNA-induced nephrotoxicity in rats according to scavenging free radical and upregulating NOS activity. PMID:21112748

  4. Osteopontin deficiency reduces kidney damage from hypercholesterolemia in Apolipoprotein E-deficient mice

    PubMed Central

    Pei, Zouwei; Okura, Takafumi; Nagao, Tomoaki; Enomoto, Daijiro; Kukida, Masayoshi; Tanino, Akiko; Miyoshi, Ken-ichi; Kurata, Mie; Higaki, Jitsuo

    2016-01-01

    Hypercholesterolemia is a well-established risk factor for kidney injury, which can lead to chronic kidney disease (CKD). Osteopontin (OPN) has been implicated in the pathology of several renal conditions. This study was to evaluate the effects of OPN on hypercholesterolemia induced renal dysfunction. Eight-week-old male mice were divided into 4 groups: apolipoprotein E knockout (ApoE−/−) and ApoE/OPN knockout (ApoE−/−/OPN−/−) mice fed a normal diet (ND) or high cholesterol diet (HD). After 4 weeks, Periodic acid-Schiff (PAS) and oil red O staining revealed excessive lipid deposition in the glomeruli of ApoE−/−HD mice, however, significantly suppressed in ApoE−/−/OPN−/−HD mice. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) expression was lower in the glomeruli of ApoE−/−/OPN−/−HD mice than ApoE−/−HD mice. In vitro study, primary mesangial cells were incubated with recombinant mouse OPN (rmOPN). RmOPN induced LOX-1 mRNA and protein expression in primary mesangial cells. Pre-treatment with an ERK inhibitor suppressed the LOX-1 gene expression induced by rmOPN. These results indicate that OPN contributes to kidney damage in hypercholesterolemia and suggest that inhibition of OPN may provide a potential therapeutic target for the prevention of hypercholesterolemia. PMID:27353458

  5. Osteopontin deficiency reduces kidney damage from hypercholesterolemia in Apolipoprotein E-deficient mice.

    PubMed

    Pei, Zouwei; Okura, Takafumi; Nagao, Tomoaki; Enomoto, Daijiro; Kukida, Masayoshi; Tanino, Akiko; Miyoshi, Ken-Ichi; Kurata, Mie; Higaki, Jitsuo

    2016-01-01

    Hypercholesterolemia is a well-established risk factor for kidney injury, which can lead to chronic kidney disease (CKD). Osteopontin (OPN) has been implicated in the pathology of several renal conditions. This study was to evaluate the effects of OPN on hypercholesterolemia induced renal dysfunction. Eight-week-old male mice were divided into 4 groups: apolipoprotein E knockout (ApoE(-/-)) and ApoE/OPN knockout (ApoE(-/-)/OPN(-/-)) mice fed a normal diet (ND) or high cholesterol diet (HD). After 4 weeks, Periodic acid-Schiff (PAS) and oil red O staining revealed excessive lipid deposition in the glomeruli of ApoE(-/-)HD mice, however, significantly suppressed in ApoE(-/-)/OPN(-/-)HD mice. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) expression was lower in the glomeruli of ApoE(-/-)/OPN(-/-)HD mice than ApoE(-/-)HD mice. In vitro study, primary mesangial cells were incubated with recombinant mouse OPN (rmOPN). RmOPN induced LOX-1 mRNA and protein expression in primary mesangial cells. Pre-treatment with an ERK inhibitor suppressed the LOX-1 gene expression induced by rmOPN. These results indicate that OPN contributes to kidney damage in hypercholesterolemia and suggest that inhibition of OPN may provide a potential therapeutic target for the prevention of hypercholesterolemia. PMID:27353458

  6. Kidney Disease

    MedlinePlus

    ... version of this page please turn Javascript on. Kidney Disease What is Kidney Disease? What the Kidneys Do Click for more information You have two ... damaged, wastes can build up in the body. Kidney Function and Aging Kidney function may be reduced ...

  7. Sodium arsenate induce changes in fatty acids profiles and oxidative damage in kidney of rats.

    PubMed

    Kharroubi, Wafa; Dhibi, Madiha; Mekni, Manel; Haouas, Zohra; Chreif, Imed; Neffati, Fadoua; Hammami, Mohamed; Sakly, Rachid

    2014-10-01

    Six groups of rats (n = 10 per group) were exposed to 1 and 10 mg/l of sodium arsenate for 45 and 90 days. Kidneys from treated groups exposed to arsenic showed higher levels of trans isomers of oleic and linoleic acids as trans C181n-9, trans C18:1n-11, and trans C18:2n-6 isomers. However, a significant decrease in eicosenoic (C20:1n-9) and arachidonic (C20:4n-6) acids were observed in treated rats. Moreover, the "Δ5 desaturase index" and the saturated/polyunsaturated fatty acids ratio were increased. There was a significant increase in the level of malondialdehyde at 10 mg/l of treatment and in the amount of conjugated dienes after 90 days (p < 0.05). Significant kidney damage was observed at 10 mg/l by increase of plasma marker enzymes. Histological studies on the ultrastructure changes of kidney supported the toxic effect of arsenate exposure. Arsenate intoxication activates significantly the superoxide dismutase at 10 mg/l for 90 days, whereas the catalase activity was markedly inhibited in all treated groups (p < 0.05). In addition, glutathione peroxidase activity was significantly increased at 45 days and dramatically declined after 90 days at 10 mg/l (p < 0.05). A significant increase in the level of glutathione was marked for the groups treated for 45 and 90 days at 1 mg/l followed by a significant decrease for rats exposed to 10 mg/l for 90 days. An increase in the level of protein carbonyl was observed in all treated groups (p < 0.05). In conclusion, the present study provides evidence for a direct effect of arsenate on fatty acid (FA) metabolism which concerns the synthesis pathway of n-6 polyunsaturated fatty acids and leads to an increase in the trans FAs isomers. Therefore, FA-induced arsenate kidney damage could contribute to trigger kidney cancer. PMID:24920263

  8. Renal necrosis and DNA damage caused by selectively deuterated and methylated analogs of 1,2-dibromo-3-chloropropane in the rat

    SciTech Connect

    Omichinski, J.G.; Brunborg, G.; Soderlund, E.J.; Dahl, J.E.; Bausano, J.A.; Holme, J.A.; Nelson, S.D.; Dybing, E.

    1987-12-01

    Selectively deuterated and methylated analogs of the nematocide 1,2-dibromo-3-chloropropane (DBCP) were compared to DBCP in causing acute renal damage in rats. All of the six deuterated analogs tested at 340 mumol/kg, including the perdeutero compound, failed to significantly alter the kidney necrosis observed at 48 hr compared to DBCP. Furthermore, when the perdeutero analog was administered at several doses (42.5, 85, 170, and 340 mumol/kg), it caused kidney damage that was not significantly different than that caused by an equivalent molar dose of nondeuterated DBCP. Of the five methylated analogs tested at 170 and 340 mumol/kg, only C3-methyl-DBCP and 1,2-dibromo-4-chlorobutane caused nephrotoxicity. The C2-methyl-, C1-dimethyl-, and C2-methyl-DBCP analogs failed to cause renal necrosis determined 48 hr after dosing. In distribution studies DBCP, perdeutero-DBCP, and all the methylated analogs were found to concentrate in the kidney approximately 25 times relative to plasma 1 hr after administration. DBCP at doses of 4.3 mumol/kg and higher caused DNA damage in the kidney as early as 10 min after administration, as measured by alkaline elution of DNA from isolated kidney nuclear preparations. Perdeuteration did not decrease the DNA damaging effect of DBCP. The ability of the methylated DBCP analogs to induce renal DNA damage correlated with their necrogenic potential. Experiments using pretreatments that are known to decrease the nephrotoxicity caused by glutathione and cysteine conjugates of several halogenated alkenes were conducted to examine the effect of these pretreatments on DBCP-induced nephrotoxicity.

  9. TNF-mediated damage to glomerular endothelium is an important determinant of acute kidney injury in sepsis.

    PubMed

    Xu, Chang; Chang, Anthony; Hack, Bradley K; Eadon, Michael T; Alper, Seth L; Cunningham, Patrick N

    2014-01-01

    Severe sepsis is often accompanied by acute kidney injury (AKI) and albuminuria. Here we studied whether the AKI and albuminuria associated with lipopolysaccharide (LPS) treatment in mice reflects impairment of the glomerular endothelium with its associated endothelial surface layer. LPS treatment decreased the abundance of endothelial surface layer heparan sulfate proteoglycans and sialic acid, and led to albuminuria likely reflecting altered glomerular filtration permselectivity. LPS treatment decreased the glomerular filtration rate (GFR), while also causing significant ultrastructural alterations in the glomerular endothelium. The density of glomerular endothelial cell fenestrae was 5-fold lower, whereas the average fenestrae diameter was 3-fold higher in LPS-treated than in control mice. The effects of LPS on the glomerular endothelial surface layer, endothelial cell fenestrae, GFR, and albuminuria were diminished in TNF receptor 1 (TNFR1) knockout mice, suggesting that these LPS effects are mediated by TNF-α activation of TNFR1. Indeed, intravenous administration of TNF decreased GFR and led to loss of glomerular endothelial cell fenestrae, increased fenestrae diameter, and damage to the glomerular endothelial surface layer. LPS treatment decreased kidney expression of vascular endothelial growth factor (VEGF). Thus, our findings confirm the important role of glomerular endothelial injury, possibly by a decreased VEGF level, in the development and progression of AKI and albuminuria in the LPS model of sepsis in the mouse. PMID:23903370

  10. Inhalation of mercury vapor can cause the toxic effects on rat kidney.

    PubMed

    Akgül, Nilgün; Altunkaynak, Berrin Zuhal; Altunkaynak, Muhammed Eyüp; Deniz, Ömür Gülsüm; Ünal, Deniz; Akgül, Hayati Murat

    2016-01-01

    Dental amalgam has been used in dentistry as a filling material. The filler comprises mercury (Hg). It is considered one of the most important and widespread environmental pollutants, which poses a serious potential threat for the humans and animals. However, mercury deposition affects the nervous, cardiovascular, pulmonary, gastrointestinal, and especially renal systems. In most animals' species and humans, the kidney is one of the main sites of deposition of mercury and target organ for its toxicity. In this study, the effects of mercury intake on kidney in rats were searched. For the this purpose; we used 24 adult female Wistar albino rats (200 g in weight) obtained from Experimental Research and Application Center of Atatürk University with ethical approval. Besides, they were placed into a specially designed glass cage. Along this experiment for 45 days, subjects were exposed to (1 mg/m(3)/day) mercury vapor. However, no application was used for the control subjects. At the end of the experiment, kidney samples were obtained from all subjects and processed for routine light microscopic level and stereological aspect were assessed. Finally, according to our results, mercury affects the histological features of the kidney. That means, the severe effects of mercury has been shown using stereological approach, which is one of the ideal quantitative methods in the current literature. In this study, it was detected that chronic exposure to mercury vapor may lead to renal damage and diseases in an experimental rat model. PMID:26888214

  11. d-Phenothrin-induced oxidative DNA damage in rat liver and kidney determined by HPLC-ECD/DAD.

    PubMed

    Atmaca, Enes; Aksoy, Abdurrahman

    2015-05-01

    The objective of this study was to assess the risk of genotoxicity of d-phenothrin by measuring the oxidative stress it causes in rat liver and kidney. The level of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG)/10(6) 2'-deoxyguanosine (dG) was measured by using high performance liquid chromatography (HPLC) with a diode array (DAD) and an electrochemical detector (ECD). Sixty male Wistar albino rats were randomly divided into five experimental groups and one control group of 10 rats/group. d-phenothrin was administered intraperitoneally (IP) to the five experimental groups at 25 mg/kg (Group I), 50 mg/kg (Group II), 66.7 mg/kg (Group III), 100 mg/kg (Group IV), and 200 mg/kg (Group V) for 14 consecutive days, and the control group received only the vehicle, dimethyl sulfoxide (DMSO). DNA from samples frozen in liquid nitrogen was isolated with a DNA isolation kit. Following digestion with nuclease P1 and alkaline phosphatase (ALP), hydrolyzed DNA was subjected to HPLC. The dG and 8-oxodG levels were analyzed with a DAD and ECD, respectively. In the experimental groups, the mean 8-oxodG/10(6) dG levels were 48.15 ± 7.43, 68.92 ± 20.66, 82.07 ± 14.15, 85.08 ± 28.50, and 89.14 ± 21.73 in livers and 39.06 ± 7.63, 59.69 ± 14.22, 61.13 ± 17.46, 65.13 ± 23.40, and 72.66 ± 19.04 in kidneys of Groups I, II, III, IV, and V, respectively. The mean 8-oxodG/10(6) dG levels in the control groups were 44.96 ± 12.66 for the liver and 39.07 ± 4.80 for the kidney. A statistically significant (p < 0.05), dose-dependent increase in oxidative DNA damage was observed in both organs of animals exposed to d-phenothrin when compared to controls. Furthermore, the liver showed a significantly higher level of oxidative DNA damage than the kidney (p < 0.01). In conclusion, d-phenothrin administered to rats intraperitoneally for 14 consecutive days generated free radical species in a dose-dependent manner and caused oxidative

  12. Transcriptional Dysregulation in the Ureteric Bud Causes Multicystic Dysplastic Kidney by Branching Morphogenesis Defect

    PubMed Central

    Guo, Qiusha; Tripathi, Piyush; Manson, Scott R.; Austin, Paul F.; Chen, Feng

    2015-01-01

    Purpose The calcineurin-NFAT signaling pathway regulates the transcription of genes important for development. It is impacted by various genetic and environmental factors. We investigated the potential role of NFAT induced transcriptional dysregulation in the pathogenesis of congenital abnormalities of the kidneys and urinary tract. Materials and Methods A murine model of conditional NFATc1 activation in the ureteric bud was generated and examined for histopathological changes. Metanephroi were also cultured in vitro to analyze branching morphogenesis in real time. Results NFATc1 activation led to defects resembling multicystic dysplastic kidney. These mutants showed severe disorganization of branching morphogenesis characterized by decreased ureteric bud branching and the disconnection of ureteric bud derivatives from the main collecting system. The orphan ureteric bud derivatives may have continued to induce nephrogenesis and likely contributed to the subsequent formation of blunt ended filtration units and cysts. The ureter also showed irregularities consistent with impaired epithelial-mesenchymal interaction. Conclusions This study reveals the profound effects of NFAT signaling dysregulation on the ureteric bud and provides insight into the pathogenesis of multicystic dysplastic kidney. Our results suggest that the obstruction hypothesis and the bud theory may not be mutually exclusive to explain the pathogenesis of multicystic dysplastic kidney. Ureteric bud dysfunction such as that induced by NFAT activation can disrupt ureteric bud-metanephric mesenchyma interaction, causing primary defects in branching morphogenesis, subsequent dysplasia and cyst formation. Obstruction of the main collecting system can further enhance these defects, producing the pathological changes associated with multicystic dysplastic kidney. PMID:25301096

  13. Anomalies of the TCF2 gene are the main cause of fetal bilateral hyperechogenic kidneys.

    PubMed

    Decramer, Stéphane; Parant, Olivier; Beaufils, Sandrine; Clauin, Séverine; Guillou, Cécile; Kessler, Sylvie; Aziza, Jacqueline; Bandin, Flavio; Schanstra, Joost P; Bellanné-Chantelot, Christine

    2007-03-01

    Prenatal discovery of fetal bilateral hyperechogenic kidneys is very stressful for pregnant women and their family, and accurate diagnosis of the cause of the moderate forms of this pathology is very difficult. Hepatocyte nuclear factor-1beta that is encoded by the TCF2 gene is involved in the embryonic development of the kidneys. Sixty-two pregnancies with fetal bilateral hyperechogenic kidneys including 25 fetuses with inaccurate diagnosis were studied. TCF2 gene anomalies were detected in 18 (29%) of these 62 patients, and 15 of these 18 patients presented a complete heterozygous deletion of the TCF2 gene. Family screening revealed de novo TCF2 anomalies in more than half of the patients. TCF2 anomalies were associated with normal amniotic fluid volume and normal-sized kidneys between -2 and +2 SD in all patients except for two sisters. Antenatal cysts were detected in 11 of 18 patients, unilaterally in eight of 11. After birth, cysts appeared during the first year (17 of 18), and in patients with antenatal cysts, the number increased and developed bilaterally with decreased renal growth. In these 18 patients, the GFR decreased with longer follow-up and was lower in patients with solitary functioning dysplastic kidney. Heterozygous deletion of the TCF2 gene is an important cause of fetal hyperechogenic kidneys in this study and showed to be linked with early disease expression. The renal phenotype and the postnatal evolution were extremely variable and need a prospective long-term follow-up. Extrarenal manifestations are frequent in TCF2-linked pathologies. Therefore, prenatal counseling and follow-up should be multidisciplinary. PMID:17267738

  14. Climatology of damage-causing hailstorms over Germany

    NASA Astrophysics Data System (ADS)

    Kunz, M.; Puskeiler, M.; Schmidberger, M.

    2012-04-01

    In several regions of Central Europe, such as southern Germany, Austria, Switzerland, and northern Italy, hailstorms often cause substantial damage to buildings, crops, or automobiles on the order of several million EUR. In the federal state of Baden-Württemberg, for example, most of the insured damage to buildings is caused by large hailstones. Due to both their local-scale extent and insufficient direct monitoring systems, hail swaths are not captured accurately and uniquely by a single observation system. Remote-sensing systems such as radars are able to detect convection signals in a basic way, but they lack the ability to discern a clear relation between measured intensity and hail on the ground. These shortcomings hamper statistical analysis on the hail probability and intensity. Hail modelling thus is a big challenge for the insurance industry. Within the project HARIS-CC (Hail Risk and Climate Change), different meteorological observations are combined (3D / 2D radar, lightning, satellite and radiosounding data) to obtain a comprehensive picture of the hail climatology over Germany. The various approaches were tested and calibrated with loss data from different insurance companies between 2005 and 2011. Best results are obtained by considering the vertical distance between the 0°C level of the atmosphere and the echo top height estimated from 3D reflectivity data from the radar network of German Weather Service (DWD). Additionally, frequency, intensity, width, and length of hail swaths are determined by applying a cell tracking algorithm to the 3D radar data (TRACE3D; Handwerker, 2002). The hailstorm tracks identified are merged with loss data using a geographical information system (GIS) to verify damage-causing hail on the ground. Evaluating the hailstorm climatology revealed that hail probability exhibits high spatial variability even over short distances. An important issue is the spatial pattern of hail occurrence that is considered to be due to

  15. Diabetic Kidney Problems

    MedlinePlus

    ... too high. Over time, this can damage your kidneys. Your kidneys clean your blood. If they are damaged, waste ... in your blood instead of leaving your body. Kidney damage from diabetes is called diabetic nephropathy. It ...

  16. αKlotho deficiency in acute kidney injury contributes to lung damage.

    PubMed

    Ravikumar, Priya; Li, Liping; Ye, Jianfeng; Shi, Mingjun; Taniguchi, Masatomo; Zhang, Jianning; Kuro-O, Makoto; Hu, Ming Chang; Moe, Orson W; Hsia, Connie C W

    2016-04-01

    αKlotho is a circulating protein that originates predominantly from the kidney and exerts cytoprotective effects in distant sites. We previously showed in rodents that the lung is particularly vulnerable to αKlotho deficiency. Because acute lung injury is a common and serious complication of acute kidney injury (AKI), we hypothesized that αKlotho deficiency in AKI contributes to lung injury. To test the hypothesis, we created AKI by renal artery ischemia-reperfusion in rats and observed the development of alveolar interstitial edema and increased pulmonary oxidative damage to DNA, protein, and lipids. Administration of αKlotho-containing conditioned media 6 h post-AKI did not alter plasma creatinine but improved recovery of endogenous αKlotho production 3 days post-AKI, reduced lung edema and oxidative damage, and increased endogenous antioxidative capacity in the lung. Intravenously injected αKlotho rapidly exits alveolar capillaries as a macromolecule, suggesting transcytosis and direct access to the epithelium. To explore the epithelial action of αKlotho, we simulated oxidative stress in vitro by adding hydrogen peroxide to cultured A549 lung epithelial cells. Purified recombinant αKlotho directly protected cells at 20 pM with half-maximal effects at 40-50 pM, which is compatible with circulating αKlotho levels. Addition of recombinant αKlotho activated an antioxidant response element reporter and increased the levels of target proteins of the nuclear factor erythroid-derived 2 related factor system. In summary, αKlotho deficiency in AKI contributes to acute lung injury by reducing endogenous antioxidative capacity and increasing oxidative damage in the lung. αKlotho replacement partially reversed these abnormalities and mitigated pulmonary complications in AKI. PMID:26718784

  17. Secreted Factors from Human Vestibular Schwannomas Can Cause Cochlear Damage

    PubMed Central

    Dilwali, Sonam; Landegger, Lukas D.; Soares, Vitor Y. R.; Deschler, Daniel G.; Stankovic, Konstantina M.

    2015-01-01

    Vestibular schwannomas (VSs) are the most common tumours of the cerebellopontine angle. Ninety-five percent of people with VS present with sensorineural hearing loss (SNHL); the mechanism of this SNHL is currently unknown. To establish the first model to study the role of VS-secreted factors in causing SNHL, murine cochlear explant cultures were treated with human tumour secretions from thirteen different unilateral, sporadic VSs of subjects demonstrating varied degrees of ipsilateral SNHL. The extent of cochlear explant damage due to secretion application roughly correlated with the subjects’ degree of SNHL. Secretions from tumours associated with most substantial SNHL resulted in most significant hair cell loss and neuronal fibre disorganization. Secretions from VSs associated with good hearing or from healthy human nerves led to either no effect or solely fibre disorganization. Our results are the first to demonstrate that secreted factors from VSs can lead to cochlear damage. Further, we identified tumour necrosis factor alpha (TNFα) as an ototoxic molecule and fibroblast growth factor 2 (FGF2) as an otoprotective molecule in VS secretions. Antibody-mediated TNFα neutralization in VS secretions partially prevented hair cell loss due to the secretions. Taken together, we have identified a new mechanism responsible for SNHL due to VSs. PMID:26690506

  18. DNA damage and cell killing. Cause and effect

    SciTech Connect

    Elkind, M.M.

    1985-11-15

    The evidence supporting a cause and effect relationship between DNA damage and cell killing is examined in the light of what is currently known about the organization and replication of genomic DNA in eukaryotic cells and the radio-energetics of DNA breakage. A large disparity is identified between characteristic doses for cell killing and for the production of DNA lesions (i.e., single- or double-strand breaks). In contrast, the sensitive phase of the inhibition of DNA synthesis has a dependence on dose quantitatively similar to that of cell killing. A model is developed in which single- and double-strand breaks are associated with the inhibition of replicon initiation, whereas only double-strand breaks are primarily responsible for strand elongation. Furthermore, the model points to the replisome and the region of replicated DNA just downstream from the fork as the locus of radiation action.

  19. Low-molecular-weight polyphenols protect kidney damage through suppressing NF-κB and modulating mitochondrial biogenesis in diabetic db/db mice.

    PubMed

    Liu, Hung-Wen; Wei, Chu-Chun; Chang, Sue-Joan

    2016-04-20

    Hyperglycemia, increased inflammatory responses, and dysregulation of mitochondrial function accompanied by type 2 diabetes may eventually lead to kidney damage. We examined the protective effects of oligonol, a low-molecular-weight polyphenol derived from lychee fruit and green tea, on kidney damage in diabetic db/db mice. Dietary oligonol supplementation lowered glucose and insulin levels and improved oral glucose tolerance. Oligonol attenuated serum resistin and IL-6 levels and reduced glomerular hypertrophy and mesangial matrix expansion caused by diabetes. Oligonol reduced activation of nuclear factor-kappa B (NF-κB) and p38 mitogen-activated protein kinase. Suppressed renal oxidative stress by oligonol was associated with stimulated sirtuin1 expression and restored AMP-activated kinase protein α activity, mitochondrial DNA copy number, and mitochondrial biogenesis associated genes including nuclear respiratory factor 1 and mitochondrial transcription factor A. In conclusion, oligonol reduced fasting glucose level, improved insulin sensitivity, suppressed inflammatory responses, and upregulated metabolic regulators involved in mitochondrial biogenesis, thereby leading to protection against diabetes-induced kidney damage. PMID:26960417

  20. Identification and isolation of kidney-derived stem cells from transgenic rats with diphtheria toxin-induced kidney damage

    PubMed Central

    Liu, Qing-Zhen; Chen, Xu-Dong; Liu, Gang; Guan, Guang-Ju

    2016-01-01

    Adult stem cells have been well characterized in numerous organs, with the exception of the kidneys. Therefore, the present study aimed to identify and isolate kidney-derived stem cells. A total of 12 Fischer 344 transgenic rats expressing the human diphtheria toxin receptor in podocyte cells of the kidney, were used in the present study. The rats were administered 5-bromo-2′-deoxyuridine (BrdU) in order to detect cellular proliferation. After 60 days, the rats were treated with the diphtheria toxin (DT), in order to induce kidney injury. Immunohistochemical analysis indicated that the number of BrdU-positive cells were increased following DT treatment. In addition, the expression of octamer-binding transcription factor 4 (Oct-4), a stem cell marker, was detected and suggested that kidney-specific stem cells were present in the DT-treated tissue samples. Furthermore, tissue samples exhibited repair of the DT-induced injury. Further cellular culturing was conducted in order to isolate the kidney-specific stem cells. After 5 weeks of culture, the majority of the cells were non-viable, with the exception of certain specialized, unique cell types, which were monomorphic and spindle-shaped in appearance. The unique cells were isolated and subjected to immunostaining and reverse transcription-polymerase chain reaction analyses in order to reconfirm the expression of Oct-4 and to detect the expression of Paired box 2 (Pax-2), which is necessary for the formation of kidney structures. The unique cells were positive for Oct-4 and Pax-2; thus suggesting that the identified cells were kidney-derived stem cells. The results of the present study suggested that the unique cell type identified in the kidneys of the DT-treated rats were kidney-specific stem cells that may have been involved in the repair of DT-induced tissue injury. In addition, these cells may provide a useful cell line for studying the fundamental characteristics of kidney stem cells, as well as identifying

  1. Neutrophil gelatinase-associated lipocalin worsens ischemia/reperfusion damage of kidney cells by autophagy.

    PubMed

    Zhang, Wenjing; Yang, Shuo; Cui, Liyan; Zhang, Jie

    2016-08-01

    This study aimed to explore the influence of neutrophil gelatinase-associated lipocalin on autophagy and its role in ischemia/reperfusion injury in human kidney-2 (HK-2) cells during acute kidney injury (AKI). HK-2 cells were given hypoxia/reoxygenation treatment for different times to simulate ischemia/reperfusion injury. Autophagy was evaluated by western blot and immunofluorescence of GFP-LC3. Cell viability was tested to reflect the degree of cell damage. The autophagy inhibitor 3-MA was used to inhibit autophagy and determine the role of autophagy in ischemia/reperfusion injury. HK-2 cells were hypoxia for 1 h, followed by reoxygenation treatment for 24 h. These cells were then exposed to human recombinant protein neutrophil gelatinase-associated lipocalin (NGAL) (50, 100, 200, 400, or 1000 ng/mL) with or without 3-MA. Our results showed that autophagy was induced by hypoxia treatment and was further enhanced by reoxygenation after hypoxia treatment. Cell viability was decreased with the inhibition of autophagy in the process. Autophagic flux was further induced with NGAL (>200 ng/mL), while cell viability declined in this condition. Cell viability was recovered when autophagy was inhibited. These results indicate that autophagy plays, in part, a protective role in renal ischemia/reperfusion injury. Furthermore, the data suggest that NGAL strengthens the level of autophagy in this process. Overall, a large quantity of NGAL produced by renal proximal tubular epithelial cells may induce excessive autophagy and increase renal ischemia/reperfusion injury in acute kidney injury. PMID:27380103

  2. A Tissue Phantom for Evaluation of Mechanical Damage Caused by Cavitation

    NASA Astrophysics Data System (ADS)

    Maxwell, Adam; Wang, Tzu-Yin; Yuan, Lingqian; Duryea, Alex; Xu, Zhen; Cain, Charles

    2010-03-01

    We have developed a phantom which acts as an indicator of mechanical tissue damage caused by cavitation in therapeutic ultrasound such as histotripsy. The phantom is an optically-transparent gel, allowing real-time visualization of cavitation. Lesions are visible as a change in transparency, giving immediate feedback of the damage. The phantom was formed in 3 layers of agarose gel, with the center layer containing 5% porcine red blood cells. It was found that the acoustic and mechanical properties are similar to tissue. To compare lesions induced in the phantom and tissue, phantoms and ex-vivo kidney were treated using a focused 1-MHz transducer applying 15 cycle pulses at a rate of 100 Hz and peak negative pressure of 14 MPa. Cavitation caused lysis of red blood cells, which changed the affected area from translucent red to transparent. Lesion morphology of the phantom was similar to tissue, with no cellular structures remaining inside the lesion and sharp boundaries between the transparent and translucent zones. Lesions in the phantom produced a hypoechoic appearance in the phantom on a B-Mode ultrasound image, as previously observed with histotripsy lesions generated in tissue. High-speed imaging was used to correlate cavitation activity with the formation of lesions spatially. During ultrasound exposure, cavitation clouds were observed in the phantom by high-speed optical imaging. Lesions in the gel only formed when and where cavitation was observed. The tissue phantom allows immediate visualization of cavitation and cavitational tissue damage providing a useful research tool for cavitational ultrasound therapy studies such as testing acoustic parameters or scanning algorithms.

  3. Use of Herbal Supplements in Chronic Kidney Disease

    MedlinePlus

    ... herbal supplements that act like a diuretic or "water pill" may cause "kidney irritation" or damage. These include bucha leaves and juniper berries. Uva Ursi and ... NY Register Now 2016 Orangeburg Kidney Walk Thu, ...

  4. Protective effects of berberine on high fat-induced kidney damage by increasing serum adiponectin and promoting insulin sensitivity

    PubMed Central

    Wu, ueyue; Cha, Ying; Huang, Xinmei; Liu, Jun; Chen, Zaoping; Wang, Fang; Xu, Jiong; Sheng, Li; Ding, Heyuan

    2015-01-01

    Berberine (BBR) has been reported in several studies in cell and animal models. However, the mechanism of actions is not fully understood. The present study was therefore aimed to explore the effects of berberine on insulin sensitivity and kidney damage in a high fat diet rat model. Impaired glucose tolerance rats induced by injection of berberine while fed with high fat laboratory chow. After rats were treated for 4 weeks, OGTT and IPITT were determined. Mass and PAS were used to study the kidney tissue. ELISA was used to detect the protein concentration of CRP and TNF-α. Western blot was used to detect the proteins adiponectin, adipoR1, adipoR2 and p-AMPK expression level. These encouraging findings suggest that berberine has excellent pharmacological potential to prevent kidney damage. PMID:26823767

  5. Cadmium, type 2 diabetes, and kidney damage in a cohort of middle-aged women

    SciTech Connect

    Barregard, Lars; Bergström, Göran; Fagerberg, Björn

    2014-11-15

    Background: It has been proposed that diabetic patients are more sensitive to the nephrotoxicity of cadmium (Cd) compared to non-diabetics, but few studies have examined this in humans, and results are inconsistent. Aim: To test the hypothesis that women with type 2 diabetes mellitus (DM) or impaired glucose tolerance (IGT) have higher risk of kidney damage from cadmium compared to women with normal glucose tolerance (NGT). Methods: All 64-year-old women in Gothenburg, Sweden, were invited to a screening examination including repeated oral glucose tolerance tests. Random samples of women with DM, IGT, and NGT were recruited for further clinical examinations. Serum creatinine was measured and used to calculate estimated glomerular filtration rate (eGFR). Albumin (Alb) and retinol-binding protein (RBP) were analyzed in a 12 h urine sample. Cadmium in blood (B-Cd) and urine (U-Cd) was determined using inductively coupled plasma mass spectrometry. Associations between markers of kidney function (eGFR, Alb, and RBP) and quartiles of B-Cd and U-Cd were evaluated in models, including also blood pressure and smoking habits. Results: The mean B-Cd (n=590) was 0.53 µg/L (median 0.34 µg/L). In multivariable models, a significant interaction was seen between high B-Cd (upper quartile, >0.56 µg/L) and DM (point estimate +0.40 mg Alb/12 h, P=0.04). In stratified analyzes, the effect of high B-Cd on Alb excretion was significant in women with DM (53% higher Alb/12 h, P=0.03), but not in women with IGT or NGT. Models with urinary albumin adjusted for creatinine showed similar results. In women with DM, the multivariable odds ratio (OR) for microalbuminuria (>15 mg/12 h) was increased in the highest quartile of B-Cd vs. B-Cd quartiles 1–3 in women with DM (OR 4.2, 95% confidence interval 1.1–12). No such effect was found in women with IGT or NGT. There were no associations between B-Cd and eGFR or excretion of RBP, and no differences between women with DM, IGT, or NGT

  6. Methamphetamine causes acute hyperthermia-dependent liver damage.

    PubMed

    Halpin, Laura E; Gunning, William T; Yamamoto, Bryan K

    2013-10-01

    Methamphetamine-induced neurotoxicity has been correlated with damage to the liver but this damage has not been extensively characterized. Moreover, the mechanism by which the drug contributes to liver damage is unknown. This study characterizes the hepatocellular toxicity of methamphetamine and examines if hyperthermia contributes to this liver damage. Livers from methamphetamine-treated rats were examined using electron microscopy and hematoxylin and eosin staining. Methamphetamine increased glycogen stores, mitochondrial aggregation, microvesicular lipid, and hydropic change. These changes were diffuse throughout the hepatic lobule, as evidenced by a lack of hematoxylin and eosin staining. To confirm if these changes were indicative of damage, serum aspartate and alanine aminotransferase were measured. The functional significance of methamphetamine-induced liver damage was also examined by measuring plasma ammonia. To examine the contribution of hyperthermia to this damage, methamphetamine-treated rats were cooled during and after drug treatment by cooling their external environment. Serum aspartate and alanine aminotransferase, as well as plasma ammonia were increased concurrently with these morphologic changes and were prevented when methamphetamine-induced hyperthermia was blocked. These findings support that methamphetamine produces changes in hepatocellular morphology and damage persisting for at least 24 h after drug exposure. At this same time point, methamphetamine treatment significantly increases plasma ammonia concentrations, consistent with impaired ammonia metabolism and functional liver damage. Methamphetamine-induced hyperthermia contributes significantly to the persistent liver damage and increases in peripheral ammonia produced by the drug. PMID:25505562

  7. Methamphetamine causes acute hyperthermia-dependent liver damage

    PubMed Central

    Halpin, Laura E; Gunning, William T; Yamamoto, Bryan K

    2013-01-01

    Methamphetamine-induced neurotoxicity has been correlated with damage to the liver but this damage has not been extensively characterized. Moreover, the mechanism by which the drug contributes to liver damage is unknown. This study characterizes the hepatocellular toxicity of methamphetamine and examines if hyperthermia contributes to this liver damage. Livers from methamphetamine-treated rats were examined using electron microscopy and hematoxylin and eosin staining. Methamphetamine increased glycogen stores, mitochondrial aggregation, microvesicular lipid, and hydropic change. These changes were diffuse throughout the hepatic lobule, as evidenced by a lack of hematoxylin and eosin staining. To confirm if these changes were indicative of damage, serum aspartate and alanine aminotransferase were measured. The functional significance of methamphetamine-induced liver damage was also examined by measuring plasma ammonia. To examine the contribution of hyperthermia to this damage, methamphetamine-treated rats were cooled during and after drug treatment by cooling their external environment. Serum aspartate and alanine aminotransferase, as well as plasma ammonia were increased concurrently with these morphologic changes and were prevented when methamphetamine-induced hyperthermia was blocked. These findings support that methamphetamine produces changes in hepatocellular morphology and damage persisting for at least 24 h after drug exposure. At this same time point, methamphetamine treatment significantly increases plasma ammonia concentrations, consistent with impaired ammonia metabolism and functional liver damage. Methamphetamine-induced hyperthermia contributes significantly to the persistent liver damage and increases in peripheral ammonia produced by the drug. PMID:25505562

  8. Damage caused by long-term, gradual karstic subsidence

    SciTech Connect

    Beck, B.F.; Jenkins, D.T.; Parker, J.W.

    1985-01-01

    Damage due to karstic subsidence (sinkhole collapse) is generally presumed to be relatively rapid in human terms. However, during repaving of a runway apron at Mac Dill Air Force Base, Tampa, Florida, 41 shallow depressions were formed during proof rolling. The apron is underlain by 6-10 m of sand and clayey sand over the limestones of the Floridan Aquifer, which are known for their karst. The apron was originally paved in 1952. Ground penetrating radar revealed that a radar-reflecting boundary, circa 4-5 m below the surface, had also subsided in an inverted-conical pattern beneath the depressions, as well as in other areas. Beneath some of the areas the pavement subbase had also subsided similarly. VLF surveys over and around the depressions mapped a linear trend identical to the apparent alignment of the depressions. Close-spaced drilling confirmed that the subsidence was directly over a depression in the limestone surface. Further, the overlying sand had an N = 0-1, whereas the surrounding sand tested N = 4-6. The authors have concluded that gradual erosion of the overlying sand into karstic depressions and voids in the limestone over a 32 year period has reduced the sand density and strength and caused subsidence where the overlying pavement was loaded.

  9. Plumb as a cause of kidney cancer (case study: Iran from 2008-2010)

    PubMed Central

    Mazdak, Hamid; Rashidi, Maasoumeh; Zohary, Moien

    2015-01-01

    Background: The main threats to human health from heavy metals are associated with exposure to plumb (Pb), cadmium, mercury, and arsenic. Some hazards that threat human health are the results of environmental factors and the relevant pollutions. Some important categories of diseases including (cancers) have considerable differences in various places, as observed in their spatial prevalence and distribution maps. The present study sets out to investigate the correlation between kidney cancer and the concentration of Pb in Iran. Materials and Methods: In this study, the first challenge was to collect some relevant information. In this connection, the authors managed to gain access to data concerning kidney cancer in Iran. The data were collected by a health centre for the period of 2008-2010. Besides, a map of Pb distribution in soil, drawn by the Mineral Exploration Organization, and Plumb Concentration Information, collected by Agriculture Jihad Organization, were used. Using a geographic information system (GIS) software such as ArcGIS (USA), the researchers drew the map of the spatial distribution of kidney cancer in the Iran country. In the indirect methods, one measures vegetation stress caused by heavy metal soil contamination. In direct methods, target detection algorithms are used to detect a selected material on the basis of its unique spectral signature. In this research, we applied target detection algorithms on moderate resolution imaging spectroradiometer (MODIS) images to detect Pb. MODIS is a sensor placed on the Terra satellite that collects data in 35 spectral bands with 250-1,000 m special resolutions. Results: The spatial distribution of kidney cancer in Iran country delineated above revealed a positive correlation between the amount of lead and the high frequency of kidney cancer. Regression analyses also confirmed this relationship (R2 = 0.77 and R = 0.87). Conclusion: The findings of the current study underscore not only the importance of

  10. Aberrant Glycosylation and Localization of Polycystin-1 Cause Polycystic Kidney in an AQP11 Knockout Model

    PubMed Central

    Inoue, Yuichi; Kobayashi, Katsuki; Chiga, Motoko; Rai, Tatemitsu; Ishibashi, Kenichi; Horie, Shigeo; Su, Xuefeng; Zhou, Jing; Sasaki, Sei; Uchida, Shinichi

    2014-01-01

    We previously reported that disruption of the aquaporin-11 (AQP11) gene in mice resulted in cystogenesis in the kidney. In this study, we aimed to clarify the mechanism of cystogenesis in AQP11(−/−) mice. To enable the analyses of AQP11 at the protein level in vivo, AQP11 BAC transgenic mice (TgAQP11) that express 3×HA-tagged AQP11 protein were generated. This AQP11 localized to the endoplasmic reticulum (ER) of proximal tubule cells in TgAQP11 mice and rescued renal cystogenesis in AQP11(−/−) mice. Therefore, we hypothesized that the absence of AQP11 in the ER could result in impaired quality control and aberrant trafficking of polycystin-1 (PC-1) and polycystin-2 (PC-2). Compared with kidneys of wild-type mice, AQP11(−/−) kidneys exhibited increased protein expression levels of PC-1 and decreased protein expression levels of PC-2. Moreover, PC-1 isolated from AQP11(−/−) mice displayed an altered electrophoretic mobility caused by impaired N-glycosylation processing, and density gradient centrifugation of kidney homogenate and in vivo protein biotinylation revealed impaired membrane trafficking of PC-1 in these mice. Finally, we showed that the Pkd1(+/−) background increased the severity of cystogenesis in AQP11(−/−) mouse kidneys, indicating that PC-1 is involved in the mechanism of cystogenesis in AQP11(−/−) mice. Additionally, the primary cilia of proximal tubules were elongated in AQP11(−/−) mice. Taken together, these data show that impaired glycosylation processing and aberrant membrane trafficking of PC-1 in AQP11(−/−) mice could be a key mechanism of cystogenesis in AQP11(−/−) mice. PMID:24854278

  11. Vesicoureteral Reflux, a Scarred kidney, and Minimal Proteinuria: An Unusual Cause of Adult Secondary Hypertension

    PubMed Central

    Sandal, Shaifali; Khanna, Apurv

    2011-01-01

    Hypertension affects about 65 million individuals in the United States. In adult patients, primary aldosteronism and renovascular causes are described as most prevalent. Vesicoureteral reflux as a cause of hypertension, while commonly described in pediatric populations, is less prevalent in the adult population especially in the absence of proteinuria. We present the case of a 31-year-old female presenting with early onset hypertension. Workup for renovascular hypertension was unrevealing. She was found to have right-sided vesicoureteral reflux with a unilateral scarred kidney. Patient underwent a nephrectomy with marked improvement in blood pressure control. PMID:22110521

  12. Carbon tetrachloride induced kidney and lung tissue damages and antioxidant activities of the aqueous rhizome extract of Podophyllum hexandrum

    PubMed Central

    2011-01-01

    Background The present study was conducted to evaluate the in vitro and in vivo antioxidant properties of aqueous extract of Podophyllum hexandrum. The antioxidant potential of the plant extract under in vitro situations was evaluated by using two separate methods, inhibition of superoxide radical and hydrogen peroxide radical. Carbon tetrachloride (CCl4) is a well known toxicant and exposure to this chemical is known to induce oxidative stress and causes tissue damage by the formation of free radicals. Methods 36 albino rats were divided into six groups of 6 animals each, all animals were allowed food and water ad libitum. Group I (control) was given olive oil, while the rest groups were injected intraperitoneally with a single dose of CCl4 (1 ml/kg) as a 50% (v/v) solution in olive oil. Group II received CCl4 only. Group III animals received vitamin E at a concentration of 50 mg/kg body weight and animals of groups IV, V and VI were given extract of Podophyllum hexandrum at concentration dose of 20, 30 and 50 mg/kg body weight. Antioxidant status in both kidney and lung tissues were estimated by determining the activities of antioxidative enzymes, glutathione reductase (GR), glutathione peroxidase (GPX), glutathione-S-transferase (GST) and superoxide dismutase (SOD); as well as by determining the levels of reduced glutathione (GSH) and thiobarbituric acid reactive substances (TBARS). In addition, superoxide and hydrogen peroxide radical scavenging activity of the extract was also determined. Results Results showed that the extract possessed strong superoxide and hydrogen peroxide radical scavenging activity comparable to that of known antioxidant butylated hydroxy toluene (BHT). Our results also showed that CCl4 caused a marked increase in TBARS levels whereas GSH, SOD, GR, GPX and GST levels were decreased in kidney and lung tissue homogenates of CCl4 treated rats. Aqueous extract of Podophyllum hexandrum successfully prevented the alterations of these effects

  13. Species differences in kidney necrosis and DNA damage, distribution and glutathione-dependent metabolism of 1,2-dibromo-3-chloropropane (DBCP).

    PubMed

    Søderlund, E J; Låg, M; Holme, J A; Brunborg, G; Omichinski, J G; Dahl, J E; Nelson, S D; Dybing, E

    1990-04-01

    Species differences and mechanisms of 1,2-dibromo-3-chloropropane (DBCP) nephrotoxicity were investigated by studying DBCP renal necrosis and DNA damage, distribution and glutathione-dependent metabolism in rats, mice, hamsters and guinea pigs. Extensive renal tubular necrosis was observed in rats 48 hr after a single intraperitoneal administration (21-170 mumol/kg) of DBCP. Significantly less necrosis was found in mice and guinea pigs, whereas no renal damage was evident (less than 680 mumol/kg) in hamsters. The activation of DBCP to DNA damaging intermediates in vivo, as measured by alkaline elution of DNA isolated from kidney nuclei 60 min. after intraperitoneal injection of DBCP, was compared in all four species. Distinct DNA damage was detected in rats, mice and hamsters as early as 10 min. after administration of DBCP and within 30 min. in guinea pigs. Rats and guinea pigs showed similar sensitivity towards DBCP-induced DNA damage (extensive DNA damage greater than 21 mumol/kg DBCP), whereas in mice and hamsters a 10-50 times higher DBCP dose was needed to cause a similar degree of DNA damage. Renal DBCP concentrations at various time-points (20 min., 1, 3 and 8 hr) after intraperitoneal administration (85 mumol/kg) revealed that the initial (20 min.) DBCP concentration was substantially higher in rats and guinea pigs compared to the other two species. Furthermore, kidney elimination of DBCP occurred at a significantly lower rate in rats than in mice, hamsters and guinea pigs.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2371234

  14. Genetic damage in patients with chronic kidney disease, peritoneal dialysis and haemodialysis: a comparative study.

    PubMed

    Rangel-López, Angélica; Paniagua-Medina, Maria Eugenia; Urbán-Reyes, Marcia; Cortes-Arredondo, Martha; Alvarez-Aguilar, Cleto; López-Meza, Joel; Ochoa-Zarzosa, Alejandra; Lindholm, Bengt; García-López, Elvia; Paniagua, José Ramón

    2013-03-01

    Patients with chronic kidney disease (CKD) have signs of genomic instability and, as a consequence, extensive genetic damage, possibly due to accumulation of uraemic toxins, oxidative stress mediators and other endogenous substances with genotoxic properties. We explored factors associated with the presence and background levels of genetic damage in CKD. A cross-sectional study was performed in 91 CKD patients including pre-dialysis (CKD patients; n = 23) and patients undergoing peritoneal dialysis (PD; n = 33) or haemodialysis (HD; n = 35) and with 61 healthy subjects, divided into two subgroups with the older group being in the age range of the patients, serving as controls. Alkaline comet assay and cytokinesis-block micronucleus assay in peripheral blood lymphocytes were used to determine DNA and chromosome damage, respectively, present in CKD. Markers of oxidative stress [malondialdehyde (MDA), advanced glycation end products (AGEs), thiols, advanced oxidation protein products and 8-hydroxy-2'-deoxyguanosine] and markers of inflammation (C-reactive protein, interleukin-6 and tumour necrosis factor alpha) were also measured. Micronucleus (MN) frequency was significantly higher (P < 0.05) in the CKD group (46±4‰) when compared with the older control (oC) group (27.7±14). A significant increase in MN frequency (P < 0.05) was also seen in PD patients (41.9±14‰) versus the oC group. There was no statistically significant difference for the HD group (29.7±15.6‰; P = NS) versus the oC group. Comet assay data showed a significant increase (P < 0.001) of tail DNA intensity in cells of patients with CKD (15.6±7%) with respect to the total control (TC) group (11±1%). PD patients (14.8±7%) also have a significant increase (P < 0.001) versus the TC group. Again, there was no statistically significant difference for the HD group (12.5±3%) compared with the TC group. Patients with MN values in the upper quartile had increased cholesterol, triglycerides, AGEs and

  15. Genetic damage in patients with chronic kidney disease, peritoneal dialysis and haemodialysis: a comparative study

    PubMed Central

    Rangel-López, Angélica

    2013-01-01

    Patients with chronic kidney disease (CKD) have signs of genomic instability and, as a consequence, extensive genetic damage, possibly due to accumulation of uraemic toxins, oxidative stress mediators and other endogenous substances with genotoxic properties. We explored factors associated with the presence and background levels of genetic damage in CKD. A cross-sectional study was performed in 91 CKD patients including pre-dialysis (CKD patients; n = 23) and patients undergoing peritoneal dialysis (PD; n = 33) or haemodialysis (HD; n = 35) and with 61 healthy subjects, divided into two subgroups with the older group being in the age range of the patients, serving as controls. Alkaline comet assay and cytokinesis-block micronucleus assay in peripheral blood lymphocytes were used to determine DNA and chromosome damage, respectively, present in CKD. Markers of oxidative stress [malondialdehyde (MDA), advanced glycation end products (AGEs), thiols, advanced oxidation protein products and 8-hydroxy-2′-deoxyguanosine] and markers of inflammation (C-reactive protein, interleukin-6 and tumour necrosis factor alpha) were also measured. Micronucleus (MN) frequency was significantly higher (P < 0.05) in the CKD group (46±4‰) when compared with the older control (oC) group (27.7±14). A significant increase in MN frequency (P < 0.05) was also seen in PD patients (41.9±14‰) versus the oC group. There was no statistically significant difference for the HD group (29.7±15.6‰; P = NS) versus the oC group. Comet assay data showed a significant increase (P < 0.001) of tail DNA intensity in cells of patients with CKD (15.6±7%) with respect to the total control (TC) group (11±1%). PD patients (14.8±7%) also have a significant increase (P < 0.001) versus the TC group. Again, there was no statistically significant difference for the HD group (12.5±3%) compared with the TC group. Patients with MN values in the upper quartile had increased cholesterol, triglycerides, AGEs

  16. Renal deterioration caused by carcinogens as a consequence of free radical mediated tissue damage: a review of the protective action of melatonin.

    PubMed

    Gultekin, Fatih; Hicyilmaz, Hicran

    2007-10-01

    This brief review summarizes some of the publications that document the preventive role of melatonin in kidney damage caused by carcinogens such as 2-nitropropane, arsenic, carbon tetrachloride, nitrilotriacetic acid and potassium bromate. Numerous chemicals generate excessive free radicals that eventually induce renal worsening. Melatonin partially or totally prevents free radical mediated tissue damages induced by many carcinogens. Protective actions of melatonin against the harmful effects of carcinogens are believed to stem from its direct free radical scavenging and indirect antioxidant activities. Dietary or pharmacologically given melatonin may attenuate the oxidative stress, thereby mitigating the subsequent renal damage. PMID:17823789

  17. Kidney Failure

    MedlinePlus

    Healthy kidneys clean your blood by removing excess fluid, minerals, and wastes. They also make hormones that keep your ... strong and your blood healthy. But if the kidneys are damaged, they don't work properly. Harmful ...

  18. Methemoglobinemia due to quinine causing severe acute kidney injury in a child

    PubMed Central

    Kudale, S.; Sethi, S. K.; Dhaliwal, M.; Kher, V.

    2014-01-01

    Congenital methemoglobinemia is a rare condition resulting from a deficiency of nicotinamide adenine dinucleotide-cytochrome b5 reductase. Acquired methemoglobinemia may result due to certain drugs, chemicals and food items. Information on epidemiological determinants from India is sparse. This report describes methemoglobinemia in a 4-year-old child after parenteral administration of quinine causing acute kidney injury. This case emphasizes the need of awareness of potential adverse events of antimalarial drugs. Prompt management of methemoglobinemia is essential to avoid potential life-threatening complications. PMID:25484537

  19. Renal necrosis and DNA damage caused by selectively deuterated and methylated analogs of 1,2-dibromo-3-chloropropane in the rat.

    PubMed

    Omichinski, J G; Brunborg, G; Søderlund, E J; Dahl, J E; Bausano, J A; Holme, J A; Nelson, S D; Dybing, E

    1987-12-01

    Selectively deuterated and methylated analogs of the nematocide 1,2-dibromo-3-chloropropane (DBCP) were compared to DBCP in causing acute renal damage in rats. All of the six deuterated analogs tested at 340 mumol/kg, including the perdeutero compound, failed to significantly alter the kidney necrosis observed at 48 hr compared to DBCP. Furthermore, when the perdeutero analog was administered at several doses (42.5, 85, 170, and 340 mumol/kg), it caused kidney damage that was not significantly different than that caused by an equivalent molar dose of nondeuterated DBCP. Of the five methylated analogs tested at 170 and 340 mumol/kg, only C3-methyl-DBCP and 1,2-dibromo-4-chlorobutane caused nephrotoxicity. The C2-methyl-, C1-dimethyl-, and C2-methyl-DBCP analogs failed to cause renal necrosis determined 48 hr after dosing. In distribution studies DBCP, perdeutero-DBCP, and all the methylated analogs were found to concentrate in the kidney approximately 25 times relative to plasma 1 hr after administration. DBCP at doses of 4.3 mumol/kg and higher caused DNA damage in the kidney as early as 10 min after administration, as measured by alkaline elution of DNA from isolated kidney nuclear preparations. Perdeuteration did not decrease the DNA damaging effect of DBCP. The ability of the methylated DBCP analogs to induce renal DNA damage correlated with their necrogenic potential. Experiments using pretreatments that are known to decrease the nephrotoxicity caused by glutathione and cysteine conjugates of several halogenated alkenes were conducted to examine the effect of these pretreatments on DBCP-induced nephrotoxicity. Probenecid, L-(alpha S,5S)-alpha-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid (AT-125) and aminooxyacetic acid did not significantly alter renal necrosis or DNA damage induced by DBCP. Based on the absence of any significant isotope effects with the predeutero-DBCP analog, it appears that breaking of a carbon-hydrogen bond is not the rate

  20. Iatrogenic Damage to the Periodontium Caused by Radiation and Radiotherapy

    PubMed Central

    Kassim, Najeeb; Sirajuddin, Syed; Biswas, Shriparna; Rafiuddin, Syed; Apine, Ashwini

    2015-01-01

    The radio-sensitivity of a tissue or organ is measured by its response to irradiation. Loss of moderate numbers of cells does not affect the function of most organs. However, with loss of large numbers of cells, all affected organisms display a clinical result. The severity of this change depends on the dosage and thus the extent of cell loss. Moderate doses to a localized area may lead to repairable damage. Comparable doses to a whole organism may result in death from damage to the most sensitive systems in the body. PMID:26312083

  1. Protective Effect of Cleistocalyx nervosum var. paniala Fruit Extract against Oxidative Renal Damage Caused by Cadmium.

    PubMed

    Poontawee, Warut; Natakankitkul, Surapol; Wongmekiat, Orawan

    2016-01-01

    Cadmium nephrotoxicity is a serious environmental health problem as it will eventually end up with end stage renal disease. The pathobiochemical mechanism of this toxic heavy metal is related to oxidative stress. This study investigated whether Cleistocalyx nervosum var. paniala fruit extract (CNFE) could protect the kidney against oxidative injury caused by cadmium. Initial analysis of the extract revealed antioxidant abilities and high levels of polyphenols, particularly catechin. Its potential renal benefits was further explored in rats treated with vehicle, CNFE, cadmium (2 mg/kg), and cadmium plus CNFE (0.5, 1, 2 g/kg) for four weeks. Oxidative renal injury was developed after cadmium exposure as evidenced by blood urea nitrogen and creatinine retention, glomerular filtration reduction, renal structural damage, together with increased nitric oxide and malondialdehyde, but decreased antioxidant thiols, superoxide dismutase, and catalase in renal tissues. Cadmium-induced nephrotoxicity was diminished in rats supplemented with CNFE, particularly at the doses of 1 and 2 g/kg. It is concluded that CNFE is able to protect against the progression of cadmium nephrotoxicity, mostly via its antioxidant power. The results also point towards a promising role for this naturally-occurring antioxidant to combat other human disorders elicited by disruption of redox homeostasis. PMID:26805807

  2. Clinical analysis of cause, treatment and prognosis in acute kidney injury patients.

    PubMed

    Yang, Fan; Zhang, Li; Wu, Hao; Zou, Hongbin; Du, Yujun

    2014-01-01

    Acute kidney injury (AKI) is characterized by an abrupt decline in renal function, resulting in an inability to secrete waste products and maintain electrolyte and water balance, and is associated with high risks of morbidity and mortality. This study retrospectively analyzed clinical data, treatment, and prognosis of 271 hospitalized patients (172 males and 99 females) diagnosed with AKI from December, 2008 to December, 2011. In addition, this study explored the association between the cause of AKI and prognosis, severity and treatment of AKI. The severity of AKI was classified according to the Acute Kidney Injury Network (AKIN) criteria. Renal recovery was defined as a decrease in a serum creatinine level to the normal value. Prerenal, renal, and postrenal causes accounted for 36.5% (99 patients), 46.5% (126 patients) and 17.0% (46 patients), respectively, of the incidence of AKI. Conservative, surgical, and renal replacement treatments were given to 180 (66.4%), 30 (11.1%) and 61 patients (22.5%), respectively. The overall recovery rate was 21.0%, and the mortality rate was 19.6%. Levels of Cl(-), Na(+) and carbon dioxide combining power decreased with increasing severity of AKI. Cause and treatment were significantly associated with AKI prognosis. Likewise, the severity of AKI was significantly associated with cause, treatment and prognosis. Multivariate logistic regression analysis found that respiratory injury and multiple organ dysfunction syndrome (MODS) were associated with AKI patient death. Cause, treatment and AKIN stage are associated with the prognosis of AKI. Respiratory injury and MODS are prognostic factors for death of AKI patients. PMID:24586237

  3. Preliminary study on the role of virtual touch tissue quantification combined with a urinary β2-microglobulin test on the early diagnosis of gouty kidney damage.

    PubMed

    Tian, Fei; Wang, Zheng-Bin; Meng, Dong-Mei; Liu, Rong-Gui; Zhang, Hai-Yan; Li, Hui-Ying; Lv, Fei-Fei

    2014-07-01

    The goal of the work described here was to evaluate the role of virtual touch tissue quantification (VTQ) combined with urinary β2-microglobulin (β2-MG) measurement in the early diagnosis of gouty kidney damage. Two hundred fifty-nine patients with gouty kidney damage and 200 healthy control subjects were tested. The shear wave velocity (SWV) of the renal parenchyma and sinus as determined with VTQ and the urinary β2-MG level of the two groups were analyzed. Although there were no significant differences in age, body mass index, creatinine level and blood urea nitrogen between the two groups (all p's > 0.05), the aforementioned parameters were higher in the group with gouty kidney damage than in the control group. Urinary β2-MG levels of the patients with kidney damage were significantly higher than those of the control subjects (t = 6.38, p < 0.01). The SWV of the renal parenchyma was higher than that of the sinus in both groups. Compared with controls, patients with kidney damage had significantly increased renal parenchyma and sinus SWVs (all p-values < 0.05). Urinary β2-MG level was positively linearly correlated with the SWV of renal parenchyma in patients with kidney damage (r = 0.442, p < 0.0001). However, there was no correlation between urinary β2-MG level and the SWV of the sinus in patients with kidney damage (r = 0). In the control group, there was no correlation between urinary β2-MG level and the SWV of the renal parenchyma or sinus. The elasticity of the kidney as determined with VTQ, combined with the urinary β2-MG level, may be helpful in the early diagnosis of gouty kidney damage. PMID:24642221

  4. Can intense endurance exercise cause myocardial damage and fibrosis?

    PubMed

    La Gerche, Andre

    2013-01-01

    There has been long-standing debate as to whether intense endurance exercise provokes acute myocardial damage and whether cardiac remodeling associated with long-standing endurance training is entirely physiological. Despite the lack of concrete evidence on either side, the potential for serious clinical consequences, including life-threatening arrhythmias, elevates the importance of the debate. Studies have taught us that elite athletes enjoy excellent health, and athletic animal models consistently show up-regulation of molecular pathways, which are free of fibrosis and entirely different from those induced through pathological cardiac loading. On the other hand, extreme exercise has been associated with biochemical and functional evidence of acute damage, and some recent imaging techniques raise the possibility of small areas of myocardial scar. Moreover, some arrhythmias appear to be more prevalent amongst endurance athletes. Only large prospective trials will enable us to really assess the health benefits and risks of regular intense endurance sports. PMID:23478555

  5. Scattered Deletion of PKD1 in Kidneys Causes a Cystic Snowball Effect and Recapitulates Polycystic Kidney Disease.

    PubMed

    Leonhard, Wouter N; Zandbergen, Malu; Veraar, Kimberley; van den Berg, Susan; van der Weerd, Louise; Breuning, Martijn; de Heer, Emile; Peters, Dorien J M

    2015-06-01

    In total, 1 in 1000 individuals carries a germline mutation in the PKD1 or PKD2 gene, which leads to autosomal dominant polycystic kidney disease (ADPKD). Cysts can form early in life and progressively increase in number and size during adulthood. Extensive research has led to the presumption that somatic inactivation of the remaining allele initiates the formation of cysts, and the progression is further accelerated by renal injury. However, this hypothesis is primarily on the basis of animal studies, in which the gene is inactivated simultaneously in large percentages of kidney cells. To mimic human ADPKD in mice more precisely, we reduced the percentage of Pkd1-deficient kidney cells to 8%. Notably, no pathologic changes occurred for 6 months after Pkd1 deletion, and additional renal injury increased the likelihood of cyst formation but never triggered rapid PKD. In mildly affected mice, cysts were not randomly distributed throughout the kidney but formed in clusters, which could be explained by increased PKD-related signaling in not only cystic epithelial cells but also, healthy-appearing tubules near cysts. In the majority of mice, these changes preceded a rapid and massive onset of severe PKD that was remarkably similar to human ADPKD. Our data suggest that initial cysts are the principal trigger for a snowball effect driving the formation of new cysts, leading to the progression of severe PKD. In addition, this approach is a suitable model for mimicking human ADPKD and can be used for preclinical testing. PMID:25361818

  6. Membrane stress causes inhibition of water channels in brush border membrane vesicles from kidney proximal tubule.

    PubMed

    Soveral, G; Macey, R I; Moura, T F

    1997-08-01

    Brush border membrane vesicles (BBMV) from rabbit kidney proximal tubule cells, prepared with different internal solute concentrations (cellobiose buffer 13, 18 or 85 mosM) developed an hydrostatic pressure difference across the membrane of 18.7 mosM, that causes a membrane tension close to 5 x 10(-5) N cm-1. When subjected to several hypertonic osmotic shocks an initial delay of osmotic shrinkage (a lag time), corresponding to a very small change in initial volume was apparent. This initial osmotic response, which is significantly retarded, was correlated with the initial period of elevated membrane tension, suggesting that the water permeability coefficient is inhibited by membrane stress. We speculate that this inhibition may serve to regulate cell volume in the proximal tubule. PMID:9468597

  7. Field and laboratory studies on pathological and biochemical characterization of microcystin-induced liver and kidney damage in the phytoplanktivorous bighead carp.

    PubMed

    Li, Li; Xie, Ping; Guo, Longgen; Ke, Zhixin; Zhou, Qiong; Liu, Yaqin; Qiu, Tong

    2008-01-01

    Field and experimental studies were conducted to investigate pathological characterizations and biochemical responses in the liver and kidney of the phytoplanktivorous bighead carp after intraperitoneal (i.p.) administration of microcystins (MCs) and exposure to natural cyanobacterial blooms in Meiliang Bay, Lake Taihu. Bighead carp in field and laboratory studies showed a progressive recovery of structure and function in terms of histological, cellular, and biochemical features. In laboratory study, when fish were i.p. injected with extracted MCs at the doses of 200 and 500 microg MC-LReq/kg body weight, respectively, liver pathology in bighead carp was observed in a time dose-dependent manner within 24 h postinjection and characterized by disruption of liver structure, condensed cytoplasm, and the appearance of massive hepatocytes with karyopyknosis, karyorrhexis, and karyolysis. In comparison with previous studies on other fish, bighead carp in field study endured higher MC doses and longer-term exposure, but displayed less damage in the liver and kidney. Ultrastructural examination in the liver revealed the presence of lysosome proliferation, suggesting that bighead carp might eliminate or lessen cell damage caused by MCs through lysosome activation. Biochemically, sensitive responses in the antioxidant enzymes and higher basal glutathione concentrations might be responsible for their powerful resistance to MCs, suggesting that bighead carp can be used as biomanipulation fish to counteract cyanotoxin contamination. PMID:18264629

  8. Exposure to benzene metabolites causes oxidative damage in Saccharomyces cerevisiae.

    PubMed

    Raj, Abhishek; Nachiappan, Vasanthi

    2016-06-01

    Hydroquinone (HQ) and benzoquinone (BQ) are known benzene metabolites that form reactive intermediates such as reactive oxygen species (ROS). This study attempts to understand the effect of benzene metabolites (HQ and BQ) on the antioxidant status, cell morphology, ROS levels and lipid alterations in the yeast Saccharomyces cerevisiae. There was a reduction in the growth pattern of wild-type cells exposed to HQ/BQ. Exposure of yeast cells to benzene metabolites increased the activity of the anti-oxidant enzymes catalase, superoxide dismutase and glutathione peroxidase but lead to a decrease in ascorbic acid and reduced glutathione. Increased triglyceride level and decreased phospholipid levels were observed with exposure to HQ and BQ. These results suggest that the enzymatic antioxidants were increased and are involved in the protection against macromolecular damage during oxidative stress; presumptively, these enzymes are essential for scavenging the pro-oxidant effects of benzene metabolites. PMID:27016252

  9. Rotator Cuff Damage: Reexamining the Causes and Treatments.

    ERIC Educational Resources Information Center

    Nash, Heyward L.

    1988-01-01

    Sports medicine specialists are beginning to reexamine the causes and treatments of rotator cuff problems, questioning the role of primary impingement in a deficient or torn cuff and trying new surgical procedures as alternatives to the traditional open acromioplasty. (Author/CB)

  10. Ly6Chigh Monocytes Protect against Kidney Damage during Sepsis via a CX3CR1-Dependent Adhesion Mechanism.

    PubMed

    Chousterman, Benjamin G; Boissonnas, Alexandre; Poupel, Lucie; Baudesson de Chanville, Camille; Adam, Julien; Tabibzadeh, Nahid; Licata, Fabrice; Lukaszewicz, Anne-Claire; Lombès, Amélie; Deterre, Philippe; Payen, Didier; Combadière, Christophe

    2016-03-01

    Monocytes have a crucial role in both proinflammatory and anti-inflammatory phenomena occurring during sepsis. Monocyte recruitment and activation are orchestrated by the chemokine receptors CX3CR1 and CCR2 and their cognate ligands. However, little is known about the roles of these cells and chemokines during the acute phase of inflammation in sepsis. Using intravital microscopy in a murine model of polymicrobial sepsis, we showed that inflammatory Ly6C(high) monocytes infiltrated kidneys, exhibited altered motility, and adhered strongly to the renal vascular wall in a chemokine receptor CX3CR1-dependent manner. Adoptive transfer of Cx3cr1-proficient monocyte-enriched bone marrow cells into septic Cx3cr1-depleted mice prevented kidney damage and promoted mouse survival. Modulation of CX3CR1 activation in septic mice controlled monocyte adhesion, regulated proinflammatory and anti-inflammatory cytokine expression, and was associated with the extent of kidney lesions such that the number of lesions decreased when CX3CR1 activity increased. Consistent with these results, the pro-adhesive I249 CX3CR1 allele in humans was associated with a lower incidence of AKI in patients with sepsis. These data show that inflammatory monocytes have a protective effect during sepsis via a CX3CR1-dependent adhesion mechanism. This receptor might be a new therapeutic target for kidney injury during sepsis. PMID:26160897

  11. Solastalgia: living with the environmental damage caused by natural disasters.

    PubMed

    Warsini, Sri; Mills, Jane; Usher, Kim

    2014-02-01

    Forced separation from one's home may trigger emotional distress. People who remain in their homes may experience emotional distress due to living in a severely damaged environment. These people experience a type of 'homesickness' similar to nostalgia because the land around them no longer resembles the home they knew and loved. What they lack is solace or comfort from their home; they long for the home environment to be the way it was before. "Solastalgia" is a term created to describe feelings which arise in people when an environment changes so much that it negatively affects an individual's quality of life. Such changed environments may include drought-stricken areas and open-cut mines. The aim of this article is to describe how solastalgia, originally conceptualized as the result of man-made environmental change, can be similarly applied to the survivors of natural disasters. Using volcanic eruptions as a case example, the authors argue that people who experience a natural disaster are likely to suffer from solastalgia for a number of reasons, which may include the loss of housing, livestock and farmland, and the ongoing danger of living in a disaster-prone area. These losses and fears challenge people's established sense of place and identity and can lead to feelings of helplessness and depression. PMID:24438454

  12. Do hyperbaric oxygen-induced seizures cause brain damage?

    PubMed

    Domachevsky, Liran; Pick, Chaim G; Arieli, Yehuda; Krinsky, Nitzan; Abramovich, Amir; Eynan, Mirit

    2012-06-01

    It is commonly accepted that hyperbaric oxygen-induced seizures, the most severe manifestation of central nervous system oxygen toxicity, are harmless. However, this hypothesis has not been investigated in depth. We used apoptotic markers to determine whether cells in the cortex and hippocampus were damaged by hyperbaric oxygen-induced seizures in mice. Experimental animals were exposed to a pressure of 6 atmospheres absolute breathing oxygen, and were randomly assigned to two groups sacrificed 1h after the appearance of seizures or 7 days later. Control groups were not exposed to hyperbaric oxygen. Caspase 9, caspase 3, and cytochrome c were used as apoptotic markers. These were measured in the cortex and the hippocampus, and compared between the groups. Levels of caspase 3, cytochrome c, and caspase 9 in the hippocampus were significantly higher in the hyperbaric oxygenexposed groups compared with the control groups 1 week after seizures (p<0.01). The levels of two fragments of caspase 9 in the cortex were higher in the control group compared with the hyperbaric oxygen-exposed group 1h after seizures (p<0.01). Hyperbaric oxygen-induced seizures activate apoptosis in the mouse hippocampus. The reason for the changes in the cortex is not understood. Further investigation is necessary to elucidate the mechanism underlying these findings and their significance. PMID:22293507

  13. Plasmid DNA damage caused by stibine and trimethylstibine.

    PubMed

    Andrewes, Paul; Kitchin, Kirk T; Wallace, Kathleen

    2004-01-01

    Antimony is classified as "possibly carcinogenic to humans" and there is also sufficient evidence for antimony carcinogenicity in experimental animals. Stibine is a volatile inorganic antimony compound to which humans can be exposed in occupational settings (e.g., lead-acid battery charging). Because it is highly toxic, stibine is considered a significant health risk; however, its genotoxicity has received little attention. For the work reported here, stibine was generated by sodium borohydride reduction of potassium antimony tartrate. Trimethylstibine is a volatile organometallic antimony compound found commonly in landfill and sewage fermentation gases at concentrations ranging between 0.1 and 100 microg/m3. Trimethylstibine is generally considered to pose little environmental or health risk. In the work reported here, trimethylstibine was generated by reduction of trimethylantimony dichloride using either sodium borohydride or the thiol compounds, dithioerythritol (DTE), L-cysteine, and glutathione. Here we report the evaluation of the in vitro genotoxicities of five antimony compounds-potassium antimony tartrate, stibine, potassium hexahydroxyantimonate, trimethylantimony dichloride, and trimethylstibine-using a plasmid DNA-nicking assay. Of these five antimony compounds, only stibine and trimethylstibine were genotoxic (significant nicking to pBR 322 plasmid DNA). We found stibine and trimethylstibine to be about equipotent with trimethylarsine using this plasmid DNA-nicking assay. Reaction of trimethylantimony dichloride with either glutathione or L-cysteine to produce DNA-damaging trimethylstibine was observed with a trimethylantimony dichloride concentration as low as 50 microM and L-cysteine or glutathione concentrations as low as 500 and 200 microM, respectively, for a 24 h incubation. PMID:14728978

  14. Association of Kidney Disease Measures with Cause-Specific Mortality: The Korean Heart Study

    PubMed Central

    Mok, Yejin; Matsushita, Kunihiro; Sang, Yingying; Ballew, Shoshana H.; Grams, Morgan; Shin, Sang Yop; Jee, Sun Ha; Coresh, Josef

    2016-01-01

    Background The link of low estimated glomerular filtration rate (eGFR) and high proteinuria to cardiovascular disease (CVD) mortality is well known. However, its link to mortality due to other causes is less clear. Methods We studied 367,932 adults (20–93 years old) in the Korean Heart Study (baseline between 1996–2004 and follow-up until 2011) and assessed the associations of creatinine-based eGFR and dipstick proteinuria with mortality due to CVD (1,608 cases), cancer (4,035 cases), and other (non-CVD/non-cancer) causes (3,152 cases) after adjusting for potential confounders. Results Although cancer was overall the most common cause of mortality, in participants with chronic kidney disease (CKD), non-CVD/non-cancer mortality accounted for approximately half of cause of death (47.0%for eGFR <60 ml/min/1.73m2 and 54.3% for proteinuria ≥1+). Lower eGFR (<60 vs. ≥60 ml/min/1.73m2) was significantly associated with mortality due to CVD (adjusted hazard ratio 1.49 [95% CI, 1.24–1.78]) and non-CVD/non-cancer causes (1.78 [1.54–2.05]). The risk of cancer mortality only reached significance at eGFR <45 ml/min/1.73m2 when eGFR 45–59 ml/min/1.73m2 was set as a reference (1.62 [1.10–2.39]). High proteinuria (dipstick ≥1+ vs. negative/trace) was consistently associated with mortality due to CVD (1.93 [1.66–2.25]), cancer (1.49 [1.32–1.68]), and other causes (2.19 [1.96–2.45]). Examining finer mortality causes, low eGFR and high proteinuria were commonly associated with mortality due to coronary heart disease, any infectious disease, diabetes, and renal failure. In addition, proteinuria was also related to death from stroke, cancers of stomach, liver, pancreas, and lung, myeloma, pneumonia, and viral hepatitis. Conclusion Low eGFR was associated with CVD and non-CVD/non-cancer mortality, whereas higher proteinuria was consistently related to mortality due to CVD, cancer, and other causes. These findings suggest the need for multidisciplinary prevention

  15. Using insurance data to learn more about damages to buildings caused by surface runoff

    NASA Astrophysics Data System (ADS)

    Bernet, Daniel; Roethlisberger, Veronika; Prasuhn, Volker; Weingartner, Rolf

    2015-04-01

    In Switzerland, almost forty percent of total insurance loss due to natural hazards in the last two decades was caused by flooding. Those flood damages occurred not only within known inundation zones of water courses. Practitioners expect that roughly half of all flood damages lie outside of known inundation zones. In urban areas such damages may simply be caused by drainage system overload for instance. However, as several case studies show, natural and agricultural land play a major role in surface runoff formation leading to damages in rural and peri-urban areas. Although many damages are caused by surface runoff, the whole process chain including surface runoff formation, propagation through the landscape and damages to buildings is not well understood. Therefore, within the framework of a project, we focus our research on this relevant process. As such flash flood events have a very short response time and occur rather diffusely in the landscape, this process is very difficult to observe directly. Therefore indirect data sources with the potential to indicate spatial and temporal distributions of the process have to be used. For that matter, post-flood damage data may be a profitable source. Namely, insurance companies' damage claim records could provide a good picture about the spatial and temporal distributions of damages caused by surface runoff and, thus, about the process itself. In our research we analyze insurance data records of flood damage claims systematically to infer main drivers and influencing factors of surface runoff causing damages to buildings. To demonstrate the potential and drawbacks of using data from insurance companies in relation to damages caused by surface runoff, a case study is presented. A well-documented event with data from a public as well as a private insurance company is selected. The case study focuses on the differences of the datasets as well as the associated problems and advantages respectively. Furthermore, the

  16. WDR73 mutations cause infantile neurodegeneration and variable glomerular kidney disease

    PubMed Central

    Vodopiutz, Julia; Seidl, Rainer; Prayer, Daniela; Khan, M. Imran; Mayr, Johannes A.; Streubel, Berthold; Steiß, Jens-Oliver; Hahn, Andreas; Csaicsich, Dagmar; Castro, Christel; Assoum, Mirna; Müller, Thomas; Wieczorek, Dagmar; Mancini, Grazia M. S.; Sadowski, Carolin E.; Levy, Nicolas; Mégarbané, André; Godbole, Koumudi; Schanze, Denny; Hildebrandt, Friedhelm; Delague, Valérie; Janecke, Andreas R.; Zenker, Martin

    2015-01-01

    Infantile-onset cerebellar atrophy (CA) is a clinically and genetically heterogeneous trait. Galloway-Mowat syndrome (GMS) is a rare autosomal recessive disease, characterized by microcephaly with brain anomalies including CA in some cases, intellectual disability, and early-infantile-onset nephrotic syndrome. Very recently, WDR73 deficiency was identified as the cause of GMS in five individuals. To evaluate the role of WDR73 mutations as a cause of GMS and other forms of syndromic CA, we performed Sanger or exome sequencing in 51 unrelated patients with CA and variable brain anomalies and in 40 unrelated patients with a diagnosis of GMS. We identified 10 patients from three CA and from two GMS families with WDR73 mutations including the original family described with CA, mental retardation, optic atrophy and skin abnormalities (CAMOS). There were five novel mutations, of which two were truncating and three were missense mutations affecting highly conserved residues. Individuals carrying homozygous WDR73 mutations mainly presented with a pattern of neurological and neuroimaging findings as well as intellectual disability, while kidney involvement was variable. We document postnatal onset of CA, a retinopathy, basal ganglia degeneration, and short stature as novel features of WDR73-related disease, and define WDR73-related disease as a new entity of infantile neurodegeneration. PMID:26123727

  17. Methanol exposure does not produce oxidatively damaged DNA in lung, liver or kidney of adult mice, rabbits or primates

    SciTech Connect

    McCallum, Gordon P.; Siu, Michelle; Sweeting, J. Nicole; Wells, Peter G.

    2011-01-15

    In vitro and in vivo genotoxicity tests indicate methanol (MeOH) is not mutagenic, but carcinogenic potential has been claimed in one controversial long-term rodent cancer bioassay that has not been replicated. To determine whether MeOH could indirectly damage DNA via reactive oxygen species (ROS)-mediated mechanisms, we treated male CD-1 mice, New Zealand white rabbits and cynomolgus monkeys with MeOH (2.0 g/kg ip) and 6 h later assessed oxidative damage to DNA, measured as 8-oxo-2'-deoxyguanosine (8-oxodG) by HPLC with electrochemical detection. We found no MeOH-dependent increases in 8-oxodG in lung, liver or kidney of any species. Chronic treatment of CD-1 mice with MeOH (2.0 g/kg ip) daily for 15 days also did not increase 8-oxodG levels in these organs. These results were corroborated in DNA repair-deficient oxoguanine glycosylase 1 (Ogg1) knockout (KO) mice, which accumulated 8-oxodG in lung, kidney and liver with age, but exhibited no increase following MeOH, despite a 2-fold increase in renal 8-oxodG in Ogg1 KO mice following treatment with a ROS-initiating positive control, the renal carcinogen potassium bromate (KBrO{sub 3}; 100 mg/kg ip). These observations suggest that MeOH exposure does not promote the accumulation of oxidatively damaged DNA in lung, kidney or liver, and that environmental exposure to MeOH is unlikely to initiate carcinogenesis in these organs by DNA oxidation.

  18. Discovery of ZIP transporters that participate in cadmium damage to testis and kidney

    SciTech Connect

    He Lei; Wang Bin; Hay, Everett B.; Nebert, Daniel W.

    2009-08-01

    It has been known for decades that cadmium (Cd) must enter the cell to cause damage, but there was no mechanism to explain genetic differences in response to Cd toxicity until 2005. Starting with the mouse Cdm locus associated with differences in Cd-induced testicular necrosis between inbred strains, a 24.6-centiMorgan region on chromosome 3 was reduced ultimately to 880 kb; in this segment is the Slc39a8 gene encoding the ZIP8 Zn{sup 2+}/HCO{sub 3}{sup -} symporter. In endothelial cells of the testis vasculature, Cd-sensitive mice exhibit high ZIP8 expression, Cd-resistant mice exhibit very low expression. A 168.7-kb bacterial artificial chromosome (BAC) from a 129S6 (Cd-sensitive) BAC library containing the Slc39a8 gene was inserted into the Cd-resistant C57BL/6J genome: Cd treatment produced testicular necrosis in BAC-transgenic BTZIP8-3 mice but not in non-transgenic littermates, thereby proving that the Slc39a8 gene is indeed the Cdm locus. Cd-induced renal failure also occurred in these BTZIP8-3 mice. Immunohistochemistry showed highly expressed ZIP8 protein in the renal proximal tubular epithelial apical surface, suggesting that ZIP8 participates in Cd-induced renal failure. Slc39a14, most closely evolutionarily related to Slc39a8, encodes differentially-spliced products ZIP14A and ZIP14B that display properties similar to ZIP8. ZIP8 in alveolar cells brings environmental Cd into the organism and ZIP14 in intestinal enterocytes carries Cd into the organism and into the hepatocyte. We believe these two transporters function endogenously as Zn{sup 2+}/HCO{sub 3}{sup -} symporters important in combating inflammation and carrying out other physiological functions; Cd is able to displace the endogenous cation, enter the cell, and produce tissue damage and disease.

  19. Nickel chloride (NiCl2)-caused inflammatory responses via activation of NF-κB pathway and reduction of anti-inflammatory mediator expression in the kidney

    PubMed Central

    Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Xun; Wu, Bangyuan; Chen, Kejie

    2015-01-01

    Nickel (Ni) or Ni compounds target a number of organs and produce multiple toxic effects. Kidney is the major organ for Ni accumulation and excretion. There are no investigations on the Ni- or Ni compounds-induced renal inflammatory responses in human beings and animals at present. Therefore, we determined NiCl2-caused alteration of inflammatory mediators, and functional damage in the broiler's kidney by the methods of biochemistry, immunohistochemistry and quantitative real-time polymerase chain reaction (qRT-PCR). Dietary NiCl2 in excess of 300 mg/kg caused the renal inflammatory responses that characterized by increasing mRNA expression levels of the pro-inflammatory mediators including tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8) and interleukin-18 (IL-18) via the activation of nucleic factor κB (NF-κB), and decreasing mRNA expression levels of the anti-inflammatory mediators including interleukin-2 (IL-2), interleukin-4 (IL-4) and interleukin-13 (IL-13). Concurrently, NiCl2 caused degeneration, necrosis and apoptosis of the tubular cells, which was consistent with the alteration of renal function parameters including elevated alkaline phosphatase (AKP) activity, and reduced activities of sodium-potassium adenosine triphosphatase (Na+/K+-ATPase), calcium adenosine triphosphatase (Ca2+-ATPase), lactic dehydrogenase (LDH), succinate dehydrogenase (SDH) and acid phosphatase (ACP) in the kidney. The above-mentioned results present that the activation of NF-κB pathway and reduction of anti-inflammatory mediator expression are main mechanisms of NiCl2-caused renal inflammatory responses and that the renal function is decreased or impaired after NiCl2-treated. PMID:26417933

  20. Nickel chloride (NiCl2)-caused inflammatory responses via activation of NF-κB pathway and reduction of anti-inflammatory mediator expression in the kidney.

    PubMed

    Guo, Hongrui; Deng, Huidan; Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Xun; Wu, Bangyuan; Chen, Kejie

    2015-10-01

    Nickel (Ni) or Ni compounds target a number of organs and produce multiple toxic effects. Kidney is the major organ for Ni accumulation and excretion. There are no investigations on the Ni- or Ni compounds-induced renal inflammatory responses in human beings and animals at present. Therefore, we determined NiCl2-caused alteration of inflammatory mediators, and functional damage in the broiler's kidney by the methods of biochemistry, immunohistochemistry and quantitative real-time polymerase chain reaction (qRT-PCR). Dietary NiCl2 in excess of 300 mg/kg caused the renal inflammatory responses that characterized by increasing mRNA expression levels of the pro-inflammatory mediators including tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8) and interleukin-18 (IL-18) via the activation of nucleic factor κB (NF-κB), and decreasing mRNA expression levels of the anti-inflammatory mediators including interleukin-2 (IL-2), interleukin-4 (IL-4) and interleukin-13 (IL-13). Concurrently, NiCl2 caused degeneration, necrosis and apoptosis of the tubular cells, which was consistent with the alteration of renal function parameters including elevated alkaline phosphatase (AKP) activity, and reduced activities of sodium-potassium adenosine triphosphatase (Na(+)/K(+)-ATPase), calcium adenosine triphosphatase (Ca(2+)-ATPase), lactic dehydrogenase (LDH), succinate dehydrogenase (SDH) and acid phosphatase (ACP) in the kidney. The above-mentioned results present that the activation of NF-κB pathway and reduction of anti-inflammatory mediator expression are main mechanisms of NiCl2-caused renal inflammatory responses and that the renal function is decreased or impaired after NiCl2-treated. PMID:26417933

  1. Home Remedy for Skin Cancer May Cause Damage, Mask New Growth

    MedlinePlus

    ... medlineplus/news/fullstory_158984.html Home Remedy For Skin Cancer May Cause Damage, Mask New Growth 'Black ... promise of an "easy and natural" treatment for skin cancer, home remedies such as black salve can ...

  2. Chronic Kidney Disease

    MedlinePlus

    You have two kidneys, each about the size of your fist. Their main job is to filter wastes and excess water out of ... help control blood pressure, and make hormones. Chronic kidney disease (CKD) means that your kidneys are damaged ...

  3. A Rare Cause of Diarrhea in a Kidney Transplant Recipient: Dipylidium caninum.

    PubMed

    Sahin, I; Köz, S; Atambay, M; Kayabas, U; Piskin, T; Unal, B

    2015-09-01

    We report the first case of dipylidiasis in a kidney transplant recipient. Watery diarrhea due to Dipylidium caninum was observed in a male patient who had been undergone kidney transplantation 2 years before. The patient was successfully treated with niclosamide. D. caninum should be considered as an agent of diarrhea in transplant patients. PMID:26361689

  4. Autosomal dominant polycystic kidney disease caused by somatic and germline mosaicism.

    PubMed

    Tan, A Y; Blumenfeld, J; Michaeel, A; Donahue, S; Bobb, W; Parker, T; Levine, D; Rennert, H

    2015-04-01

    Autosomal dominant polycystic kidney disease (ADPKD) is a heterogeneous genetic disorder caused by loss of function mutations of PKD1 or PKD2 genes. Although PKD1 is highly polymorphic and the new mutation rate is relatively high, the role of mosaicism is incompletely defined. Herein, we describe the molecular analysis of ADPKD in a 19-year-old female proband and her father. The proband had a PKD1 truncation mutation c.10745dupC (p.Val3584ArgfsX43), which was absent in paternal peripheral blood lymphocytes (PBL). However, very low quantities of this mutation were detected in the father's sperm DNA, but not in DNA from his buccal cells or urine sediment. Next generation sequencing (NGS) analysis determined the level of this mutation in the father's PBL, buccal cells and sperm to be ∼3%, 4.5% and 10%, respectively, consistent with somatic and germline mosaicism. The PKD1 mutation in ∼10% of her father's sperm indicates that it probably occurred early in embryogenesis. In ADPKD cases where a de novo mutation is suspected because of negative PKD gene testing of PBL, additional evaluation with more sensitive methods (e.g. NGS) of the proband PBL and paternal sperm can enhance detection of mosaicism and facilitate genetic counseling. PMID:24641620

  5. Indigofera oblongifolia mitigates lead-acetate-induced kidney damage and apoptosis in a rat model

    PubMed Central

    Dkhil, Mohamed A; Al-Khalifa, Mohamed S; Al-Quraishy, Saleh; Zrieq, Rafat; Abdel Moneim, Ahmed Esmat

    2016-01-01

    This study was conducted to appraise the protective effect of Indigofera oblongifolia leaf extract on lead acetate (PbAc)-induced nephrotoxicity in rats. PbAc was intraperitoneally injected at a dose of 20 mg/kg body weight for 5 days, either alone or together with the methanol extract of I. oblongifolia (100 mg/kg). Kidney lead (Pb) concentration; oxidative stress markers including lipid peroxidation, nitrite/nitrate, and glutathione (GSH); and antioxidant enzyme activities, namely superoxide dismutase, catalase, GSH peroxidase, and GSH reductase were all determined. The PbAc injection elicited a marked elevation in Pb concentration, lipid peroxidation, and nitrite/nitrate, with a concomitant depletion in GSH content compared with the control and a remarkable decrease in antioxidant enzymes. Oxidant/antioxidant imbalance, Pb accumulation, and histological changes in the kidneys were successfully prevented by the pre-administration of I. oblongifolia extract. In addition, the elevated expression of proapoptotic protein, Bax, in the kidneys of the PbAc-injected rats was reduced as a result of I. oblongifolia pre-administration, while the hitherto reduced expression of the anti-apoptotic protein Bcl-2 was elevated. Based on the current findings, it can be concluded that I. oblongifolia successfully minimizes the deleterious effects in kidney function and histological coherence associated with nephrotoxicity by strengthening the antioxidant defense system, suppressing oxidative stress, and mitigating apoptosis. PMID:27330278

  6. Phytohemagglutinin derived from red kidney bean (Phaseolus vulgaris): a cause for intestinal malabsorption associated with bacterial overgrowth in the rat.

    PubMed

    Banwell, J G; Boldt, D H; Meyers, J; Weber, F L

    1983-03-01

    Plant lectins or carbohydrate binding proteins interact with membrane receptors on cellular surfaces but their antinutritional effects are poorly defined. Studies were conducted to determine the effects of phytohemagglutinin, a lectin derived from raw red kidney bean (Phaseolus vulgaris), on small intestinal absorptive function and morphology, and on the intestinal microflora. Phytohemagglutinin was isolated in purified form by thyroglobulin-sepharose 4B affinity chromatography. Red kidney bean and phytohemagglutinin (6% and 0.5%, respectively, of dietary protein) were fed in a purified casein diet to weanling rats for up to 21 days. Weight loss, associated with malabsorption of lipid, nitrogen, and vitamin B12, developed in comparison with animals pair-fed isonitrogenous casein diets. Antinutritional effects of red kidney bean were reversible on reinstitution of a purified casein diet. An increase in bacterial colonization of the jejunum and ileum occurred in red kidney bean- and phytohemagglutin-fed animals. When antibiotics were included in the diet, malabsorption of [3H]triolein and 57Co-vitamin B12 in red kidney bean-fed animals was partially reversed and, in germ-free animals, purified phytohemagglutinin had no demonstrable antinutritional effect. Mucosal disaccharidase activity was reduced in red kidney bean- and phytohemagglutinin-fed animals, but intestinal mucosal morphology was unchanged. Dietary administration of phytohemagglutinin, alone or as a component of red kidney bean, caused intestinal dysfunction, which was associated with, and dependent upon, small intestinal bacterial overgrowth. Adherence of enteric bacteria to the mucosal surface was enhanced by phytohemagglutinin which may have facilitated small intestinal bacterial overgrowth. PMID:6822324

  7. Comparison of damage to human hair fibers caused by monoethanolamine- and ammonia-based hair colorants.

    PubMed

    Bailey, Aaron D; Zhang, Guiru; Murphy, Bryan P

    2014-01-01

    The number of Level 3 hair color products that substitute 2-aminoethanol [monoethanolamine (MEA)] for ammonia is increasing. There is some anecdotal evidence that higher levels of MEA can be more damaging to hair and more irritating than a corresponding equivalent level of the typical alkalizer, ammonia (in the form of ammonium hydroxide). Our interest was to understand in more quantitative terms the relative hair damage from the two alkalizers, particularly at the upper limits of MEA on-head use. Limiting investigations of oxidative hair damage to increases in cysteic acid content (from cystine oxidation) can underreport the extent of total damage. Hence, we complemented Fourier transform infrared spectroscopy (FTIR) cysteic acid level measurement with scanning electron microscopy (SEM) photomicrographs to visualize cuticle damage, and protein loss to understand not only the oxidative damage but also the damage caused by other damage pathways, e.g., reaction of the more nucleophilic (than ammonia) MEA with hair protein. In fact, all methods show an increase in damage from MEA-based formulations, up to 85% versus ammonia in the most extreme case. Hence, if the odor of ammonia is a concern, a better approach may be to minimize the volatility of ammonia in specific chassis rather than replacing it with high levels of a potentially more damaging alkalizer such as MEA. PMID:24602818

  8. Targeting Iron Homeostasis in Acute Kidney Injury.

    PubMed

    Walker, Vyvyca J; Agarwal, Anupam

    2016-01-01

    Iron is an essential metal involved in several major cellular processes required to maintain life. Because of iron's ability to cause oxidative damage, its transport, metabolism, and storage is strictly controlled in the body, especially in the small intestine, liver, and kidney. Iron plays a major role in acute kidney injury and has been a target for therapeutic intervention. However, the therapies that have been effective in animal models of acute kidney injury have not been successful in human beings. Targeting iron trafficking via ferritin, ferroportin, or hepcidin may offer new insights. This review focuses on the biology of iron, particularly in the kidney, and its implications in acute kidney injury. PMID:27085736

  9. Toxicological comparison of diverse Cylindrospermopsis raciborskii strains: evidence of liver damage caused by a French C raciborskii strain.

    PubMed

    Bernard, C; Harvey, M; Briand, J F; Biré, R; Krys, S; Fontaine, J J

    2003-06-01

    The freshwater cyanobacterium Cylindrospermopsis raciborskii is known to produce toxic effects in several countries. Acute and chronic exposures to C. raciborskii in Australia have been linked to liver damage (hepatotoxicity) with concomitant effects on the kidneys, adrenal glands, small intestine, lungs, thymus, and heart. The alkaloid cylindrospermopsin, which produces these toxic effects, is thought to be a potent inhibitor of protein synthesis. C. raciborskii strains producing cylindrospermopsin or analogue alkaloids have also been reported in Florida, USA, and Thailand. Brazilian isolates of C. raciborskii are also toxic but act by a different mechanism, causing acute death in mice with neurotoxic symptoms similar to those induced by the saxitoxins. In this article we compare the toxicity in the mouse of a C. raciborskii French strain with C. raciborskii strains from various other sources (Australia, Brazil, Mexico, and Hungary). We tested the toxicity of cell extracts by a mouse bioassay. Acute, fatal neurotoxicity was produced by the Brazilian strain, which was confirmed by liquid chromatography with fluorescence detection of the cell extracts, which revealed the presence of saxitoxin, neosaxitoxin, and decarbamoylsaxitoxin, along with two unidentified compounds. Acute hepatotoxicity with severe liver, kidney, and thymus damage was observed with the Australian cylindrospermopsin-producing strain. The Mexican and Hungarian strains were not found to be toxic to mice in our experimental conditions. No animals died after exposure to the extracts of the French C. raciborskii strain. Histological examination of the liver revealed moderate, multifocal necrosis characterized by small areas of hepatocellular necrosis, combined with disorganization of the parenchyma and congestion of the inner sinusoid. These symptoms and lesions resembled those induced by cylindrospermopsin, but the chemical analysis performed by liquid chromatography coupled with either a diode

  10. At Risk for Kidney Disease?

    MedlinePlus

    ... or organization Alternate Language URL At Risk for Kidney Disease? Page Content You are at risk for kidney ... failure by treating kidney disease early. Diabetes and Kidney Disease Diabetes is the leading cause of kidney failure. ...

  11. Assessment of ozone damage to crop and forest in Europe caused by Danish emissions

    NASA Astrophysics Data System (ADS)

    Siggaard-Andersen, M.-L.; Zakey, A.; Nuterman, R.; Brandt, J.

    2012-04-01

    Tropospheric Ozone has a damaging effect on vegetation, where it inhibits growth and reduces yield of crop production, as well as causing visible damage to plant leaves. The reduced crop production and growth of forest trees can be assessed using species specific sensitivity factors and market prices. The damages to agriculture are severe and a treat to food security. However, anthropogenic emissions of air pollution are not causing ozone damage to vegetation locally because of redox titration of ozone in the pollution source area. The ozone damage is taking effect hundreds of kilometers further downwind, where the atmospheric content of ozone has stabilized. This means that ozone damage can have a large effect outside an emitting country's borders, while the effects inside are limited or even have reducing effects of ozone damage from other sources. As part of CEEH (Centre for energy, environment and health), we are assessing ozone damage to forest and vegetation in European countries from Danish emissions using atmospheric chemical transport simulations.

  12. Phagocytosis-dependent and independent mechanisms underlie the microglial cell damage caused by carbon nanotube agglomerates.

    PubMed

    Shigemoto-Mogami, Yukari; Hoshikawa, Kazue; Hirose, Akihiko; Sato, Kaoru

    2016-01-01

    Although carbon nanotubes (CNTs) are used in many fields, including energy, healthcare, environmental technology, materials, and electronics, the adverse effects of CNTs in the brain are poorly understood. In this study, we investigated the effects of CNTs on cultured microglia, as microglia are the first responders to foreign materials. We compared the effects of sonicated suspensions of 5 kinds of CNTs and their flow-through filtered with a 0.22 µm membrane filter on microglial viability. We found that sonicated suspensions caused microglial cell damage, but their flow-through did not. The number of microglial aggregates was well correlated with the extent of the damage. We also determined that the CNT agglomerates consisted of two groups: one was phagocytosed by microglia and caused microglial cell damage, and the other caused cell damage without phagocytosis. These results suggest that phagocytosis-dependent and independent mechanisms underlie the microglial cell damage caused by CNT agglomerates and it is important to conduct studies about the relationships between physical properties of nanomaterial-agglomerates and cell damage. PMID:27432236

  13. DNA damage in human skin keratinocytes caused by multiwalled carbon nanotubes with carboxylate functionalization.

    PubMed

    McShan, Danielle; Yu, Hongtao

    2014-07-01

    Water-soluble carbon nanotubes have been found to be one of the most promising nanomaterials in biological- and biomedical-based applications. However, there have been major concerns on their ability to cause cellular and DNA damages upon exposure. In this work, we explore the toxic effects of three multiwalled carbon nanotubes (MWCNTs: nonpurified, purified and carboxylate-functionalized) on human skin keratinocytes (HaCaT). Cytotoxicity tests using the conventional thiazolyl blue tetrazolium bromide (MTT) and the water-soluble tetrazolium (WST-1) assays for 0.5 or 24 h exposure to 20 μg/mL of MWCNTs show that all three caused minimum cytotoxicity that is generally not statistically significant. Assessment of direct and oxidative DNA damages using both alkaline Comet assay and formamidopyrimidine DNA glycosylase-modified Comet assay reveals that the treatment with 20 μg/mL of MWCNTs does not cause significant direct DNA damages, but causes great amount of oxidative DNA damages in HaCaT cells. The oxidative DNA damage reaches the maximum amount at 4 h of incubation in Dulbecco's minimum essential medium, but decreases to the minimum at 8 and 24 h of incubation, indicating repair of the oxidative damages by the intrinsic DNA repair mechanism of the cells. PMID:23012341

  14. Chronic Broca's Aphasia Is Caused by Damage to Broca's and Wernicke's Areas.

    PubMed

    Fridriksson, Julius; Fillmore, Paul; Guo, Dazhou; Rorden, Chris

    2015-12-01

    Despite being perhaps the most studied form of aphasia, the critical lesion location for Broca's aphasia has long been debated, and in chronic patients, cortical damage often extends far beyond Broca's area. In a group of 70 patients, we examined brain damage associated with Broca's aphasia using voxel-wise lesion-symptom mapping (VLSM). We found that damage to the posterior portion of Broca's area, the pars opercularis, is associated with Broca's aphasia. However, several individuals with other aphasic patterns had considerable damage to pars opercularis, suggesting that involvement of this region is not sufficient to cause Broca's aphasia. When examining only individuals with pars opercularis damage, we found that patients with Broca's aphasia had greater damage in the left superior temporal gyrus (STG; roughly Wernicke's area) than those with other aphasia types. Using discriminant function analysis and logistic regression, based on proportional damage to the pars opercularis and Wernicke's area, to predict whether individuals had Broca's or another types of aphasia, over 95% were classified correctly. Our findings suggest that persons with Broca's aphasia have damage to both Broca's and Wernicke's areas, a conclusion that is incongruent with classical neuropsychology, which has rarely considered the effects of damage to both areas. PMID:25016386

  15. [MALT B cell lymphoma with kidney damage and monoclonal gammopathy: a case study and literature review].

    PubMed

    Peces, R; Vega-Cabrera, C; Peces, C; Pobes, A; Fresno, M F

    2010-01-01

    We report a case of low-grade B-cell lymphoma of mucosa-associated lymphoid tissue (MALT) involving the left kidney and simultaneous onset of a monoclonal gammopathy IgM kappa. No predisposing local inflammatory condition was identified. Following left nephrectomy, the renal specimen showed the centrocyte like cells and lymphoid cells in the lymphoepithelial lesions were positive for CD20 and CD79α. The neoplastic cells expressed monotypic cytoplasmic IgM kappa. The demonstration of bone marrow cells of B-lineage expressing the same monoclonal protein as the tumor suggested bone marrow involvement, even in the absence of identical morphology. Despite chemotherapy and rituximab treatment, clinical follow-up showed right kidney extension with high-grade transformation, and finally systemic dissemination. This case illustrates that the kidney is among the sites that may be involved by MALT B-cell lymphomas in a primary or secondary fashion, and the need for expanded investigation of the possible dissemination. We review the literature on this unusual extranodal lymphoma. PMID:21113219

  16. Oral Supplementation of Glucosamine Fails to Alleviate Acute Kidney Injury in Renal Ischemia-Reperfusion Damage

    PubMed Central

    Johnsen, Marc; Späth, Martin Richard; Denzel, Martin S.; Göbel, Heike; Kubacki, Torsten; Hoyer, Karla Johanna Ruth; Hinze, Yvonne; Benzing, Thomas; Schermer, Bernhard; Antebi, Adam; Burst, Volker; Müller, Roman-Ulrich

    2016-01-01

    Acute kidney injury is a leading contributor to morbidity and mortality in the ageing population. Proteotoxic stress response pathways have been suggested to contribute to the development of acute renal injury. Recent evidence suggests that increased synthesis of N-glycan precursors in the hexosamine pathway as well as feeding of animals with aminosugars produced in the hexosamine pathway may increase stress resistance through reducing proteotoxic stress and alleviate pathology in model organisms. As feeding of the hexosamine pathway metabolite glucosamine to aged mice increased their life expectancy we tested whether supplementation of this aminosugar may also protect mice from acute kidney injury after renal ischemia and reperfusion. Animals were fed for 4 weeks ad libitum with standard chow or standard chow supplemented with 0.5% N-acetylglucosamine. Preconditioning with caloric restriction for four weeks prior to surgery served as a positive control for protective dietary effects. Whereas caloric restriction demonstrated the known protective effect both on renal function as well as survival in the treated animals, glucosamine supplementation failed to promote any protection from ischemia-reperfusion injury. These data show that although hexosamine pathway metabolites have a proven role in enhancing protein quality control and survival in model organisms oral glucosamine supplementation at moderate doses that would be amenable to humans does not promote protection from ischemia-reperfusion injury of the kidney. PMID:27557097

  17. Murine lethal milk mutation causes maternal accumulation of zinc in intestine and kidney and reduced zinc transport to milk

    SciTech Connect

    Dohyeel Lee; Cousins, R.J. )

    1991-03-15

    The lethal milk (Lm) mutation is autosomal recessive in C57BL/6J mice and causes Zn deficiency in pups nursed by Lm dams. The genetic defect may cause a shift in the tissue Zn distribution in Lm dams since their milk has a 34-45% lower Zn concentration than milk of normal (N) dams. To examine tissue Zn distribution and Zn transport to milk and pups, 1 {mu}Ci of {sup 65}Zn was administered ip to lactating N and Lm dams. They also received 800 {mu}g Zn/ml in their drinking water to preclude short term, terminal zinc deficiency in the neonates nursed by Lm dams. {sup 65}Zn content of milk and tissues of dams and tissues of pups was measured. Transport of {sup 65}Zn to milk of Lm dams was about 50% compared to milk of N dams. The percentage of the {sup 65}Zn dose recovered in the intestine, liver, and kidney of N pups nursed by LM dams was markedly lower than those of N pups nursed by N dams. In contrast, the percentage of {sup 65}Zn in the intestine and kidney of Lm dams was about twice that of N dams. The elevated intestinal {sup 65}Zn was paralleled by and elevated metallothionein concentration, but the increased {sup 65}Zn in the kidney was not. The Lm gene defect might limit Zn transport to milk by shifting the Zn distribution in lactating dams to the intestine, kidney, and perhaps other tissues.

  18. Cobalt-chromium-molybdenum alloy causes metal accumulation and metallothionein up-regulation in rat liver and kidney.

    PubMed

    Jakobsen, Stig S; Danscher, Gorm; Stoltenberg, Meredin; Larsen, Agnete; Bruun, Jens M; Mygind, Tina; Kemp, Kaare; Soballe, Kjeld

    2007-12-01

    Cobalt-chromium-molybdenum (CoCrMo) metal-on-metal hip prosthesis has had a revival due to their excellent wear properties. However, particulate wear debris and metal ions liberated from the CoCrMo alloys might cause carcinogenicity, hypersensitivity, local and general tissue toxicity, genotoxicity and inflammation-generating qualities. Nine months after implanting small pieces of CoCrMo alloy intramuscularly and intraperitoneally in rats, we analysed the accumulation of metals with a multi-element analysis, and the levels of metallothionein I/II with real-time reverse transcriptase-polymerase chain reaction in liver and kidney. We found that metal ions are liberated from CoCrMo alloys and suggest that they are released by dissolucytosis, a process where macrophages causes the metallic surface to release metal ions. Animals with intramuscular implants accumulated metal in liver and kidney and metallohionein I/II were elevated in liver tissue. The present data do not tell whether kidney and liver are the primary target organs or what possible toxicological effect the different metal ions might have, but they show that metal ions are liberated from CoCrMo alloys that are not subjected to mechanical wear and that they accumulate in liver and kidney tissue. That the liberated metal ions affect the tissues is supported by an up-regulation of the detoxifying/pacifying metalloprotein I/II in the liver. PMID:17971067

  19. Protective effects of melatonin and indole-3-propionic acid against lipid peroxidation, caused by potassium bromate in the rat kidney.

    PubMed

    Karbownik, Małgorzata; Stasiak, Magdalena; Zygmunt, Arkadiusz; Zasada, Krzysztof; Lewiński, Andrzej

    2006-01-01

    Potassium bromate (KBrO(3)) is classified as a carcinogenic agent. KBrO(3) induces tumors and pro-oxidative effects in kidneys. Melatonin is a well known antioxidant and free radical scavenger. Indole-3-propionic acid (IPA), an indole substance, also reveals antioxidative properties. Recently, some antioxidative effects of propylthiouracil (PTU)-an antithyroid drug-have been found. The aim of the study was to compare protective effects of melatonin, IPA, and PTU against lipid peroxidation in the kidneys and blood serum and, additionally, in the livers and the lungs, collected from rats, pretreated with KBrO(3). Male Wistar rats were administered KBrO(3) (110 mg/kg b.w., i.p., on the 10th day of the experiment) and/or melatonin, or IPA (0.0645 mmol/kg b.w., i.p., twice daily, for 10 days), or PTU (0.025% solution in drinking water, for 10 days). The level of lipid peroxidation products-malondialdehyde + 4-hydroxyalkenals (MDA + 4-HDA)-was measured spectrophotometrically in thyroid homogenates. KBrO(3), when injected to rats, significantly increased lipid peroxidation in the kidney homogenates and blood serum, but not in the liver and the lung homogenates. Co-treatment with either melatonin or with IPA, but not with PTU, decreased KBrO(3)-induced oxidative damage to lipids in the rat kidneys and serum. In conclusion, melatonin and IPA, which prevent KBrO(3)-induced lipid peroxidation in rat kidneys, may be of great value as protective agents under conditions of exposure to KBrO(3). PMID:16397908

  20. Chronic kidney disease of unknown aetiology in Sri Lanka: is cadmium a likely cause?

    PubMed Central

    2011-01-01

    Background The rising prevalence of chronic kidney disease (CKD) and subsequent end stage renal failure necessitating renal replacement therapy has profound consequences for affected individuals and health care resources. This community based study was conducted to identify potential predictors of microalbuminuria in a randomly selected sample of adults from the North Central Province (NCP) of Sri Lanka, where the burden of CKD is pronounced and the underlying cause still unknown. Methods Exposures to possible risk factors were determined in randomly recruited subjects (425 females and 461 males) from selected areas of the NCP of Sri Lanka using an interviewer administered questionnaire. Sulphosalicylic acid and the Light Dependent Resister microalbumin gel filtration method was used for initial screening for microalbuminuria and reconfirmed by the Micral strip test. Results Microalbumnuria was detected in 6.1% of the females and 8.5% of the males. Smoking (p < 0.001), alcohol use (p = 0.003), hypertension (p < 0.001), diabetes (p < 0.001), urinary tract infection (UTI) (p = 0.034) and consumption of water from wells in the fields (p = 0.025) were associated with microalbuminuria. In the binary logistic regression analysis, hypertension, diabetes mellitus, UTI, drinking well water in the fields, smoking and pesticide spraying were found to be significant predictors of microalbuminuria. Conclusions Hypertension, diabetes mellitus, UTI, and smoking are known risk factors for microalbuminuria. The association between microalbuminuria and consumption of well water suggests an environmental aetiology to CKD in NCP. The causative agent is yet to be identified. Investigations for cadmium as a potential causative agent needs to be initiated. PMID:21726464

  1. Protective effect of ω-3 polyunsaturated fatty acids (PUFAs) on sodium nitroprusside-induced nephrotoxicity and oxidative damage in rat kidney.

    PubMed

    Khan, M W; Priyamvada, S; Khan, S A; Khan, S; Naqshbandi, A; Yusufi, A N K

    2012-10-01

    Sodium nitroprusside (SNP) a nitric oxide (NO) donor has proven toxic effects. Dietary ω-3 polyunsaturated fatty acid (PUFA) has been shown to reduce the severity of numerous ailments. Present study examined whether intake of fish oil (FO)/flaxseed oil (FXO, Omega Nutrition, St Vancouver, Canada) would have protective effect against SNP-induced toxicity. Male Wistar rats (150 ± 10 g) were used in this study. Initially animals were divided into two groups: one fed on normal diet and the other on 15% FO/FXO for 15 days. On the 16th day, SNP (1.5 mg/kg body weight) was administered intraperitoneally for 7 days daily. After 7 days animals were killed, kidneys were harvested for further analysis. SNP induced nephrotoxicity by increasing serum creatinine and blood urea nitrogen, SNP significantly decreased malate dehydrogenase, glucose-6-phosphatase, fructose-1,6-bisphosphatase and malic enzyme but increased lactate dehydrogenase and glucose-6-phosphate dehydrogenase. Brush border membrane enzymes such as alkaline phosphatase, γ-glutamyl transpeptidase and leucine amino peptidase were also decreased. The activity of catalase and glutathione peroxidase decreased concomitantly with increased lipid peroxidation, indicating that the significant kidney damage has been inflicted by SNP. Feeding of FO and FXO with SNP ameliorated the changes in various parameters caused by SNP. The results of the present study suggest that ω-3 PUFA-enriched FO and FXO from seafoods and plant sources, respectively, are similarly effective in reducing SNP-induced nephrotoxicity and oxidative damage. Thus, vegetarians who cannot consume FO can have similar health benefits from plant-derived ω-3 PUFA. PMID:22549094

  2. DNA Damage in Euonymus japonicus Leaf Cells Caused by Roadside Pollution in Beijing.

    PubMed

    Li, Tianxin; Zhang, Minjie; Gu, Ke; Herman, Uwizeyimana; Crittenden, John; Lu, Zhongming

    2016-01-01

    The inhalable particles from vehicle exhaust can cause DNA damage to exposed organisms. Research on DNA damage is primarily focused on the influence of specific pollutants on certain species or the effect of environmental pollution on human beings. To date, little research has quantitatively studied the relationship between roadside pollution and DNA damage. Based on an investigation of the roadside pollution in Beijing, Euonymus japonicus leaves of differing ages grown in heavily-polluted sections were chosen as biomonitors to detect DNA damage using the comet assay technique. The percentage of DNA in the tail and tail moment was chosen as the analysis index based on SPSS data analysis. The roadside samples showed significantly higher levels of DNA damage than non-roadside samples, which increased in older leaves, and the DNA damage to Euonymus japonicus leaf cells was positively correlated with haze-aggravated roadside pollution. The correlation between damage and the Air Quality Index (AQI) are 0.921 (one-year-old leaves), 0.894 (two-year-old leaves), and 0.878 (three-year-old leaves). Over time, the connection between DNA damage and AQI weakened, with the sensitivity coefficient for δyear 1 being larger than δyear 2 and δyear 3. These findings support the suitability and sensitivity of the comet assay for surveying plants for an estimation of DNA damage induced by environmental genotoxic agents. This study might be applied as a preliminary quantitative method for Chinese urban air pollution damage assessment caused by environmental stress. PMID:27455298

  3. DNA Damage in Euonymus japonicus Leaf Cells Caused by Roadside Pollution in Beijing

    PubMed Central

    Li, Tianxin; Zhang, Minjie; Gu, Ke; Herman, Uwizeyimana; Crittenden, John; Lu, Zhongming

    2016-01-01

    The inhalable particles from vehicle exhaust can cause DNA damage to exposed organisms. Research on DNA damage is primarily focused on the influence of specific pollutants on certain species or the effect of environmental pollution on human beings. To date, little research has quantitatively studied the relationship between roadside pollution and DNA damage. Based on an investigation of the roadside pollution in Beijing, Euonymus japonicus leaves of differing ages grown in heavily-polluted sections were chosen as biomonitors to detect DNA damage using the comet assay technique. The percentage of DNA in the tail and tail moment was chosen as the analysis index based on SPSS data analysis. The roadside samples showed significantly higher levels of DNA damage than non-roadside samples, which increased in older leaves, and the DNA damage to Euonymus japonicus leaf cells was positively correlated with haze-aggravated roadside pollution. The correlation between damage and the Air Quality Index (AQI) are 0.921 (one-year-old leaves), 0.894 (two-year-old leaves), and 0.878 (three-year-old leaves). Over time, the connection between DNA damage and AQI weakened, with the sensitivity coefficient for δyear 1 being larger than δyear 2 and δyear 3. These findings support the suitability and sensitivity of the comet assay for surveying plants for an estimation of DNA damage induced by environmental genotoxic agents. This study might be applied as a preliminary quantitative method for Chinese urban air pollution damage assessment caused by environmental stress. PMID:27455298

  4. Myocardium and striated muscle damage caused by licit or illicit drugs.

    PubMed

    Tóth, Anita Réka; Varga, Tibor

    2009-04-01

    Illicit and central nervous system active licit drug consumption related deaths are mainly the consequences of either unintentional or intentional overdose. According to the data in the relevant literature occurrences of different organ damages are also observable and this can play a role in death, as well. Organ damages may appear simultaneously with overdosing or can be extended in time, which may lead to proving the cause of death and establishing the relationships with previous medication difficult. The most frequent damage observed is rhabdomyolysis syndrome, which has been mainly described after cocaine or opium consumption. Authors present four cases from the autopsy documentation of the period between 2003 and 2008 at the Institute of Forensic Medicine, University of Szeged, Hungary in which illicit drug consumption or neuroleptic licit drug medication resulted in development of myocardium and striated muscle damage. The dominant clinical symptoms were hyperthermia, renal and circulatory failure. The laboratory tests showed renal and liver insufficiency; in addition the CK and CK-MB level increase suggested damage in striated muscles. The focal myocardium and striated muscle damage could be assessed as the cause of death in one case, but microscopic investigation proved the presence of damage in each. PMID:19342269

  5. Ricin crosses polarized human intestinal cells and intestines of ricin-gavaged mice without evident damage and then disseminates to mouse kidneys.

    PubMed

    Flora, Alyssa D; Teel, Louise D; Smith, Mark A; Sinclair, James F; Melton-Celsa, Angela R; O'Brien, Alison D

    2013-01-01

    Ricin is a potent toxin found in the beans of Ricinus communis and is often lethal for animals and humans when aerosolized or injected and causes significant morbidity and occasional death when ingested. Ricin has been proposed as a bioweapon because of its lethal properties, environmental stability, and accessibility. In oral intoxication, the process by which the toxin transits across intestinal mucosa is not completely understood. To address this question, we assessed the impact of ricin on the gastrointestinal tract and organs of mice after dissemination of toxin from the gut. We first showed that ricin adhered in a specific pattern to human small bowel intestinal sections, the site within the mouse gut in which a variable degree of damage has been reported by others. We then monitored the movement of ricin across polarized human HCT-8 intestinal monolayers grown in transwell inserts and in HCT-8 cell organoids. We observed that, in both systems, ricin trafficked through the cells without apparent damage until 24 hours post intoxication. We delivered a lethal dose of purified fluorescently-labeled ricin to mice by oral gavage and followed transit of the toxin from the gastrointestinal tracts to the internal organs by in vivo imaging of whole animals over time and ex vivo imaging of organs at various time points. In addition, we harvested organs from unlabeled ricin-gavaged mice and assessed them for the presence of ricin and for histological damage. Finally, we compared serum chemistry values from buffer-treated versus ricin-intoxicated animals. We conclude that ricin transverses human intestinal cells and mouse intestinal cells in situ prior to any indication of enterocyte damage and that ricin rapidly reaches the kidneys of intoxicated mice. We also propose that mice intoxicated orally with ricin likely die from distributive shock. PMID:23874986

  6. Escalating chronic kidney diseases of multi-factorial origin in Sri Lanka: causes, solutions, and recommendations.

    PubMed

    Wimalawansa, Sunil J

    2014-11-01

    During the last two decades, Sri Lanka, located close to the equator, has experienced an escalating incidence of chronic kidney disease (CKD) of unknown aetiology (CKDue) in dry zonal areas. Similar incidences of unusual CKDs have been reported in the dry zonal, agricultural areas of several other equatorial countries. In Sri Lanka, the incidence of CKDue is highest in the North Central Province (NCP), where approximately 45 % of the country's paddy fields are located. However, in recent years, the disease has spread into areas adjacent to as well as distant from the NCP. The cause of CKD in Sri Lanka is unknown, and may likely due to interactions of different potential agents; thus, CKD is of multi-factorial origin (CKD-mfo). These factors include, the negative effects from overuse of agrochemicals. Nevertheless, the potential interactions and synergism between probable agents have not been studied. This systematic review discusses the proposed hypotheses and causes of CKD-mfo in Sri Lanka, and ways to decrease the incidence of this disease and to eradicate it, and provide some recommendations. During the past decade, a number of groups have investigated this disorder using different methodologies and reported various correlations, but failed to find a cause. Research has focussed on the contamination of water with heavy metals, agrochemicals, hard water, algae, ionicity, climate change, and so forth. Nevertheless, the levels of any of the pollutants or conditions reported in water in NPC are inconsistent not correlated with the prevalence of the disease, and are too low to be the sole cause of CKD-mfo. Meanwhile, several nephrotoxins prevalent in the region, including medications, leptospirosis, toxic herbs, illicit alcohol, locally grown tobacco, and petrochemicals, as well as the effects of changed habits occured over the past four decades have not been studied to date. Taken together, the geographical distribution and overall findings indicate that

  7. Effects of atrazine on the oxidative damage of kidney in Wister rats

    PubMed Central

    Liu, Wei; Du, Yanwei; Liu, Jian; Wang, Hebin; Sun, Daguang; Liang, Dongmei; Zhao, Lijing; Shang, Jincheng

    2014-01-01

    The environmental persistence and bioaccumulation of herbicide atrazine may pose a significant threat to human health. In this experiment, 4 weeks old female Wister rats were treated by 0, 5, 25 and 125 mg/kg atrazine respectively for 28 days, and the oxidative stress responses as well as the activations of Nrf2 signaling pathway in kidney tissues induced by atrazine were observed. The results showed that after be treated by atrazine, the Blood urea nitrogen (BUN) and creatinine (CREA) levels in serum were increased, the contents of nitric oxide (NO) and malondialdehyde (MDA) in the kidney tissue homogenates were increased, the over-expressed Nrf2 transferred into the nuclei and played an antioxidant role by up-regulated the expression of II phase detoxifying enzymes such as heme oxygenase-1 (HO1) and NAD(P)H quinone oxidoreductase (NQO1) and the expression of antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). PMID:25419354

  8. Pulmonary Phaeohyphomycosis Caused by Phaeoacremonium in a Kidney Transplant Recipient: Successful Treatment with Posaconazole

    PubMed Central

    Monaganti, Saivaralaxmi; Santos, Carlos A. Q.; Markwardt, Andrea; Pence, Morgan A.; Brennan, Daniel C.

    2014-01-01

    We report a rare case of pulmonary phaeohyphomycosis in a 49-year-old woman 6 years after kidney transplantation. She presented with dyspnea, cough, and fatigue. Her chest CT scan revealed nodular opacities in the right upper lung. A fine needle aspirate biopsy culture yielded Phaeoacremonium and surgical pathology of the biopsy showed chronic inflammation. We successfully treated her with posaconazole and managed drug interactions between posaconazole and tacrolimus. This is the second reported case of biopsy-proven pulmonary infection by Phaeoacremonium in a kidney transplant recipient and successfully treated with posaconazole. PMID:24959182

  9. Chelation in metal intoxication. XIV. Comparative effect of thiol and amino chelators on lead-poisoned rats with normal or damaged kidneys

    SciTech Connect

    Tandon, S.K.; Flora, S.J.; Singh, S.

    1985-06-30

    D-Penicillamine (DPA), diethyldithiocarbamate (DDC), L-cysteine, ethylenediaminetetraacetic acid (EDTA), cyclohexylenediaminetetraacetic acid (CDTA), and diethylene triamine pentaacetic acid (DTPA) were compared for their efficacy to enhance urinary excretion of Pb, to reduce Pb concentration of body organs, and to restore the enhanced urinary excretion of delta-aminolevulinic acid (delta-ALA), the inhibited activities of blood delta-ALA dehydratase, and renal enzymes in Pb-administered rats (10 mg/kg, po, 4 weeks) with normal or experimentally damaged kidneys. The acute renal damage was induced by uranyl acetate (3 mg/kg, sc, once) prior to treatment with the chelators (0.3 mmol/kg, ip, twice) and evaluated by enhanced urinary excretion of diagnostic enzymes and inhibition in their renal activities. Among thiol chelators, DPA was the most effective followed by DDC in enhancing the urinary excretion of Pb, reducing the concentration of Pb in blood, kidneys and liver, and in restoring Pb-induced biological alterations in urine, blood, and kidneys. Among amino carboxylic acids, DTPA was the most effective and EDTA and CDTA were about equally potent in countering Pb toxicity. Protection was more marked in animals with normal kidneys than in those with acutely damaged kidneys.

  10. An unexpected cause of acute kidney injury in a patient with ANCA associated vasculitis.

    PubMed

    Choudhry, Wajid M; Nori, Uday S; Nadasdy, Tibor; Satoskar, Anjali A

    2016-05-01

    Diagnostic kidney biopsies sometimes yield clinically unsuspected diagnoses. We present a case of a 69-year-old woman with established ANCA-associated vasculitis (AAV) of 4 years duration who was in clinical remission following cytotoxic therapy and was on maintenance immunosuppression. She presented to the hospital with acute kidney injury (AKI), symptoms suggestive of a systemic vasculitis, and in addition had hypercalcemia, metabolic alkalosis. A relapse in the AAV was suspected but a diagnostic kidney biopsy showed acute tubular necrosis, patchy interstitial inflammation, and calcium phosphate deposits. It was found that the patient recently started consuming large doses of over-the-counter calcium-containing antacids and vitamin Dcontaining multivitamin supplements. Cessation of these drugs led to improvement of renal function to baseline. This case highlights several teaching points: (1) the kidney biopsy can prove to be critically important even in cases where there appears to be a more obvious clinical diagnosis, (2) AK due to calcium-alkali syndrome has characteristic histopathological changes, and (3) that the triad of hypercalcemia, metabolic alkalosis, and AKI is exclusively associated with the ingestion of excessive quantities of calcium-containing antacids. The physician should keep this in mind, and pro-actively seek pertinent medication history from the patient. A brief review of calcium-alkali syndrome is given. PMID:26932179

  11. Fatal Granulomatous Amoebic Encephalitis Caused by Acanthamoeba in a Patient With Kidney Transplant: A Case Report

    PubMed Central

    Salameh, Ahmad; Bello, Nancy; Becker, Jennifer; Zangeneh, Tirdad

    2015-01-01

    Granulomatous amoebic encephalitis (GAE) due to Acanthamoeba is almost a uniformly fatal infection in immune-compromised hosts despite multidrug combination therapy. We report a case of GAE in a female who received a deceased donor kidney graft. She was treated with a combination of miltefosine, pentamidine, sulfadiazine, fluconazole, flucytosine, and azithromycin. PMID:26280011

  12. Cutaneous Alternariosis Caused by Alternaria infectoria: Three Cases in Kidney Transplant Patients.

    PubMed

    Lopes, Leonor; Borges-Costa, João; Soares-Almeida, Luís; Filipe, Paulo; Neves, Fernanda; Santana, Alice; Guerra, José; Kutzner, Heinz

    2013-01-01

    The genus Alternaria has more than 80 species. Alternaria alternata and Alternaria infectoria are the most frequent species associated with infections in humans. Their clinical importance lies in the growing number of cases reported in immunocompromised patients. Herein, we report three cases of kidney-transplanted patients with different clinical presentations of cutaneous alternariosis and we discuss the treatment options. PMID:27429134

  13. Cutaneous Alternariosis Caused by Alternaria infectoria: Three Cases in Kidney Transplant Patients

    PubMed Central

    Lopes, Leonor; Borges-Costa, João; Soares-Almeida, Luís; Filipe, Paulo; Neves, Fernanda; Santana, Alice; Guerra, José; Kutzner, Heinz

    2013-01-01

    The genus Alternaria has more than 80 species. Alternaria alternata and Alternaria infectoria are the most frequent species associated with infections in humans. Their clinical importance lies in the growing number of cases reported in immunocompromised patients. Herein, we report three cases of kidney-transplanted patients with different clinical presentations of cutaneous alternariosis and we discuss the treatment options. PMID:27429134

  14. Delamination and other types of damage of graphite/expoxy composite caused by machining

    SciTech Connect

    Sadat, A.B.

    1995-12-31

    Fibrous composites are often used as preshaped and preformed for the construction of the structures that are small in size and simple in shape. However, for structures that are large in size and have complicated shapes, composite components are usually assembled and joined together. Therefore secondary machining processes such as drilling, sawing, trimming, etc. are often required for assembling and joining composite components. The two major problems that are associated with machining graphite/epoxy composites are (1) damaged machine zone and (2) rapid tool wear. This paper deals with the damaged machine zone caused by drilling and sawing operations. The various types of damage are identified and their cause and origin is explained. In addition, preventing delamination during machining is discussed and the use of a specially made device in preventing delamination in a drilling operation is presented.

  15. COMPARISONS BETWEEN DAMAGES AND MOTION PARAMETERS CAUSED BY THE 2008 IWAT-MIYAGI NAIRIKU EARTHQUAKE

    NASA Astrophysics Data System (ADS)

    Kamiyama, Makoto; Matsukawa, Tadashi; Anazawa, Masahiro

    The 2008 Iwate-Miyagi-Nairiku Earthquake, which hit Iwate, Miyagi and Akita Prefectures in Japan with a JMA magnitude of 7.2 on June 14, 2008, caused various kinds of geotechnical damages in the epicentral area. This paper describes the relations between the permanent displacements of ground and damages of soils mainly including slope failure caused by the earthquake. The permanent displacements of ground were obtained using both the position data of the GEONET system operated with aid of GPS and the displacement records numerically estimated from strong ground motions. It is concluded that the permanent displacement of ground can explain well the geotechnical damages occurred during the earthquake rather than strong motion data such as acceleration amplitude and seismic intensity scale.

  16. Foliar Nutritional Quality Explains Patchy Browsing Damage Caused by an Invasive Mammal

    PubMed Central

    Windley, Hannah R.; Barron, Mandy C.; Holland, E. Penelope; Starrs, Danswell; Ruscoe, Wendy A.; Foley, William J.

    2016-01-01

    Introduced herbivores frequently inflict significant, yet patchy damage on native ecosystems through selective browsing. However, there are few instances where the underlying cause of this patchy damage has been revealed. We aimed to determine if the nutritional quality of foliage could predict the browsing preferences of an invasive mammalian herbivore, the common brushtail possum (Trichosurus vulpecula), in a temperate forest in New Zealand. We quantified the spatial and temporal variation in four key aspects of the foliar chemistry (total nitrogen, available nitrogen, in vitro dry matter digestibility and tannin effect) of 275 trees representing five native tree species. Simultaneously, we assessed the severity of browsing damage caused by possums on those trees in order to relate selective browsing to foliar nutritional quality. We found significant spatial and temporal variation in nutritional quality among individuals of each tree species examined, as well as among tree species. There was a positive relationship between the available nitrogen concentration of foliage (a measure of in vitro digestible protein) and the severity of damage caused by browsing by possums. This study highlights the importance of nutritional quality, specifically, the foliar available nitrogen concentration of individual trees, in predicting the impact of an invasive mammal. Revealing the underlying cause of patchy browsing by an invasive mammal provides new insights for conservation of native forests and targeted control of invasive herbivores in forest ecosystems. PMID:27171381

  17. Crop damage caused by Powdery Mildew on Hop and its relationship to late season management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Powdery mildew of hop (Podosphaera macularis) may cause economic loss due to reductions in cone yield and quality. Quantitative estimates of crop damage from powdery mildew remain poorly characterised, especially the effect of late season disease management on crop yield and quality. Field studies i...

  18. Serum Calcification Propensity Is a Strong and Independent Determinant of Cardiac and All-Cause Mortality in Kidney Transplant Recipients.

    PubMed

    Dahle, D O; Åsberg, A; Hartmann, A; Holdaas, H; Bachtler, M; Jenssen, T G; Dionisi, M; Pasch, A

    2016-01-01

    Calcification of the vasculature is associated with cardiovascular disease and death in kidney transplant recipients. A novel functional blood test measures calcification propensity by quantifying the transformation time (T50 ) from primary to secondary calciprotein particles. Accelerated T50 indicates a diminished ability of serum to resist calcification. We measured T50 in 1435 patients 10 weeks after kidney transplantation during 2000-2003 (first era) and 2009-2012 (second era). Aortic pulse wave velocity (APWV) was measured at week 10 and after 1 year in 589 patients from the second era. Accelerated T50 was associated with diabetes, deceased donor, first transplant, rejection, stronger immunosuppression, first era, higher serum phosphate and lower albumin. T50 was not associated with progression of APWV. During a median follow-up of 5.1 years, 283 patients died, 70 from myocardial infarction, cardiac failure or sudden death. In Cox regression models, accelerated T50 was strongly and independently associated with both all-cause and cardiac mortality, low versus high T50 quartile: hazard ratio 1.60 (95% confidence interval [CI] 1.00-2.57), ptrend   = 0.03, and 3.60 (95% CI 1.10-11.83), ptrend   = 0.02, respectively. In conclusion, calcification propensity (T50 ) was strongly associated with all-cause and cardiac mortality of kidney transplant recipients, potentially via a cardiac nonAPWV-related pathway. Whether therapeutic improvement of T50 improves outcome awaits clarification in a randomized trial. PMID:26375609

  19. Mutations in 12 known dominant disease-causing genes clarify many congenital anomalies of the kidney and urinary tract

    PubMed Central

    Hwang, Daw-Yang; Dworschak, Gabriel C.; Kohl, Stefan; Saisawat, Pawaree; Vivante, Asaf; Hilger, Alina C.; Reutter, Heiko M.; Soliman, Neveen A.; Bogdanovic, Radovan; Kehinde, Elijah O.; Tasic, Velibor; Hildebrandt, Friedhelm

    2014-01-01

    Congenital anomalies of the kidney and urinary tract (CAKUT) account for approximately half of children with chronic kidney disease. CAKUT can be caused by monogenic mutations, however, data are lacking on their frequency. Genetic diagnosis has been hampered by genetic heterogeneity and lack of genotype-phenotype correlation. To determine the percentage of cases with CAKUT that can be explained by mutations in known CAKUT genes, we analyzed the coding exons of the 17 known dominant CAKUT-causing genes in a cohort of 749 individuals from 650 families with CAKUT. The most common phenotypes in this CAKUT cohort were 288 with vesicoureteral reflux, 120 with renal hypodysplasia and 90 with unilateral renal agenesis. We identified 37 different heterozygous mutations (33 novel) in 12 of the 17 known genes in 47 patients from 41 of the 650 families (6.3%). These mutations include (number of families): BMP7 (1), CDC5L (1), CHD1L (5), EYA1 (3), GATA3 (2), HNF1B (6), PAX2 (5), RET (3), ROBO2 (4), SALL1 (9), SIX2 (1), and SIX5 (1). Furthermore, several mutations previously reported to be disease-causing are most likely benign variants. Thus, in a large cohort over 6% of families with isolated CAKUT are caused by a mutation in 12 of 17 dominant CAKUT genes. Our report represents one of the most in-depth diagnostic studies of monogenic causes of isolated CAKUT in children. PMID:24429398

  20. A defect in a novel Nek-family kinase causes cystic kidney disease in the mouse and in zebrafish.

    PubMed

    Liu, Shanming; Lu, Weining; Obara, Tomoko; Kuida, Shiei; Lehoczky, Jennifer; Dewar, Ken; Drummond, Iain A; Beier, David R

    2002-12-01

    The murine autosomal recessive juvenile cystic kidney (jck) mutation results in polycystic kidney disease. We have identified in jck mice a mutation in Nek8, a novel and highly conserved member of the Nek kinase family. In vitro expression of mutated Nek8 results in enlarged, multinucleated cells with an abnormal actin cytoskeleton. To confirm that a defect in the Nek8 gene can cause cystic disease, we performed a cross-species analysis: injection of zebrafish embryos with a morpholino anti-sense oligonucleotide corresponding to the ortholog of Nek8 resulted in the formation of pronephric cysts. These results demonstrate that comparative analysis of gene function in different model systems represents a powerful means to annotate gene function. PMID:12421721

  1. DNA damage and S phase arrest induced by Ochratoxin A in human embryonic kidney cells (HEK 293).

    PubMed

    Yang, Qian; He, Xiaoyun; Li, Xiaohong; Xu, Wentao; Luo, Yunbo; Yang, Xuan; Wang, Yan; Li, Yingcong; Huang, Kunlun

    2014-07-01

    Ochratoxin A (OTA) is a ubiquitous mycotoxin with potential nephrotoxic, hepatotoxic and immunotoxic effects. The mechanisms underlying the nephrotoxicity of OTA remain obscure. To investigate DNA damage and the changes of the cell cycle distribution induced by OTA, human embryonic kidney cells (HEK 293 cells) were incubated with various concentrations of OTA for 24h in vitro. The results indicated that OTA treatment led to the production of reactive oxygen species (ROS) and to a decrease of the mitochondrial membrane potential (ΔΨm). OTA-induced DNA damage in HEK 293 cells was evidenced by DNA comet tails formation and increased expression of γ-H2AX. In addition, OTA could induce cell cycle arrest at the S phase in HEK 293 cells. The expression of key cell cycle regulatory factors that were critical to the S phase, including cyclin A2, cyclin E1, and CDK2, were further detected. The expression of cyclin A2, cyclin E1, and CDK2 were significantly decreased by OTA treatment at both the mRNA and protein levels. The apoptosis of HEK 293 cells after OTA treatment was observed using Hoechst 33342 staining. The results confirmed that OTA did induce apoptosis in HEK 293 cells. In conclusion, our results provided new insights into the molecular mechanisms by which OTA might promote nephrotoxicity. PMID:25847125

  2. Interleukin-1 receptor antagonist inhibits neuronal damage caused by fluid percussion injury in the rat.

    PubMed

    Toulmond, S; Rothwell, N J

    1995-02-13

    Increased expression of the cytokine interleukin-1 (IL-1) has been observed in rodent and human brain after injury, and IL-1 has been implicated in ischaemic and excitotoxic brain damage in the rat. These data suggest that neurodegeneration caused by brain injury may be mediated by local IL-1 production and action. This hypothesis was tested by studying the effects of central injection of recombinant human interleukin-1 receptor antagonist (rhIL-1ra) on brain damage (assessed histologically, H and E stain) induced by fluid percussion trauma in the rat. Injection of rhIL-1ra (10 micrograms, i.c.v.) 15 min and 2, 4, 6, 8, 24 and 48 h after injury significantly reduced, by 44%, the extent of damage measured 3 days later. Similar protection was observed in animals killed 7 days after injury. Delayed administration of rhIL-1ra (4, 6, 8, 24 and 48 h) after injury also significantly reduced (by 28%) neuronal damage. These data indicate that endogenous IL-1 mediates damage caused by traumatic brain injury and that rhIL-1ra offers significant protection even when treatment is delayed. PMID:7743213

  3. Enhanced UV-mediated free radical generation; DNA and mitochondrial damage caused by retinol supplementation.

    PubMed

    Klamt, Fábio; Dal-Pizzol, Felipe; Bernard, Elena Aida; Moreira, José Cláudio Fonseca

    2003-08-01

    Retinoid supplementation has been therapeutically used against various human disorders. We and others have demonstrated that retinol treatment causes free radical generation and increased iron uptake, iron storage and oxidative damage, both in vitro and in vivo. Here, we investigate the possible synergistic effect of retinol on UV-mediated free radical generation, oxidative damage to biomolecules and decreased cellular viability in primary cultured mammalian cells. Retinol treatment (7 microM) resulted in a threefold increase in UV-mediated free radical generation and a 40%, increase in lipoperoxidation. DNA fragmentation and mitochondrial oxidative damage also increased significantly in retinol-supplemented UV-irradiated cultured cells as compared to UV-irradiated control cells, which were only treated with the solvent used to deliver the retinol (0.1% ethanol). All measurements were restored to control values when an iron chelator, 1,10-phenanthroline (100 microM), or an OH* scavenger, mannitol (1 mM), was co-administrated. Rather than protecting against free radical generation, retinol seems to enhance UV-mediated oxidative damage and decreases cellular viability in cultured cells. We suggest that retinol-enhanced iron uptake and storage and increased reactive oxygen species generated by the Fenton reaction may act synergistically with UV-irradiation in causing oxidative damage to cells. PMID:14521222

  4. Analyses of the Secondary Particle Radiation and the DNA Damage it Causes to Human Keratinocytes

    SciTech Connect

    Lebel E. A.; Tafrov S.; Rusek, A.; Sivertz, M. B.; Yip, K.; Thompson, K. H.

    2011-11-01

    High-energy protons, and high mass and energy ions, along with the secondary particles they produce, are the main contributors to the radiation hazard during space explorations. Skin, particularly the epidermis, consisting mainly of keratinocytes with potential for proliferation and malignant transformation, absorbs the majority of the radiation dose. Therefore, we used normal human keratinocytes to investigate and quantify the DNA damage caused by secondary radiation. Its manifestation depends on the presence of retinol in the serum-free media, and is regulated by phosphatidylinositol 3-kinases. We simulated the generation of secondary radiation after the impact of protons and iron ions on an aluminum shield. We also measured the intensity and the type of the resulting secondary particles at two sample locations; our findings agreed well with our predictions. We showed that secondary particles inflict DNA damage to different extents, depending on the type of primary radiation. Low-energy protons produce fewer secondary particles and cause less DNA damage than do high-energy protons. However, both generate fewer secondary particles and inflict less DNA damage than do high mass and energy ions. The majority of cells repaired the initial damage, as denoted by the presence of 53BPI foci, within the first 24 hours after exposure, but some cells maintained the 53BP1 foci longer.

  5. Analyses of the secondary particle radiation and the DNA damage it causes to human keratinocytes

    SciTech Connect

    Lebel E.; Rusek A.; Sivertz, M.; Yip, K.; Thompson, K.; Tafrov, S.

    2011-11-22

    High-energy protons, and high mass and energy ions, along with the secondary particles they produce, are the main contributors to the radiation hazard during space explorations. Skin, particularly the epidermis, consisting mainly of keratinocytes with potential for proliferation and malignant transformation, absorbs the majority of the radiation dose. Therefore, we used normal human keratinocytes to investigate and quantify the DNA damage caused by secondary radiation. Its manifestation depends on the presence of retinol in the serum-free media, and is regulated by phosphatidylinositol 3-kinases. We simulated the generation of secondary radiation after the impact of protons and iron ions on an aluminum shield. We also measured the intensity and the type of the resulting secondary particles at two sample locations; our findings agreed well with our predictions. We showed that secondary particles inflict DNA damage to different extents, depending on the type of primary radiation. Low-energy protons produce fewer secondary particles and cause less DNA damage than do high-energy protons. However, both generate fewer secondary particles and inflict less DNA damage than do high mass and energy ions. The majority of cells repaired the initial damage, as denoted by the presence of 53BPI foci, within the first 24 hours after exposure, but some cells maintained the 53BP1 foci longer.

  6. Example Building Damage Caused by Mining Exploitation in Disturbed Rock Mass

    NASA Astrophysics Data System (ADS)

    Florkowska, Lucyna

    2013-06-01

    Issues concerning protection of buildings against the impact of underground coal mining pose significant scientific and engineering challenges. In Poland, where mining is a potent and prominent industry assuring domestic energy security, regions within reach of mining influences are plenty. Moreover, due to their industrial character they are also densely built-up areas. Because minerals have been extracted on an industrial scale in majority of those areas for many years, the rock mass structure has been significantly disturbed. Hence, exploitation of successive layers of multi-seam deposits might cause considerable damage - both in terms of surface and existing infrastructure networks. In the light of those facts, the means of mining and building prevention have to be improved on a regular basis. Moreover, they have to be underpinned by reliable analyses holistically capturing the comprehensive picture of the mining, geotechnical and constructional situation of structures. Scientific research conducted based on observations and measurements of mining-induced strain in buildings is deployed to do just that. Presented in this paper examples of damage sustained by buildings armed with protection against mining influences give an account of impact the mining exploitation in disturbed rock mass can have. This paper is based on analyses of mining damage to church and Nursing Home owned by Evangelical Augsburg Parish in Bytom-Miechowice. Neighbouring buildings differ in the date they were built, construction, building technology, geometry of the building body and fitted protection against mining damage. Both the buildings, however, have sustained lately significant deformation and damage caused by repeated mining exploitation. Selected damage has been discussed hereunder. The structures have been characterised, their current situation and mining history have been outlined, which have taken their toll on character and magnitude of damage. Description has been supplemented

  7. Management of wildlife causing damage at Argonne National Laboratory-East, DuPage County, Illinois

    SciTech Connect

    1995-04-01

    The DOE, after an independent review, has adopted an Environmental Assessment (EA) prepared by the US Department of Agriculture (USDA) which evaluates use of an Integrated Wildlife Damage Management approach at Argonne National Laboratory-East (ANL-E) in DuPage County, Illinois (April 1995). In 1994, the USDA issued a programmatic Environmental Impact Statement (EIS) that covers nationwide animal damage control activities. The EA for Management of Wildlife Causing Damage at ANL-E tiers off this programmatic EIS. The USDA wrote the EA as a result of DOE`s request to USDA to prepare and implement a comprehensive Wildlife Management Damage Plan; the USDA has authority for animal damage control under the Animal Damage Control Act of 1931, as amended, and the Rural Development, Agriculture and Related Agencies Appropriations Act of 1988. DOE has determined, based on the analysis in the EA, that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an EIS is not required. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact (FONSI).

  8. A potential cause for kidney stone formation during space flights: enhanced growth of nanobacteria in microgravity

    NASA Technical Reports Server (NTRS)

    Ciftcioglu, Neva; Haddad, Ruwaida S.; Golden, D. C.; Morrison, Dennis R.; McKay, David S.

    2005-01-01

    BACKGROUND: Although some information is available regarding the cellular/molecular changes in immune system exposed to microgravity, little is known about the reasons of the increase in the kidney stone formation in astronauts during and/or after long duration missions at zero gravity (0 g). In our earlier studies, we have assessed a unique agent, nanobacteria (NB), in kidney stones and hypothesized that NB have an active role in calcium phosphate-carbonate deposition in kidney. In this research we studied effect of microgravity on multiplication and calcification of NB in vitro. METHODS: We examined NB cultures in High Aspect Rotating Vessels (HARVs) designed at the NASA's Johnson Space Center, which are designed to stimulate some aspects of microgravity. Multiplication rate and calcium phosphate composition of those NB were compared with NB cultured on stationary and shaker flasks. Collected aliquots of the cultures from different incubation periods were analyzed using spectrophotometer, SEM, TEM, EDX, and x-ray diffraction techniques. RESULTS: The results showed that NB multiplied 4.6x faster in HARVs compared to stationary cultures, and 3.2x faster than shaker flask conditions. X-ray diffraction and EDX analysis showed that the degree of apatite crystal formation and the properties of the apatite depend on the specific culture conditions used. CONCLUSION: We now report an increased multiplication rate of NB in microgravity-simulated conditions. Thus, NB infection may have a potential role in kidney stone formation in crew members during space flights. For further proof to this hypothesis, screening of the NB antigen and antibody level in flight crew before and after flight would be necessary.

  9. Combusted but not smokeless tobacco products cause DNA damage in oral cavity cells.

    PubMed

    Gao, Hong; Prasad, G L; Zacharias, Wolfgang

    2014-05-01

    The aim of this work was to investigate genomic DNA damage in human oral cavity cells after exposure to different tobacco product preparations (TPPs). The oral carcinoma cell line 101A, gingival epithelial cells HGEC, and gingival fibroblasts HGF were exposed to TPM (total particulate matter from 3R4F cigarettes), ST/CAS (2S3 smokeless tobacco extract in complete artificial saliva), and NIC (nicotine). Treatments were for 24 h using TPM at its EC-50 doses, ST/CAS and NIC at doses with equi-nicotine units, and high doses for ST/CAS and NIC. Comet assays showed that TPM, but not ST/CAS or NIC, caused substantial DNA breaks in cells; only the high ST/CAS dose caused weak DNA damage. These results were confirmed by immunofluorescence for γ-H2AX protein. These data revealed that the combusted TPP caused substantial DNA damage in all cell types, whereas the two non-combusted TPPs exerted no or only minimal DNA damage. They support epidemiologic evidence on the relative risk associated with consumption of non-combusted versus combusted tobacco products, and help to understand potential genotoxic effects of such products on oral cavity cells. PMID:24780532

  10. [Formation causes of wind damage to Robinia pseudoacacia plantation in Yellow River Delta].

    PubMed

    Cao, Bang-Hua; Zhang, Yu-Juan; Mao, Pei-Li; Li, Cheng-Bo

    2012-08-01

    Based on the investigation of the gale-caused damage to the Robinia pseudoacacia plantation in the Yellow River Delta in June-July 2010, this paper measured the morphological indexes and root system characteristics of fallen trees, gap sizes, and soil compactness, aimed to analyze the formation causes of the wind damage to the plantation. Wind-falling was the main form of the wind damage to the R. pseudoacacia plantation, and the damage was more serious for the trees with the diameter at breast height of 15-20 cm. For the fallen trees, their tree height and their crown width, height, and taper degree increased significantly with the increase of the diameter at breast height, while the height under branch, the ratio of crown width to height, and the ratio of the height under branch to tree height showed no significant change. With the increase of diameter class, root length had a rapid increase first but a slow increase then, while root mass increased gradually. With increasing forest gap area, the number of fallen trees decreased after an initial increase, being the maximum in the gap areas of 100-150 m2. Soil compactness increased with soil depth, but did not show significant changes with the stand diameter class. Increased tree shape factors and suppressed root growth resulting from the increased diameter could be the main factors causing wind-falling, and forest gap played a promotion role. PMID:23189678

  11. Remote conditioning or erythropoietin before surgery primes kidneys to clear ischemia-reperfusion-damaged cells: a renoprotective mechanism?

    PubMed

    Gardner, David S; Welham, Simon J M; Dunford, Louise J; McCulloch, Thomas A; Hodi, Zsolt; Sleeman, Philippa; O'Sullivan, Saoirse; Devonald, Mark A J

    2014-04-15

    Acute kidney injury is common, serious with no specific treatment. Ischemia-reperfusion is a common cause of acute kidney injury (AKI). Clinical trials suggest that preoperative erythropoietin (EPO) or remote ischemic preconditioning may have a renoprotective effect. Using a porcine model of warm ischemia-reperfusion-induced AKI (40-min bilateral cross-clamping of renal arteries, 48-h reperfusion), we examined the renoprotective efficacy of EPO (1,000 iu/kg iv.) or remote ischemic preconditioning (3 cycles, 5-min inflation/deflation to 200 mmHg of a hindlimb sphygmomanometer cuff). Ischemia-reperfusion induced significant kidney injury at 24 and 48 h (χ(2), 1 degree of freedom, >10 for 6/7 histopathological features). At 2 h, a panel of biomarkers including plasma creatinine, neutrophil gelatinase-associated lipocalin, and IL-1β, and urinary albumin:creatinine could be used to predict histopathological injury. Ischemia-reperfusion increased cell proliferation and apoptosis in the renal cortex but, for pretreated groups, the apoptotic cells were predominantly intratubular rather than interstitial. At 48-h reperfusion, plasma IL-1β and the number of subcapsular cells in G2-M arrest were reduced after preoperative EPO, but not after remote ischemic preconditioning. These data suggest an intrarenal mechanism acting within cortical cells that may underpin a renoprotective function for preoperative EPO and, to a limited extent, remote ischemic preconditioning. Despite equivocal longer-term outcomes in clinical studies investigating EPO as a renoprotective agent in AKI, optimal clinical dosing and administration have not been established. Our data suggest further clinical studies on the potential renoprotective effect of EPO and remote ischemic preconditioning are justified. PMID:24523383

  12. Screw insertion in trabecular bone causes peri-implant bone damage.

    PubMed

    Steiner, Juri A; Ferguson, Stephen J; van Lenthe, G Harry

    2016-04-01

    Secure fracture fixation is still a major challenge in orthopedic surgery, especially in osteoporotic bone. While numerous studies have investigated the effect of implant loading on the peri-implant bone after screw insertion, less focus has been put on bone damage that may occur due to the screw insertion process itself. Therefore, the aim of this study was to localize and quantify peri-implant bone damage caused by screw insertion. We used non-invasive three-dimensional micro-computed tomography to scan twenty human femoral bone cores before and after screw insertion. After image registration of the pre- and post-insertion scans, changes in the bone micro-architecture were identified and quantified. This procedure was performed for screws with a small thread size of 0.3mm (STS, N=10) and large thread size of 0.6mm (LTS, N=10). Most bone damage occurred within a 0.3mm radial distance of the screws. Further bone damage was observed up to 0.6mm and 0.9mm radial distance from the screw, for the STS and LTS groups, respectively. While a similar amount of bone damage was found within a 0.3mm radial distance for the two screw groups, there was significantly more bone damage for the LTS group than the STS group in volumes of interest between 0.3-0.6mm and 0.6-0.9mm. In conclusion, this is the first study to localize and quantify peri-implant bone damage caused by screw insertion based on a non-invasive, three-dimensional, micro-CT imaging technique. We demonstrated that peri-implant bone damage already occurs during screw insertion. This should be taken into consideration to further improve primary implant stability, especially in low quality osteoporotic bone. We believe that this technique could be a promising method to assess more systematically the effect of peri-implant bone damage on primary implant stability. Furthermore, including peri-implant bone damage due to screw insertion into patient-specific in silico models of implant-bone systems could improve the

  13. Meta-analysis of attitudes toward damage-causing mammalian wildlife.

    PubMed

    Kansky, Ruth; Kidd, Martin; Knight, Andrew T

    2014-08-01

    Many populations of threatened mammals persist outside formally protected areas, and their survival depends on the willingness of communities to coexist with them. An understanding of the attitudes, and specifically the tolerance, of individuals and communities and the factors that determine these is therefore fundamental to designing strategies to alleviate human-wildlife conflict. We conducted a meta-analysis to identify factors that affected attitudes toward 4 groups of terrestrial mammals. Elephants (65%) elicited the most positive attitudes, followed by primates (55%), ungulates (53%), and carnivores (44%). Urban residents presented the most positive attitudes (80%), followed by commercial farmers (51%) and communal farmers (26%). A tolerance to damage index showed that human tolerance of ungulates and primates was proportional to the probability of experiencing damage while elephants elicited tolerance levels higher than anticipated and carnivores elicited tolerance levels lower than anticipated. Contrary to conventional wisdom, experiencing damage was not always the dominant factor determining attitudes. Communal farmers had a lower probability of being positive toward carnivores irrespective of probability of experiencing damage, while commercial farmers and urban residents were more likely to be positive toward carnivores irrespective of damage. Urban residents were more likely to be positive toward ungulates, elephants, and primates when probability of damage was low, but not when it was high. Commercial and communal farmers had a higher probability of being positive toward ungulates, primates, and elephants irrespective of probability of experiencing damage. Taxonomic bias may therefore be important. Identifying the distinct factors explaining these attitudes and the specific contexts in which they operate, inclusive of the species causing damage, will be essential for prioritizing conservation investments. PMID:24661270

  14. Proximal fiber tip damage during Holmium:YAG and thulium fiber laser ablation of kidney stones

    NASA Astrophysics Data System (ADS)

    Wilson, Christopher R.; Hardy, Luke A.; Irby, Pierce B.; Fried, Nathaniel M.

    2016-02-01

    The Thulium fiber laser (TFL) is being studied as an alternative to Holmium:YAG laser for lithotripsy. TFL beam originates within an 18-μm-core thulium doped silica fiber, and its near single mode, Gaussian beam profile enables transmission of higher laser power through smaller fibers than possible during Holmium laser lithotripsy. This study examines whether TFL beam profile also reduces proximal fiber tip damage compared to Holmium laser multimodal beam. TFL beam at wavelength of 1908 nm was coupled into 105-μm-core silica fibers, with 35-mJ energy, 500-μs pulse duration, and pulse rates of 50-500 Hz. For each pulse rate, 500,000 pulses were delivered. Magnified images of proximal fiber surfaces were taken before and after each trial. For comparison, 20 single-use, 270-μm-core fibers were collected after clinical Holmium laser lithotripsy procedures using standard settings (600 mJ, 350 μs, 6 Hz). Total laser energy, number of laser pulses, and laser irradiation time were recorded, and fibers were rated for damage. For TFL studies, output power was stable, and no proximal fiber damage was observed after delivery of 500,000 pulses at settings up to 35 mJ, 500 Hz, and 17.5 W average power. In contrast, confocal microscopy images of fiber tips after Holmium lithotripsy showed proximal fiber tip degradation in all 20 fibers. The proximal fiber tip of a 105-μm-core fiber transmitted 17.5 W of TFL power without degradation, compared to degradation of 270-μm-core fibers after transmission of 3.6 W of Holmium laser power. The smaller and more uniform TFL beam profile may improve fiber lifetime, and potentially reduce costs for the surgical disposables as well.

  15. Testicular necrosis and DNA damage caused by deuterated and methylated analogs of 1,2-dibromo-3-chloropropane in the rat

    SciTech Connect

    Soderlund, E.J.; Brunborg, G.; Omichinski, J.G.; Holme, J.A.; Dahl, J.E.; Nelson, S.D.; Dybing, E.

    1988-07-01

    To study the role of metabolism in 1,2-dibromo-3-chloropropane (DBCP)-induced testicular damage in rats, selectively deuterated and methylated analogs of DBCP were given as a single ip dose of 340 mumol/kg and testicular toxicity was determined 10 days after treatment. None of the four deuterated analogs C1-D2-, C2-D1-, C3-D2-, or C1-C2-C3-D5-DBCP reduced the degree of testicular damage compared to DBCP, indicating that metabolic cleavage of a C-H bond was not rate-limiting in DBCP-induced testicular toxicity. Of the five methylated analogs, C1-methyl-, C1-dimethyl-, C2-methyl-, and C3-methyl-DBCP and 1,2-dibromo-4-chlorobutane, only C3-methyl-DBCP caused testicular toxicity. DBCP treatment resulted in increased testicular DNA damage at doses of 85-170 mumol/kg as measured by alkaline elution of DNA from testicular cells isolated 3 hr after in vivo treatment. The perdeutero-DBCP analog induced testicular DNA damage that was at least as extensive as that induced by DBCP. Of the methylated analogs tested, only C3-methyl-DBCP gave a marked dose-dependent increase in testicular DNA damage between 170 and 540 mumol/kg. There were no significant differences in the testicular tissue distribution between DBCP, perdeutero-DBCP, and the methylated DBCP analogs. Furthermore, in distribution studies with DBCP, C1-methyl- and C3-methyl-DBCP, and 1,2-dibromo-4-chlorobutane, the highest tissue concentrations were found in the kidneys, followed by the liver and then the testes. The fact that testicular DNA damage of DBCP and its deuterated and methylated analogs paralleled their ability to cause testicular necrosis and atrophy makes measurement of DNA damage a very useful correlate in mechanistic studies of DBCP-induced testicular cell death.

  16. Testicular necrosis and DNA damage caused by deuterated and methylated analogs of 1,2-dibromo-3-chloropropane in the rat.

    PubMed

    Søderlund, E J; Brunborg, G; Omichinski, J G; Holme, J A; Dahl, J E; Nelson, S D; Dybing, E

    1988-07-01

    To study the role of metabolism in 1,2-dibromo-3-chloropropane (DBCP)-induced testicular damage in rats, selectively deuterated and methylated analogs of DBCP were given as a single ip dose of 340 mumol/kg and testicular toxicity was determined 10 days after treatment. None of the four deuterated analogs C1-D2-, C2-D1-, C3-D2-, or C1-C2-C3-D5-DBCP reduced the degree of testicular damage compared to DBCP, indicating that metabolic cleavage of a C-H bond was not rate-limiting in DBCP-induced testicular toxicity. Of the five methylated analogs, C1-methyl-, C1-dimethyl-, C2-methyl-, and C3-methyl-DBCP and 1,2-dibromo-4-chlorobutane, only C3-methyl-DBCP caused testicular toxicity. DBCP treatment resulted in increased testicular DNA damage at doses of 85-170 mumol/kg as measured by alkaline elution of DNA from testicular cells isolated 3 hr after in vivo treatment. The perdeutero-DBCP analog induced testicular DNA damage that was at least as extensive as that induced by DBCP. Of the methylated analogs tested, only C3-methyl-DBCP gave a marked dose-dependent increase in testicular DNA damage between 170 and 540 mumol/kg. There were no significant differences in the testicular tissue distribution between DBCP, perdeutero-DBCP, and the methylated DBCP analogs. Furthermore, in distribution studies with DBCP, C1-methyl- and C3-methyl-DBCP, and 1,2-dibromo-4-chlorobutane, the highest tissue concentrations were found in the kidneys, followed by the liver and then the testes. The fact that testicular DNA damage of DBCP and its deuterated and methylated analogs paralleled their ability to cause testicular necrosis and atrophy makes measurement of DNA damage a very useful correlate in mechanistic studies of DBCP-induced testicular cell death. PMID:3400095

  17. White and dark kidney beans reduce colonic mucosal damage and inflammation in response to dextran sodium sulfate.

    PubMed

    Monk, Jennifer M; Zhang, Claire P; Wu, Wenqing; Zarepoor, Leila; Lu, Jenifer T; Liu, Ronghua; Pauls, K Peter; Wood, Geoffrey A; Tsao, Rong; Robinson, Lindsay E; Power, Krista A

    2015-07-01

    Common beans are a rich source of nondigestible fermentable components and phenolic compounds that have anti-inflammatory effects. We assessed the gut-health-promoting potential of kidney beans in healthy mice and their ability to attenuate colonic inflammation following dextran sodium sulphate (DSS) exposure (via drinking water, 2% DSS w/v, 7 days). C57BL/6 mice were fed one of three isocaloric diets: basal diet control (BD), or BD supplemented with 20% cooked white (WK) or dark red kidney (DK) bean flour for 3 weeks. In healthy mice, anti-inflammatory microbial-derived cecal short chain fatty acid (SCFA) levels (acetate, butyrate and propionate), colon crypt height and colonic Mucin 1 (MUC1) and Resistin-like Molecule beta (Relmβ) mRNA expression all increased in WK- and DK-fed mice compared to BD, indicative of enhanced microbial activity, gut barrier integrity and antimicrobial defense response. During colitis, both bean diets reduced (a) disease severity, (b) colonic histological damage and (c) increased mRNA expression of antimicrobial and barrier integrity-promoting genes (Toll-like Receptor 4 (TLR4), MUC1-3, Relmβ and Trefoil Factor 3 (TFF3)) and reduced proinflammatory mediator expression [interleukin (IL)-1β, IL-6, interferon (IFN)γ, tumor necrosis factor (TNF)α and monocyte chemoattractant protein-1], which correlated with reduced colon tissue protein levels. Further, bean diets exerted a systemic anti-inflammatory effect during colitis by reducing serum levels of IL-17A, IFNγ, TNFα, IL-1β and IL-6. In conclusion, both WK and DK bean-supplemented diets enhanced microbial-derived SCFA metabolite production, gut barrier integrity and the microbial defensive response in the healthy colon, which supported an anti-inflammatory phenotype during colitis. Collectively, these data demonstrate a beneficial colon-function priming effect of bean consumption that mitigates colitis severity. PMID:25841250

  18. Identification of high-risk population and prevalence of kidney damage among asymptomatic central government employees in Delhi, India.

    PubMed

    Mahapatra, Himanshu Sekhar; Gupta, Yadunanandan Prasad; Sharma, Neera; Buxi, Gurdeep

    2016-03-01

    Chronic kidney disease (CKD) has attained epidemic proportions in India due to increased incidence of diabetes and hypertension (HTN). It was surmised that identification of only high-risk groups (HRGs) through a questionnaire would be sufficient to identify cases of kidney damage (KD). The study attempted to device a questionnaire to classify the subjects in to HRG and low-risk group (LRG) and assess the extent of early KD. The central government employees were classified into HRG and LRG based on "SCreening for Occult REnal Disease (SCORED)" and "EXTENDED" questionnaire formulated after addition of 10 more parameters apart from diabetes and HTN. Urine examination by dipstick, quantitative microalbumin, serum creatinine, and estimated glomerular filtration rate were assessed to determine KD. The data were analyzed for risk-group classification. Sensitivity was calculated based on the number of KD cases in the HRG. Of the 1104 employees screened, 58% and 42% were classified in HRG and LRG, respectively. There were 306 KD cases of whom, 65% were in the HRG. The sensitivity of the EXTENDED questionnaire to detect CKD was much higher (60%) compared to the SCORED questionnaire (25%). The prevalence of KD according to stage was: stage-1, 13.4%; stage-2, 9.9%; and late stages (3, 4, and 5), 4.5%. Microalbuminuria and dipstick-positive proteinuria showed statistically higher proportion in the HRG (25% and 4.1%) than in the LRG (19% and 1%, respectively) (P <0.05). Although the EXTENDED questionnaire was more sensitive in detecting KD, only screening the high-risk population will leave behind 35% of KD cases. There is, therefore, a need for mass screening at regular intervals. PMID:26997392

  19. Vitamin E protects against the mitochondrial damage caused by cyclosporin A in LLC-PK1 cells

    SciTech Connect

    Arriba, G. de Perez de Hornedo, J.; Ramirez Rubio, S.; Calvino Fernandez, M.; Benito Martinez, S.; Maiques Camarero, M.; Parra Cid, T.

    2009-09-15

    Cyclosporin A (CsA) has nephrotoxic effects known to involve reactive oxygen species (ROS), since antioxidants prevent the kidney damage induced by this drug. Given that mitochondria are among the main sources of intracellular ROS, the aims of our study were to examine the mitochondrial effects of CsA in the porcine renal endothelial cell line LLC-PK1 and the influence of the antioxidant Vitamin E (Vit E). Following the treatment of LLC-PK1 cells with CsA, we assessed the mitochondrial synthesis of superoxide anion, permeability transition pore opening, mitochondrial membrane potential, cardiolipin peroxidation, cytochrome c release and cellular apoptosis, using flow cytometry and confocal microscopy procedures. Similar experiments were done after Vit E preincubation of cells. CsA treatment increased superoxide anion in a dose-dependent way. CsA opened the permeability transition pores, caused Bax migration to mitochondria, and decreased mitochondrial membrane potential and cardiolipin content. Also CsA released cytochrome c into cytosol and provoked cellular apoptosis. Vit E pretreatment inhibited the effects that CsA induced on mitochondrial structure and function in LLC-PK1 cells and avoided apoptosis. CsA modifies mitochondrial LLC-PK1 cell physiology with loss of negative electrochemical gradient across the inner mitochondrial membrane and increased lipid peroxidation. These features are related to apoptosis and can explain the cellular damage that CsA induces. As Vit E inhibited these effects, our results suggest that they were mediated by an increase in ROS production by mitochondria.

  20. Exposure to silica nanoparticles causes reversible damage of the spermatogenic process in mice.

    PubMed

    Xu, Ying; Wang, Na; Yu, Yang; Li, Yang; Li, Yan-Bo; Yu, Yong-Bo; Zhou, Xian-Qing; Sun, Zhi-Wei

    2014-01-01

    Environmental exposure to nanomaterials is inevitable, as nanomaterials have become part of our daily life now. In this study, we firstly investigated the effects of silica nanoparticles on the spermatogenic process according to their time course in male mice. 48 male mice were randomly divided into control group and silica nanoparticle group with 24 mice per group, with three evaluation time points (15, 35 and 60 days after the first dose) per group. Mice were exposed to the vehicle control and silica nanoparticles at a dosage of 20 mg/kg every 3 days, five times over a 13-day period, and were sacrificed at 15, 35 and 60 days after the first dose. The results showed that silica nanoparticles caused damage to the mitochondrial cristae and decreased the levels of ATP, resulting in oxidative stress in the testis by days 15 and 35; however, the damage was repaired by day 60. DNA damage and the decreases in the quantity and quality of epididymal sperm were found by days 15 and 35; but these changes were recovered by day 60. In contrast, the acrosome integrity and fertility in epididymal sperm, the numbers of spermatogonia and sperm in the testes, and the levels of three major sex hormones were not significantly affected throughout the 60-day period. The results suggest that nanoparticles can cause reversible damage to the sperms in the epididymis without affecting fertility, they are more sensitive than both spermatogonia and spermatocytes to silica nanoparticle toxicity. Considering the spermatogenesis time course, silica nanoparticles primarily influence the maturation process of sperm in the epididymis by causing oxidative stress and damage to the mitochondrial structure, resulting in energy metabolism dysfunction. PMID:25003337

  1. Nutcrackerlike Phenomenon Is An Unusual Cause for Gross Hematuria After a Kidney Graft.

    PubMed

    Salehipour, Mehdi; Kazemi, Kourosh; Shamsaeefar, Ali; Hekmati, Pooya; Sanaei, Ahmad Khalid; Bahador, Ali; Aliakbarian, Mohsen; Malek Hosseini, Seyed Ali

    2016-02-01

    Nutcracker phenomenon is the condition that occurs most commonly at the morphologic type by compression of the left renal vein between the aorta and superior mesenteric artery. The diagnosis is often delayed because of the variability in manifestations and absence of consensus on diagnostic criteria. We report a 30-year-old woman who presented gross hematuria several days after a kidney transplant. Nutcracker syndrome was established intraoperatively during open surgical approach for bladder clot evacuation. Renal repositioning was done with relief in the degree of hematuria intraoperatively. No episode of gross hematuria was observed on follow-up after 8 months. PMID:24919128

  2. MCPIP is induced by cholesterol and participated in cholesterol-caused DNA damage in HUVEC

    PubMed Central

    Da, Jingjing; Zhuo, Ming; Qian, Minzhang

    2015-01-01

    Hypercholesterolemia is an important risk factor for atherosclerosis and cholesterol treatment would cause multiple damages, including DNA damage, on endothelial cells. In this work, we have used human umbilical vein endothelial cell line (HUVEC) to explore the mechanism of cholesterol induced damage. We have found that cholesterol treatment on HUVEC could induce the expression of MCPIP1. When given 12.5 mg/L cholesterol on HUVEC, the expression of MCPIP1 starts to increase since 4 hr after treatment and at 24 hr after treatment it could reach to 10 fold of base line level. We hypothesis this induction of MCPIP1 may contribute to the damaging process and we have used siRNA of MCPIP1 in further research. This MCPIP1 siRNA (siMCPIP) could down regulate MCPIP1 by 73.4% and when using this siRNA on HUVECs, we could see the cholesterol induced DNA damage have been reduced. We have detected DNA damage by γH2AX foci formation in nuclear, γH2AX protein level and COMET assay. Compare to cholesterol alone group, siMCPIP group shows much less γH2AX foci formation in nuclear after cholesterol treatment, less γH2AX protein level in cell and also less tail moment detected in COMET assay. We have also seen that using siMCPIP1 could result in less reactive oxygen species (ROS) in cell after cholesterol treatment. We have also seen that using siMCPIP could reduce the protein level of Nox4 and p47phox, two major regulators in ROS production. These results suggest that MCPIP1 may play an important role in cholesterol induced damage. PMID:26617772

  3. Caffeic Acid Phenethyl Ester as a Protective Agent against Nephrotoxicity and/or Oxidative Kidney Damage: A Detailed Systematic Review

    PubMed Central

    Akyol, Sumeyya; Ugurcu, Veli; Altuntas, Aynur; Hasgul, Rukiye; Cakmak, Ozlem

    2014-01-01

    Caffeic acid phenethyl ester (CAPE), an active component of propolis, has been attracting the attention of different medical and pharmaceutical disciplines in recent years because of its antioxidant, anti-inflammatory, antiproliferative, cytotoxic, antiviral, antifungal, and antineoplastic properties. One of the most studied organs for the effects of CAPE is the kidney, particularly in the capacity of this ester to decrease the nephrotoxicity induced by several drugs and the oxidative injury after ischemia/reperfusion (I/R). In this review, we summarized and critically evaluated the current knowledge regarding the protective effect of CAPE in nephrotoxicity induced by several special medicines such as cisplatin, doxorubicin, cyclosporine, gentamycin, methotrexate, and other causes leading to oxidative renal injury, namely, I/R models and senility. PMID:25003138

  4. Testing for Kidney Disease

    MedlinePlus

    ... Education Program > Learn About Kidney Disease > What Causes Kidney Disease? > Testing for Kidney Disease | Share External Link Disclaimer What ... from our online catalog . Alternate Language URL Español Testing for Kidney Disease Page Content Early kidney disease usually does not ...

  5. Thrombotic microangiopathy caused by oral contraceptives in a kidney transplant recipient.

    PubMed

    Shirai, Hiroyuki; Yashima, Jun; Tojimbara, Tamotsu; Honda, Kazuho

    2016-07-01

    Thrombotic microangiopathy (TMA) after kidney transplantation has various aetiologies, including acute antibody-mediated rejection, bacterial or viral infection and immunosuppressive drugs, particularly calcineurin inhibitors. We present the case of a 28-year-old woman who developed TMA 30 months after the transplantation of an ABO-incompatible kidney from a living unrelated donor. The patient developed a sudden onset of allograft renal dysfunction and became uremic. She was transferred to our institution from a community hospital with strongly suspected acute allograft rejection. Intensive treatments for both T- and B-cell mediated acute rejection, including steroid pulse therapy, double-filtration plasmapheresis, antithymocyte globulin (1.5 mg/kg × 14 days) and rituximab (100 mg), were initiated during haemodialysis. However, her renal allograft function did not improve. Histopathological analysis 8 days after the treatment indicated TMA, despite the absence of apparent acute T-cell- or acute antibody-mediated rejection. There were no symptoms of infectious diseases, such as intestinal haemorrhagic colitis or viral infection. We concluded that the use of oral contraceptives, which had been initiated 3 weeks before TMA onset for the treatment of irregular vaginal bleeding, was the aetiologic agent. PMID:26970708

  6. Nitrative and oxidative DNA damage caused by K-ras mutation in mice

    SciTech Connect

    Ohnishi, Shiho; Saito, Hiromitsu; Suzuki, Noboru; Ma, Ning; Hiraku, Yusuke; Murata, Mariko; Kawanishi, Shosuke

    2011-09-23

    Highlights: {yields} Mutated K-ras in transgenic mice caused nitrative DNA damage, 8-nitroguanine. {yields} The mutagenic 8-nitroguanine seemed to be generated by iNOS via Ras-MAPK signal. {yields} Mutated K-ras produces additional mutagenic lesions, as a new oncogenic role. -- Abstract: Ras mutation is important for carcinogenesis. Carcinogenesis consists of multi-step process with mutations in several genes. We investigated the role of DNA damage in carcinogenesis initiated by K-ras mutation, using conditional transgenic mice. Immunohistochemical analysis revealed that mutagenic 8-nitroguanine and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) were apparently formed in adenocarcinoma caused by mutated K-ras. 8-Nitroguanine was co-localized with iNOS, eNOS, NF-{kappa}B, IKK, MAPK, MEK, and mutated K-ras, suggesting that oncogenic K-ras causes additional DNA damage via signaling pathway involving these molecules. It is noteworthy that K-ras mutation mediates not only cell over-proliferation but also the accumulation of mutagenic DNA lesions, leading to carcinogenesis.

  7. Depletion of the cellular antioxidant system contributes to tenofovir disoproxil fumarate - induced mitochondrial damage and increased oxido-nitrosative stress in the kidney

    PubMed Central

    2013-01-01

    Background Nephrotoxicity is a dose limiting side effect of tenofovir, a reverse transcriptase inhibitor that is used for the treatment of HIV infection. The mechanism of tenofovir nephrotoxicity is not clear. Tenofovir is specifically toxic to the proximal convoluted tubules and proximal tubular mitochondria are the targets of tenofovir cytotoxicity. Damaged mitochondria are major sources of reactive oxygen species and cellular damage is reported to occur after the antioxidants are depleted. The purpose of the study is to investigate the alterations in cellular antioxidant system in tenofovir induced renal damage using a rat model. Results Chronic tenofovir administration to adult Wistar rats resulted in proximal tubular damage (as evidenced by light microscopy), proximal tubular dysfunction (as shown by Fanconi syndrome and tubular proteinuria), and extensive proximal tubular mitochondrial injury (as revealed by electron microscopy). A 50% increase in protein carbonyl content was observed in the kidneys of TDF treated rats as compared with the control. Reduced glutathione was decreased by 50%. The activity of superoxide dismutase was decreased by 57%, glutathione peroxidase by 45%, and glutathione reductase by 150% as compared with control. Carbonic Anhydrase activity was decreased by 45% in the TDF treated rat kidneys as compared with control. Succinate dehydrogenase activity, an indicator of mitochondrial activity was decreased by 29% in the TDF treated rat kidneys as compared with controls, suggesting mitochondrial dysfunction. Conclusion Tenofovir- induced mitochondrial damage and increased oxidative stress in the rat kidneys may be due to depletion of the antioxidant system particularly, the glutathione dependent system and MnSOD. PMID:23957306

  8. Uncommon cause of chest pain in a renal transplantation patient with autosomal dominant polycystic kidney disease: a case report.

    PubMed

    Rodrigues, L; Neves, M; Machado, S; Sá, H; Macário, F; Alves, R; Mota, A; Campos, M

    2012-10-01

    Autosomal dominant polycystic kidney disease (ADPKD) is a common cause of end-stage renal disease (ESRD) and, because of its intrinsic systemic involvement, its treatment can be a medical and surgical challenge. This condition is often associated with the presence of hepatic cysts and their prevalence generally increases with age. Most patients remain asymptomatic, but some of these will develop complications associated with enlargement and infection of their cysts. Chest pain is a rare manifestation of these complications and, after exclusion of more common cardiovascular and pulmonary causes, should raise the suspicion of an infected hepatic cyst in these patients. We report the case of a 62-year-old male who underwent a kidney transplantation from a cadaveric donor in 1997 (etiology of the ESRD was ADPKD), and was admitted to the emergency department with complaints of chest pain radiating to both shoulders and the interscapular region. An echocardiogram was showed compression of the right atrium by a large liver cyst without associated ventricular dysfunction. Computer tomography-guided drainage of the cyst was performed and an Enterobacter aerogenes sensitive to carbamapenemes was isolated from respective cultures. The patient presented a favorable clinical outcome with prolonged administration of antibiotic therapy according to the antibiotic susceptibility testing. There was no need for surgical intervention. PMID:23026633

  9. Deficiency of antidiuretic hormone: a rare cause of massive polyuria after kidney transplantation

    PubMed Central

    Jang, Kyung Mi; Sohn, Young Soo; Hwang, Young Ju; Choi, Bong Seok

    2016-01-01

    A 15-year-old boy, who was diagnosed with Alport syndrome and end-stage renal disease, received a renal transplant from a living-related donor. On postoperative day 1, his daily urine output was 10,000 mL despite normal graft function. His laboratory findings including urine, serum osmolality, and antidiuretic hormone levels showed signs similar to central diabetes insipidus, so he was administered desmopressin acetate nasal spray. After administering the desmopressin, urine specific gravity and osmolality increased abruptly, and daily urine output declined to the normal range. The desmopressin acetate was tapered gradually and discontinued 3 months later. Graft function was good, and urine output was maintained within the normal range without desmopressin 20 months after the transplantation. We present a case of a massive polyuria due to transient deficiency of antidiuretic hormone with the necessity of desmopressin therapy immediately after kidney transplantation in a pediatric patient. PMID:27186232

  10. Deficiency of antidiuretic hormone: a rare cause of massive polyuria after kidney transplantation.

    PubMed

    Jang, Kyung Mi; Sohn, Young Soo; Hwang, Young Ju; Choi, Bong Seok; Cho, Min Hyun

    2016-04-01

    A 15-year-old boy, who was diagnosed with Alport syndrome and end-stage renal disease, received a renal transplant from a living-related donor. On postoperative day 1, his daily urine output was 10,000 mL despite normal graft function. His laboratory findings including urine, serum osmolality, and antidiuretic hormone levels showed signs similar to central diabetes insipidus, so he was administered desmopressin acetate nasal spray. After administering the desmopressin, urine specific gravity and osmolality increased abruptly, and daily urine output declined to the normal range. The desmopressin acetate was tapered gradually and discontinued 3 months later. Graft function was good, and urine output was maintained within the normal range without desmopressin 20 months after the transplantation. We present a case of a massive polyuria due to transient deficiency of antidiuretic hormone with the necessity of desmopressin therapy immediately after kidney transplantation in a pediatric patient. PMID:27186232

  11. Copy-Number Disorders Are a Common Cause of Congenital Kidney Malformations

    PubMed Central

    Sanna-Cherchi, Simone; Kiryluk, Krzysztof; Burgess, Katelyn E.; Bodria, Monica; Sampson, Matthew G.; Hadley, Dexter; Nees, Shannon N.; Verbitsky, Miguel; Perry, Brittany J.; Sterken, Roel; Lozanovski, Vladimir J.; Materna-Kiryluk, Anna; Barlassina, Cristina; Kini, Akshata; Corbani, Valentina; Carrea, Alba; Somenzi, Danio; Murtas, Corrado; Ristoska-Bojkovska, Nadica; Izzi, Claudia; Bianco, Beatrice; Zaniew, Marcin; Flogelova, Hana; Weng, Patricia L.; Kacak, Nilgun; Giberti, Stefania; Gigante, Maddalena; Arapovic, Adela; Drnasin, Kristina; Caridi, Gianluca; Curioni, Simona; Allegri, Franca; Ammenti, Anita; Ferretti, Stefania; Goj, Vinicio; Bernardo, Luca; Jobanputra, Vaidehi; Chung, Wendy K.; Lifton, Richard P.; Sanders, Stephan; State, Matthew; Clark, Lorraine N.; Saraga, Marijan; Padmanabhan, Sandosh; Dominiczak, Anna F.; Foroud, Tatiana; Gesualdo, Loreto; Gucev, Zoran; Allegri, Landino; Latos-Bielenska, Anna; Cusi, Daniele; Scolari, Francesco; Tasic, Velibor; Hakonarson, Hakon; Ghiggeri, Gian Marco; Gharavi, Ali G.

    2012-01-01

    We examined the burden of large, rare, copy-number variants (CNVs) in 192 individuals with renal hypodysplasia (RHD) and replicated findings in 330 RHD cases from two independent cohorts. CNV distribution was significantly skewed toward larger gene-disrupting events in RHD cases compared to 4,733 ethnicity-matched controls (p = 4.8 × 10−11). This excess was attributable to known and novel (i.e., not present in any database or in the literature) genomic disorders. All together, 55/522 (10.5%) RHD cases harbored 34 distinct known genomic disorders, which were detected in only 0.2% of 13,839 population controls (p = 1.2 × 10−58). Another 32 (6.1%) RHD cases harbored large gene-disrupting CNVs that were absent from or extremely rare in the 13,839 population controls, identifying 38 potential novel or rare genomic disorders for this trait. Deletions at the HNF1B locus and the DiGeorge/velocardiofacial locus were most frequent. However, the majority of disorders were detected in a single individual. Genomic disorders were detected in 22.5% of individuals with multiple malformations and 14.5% of individuals with isolated urinary-tract defects; 14 individuals harbored two or more diagnostic or rare CNVs. Strikingly, the majority of the known CNV disorders detected in the RHD cohort have previous associations with developmental delay or neuropsychiatric diseases. Up to 16.6% of individuals with kidney malformations had a molecular diagnosis attributable to a copy-number disorder, suggesting kidney malformations as a sentinel manifestation of pathogenic genomic imbalances. A search for pathogenic CNVs should be considered in this population for the diagnosis of their specific genomic disorders and for the evaluation of the potential for developmental delay. PMID:23159250

  12. Amphetamine exposure imbalanced antioxidant activity in the bivalve Dreissena polymorpha causing oxidative and genetic damage.

    PubMed

    Parolini, Marco; Magni, Stefano; Castiglioni, Sara; Binelli, Andrea

    2016-02-01

    Illicit drugs have been recognized as emerging aquatic pollutants due to their presence in aquatic ecosystems up to µg/L level. Among these, the synthetic psycho-stimulant drug amphetamine (AMPH) is commonly found in both surface and wastewaters worldwide. Even though the environmental occurrence of AMPH is well-known, the information on its toxicity towards non-target freshwater organisms is completely lacking. This study investigated the imbalance of the oxidative status and both oxidative and genetic damage induced by a 14-day exposure to two concentrations (500 ng/L and 5000 ng/L) of AMPH on the freshwater bivalve Dreissena polymorpha by the application of a biomarker suite. We investigated the activity of antioxidant enzymes (SOD, CAT and GPx), the phase II detoxifying enzyme GST, the lipid peroxidation level (LPO) and protein carbonyl content (PCC), as well as primary (Single Cell Gel Electrophoresis assay) and fixed (DNA diffusion assay and Micronucleus test) genetic damage. Our results showed that a current realistic AMPH concentration (500 ng/L) did neither cause notable imbalances in enzymatic activities, nor oxidative and genetic damage to cellular macromolecules. In contrast, the bell-shaped trend of antioxidants showed at the highest tested concentration (5000 ng/L) suggested an overproduction of reactive oxygen species, leading to oxidative damage, as confirmed by the significant increase of protein carbonylation and DNA fragmentation. PMID:26363322

  13. Shell damage in the Tehuelche scallop Aequipecten tehuelchus caused by Polydora rickettsi (Polychaeta: Spionidae) infestation.

    PubMed

    Diez, M E; Orensanz, J M; Márquez, F; Cremonte, F

    2013-10-01

    The different types of shell damage caused to the commercially valuable Tehuelche scallop (Aequipecten tehuelchus) by the polychaete Polydora rickettsi are described. X-rays, computerized tomography, shell sections, scanning electron microscopy, Energy Dispersive X-ray analysis (EDAX), mineralogical analyses and geometric morphometrics were applied to that end. Scallop shells presented three types of damage: (1) spots, (2) calcareous alterations, and (3) mud blisters. Microstructural alterations consisted of a simple conchiolin membranous layer in the case of spots, a series of interleaved layers of different degree of calcifications in calcareous alterations, and two different surface morphologies (muddy and mucous layers) in mud blisters. Damage was localized mainly along concentric growth rings, coincidentally with the location of most burrows, as shown by X-ray. Mineralogical analysis showed that in all cases (including non-infested shells) calcite was the calcium carbonate polymorph present. Geometric morphometrics showed that only 5% of shape variation was explained by infestation with P. rickettsi, irrespective of the type of damage. Number of worms per infested shell varied significantly among four beds. Left shells (upward-oriented) were significantly more affected than right shells, which are in closer contact with the bottom. PMID:23871854

  14. Acrocomia aculeata prevents toxicogenetic damage caused by the antitumor agent cyclophosphamide.

    PubMed

    Magosso, M F; Carvalho, P C; Shneider, B U C; Pessatto, L R; Pesarini, J R; Silva, P V B; Correa, W A; Kassuya, C A L; Muzzi, R M; Oliveira, R J

    2016-01-01

    Acrocomia aculeata is a plant rich in antioxidant compounds. Studies suggest that this plant has anti-inflammatory, antidiabetic, and diuretic potential. We assessed the antigenotoxic, antimutagenic, immunomodulation, and apoptotic potentials of A. aculeata alone and in combination with an antitumor agent, cyclophosphamide. Swiss male mice (N = 140) were used. The animals were divided into 14 experimental groups as follows: a negative group, a positive group (100 mg/kg cyclophosphamide), groups that only received the oil extracted from the almond (AO) and from the pulp (PO) of A. aculeata at doses of 3, 15, and 30 mg/kg, and the associated treatment groups (oils combined with cyclophosphamide) involving pretreatment, simultaneous, and post-treatment protocols. Data suggest that both oils were chemopreventive at all doses, based on the tested protocols. The highest damage reduction percentages, observed for AO and PO were 88.19 and 90.03%, respectively, for the comet assay and 69.73 and 70.93%, respectively, for the micronucleus assay. Both AO and PO demonstrated immunomodulatory activity. The oils reduced the capacity of cyclophosphamide to trigger apoptosis in the liver, spleen, and kidney cells. These results suggest that A. aculeate AO and PO can be classified as a functional food and also enrich other functional foods and nutraceuticals with chemopreventive features. However, they are not appropriate sources for chemotherapeutic adjuvants, in particular for those used in combination with cyclophosphamide. PMID:27173316

  15. A systematic approach for the prevention and treatment of formation damage caused by asphaltene deposition

    SciTech Connect

    Leontaritis, K.J.; Amaefule, J.O.; Charles, R.E. )

    1994-08-01

    Asphaltene plugging is a known cause of near-wellbore formation damage. Deposited asphaltenes can reduce effective hydrocarbon mobility by (1) blocking the pore throats; (2) adsorbing onto the rock, thereby altering the formation wettability from water-wet to oil-wet; and (3) increasing hydrocarbon viscosity by nucleating water-in-oil emulsions. Asphaltene flocculation and deposition can be avoided in some, but not all, cases. Some formation damage resulting from asphaltene plugging is permanent and hence must be prevented rather than treated. Prevention of asphaltene-induced formation damage should be started in the early stages of drilling and well completion, once the oil is known to be asphaltenic. This paper presents a systematic approach to successful diagnosis, prevention, and mitigation of asphaltene problems during recovery of asphaltenic oils. A mechanism of asphaltene flocculation and deposition is proposed and analyzed, and the previously defined concept of asphaltene deposition envelope is further refined. Diagnostic technology is presented that can test the compatibility of drilling and completion fluids with any asphaltenic oil. Important issues that need to be considered in the design of treatments for asphaltene removal are discussed. Finally, the paper presents a methodology for restoring unfavorable wettability changes caused by asphaltene deposition.

  16. Comparison between myocardial infarction and diabetes mellitus damage caused angiogenesis or energy metabolism.

    PubMed

    Li, Chao; Lu, Chengzhi; Zhao, Xiangdong; Chen, Xin

    2015-01-01

    This study aims to compare and analyze lactate dehydrogenase (LDH), succinic dehydrogenase (SDH) and differences in capillary density level in the model of myocardial damage which caused by rats diabetes. The Wistar rats were divided into 4 groups, including control, diabetic, myocardial infarction and two diseases combined group. Ligate descending branch of left coronary artery on 1/3 position or inject streptozotocin into abdominal cavity to establish two kinds of disease models. After 6 w, obtain the myocardial tissues to do the vascular density analysis of tissue sections which are stained and cell tissue enzyme. Explore change of relevant index and differences among groups. Results indicated that degree of LDH and SDH decrease in two kinds of disease model. Compared with control group, level of myocardial vascular of myocardial injury group is higher, and diabetic group is higher than non diabetic group. Quantitative result of FFA in mitochondrial suspension of single disease group is higher than that of control group and two diseases combined group. Level of FFA and LDH of two diseases combined group is consistent with control group. In conclusion, after myocardial damage, which is caused by diabetes mellitus or myocardial infarction, degree of local vascularization increases, diabetes mellitus is more obvious. After myocardial damage, process of myocardial mitochondrial glycolysis and oxidative phosphorylation has some obstacles. But these two kinds of diseases all have cardiac muscle cell which can keep generated procedure of aerobic and anaerobic energy to instead the normal function of cardiac muscle. PMID:26885216

  17. Comparison between myocardial infarction and diabetes mellitus damage caused angiogenesis or energy metabolism

    PubMed Central

    Li, Chao; Lu, Chengzhi; Zhao, Xiangdong; Chen, Xin

    2015-01-01

    This study aims to compare and analyze lactate dehydrogenase (LDH), succinic dehydrogenase (SDH) and differences in capillary density level in the model of myocardial damage which caused by rats diabetes. The Wistar rats were divided into 4 groups, including control, diabetic, myocardial infarction and two diseases combined group. Ligate descending branch of left coronary artery on 1/3 position or inject streptozotocin into abdominal cavity to establish two kinds of disease models. After 6 w, obtain the myocardial tissues to do the vascular density analysis of tissue sections which are stained and cell tissue enzyme. Explore change of relevant index and differences among groups. Results indicated that degree of LDH and SDH decrease in two kinds of disease model. Compared with control group, level of myocardial vascular of myocardial injury group is higher, and diabetic group is higher than non diabetic group. Quantitative result of FFA in mitochondrial suspension of single disease group is higher than that of control group and two diseases combined group. Level of FFA and LDH of two diseases combined group is consistent with control group. In conclusion, after myocardial damage, which is caused by diabetes mellitus or myocardial infarction, degree of local vascularization increases, diabetes mellitus is more obvious. After myocardial damage, process of myocardial mitochondrial glycolysis and oxidative phosphorylation has some obstacles. But these two kinds of diseases all have cardiac muscle cell which can keep generated procedure of aerobic and anaerobic energy to instead the normal function of cardiac muscle. PMID:26885216

  18. Repeated administrations of carbon nanotubes in male mice cause reversible testis damage without affecting fertility

    NASA Astrophysics Data System (ADS)

    Bai, Yuhong; Zhang, Yi; Zhang, Jingping; Mu, Qingxin; Zhang, Weidong; Butch, Elizabeth R.; Snyder, Scott E.; Yan, Bing

    2010-09-01

    Soluble carbon nanotubes show promise as materials for in vivo delivery and imaging applications. Several reports have described the in vivo toxicity of carbon nanotubes, but their effects on male reproduction have not been examined. Here, we show that repeated intravenous injections of water-soluble multiwalled carbon nanotubes into male mice can cause reversible testis damage without affecting fertility. Nanotubes accumulated in the testes, generated oxidative stress and decreased the thickness of the seminiferous epithelium in the testis at day 15, but the damage was repaired at 60 and 90 days. The quantity, quality and integrity of the sperm and the levels of three major sex hormones were not significantly affected throughout the 90-day period. The fertility of treated male mice was unaffected; the pregnancy rate and delivery success of female mice that mated with the treated male mice did not differ from those that mated with untreated male mice.

  19. Ring-type ESD damage caused by electrostatic chuck of ion implanter

    NASA Astrophysics Data System (ADS)

    King, Mingchu; Hsu, Chun-Keng; Fu, Chiang; Huang, Hsin-Chie; Yang, Shih-Yi; Liu, Yuan-Lung; Hsu, Kuo-chin

    1999-04-01

    Electrostatic discharge (ESD) due to electrostatic chuck (ESC) during ion implantation was observed in our fab. This defect could burn out the inter-layer dielectric and jeopardize the circuit performance. the yield impact on 0.35 micrometers product could be 40 percent. The defect distributed around the wafer edge and has a ring-type map. This defect occurred right after ESD implantation. The fringe field of the electrostatic chuck is the key reason why ring-type electrostatic discharge damage happened right after ion implantation. Our experimental result also showed that the junction characterization and surface conductivity will influence the probability of ESD damage caused by electrostatic chuck of ion implanter.

  20. Mode of Proximal Tubule Damage: Differential Cause for the Release of TFF3?

    PubMed Central

    Zwaini, Zinah; Alammari, Dalia; Byrne, Simon; Stover, Cordula

    2016-01-01

    Proximal tubular epithelial cells are particularly sensitive to damage. In search of a biomarker, this study evaluated the potential of different cell activation models (hypoxia/replenishment and protein overload) to lead to a release of trefoil factor 3 (TFF3). Surprisingly, we found disparity in the ability of the different stimuli to enhance the intracellular abundance of TFF3 and its release: while conditions of nutrient starvation and damage associated with replenishment lead to intracellular abundance of TFF3 in the absence of TFF3 release, stimulation with an excess amount of albumin did not yield accumulation of TFF3. By contrast, incubation of cells with a purified λ light chain preparation from a patient with multiple myeloma provoked the presence of TFF3 in the cell supernatant. We, therefore, propose that elevations of TFF3 in renal disease might be more revelatory for the cause of restitution than previously thought. PMID:27066010

  1. Assessing the damage caused by Deepwater Horizon: not just another Exxon Valdez.

    PubMed

    Perrons, Robert K

    2013-06-15

    In light of the high stakes of the Deepwater Horizon civil trial and the important precedent-setting role that the case will have on the assessment of future marine disasters, the methodologies underpinning the calculations of damage on both sides will be subjected to considerable scrutiny. Despite the importance of the case, however, there seems to be a pronounced lack of convergence about it in the academic literature. Contributions from scientific journals frequently make comparisons to the Ixtoc I oil spill off the coast of Mexico in 1979; the legal literature, by stark contrast, seems to be much more focused on the Exxon Valdez spill that occurred off the shores of Alaska in 1989. This paper accordingly calls for a more thorough consideration of other analogs beyond the Exxon Valdez spill-most notably, the Ixtoc I incident-in arriving at an assessment of the damage caused by the Deepwater Horizon disaster. PMID:23602264

  2. Inhibition of de novo NAD(+) synthesis by oncogenic URI causes liver tumorigenesis through DNA damage.

    PubMed

    Tummala, Krishna S; Gomes, Ana L; Yilmaz, Mahmut; Graña, Osvaldo; Bakiri, Latifa; Ruppen, Isabel; Ximénez-Embún, Pilar; Sheshappanavar, Vinayata; Rodriguez-Justo, Manuel; Pisano, David G; Wagner, Erwin F; Djouder, Nabil

    2014-12-01

    Molecular mechanisms responsible for hepatocellular carcinoma (HCC) remain largely unknown. Using genetically engineered mouse models, we show that hepatocyte-specific expression of unconventional prefoldin RPB5 interactor (URI) leads to a multistep process of HCC development, whereas its genetic reduction in hepatocytes protects against diethylnitrosamine (DEN)-induced HCC. URI inhibits aryl hydrocarbon (AhR)- and estrogen receptor (ER)-mediated transcription of enzymes implicated in L-tryptophan/kynurenine/nicotinamide adenine dinucleotide (NAD(+)) metabolism, thereby causing DNA damage at early stages of tumorigenesis. Restoring NAD(+) pools with nicotinamide riboside (NR) prevents DNA damage and tumor formation. Consistently, URI expression in human HCC is associated with poor survival and correlates negatively with L-tryptophan catabolism pathway. Our results suggest that boosting NAD(+) can be prophylactic or therapeutic in HCC. PMID:25453901

  3. Diamondoid naphthenic acids cause in vivo genetic damage in gills and haemocytes of marine mussels.

    PubMed

    Dissanayake, Awantha; Scarlett, Alan G; Jha, Awadhesh N

    2016-04-01

    Diamondoids are polycyclic saturated hydrocarbons that possess a cage-like carbon skeleton approaching that of diamond. These 'nano-diamonds' are used in a range of industries including nanotechnologies and biomedicine. Diamondoids were thought to be highly resistant to degradation, but their presumed degradation acid products have now been found in oil sands process-affected waters (OSPW) and numerous crude oils. Recently, a diamondoid-related structure, 3-noradamantane carboxylic acid, was reported to cause genetic damage in trout hepatocytes under in vitro conditions. This particular compound has never been reported in the environment but led us to hypothesise that other more environmentally relevant diamondoid acids could also be genotoxic. We carried out in vivo exposures (3 days, semi-static) of marine mussels to two environmentally relevant diamondoid acids, 1-adamantane carboxylic acid and 3,5-dimethyladamantane carboxylic acid plus 3-noradamantane carboxylic acid with genotoxic damage assessed using the Comet assay. An initial screening test confirmed that these acids displayed varying degrees of genotoxicity to haemocytes (increased DNA damage above that of controls) when exposed in vivo to a concentration of 30 μmol L(-1). In a further test focused on 1-adamantane carboxylic acid with varying concentrations (0.6, 6 and 30 μmol L(-1)), significant (P < 0.05%) DNA damage was observed in different target cells (viz. gills and haemocytes) at 0.6 μmol L(-1). Such a level of induced genetic damage was similar to that observed following exposure to a known genotoxin, benzo(a)pyrene (exposure concentration, 0.8 μmol L(-1)). These findings may have implications for a range of worldwide industries including oil extraction, nanotechnology and biomedicine. PMID:26884235

  4. Post-Natal Inhibition of NF-κB Activation Prevents Renal Damage Caused by Prenatal LPS Exposure

    PubMed Central

    Sun, Xiongshan; Wang, Fangjie; Ji, Yan; Huang, Pei; Deng, Yafei; Zhang, Qi; Han, Qi; Yi, Ping; Namaka, Michael; Liu, Ya; Li, Xiaohui

    2016-01-01

    Prenatal exposure to an inflammatory stimulus has been shown to cause renal damage in offspring. Our present study explored the role of intra-renal NF-κB activation in the development of progressive renal fibrosis in offspring that underwent prenatal exposure to an inflammatory stimulus. Time-dated pregnant rats were treated with saline (control group) or 0.79 mg/kg lipopolysaccharide (LPS) through intra-peritoneal injection on gestational day 8, 10 and 12. At the age of 7 weeks, offspring from control or LPS group were treated with either tap water (Con+Ve or LPS+Ve group) or pyrollidine dithiocarbamate (PDTC, 120mg/L), a NF-κB inhibitor, via drinking water starting (Con+PDTC or LPS+PDTC group), respectively, till the age of 20 or 68 weeks. The gross structure of kidney was assessed by hematoxylin-eosin, periodic acid–Schiff staining and Sirius red staining. The expression levels of TNF-α, IL-6, α-smooth muscle actin (α-SMA) and renin-angiotensin system (RAS) genes were determined by real time polymerase chain reaction and/or immunohistochemical staining. Our data showed that post-natal persistent PDTC administration efficiently repressed intra-renal NF-κB activation, TNF-α and IL-6 expression. Post-natal PDTC also prevented intra-renal glycogen deposition and collagenous fiber generation as evident by the reduced expression of collagen III and interstitial α-SMA in offspring of prenatal LPS exposure. Furthermore, post-natal PDTC administration reversed the intra-renal renin-angiotensin system (RAS) over-activity in offspring of prenatal LPS exposure. In conclusion, prenatal inflammatory exposure results in offspring’s intra-renal NF-κB activation along with inflammation which cross-talked with excessive RAS activation that caused exacerbation of renal fibrosis and dysfunction in the offspring. Thus, early life prevention of NF-κB activation may be a potential preventive strategy for chronic renal inflammation and progressive renal damage. PMID

  5. Post-Natal Inhibition of NF-κB Activation Prevents Renal Damage Caused by Prenatal LPS Exposure.

    PubMed

    Guo, Wei; Guan, Xiao; Pan, Xiaodong; Sun, Xiongshan; Wang, Fangjie; Ji, Yan; Huang, Pei; Deng, Yafei; Zhang, Qi; Han, Qi; Yi, Ping; Namaka, Michael; Liu, Ya; Deng, Youcai; Li, Xiaohui

    2016-01-01

    Prenatal exposure to an inflammatory stimulus has been shown to cause renal damage in offspring. Our present study explored the role of intra-renal NF-κB activation in the development of progressive renal fibrosis in offspring that underwent prenatal exposure to an inflammatory stimulus. Time-dated pregnant rats were treated with saline (control group) or 0.79 mg/kg lipopolysaccharide (LPS) through intra-peritoneal injection on gestational day 8, 10 and 12. At the age of 7 weeks, offspring from control or LPS group were treated with either tap water (Con+Ve or LPS+Ve group) or pyrollidine dithiocarbamate (PDTC, 120mg/L), a NF-κB inhibitor, via drinking water starting (Con+PDTC or LPS+PDTC group), respectively, till the age of 20 or 68 weeks. The gross structure of kidney was assessed by hematoxylin-eosin, periodic acid-Schiff staining and Sirius red staining. The expression levels of TNF-α, IL-6, α-smooth muscle actin (α-SMA) and renin-angiotensin system (RAS) genes were determined by real time polymerase chain reaction and/or immunohistochemical staining. Our data showed that post-natal persistent PDTC administration efficiently repressed intra-renal NF-κB activation, TNF-α and IL-6 expression. Post-natal PDTC also prevented intra-renal glycogen deposition and collagenous fiber generation as evident by the reduced expression of collagen III and interstitial α-SMA in offspring of prenatal LPS exposure. Furthermore, post-natal PDTC administration reversed the intra-renal renin-angiotensin system (RAS) over-activity in offspring of prenatal LPS exposure. In conclusion, prenatal inflammatory exposure results in offspring's intra-renal NF-κB activation along with inflammation which cross-talked with excessive RAS activation that caused exacerbation of renal fibrosis and dysfunction in the offspring. Thus, early life prevention of NF-κB activation may be a potential preventive strategy for chronic renal inflammation and progressive renal damage. PMID:27073902

  6. Barriers facing patients referred for kidney transplant cause loss to follow-up

    PubMed Central

    Simpson, Kit N.; Chavin, Kenneth D.; Baliga, Prabhakar

    2012-01-01

    End stage renal disease impacts many Americans, however, transplant is the best treatment option increasing life years and offering a higher quality of life than possible with dialysis. Ironically, many who are eligible for transplant do not follow through on the complex work-up protocols required to be placed on the transplant waiting list. Here we surveyed vascular access clinic patients at an academic medical center referred for transplant that did not follow up on the needed work-up to be added to the national transplant waiting list. The most frequent responses of 83 patients for not pursuing transplantation were that the patients did not think they would pass the medical tests, they were scared of getting a transplant, and they could not afford the medicine or the transplantation. These impediments may result from unclear provider communication, misinformation received from peers or other sources, misperceptions related to transplant surgery, or limited health literacy/health decision making capacity. Thus, patients with end stage renal disease lost to follow up after referral for kidney transplant faced both real and perceived barriers pursuing transplantation. PMID:22832516

  7. Cutaneous and renal glomerular vasculopathy as a cause of acute kidney injury in dogs in the UK

    PubMed Central

    Hawkins, I.; Robin, C.; Newton, R. J.; Jepson, R.; Stanzani, G.; McMahon, L. A.; Pesavento, P.; Carr, T.; Cogan, T.; Couto, C. G.; Cianciolo, R.; Walker, D. J.

    2015-01-01

    To describe the signalment, clinicopathological findings and outcome in dogs presenting with acute kidney injury (AKI) and skin lesions between November 2012 and March 2014, in whom cutaneous and renal glomerular vasculopathy (CRGV) was suspected and renal thrombotic microangiopathy (TMA) was histopathologically confirmed. The medical records of dogs with skin lesions and AKI, with histopathologically confirmed renal TMA, were retrospectively reviewed. Thirty dogs from across the UK were identified with clinicopathological findings compatible with CRGV. These findings included the following: skin lesions, predominantly affecting the distal extremities; AKI; and variably, anaemia, thrombocytopaenia and hyperbilirubinaemia. Known causes of AKI were excluded. The major renal histopathogical finding was TMA. All thirty dogs died or were euthanised. Shiga toxin was not identified in the kidneys of affected dogs. Escherichia coli genes encoding shiga toxin were not identified in faeces from affected dogs. CRGV has previously been reported in greyhounds in the USA, a greyhound in the UK, without renal involvement, and a Great Dane in Germany. This is the first report of a series of non-greyhound dogs with CRGV and AKI in the UK. CRGV is a disease of unknown aetiology carrying a poor prognosis when azotaemia develops. PMID:25802439

  8. Cutaneous and renal glomerular vasculopathy as a cause of acute kidney injury in dogs in the UK.

    PubMed

    Holm, L P; Hawkins, I; Robin, C; Newton, R J; Jepson, R; Stanzani, G; McMahon, L A; Pesavento, P; Carr, T; Cogan, T; Couto, C G; Cianciolo, R; Walker, D J

    2015-04-11

    To describe the signalment, clinicopathological findings and outcome in dogs presenting with acute kidney injury (AKI) and skin lesions between November 2012 and March 2014, in whom cutaneous and renal glomerular vasculopathy (CRGV) was suspected and renal thrombotic microangiopathy (TMA) was histopathologically confirmed. The medical records of dogs with skin lesions and AKI, with histopathologically confirmed renal TMA, were retrospectively reviewed. Thirty dogs from across the UK were identified with clinicopathological findings compatible with CRGV. These findings included the following: skin lesions, predominantly affecting the distal extremities; AKI; and variably, anaemia, thrombocytopaenia and hyperbilirubinaemia. Known causes of AKI were excluded. The major renal histopathological finding was TMA. All thirty dogs died or were euthanised. Shiga toxin was not identified in the kidneys of affected dogs. Escherichia coli genes encoding shiga toxin were not identified in faeces from affected dogs. CRGV has previously been reported in greyhounds in the USA, a greyhound in the UK, without renal involvement, and a Great Dane in Germany. This is the first report of a series of non-greyhound dogs with CRGV and AKI in the UK. CRGV is a disease of unknown aetiology carrying a poor prognosis when azotaemia develops. PMID:25802439

  9. Successful liver-kidney transplantation in two children with aHUS caused by a mutation in complement factor H.

    PubMed

    Jalanko, H; Peltonen, S; Koskinen, A; Puntila, J; Isoniemi, H; Holmberg, C; Pinomäki, A; Armstrong, E; Koivusalo, A; Tukiainen, E; Mäkisalo, H; Saland, J; Remuzzi, G; de Cordoba, S; Lassila, R; Meri, S; Jokiranta, T S

    2008-01-01

    A 12-month-old boy and his 16-year-old aunt became acutely ill 6 months apart and were diagnosed to have atypical hemolytic uremic syndrome (aHUS). Genetic analysis revealed heterozygous R1215Q mutation in complement factor H (CFH) in both patients. The same mutation was found in five healthy adult relatives indicating incomplete penetrance of the disease. The patients developed terminal renal failure and experienced reversible neurological symptoms in spite of plasma exchange (PE) therapy. In both cases, liver-kidney transplantation was successfully performed 6 months after the onset of the disease. To minimize complement activation and prevent thrombotic microangiopathy or overt thrombotic events due to the malfunctioning CFH, extensive PE with fresh frozen plasma was performed pre- and perioperatively and anticoagulation was started a few hours after the operation. No circulatory complications appeared and all four grafts started to function immediately. Also, no recurrence or other major clinical setbacks have appeared during the postoperative follow-up (15 and 9 months) and the grafts show excellent function. While more experience is needed, it seems that liver-kidney transplantation combined with pre- and perioperative PE is a rational option in the management of patients with aHUS caused by CFH mutation. PMID:17973958

  10. Evaluation of the damages caused by lightning current flowing through bearings

    NASA Technical Reports Server (NTRS)

    Celi, O.; Pigini, A.; Garbagnati, E.

    1991-01-01

    A laboratory for lightning current tests was set up allowing the generation of the lightning currents foreseen by the Standards. Lightning tests are carried out on different objects, aircraft materials and components, evaluating the direct and indirect effects of lightning. Recently a research was carried out to evaluate the effects of the lightning current flow through bearings with special reference to wind power generator applications. For this purpose, lightning currents of different amplitude were applied to bearings in different test conditions and the damages caused by the lightning current flow were analyzed. The influence of the load acting on the bearing, the presence of lubricant and the bearing rotation were studied.

  11. Methoxychlor causes mitochondrial dysfunction and oxidative damage in the mouse ovary

    SciTech Connect

    Gupta, R.K.; Schuh, R.A.; Fiskum, G.; Flaws, J.A. . E-mail: jflaws@epi.umaryland.edu

    2006-11-01

    Methoxychlor (MXC) is an organochlorine pesticide that reduces fertility in female rodents by causing ovarian atrophy, persistent estrous cyclicity, and antral follicle atresia (apoptotic cell death). Oxidative damage resulting from reactive oxygen species (ROS) generation has been demonstrated to lead to toxicant-induced cell death. Thus, this work tested the hypothesis that MXC causes oxidative damage to the mouse ovary and affects mitochondrial respiration in a manner that stimulates ROS production. For the in vitro experiments, mitochondria were collected from adult cycling mouse ovaries, treated with vehicle (dimethyl sulfoxide; DMSO) or MXC, and subjected to polarographic measurements of respiration. For the in vivo experiments, adult cycling CD-1 mice were dosed with either vehicle (sesame oil) or MXC for 20 days. After treatment, ovarian mitochondria were isolated and subjected to measurements of respiration and fluorimetric measurements of H{sub 2}O{sub 2} production. Some ovaries were also fixed and processed for immunohistochemistry using antibodies for ROS production markers: nitrotyrosine and 8-hydroxy-2'-deoxyguanosine (8-OHG). Ovaries from in vivo experiments were also used to measure the mRNA expression and activity of antioxidants such as Cu/Zn superoxide dismutase (SOD1), glutathione peroxidase (GPX), and catalase (CAT). The results indicate that MXC significantly impairs mitochondrial respiration, increases production of H{sub 2}O{sub 2}, causes more staining for nitrotyrosine and 8-OHG in antral follicles, and decreases the expression and activity of SOD1, GPX, and CAT as compared to controls. Collectively, these data indicate that MXC inhibits mitochondrial respiration, causes ROS production, and decreases antioxidant expression and activity in the ovary, specifically in the antral follicles. Therefore, it is possible that MXC causes atresia of ovarian antral follicles by inducing oxidative stress through mitochondrial production of ROS.

  12. Spleen Tyrosine Kinase Signaling Promotes Myeloid Cell Recruitment and Kidney Damage after Renal Ischemia/Reperfusion Injury.

    PubMed

    Ryan, Jessica; Kanellis, John; Blease, Kate; Ma, Frank Y; Nikolic-Paterson, David J

    2016-08-01

    Ischemia/reperfusion (I/R) injury is an important cause of acute and chronic renal failure. Neutrophils and macrophages, by integrin-based recruitment, play a key role in renal I/R injury. Integrin-based activation of spleen tyrosine kinase (Syk) contributes to myeloid cell adhesion to activated endothelial cells in vitro; however, whether Syk is required for myeloid cell recruitment and tubular damage in I/R injury is unknown. Therefore, we investigated the function of Syk in mouse I/R injury using two different approaches. C57Bl/6J mice underwent bilateral warm ischemia and were sacrificed after 30 minutes or 24 hours of reperfusion. Mice were treated with the Syk inhibitor CC0417, or vehicle, beginning 1 hour before surgery. Syk was expressed by infiltrating neutrophils, macrophages, and platelets in vehicle-treated I/R injury which exhibited severe renal failure and tubular damage at 24 hours. CC0417 treatment markedly reduced neutrophil, macrophage, and platelet accumulation with improved renal function and reduced tubular damage. Next, we compared mice with conditional Syk gene deletion in myeloid cells (Syk(My)) versus Syk(f/f) littermate controls in a 24-hour study. Syk(My) mice also showed a marked reduction in neutrophil and macrophage infiltration with significant protection from I/R-induced acute renal failure and tubular damage. These studies define a pathologic role for myeloid Syk signaling in renal I/R injury and identify Syk as a potential therapeutic target in this condition. PMID:27322771

  13. Respiratory epithelial cytotoxicity and membrane damage (holes) caused by amine-modified nanoparticles.

    PubMed

    Ruenraroengsak, Pakatip; Novak, Pavel; Berhanu, Deborah; Thorley, Andrew J; Valsami-Jones, Eugenia; Gorelik, Julia; Korchev, Yuri E; Tetley, Teresa D

    2012-02-01

    The respiratory epithelium is a significant target of inhaled, nano-sized particles, the biological reactivity of which will depend on its physicochemical properties. Surface-modified, 50 and 100 nm, polystyrene latex nanoparticles (NPs) were used as model particles to examine the effect of particle size and surface chemistry on transformed human alveolar epithelial type 1-like cells (TT1). Live images of TT1 exposed to amine-modified NPs taken by hopping probe ion conductance microscopy revealed severe damage and holes on cell membranes that were not observed with other types of NPs. This paralleled induction of cell detachment, cytotoxicity and apoptotic (caspase-3/7 and caspase-9) cell death, and increased release of CXCL8 (IL-8). In contrast, unmodified, carboxyl-modified 50 nm NPs and the 100 nm NPs did not cause membrane damage, and were less reactive. Thus, the susceptibility and membrane damage to respiratory epithelium following inhalation of NPs will depend on both surface chemistry (e.g., cationic) and nano-size. PMID:21352086

  14. Localized damage caused by topographic amplification during the 2010 M7.0 Haiti earthquake

    USGS Publications Warehouse

    Hough, S.E.; Altidor, J.R.; Anglade, D.; Given, D.; Janvier, M.G.; Maharrey, J.Z.; Meremonte, M.; Mildor, B.S.-L.; Prepetit, C.; Yong, A.

    2010-01-01

    Local geological conditions, including both near-surface sedimentary layers and topographic features, are known to significantly influence ground motions caused by earthquakes. Microzonation maps use local geological conditions to characterize seismic hazard, but commonly incorporate the effect of only sedimentary layers. Microzonation does not take into account local topography, because significant topographic amplification is assumed to be rare. Here we show that, although the extent of structural damage in the 2010 Haiti earthquake was primarily due to poor construction, topographic amplification contributed significantly to damage in the district of Petionville, south of central Port-au-Prince. A large number of substantial, relatively well-built structures situated along a foothill ridge in this district sustained serious damage or collapse. Using recordings of aftershocks, we calculate the ground motion response at two seismic stations along the topographic ridge and at two stations in the adjacent valley. Ground motions on the ridge are amplified relative to both sites in the valley and a hard-rock reference site, and thus cannot be explained by sediment-induced amplification. Instead, the amplitude and predominant frequencies of ground motion indicate the amplification of seismic waves by a narrow, steep ridge. We suggest that microzonation maps can potentially be significantly improved by incorporation of topographic effects. ?? 2010 Macmillan Publishers Limited. All rights reserved.

  15. Causes and Consequences of Sensory Hair Cell Damage and Recovery in Fishes.

    PubMed

    Smith, Michael E; Monroe, J David

    2016-01-01

    Sensory hair cells are the mechanotransductive receptors that detect gravity, sound, and vibration in all vertebrates. Damage to these sensitive receptors often results in deficits in vestibular function and hearing. There are currently two main reasons for studying the process of hair cell loss in fishes. First, fishes, like other non-mammalian vertebrates, have the ability to regenerate hair cells that have been damaged or lost via exposure to ototoxic chemicals or acoustic overstimulation. Thus, they are used as a biomedical model to understand the process of hair cell death and regeneration and find therapeutics that treat or prevent human hearing loss. Secondly, scientists and governmental natural resource managers are concerned about the potential effects of intense anthropogenic sounds on aquatic organisms, including fishes. Dr. Arthur N. Popper and his students, postdocs and research associates have performed pioneering experiments in both of these lines of fish hearing research. This review will discuss the current knowledge regarding the causes and consequences of both lateral line and inner ear hair cell damage in teleost fishes. PMID:26515323

  16. Determination of damages of photosynthetic metabolism caused by herbicides using a delayed fluorescence technique

    NASA Astrophysics Data System (ADS)

    Zhang, Lingrui; Xing, Da; Zhou, Xiaoming; Li, Qiang

    2007-11-01

    The structure and function of chloroplast in plant can be affected by herbicide, resulting in the decrease in photosynthetic capacity. The photosystem II (PSII) in plants is considered to be the primary site where light-induced delayed fluorescence (DF) is produced. In this study, a simple analytical model of DF has been developed to diagnose the damages of photosynthesis caused by herbicides based on the charge recombination theory. Using a home-made portable DF detection system, we have studied the effects of two different kinds of herbicides on decay kinetics of DF in soybean (Glycine max (L.), Jinghuang No. 3). Current investigations have demonstrated that the analytic equation of DF decay dynamics we proposed here can accurately determine the extent of damage of herbicides to photosynthetic metabolism and truly reflect the mechanism and site about which herbicides inhibit photosynthetic electron transport chain. Therefore, the decay kinetics of DF with proper calibration may provide a promisingly new and practical means for pharmacological analysis of herbicides and damage-diagnosis of photosynthetic metabolism. The DF technique could be potentially useful for detecting the effects of herbicide on plant performance in vivo and screening new generation of promising herbicides with low toxicity and superhigh efficiency.

  17. Specificity of Chromosome Damage Caused by the Rex Element of Drosophila Melanogaster

    PubMed Central

    Robbins, L. G.

    1996-01-01

    Rex is a multicopy genetic element that maps within an X-linked ribosomal RNA gene (rDNA) array of D. melanogaster. Acting maternally, Rex causes recombination between rDNA arrays in a few percent of early embryos. With target chromosomes that contain two rDNA arrays, the exchanges either delete all of the material between the two arrays or invert the entire intervening chromosomal segment. About a third of the embryos produced by Rex homozygotes have cytologically visible chromosome damage, nearly always involving a single chromosome. Most of these embryos die during early development, displaying a characteristic apoptosis-like phenotype. An experiment that tests whether the cytologically visible damage is rDNA-specific is reported here. In this experiment, females heterozygous for Rex and an rDNA-deficient X chromosome were crossed to males of two genotypes. Some of the progeny from the experimental cross entirely lacked rDNA, while all of the progeny from the control cross had at least one rDNA array. A significantly lower frequency of early-lethal embryos in the experimental cross, proportionate to the fraction of rDNA-deficient embryos, demonstrates that Rex preferentially damages rDNA. PMID:8878677

  18. v-Src Causes Chromosome Bridges in a Caffeine-Sensitive Manner by Generating DNA Damage.

    PubMed

    Ikeuchi, Masayoshi; Fukumoto, Yasunori; Honda, Takuya; Kuga, Takahisa; Saito, Youhei; Yamaguchi, Naoto; Nakayama, Yuji

    2016-01-01

    An increase in Src activity is commonly observed in epithelial cancers. Aberrant activation of the kinase activity is associated with malignant progression. However, the mechanisms that underlie the Src-induced malignant progression of cancer are not completely understood. We show here that v-Src, an oncogene that was first identified from a Rous sarcoma virus and a mutant variant of c-Src, leads to an increase in the number of anaphase and telophase cells having chromosome bridges. v-Src increases the number of γH2AX foci, and this increase is inhibited by treatment with PP2, a Src kinase inhibitor. v-Src induces the phosphorylation of KAP1 at Ser824, Chk2 at Thr68, and Chk1 at Ser345, suggesting the activation of the ATM/ATR pathway. Caffeine decreases the number of cells having chromosome bridges at a concentration incapable of inhibiting Chk1 phosphorylation at Ser345. These results suggest that v-Src induces chromosome bridges via generation of DNA damage and the subsequent DNA damage response, possibly by homologous recombination. A chromosome bridge gives rise to the accumulation of DNA damage directly through chromosome breakage and indirectly through cytokinesis failure-induced multinucleation. We propose that v-Src-induced chromosome bridge formation is one of the causes of the v-Src-induced malignant progression of cancer cells. PMID:27271602

  19. v-Src Causes Chromosome Bridges in a Caffeine-Sensitive Manner by Generating DNA Damage

    PubMed Central

    Ikeuchi, Masayoshi; Fukumoto, Yasunori; Honda, Takuya; Kuga, Takahisa; Saito, Youhei; Yamaguchi, Naoto; Nakayama, Yuji

    2016-01-01

    An increase in Src activity is commonly observed in epithelial cancers. Aberrant activation of the kinase activity is associated with malignant progression. However, the mechanisms that underlie the Src-induced malignant progression of cancer are not completely understood. We show here that v-Src, an oncogene that was first identified from a Rous sarcoma virus and a mutant variant of c-Src, leads to an increase in the number of anaphase and telophase cells having chromosome bridges. v-Src increases the number of γH2AX foci, and this increase is inhibited by treatment with PP2, a Src kinase inhibitor. v-Src induces the phosphorylation of KAP1 at Ser824, Chk2 at Thr68, and Chk1 at Ser345, suggesting the activation of the ATM/ATR pathway. Caffeine decreases the number of cells having chromosome bridges at a concentration incapable of inhibiting Chk1 phosphorylation at Ser345. These results suggest that v-Src induces chromosome bridges via generation of DNA damage and the subsequent DNA damage response, possibly by homologous recombination. A chromosome bridge gives rise to the accumulation of DNA damage directly through chromosome breakage and indirectly through cytokinesis failure-induced multinucleation. We propose that v-Src-induced chromosome bridge formation is one of the causes of the v-Src-induced malignant progression of cancer cells. PMID:27271602

  20. Localized damage caused by topographic amplification during the 2010 M7.0 Haiti earthquake

    NASA Astrophysics Data System (ADS)

    Hough, Susan E.; Altidor, Jean Robert; Anglade, Dieuseul; Given, Doug; Janvier, M. Guillard; Maharrey, J. Zebulon; Meremonte, Mark; Mildor, Bernard Saint-Louis; Prepetit, Claude; Yong, Alan

    2010-11-01

    Local geological conditions, including both near-surface sedimentary layers and topographic features, are known to significantly influence ground motions caused by earthquakes. Microzonation maps use local geological conditions to characterize seismic hazard, but commonly incorporate the effect of only sedimentary layers. Microzonation does not take into account local topography, because significant topographic amplification is assumed to be rare. Here we show that, although the extent of structural damage in the 2010 Haiti earthquake was primarily due to poor construction, topographic amplification contributed significantly to damage in the district of Petionville, south of central Port-au-Prince. A large number of substantial, relatively well-built structures situated along a foothill ridge in this district sustained serious damage or collapse. Using recordings of aftershocks, we calculate the ground motion response at two seismic stations along the topographic ridge and at two stations in the adjacent valley. Ground motions on the ridge are amplified relative to both sites in the valley and a hard-rock reference site, and thus cannot be explained by sediment-induced amplification. Instead, the amplitude and predominant frequencies of ground motion indicate the amplification of seismic waves by a narrow, steep ridge. We suggest that microzonation maps can potentially be significantly improved by incorporation of topographic effects.

  1. A Rare Cause of Acute Kidney Injury in a Female Patient with Breast Cancer Presenting as Renal Colic.

    PubMed

    Jurubita, Roxana; Obrisca, Bogdan; Ismail, Gener

    2016-01-01

    Renal infarction is a rare cause of acute kidney injury which could lead to permanent loss of renal function. A prompt diagnosis is necessary in order to achieve a successful revascularization of the occluded artery. Given the rarity of the disease and the paucity of the reported cases in the previous literature a high index of suspicion must be maintained not only in the classical cardiac sources of systemic emboli (atrial fibrillation, dilated cardiomyopathy, or endocarditis), but also in the situations when a hypercoagulable state is presumed. The unspecific presenting symptoms often mask the true etiology of the patient's complaints. We present here a rare case of renal infarction that occurred in the setting of a hypercoagulable state, in a female patient with a history of breast cancer and documented hepatic metastases. PMID:27293927

  2. A Rare Cause of Acute Kidney Injury in a Female Patient with Breast Cancer Presenting as Renal Colic

    PubMed Central

    2016-01-01

    Renal infarction is a rare cause of acute kidney injury which could lead to permanent loss of renal function. A prompt diagnosis is necessary in order to achieve a successful revascularization of the occluded artery. Given the rarity of the disease and the paucity of the reported cases in the previous literature a high index of suspicion must be maintained not only in the classical cardiac sources of systemic emboli (atrial fibrillation, dilated cardiomyopathy, or endocarditis), but also in the situations when a hypercoagulable state is presumed. The unspecific presenting symptoms often mask the true etiology of the patient's complaints. We present here a rare case of renal infarction that occurred in the setting of a hypercoagulable state, in a female patient with a history of breast cancer and documented hepatic metastases. PMID:27293927

  3. Long-term exposure to cypermethrin and piperonyl butoxide cause liver and kidney inflammation and induce genotoxicity in New Zealand white male rabbits.

    PubMed

    Vardavas, Alexander I; Stivaktakis, Polychronis D; Tzatzarakis, Manolis N; Fragkiadaki, Persefoni; Vasilaki, Fotini; Tzardi, Maria; Datseri, Galateia; Tsiaoussis, John; Alegakis, Athanasios K; Tsitsimpikou, Christina; Rakitskii, Valerii N; Carvalho, Félix; Tsatsakis, Aristidis M

    2016-08-01

    Cypermethrin (CY) is a frequently used class II pyrethroid pesticide, while piperonyl butoxide (PBO) plays a major role in the pesticide formulation of synthetic pyrethroids. Synthetic pyrethroids are metabolized in mammals via oxidation and ester hydrolysis. PBO can prevent the metabolism of CY and enhances its pesticide effect. While this potentiation effect reduces the amount of pesticide required to eliminate insects, it is not clear how this mixture affects mammals. In our in vivo experiment, New Zealand white male rabbits were exposed to low and high doses of CY, PBO, and their combinations, for 4 months. Genotoxicity and cytotoxicity were monitored by measuring binucleated cells with micronuclei (BNMN), micronuclei (MN) and the cytokinesis block proliferation index (CBPI) in lymphocytes. After two months of exposure, a statistically significant increase in the frequency of BNMN was observed for all exposed animals (p < 0.001) in a dose-dependent way. MN were significantly elevated compared to controls (p < 0.001), with high dose groups reaching a 442% increase when co-exposed. BNMN and MN continued to increase after four months. Histopathological examination of lesions showed damage involving inflammation, attaining lymphoplasmatocytic infiltration in the high dose groups. Both CY and PBO cause liver and kidney inflammation and induce genotoxicity. PMID:27321377

  4. Oxidative DNA damage caused by pulsed discharge with cavitation on the bactericidal function

    NASA Astrophysics Data System (ADS)

    Kudo, Ken-ichi; Ito, Hironori; Ihara, Satoshi; Terato, Hiroaki

    2015-09-01

    Plasma-based techniques are expected to have practical use for wastewater purification with a potential for killing contaminated microorganisms and degrading recalcitrant materials. In the present study, we analysed oxidative DNA damage in bacterial cells treated by the plasma to unveil its mechanisms in the bactericidal process. Escherichia coli cell suspension was exposed to the plasma induced by applying an alternating-current voltage of about 1 kV with bubbling formed by water-cavitation, termed pulsed discharge with cavitation. Chromosomal DNA damage, such as double strand break (DSB) and oxidative base lesions, increased proportionally with the applied energy, as determined by electrophoretic and mass spectrometric analyses. Among the base lesions identified, the yields of 8-hydroxyguanine (8-OH-G) and 5-hydroxycytosine (5-OH-C) in chromosomal DNA increased by up to 4- and 15-fold, respectively, compared to untreated samples. The progeny DNA sequences, derived from plasmid DNA exposed to the plasma, indicated that the production rate of 5-OH-C exceeded that of 8-OH-G, as G:C to A:T transitions accounted for 65% of all base changes, but only a few G:C to T:A transversions were observed. The cell viabilities of E. coli cells decreased in direct proportion to increases in the applied energy. Therefore, the plasma-induced bactericidal mechanism appears to relate to oxidative damage caused to bacterial DNA. These results were confirmed by observing the generation of hydroxyl radicals and hydrogen peroxide molecules following the plasma exposure. We also compared our results with the plasma to those obtained with 137Cs γ-rays, as a well-known ROS generator to confirm the DNA-damaging mechanism involved.

  5. Moderate Thermal Stress Causes Active and Immediate Expulsion of Photosynthetically Damaged Zooxanthellae (Symbiodinium) from Corals

    PubMed Central

    Fujise, Lisa; Yamashita, Hiroshi; Suzuki, Go; Sasaki, Kengo; Liao, Lawrence M.; Koike, Kazuhiko

    2014-01-01

    The foundation of coral reef biology is the symbiosis between corals and zooxanthellae (dinoflagellate genus Symbiodinium). Recently, coral bleaching, which often results in mass mortality of corals and the collapse of coral reef ecosystems, has become an important issue around the world as coral reefs decrease in number year after year. To understand the mechanisms underlying coral bleaching, we maintained two species of scleractinian corals (Acroporidae) in aquaria under non-thermal stress (27°C) and moderate thermal stress conditions (30°C), and we compared the numbers and conditions of the expelled Symbiodinium from these corals. Under non-thermal stress conditions corals actively expel a degraded form of Symbiodinium, which are thought to be digested by their host coral. This response was also observed at 30°C. However, while the expulsion rates of Symbiodinium cells remained constant, the proportion of degraded cells significantly increased at 30°C. This result indicates that corals more actively digest and expel damaged Symbiodinium under thermal stress conditions, likely as a mechanism for coping with environmental change. However, the increase in digested Symbiodinium expulsion under thermal stress may not fully keep up with accumulation of the damaged cells. There are more photosynthetically damaged Symbiodinium upon prolonged exposure to thermal stress, and corals release them without digestion to prevent their accumulation. This response may be an adaptive strategy to moderate stress to ensure survival, but the accumulation of damaged Symbiodinium, which causes subsequent coral deterioration, may occur when the response cannot cope with the magnitude or duration of environmental stress, and this might be a possible mechanism underlying coral bleaching during prolonged moderate thermal stress. PMID:25493938

  6. Protective Effects of Pinus halepensis L. Essential Oil on Aspirin-induced Acute Liver and Kidney Damage in Female Wistar Albino Rats.

    PubMed

    Bouzenna, Hafsia; Samout, Noura; Amani, Etaya; Mbarki, Sakhria; Tlili, Zied; Rjeibi, Ilhem; Elfeki, Abdelfattah; Talarmin, Hélène; Hfaiedh, Najla

    2016-08-01

    Aromatic and medicinal plants are sources of natural antioxidants thanks to their secondary metabolites. Administration of Pinus halepensis L. (Pinaceae family) in previous studies was found to alleviate deleterious effects of aspirin-induced damage on liver and kidney. The present study, carried out on female rats, evaluates the effects of P. halepensis L. essential oil (EOP) on aspirin (A)-induced damage to liver and kidney. The animals used in this study were rats (n=28) divided into 4 groups of 7 each: (1) a control group (C); (2) a group given NaCl for 56 days then treated with (A) (600 mg/kg) for 4 days (A); (3) a group fed with (EOP) for 56 days then (A) for 4 days; and a group fed with only (EOP) for 56 days and given NaCl for 4 days. Estimations of biochemical parameters in blood were determined using kit methods (Spinreact). Lipid peroxidation levels (TBARS), superoxide dismutase (SOD) and catalase (CAT), glutathione peroxidase (GPx) activities were determined. Histopathological study was done by immersing pieces of both organs in a fixative solution followed by paraffin embeddeding and hematoxylin-eosin staining. Under our experimental conditions, Aspirin at dose 600 mg/kg body weight induced an increase of serum biochemical parameters as well as an oxidative stress in both organs. An increase occurred in TBARS by 108% and 55%, a decrease in SOD by 78% and 53%, CAT by 53% and 78%, and GPx by 78% and 51% in liver and kidney, respectively, compared to control. Administration of EOP given to rats enabled correction in these parameters. It could be concluded that the treatment with P. halepensis L. essential oil inhibited aspirin-induced liver and kidney damage. PMID:27430382

  7. Calcium citrate without aluminum antacids does not cause aluminum retention in patients with functioning kidneys

    NASA Technical Reports Server (NTRS)

    Sakhaee, K.; Wabner, C. L.; Zerwekh, J. E.; Copley, J. B.; Pak, L.; Poindexter, J. R.; Pak, C. Y.

    1993-01-01

    It has been suggested that calcium citrate might enhance aluminum absorption from food, posing a threat of aluminum toxicity even in patients with normal renal function. We therefore measured serum and urinary aluminum before and following calcium citrate therapy in patients with moderate renal failure and in normal subjects maintained on constant metabolic diets with known aluminum content (967-1034 mumol/day, or 26.1-27.9 mg/day, in patients and either 834 or 1579 mumol/day, or 22.5 and 42.6 mg/day, in normal subjects). Seven patients with moderate renal failure (endogenous creatinine clearance of 43 ml/min) took 50 mmol (2 g) calcium/day as effervescent calcium citrate with meals for 17 days. Eight normal women received 25 mmol (1 g) calcium/day as tricalcium dicitrate tablets with meals for 7 days. In patients with moderate renal failure, serum and urinary aluminum were normal before treatment at 489 +/- 293 SD nmol/l (13.2 +/- 7.9 micrograms/l) and 767 +/- 497 nmol/day (20.7 +/- 13.4 micrograms/day), respectively. They remained within normal limits and did not change significantly during calcium citrate treatment (400 +/- 148 nmol/l and 600 +/- 441 nmol/day, respectively). Similarly, no significant change in serum and urinary aluminum was detected in normal women during calcium citrate administration (271 +/- 59 vs 293 +/- 85 nmol/l and 515 +/- 138 vs 615 +/- 170 nmol/day, respectively). In addition, skeletal bone aluminum content did not change significantly in 14 osteoporotic patients (endogenous creatinine clearance of 68.5 ml/min) treated for 24 months with calcium citrate, 10 mmol calcium twice/day separately from meals (29.3 +/- 13.9 ng/mg ash bone to 27.9 +/0- 10.4, P = 0.727). In them, histomorphometric examination did not show any evidence of mineralization defect. Thus, calcium citrate given alone without aluminum-containing drugs does not pose a risk of aluminum toxicity in subjects with normal or functioning kidneys, when it is administered on an

  8. Two-peptide bacteriocin PlnEF causes cell membrane damage to Lactobacillus plantarum.

    PubMed

    Zhang, Xu; Wang, Yang; Liu, Lei; Wei, Yunlu; Shang, Nan; Zhang, Xiangmei; Li, Pinglan

    2016-02-01

    Biologically active, artificially synthesized two-peptide bacteriocin PlnEF was used to study its mode of action on sensitive bacteria Lactobacillus plantarum pl2. The data obtained showed that PlnEF induced membrane permeabilization, allowing for the efflux of electrolytes, which was evidenced by the increased extracellular conductivity, the dissipation of transmembrane electrical potential and pH gradient, and rapid intracellular ATP depletion after L. plantarum pl2 cells were treated with PlnEF for minutes. Laser confocal microscopy showed that PlnEF accumulated very quickly in L. plantarum pl2 cells and the accumulation of PlnEF caused damage to cell membrane. Scanning electron microscopy and transmission electron microscopy further showed that PlnEF induced morphological changes and structure disruption to L. plantarum pl2 cells, such as the formation of blebs, microspheres, membrane deformation and cell lysis. In summary, the data obtained show that PlnEF caused cell membrane damage to L. plantarum pl2 cells. Our study reveals the antimicrobial mechanism of two-peptide bacteriocin PlnEF against L. plantarum. PMID:26615918

  9. Ziram Causes Dopaminergic Cell Damage by Inhibiting E1 Ligase of the Proteasome*

    PubMed Central

    Chou, Arthur P.; Maidment, Nigel; Klintenberg, Rebecka; Casida, John E.; Li, Sharon; Fitzmaurice, Arthur G.; Fernagut, Pierre-Olivier; Mortazavi, Farzad; Chesselet, Marie-Francoise; Bronstein, Jeff M.

    2008-01-01

    The etiology of Parkinson disease (PD) is unclear but may involve environmental toxins such as pesticides leading to dysfunction of the ubiquitin proteasome system (UPS). Here, we measured the relative toxicity of ziram (a UPS inhibitor) and analogs to dopaminergic neurons and examined the mechanism of cell death. UPS (26 S) activity was measured in cell lines after exposure to ziram and related compounds. Dimethyl- and diethyldithiocarbamates including ziram were potent UPS inhibitors. Primary ventral mesencephalic cultures were exposed to ziram, and cell toxicity was assessed by staining for tyrosine hydroxylase (TH) and NeuN antigen. Ziram caused a preferential damage to TH+ neurons and elevated α-synuclein levels but did not increase aggregate formation. Mechanistically, ziram altered UPS function through interfering with the targeting of substrates by inhibiting ubiquitin E1 ligase. Sodium dimethyldithiocarbamate administered to mice for 2 weeks resulted in persistent motor deficits and a mild reduction in striatal TH staining but no nigral cell loss. These results demonstrate that ziram causes selective dopaminergic cell damage in vitro by inhibiting an important degradative pathway implicated in the etiology of PD. Chronic exposure to widely used dithiocarbamate fungicides may contribute to the development of PD, and elucidation of its mechanism would identify a new potential therapeutic target. PMID:18818210

  10. Cystinosin deficiency causes podocyte damage and loss associated with increased cell motility.

    PubMed

    Ivanova, Ekaterina A; Arcolino, Fanny O; Elmonem, Mohamed A; Rastaldi, Maria P; Giardino, Laura; Cornelissen, Elisabeth M; van den Heuvel, Lambertus P; Levtchenko, Elena N

    2016-05-01

    The involvement of the glomerulus in the pathogenesis of cystinosis, caused by loss-of-function mutations in cystinosin (CTNS, 17p13), is a matter of controversy. Although patients with cystinosis demonstrate glomerular lesions and high-molecular-weight proteinuria starting from an early age, a mouse model of cystinosis develops only signs of proximal tubular dysfunction. Here we studied podocyte damage in patients with cystinosis by analyzing urinary podocyte excretion and by in vitro studies of podocytes deficient in cystinosin. Urine from patients with cystinosis presented a significantly higher amount of podocytes compared with controls. In culture, cystinotic podocytes accumulated cystine compatible with cystinosin deficiency. The expression of podocyte specific genes CD2AP, podocalyxin, and synaptopodin and of the WT1 protein was evident in all cell lines. Conditionally immortalized podocyte lines of 2 patients with different CTNS mutations had altered cytoskeleton, impaired cell adhesion sites, and increased individual cell motility. Moreover, these cells showed enhanced phosphorylation of both Akt1 and Akt2 (isoforms of protein kinase B). Inhibition of Akt by a specific inhibitor (Akti inhibitor 1/2) resulted in normalization of the hypermotile phenotype. Thus, our study extends the list of genetic disorders causing podocyte damage and provides the evidence of altered cell signaling cascades resulting in impaired cell adhesion and enhanced cell motility in cystinosis. PMID:27083281

  11. Exposure to cigarette smoke causes DNA damage in oropharyngeal tissue in dogs.

    PubMed

    Pérez, Natalia; Berrío, Alina; Jaramillo, Jairo Enrique; Urrego, Rodrigo; Arias, María Patricia

    2014-07-15

    More than 40 mutagenic and carcinogenic agents present in cigarette smoke have been identified as causative factors of human cancer, but no relation has been clearly documented in companion animals. In dogs, in addition to smoke inhalation and transdermic absorption, exposure to smoke includes oral ingestion of particles adhered to the animal's fur. This study evaluates the presence and type of histological alterations and DNA integrity in oropharyngeal tissue in dogs exposed and non-exposed to household cigarette smoke by means of histopathology and comet assay studies on biopsy and swab samples. A non-probabilistic convenience sample of 12 dogs were selected and classified in two groups: exposed and non-exposed to cigarette smoke. Non-parametric Kruskal-Wallis test was carried out on biopsy and swab data and a Chi(2) test was performed on the information obtained by histopathology. A significance level was set at P<0.05. Statistically significant differences were found between groups in comet assays carried out on biopsy samples. No differences (P>0.05) were found between groups based on comet assays swab samples and histopathology assessment. In conclusion, exposure to cigarette smoke causes DNA damage in dog oropharyngeal tissue. The use of dogs as sentinels for early DNA damage caused by exposure to environmental genotoxic agents like cigarette smoke is reported for the first time. PMID:25344107

  12. Evaluating the Contribution of the Cause of Kidney Disease to Prognosis in CKD: Results From the Study of Heart and Renal Protection (SHARP)

    PubMed Central

    Haynes, Richard; Staplin, Natalie; Emberson, Jonathan; G. Herrington, William; Tomson, Charles; Agodoa, Lawrence; Tesar, Vladimir; Levin, Adeera; Lewis, David; Reith, Christina; Baigent, Colin; Landray, Martin J.

    2014-01-01

    Background The relevance of the cause of kidney disease to prognosis among patients with chronic kidney disease is uncertain. Study Design Observational study. Settings & Participants 6,245 nondialysis participants in the Study of Heart and Renal Protection (SHARP). Predictor Baseline cause of kidney disease was categorized into 4 groups: cystic kidney disease, diabetic nephropathy, glomerulonephritis, and other recorded diagnoses. Outcomes End-stage renal disease (ESRD; dialysis or transplantation) and death. Results During an average 4.7 years' follow-up, 2,080 participants progressed to ESRD, including 454 with cystic kidney disease (23% per year), 378 with glomerulonephritis (10% per year), 309 with diabetic nephropathy (12% per year), and 939 with other recorded diagnoses (8% per year). By comparison with patients with cystic kidney disease, other disease groups had substantially lower adjusted risks of ESRD (relative risks of 0.28 [95% CI, 0.24-0.32], 0.40 [95% CI, 0.34-0.47], and 0.29 [95% CI, 0.25-0.32] for glomerulonephritis, diabetic nephropathy, and other recorded diagnoses, respectively). Albuminuria and baseline estimated glomerular filtration rate were associated more weakly with risk of ESRD in patients with cystic kidney disease than the 3 other diagnostic categories (P for interaction, <0.001 and 0.01, respectively). Death before ESRD was uncommon in patients with cystic kidney disease, but was a major competing risk for participants with diabetic nephropathy, whose adjusted risk of death was 2-fold higher than that of the cystic kidney disease group (relative risk, 2.35 [95% CI, 1.73-3.18]). Limitations Exclusion of patients with prior myocardial infarction or coronary revascularization. Conclusions The cause of kidney disease has substantial prognostic implications. Other things being equal, patients with cystic kidney disease are at much higher risk of ESRD (and much lower risk of death before ESRD) than other patients. Patients with diabetic

  13. Reversed Dipper Blood-Pressure Pattern Is Closely Related to Severe Renal and Cardiovascular Damage in Patients with Chronic Kidney Disease

    PubMed Central

    Liu, Xun; Li, Cuicui; Ye, Zengchun; Peng, Hui; Chen, Zhujiang; Lou, Tanqi

    2013-01-01

    Background A non-dipper blood pressure (BP) pattern is very common in chronic kidney disease (CKD) patients and affects the progression and development of cardiovascular disease. However, data on the reversed dipper BP pattern on target-organ damage in Chinese CKD patients are lacking. Methods A total of 540 CKD patients were enrolled. Ambulatory blood pressure monitoring (ABPM), clinical BP, ultrasonographic assessment and other clinical data were collected. Univariate and multivariate analyses were used to ascertain the relationship between ABPM results and clinical parameters. Results A total of 21.9% CKD patients had a reversed dipper BP pattern, 42% of patients had a non-dipper BP pattern and 36.1% of patients had a dipper BP pattern. Patients with reversed dipper BP pattern had the worst renal function and most severe cardiovascular damages among these CKD patients (p<0.05). The estimated glomerular filtration rate (eGFR) and left ventricular mass index (LVMI) correlated significantly with the rate of decline of nocturnal BP. A reversed dipper BP pattern was an independent factor affecting kidney damage and left ventricular hypertrophy. Age, lower hemoglobin level, higher 24-h systolic BP from ABPM, and higher serum phosphate levels were independent associated with a reversed dipper BP pattern after multivariate logistic regression analyses. Conclusion The reversed dipper BP pattern is closely related to severe renal damage and cardiovascular injuries in CKD patients, and special attention should be given to these CKD patients. PMID:23393577

  14. Meta-Analysis of Attitudes toward Damage-Causing Mammalian Wildlife

    PubMed Central

    KANSKY, RUTH; KIDD, MARTIN; KNIGHT, ANDREW T

    2014-01-01

    Many populations of threatened mammals persist outside formally protected areas, and their survival depends on the willingness of communities to coexist with them. An understanding of the attitudes, and specifically the tolerance, of individuals and communities and the factors that determine these is therefore fundamental to designing strategies to alleviate human-wildlife conflict. We conducted a meta-analysis to identify factors that affected attitudes toward 4 groups of terrestrial mammals. Elephants (65%) elicited the most positive attitudes, followed by primates (55%), ungulates (53%), and carnivores (44%). Urban residents presented the most positive attitudes (80%), followed by commercial farmers (51%) and communal farmers (26%). A tolerance to damage index showed that human tolerance of ungulates and primates was proportional to the probability of experiencing damage while elephants elicited tolerance levels higher than anticipated and carnivores elicited tolerance levels lower than anticipated. Contrary to conventional wisdom, experiencing damage was not always the dominant factor determining attitudes. Communal farmers had a lower probability of being positive toward carnivores irrespective of probability of experiencing damage, while commercial farmers and urban residents were more likely to be positive toward carnivores irrespective of damage. Urban residents were more likely to be positive toward ungulates, elephants, and primates when probability of damage was low, but not when it was high. Commercial and communal farmers had a higher probability of being positive toward ungulates, primates, and elephants irrespective of probability of experiencing damage. Taxonomic bias may therefore be important. Identifying the distinct factors explaining these attitudes and the specific contexts in which they operate, inclusive of the species causing damage, will be essential for prioritizing conservation investments. Meta-Análisis de las Posturas hacia la Mam

  15. Iodinated contrast media cause direct tubular cell damage, leading to oxidative stress, low nitric oxide, and impairment of tubuloglomerular feedback

    PubMed Central

    Liu, Zhi Zhao; Schmerbach, Kristin; Lu, Yuan; Perlewitz, Andrea; Nikitina, Tatiana; Cantow, Kathleen; Seeliger, Erdmann; Persson, Pontus B.; Liu, Ruisheng; Sendeski, Mauricio M.

    2014-01-01

    Iodinated contrast media (CM) have adverse effects that may result in contrast-induced acute kidney injury. Oxidative stress is believed to play a role in CM-induced kidney injury. We test the hypothesis that oxidative stress and reduced nitric oxide in tubules are consequences of CM-induced direct cell damage and that increased local oxidative stress may increase tubuloglomerular feedback. Rat thick ascending limbs (TAL) were isolated and perfused. Superoxide and nitric oxide were quantified using fluorescence techniques. Cell death rate was estimated using propidium iodide and trypan blue. The function of macula densa and tubuloglomerular feedback responsiveness were measured in isolated, perfused juxtaglomerular apparatuses (JGA) of rabbits. The expression of genes related to oxidative stress and the activity of superoxide dismutase (SOD) were investigated in the renal medulla of rats that received CM. CM increased superoxide concentration and reduced nitric oxide bioavailability in TAL. Propidium iodide fluorescence and trypan blue uptake increased more in CM-perfused TAL than in controls, indicating increased rate of cell death. There were no marked acute changes in the expression of genes related to oxidative stress in medullary segments of Henle's loop. SOD activity did not differ between CM and control groups. The tubuloglomerular feedback in isolated JGA was increased by CM. Tubular cell damage and accompanying oxidative stress in our model are consequences of CM-induced direct cell damage, which also modifies the tubulovascular interaction at the macula densa, and may therefore contribute to disturbances of renal perfusion and filtration. PMID:24431205

  16. High dietary fiber intake is associated with decreased inflammation and all-cause mortality in patients with chronic kidney disease

    PubMed Central

    Raj Krishnamurthy, Vidya M.; Wei, Guo; Baird, Bradley C.; Murtaugh, Maureen; Chonchol, Michel B.; Raphael, Kalani L.; Greene, Tom; Beddhu, Srinivasan

    2016-01-01

    Chronic kidney disease is considered an inflammatory state and a high fiber intake is associated with decreased inflammation in the general population. Here, we determined whether fiber intake is associated with decreased inflammation and mortality in chronic kidney disease, and whether kidney disease modifies the associations of fiber intake with inflammation and mortality. To do this, we analyzed data from 14,543 participants in the National Health and Nutrition Examination Survey III. The prevalence of chronic kidney disease (estimated glomerular filtration rate less than 60 ml/min per 1.73 m2) was 5.8%. For each 10-g/day increase in total fiber intake, the odds of elevated serum C-reactive protein levels were decreased by 11% and 38% in those without and with kidney disease, respectively. Dietary total fiber intake was not significantly associated with mortality in those without but was inversely related to mortality in those with kidney disease. The relationship of total fiber with inflammation and mortality differed significantly in those with and without kidney disease. Thus, high dietary total fiber intake is associated with lower risk of inflammation and mortality in kidney disease and these associations are stronger in magnitude in those with kidney disease. Interventional trials are needed to establish the effects of fiber intake on inflammation and mortality in kidney disease. PMID:22012132

  17. Loss of p21 permits carcinogenesis from chronically damaged liver and kidney epithelial cells despite unchecked apoptosis.

    PubMed

    Willenbring, Holger; Sharma, Amar Deep; Vogel, Arndt; Lee, Andrew Y; Rothfuss, Andreas; Wang, Zhongya; Finegold, Milton; Grompe, Markus

    2008-07-01

    Accumulation of toxic metabolites in hereditary tyrosinemia type I (HT1) patients leads to chronic DNA damage and the highest risk for hepatocellular carcinomas (HCCs) of any human disease. Here we show that hepatocytes of HT1 mice exhibit a profound cell-cycle arrest that, despite concomitant apoptosis resistance, causes mortality from impaired liver regeneration. However, additional loss of p21 in HT1 mice restores the proliferative capabilities of hepatocytes and renal proximal tubular cells. This growth response compensates cell loss due to uninhibited apoptosis and enables animal survival but rapidly leads to HCCs, renal cysts, and renal carcinomas. Thus, p21's antiproliferative function is indispensable for the suppression of carcinogenesis from chronically injured liver and renal epithelial cells and cannot be compensated by apoptosis. PMID:18598944

  18. Assessment of infrastructure functional damages caused by natural-technological disasters

    NASA Astrophysics Data System (ADS)

    Massabò, Marco; Trasforini, Eva; Traverso, Stefania; Rudari, Roberto; De Angeli, Silvia; Cecinati, Francesca; Cerruti, Valentina

    2013-04-01

    The assessment of infrastructure damages caused by technological disaster poses several challenges, from gathering needed information on the territorial system to the definition of functionality curves for infrastructures elements (such as, buildings, road school) that are exposed to both natural and technological event. Moreover, areas affected by natural or natech (technological disasters triggered by natural events) disasters have often very large extensions and a rapid survey of them to gather all the needed information is a very difficult task, for many reasons, not least the difficult access to the existing databases and resources. We use multispectral optical imagery with other geographical and unconventional data to identify and characterize exposed elements. Our efforts in the virtual survey and during the investigation steps have different aims: to identify the vulnerability of infrastructures, buildings or activities; to execute calculations of exposition to risk; to estimate physical and functional damages. Subsequently, we apply specific algorithms to estimate values of acting forces and physical and functional damages. The updated picture of target areas in terms of risk-prone people, infrastructures and their connections is very important. It is possible to develop algorithms providing values of systemic functionality for each network element. The methodology is here applied to a natech disaster, arising from the combination of a flood event (specifically, the January 2010 flooding of Drin and Buna rivers, with a worsening in the road safety levels in the Shkoder area) with and the subsequent overturning of a truck transporting hazardous material. The accident causes the loss of containment and the total material release. Once the release has taken place, the evolution will depend on the physical state of the substance spilled (liquid, gas or dust). As a specific case we consider the rupture of a trucks transporting liquid fuels such as gasoline

  19. Maize Purple Plant Pigment Protects Against Fluoride-Induced Oxidative Damage of Liver and Kidney in Rats

    PubMed Central

    Zhang, Zhuo; Zhou, Bo; Wang, Hiaohong; Wang, Fei; Song, Yingli; Liu, Shengnan; Xi, Shuhua

    2014-01-01

    Anthocyanins are polyphenols and well known for their biological antioxidative benefits. Maize purple plant pigment (MPPP) extracted and separated from maize purple plant is rich in anthocyanins. In the present study, MPPP was used to alleviate the adverse effects generated by fluoride on liver and kidney in rats. The results showed that the ultrastructure of the liver and kidney in fluoride treated rats displayed shrinkage of nuclear and cell volume, swollen mitochondria and endoplasmic reticulum and vacuols formation in the liver and kidney cells. MPPP significantly attenuated these fluoride-induced pathological changes. The MDA levels in serum and liver tissue of fluoride alone treated group were significantly higher than those of the control group (p < 0.05). The presence of 5 g/kg MPPP in the diet reduced the elevation of MDA levels in blood and liver, and increased the SOD and GSH-Px activities in kidney and GSH level in liver and kidney compared with the fluoride alone treated group (p < 0.05). In addition, MPPP alleviated the decrease of Bcl-2 protein expression and the increase of Bax protein expression induced by fluoride. This study demonstrated the protective role of MPPP against fluoride-induced oxidative stress in liver and kidney of rats. PMID:24419046

  20. Blast Wave Exposure to the Extremities Causes Endothelial Activation and Damage.

    PubMed

    Spear, Abigail M; Davies, Emma M; Taylor, Christopher; Whiting, Rachel; Macildowie, Sara; Kirkman, Emrys; Midwinter, Mark; Watts, Sarah A

    2015-11-01

    Extremity injury is a significant burden to those injured in explosive incidents and local ischaemia can result in poor functionality in salvaged limbs. This study examined whether blast injury to a limb resulted in a change in endothelial phenotype leading to changes to the surrounding tissue.The hind limbs of terminally anaesthetized rabbits were subjected to one of four blast exposures (high, medium, low, or no blast). Blood samples were analyzed for circulating endothelial cells pre-injury and at 1, 6, and 11 h postinjury as well as analysis for endothelial activation pre-injury and at 1, 6, and 12  h postinjury. Post-mortem tissue (12  h post-injury) was analysed for both protein and mRNA expression and also for histopathology. The high blast group had significantly elevated levels of circulating endothelial cells 6  h postinjury. This group also had significantly elevated tissue mRNA expression of IL-6, E-selection, TNF-α, HIF-1, thrombomodulin, and PDGF. There was a significant correlation between blast dose and the degree of tissue pathology (hemorrhage, neutrophil infiltrate, and oedema) with the worst scores in the high blast group. This study has demonstrated that blast injury can activate the endothelium and in some cases cause damage that in turn leads to pathological changes in the surrounding tissue. For the casualty injured by an explosion the damaging effects of hemorrhage and shock could be exacerbated by blast injury and vice versa so that even low levels of blast become damaging, all of which could affect tissue functionality and long-term outcomes. PMID:26418548

  1. Blast Wave Exposure to the Extremities Causes Endothelial Activation and Damage

    PubMed Central

    Spear, Abigail M.; Davies, Emma M.; Taylor, Christopher; Whiting, Rachel; Macildowie, Sara; Kirkman, Emrys; Midwinter, Mark; Watts, Sarah A.

    2015-01-01

    ABSTRACT Extremity injury is a significant burden to those injured in explosive incidents and local ischaemia can result in poor functionality in salvaged limbs. This study examined whether blast injury to a limb resulted in a change in endothelial phenotype leading to changes to the surrounding tissue. The hind limbs of terminally anaesthetized rabbits were subjected to one of four blast exposures (high, medium, low, or no blast). Blood samples were analyzed for circulating endothelial cells pre-injury and at 1, 6, and 11 h postinjury as well as analysis for endothelial activation pre-injury and at 1, 6, and 12 h postinjury. Post-mortem tissue (12 h post-injury) was analysed for both protein and mRNA expression and also for histopathology. The high blast group had significantly elevated levels of circulating endothelial cells 6 h postinjury. This group also had significantly elevated tissue mRNA expression of IL-6, E-selectin, TNF-α, HIF-1, thrombomodulin, and PDGF. There was a significant correlation between blast dose and the degree of tissue pathology (hemorrhage, neutrophil infiltrate, and oedema) with the worst scores in the high blast group. This study has demonstrated that blast injury can activate the endothelium and in some cases cause damage that in turn leads to pathological changes in the surrounding tissue. For the casualty injured by an explosion the damaging effects of hemorrhage and shock could be exacerbated by blast injury and vice versa so that even low levels of blast become damaging, all of which could affect tissue functionality and long-term outcomes. PMID:26418548

  2. Immunization with Pneumolysin Protects Against Both Retinal and Global Damage Caused by Streptococcus pneumoniae Endophthalmitis

    PubMed Central

    Sanders, Melissa E.; Norcross, Erin W.; Moore, Quincy C.; Fratkin, Jonathan; Thompson, Hilary

    2010-01-01

    Abstract Purpose To determine whether immunization with pneumolysin (PLY) protects against pneumococcal endophthalmitis. Methods New Zealand white rabbits were immunized with a mutant form of PLY that retains only 1% of its cytolytic activity until serum IgG titers were ≥51,200. For a negative control, rabbits were immunized with phosphate-buffered saline (mock). Each vitreous was injected with 102 colony-forming units of a clinical endophthalmitis isolate of Streptococcus pneumoniae. Severity of endophthalmitis was graded by slit lamp examination at 24 and 48 h postinfection (PI). Serial dilutions of vitreous were plated for bacterial colony-forming units quantitation, eyes were extracted for histology, and a whole blood survival assay was performed. Results Immunized rabbits had a significantly lower mean slit lamp examination score at 24 and 48 h PI when compared to mock immunized rabbits (P ≤ 0.002). There was not a significant difference in bacterial load in the vitreous at 24 or 48 h PI. Histological sections showed that retinas of mock immunized rabbits appeared to be destroyed, whereas those of PLY immunized rabbits remained largely intact. Damage spread to the aqueous humor, stroma, and conjunctiva of mock immunized rabbits by 48 h PI. Minimal damage was observed in the vitreous of PLY immunized rabbits and did not spread to other parts of the eye. Whole blood from immunized rabbits inhibited the growth of bacteria better than whole blood from mock immunized rabbits. Conclusion Immunization with PLY helps protect the eye from damage caused by pneumococcal endophthalmitis. PMID:21034245

  3. Damage to Trichothecium roseum caused by sodium silicate is independent from pH.

    PubMed

    Niu, Li-li; Bi, Yang; Bai, Xiao-dong; Zhang, Sheng-gui; Xue, Hua-li; Li, Yong-cai; Wang, Yi; Calderón-Urrea, Alejandro

    2016-02-01

    Trichothecium roseum is one of the most important postharvest pathogens in arid and semiarid regions. Sodium silicate (NaSi) and environmental pH have significant inhibitory effects on fungal growth. However, no study has addressed the relationship of NaSi and pH in combination and the effects on T. roseum. In this work, we showed that spore germination, germ tube elongation, and mycelial growth of T. roseum were significantly inhibited by various NaSi concentrations, which had corresponding increasing pHs. Furthermore, these NaSi solutions showed a much greater impact than did pH treatments alone. The pathogenicity of NaSi-treated conidia on a model assay (conidia-inoculated apple fruit) was dramatically reduced, whereas no changes of pathogenicity were evident for the corresponding pH (various sodium hydroxide (NaOH) solutions) treatments. Fluorescent microscopy, using propidium iodide staining, showed damage of the plasma membranes of T. roseum conidia treated with both NaSi and NaOH, although the damage was more severe with NaSi. Leakage of proteins and sugars was significantly higher in NaSi-treated and NaOH-treated conidia than in untreated controls. In addition, serious damage was observed in the conidia exposed to NaSi for longer periods of time. Ultrastructural observations showed that treatment with either NaSi or NaOH caused a plasmolysis state and disorganized organelles. Taken together the results show that NaSi has inhibitory effects on T. roseum and that the inherent higher pH of NaSi solutions of higher concentrations simply acts as an enhancer of the inhibitory effects of NaSi. PMID:26751338

  4. Ingested Shiga toxin 2 (Stx2) causes histopathological changes in kidney, spleen, and thymus tissues and mortality in mice.

    PubMed

    Rasooly, Reuven; Do, Paula M; Griffey, Stephen M; Vilches-Moure, Jose G; Friedman, Mendel

    2010-08-25

    The Shiga toxin (Stx)-producing bacterial strain, Escherichia coli O157:H7, colonizes the distal small intestine and the colon, initiating serious illness, including hemolytic-uremic syndrome (HUS), characterized by microangiopathic hemolytic anemia, thrombocytopenia, and acute renal failure. Although intravenous administration of purified Stx to primates has been able to reproduce the features of HUS, it has not been conclusively established as to whether ingestion of Stx alone without the bacterium poses a potential health risk. To help answer this question, in this study, we fed Shiga toxin 2 (Stx2) directly into the stomachs of mice via gavage. Our data show that ingestion of Stx2 at a concentration of 50 μg/mouse induces weight loss and kills the mice at 3-5 days post-gavage. Additional studies revealed that the toxin retains activity at low pH, that its activity is neutralized by treatment with toxin-specific antibody, and that about 1% of the fed toxin is absorbed into the blood circulation. Lethality by intraperitoneal (IP) injection of Stx2 occurred at much lower doses than by ingestion. Detailed histopathological evaluation of stained tissues by light microscopy revealed severe histopathological changes in kidneys, spleen, and thymus but not in the pancreas, lymph nodes, heart, lungs, trachea, esophagus, stomach, duodenum, jejunum, ileum, cecum, and colon. The pathological changes in the kidney appeared similar to those seen in humans with HUS. The cited data suggest that (a) most but not all of the toxin is inactivated in the digestive tract, (b) part of the oral-ingested toxin is absorbed from the digestive tract into the circulation, (c) enough active toxin reaches susceptible organs to induce damage, and (d) Stx2 in the absence of toxin-producing bacteria can be harmful to mice. The results are clinically relevant for food safety because we also found that heat treatments (pasteurization) that destroy bacteria did not inactivate the heat

  5. Dietary NiCl2 causes G2/M cell cycle arrest in the broiler's kidney

    PubMed Central

    Guo, Hongrui; Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Xun; Wu, Bangyuan; Chen, Kejie; Deng, Jie

    2015-01-01

    Here we showed that dietary NiCl2 in excess of 300 mg/kg caused the G2/M cell cycle arrest and the reduction of cell proportion at S phase. The G2/M cell cycle arrest was accompanied by up-regulation of phosphorylated ataxia telangiectasia mutated (p-ATM), p53, p-Chk1, p-Chk2, p21 protein expression and ATM, p53, p21, Chk1, Chk2 mRNA expression, and down-regulation of p-cdc25C, cdc2, cyclinB and proliferating cell nuclear antigen (PCNA) protein expression and the cdc25, cdc2, cyclinB, PCNA mRNA expression. PMID:26440151

  6. Scrum kidney: epidemic pyoderma caused by a nephritogenic Streptococcus pyogenes in a rugby team.

    PubMed

    Ludlam, H; Cookson, B

    1986-08-01

    In December, 1984, an outbreak of pyoderma affected five scrum players in the St Thomas' Hospital rugby team. The causative organism, Streptococcus pyogenes, was acquired during a match against a team experiencing an outbreak of impetigo, and was transmitted to two front row players of another team a week later, and to two girlfriends of affected St Thomas' players a month later. The strain was M-type 49, tetracycline-resistant, and virulent. It caused salpingitis in a girlfriend and acute glomerulonephritis in one rugby player. No case of subclinical glomerulonephritis was detected in eight patients with pyoderma. Screening of the St Thomas' Hospital team revealed four further cases of non-streptococcal skin infection, with evidence for contemporaneous spread of Staphylococcus aureus. Teams should not field players with sepsis, and it may be advisable to apply a skin antiseptic to traumatised skin after the match. PMID:2874337

  7. Local skin burn causes systemic (lung and kidney) endothelial cell injury reflected by increased circulating and decreased tissue factor VIII-related antigen.

    PubMed

    Gross, M A; Viders, D E; Brown, J M; Mulvin, D W; Miles, R H; Brentlinger, E R; Velasco, S E; Crawford, T S; Burton, L K; Repine, J E

    1989-08-01

    Inasmuch as xanthine oxidase (XO)-derived O2* metabolites may contribute to vascular endothelial injury and Factor VIII antigen (F8Ag) is a component of endothelial cells, we hypothesized that XO-derived O2* might damage and cause distant organ endothelial cells to release F8Ag in rats subjected to skin burn. We found that serum F8Ag (ELISA) increased in the blood of rats subjected to skin burn (70 degrees C water to shaved dorsal skin for 30 seconds) but not in sham control rats (30 degrees C water). Coincidentally, F8Ag levels also decreased in lung and kidney tissue sections (immunofluorescent staining) of burned rats but not sham rats. Increases in circulating F8Ag levels and decreases in tissue F8Ag levels appeared to result from XO-derived O2* metabolites: F8Ag levels did not increase in the blood and did not decrease in the tissues of rats pretreated with allopurinol (a specific XO inhibitor, 50 mg/kg) or dimethylthiourea (DMTU) (a permeable O2* metabolite scavenger, 250 mg/kg). Lung injury as assessed by permeability studies (I125-albumin leak) paralleled changes in blood F8Ag levels in sham, burn, allopurinol-, and DMTU-treated groups. We conclude that skin burn causes a systemic vascular injury that can be inhibited by allopurinol or DMTU and is reflected by increased circulating and tissue decreased Factor VIII antigen levels. Release of Factor VIII antigen may serve as a valuable marker of distant organ injury in patients with skin burn. PMID:2503901

  8. A Long-Term High-Fat/High-Sucrose Diet Promotes Kidney Lipid Deposition and Causes Apoptosis and Glomerular Hypertrophy in Bama Minipigs.

    PubMed

    Li, Li; Zhao, Zhanzhao; Xia, Jihan; Xin, Leilei; Chen, Yaoxing; Yang, Shulin; Li, Kui

    2015-01-01

    Metabolic syndrome can induce chronic renal injury in humans. In the present study, Bama minipigs were fed a high-fat/high-sucrose diet (HFHSD) for 23 months, which caused them to develop the pathological characteristics of metabolic syndrome, including obesity, hyperinsulinemia, and hyperlipidemia, and resulted in kidney tissue damage. In the HFHSD group, the ratio of the glomus areas to the glomerulus area and the glomerular density inside the renal cortex both decreased. Lipid deposition in the renal tubules was detected in the HFHSD group, and up-regulated expression levels of SREBP-1, FABP3 and LEPR promoted lipid deposition. The decreased levels of SOD, T-AOC and GSH-PX indicated that the antioxidant capacity of the renal tissues was diminished in the HFHSD group compared with MDA, which increased. The renal tissue in the HFHSD group exhibited clear signs of inflammation as well as significantly elevated expression of key genes associated with inflammation, including tumor necrosis factor-α (TNF-α) and macrophage migration inhibitory factor (MIF), compared with the control group. The tubular epithelial cells in the HFHSD group displayed significantly greater numbers of apoptotic cells, and the expression of proliferating cell nuclear antigen (PCNA) in the renal tubules decreased. Caspase-3 expression increased significantly, and the transcription factor nuclear factor κB (NF-κB) was activated and translocated into the nucleus. In conclusion, long-term HFHSDs cause metabolic syndrome and chronic renal tissue injury in Bama minipigs. These findings provide a foundation for further studies investigating metabolic syndrome and nephropathy. PMID:26571016

  9. A Long-Term High-Fat/High-Sucrose Diet Promotes Kidney Lipid Deposition and Causes Apoptosis and Glomerular Hypertrophy in Bama Minipigs

    PubMed Central

    Li, Li; Zhao, Zhanzhao; Xia, Jihan; Xin, Leilei; Chen, Yaoxing; Yang, Shulin; Li, Kui

    2015-01-01

    Metabolic syndrome can induce chronic renal injury in humans. In the present study, Bama minipigs were fed a high-fat/high-sucrose diet (HFHSD) for 23 months, which caused them to develop the pathological characteristics of metabolic syndrome, including obesity, hyperinsulinemia, and hyperlipidemia, and resulted in kidney tissue damage. In the HFHSD group, the ratio of the glomus areas to the glomerulus area and the glomerular density inside the renal cortex both decreased. Lipid deposition in the renal tubules was detected in the HFHSD group, and up-regulated expression levels of SREBP-1, FABP3 and LEPR promoted lipid deposition. The decreased levels of SOD, T-AOC and GSH-PX indicated that the antioxidant capacity of the renal tissues was diminished in the HFHSD group compared with MDA, which increased. The renal tissue in the HFHSD group exhibited clear signs of inflammation as well as significantly elevated expression of key genes associated with inflammation, including tumor necrosis factor-α (TNF-α) and macrophage migration inhibitory factor (MIF), compared with the control group. The tubular epithelial cells in the HFHSD group displayed significantly greater numbers of apoptotic cells, and the expression of proliferating cell nuclear antigen (PCNA) in the renal tubules decreased. Caspase-3 expression increased significantly, and the transcription factor nuclear factor κB (NF-κB) was activated and translocated into the nucleus. In conclusion, long-term HFHSDs cause metabolic syndrome and chronic renal tissue injury in Bama minipigs. These findings provide a foundation for further studies investigating metabolic syndrome and nephropathy. PMID:26571016

  10. Resistance of early maturing sweet corn varieties to damage caused by Sesamia nonagrioides (Lepidoptera: Noctuidae).

    PubMed

    Velasco, P; Revilla, P; Cartea, M E; Ordás, A; Malvar, R A

    2004-08-01

    In Mediterranean countries, the principal pest of maize, Zea mays L., is Sesamia nonagrioides Lefebvre. The objective of this work was to study the resistance of the four early maturing varieties of sweet corn, Baby Orchard, Orchard Baby, Dorinny Sweet, and Golden Early Market, and to check the relationship among resistance to S. nonagrioides and infestation dates. In a previous study, these varieties had showed a confusing behavior, being the most resistant varieties to S. nonagrioides attack in some environments and the most susceptible in others. These varieties were again evaluated along with three medium maturing varieties, used as testers because they were more stable in both environments, by using two infestation dates. Plants were more damaged in the late infestation, but the effect of the infestation depends on the variety studied. Orchard Baby and Baby Orchard were the most resistant varieties under two infestation dates. These two varieties are closely related. Therefore, we can use either one as a source of precocity and resistance for modern sweet corn. Although many studies showed that early maturing inbreds had greater damage caused by S. nonagrioides and European corn borer than late maturing inbreds and hybrids, our results showed that the earliest maturing varieties were the most resistant. PMID:15384357

  11. Assessment of concrete damage and strength degradation caused by reinforcement corrosion

    NASA Astrophysics Data System (ADS)

    Nepal, Jaya; Chen, Hua-Peng

    2015-07-01

    Structural performance deterioration of reinforced concrete structures has been extensively investigated, but very limited studies have been carried out to investigate the effect of reinforcement corrosion on time-dependent reliability with consideration of the influence of mechanical characteristics of the bond interface due to corrosion. This paper deals with how corrosion in reinforcement creates different types of defects in concrete structure and how they are responsible for the structural capacity deterioration of corrosion affected reinforced concrete structures during their service life. Cracking in cover concrete due to reinforcement corrosion is investigated by using rebar-concrete model and realistic concrete properties. The flexural strength deterioration is analytically predicted on the basis of bond strength evolution due to reinforcement corrosion, which is examined by the experimental data available. The time-dependent reliability analysis is undertaken to calculate the life time structural reliability of corrosion damaged concrete structures by stochastic deterioration modelling of reinforced concrete. The results from the numerical example show that the proposed approach is capable of evaluating the damage caused by reinforcement corrosion and also predicting the structural reliability of concrete structures during their lifecycle.

  12. Perfluorooctane sulfonate exposure causes gonadal developmental toxicity in Caenorhabditis elegans through ROS-induced DNA damage.

    PubMed

    Guo, Xiaoying; Li, Qingqing; Shi, Jue; Shi, Liulin; Li, Buqing; Xu, An; Zhao, Guoping; Wu, Lijun

    2016-07-01

    Perfluorooctane sulfonate (PFOS), a common persistent organic pollutant, has been reported to show potential developmental toxicity in many animal studies. However, little was known about its effects on reproductive tissues, especially in the germ line. In the present study, Caenorhabditis elegans was used as an in vivo experimental model to study the developmental toxicity caused by PFOS exposure, especially in the gonads. Our results showed that PFOS exposure significantly retarded gonadal development, as shown by the increased number of worms that remained in the larval stages after hatched L1-stage larvae were exposed to PFOS for 72 h. Investigation of germ line proliferation following PFOS exposure showed that the number of total germ cells reduced in a dose-dependent manner when L1-stage larvae were exposed to 0-25.0 μM PFOS. PFOS exposure induced transient mitotic cell cycle arrest and apoptosis in the germ line. Quantification of DNA damage in proliferating germ cells and production of reactive oxygen species (ROS) showed that distinct foci of HUS-1:GFP and ROS significantly increased in the PFOS-treated groups, whereas the decrease in mitotic germ cell number and the enhanced apoptosis induced by PFOS exposure were effectively rescued upon addition of dimethyl sulfoxide (DMSO) and mannitol (MNT). These results suggested that ROS-induced DNA damage might play a pivotal role in the impairment of gonadal development indicated by the reduction in total germ cells, transient mitotic cell cycle arrest, and apoptosis. PMID:27108369

  13. Repair of clustered DNA damage caused by high LET radiation in human fibroblasts

    NASA Technical Reports Server (NTRS)

    Rydberg, B.; Lobrich, M.; Cooper, P. K.; Chatterjee, A. (Principal Investigator)

    1998-01-01

    It has recently been demonstrated experimentally that DNA damage induced by high LET radiation in mammalian cells is non-randomly distributed along the DNA molecule in the form of clusters of various sizes. The sizes of such clusters range from a few base-pairs to at least 200 kilobase-pairs. The high biological efficiency of high LET radiation for induction of relevant biological endpoints is probably a consequence of this clustering, although the exact mechanisms by which the clustering affects the biological outcome is not known. We discuss here results for induction and repair of base damage, single-strand breaks and double-strand breaks for low and high LET radiations. These results are discussed in the context of clustering. Of particular interest is to determine how clustering at different scales affects overall rejoining and fidelity of rejoining of DNA double-strand breaks. However, existing methods for measuring repair of DNA strand breaks are unable to resolve breaks that are close together in a cluster. This causes problems in interpretation of current results from high LET radiation and will require new methods to be developed.

  14. Mutations in GANAB, Encoding the Glucosidase IIα Subunit, Cause Autosomal-Dominant Polycystic Kidney and Liver Disease.

    PubMed

    Porath, Binu; Gainullin, Vladimir G; Cornec-Le Gall, Emilie; Dillinger, Elizabeth K; Heyer, Christina M; Hopp, Katharina; Edwards, Marie E; Madsen, Charles D; Mauritz, Sarah R; Banks, Carly J; Baheti, Saurabh; Reddy, Bharathi; Herrero, José Ignacio; Bañales, Jesús M; Hogan, Marie C; Tasic, Velibor; Watnick, Terry J; Chapman, Arlene B; Vigneau, Cécile; Lavainne, Frédéric; Audrézet, Marie-Pierre; Ferec, Claude; Le Meur, Yannick; Torres, Vicente E; Harris, Peter C

    2016-06-01

    Autosomal-dominant polycystic kidney disease (ADPKD) is a common, progressive, adult-onset disease that is an important cause of end-stage renal disease (ESRD), which requires transplantation or dialysis. Mutations in PKD1 or PKD2 (∼85% and ∼15% of resolved cases, respectively) are the known causes of ADPKD. Extrarenal manifestations include an increased level of intracranial aneurysms and polycystic liver disease (PLD), which can be severe and associated with significant morbidity. Autosomal-dominant PLD (ADPLD) with no or very few renal cysts is a separate disorder caused by PRKCSH, SEC63, or LRP5 mutations. After screening, 7%-10% of ADPKD-affected and ∼50% of ADPLD-affected families were genetically unresolved (GUR), suggesting further genetic heterogeneity of both disorders. Whole-exome sequencing of six GUR ADPKD-affected families identified one with a missense mutation in GANAB, encoding glucosidase II subunit α (GIIα). Because PRKCSH encodes GIIβ, GANAB is a strong ADPKD and ADPLD candidate gene. Sanger screening of 321 additional GUR families identified eight further likely mutations (six truncating), and a total of 20 affected individuals were identified in seven ADPKD- and two ADPLD-affected families. The phenotype was mild PKD and variable, including severe, PLD. Analysis of GANAB-null cells showed an absolute requirement of GIIα for maturation and surface and ciliary localization of the ADPKD proteins (PC1 and PC2), and reduced mature PC1 was seen in GANAB(+/-) cells. PC1 surface localization in GANAB(-/-) cells was rescued by wild-type, but not mutant, GIIα. Overall, we show that GANAB mutations cause ADPKD and ADPLD and that the cystogenesis is most likely driven by defects in PC1 maturation. PMID:27259053

  15. Using magnetic nanoparticles to probe protein damage in ferritin caused by freeze concentration

    NASA Astrophysics Data System (ADS)

    Chagas, E. F.; Correia Carreira, S.; Schwarzacher, W.

    2015-11-01

    We demonstrate a method for monitoring the damage caused to a protein during freeze-thawing in the presence of glycerol, a cryo-protectant. For this work we synthesized magnetite nanoparticles doped with 2.5% cobalt inside the protein ferritin (CMF), dissolved them in different concentration glycerol solutions and measured their magnetization after freezing in a high applied field (5 T). As the temperature was raised, a step-like decrease in the sample magnetization was observed, corresponding to the onset of Brownian relaxation as the viscosity of the freeze-concentrated glycerol solution decreased. The position of the step reveals changes to the protein hydrodynamic radius that we attribute to protein unfolding, while its height depends on how much protein is trapped by ice during freeze concentration. Changes to the protein hydrodynamic radius are confirmed by dynamic light scattering (DLS) measurements, but unlike DLS, the magnetic measurements can provide hydrodynamic data while the solution remains mainly frozen.

  16. Oxidative DNA damage caused by inflammation may link to stress-induced non-targeted effects

    PubMed Central

    Sprung, Carl N.; Ivashkevich, Alesia; Forrester, Helen B.; Redon, Christophe E.; Georgakilas, Alexandros; Martin, Olga A.

    2013-01-01

    A spectrum of radiation-induced non-targeted effects has been reported during the last two decades since Nagasawa and Little first described a phenomenon in cultured cells that was later called the “bystander effect”. These non-targeted effects include radiotherapy-related abscopal effects, where changes in organs or tissues occur distant from the irradiated region. The spectrum of non-targeted effects continue to broaden over time and now embrace many types of exogenous and endogenous stressors that induce a systemic genotoxic response including a widely studied tumor microenvironment. Here we discuss processes and factors leading to DNA damage induction in non-targeted cells and tissues and highlight similarities in the regulation of systemic effects caused by different stressors. PMID:24041866

  17. Monitoring of Maize Damage Caused by Western Corn Rootworm by Remote Sensing

    NASA Astrophysics Data System (ADS)

    Nádor, G.; Fényes, D.; Vasas, L.; Surek, G.

    2009-04-01

    The gradual dispersion of western corn rootworm (WCR) is becoming a serious maize pest in Europe, and all over the world. In 2008 using remote sensing data, the Remote Sensing Centre of Institute of Geodesy, Cartography and Remote Sensing (FÖMI RSC) carried out this project to identify WCR larval damage. Our goal with the present project is to assess and identify the disorder and structural changes caused by WCR larvae using optical (IRS-P6 AWiFS, IRS-P6 LISS, SPOT4 and SPOT5) and polarimetic radar (ALOS PALSAR) satellite images. We used 3 different individual features (Mono-maize feature, Optical feature, Radar feature) derived from remote sensing data to accomplish this goal. Findings were tested against on-the-spot ground assessments. Using radar polarimetry increased the accuracy significantly. The final results have implications for plant protection strategy, farming practices, pesticide producers, state authorities and research institutes.

  18. Prolonged electrical stimulation causes no damage to sacral nerve roots in rabbits

    PubMed Central

    Yan, Peng; Yang, Xiaohong; Yang, Xiaoyu; Zheng, Weidong; Tan, Yunbing

    2014-01-01

    Previous studies have shown that, anode block electrical stimulation of the sacral nerve root can produce physiological urination and reconstruct urinary bladder function in rabbits. However, whether long-term anode block electrical stimulation causes damage to the sacral nerve root remains unclear, and needs further investigation. In this study, a complete spinal cord injury model was established in New Zealand white rabbits through T9–10 segment transection. Rabbits were given continuous electrical stimulation for a short period and then chronic stimulation for a longer period. Results showed that compared with normal rabbits, the structure of nerve cells in the anterior sacral nerve roots was unchanged in spinal cord injury rabbits after electrical stimulation. There was no significant difference in the expression of apoptosis-related proteins such as Bax, Caspase-3, and Bcl-2. Experimental findings indicate that neurons in the rabbit sacral nerve roots tolerate electrical stimulation, even after long-term anode block electrical stimulation. PMID:25206785

  19. Mutations of the Thyroid Hormone Transporter MCT8 Cause Prenatal Brain Damage and Persistent Hypomyelination

    PubMed Central

    López-Espíndola, Daniela; Morales-Bastos, Carmen; Grijota-Martínez, Carmen; Liao, Xiao-Hui; Lev, Dorit; Sugo, Ella; Verge, Charles F.; Refetoff, Samuel

    2014-01-01

    Context: Mutations in the MCT8 (SLC16A2) gene, encoding a specific thyroid hormone transporter, cause an X-linked disease with profound psychomotor retardation, neurological impairment, and abnormal serum thyroid hormone levels. The nature of the central nervous system damage is unknown. Objective: The objective of the study was to define the neuropathology of the syndrome by analyzing brain tissue sections from MCT8-deficient subjects. Design: We analyzed brain sections from a 30th gestational week male fetus and an 11-year-old boy and as controls, brain tissue from a 30th and 28th gestational week male and female fetuses, respectively, and a 10-year-old girl and a 12-year-old boy. Methods: Staining with hematoxylin-eosin and immunostaining for myelin basic protein, 70-kDa neurofilament, parvalbumin, calbindin-D28k, and synaptophysin were performed. Thyroid hormone determinations and quantitative PCR for deiodinases were also performed. Results: The MCT8-deficient fetus showed a delay in cortical and cerebellar development and myelination, loss of parvalbumin expression, abnormal calbindin-D28k content, impaired axonal maturation, and diminished biochemical differentiation of Purkinje cells. The 11-year-old boy showed altered cerebellar structure, deficient myelination, deficient synaptophysin and parvalbumin expression, and abnormal calbindin-D28k expression. The MCT8-deficient fetal cerebral cortex showed 50% reduction of thyroid hormones and increased type 2 deiodinase and decreased type 3 deiodinase mRNAs. Conclusions: The following conclusions were reached: 1) brain damage in MCT8 deficiency is diffuse, without evidence of focal lesions, and present from fetal stages despite apparent normality at birth; 2) deficient hypomyelination persists up to 11 years of age; and 3) the findings are compatible with the deficient action of thyroid hormones in the developing brain caused by impaired transport to the target neural cells. PMID:25222753

  20. Neuroprotective Effects of Agmatine Against Cell Damage Caused by Glucocorticoids in Cultured Rat Hippocampal Neurons

    PubMed Central

    Zhu, M.-Y.; Wang, W.-P.; Bissette, G.

    2010-01-01

    In the present study the neuroprotective effects of agmatine against neuronal damage caused by glucocorticoids were examined in cultured rat hippocampal neurons. Spectrophotometric measurements of lactate dehydrogenase activities, β-tubulin III immunocytochemical staining, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick-end-labeling assay (TUNEL) labeling and caspase-3 assays were carried out to detect cell damage or possible involved mechanisms. Our results show that dexamethasone and corticosterone produced a concentration-dependent increase of lactate dehydrogenase release in 12-day hippocampal cultures. Addition of 100 μM agmatine into media prevented the glucocorticoid-induced increase of lactate dehydrogenase release, an effect also shared with the specific N-methyl-d-aspartate receptor antagonist MK801 and glucocorticoid receptor antagonists mifepristone and spironolactone. Arcaine, an analog of agmatine with similar structure as agmatine, also blocked glucocorticoid-induced increase of lactate dehydrogenase release. Spermine and putrescine, the endogenous polyamine and metabolic products of agmatine without the guanidino moiety of agmatine, have no appreciable effect on glucocorticoid-induced injuries, indicating a structural relevance for this neuroprotection. Immunocytochemical staining with β-tubulin III confirmed the substantial neuronal injuries caused by glucocorticoids and the neuroprotective effects of agmatine against these neuronal injuries. TUNEL labeling demonstrated that agmatine significantly reduced TUNEL-positive cell numbers induced by exposure of cultured neurons to dexamethasone. Moreover, exposure of hippocampal neurons to dexamethasone significantly increased caspase-3 activity, which was inhibited by co-treatment with agmatine. Taken together, these results demonstrate that agmatine can protect cultured hippocampal neurons from glucocorticoid-induced neurotoxicity, through a possible blockade of

  1. 99mTc-Labeled HYNIC-DAPI Causes Plasmid DNA Damage with High Efficiency

    PubMed Central

    Kotzerke, Joerg; Punzet, Robert; Runge, Roswitha; Ferl, Sandra; Oehme, Liane; Wunderlich, Gerd; Freudenberg, Robert

    2014-01-01

    99mTc is the standard radionuclide used for nuclear medicine imaging. In addition to gamma irradiation, 99mTc emits low-energy Auger and conversion electrons that deposit their energy within nanometers of the decay site. To study the potential for DNA damage, direct DNA binding is required. Plasmid DNA enables the investigation of the unprotected interactions between molecules and DNA that result in single-strand breaks (SSBs) or double-strand breaks (DSBs); the resulting DNA fragments can be separated by gel electrophoresis and quantified by fluorescent staining. This study aimed to compare the plasmid DNA damage potential of a 99mTc-labeled HYNIC-DAPI compound with that of 99mTc pertechnetate (99mTcO4−). pUC19 plasmid DNA was irradiated for 2 or 24 hours. Direct and radical-induced DNA damage were evaluated in the presence or absence of the radical scavenger DMSO. For both compounds, an increase in applied activity enhanced plasmid DNA damage, which was evidenced by an increase in the open circular and linear DNA fractions and a reduction in the supercoiled DNA fraction. The number of SSBs elicited by 99mTc-HYNIC-DAPI (1.03) was twice that caused by 99mTcO4− (0.51), and the number of DSBs increased fivefold in the 99mTc-HYNIC-DAPI-treated sample compared with the 99mTcO4− treated sample (0.02 to 0.10). In the presence of DMSO, the numbers of SSBs and DSBs decreased to 0.03 and 0.00, respectively, in the 99mTcO4– treated samples, whereas the numbers of SSBs and DSBs were slightly reduced to 0.95 and 0.06, respectively, in the 99mTc-HYNIC-DAPI-treated samples. These results indicated that 99mTc-HYNIC-DAPI induced SSBs and DSBs via a direct interaction of the 99mTc-labeled compound with DNA. In contrast to these results, 99mTcO4− induced SSBs via radical formation, and DSBs were formed by two nearby SSBs. The biological effectiveness of 99mTc-HYNIC-DAPI increased by approximately 4-fold in terms of inducing SSBs and by approximately 10-fold in terms of

  2. Protective effect of ω-3 polyunsaturated fatty acids on L-arginine-induced nephrotoxicity and oxidative damage in rat kidney.

    PubMed

    Khan, M W; Priyamvada, S; Khan, S A; Khan, S; Naqshbandi, A; Yusufi, A N K

    2012-10-01

    L-Arginine (ARG), an essential amino acid, is the endogenous source of the deleterious nitric oxide. Dietary ω-3 polyunsaturated fatty acid (PUFA)-enriched fish oil (FO) has been shown to reduce the severity of certain types of cancers, cardiovascular disease, and renal disease. Present study examined whether feeding of FO/flaxseed oil (FXO) would have protective effect against ARG-induced nephrotoxicity. ARG-induced nephrotoxicity was recorded by increased serum creatinine and blood urea nitrogen. ARG significantly altered the activities of metabolic and brush border membrane (BBM) enzymes. ARG caused significant imbalances in the antioxidant system. These alterations were associated with increased lipid peroxidation (LPO) and altered antioxidant enzyme activities. Feeding of FO and FXO with ARG ameliorated the changes in various parameters caused by ARG. Nephrotoxicity parameters lowered and enzyme activities of carbohydrate metabolism, BBM and inorganic phosphate (32Pi) transport were improved to near control values. ARG-induced LPO declined and antioxidant defense mechanism was strengthened by both FO and FXO alike. The results of the present study suggest that ω-3 PUFA-enriched FO and FXO from seafoods and plant sources, respectively, are similarly effective in reducing ARG-induced nephrotoxicity and oxidative damage. Thus, vegetarians who cannot consume FO can have similar health benefits from plant-derived ω-3 PUFA. PMID:22531969

  3. Reactive oxygen species cause direct damage of Engelbreth-Holm-Swarm matrix.

    PubMed Central

    Riedle, B.; Kerjaschki, D.

    1997-01-01

    -linking bityrosine groups. ROS scavengers pinpointed to the hydroxyl radical as the most damaging radical species. Protease inhibitor experiments suggested that degradation of matrix proteins was caused primarily by the direct action of ROS and not by proteolysis by potentially contaminating proteases. Collectively, these results provide evidence that EHS matrix proteins show differential sensitivity to ROS-induced damage in a reproducible, sequential pattern, in the order entactin > laminin > type IV collagen, and that ROS cause partial dissociation and cross-linking of the EHS matrix. Images Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 11 PMID:9212747

  4. The Carrier's Liability for Damage Caused by Delay in International Air Transport

    NASA Technical Reports Server (NTRS)

    Lee, Kang Bin

    2003-01-01

    Delay in the air transport occurs when passengers, baggage or cargo do not arrive at their destination at the time indicated in the contract of carriage. The causes of delay in the carriage of passengers are booking errors or double booking, delayed departure of aircraft, incorrect information regarding the time of departure, failure to land at the scheduled destination and changes in flight schedule or addition of extra landing stops. Delay in the carriage of baggage or cargo may have different causes: no reservation, lack of space, failure to load the baggage or cargo at the right place, or to deliver the covering documents at the right place. The Montreal Convention of 1999 Article 19 provides that 'The carrier is liable for damage occasioned by delay in the carriage by air of passengers, baggage or cargo. Nevertheless, the carder shall not be liable for damage occasioned by delay if it proves that it and its servants and agents took all measures that could reasonably be required to avoid the damage or that it was impossible for it or them to take such measures'. The Montreal Convention Article 22 provides liability limits of the carrier in case of delay for passengers and their baggage and for cargo. In the carriage of persons, the liability of the carrier for each passenger is limited to 4,150 SDR. In the carriage of baggage, the liability of the carrier is limited to 1,000 SDR for each passenger unless a special declaration as to the value of the baggage has been made. In the carriage of cargo, the liability of the carrier is limited to 17 SDR per kilogram unless a special declaration as to the value of the cargo has been made. The Montreal Convention Article 19 has shortcomings: it is silent on the duration of the liability for carriage,andit does not make any distinction between persons and good. It does not give any indication concerning the circumstances to be taken into account in cases of delay, and about the length of delay. In conclusion, it is

  5. Protective Effects of Crocus Sativus L. Extract and Crocin against Chronic-Stress Induced Oxidative Damage of Brain, Liver and Kidneys in Rats

    PubMed Central

    Bandegi, Ahmad Reza; Rashidy-Pour, Ali; Vafaei, Abbas Ali; Ghadrdoost, Behshid

    2014-01-01

    Purpose: Chronic stress has been reported to induce oxidative damage of the brain. A few studies have shown that Crocus Sativus L., commonly known as saffron and its active constituent crocin may have a protective effect against oxidative stress. The present work was designed to study the protective effects of saffron extract and crocin on chronic – stress induced oxidative stress damage of the brain, liver and kidneys. Methods: Rats were injected with a daily dose of saffron extract (30 mg/kg, IP) or crocin (30 mg/kg, IP) during a period of 21 days following chronic restraint stress (6 h/day). In order to determine the changes of the oxidative stress parameters following chronic stress, the levels of the lipid peroxidation product, malondialdehyde (MDA), the total antioxidant reactivity (TAR), as well as antioxidant enzyme activities glutathione peroxidase (GPx), glutathione reductase (GR) and superoxide dismutase (SOD) were measured in the brain, liver and kidneys tissues after the end of chronic stress. Results: In the stressed animals that receiving of saline, levels of MDA, and the activities of GPx, GR, and SOD were significantly higher (P<0.0001) and the TAR capacity were significantly lower than those of the non-stressed animals (P<0.0001). Both saffron extract and crocin were able to reverse these changes in the stressed animals as compared with the control groups (P<0.05). Conclusion: These observations indicate that saffron and its active constituent crocin can prevent chronic stress–induced oxidative stress damage of the brain, liver and kidneys and suggest that these substances may be useful against oxidative stress. PMID:25671180

  6. Murine liver damage caused by exposure to nano-titanium dioxide

    NASA Astrophysics Data System (ADS)

    Hong, Jie; Zhang, Yu-Qing

    2016-03-01

    Due to its unique physiochemical properties, nano-titanium dioxide (nano-TiO2) is widely used in all aspects of people’s daily lives, bringing it into increasing contact with humans. Thus, this material’s security issues for humans have become a heavily researched subject. Nano-TiO2 can enter the body through the mouth, skin, respiratory tract or in other ways, after which it enters the blood circulation and is deposited in the liver, changing biochemical indicators and causing liver inflammation. Meanwhile, the light sensitivity of these nanoparticles allows them to become media-generating reactive oxygen species (ROS), causing an imbalance between oxidation and anti-oxidation that leads to oxidative stress and liver damage. Nano-TiO2 can be transported into cells via phagocytosis, where the nanoparticles bind to the mitochondrial membrane, resulting in the disintegration of the membrane and the electron transport chain within the mitochondria. Thus, more ROS are produced. Nano-TiO2 can also enter the nucleus, where it can directly embed into or indirectly affect DNA, thereby causing DNA breakage or affecting gene expression. These effects include increased mRNA and protein expression levels of inflammation-related factors and decreased mRNA and protein expression levels of IκB and IL-2, resulting in inflammation. Long-term inflammation of the liver causes HSC cell activation, and extracellular matrix (ECM) deposition is promoted by multiple signalling pathways, resulting in liver fibrosis. In this paper, the latest progress on murine liver injury induced by environmental TiO2 is systematically described. The toxicity of nano-TiO2 also depends on size, exposure time, surface properties, dosage, administration route, and its surface modification. Therefore, its toxic effects in humans should be studied in greater depth. This paper also provides useful reference information regarding the safe use of nano-TiO2 in the future.

  7. Murine liver damage caused by exposure to nano-titanium dioxide.

    PubMed

    Hong, Jie; Zhang, Yu-Qing

    2016-03-18

    Due to its unique physiochemical properties, nano-titanium dioxide (nano-TiO2) is widely used in all aspects of people's daily lives, bringing it into increasing contact with humans. Thus, this material's security issues for humans have become a heavily researched subject. Nano-TiO2 can enter the body through the mouth, skin, respiratory tract or in other ways, after which it enters the blood circulation and is deposited in the liver, changing biochemical indicators and causing liver inflammation. Meanwhile, the light sensitivity of these nanoparticles allows them to become media-generating reactive oxygen species (ROS), causing an imbalance between oxidation and anti-oxidation that leads to oxidative stress and liver damage. Nano-TiO2 can be transported into cells via phagocytosis, where the nanoparticles bind to the mitochondrial membrane, resulting in the disintegration of the membrane and the electron transport chain within the mitochondria. Thus, more ROS are produced. Nano-TiO2 can also enter the nucleus, where it can directly embed into or indirectly affect DNA, thereby causing DNA breakage or affecting gene expression. These effects include increased mRNA and protein expression levels of inflammation-related factors and decreased mRNA and protein expression levels of IκB and IL-2, resulting in inflammation. Long-term inflammation of the liver causes HSC cell activation, and extracellular matrix (ECM) deposition is promoted by multiple signalling pathways, resulting in liver fibrosis. In this paper, the latest progress on murine liver injury induced by environmental TiO2 is systematically described. The toxicity of nano-TiO2 also depends on size, exposure time, surface properties, dosage, administration route, and its surface modification. Therefore, its toxic effects in humans should be studied in greater depth. This paper also provides useful reference information regarding the safe use of nano-TiO2 in the future. PMID:26871200

  8. Kidney Function, Albuminuria, and All-Cause Mortality in the REGARDS (Reasons for Geographic and Racial Differences in Stroke) Study

    PubMed Central

    Warnock, David G.; Muntner, Paul; McCullough, Peter A.; Zhang, Xiao; McClure, Leslie A.; Zakai, Neil; Cushman, Mary; Newsome, Britt B.; Kewalramani, Reshma; Steffes, Michael W.; Howard, George; McClellan, William M.

    2010-01-01

    Background Chronic kidney disease (CKD) and albuminuria are associated with increased risk of all-cause mortality. Study Design Prospective observational cohort study Setting and Participants 17,393 participants (mean age, 64.3 ± 9.6 years) in the REGARDS (Reasons for Geographic and Racial Differences in Stroke) Study. Predictor Estimated glomerular filtration rate (eGFR), urinary albumin-creatinine ratio (ACR). Outcome All-cause mortality (710 deaths); median duration of follow-up: 3.6 years. Measurements and Analysis Categories of eGFR (90– <120, 60–<90, 45–<60, 30–<45, and 15–<30 mL/min/1.73 m2) and urinary ACR (<10 mg/g or normal, 10–<30 mg/g or high normal, 30–300 mg/g or high, and >300 mg/g or very high). Cox’s proportional hazards models were adjusted for demographic factors, cardiovascular covariates, and hemoglobin. Results The background all-cause mortality rate for participants with normal ACR, eGFR of 90–<120 mL/min/1.73 m2 and no CHD was 4.3 deaths/1,000 person-years. Higher ACR was associated with an increased multivariable adjusted hazard ratio for all-cause mortality within each eGFR category. Reduced eGFR was associated with higher adjusted hazard ratio for all-cause mortality for participants with high normal (P value = 0.01) and high (P value <0.001) ACR values, but not for those with normal or very high ACR values. Limitations Only one laboratory assessment for serum creatinine and ACR was available Conclusions Increased albuminuria was an independent risk factor for all-cause mortality. Reduced eGFR was associated with increased mortality risk among those with high normal and high ACR. The mortality rate was low in the normal ACR group and increased in the very high ACR group but did not vary with eGFR in these groups. PMID:20692752

  9. De Novo Kidney Regeneration with Stem Cells

    PubMed Central

    Yokote, Shinya; Yamanaka, Shuichiro; Yokoo, Takashi

    2012-01-01

    Recent studies have reported on techniques to mobilize and activate endogenous stem-cells in injured kidneys or to introduce exogenous stem cells for tissue repair. Despite many recent advantages in renal regenerative therapy, chronic kidney disease (CKD) remains a major cause of morbidity and mortality and the number of CKD patients has been increasing. When the sophisticated structure of the kidneys is totally disrupted by end stage renal disease (ESRD), traditional stem cell-based therapy is unable to completely regenerate the damaged tissue. This suggests that whole organ regeneration may be a promising therapeutic approach to alleviate patients with uncured CKD. We summarize here the potential of stem-cell-based therapy for injured tissue repair and de novo whole kidney regeneration. In addition, we describe the hurdles that must be overcome and possible applications of this approach in kidney regeneration. PMID:23251079

  10. 76 FR 54531 - Pipeline Safety: Potential for Damage to Pipeline Facilities Caused by the Passage of Hurricanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-01

    ... Facilities Caused by the Passage of Hurricanes AGENCY: Pipeline and Hazardous Materials Safety Administration... to pipeline facilities caused by the passage of Hurricanes. ADDRESSES: This document can be viewed on...-related issues that can result from the passage of hurricanes. That includes the potential for damage...

  11. MWCNT causes extensive damage to the ciliated epithelium of the trachea of rodents.

    PubMed

    Ohba, Teruya; Xu, Jiegou; Alexander, David B; Yamada, Akane; Kanno, Jun; Hirose, Akihiko; Tsuda, Hiroyuki; Imaizumi, Yuji

    2014-06-01

    The ciliated tracheobronchial epithelium plays an important role in the excretion of inhaled dust. While many reports indicate that inhaled multi-walled carbon nanotubes (MWCNT) induce inflammation and proliferative changes in the lung and pleura, their effects on the upper airway have not been reported. Two different types of MWCNTs, MWCNT-L (8 µm in length and 150 nm in diameter) and MWCNT-S (3 µm in length and 15 nm in diameter), were examined for their effect on the trachea as well as the bronchus and lung. In vitro, the movement of the cilia of primary tracheal epithelial cells was impaired by treatment with the 2 MWCNTs. Rats were treated with 0.3 ml of a 250 µg/ml suspension of MWCNTs on days 1, 4, and 7, and sacrificed on day 8. Extensive loss of ciliated cells and replacement by flat cells without cilia was observed in the trachea. Deposition of MWCNTs and occasional squamous cell metaplasia were found in the regenerative granulation tissue. The proportion of the lesion to the transverse section of the trachea was vehicle, 0; MWCNT-L, 27.2 ± 10.5; MWCNT-S, 32.1 ± 15.8 (both MWCNTs, p < 0.001 vs vehicle). The amount of cilia showed significant decrease in the MWCNT-L treated rats  (p < 0.05). In contrast to the trachea lesions, the number of inflammatory foci in the lung was greater in the MWCNT-S than in the MWCNT-L treated rats. Our results indicate that both MWCNTs caused extensive damage to the ciliated epithelium of the trachea. This damage may prolong the deposition of inhaled MWNCT in the lung. PMID:24849684

  12. ALS-associated mutation FUS-R521C causes DNA damage and RNA splicing defects

    PubMed Central

    Qiu, Haiyan; Lee, Sebum; Shang, Yulei; Wang, Wen-Yuan; Au, Kin Fai; Kamiya, Sherry; Barmada, Sami J.; Finkbeiner, Steven; Lui, Hansen; Carlton, Caitlin E.; Tang, Amy A.; Oldham, Michael C.; Wang, Hejia; Shorter, James; Filiano, Anthony J.; Roberson, Erik D.; Tourtellotte, Warren G.; Chen, Bin; Tsai, Li-Huei; Huang, Eric J.

    2014-01-01

    Autosomal dominant mutations of the RNA/DNA binding protein FUS are linked to familial amyotrophic lateral sclerosis (FALS); however, it is not clear how FUS mutations cause neurodegeneration. Using transgenic mice expressing a common FALS-associated FUS mutation (FUS-R521C mice), we found that mutant FUS proteins formed a stable complex with WT FUS proteins and interfered with the normal interactions between FUS and histone deacetylase 1 (HDAC1). Consequently, FUS-R521C mice exhibited evidence of DNA damage as well as profound dendritic and synaptic phenotypes in brain and spinal cord. To provide insights into these defects, we screened neural genes for nucleotide oxidation and identified brain-derived neurotrophic factor (Bdnf) as a target of FUS-R521C–associated DNA damage and RNA splicing defects in mice. Compared with WT FUS, mutant FUS-R521C proteins formed a more stable complex with Bdnf RNA in electrophoretic mobility shift assays. Stabilization of the FUS/Bdnf RNA complex contributed to Bdnf splicing defects and impaired BDNF signaling through receptor TrkB. Exogenous BDNF only partially restored dendrite phenotype in FUS-R521C neurons, suggesting that BDNF-independent mechanisms may contribute to the defects in these neurons. Indeed, RNA-seq analyses of FUS-R521C spinal cords revealed additional transcription and splicing defects in genes that regulate dendritic growth and synaptic functions. Together, our results provide insight into how gain-of-function FUS mutations affect critical neuronal functions. PMID:24509083

  13. Chronic occupational exposure to hexavalent chromium causes DNA damage in electroplating workers

    PubMed Central

    2011-01-01

    Background Occupational exposure to chromium compounds may result in adverse health effects. This study aims to investigate whether low-level hexavalent chromium (Cr(VI)) exposure can cause DNA damage in electroplating workers. Methods 157 electroplating workers and 93 control subjects with no history of occupational exposure to chromium were recruited in Hangzhou, China. Chromium levels in erythrocytes were determined by graphite furnace atomic absorption spectrophotometer. DNA damage in peripheral lymphocytes was evaluated with the alkaline comet assay by three parameters: Olive tail moment, tail length and percent of DNA in the comet tail (tail DNA%). Urinary 8-OHdG levels were measured by ELISA. Results Chromium concentration in erythrocytes was about two times higher in electroplating workers (median: 4.41 μg/L) than that in control subjects (1.54 μg/L, P < 0.001). The medians (range) of Olive tail moment, tail length and tail DNA% in exposed workers were 1.13 (0.14-6.77), 11.17 (3.46-52.19) and 3.69 (0.65-16.20), and were significantly higher than those in control subjects (0.14 (0.01-0.39), 3.26 (3.00-4.00) and 0.69 (0.04-2.74), P < 0.001). Urinary 8-OHdG concentration was 13.65 (3.08-66.30) μg/g creatinine in exposed workers and 8.31 (2.94-30.83) μg/g creatinine in control subjects (P < 0.001). The differences of urinary 8-OHdG levels, Olive tail moment, tail length and tail DNA% between these two groups remained significant (P < 0.001) even after stratification by potential confounding factors such as age, gender, and smoking status. Chromium exposure was found to be positively associated with chromium levels in erythrocytes, urinary 8-OHdG levels, Olive tail moment, tail length and tail DNA%. Positive dose-response associations were also found between chromium levels in erythrocytes and Olive tail moment, tail length and tail DNA%. Conclusion The findings in this study indicated that there was detectable chromium exposure in electroplating workers

  14. DNA Damage, Cell Cycle Arrest, and Apoptosis Induction Caused by Lead in Human Leukemia Cells

    PubMed Central

    Yedjou, Clement G.; Tchounwou, Hervey M.; Tchounwou, Paul B.

    2015-01-01

    In recent years, the industrial use of lead has been significantly reduced from paints and ceramic products, caulking, and pipe solder. Despite this progress, lead exposure continues to be a significant public health concern. The main goal of this research was to determine the in vitro mechanisms of lead nitrate [Pb(NO3)2] to induce DNA damage, apoptosis, and cell cycle arrest in human leukemia (HL-60) cells. To reach our goal, HL-60 cells were treated with different concentrations of Pb(NO3)2 for 24 h. Live cells and necrotic death cells were measured by the propidium idiode (PI) assay using the cellometer vision. Cell apoptosis was measured by the flow cytometry and DNA laddering. Cell cycle analysis was evaluated by the flow cytometry. The result of the PI demonstrated a significant (p < 0.05) increase of necrotic cell death in Pb(NO3)2-treated cells, indicative of membrane rupture by Pb(NO3)2 compared to the control. Data generated from the comet assay indicated a concentration-dependent increase in DNA damage, showing a significant increase (p < 0.05) in comet tail-length and percentages of DNA cleavage. Data generated from the flow cytometry assessment indicated that Pb(NO3)2 exposure significantly (p < 0.05) increased the proportion of caspase-3 positive cells (apoptotic cells) compared to the control. The flow cytometry assessment also indicated Pb(NO3)2 exposure caused cell cycle arrest at the G0/G1 checkpoint. The result of DNA laddering assay showed presence of DNA smear in the agarose gel with little presence of DNA fragments in the treated cells compared to the control. In summary, Pb(NO3)2 inhibits HL-60 cells proliferation by not only inducing DNA damage and cell cycle arrest at the G0/G1 checkpoint but also triggering the apoptosis through caspase-3 activation and nucleosomal DNA fragmentation accompanied by secondary necrosis. We believe that our study provides a new insight into the mechanisms of Pb(NO3)2 exposure and its associated adverse health

  15. DNA Damage, Cell Cycle Arrest, and Apoptosis Induction Caused by Lead in Human Leukemia Cells.

    PubMed

    Yedjou, Clement G; Tchounwou, Hervey M; Tchounwou, Paul B

    2016-01-01

    In recent years, the industrial use of lead has been significantly reduced from paints and ceramic products, caulking, and pipe solder. Despite this progress, lead exposure continues to be a significant public health concern. The main goal of this research was to determine the in vitro mechanisms of lead nitrate [Pb(NO₃)₂] to induce DNA damage, apoptosis, and cell cycle arrest in human leukemia (HL-60) cells. To reach our goal, HL-60 cells were treated with different concentrations of Pb(NO₃)₂ for 24 h. Live cells and necrotic death cells were measured by the propidium idiode (PI) assay using the cellometer vision. Cell apoptosis was measured by the flow cytometry and DNA laddering. Cell cycle analysis was evaluated by the flow cytometry. The result of the PI demonstrated a significant (p < 0.05) increase of necrotic cell death in Pb(NO₃)₂-treated cells, indicative of membrane rupture by Pb(NO₃)₂ compared to the control. Data generated from the comet assay indicated a concentration-dependent increase in DNA damage, showing a significant increase (p < 0.05) in comet tail-length and percentages of DNA cleavage. Data generated from the flow cytometry assessment indicated that Pb(NO₃)₂ exposure significantly (p < 0.05) increased the proportion of caspase-3 positive cells (apoptotic cells) compared to the control. The flow cytometry assessment also indicated Pb(NO₃)₂ exposure caused cell cycle arrest at the G₀/G₁ checkpoint. The result of DNA laddering assay showed presence of DNA smear in the agarose gel with little presence of DNA fragments in the treated cells compared to the control. In summary, Pb(NO₃)₂ inhibits HL-60 cells proliferation by not only inducing DNA damage and cell cycle arrest at the G₀/G₁ checkpoint but also triggering the apoptosis through caspase-3 activation and nucleosomal DNA fragmentation accompanied by secondary necrosis. We believe that our study provides a new insight into the mechanisms of Pb

  16. Measures of kidney function by minimally invasive techniques correlate with histological glomerular damage in SCID mice with adriamycin-induced nephropathy.

    PubMed

    Scarfe, Lauren; Rak-Raszewska, Aleksandra; Geraci, Stefania; Darssan, Darsy; Sharkey, Jack; Huang, Jiaguo; Burton, Neal C; Mason, David; Ranjzad, Parisa; Kenny, Simon; Gretz, Norbert; Lévy, Raphaël; Kevin Park, B; García-Fiñana, Marta; Woolf, Adrian S; Murray, Patricia; Wilm, Bettina

    2015-01-01

    Maximising the use of preclinical murine models of progressive kidney disease as test beds for therapies ideally requires kidney function to be measured repeatedly in a safe, minimally invasive manner. To date, most studies of murine nephropathy depend on unreliable markers of renal physiological function, exemplified by measuring blood levels of creatinine and urea, and on various end points necessitating sacrifice of experimental animals to assess histological damage, thus counteracting the principles of Replacement, Refinement and Reduction. Here, we applied two novel minimally invasive techniques to measure kidney function in SCID mice with adriamycin-induced nephropathy. We employed i) a transcutaneous device that measures the half-life of intravenously administered FITC-sinistrin, a molecule cleared by glomerular filtration; and ii) multispectral optoacoustic tomography, a photoacoustic imaging device that directly visualises the clearance of the near infrared dye, IRDye 800CW carboxylate. Measurements with either technique showed a significant impairment of renal function in experimental animals versus controls, with significant correlations with the proportion of scarred glomeruli five weeks after induction of injury. These technologies provide clinically relevant functional data and should be widely adopted for testing the efficacies of novel therapies. Moreover, their use will also lead to a reduction in experimental animal numbers. PMID:26329825

  17. Measures of kidney function by minimally invasive techniques correlate with histological glomerular damage in SCID mice with adriamycin-induced nephropathy

    PubMed Central

    Scarfe, Lauren; Rak-Raszewska, Aleksandra; Geraci, Stefania; Darssan, Darsy; Sharkey, Jack; Huang, Jiaguo; Burton, Neal C.; Mason, David; Ranjzad, Parisa; Kenny, Simon; Gretz, Norbert; Lévy, Raphaël; Kevin Park, B.; García-Fiñana, Marta; Woolf, Adrian S.; Murray, Patricia; Wilm, Bettina

    2015-01-01

    Maximising the use of preclinical murine models of progressive kidney disease as test beds for therapies ideally requires kidney function to be measured repeatedly in a safe, minimally invasive manner. To date, most studies of murine nephropathy depend on unreliable markers of renal physiological function, exemplified by measuring blood levels of creatinine and urea, and on various end points necessitating sacrifice of experimental animals to assess histological damage, thus counteracting the principles of Replacement, Refinement and Reduction. Here, we applied two novel minimally invasive techniques to measure kidney function in SCID mice with adriamycin-induced nephropathy. We employed i) a transcutaneous device that measures the half-life of intravenously administered FITC-sinistrin, a molecule cleared by glomerular filtration; and ii) multispectral optoacoustic tomography, a photoacoustic imaging device that directly visualises the clearance of the near infrared dye, IRDye 800CW carboxylate. Measurements with either technique showed a significant impairment of renal function in experimental animals versus controls, with significant correlations with the proportion of scarred glomeruli five weeks after induction of injury. These technologies provide clinically relevant functional data and should be widely adopted for testing the efficacies of novel therapies. Moreover, their use will also lead to a reduction in experimental animal numbers. PMID:26329825

  18. Optical Coherence Tomography in Kidney Transplantation

    NASA Astrophysics Data System (ADS)

    Andrews, Peter M.; Wierwille, Jeremiah; Chen, Yu

    End-stage renal disease (ESRD) is associated with both high mortality rates and an enormous economic burden [1]. The preferred treatment option for ESRD that can extend patients' lives and improve their quality of life is kidney transplantation. However, organ shortages continue to pose a major problem in kidney transplantation. Most kidneys for transplantation come from heart-beating cadavers. Although non-heart-beating cadavers represent a potentially large pool of donor kidneys, these kidneys are not often used due to the unknown extent of damage to the renal tubules (i.e., acute tubular necrosis or "ATN") induced by ischemia (i.e., lack of blood flow). Also, ischemic insult suffered by kidneys awaiting transplantation frequently causes ATN that leads to varying degrees of delayed graft function (DGF) after transplantation. Finally, ATN represents a significant risk for eventual graft and patient survival [2, 3] and can be difficult to discern from rejection. In present clinical practice, there is no reliable real-time test to determine the viability of donor kidneys and whether or not donor kidneys might exhibit ATN. Therefore, there is a critical need for an objective and reliable real-time test to predict ATN to use these organs safely and utilize the donor pool optimally. In this review, we provided preliminary data indicating that OCT can be used to predict the post-transplant function of kidneys used in transplantation.

  19. Excess processing of oxidative damaged bases causes hypersensitivity to oxidative stress and low dose rate irradiation.

    PubMed

    Yoshikawa, Y; Yamasaki, A; Takatori, K; Suzuki, M; Kobayashi, J; Takao, M; Zhang-Akiyama, Q-M

    2015-10-01

    Ionizing radiations such as X-ray and γ-ray can directly or indirectly produce clustered or multiple damages in DNA. Previous studies have reported that overexpression of DNA glycosylases in Escherichia coli (E. coli) and human lymphoblast cells caused increased sensitivity to γ-ray and X-ray irradiation. However, the effects and the mechanisms of other radiation, such as low dose rate radiation, heavy-ion beams, or hydrogen peroxide (H2O2), are still poorly understood. In the present study, we constructed a stable HeLaS3 cell line overexpressing human 8-oxoguanine DNA N-glycosylase 1 (hOGG1) protein. We determined the survival of HeLaS3 and HeLaS3/hOGG1 cells exposed to UV, heavy-ion beams, γ-rays, and H2O2. The results showed that HeLaS3 cells overexpressing hOGG1 were more sensitive to γ-rays, OH(•), and H2O2, but not to UV or heavy-ion beams, than control HeLaS3. We further determined the levels of 8-oxoG foci and of chromosomal double-strand breaks (DSBs) by detecting γ-H2AX foci formation in DNA. The results demonstrated that both γ-rays and H2O2 induced 8-oxoguanine (8-oxoG) foci formation in HeLaS3 cells. hOGG1-overexpressing cells had increased amounts of γ-H2AX foci and decreased amounts of 8-oxoG foci compared with HeLaS3 control cells. These results suggest that excess hOGG1 removes the oxidatively damaged 8-oxoG in DNA more efficiently and therefore generates more DSBs. Micronucleus formation also supported this conclusion. Low dose-rate γ-ray effects were also investigated. We first found that overexpression of hOGG1 also caused increased sensitivity to low dose rate γ-ray irradiation. The rate of micronucleus formation supported the notion that low dose rate irradiation increased genome instability. PMID:26059740

  20. On the monitoring and implications of growing damages caused by manufacturing defects in composite structures

    NASA Astrophysics Data System (ADS)

    Schagerl, M.; Viechtbauer, C.; Hörrmann, S.

    2015-07-01

    Damage tolerance is a classical safety concept for the design of aircraft structures. Basically, this approach considers possible damages in the structure, predicts the damage growth under applied loading conditions and predicts the following decrease of the structural strength. As a fundamental result the damage tolerance approach yields the maximum inspection interval, which is the time a damage grows from a detectable to a critical level. The above formulation of the damage tolerance safety concept targets on metallic structures where the damage is typically a simple fatigue crack. Fiber-reinforced polymers show a much more complex damage behavior, such as delaminationsin laminated composites. Moreover, progressive damage in composites is often initiated by manufacturing defects. The complex manufacturing processes for composite structures almost certainly yield parts with defects, e.g. pores in the matrix or undulations of fibers. From such defects growing damages may start after a certain time of operation. The demand to simplify or even avoid the inspection of composite structures has therefore led to a comeback of the traditional safe-life safety concept. The aim of the so-called safe-life flaw tolerance concept is a structure that is capable of carrying the static loads during operation, despite significant damages and after a representative fatigue load spectrum. A structure with this property does not need to be inspected, respectively monitored at all during its service life. However, its load carrying capability is thereby not fully utilized. This article presents the possible refinement of the state-of-the-art safe-life flaw tolerance concept for composite structures towards a damage tolerance approach considering also the influence of manufacturing defects on damage initiation and growth. Based on fundamental physical relations and experimental observations the challenges when developing damage growth and residual strength curves are discussed.

  1. 6-Gingerol-Rich Fraction from Zingiber officinale Prevents Hematotoxicity and Oxidative Damage in Kidney and Liver of Rats Exposed to Carbendazim.

    PubMed

    Salihu, Mariama; Ajayi, Babajide O; Adedara, Isaac A; Farombi, Ebenezer O

    2016-07-01

    Ginger (Zingiber officinale) is a globally marketed flavoring agent and cooking spice with a long history of human health benefits. The fungicide carbendazim (CBZ) is often detected in fruits and vegetables for human nutrition and has been reported to elicit toxic effects in different experimental animal models. The present study investigated the protective effects of 6-Gingerol-rich fraction (6-GRF) from ginger on hematotoxicity and hepatorenal damage in rats exposed to CBZ. CBZ was administered at a dose of 50 mg/kg alone or simultaneously administered with 6-GRF at 50, 100, and 200 mg/kg, whereas control rats received corn oil alone at 2 mL/kg for 14 days. Hematological examination showed that CBZ-mediated toxicity to the total white blood cell (WBC), neutrophils, lymphocytes, and platelets counts were normalized to the control values in rats cotreated with 6-GRF. Moreover, administration of CBZ significantly decreased the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione S-transferase as well as glutathione level in the livers and kidneys of rats compared with control. However, the levels of hydrogen peroxide (H2O2) and malondialdehyde were markedly elevated in kidneys and livers of CBZ-treated rats compared with control. The significant elevation in the plasma indices of renal and hepatic dysfunction in CBZ-treated rats was confirmed by light microscopy. Coadministration of 6-GRF exhibited chemoprotection against CBZ-mediated hematotoxicity, augmented antioxidant status, and prevented oxidative damage in the kidney and liver of rats. PMID:26673969

  2. Recovery of damages by states for fish and wildlife losses caused by pollution

    SciTech Connect

    Halter, F.; Thomas, J.T.

    1982-01-01

    In February of 1976 a tank barge carrying about 19,700 barrels of oil sank while in tow up the Chesapeake Bay. Much of the oil escaped into the Bay off Smith Point, just below the mouth of the Potomac River. Several months later the owner, Steuart Transportation Company, filed a complaint seeking exoneration from or limitation of liability for the damages caused by the spill. Both the United States and the Commonwealth of Virginia filed claims. The several bases for state recovery actions are analyzed and investigation is made of various methods for establishing the monetary value of the fish and wildlife destroyed. While legal remedies are available through legislation and, in many cases, through state common law as well, the problem of determining the value of fish and wildlife has been a major factor in discouraging recoveries. Methods for valuing these resources are available. Some, like replacement cost, are well established. Newer methods for more difficult valuation problems are just developing and have not yet received much application. Specific authorizing legislation will facilitate state recovery efforts by establishing a sound legal basis and providing a framework for the development and use of a variety of valuation methods. The growing number of state actions and the statutory mandate of Superfund should lead to rapid progress in this area. 124 references.

  3. Pumping bottom water to prevent Korean red tide damage caused by Cochlodinium polykrikoides Margalef.

    PubMed

    Cho, Eun Seob; Moon, Seong Yong; Shu, Young Sang; Hwang, Jae Dong; Youn, Seok Hyun

    2015-09-01

    Cochlodinium polykrikoides Margalef produces annual massive blooms in Korean coastal waters which cause great damage to aquaculture and fisheries. Although various methods have been developed to remove the red tide of C. polykrikoides, release of yellow loess has been regarded as the most desirable technique for mitigation for over 10 years. Each August, strong irradiation generates water column stratification separating warm surface from colder bottom waters. Water from a distance of 0 (St. 1), 5 (St. 2), 10 (St. 3), and 15 m (St. 4) was pumped by running a pump for 0, 10, 30 and 90 min and characterized water temperature, salinity collected, suspended solids, Chl-a, and phytoplankton including C. polykrikoides. After running for 30 min, was temperature and salinity in surface water was similar to those of bottom water, and water column stratification completely reversed after 90 min. Likewise, suspended solids, Chl-a, and total phytoplankton cell density decreased after 30 min, but C. polykrikoides did not show strong removal because of low cell density during sampling. However, the number of C. polykrikoides was significantly diluted (80%) after 90 min. These results suggested that pumping device was as an environmentally-friendly method convenient to be install in fish cages and effective to remove C. polykrikoides stratified water column conditions. PMID:26521549

  4. Topiramate as a rare cause of reversible Fanconi syndrome and acute kidney injury: a case report and literature review.

    PubMed

    Meseeha, Marcelle G; Attia, Maximos N; Kolade, Victor O

    2016-01-01

    Topiramate (TPM) is a sulfa-derivative monosaccharide that has been used for multiple indications in the last several years. We describe a 53-year-old woman with known chronic kidney disease stage 2 and baseline creatinine of 1 mg/dL who developed acute kidney injury and proximal renal tubular dysfunction while on TPM for depression. The Naranjo Adverse Drug Reaction Probability Scale indicated a probable relationship (score of 6) between TPM and acute kidney injury as well as proximal tubular dysfunction; these renal conditions resolved on withdrawal of TPM. To our knowledge, this is the first report of such a scenario. Patients receiving TPM therapy should be closely monitored for evidence of kidney dysfunction and electrolyte abnormalities. PMID:26908388

  5. Topiramate as a rare cause of reversible Fanconi syndrome and acute kidney injury: a case report and literature review

    PubMed Central

    Meseeha, Marcelle G.; Attia, Maximos N.; Kolade, Victor O.

    2016-01-01

    Topiramate (TPM) is a sulfa-derivative monosaccharide that has been used for multiple indications in the last several years. We describe a 53-year-old woman with known chronic kidney disease stage 2 and baseline creatinine of 1 mg/dL who developed acute kidney injury and proximal renal tubular dysfunction while on TPM for depression. The Naranjo Adverse Drug Reaction Probability Scale indicated a probable relationship (score of 6) between TPM and acute kidney injury as well as proximal tubular dysfunction; these renal conditions resolved on withdrawal of TPM. To our knowledge, this is the first report of such a scenario. Patients receiving TPM therapy should be closely monitored for evidence of kidney dysfunction and electrolyte abnormalities. PMID:26908388

  6. Methodology to improve process understanding of surface runoff causing damages to buildings by analyzing insurance data records

    NASA Astrophysics Data System (ADS)

    Bernet, Daniel; Prasuhn, Volker; Weingartner, Rolf

    2015-04-01

    Several case studies in Switzerland highlight that many buildings which are damaged by floods are not located within the inundation zones of rivers, but outside the river network. In urban areas, such flooding can be caused by drainage system surcharge, low infiltration capacity of the urbanized landscape etc. However, in rural and peri-urban areas inundations are more likely caused by surface runoff formed on natural and arable land. Such flash floods have very short response time, occur rather diffusely and, thus, are very difficult to observe directly. In our approach, we use data records from private, but mostly from public insurance companies. The latter, present in 19 out of the total 26 Cantons of Switzerland, insure (almost) every building within the respective administrative zones and, in addition, hold a monopoly position. Damage claims, including flood damages, are usually recorded and, thus, data records from such public insurance companies are a very profitable data source to better understand surface runoff leading to damages. Although practitioners agree that this process is relevant, there seems to be a knowledge gap concerning spatial and temporal distributions as well as triggers and influencing factors of such damage events. Within the framework of a research project, we want to address this research gap and improve the understanding of the process chain from surface runoff formation up to possible damages to buildings. This poster introduces the methodology, which will be applied to a dataset including data from the majority of all 19 public insurance companies for buildings in Switzerland, counting over 50'000 damage claims, in order to better understand surface runoff. The goal is to infer spatial and temporal patterns as well as drivers and influencing factors of surface runoff possibly causing damages. In particular, the workflow of data acquisition, harmonization and treatment is outlined. Furthermore associated problems and challenges are

  7. Distinct illusory own-body perceptions caused by damage to posterior insula and extrastriate cortex.

    PubMed

    Heydrich, Lukas; Blanke, Olaf

    2013-03-01

    Recent research in cognitive neuroscience using virtual reality, robotic technology and brain imaging has linked self-consciousness to the processing and integration of multisensory bodily signals. This work on bodily self-consciousness has implicated the temporo-parietal, premotor and extrastriate cortex and partly originated in work on neurological patients with different disorders of bodily self-consciousness. One class of such disorders is autoscopic phenomena, which are defined as illusory own-body perceptions, during which patients experience the visual illusory reduplication of their own body in extrapersonal space. Three main forms of autoscopic phenomena have been defined. During autoscopic hallucinations, a second own body is seen without any changes in bodily self-consciousness. During out-of-body experiences, the second own body is seen from an elevated perspective and location associated with disembodiment. During heautoscopy, subjects report strong self-identification with the second own body, often associated with the experience of existing at and perceiving the world from two places at the same time. Although it has been proposed that each autoscopic phenomenon is associated with different impairments of bodily self-consciousness, past research on neurological patients and the development of experimental paradigms for the study of bodily self-consciousness has focused on out-of-body experiences and the association with temporo-parietal cortex. Here, we performed quantitative lesion analysis in the-to date-largest group of patients with autoscopic hallucination and heautoscopy and compared the location of brain damage with those of control patients suffering from complex visual hallucinations. We found that heautoscopy was associated with lesions to the left posterior insula, and that autoscopic hallucinations were associated with damage to the right occipital cortex. Autoscopic hallucination and heautoscopy were further associated with distinct

  8. Effects of penehyclidine hydrochloride in small intestinal damage caused by limb ischemia-reperfusion

    PubMed Central

    Zhang, Yan; Leng, Yu-Fang; Xue, Xing; Zhang, Yue; Wang, Tao; Kang, Yu-Qing

    2011-01-01

    AIM: To investigate the protective effect of penehyclidine hydrochloride post-conditioning in the damage to the barrier function of the small intestinal mucosa caused by limb ischemia-reperfusion (LIR) injury. METHODS: Male Wistar rats were randomly divided into three groups (36 rats each): the sham-operation group (group S), lower limb ischemia-reperfusion group (group LIR), and penehyclidine hydrochloride post-conditioning group (group PHC). Each group was divided into subgroups (n = 6 in each group) according to ischemic-reperfusion time, i.e. immediately 0 h (T1), 1 h (T2), 3 h (T3), 6 h (T4), 12 h (T5), and 24 h (T6). Bilateral hind-limb ischemia was induced by rubber band application proximal to the level of the greater trochanter for 3 h. In group PHC, 0.15 mg/kg of penehyclidine hydrochloride was injected into the tail vein immediately after 3 h of bilateral hind-limb ischemia. The designated rats were sacrificed at different time-points of reperfusion; diamine oxidase (DAO), superoxide dismutase (SOD) activity, myeloperoxidase (MPO) of small intestinal tissue, plasma endotoxin, DAO, tumor necrosis factor-α (TNF-α), and interleukin (IL)-10 in serum were detected in the rats. RESULTS: The pathological changes in the small intestine were observed under light microscope. The levels of MPO, endotoxin, serum DAO, and IL-10 at T1-T6, and TNF-α level at T1-T4 increased in groups LIR and PHC (P < 0.05) compared with those in group S, but tissue DAO and SOD activity at T1-T6 decreased (P < 0.05). In group PHC, the tissue DAO and SOD activity at T2-T6, and IL-10 at T2-T5 increased to higher levels than those in group LIR (P < 0.05); however, the levels of MPO, endotoxin, and DAO in the blood at T2-T6, and TNF-α at T2 and T4 decreased (P < 0.05). CONCLUSION: Penehyclidine hydrochloride post-conditioning may reduce the permeability of the small intestines after LIR. Its protection mechanisms may be related to inhibiting oxygen free radicals and inflammatory

  9. Acute and chronic administration of gold nanoparticles cause DNA damage in the cerebral cortex of adult rats.

    PubMed

    Cardoso, Eria; Rezin, Gislaine Tezza; Zanoni, Elton Torres; de Souza Notoya, Frederico; Leffa, Daniela Dimer; Damiani, Adriani Paganini; Daumann, Francine; Rodriguez, Juan Carlos Ortiz; Benavides, Roberto; da Silva, Luciano; Andrade, Vanessa M; da Silva Paula, Marcos Marques

    2014-01-01

    The use of gold nanoparticles is increasing in medicine; however, their toxic effects remain to be elucidated. Studies show that gold nanoparticles can cross the blood-brain barrier, as well as accumulate in the brain. Therefore, this study was undertaken to better understand the effects of gold nanoparticles on rat brains. DNA damage parameters were evaluated in the cerebral cortex of adult rats submitted to acute and chronic administration of gold nanoparticles of two different diameters: 10 and 30nm. During acute administration, adult rats received a single intraperitoneal injection of either gold nanoparticles or saline solution. During chronic administration, adult rats received a daily single injection for 28 days of the same gold nanoparticles or saline solution. Twenty-four hours after either single (acute) or last injection (chronic), the rats were euthanized by decapitation, their brains removed, and the cerebral cortices isolated for evaluation of DNA damage parameters. Our study showed that acute administration of gold nanoparticles in adult rats presented higher levels of damage frequency and damage index in their DNA compared to the control group. It was also observed that gold nanoparticles of 30nm presented higher levels of damage frequency and damage index in the DNA compared to the 10nm ones. When comparing the effects of chronic administration of gold nanoparticles of 10 and 30nm, we observed that occurred significant different index and frequency damage, comparing with control group. However, there is no difference between the 10 and 30nm groups in the levels of DNA damage for both parameters of the Comet assay. Results suggest that gold nanoparticles for both sizes cause DNA damage for chronic as well as acute treatments, although a higher damage was observed for the chronic one. PMID:25847268

  10. Multilocus variable-number tandem-repeat genotyping of Renibacterium salmoninarum, a bacterium causing bacterial kidney disease in salmonid fish

    PubMed Central

    2013-01-01

    Background Bacterial kidney disease (BKD), caused by Renibacterium salmoninarum, is a bacterial disease of fish, which is both geographically widespread and difficult to control. Previously, application of various molecular typing methods has failed to reliably discriminate between R. salmoninarum isolates originating from different host species and geographic areas. The current study aimed to utilize multilocus variable number tandem repeats (VNTR) to investigate inter-strain variation of R. salmoninarum to establish whether host-specific populations exist in Atlantic salmon and rainbow trout respectively. Such information would be valuable in risk assessment of transmission of R. salmoninarum in a multispecies aquaculture environment. Results The present analysis utilizing sixteen VNTRs distinguished 17 different haplotypes amongst 41 R. salmoninarum isolates originating from Atlantic salmon and rainbow trout in Scotland, Norway and the US. The VNTR typing system revealed two well supported groups of R. salmoninarum haplotypes. The first group included R. salmoninarum isolates originating from both Atlantic salmon and rainbow trout circulating in Scottish and Norwegian aquaculture, in addition to the type strain ATCC33209T originating from Chinook salmon in North America. The second group comprised isolates found exclusively in Atlantic salmon, of mainly wild origin, including isolates NCIB1114 and NCIB1116 associated with the original Dee disease in Scotland. Conclusions The present study confirmed that VNTR analysis can be successfully applied to discriminate R. salmoninarum strains. There was no clear distinction between isolates originating from Atlantic salmon and rainbow trout as several haplotypes in group 1 clustered together R. salmoninarum isolates from both species. These findings indicate a potential exchange of pathogens between Atlantic salmon and rainbow trout in Scottish and Norwegian aquaculture during the last 20 years. In a scenario of

  11. Heme-induced contractile dysfunction in human cardiomyocytes caused by oxidant damage to thick filament proteins.

    PubMed

    Alvarado, Gerardo; Jeney, Viktória; Tóth, Attila; Csősz, Éva; Kalló, Gergő; Huynh, An T; Hajnal, Csaba; Kalász, Judit; Pásztor, Enikő T; Édes, István; Gram, Magnus; Akerström, Bo; Smith, Ann; Eaton, John W; Balla, György; Papp, Zoltán; Balla, József

    2015-12-01

    Intracellular free heme predisposes to oxidant-mediated tissue damage. We hypothesized that free heme causes alterations in myocardial contractility via disturbed structure and/or regulation of the contractile proteins. Isometric force production and its Ca(2+)-sensitivity (pCa50) were monitored in permeabilized human ventricular cardiomyocytes. Heme exposure altered cardiomyocyte morphology and evoked robust decreases in Ca(2+)-activated maximal active force (Fo) while increasing Ca(2+)-independent passive force (F passive). Heme treatments, either alone or in combination with H2O2, did not affect pCa50. The increase in F passive started at 3 µM heme exposure and could be partially reversed by the antioxidant dithiothreitol. Protein sulfhydryl (SH) groups of thick myofilament content decreased and sulfenic acid formation increased after treatment with heme. Partial restoration in the SH group content was observed in a protein running at 140 kDa after treatment with dithiothreitol, but not in other proteins, such as filamin C, myosin heavy chain, cardiac myosin binding protein C, and α-actinin. Importantly, binding of heme to hemopexin or alpha-1-microglobulin prevented its effects on cardiomyocyte contractility, suggesting an allosteric effect. In line with this, free heme directly bound to myosin light chain 1 in human cardiomyocytes. Our observations suggest that free heme modifies cardiac contractile proteins via posttranslational protein modifications and via binding to myosin light chain 1, leading to severe contractile dysfunction. This may contribute to systolic and diastolic cardiac dysfunctions in hemolytic diseases, heart failure, and myocardial ischemia-reperfusion injury. PMID:26409224

  12. Mechanism of action of lung damage caused by a nanofilm spray product.

    PubMed

    Larsen, Søren T; Dallot, Constantin; Larsen, Susan W; Rose, Fabrice; Poulsen, Steen S; Nørgaard, Asger W; Hansen, Jitka S; Sørli, Jorid B; Nielsen, Gunnar D; Foged, Camilla

    2014-08-01

    Inhalation of waterproofing spray products has on several occasions caused lung damage, which in some cases was fatal. The present study aims to elucidate the mechanism of action of a nanofilm spray product, which has been shown to possess unusual toxic effects, including an extremely steep concentration-effect curve. The nanofilm product is intended for application on non-absorbing flooring materials and contains perfluorosiloxane as the active film-forming component. The toxicological effects and their underlying mechanisms of this product were studied using a mouse inhalation model, by in vitro techniques and by identification of the binding interaction. Inhalation of the aerosolized product gave rise to increased airway resistance in the mice, as evident from the decreased expiratory flow rate. The toxic effect of the waterproofing spray product included interaction with the pulmonary surfactants. More specifically, the active film-forming components in the spray product, perfluorinated siloxanes, inhibited the function of the lung surfactant due to non-covalent interaction with surfactant protein B, a component which is crucial for the stability and persistence of the lung surfactant film during respiration. The active film-forming component used in the present spray product is also found in several other products on the market. Hence, it may be expected that these products may have a toxicity similar to the waterproofing product studied here. Elucidation of the toxicological mechanism and identification of toxicological targets are important to perform rational and cost-effective toxicological studies. Thus, because the pulmonary surfactant system appears to be an important toxicological target for waterproofing spray products, study of surfactant inhibition could be included in toxicological assessment of this group of consumer products. PMID:24863969

  13. Cafeteria diet-induced obesity causes oxidative damage in white adipose.

    PubMed

    Johnson, Amy R; Wilkerson, Matthew D; Sampey, Brante P; Troester, Melissa A; Hayes, D Neil; Makowski, Liza

    2016-04-29

    Obesity continues to be one of the most prominent public health dilemmas in the world. The complex interaction among the varied causes of obesity makes it a particularly challenging problem to address. While typical high-fat purified diets successfully induce weight gain in rodents, we have described a more robust model of diet-induced obesity based on feeding rats a diet consisting of highly palatable, energy-dense human junk foods - the "cafeteria" diet (CAF, 45-53% kcal from fat). We previously reported that CAF-fed rats became hyperphagic, gained more weight, and developed more severe hyperinsulinemia, hyperglycemia, and glucose intolerance compared to the lard-based 45% kcal from fat high fat diet-fed group. In addition, the CAF diet-fed group displayed a higher degree of inflammation in adipose and liver, mitochondrial dysfunction, and an increased concentration of lipid-derived, pro-inflammatory mediators. Building upon our previous findings, we aimed to determine mechanisms that underlie physiologic findings in the CAF diet. We investigated the effect of CAF diet-induced obesity on adipose tissue specifically using expression arrays and immunohistochemistry. Genomic evidence indicated the CAF diet induced alterations in the white adipose gene transcriptome, with notable suppression of glutathione-related genes and pathways involved in mitigating oxidative stress. Immunohistochemical analysis indicated a doubling in adipose lipid peroxidation marker 4-HNE levels compared to rats that remained lean on control standard chow diet. Our data indicates that the CAF diet drives an increase in oxidative damage in white adipose tissue that may affect tissue homeostasis. Oxidative stress drives activation of inflammatory kinases that can perturb insulin signaling leading to glucose intolerance and diabetes. PMID:27033600

  14. Schinus terebinthifolius Leaf Extract Causes Midgut Damage, Interfering with Survival and Development of Aedes aegypti Larvae

    PubMed Central

    Procópio, Thamara Figueiredo; Fernandes, Kenner Morais; Pontual, Emmanuel Viana; Ximenes, Rafael Matos; de Oliveira, Aline Rafaella Cardoso; Souza, Carolina de Santana; Melo, Ana Maria Mendonça de Albuquerque; Navarro, Daniela Maria do Amaral Ferraz; Paiva, Patrícia Maria Guedes; Martins, Gustavo Ferreira; Napoleão, Thiago Henrique

    2015-01-01

    In this study, a leaf extract from Schinus terebinthifolius was evaluated for effects on survival, development, and midgut of A. aegypti fourth instar larvae (L4), as well as for toxic effect on Artemia salina. Leaf extract was obtained using 0.15 M NaCl and evaluated for phytochemical composition and lectin activity. Early L4 larvae were incubated with the extract (0.3–1.35%, w/v) for 8 days, in presence or absence of food. Polymeric proanthocyanidins, hydrolysable tannins, heterosid and aglycone flavonoids, cinnamic acid derivatives, traces of steroids, and lectin activity were detected in the extract, which killed the larvae at an LC50 of 0.62% (unfed larvae) and 1.03% (fed larvae). Further, the larvae incubated with the extract reacted by eliminating the gut content. No larvae reached the pupal stage in treatments at concentrations between 0.5% and 1.35%, while in the control (fed larvae), 61.7% of individuals emerged as adults. The extract (1.0%) promoted intense disorganization of larval midgut epithelium, including deformation and hypertrophy of cells, disruption of microvilli, and vacuolization of cytoplasms, affecting digestive, enteroendocrine, regenerative, and proliferating cells. In addition, cells with fragmented DNA were observed. Separation of extract components by solid phase extraction revealed that cinnamic acid derivatives and flavonoids are involved in larvicidal effect of the extract, being the first most efficient in a short time after larvae treatment. The lectin present in the extract was isolated, but did not show deleterious effects on larvae. The extract and cinnamic acid derivatives were toxic to A. salina nauplii, while the flavonoids showed low toxicity. S. terebinthifolius leaf extract caused damage to the midgut of A. aegypti larvae, interfering with survival and development. The larvicidal effect of the extract can be attributed to cinnamic acid derivatives and flavonoids. The data obtained using A. salina indicates that caution

  15. Mechanism of Action of Lung Damage Caused by a Nanofilm Spray Product

    PubMed Central

    Larsen, Søren T.; Dallot, Constantin; Larsen, Susan W.; Rose, Fabrice; Poulsen, Steen S.; Nørgaard, Asger W.; Hansen, Jitka S.; Sørli, Jorid B.; Nielsen, Gunnar D.; Foged, Camilla

    2014-01-01

    Inhalation of waterproofing spray products has on several occasions caused lung damage, which in some cases was fatal. The present study aims to elucidate the mechanism of action of a nanofilm spray product, which has been shown to possess unusual toxic effects, including an extremely steep concentration-effect curve. The nanofilm product is intended for application on non-absorbing flooring materials and contains perfluorosiloxane as the active film-forming component. The toxicological effects and their underlying mechanisms of this product were studied using a mouse inhalation model, by in vitro techniques and by identification of the binding interaction. Inhalation of the aerosolized product gave rise to increased airway resistance in the mice, as evident from the decreased expiratory flow rate. The toxic effect of the waterproofing spray product included interaction with the pulmonary surfactants. More specifically, the active film-forming components in the spray product, perfluorinated siloxanes, inhibited the function of the lung surfactant due to non-covalent interaction with surfactant protein B, a component which is crucial for the stability and persistence of the lung surfactant film during respiration. The active film-forming component used in the present spray product is also found in several other products on the market. Hence, it may be expected that these products may have a toxicity similar to the waterproofing product studied here. Elucidation of the toxicological mechanism and identification of toxicological targets are important to perform rational and cost-effective toxicological studies. Thus, because the pulmonary surfactant system appears to be an important toxicological target for waterproofing spray products, study of surfactant inhibition could be included in toxicological assessment of this group of consumer products. PMID:24863969

  16. Semi-auto assessment system on building damage caused by landslide disaster with high-resolution satellite and aerial images

    NASA Astrophysics Data System (ADS)

    Sun, Bo; Xu, Qihua; He, Jun; Ge, Fengxiang; Wang, Ying

    2015-10-01

    In recent years, earthquake and heavy rain have triggered more and more landslides, which have caused serious economic losses. The timely detection of the disaster area and the assessment of the hazard are necessary and primary for disaster mitigation and relief. As high-resolution satellite and aerial images have been widely used in the field of environmental monitoring and disaster management, the damage assessment by processing satellite and aerial images has become a hot spot of research work. The rapid assessment of building damage caused by landslides with high-resolution satellite or aerial images is the focus of this article. In this paper, after analyzing the morphological characteristics of the landslide disaster, we proposed a set of criteria for rating building damage, and designed a semi-automatic evaluation system. The system is applied to the satellite and aerial images processing. The performance of the experiments demonstrated the effectiveness of our system.

  17. Kidney Failure

    MedlinePlus

    ... if You Have Kidney Disease Kidney Failure Expand Dialysis Kidney Transplant Preparing for Kidney Failure Treatment Choosing Not to Treat with Dialysis or Transplant Paying for Kidney Failure Treatment Contact ...

  18. DNA damage in the kidney tissue cells of the fish Rhamdia quelen after trophic contamination with aluminum sulfate

    PubMed Central

    Klingelfus, Tatiane; da Costa, Paula Moiana; Scherer, Marcos; Cestari, Marta Margarete

    2015-01-01

    Abstract Even though aluminum is the third most common element present in the earth's crust, information regarding its toxicity remains scarce. It is known that in certain cases, aluminum is neurotoxic, but its effect in other tissues is unknown. The aim of this work was to analyze the genotoxic potential of aluminum sulfate in kidney tissue of the fish Rhamdia quelen after trophic contamination for 60 days. Sixty four fish were subdivided into the following groups: negative control, 5 mg, 50 mg and 500 mg of aluminum sulfate per kg of fish. Samples of the posterior kidney were taken and prepared to obtain mitotic metaphase, as well as the comet assay. The three types of chromosomal abnormalities (CA) found were categorized as chromatid breaks, decondensation of telomeric region, and early separation of sister chromatids. The tests for CA showed that the 5 mg/kg and 50 mg/kg doses of aluminum sulfate had genotoxic potential. Under these treatments, early separation of the sister chromatids was observed more frequently and decondensation of the telomeric region tended to increase in frequency. We suggest that structural changes in the proteins involved in DNA compaction may have led to the decondensation of the telomeric region, making the DNA susceptible to breaks. Moreover, early separation of the sister chromatids may have occurred due to changes in the mobility of chromosomes or proteins that keep the sister chromatids together. The comet assay confirmed the genotoxicity of aluminum sulfate in the kidney tissue of Rhamdia quelen at the three doses of exposure. PMID:26692157

  19. An introduction to alcohol-induced brain damage and its causes.

    PubMed

    Harper, C; Kril, J

    1994-01-01

    The aim of the symposium on alcohol-induced brain damage is to review current opinion and recent advances concerning factors which are thought to play a significant role in this disorder. The three principal factors are: alcohol specific neurotoxicity, associated vitamin B1 (thiamine) deficiency (the Wernicke-Korsakoff syndrome) and liver failure secondary to alcoholic cirrhosis. There is a complex interaction of these and other factors and it is difficult to dissect out the relative importance of each in the pathogenesis of alcohol-related brain damage. Moreover recent molecular and biochemical studies suggest that several of these factors may have pathogenetic mechanisms in common-for example, excitotoxicity, mitric oxide and free radicals. The application of new technologies in neuropathological studies of carefully selected groups of alcoholic cases is beginning to reveal a far more complex pattern of damage than current view holds. Quantitative morphometry and immunohistochemistry can be combined to create three dimensional images of various anatomical regions of the brain together with detailed analyses of neuronal counts, sizes and neurochemical type. In the Wernicke-Korsakoff syndrome (WKS) there is good evidence (in support of neuropsychological and neuroradiological data) to suggest that specific populations of neurons are damaged in cortical and subcortical regions. In those cases with the WKS there is also evidence of pathological damage in cortical and subcortical regions other than the well described periventricular distributions. These more detailed studies provide us with a more comprehensive understanding of alcohol-related brain damage. PMID:8974342

  20. Could humic acid relieve the biochemical toxicities and DNA damage caused by nickel and deltamethrin in earthworms (Eisenia foetida)?

    PubMed

    Shen, Chen-Chao; Shen, Dong-Sheng; Shentu, Jia-Li; Wang, Mei-Zhen; Wan, Ming-Yang

    2015-12-01

    The aim of the study was to determine whether humic acid (HA) prevented gene and biochemical toxic effects in earthworms (Eisenia foetida) exposed to nickel and deltamethrin (at 100 and 1 mg kg(-1), respectively) in soil. Cellular- and molecular-level toxic effects of nickel and deltamethrin in earthworms were evaluated by measuring damage to lipid membranes and DNA and the production of protein carbonyls over 42 days of exposure. Nickel and deltamethrin induced significant levels of oxidative stress in earthworms, increasing the production of peroxidation products (malondialdehyde and protein carbonyls) and increasing the comet assay tail DNA% (determined by single-cell gel electrophoresis). DNA damage was the most sensitive of the three indices because it gave a higher sample/control ratio than did the other indices. The presence of HA alleviated (in decreasing order of effectiveness) damage to DNA, proteins, and lipid membranes caused by nickel and deltamethrin. A low HA dose (0.5-1% HA in soil) prevented a great deal of lipid membrane damage, but the highest HA dose (3% HA in soil) prevented still more DNA damage. However, the malondialdehyde concentrations in earthworms were higher at the highest HA dose than at the lower HA doses. The amounts of protein carbonyls produced at different HA doses were not significantly different. The toxic effects to earthworms caused by increased oxidizable nickel concentrations could be relieved by adding HA. PMID:26511644

  1. Proteomic identification of vanin-1 as a marker of kidney damage in a rat model of type 1 diabetic nephropathy.

    PubMed

    Fugmann, Tim; Borgia, Beatrice; Révész, Csaba; Godó, Mária; Forsblom, Carol; Hamar, Peter; Holthöfer, Harry; Neri, Dario; Roesli, Christoph

    2011-08-01

    At present, the urinary albumin excretion rate is the best noninvasive predictor for diabetic nephropathy (DN) but major limitations are associated with this marker. Here, we used in vivo perfusion technology to establish disease progression markers in an animal model of DN. Rats were perfused with a reactive ester derivative of biotin at various times after streptozotocin treatment. Following homogenization of kidney tissue and affinity purification of biotinylated proteins, a label-free mass spectrometry-based proteomic analysis of tryptic digests identified and relatively quantified 396 proteins. Of these proteins, 24 and 11 were found to be more than 10-fold up- or downregulated, respectively, compared with the same procedure in vehicle-treated rats. Changes in the expression of selected differentially regulated proteins were validated by immunofluorescence detection in kidney tissue from control and diabetic rats. Immunoblot analysis of pooled human urine found that concentrations of vanin-1, an ectoenzyme pantetheinase, distinguished diabetic patients with macroalbuminuria from those with normal albuminuria. Uromodulin was elevated in the urine pools of the diabetic patients, regardless of the degree of albuminuria, compared with healthy controls. Thus, in vivo biotinylation facilitates the detection of disease-specific changes in the abundance of potential biomarker proteins for disease monitoring and/or pharmacodelivery applications. PMID:21544065

  2. Human kidney damage in fatal dengue hemorrhagic fever results of glomeruli injury mainly induced by IL17.

    PubMed

    Pagliari, Carla; Simões Quaresma, Juarez Antônio; Kanashiro-Galo, Luciane; de Carvalho, Leda Viegas; Vitoria, Webster Oliveira; da Silva, Wellington Luiz Ferreira; Penny, Ricardo; Vasconcelos, Barbara Cristina Baldez; da Costa Vasconcelos, Pedro Fernando; Duarte, Maria Irma Seixas

    2016-02-01

    Acute kidney injury is an unusual complication during dengue infection. The objective of this study was to better identify the characteristics of glomerular changes focusing on in situ immune cells and cytokines. An immunohistochemical assay was performed on 20 kidney specimens from fatal human cases of dengue hemorrhagic fever (DHF). It was observed a lymphomononuclear infiltrate, neutrophils and nuclear fragmentation in the glomeruli, hydropic degeneration, nuclear retraction, eosinophilic tubules and intense acute congestion. Sickle erythrocytes were frequent in glomeruli and inflammatory infiltrate. The glomeruli presented endothelial swelling and mesangial proliferation. Lymphocytes CD4+ predominated over CD8+ T cells, B cells and natural killer cells. There were also an expressive number of macrophagic CD68+ cells. S100, Foxp3 and CD123 cells were not identified. Cells expressing IL17 and IL18+ cytokines predominated in the renal tissues, while IL4, IL6, IL10, IL13, TNF-alpha and IFN-gamma were rarely visualized. The high number of cells expressing IL17 and IL18+ could reflect the acute inflammatory response and possibly contribute to the local lesion. CD8+ T cells could play a role in the cytotoxic response. DHF is a multifactorial disease of capillary leakage associated with a "Tsunami of cytokines expression". The large numbers of cells expressing IL17 seems to play a role favoring the increased permeability. PMID:26741825

  3. Para-phenylenediamine induced DNA damage and apoptosis through oxidative stress and enhanced caspase-8 and -9 activities in Mardin-Darby canine kidney cells.

    PubMed

    Chen, S C; Chen, C H; Tioh, Y L; Zhong, P Y; Lin, Y S; Chye, S M

    2010-06-01

    Para-phenylenediamine (p-PD), a suspected carcinogen, is a component of permanent hair dyes. In this study we examined the mechanism of cytotoxicity and genotoxicity in Mardin-Darby canine kidney cells (MDCK)-treated with p-PD. Our results showed that p-PD decreased cell viability in a dose- and time-dependent manner. In addition, p-PD induced DNA damage was confirmed by the comet and TUNEL assays. Pre-treatment of MDCK cells with antioxidants vitamin C or E significantly inhibited p-PD induced cytotoxicity and reactive oxygen species (ROS) generation. Furthermore, p-PD induced apoptosis through activated initiator caspase-8 and -9, and effector caspase-3/7. Based on these results, we suggested that p-PD induce apoptosis which was mediated with caspase-8, caspase-9 and caspase-3/7 activation via the involvement of ROS. PMID:20156547

  4. Fingolimod protects against neonatal white matter damage and long-term cognitive deficits caused by hyperoxia.

    PubMed

    Serdar, Meray; Herz, Josephine; Kempe, Karina; Lumpe, Katharina; Reinboth, Barbara S; Sizonenko, Stéphane V; Hou, Xinlin; Herrmann, Ralf; Hadamitzky, Martin; Heumann, Rolf; Hansen, Wiebke; Sifringer, Marco; van de Looij, Yohan; Felderhoff-Müser, Ursula; Bendix, Ivo

    2016-02-01

    Cerebral white matter injury is a leading cause of adverse neurodevelopmental outcome in prematurely born infants involving cognitive deficits in later life. Despite increasing knowledge about the pathophysiology of perinatal brain injury, therapeutic options are limited. In the adult demyelinating disease multiple sclerosis the sphingosine-1-phosphate (S1P) receptor modulating substance fingolimod (FTY720) has beneficial effects. Herein, we evaluated the neuroprotective potential of FTY720 in a neonatal model of oxygen-toxicity, which is associated with hypomyelination and impaired neuro-cognitive outcome. A single dose of FTY720 (1mg/kg) at the onset of neonatal hyperoxia (24h 80% oxygen on postnatal day 6) resulted in improvement of neuro-cognitive development persisting into adulthood. This was associated with reduced microstructural white matter abnormalities 4 months after the insult. In search of the underlying mechanisms potential non-classical (i.e. lymphocyte-independent) pathways were analysed shortly after the insult, comprising modulation of oxidative stress and local inflammatory responses as well as myelination, oligodendrocyte degeneration and maturation. Treatment with FTY720 reduced hyperoxia-induced oxidative stress, microglia activation and associated pro-inflammatory cytokine expression. In vivo and in vitro analyses further revealed that oxygen-induced hypomyelination is restored to control levels, which was accompanied by reduced oligodendrocyte degeneration and enhanced maturation. Furthermore, hyperoxia-induced elevation of S1P receptor 1 (S1P1) protein expression on in vitro cultured oligodendrocyte precursor cells was reduced by activated FTY720 and protection from degeneration is abrogated after selective S1P1 blockade. Finally, FTY720s' classical mode of action (i.e. retention of immune cells within peripheral lymphoid organs) was analysed demonstrating that FTY720 diminished circulating lymphocyte counts independent from hyperoxia

  5. Diabetes and kidney disease

    MedlinePlus

    ... occurs over time in people with diabetes. This type of kidney disease is called diabetic nephropathy. Causes Each kidney is made of hundreds ... ACE inhibitors Diabetes - what to ask your doctor - type 2 Update Date ... Diabetic Kidney Problems Browse the Encyclopedia A.D.A. ...

  6. Enhanced cadmium-induced testicular necrosis and renal proximal tubule damage caused by gene-dose increase in a Slc39a8-transgenic mouse line.

    PubMed

    Wang, Bin; Schneider, Scott N; Dragin, Nadine; Girijashanker, Kuppuswami; Dalton, Timothy P; He, Lei; Miller, Marian L; Stringer, Keith F; Soleimani, Manoocher; Richardson, Douglas D; Nebert, Daniel W

    2007-04-01

    Resistance to cadmium (Cd)-induced testicular necrosis is an autosomal recessive trait defined as the Cdm locus. Using positional cloning, we previously identified the Slc39a8 (encoding an apical-surface ZIP8 transporter protein) as the gene most likely responsible for the phenotype. In situ hybridization revealed that endothelial cells of the testis vasculature express high ZIP8 levels in two sensitive inbred mouse strains and negligible amounts in two resistant strains. In the present study, we isolated a 168.7-kb bacterial artificial chromosome (BAC), carrying only the Slc39a8 gene, from a Cd-sensitive 129/SvJ BAC library and generated BAC-transgenic mice. The BTZIP8-3 line, having three copies of the 129/SvJ Slc39a8 gene inserted into the Cd-resistant C57BL/6J genome (having its normal two copies of the Slc39a8 gene), showed tissue-specific ZIP8 mRNA expression similar to wild-type mice, mainly in lung, testis, and kidney. The approximately 2.5-fold greater expression paralleled the fact that the BTZIP8-3 line has five copies, whereas wild-type mice have two copies, of the Slc39a8 gene. The ZIP8 mRNA and protein localized especially to endothelial cells of the testis vasculature in BTZIP8-3 mice. Cd treatment reversed Cd resistance (seen in nontransgenic littermates) to Cd sensitivity in BTZIP8-3 mice; reversal of the testicular necrosis phenotype confirms that Slc39a8 is unequivocally the Cdm locus. ZIP8 also localized specifically to the apical surface of proximal tubule cells in the BTZIP8-3 kidney. Cd treatment caused acute renal failure and signs of proximal tubular damage in the BTZIP8-3 but not nontransgenic littermates. BTZIP8-3 mice should be a useful model for studying Cd-induced disease in kidney. PMID:17108009

  7. Evaluation of the surface damage to stainless steel caused by a micro-jet in seawater

    NASA Astrophysics Data System (ADS)

    Chong, Sang-Ok; Kim, Seong-Jong; Jeong, Jae-Yong

    2016-01-01

    As high-speed machines have been developed in marine and offshore industry cavitation damage due to the high speed of rotation of a fluid has been gradually increasing. The damage on the material's surface is a combination of electrochemical corrosion due to the passivity of the films being destroyed by Cl- and cavitation erosion due to the collapse of cavity bubbles. Hence, in this paper, the damage mechanisms for electrochemical corrosion and physical pressure for 415 stainless-steel cavities were evaluated in seawater solutions. The experiments included a galvanostatic experiment in a cavitation environment and a cavitation test with an ultrasonic amplitude of 30 µm at various times. The complex damage behaviors were compared and analyzed by scanning electron microscope (SEM) and 3D microscopy after completion of the experiment. As a result of the galvanostatic experiment under a cavitation condition in seawater, damage under a cavitation condition owing to the water cavitation peening effect was relatively less compared to that under a static condition.

  8. Two damaging hydrogeological events in Calabria, September 2000 and November 2015. Comparative analysis of causes and effects

    NASA Astrophysics Data System (ADS)

    Petrucci, Olga; Caloiero, Tommaso; Aurora Pasqua, Angela

    2016-04-01

    Each year, especially during winter season, some episode of intense rain affects Calabria, the southernmost Italian peninsular region, triggering flash floods and mass movements that cause damage and fatalities. This work presents a comparative analysis between two events that affected the southeast sector of the region, in 2000 and 2014, respectively. The event occurred between 9th and 10th of September 2000 is known in Italy as Soverato event, after the name of the municipality where it reached the highest damage severity. In the Soverato area, more than 200 mm of rain that fell in 24 hours caused a disastrous flood that swept away a campsite at about 4 a.m., killing 13 people and hurting 45. Besides, the rain affected a larger area, causing damage in 89 (out of 409) municipalities of the region. Flooding was the most common process, which damaged housing and trading. Landslide mostly affected the road network, housing and cultivations. The most recent event affected the same regional sector between 30th October and 2nd November 2015. The daily rain recorded at some of the rain gauges of the area almost reached 400 mm. Out of the 409 municipalities of Calabria, 109 suffered damage. The most frequent types of processes were both flash floods and landslides. The most heavily damaged element was the road network: the representative picture of the event is a railway bridge destroyed by the river flow. Housing was damaged too, and 486 people were temporarily evacuated from home. The event also caused a victim killed by a flood. The event-centred study approach aims to highlight differences and similarities in both the causes and the effects of the two events that occurred at a temporal distance of 14 years. The comparative analysis focus on three main aspects: the intensity of triggering rain, the modifications of urbanised areas, and the evolution of emergency management. The comparative analysis of rain is made by comparing the return period of both daily and

  9. Method for assessing damage to mitochondrial DNA caused by radiation and epichlorohydrin

    SciTech Connect

    Singh, G.; Hauswirth, W.W.; Ross, W.E.; Neims, A.H.

    1985-01-01

    This paper describes a rapid and reliable method for quantification of damage to mitochondrial DNA (mtDNA), especially strand breaks. The degree of damage to mtDNA is assessed by the proportion of physical forms (i.e., supercoiled versus open-circular and linear forms) upon agarose gel electrophoresis, blotting, and visualization by hybridization with (/sup 32/P)mtDNA probes. The use of a radiolabeled probe is a crucial step in the procedure because it provides both a means to quantify by radioautography and to obtain the mtDNA specificity required to eliminate misinterpretation due to nuclear DNA contamination. To demonstrate the utility of this technique, X-irradiation and epichlorohydrin are shown to damage both isolated mtDNA and mtDNA in whole cells in a dose-dependent fashion.

  10. Low doses of ionizing radiation to mammalian cells may rather control than cause DNA damage

    SciTech Connect

    Feinendegen, L.E.; Bond, V.P.; Sondhaus, C.A.; Altman, K.I.

    1998-12-31

    This report examines the origin of tissue effects that may follow from different cellular responses to low-dose irradiation, using published data. Two principal categories of cellular responses are considered. One response category relates to the probability of radiation-induced DNA damage. The other category consists of low-dose induced metabolic changes that induce mechanisms of DNA damage mitigation, which do not operate at high levels of exposure. Modeled in this way, tissue is treated as a complex adaptive system. The interaction of the various cellular responses results in a net tissue dose-effect relation that is likely to deviate from linearity in the low-dose region. This suggests that the LNT hypothesis should be reexamined. This paper aims at demonstrating tissue effects as an expression of cellular responses, both damaging and defensive, in relation to the energy deposited in cell mass, by use of microdosimetric concepts.

  11. Measurement of lattice damage caused by ion-implantation doping of semiconductors.

    NASA Technical Reports Server (NTRS)

    Hunsperger, R. G.; Wolf, E. D.; Shifrin, G. A.; Marsh, O. J.; Jamba, D. M.

    1971-01-01

    Discussion of two new techniques used to measure the lattice damage produced in GaAs by the implantation of 60 keV cadmium ions. In the first method, optical reflection spectra of the ion-implanted samples were measured in the wavelength range from 2000 to 4600 A. The decrease in reflectivity resulting from ion-implantation was used to determine the relative amount of lattice damage as a function of ion dose. The second technique employed the scanning electron microscope. Patterns very similar in appearance to Kikuchi electron diffraction patterns are obtained when the secondary and/or backscattered electron intensity is displayed as a function of the angle of incidence of the electron beam on a single crystal surface. The results of measurements made by both methods are compared with each other and with data obtained by the method of measuring lattice damage by Rutherford scattering of 1 MeV helium ions.

  12. Intragastric inulin as a measure of mucosal damage caused by aspirin

    SciTech Connect

    Wittmers, L.E. Jr.; Anderson, L.A.; Fall, M.M.; Alich, A.A. )

    1990-11-01

    In an attempt to find a method of gastric mucosal damage assessment that yields consistent results, the experiments presented here employed the measurement of the movement of inulin out of the gastric contents into the stomach wall and vascular compartment as an estimate of mucosal damage. Anesthetized male Sprague-Dawley rats were functionally nephrectomized and were administered a control or test solution containing 3H-inulin. The test solutions contained one of three doses of aspirin. Blood samples were taken at 15-min intervals over a 90-min exposure period. The stomach was removed from the animal and full-thickness tissue samples taken for measurement of 3H-inulin content. When the gastric mucosa was exposed to the test agents, there was a significantly greater accumulation of inulin in the body and antrum as well as in the plasma when compared to controls. We conclude that intragastric inulin can be employed to estimate gastric mucosal damage.

  13. [Structural mechanisms and mathematical modeling of the bone tissue damage caused by hyper-speed impact].

    PubMed

    Ishchenko, A N; Belov, N N; Gaĭdash, A A; Iugov, N T; Bashirov, R S; Afanas'eva, S A; Sinitsa, L N

    2011-03-01

    Method of computer modeling of behavior of cylindrical and lamellar bones under the hypervelocity impact is suggested. This method allows in the frame of mechanics of continuous medium to calculate the stress strain behavior and damage in bone tissues under the shock wave impact. The processes of shock correlation of steel fragments of different shape with diaphysis of cylindrical bones and flat bone of calvaria under the impact 500 m/s are studied. The given method can be used for the evaluation of damage area of bone tissue of shock wave osteoporosis under the gunshot wound. PMID:21770310

  14. Kidney Facts

    MedlinePlus

    ... Home / Before The Transplant / Organ Facts / Kidney Organ Facts Heart Lung Heart/Lung Kidney Pancreas Kidney/Pancreas Liver ... Receiving "the call" About the Operation Heart Lung Heart/Lung Kidney Pancreas Kidney/Pancreas Liver Intestine Kidney Facts The kidneys are a pair of reddish-brown ...

  15. [Prevention and control of air pollution needs to strengthen further study on health damage caused by air pollution].

    PubMed

    Wu, T C

    2016-08-01

    Heath issues caused by air pollution such as particulate matter (PM) are much concerned and focused among air, water and soil pollutions because human breathe air for whole life span. Present comments will review physical and chemical characteristics of PM2.5 and PM10; Dose-response associations of PM10, PM2.5 and their components with mortality and risk of cardiopulmonary diseases, early health damages such as the decrease of lung functions and heart rate variability, DNA damage; And the roles of genetic variations and epigenetic changes in lung functions and heart rate variability, DNA damage related to PMs and their components. This comments list some limitations and perspectives about the associations of air pollution with health. PMID:27539517

  16. Tissue damage by laser radiation: an in vitro comparison between Tm:YAG and Ho:YAG laser on a porcine kidney model.

    PubMed

    Huusmann, Stephan; Wolters, Mathias; Kramer, Mario W; Bach, Thorsten; Teichmann, Heinrich-Otto; Eing, Andreas; Bardosi, Sebastian; Herrmann, Thomas R W

    2016-01-01

    The understanding of tissue damage by laser radiation is very important for the safety in the application of surgical lasers. The objective of this study is to evaluate cutting, vaporization and coagulation properties of the 2 µm Tm:YAG laser (LISA Laser Products OHG, GER) in comparison to the 2.1 µm Ho:YAG laser (Coherent Medical Group, USA) at different laser power settings in an in vitro model of freshly harvested porcine kidneys. Laser radiation of both laser generators was delivered by using a laser fiber with an optical core diameter of 550 µm (RigiFib, LISA Laser GER). Freshly harvested porcine kidneys were used as tissue model. Experiments were either performed in ambient air or in aqueous saline. The Tm:YAG laser was adjusted to 5 W for low and 120 W for the high power setting. The Ho:YAG laser was adjusted to 0.5 J and 10 Hz (5 W average power) for low power setting and to 2.0 J and 40 Hz (80 W average power) for high power setting, accordingly. The specimens of the cutting experiments were fixed in 4 % formalin, embedded in paraffin and stained with Toluidin blue. The laser damage zone was measured under microscope as the main evaluation criteria. Laser damage zone consists of an outer coagulation zone plus a further necrotic zone. In the ambient air experiments the laser damage zone for the low power setting was 745 ± 119 µm for the Tm:YAG and 614 ± 187 µm for the Ho:YAG laser. On the high power setting, the damage zone was 760 ± 167 µm for Tm:YAG and 715 ± 142 µm for Ho:YAG. The incision depth in ambient air on the low power setting was 346 ± 199 µm for Tm:YAG, 118 ± 119 µm for Ho:YAG. On the high power setting incision depth was 5083 ± 144 µm (Tm:YAG) and 1126 ± 383 µm (Ho:YAG) respectively. In the saline solution experiments, the laser damage zone was 550 ± 137 µm (Tm:YAG) versus 447 ± 65 µm (Ho:YAG), on the low power setting and 653 ± 137 µm (Tm:YAG) versus 677 ± 134 µm (Ho

  17. Gill Damage to Atlantic Salmon (Salmo salar) Caused by the Common Jellyfish (Aurelia aurita) under Experimental Challenge

    PubMed Central

    Baxter, Emily J.; Sturt, Michael M.; Ruane, Neil M.; Doyle, Thomas K.; McAllen, Rob; Harman, Luke; Rodger, Hamish D.

    2011-01-01

    Background Over recent decades jellyfish have caused fish kill events and recurrent gill problems in marine-farmed salmonids. Common jellyfish (Aurelia spp.) are among the most cosmopolitan jellyfish species in the oceans, with populations increasing in many coastal areas. The negative interaction between jellyfish and fish in aquaculture remains a poorly studied area of science. Thus, a recent fish mortality event in Ireland, involving Aurelia aurita, spurred an investigation into the effects of this jellyfish on marine-farmed salmon. Methodology/Principal Findings To address the in vivo impact of the common jellyfish (A. aurita) on salmonids, we exposed Atlantic salmon (Salmo salar) smolts to macerated A. aurita for 10 hrs under experimental challenge. Gill tissues of control and experimental treatment groups were scored with a system that rated the damage between 0 and 21 using a range of primary and secondary parameters. Our results revealed that A. aurita rapidly and extensively damaged the gills of S. salar, with the pathogenesis of the disorder progressing even after the jellyfish were removed. After only 2 hrs of exposure, significant multi-focal damage to gill tissues was apparent. The nature and extent of the damage increased up to 48 hrs from the start of the challenge. Although the gills remained extensively damaged at 3 wks from the start of the challenge trial, shortening of the gill lamellae and organisation of the cells indicated an attempt to repair the damage suffered. Conclusions Our findings clearly demonstrate that A. aurita can cause severe gill problems in marine-farmed fish. With aquaculture predicted to expand worldwide and evidence suggesting that jellyfish populations are increasing in some areas, this threat to aquaculture is of rising concern as significant losses due to jellyfish could be expected to increase in the future. PMID:21490977

  18. Diabetes and kidney disease

    MedlinePlus

    Diabetic nephropathy; Nephropathy - diabetic; Diabetic glomerulosclerosis; Kimmelstiel-Wilson disease ... Diabetic kidney disease is a major cause of sickness and death in people with diabetes. It can ...

  19. Protection by Chrysanthemum zawadskii extract from liver damage of mice caused by carbon tetrachloride is maybe mediated by modulation of QR activity

    PubMed Central

    Seo, Ji Yeon; Lim, Soon Sung; Park, Jia; Lim, Ji-Sun; Kim, Hyo Jung; Kang, Hui Jung; Yoon Park, Jung Han

    2010-01-01

    Our previous study demonstrated that methanolic extract of Chrysanthemum zawadskii Herbich var. latilobum Kitamura (Compositae) has the potential to induce detoxifying enzymes such as NAD(P)H:(quinone acceptor) oxidoreductase 1 (EC 1.6.99.2) (NQO1, QR) and glutathione S-transferase (GST). In this study we further fractionated methanolic extract of Chrysanthemum zawadskii and investigated the detoxifying enzyme-inducing potential of each fraction. The fraction (CZ-6) shown the highest QR-inducing activity was found to contain (+)-(3S,4S,5R,8S)-(E)-8-acetoxy-4-hydroxy-3-isovaleroyloxy-2-(hexa-2,4-diynyliden)-1,6-dioxaspiro [4,5] decane and increased QR enzyme activity in a dose-dependent manner. Furthermore, CZ-6 fraction caused a dose-dependent enhancement of luciferase activity in HepG2-C8 cells generated by stably transfecting antioxidant response element-luciferase gene construct, suggesting that it induces antioxidant/detoxifying enzymes through antioxidant response element (ARE)-mediated transcriptional activation of the relevant genes. Although CZ-6 fraction failed to induce hepatic QR in mice over the control, it restored QR activity suppressed by CCl4 treatment to the control level. Hepatic injury induced by CCl4 was also slightly protected by pretreatment with CZ-6. In conclusion, although CZ-6 fractionated from methanolic extract of Chrysanthemum zawadskii did not cause a significant QR induction in mice organs such as liver, kidney, and stomach, it showed protective effect from liver damage caused by CCl4. PMID:20461196

  20. Protection by Chrysanthemum zawadskii extract from liver damage of mice caused by carbon tetrachloride is maybe mediated by modulation of QR activity.

    PubMed

    Seo, Ji Yeon; Lim, Soon Sung; Park, Jia; Lim, Ji-Sun; Kim, Hyo Jung; Kang, Hui Jung; Yoon Park, Jung Han; Kim, Jong-Sang

    2010-04-01

    Our previous study demonstrated that methanolic extract of Chrysanthemum zawadskii Herbich var. latilobum Kitamura (Compositae) has the potential to induce detoxifying enzymes such as NAD(P)H:(quinone acceptor) oxidoreductase 1 (EC 1.6.99.2) (NQO1, QR) and glutathione S-transferase (GST). In this study we further fractionated methanolic extract of Chrysanthemum zawadskii and investigated the detoxifying enzyme-inducing potential of each fraction. The fraction (CZ-6) shown the highest QR-inducing activity was found to contain (+)-(3S,4S,5R,8S)-(E)-8-acetoxy-4-hydroxy-3-isovaleroyloxy-2-(hexa-2,4-diynyliden)-1,6-dioxaspiro [4,5] decane and increased QR enzyme activity in a dose-dependent manner. Furthermore, CZ-6 fraction caused a dose-dependent enhancement of luciferase activity in HepG2-C8 cells generated by stably transfecting antioxidant response element-luciferase gene construct, suggesting that it induces antioxidant/detoxifying enzymes through antioxidant response element (ARE)-mediated transcriptional activation of the relevant genes. Although CZ-6 fraction failed to induce hepatic QR in mice over the control, it restored QR activity suppressed by CCl(4) treatment to the control level. Hepatic injury induced by CCl(4) was also slightly protected by pretreatment with CZ-6. In conclusion, although CZ-6 fractionated from methanolic extract of Chrysanthemum zawadskii did not cause a significant QR induction in mice organs such as liver, kidney, and stomach, it showed protective effect from liver damage caused by CCl(4). PMID:20461196

  1. Human Papillomavirus Type 16 E7 Oncoprotein Causes a Delay in Repair of DNA Damage

    PubMed Central

    Park, Jung Wook; Nickel, Kwangok P.; Torres, Alexandra D.; Lee, Denis; Lambert, Paul F.; Kimple, Randall J.

    2014-01-01

    Background and Purpose Patients with Human papillomavirus related (HPV+) head and neck cancers (HNCs) demonstrate improved clinical outcomes compared to traditional HPV negative (HPV−) HNC patients. We have recently shown that HPV+ HNC cells are more sensitive to radiation than HPV− HNC cells. However, roles of HPV oncogenes in regulating the response of DNA damage repair remain unknown. Material and Methods Using immortalized normal oral epithelial cell lines, HPV+ HNC derived cell lines, and HPV16 E7-transgenic mice we assessed the repair of DNA damage using γ-H2AX foci, single and split dose clonogenic survival assays, and immunoblot. The ability of E7 to modulate expression of proteins associated with DNA repair pathways was assessed by immunoblot. Results HPV16 E7 increased retention of γ-H2AX nuclear foci and significantly decreased sublethal DNA damage repair. While phospho-ATM, phospho-ATR, Ku70, and Ku80 expressions were not altered by E7, Rad51 was induced by E7. Correspondingly, HPV+ HNC cell lines showed retention of Rad51 after γ-radiation. Conclusions Our findings provide further understanding as to how HPV16 E7 manipulates cellular DNA damage responses that may underlie its oncogenic potential and influence the altered sensitivity to radiation seen in HPV+ HNC as compared to HPV− HNC. PMID:25216575

  2. Satellite detection of vegetative damage and alteration caused by pollutants emitted by a zinc smelter

    NASA Technical Reports Server (NTRS)

    Mcmurtry, G. J.; Petersen, G. W. (Principal Investigator); Fritz, E. L.; Pennypacker, S. P.

    1974-01-01

    The author has identified the following significant results. Field observations and data collected by low flying aircraft were used to verify the accuracy of maps produced from the satellite data. Although areas of vegetation as small as six acres can accurately be detected, a white pine stand that was severely damaged by sulfur dioxide could not be differentiated from a healthy white pine stand because spectral differences were not large enough. When winter data were used to eliminate interference from herbaceous and deciduous vegetation, the damage was still undetectable. The analysis was able to produce a character map that accurately delineated areas of vegetative alteration due to high zinc levels accumulating in the soil. The map depicted a distinct gradient of less damage and alteration as the distance from the smelter increased. Although the satellite data will probably not be useful for detecting small acreages of damaged vegetation, it is concluded that the data may be very useful as an inventory tool to detect and delineate large vegetative areas possessing differing spectral signatures.

  3. PLASMID DNA DAMAGE CAUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN

    EPA Science Inventory

    PLASMID DNA DAMAGE CAOUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN

    ABSTRACT

    Both dimethylarsinic acid (DMA(V)) and dimethylarsinous acid (DMA(III)) release iron from human liver ferritin (HLF) with or without the presence of ascorbic acid. ...

  4. PARP and CHK inhibitors interact to cause DNA damage and cell death in mammary carcinoma cells.

    PubMed

    Booth, Laurence; Cruickshanks, Nichola; Ridder, Thomas; Dai, Yun; Grant, Steven; Dent, Paul

    2013-05-01

    The present studies examined viability and DNA damage levels in mammary carcinoma cells following PARP1 and CHK1 inhibitor drug combination exposure. PARP1 inhibitors [AZD2281 ; ABT888 ; NU1025 ; AG014699] interacted with CHK1 inhibitors [UCN-01 ; AZD7762 ; LY2603618] to kill mammary carcinoma cells. PARP1 and CHK1 inhibitors interacted to increase both single strand and double strand DNA breaks that correlated with increased γH2AX phosphorylation. Treatment of cells with CHK1 inhibitors increased the phosphorylation of CHK1 and ERK1/2. Knock down of ATM suppressed the drug-induced increases in CHK1 and ERK1/2 phosphorylation and enhanced tumor cell killing by PARP1 and CHK1 inhibitors. Expression of dominant negative MEK1 enhanced drug-induced DNA damage whereas expression of activated MEK1 suppressed both the DNA damage response and tumor cell killing. Collectively our data demonstrate that PARP1 and CHK1 inhibitors interact to kill mammary carcinoma cells and that increased DNA damage is a surrogate marker for the response of cells to this drug combination. PMID:23917378

  5. Field data analysis of asphalt road paving damages caused by tree roots

    NASA Astrophysics Data System (ADS)

    Weissteiner, Clemens; Rauch, Hans Peter

    2015-04-01

    Tree root damages are a frequent problem along paved cycling paths and service roads of rivers and streams. Damages occur mostly on streets with thin asphalt layers and especially in the upper part of the pavement structure. The maintainers of these roads are faced with frequent and high annual repair costs in order to guarantee traffic safety and pleasant cycling conditions. The focus of this research project is to get an insight in the processes governing the growth of the tree roots in asphalt layers and to develop test methods to avoid rood penetration into the road structure. Tree vegetation has been analysed selectively along a 300 km long cycle and service path of the Danube River in the region of Austria. Tree characteristics, topographic as well as hydrologic conditions have been analysed at 119 spots with different asphalt damage intensities. On 5 spots additional investigations on the root growth characteristics where performed. First results underline a high potential damage of pioneer trees which are growing naturally along rivers. Mostly, local occurring fast growing tree species penetrated the road layer structure. In a few cases other tree species where as well responsible for road structure damages. The age respectively the size of the trees didn't seem to influence significantly the occurrence of asphalt damages. Road structure damages were found to appear unaffected by hydrologic or topographic conditions. However, results have to be interpreted with care as the investigations represent a temporally limited view of the problem situation. The investigations of the root growth characteristics proved that tree roots penetrate the road structure mostly between the gravel sublayer and the asphalt layer as the layers it selves don't allow a penetration because of their high compaction. Furthermore roots appear to be attracted by condensed water at the underside of the asphalt layer. Further steps of the research project imply testing of different

  6. Thrombotic Microangiopathy as a Cause of Chronic Kidney Transplant Dysfunction: Case Report Demonstrating Successful Treatment with Eculizumab.

    PubMed

    Iqbal, Z; Wood, K; Carter, V; Goodship, T H; Brown, A L; Sheerin, N S

    2015-09-01

    Atypical hemolytic uremic syndrome is a rare disease associated with genetic or acquired defects in complement regulation which frequently leads to renal failure. Disease often recurs early after kidney transplantation, leading to a rapid irreversible loss of function. Extrarenal features, such as hemolysis and thrombocytopenia, may not always occur, and diagnosis is made by demonstrating the classic features of thrombotic microangiopathy on renal biopsy. Eculizumab, a terminal complement inhibitor, has been used successfully to treat fulminant early recurrent disease after transplantation. We describe a case of disease recurrence presenting in the second year after transplantation with a gradual decline in function and the first report of eculizumab treatment for chronic thrombotic microangiopathy in a transplanted kidney. The resultant diagnostic challenges and successful response to eculizumab in this setting are discussed. PMID:26361694

  7. The psychosocial impact of the environmental damage caused by the MT Merapi eruption on survivors in Indonesia.

    PubMed

    Warsini, Sri; Buettner, Petra; Mills, Jane; West, Caryn; Usher, Kim

    2014-12-01

    The eruption of Indonesia's Mount Merapi volcano in 2010 caused extensive environmental degradation. Settlements and hundreds of hectares of farmlands were buried under volcanic ash. Until now, there has been no research on the psychosocial impact of living in an environment damaged by a volcanic eruption. We studied and compared the psychosocial impact of environmental damage on volcano survivors from two subdistricts-Cangkringan and Pakem. Cangkringan survivors affected by the 2010 eruption continue to live in a damaged environment. The Pakem subdistrict was damaged by eruptions of Mt Merapi in the 1990s but there is no recent damage to their environment. The Indonesian-Environmental Distress Scale (I-EDS), a translated revision of the original Environmental Distress Scale (EDS), was used to collect data. Exploratory statistical methods and multivariate linear regression analyses were performed to examine the relative contributions of demographic variables on the psychosocial impact of living in an environment damaged by volcanic eruption. A total of 348 survivors of the Mt Merapi eruption participated in the survey. The mean I-EDS score for Cangkringan district was 15.8 (SD 1.6; range 11.8-19.8) compared to 14.6 (SD 1.3; range 11.8-18.3) for Pakem district (P < 0.001). This result was confirmed by multiple linear regression analysis showing further that older respondents (P < 0.001), unemployed and retired respondents (P = 0.007), and respondents with no formal school education (P = 0.037) had lower I-EDS scores compared to the respective reference groups. Survivors of the Mt Merapi eruption who continue to live in the environment damaged by the 2010 volcanic eruption experience environmental distress. Relevant interventions should target those from low sosioeconomic groups to deal with the distress. PMID:24763946

  8. Genetic damage caused by methyl-parathion in mouse spermatozoa is related to oxidative stress

    SciTech Connect

    Pina-Guzman, B.; Solis-Heredia, M.J.; Rojas-Garcia, A.E.; Uriostegui-Acosta, M.; Quintanilla-Vega, B. . E-mail: mquintan@cinvestav.mx

    2006-10-15

    Organophosphorous (OP) pesticides are considered genotoxic mainly to somatic cells, but results are not conclusive. Few studies have reported OP alterations on sperm chromatin and DNA, and oxidative stress has been related to their toxicity. Sperm cells are very sensitive to oxidative damage which has been associated with reproductive dysfunctions. We evaluated the effects of methyl-parathion (Me-Pa; a widely used OP) on sperm DNA, exploring the sensitive stage(s) of spermatogenesis and the relationship with oxidative stress. Male mice (10-12-weeks old) were administered Me-Pa (3-20 mg/kg bw/i.p.) and euthanized at 7- or 28-days post-treatment. Mature spermatozoa were obtained and evaluated for chromatin structure through SCSA (Sperm Chromatin Structure Assay; DNA Fragmentation Index parameters: Mean DFI and DFI%) and chromomycin-A{sub 3} (CMA{sub 3})-staining, for DNA damage through in situ-nick translation (NT-positive) and for oxidative stress through lipid peroxidation (LPO; malondialdehyde production). At 7-days post-treatment (mature spermatozoa when Me-Pa exposure), dose-dependent alterations in chromatin structure (Mean DFI and CMA{sub 3}-staining) were observed, as well as increased DNA damage, from 2-5-fold in DFI% and NT-positive cells. Chromatin alterations and DNA damage were also observed at 28-days post-treatment (cells at meiosis at the time of exposure); suggesting that the damage induced in spermatocytes was not repaired. Positive correlations were observed between LPO and sperm DNA-related parameters. These data suggest that oxidative stress is related to Me-Pa alterations on sperm DNA integrity and cells at meiosis (28-days post-treatment) and epididymal maturation (7-days post-treatment) are Me-Pa targets. These findings suggest a potential risk of Me-Pa to the offspring after transmission.

  9. Structure-specific DNA endonuclease Mus81/Eme1 generates DNA damage caused by Chk1 inactivation.

    PubMed

    Forment, Josep V; Blasius, Melanie; Guerini, Ilaria; Jackson, Stephen P

    2011-01-01

    The DNA-damage checkpoint kinase Chk1 is essential in higher eukaryotes due to its role in maintaining genome stability in proliferating cells. CHK1 gene deletion is embryonically lethal, and Chk1 inhibition in replicating cells causes cell-cycle defects that eventually lead to perturbed replication and replication-fork collapse, thus generating endogenous DNA damage. What is the cause of replication-fork collapse when Chk1 is inactivated, however, remains poorly understood. Here, we show that generation of DNA double-strand breaks at replication forks when Chk1 activity is compromised relies on the DNA endonuclease complex Mus81/Eme1. Importantly, we show that Mus81/Eme1-dependent DNA damage--rather than a global increase in replication-fork stalling--is the cause of incomplete replication in Chk1-deficient cells. Consequently, Mus81/Eme1 depletion alleviates the S-phase progression defects associated with Chk1 deficiency, thereby increasing cell survival. Chk1-mediated protection of replication forks from Mus81/Eme1 even under otherwise unchallenged conditions is therefore vital to prevent uncontrolled fork collapse and ensure proper S-phase progression in human cells. PMID:21858151

  10. Nur77 forms novel nuclear structures upon DNA damage that cause transcriptional arrest

    SciTech Connect

    Leseleuc, Louis de; Denis, Francois . E-mail: francois.denis@iaf.inrs.ca

    2006-05-15

    The orphan nuclear receptor Nur77 has been implicated in both growth and apoptosis, and its function and activity can be modulated by cellular redistribution. Green fluorescent protein-tagged Nur77 was used to evaluate the role of Nur77 intracellular redistribution in response to genotoxic stress. Selected DNA damaging agents and transcription inhibition lead to rapid redistribution of Nur77 into nuclear structures distinct from conventional nuclear bodies. These nuclear bodies formed transiently were tightly bound to the nuclear matrix and conditions that lead to their appearance were associated with Nur77 transcriptional inhibition. The formation of Nur77 nuclear bodies might be involved in programmed cell death modulation upon exposure to DNA damaging agents that inhibit transcription by sequestrating this proapoptotic factor in dense nuclear structures.

  11. Iatrogenic Damage to the Periodontium Caused by Endodontic Treatment Procedures: An Overview

    PubMed Central

    Bhat, Aishwarya; Sirajuddin, Syed; Prabhu, Sandeep S; Chungkham, Sachidananda; Bilichodmath, Chandrasekhar

    2015-01-01

    The tooth, the pulp tissue within it and its supporting structures should be viewed as one biologic unit. The interrelationship of these structures influences each other during health, function and disease. The interrelationship between periodontal and endodontic diseases has aroused much speculation, confusion and controversy. The endodontium and periodontiumare closely related and disease or damage of one tissue may lead to the involvement of the other. PMID:26312090

  12. A Novel Mutation in DNA Topoisomerase I of Yeast Causes DNA Damage and Rad9-Dependent Cell Cycle Arrest

    PubMed Central

    Levin, N. A.; Bjornsti, M. A.; Fink, G. R.

    1993-01-01

    DNA topoisomerases, enzymes that alter the superhelicity of DNA, have been implicated in such critical cellular functions as transcription, DNA replication, and recombination. In the yeast Saccharomyces cerevisiae, a null mutation in the gene encoding topoisomerase I (TOP1) causes elevated levels of mitotic recombination in the ribosomal DNA (rDNA), but has little effect on growth. We have isolated a missense mutation in TOP1 that causes mitotic hyper-recombination not only in the rDNA, but also at other loci, in addition to causing a number of other unexpected phenotypes. This topoisomerase I mutation (top1-103) causes slow growth, constitutive expression of DNA damage-inducible genes, and inviability in the absence of the double-strand break repair system. Overexpression of top1-103 causes RAD9-dependent cell cycle arrest in G(2). We show that the Top1-103 enzyme nicks DNA in vitro, suggesting that it damages DNA directly. We propose that Top1-103 mimics the action of wild-type topoisomerase I in the presence of the anti-tumor drug, camptothecin. PMID:8385050

  13. Kidney Cysts

    MedlinePlus

    ... fluid-filled sac. There are two types of kidney cysts. Polycystic kidney disease (PKD) runs in families. In PKD, the ... place of the normal tissue. They enlarge the kidneys and make them work poorly, leading to kidney ...

  14. Your Kidneys

    MedlinePlus

    ... Homework? Here's Help White House Lunch Recipes Your Kidneys KidsHealth > For Kids > Your Kidneys Print A A ... and it will be lighter. What Else Do Kidneys Do? Kidneys are always busy. Besides filtering the ...

  15. Kidney Disease

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? Kidney Disease KidsHealth > For Teens > Kidney Disease Print A ... Syndrome Coping With Kidney Conditions What Do the Kidneys Do? You might never think much about some ...

  16. Kidney Transplant

    MedlinePlus

    ... Rate Your Risk Quiz Featured Story African Americans & Kidney Disease Did you know that African Americans are ... checks Your Kidneys and You Meetings Featured Story Kidney Walk The Kidney Walk is the nation's largest ...

  17. Kidney Dysplasia

    MedlinePlus

    ... following early in life: blood-filtering treatments called dialysis a kidney transplant Children with dysplasia in only ... mild dysplasia of both kidneys may not need dialysis or a kidney transplant for several years. Kidney ...

  18. Kidney Cysts

    MedlinePlus

    ... are two types of kidney cysts. Polycystic kidney disease (PKD) runs in families. In PKD, the cysts ... failure, dialysis or kidney transplants. Acquired cystic kidney disease (ACKD) usually happens in people who are on ...

  19. 78 FR 41991 - Pipeline Safety: Potential for Damage to Pipeline Facilities Caused by Flooding

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-12

    ... July 29, 1993 (ADB-93-03), and the most recent Advisory Bulletin (ADB-11-04) on July 27, 2011, 76 FR... Facilities Caused by Flooding AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA); DOT... pipeline facilities caused by severe flooding. This advisory includes actions that operators...

  20. 76 FR 44985 - Pipeline Safety: Potential for Damage to Pipeline Facilities Caused by Flooding

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-27

    ... Facilities Caused by Flooding AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT... pipeline facilities caused by severe flooding. This advisory includes actions that operators should consider taking to ensure the integrity of pipelines in case of flooding. ADDRESSES: This document can...

  1. Metallurgical causes for the occurrence of creep damage in longitudinally seam-welded Cr-Mo high-energy piping

    NASA Astrophysics Data System (ADS)

    Zhou, Gang

    A continuous occurrence of catastrophic failures, leaks and cracks of the Cr-Mo steam piping has created widespread utility concern for the integrity and serviceability of the seam-welded piping systems in power plants across USA. Cr-Mo steels are the materials widely used for elevated temperature service in fossil-fired generating stations. A large percentage of the power plant units with the Cr-Mo seam-welded steam piping have been in operation for a long duration such that the critical components of the units have been employed beyond the design life (30 or 40 years). This percentage will increase even more significantly in the near future. There is a strong desire to extend and thus there is a need to assess the remaining life of these units. Thus, understanding of the metallurgical causes for the failures and damage in the Cr-Mo seam-welded piping plays a major role in estimating possible life-extension and decision making on whether to operate, repair or replace. In this study, an optical metallographic method and a Cryo-Crack fractographic method have been developed for characterization and quantification of the damage in seam-welded steam piping. More than 500 metallographic assessments, from more than 25 power plants, have been accomplished using the optical metallographic method, and more than 200 fractographic specimens from 10 power plants have been evaluated using the "Cryo-Crack" fractographic technique. For comparison, "virgin" SA welds were fabricated using the Mohave welding procedure with re-N&T Mohave base metal with both "acid" and "basic" fluxes. The damage mechanism, damage distribution pattern, damage classification, correlation of the damage with the microstructural features of these SA welds and the impurity segregation patterns have been determined. A physical model for cavitation (leading to failure) in Cr-Mo SA weld metals and evaluation methodologies for high energy piping are proposed.

  2. Definition and classification of chronic kidney disease: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO).

    PubMed

    Levey, Andrew S; Eckardt, Kai-Uwe; Tsukamoto, Yusuke; Levin, Adeera; Coresh, Josef; Rossert, Jerome; De Zeeuw, Dick; Hostetter, Thomas H; Lameire, Norbert; Eknoyan, Garabed

    2005-06-01

    Chronic kidney disease (CKD) is a worldwide public health problem, with adverse outcomes of kidney failure, cardiovascular disease (CVD), and premature death. A simple definition and classification of kidney disease is necessary for international development and implementation of clinical practice guidelines. Kidney Disease: Improving Global Outcomes (KDIGO) conducted a survey and sponsored a controversies conference to (1) provide a clear understanding to both the nephrology and nonnephrology communities of the evidence base for the definition and classification recommended by Kidney Disease Quality Outcome Initiative (K/DOQI), (2) develop global consensus for the adoption of a simple definition and classification system, and (3) identify a collaborative research agenda and plan that would improve the evidence base and facilitate implementation of the definition and classification of CKD. The K/DOQI definition and classification were accepted, with clarifications. CKD is defined as kidney damage or glomerular filtration rate (GFR) <60 mL/min/1.73 m(2) for 3 months or more, irrespective of cause. Kidney damage in many kidney diseases can be ascertained by the presence of albuminuria, defined as albumin-to-creatinine ratio >30 mg/g in two of three spot urine specimens. GFR can be estimated from calibrated serum creatinine and estimating equations, such as the Modification of Diet in Renal Disease (MDRD) Study equation or the Cockcroft-Gault formula. Kidney disease severity is classified into five stages according to the level of GFR. Kidney disease treatment by dialysis and transplantation should be noted. Simple, uniform classifications of CKD by cause and by risks for kidney disease progression and CVD should be developed. PMID:15882252

  3. Protective Effects of Selenium, Vitamin E, and Purple Carrot Anthocyanins on D-Galactose-Induced Oxidative Damage in Blood, Liver, Heart and Kidney Rats.

    PubMed

    Li, Xia; Zhang, Yunlong; Yuan, Yuan; Sun, Yong; Qin, Yan; Deng, Zeyuan; Li, Hongyan

    2016-10-01

    The present study was performed to investigate the protective effects of selenium (Se), vitamin E (Vit E) and anthocyanins from purple carrots and their combination against the oxidative stress induced by D-galactose in rats. A total of 80 male rats were equally divided into 11 groups, one of which acted as control (I) just receiving intraperitoneal injections of physiological saline. The remaining ten groups (II-XI) were intraperitoneally injected with D-galactose at a dose of 400 mg kg(-1) body weight (BW) per day for 42 consecutive days. Rats in groups III-XI were treated with antioxidants via gavage per day as follows: group III: Se-methylselenocysteine (SeMSC), IV: Se as sodium selenite (Na2SeO3), V: Se-enriched yeast (SeY), VI: Vit E as α-tocopherol acetate, VII: anthocyanin from purple carrots (APC), VIII: APC + Vit E, IX: SeMSC + APC+ Vit E, X: Na2SeO3 + APC + Vit E, XI: SeY + Ant + Vit E. The results showed that the rats treated with antioxidants (III-XI) showed significant decreases in the levels of malondialdehyde (MDA) and carbonyl protein (PCO) compared with the D-galactose-treated group (II) in the heart, liver, kidneys, and blood. Moreover, there were significant increases in the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), glutathione (GSH) concentration, and total antioxidant capacity (T-AOC) in the heart, liver, kidneys, and blood of antioxidant-treated animals (III-XI) than those in control group (I). In addition, the combined treatments of two or three antioxidants showed greater antioxidant activities than those of individual treatments, suggesting the synergistic antioxidant effects of Se, Vit E, and APC. In conclusion, all the antioxidants exhibited protective effects against D-galactose-induced oxidative damage in rats, and these antioxidants showed a synergistic effect. PMID:27025718

  4. Solanum torvum Swartz. fruit attenuates cadmium-induced liver and kidney damage through modulation of oxidative stress and glycosylation.

    PubMed

    Ramamurthy, C H; Subastri, A; Suyavaran, A; Subbaiah, K C V; Valluru, L; Thirunavukkarasu, C

    2016-04-01

    Increased levels of environmental pollutants are linked to almost all human disorders; the efficient method to manage the human health is through naturally available dietary molecule. Solanum torvum (ST) Swartz (Solanaceae) commonly called Turkey Berry is found in Africa, Asia, and South America. Its fruit, part of traditional Indian cuisine, is a widely consumed nutritious herb, acclaimed for its medicinal value. ST aqueous extract (STAe) (250, 500, and 1000 mg/kg b.w., 6 days; oral) against acute Cadmium (Cd) (6.3 mg/kg b.w., single dose; oral) toxicity was evaluated in rats. Protective effect was assessed using serum markers, tissue antioxidants, oxidant derivatives, glycoprotein, and histopathological studies. The activities of serum marker enzymes were increased (40-60 %); antioxidant enzymes such as SOD and CAT, GSH, and its metabolic enzyme activities were decreased (50-80 %) in the liver and kidney upon Cd intoxication. During STAe pre-treatment, at doses of 250 and 500 mg/kg b.w., the above changes were brought to near normal (25-63 %). Tissue 4-hydroxynonenal, 3-nitrotyrosine, and protein carbonyls were increased (8-15 fold) in Cd-alone-treated rats, whereas pre-supplementation of STAe significantly decreased their levels and inhibited the protein glycosylation effectively. The pharmacological effect of STAe was confirmed by histopathological observations. Based on previous literature and present investigation, we conclude that ST may serve as a potential functional food against environmental contaminant such as heavy metal-induced oxidative stress. PMID:26762936

  5. Prospects for studying how high-intensity compression waves cause damage in human blast injuries

    NASA Astrophysics Data System (ADS)

    Brown, Katherine; Bo, Chiara; Ramaswamy, Arul; Masouros, Spiros; Newell, Nicolas; Hill, Adam; Clasper, Jon; Bull, Anthony; Proud, William

    2011-06-01

    Blast injuries arising from improvised explosive devices are often complex leading to long-term disability in survivors. There is an urgent need to mitigate against the effects of blast that lead to these injuries, and to also improve post-traumatic therapeutic treatments related to problems associated with damage and healing processes and infections. We have initiated multidisciplinary studies to develop experimental facilities and strategies for analyzing the effects blast waves upon the human body, from cellular through to skeletal functions. This work is supported by the Atomic Weapons Establishment and the Defence Science and Technology Laboratory, UK.

  6. Reactive oxygen species do not cause arsine-induced hemoglobin damage

    SciTech Connect

    Hatlelid, K.M.; Carter, D.E.

    1997-04-11

    Previous work suggested that arsine- (AsH{sub 3}-) induced hemoglobin (HbO{sub 2}) damage may lead to hemolysis (Hatlelid et al., 1996). The purpose of the work presented here was to determine whether reactive oxygen species are formed by AsH{sub 3} in solution, in hemoglobin solutions, or in intact red blood cells, and, if so, to determine whether these species are responsible for the observed hemoglobin damage. Hydrogen peroxide (H{sub 2}O{sub 2}) was detected in aqueous solutions containing AsH{sub 3} and HbO{sub 2} or AsH{sub 3} alone but not in intact red blood cells or lysates. Additionally, high-activity catalase (19,200 U/ml) or glutathione peroxidase (68 U/ml) added to solutions of HbO{sub 2} and AsH{sub 3} had only a minor protective effect against AsH{sub 3}-induced damage. Further, the differences between the visible spectra of AsH{sub 3}-treated HbO{sub 2} and H{sub 2}O{sub 2}-treated HbO{sub 2} indicate that two different degradative processes occur. The presence of superoxide anion (O{sub 2}{sup {minus}}) was measured by O{sub 2}{sup {minus}} -dependent reduction of nitro blue tetrazolium (NBT). The results were negative for O{sub 2}{sup {minus}}. Exogenous superoxide dismutase (100 {mu}g/ml) did not affect AsH{sub 3}-induced HbO{sub 2} spectral changes, nor did the hydroxyl radical scavengers, mannitol, and DMSO (20mM each). The general antioxidants ascorbate ({le} 10 mM) and glutathione ({le}1 mM) also had no effect. These results indicate that the superoxide anion and the hydroxyl radical (OH) are not involved in the mechanism of AsH{sub 3}-induced HbO{sub 2} damage. The results also indicate that although AsH{sub 3} contributes to H{sub 2}O{sub 2} production in vitro, cellular defenses are adequate to detoxify the amount formed. An alternative mechanism by which an arsenic species is the hemolytic agent is proposed. 16 refs., 4 figs., 2 tabs.

  7. Optimal choice: assessing the probability of additional damage to buildings caused by water level changes of larger areas

    NASA Astrophysics Data System (ADS)

    Bijnagte, J. L.; Luger, D.

    2012-12-01

    In the Northern parts of the Netherlands exploration of natural gas reservoirs causes subsidence over large areas. As a consequence, the water levels in canals and polders have to be adjusted over time in order to keep the groundwater levels at a constant depth relative to the surface level. In the middle of the subsidence area it is relatively easy to follow the settlements by a uniform lowering of the water level. This would however result in a relative lowering of the groundwater table at the edges of the subsidence area. Given the presence of soft compressible soils, this would result in induced settlements. For buildings in these areas this will increase the chance of damage. A major design challenge lies therefore in the optimisation of the use of compartments. The more compartments the higher the cost therefore the aim is to make compartments in the water management system that are as large as possible without causing inadmissible damage to buildings. In order to asses expected damage from different use of compartments three tools are needed. The first is a generally accepted method of damage determination, the second a method to determine the contribution to damage of a new influence, e.g. a groundwater table change. Third, and perhaps most importantly, a method is needed to evaluate effects not for single buildings but for larger areas. The first need is covered by established damage criteria like those of Burland & Wroth or Boscardin & Cording. Up until now the second and the third have been problematic. This paper presents a method which enables to assign a contribution to the probability of damage of various recognised mechanisms such as soil and foundation inhomogeneity, uneven loading, ground water level changes. Shallow subsidence due to peat oxidation and deep subsidence due to reservoir depletion can be combined. In order to address the third issue: evaluation of effects for larger areas, the method uses a probabilistic approach. Apart from a

  8. Diabetic Kidney Disease: A Syndrome Rather Than a Single Disease.

    PubMed

    Piccoli, Giorgina B; Grassi, Giorgio; Cabiddu, Gianfranca; Nazha, Marta; Roggero, Simona; Capizzi, Irene; De Pascale, Agostino; Priola, Adriano M; Di Vico, Cristina; Maxia, Stefania; Loi, Valentina; Asunis, Anna M; Pani, Antonello; Veltri, Andrea

    2015-01-01

    The term "diabetic kidney" has recently been proposed to encompass the various lesions, involving all kidney structures that characterize protean kidney damage in patients with diabetes. While glomerular diseases may follow the stepwise progression that was described several decades ago, the tenet that proteinuria identifies diabetic nephropathy is disputed today and should be limited to glomerular lesions. Improvements in glycemic control may have contributed to a decrease in the prevalence of glomerular lesions, initially described as hallmarks of diabetic nephropathy, and revealed other types of renal damage, mainly related to vasculature and interstitium, and these types usually present with little or no proteinuria. Whilst glomerular damage is the hallmark of microvascular lesions, ischemic nephropathies, renal infarction, and cholesterol emboli syndrome are the result of macrovascular involvement, and the presence of underlying renal damage sets the stage for acute infections and drug-induced kidney injuries. Impairment of the phagocytic response can cause severe and unusual forms of acute and chronic pyelonephritis. It is thus concluded that screening for albuminuria, which is useful for detecting "glomerular diabetic nephropathy", does not identify all potential nephropathies in diabetes patients. As diabetes is a risk factor for all forms of kidney disease, diagnosis in diabetic patients should include the same combination of biochemical, clinical, and imaging tests as employed in non-diabetic subjects, but with the specific consideration that chronic kidney disease (CKD) may develop more rapidly and severely in diabetic patients. PMID:26676663

  9. NP04634 prevents cell damage caused by calcium overload and mitochondrial disruption in bovine chromaffin cells.

    PubMed

    Valero, Teresa; del Barrio, Laura; Egea, Javier; Cañas, Noelia; Martínez, Ana; García, Antonio G; Villarroya, Mercedes; López, Manuela G

    2009-04-01

    Marine sponges are becoming a rich source of potential new medicines. NP04634 is a synthetic derivative of 11,19 dideoxyfistularin, a natural product of the Mediterranean sponge Aplysina cavernicola. We report the cytoprotective effects of this new compound in isolated bovine chromaffin cells exposed to cytotoxic stimuli that have been related to neuronal cell death, i.e. Ca(2+) overload and mitochondrial dysfunction. Cell death was achieved by: (i) causing Ca(2+) overload through voltage-dependent calcium channels by exposing the cells to 30 mM K(+), 5 mM Ca(2+) plus 0.3 microM FPL64176 (an L-type Ca(2+)-channel activator); (ii) incubating the cells with veratridine, causing cytosolic Ca(2+) concentration ([Ca(2+)](c)) oscillations and mitochondrial disruption; and (iii) blocking mitochondrial complexes I and V using a combination of 30 microM rotenone and 10 microM oligomycin. At 10 microM, NP04634 caused significant protection against 30K(+)/5Ca(2+)/FPL-induced toxicity. NP04634 caused a concentration-dependent reduction in [Ca(2+)](c) induced by 70 mM K(+) in cells loaded with Fluo-4; maximum blockade was 67% at 30 microM. Veratridine caused continuous [Ca(2+)](c) oscillations that translated into 43.4+/-2% cell death. In this model, NP04634 caused 42% and 67% protection at 3 and 10 microM, respectively. NP04634 reduced [Ca(2+)](c) oscillations and mitochondrial depolarization caused by veratridine. NP04634 at 10 microM also protected against mitochondrial disruption caused by rotenone plus oligomycin. In conclusion, NP04634 is a novel compound of marine origin with cytoprotective properties that might have potential therapeutic implications under pathological circumstances involving Ca(2+) overload and mitochondrial disruption, such as in certain neurodegenerative diseases and/or stroke. PMID:19233161

  10. Optical properties and surface damage studies of crystalline silicon caused by swift iron ions

    NASA Astrophysics Data System (ADS)

    Dubey, S. K.

    2016-05-01

    p-Type silicon samples irradiated with 70 MeV 56Fe5+ ions for various fluences varying between 5 × 1012 and 4 × 1014 ions cm-2 have been studied using spectroscopic ellipsometry and Fourier transform infrared spectroscopy. The microstructure of the irradiated samples was modeled from ellipsometric data, using a multilayer optical model and Bruggeman effective medium approximation. The values of pseudodielectric function, absorption coefficient and Penn gap energy were determined with respect to ion fluence. The effective medium analysis suggests that the superficial silicon layer can be explained as a mixture of crystalline and damaged silicon. The thickness of the damaged layer and percentage of voids present in the layer were found to increase with increase in the ion fluence. The effect of disorder on the interband optical spectra, especially on the critical point E1 at 3.4 eV was found to vary with ion fluence. A red shift in the critical point E1 with increasing ion fluence was observed. FTIR study showed of silicon samples irradiated with 70 MeV 56Fe5+ ions produced the oscillations in the spectral region 1000-400 cm-1. As irradiated sample showed more pronounced fringes, while contrast of the fringes and amplitude both were found to decrease with increase in depth.

  11. B7-H3 upregulates BRCC3 expression, antagonizing DNA damage caused by 5-Fu.

    PubMed

    Sun, Zhang Zhang; Zhang, Ting; Ning, Kuan; Zhu, Ruan; Liu, Fen; Tang, Shou-Ching; Jiang, Bo; Hua, Dong

    2016-07-01

    5-fluorouracil (5-Fu) is still recognized as the mainstay in colorectal cancer chemotherapy, but the response rate of 5-Fu in colorectal cancer is less than 50%. Our previous mRNA microarray data revealed that BRCC3, a component of the BRCA1-BRCA2-BRCC3 DNA repair complex, had a direct relationship with B7-H3, an immunoglobulin that is upregulated in tumor tissue and associated with metastasis and poor prognosis. Real-time PCR and western blot analysis confirmed that the expression of both BRCC3 mRNA and protein, respectively, were elevated following B7-H3 overexpression in SW480 cells; likewise, BRCC3 expression decreased after B7-H3 was knocked down in HCT-8 cells. DNA comet assay results indicate an inverse correlation between the extent of 5-Fu-induced DNA damage and the expression level of B7-H3 in both SW480- and HCT-8-based cell lines. In SW480 cells that overexpress B7-H3, knockdown of BRCC3 similarly permitted greater 5-Fu-induced DNA damage. Altogether, results suggest that BRCC3 may play a role in B7-H3-induced 5-Fu resistance, such that B7-H3 upregulates BRCC3 expression, enhancing DNA repair in colorectal cancer cells. PMID:27175567

  12. Effects of the nematicide imicyafos on soil nematode community structure and damage to radish caused by Pratylenchus penetrans

    PubMed Central

    Toyota, Koki; Takada, Atsushi

    2011-01-01

    The effects of the non-fumigant nematicide imicyafos on soil nematode community structure and damage to radish caused by Pratylenchus penetrans were evaluated in two field experiments in consecutive years (2007 and 2008). Nematode densities in soil at 0 - 10 cm (the depth of nematicide incorporation) and 10 - 30 cm were measured. The application of imicyafos had a significant impact on the density of P. penetrans at 0 - 10 cm but had no effect on free-living nematode density. PCR-DGGE analysis conducted using extracted nematodes showed that the nematode community structure 12 d after application in 2007 was altered by the application of imicyafos at the 0 - 10 cm depth, but not at 10 - 30 cm. No significant differences were observed in the diversity of the nematode community at harvest (89 and 91 d after application) between the control and imicyafos treatments in both depths and both years. In both years, the damage to radish caused by P. penetrans was markedly suppressed by the nematicide. Overall, the nematicide imicyafos decreased populations of P. penetrans in soil and thereby decreased damage to radish, while having little impact on the soil nematode community. PMID:22791909

  13. Low Doses of Oxygen Ion Irradiation Cause Acute Damage to Hematopoietic Cells in Mice.

    PubMed

    Chang, Jianhui; Luo, Yi; Wang, Yingying; Pathak, Rupak; Sridharan, Vijayalakshmi; Jones, Tamako; Mao, Xiao Wen; Nelson, Gregory; Boerma, Marjan; Hauer-Jensen, Martin; Zhou, Daohong; Shao, Lijian

    2016-01-01

    One of the major health risks to astronauts is radiation on long-duration space missions. Space radiation from sun and galactic cosmic rays consists primarily of 85% protons, 14% helium nuclei and 1% high-energy high-charge (HZE) particles, such as oxygen (16O), carbon, silicon, and iron ions. HZE particles exhibit dense linear tracks of ionization associated with clustered DNA damage and often high relative biological effectiveness (RBE). Therefore, new knowledge of risks from HZE particle exposures must be obtained. In the present study, we investigated the acute effects of low doses of 16O irradiation on the hematopoietic system. Specifically, we exposed C57BL/6J mice to 0.1, 0.25 and 1.0 Gy whole body 16O (600 MeV/n) irradiation and examined the effects on peripheral blood (PB) cells, and bone marrow (BM) hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) at two weeks after the exposure. The results showed that the numbers of white blood cells, lymphocytes, monocytes, neutrophils and platelets were significantly decreased in PB after exposure to 1.0 Gy, but not to 0.1 or 0.25 Gy. However, both the frequency and number of HPCs and HSCs were reduced in a radiation dose-dependent manner in comparison to un-irradiated controls. Furthermore, HPCs and HSCs from irradiated mice exhibited a significant reduction in clonogenic function determined by the colony-forming and cobblestone area-forming cell assays. These acute adverse effects of 16O irradiation on HSCs coincided with an increased production of reactive oxygen species (ROS), enhanced cell cycle entry of quiescent HSCs, and increased DNA damage. However, none of the 16O exposures induced apoptosis in HSCs. These data suggest that exposure to low doses of 16O irradiation induces acute BM injury in a dose-dependent manner primarily via increasing ROS production, cell cycling, and DNA damage in HSCs. This finding may aid in developing novel strategies in the protection of the hematopoietic

  14. Low Doses of Oxygen Ion Irradiation Cause Acute Damage to Hematopoietic Cells in Mice

    PubMed Central

    Wang, Yingying; Pathak, Rupak; Sridharan, Vijayalakshmi; Jones, Tamako; Mao, Xiao Wen; Nelson, Gregory; Boerma, Marjan; Hauer-Jensen, Martin; Zhou, Daohong; Shao, Lijian

    2016-01-01

    One of the major health risks to astronauts is radiation on long-duration space missions. Space radiation from sun and galactic cosmic rays consists primarily of 85% protons, 14% helium nuclei and 1% high-energy high-charge (HZE) particles, such as oxygen (16O), carbon, silicon, and iron ions. HZE particles exhibit dense linear tracks of ionization associated with clustered DNA damage and often high relative biological effectiveness (RBE). Therefore, new knowledge of risks from HZE particle exposures must be obtained. In the present study, we investigated the acute effects of low doses of 16O irradiation on the hematopoietic system. Specifically, we exposed C57BL/6J mice to 0.1, 0.25 and 1.0 Gy whole body 16O (600 MeV/n) irradiation and examined the effects on peripheral blood (PB) cells, and bone marrow (BM) hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) at two weeks after the exposure. The results showed that the numbers of white blood cells, lymphocytes, monocytes, neutrophils and platelets were significantly decreased in PB after exposure to 1.0 Gy, but not to 0.1 or 0.25 Gy. However, both the frequency and number of HPCs and HSCs were reduced in a radiation dose-dependent manner in comparison to un-irradiated controls. Furthermore, HPCs and HSCs from irradiated mice exhibited a significant reduction in clonogenic function determined by the colony-forming and cobblestone area-forming cell assays. These acute adverse effects of 16O irradiation on HSCs coincided with an increased production of reactive oxygen species (ROS), enhanced cell cycle entry of quiescent HSCs, and increased DNA damage. However, none of the 16O exposures induced apoptosis in HSCs. These data suggest that exposure to low doses of 16O irradiation induces acute BM injury in a dose-dependent manner primarily via increasing ROS production, cell cycling, and DNA damage in HSCs. This finding may aid in developing novel strategies in the protection of the hematopoietic

  15. Establishment of the Security Apparatus against Damage Caused by Lightning on a Transmission line of Electrical Energy

    NASA Astrophysics Data System (ADS)

    Abdelhakim, Daas; Ali, Haddouche; Djalel, Dib

    Lightning is the visible discharge of static electricity within a cloud, between clouds, or between tile earth and a cloud. Scientists still do not fully understand what causes lightning, but most experts believe that different kinds of ice interact in a cloud. Updrafts in the clouds separate charges so that positive charges moves end up at the top of the cloud while negative flow to the bottom. A lighting protection system provides a means by which this discharge may enter or leave earth without passing through and damaging non-conducting parts of a structure, such as those made of wood, brick, and tile of- concrete. A lightning protection system does not prevent lightning from striking; it provides a means for controlling it and preventing damage by providing a low resistance path for the discharge of lightning energy.

  16. {beta}-carboline derivatives: Novel photosensitizers that intercalate into DNA to cause direct DNA damage in photodynamic therapy

    SciTech Connect

    Guan Huaji; Liu Xiaodong; Peng Wenlie; Cao Rihui; Ma Yan; Chen Hongsheng; Xu Anlong . E-mail: ls36@zsu.edu.cn

    2006-04-14

    Novel 1,3,9-trisubstituted {beta}-carboline derivatives were found to exhibit DNA photocleavage properties under visible light irradiation in a cell-free system, which could be reduced by antioxidant vitamin E. Their photo-cytotoxicity to human tumor cell line HeLa was confirmed, in which apoptosis only contributed a small part to the cell death, and necrosis was the dominating outcome of HeLa cells in photodynamic therapy (PDT) using {beta}-carboline derivatives. Different from other clinical PDT drugs, {beta}-carboline derivatives were demonstrated to be able to distribute in the nucleus and intercalate into DNA, and consequently cause direct DNA damage by photochemical reaction products in PDT, which was proved by the distinct DNA tails in the comet assay and the considerable amount of DNA damaged cells quantified by flow cytometry. This mechanism could be the explanation for the delay of cell proliferation at DNA synthesis and mitosis.

  17. An enterovirus 71 strain causes skeletal muscle damage in infected mice

    PubMed Central

    Lin, Peixin; Gao, Lulu; Huang, Yeen; Chen, Qing; Shen, Hong

    2015-01-01

    Objective: To study the target organs for enterovirus 71 (EV71) in infected suckling mice. Methods: 5-day-old BALB/c suckling mice were infected with an EV71 strain. Tissues of the infected mice were processed for histopathological examination, including immunohistochemistry, in situ hybridization, ultrastructural observation. Results: Some mice developed limb paralysis, trouble walking and loss of balance. Results of the histopathological study showed that a large amount of EV71 existed in the skeletal muscle tissues, accounting for the damage of the skeletal muscles. Conclusion: The EV71 clinical isolate used in this study presented evident myotropism. Skeletal muscles are important target organs for EV71 in the infected suckling mice. To clarify the relationship between EV71 infection and muscle diseases may contribute to a better understanding of the pathogenesis of EV71. PMID:26097530

  18. On the inlet vortex system. [preventing jet engine damage caused by debris pick-up

    NASA Technical Reports Server (NTRS)

    Bissinger, N. C.; Braun, G. W.

    1974-01-01

    The flow field of a jet engine with an inlet vortex, which can pick up heavy debris from the ground and damage the engine, was simulated in a small water tunnel by means of the hydrogen bubble technique. It was found that the known engine inlet vortex is accompained by a vortex system, consisting of two inlet vortices (the ground based and the trailing one), secondary vortices, and ground vortices. Simulation of the ground effect by an inlet image proved that the inlet vortex feeds on free stream vorticity and can exist without the presence of a ground boundary layer. The structural form of the inlet vortex system was explained by a simple potential flow model, which showed the number, location, and the importance of the stagnation points. A retractable horizontal screen or an up-tilt of the engine is suggested as countermeasure against debris ingestion.

  19. Azoxystrobin causes oxidative stress and DNA damage in the aquatic macrophyte Myriophyllum quitense.

    PubMed

    Garanzini, Daniela S; Menone, Mirta L

    2015-02-01

    Among the search for new types of pesticides, the fungicide azoxystrobin (AZX) was the first patent of the strobilurin compounds, entering in the market in 1996. Its use worldwide is growing, mainly linked to soybean production, although its effects in non-target organisms are almost unknown. The goal of the present work was to evaluate effects of short-term AZX exposure to the aquatic macrophyte Myriophyllum quitense, focusing on oxidative stress parameters and DNA fragmentation. Significant inhibition of the antioxidant enzyme systems were observed at 50 μg/L AZX for catalase and peroxidase (p < 0.05). Lipid and DNA damage were significant at 50 and 100 μg/L AZX. These biomarkers were sensitive to AZX and can be used in a battery to evaluate the occurrence of AZX in freshwater ecosystems. PMID:25416866

  20. DNA damage and apoptosis of endometrial cells cause loss of the early embryo in mice exposed to carbon disulfide

    SciTech Connect

    Zhang, Bingzhen; Shen, Chunzi; Yang, Liu; Li, Chunhui; Yi, Anji; Wang, Zhiping

    2013-12-01

    Carbon disulfide (CS{sub 2}) may lead to spontaneous abortion and very early pregnancy loss in women exposed in the workplace, but the mechanism remains unclear. We designed an animal model in which gestating Kunming strain mice were exposed to CS{sub 2} via i.p. on gestational day 4 (GD4). We found that the number of implanted blastocysts on GD8 was significantly reduced by each dose of 0.1 LD{sub 50} (157.85 mg/kg), 0.2 LD{sub 50} (315.7 mg/kg) and 0.4 LD{sub 50} (631.4 mg/kg). In addition, both the level of DNA damage and apoptosis rates of endometrial cells on GD4.5 were increased, showed definite dose–response relationships, and inversely related to the number of implanted blastocysts. The expressions of mRNA and protein for the Bax and caspase-3 genes in the uterine tissues on GD4.5 were up-regulated, while the expressions of mRNA and protein for the Bcl-2 gene were dose-dependently down-regulated. Our results indicated that DNA damage and apoptosis of endometrial cells were important reasons for the loss of implanted blastocysts induced by CS{sub 2}. - Highlights: • We built an animal model of CS2 exposure during blastocyst implantation. • Endometrial cells were used in the comet assay to detect DNA damage. • CS2 exposure caused DNA damage and endometrial cell apoptosis. • DNA damage and endometrial cell apoptosis were responsible for embryo loss.

  1. DNA damage causes TP53-dependent coupling of self-renewal and senescence pathways in embryonal carcinoma cells.

    PubMed

    Jackson, Thomas R; Salmina, Kristine; Huna, Anda; Inashkina, Inna; Jankevics, Eriks; Riekstina, Una; Kalnina, Zane; Ivanov, Andrey; Townsend, Paul A; Cragg, Mark S; Erenpreisa, Jekaterina

    2013-02-01

    Recent studies have highlighted an apparently paradoxical link between self-renewal and senescence triggered by DNA damage in certain cell types. In addition, the finding that TP53 can suppress senescence has caused a re-evaluation of its functional role in regulating these outcomes. To investigate these phenomena and their relationship to pluripotency and senescence, we examined the response of the TP53-competent embryonal carcinoma (EC) cell line PA-1 to etoposide-induced DNA damage. Nuclear POU5F1/OCT4A and P21CIP1 were upregulated in the same cells following etoposide-induced G 2M arrest. However, while accumulating in the karyosol, the amount of OCT4A was reduced in the chromatin fraction. Phosphorylated CHK2 and RAD51/γH2AX-positive nuclear foci, overexpression of AURORA B kinase and moderate macroautophagy were evident. Upon release from G 2M arrest, cells with repaired DNA entered mitoses, while the cells with persisting DNA damage remained at this checkpoint or underwent mitotic slippage and gradually senesced. Reduction of TP53 using sh- or si-RNA prevented the upregulation of OCT4A and P21CIP1 and increased DNA damage. Subsequently, mitoses, micronucleation and senescence were all enhanced after TP53 reduction with senescence confirmed by upregulation of CDKN2A/P16INK4A and increased sa-β-galactosidase positivity. Those mitoses enhanced by TP53 silencing were shown to be multicentrosomal and multi-polar, containing fragmented and highly deranged chromosomes, indicating a loss of genome integrity. Together, these data suggest that TP53-dependent coupling of self-renewal and senescence pathways through the DNA damage checkpoint provides a mechanism for how embryonal stem cell-like EC cells safeguard DNA integrity, genome stability and ultimately the fidelity of self-renewal. PMID:23287532

  2. Inhibition of immunological function mediated DNA damage of alveolar macrophages caused by cigarette smoke in mice.

    PubMed

    Ishida, Takahiro; Hirono, Yuriko; Yoshikawa, Kenichi; Hutei, Yoshimi; Miyagawa, Mayuko; Sakaguchi, Ikuyo; Pinkerton, Kent E; Takeuchi, Minoru

    2009-12-01

    Exposure to cigarette smoke impairs the pulmonary immune system, including alveolar macrophage function, although the mechanisms by which this occurs are not fully elucidated. This study investigates the effect of cigarette smoke exposure on the antigen-presenting activity of alveolar macrophages, which is required for antigen-specific response to T cells. C57BL/6 mice were exposed to cigarette smoke for 10 days using a Hamburg II smoking machine, and alveolar macrophages were obtained by bronchoalveolar lavage. The antigen-presenting activity of alveolar macrophages was significantly inhibited in mice exposed to cigarette smoke compared with mice not exposed to cigarette smoke. Major histocompatibility complex class II cell surface molecule-positive cells, B7-1 molecule-positive cells, and interleukin-1beta messenger RNA gene expression in alveolar macrophages were significantly decreased in mice exposed to cigarette smoke compared with mice not exposed to cigarette smoke. In contrast, DNA damage and generation of superoxide and hydrogen peroxide in alveolar macrophages were significantly increased by cigarette smoke exposure. These results suggest that inhibition of the antigen-presenting activity of alveolar macrophages may result from decreased expression of major histocompatibility complex class II and B7-1 molecules and interleukin-1beta messenger RNA gene expression following cigarette smoke exposure. Furthermore, inhibition of antigen presentation in alveolar macrophage may result from DNA damage induced by excessive amounts of reactive oxygen species being generated by alveolar macrophages following cigarette smoke exposure. These findings suggest that cigarette smoke impairs the immunological function of alveolar macrophages and, as a result, increases the risk for pulmonary infection. PMID:19922407

  3. Environmental Pollutant Ozone Causes Damage to Lung Surfactant Protein B (SP-B).

    PubMed

    Hemming, Joanna M; Hughes, Brian R; Rennie, Adrian R; Tomas, Salvador; Campbell, Richard A; Hughes, Arwel V; Arnold, Thomas; Botchway, Stanley W; Thompson, Katherine C

    2015-08-25

    Lung surfactant protein B (SP-B) is an essential protein found in the surfactant fluid at the air-water interface of the lung. Exposure to the air pollutant ozone could potentially damage SP-B and lead to respiratory distress. We have studied two peptides, one consisting of the N-terminus of SP-B [SP-B(1-25)] and the other a construct of the N- and C-termini of SP-B [SP-B(1-25,63-78)], called SMB. Exposure to dilute levels of ozone (~2 ppm) of monolayers of each peptide at the air-water interface leads to a rapid reaction, which is evident from an increase in the surface tension. Fluorescence experiments revealed that this increase in surface tension is accompanied by a loss of fluorescence from the tryptophan residue at the interface. Neutron and X-ray reflectivity experiments show that, in contrast to suggestions in the literature, the peptides are not solubilized upon oxidation but rather remain at the interface with little change in their hydration. Analysis of the product material reveals that no cleavage of the peptides occurs, but a more hydrophobic product is slowly formed together with an increased level of oligomerization. We attributed this to partial unfolding of the peptides. Experiments conducted in the presence of phospholipids reveal that the presence of the lipids does not prevent oxidation of the peptides. Our results strongly suggest that exposure to low levels of ozone gas will damage SP-B, leading to a change in its structure. The implication is that the oxidized protein will be impaired in its ability to interact at the air-water interface with negatively charged phosphoglycerol lipids, thus compromising what is thought to be its main biological function. PMID:26270023

  4. Genotoxic evaluation of Mikania laevigata extract on DNA damage caused by acute coal dust exposure.

    PubMed

    Freitas, Tiago P; Heuser, Vanina D; Tavares, Priscila; Leffa, Daniela D; da Silva, Gabriela A; Citadini-Zanette, Vanilde; Romão, Pedro R T; Pinho, Ricardo A; Streck, Emilio L; Andrade, Vanessa M

    2009-06-01

    In the present article, we report data on the possible antigenotoxic activity of Mikania laevigata extract (MLE) after acute intratracheal instillation of coal dust using the comet assay in peripheral blood, bone marrow, and liver cells and the micronucleus test in peripheral blood of Wistar rats. The animals were pretreated for 2 weeks with saline solution (groups 1 and 2) or MLE (100 mg/kg) (groups 3 and 4). On day 15, the animals were anesthetized with ketamine (80 mg/kg) and xylazine (20 mg/kg), and gross mineral coal dust (3 mg/0.3 mL saline) (groups 2 and 4) or saline solution (0.3 mL) (groups 1 and 3) was administered directly in the lung by intratracheal administration. Fifteen days after coal dust or saline instillation, the animals were sacrificed, and the femur, liver, and peripheral blood were removed. The results showed a general increase in the DNA damage values at 8 hours for all treatment groups, probably related to surgical procedures that had stressed the animals. Also, liver cells from rats treated with coal dust, pretreated or not with MLE, showed statistically higher comet assay values compared to the control group at 14 days after exposure. These results could be expected because the liver metabolizes a variety of organic compounds to more polar by-products. On the other hand, the micronucleus assay results did not show significant differences among groups. Therefore, our data do not support the antimutagenic activity of M. laevigata as a modulator of DNA damage after acute coal dust instillation. PMID:19627217

  5. Environmental Pollutant Ozone Causes Damage to Lung Surfactant Protein B (SP-B)

    PubMed Central

    2015-01-01

    Lung surfactant protein B (SP-B) is an essential protein found in the surfactant fluid at the air–water interface of the lung. Exposure to the air pollutant ozone could potentially damage SP-B and lead to respiratory distress. We have studied two peptides, one consisting of the N-terminus of SP-B [SP-B(1–25)] and the other a construct of the N- and C-termini of SP-B [SP-B(1–25,63–78)], called SMB. Exposure to dilute levels of ozone (∼2 ppm) of monolayers of each peptide at the air–water interface leads to a rapid reaction, which is evident from an increase in the surface tension. Fluorescence experiments revealed that this increase in surface tension is accompanied by a loss of fluorescence from the tryptophan residue at the interface. Neutron and X-ray reflectivity experiments show that, in contrast to suggestions in the literature, the peptides are not solubilized upon oxidation but rather remain at the interface with little change in their hydration. Analysis of the product material reveals that no cleavage of the peptides occurs, but a more hydrophobic product is slowly formed together with an increased level of oligomerization. We attributed this to partial unfolding of the peptides. Experiments conducted in the presence of phospholipids reveal that the presence of the lipids does not prevent oxidation of the peptides. Our results strongly suggest that exposure to low levels of ozone gas will damage SP-B, leading to a change in its structure. The implication is that the oxidized protein will be impaired in its ability to interact at the air–water interface with negatively charged phosphoglycerol lipids, thus compromising what is thought to be its main biological function. PMID:26270023

  6. Genotoxic Evaluation of Mikania laevigata Extract on DNA Damage Caused by Acute Coal Dust Exposure

    SciTech Connect

    Freitas, T.P.; Heuser, V.D.; Tavares, P.; Leffa, D.D.; da Silva, G.A.; Citadini-Zanette, V.; Romao, P.R.T.; Pinho, R.A.; Streck, E.L.; Andrade,V.M.

    2009-06-15

    We report data on the possible antigenotoxic activity of Mikania laevigata extract (MLE) after acute intratracheal instillation of coal dust using the comet assay in peripheral blood, bone marrow, and liver cells and the micronucleus test in peripheral blood of Wistar rats. The animals were pretreated for 2 weeks with saline solution (groups 1 and 2) or MLE (100 mg/kg) (groups 3 and 4). On day 15, the animals were anesthetized with ketamine (80 mg/kg) and xylazine (20 mg/kg), and gross mineral coal dust (3 mg/0.3 mL saline) (groups 2 and 4) or saline solution (0.3 mL) (groups 1 and 3) was administered directly in the lung by intratracheal administration. Fifteen days after coal dust or saline instillation, the animals were sacrificed, and the femur, liver, and peripheral blood were removed. The results showed a general increase in the DNA damage values at 8 hours for all treatment groups, probably related to surgical procedures that had stressed the animals. Also, liver cells from rats treated with coal dust, pretreated or not with MLE, showed statistically higher comet assay values compared to the control group at 14 days after exposure. These results could be expected because the liver metabolizes a variety of organic compounds to more polar by-products. On the other hand, the micronucleus assay results did not show significant differences among groups. Therefore, our data do not support the antimutagenic activity of M. laevigata as a modulator of DNA damage after acute coal dust instillation.

  7. COX-2 gene dosage-dependent defects in kidney development.

    PubMed

    Slattery, Patrick; Frölich, Stefanie; Schreiber, Yannik; Nüsing, Rolf M

    2016-05-15

    Deletion of cyclooxygenase (COX)-2 causes impairment of kidney development, including hypothrophic glomeruli and cortical thinning. A critical role for COX-2 is seen 4-8 days postnatally. The present study was aimed at answering whether different COX-2 gene dosage and partial pharmacological COX-2 inhibition impairs kidney development. We studied kidney development in COX-2(+/+), COX-2(+/-), and COX-2(-/-) mice as well as in C57Bl6 mice treated postnatally with low (5 mg·kg(-1)·day(-1)) and high (10 mg·kg(-1)·day(-1)) doses of the selective COX-2 inhibitor SC-236. COX-2(+/-) mice exhibit impaired kidney development leading to reduced glomerular size but, in contrast to COX-2(-/-) mice, only marginal cortical thinning. Moreover, in COX-2(+/-) and COX-2(-/-) kidneys, juxtamedullary glomeruli, which develop in the very early stages of nephrogenesis, also showed a size reduction. In COX-2(+/-) kidneys at the age of 8 days, we observed significantly less expression of COX-2 mRNA and protein and less PGE2 and PGI2 synthetic activity compared with COX-2(+/+) kidneys. The renal defects in COX-2(-/-) and COX-2(+/-) kidneys could be mimicked by high and low doses of SC-236, respectively. In aged COX-2(+/-) kidneys, glomerulosclerosis was observed; however, in contrast to COX-2(-/-) kidneys, periglomerular fibrosis was absent. COX-2(+/-) mice showed signs of kidney insufficiency, demonstrated by enhanced serum creatinine levels, quite similar to COX-2(-/-) mice, but, in contrast, serum urea remained at the control level. In summary, function of both COX-2 gene alleles is absolutely necessary to ensure physiological development of the mouse kidney. Loss of one copy of the COX-2 gene or partial COX-2 inhibition is associated with distinct renal damage and reduced kidney function. PMID:26984955

  8. [Hyperhydration and dialysis in acute kidney failure].

    PubMed

    Saner, Fuat H; Bienholz, Anja; Tyczynski, Bartosz; Kribben, Andreas; Feldkamp, Thorsten

    2015-05-01

    Despite the advances in critical care medicine, the hospital mortality in patients with acute kidney injury (AKI) requiring dialysis remains high. Depending on the underlying disease the in-house mortality is reported to be up to 80%. Several observational studies demonstrated an association between mortality and fluid overload. A primary mechanism of interest is that fluid overload causes tissue edema and subsequent reduction of perfusion, oxygenation and nutrient delivery. This results in further renal damage. In addition, fluid overload-related dilution within the extracellular space causes artificially low serum creatinine, which masks AKI diagnosis. As a consequence, renal protective management strategies are deferred, which further aggravates kidney injury. This aggravation of renal damage subsequently increases the mortality. This review discusses the role of fluid overload for outcomes in critically ill patients as described in the current literature and assesses criteria for the initiation of renal replacement therapy in this critically ill population. PMID:25970415

  9. War on Carcinogens: industry disputes human relevance of chemicals causing cancer in laboratory animals based on unproven hypotheses, using kidney tumors as an example.

    PubMed

    Melnick, Ronald L; Ward, Jerrold M; Huff, James

    2013-01-01

    Evidence from studies in animals is essential for identifying chemicals likely to cause or contribute to many diseases in humans, including cancers. Yet, to avoid or delay the implementation of protective public health standards, the chemical industry typically denies cancer causation by agents they produce. The spurious arguments put forward to discount human relevance are often based on inadequately tested hypotheses or modes of action that fail to meet Bradford Hill criteria for causation. We term the industry attacks on the relevance of animal cancer findings as the "War on Carcinogens." Unfortunately, this tactic has been effective in preventing timely and appropriate health protective actions on many economically important yet carcinogenic chemicals, including: arsenic, asbestos, benzene, 1,3-butadiene, formaldehyde, methylene chloride, phthalates, tobacco usage, trichloroethylene [TCE], and others. Recent examples of the "War on Carcinogens" are chemicals causing kidney cancer in animals. Industry consultants argue that kidney tumor findings in rats with exacerbated chronic progressive nephropathy (CPN) are not relevant to humans exposed to these chemicals. We dispute and dismiss this unsubstantiated claim with data and facts, and divulge unprofessional actions from a leading toxicology journal. PMID:24588032

  10. Targeted inactivation of hepatic Abca1 causes profound hypoalphalipoproteinemia and kidney hypercatabolism of apoA-I.

    PubMed

    Timmins, Jenelle M; Lee, Ji-Young; Boudyguina, Elena; Kluckman, Kimberly D; Brunham, Liam R; Mulya, Anny; Gebre, Abraham K; Coutinho, Jonathan M; Colvin, Perry L; Smith, Thomas L; Hayden, Michael R; Maeda, Nobuyo; Parks, John S

    2005-05-01

    Patients with Tangier disease exhibit extremely low plasma HDL concentrations resulting from mutations in the ATP-binding cassette, sub-family A, member 1 (ABCA1) protein. ABCA1 controls the rate-limiting step in HDL particle assembly by mediating efflux of cholesterol and phospholipid from cells to lipid-free apoA-I, which forms nascent HDL particles. ABCA1 is widely expressed; however, the specific tissues involved in HDL biogenesis are unknown. To determine the role of the liver in HDL biogenesis, we generated mice with targeted deletion of the second nucleotide-binding domain of Abca1 in liver only (Abca1(-L/-L)). Abca1(-L/-L) mice had total plasma and HDL cholesterol concentrations that were 19% and 17% those of wild-type littermates, respectively. In vivo catabolism of HDL apoA-I from wild-type mice or human lipid-free apoA-I was 2-fold higher in Abca1(-L/-L) mice compared with controls due to a 2-fold increase in the catabolism of apoA-I by the kidney, with no change in liver catabolism. We conclude that in chow-fed mice, the liver is the single most important source of plasma HDL. Furthermore, hepatic, but not extrahepatic, Abca1 is critical in maintaining the circulation of mature HDL particles by direct lipidation of hepatic lipid-poor apoA-I, slowing its catabolism by the kidney and prolonging its plasma residence time. PMID:15841208

  11. APOL1 kidney disease risk variants cause cytotoxicity by depleting cellular potassium and inducing stress-activated protein kinases

    PubMed Central

    Olabisi, Opeyemi A.; Zhang, Jia-Yue; VerPlank, Lynn; Zahler, Nathan; DiBartolo, Salvatore; Heneghan, John F.; Schlöndorff, Johannes S.; Suh, Jung Hee; Yan, Paul; Alper, Seth L.; Friedman, David J.; Pollak, Martin R.

    2016-01-01

    Two specific genetic variants of the apolipoprotein L1 (APOL1) gene are responsible for the high rate of kidney disease in people of recent African ancestry. Expression in cultured cells of these APOL1 risk variants, commonly referred to as G1 and G2, results in significant cytotoxicity. The underlying mechanism of this cytotoxicity is poorly understood. We hypothesized that this cytotoxicity is mediated by APOL1 risk variant-induced dysregulation of intracellular signaling relevant for cell survival. To test this hypothesis, we conditionally expressed WT human APOL1 (G0), the APOL1 G1 variant, or the APOL1 G2 variant in human embryonic kidney cells (T-REx-293) using a tetracycline-mediated (Tet-On) system. We found that expression of either G1 or G2 APOL1 variants increased apparent cell swelling and cell death compared with G0-expressing cells. These manifestations of cytotoxicity were preceded by G1 or G2 APOL1-induced net efflux of intracellular potassium as measured by X-ray fluorescence, resulting in the activation of stress-activated protein kinases (SAPKs), p38 MAPK, and JNK. Prevention of net K+ efflux inhibited activation of these SAPKs by APOL1 G1 or G2. Furthermore, inhibition of SAPK signaling and inhibition of net K+ efflux abrogated cytotoxicity associated with expression of APOL1 risk variants. These findings in cell culture raise the possibility that nephrotoxicity of APOL1 risk variants may be mediated by APOL1 risk variant-induced net loss of intracellular K+ and subsequent induction of stress-activated protein kinase pathways. PMID:26699492

  12. Acute kidney injury and dermonecrosis after Loxosceles reclusa envenomation

    PubMed Central

    Nag, A.; Datta, J.; Das, A.; Agarwal, A. K.; Sinha, D.; Mondal, S.; Ete, T.; Chakraborty, A.; Ghosh, S.

    2014-01-01

    Spiders of the Loxosceles species can cause dermonecrosis and acute kidney injury (AKI). Hemolysis, rhabdomyolysis and direct toxin-mediated renal damage have been postulated. There are very few reports of Loxoscelism from India. We report a case of AKI, hemolysis and a “gravitational” pattern of ulceration following the bite of the brown recluse spider (Loxosceles spp). PMID:25097339

  13. Acute kidney injury and dermonecrosis after Loxosceles reclusa envenomation.

    PubMed

    Nag, A; Datta, J; Das, A; Agarwal, A K; Sinha, D; Mondal, S; Ete, T; Chakraborty, A; Ghosh, S

    2014-07-01

    Spiders of the Loxosceles species can cause dermonecrosis and acute kidney injury (AKI). Hemolysis, rhabdomyolysis and direct toxin-mediated renal damage have been postulated. There are very few reports of Loxoscelism from India. We report a case of AKI, hemolysis and a "gravitational" pattern of ulceration following the bite of the brown recluse spider (Loxosceles spp). PMID:25097339

  14. Cytotoxicity, apoptosis, DNA damage and methylation in mammary and kidney epithelial cell lines exposed to ochratoxin A.

    PubMed

    Giromini, Carlotta; Rebucci, Raffaella; Fusi, Eleonora; Rossi, Luciana; Saccone, Francesca; Baldi, Antonella

    2016-06-01

    This study aimed to investigate the in vitro damage induced by ochratoxin A (OTA) in BME-UV1 and MDCK epithelial cells. Both cells lines were treated with OTA (0 up to 10 μg/mL), and cell viability (MTT assay), membrane stability (lactate dehydrogenase (LDH) release assay) and apoptotic cell rate (Tunel assay) were investigated. Further, the effect of the incubation with OTA has been evaluated at DNA level by the determination of DNA integrity, by the quantification of DNA adduct formation (8-hydroxy-2'-deoxyguanosine (8-OHdG)) and by the assessment of the global DNA methylation status (5-methyl-cytosine (5-mC)). The obtained results showed that after 24 h of OTA treatment, BME-UV1 cell viability was reduced in a dose-dependent way. OTA significantly (P < 0.05) increased LDH release in BME-UV1 cells at all concentrations tested. OTA (1.25 μg/mL) induced 35 % LDH release in MDCK cells (P < 0.05). A significant (P < 0.05) change in percentages of apoptotic BME-UV1 (10 ± 0.86) and MDCK (25 ± 0.88) cells was calculated when the cells were co-incubated with OTA. The level of 8-OHdG adduct formation was significantly (P < 0.05) increased in BME-UV1 cells treated with 1.25 μg/mL of OTA. The results of the present study suggest that a different mechanism of action may occur in these cell lines. Graphical abstract Study results overview. PMID:27154019

  15. Whole-body proton irradiation causes long-term damage to hematopoietic stem cells in mice.

    PubMed

    Chang, Jianhui; Feng, Wei; Wang, Yingying; Luo, Yi; Allen, Antiño R; Koturbash, Igor; Turner, Jennifer; Stewart, Blair; Raber, Jacob; Hauer-Jensen, Martin; Zhou, Daohong; Shao, Lijian

    2015-02-01

    Space flight poses certain health risks to astronauts, including exposure to space radiation, with protons accounting for more than 80% of deep-space radiation. Proton radiation is also now being used with increasing frequency in the clinical setting to treat cancer. For these reasons, there is an urgent need to better understand the biological effects of proton radiation on the body. Such improved understanding could also lead to more accurate assessment of the potential health risks of proton radiation, as well as the development of improved strategies to prevent and mitigate its adverse effects. Previous studies have shown that exposure to low doses of protons is detrimental to mature leukocyte populations in peripheral blood, however, the underlying mechanisms are not known. Some of these detriments may be attributable to damage to hematopoietic stem cells (HSCs) that have the ability to self-renew, proliferate and differentiate into different lineages of blood cells through hematopoietic progenitor cells (HPCs). The goal of this study was to investigate the long-term effects of low-dose proton irradiation on HSCs. We exposed C57BL/6J mice to 1.0 Gy whole-body proton irradiation (150 MeV) and then studied the effects of proton radiation on HSCs and HPCs in the bone marrow (BM) 22 weeks after the exposure. The results showed that mice exposed to 1.0 Gy whole-body proton irradiation had a significant and persistent reduction of BM HSCs compared to unirradiated controls. In contrast, no significant changes were observed in BM HPCs after proton irradiation. Furthermore, irradiated HSCs and their progeny exhibited a significant impairment in clonogenic function, as revealed by the cobblestone area-forming cell (CAFC) and colony-forming cell assays, respectively. These long-term effects of proton irradiation on HSCs may be attributable to the induction of chronic oxidative stress in HSCs, because HSCs from irradiated mice exhibited a significant increase in NADPH

  16. Persistent DNA damage caused by low levels of mitomycin C induces irreversible cell senescence.

    PubMed

    McKenna, Elise; Traganos, Frank; Zhao, Hong; Darzynkiewicz, Zbigniew

    2012-08-15

    Mutations of oncogenes and tumor suppressor genes which activate mTOR through several downstream signaling pathways are common to cancer. Activation of mTOR when combined with inhibition of cell cycle progression or DNA replication stress has previously been shown to promote cell senescence. In the present study, we examined the conditions under which human non-small cell lung carcinoma A549 cells can undergo senescence when treated with the DNA alkylating agent mitomycin C (MMC). While exposure of A549 cells to 0.1 or 0.5 µg/ml of MMC led to their arrest in S phase of the cell cycle and subsequent apoptosis, exposure to 0.01 or 0.02 µg/ml for 6 d resulted in induction of cell senescence and near total (0.01 µg/ml) or total (0.02 µg/ml) elimination of their reproductive potential. During exposure to these low concentrations of MMC, the cells demonstrated evidence of DNA replication stress manifested by expression of γH2AX, p21 (WAF1) and a very low level of EdU incorporation into DNA. The data are consistent with the notion that enduring DNA replication stress in cells known to have activated oncogenes leads to their senescence. It is reasonable to expect that tumors having constitutive activation of oncogenes triggering mTOR signaling may be particularly predisposed to undergoing senescence following prolonged treatment with low doses of DNA damaging drugs. PMID:22871735

  17. Damage on fused silica optics caused by laser ablation of surface-bound microparticles.

    PubMed

    Raman, Rajesh N; Demos, Stavros G; Shen, Nan; Feigenbaum, Eyal; Negres, Raluca A; Elhadj, Selim; Rubenchik, Alexander M; Matthews, Manyalibo J

    2016-02-01

    High peak power laser systems are vulnerable to performance degradation due to particulate contamination on optical surfaces. In this work, we show using model contaminant particles that their optical properties decisively determine the nature of the optical damage. Borosilicate particles with low intrinsic optical absorption undergo ablation initiating in their sub-surface, leading to brittle fragmentation, distributed plasma formation, material dispersal and ultimately can lead to micro-fractures in the substrate optical surface. In contrast, energy coupling into metallic particles is highly localized near the particle-substrate interface leading to the formation of a confined plasma and subsequent etching of the substrate surface, accompanied by particle ejection driven by the recoil momentum of the ablation plume. While the tendency to create fractured surface pitting from borosilicate is stochastic, the smooth ablation pits created by metal particles is deterministic, with pit depths scaling linearly with laser fluence. A simple model is employed which predicts ~3x electric field intensity enhancement from surface-bound fragments. In addition, our results suggest that the amount of energy deposited in metal particles is at least twice that in transparent particles. PMID:26906835

  18. Hepatic enzyme changes in bovine hepatogenous photosensitivity caused by water-damaged alfalfa hay.

    PubMed

    Putnam, M R; Qualls, C W; Rice, L E; Dawson, L J; Edwards, W C

    1986-07-01

    In the winter of 1983, practitioners reported extensive photosensitization in 7 herds of cattle. All herds had a history of having been fed water-damaged alfalfa hay. A cow from one herd was referred to the veterinary teaching hospital at Oklahoma State University. In this herd of approximately 40 adult Polled Herefords, all cattle had had some degree of clinical involvement over the past 4 to 6 weeks. Clinical signs included scaling and erythema of sparsely haired skin, muzzle, and teats, as well as icterus, anorexia, and weight loss. One cow died, and the remaining cattle recovered over an 8- to 10-week period after removal of the hay from the ration. In the referred cow, values for total and conjugated bilirubin, BUN, creatinine, sorbitol dehydrogenase, serum alkaline phosphatase, serum aspartate transaminase, and serum gamma-glutamyl transferase were higher than normal. In the herd of origin, extremely high serum gamma-glutamyl transferase values (180 to 1,400 IU/L) persisted (normal, 2 to 35 IU/L). Feeding the same alfalfa hay to 2 clinically normal cows reproduced the syndrome. The characteristic hepatic lesion was bile duct necrosis, with secondary bile duct hyperplasia. PMID:2874123

  19. [Risk predictive model for damage caused by the spittlebug Aeneolamiapostica (Walker) Fennah (Hemiptera: Cercopidae)].

    PubMed

    García-García, Carlos G; López-Collado, José; Nava-Tablada, Martha E; Villanueva-Jiménez, Juan A; Vera-Graziano, Jorge

    2006-01-01

    This paper evaluated the risk that Aenolamia postica (Walker) Fennah populations reach the economic threshold in sugar cane fields in Veracruz, México. A risk deductive model was constructed to include the sequence of events leading to damaging populations, considered the top event or critical failure in the crop. Model events were identified and quantified, and model was validated on field conditions. The model components and their state values were identified as: temperature e" 28 degrees C, precipitation e" 45% during June and July, soil clay content e" 40%, infested adjoining fields, deficient weed control, wind dominance, crop phenology and variety, deficient chemical and biological control, and irrigation. Sensitivity analysis showed that the most important events triggering high densities of A. postica were high temperatures and precipitation, previous field infestation, nymph and weed presence. Event probability estimates were combined using Boolean algebra to compute the minimum, mean and maximum probabilities for the top event, yielding values of 0.417, 0.563, y 0.734 respectively. Model was tested in field, by selecting sugar cane fields having the model properties and compared to fields without these features. Fields were sampled in both conditions during 2004 year and high-risk fields had significantly (F = 13, 4, gl = 1, 18, P = 0,0018) higher densities (2.4 adults m(-1)) than low-risk plots (0.4 adults m(-1)) thus agreeing with the model forecast. PMID:17144142

  20. Role of DNA damage response pathways in preventing carcinogenesis caused by intrinsic replication stress.

    PubMed

    Wallace, M D; Southard, T L; Schimenti, K J; Schimenti, J C

    2014-07-10

    Defective DNA replication can result in genomic instability, cancer and developmental defects. To understand the roles of DNA damage response (DDR) genes on carcinogenesis in mutants defective for core DNA replication components, we utilized the Mcm4(Chaos3/Chaos3) ('Chaos3') mouse model that, by virtue of an amino-acid alteration in MCM4 that destabilizes the MCM2-7 DNA replicative helicase, has fewer dormant replication origins and an increased number of stalled replication forks. This leads to genomic instability and cancer in most Chaos3 mice. We found that animals doubly mutant for Chaos3 and components of the ataxia telangiectasia-mutated (ATM) double-strand break response pathway (Atm, p21/Cdkn1a and Chk2/Chek2) had decreased tumor latency and/or increased tumor susceptibility. Tumor latency and susceptibility differed between genetic backgrounds and genders, with females demonstrating an overall greater cancer susceptibility to Atm and p21 deficiency than males. Atm deficiency was semilethal in the Chaos3 background and impaired embryonic fibroblast proliferation, suggesting that ATM drug inhibitors might be useful against tumors with DNA replication defects. Hypomorphism for the 9-1-1 component Hus1 did not affect tumor latency or susceptibility in Chaos3 animals, and tumors in these mice did not exhibit impaired ATR pathway signaling. These and other data indicate that under conditions of systemic replication stress, the ATM pathway is particularly important both for cancer suppression and viability during development. PMID:23975433

  1. Cyclooxygenase-2 and kidney failure.

    PubMed

    Rios, Amelia; Vargas-Robles, Hilda; Gámez-Méndez, Ana Maria; Escalante, Bruno

    2012-08-01

    Cyclooxygenase (COX)-dependent prostaglandins are necessary for normal kidney function. These prostaglandins are associated with inflammation, maintenance of sodium and water homeostasis, control of renin release, renal vasodilation, vasoconstriction attenuation, and prenatal renal development. COX-2 expression is regulated by the renin-angiotensin system, glucocorticoids or mineralcorticoids, and aldosterone, supporting a role for COX-2 in kidney function. Indeed, COX-2 mRNA and protein levels as well as enzyme activity are increased, along with PGE2, during kidney failure. In addition, changes in COX-2 expression are associated with increased blood pressure, urinary volume, sodium and protein and decreased urinary osmolarity. Intrarenal mechanisms such as angiotensin II (Ang II) production, increased sodium delivery, glomerular hypertension, and renal tubular inflammation have been suggested to be responsible for the increase in COX-2 expression. Although, specific COX-2 pharmacological inhibition has been related to the prevention of kidney damage, clinical studies have reported that COX-2 inhibition may cause side effects such as edema or a modest elevation in blood pressure and could possibly interfere with antihypertensive drugs and increase the risk of cardiovascular complications. Thus, administration of COX-2 inhibitors requires caution, especially in the presence of underlying cardiovascular disease. PMID:22119250

  2. Protective effect of Xingnaojia formulation on rats with brain and liver damage caused by chronic alcoholism

    PubMed Central

    LI, SHUANG; WANG, SU; GUO, ZHI-GANG; HUANG, NING; ZHAO, FAN-RONG; ZHU, MO-LI; MA, LI-JUAN; LIANG, JIN-YING; ZHANG, YU-LIN; HUANG, ZHONG-LIN; WAN, GUANG-RUI

    2015-01-01

    The aim of this study was to observe the effect of a formulation of traditional Chinese medicine extracts known as Xingnaojia (XNJ) on the liver function, learning ability and memory of rats with chronic alcoholism and to verify the mechanism by which it protects the brain and liver. A rat model of chronic alcoholism was used in the study. The spatial learning ability and memory of the rats were tested. The rats were then sacrificed and their brains and hepatic tissues were isolated. The activity of superoxide dismutase (SOD) and levels of glutamate (Glu), N-methyl D-aspartate receptor subtype 2B (NR2B), cyclin-dependent kinase 5 (CDK5) and cannabinoid receptor 1 (CB1) in the hippocampus were analyzed. The ultrastructure of the hepatic tissue was observed by electron microscopy. In addition, the activities of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) in serum were tested and the levels of low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides (TG) and total cholesterol (TCHOL) were analyzed. XNJ enhanced the learning and memory of rats with chronic alcoholism. Treatment with XNJ increased the activity of SOD, and decreased the expression levels of NR2B mRNA and NR2B, CB1 and CDK5 proteins in the brain tissues compared with those in the model rats. It also increased the activity of ALDH in the serum and liver, decreased the serum levels of LDL, TG and TCHOL and increased the serum level of HDL. These results indicate that XNJ exhibited a protective effect against brain and liver damage in rats with chronic alcoholism. PMID:26640531

  3. Application of molecular markers to detect DNA damage caused by environmental pollutants in lichen species.

    PubMed

    Cansaran-Duman, D; Altunkaynak, E; Aslan, A; Büyük, I; Aras, S

    2015-01-01

    Pseudevernia furfuracea L. (Zopf), Peltigera praetextata (Flörke ex Sommerf.) Zopf, Lobaria pulmonaria (L.) Hoffm., and Usnea longissima Ach. lichen species were used as bioindicators to assess the genotoxicity of air pollutants. In the present study, we examined significant environmetal pollutants and investigate how changes may lead to damage in DNA structure using RAPD markers. In the study area (Erzurum, Turkey), poor-quality lignite, which generates a large amount of sulfur dioxide, nitrogen oxides, and particle matter, is used for domestic heating, and vehicles also contribute to air pollution. Control lichen samples were collected far from large urban and industrial settlements and transplanted to four polluted sites for 4, 8, or 12 months. The total soluble protein content of the examined four lichen species did not significantly change with exposure time (P < 0.05). The four lichen samples exposed to the pollutants for 8 months had the highest ratio of DNA changes. The ratio of band differences in P. praetextata was higher than that in the other three lichen species, possibly because it has broad leaves that accumulated more pollutants. The average incidences of polymorphism were 64.14, 54.58, 65.76, and 43.06% for P. furfuracea, P. praetextata, L. pulmonaria, and U. longissima, respectively. The genomic template stability (GTS) significantly decreased following exposure to pollutants. GTS ratios revealed that the highest value (98.36%) belonged to U. longissima samples from Site 1 (10 m) after 4 months of exposure, and the lowest values belonged to P. praetextata (73.58%) from Site 3 (100 m) after 8 months of exposure. Based on our findings, we recommend the use of P. praetextata as an indicator of genotoxicity. PMID:25966238

  4. Iatrogenic Damage to the Periodontium Caused by Fixed Prosthodontic Treatment Procedures

    PubMed Central

    Harish, PV; Joseph, Sonila Anne; Sirajuddin, Syed; Gundapaneni, Veenadharini; Chungkham, Sachidananda; ., Ambica

    2015-01-01

    Missing teeth should be replaced as soon as possible to maintain arch integrity and thereby avoid both morphologic and functional derangements in the occlusion. Otherwise, changes occur that upset the masticatory system, such as extrusion of the teeth opposing the edentulous areas along with their alveolar housing, their supporting tissues and ultimately the maxillary sinus. Concurrently with extrusion, shifting of the interproximal contacts and migration of the adjacent teeth occur, thereby impairing function and causing disharmony. Good oral health cannot be achieved when changes in tooth position alter the coronal contour and occlusion interfering with mutual support, which encourages food impaction and retention, further leading to osseous defects.

  5. Effect of temperature and tree species on damage progression caused by whitespotted sawyer (Coleoptera: Cerambycidae) larvae in recently burned logs.

    PubMed

    Bélanger, Sébastien; Bauce, Eric; Berthiaume, Richard; Long, Bernard; Labrie, Jacques; Daigle, Louis-Frédéric; Hébert, Christian

    2013-06-01

    The whitespotted sawyer, Monochamus scutellatus scutellatus (Say) (Coleoptera: Ce-rambycidae), is one of the most damaging wood-boring insects in recently burned boreal forests of North America. In Canada, salvage logging after wildfire contributes to maintaining the timber volume required by the forest industry, but larvae of this insect cause significant damage that reduces the economic value of lumber products. This study aimed to estimate damage progression as a function of temperature in recently burned black spruce (Picea mariana (Miller) Britton, Sterns, and Poggenburg) and jack pine (Pinus banksiana Lambert) trees. Using axial tomographic technology, we modeled subcortical development and gallery depth progression rates as functions of temperature for both tree species. Generally, these rates were slightly faster in black spruce than in jack pine logs. Eggs laid on logs kept at 12 degrees C did not hatch or larvae were unable to establish themselves under the bark because no larval development was observed. At 16 degrees C, larvae stayed under the bark for > 200 d before penetrating into the sapwood. At 20 degrees C, half of the larvae entered the sapwood after 30-50 d, but gallery depth progression stopped for approximately 70 d, suggesting that larvae went into diapause. The other half of the larvae entered the sapwood only after 100-200 d. At 24 and 28 degrees C, larvae entered the sapwood after 26-27 and 21 d, respectively. At 28 degrees C, gallery depth progressed at a rate of 1.44 mm/d. Temperature threshold for subcortical development was slightly lower in black spruce (12.9 degrees C) than in jack pine (14.6 degrees C) and it was 1 degrees C warmer for gallery depth progression for both tree species. These results indicate that significant damage may occur within a few months after fire during warm summers, particularly in black spruce, which highlights the importance of beginning postfire salvage logging as soon as possible to reduce economic

  6. Methanolic Extract of Curcuma caesia Roxb. Prevents the Toxicity Caused by Cyclophosphamide to Bone Marrow Cells, Liver and Kidney of Mice

    PubMed Central

    Devi, Heisanam Pushparani; Mazumder, Pranab Behari

    2016-01-01

    Introduction: With an ever increasing cause of cancer, it has been recommended to treat with conventional drugs, however because of the side effects caused by the conventional drugs, the research on medicinal plants has been intensified due to their less adverse and toxic effects. Objectives: The primary objective of the present study was to evaluate the protective effect of the medicinal plant Curcuma caesia Roxb. against free radicals ABTS+ and O2-. Also it was aimed to evaluate the protective effect of C.caesia Roxb. against the chemotherapeutic drug Cyclophosphamide and its side effects in liver and kidney. Methods: The rhizomes of the plant was extracted with methanol through soxhlet and its antioxidant activity was tested against ABTS+ and O2-. For antigenotoxic studies, animals were divided into eight groups and micronucleus assay was employed and for biochemical analysis serum sample was collected from the blood and SGOT, SGPT analysis was performed. Also the biochemical analysis was performed from both the liver and kidney. Results: The methanolic extract of Curcuma caesia Roxb. was found to scavenge the free radicals ABTS+ and O2-. the micronuclei formation was found to be increased in the positive control group as compared to the negative control group significantly (P<0.002) however increase in the number of micronuclei was found to be decrease with the pretreatment of the extract at different concentrations significantly as compared to the negative control groups (P<0.01, P<0.005, P<0.001). The increased level of serum SGPT and SGOT as well as peroxidation level in both liver and kidney due to treatment of cyclophosphamide was also found to be decreased with the pretreatment of the extract significantly as compared to the positive control groups. There was decreased in the level of endogenous antioxidant such as GSH and GR in the positive control group however decreased level of GSH and GR was found to be increased with the pretreatment of the

  7. Low-temperature atmospheric plasma increases the expression of anti-aging genes of skin cells without causing cellular damages.

    PubMed

    Choi, Jeong-Hae; Lee, Hyun-Wook; Lee, Jae-Koo; Hong, Jin-woo; Kim, Gyoo-cheon

    2013-03-01

    Efforts to employ various types of plasma in the field of skin care have increased consistently because it can regulate many biochemical reactions that are normally unaffected by light-based therapy. One method for skin rejuvenation adopted a high-temperature plasma generator to remove skin epithelial cells. In this case, the catalyzing effects of the plasma were rarely used due to the high temperature. Hence, the benefits of the plasma were not magnified. Recently, many types of low-temperature plasma devices have been developed for medical applications but their detailed functions and working mechanisms are unclear. The present study examined the effect of low-temperature microwave plasma on skin cells. Treatment with low-temperature plasma increased the expression of anti-aging genes in skin cells, including collagen, fibronectin and vascular endothelial growth factor. Furthermore, the plasma treatment did not cause cell death, but only induced slight cell growth arrest at the G2 phase. Although the cells treated with low-temperature plasma showed moderate growth arrest, there were no signs of thermal or genetic damage of skin cells. Overall, this low-temperature microwave plasma device induces the expressions of some anti-aging-related genes in skin cells without causing damage. PMID:22773133

  8. Inhibition of the transient receptor potential melastatin-2 channel causes increased DNA damage and decreased proliferation in breast adenocarcinoma cells

    PubMed Central

    HOPKINS, MANDI M.; FENG, XIAOXING; LIU, MENGWEI; PARKER, LAUREN P.; KOH, DAVID W.

    2015-01-01

    Transient receptor potential, melastatin-2 (TRPM2) is a plasma membrane cation channel with important roles in sensory functions and promoting cell death. However, we demonstrated here that TRPM2 was present in the nuclei of MCF-7 and MDA-MB-231 human breast adenocarcinoma cells, and its pharmacologic inhibition or RNAi silencing caused decreased cell proliferation. Neither an effect on proliferation nor a localization of TRPM2 in the nucleus was observed in noncancerous HMEC and MCF-10A human mammary epithelial cells. Investigation of possible effects of TRPM2 function in the nucleus demonstrated that pharmacologic inhibition or RNAi silencing of TRPM2 in MCF-7 and MDA-MB-231 human breast adenocarcinoma cells caused up to 4-fold increases in DNA damage levels, as compared to noncancerous breast cells after equivalent treatments. These results indicate that TRPM2 has a novel nuclear function in human breast adenocarcinoma cells that facilitates the integrity of genomic DNA, a finding that is distinct from its previously reported role as a plasma membrane cation channel in noncancerous cells. In summary, we report here a novel effect promoted by TRPM2, where it functions to minimize DNA damage and thus may have a role in the protection of genomic DNA in breast cancer cells. Our study therefore provides compelling evidence that TRPM2 has a unique role in breast adenocarcinoma cells. Accordingly, these studies suggest that TRPM2 is a potential therapeutic target, where its pharmacologic inhibition may provide an innovative strategy to selectively increase DNA damage levels in breast cancer cells. PMID:25760245

  9. A missense mutation in the human liver/bone/kidney alkaline phosphatase gene causing a lethal form of hypophosphatasia.

    PubMed Central

    Weiss, M J; Cole, D E; Ray, K; Whyte, M P; Lafferty, M A; Mulivor, R A; Harris, H

    1988-01-01

    Hypophosphatasia is an inherited disorder characterized by defective bone mineralization and a deficiency of serum and tissue liver/bone/kidney alkaline phosphatase (L/B/K ALP) activity. Clinical severity is variable, ranging from death in utero (due to severe rickets) to pathologic fractures first presenting in adult life. Affected siblings, however, are phenotypically similar. Severe forms of the disease are inherited in an autosomal recessive fashion; heterozygotes often show reduced serum ALP activity. The specific gene defects in hypophosphatasia are unknown but are thought to occur either at the L/B/K ALP locus or within another gene that regulates L/B/K ALP expression. We used the polymerase chain reaction to examine L/B/K ALP cDNA from a patient with a perinatal (lethal) form of the disease. We observed a guanine-to-adenine transition in nucleotide 711 of the cDNA that converts alanine-162 of the mature enzyme to threonine. The affected individual, whose parents are second cousins, is homozygous for the mutant allele. Introduction of this mutation into an otherwise normal cDNA by site-directed mutagenesis abolishes the expression of active enzyme, demonstrating that a defect in the L/B/K ALP gene results in hypophosphatasia and that the enzyme is, therefore, essential for normal skeletal mineralization. Images PMID:3174660

  10. Nitric oxide and asymmetric dimethyl arginine (ADMA) levels in an experimental hydronephrotic kidney caused by unilateral partial ureteral obstruction

    PubMed Central

    Alan, Cabir; Kurt, Hasan Anil; Topaloğlu, Naci; Ersay, Ahmet Reşit; Çakir, Dilek Ülker; Baştürk, Gökhan

    2016-01-01

    ABSTRACT Aim Our aim is to measure asymmetric dimethyl arginine and nitric oxide levels in rats with induced unilateral acute ureteral obstruction to research the effects on the kidney. Material and Methods The study included 21 adolescent (average age 6 weeks) Sprague-Dawley male rats weighing between 240-290g divided at random into 3 groups. Group-1: Control group (n=6): underwent no procedures. Group-2: Sham group (n=6): underwent the same procedures as the experimental group without ureter and psoas muscle dissection. Group-3: Group with induced partial unilateral ureteral obstruction (n=9). All rats were sacrificed after 12 weeks. Superoxide dismutase enzyme activity and nitrite and nitrate salt levels were measured in renal tissue. Plasma nitrite-nitrate and ADMA levels were examined. Results In the experimental group histopathological changes observed included renal pelvis dilatation, flattened papillae, sclerotic glomerulus and fibrosis. In the experimental group tissue SOD and blood ADMA levels were higher than the control and sham groups (p<0.05) while tissue NO and plasma NO values were lower than in the sham and control groups (p<0.05). Conclusion Oxidative stress and disruption of NO synthesis play an important role in renal function and histopathological changes after obstructive renal disease. To prevent renal complications developing after obstructive nephropathy we believe that a new strategy may be research on reducing ADMA. PMID:27286129

  11. GPR measurements and estimation for road subgrade damage caused by neighboring train vibration load

    NASA Astrophysics Data System (ADS)

    Zhao, Yonghui; Lu, Gang; Ge, Shuangcheng

    2015-04-01

    Generally, road can be simplified as a three-layer structure, including subgrade, subbase and pavement. Subgrade is the native material underneath a constructed road. It is commonly compacted before the road construction, and sometimes stabilized by the addition of asphalt, lime or other modifiers. As the mainly supporting structure, subgrade damage would lead in pavement settlement, displacement and crack. Assessment and monitoring of the subgrade condition currently involves trial pitting and subgrade sampling. However there is a practical limit on spatial density at which trail pits and cores can be taken. Ground penetrating radar (GPR) has been widely used to characterize highway pavement profiling, concrete structure inspection and railroad track ballast estimation. GPR can improve the economics of road maintenance. Long-term train vibration load might seriously influence the stability of the subgrade of neighboring road. Pavement settlement and obvious cracks have been found at a municipal road cross-under a railway with culvert box method. GPR test was conducted to estimate the subgrade and soil within 2.0 m depth for the further road maintenance. Two survey lines were designed in each lane, and total 12 GPR sections have been implemented. Considering both the penetrating range and the resolution, a antenna with a 500 MHz central frequency was chosen for on-site GPR data collection. For data acquisition, we used the default operating environment and scanning parameters for the RAMAC system: 60kHz transmission rate, 50 ns time window, 1024 samples per scan and 0.1 m step-size. Continuous operation was used; the antenna was placed on the road surface and slowly moved along the road. The strong surrounding disturbance related to railroad and attachments, might decrease the reliability of interpretation results. Some routine process methods (including the background removing, filtering) have been applied to suppress the background noise. Additionally, attribute

  12. Normal black kidney

    PubMed Central

    Yarmohamadi, Aliasghar; Rezayat, Ali Reza Akhavan; Memar, Bahram; Rahimi, Hamid Reza; Cand, PhD

    2014-01-01

    A black kidney has 3 major differential diagnoses: hemosiderosis, lipofuscin pigment and melanotic renal cell carcinoma. Excluding lipofuscin, the other 2 are accompanied by an abnormal renal function. We report on a 25-year-old man who intended to donate a kidney to his cousin. On the operating room table when we incised the left flank region and exposed the kidney, we found a firm and black kidney so the operation was cancelled due to potential vascular injuries. Days after the incomplete procedure, we reviewed the donor’s biochemistry and imaging to reassess his renal function, but the results showed quite normal renal function again. The result of Ham test was also negative. Two weeks later, we began the operation, removed the same left kidney and found that it was in the same conditions as it was before. We took the opportunity to send needle biopsies of the kidney for histopathologic analysis. The analysis showed a melanotic kidney without pathological changes in glomeruli and interstitium and vessels. A black kidney may result in hemosiderin, lipofuscin or melanin deposits in the kidney, which can confirm the diagnosis; however, special tests for underlying disease and renal function should be considered. Some causes of black kidney lead to abnormal function, but our patients’s kidney returned to normal. PMID:24839502

  13. Damage caused by a nanosecond UV laser on a heated copper surface

    NASA Astrophysics Data System (ADS)

    Henč-Bartolić, V.; Bončina, T.; Jakovljević, S.; Panjan, P.; Zupanič, F.

    2016-08-01

    This work studied the effect of thin copper plate temperature on its surface morphology after irradiation using a pulsed nanosecond UV laser. The surface characteristics were investigated using scanning electron microscopy, energy dispersive X-ray spectroscopy, focused ion beam and stylus profilometry. When a target was at room temperature, a crater and the radial flow of molten Cu from the crater was observed. When the thin target was warm (about 360 °C ± 20 °C), a crater was smaller, and quasi-semicircular waves with the periodicity of around 3 μm appeared in its vicinity. The origin of the waves is Marangoni effect, causing thermocapillary waves, which in same occasions had a structure of final states of chaos in Rayleigh-Bénard convection.

  14. Valuing the human health damage caused by the fraud of Volkswagen.

    PubMed

    Oldenkamp, Rik; van Zelm, Rosalie; Huijbregts, Mark A J

    2016-05-01

    Recently it became known that Volkswagen Group has been cheating with emission tests for diesel engines over the last six years, resulting in on-road emissions vastly exceeding legal standards for nitrogen oxides in Europe and the United States. Here, we provide an estimate of the public health consequences caused by this fraud. From 2009 to 2015, approximately nine million fraudulent Volkswagen cars, as sold in Europe and the US, emitted a cumulative amount of 526 ktonnes of nitrogen oxides more than was legally allowed. These fraudulent emissions are associated with 45 thousand disability-adjusted life years (DALYs) and a value of life lost of at least 39 billion US dollars, which is approximately 5.3 times larger than the 7.3 billion US dollars that Volkswagen Group has set aside to cover worldwide costs related to the diesel emissions scandal. PMID:26840525

  15. Oxidative stress and autophagy: Crucial modulators of kidney injury

    PubMed Central

    Sureshbabu, Angara; Ryter, Stefan W.; Choi, Mary E.

    2015-01-01

    Both acute kidney injury (AKI) and chronic kidney disease (CKD) that lead to diminished kidney function are interdependent risk factors for increased mortality. If untreated over time, end stage renal disease (ESRD) is an inevitable outcome. Acute and chronic kidney diseases occur partly due to imbalance between the molecular mechanisms that govern oxidative stress, inflammation, autophagy and cell death. Oxidative stress refers to the cumulative effects of highly reactive oxidizing molecules that cause cellular damage. Autophagy removes damaged organelles, protein aggregates and pathogens by recruiting these substrates into double membrane vesicles called autophagosomes which subsequently fuse with lysosomes. Mounting evidence suggests that both oxidative stress and autophagy are significantly involved in kidney health and disease. However, very little is known about the signaling processes that link them. This review is focused on understanding the role of oxidative stress and autophagy in kidney diseases. In this review, we also discuss the potential relationships between oxidative stress and autophagy that may enable the development of better therapeutic intervention to halt the progression of kidney disease and promote its repair and resolution. PMID:25613291

  16. Kidneys and Urinary Tract (For Parents)

    MedlinePlus

    ... can have permanent kidney damage that eventually requires dialysis or a kidney transplant. High blood pressure (hypertension) . ... to the failure and sometimes requires surgery or dialysis. Dialysis involves using a machine or other artificial ...

  17. Kidney Problems

    MedlinePlus

    ... our e-newsletter! Aging & Health A to Z Kidney Problems Basic Facts & Information The kidneys are two ... the production of red blood cells. What are Kidney Diseases? For about one-third of older people, ...

  18. Kidney Tests

    MedlinePlus

    ... taking out waste products and making urine. Kidney tests check to see how well your kidneys are working. They include blood, urine, and imaging tests. Early kidney disease usually does not have signs ...

  19. Kidney stones

    MedlinePlus Videos and Cool Tools

    ... urine exits the kidney and enters the ureter. As urine can become very concentrated as it passes through the kidneys. When the urine ... chemicals dissolved in the urine can crystallize, forming a kidney stone (renal calculus). Usually the calculus is ...

  20. Kidney Failure

    MedlinePlus

    ... enough red blood cells. This is called kidney failure. If your kidneys fail, you need treatment to ... providers, family, and friends, most people with kidney failure can lead full and active lives. NIH: National ...

  1. Kidney Biopsy

    MedlinePlus

    ... F For More Information National Kidney Foundation MedlinePlus Kidney and Urologic Disease Organizations Many organizations provide support ... Disease Organizations​​ . (PDF, 345 KB) Alternate Language URL Kidney Biopsy Page Content On this page: What is ...

  2. The effect of statins on microalbuminuria, proteinuria, progression of kidney function, and all-cause mortality in patients with non-end stage chronic kidney disease: A meta-analysis.

    PubMed

    Zhang, Zhenhong; Wu, Pingsheng; Zhang, Jiping; Wang, Shunyin; Zhang, Gengxin

    2016-03-01

    Conclusive evidence regarding the effect of statins on non-end stage chronic kidney disease (CKD) has not been reported previously. This meta-analysis evaluated the association between statins and microalbuminuria, proteinuria, progression, and all-cause mortality in patients with non-end stage CKD. Databases (e.g., PubMed, Embase and the Cochrane Library) were searched for randomized controlled trials (RCTs) with data on statins, microalbuminuria, proteinuria, renal health endpoints, and all-cause mortality patients with non-end stage CKD to perform this meta-analysis. The mean difference (MD) of the urine albumin excretion ratios (UAER), 24-h urine protein excretion, and risk ratios (RR) of all-cause mortality and renal health endpoints were calculated, and the results are presented with 95% confidence intervals (CI). A total of 23 RCTs with 39,419 participants were selected. The analysis demonstrated that statins statistically reduced UAER to 26.73μg/min [95%CI (-51.04, -2.43), Z=2.16, P<0.05], 24-h urine protein excretion to 682.68mg [95%CI (-886.72, -478.63), Z=6.56, P<0.01] and decreased all-cause mortality [RR=0.78, 95%CI (0.72, 0.84), Z=6.08, P<0.01]. However, the analysis results did not indicate that statins reduced the events of renal health endpoints [RR=0.96, 95%CI (0.91,1.01), Z=1.40, P>0.05]. In summary, our study indicates that statins statistically reduced microalbuminuria, proteinuria, and clinical deaths, but statins did not effectively slow the clinical progression of non-end stage CKD. PMID:26776964

  3. [Sudden death associated with myocardial damage caused by microthrombi in a patient with thrombotic thrombocytopenic purpura].

    PubMed

    Yamamoto, Kiyoko; Hattori, Yukinori; Shimada, Koki; Araki, Yoko; Adachi, Tatsuya; Tsushita, Keitaro

    2015-11-01

    We describe a 35-year-old woman with Down's syndrome who was admitted to a clinic with anorexia and vomiting. Since laboratory findings showed anemia (Hb 7.4 g/dl) and thrombocytopenia (0.5 × 10⁴/μl), she was transferred to our hospital for treatment. Further laboratory examinations revealed schistocytes, LDH elevation, and a negative Coombs' test. Thrombotic thrombocytopenic purpura (TTP) was suspected. Plasma exchange (PEX) and prednisolone administration were thus immediately initiated. Prior to these treatments, ADAMTS13 activity was less than 5% and inhibitors were detected at a level of 0.8 Bethesda U/ml. Although her platelet count had risen to 13.0 × 10⁴/μl by day 6 (post 4 sessions of PEX), it had decreased to 1.8 × 10⁴/μl on day 7. Despite ongoing PEX, thrombocytopenia persisted. On day 21, she suddenly died. Autopsy findings revealed no evidence of myocardial necrosis or coronary artery thrombosis. Extensive microthrombi were, however, detected in precapillary arterioles, capillaries, and post-capillary venules of the heart. Therefore, this patient's sudden death was clinically suspected to have been caused by cardiomyopathy, which had produced cardiogenic shock. PMID:26666721

  4. [Severe myocardial damage caused by leptospirosis. Report of a fatal case in Mexico].

    PubMed

    Velasco-Castrejón, Oscar; Rivas-Sánchez, Beatriz; Soriano-Rosas, Juan; Rivera-Reyes, Héctor Hugo

    2009-01-01

    Chagasic cardiomyopathy is a common disease in Latin America, however similar clinical pictures exist that can be confused with this, as they give negative results to the tests that detects T. cruzi, like non Chagasic rural endemic chronic cardiopathy, highly common in Venezuela. Using histopathology techniques, "idiopathic cardiomyopathy" is frequently found as the cause of death when the etiology of this disease is not known. This paper presents the case of a man of 26-years-old who died of dilated cardiomyopathy secondary to leptospirosis. Clinically, in addition to the cardiac failure, jaundice, hyperbilirubinemia, transaminases increase, proteinuria and hematuria were present. Initially it was suspected Chagasic cardiomyopathy but the epidemiologic background and the parasitologic and serologic tests for T. cruzi gave negative results. The dark field microscopy videorecording of blood and urine samples, argentic impregnation and immunohistochemistry tests as well as haemoculture in EMJH medium were positive for L. interrogans serovar Pomona. Postmortem we confirmed the presence of leptospira in different tissues through of histopathology, argentic impregnation, indirect immunofluorescence and immunohistochemistry. PMID:20191987

  5. Radio frequency radiation causes no nonthermal damage in enzymes and living cells.

    PubMed

    Fortune, Jennifer A; Wu, Bae-Ian; Klibanov, Alexander M

    2010-01-01

    The ability of radio frequency radiation (RFR) to exert irreversible nonthermal (i.e., not caused by accompanying heat) effects on biologics has been widely debated due to a relative paucity of comprehensive critical details in published reports dealing with this issue. In this study, we used rigorous control over experimental conditions to determine whether continuous RFR nonthermally affects commercially important enzymes and live bacterial and human cells using three most commonly used frequencies in current RF identification technology, namely 2.45 GHz, 915 MHz, and 13.56 MHz. Diverse biological samples were exposed to RFR under deliberately harsh conditions to increase the likelihood of observing such effects should they exist. Enzymatic activities of horseradish peroxidase and β-galactosidase in aqueous solution exhibited no statistically discernable consequences of even very intense RFR. Likewise, with putative thermal effects excluded, the viabilities of bacteria (both gram-positive and gram-negative) and of human cells were not detectably compromised by such an RFR exposure. PMID:20572294

  6. Zika Virus Infection during Pregnancy in Mice Causes Placental Damage and Fetal Demise.

    PubMed

    Miner, Jonathan J; Cao, Bin; Govero, Jennifer; Smith, Amber M; Fernandez, Estefania; Cabrera, Omar H; Garber, Charise; Noll, Michelle; Klein, Robyn S; Noguchi, Kevin K; Mysorekar, Indira U; Diamond, Michael S

    2016-05-19

    Zika virus (ZIKV) infection in pregnant women causes intrauterine growth restriction, spontaneous abortion, and microcephaly. Here, we describe two mouse models of placental and fetal disease associated with in utero transmission of ZIKV. Female mice lacking type I interferon signaling (Ifnar1(-/-)) crossed to wild-type (WT) males produced heterozygous fetuses resembling the immune status of human fetuses. Maternal inoculation at embryonic day 6.5 (E6.5) or E7.5 resulted in fetal demise that was associated with ZIKV infection of the placenta and fetal brain. We identified ZIKV within trophoblasts of the maternal and fetal placenta, consistent with a trans-placental infection route. Antibody blockade of Ifnar1 signaling in WT pregnant mice enhanced ZIKV trans-placental infection although it did not result in fetal death. These models will facilitate the study of ZIKV pathogenesis, in utero transmission, and testing of therapies and vaccines to prevent congenital malformations. PMID:27180225

  7. Causes of death in fulminant hepatic failure and relationship to quantitative histological assessment of parenchymal damage.

    PubMed

    Gazzard, B G; Portmann, B; Murray-Lyon, I M; Williams, R

    1975-10-01

    The clinical course and causes of death in 132 consecutive patients with fulminant hepatic failure and grade III or IV encephalopathy have been reviewed. 105 patients died and in 96 of these an autopsy examination was performed. In 36 patients there was cerebral oedema and the mean age of this group was significantly younger than the other fatal cases. In 28 patients death was attributed to major haemorrhage which originated in the gastrointestinal tract in 25. The prothrombin time ratio was not significantly greater in patients with major bleeding than in those without but they did have a significantly lower platelet count. Sepsis contributed to death in 12 patients. In 25 patients massive hepatic necrosis only was found at autopsy and death was considered to be due solely to hepatic failure. The degree of hepatocyte loss was assessed in 80 fatal cases by a histological morphometric technique on a needle specimen of liver taken immediately post-mortem. The proportion of the liver volume occupied by hepatocytes (hepatocyte volume fraction, HVF) was greatly reduced in all patients (normal 85+/-SD 5 percent) but the mean value was significantly higher in the patients dying with sepsis, cerebral oedema or haemorrhage than in the group in whom death was attributed solely to hepatic failure. There were ten patients in whom liver function was improving at the time of death which was due to cerebral (9) or haemorrhage (1). These observations suggest that many patients presently dying from fulminant hepatic failure may be expected to survive, once more effective therapy is available for the complications of the illness. PMID:172938

  8. Can Diopatra neapolitana (Annelida: Onuphidae) regenerate body damage caused by bait digging or predation?

    NASA Astrophysics Data System (ADS)

    Pires, A.; Freitas, R.; Quintino, V.; Rodrigues, A. M.

    2012-09-01

    The regenerative ability of Diopatra neapolitana was evaluated under laboratory conditions following nine experimental amputation levels: before the beginning of the branchiae (chaetiger 3 or 4), in the branchial region, at chaetigers 10, 15, 20, 25, 30, 35 and 40 and after the branchiae, at chaetigers 45-55. Specimens amputated at the 20th chaetiger were not able to regenerate and did not survive. The posterior portion of the specimens amputated up to chaetiger 15, regenerated the anterior part but the anterior ends were unable to survive. The anterior end of the specimens amputated at and beyond the 25th chaetiger regenerated the posterior part but the posterior ends were not able to regenerate an anterior part. Percent survival was directly related to the number of branchial segments left in the regenerating specimen and reached 100% only when the specimens were amputated beyond the branchial region. These results indicate that the species has regenerative ability and should survive the loss of a few anterior chaetigers, namely caused by predation. However, the results also indicate that bait digging could impair the survival of the posterior part remaining in the tube, as usually more than 20 chaetigers are harvested by bait collectors. Regarding field-collected specimens, D. neapolitana was found regenerating a mean of 9.0 ± 2.51 chaetigers, and Diopatra marocensis 7.5 ± 1.93 chaetigers, at the anterior end. The higher percentage of field-collected specimens showing regeneration of the anterior end belonged to D. marocensis. Only very few specimens, for both species, were found regenerating the posterior part of the body.

  9. Simulated climate change causes immune suppression and protein damage in the crustacean Nephrops norvegicus.

    PubMed

    Hernroth, Bodil; Sköld, Helen Nilsson; Wiklander, Kerstin; Jutfelt, Fredrik; Baden, Susanne

    2012-11-01

    Rising atmospheric carbon dioxide concentration is causing global warming, which affects oceans by elevating water temperature and reducing pH. Crustaceans have been considered tolerant to ocean acidification because of their retained capacity to calcify during subnormal pH. However, we report here that significant immune suppression of the Norway lobster, Nephrops norvegicus, occurs after a 4-month exposure to ocean acidification (OA) at a level predicted for the year 2100 (hypercapnic seawater with a pH lowered by 0.4 units). Experiments carried out at different temperatures (5, 10, 12, 14, 16, and 18°C) demonstrated that the temperature within this range alone did not affect lobster immune responses. In the OA-treatment, hemocyte numbers were reduced by almost 50% and the phagocytic capacity of the remaining hemocytes was inhibited by 60%. The reduction in hemocyte numbers was not due to increased apoptosis in hematopoetic tissue. Cellular responses to stress were investigated through evaluating advanced glycation end products (AGE) and lipid oxidation in lobster hepatopancreata, and OA-treatment was shown to significantly increase AGEs', indicating stress-induced protein alterations. Furthermore, the extracellular pH of lobster hemolymph was reduced by approximately 0.2 units in the OA-treatment group, indicating either limited pH compensation or buffering capacity. The negative effects of OA-treatment on the nephropidae immune response and tissue homeostasis were more pronounced at higher temperatures (12-18°C versus 5°C), which may potentially affect disease severity and spread. Our results signify that ocean acidification may have adverse effects on the physiology of lobsters, which previously had been overlooked in studies of basic parameters such as lobster growth or calcification. PMID:22974540

  10. Renal Integrin-Linked Kinase Depletion Induces Kidney cGMP-Axis Upregulation: Consequences on Basal and Acutely Damaged Renal Function

    PubMed Central

    Cano-Peñalver, José Luis; Griera, Mercedes; García-Jerez, Andrea; Hatem-Vaquero, Marco; Ruiz-Torres, María Piedad; Rodríguez-Puyol, Diego; de Frutos, Sergio; Rodríguez-Puyol, Manuel

    2015-01-01

    Soluble guanylyl cyclase (sGC) is activated by nitric oxide (NO) and produces cGMP, which activates cGMP-dependent protein kinases (PKG) and is hydrolyzed by specific phosphodiesterases (PDE). The vasodilatory and cytoprotective capacity of cGMP-axis activation results in a therapeutic strategy for several pathologies. Integrin-linked kinase (ILK), a major scaffold protein between the extracellular matrix and intracellular signaling pathways, may modulate the expression and functionality of the cGMP-axis–related proteins. We introduce ILK as a novel modulator in renal homeostasis as well as a potential target for cisplatin (CIS)-induced acute kidney injury (AKI) improvement. We used an adult mice model of depletion of ILK (cKD-ILK), which showed basal increase of sGC and PKG expressions and activities in renal cortex when compared with wildtype (WT) littermates. Twenty-four h activation of sGC activation with NO enhanced the filtration rate in cKD-ILK. During AKI, cKD-ILK maintained the cGMP-axis upregulation with consequent filtration rates enhancement and ameliorated CIS-dependent tubular epithelial-to-mesenchymal transition and inflammation and markers. To emphasize the role of cGMP-axis upregulation due to ILK depletion, we modulated the cGMP axis under AKI in vivo and in renal cultured cells. A suboptimal dose of the PDE inhibitor ZAP enhanced the beneficial effects of the ILK depletion in AKI mice. On the other hand, CIS increased contractility-related events in cultured glomerular mesangial cells and necrosis rates in cultured tubular cells; ILK depletion protected the cells while sGC blockade with ODQ fully recovered the damage. PMID:26562149

  11. Polycystic kidney disease in the medaka (Oryzias latipes) pc mutant caused by a mutation in the Gli-Similar3 (glis3) gene.

    PubMed

    Hashimoto, Hisashi; Miyamoto, Rieko; Watanabe, Naoki; Shiba, Dai; Ozato, Kenjiro; Inoue, Chikako; Kubo, Yuko; Koga, Akihiko; Jindo, Tomoko; Narita, Takanori; Naruse, Kiyoshi; Ohishi, Kazuko; Nogata, Keiko; Shin-I, Tadasu; Asakawa, Shuichi; Shimizu, Nobuyoshi; Miyamoto, Tomotsune; Mochizuki, Toshio; Yokoyama, Takahiko; Hori, Hiroshi; Takeda, Hiroyuki; Kohara, Yuji; Wakamatsu, Yuko

    2009-01-01

    Polycystic kidney disease (PKD) is a common hereditary disease in humans. Recent studies have shown an increasing number of ciliary genes that are involved in the pathogenesis of PKD. In this study, the Gli-similar3 (glis3) gene was identified as the causal gene of the medaka pc mutant, a model of PKD. In the pc mutant, a transposon was found to be inserted into the fourth intron of the pc/glis3 gene, causing aberrant splicing of the pc/glis3 mRNA and thus a putatively truncated protein with a defective zinc finger domain. pc/glis3 mRNA is expressed in the epithelial cells of the renal tubules and ducts of the pronephros and mesonephros, and also in the pancreas. Antisense oligonucleotide-mediated knockdown of pc/glis3 resulted in cyst formation in the pronephric tubules of medaka fry. Although three other glis family members, glis1a, glis1b and glis2, were found in the medaka genome, none were expressed in the embryonic or larval kidney. In the pc mutant, the urine flow rate in the pronephros was significantly reduced, which was considered to be a direct cause of renal cyst formation. The cilia on the surface of the renal tubular epithelium were significantly shorter in the pc mutant than in wild-type, suggesting that shortened cilia resulted in a decrease in driving force and, in turn, a reduction in urine flow rate. Most importantly, EGFP-tagged pc/glis3 protein localized in primary cilia as well as in the nucleus when expressed in mouse renal epithelial cells, indicating a strong connection between pc/glis3 and ciliary function. Unlike human patients with GLIS3 mutations, the medaka pc mutant shows none of the symptoms of a pancreatic phenotype, such as impaired insulin expression and/or diabetes, suggesting that the pc mutant may be suitable for use as a kidney-specific model for human GLIS3 patients. PMID:19609364

  12. Cancer cachexia causes skeletal muscle damage via transient receptor potential vanilloid 2‐independent mechanisms, unlike muscular dystrophy

    PubMed Central

    Suzuki, Nobuyuki; Ohtake, Hitomi; Kamauchi, Shinya; Hashimoto, Naohiro; Kiyono, Tohru; Wakabayashi, Shigeo

    2015-01-01

    Abstract Background Muscle wasting during cancer cachexia contributes to patient morbidity. Cachexia‐induced muscle damage may be understood by comparing its symptoms with those of other skeletal muscle diseases, but currently available data are limited. Methods We modelled cancer cachexia in mice bearing Lewis lung carcinoma/colon adenocarcinoma and compared the associated muscle damage with that in a murine muscular dystrophy model (mdx mice). We measured biochemical and immunochemical parameters: amounts/localization of cytoskeletal proteins and/or Ca2+ signalling proteins related to muscle function and abnormality. We analysed intracellular Ca2+ mobilization and compared results between the two models. Involvement of Ca2+‐permeable channel transient receptor potential vanilloid 2 (TRPV2) was examined by inoculating Lewis lung carcinoma cells into transgenic mice expressing dominant‐negative TRPV2. Results Tumourigenesis caused loss of body and skeletal muscle weight and reduced muscle force and locomotor activity. Similar to mdx mice, cachexia muscles exhibited myolysis, reduced sarcolemmal sialic acid content, and enhanced lysosomal exocytosis and sarcolemmal localization of phosphorylated Ca2+/CaMKII. Abnormal autophagy and degradation of dystrophin also occurred. Unlike mdx muscles, cachexia muscles did not exhibit regeneration markers (centrally nucleated fibres), and levels of autophagic proteolytic pathway markers increased. While a slight accumulation of TRPV2 was observed in cachexia muscles, Ca2+ influx via TRPV2 was not elevated in cachexia‐associated myotubes, and the course of cachexia pathology was not ameliorated by dominant‐negative inhibition of TRPV2. Conclusions Thus, cancer cachexia may induce muscle damage through TRPV2‐independent mechanisms distinct from those in muscular dystrophy; this may help treat patients with tumour‐induced muscle wasting. PMID:27239414

  13. Serum Anion Gap Predicts All-Cause Mortality in Patients with Advanced Chronic Kidney Disease: A Retrospective Analysis of a Randomized Controlled Study

    PubMed Central

    Lee, Sung Woo; Kim, Sejoong; Na, Ki Young; Cha, Ran-hui; Kang, Shin Wook; Park, Cheol Whee; Cha, Dae Ryong; Kim, Sung Gyun; Yoon, Sun Ae; Han, Sang Youb; Park, Jung Hwan; Chang, Jae Hyun; Lim, Chun Soo; Kim, Yon Su

    2016-01-01

    Background and Objectives Cardiovascular outcomes and mortality rates are poor in advanced chronic kidney disease (CKD) patients. Novel risk factors related to clinical outcomes should be identified. Methods A retrospective analysis of data from a randomized controlled study was performed in 440 CKD patients aged > 18 years, with estimated glomerular filtration rate 15–60 mL/min/1.73m2. Clinical data were available, and the albumin-adjusted serum anion gap (A-SAG) could be calculated. The outcome analyzed was all-cause mortality. Results Of 440 participants, the median (interquartile range, IQR) follow-up duration was 5.1 (3.0–5.5) years. During the follow-up duration, 29 participants died (all-cause mortality 6.6%). The area under the receiver operating characteristic curve of A-SAG for all-cause mortality was 0.616 (95% CI 0.520–0.712, P = 0.037). The best threshold of A-SAG for all-cause mortality was 9.48 mmol/L, with sensitivity 0.793 and specificity 0.431. After adjusting for confounders, A-SAG above 9.48 mmol/L was independently associated with increased risk of all-cause mortality, with hazard ratio 2.968 (95% CI 1.143–7.708, P = 0.025). In our study, serum levels of beta-2 microglobulin and blood urea nitrogen (BUN) were positively associated with A-SAG. Conclusions A-SAG is an independent risk factor for all-cause mortality in advanced CKD patients. The positive correlation between A-SAG and serum beta-2 microglobulin or BUN might be a potential reason. Future study is needed. Trial Registration Clinicaltrials.gov NCT 00860431 PMID:27249416

  14. Nuclear magnetic resonance: a tool for imaging belowground damage caused by Heterodera schachtii and Rhizoctonia solani on sugar beet.

    PubMed

    Hillnhütter, C; Sikora, R A; Oerke, E-C; van Dusschoten, D

    2012-01-01

    Belowground symptoms of sugar beet caused by the beet cyst nematode (BCN) Heterodera schachtii include the development of compensatory secondary roots and beet deformity, which, thus far, could only be assessed by destructively removing the entire root systems from the soil. Similarly, the symptoms of Rhizoctonia crown and root rot (RCRR) caused by infections of the soil-borne basidiomycete Rhizoctonia solani require the same invasive approach for identification. Here nuclear magnetic resonance imaging (MRI) was used for the non-invasive detection of belowground symptoms caused by BCN and/or RCRR on sugar beet. Excessive lateral root development and beet deformation of plants infected by BCN was obvious 28 days after inoculation (dai) on MRI images when compared with non-infected plants. Three-dimensional images recorded at 56 dai showed BCN cysts attached to the roots in the soil. RCRR was visualized by a lower intensity of the MRI signal at sites where rotting occurred. The disease complex of both organisms together resulted in RCRR development at the site of nematode penetration. Damage analysis of sugar beet plants inoculated with both pathogens indicated a synergistic relationship, which may result from direct and indirect interactions. Nuclear MRI of plants may provide valuable, new insight into the development of pathogens infecting plants below- and aboveground because of its non-destructive nature and the sufficiently high spatial resolution of the method. PMID:21948851

  15. Intense THz pulses cause H2AX phosphorylation and activate DNA damage response in human skin tissue

    PubMed Central

    Titova, Lyubov V.; Ayesheshim, Ayesheshim K.; Golubov, Andrey; Fogen, Dawson; Rodriguez-Juarez, Rocio; Hegmann, Frank A.; Kovalchuk, Olga

    2013-01-01

    Recent emergence and growing use of terahertz (THz) radiation for medical imaging and public security screening raise questions on reasonable levels of exposure and health consequences of this form of electromagnetic radiation. In particular, picosecond-duration THz pulses have shown promise for novel diagnostic imaging techniques. However, the effects of THz pulses on human cells and tissues thus far remain largely unknown. We report on the investigation of the biological effects of pulsed THz radiation on artificial human skin tissues. We observe that exposure to intense THz pulses for ten minutes leads to a significant induction of H2AX phosphorylation, indicating that THz pulse irradiation may cause DNA damage in exposed skin tissue. At the same time, we find a THz-pulse-induced increase in the levels of several proteins responsible for cell-cycle regulation and tumor suppression, suggesting that DNA damage repair mechanisms are quickly activated. Furthermore, we find that the cellular response to pulsed THz radiation is significantly different from that induced by exposure to UVA (400 nm). PMID:23577291

  16. Oxidative Damage of U937 Human Leukemic Cells Caused by Hydroxyl Radical Results in Singlet Oxygen Formation

    PubMed Central

    Rác, Marek; Křupka, Michal; Binder, Svatopluk; Sedlářová, Michaela; Matušková, Zuzana; Raška, Milan; Pospíšil, Pavel

    2015-01-01

    The exposure of human cells to oxidative stress leads to the oxidation of biomolecules such as lipids, proteins and nuclei acids. In this study, the oxidation of lipids, proteins and DNA was studied after the addition of hydrogen peroxide and Fenton reagent to cell suspension containing human leukemic monocyte lymphoma cell line U937. EPR spin-trapping data showed that the addition of hydrogen peroxide to the cell suspension formed hydroxyl radical via Fenton reaction mediated by endogenous metals. The malondialdehyde HPLC analysis showed no lipid peroxidation after the addition of hydrogen peroxide, whereas the Fenton reagent caused significant lipid peroxidation. The formation of protein carbonyls monitored by dot blot immunoassay and the DNA fragmentation measured by comet assay occurred after the addition of both hydrogen peroxide and Fenton reagent. Oxidative damage of biomolecules leads to the formation of singlet oxygen as conformed by EPR spin-trapping spectroscopy and the green fluorescence of singlet oxygen sensor green detected by confocal laser scanning microscopy. It is proposed here that singlet oxygen is formed by the decomposition of high-energy intermediates such as dioxetane or tetroxide formed by oxidative damage of biomolecules. PMID:25730422

  17. Evaluation of melioration area damage on the river Danube caused by the hydroelectric power plant 'Djerdap 1' backwater.

    PubMed

    Pajic, P; Andjelic, L; Urosevic, U; Polomcic, D

    2014-01-01

    Construction of the hydroelectric power plant (HPP) 'Djerdap 1' formed a backwater effect on the Danube and its tributaries, which had an inevitable influence on groundwater level, causing it to rise and thus creating additional threats to all melioration areas on more than 300 km of the Danube riversides, as well as on the riversides of its tributaries: the Sava (100 km) and the Tisa (60 km). In this paper, the HPP 'Djerdap 1' backwater effect on some characteristic melioration areas (34 in all) has been analyzed. In most of these areas intensive agricultural activity has always been present. An assessment of agricultural production damage was carried out by complex hydrodynamic calculations (60 calculation profiles) for different backwater regimes, with the aim to precisely quantify the HPP 'Djerdap 1' backwater effect on groundwater piezometric levels. Combining them with complex agroeconomic analyses, the aim is to quantify agricultural production damage and to consider the perspective of melioration area users. This method, which combines two different, but compatible, aspects of the melioration area threat assessment (hydrodynamic and agroeconomic), may present a quality base for further agricultural production threat assessment on all melioration areas on the Danube riversides, with the final aim to consider the economic effects and the importance of its further protection. PMID:25051487

  18. Dysplastic kidneys.

    PubMed

    Winyard, Paul; Chitty, Lyn S

    2008-06-01

    Dysplastic kidneys are common malformations affecting up to 1 in 1000 of the general population. They are part of the spectrum of Congenital Abnormalities of the Kidney and Urinary Tract (CAKUT) and an increasing number of children are being diagnosed on antenatal ultrasound. In the past, these patients may not have been detected until adulthood following investigation for other illness, or even as incidental findings at post mortem, unless there was severe bilateral dysplasia leading to Potter's sequence or renal failure in childhood. Excluding syndromic cases with defects in other organ systems, features linked to worse prognosis at presentation are: (1) bilateral disease; (2) decreased functional renal mass (which encompasses not just small kidneys but also large ones where cysts replace normal architecture); (3) lower urinary tract obstruction; and (4) anhydramnios or severe oligohydramnios. Dysplasia and renal function are dynamic and can evolve during pregnancy, so repeated assessment is necessary when pathology is expected. Worsening dimensions or decreasing amniotic fluid levels imply poorer prognosis, but there are no proven therapies during pregnancy, though vesicoamniotic shunting may be indicated with obstruction. Postnatal investigations aim to define the anatomy, which helps to estimate risks of infection and kidney function. Management might then involve observation, prophylactic antibiotics, surgery and/or renal support. Risks of renal malignancy and hypertension are low during childhood, but longer-term follow-up is needed, particularly to determine blood pressure and renal function in adulthood and pregnancy. Around 10% of cases have a family history of significant renal/urinary tract malformation. Monogenic causes include mutations in individual genes, such as TCF2/hepatocyte nuclear factor 1ss (HNF1beta), PAX2 and uroplakins, but there are also recent reports of children with compound heterozygote mutations in several renal/urinary tract

  19. Secondary radiation damage as the main cause for unexpected volume effects: A histopathologic study of the parotid gland

    SciTech Connect

    Konings, Antonius W.T. . E-mail: a.w.t.konings@med.umcg.nl; Faber, Hette; Cotteleer, Femmy; Vissink, Arjan; Coppes, Rob P.

    2006-01-01

    Purpose: To elucidate with a histopathological study the mechanism of region-dependent volume effects in the partly irradiated parotid gland of the rat. Methods and Materials: Wistar rats were locally X-irradiated with collimators with conformal radiation portals for 100% volume and 50% cranial/caudal partial volumes. Single doses up to 40 Gy were applied. Parotid saliva samples were collected, and the three lobes of the parotid gland were examined individually on the macro- and micromorphologic level up to 1 year after irradiation. Results: Dose-dependent loss of gland weight was observed 1 year after total or partial X-irradiation. Weight loss of the glands correlated very well with loss of secretory function. Irradiating the cranial 50% volume (implicating a shielded lateral lobe) resulted in substantially more damage in terms of weight loss and loss of secretory function than 50% caudal irradiation (shielding the ventral and dorsal lobe). Histologic examinations of the glands 1 year after irradiation revealed that the shielded lateral lobe was severely affected, in contrast to the shielded ventral and dorsal lobes. Time studies showed that irradiation of the cranial 50% volume caused late development of secondary damage in the shielded lateral lobe, becoming manifest between 240 and 360 days after irradiation. The possible clinical significance of this finding is discussed. Conclusion: It is concluded that the observed region-dependent volume effect for late function loss in the rat parotid gland after partial irradiation is mainly caused by secondary events in the shielded lateral lobe. The most probable first step (primary radiation event) in the development of this secondary damage is radiation exposure to the hilus region (located between the ventral and dorsal lobe). By injuring major excretory ducts and supply routes for blood and nerves in this area, the facility system necessary for proper functioning of the nonexposed lateral lobe is seriously affected

  20. Do Native Parasitic Plants Cause More Damage to Exotic Invasive Hosts Than Native Non-Invasive Hosts? An Implication for Biocontrol

    PubMed Central

    Li, Junmin; Jin, Zexin; Song, Wenjing

    2012-01-01

    Field studies have shown that native, parasitic plants grow vigorously on invasive plants and can cause more damage to invasive plants than native plants. However, no empirical test has been conducted and the mechanism is still unknown. We conducted a completely randomized greenhouse experiment using 3 congeneric pairs of exotic, invasive and native, non-invasive herbaceous plant species to quantify the damage caused by parasitic plants to hosts and its correlation with the hosts' growth rate and resource use efficiency. The biomass of the parasitic plants on exotic, invasive hosts was significantly higher than on congeneric native, non-invasive hosts. Parasites caused more damage to exotic, invasive hosts than to congeneric, native, non-invasive hosts. The damage caused by parasites to hosts was significantly positively correlated with the biomass of parasitic plants. The damage of parasites to hosts was significantly positively correlated with the relative growth rate and the resource use efficiency of its host plants. It may be the mechanism by which parasitic plants grow more vigorously on invasive hosts and cause more damage to exotic, invasive hosts than to native, non-invasive hosts. These results suggest a potential biological control effect of native, parasitic plants on invasive species by reducing the dominance of invasive species in the invaded community. PMID:22493703

  1. Solitary Kidney

    MedlinePlus

    ... Institute, Inc., Kidney School National Kidney Foundation MedlinePlus Kidney and Urologic Disease Organizations Many organizations provide support ... Organizations​​ . (PDF, 345 KB)​​​​​ Alternate Language URL Solitary Kidney Page Content On this page: What is a ...

  2. Studies of cadmium uptake and metabolism by the kidney

    SciTech Connect

    Suzuki, K.T.

    1984-03-01

    The investigation centered on a possible relationship between the toxicity of cadmium and changes in its chemical forms in tissues. Two models have been studied: one is the renal damage induced by a single injection of cadmium-containing metallothionein and the other is the renal damage induced by repeated injections of cadmium salt. Parenteral loading of cadmium-containing metallothionein caused acute and transitory necrotic damage of renal tubular lining cells. This was explained by the selection and rapid uptake of metallothionein at the proximal tubules and degradation of the protein, resulting in liberation of cadmium ions. Cadmium ions were injected repeatedly into rats, and the changes in the chemical forms of cadmium, zinc and copper in the liver and kidneys were correlated with the histological observations. The transitory necrotic damage of the proximal tubules caused during the repeated injections of cadmium was accompanied with a rapid decrease of the copper content in the kidney metallothionein. Further loading of cadmium ions induced increases in the amounts of cadmium not bound to metallothionein and its oxidation products as well as an increase of the Cd/Zn ratio in metallothionein. With these changes in the chemical forms of cadmium, persistent damage of the kidneys occurred. The transitory renal damage caused both by a single injection of cadmium-containing metallothionein and by repeated injections of cadmium salt can be explained by a limit of the native biosynthetic capacity of metallothionein in the kidney, while the persistent damage appears to be due to a limit of the induced capacity. 46 references, 7 figures.

  3. D-Amino Acid Substitution of Peptide-Mediated NF-κB Suppression in mdx Mice Preserves Therapeutic Benefit in Skeletal Muscle, but Causes Kidney Toxicity.

    PubMed

    Reay, Daniel P; Bastacky, Sheldon I; Wack, Kathryn E; Stolz, Donna B; Robbins, Paul D; Clemens, Paula R

    2015-01-01

    In Duchenne muscular dystrophy (DMD) patients and the mdx mouse model of DMD, chronic activation of the classical nuclear factor-κB (NF-κB) pathway contributes to the pathogenesis that causes degeneration of muscle fibers, inflammation and fibrosis. Prior studies demonstrate that inhibition of inhibitor of κB kinase (IKK)-mediated NF-κB activation using L-isomer NF-κB essential modulator (NEMO)-binding domain (NBD) peptide-based approaches reduce muscle pathology in the mdx mouse. For our studies, the NBD peptide is synthesized as a fusion peptide with an eight-lysine (8K) protein transduction domain to facilitate intracellular delivery. We hypothesized that the d-isoform peptide could have a greater effect than the naturally occurring L-isoform peptide due to the longer persistence of the D-isoform peptide in vivo. In this study, we compared systemic treatment with low (1 mg/kg) and high (10 mg/kg) doses of L- and D-isomer 8K-wild-type-NBD peptide in mdx mice. Treatment with both L- or D-isoform 8K-wild-type-NBD peptide resulted in decreased activation of NF-κB and improved histology in skeletal muscle of the mdx mouse. However, we observed kidney toxicity (characterized by proteinuria), increased serum creatinine, activation of NF-κB and pathological changes in kidney cortex that were most severe with treatment with the D-isoform of 8K-wild-type-NBD peptide. The observed toxicity was also seen in normal mice. PMID:26018805

  4. Upper gastrointestinal bleeding as a risk factor for dialysis and all-cause mortality: a cohort study of chronic kidney disease patients in Taiwan

    PubMed Central

    Liang, Chih-Chia; Chang, Chiz-Tzung; Wang, I-Kuan; Huang, Chiu-Ching

    2016-01-01

    Objective Impaired renal function is associated with higher risk of upper gastrointestinal bleeding (UGIB) in patients with chronic kidney disease and not on dialysis (CKD-ND). It is unclear if UGIB increases risk of chronic dialysis. The aim of the study was to investigate risk of chronic dialysis in CKD-ND patients with UGIB. Setting All CKD-ND stage 3–5 patients of a CKD programme in one hospital between 2003 and 2009 were enrolled and prospectively followed until September 2012. Primary and secondary outcome measures Chronic dialysis (dialysis for more than 3 months) started and all-cause mortality. The risk of chronic dialysis was analysed using Cox proportional hazard regression with adjustments for age, gender and renal function, followed by competing-risks analysis. Results We analysed 3126 CKD-ND patients with a mean age of 65±14 years for 2.8 years. Of 3126 patients, 387 (12.4%) patients developed UGIB, 989 (31.6%) patients started chronic dialysis and 197 (6.3%) patients died. UGIB increased all-cause mortality (adjusted HR (aHR): 1.51, 95% CI 1.07 to 2.13) and the risk of chronic dialysis (aHR; 1.29, 95% CI 1.11 to 1.50). The subdistribution HR (SHR) of UGIB for chronic dialysis (competing event: all-cause mortality) was 1.37 (95% CI 1.15 to 1.64) in competing-risks analysis with adjustments for age, renal function, gender, diabetes, haemoglobin, albumin and urine protein/creatinine ratio. Conclusions UGIB is associated with increased risk of chronic dialysis and all-cause mortality in patients with CKD-ND stages 3–5. This association is independent of age, gender, basal renal function, haemoglobin, albumin and urine protein levels. PMID:27150184

  5. Women are more susceptible than men to oxidative stress and chromosome damage caused by polycyclic aromatic hydrocarbons exposure.

    PubMed

    Guo, Huan; Huang, Kun; Zhang, Xiao; Zhang, Wangzhen; Guan, Lei; Kuang, Dan; Deng, Qifei; Deng, Huaxin; Zhang, Xiaomin; He, Meian; Christiani, David; Wu, Tangchun

    2014-07-01

    Exposure to environmental polycyclic aromatic hydrocarbons (PAHs) has been associated with increased risk of cancer, but evidence for gender differences in this association is limited. The aim of this study was to examine the gender differences in PAHs caused early genotoxic effects such as oxidative stress and chromosome damage, which are potential carcinogenic etiology of PAHs. A total of 478 nonsmoking workers (272 men and 206 women) from a coke oven plant were recruited. We determined 16 environmental PAHs in their workplaces, and measured concentrations of 12 urinary PAH metabolites (OH-PAHs), plasma benzo[a]pyrene-r-7,t-8,t-9,c-10-tetrahydotetrol-albumin (BPDE-Alb) adducts, urinary 8-hydroxydeoxyguanosine (8-OHdG) and 8-iso-prostaglandin-F2α (8-iso-PGF2α), and micronucleus frequencies in lymphocytes in all subjects. It showed that, women working at the office, adjacent to the coke oven, and on the bottom or side of the coke oven displayed significantly higher levels of urinary 8-OHdG and 8-iso-PGF2α, and lymphocytic micronucleus frequencies compared with men working at above areas, respectively (all P < 0.05). These gender differences remain significant after adjusted for potential confounders and urinary ΣOH-PAHs or plasma BPDE-Alb adducts. A significant interaction existed between gender and BPDE-Alb adducts on increasing micronucleus frequencies (Pinteraction  < 0.001). We further stratified all workers by the tertiles of urinary ΣOH-PAHs or plasma BPDE-Alb adducts, and the above gender differences were more evident in the median- and high-exposure groups (all P < 0.05). In conclusion, women were more susceptible than men to oxidative stress and chromosome damage induced by PAHs, which may add potential evidence underlying gender differences in PAH exposure-related lung cacinogenesis. PMID:24668722

  6. Somatic cell mutations caused by 365 nm LED-UVA due to DNA double-strand breaks through oxidative damage.

    PubMed

    Fang, Xing; Ide, Naohiro; Higashi, Sho-Ichi; Kamei, Yasuhiro; Toyooka, Tatsushi; Ibuki, Yuko; Kawai, Kazuaki; Kasai, Hiroshi; Okamoto, Keinosuke; Arimoto-Kobayashi, Sakae; Negishi, Tomoe

    2014-09-01

    Evidence is accumulating indicating that UVA (320-400 nm ultraviolet light) plays an important role in photo-carcinogenesis. UVA is thought to produce reactive oxygen species in irradiated cells through photo-activation of inherent photosensitizers, and was recently reported to cause DNA double-strand breaks (DSBs) in exposed cells. We have investigated the involvement of UVA in mutations and DNA damage in somatic cells using Drosophila melanogaster larvae. Using the Okazaki Large Spectrograph, we previously observed that longer wavelength UVA (>330 nm) was more mutagenic in post-replication repair-deficient D. melanogaster (mei-41) than in the nucleotide excision repair-deficient strain (mei-9). LED-light has recently been developed as a high-dose-rate UVA source. LED-UVA light (365 nm) was also more mutagenic in mei-41 than in mei-9. The mei-41 gene was shown to be an orthologue of the human ATR gene, which is involved in the repair of DSBs through phosphorylation of histone H2AX. In order to estimate the extent to which oxidative damage contributes to mutation, we established a new D. melanogaster strain (urate-null mutant) that is sensitive to oxidative damage and has a marker to detect somatic cell mutations. When somatic cell mutations were examined using this strain, LED-UVA was mutagenic in the urate-null strain at doses that were non-mutagenic in the urate-positive strain. In an effort to investigate the generation of DSBs, we examined the presence of phosphorylated histone H2AvD (H2AX D. melanogaster homologue). At high doses of LED-UVA (>800 kJ m(-2)), levels of phosphorylated H2AvD (γ-H2AvD) increased significantly in the urate-null strain. Moreover, the level of γ-H2AvD increased in the excision repair-deficient strain but not in the ATR-deficient strain following UVA-irradiation. These results supported the notion that the generation of γ-H2AvD was mediated by the function of the mei-41 gene. It was reported that ATR functions on DSB repair in D

  7. Heavy metals, arsenic, and pesticide contamination in an area with high incidence of chronic kidney disease of non-traditional causes in El Salvador

    NASA Astrophysics Data System (ADS)

    Lopez, D. A.; Ribó, A.; Quinteros, E.; Mejia, R.; Jovel, R.; VanDervort, D.; Orantes, C. M.

    2013-12-01

    Chronic kidney disease of non-traditional causes is epidemic in Central America, Southern Mexico and other regions of the world such as Sri Lanka, where the origin of the illness is attributed to exposure to agrochemicals and arsenic in soils and groundwater. In Central America, several causes have been suggested for this illness including: high ambient temperatures and chronic dehydration, and toxic effects of agrochemicals. Previous research using step-wise multivariate regression in El Salvador found statistically significant correlation between the spatial distribution of the number of sick people per thousand inhabitants and the percent area cultivated with sugar cane, cotton, and beans, and maximum ambient temperature, with sugar cane cultivation as the most significant factor. This study aims to investigate the possible effects of agricultural activities in the occurrence of this illness looking at heavy metal, arsenic and pesticide contamination in soil, water and sediments of a community located in Bajo Lempa region (Ciudad Romero, El Salvador) and heavily affected by this illness. The Bajo Lempa region is close to Lempa River delta, in the Pacific coast. Ground and surface water, sediment and soil samples were collected in the village where the patients live and in the agricultural areas where they work. With respect to the heavy metals, lead and cadmium where detected in the soils but below the standards for cultivated soils, however, they were not detected in the majority of surface and groundwater. Of the inorganic contaminants, arsenic was present in most soil, sediments, and water samples with some concentrations considerable higher than the standards for cultivated lands and drinking water. Statistically different concentrations in soils were found for the village soils and the cultivated soils, with arsenic higher in the cultivated soils. For the pesticides, results show a significant pollution of soil and groundwater of organochlorine pesticides

  8. Direct damage to vegetation caused by acid rain and polluted cloud: definition of critical levels for forest trees.

    PubMed

    Cape, J N

    1993-01-01

    The concept of critical levels was developed in order to define short-term and long-term average concentrations of gaseous pollutants above which plants may be damaged. Although the usual way in which pollutants in precipitation (wet deposition) influence vegetation is by affecting soil processes, plant foliage exposed to fog and cloud, which often contain much greater concentrations of pollutant ions than rain, may be damaged directly. The idea of a critical level has been extended to define concentrations of pollutants in wet deposition above which direct damage to plants is likely. Concentrations of acidity and sulphate measured in mountain and coastal cloud are summarised. Vegetation at risk of injury is identified as montane forest growing close to the cloud base, where ion concentrations are highest. The direct effects of acidic precipitation on trees are reviewed, based on experimental exposure of plants to simulated acidic rain, fog or mist. Although most experiments have reported results in terms of pH (H(+) concentration), the accompanying anion is important, with sulphate being more damaging than nitrate. Both conifers and broadleaved tree seedlings showing subtle changes in the structural characteristics of leaf surfaces after exposure to mist or rain at or about pH 3.5, or sulphate concentration of 150 micromol litre(-1). Visible lesions on leaf surfaces occur at around pH 3 (500 micromol litre(-1) sulphate), broadleaved species tending to be more sensitive than conifers. Effects on photosynthesis and water relations, and interactions with other stresses (e.g. frost), have usually been observed only for treatments which have also caused visible injury to the leaf surface. Few experiments on the direct effects of polluted cloud have been conducted under field conditions with mature trees, which unlike seedlings in controlled conditions, may suffer a growth reduction in the absence of visible injury. Although leaching of cations (Ca(2+), Mg(2+), K(+)) is

  9. Cationic liposomes formulated with DMPC and a gemini surfactant traverse the cell membrane without causing a significant bio-damage.

    PubMed

    Stefanutti, E; Papacci, F; Sennato, S; Bombelli, C; Viola, I; Bonincontro, A; Bordi, F; Mancini, G; Gigli, G; Risuleo, G

    2014-10-01

    Cationic liposomes have been intensively studied both in basic and applied research because of their promising potential as non-viral molecular vehicles. This work was aimed to gain more information on the interactions between the plasmamembrane and liposomes formed by a natural phospholipid and a cationic surfactant of the gemini family. The present work was conducted with the synergistic use of diverse experimental approaches: electro-rotation measurements, atomic force microscopy, ζ-potential measurements, laser scanning confocal microscopy and biomolecular/cellular techniques. Electro-rotation measurements pointed out that the interaction of cationic liposomes with the cell membrane alters significantly its dielectric and geometric parameters. This alteration, being accompanied by significant changes of the membrane surface roughness as measured by atomic force microscopy, suggests that the interaction with the liposomes causes locally substantial modifications to the structure and morphology of the cell membrane. However, the results of electrophoretic mobility (ζ-potential) experiments show that upon the interaction the electric charge exposed on the cell surface does not vary significantly, pointing out that the simple adhesion on the cell surface of the cationic liposomes or their fusion with the membrane is to be ruled out. As a matter of fact, confocal microscopy images directly demonstrated the penetration of the liposomes inside the cell and their diffusion within the cytoplasm. Electro-rotation experiments performed in the presence of endocytosis inhibitors suggest that the internalization is mediated by, at least, one specific pathway. Noteworthy, the liposome uptake by the cell does not cause a significant biological damage. PMID:25017801

  10. [Kidney Transplantation and inborn errors of metabolism].

    PubMed

    Capelli, Irene; Battaglino, Giuseppe; Baraldi, Olga; Ravaioli, Matteo; Cuna, Vania; Moretti, Ilaria; Angeletti, Andrea; Mencarelli, Francesca; Pasini, Andrea; Montini, Giovanni; Pinna, Antonio Daniele; La Manna, Gaetano

    2015-01-01

    Inherited kidney diseases constitute at least 150 different disorders and they have an overall prevalence of about 6080 cases per 100 000 in Europe and in USA. At least 10% of adults and nearly all children who progress to renal-replacement therapy have an inherited kidney disease, representing the fifth most common cause of end-stage renal disease after diabetes, hypertension, glomerulonephritis, and pyelonephritis. These conditions include both structural and functional disorders, among which are counted diseases resulting from inborn errors of metabolism (IEM). Some inborn errors of metabolism primarily affect kidney and because of progress in renal replacement therapy, patients with inherited kidney disorders rarely die when their disease progresses and can live for many years. However, these patients often have compromised health with a poor quality of life. Renal transplantation offers a viable treatment option for those inborn errors of metabolism characterized by primary renal damage caused by dysfunction of a mutated protein, as in cystinuria. In this case, the indication to renal transplantation makes it possible to overcome the specific enzyme defect. However this option remains valid even when the genetic defect is expressed systemically and renal involvement is just one of the clinical manifestations of the disease, as in Anderson-Fabry disease, cystinosis, hereditary amyloidosis and primary hyperoxaluria. In these conditions, renal transplantation is combined with the liver (primary hyperoxaluria) or cardiac transplant (familial amyloidosis) improving the quality and life expectancy of patients. PMID:26005941

  11. [Kidney Transplantation and inborn errors of metabolism].

    PubMed

    Capelli, Irene; Battaglino, Giuseppe; Baraldi, Olga; Ravaioli, Matteo; Cuna, Vania; Moretti, Ilaria; Angeletti, Andrea; Mencarelli, Francesca; Pasini, Andrea; Montini, Giovanni; Pinna, Antonio Daniele; La Manna, Gaetano

    2015-01-01

    Inherited kidney diseases constitute at least 150 different disorders and they have an overall prevalence of about 6080 cases per 100,000 in Europe and in USA. At least 10% of adults and nearly all children who progress to renal-replacement therapy have an inherited kidney disease, representing the fifth most common cause of end-stage renal disease after diabetes, hypertension, glomerulonephritis, and pyelonephritis. These conditions include both structural and functional disorders, among which are counted diseases resulting from inborn errors of metabolism (IEM). Some inborn errors of metabolism primarily affect kidney and because of progress in renal replacement therapy, patients with inherited kidney disorders rarely die when their disease progresses and can live for many years. However, these patients often have compromised health with a poor quality of life. Renal transplantation offers a viable treatment option for those inborn errors of metabolism characterized by primary renal damage caused by dysfunction of a mutated protein, as in cystinuria. In this case, the indication to renal transplantation makes it possible to overcome the specific enzyme defect. However this option remains valid even when the genetic defect is expressed systemically and renal involvement is just one of the clinical manifestations of the disease, as in Anderson-Fabry disease, cystinosis, hereditary amyloidosis and primary hyperoxaluria. In these conditions, renal transplantation is combined with the liver (primary hyperoxaluria) or cardiac transplant (familial amyloidosis) improving the quality and life expectancy of patients. PMID:26479053

  12. Bioengineering Kidneys for Transplantation

    PubMed Central

    Madariaga, Maria Lucia L.; Ott, Harald C.

    2014-01-01

    One in ten Americans suffer from chronic kidney disease, and close to 90,000 people die each year from causes related to kidney failure. Patients with end-stage renal disease are faced with two options: hemodialysis or transplantation. Unfortunately, the reach of transplantation is limited because of the shortage of donor organs and the need for immunosuppression. Bioengineered kidney grafts theoretically present a novel solution to both problems. Herein we discuss the history of bioengineering organs, the current status of bioengineered kidneys, considerations for the future of the field, and challenges to clinical translation. We hope that by integrating principles of tissue engineering, and stem cell and developmental biology, bioengineered kidney grafts will advance the field of regenerative medicine while meeting a critical clinical need. PMID:25217267

  13. [Drug-induced acute kidney injury].

    PubMed

    Derungs, Adrian

    2015-12-01

    Due to their physiological function, the kidneys are exposed to high concentrations of numerous drugs and their metabolites, making them vulnerable to drug-related injuries. This article provides an overview of the pathophysiological mechanisms involved in nephrotoxicity, the most common nephrotoxic drugs, and the risk factors for the occurrence of drug-induced acute kidney injuries. NSAIDs, diuretics, ACE inhibitors, and angiotensin II receptor blockers (ARBs} are the most frequent prerenal causes of an acute elevation in creatinine levels. Primary vascular damage arises from thrombotic microangiopathy (e. g. due to cic/osporin, tacrolimus, muromonab-CD3, mitomycin C, quinine, ticlopidine, clopidogrel}. Anticoagulants and thrombolytic medications lead to secondary blood vessel damage by cholesterol emboli, embolism of thrombus material into the periphery or bleeding. Tubulopathies can be observed on treatment with ifosfamide and cisplatin (rarely with cyclophosphamide or carboplatin), aminoglycosides, vancomycin, and radiocontrast agents. Immunological mechanisms underlie interstitial nephritides, which are induced by drugs in about 85% of cases. In drug-induced glomerulopathies;- renal biopsy allows closer identification of the triggering medication. Drug-induced systemic lupus erythematosus (SLE} represents a special form of immune complex glomerulonephritis and can be triggered by procainamide, hydralazine, isoniazid, methyldopa, quinidine, chlorpromazine, and propylthiouracil. Crystal-induced kidney injury is caused by precipitation of drugs (e. g. aciclovir, sulfonamide antibiotics, methotrexate, indinavir) in the renal tubules and the urine-conducting organs with consecutive obstruction thereof. PMID:26654816

  14. Kidney Biopsy

    MedlinePlus

    ... right diagnosis. [ Top ] What should a person do days before a kidney biopsy? Days before the procedure, ... Top ] What can a person expect on the day of the kidney biopsy? A person should arrive ...

  15. Kidney removal

    MedlinePlus

    ... the surgical cut is located. Recovery after a laparoscopic procedure is most often quicker, with less pain. Outlook (Prognosis) The outcome is most often good when a single kidney is removed. If both kidneys are removed, ...

  16. Kidney stones

    MedlinePlus Videos and Cool Tools

    ... cortex to the inner medulla. The renal pelvis is the funnel through which urine exits the kidney ... a kidney stone (renal calculus). Usually the calculus is the size of a small pebble. But ureters ...

  17. Ectopic Kidney

    MedlinePlus

    ... of the spine. Every minute, a person’s kidneys filter about 3 ounces of blood, removing wastes and ... occur. As a result, the kidney can’t filter wastes and extra water from the blood. One ...

  18. Kidney transplant

    MedlinePlus

    ... infections Side effects from medicines used to prevent transplant rejection Loss of transplanted kidney ... tries to destroy it. In order to avoid rejection, almost all kidney transplant recipients must take medicines that suppress their immune ...

  19. The administration of food supplemented with cocoa powder during nutritional recovery reduces damage caused by oxidative stress in rat brain.

    PubMed

    Barragán Mejía, Gerardo; Calderón Guzmán, David; Juárez Olguín, Hugo; Hernández Martínez, Nancy; García Cruz, Edna; Morales Ramírez, Aline; Labra Ruiz, Norma; Esquivel Jiménez, Gabriela; Osnaya Brizuela, Norma; García Álvarez, Raquel; Ontiveros Mendoza, Esperanza

    2011-12-01

    Malnutrition contributes to the development of oxidative damage in the central nervous system. The selective administration of nutrients tends to show positive results in individuals who have suffered from malnutrition. To determine the effect of the administration of cocoa powder on the peroxidation of lipids and glutathione level during the nutritional recovery in brain, rats of 21 days old were subjected to a protocol that resembles malnutrition (MN) by feeding them with 60% of the daily food consumption of the control group (WN) and later to nutritional recovery with regular rodent feed (RFR) or added with cocoa (10 g of cocoa powder/kg of regular rodent feed) (CCR). Animals fed with regular rodent food showed significant reduction in brain glutathione: RFR (84.18 ± 6.38 ng/mg protein) vs. CCR (210.61 ± 50.10 ng/mg protein) and WN (186.55 ± 33.18 ng/mg protein), but with similar level to that of MN (92.12 ± 15.60 ng/mg protein). On the contrary, lipid peroxidation in RFR-fed animals increased RFR (1.32 ± 0.2 μM malondialdehyde/g of tissue), CCR (0.86 ± 0.07 μM malondialdehyde/g of tissue), WN (0.89 ± 0.09 μM malondialdehyde/g of tissue), but their thiobarbituric acid reactive substances concentration is similar to that of MN group (1.50 ± 0.2 μM malondialdehyde/g of tissue). Consumption of cocoa powder as a source of antioxidants favors the restoration of the concentration of glutathione and reduces the damage caused by oxidative stress during nutritional recovery in rat brain. PMID:21826449

  20. Effects of paracetamol and propacetamol on gastric mucosal damage and gastric lipid peroxidation caused by acetylsalicylic acid (ASA) in rats.

    PubMed

    Galunska, B; Marazova, K; Tankova, T; Popov, A; Frangov, P; Krushkov, I; Di Massa, A

    2002-08-01

    We have studied the effect of paracetamol and its pro-drug propacetamol on gastric mucosal damage induced by acetylsalicylic acid (ASA) and its possible relation to changes in gastric lipid peroxidation status in rats. Paracetamol or propacetamol were administered intragastrically 1h before ASA (300 mg kg(-1)) in the following equivalent doses: 62.5, 125.0 and 250.0 mg kg(-1) or 125.0, 250.0 and 500.0 mg kg(-1), respectively. The effects of the tested agents were compared to that of prostaglandin E2 (PGE2) 15, 30 and 60 mg kg(-1). Gastric ulcer formation was estimated morphometrically 4h after ASA administration. Malondialdehyde (MDA), glutathione (reduced, GSH, and oxidized, GSSG) and uric acid (UA) were determined in gastric mucosa and blood plasma and used as biochemical markers of the oxidative status. The results showed that paracetamol (250, 125, 62.5 mg kg(-1)) and propacetamol (500, 250, 125 mg kg(-1)) diminished the area of ASA-induced gastric lesions. The effect of propacetamol was more pronounced than that of paracetamol and similar to that of PGE2. Gastric MDA increased 3-fold in the ASA-group. The tested agents reduced it by a range of 30-70%. In all pretreated groups gastric glutathione and UA levels were found higher than that of control group and lower than that of ASA-group. Paracetamol and propacetamol, as well as PGE2, diminished the lipid peroxidation in plasma to a lesser extent than in gastric mucosa, but maintained elevated levels of the selective plasma antioxidant UA. These results show that the ASA-induced gastric mucosal damage is accompanied by the development of oxidative stress, evidenced by the accumulation of MDA, and concomitant initial activation of cell antioxidant defences. As paracetamol and propacetamol tend to decrease gastric lesions caused by ASA and alter gastric mucosal MDA, glutathione and UA values in a favorable manner, it could be suggested that their effects on the gastric mucosa could be related to interference with

  1. A protein kinase A-independent pathway controlling aquaporin 2 trafficking as a possible cause for the syndrome of inappropriate antidiuresis associated with polycystic kidney disease 1 haploinsufficiency.

    PubMed

    Tamma, Grazia; Lasorsa, Domenica; Trimpert, Christiane; Ranieri, Marianna; Di Mise, Annarita; Mola, Maria Grazia; Mastrofrancesco, Lisa; Devuyst, Olivier; Svelto, Maria; Deen, Peter M T; Valenti, Giovanna

    2014-10-01

    Renal water reabsorption is controlled by arginine vasopressin (AVP), which binds to V2 receptors, resulting in protein kinase A (PKA) activation, phosphorylation of aquaporin 2 (AQP2) at serine 256, and translocation of AQP2 to the plasma membrane. However, AVP also causes dephosphorylation of AQP2 at S261. Recent studies showed that cyclin-dependent kinases (cdks) can phosphorylate AQP2 peptides at S261 in vitro. We investigated the possible role of cdks in the phosphorylation of AQP2 and identified a new PKA-independent pathway regulating AQP2 trafficking. In ex vivo kidney slices and MDCK-AQP2 cells, R-roscovitine, a specific inhibitor of cdks, increased pS256 levels and decreased pS261 levels. The changes in AQP2 phosphorylation status were paralleled by increases in cell surface expression of AQP2 and osmotic water permeability in the absence of forskolin stimulation. R-Roscovitine did not alter cAMP-dependent PKA activity but specifically reduced protein phosphatase 2A (PP2A) expression and activity in MDCK cells. Notably, we found reduced PP2A expression and activity and reduced pS261 levels in Pkd1(+/-) mice displaying a syndrome of inappropriate antidiuresis with high levels of pS256, despite unchanged AVP and cAMP. Similar to previous findings in Pkd1(+/-) mice, R-roscovitine treatment caused a significant decrease in intracellular calcium in MDCK cells. Our data indicate that reduced activity of PP2A, secondary to reduced intracellular Ca(2+) levels, promotes AQP2 trafficking independent of the AVP-PKA axis. This pathway may be relevant for explaining pathologic states characterized by inappropriate AVP secretion and positive water balance. PMID:24700872

  2. Hazard evaluation of chemicals that cause accumulation of alpha 2u-globulin, hyaline droplet nephropathy, and tubule neoplasia in the kidneys of male rats.

    PubMed Central

    Hard, G C; Rodgers, I S; Baetcke, K P; Richards, W L; McGaughy, R E; Valcovic, L R

    1993-01-01

    This review paper examines the relationship between chemicals inducing excessive accumulation of alpha 2u-globulin (alpha 2u-g) (CIGA) in hyaline droplets in male rat kidneys and the subsequent development of nephrotoxicity and renal tubule neoplasia in the male rat. This dose-responsive hyaline droplet accumulation distinguishes CIGA carcinogens from classical renal carcinogens. CIGA carcinogens also do not appear to react with DNA and are generally negative in short-term tests for genotoxicity, CIGA or their metabolites bind specifically, but reversibly, to male rat alpha 2u-g. The resulting complex appears to be more resistant to hydrolytic degradation in the proximal tubule than native, unbound alpha 2u-g. Single cell necrosis of the tubule epithelium, with associated granular cast formation and papillary mineralization, is followed by sustained regenerative tubule cell proliferation, foci of tubule hyperplasia in the convoluted proximal tubules, and renal tubule tumors. Although structurally similar proteins have been detected in other species, including humans, renal lesions characteristic of alpha 2u-g nephropathy have not been observed. Epidemiologic investigation has not specifically examined the CIGA hypothesis for humans. Based on cancer bioassays, hormone manipulation studies, investigations in an alpha 2u-g-deficient strain of rat, and other laboratory data, an increased proliferative response caused by chemically induced cytotoxicity appears to play a role in the development of renal tubule tumors in male rats. Thus, it is reasonable to suggest that the renal effects induced in male rats by chemicals causing alpha 2u-g accumulation are unlikely to occur in humans. Images FIGURE 1. FIGURE 2. FIGURE 3. FIGURE 4. FIGURE 5. FIGURE 6. FIGURE 7. FIGURE 8. FIGURE 9. FIGURE 10. FIGURE 11. FIGURE 12. FIGURE 13. PMID:7686485

  3. Kidney diseases and tissue engineering.

    PubMed

    Moon, Kyung Hyun; Ko, In Kap; Yoo, James J; Atala, Anthony

    2016-04-15

    Kidney disease is a worldwide public health problem. Renal failure follows several disease stages including acute and chronic kidney symptoms. Acute kidney injury (AKI) may lead to chronic kidney disease (CKD), which can progress to end-stage renal disease (ESRD) with a mortality rate. Current treatment options are limited to dialysis and kidney transplantation; however, problems such as donor organ shortage, graft failure and numerous complications remain a concern. To address this issue, cell-based approaches using tissue engineering (TE) and regenerative medicine (RM) may provide attractive approaches to replace the damaged kidney cells with functional renal specific cells, leading to restoration of normal kidney functions. While development of renal tissue engineering is in a steady state due to the complex composition and highly regulated functionality of the kidney, cell therapy using stem cells and primary kidney cells has demonstrated promising therapeutic outcomes in terms of restoration of renal functions in AKI and CKD. In this review, basic components needed for successful renal kidney engineering are discussed, and recent TE and RM approaches to treatment of specific kidney diseases will be presented. PMID:26134528

  4. Kidney Dysplasia

    MedlinePlus

    ... Dimes National Kidney Foundation Urology Care Foundation MedlinePlus Kidney and Urologic Disease Organizations Many organizations provide support ... Disease Organizations​​ . (PDF, 345 KB)​​​​​ Alternate Language URL Kidney Dysplasia Page Content On this page: What is ...

  5. An unusual presentation of a Page kidney 24 days after transplantation: case report.

    PubMed

    Butt, F K; Seawright, A H; Kokko, K E; Hawxby, A M

    2010-12-01

    The Page kidney phenomenon is a well recognized entity where an extrinsically compressed kidney results in hypertension and loss of function. This compression is usually caused by a subcapsular hematoma secondary to blunt abdominal trauma or an invasive procedure such as a renal biopsy. We describe an unusual case involving the spontaneous development of a Page kidney 24 days after renal transplantation without any history of preceding trauma. The subcapsular hematoma was detected by a computerized tomographic scan performed as part of the work-up for acute allograft dysfunction. Prompt recognition and early intervention are essential if renal function is to be restored before irreversible damage occurs. PMID:21168685

  6. Clinical Scenarios in Acute Kidney Injury: Parenchymal Acute Kidney Injury-Tubulo-Interstitial Diseases.

    PubMed

    Meola, Mario; Samoni, Sara; Petrucci, Ilaria; Ronco, Claudio

    2016-01-01

    Acute tubular necrosis (ATN) is the most common type of acute kidney injury (AKI) related to parenchymal damage (90% of cases). It may be due to a direct kidney injury, such as sepsis, drugs, toxins, contrast media, hemoglobinuria and myoglobinuria, or it may be the consequence of a prolonged systemic ischemic injury. Conventional ultrasound (US) shows enlarged kidneys with hypoechoic pyramids. Increased volume is largely sustained by the increase of anteroposterior diameter, while longitudinal axis usually maintains its normal length. Despite the role of color Doppler in AKI still being debated, many studies demonstrate that renal resistive indexes (RIs) vary on the basis of primary disease. Moreover, several studies assessed that higher RI values are predictive of persistent AKI. Nevertheless, due to the marked heterogeneity among the studies, further investigations focused on timing of RI measurement and test performances are needed. Acute interstitial nephritis is also a frequent cause of AKI, mainly due to non-steroidal anti-inflammatory drugs and antibiotics administration. The development of acute interstitial nephritis is due to an immunological reaction against nephritogenic exogenous antigens, processed by tubular cells. In acute interstitial nephritis, as well as in ATN, conventional US does not allow a definitive diagnosis. Kidneys appear enlarged and widely hyperechoic due to interstitial edema and inflammatory infiltration. Also, in this condition, hemodynamic changes are closely correlated to the severity and the progression of the anatomical damage. PMID:27169885

  7. Damage and loss assessment on rubber trees caused by typhoon based on high-precision remote sensing data and field investigation

    NASA Astrophysics Data System (ADS)

    Li, Jian; Fang, Weihua; Tan, Chenyan

    2016-04-01

    Forest dynamics are highly relevant to land hydrology, climate, carbon budget and biodiversity. Damage and loss assessment of forest caused by typhoon is essential to the understanding of ecosystem variations. Combination of high-precision remote sensing data and field investigation is critical to the assessment of forest damage loss. In this study, high-precision remote sensing data prior to and after typhoon from IKONOS, QuickBird, unmanned aerial vehicle (UAV) are used for identifying rubber tree disturbance. The ground truth data of rubber tree damage collected through field investigation are used to verify and compare the results. Taken the forest damage induced by typhoon Rammasun (201409) in Hainan as an example, 5 damage types (overthrown, trunk snapped below 2m, trunk snapped above 2m, half-overthrown, and sheared) of rubber trees are clearly interpreted compared with field investigation results. High-precision remote sensing data is then applied to other areas to evaluate the forest damage severity. At last, rubber tree damage severity is investigated with other typhoon hazard factors such as wind, topography, soil and precipitation.

  8. Characterization of radiation damage caused by 23 MeV protons in Multi-Pixel Photon Counter (MPPC)

    NASA Astrophysics Data System (ADS)

    Li, Zhengwei; Xu, Yupeng; Liu, Congzhan; Gu, Yudong; Xie, Fei; Li, Yanguo; Hu, Hongliang; Zhou, Xu; Lu, Xuefeng; Li, Xufang; Zhang, Shuo; Chang, Zhi; Zhang, Juan; Xu, Zhenling; Zhang, Yifei; Zhao, Jianling

    2016-06-01

    A automatic gain control system (AGC) is designed to continuously monitor and automatically control the gain of the phoswich detectors onboard the Hard X-ray Modulation Telescope (HXMT). It consists of a Am241 radioactive source and a photo-detector. The Am241 radioactive source is tagged within a plastic scintillator (BC440M). The scintillating photons produced by the decayed alpha particles from the radioactive source is readout by the photo-detector. The Multi-Pixel Photon Counter (MPPC) produced by Hamamatsu is used as the photo-detector for AGC. To verify the feasibility of its application in space environment, four MPPCs (S10362-33-050C) were irradiated by a beam of 23 MeV protons. The integrated proton fluence that exposed to the four MPPC samples are 1.0 ×108 p cm-2 , 2.0 ×108 p cm-2 , 4.0 ×108 p cm-2 and 1.0 ×1010 p cm-2 respectively. It is found that the increment leakage current of the MPPC samples caused by irradiation damage increase linearly with the integrated fluence. The pulse-height resolution of the MPPC has deteriorated hardly after irradiation. When irradiated up to 1.1 ×109cm-2 1 MeV equivalent neutrons, the MPPC completely lost its photon-counting capability but could still work as a photo-detector for AGC. The MPPC fails as a photo-detector for the AGC when the irradiated 1 MeV neutron equivalent fluences is up to 2.7 ×1010cm-2 .

  9. Identification of Personal Lubricants That Can Cause Rectal Epithelial Cell Damage and Enhance HIV Type 1 Replication in Vitro

    PubMed Central

    Begay, Othell; Jean-Pierre, Ninochka; Abraham, Ciby J.; Chudolij, Anne; Seidor, Samantha; Rodriguez, Aixa; Ford, Brian E.; Henderson, Marcus; Katz, David; Zydowsky, Thomas; Robbiani, Melissa

    2011-01-01

    Abstract Over-the-counter personal lubricants are used frequently during vaginal and anal intercourse, but they have not been extensively tested for biological effects that might influence HIV transmission. We evaluated the in vitro toxicity anti-HIV-1 activity and osmolality of popular lubricants. A total of 41 lubricants were examined and compared to Gynol II and Carraguard as positive and negative controls for toxicity, respectively. Cytotoxicity was assessed using the XTT assay. The MAGI assay with R5 and X4 HIV-1 laboratory strains was used to evaluate antiviral activity. The effect of the lubricants on differentiated Caco-2 cell monolayers (transepithelial electrical resistance, TEER) was also measured. None of the lubricants tested showed significant activity against HIV-1. Surprisingly, four of them, Astroglide Liquid, Astroglide Warming Liquid, Astroglide Glycerin & Paraben-Free Liquid, and Astroglide Silken Secret, significantly enhanced HIV-1 replication (p<0.0001). A common ingredient in three of these preparations is polyquaternium-15. In vitro testing of a chemically related compound (MADQUAT) confirmed that this similarly augmented HIV-1 replication. Most of the lubricants were found to be hyperosmolar and the TEER value dropped approximately 60% 2 h after exposure to all lubricants tested. Cells treated with Carraguard, saline, and cell controls maintained about 100% initial TEER value after 2–6 h. We have identified four lubricants that significantly increase HIV-1 replication in vitro. In addition, the epithelial damage caused by these and many other lubricants may have implications for enhancing HIV transmission in vivo. These data emphasize the importance of performing more rigorous safety testing on these products. PMID:21309617

  10. Identification of personal lubricants that can cause rectal epithelial cell damage and enhance HIV type 1 replication in vitro.

    PubMed

    Begay, Othell; Jean-Pierre, Ninochka; Abraham, Ciby J; Chudolij, Anne; Seidor, Samantha; Rodriguez, Aixa; Ford, Brian E; Henderson, Marcus; Katz, David; Zydowsky, Thomas; Robbiani, Melissa; Fernández-Romero, José A

    2011-09-01

    Over-the-counter personal lubricants are used frequently during vaginal and anal intercourse, but they have not been extensively tested for biological effects that might influence HIV transmission. We evaluated the in vitro toxicity anti-HIV-1 activity and osmolality of popular lubricants. A total of 41 lubricants were examined and compared to Gynol II and Carraguard as positive and negative controls for toxicity, respectively. Cytotoxicity was assessed using the XTT assay. The MAGI assay with R5 and X4 HIV-1 laboratory strains was used to evaluate antiviral activity. The effect of the lubricants on differentiated Caco-2 cell monolayers (transepithelial electrical resistance, TEER) was also measured. None of the lubricants tested showed significant activity against HIV-1. Surprisingly, four of them, Astroglide Liquid, Astroglide Warming Liquid, Astroglide Glycerin & Paraben-Free Liquid, and Astroglide Silken Secret, significantly enhanced HIV-1 replication (p<0.0001). A common ingredient in three of these preparations is polyquaternium-15. In vitro testing of a chemically related compound (MADQUAT) confirmed that this similarly augmented HIV-1 replication. Most of the lubricants were found to be hyperosmolar and the TEER value dropped approximately 60% 2 h after exposure to all lubricants tested. Cells treated with Carraguard, saline, and cell controls maintained about 100% initial TEER value after 2-6 h. We have identified four lubricants that significantly increase HIV-1 replication in vitro. In addition, the epithelial damage caused by these and many other lubricants may have implications for enhancing HIV transmission in vivo. These data emphasize the importance of performing more rigorous safety testing on these products. PMID:21309617

  11. Vitamins as radioprotectors in vivo II. protection by vitamin A and soybean oil against radiation damage caused by internal radionuclides

    SciTech Connect

    Harapanhalli, R.S.; Narra, V.R.; Yaghmai, V.; Azure, M.T.; Goddu, M.; Howell, R.W.; Rao, D.V.

    1994-07-01

    Tissue-incorporated radionuclides impart radiation energy over extended periods of time depending on their effective half-lives. The capacity of vitamin A dissolved in soybean oil to protect against the biological effects caused by internal radionuclides is investigated. The radiochemicals examined are DNA-binding {sup 125}IdU, cytoplasmically localized H{sup 125}IPDM and the {alpha}-particle emitter {sup 210}Po citrate. As in our previous studies, spermatogenesis in mice is used as the experimental model and spermatogonial cell survival is the biological end point. Surprisingly, soybean oil itself provides substantial and equal protection against the Auger effect of {sup 125}IdU, which is comparable to a high-LET radiation effect, as well as the low-LET effects of H{sup 125}IPDM, the dose modification factors (DMFs) being 3.6 {+-} 0.9 (SEM) and 3.4 {+-} 0.9, respectively. The protection afforded by the oil against the effects of 5.3 MeV {alpha} particles emitted by 210Po is also significant (DMF = 2.2 {+-} 0.4). The presence of vitamin A in the oil further enhanced the radioprotection against the effect of {sup 125}IdU (DMF = 4.8 {+-} 1.3) and H{sup 125}IKPDM (DMF = 5.1 {+-} 0.6); however, no enhancement is provided against the effects of {alpha} particles. These interesting results with soybean oil and vitamin A, together with data on the subcellular distribution of the protectors, provide clues regarding the mechanistic aspects of the protection. In addition, the data for vitamin A reaffirm our earlier conclusion that the mechanism by which DNA-bound Auger emitters impart biological damage is primarily indirect in nature. 29 refs., 7 figs., 2 tabs.

  12. The effect of urbanization in an arid region: Formation of a perched water table that causes environmental damages

    NASA Astrophysics Data System (ADS)

    Karnieli, A.; Issar, A.; Wolf, M.

    1984-03-01

    Construction in a new neighborhood in the israeli town of Dimona, situated in an arid region in the south of the country (150 mm average annual rainfall), resulted in a rise in groundwater levels during the subsequent rainy seasons This caused flooding of shelter basements, soil sliding, and sagging which permanently damaged walls and buildings The neighborhood had been built on continental sands and marls blanketed by loess, on a valley slope near a rocky anticlinal dip-slope Subsurface studies, using piezometer holes and groundwater analyses, revealed the presence of sand lenses alternating with plastic marls, which act as seasonal aquifers with perched water tables Groundwaters obtain high SO{4/-2} and Cl- corrosivity through contact with these nonflushed marls of the Neogene valley fill (Hazeva Formation) The reasons for the rising of groundwater were found to be (a) artificial interference with the natural (pre-construction) drainage system—interception of the hillside runoff by building plots, roads, etc, (b) partial denudation of the loess blanket, increasing the local infiltration and the build-up of local, perched water tables, and (c) corrosion of concrete and steel pipelines, as well as foundations, by prolonged contact with corrosive groundwater, resulting in haphazard but massive leakage Guidelines are proposed for an environmental improvement plan, which would include terracing and planting of the watershed above town to increase evapotranspiration, lowering of the water table by pumping, and diverting the water to suburban parks (groves of saltresistant trees), and replacement of steel and cement pipes by a non-corrodable plastic pipe system

  13. Comparative Effects of Phosphoenolpyruvate, a Glycolytic Intermediate, as an Organ Preservation Agent with Glucose and N-Acetylcysteine against Organ Damage during Cold Storage of Mouse Liver and Kidney

    PubMed Central

    Ishitsuka, Yoichi; Fukumoto, Yusuke; Kondo, Yuki; Irikura, Mitsuru; Kadowaki, Daisuke; Narita, Yuki; Hirata, Sumio; Moriuchi, Hiroshi; Maruyama, Toru; Hamasaki, Naotaka; Irie, Tetsumi

    2013-01-01

    We evaluated the usefulness of phosphoenolpyruvate (PEP), a glycolytic intermediate with antioxidative and energy supplementation potentials, as an organ preservation agent. Using ex vivo mouse liver and kidney of a static cold storage model, we compared the effects of PEP against organ damage and oxidative stress during cold preservation with those of glucose or N-acetylcysteine (NAC). Lactate dehydrogenase (LDH) leakage, histological changes, and oxidative stress parameters (measured as thiobarbituric acid reactive substance and glutathione content) were determined. PEP (100 mM) significantly prevented an increase in LDH leakage, histological changes, such as tubulonecrosis and vacuolization, and changes in oxidative stress parameters during 72 h of cold preservation in mouse liver. Although glucose (100 mM) partly prevented LDH leakage and histological changes, no effects against oxidative stress were observed. By contrast, NAC inhibited oxidative stress in the liver and did not prevent LDH leakage or histological changes. PEP also significantly prevented kidney damage during cold preservation in a dose-dependent manner, and the protective effects were superior to those of glucose and NAC. We suggest that PEP, a functional carbohydrate with organ protective and antioxidative activities, may be useful as an organ preservation agent in clinical transplantation. PMID:24490082

  14. Induction of cytotoxicity of Pelagia noctiluca venom causes reactive oxygen species generation, lipid peroxydation induction and DNA damage in human colon cancer cells

    PubMed Central

    2011-01-01

    Background The long-lasting and abundant blooming of Pelagia noctiluca in Tunisian coastal waters compromises both touristic and fishing activities and causes substantial economic losses. Determining their molecular mode of action is, important in order to limit or prevent the subsequent damages. Thus, the aim of the present study was to investigate the propensity of Pelagia noctiluca venom to cause oxidative damage in HCT 116 cells and its associated genotoxic effects. Results Our results indicated an overproduction of ROS, an induction of catalase activity and an increase of MDA generation. We looked for DNA fragmentation by means of the comet assay. Results indicated that venom of Pelagia noctiluca induced DNA fragmentation. SDS-PAGE analysis of Pelagia noctiluca venom revealed at least 15 protein bands of molecular weights ranging from 4 to 120 kDa. Conclusion Oxidative damage may be an initiating event and contributes, in part, to the mechanism of toxicity of Pelagia noctiluca venom. PMID:22151830

  15. Clinical Scenarios in Chronic Kidney Disease: Kidneys' Structural Changes in End-Stage Renal Disease.

    PubMed

    Meola, Mario; Samoni, Sara; Petrucci, Ilaria

    2016-01-01

    Acquired cystic kidney disease (ACKD) and renal cell carcinoma (RCC) are the most important manifestations of end-stage kidneys' structural changes. ACKD is caused by kidney damage or scarring and it is characterized by the presence of small, multiple cortical and medullary cysts filled with a fluid similar to preurine. ACKD prevalence varies according to predialysis and dialysis age and its pathogenesis is unknown, although it is stated that progressive destruction of renal tissue induces hypertrophy/compensatory hyperplasia of residual nephrons and may trigger the degenerative process. ACKD is almost asymptomatic, but it can lead to several complications (bleeding, rupture, infections, RCC). Ultrasound (US) is the first level imaging technique in ACKD, because of its sensitivity and reliability. The most serious complication of ACKD is RCC, which is stimulated by the same growth factors and proto-oncogenes that lead to the genesis of cysts. Two different histological types of RCC have been identi