Science.gov

Sample records for kidney damage caused

  1. A pilot study to assess markers of renal damage in the rodent kidney after exposure to 7 MHz ultrasound pulse sequences designed to cause microbubble translation and disruption

    PubMed Central

    Johnson, Kennita; Cianciolo, Rachel; Gessner, Ryan C.; Dayton, Paul A.

    2013-01-01

    Acoustic radiation force has been proposed as a mechanism to enhance microbubble concentration for therapeutic and molecular imaging applications. It is hypothesized that once microbubbles are localized, bursting them with acoustic pressure could result in local drug delivery. It is known that low-frequency, high-amplitude acoustic energy combined with cavitation nuclei can result in bioeffects. However, little is known about the bioeffects potential of acoustic parameters involved in radiation-force and microbubble destruction pulse sequences applied at higher frequencies. In this pilot study, rat kidneys are exposed to high-duty cycle, low-amplitude pulse sequences known to cause substantial bubble translation due to radiation force, as well as high-amplitude short pulse sequences known to cause microbubble destruction. Both studies are performed at 7 MHz on a clinical ultrasound system, and implemented in 3-D for entire kidney exposure. Analysis of biomarkers of renal injury and renal histopathology indicate that there was no significant renal damage due to these ultrasound parameters in conjunction with microbubbles within the study group. PMID:22104535

  2. A Protein Toxin from the Sea Anemone Phyllodiscus semoni Targets the Kidney and Causes a Severe Renal Injury with Predominant Glomerular Endothelial Damage

    PubMed Central

    Mizuno, Masashi; Nozaki, Masatoshi; Morine, Nobuya; Suzuki, Norihiko; Nishikawa, Kazuhiro; Morgan, B. Paul; Matsuo, Seiichi

    2007-01-01

    Envenomation by the sea anemone Phyllodiscus semoni causes fulminant dermatitis and, rarely, acute renal failure in humans. Here, we investigated whether the venom extracted from the nematocysts (PsTX-T) was nephrotoxic when administered intravenously in rats and whether PsTX-T induced activation of the complement system. Although small dose of PsTX-T induced acute tubular necrosis in rats resembling pathology seen in patients, kidneys displayed glomerular injury with glomerular endothelial damage, thrombus formation, mesangiolysis, and partial rupture of glomerular basement membrane, accompanied by severe tubular necrosis at 24 hours after administration of 0.03 mg of PsTX-T per animal, similar to the glomerular findings typical of severe hemolytic uremic syndrome. The early stage injury was accompanied by specific PsTX-T binding, massive complement C3b, and membrane attack complex deposition in glomeruli in the regions of injury and decreased glomerular expression of complement regulators. A pathogenic role for complement was confirmed by demonstrating that systemic complement inhibition reduced renal injury. The isolated nephrotoxic component, a 115-kd protein toxin (PsTX-115), was shown to cause identical renal pathology. The demonstration that PsTX-T and PsTX-115 were highly nephrotoxic acting via induction of complement activation suggests that inhibition of complement might be used to prevent acute renal damage following envenomation by P. semoni. PMID:17600120

  3. [Causes of removal of kidney allotransplants].

    PubMed

    Rozental', R L; Il'inskiĭ, I M; Tikhomirova, T E; Bitsans, Ia B; Luse, L Ia

    1983-07-01

    The most frequent causes of cessation of the functioning of 60 kidney transplants was an acute rejection reaction and thrombosis of main vessels of the transplanted kidney. The authors believe the attraction of the cytological analysis of the urine, instrumental and roentgen-radiological examinations as well as biochemical data to improve the diagnosis of pathological changes in the transplant. PMID:6353738

  4. Effects of curcumin on methyl methanesulfonate damage to mouse kidney.

    PubMed

    Cuce, G; Cetinkaya, S; Isitez, N; Kuccukturk, S; Sozen, M E; Kalkan, S; Cigerci, I H; Demirel, H H

    2016-02-01

    Methylmethane sulfonate (MMS) is an alkylating agent that may react with DNA and damage it. We investigated histological changes and apoptosis caused by MMS and the effects of curcumin on MMS treated mouse kidneys. Twenty-four mice were divided into four equal groups: controls injected with saline, a group injected with 40 mg/kg MMS, a group injected with 40 mg/kg MMS and given 100 mg/kg curcumin by gavage, and a group given 100 mg/kg curcumin by gavage. MMS caused congestion and vacuole formation, and elevated the apoptotic index significantly, but had no other effect on kidney tissue. Curcumin improved the congestion and vacuole formation caused by MMS and decreased the apoptotic index. Curcumin administered with MMS appears to decrease the deleterious effects of MMS on the kidney. PMID:26529305

  5. Hereditary Causes of Kidney Stones and Chronic Kidney Disease

    PubMed Central

    Edvardsson, Vidar O.; Goldfarb, David S.; Lieske, John C.; Beara-Lasic, Lada; Anglani, Franca; Milliner, Dawn S.; Palsson, Runolfur

    2013-01-01

    Adenine phosphoribosyltransferase (APRT) deficiency, cystinuria, Dent disease, familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC) and primary hyperoxaluria (PH) are rare but important causes of severe kidney stone disease and/or chronic kidney disease in children. Recurrent kidney stone disease and nephrocalcinosis, particularly in pre-pubertal children, should alert the physician to the possibility of an inborn error of metabolism as the underlying cause. Unfortunately, the lack of recognition and knowledge of the five disorders has frequently resulted in an unacceptable delay in diagnosis and treatment, sometimes with grave consequences. A high index of suspicion coupled with early diagnosis may reduce or even prevent the serious long-term complications of these diseases. In this paper, we review the epidemiology, clinical features, diagnosis, treatment and outcome of patients with APRT deficiency, cystinuria, Dent disease, FHHNC and PH with emphasis on childhood manifestations. PMID:23334384

  6. Biomarkers in chronic kidney disease, from kidney function to kidney damage

    PubMed Central

    Lopez-Giacoman, Salvador; Madero, Magdalena

    2015-01-01

    Chronic kidney disease (CKD) typically evolves over many years, with a long latent period when the disease is clinically silent and therefore diagnosis, evaluation and treatment is based mainly on biomarkers that assess kidney function. Glomerular filtration rate (GFR) remains the ideal marker of kidney function. Unfortunately measuring GFR is time consuming and therefore GFR is usually estimated from equations that take into account endogenous filtration markers like serum creatinine (SCr) and cystatin C (CysC). Other biomarkers such as albuminuria may precede kidney function decline and have demonstrated to have strong associations with disease progression and outcomes. New potential biomarkers have arisen with the promise of detecting kidney damage prior to the currently used markers. The aim of this review is to discuss the utility of the GFR estimating equations and biomarkers in CKD and the different clinical settings where these should be applied. The CKD-Epidemiology Collaboration equation performs better than the modification of diet in renal disease equation, especially at GFR above 60 mL/min per 1.73 m2. Equations combining CysC and SCr perform better than the equations using either CysC or SCr alone and are recommended in situations where CKD needs to be confirmed. Combining creatinine, CysC and urine albumin to creatinine ratio improves risk stratification for kidney disease progression and mortality. Kidney injury molecule and neutrophil gelatinase-associated lipocalin are considered reasonable biomarkers in urine and plasma to determine severity and prognosis of CKD. PMID:25664247

  7. Vascular Damage in Kidney Disease: Beyond Hypertension

    PubMed Central

    Stinghen, Andréa E. M.; Pecoits-Filho, Roberto

    2011-01-01

    Chronic kidney disease (CKD) is highly prevalent and a multiplier of cardiovascular disease (CVD) and cannot be completely explained by traditional Framinghan risk factors. Consequently, greater emphasis has been placed in nontraditional risk factors, such as inflammation, endothelial dysfunction, sympathetic overactivation, protein-energy wasting oxidative stress, vascular calcification, and volume overload. The accumulation of uremic toxins (and the involvement of genetic factors) is responsible for many of the clinical consequences of a condition known as uremia. In this brief paper, we discuss mechanisms involved in the vascular damage of CKD patients, aiming to point out that important factors beyond hypertension are largely responsible for endothelial activation and increased CVD risk, with potential impact on risk stratification and development of novel therapeutic options. PMID:21876786

  8. Acute kidney injury: A rare cause.

    PubMed

    Mendonca, Satish; Barki, Satish; Mishra, Mayank; Kumar, R S V; Gupta, Devika; Gupta, Pooja

    2015-09-01

    We present a young lady who consumed hair dye, which contained paraphenylene diamine (PPD), as a means of deliberate self-harm. This resulted in severe angio-neurotic edema for which she had to be ventilated, and thereafter developed rhabdomyolysis leading to acute kidney injury (AKI). The unusual aspect was that the patient continued to have flaccid quadriparesis and inability to regain kidney function. Renal biopsy performed 10 weeks after the dye consumption revealed severe acute tubular necrosis with myoglobin pigment casts. This suggests that PPD has a long-term effect leading to ongoing myoglobinuria, causing flaccid paralysis to persist and preventing the recovery of AKI. In such instances, timely treatment to prevent AKI in the form alkalinization of urine should be initiated promptly. Secondly, because PPD is a nondialyzable toxin, and its long-term effect necessitates its speedy removal, hemoperfusion might be helpful and is worth considering. PMID:26354573

  9. Accidental and iatrogenic causes of acute kidney injury

    PubMed Central

    Twombley, Katherine; Baum, Michel; Gattineni, Jyothsna

    2014-01-01

    Purpose of review Ingestions and iatrogenic administration of drugs are all too common causes of acute kidney injury. This review will discuss these preventable causes of acute kidney injury. Recent findings Recent studies have examined the pathophysiology of acute kidney injury by several commonly used drugs. These studies have shown that drugs and toxins can cause acute kidney injury by altering renal hemodynamics, direct tubular injury or causing renal tubular obstruction. Summary Knowledge of the drugs that cause acute kidney injury and how this injury is manifested can lead to improved diagnosis and treatment with the ultimate goal of prevention. PMID:21293274

  10. Taurine ameliorates potassium bromate-induced kidney damage in rats.

    PubMed

    Ahmad, Mir Kaisar; Khan, Aijaz Ahmed; Mahmood, Riaz

    2013-11-01

    Potassium bromate (KBrO3) is widely used as a food additive and is a major water disinfection by-product. Several studies have shown that it causes nephrotoxicity in humans and experimental animals. We have investigated the potential role of the sulfonic amino acid taurine in protecting the kidney from KBrO3-induced damage in rats. Animals were randomly divided into four groups: control, KBrO3 alone, taurine alone and taurine + KBrO3. Administration of single oral dose of KBrO3 alone caused nephrotoxicity as evident by elevated serum creatinine and urea levels. Renal lipid peroxidation and protein carbonyls were increased while total sulfhydryl groups and reduced glutathione levels were decreased suggesting the induction of oxidative stress. The enzymes of renal brush border membrane were inhibited and those of carbohydrate metabolism were altered. There was an increase in DNA damage and DNA-protein cross-linking. Treatment with taurine, prior to administration of KBrO3, resulted in significant attenuation in all these parameters but the administration of taurine alone had no effect. Histological studies supported these biochemical results showing extensive renal damage in KBrO3-treated animals and greatly reduced tissue injury in the taurine + KBrO3 group. These results show that taurine is an effective chemoprotectant against bromate-induced renal damage and this amino acid could prove to be useful in attenuating the toxicity of this compound. PMID:23913267

  11. Factors predicting kidney damage in Puumala virus infected patients in Southern Denmark.

    PubMed

    Skarphedinsson, S; Thiesson, H C; Shakar, S A; Tepel, M

    2015-10-01

    In Europe, infections with Puumala hantavirus cause nephropathia epidemica. Presently the risk factors predicting severe kidney damage after Puumala virus infection are not well known. The objective of the study was to investigate environmental and individual factors predicting severe kidney damage caused by serologically established Puumala infections. In a nationwide cohort study we investigated all serologically established Puumala infections in Southern Denmark from 1996 to 2012. A total of 184 patients had serologically verified Puumala virus infection. In patients with Puumala virus infections the decrease of platelet counts preceded acute kidney failure. Multivariable logistic regression demonstrated that recent activities in the forest, platelet counts, and flu-like symptoms predicted estimated glomerular filtration rates less than 30 mL/min/1.73 m(²), but not age, gender, fever, nor abdominal pain. Severe kidney damage in Puumala infections in Southern Denmark is associated with the risk of recent activities in the forest. PMID:26205664

  12. Diabetic Kidney Damage May Start Earlier Than Thought

    MedlinePlus

    ... html Diabetic Kidney Damage May Start Earlier Than Thought Higher-than-normal blood sugar levels can lead ... from diabetes may begin much sooner than previously thought, according to a new study. Researchers found that ...

  13. Damage Caused by the Rogue Trustee

    ERIC Educational Resources Information Center

    O'Banion, Terry

    2009-01-01

    Fifty-nine community college presidents and chancellors in 16 states report on the damage caused by rogue trustees. While the damage to presidents, other trustees, and faculty and staff is alarming, the damage these trustees cause the college suggests that the rogue trustee may be the single most destructive force ever to plague an educational…

  14. Do We Know What Causes Kidney Cancer?

    MedlinePlus

    ... kidney cells to become cancerous. Changes (mutations) in genes Researchers are starting to understand how certain changes ... oncogenes or turn off tumor suppressor genes. Inherited gene mutations Certain inherited DNA changes can lead to ...

  15. Does Immunosuppressive Therapy Affect Markers of Kidney Damage?

    PubMed

    Kędzierska, Karolina; Sindrewicz, Krzysztof; Sporniak-Tutak, Katarzyna; Gołembiewska, Edyta; Zair, Labib; Sieńko, Jerzy; Stańczyk-Dunaj, Małgorzata; Baranowska-Bosiacka, Irena; Ciechanowski, Kazimierz

    2016-01-01

    BACKGROUND Markers currently used to detect kidney damage are effective in both early (KIM-1, NGAL) and late (MCP-1, MMP, TIMP) stages of renal tubular damage, indicating the progression of chronic kidney disease. Immunosuppressive drugs may damage the transplanted organ through their direct toxic effects and by contributing to the development of chronic fibrosis and tubular atrophy. The aim of this study was to determine if immunosuppressive drugs per se affect the concentration of kidney damage markers, by using concentrations and doses of immunosuppressive within therapeutic, not toxic, levels in rat blood. MATERIAL AND METHODS The study involved 36 rats grouped according to the immunosuppressive regimen used (tacrolimus, mycophenolate mofetil, cyclosporin A, rapamycin, and prednisone). The rats were treated with a 3-drug protocol for 6 months. No drugs were administered to the control group. The blood samples were collected to determine the concentration of kidney damage markers by using enzyme-linked immunosorbent assay (ELISA). RESULTS 1. In the groups receiving regimens based on cyclosporin A (CyA), significantly higher concentrations of KIM-1 in plasma was observed compared to cases not treated with drugs. 2. The use of tacrolimus was associated with increased concentrations of MCP-1 in plasma and rapamycin was associated with decreased concentrations of MCP-1 in plasma. 3. Rapamycin induces an unfavorable, profibrotic imbalance between metalloproteinase-9 and its inhibitor, TIMP-1. CONCLUSIONS Commonly used immunosuppressive drugs influence the concentration of blood markers of kidney damage. This fact should be taken into account when analyzing the association between the concentration of these markers and pathological processes occurring in the transplanted kidney. PMID:26936590

  16. Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury

    PubMed Central

    Maejima, Ikuko; Takahashi, Atsushi; Omori, Hiroko; Kimura, Tomonori; Takabatake, Yoshitsugu; Saitoh, Tatsuya; Yamamoto, Akitsugu; Hamasaki, Maho; Noda, Takeshi; Isaka, Yoshitaka; Yoshimori, Tamotsu

    2013-01-01

    Diverse causes, including pathogenic invasion or the uptake of mineral crystals such as silica and monosodium urate (MSU), threaten cells with lysosomal rupture, which can lead to oxidative stress, inflammation, and apoptosis or necrosis. Here, we demonstrate that lysosomes are selectively sequestered by autophagy, when damaged by MSU, silica, or the lysosomotropic reagent L-Leucyl-L-leucine methyl ester (LLOMe). Autophagic machinery is recruited only on damaged lysosomes, which are then engulfed by autophagosomes. In an autophagy-dependent manner, low pH and degradation capacity of damaged lysosomes are recovered. Under conditions of lysosomal damage, loss of autophagy causes inhibition of lysosomal biogenesis in vitro and deterioration of acute kidney injury in vivo. Thus, we propose that sequestration of damaged lysosomes by autophagy is indispensable for cellular and tissue homeostasis. PMID:23921551

  17. [Hazardous environmental factors causing renal damage in children].

    PubMed

    Xu, Zhi-Quan; Yi, Zhu-Wen

    2014-04-01

    Hazardous environmental factors invade the body through multiple routes, including ingestion, inhalation and absorption by contact with the skin and mucous membrane. They are from various sources and soil, water, air, building and decorative materials, foods and daily necessities are the main carriers. According to their physical and chemical properties and morphological characteristics, these hazardous factors are classified as metals, inorganic matter, organic matter, radioactive substances, biological toxins, viruses, bacteria, mycoplasmas, chlamydiae and parasites. They cause diseases through blood and urine and also have kidney susceptibility. This article suggests that pediatricians should fully understand the characteristics and seriousness of hazardous environmental factors that cause renal damage, and pay attention to the prevention and control of these factors so as to minimize renal damage in children. PMID:24750822

  18. Indoxyl sulphate and kidney disease: Causes, consequences and interventions.

    PubMed

    Ellis, Robert J; Small, David M; Vesey, David A; Johnson, David W; Francis, Ross; Vitetta, Luis; Gobe, Glenda C; Morais, Christudas

    2016-03-01

    In the last decade, chronic kidney disease (CKD), defined as reduced renal function (glomerular filtration rate (GFR)?kidney damage (typically manifested as albuminuria) for at least 3 months, has become one of the fastest-growing public health concerns worldwide. CKD is characterized by reduced clearance and increased serum accumulation of metabolic waste products (uremic retention solutes). At least 152 uremic retention solutes have been reported. This review focuses on indoxyl sulphate (IS), a protein-bound, tryptophan-derived metabolite that is generated by intestinal micro-organisms (microbiota). Animal studies have demonstrated an association between IS accumulation and increased fibrosis, and oxidative stress. This has been mirrored by in vitro studies, many of which report cytotoxic effects in kidney proximal tubular cells following IS exposure. Clinical studies have associated IS accumulation with deleterious effects, such as kidney functional decline and adverse cardiovascular events, although causality has not been conclusively established. The aims of this review are to: (i) establish factors associated with increased serum accumulation of IS; (ii) report effects of IS accumulation in clinical studies; (iii) critique the reported effects of IS in the kidney, when administered both in vivo and in vitro; and (iv) summarize both established and hypothetical therapeutic options for reducing serum IS or antagonizing its reported downstream effects in the kidney. PMID:26239363

  19. A model for damage of microheterogeneous kidney stones

    NASA Astrophysics Data System (ADS)

    Szeri, Andrew J.; Zohdi, Tarek I.; Blake, John R.

    2005-04-01

    In this paper, a theoretical framework is developed for the mechanics of kidney stones with an isotropic, random microstructure-such as those comprised of cystine or struvite. The approach is based on a micromechanical description of kidney stones comprised of crystals in a binding matrix. Stress concentration functions are developed to determine load sharing of the particle phase and the binding matrix phase. As an illustration of the theory, the fatigue of kidney stones subject to shock wave lithotripsy is considered. Stress concentration functions are used to construct fatigue life estimates for each phase, as a function of the volume fraction and of the mechanical properties of the constituents, as well as the loading from SWL. The failure of the binding matrix is determined explicitly in a model for the accumulation of distributed damage. Also considered is the amount of material damaged in a representative non-spherical collapse of a cavitation bubble near the stone surface. The theory can be used to assess the importance of microscale heterogeneity on the comminution of renal calculi and to estimate the number of cycles to failure in terms of measurable material properties.

  20. Red yeast rice repairs kidney damage and reduces inflammatory transcription factors in rat models of hyperlipidemia

    PubMed Central

    DING, MEI; SI, DAOYUAN; ZHANG, WENQI; FENG, ZHAOHUI; HE, MIN; YANG, PING

    2014-01-01

    Xuezhikang (XZK), an extract of red yeast rice, has been widely used for the management of hyperlipidemia and coronary heart disease (CHD); however, the effects of XZK treatment on kidney injury have not yet been fully identified. The aim of the current study was to evaluate the effects of XZK on the kidneys and investigate the related mechanisms in a rat model of hyperlipidemia. Thus, the effect on inflammatory transcription factors and kidney damage was investigated with in vitro and in vivo experiments on hyperlipidemic rats following XZK treatment. The results revealed that the plasma levels of total cholesterol (TC), triglycerides (TG) and low-density lipoprotein-cholesterol (LDL-C) were significantly decreased, while the levels of high-density lipoprotein-cholesterol (HDL-C) were significantly upregulated in the XZK treatment group, as compared with those in the hyperlipidemia group (P<0.05). In addition, the results demonstrated that XZK was able to repair the kidney damage caused by hyperlipidemia. Furthermore, the expression levels of the inflammatory transcription factors, tumor necrosis factor-α and interleukin-6, were shown to be reduced in the XZK group when compared with the hyperlipidemia group. In summary, XZK reduces kidney injury, downregulates the levels of TG, TC and LDL-C, as well as the expression levels of inflammatory transcription factors, and upregulates HDL-C. These results further the understanding of the molecular pathogenic mechanisms underlying hyperlipidemia and aid the development of XZK as an effective therapeutic agent for hyperlipidemia. PMID:25371725

  1. Red yeast rice repairs kidney damage and reduces inflammatory transcription factors in rat models of hyperlipidemia.

    PubMed

    Ding, Mei; Si, Daoyuan; Zhang, Wenqi; Feng, Zhaohui; He, Min; Yang, Ping

    2014-12-01

    Xuezhikang (XZK), an extract of red yeast rice, has been widely used for the management of hyperlipidemia and coronary heart disease (CHD); however, the effects of XZK treatment on kidney injury have not yet been fully identified. The aim of the current study was to evaluate the effects of XZK on the kidneys and investigate the related mechanisms in a rat model of hyperlipidemia. Thus, the effect on inflammatory transcription factors and kidney damage was investigated with in vitro and in vivo experiments on hyperlipidemic rats following XZK treatment. The results revealed that the plasma levels of total cholesterol (TC), triglycerides (TG) and low-density lipoprotein-cholesterol (LDL-C) were significantly decreased, while the levels of high-density lipoprotein-cholesterol (HDL-C) were significantly upregulated in the XZK treatment group, as compared with those in the hyperlipidemia group (P<0.05). In addition, the results demonstrated that XZK was able to repair the kidney damage caused by hyperlipidemia. Furthermore, the expression levels of the inflammatory transcription factors, tumor necrosis factor-α and interleukin-6, were shown to be reduced in the XZK group when compared with the hyperlipidemia group. In summary, XZK reduces kidney injury, downregulates the levels of TG, TC and LDL-C, as well as the expression levels of inflammatory transcription factors, and upregulates HDL-C. These results further the understanding of the molecular pathogenic mechanisms underlying hyperlipidemia and aid the development of XZK as an effective therapeutic agent for hyperlipidemia. PMID:25371725

  2. Keep Your Kidneys Clear: Kicking Kidney Stones

    MedlinePlus

    ... Your Kidneys Clear Keep Your Kidneys Clear Kicking Kidney Stones Some say that passing a kidney stone is like delivering a baby made of razor ... is that, although they can be excruciatingly painful, kidney stones rarely cause permanent damage, and you may be ...

  3. DNA damage: from causes to cures.

    PubMed

    Bowater, Richard P; Borts, Rhona H; White, Malcolm F

    2009-06-01

    In order to maintain genome integrity, it is essential that any DNA damage is repaired. This is achieved in diverse ways in all cells to ensure cellular survival. There is a large repertoire of proteins that remove and repair DNA damage. However, sometimes these processes do not function correctly, leading to genome instability. Studies of DNA repair and genome instability and their causes and cures were showcased in the 2008 Biochemical Society Annual Symposium. The present article provides a summary of the talks given and the subsequent papers in this issue of Biochemical Society Transactions. PMID:19442241

  4. Reduced Renal Methylarginine Metabolism Protects against Progressive Kidney Damage.

    PubMed

    Tomlinson, James A P; Caplin, Ben; Boruc, Olga; Bruce-Cobbold, Claire; Cutillas, Pedro; Dormann, Dirk; Faull, Peter; Grossman, Rebecca C; Khadayate, Sanjay; Mas, Valeria R; Nitsch, Dorothea D; Wang, Zhen; Norman, Jill T; Wilcox, Christopher S; Wheeler, David C; Leiper, James

    2015-12-01

    Nitric oxide (NO) production is diminished in many patients with cardiovascular and renal disease. Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of NO synthesis, and elevated plasma levels of ADMA are associated with poor outcomes. Dimethylarginine dimethylaminohydrolase-1 (DDAH1) is a methylarginine-metabolizing enzyme that reduces ADMA levels. We reported previously that a DDAH1 gene variant associated with increased renal DDAH1 mRNA transcription and lower plasma ADMA levels, but counterintuitively, a steeper rate of renal function decline. Here, we test the hypothesis that reduced renal-specific ADMA metabolism protects against progressive renal damage. Renal DDAH1 is expressed predominately within the proximal tubule. A novel proximal tubule-specific Ddah1 knockout (Ddah1(PT-/-)) mouse demonstrated tubular cell accumulation of ADMA and lower NO concentrations, but unaltered plasma ADMA concentrations. Ddah1(PT-/-) mice were protected from reduced kidney tissue mass, collagen deposition, and profibrotic cytokine expression in two independent renal injury models: folate nephropathy and unilateral ureteric obstruction. Furthermore, a study of two independent kidney transplant cohorts revealed higher levels of human renal allograft methylarginine-metabolizing enzyme gene expression associated with steeper function decline. We also report an association among DDAH1 expression, NO activity, and uromodulin expression supported by data from both animal and human studies, raising the possibility that kidney DDAH1 expression exacerbates renal injury through uromodulin-related mechanisms. Together, these data demonstrate that reduced renal tubular ADMA metabolism protects against progressive kidney function decline. Thus, circulating ADMA may be an imprecise marker of renal methylarginine metabolism, and therapeutic ADMA reduction may even be deleterious to kidney function. PMID:25855779

  5. PLASMID DNA DAMAGE CAUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN

    EPA Science Inventory

    Plasmid DNA damage caused by methylated arsenicals, ascorbic acid and human liver ferritin.

    Arsenic causes cancer in human skin, urinary bladder, lung, liver and kidney and is a significant world-wide public health problem. Although the metabolism of inorganic arsenic is ...

  6. Vascular damage caused by Cruorifilaria tuberocauda in the capybara (Hydrochoerus hydrochaeris).

    PubMed

    Morales, G A; Guzmań, V H; Angel, D

    1978-01-01

    Infection with Cruorifilaria tuberocauda caused vascular damage in the kidneys, lungs and heart of the capybara (Hydrochoerus hydrochaeris). The most significant lesions observed were in the renal and pulmonary arteries. They consisted of villous endarteritis, intimal and medial hypertrophy of the vessel walls, and large rugose protuberances that encroached upon the lumen leading to pyramidal infarcts in the kidneys. Coronary vascular lesions were related to dead and calcified parasites. PMID:633511

  7. Oral nanoparticulate curcumin combating arsenic-induced oxidative damage in kidney and brain of rats.

    PubMed

    Sankar, Palanisamy; Telang, Avinash Gopal; Kalaivanan, Ramya; Karunakaran, Vijayakaran; Suresh, Subramaniyam; Kesavan, Manickam

    2016-03-01

    Arsenic exposure through drinking water causes oxidative stress and tissue damage in the kidney and brain. Curcumin (CUR) is a good antioxidant with limited clinical application because of its hydrophobic nature and limited bioavailability, which can be overcome by the encapsulation of CUR with nanoparticles (NPs). The present study investigates the therapeutic efficacy of free CUR and NP-encapsulated CUR (CUR-NP) against sodium arsenite-induced renal and neuronal oxidative damage in rat. The CUR-NP prepared by emulsion technique and particle size ranged between 120 and 140 nm, with the mean particle size being 130.8 nm. Rats were divided into five groups (groups 1-5) with six animals in each group. Group 1 served as control. Group 2 rats were exposed to sodium arsenite (25 ppm) daily through drinking water for 42 days. Groups 3, 4, and 5 were treated with arsenic as in Group 2; however, these animals were also administered with empty NPs, CUR (100 mg/kg body weight), and CUR-NP (100 mg/kg), respectively, by oral gavage during the last 14 days of arsenic exposure. Arsenic exposure significantly increased serum urea nitrogen and creatinine levels. Arsenic increased lipid peroxidation (LPO), reduced glutathione content and the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase were depleted significantly in both kidney and brain. Treatment with free CUR and CUR-NP decreased the LPO and increased the enzymatic and nonenzymatic antioxidant system in kidney and brain. Histopathological examination showed that kidney and brain injury mediated by arsenic was ameliorated by treatment. However, the amelioration percentage indicates that CUR-NP had marked therapeutic effect on arsenic-induced oxidative damage in kidney and brain tissues. PMID:24105067

  8. Textile damage caused by vapour cloud explosions.

    PubMed

    Was-Gubala, J; Krauss, W

    2004-01-01

    The aim of the project was to investigate the damage to garments caused by particular vapour cloud explosions. The authors would like to be able to provide investigators with specific information on how to link clothes to a specific type of crime: a particular case study was the inspiration for the examinations. Experiments were carried out in the fire reconstruction chamber of the laboratory using a selection of 26 clothes and 15 household garments differing in colour, fibre composition and textile construction. PMID:15527183

  9. Loss of Glis2/NPHP7 causes kidney epithelial cell senescence and suppresses cyst growth in the Kif3a mouse model of cystic kidney disease.

    PubMed

    Lu, Dongmei; Rauhauser, Alysha; Li, Binghua; Ren, Chongyu; McEnery, Kayla; Zhu, Jili; Chaki, Moumita; Vadnagara, Komal; Elhadi, Sarah; Jetten, Anton M; Igarashi, Peter; Attanasio, Massimo

    2016-06-01

    Enlargement of kidney tubules is a common feature of multiple cystic kidney diseases in humans and mice. However, while some of these pathologies are characterized by cyst expansion and organ enlargement, in others, progressive interstitial fibrosis and kidney atrophy prevail. The Kif3a knockout mouse is an established non-orthologous mouse model of cystic kidney disease. Conditional inactivation of Kif3a in kidney tubular cells results in loss of primary cilia and rapid cyst growth. Conversely, loss of function of the gene GLIS2/NPHP7 causes progressive kidney atrophy, interstitial inflammatory infiltration, and fibrosis. Kif3a null tubular cells have unrestrained proliferation and reduced stabilization of p53 resulting in a loss of cell cycle arrest in the presence of DNA damage. In contrast, loss of Glis2 is associated with activation of checkpoint kinase 1, stabilization of p53, and induction of cell senescence. Interestingly, the cystic phenotype of Kif3a knockout mice is partially rescued by genetic ablation of Glis2 and pharmacological stabilization of p53. Thus, Kif3a is required for cell cycle regulation and the DNA damage response, whereas cell senescence is significantly enhanced in Glis2 null cells. Hence, cell senescence is a central feature in nephronophthisis type 7 and Kif3a is unexpectedly required for efficient DNA damage response and cell cycle arrest. PMID:27181777

  10. Functional and morphologic damage in the neonatally irradiated canine kidney

    SciTech Connect

    Peneyra, R.S.; Jaenke, R.S.

    1985-11-01

    Perinatal irradiation of the developing kidney results in progressive glomerulosclerosis (PGS) and renal failure. This syndrome may result from direct radiation damage to mature deep cortical nephrons and/or nephron functional adaptations resulting from outer cortical nephron ablation. Beagle dogs received single, whole-body exposures (330 R) to /sup 60/Co gamma radiation at 4 days of age (IR4) to study the combined effects of direct radiation damage and nephron loss, or at 30 days of age (IR30) to study the effects of renal irradiation alone. To study the effects of nephron loss alone, dogs underwent unilateral nephrectomy (UN4) or superficial hyperthermic renal ablation (HY4) at 4 days of age. Nephron loss due to irradiation (IR4) and partial renal ablation (UN4 and HY4) was associated with compensatory nephron hypertrophy and increased single nephron glomerular filtration rate (SNGFR), while irradiation at 30 days resulted in transitory decreased SNGFR. Similar degrees of PGS occurred in IR4 dogs which experienced both irradiation and loss of nephrons and UN4 and HY4 dogs which experienced only loss of nephrons. PGS of lesser severity also occurred in IR30 dogs. These findings indicate that PGS associated with perinatal renal irradiation results from direct radiation damage to deep cortical nephrons and compensatory functional changes occurring in response to loss of renal mass.

  11. Ammonium dichromate poisoning: A rare cause of acute kidney injury.

    PubMed

    Radhakrishnan, H; Gopi, M; Arumugam, A

    2014-11-01

    Ammonium dichromate is an inorganic compound frequently used in screen and color printing. Being a strong oxidizing agent, it causes oxygen free radical injury resulting in organ failure. We report a 25-year-old female who presented with acute kidney injury after consumption of ammonium dichromate. She was managed successfully with hemodialysis and supportive measures. This case is reported to highlight the toxicity of ammonium dichromate. PMID:25484533

  12. Ammonium dichromate poisoning: A rare cause of acute kidney injury

    PubMed Central

    Radhakrishnan, H.; Gopi, M.; Arumugam, A.

    2014-01-01

    Ammonium dichromate is an inorganic compound frequently used in screen and color printing. Being a strong oxidizing agent, it causes oxygen free radical injury resulting in organ failure. We report a 25-year-old female who presented with acute kidney injury after consumption of ammonium dichromate. She was managed successfully with hemodialysis and supportive measures. This case is reported to highlight the toxicity of ammonium dichromate. PMID:25484533

  13. Plasmodium Vivax causing acute kidney injury: A foe less addressed

    PubMed Central

    Naqvi, Rubina

    2015-01-01

    Objective: To report patients developing acute kidney injury (AKI) after Vivax malaria. Methods: An observational cohort of patients identified as having acute kidney injury (AKI) after Plasmodium vivax infection. AKI was defined according to RIFLE criteria with sudden rise in creatinine or decline in urine output or both. All patients had normal size non obstructed kidneys on ultrasonography, with no previous co morbids. Malarial parasite Vivax was seen on blood peripheral film in all patients. Results: From January 1990 – December 2014, total 5623 patients with AKI were registered in our institute, of these 671 (11.93%) developed AKI in association with malarial infection, furthermore, Vivax was species in 109 patients. Average age of patients was 33.49±14.67 (range 8-78 years) with 66 male and 43 female. Oligo-anuria and vomiting were most common associated symptoms with fever. Renal replacement therapy required in 82 (75.22%) patients. Complete recovery was seen in 69 (63.30%), while 14 (12.84%) expired during acute phase of illness. Jaundice, thrombocytopenia, central nervous system involvement, mechanical ventilation requirement and hematuria were the factors significantly associated with high mortality. Conclusion: Malaria still causing significant morbidity and mortality in our part of world. Vivax malaria can present with hemolysis, thrombocytopenia and kidney failure in remarkable number of patients. PMID:26870118

  14. Coccidian Infection Causes Oxidative Damage in Greenfinches

    PubMed Central

    Sepp, Tuul; Karu, Ulvi; Blount, Jonathan D.; Sild, Elin; Männiste, Marju; Hõrak, Peeter

    2012-01-01

    The main tenet of immunoecology is that individual variation in immune responsiveness is caused by the costs of immune responses to the hosts. Oxidative damage resulting from the excessive production of reactive oxygen species during immune response is hypothesized to form one of such costs. We tested this hypothesis in experimental coccidian infection model in greenfinches Carduelis chloris. Administration of isosporan coccidians to experimental birds did not affect indices of antioxidant protection (TAC and OXY), plasma triglyceride and carotenoid levels or body mass, indicating that pathological consequences of infection were generally mild. Infected birds had on average 8% higher levels of plasma malondialdehyde (MDA, a toxic end-product of lipid peroxidation) than un-infected birds. The birds that had highest MDA levels subsequent to experimental infection experienced the highest decrease in infection intensity. This observation is consistent with the idea that oxidative stress is a causative agent in the control of coccidiosis and supports the concept of oxidative costs of immune responses and parasite resistance. The finding that oxidative damage accompanies even the mild infection with a common parasite highlights the relevance of oxidative stress biology for the immunoecological research. PMID:22615772

  15. Chronic kidney disease of uncertain etiology in Sri Lanka: Are leptospirosis and Hantaviral infection likely causes?

    PubMed

    Gamage, Chandika Damesh; Sarathkumara, Yomani Dilukshi

    2016-06-01

    Chronic kidney disease of uncertain etiology (CKDu) has been a severe burden and a public health crisis in Sri Lanka over the past two decades. Many studies have established hypotheses to identify potential risk factors although causative agents, risk factors and etiology of this disease are still uncertain. Several studies have postulated that fungal and bacterial nephrotoxins are a possible etiological factor; however, the precise link between hypothesized risk factors and the pathogenesis of chronic kidney disease has yet to be proven in prior studies. Leptospirosis and Hantavirus infections are important zoonotic diseases that are naturally maintained and transmitted via infected rodent populations and which present similar clinical and epidemiological features. Both infections are known to be a cause of acute kidney damage that can proceed into chronic renal failure. Several studies have reported presence of both infections in Sri Lanka. Therefore, we hypothesized that pathogenic Leptospira or Hantavirus are possible causative agents of acute kidney damage which eventually progresses to chronic kidney disease in Sri Lanka. The proposed hypothesis will be evaluated by means of an observational study design. Past infection will be assessed by a cross-sectional study to detect the presence of IgG antibodies with further confirmatory testing among chronic kidney disease patients and individuals from the community in selected endemic areas compared to low prevalence areas. Identification of possible risk factors for these infections will be followed by a case-control study and causality will be further determined with a cohort study. If the current hypothesis is true, affected communities will be subjected for medical interventions related to the disease for patient management while considering supportive therapies. Furthermore and possibly enhance their preventive and control measures to improve vector control to decrease the risk of infection. PMID:27142134

  16. [An unusual cause of ureteral obstruction in kidney transplant].

    PubMed

    Vigo, Valentina; Rossi, Luigi; Lisi, Piero; Antonelli, Maurizio; Lomonte, Carlo; Basile, Carlo

    2016-01-01

    Inguinal herniation of the ureter in a kidney transplantation is a rare cause of late distal ureteral obstruction. Herniation is usually secondary to the implant of a long redundant ureter and to its course on the spermatic cord. This clinical condition can worsen graft function in the presence of ipsilateral hydroureteronephrosis. In this review, we describe the case of an asymptomatic 51-year-old man with a history of right iliac renal allotransplantation 12 years before. Kidney ultrasound showed moderate hydroureteronephrosis and ureteral kneeling at the upper third of the inguinal canal. The patient presented a mild increase in serum creatinine; physical examination revealed an ipsilateral inguinal hernia. A CT scan of the abdomen with no contrast medium confirmed middle-distal ureteral kneeling engaging in the sac of the right inguinal hernia. The patient underwent surgical hernia repair with no complications and his renal function recovered completely. PMID:26913744

  17. Diagnosis of kidney damage using novel acute kidney injury biomarkers: assessment of kidney function alone is insufficient.

    PubMed

    Murray, Patrick T

    2011-01-01

    Acute kidney injury (AKI) is a syndrome that is associated with a major burden of morbidity and mortality in a variety of high risk patient populations, many of them cared for by intensivists. Following renal transplantation, delayed graft function (DGF) caused by severe acute tubular necrosis (ATN), defined by a requirement for dialysis during the initial post-transplant week, complicates postoperative management, and if prolonged (>14 days), adversely affects allograft survival. Neutrophil gelatinase-associated lipocalin (NGAL) and other novel biomarkers can detect AKI earlier than serum creatinine, and can predict AKI severity in high risk patient populations, including kidney transplant recipients. Hollmen and colleagues now demonstrate that elevated urine NGAL in deceased kidney donors is a significant risk factor for prolonged post-transplant DGF in recipients. These findings have clear implications with regard to potentially improved assessment of deceased donor suitability for potential renal allograft donation. These findings are also consistent with the growing evidence that severe ATN diagnosed by markedly elevated levels of AKI biomarkers is a useful predictor of the requirement for acute renal replacement therapy in AKI patients. PMID:21740601

  18. Carbon tetrachloride-induced kidney damage and protective effect of Amaranthus lividus L. in rats.

    PubMed

    Yilmaz-Ozden, Tugba; Can, Ayse; Karatug, Ayse; Pala-Kara, Zeliha; Okyar, Alper; Bolkent, Sehnaz

    2016-06-01

    This study was designed to evaluate the protective effect of water extract of Amaranthus lividus L. (A. lividus) (Amaranthaceae) on carbon tetrachloride (CCl4)-induced toxicity in kidneys of rats. For this purpose, male albino Wistar rats were pretreated with A. lividus (250 and 500 mg/kg body weight (b.w.)) daily for 9 days and a single dose of CCl4 was applied intraperitoneally (50% in olive oil; 1.5 mL/kg b.w.) on the 10th day. All rats were killed 24 h after CCl4 administration, and kidneys were excised and used for determination of histopathological and biochemical parameters. CCl4 administration caused a remarkable increase in lipid peroxidation (LPO) and glutathione levels and glutathione-S-transferase, glutathione peroxidase, glutathione reductase, superoxide dismutase, myeloperoxidase (MPO) activities and a decrease in catalase (CAT) activity when compared to the control group. Pretreatment with A. lividus (250 and 500 mg/kg b.w.) significantly prevented the elevation in LPO level and MPO activity as well as protected the decrease in CAT activity but did not alter other biochemical parameters. The protective effect of A. lividus was further evident through the decreased histological alterations in kidneys. In conclusion, this study has indicated that A. lividus possesses protective and antioxidant effects against CCl4-induced oxidative kidney damage. PMID:25415872

  19. Fluid overload and acute kidney injury: cause or consequence?

    PubMed

    Ostermann, Marlies; Straaten, Heleen M Oudemans-van; Forni, Lui G

    2015-01-01

    There is increasing evidence that fluid overload and acute kidney injury (AKI) are associated but the exact cause-effect relationship remains unclear. Wang and colleagues analysed patients admitted to 30 intensive care units in China and found that fluid accumulation was independently associated with an increased risk of AKI and mortality. This commentary focuses on the close pathophysiological link between AKI and fluid overload and discusses the implications for clinical practice. It outlines some of the challenges, including the difficulty in diagnosing fluid overload reliably with current methods, and stresses the importance of personalised fluid therapy with physiological end-points to avoid the deleterious effects of fluid overload. PMID:26707872

  20. From the nephrologist's point of view: diversity of causes and clinical features of acute kidney injury

    PubMed Central

    Bienholz, Anja; Wilde, Benjamin; Kribben, Andreas

    2015-01-01

    Acute kidney injury (AKI) is a clinical syndrome with multiple entities. Although AKI implies renal damage, functional impairment or both, diagnosis is solely based on the functional parameters of serum creatinine and urine output. The latest definition was provided by the Kidney Disease Improving Global Outcomes (KDIGO) working group in 2012. Independent of the underlying disease, and even in the case of full recovery, AKI is associated with an increased morbidity and mortality. Awareness of the patient's individual risk profile and the diversity of causes and clinical features of AKI is pivotal for optimization of prophylaxes, diagnosis and therapy of each form of AKI. A differentiated and individualized approach is required to improve patient mortality, morbidity, long-term kidney function and eventually the quality of life. In this review, we provide an overview of the different clinical settings in which specific forms of AKI may occur and point out possible diagnostic as well as therapeutic approaches. Secifically AKI is discussed in the context of non-kidney organ failure, organ transplantation, sepsis, malignancy and autoimmune disease. PMID:26251707

  1. Careful: Acetaminophen in Pain Relief Medicines Can Cause Liver Damage

    MedlinePlus

    ... Acetaminophen in pain relief medicines can cause liver damage Share Tweet Linkedin Pin it More sharing options ... or may have the abbreviation "APAP." Severe liver damage may occur and may lead to death if ...

  2. Parents: Acetaminophen in Pain Relief Medicines Can Cause Liver Damage

    MedlinePlus

    ... Acetaminophen in pain relief medicines can cause liver damage Share Tweet Linkedin Pin it More sharing options ... word or may have the abbreviation "APAP." Liver damage: Giving your child more acetaminophen than directed on ...

  3. Kidney damage in extracorporeal shock wave lithotripsy: a numerical approach for different shock profiles.

    PubMed

    Weinberg, Kerstin; Ortiz, Michael

    2009-08-01

    In shock-wave lithotripsy--a medical procedure to fragment kidney stones--the patient is subjected to hypersonic waves focused at the kidney stone. Although this procedure is widely applied, the physics behind this medical treatment, in particular the question of how the injuries to the surrounding kidney tissue arise, is still under investigation. To contribute to the solution of this problem, two- and three-dimensional numerical simulations of a human kidney under shock-wave loading are presented. For this purpose a constitutive model of the bio-mechanical system kidney is introduced, which is able to map large visco-elastic deformations and, in particular, material damage. The specific phenomena of cavitation induced oscillating bubbles is modeled here as an evolution of spherical pores within the soft kidney tissue. By means of large scale finite element simulations, we study the shock-wave propagation into the kidney tissue, adapt unknown material parameters and analyze the resulting stress states. The simulations predict localized damage in the human kidney in the same regions as observed in animal experiments. Furthermore, the numerical results suggest that in first instance the pressure amplitude of the shock wave impulse (and not so much its exact time-pressure profile) is responsible for damaging the kidney tissue. PMID:18807077

  4. Predation risk causes oxidative damage in prey

    PubMed Central

    Janssens, Lizanne; Stoks, Robby

    2013-01-01

    While there is increasing interest in non-consumptive effects of predators on prey, physiological effects are understudied. While physiological stress responses play a crucial role in preparing escape responses, the increased metabolic rates and shunting of energy away from other body functions, including antioxidant defence, may generate costs in terms of increased oxidative stress. Here, we test whether predation risk increases oxidative damage in Enallagma cyathigerum damselfly larvae. Under predation risk, larvae showed higher lipid peroxidation, which was associated with lower levels of superoxide dismutase, a major antioxidant enzyme in insects, and higher superoxide anion concentrations, a potent reactive oxygen species. The mechanisms underlying oxidative damage are likely to be due to the shunting of energy away from antioxidant defence and to an increased metabolic rate, suggesting that the observed increased oxidative damage under predation risk may be widespread. Given the potentially severe fitness consequences of oxidative damage, this largely overlooked non-consumptive effect of predators may be contributing significantly to prey population dynamics. PMID:23760170

  5. Predation risk causes oxidative damage in prey.

    PubMed

    Janssens, Lizanne; Stoks, Robby

    2013-08-23

    While there is increasing interest in non-consumptive effects of predators on prey, physiological effects are understudied. While physiological stress responses play a crucial role in preparing escape responses, the increased metabolic rates and shunting of energy away from other body functions, including antioxidant defence, may generate costs in terms of increased oxidative stress. Here, we test whether predation risk increases oxidative damage in Enallagma cyathigerum damselfly larvae. Under predation risk, larvae showed higher lipid peroxidation, which was associated with lower levels of superoxide dismutase, a major antioxidant enzyme in insects, and higher superoxide anion concentrations, a potent reactive oxygen species. The mechanisms underlying oxidative damage are likely to be due to the shunting of energy away from antioxidant defence and to an increased metabolic rate, suggesting that the observed increased oxidative damage under predation risk may be widespread. Given the potentially severe fitness consequences of oxidative damage, this largely overlooked non-consumptive effect of predators may be contributing significantly to prey population dynamics. PMID:23760170

  6. Causes of hyperhomocysteinemia in patients with chronic kidney diseases.

    PubMed

    Garibotto, Giacomo; Sofia, Antonella; Valli, Alessandro; Tarroni, Alice; Di Martino, Massimiliano; Cappelli, Valeria; Aloisi, Francesca; Procopio, Vanessa

    2006-01-01

    Plasma homocysteine (Hcy) levels are increased significantly in patients with moderate renal failure and increase markedly in patients with end-stage renal disease. An increase in plasma Hcy level theoretically could be caused by an increased production rate (ie, transmethylation), a decreased rate of removal by transsulfuration or remethylation, or a decrease in the excretion of Hcy. Current evidence indicates that the major mechanism for hyperhomocysteinemia in renal failure is a decrease in Hcy removal from the body. However, it is debated whether this effect is the result of a decrease in the renal metabolic clearance or a result of extrarenal metabolic changes. The human kidney plays a major role in the removal of several aminothiols or Hcy-related compounds from the circulation (eg, cysteine-glycine, glutathione, AdoMet, and AdoHcy). However, the glomerular filtration of Hcy seems to be restricted because of protein binding. Besides glomerular filtration, the normal kidney can remove Hcy by plasma flow and peritubular uptake. Although in the low normal range in absolute terms, the flow through the transsulfuration pathway is reduced if related to Hcy levels in uremia; in addition, the remethylation pathway also is impaired. Besides the potential effect of the reduced renal mass on Hcy removal, available evidence suggests the occurrence of a generalized down-regulation of the methionine cycle and catabolism in uremia. AdoHcy, sulfate, and dimethylglycine currently are being investigated as retained solutes that can inhibit 1 or more pathways of Hcy metabolism. In addition, the high Hcy levels decrease in malnourished end-stage renal disease patients and change according to nutrient intake and several other nutritional parameters, indicating that circulating Hcy levels become an expression of nutritional status. PMID:16412817

  7. Multiple organ damage caused by tumor necrosis factor and prevented by prior neutrophil depletion

    SciTech Connect

    Mallick, A.A.; Ishizaka, A.; Stephens, K.E.; Hatherill, J.R.; Tazelaar, H.D.; Raffin, T.A. )

    1989-05-01

    The effect of TNF on nonpulmonary multiple organ damage (MOD) was studied. Since polymorphonuclear leukocytes (PMN) are thought to play an important role in septic or TNF-induced MOD, we investigated both neutrophil sufficient (PMN+) and neutropenic (PMN-) guinea pigs. Sepsis was induced by Escherichia coli administration (2 x 10(9)/kg) or recombinant human TNF (1.4 x 10(6) U/kg) was infused into PMN+ and PMN- guinea pigs. During necropsy, the PMN+/TNF and PMN+/E coli animals exhibited marked damage in the adrenal glands, kidneys and liver as evidenced by hemorrhage, congestion, and PMN sequestration on histopathologic examination. There was also increased tissue albumin accumulation in the adrenal glands, kidneys, spleen, heart, and liver as demonstrated by {sup 125}I-labeled albumin determinations. In contrast, the PMN-/TNF group did not reveal histopathologic damage in any organ system and there was no abnormal organ accumulation of {sup 125}I-albumin. However, in PMN-/E coli animals, marked histopathologic damage in the adrenal glands and liver was evident. Furthermore, there were marked accumulations of {sup 125}I-albumin in the adrenals, heart, kidneys, liver, and spleen. Moreover, the PMN-/E coli guinea pigs had a much greater accumulation (p less than 0.01) of {sup 125}I-albumin in the kidneys than any other group including the PMN+/E coli group. Thus, nonpulmonary MOD in guinea pigs is caused by TNF administration and can be prevented by PMN depletion. However, while E coli administration also caused marked nonpulmonary MOD in neutrophil sufficient guinea pigs, equivalent or greater damage was produced in neutropenic animals. This suggests that while TNF-induced MOD may be primarily mediated by PMN, E coli-induced MOD seems to be mediated by more than PMN.

  8. Eucalyptus globulus extract protects upon acetaminophen-induced kidney damages in male rat.

    PubMed

    Dhibi, Sabah; Mbarki, Sakhria; Elfeki, Abdelfettah; Hfaiedh, Najla

    2014-05-01

    Plants have historically been used in treating many diseases. Eucalyptus globules, a rich source of bioactive compounds, and have been shown to possess antioxidative properties. The purpose of this study, carried out on male Wistar rats, was to evaluate the beneficial effects of Eucalyptus globulus extract upon acetaminophen-induced damages in kidney. Our study is realized in the Department of Biology, Faculty of Sciences of Sfax (Tunisia). 32 Wistar male rats; were divided into 4 batches: a control group (n=8), a group of rats treated with acetaminophen (900 mg/kg) by intraperitoneal injection during 4 days (n=8), a group receiving Eucalyptus globulus extract (130 mg of dry leaves/kg/day) in drinking water during 42 days after 2 hours of acetaminophen administration (during 4 days) (n=8) and group received only Eucalyptus (n=8) during 42 days. After 6 weeks, animals from each group were rapidly sacrificed by decapitation. Blood serum was obtained by centrifugation. Under our experimental conditions, acetaminophen poisoning resulted in an oxidative stress evidenced by statistically significant losses in the activities of catalase (CAT), superoxide-dismutase (SOD), glutathione-peroxidase (GPX) activities and an increase in lipids peroxidation level in renal tissue of acetaminophen-treated group compared with the control group. Acetaminophen also caused kidney damage as evident by statistically significant (p<0.05) increase in levels of creatinine and urea and decreased levels of uric acid and proteins in blood. Histological analysis demonstrated alteration of proximal tubules, atrophy of the glomerule and dilatation of urinary space. Previous administration of plant extract is found to alleviate this acetaminophen-induced damage. PMID:24856382

  9. Eucalyptus globulus extract protects upon acetaminophen-induced kidney damages in male rat

    PubMed Central

    Dhibi, Sabah; Mbarki, Sakhria; Elfeki, Abdelfettah; Hfaiedh, Najla

    2014-01-01

    Plants have historically been used in treating many diseases. Eucalyptus globules, a rich source of bioactive compounds, and have been shown to possess antioxidative properties. The purpose of this study, carried out on male Wistar rats, was to evaluate the beneficial effects of Eucalyptus globulus extract upon acetaminophen-induced damages in kidney. Our study is realized in the Department of Biology, Faculty of Sciences of Sfax (Tunisia). 32 Wistar male rats; were divided into 4 batches: a control group (n=8), a group of rats treated with acetaminophen (goomg/kg) by intraperitoneal injection during 4 days (n=8), a group receiving Eucalyptus globulus extract (130 mg of dry leaves/kg/day) in drinking water during 42 days after 2 hours of acetaminophen administration (during 4 days) (n=8) and group received only Eucalyptus (n=8) during 42 days. After 6 weeks, animals from each group were rapidly sacrificed by decapitation. Blood serum was obtained by centrifugation. Under our experimental conditions, acetaminophen poisoning resulted in an oxidative stress evidenced by statistically significant losses in the activities of catalase (CAT), superoxide-dismutase (SOD), glutathione-peroxidase (GPX) activities and an increase in lipids peroxidation level in renal tissue of acetaminophen-treated group compared with the control group. Acetaminophen also caused kidney damage as evident by statistically significant (p<0.05) increase in levels of creatinine and urea and decreased levels of uric acid and proteins in blood. Histological analysis demonstrated alteration of proximal tubules, atrophy of the glomerule and dilatation of urinary space. Previous administration of plant extract is found to alleviate this acetaminophen-induced damage. PMID:24856382

  10. Thalidomide Ameliorates Inflammation and Vascular Injury but Aggravates Tubular Damage in the Irradiated Mouse Kidney

    SciTech Connect

    Scharpfenecker, Marion; Floot, Ben; Russell, Nicola S.; Coppes, Rob P.; Stewart, Fiona A.

    2014-07-01

    Purpose: The late side effects of kidney irradiation include vascular damage and fibrosis, which are promoted by an irradiation-induced inflammatory response. We therefore treated kidney-irradiated mice with the anti-inflammatory and angiogenesis-modulating drug thalidomide in an attempt to prevent the development of late normal tissue damage and radiation nephropathy in the mouse kidney. Methods and Materials: Kidneys of C57Bl/6 mice were irradiated with a single dose of 14 Gy. Starting from week 16 after irradiation, the mice were fed with thalidomide-containing chow (100 mg/kg body weight/day). Gene expression and kidney histology were analyzed at 40 weeks and blood samples at 10, 20, 30, and 40 weeks after irradiation. Results: Thalidomide improved the vascular structure and vessel perfusion after irradiation, associated with a normalization of pericyte coverage. The drug also reduced infiltration of inflammatory cells but could not suppress the development of fibrosis. Irradiation-induced changes in hematocrit and blood urea nitrogen levels were not rescued by thalidomide. Moreover, thalidomide worsened tubular damage after irradiation and also negatively affected basal tubular function. Conclusions: Thalidomide improved the inflammatory and vascular side effects of kidney irradiation but could not reverse tubular toxicity, which probably prevented preservation of kidney function.

  11. A Novel Therapy to Attenuate Acute Kidney Injury and Ischemic Allograft Damage after Allogenic Kidney Transplantation in Mice

    PubMed Central

    Gueler, Faikah; Shushakova, Nelli; Mengel, Michael; Hueper, Katja; Chen, Rongjun; Liu, Xiaokun; Park, Joon-Keun; Haller, Hermann

    2015-01-01

    Ischemia followed by reperfusion contributes to the initial damage to allografts after kidney transplantation (ktx). In this study we tested the hypothesis that a tetrapeptide EA-230 (AQGV), might improve survival and attenuate loss of kidney function in a mouse model of renal ischemia/reperfusion injury (IRI) and ischemia-induced delayed graft function after allogenic kidney transplantation. IRI was induced in male C57Bl/6N mice by transient bilateral renal pedicle clamping for 35 min. Treatment with EA-230 (20–50mg/kg twice daily i.p. for four consecutive days) was initiated 24 hours after IRI when acute kidney injury (AKI) was already established. The treatment resulted in markedly improved survival in a dose dependent manner. Acute tubular injury two days after IRI was diminished and tubular epithelial cell proliferation was significantly enhanced by EA-230 treatment. Furthermore, CTGF up-regulation, a marker of post-ischemic fibrosis, at four weeks after IRI was significantly less in EA-230 treated renal tissue. To learn more about these effects, we measured renal blood flow (RBF) and glomerular filtration rate (GFR) at 28 hours after IRI. EA-230 improved both GFR and RBF significantly. Next, EA-230 treatment was tested in a model of ischemia-induced delayed graft function after allogenic kidney transplantation. The recipients were treated with EA-230 (50 mg/kg) twice daily i.p. which improved renal function and allograft survival by attenuating ischemic allograft damage. In conclusion, EA-230 is a novel and promising therapeutic agent for treating acute kidney injury and preventing IRI-induced post-transplant ischemic allograft injury. Its beneficial effect is associated with improved renal perfusion after IRI and enhanced regeneration of tubular epithelial cells. PMID:25617900

  12. [Early liver damage caused by alcohol].

    PubMed

    Garcá Vigil, J L; Aguirre García, J; Pérez Muñoz, H A; López Bárcena, J J; Lifshitz Guinzberg, A

    1980-01-01

    Liver biopsy was taken from 20 patients with chronic and acute alcoholism. The patients had been hospitalized for diverse reasons, had no clinical manifestations of alcoholic hepatitis nor cirrhosis, but did have abnormal liver function tests. The most common abnormal test results were low serum albumin, polyclonal gamma-globulin elevation, and S G O T and Alk P rise. In all patients one or more types of hepatic lesiones were found: steatosis (15), polynuclear and mononuclear infiltrates (15), and portal (7), interstitial (13), or centriobular (8) fibrosis. Two patients had cirrhosis. None had hepatic cell necrosis. These findings justify a motivated search for liver damage in patients with alcoholism who have slight alterations in liver function tests, even in the absence of clinical manifestations of liver disease. PMID:7466143

  13. A Possible Zebrafish Model of Polycystic Kidney Disease: Knockdown of wnt5a Causes Cysts in Zebrafish Kidneys

    PubMed Central

    Huang, Liwei; Xiao, An; Wecker, Andrea; McBride, Daniel A.; Choi, Soo Young; Zhou, Weibin; Lipschutz, Joshua H.

    2015-01-01

    Polycystic kidney disease (PKD) is one of the most common causes of end-stage kidney disease, a devastating disease for which there is no cure. The molecular mechanisms leading to cyst formation in PKD remain somewhat unclear, but many genes are thought to be involved. Wnt5a is a non-canonical glycoprotein that regulates a wide range of developmental processes. Wnt5a works through the planar cell polarity (PCP) pathway that regulates oriented cell division during renal tubular cell elongation. Defects of the PCP pathway have been found to cause kidney cyst formation. Our paper describes a method for developing a zebrafish cystic kidney disease model by knockdown of the wnt5a gene with wnt5a antisense morpholino (MO) oligonucleotides. Tg(wt1b:GFP) transgenic zebrafish were used to visualize kidney structure and kidney cysts following wnt5a knockdown. Two distinct antisense MOs (AUG - and splice-site) were used and both resulted in curly tail down phenotype and cyst formation after wnt5a knockdown. Injection of mouse Wnt5a mRNA, resistant to the MOs due to a difference in primary base pair structure, rescued the abnormal phenotype, demonstrating that the phenotype was not due to “off-target” effects of the morpholino. This work supports the validity of using a zebrafish model to study wnt5a function in the kidney. PMID:25489842

  14. A possible zebrafish model of polycystic kidney disease: knockdown of wnt5a causes cysts in zebrafish kidneys.

    PubMed

    Huang, Liwei; Xiao, An; Wecker, Andrea; McBride, Daniel A; Choi, Soo Young; Zhou, Weibin; Lipschutz, Joshua H

    2014-01-01

    Polycystic kidney disease (PKD) is one of the most common causes of end-stage kidney disease, a devastating disease for which there is no cure. The molecular mechanisms leading to cyst formation in PKD remain somewhat unclear, but many genes are thought to be involved. Wnt5a is a non-canonical glycoprotein that regulates a wide range of developmental processes. Wnt5a works through the planar cell polarity (PCP) pathway that regulates oriented cell division during renal tubular cell elongation. Defects of the PCP pathway have been found to cause kidney cyst formation. Our paper describes a method for developing a zebrafish cystic kidney disease model by knockdown of the wnt5a gene with wnt5a antisense morpholino (MO) oligonucleotides. Tg(wt1b:GFP) transgenic zebrafish were used to visualize kidney structure and kidney cysts following wnt5a knockdown. Two distinct antisense MOs (AUG - and splice-site) were used and both resulted in curly tail down phenotype and cyst formation after wnt5a knockdown. Injection of mouse Wnt5a mRNA, resistant to the MOs due to a difference in primary base pair structure, rescued the abnormal phenotype, demonstrating that the phenotype was not due to "off-target" effects of the morpholino. This work supports the validity of using a zebrafish model to study wnt5a function in the kidney. PMID:25489842

  15. [DIABETIC NEPHROPATHY AS A CAUSE OF CHRONIC KIDNEY DISEASE].

    PubMed

    Kos, Ivan; Prkačin, Ingrid

    2014-12-01

    Diabetic nephropathy is the leading cause of end-stage chronic kidney disease in most developed countries. Hyperglycemia, hypertension and genetic predisposition are the main risk factors for the development of diabetic nephropathy. Elevated serum lipids, smoking habits, and the amount and origin of dietary protein also seem to play a role as risk factors. Clinical picture includes a progressive increase in albuminuria, decline in glomerular filtration, hypertension, and a high risk of cardiovascular morbidity and mortality. Screening for albuminuria should be performed yearly, starting 5 years after diagnosis in type 1 diabetes or earlier in the presence of adolescence or poor metabolic control. In patients with type 2 diabetes, screening should be performed at diagnosis and yearly thereafter. Patients with albuminuria should undergo evaluation regarding the presence of associated comorbidities, especially retinopathy and macrovascular disease. Achieving the best metabolic control (HbA1c < 7%), treating hypertension (target blood pressure < 140/85 mm Hg), using drugs with blockade effect on the renin-angiotensin-aldosterone system, treating dyslipidemia and anemia are effective strategies for preventing the development of albuminuria, delaying the progression to more advanced stages of nephropathy and reducing cardiovascular mortality in patients with type 1 and type 2 diabetes. PMID:26285470

  16. Complete staghorn calculus in polycystic kidney disease: infection is still the cause

    PubMed Central

    2013-01-01

    Background Kidney stones in patients with autosomal dominant polycystic kidney disease are common, regarded as the consequence of the combination of anatomic abnormality and metabolic risk factors. However, complete staghorn calculus is rare in polycystic kidney disease and predicts a gloomy prognosis of kidney. For general population, recent data showed metabolic factors were the dominant causes for staghorn calculus, but for polycystic kidney disease patients, the cause for staghorn calculus remained elusive. Case presentation We report a case of complete staghorm calculus in a polycystic kidney disease patient induced by repeatedly urinary tract infections. This 37-year-old autosomal dominant polycystic kidney disease female with positive family history was admitted in this hospital for repeatedly upper urinary tract infection for 3 years. CT scan revealed the existence of a complete staghorn calculus in her right kidney, while there was no kidney stone 3 years before, and the urinary stone component analysis showed the composition of calculus was magnesium ammonium phosphate. Conclusion UTI is an important complication for polycystic kidney disease and will facilitate the formation of staghorn calculi. As staghorn calculi are associated with kidney fibrosis and high long-term renal deterioration rate, prompt control of urinary tract infection in polycystic kidney disease patient will be beneficial in preventing staghorn calculus formation. PMID:24070202

  17. The protective effect of Malva sylvestris on rat kidney damaged by vanadium

    PubMed Central

    2011-01-01

    Background The protective effect of the common mallow (Malva sylvestris) decoction on renal damages in rats induced by ammonium metavanadate poisoning was evaluated. On the one hand, vanadium toxicity is associated to the production of reactive oxygen species, causing a lipid peroxidation and an alteration in the enzymatic antioxidant defence. On the other hand, many medicinal plants are known to possess antioxidant and radical scavenging properties, thanks to the presence of flavonoids. These properties were confirmed in Malva sylvestris by two separate methods; namely, the Diphenyl-2-picrylhydrazyl assay and the Nitroblue Tetrazolium reduction assay. Results In 80 rats exposed to ammonium metavanadate (0.24 mmol/kg body weight in drinking water) for 90 days, lipid peroxidation levels and superoxide dismutase, catalase and glutathione peroxidase activities were measured in kidney. A significant increase in the formation of free radicals and antioxidant enzyme activities was noticed. In addition, a histological examination of kidney revealed a structural deterioration of the renal cortical capsules and a shrinking of the Bowman space. In animals intoxicated by metavanadate but also given a Malva sylvestris decoction (0.2 g dry mallow/kg body weight), no such pathologic features were observed: lipid peroxidation levels, antioxidant enzyme activities and histological features appeared normal as compared to control rats. Conclusion Malva sylvestris is proved to have a high antioxidative potential thanks to its richness in phenolic compounds. PMID:21513564

  18. Unilateral nephrectomy 24 hours after bilateral kidney irradiation reduces damage to the function and structure of the remaining kidney

    SciTech Connect

    Liao, Z.X.; Travis, E.L.

    1994-09-01

    The effect of unilateral nephrectomy 24 h after irradiation on renal function and death with renal insufficiency as well as histopathological changes in the kidney was assessed. Single doses totaling 8-18 Gy were given bilaterally to unanesthetized female and male C3Hf/Kam mice. Renal function damage was assayed by blood urea nitrogen (BUN) and hematocrit (Hct). Histological damage was quantified by two parameters: kidney area and number of surviving tubule cells along the renal capsule. The number of glomeruli was scored as an indication of the number of nephrons. Changes in the two functional parameters did not appear sooner after irradiation in the nephrectomized mice than in the non-nephrectomized mice. Rather, less impairment of function was measured by both parameters in the nephrectomized mice but only after radiation doses greater than 12 Gy. The LD{sub 50} at 424 days after irradiation was also higher in the nephrectomized mice than in the mice receiving only irradiation, 13.98 Gy (95% confidence limits = 12.03, 15.93) and 11.71 Gy (95% confidence limits = 10.4, 13.1), respectively, in agreement with the data on function. Unilateral nephrectomy alone induced a 10% increase in size of the contralateral kidney. The dose-response curve for the kidney area from nephrectomized mice was parallel to and displaced above that for non-nephrectomized mice, indicating that the increase in renal mass occurred independent of and was not compromised by radiation. Unilateral nephrectomy alone induced no increase in the number of proximal tubules in the contralateral kidney. 30 refs., 9 figs., 1 tab.

  19. Effect of Nigella sativa on ischemia-reperfusion induced rat kidney damage

    PubMed Central

    Havakhah, Shahrzad; Sadeghnia, Hamid R; Hajzadeh, Mosa-Al-Reza; Roshan, Nama Mohammadian; Shafiee, Somayeh; Hosseinzadeh, Hossein; Mohareri, Narges; Rad, Abolfazl Khajavi

    2014-01-01

    Objective(s): There are a few previously reported studies about the effect of Nigella sativa oil on renal ischemia-reperfusion injury (IRI). The aim of the present study was to test the hypothesis whether pre- or post-treatment with N. sativa hydroalcoholic extract (NSE) would reduce tissue injury and oxidative damages in a clinically relevant rat model of renal IRI. Materials and Methods: IRI was induced by clamping of bilateral renal arteries for 40 min fallowed by reperfusion for 180 min. NSE was prepared in a Soxhlet extractor and administrated with doses of 150 mg/kg or 300 mg/kg at 1 hr before ischemia induction (P-150 and 300) or at the beginning of reperfusion phase (T-150 and 300), via jugular catheter intravenously. The kidneys were then removed and subjected to biochemical analysis, comet assay or histopathological examination. Results: The kidneys of untreated IRI rats had a higher histopathological score (P<0.001), while in P-150, as well as T-150 and T-300 groups tubular lesions significantly decreased (P<0.001). Pre- and post-treatment with NSE also resulted in a significant decrease in malondialdehyde (MDA) level (P<0.001) and DNA damage (P<0.001) that were increased by renal I/R injury. NSE treatment also significantly restore (P<0.01) the decrease in renal thiol content caused by IRI. Conclusion: The present study shows N. sativa extract has marked protective action against renal IRI, which may be partly due to its antioxidant effects. PMID:25859302

  20. Thromboembolism as a Cause of Renal Artery Occlusion and Acute Kidney Injury: The Recovery of Kidney Function after Two Weeks

    PubMed Central

    Koivuviita, Niina; Tertti, Risto; Heiro, Maija; Manner, Ilkka; Metsrinne, Kaj

    2014-01-01

    Thromboembolic occlusion is a rare cause of acute kidney injury (AKI). It may lead to permanent loss of renal function. Our patient, who had dilated cardiomyopathy and prosthetic aortic valve, presented with AKI due to thromboembolic arterial occlusion of a solitary functioning kidney. After 2 weeks delay, local intra-arterial thrombolytic treatment with recombinant tissue plasminogen activator was performed without sufficient effect. However, a subsequent percutaneous transluminal angioplasty with stenting was successful. Diuresis began immediately, and renal function was fully recovered after 2 weeks. Although there had been no evident arterial circulation in the kidney, we think that minor flow through subtotal occlusion of the main renal artery made the hibernation of kidney tissue possible and contributed to the recovery. Thus, even after prolonged ischemia, revascularization can be useful. PMID:24847350

  1. 6. 'ROCKFILLED CRIB 350 FEET LONG, REPAIRING DAMAGES CAUSED BY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. 'ROCK-FILLED CRIB 350 FEET LONG, REPAIRING DAMAGES CAUSED BY FLOODS DURING SEASON OF 1927 TO THE DRY GULCH CANAL HEADING.' 1928 - Irrigation Canals in the Uinta Basin, Duchesne, Duchesne County, UT

  2. What is damaging the kidney in lupus nephritis?

    PubMed

    Davidson, Anne

    2016-03-01

    Despite marked improvements in the survival of patients with severe lupus nephritis over the past 50 years, the rate of complete clinical remission after immune suppression therapy is <50% and renal impairment still occurs in 40% of affected patients. An appreciation of the factors that lead to the development of chronic kidney disease following acute or subacute renal injury in patients with systemic lupus erythematosus is beginning to emerge. Processes that contribute to end-stage renal injury include continuing inflammation, activation of intrinsic renal cells, cell stress and hypoxia, metabolic abnormalities, aberrant tissue repair and tissue fibrosis. A deeper understanding of these processes is leading to the development of novel or adjunctive therapies that could protect the kidney from the secondary non-immune consequences of acute injury. Approaches based on a molecular-proteomic-lipidomic classification of disease should yield new information about the functional basis of disease heterogeneity so that the most effective and least toxic treatment regimens can be formulated for individual patients. PMID:26581344

  3. The Mitochondria-Targeted Antioxidants and Remote Kidney Preconditioning Ameliorate Brain Damage through Kidney-to-Brain Cross-Talk

    PubMed Central

    Silachev, Denis N.; Isaev, Nikolay K.; Pevzner, Irina B.; Zorova, Ljubava D.; Stelmashook, Elena V.; Novikova, Svetlana V.; Plotnikov, Egor Y.; Skulachev, Vladimir P.; Zorov, Dmitry B.

    2012-01-01

    Background Many ischemia-induced neurological pathologies including stroke are associated with high oxidative stress. Mitochondria-targeted antioxidants could rescue the ischemic organ by providing specific delivery of antioxidant molecules to the mitochondrion, which potentially suffers from oxidative stress more than non-mitochondrial cellular compartments. Besides direct antioxidative activity, these compounds are believed to activate numerous protective pathways. Endogenous anti-ischemic defense may involve the very powerful neuroprotective agent erythropoietin, which is mainly produced by the kidney in a redox-dependent manner, indicating an important role of the kidney in regulation of brain ischemic damage. The goal of this study is to track the relations between the kidney and the brain in terms of the amplification of defense mechanisms during SkQR1 treatment and remote renal preconditioning and provide evidence that the kidney can generate signals inducing a tolerance to oxidative stress-associated brain pathologies. Methodology/Principal Findings We used the cationic plastoquinone derivative, SkQR1, as a mitochondria-targeted antioxidant to alleviate the deleterious consequences of stroke. A single injection of SkQR1 before cerebral ischemia in a dose-dependent manner reduces infarction and improves functional recovery. Concomitantly, an increase in the levels of erythropoietin in urine and phosphorylated glycogen synthase kinase-3β (GSK-3β) in the brain was detected 24 h after SkQR1 injection. However, protective effects of SkQR1 were not observed in rats with bilateral nephrectomy and in those treated with the nephrotoxic antibiotic gentamicin, indicating the protective role of humoral factor(s) which are released from functional kidneys. Renal preconditioning also induced brain protection in rats accompanied by an increased erythropoietin level in urine and kidney tissue and P-GSK-3β in brain. Co-cultivation of SkQR1-treated kidney cells with cortical neurons resulted in enchanced phosphorylation of GSK-3β in neuronal cells. Conclusion The results indicate that renal preconditioning and SkQR1-induced brain protection may be mediated through the release of EPO from the kidney. PMID:23272118

  4. Vitamin D3 Reduces Tissue Damage and Oxidative Stress Caused by Exhaustive Exercise

    PubMed Central

    Ke, Chun-Yen; Yang, Fwu-Lin; Wu, Wen-Tien; Chung, Chen-Han; Lee, Ru-Ping; Yang, Wan-Ting; Subeq, Yi-Maun; Liao, Kuang-Wen

    2016-01-01

    Exhaustive exercise results in inflammation and oxidative stress, which can damage tissue. Previous studies have shown that vitamin D has both anti-inflammatory and antiperoxidative activity. Therefore, we aimed to test if vitamin D could reduce the damage caused by exhaustive exercise. Rats were randomized to one of four groups: control, vitamin D, exercise, and vitamin D+exercise. Exercised rats received an intravenous injection of vitamin D (1 ng/mL) or normal saline after exhaustive exercise. Blood pressure, heart rate, and blood samples were collected for biochemical testing. Histological examination and immunohistochemical (IHC) analyses were performed on lungs and kidneys after the animals were sacrificed. In comparison to the exercise group, blood markers of skeletal muscle damage, creatine kinase and lactate dehydrogenase, were significantly (P < 0.05) lower in the vitamin D+exercise group. The exercise group also had more severe tissue injury scores in the lungs (average of 2.4 ± 0.71) and kidneys (average of 3.3 ± 0.6) than the vitamin D-treated exercise group did (1.08 ± 0.57 and 1.16 ± 0.55). IHC staining showed that vitamin D reduced the oxidative product 4-Hydroxynonenal in exercised animals from 20.6% to 13.8% in the lungs and from 29.4% to 16.7% in the kidneys. In summary, postexercise intravenous injection of vitamin D can reduce the peroxidation induced by exhaustive exercise and ameliorate tissue damage, particularly in the kidneys and lungs. PMID:26941574

  5. Vitamin D3 Reduces Tissue Damage and Oxidative Stress Caused by Exhaustive Exercise.

    PubMed

    Ke, Chun-Yen; Yang, Fwu-Lin; Wu, Wen-Tien; Chung, Chen-Han; Lee, Ru-Ping; Yang, Wan-Ting; Subeq, Yi-Maun; Liao, Kuang-Wen

    2016-01-01

    Exhaustive exercise results in inflammation and oxidative stress, which can damage tissue. Previous studies have shown that vitamin D has both anti-inflammatory and antiperoxidative activity. Therefore, we aimed to test if vitamin D could reduce the damage caused by exhaustive exercise. Rats were randomized to one of four groups: control, vitamin D, exercise, and vitamin D+exercise. Exercised rats received an intravenous injection of vitamin D (1 ng/mL) or normal saline after exhaustive exercise. Blood pressure, heart rate, and blood samples were collected for biochemical testing. Histological examination and immunohistochemical (IHC) analyses were performed on lungs and kidneys after the animals were sacrificed. In comparison to the exercise group, blood markers of skeletal muscle damage, creatine kinase and lactate dehydrogenase, were significantly (P < 0.05) lower in the vitamin D+exercise group. The exercise group also had more severe tissue injury scores in the lungs (average of 2.4 ± 0.71) and kidneys (average of 3.3 ± 0.6) than the vitamin D-treated exercise group did (1.08 ± 0.57 and 1.16 ± 0.55). IHC staining showed that vitamin D reduced the oxidative product 4-Hydroxynonenal in exercised animals from 20.6% to 13.8% in the lungs and from 29.4% to 16.7% in the kidneys. In summary, postexercise intravenous injection of vitamin D can reduce the peroxidation induced by exhaustive exercise and ameliorate tissue damage, particularly in the kidneys and lungs. PMID:26941574

  6. Knockdown of Bicaudal C in Zebrafish (Danio rerio) Causes Cystic Kidneys: A Nonmammalian Model of Polycystic Kidney Disease

    PubMed Central

    Bouvrette, Denise J; Sittaramane, Vinoth; Heidel, Jerry R; Chandrasekhar, Anand; Bryda, Elizabeth C

    2010-01-01

    Polycystic kidney disease (PKD) is one of the leading causes of end-stage renal disease in humans and is characterized by progressive cyst formation, renal enlargement, and abnormal tubular development. Currently, there is no cure for PKD. Although a number of PKD genes have been identified, their precise role in cystogenesis remains unclear. In the jcpk mouse model of PKD, mutations in the bicaudal C gene (Bicc1) are responsible for the cystic phenotype; however, the function of Bicc1 is unknown. In this study, we establish an alternative, nonmammalian zebrafish model to study the role of Bicc1 in PKD pathogenesis. Antisense morpholinos were used to evaluate loss of Bicc1 function in zebrafish. The resulting morphants were examined histologically for kidney cysts and structural abnormalities. Immunostaining and fluorescent dye injection were used to evaluate pronephric cilia and kidney morphogenesis. Knockdown of zebrafish Bicc1 expression resulted in the formation of kidney cysts; however, defects in kidney structure or pronephric cilia were not observed. Importantly, expression of mouse Bicc1 rescues the cystic phenotype of the morphants. These results demonstrate that the function of Bicc1 in the kidney is evolutionarily conserved, thus supporting the use of zebrafish as an alternative in vivo model to study the role of mammalian Bicc1 in renal cyst formation. PMID:20412683

  7. Monosodium glutamate-induced oxidative kidney damage and possible mechanisms: a mini-review.

    PubMed

    Sharma, Amod

    2015-01-01

    Animal studies suggest that chronic monosodium glutamate (MSG) intake induces kidney damage by oxidative stress. However, the underlying mechanisms are still unclear, despite the growing evidence and consensus that α-ketoglutarate dehydrogenase, glutamate receptors and cystine-glutamate antiporter play an important role in up-regulation of oxidative stress in MSG-induced renal toxicity. This review summaries evidence from studies into MSG-induced renal oxidative damage, possible mechanisms and their importance from a toxicological viewpoint. PMID:26493866

  8. Akt1-Mediated Fast/Glycolytic Skeletal Muscle Growth Attenuates Renal Damage in Experimental Kidney Disease

    PubMed Central

    Hanatani, Shinsuke; Araki, Satoshi; Rokutanda, Taku; Kimura, Yuichi; Walsh, Kenneth; Ogawa, Hisao

    2014-01-01

    Muscle wasting is frequently observed in patients with kidney disease, and low muscle strength is associated with poor outcomes in these patients. However, little is known about the effects of skeletal muscle growth per se on kidney diseases. In this study, we utilized a skeletal muscle-specific, inducible Akt1 transgenic (Akt1 TG) mouse model that promotes the growth of functional skeletal muscle independent of exercise to investigate the effects of muscle growth on kidney diseases. Seven days after Akt1 activation in skeletal muscle, renal injury was induced by unilateral ureteral obstruction (UUO) in Akt1 TG and wild-type (WT) control mice. The expression of atrogin-1, an atrophy-inducing gene in skeletal muscle, was upregulated 7 days after UUO in WT mice but not in Akt1 TG mice. UUO-induced renal interstitial fibrosis, tubular injury, apoptosis, and increased expression of inflammatory, fibrosis-related, and adhesion molecule genes were significantly diminished in Akt1 TG mice compared with WT mice. An increase in the activating phosphorylation of eNOS in the kidney accompanied the attenuation of renal damage by myogenic Akt1 activation. Treatment with the NOS inhibitor L-NAME abolished the protective effect of skeletal muscle Akt activation on obstructive kidney disease. In conclusion, Akt1-mediated muscle growth reduces renal damage in a model of obstructive kidney disease. This improvement appears to be mediated by an increase in eNOS signaling in the kidney. Our data support the concept that loss of muscle mass during kidney disease can contribute to renal failure, and maintaining muscle mass may improve clinical outcome. PMID:25012168

  9. A Kinetic Model for Cell Damage Caused by Oligomer Formation.

    PubMed

    Hong, Liu; Huang, Ya-Jing; Yong, Wen-An

    2015-10-01

    It is well known that the formation of amyloid fiber may cause invertible damage to cells, although the underlying mechanism has not been fully understood. In this article, a microscopic model considering the detailed processes of amyloid formation and cell damage is constructed based on four simple assumptions, one of which is that cell damage is raised by oligomers rather than mature fibrils. By taking the maximum entropy principle, this microscopic model in the form of infinite mass-action equations together with two reaction-convection partial differential equations (PDEs) has been greatly coarse-grained into a macroscopic system consisting of only five ordinary differential equations (ODEs). With this simple model, the effects of primary nucleation, elongation, fragmentation, and protein and seeds concentration on amyloid formation and cell damage have been extensively explored and compared with experiments. We hope that our results will provide new insights into the quantitative linkage between amyloid formation and cell damage. PMID:26445435

  10. A methodological approach to identify rainfall causing damaging hydrogeological events

    NASA Astrophysics Data System (ADS)

    Petrucci, Olga; Aceto, Luigi

    2014-05-01

    The paper deals with Damaging Hydrogeological Events (DHEs), defined as periods of severe weather affecting wide regions for several days, and during which landslides and floods cause economic damage and victims. The great variability of DHEs, in both space and time, is the cause of one of main problems to solve in performing the analysis of these events. Dealing with events affecting wide areas for several days, it is challenging to isolate the rainy days that can be considered as triggering factors of the observed damaging phenomena. In this paper we consider 30 catastrophic DHEs which occurred in Calabria (southern Italy) between 1981 and 2010, and we develop a methodological approach aiming to both select and analyze rainfall events that triggered damage. The performed analysis allows highlighting some seasonal characteristics of Calabrian DHEs. More in general, the proposed approach can be used in regions affected by DHEs for which damage and rainfall data are available. Practical results that could be obtained concern: a) individuation of rainfall thresholds for the triggering of DHEs, at both regional and sub-regional scale; b) individuation of relationships between temporal distribution of rain and types of phenomena triggered; c) individuation of rain/damage relationships at sub-regional scale; and d) analysis of the pattern of rainy days which triggered a long historical series of DHEs, in order to highlight if the most recent events affecting the study area were mainly caused by short and intense rain, as it seems the tendency related to the climate change.

  11. Oxidative Stress and DNA Damage Induced by Chromium in Liver and Kidney of Goldfish, Carassius auratus

    PubMed Central

    Velma, Venkatramreddy; Tchounwou, Paul B.

    2013-01-01

    Chromium (Cr) is an abundant element in the Earth’s crust. It exhibits various oxidation states, from divalent to hexavalent forms. Cr has diverse applications in various industrial processes and inadequate treatment of the industrial effluents leads to the contamination of the surrounding water resources. Hexavalent chromium (Cr (VI)) is the most toxic form, and its toxicity has been associated with oxidative stress. The present study was designed to investigate the toxic potential of Cr (VI) in fish. In this research, we investigated the role of oxidative stress in chromium-induced genotoxicity in the liver and kidney cells of goldfish, Carassius auratus. Goldfish were acclimatized to the laboratory conditions and exposed them to 5% and 10% of 96 hr-LC50 (85.7 mg/L) of aqueous Cr (VI) in a continuous flow through system. Fish were sampled every 7 days for a period of 28 days to analyze the lipid hydroperoxides (LHP) levels and genotoxic potentials in the liver and kidney. LHP levels were analyzed by spectrophotometry while genotoxicity was assessed by single cell gel electrophoresis (comet) assay. LHP levels in the liver increased significantly at week 1, followed by a decrease. LHP levels in the kidney increased significantly at weeks 1, 2, and 3, and decreased at week 4 compared to the control. The percentage of DNA damage increased in both liver and kidney at both test concentrations. The results clearly indicate that Cr (VI) induces significant levels of DNA damage in liver and kidney cells of goldfish. The induced LHP levels in both organs were concentration-dependent and were directly correlated with the levels of DNA damage. The two tested Cr (VI) concentrations induced significant levels of oxidative stress in both organs, however the kidney appears to be more vulnerable and sensitive to Cr-induced toxicity than the liver. PMID:23700361

  12. Trimetazidine effect on burn-induced intestinal mucosal injury and kidney damage in rats

    PubMed Central

    Yalcin, Arzu Didem; Bisgin, Atil; Erbay, Riza Hakan; Oguz, Oguzhan; Demir, Suleyman; Yilmaz, Mustafa; Gumuslu, Saadet

    2012-01-01

    Background: Trimetazidine (TMZ) has been used in cardiology practice for protection from ischemiareperfusion injury. But its effects on intestinal mucosa are not well known. Our aim was to investigate the protective effect of TMZ on intestinal mucosa and on damaged kidney due to thermal injury in rats. Material and methods: Total of 30 male Sprague-Dawley rats were used in the study of intestinal mucosa damage and 24 female Sprague-Dawley rats in renal injury model. Back regions were shaved and taken into 99°C water for about 10 seconds in order to have a thermal injury. All rats were sacrificed 5 hours after the burn injury. Tissue malondialdehyde (MDA), myeloperoxidase (MPO) and glutathione (GSH) levels were measured. In order to show the tissue edema resulting from microvascular circulatory impairment, unbiased stereological technique, Cavalieri's volume estimation applied to each kidney. Result: TMZ decreased MPO levels, but no effect on GSH/oxidized glutathione (GSSG) and MDA levels. MPO levels were significantly lower in TMZ group than burnt-control group (p<0.05). There were statistically significant differences in the kidney volumes between TMZ group and sham group (p<0.05). Conclusion: In this study, TMZ seems to be protective on intestinal mucosa and prevented kidney damage originated from thermal injury. PMID:23071909

  13. Bilateral ureteric stones: an unusual cause of acute kidney injury.

    PubMed

    Sumner, Daniel; Rehnberg, Lucas; Kler, Aaron

    2016-01-01

    A 49-year-old man presented to the accident and emergency department, with a short history of vague abdominal pain, abdominal distension and two episodes of frank haematuria. A plain chest film showed dilated loops of large bowel and blood results on admission showed an acute kidney injury (stage 3). A diagnosis of bowel obstruction was made initially but a CT scan of the abdomen showed bilateral obstructing calculi. After initial resuscitation, the patient had bilateral ultrasound-guided nephrostomies and haemofiltration. He later underwent bilateral antegrade ureteric stenting. A decision will later be made on whether or not he is fit enough to undergo ureteroscopy and laser stone fragmentation. PMID:27030462

  14. DAMAGE CAUSED BY THE EXPLOSION OF THE CORLISS ENGINE FLYWHEEL. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DAMAGE CAUSED BY THE EXPLOSION OF THE CORLISS ENGINE FLYWHEEL. NO. 2 ENGINE HOUSE (NO. 7 MILL). PHOTOCOPY OF 1871 VIEW LOOKING WEST. From the collection of the Manchester Public Library, Manchester, N. H. - Amoskeag Millyard, Canal Street, Manchester, Hillsborough County, NH

  15. Nuclear DNA damage as a direct cause of aging.

    PubMed

    Best, Benjamin P

    2009-06-01

    This paper presents evidence that damage to nuclear DNA (nDNA) is a direct cause of aging in addition to the effects of nDNA damage on cancer, apoptosis, and cellular senescence. Many studies show significant nDNA damage with age, associated with declining nDNA repair, and this evidence for the decline of nDNA repair with age is also reviewed. Mammalian lifespans correlate with the effectiveness of nDNA repair. The most severe forms of accelerated aging disease in humans are due to nDNA repair defects, and many of these diseases do not exhibit increased cancer incidence. High rates of cellular senescence and apoptosis due to high rates of nDNA damage are apparently the main cause of the elderly phenotype in these diseases. Transgenic mice with high rates of cellular senescence and apoptosis exhibit an elderly phenotype, whereas some strains with low rates of cellular senescence and apoptosis show extended lifespan. Age-associated increases of nDNA damage in the brain may be problematic for rejuvenation because neurons may be difficult to replace and artificial nDNA repair could be difficult. PMID:19594328

  16. Interleukin-19 mediates tissue damage in murine ischemic acute kidney injury.

    PubMed

    Hsu, Yu-Hsiang; Li, Hsing-Hui; Sung, Junne-Ming; Chen, Wei-Ting; Hou, Ya-Chin; Chang, Ming-Shi

    2013-01-01

    Inflammation and renal tubular injury are major features of acute kidney injury (AKI). Many cytokines and chemokines are released from injured tubular cells and acts as proinflammatory mediators. However, the role of IL-19 in the pathogenesis of AKI is not defined yet. In bilateral renal ischemia/reperfusion injury (IRI)-induced and HgCl2-induced AKI animal models, real-time quantitative (RTQ)-PCR showed that the kidneys, livers, and lungs of AKI mice expressed significantly higher IL-19 and its receptors than did sham control mice. Immunohistochemical staining showed that IL-19 and its receptors were strongly stained in the kidney, liver, and lung tissue of AKI mice. In vitro, IL-19 upregulated MCP-1, TGF-β1, and IL-19, and induced mitochondria-dependent apoptosis in murine renal tubular epithelial M-1 cells. IL-19 upregulated TNF-α and IL-10 in cultured HepG2 cells, and it increased IL-1β and TNF-α expression in cultured A549 cells. In vivo, after renal IRI or a nephrotoxic dose of HgCl2 treatment, IL-20R1-deficient mice (the deficiency blocks IL-19 signaling) showed lower levels of blood urea nitrogen (BUN) in serum and less tubular damage than did wild-type mice. Therefore, we conclude that IL-19 mediates kidney, liver, and lung tissue damage in murine AKI and that blocking IL-19 signaling may provide a potent therapeutic strategy for treating AKI. PMID:23468852

  17. Single-Gene Causes of Congenital Anomalies of the Kidney and Urinary Tract (CAKUT) in Humans

    PubMed Central

    Vivante, Asaf; Kohl, Stefan; Hwang, Daw-Yang; Dworschak, Gabriel C.; Hildebrandt, Friedhelm

    2015-01-01

    Congenital anomalies of the kidney and urinary tract (CAKUT) cover a wide range of structural malformations that result from defects in the morphogenesis of the kidney and/or urinary tract. These anomalies account for about 40–50% of children with chronic kidney disease worldwide. Knowledge from genetically modified mouse models suggests that single gene mutations in renal developmental genes may lead to CAKUT in humans. However, until recently only a handful of CAKUT-causing genes were reported, most of them in familial syndromic cases. Recent findings suggest that CAKUT may arise from mutations in a multitude of different single gene causes. We focus here on single gene causes of CAKUT and their developmental origin. Currently more than 20 monogenic CAKUT-causing genes have been identified. High-throughput sequencing techniques make it likely that additional CAKUT-causing genes will be identified in the near future. PMID:24398540

  18. Tissue damage in kidney, adrenal glands and diaphragm following extracorporeal shock wave lithotripsy.

    PubMed

    Gecit, Ilhan; Kavak, Servet; Oguz, Elif Kaval; Pirincci, Necip; Günes, Mustafa; Kara, Mikail; Ceylan, Kadir; Kaba, Mehmet; Tanık, Serhat

    2014-10-01

    This study was designed to investigate whether exposure to short-term extracorporeal shock wave lithotripsy (ESWL) produces histologic changes or induces apoptosis in the kidney, adrenal glands or diaphragm muscle in rats. The effect of shock waves on the kidney of male Wistar rats (n = 12) was investigated in an experimental setting using a special ESWL device. Animals were killed at 72 h after the last ESWL, and the tissues were stained with an in situ Cell Death Detection Kit, Fluorescein. Microscopic examination was performed by fluorescent microscopy. Apoptotic cell deaths in the renal tissue were not observed in the control group under fluorescent microscopy. In the ESWL group, local apoptotic changes were observed in the kidney in the area where the shock wave was focused. The apoptotic cell deaths observed in the adrenal gland of the control group were similar to those observed in the ESWL groups, and apoptosis was occasionally observed around the capsular structure. Apoptotic cell deaths in the diaphragm muscle were infrequently observed in the control group. Apoptosis in the ESWL group was limited to the mesothelial cells. This study demonstrated that serious kidney, adrenal gland and diaphragm muscles damage occurred following ESWL, which necessitated the removal of the organ in the rat model. It is recognized that the ESWL complications related to the kidney, adrenal gland and diaphragm muscles are rare and may be managed conservatively. PMID:23095486

  19. Candidate gene associated with a mutation causing recessive polycystic kidney disease in mice

    SciTech Connect

    Moyer, J.H.; Lee-Tischler, M.J.; Kwon, H.Y.; Schrick, J.J. ); Avner, E.D.; Sweeney, W.E. ); Godfrey, V.L.; Cacheiro, N.L.A.; Woychik, R.P. ); Wilkinson, J.E. )

    1994-05-27

    A line of transgenic mice was generated that contains an insertional mutation causing a phenotype similar to human autosomal recessive polycystic kidney disease. Homozygotes displayed a complex phenotype that included bilateral polycystic kidneys and an unusual liver lesion. The mutant locus was cloned and characterized through use of the transgene as a molecular marker. Additionally, a candidate polycystic kidney disease (PKD) gene was identified whose structure and expression are directly associated with the mutant locus. A complementary DNA derived from this gene predicted a peptide containing a motif that was originally identified in several genes involved in cell cycle control.

  20. Bath salt intoxication causing acute kidney injury requiring hemodialysis.

    PubMed

    Regunath, Hariharan; Ariyamuthu, Venkatesh Kumar; Dalal, Pranavkumar; Misra, Madhukar

    2012-10-01

    Traditional bath salts contain a combination of inorganic salts like Epsom salts, table salt, baking soda, sodium metaphosphate, and borax that have cleansing properties. Since 2010, there have been rising concerns about a new type of substance abuse in the name of "bath salts." They are beta-ketone amphetamine analogs and are derivates of cathinone, a naturally occurring amphetamine analog found in the "khat" plant (Catha edulis). Effects reported with intake included increased energy, empathy, openness, and increased libido. Serious adverse effects reported with intoxication included cardiac, psychiatric, and neurological signs and symptoms. Not much is known about the toxicology and metabolism of these compounds. They inhibit monoamine reuptake (dopamine, nor epinephrine, etc.) and act as central nervous system stimulants with high additive and abuse potential because of their clinical and biochemical similarities to effects from use of cocaine, amphetamine, and 3,4-methylenedioxy-N-methylamphetamine. Deaths associated with use of these compounds have also been reported. We report a case of acute kidney injury associated with the use of "bath salt" pills that improved with hemodialysis. PMID:23036036

  1. Permeability damage to natural fractures caused by fracturing fluid polymers

    SciTech Connect

    Gall, B.L.; Sattler, A.R.; Maloney, D.R.; Raible, C.J.

    1988-04-01

    Formation damage studies using artificially fractured, low-permeability sandstone cores indicate that viscosified fracturing fluids can severely restrict gas flow through these types of narrow fractures. These studies were performed in support of the Department of Energy's Multiwell Experiment (MWX). Extensive geological and production evaluations at the MWX site indicate that the presence of a natural fracture system is largely responsible for unstimulated gas production. The laboratory formation damage studies were designed to examine changes in cracked core permeability to gas caused by fracturing fluid residues introduced into such narrow fractures during fluid leakoff. Polysaccharide polymers caused significant reduction (up to 95%) to gas flow through cracked cores. Polymer fracturing fluid gels used in this study included hydroxypropyl guar, hydroxyethyl cellulose, and xanthan gum. In contrast, polyacrylamide gels caused little or no reduction in gas flow through cracked cores after liquid cleanup. Other components of fracturing fluids (surfactants, breakers, etc.) caused less damage to gas flows. Other factors affecting gas flow through cracked cores were investigated, including the effects of net confining stress and non-Darcy flow parameters. Results are related to some of the problems observed during the stimulation program conducted for the MWX. 24 refs., 4 figs., 7 tabs.

  2. Can graphene quantum dots cause DNA damage in cells?

    NASA Astrophysics Data System (ADS)

    Wang, Dan; Zhu, Lin; Chen, Jian-Feng; Dai, Liming

    2015-05-01

    Graphene quantum dots (GQDs) have attracted tremendous attention for biological applications. We report the first study on cytotoxicity and genotoxicity of GQDs to fibroblast cell lines (NIH-3T3 cells). The NIH-3T3 cells treated with GQDs at dosages over 50 μg mL-1 showed no significant cytotoxicity. However, the GQD-treated NIH-3T3 cells exhibited an increased expression of proteins (p53, Rad 51, and OGG1) related to DNA damage compared with untreated cells, indicating the DNA damage caused by GQDs. The GQD-induced release of reactive oxygen species (ROS) was demonstrated to be responsible for the observed DNA damage. These findings should have important implications for future applications of GQDs in biological systems.Graphene quantum dots (GQDs) have attracted tremendous attention for biological applications. We report the first study on cytotoxicity and genotoxicity of GQDs to fibroblast cell lines (NIH-3T3 cells). The NIH-3T3 cells treated with GQDs at dosages over 50 μg mL-1 showed no significant cytotoxicity. However, the GQD-treated NIH-3T3 cells exhibited an increased expression of proteins (p53, Rad 51, and OGG1) related to DNA damage compared with untreated cells, indicating the DNA damage caused by GQDs. The GQD-induced release of reactive oxygen species (ROS) was demonstrated to be responsible for the observed DNA damage. These findings should have important implications for future applications of GQDs in biological systems. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01734c

  3. An unusual cause of acute kidney injury due to oxalate nephropathy in systemic scleroderma.

    PubMed

    Mascio, Heather M; Joya, Christie A; Plasse, Richard A; Baker, Thomas P; Flessner, Michael F; Nee, Robert

    2015-08-01

    Oxalate nephropathy is an uncommon cause of acute kidney injury. Far rarer is its association with scleroderma, with only one other published case report in the literature. We report a case of a 75-year-old African-American female with a history of systemic scleroderma manifested by chronic pseudo-obstruction and small intestinal bacterial overgrowth (SIBO) treated with rifaximin, who presented with acute kidney injury with normal blood pressure. A renal biopsy demonstrated extensive acute tubular injury with numerous intratubular birefringent crystals, consistent with oxalate nephropathy. We hypothesize that her recent treatment with rifaximin for SIBO and decreased intestinal transit time in pseudo-obstruction may have significantly increased intestinal oxalate absorption, leading to acute kidney injury. Oxalate nephropathy should be considered in the differential diagnosis of acute kidney injury in scleroderma with normotension, and subsequent evaluation should be focused on bowel function to include alterations in gut flora due to antibiotic administration. PMID:25500295

  4. Adult mouse kidneys become permissive to acute polyomavirus infection and reactivate persistent infections in response to cellular damage and regeneration.

    PubMed Central

    Atencio, I A; Shadan, F F; Zhou, X J; Vaziri, N D; Villarreal, L P

    1993-01-01

    Kidneys of newborn (but not adult) mice are normally high permissive for polyomavirus (Py) infection and readily establish persistent infections. We have proposed that ongoing cellular differentiation, which occurs in newborn mice, may be necessary for a high level of in vivo Py replication (R. Rochford, J. P. Moreno, M. L. Peake, and L. P. Villarreal, J. Virol. 66:3287-3297, 1992). This cellular differentiation requirement may also be necessary for the reactivation of a persistent Py kidney infection and could provide an alternative to the accepted view that reactivation results from immunosuppression. To examine this proposal, the ability of adult BALB/c mouse kidneys to support primary acute Py infection or to reactivate previously established persistent Py infections after kidney-specific damage was investigated. Kidney damage was induced by both chemical (glycerol, cisplatin, or methotrexate) and mechanical (through renal artery clamping to produce unilateral renal ischemia) treatments. We also examined the effects of epidermal growth factor (EGF), which enhances the rate of kidney regeneration, on Py replication. Using histopathologic techniques, in situ hybridization for Py DNA, and immunofluorescence for Py VP1 production, we established that both chemical damage and damage through renal artery clamping of adult kidneys promoted high levels of primary Py replication in these normally nonpermissive cells. This damage also promoted the efficient reactivation of Py replication from persistently infected kidneys, in the absence of immunosuppression. EGF treatment significantly increased acute Py replication and also reactivation in damaged kidneys. These results support the view that ongoing cellular division and differentiation may be needed both for high levels of acute Py replication and for reactivation of persistent infections in vivo. Images PMID:8382304

  5. Adipose Tissue-Derived Stem Cells Reduce Acute and Chronic Kidney Damage in Mice

    PubMed Central

    Burgos-Silva, Marina; Semedo-Kuriki, Patricia; Donizetti-Oliveira, Cassiano; Costa, Priscilla Barbosa; Cenedeze, Marco Antonio; Hiyane, Meire Ioshie; Pacheco-Silva, Alvaro; Câmara, Niels Olsen Saraiva

    2015-01-01

    Acute and chronic kidney injuries (AKI and CKI) constitute syndromes responsible for a large part of renal failures, and are today still associated with high mortality rates. Given the lack of more effective therapies, there has been intense focus on the use stem cells for organ protective and regenerative effects. Mesenchymal stem cells (MSCs) have shown great potential in the treatment of various diseases of immune character, although there is still debate on its mechanism of action. Thus, for a greater understanding of the role of MSCs, we evaluated the effect of adipose tissue-derived stem cells (AdSCs) in an experimental model of nephrotoxicity induced by folic acid (FA) in FVB mice. AdSC-treated animals displayed kidney functional improvement 24h after therapy, represented by reduced serum urea after FA. These data correlated with cell cycle regulation and immune response modulation via reduced chemokine expression and reduced neutrophil infiltrate. Long-term analyses, 4 weeks after FA, indicated that AdSC treatment reduced kidney fibrosis and chronic inflammation. These were demonstrated by reduced interstitial collagen deposition and tissue chemokine and cytokine expression. Thus, we concluded that AdSC treatment played a protective role in the framework of nephrotoxic injury via modulation of inflammation and cell cycle regulation, resulting in reduced kidney damage and functional improvement, inhibiting organ fibrosis and providing long-term immune regulation. PMID:26565621

  6. Selenium deficiency induced damages and altered expressions of metalloproteinases and their inhibitors (MMP1/3, TIMP1/3) in the kidneys of growing rats.

    PubMed

    Han, Jing; Liang, Hua; Yi, Jianhua; Tan, Wuhong; He, Shulan; Wu, Xiaofang; Shi, Xiaowei; Ma, Jing; Guo, Xiong

    2016-03-01

    Selenium is an essential trace element for the maintenance of structures and functions of kidney. To evaluate the effects of low selenium on the kidneys of growing rats, newborn rats were fed with selenium deficient and normal diets respectively for 109 days. As a result, rats fed with low selenium diets resulted in a decline in the body weight and the concentration of selenium in the kidney, especially the male rats from the low selenium groups. Moreover, the ultrastructure of glomerulus and tubules were damaged in low selenium group: the glomeruli were observed with hyperplasia of mesangial cells, fusion of podocyte foot processes and thickening of basement membrane; and the tubules were observed with vacuolar degenerated epithelial cells, increased edema fluid or protein solution between cells, microvilli edema, increased cell gaps and decreased cell links. Furthermore, the pathological changes in selenium deficient group included the increase of fibers around renal hilum aorta and in the renal collecting duct, and shed of cells in the proximal convoluted tubules. In addition, up-regulated expressions of matrix metalloproteinases (MMP1/3) and down-regulated expressions of their inhibitors (TIMP1/3) at the mRNA and protein levels were also appeared to be relevant to low selenium. The results suggested that low selenium in diet may cause low selenium concentration in the kidney of growing rat and lead to damages of the ultrastructure and extracellular matrix (ECM) of kidney. PMID:26854238

  7. The beta adrenoceptor blocker tertatolol causes vasodilatation in the isolated perfused vasoconstricted rat kidney.

    PubMed

    Verbeuren, T J; Zonnekeyn, L L; Prost, J F; Rochat, C; Thomas, J R; Herman, A G

    1988-08-01

    The activity of the beta adrenoceptor antagonist tertatolol on renal vasoconstrictions was investigated. Infusion of increasing concentrations of tertatolol (10(-8) to 10(-5) M) progressively inhibited the constrictor responses to bolus injections of norepinephrine and to electrical stimulation in isolated perfused kidneys of both normotensive and spontaneously hypertensive rats. Also, in kidneys of normotensive rats the vasoconstrictions caused by serotonin and barium chloride were inhibited by tertatolol. During sustained vasoconstrictions induced by infusion of norepinephrine (6 X 10(-7) M) increasing doses of tertatolol (2.5 X 10(-7) g to 2 X 10(-5) g) caused rapid, reversible dilatations in the rat kidneys. The inhibitory responses caused by tertatolol were not antagonized by propranolol, atropine, hexamethonium, SCH23390, metoclopramide, mepyramine, cimetidine, naloxone, cocaine or indomethacin. During constrictions caused by norepinephrine, methylene blue significantly inhibited the renal vasodilatations caused by tertatolol, acetylcholine, papaverine and nitroglycerin but not those caused by atrial natriuretic factor. Unlike the other vasodilators, tertatolol did not inhibit the constrictions induced by prostaglandin F2 alpha (5 X 10(-6) M) in the rat kidneys. In canine renal arteries with endothelium, tertatolol (10(-9) to 10(-5) M) did not cause relaxations during contractions induced by norepinephrine, electrical stimulation or prostaglandin F2 alpha. Our data illustrate that tertatolol has potent vasodilator properties in the isolated perfused vasoconstricted rat kidney. The dilator response to the beta blocker cannot be inhibited by a variety of classical receptor blockers but ultimately seems to depend on the formation of cyclic GMP. PMID:2900328

  8. Iatrogenic Damage to the Periodontium Caused by Periodontal Treatment Procedures

    PubMed Central

    Latheef, P; Sirajuddin, Syed; Gundapaneni, Veenadharini; MN, Kumuda; Apine, Ashwini

    2015-01-01

    Periodontitis is an inflammatory disease affecting the periodontium i.e. the tissues that surround and support the teeth. Periodontitis manifests as progressive loss of the alveolar bone around the teeth, and if left untreated, can cause loosening and subsequent loss of teeth. Periodontitis is initiated by microorganisms that adhere to and grow on the tooth's surfaces, besides an over -aggressive immune response against these microorganisms. The primary goal of periodontal therapy is to preserve the natural dentition by accomplishing and preserving a healthy functional periodontium. Many treatment modalities have been introduced to improve the therapeutic result of periodontal treatment which may also damage the periodontiumiatrogenically. PMID:26312087

  9. Associations among environmental exposure to manganese, neuropsychological performance, oxidative damage and kidney biomarkers in children.

    PubMed

    Nascimento, Sabrina; Baierle, Marília; Göethel, Gabriela; Barth, Anelise; Brucker, Natália; Charão, Mariele; Sauer, Elisa; Gauer, Bruna; Arbo, Marcelo Dutra; Altknecht, Louise; Jager, Márcia; Dias, Ana Cristina Garcia; de Salles, Jerusa Fumagalli; Pierre, Tatiana Saint'; Gioda, Adriana; Moresco, Rafael; Garcia, Solange Cristina

    2016-05-01

    Environmental exposure to manganese (Mn) results in several toxic effects, mainly neurotoxicity. This study investigated associations among Mn exposure, neuropsychological performance, biomarkers of oxidative damage and early kidney dysfunction in children aged 6-12 years old. Sixty-three children were enrolled in this study, being 43 from a rural area and 20 from an urban area. Manganese was quantified in blood (B-Mn), hair (H-Mn) and drinking water using inductively coupled plasma mass spectrometry (ICP-MS). The neuropsychological functions assessed were attention, perception, working memory, phonological awareness and executive functions - inhibition. The Intelligence quotient (IQ) was also evaluated. The biomarkers malondialdehyde (MDA), protein carbonyls (PCO), δ-aminolevulinate dehydratase (ALA-D), reactivation indexes with dithiothreitol (ALA-RE/DTT) and ZnCl2 (ALA-RE/ZnCl2), non-protein thiol groups, as well as microalbuminuria (mALB) level and N-acetyl-β-D-glucosaminidase (NAG) activity were assessed. The results demonstrated that Mn levels in blood, hair and drinking water were higher in rural children than in urban children (p<0.01). Adjusted for potential confounding factors, IQ, age, gender and parents' education, significant associations were observed mainly between B-Mn and visual attention (β=0.649; p<0.001). Moreover, B-Mn was negatively associated with visual perception and phonological awareness. H-Mn was inversely associated with working memory, and Mn levels from drinking water with written language and executive functions - inhibition. Rural children showed a significant increase in oxidative damage to proteins and lipids, as well as alteration in kidney function biomarkers (p<0.05). Moreover, significant associations were found between B-Mn, H-Mn and Mn levels in drinking water and biomarkers of oxidative damage and kidney function, besides between some oxidative stress biomarkers and neuropsychological tasks (p<0.05). The findings of this study suggest an important association between environmental exposure to Mn and toxic effects on neuropsychological function, oxidative damage and kidney function in children. PMID:26844420

  10. Kidney Disease

    MedlinePlus

    ... version of this page please turn Javascript on. Kidney Disease What is Kidney Disease? What the Kidneys Do Click for more information You have two ... damaged, wastes can build up in the body. Kidney Function and Aging Kidney function may be reduced ...

  11. Enteric hyperoxaluria: an important cause of end-stage kidney disease.

    PubMed

    Nazzal, Lama; Puri, Sonika; Goldfarb, David S

    2016-03-01

    Hyperoxaluria is a frequent complication of inflammatory bowel diseases, ileal resection and Roux-en-Y gastric bypass and is well-known to cause nephrolithiasis and nephrocalcinosis. The associated prevalence of chronic kidney disease and end-stage kidney disease (ESKD) is less clear but may be more consequential than recognized. In this review, we highlight three cases of ESKD due to enteric hyperoxaluria following small bowel resections. We review current information on the pathophysiology, complications and treatment of this complex disease. PMID:25701816

  12. Protective effect of Salvia miltiorrhizae injection on N(G)-nitro-D-arginine induced nitric oxide deficient and oxidative damage in rat kidney.

    PubMed

    You, Zhenqiang; Xin, Yanfei; Liu, Yan; Han, Bin; Zhang, Lijiang; Chen, Ying; Chen, Yunxiang; Gu, Liqiang; Gao, Haiyan; Xuan, Yaoxian

    2012-07-01

    N(G)-nitro-D-arginine (d-NNA) could convert into N(G)-nitro-L-arginine (l-NNA) in vivo, and kidney is the major target organ. In the chiral inversion process, a number of reactive oxygen species (ROS) were generated and NOS activity was inhibited, which may cause renal damage. Salvia miltiorrhiza (SM), a traditional Chinese drug, was used in the treatment of cardiovascular diseases and chronic renal failure. The aim of the present study was to investigate the kidney damage caused by D-NNA administration for 12 weeks and to evaluate the effects of treatment with SM on D-NNA-induced kidney damage. The rats, induced with D-NNA for period of 12 weeks, showed significant elevation of Blood Urea Nitrogen (BUN), Creatinine (Crea) and MDA levels, and significant decrease of SOD and GSH-Px activities, as compared with control group. In addition, the kidney of rats induced with D-NNA only showed remarkable histopathology, including severe mononuclear cell infiltration, mild tubular dilatation and congestion, and moderate interstitial desmoplasia. After 4 weeks SM treatment, the activity of SOD, GSH-Px and iNOS and the production of NO were significantly higher (P<0.05), and the levels of BUN, Crea and MDA were significantly lower than that of D-NNA only group (P<0.05). In addition, treatment with SM showed histopathological protection in tubular dilatation, congestion, mononuclear cell infiltration and interstitial desmoplasia. The present results indicate that the toxicity of D-NNA relates to its ability to generate oxidative stress and upregulate NOS activity in rat kidney. SM probably ameliorates D-NNA-induced nephrotoxicity in rats according to scavenging free radical and upregulating NOS activity. PMID:21112748

  13. Inhalation of mercury vapor can cause the toxic effects on rat kidney.

    PubMed

    Akgül, Nilgün; Altunkaynak, Berrin Zuhal; Altunkaynak, Muhammed Eyüp; Deniz, Ömür Gülsüm; Ünal, Deniz; Akgül, Hayati Murat

    2016-04-01

    Dental amalgam has been used in dentistry as a filling material. The filler comprises mercury (Hg). It is considered one of the most important and widespread environmental pollutants, which poses a serious potential threat for the humans and animals. However, mercury deposition affects the nervous, cardiovascular, pulmonary, gastrointestinal, and especially renal systems. In most animals' species and humans, the kidney is one of the main sites of deposition of mercury and target organ for its toxicity. In this study, the effects of mercury intake on kidney in rats were searched. For the this purpose; we used 24 adult female Wistar albino rats (200 g in weight) obtained from Experimental Research and Application Center of Atatürk University with ethical approval. Besides, they were placed into a specially designed glass cage. Along this experiment for 45 days, subjects were exposed to (1 mg/m(3)/day) mercury vapor. However, no application was used for the control subjects. At the end of the experiment, kidney samples were obtained from all subjects and processed for routine light microscopic level and stereological aspect were assessed. Finally, according to our results, mercury affects the histological features of the kidney. That means, the severe effects of mercury has been shown using stereological approach, which is one of the ideal quantitative methods in the current literature. In this study, it was detected that chronic exposure to mercury vapor may lead to renal damage and diseases in an experimental rat model. PMID:26888214

  14. Transcriptional Dysregulation in the Ureteric Bud Causes Multicystic Dysplastic Kidney by Branching Morphogenesis Defect

    PubMed Central

    Guo, Qiusha; Tripathi, Piyush; Manson, Scott R.; Austin, Paul F.; Chen, Feng

    2015-01-01

    Purpose The calcineurin-NFAT signaling pathway regulates the transcription of genes important for development. It is impacted by various genetic and environmental factors. We investigated the potential role of NFAT induced transcriptional dysregulation in the pathogenesis of congenital abnormalities of the kidneys and urinary tract. Materials and Methods A murine model of conditional NFATc1 activation in the ureteric bud was generated and examined for histopathological changes. Metanephroi were also cultured in vitro to analyze branching morphogenesis in real time. Results NFATc1 activation led to defects resembling multicystic dysplastic kidney. These mutants showed severe disorganization of branching morphogenesis characterized by decreased ureteric bud branching and the disconnection of ureteric bud derivatives from the main collecting system. The orphan ureteric bud derivatives may have continued to induce nephrogenesis and likely contributed to the subsequent formation of blunt ended filtration units and cysts. The ureter also showed irregularities consistent with impaired epithelial-mesenchymal interaction. Conclusions This study reveals the profound effects of NFAT signaling dysregulation on the ureteric bud and provides insight into the pathogenesis of multicystic dysplastic kidney. Our results suggest that the obstruction hypothesis and the bud theory may not be mutually exclusive to explain the pathogenesis of multicystic dysplastic kidney. Ureteric bud dysfunction such as that induced by NFAT activation can disrupt ureteric bud-metanephric mesenchyma interaction, causing primary defects in branching morphogenesis, subsequent dysplasia and cyst formation. Obstruction of the main collecting system can further enhance these defects, producing the pathological changes associated with multicystic dysplastic kidney. PMID:25301096

  15. Autografting of Renal Progenitor Cells Ameliorates Kidney Damage in Experimental Model of Pyelonephritis

    PubMed Central

    Kajbafzadeh, Abdol-Mohammad; Elmi, Azadeh; Talab, Saman Shafaat; Sadeghi, Zhina; Emami, Hamed; Sotoudeh, Masoud

    2010-01-01

    Current therapies for pyelonephritic renal damage have severe limitations; stem cells may offer an exciting potential in regenerating nephrology. We aimed to investigate the feasibility of direct intrarenal injection of autologous renal progenitor cells (RPCs; originated from epithelial cells in Bowman’s capsule) in chronic pyelonephritis rat model. Twenty-seven rats were divided into three groups. The control group (GI, n = 3) underwent sham subcapsular injection of isotonic saline. Pyelonephritis was induced in the right kidney of the remaining 24 rats and isotonic saline (GII, n = 12) or labeled autologous RPCs, obtained from a biopsy of left kidney (GIII, n = 12), were injected into the subcapsular space 6 weeks later. At 7, 14, 28, and 60 days, dimercaptosuccinic acid scan was performed in three animals of each group at every interval and subsequently renal sections were obtained for the evaluation of tubular and glomerular regeneration and proliferation. Cell transplantation resulted in the reduction of tubular and glomerular atrophy after 2 weeks. The transplanted cells were observed in the reconstructed region of the kidneys as evidenced by the presence of fluorescently labeled cells both in tubules and glomeruli. We also observed significant decrease in interstitial fibrosis in the fourth week and there were higher amount of Ki-67-positive cells in GIII. Notably, the right renal tissue integrity was significantly improved in this group and revealed normal cortical function on day 60. Transplanting RPCs showed the potential for partial augmentation of kidney structure and function in pyelonephritis. Cellular repair was seen predominantly in the proximal tubule, the major site of injury in pyelonephritis. Our findings may pave the way toward the future regeneration of renal scarring of pyelonephritis in children.

  16. TNF-mediated damage to glomerular endothelium is an important determinant of acute kidney injury in sepsis

    PubMed Central

    Xu, Chang; Chang, Anthony; Hack, Bradley K.; Eadon, Michael T.; Alper, Seth L.; Cunningham, Patrick N.

    2013-01-01

    Severe sepsis is often accompanied by acute kidney injury (AKI) and albuminuria. Here we studied whether the AKI and albuminuria associated with lipopolysaccharide (LPS) treatment in mice reflects impairment of the glomerular endothelium with its associated endothelial surface layer. LPS treatment decreased the abundance of endothelial surface layer heparan sulfate proteoglycans and sialic acid, and led to albuminuria likely reflecting altered glomerular filtration perm-selectivity. LPS treatment decreased the glomerular filtration rate (GFR), while also causing significant ultrastructural alterations in the glomerular endothelium. The density of glomerular endothelial cell fenestrae was 5-fold lower whereas the average fenestrae diameter was 3-fold higher in LPS-treated than in control mice. The effects of LPS on the glomerular endothelial surface layer, endothelial cell fenestrae, GFR, and albuminuria were diminished in TNF receptor 1 (TNFR1) knockout mice, suggesting that these LPS effects are mediated by TNF-α activation of TNFR1. Indeed, intravenous administration of TNF decreased GFR and led to loss of glomerular endothelial cell fenestrae, increased fenestrae diameter, and damage to the glomerular endothelial surface layer. LPS treatment decreased kidney expression of vascular endothelial growth factor (VEGF). Thus, our findings confirm the important role of glomerular endothelial injury, possibly by a decreased VEGF level, in the development and progression of AKI and albuminuria in the LPS model of sepsis in the mouse. PMID:23903370

  17. Climatology of damage-causing hailstorms over Germany

    NASA Astrophysics Data System (ADS)

    Kunz, M.; Puskeiler, M.; Schmidberger, M.

    2012-04-01

    In several regions of Central Europe, such as southern Germany, Austria, Switzerland, and northern Italy, hailstorms often cause substantial damage to buildings, crops, or automobiles on the order of several million EUR. In the federal state of Baden-Württemberg, for example, most of the insured damage to buildings is caused by large hailstones. Due to both their local-scale extent and insufficient direct monitoring systems, hail swaths are not captured accurately and uniquely by a single observation system. Remote-sensing systems such as radars are able to detect convection signals in a basic way, but they lack the ability to discern a clear relation between measured intensity and hail on the ground. These shortcomings hamper statistical analysis on the hail probability and intensity. Hail modelling thus is a big challenge for the insurance industry. Within the project HARIS-CC (Hail Risk and Climate Change), different meteorological observations are combined (3D / 2D radar, lightning, satellite and radiosounding data) to obtain a comprehensive picture of the hail climatology over Germany. The various approaches were tested and calibrated with loss data from different insurance companies between 2005 and 2011. Best results are obtained by considering the vertical distance between the 0°C level of the atmosphere and the echo top height estimated from 3D reflectivity data from the radar network of German Weather Service (DWD). Additionally, frequency, intensity, width, and length of hail swaths are determined by applying a cell tracking algorithm to the 3D radar data (TRACE3D; Handwerker, 2002). The hailstorm tracks identified are merged with loss data using a geographical information system (GIS) to verify damage-causing hail on the ground. Evaluating the hailstorm climatology revealed that hail probability exhibits high spatial variability even over short distances. An important issue is the spatial pattern of hail occurrence that is considered to be due to orographic modifications of the flow. It is found that hail probability downstream of the low mountain ranges of Germany is strongly controlled by the Froude number. In the case of low Froude number flow, a convergence zone may develop downstream of the mountains, which may lead to the triggering or intensification of deep convection. Based on the results obtained, a hail loss model will be created for the insurance marked to convert the observed hail parameter into monetary parameters, for example, mean loss or maximum loss. Such a model will allow to quantify the hail risk for a certain return period on the local-scale or to assess worst case scenarios.

  18. d-Phenothrin-induced oxidative DNA damage in rat liver and kidney determined by HPLC-ECD/DAD.

    PubMed

    Atmaca, Enes; Aksoy, Abdurrahman

    2015-05-01

    The objective of this study was to assess the risk of genotoxicity of d-phenothrin by measuring the oxidative stress it causes in rat liver and kidney. The level of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG)/10(6) 2'-deoxyguanosine (dG) was measured by using high performance liquid chromatography (HPLC) with a diode array (DAD) and an electrochemical detector (ECD). Sixty male Wistar albino rats were randomly divided into five experimental groups and one control group of 10 rats/group. d-phenothrin was administered intraperitoneally (IP) to the five experimental groups at 25 mg/kg (Group I), 50 mg/kg (Group II), 66.7 mg/kg (Group III), 100 mg/kg (Group IV), and 200 mg/kg (Group V) for 14 consecutive days, and the control group received only the vehicle, dimethyl sulfoxide (DMSO). DNA from samples frozen in liquid nitrogen was isolated with a DNA isolation kit. Following digestion with nuclease P1 and alkaline phosphatase (ALP), hydrolyzed DNA was subjected to HPLC. The dG and 8-oxodG levels were analyzed with a DAD and ECD, respectively. In the experimental groups, the mean 8-oxodG/10(6) dG levels were 48.15 ± 7.43, 68.92 ± 20.66, 82.07 ± 14.15, 85.08 ± 28.50, and 89.14 ± 21.73 in livers and 39.06 ± 7.63, 59.69 ± 14.22, 61.13 ± 17.46, 65.13 ± 23.40, and 72.66 ± 19.04 in kidneys of Groups I, II, III, IV, and V, respectively. The mean 8-oxodG/10(6) dG levels in the control groups were 44.96 ± 12.66 for the liver and 39.07 ± 4.80 for the kidney. A statistically significant (p < 0.05), dose-dependent increase in oxidative DNA damage was observed in both organs of animals exposed to d-phenothrin when compared to controls. Furthermore, the liver showed a significantly higher level of oxidative DNA damage than the kidney (p < 0.01). In conclusion, d-phenothrin administered to rats intraperitoneally for 14 consecutive days generated free radical species in a dose-dependent manner and caused oxidative DNA damage in the liver and kidney. PMID:24339023

  19. Diabetic Kidney Problems

    MedlinePlus

    ... too high. Over time, this can damage your kidneys. Your kidneys clean your blood. If they are damaged, waste ... in your blood instead of leaving your body. Kidney damage from diabetes is called diabetic nephropathy. It ...

  20. Secreted Factors from Human Vestibular Schwannomas Can Cause Cochlear Damage

    PubMed Central

    Dilwali, Sonam; Landegger, Lukas D.; Soares, Vitor Y. R.; Deschler, Daniel G.; Stankovic, Konstantina M.

    2015-01-01

    Vestibular schwannomas (VSs) are the most common tumours of the cerebellopontine angle. Ninety-five percent of people with VS present with sensorineural hearing loss (SNHL); the mechanism of this SNHL is currently unknown. To establish the first model to study the role of VS-secreted factors in causing SNHL, murine cochlear explant cultures were treated with human tumour secretions from thirteen different unilateral, sporadic VSs of subjects demonstrating varied degrees of ipsilateral SNHL. The extent of cochlear explant damage due to secretion application roughly correlated with the subjects’ degree of SNHL. Secretions from tumours associated with most substantial SNHL resulted in most significant hair cell loss and neuronal fibre disorganization. Secretions from VSs associated with good hearing or from healthy human nerves led to either no effect or solely fibre disorganization. Our results are the first to demonstrate that secreted factors from VSs can lead to cochlear damage. Further, we identified tumour necrosis factor alpha (TNFα) as an ototoxic molecule and fibroblast growth factor 2 (FGF2) as an otoprotective molecule in VS secretions. Antibody-mediated TNFα neutralization in VS secretions partially prevented hair cell loss due to the secretions. Taken together, we have identified a new mechanism responsible for SNHL due to VSs. PMID:26690506

  1. The Medically Complex Living Kidney Donor: Glucose Metabolism as Principal Cause of Donor Declination.

    PubMed

    Guthoff, Martina; Nadalin, Silvio; Fritsche, Andreas; Knigsrainer, Alfred; Hring, Hans-Ulrich; Heyne, Nils

    2016-01-01

    BACKGROUND Transplant centers are increasingly confronted with medically complex living kidney donor candidates. Considerable differences exist among centers regarding handling of these patients and little data is available on characteristics, evaluation outcome and declination criteria. We now demonstrate impaired glucose metabolism to be the largest single cause of donor declination. MATERIAL AND METHODS Follow-up of 133 donor-recipient pairs, presenting to our transplant center between 03/2007 and 06/2012 was included in the analysis. Evaluation outcome of donor-recipient pairs was assessed and declinations stratified into donor or recipient reasons and underlying conditions. RESULTS 65 donor-recipient pairs (49%) were accepted for transplantation, 68 (51%) were declined upon first evaluation. 77% of declinations were for donor- and 23% for recipient reasons. Almost half of donor declinations resulted from increased cardiovascular risk with the presence of diabetes mellitus or prediabetes as the largest single cause of declination. CONCLUSIONS Glucose metabolism is key in donor risk assessment and precludes kidney donation if abnormal. The high prevalence emphasizes the need for prevention. Prediabetes defines a cohort at risk and response to lifestyle intervention allows for individual risk stratification, thereby potentially increasing the number of persons eligible for kidney donation. Unification of evaluation criteria, as well as prospective long-term follow-up is required to account for increasingly complex living kidney donors. PMID:26811295

  2. αKlotho deficiency in acute kidney injury contributes to lung damage.

    PubMed

    Ravikumar, Priya; Li, Liping; Ye, Jianfeng; Shi, Mingjun; Taniguchi, Masatomo; Zhang, Jianning; Kuro-O, Makoto; Hu, Ming Chang; Moe, Orson W; Hsia, Connie C W

    2016-04-01

    αKlotho is a circulating protein that originates predominantly from the kidney and exerts cytoprotective effects in distant sites. We previously showed in rodents that the lung is particularly vulnerable to αKlotho deficiency. Because acute lung injury is a common and serious complication of acute kidney injury (AKI), we hypothesized that αKlotho deficiency in AKI contributes to lung injury. To test the hypothesis, we created AKI by renal artery ischemia-reperfusion in rats and observed the development of alveolar interstitial edema and increased pulmonary oxidative damage to DNA, protein, and lipids. Administration of αKlotho-containing conditioned media 6 h post-AKI did not alter plasma creatinine but improved recovery of endogenous αKlotho production 3 days post-AKI, reduced lung edema and oxidative damage, and increased endogenous antioxidative capacity in the lung. Intravenously injected αKlotho rapidly exits alveolar capillaries as a macromolecule, suggesting transcytosis and direct access to the epithelium. To explore the epithelial action of αKlotho, we simulated oxidative stress in vitro by adding hydrogen peroxide to cultured A549 lung epithelial cells. Purified recombinant αKlotho directly protected cells at 20 pM with half-maximal effects at 40-50 pM, which is compatible with circulating αKlotho levels. Addition of recombinant αKlotho activated an antioxidant response element reporter and increased the levels of target proteins of the nuclear factor erythroid-derived 2 related factor system. In summary, αKlotho deficiency in AKI contributes to acute lung injury by reducing endogenous antioxidative capacity and increasing oxidative damage in the lung. αKlotho replacement partially reversed these abnormalities and mitigated pulmonary complications in AKI. PMID:26718784

  3. Low-molecular-weight polyphenols protect kidney damage through suppressing NF-κB and modulating mitochondrial biogenesis in diabetic db/db mice.

    PubMed

    Liu, Hung-Wen; Wei, Chu-Chun; Chang, Sue-Joan

    2016-04-20

    Hyperglycemia, increased inflammatory responses, and dysregulation of mitochondrial function accompanied by type 2 diabetes may eventually lead to kidney damage. We examined the protective effects of oligonol, a low-molecular-weight polyphenol derived from lychee fruit and green tea, on kidney damage in diabetic db/db mice. Dietary oligonol supplementation lowered glucose and insulin levels and improved oral glucose tolerance. Oligonol attenuated serum resistin and IL-6 levels and reduced glomerular hypertrophy and mesangial matrix expansion caused by diabetes. Oligonol reduced activation of nuclear factor-kappa B (NF-κB) and p38 mitogen-activated protein kinase. Suppressed renal oxidative stress by oligonol was associated with stimulated sirtuin1 expression and restored AMP-activated kinase protein α activity, mitochondrial DNA copy number, and mitochondrial biogenesis associated genes including nuclear respiratory factor 1 and mitochondrial transcription factor A. In conclusion, oligonol reduced fasting glucose level, improved insulin sensitivity, suppressed inflammatory responses, and upregulated metabolic regulators involved in mitochondrial biogenesis, thereby leading to protection against diabetes-induced kidney damage. PMID:26960417

  4. Plumb as a cause of kidney cancer (case study: Iran from 2008-2010)

    PubMed Central

    Mazdak, Hamid; Rashidi, Maasoumeh; Zohary, Moien

    2015-01-01

    Background: The main threats to human health from heavy metals are associated with exposure to plumb (Pb), cadmium, mercury, and arsenic. Some hazards that threat human health are the results of environmental factors and the relevant pollutions. Some important categories of diseases including (cancers) have considerable differences in various places, as observed in their spatial prevalence and distribution maps. The present study sets out to investigate the correlation between kidney cancer and the concentration of Pb in Iran. Materials and Methods: In this study, the first challenge was to collect some relevant information. In this connection, the authors managed to gain access to data concerning kidney cancer in Iran. The data were collected by a health centre for the period of 2008-2010. Besides, a map of Pb distribution in soil, drawn by the Mineral Exploration Organization, and Plumb Concentration Information, collected by Agriculture Jihad Organization, were used. Using a geographic information system (GIS) software such as ArcGIS (USA), the researchers drew the map of the spatial distribution of kidney cancer in the Iran country. In the indirect methods, one measures vegetation stress caused by heavy metal soil contamination. In direct methods, target detection algorithms are used to detect a selected material on the basis of its unique spectral signature. In this research, we applied target detection algorithms on moderate resolution imaging spectroradiometer (MODIS) images to detect Pb. MODIS is a sensor placed on the Terra satellite that collects data in 35 spectral bands with 250-1,000 m special resolutions. Results: The spatial distribution of kidney cancer in Iran country delineated above revealed a positive correlation between the amount of lead and the high frequency of kidney cancer. Regression analyses also confirmed this relationship (R2 = 0.77 and R = 0.87). Conclusion: The findings of the current study underscore not only the importance of preventing exposure to Pb but also the importance of controlling Pb-producing industries. PMID:26929763

  5. Vesicoureteral Reflux, a Scarred kidney, and Minimal Proteinuria: An Unusual Cause of Adult Secondary Hypertension

    PubMed Central

    Sandal, Shaifali; Khanna, Apurv

    2011-01-01

    Hypertension affects about 65 million individuals in the United States. In adult patients, primary aldosteronism and renovascular causes are described as most prevalent. Vesicoureteral reflux as a cause of hypertension, while commonly described in pediatric populations, is less prevalent in the adult population especially in the absence of proteinuria. We present the case of a 31-year-old female presenting with early onset hypertension. Workup for renovascular hypertension was unrevealing. She was found to have right-sided vesicoureteral reflux with a unilateral scarred kidney. Patient underwent a nephrectomy with marked improvement in blood pressure control. PMID:22110521

  6. Damage caused by long-term, gradual karstic subsidence

    SciTech Connect

    Beck, B.F.; Jenkins, D.T.; Parker, J.W.

    1985-01-01

    Damage due to karstic subsidence (sinkhole collapse) is generally presumed to be relatively rapid in human terms. However, during repaving of a runway apron at Mac Dill Air Force Base, Tampa, Florida, 41 shallow depressions were formed during proof rolling. The apron is underlain by 6-10 m of sand and clayey sand over the limestones of the Floridan Aquifer, which are known for their karst. The apron was originally paved in 1952. Ground penetrating radar revealed that a radar-reflecting boundary, circa 4-5 m below the surface, had also subsided in an inverted-conical pattern beneath the depressions, as well as in other areas. Beneath some of the areas the pavement subbase had also subsided similarly. VLF surveys over and around the depressions mapped a linear trend identical to the apparent alignment of the depressions. Close-spaced drilling confirmed that the subsidence was directly over a depression in the limestone surface. Further, the overlying sand had an N = 0-1, whereas the surrounding sand tested N = 4-6. The authors have concluded that gradual erosion of the overlying sand into karstic depressions and voids in the limestone over a 32 year period has reduced the sand density and strength and caused subsidence where the overlying pavement was loaded.

  7. Hydatid Disease Involved in the Heart, Liver, and Kidney That Caused Sudden Death: Case Report.

    PubMed

    Daş, Taner; Özer, Mehmet; Yağmur, Gülhan; Yildirim, Muzaffer; Özgün, Ayşe; Demirel, Hüsrev

    2015-12-01

    Hydatid disease is a parasitic infestation caused by ingestion of eggs of echinococcal species. For Echinococcus granulosus, the definitive host is the dog, and sheeps are the usual intermediate hosts. Humans are accidental intermediate hosts, infected by ingestion of food contaminated with eggs shed by dogs or foxes. The most common organs that hydatid disease encountered are the liver and lungs. Involvement of the kidney is rare and usually accompanies the other organ involvements. Cardiac involvement of echinococcosis is also very rare. We report the case of a 31-year-old woman with a 6-year history of asthma who collapsed after strenuous activity and died despite the interventions carried out. At autopsy, cystic masses were detected in the apex of the heart, in the right kidney, and in the liver. There were no macroscopic pathologic findings in the other organs. Microscopic examination revealed the diagnosis of hydatid cyst in the heart, right kidney, and liver besides medial hypertrophy of the lung vessels. Cause of death was attributed to hydatid cyst and its complications. Patients who have symptoms akin to asthma at clinical presentation have to be further investigated for organic cardiac and pulmonary diseases such as hydatid cyst, especially in endemic countries. PMID:26355853

  8. Cadmium, type 2 diabetes, and kidney damage in a cohort of middle-aged women

    SciTech Connect

    Barregard, Lars; Bergström, Göran; Fagerberg, Björn

    2014-11-15

    Background: It has been proposed that diabetic patients are more sensitive to the nephrotoxicity of cadmium (Cd) compared to non-diabetics, but few studies have examined this in humans, and results are inconsistent. Aim: To test the hypothesis that women with type 2 diabetes mellitus (DM) or impaired glucose tolerance (IGT) have higher risk of kidney damage from cadmium compared to women with normal glucose tolerance (NGT). Methods: All 64-year-old women in Gothenburg, Sweden, were invited to a screening examination including repeated oral glucose tolerance tests. Random samples of women with DM, IGT, and NGT were recruited for further clinical examinations. Serum creatinine was measured and used to calculate estimated glomerular filtration rate (eGFR). Albumin (Alb) and retinol-binding protein (RBP) were analyzed in a 12 h urine sample. Cadmium in blood (B-Cd) and urine (U-Cd) was determined using inductively coupled plasma mass spectrometry. Associations between markers of kidney function (eGFR, Alb, and RBP) and quartiles of B-Cd and U-Cd were evaluated in models, including also blood pressure and smoking habits. Results: The mean B-Cd (n=590) was 0.53 µg/L (median 0.34 µg/L). In multivariable models, a significant interaction was seen between high B-Cd (upper quartile, >0.56 µg/L) and DM (point estimate +0.40 mg Alb/12 h, P=0.04). In stratified analyzes, the effect of high B-Cd on Alb excretion was significant in women with DM (53% higher Alb/12 h, P=0.03), but not in women with IGT or NGT. Models with urinary albumin adjusted for creatinine showed similar results. In women with DM, the multivariable odds ratio (OR) for microalbuminuria (>15 mg/12 h) was increased in the highest quartile of B-Cd vs. B-Cd quartiles 1–3 in women with DM (OR 4.2, 95% confidence interval 1.1–12). No such effect was found in women with IGT or NGT. There were no associations between B-Cd and eGFR or excretion of RBP, and no differences between women with DM, IGT, or NGT regarding effect of B-Cd on eGFR or RBP. Conclusion: The present study provides support for the hypothesis that women with DM have higher risk of renal glomerular damage from cadmium exposure compared to women without DM. - Highlights: • Cadmium in blood, kidney function, and glucose tolerance was examined in 590 women. • Blood cadmium was associated with albumin excretion in women with type 2 diabetes. • No such associations with cadmium were found in women without diabetes. • Women with type 2 diabetes have increased sensitivity to kidney damage from cadmium.

  9. Damage to the liver, kidney, and testis with reference to burden of heavy metals in yellow-necked mice from areas around steelworks and zinc smelters in Poland.

    PubMed

    Damek-Poprawa, Monika; Sawicka-Kapusta, Katarzyna

    2003-04-15

    The influence of the steelworks in Warsaw and Krakow as well as the zinc smelters in Bukowno and Miasteczko Slaskie on lead, cadmium, zinc and iron concentrations and the structure of selected tissues of yellow-necked mice were analysed. The Borecka Forest was chosen as a control area. The highest concentrations of lead, 172.36 g/g dry weight, and cadmium, 23.58 g/g, were detected in the femurs and kidneys, respectively, of rodents caught in Bukowno. Zinc and iron concentrations ranged over physiological values. No histopathological changes were observed in analysed tissues of all rodents in the control area. Damage occurred in the liver and kidneys of animals from all other sites and in the testes of rodents from Bukowno. Decreased glycogen content, interstitial fibrosis, and increased number of pyknotic nuclei as well as necrosis were seen in hepatocytes. In the kidneys hyperplasia of the tubules, atrophy of glomeruli, interstitial fibrosis and necrosis were observed. Degenerate cells were present in the lumen of seminiferous tubules of animals from the Bukowno area. Even relatively low concentrations of lead and cadmium, like those found in the liver and kidneys of rodents from the neighbourhood of the steelworks, caused histopathological changes. PMID:12604166

  10. Home Remedy for Skin Cancer May Cause Damage, Mask New Growth

    MedlinePlus

    ... html Home Remedy For Skin Cancer May Cause Damage, Mask New Growth 'Black salve' made FDA's fake ... cancer out,' when, in fact, it just indiscriminately damages anything it touches," study co-author Dr. Mark ...

  11. Nanoparticles can cause DNA damage across a cellular barrier

    NASA Astrophysics Data System (ADS)

    Bhabra, Gevdeep; Sood, Aman; Fisher, Brenton; Cartwright, Laura; Saunders, Margaret; Evans, William Howard; Surprenant, Annmarie; Lopez-Castejon, Gloria; Mann, Stephen; Davis, Sean A.; Hails, Lauren A.; Ingham, Eileen; Verkade, Paul; Lane, Jon; Heesom, Kate; Newson, Roger; Case, Charles Patrick

    2009-12-01

    The increasing use of nanoparticles in medicine has raised concerns over their ability to gain access to privileged sites in the body. Here, we show that cobalt-chromium nanoparticles (29.5 +/- 6.3 nm in diameter) can damage human fibroblast cells across an intact cellular barrier without having to cross the barrier. The damage is mediated by a novel mechanism involving transmission of purine nucleotides (such as ATP) and intercellular signalling within the barrier through connexin gap junctions or hemichannels and pannexin channels. The outcome, which includes DNA damage without significant cell death, is different from that observed in cells subjected to direct exposure to nanoparticles. Our results suggest the importance of indirect effects when evaluating the safety of nanoparticles. The potential damage to tissues located behind cellular barriers needs to be considered when using nanoparticles for targeting diseased states.

  12. Kidney Failure

    MedlinePlus

    Healthy kidneys clean your blood by removing excess fluid, minerals, and wastes. They also make hormones that keep your ... strong and your blood healthy. But if the kidneys are damaged, they don't work properly. Harmful ...

  13. Deletion of Irs2 causes reduced kidney size in mice: role for inhibition of GSK3β?

    PubMed Central

    2010-01-01

    Background Male Irs2-/- mice develop fatal type 2 diabetes at 13-14 weeks. Defects in neuronal proliferation, pituitary development and photoreceptor cell survival manifest in Irs2-/- mice. We identify retarded renal growth in male and female Irs2-/- mice, independent of diabetes. Results Kidney size and kidney:body weight ratio were reduced by approximately 20% in Irs2-/- mice at postnatal day 5 and was maintained in maturity. Reduced glomerular number but similar glomerular density was detected in Irs2-/- kidney compared to wild-type, suggesting intact global kidney structure. Analysis of insulin signalling revealed renal-specific upregulation of PKBβ/Akt2, hyperphosphorylation of GSK3β and concomitant accumulation of β-catenin in Irs2-/- kidney. Despite this, no significant upregulation of β-catenin targets was detected. Kidney-specific increases in Yes-associated protein (YAP), a key driver of organ size were also detected in the absence of Irs2. YAP phosphorylation on its inhibitory site Ser127 was also increased, with no change in the levels of YAP-regulated genes, suggesting that overall YAP activity was not increased in Irs2-/- kidney. Conclusions In summary, deletion of Irs2 causes reduced kidney size early in mouse development. Compensatory mechanisms such as increased β-catenin and YAP levels failed to overcome this developmental defect. These data point to Irs2 as an important novel mediator of kidney size. PMID:20604929

  14. Methemoglobinemia due to quinine causing severe acute kidney injury in a child

    PubMed Central

    Kudale, S.; Sethi, S. K.; Dhaliwal, M.; Kher, V.

    2014-01-01

    Congenital methemoglobinemia is a rare condition resulting from a deficiency of nicotinamide adenine dinucleotide-cytochrome b5 reductase. Acquired methemoglobinemia may result due to certain drugs, chemicals and food items. Information on epidemiological determinants from India is sparse. This report describes methemoglobinemia in a 4-year-old child after parenteral administration of quinine causing acute kidney injury. This case emphasizes the need of awareness of potential adverse events of antimalarial drugs. Prompt management of methemoglobinemia is essential to avoid potential life-threatening complications. PMID:25484537

  15. Acute arterial fibrinoid deposition and ischaemic parenchymal damage of the kidney. Pathogenic factors in the development of malignant hypertension.

    PubMed

    Chatelain, R E; Dardik, B N; Shainoff, J R

    1983-10-01

    The development and evolution of hypertensive vascular lesions affecting the arterial supply of (a) the kidney and (b) organs other than the kidney were studied in rats developing either malignant (MHY) or benign (BHY) hypertension 3, 6, 9 and 12 days after aortic ligation between the renal arteries. Vascular disease evolved into two distinct patterns which suggested acute renal damage to be the determinant for the development of either the malignant or benign form of hypertension. Three days after aortic ligation MHY and BHY animals showed widespread fibrinoid deposition in vascular territories above the aortic ligature. However, in MHYs these lesions were much more severe and, in the kidney, they were accompanied by the development of focal parenchymal atrophy, microinfarcts and hyalin droplet degeneration of cells of the Bowman capsule. The degree of renal damage correlated with elevations in blood urea nitrogen (BUN) and plasma creatinine; however, there was no correlation with rises in blood pressure, plasma renin activity (PRA), aldosterone or corticosterone which were similarly elevated in 3-day MHY and 3-day BHY animals. Between 6 and 12 days a marked clearance of fibrinoid took place in all organ beds of BHYs, but in the non-renal vasculature of MHY animals fibrinoid remained prominent and served as the central core for necrotising arterial lesions. In the kidney of MHYs some reduction in the fibrinoid content was observed, but the parenchymal damage perpetuating from the earlier stages had exacerbated leading to collagen deposition and a marked increase in the collagen concentration of the renal cortex. These features were accompanied by further elevations in PRA and corticosteroids and a progressive deterioration of renal function. By contrast, in 12-day BHY animals, despite sustained hypertension, PRA and corticosteroids were falling from their previously higher levels and normal renal function was maintained. These studies warrant inference that extensive parenchymal damage of the kidney due in part to severe arterial fibrinoid deposition is one of the initial events in the development of malignant hypertension. PMID:6363644

  16. HANAC Syndrome Col4a1 Mutation Causes Neonate Glomerular Hyperpermeability and Adult Glomerulocystic Kidney Disease.

    PubMed

    Chen, Zhiyong; Migeon, Tiffany; Verpont, Marie-Christine; Zaidan, Mohamad; Sado, Yoshikazu; Kerjaschki, Dontscho; Ronco, Pierre; Plaisier, Emmanuelle

    2016-04-01

    Hereditary angiopathy, nephropathy, aneurysms, and muscle cramps (HANAC) syndrome is an autosomal dominant syndrome caused by mutations inCOL4A1that encodes theα1 chain of collagen IV, a major component of basement membranes. Patients present with cerebral small vessel disease, retinal tortuosity, muscle cramps, and kidney disease consisting of multiple renal cysts, chronic kidney failure, and sometimes hematuria. Mutations producing HANAC syndrome localize within the integrin binding site containing CB3[IV] fragment of the COL4A1 protein. To investigate the pathophysiology of HANAC syndrome, we generated mice harboring theCol4a1p.Gly498Val mutation identified in a family with the syndrome.Col4a1G498V mutation resulted in delayed glomerulogenesis and podocyte differentiation without reduction of nephron number, causing albuminuria and hematuria in newborns. The glomerular defects resolved within the first month, but glomerular cysts developed in 3-month-old mutant mice. Abnormal structure of Bowman's capsule was associated with metalloproteinase induction and activation of the glomerular parietal epithelial cells that abnormally expressed CD44,α-SMA, ILK, and DDR1. Inflammatory infiltrates were observed around glomeruli and arterioles. HomozygousCol4a1G498V mutant mice additionally showed dysmorphic papillae and urinary concentration defects. These results reveal a developmental role for theα1α1α2 collagen IV molecule in the embryonic glomerular basement membrane, affecting podocyte differentiation. The observed association between molecular alteration of the collagenous network in Bowman's capsule of the mature kidney and activation of parietal epithelial cells, matrix remodeling, and inflammation may account for glomerular cyst development and CKD in patients withCOL4A1-related disorders. PMID:26260163

  17. Sudden death caused by aortic dissection in a patient with polycystic kidney disease.

    PubMed

    Gignon, M; Defouilloy, C; Montpellier, D; Chatelain, D; Traulle, S; Ammirati, C; Jarde, O; Manaouil, C

    2011-01-01

    A 43-year-old man presented at the emergency medical unit with chest pain. The results of a clinical examination were normal, apart from sternum pain (without radiation) on palpation. The patient had no respiratory problems and the pain was relieved by paracetamol. The electrocardiogram, laboratory tests and chest X-ray were normal. However, the man was found dead the next morning. In the autopsy, we noted the presence of haemopericardium, aortic dissection (starting from the vessel's origin and extended to the aortic arch and on through the diaphragm), polycystic kidney disease and liver cysts. In adult autosomal dominant polycystic kidney disease (ADPKD) patients, the main causes of death are ruptured intracerebral aneurysms, coronary artery disease, congestive heart failure, valvular heart disease and ruptured abdominal aortic aneurysms. Aortic dissection is considered to be rare cause of sudden death in ADPKD sufferers. ADPKD can have serious consequences for the vascular system. The families of confirmed ADPKD sufferers must be informed and screened as early as possible, in order to prevent renal and cardiovascular complications. PMID:22303792

  18. Protective Effect of Cleistocalyx nervosum var. paniala Fruit Extract against Oxidative Renal Damage Caused by Cadmium.

    PubMed

    Poontawee, Warut; Natakankitkul, Surapol; Wongmekiat, Orawan

    2016-01-01

    Cadmium nephrotoxicity is a serious environmental health problem as it will eventually end up with end stage renal disease. The pathobiochemical mechanism of this toxic heavy metal is related to oxidative stress. This study investigated whether Cleistocalyx nervosum var. paniala fruit extract (CNFE) could protect the kidney against oxidative injury caused by cadmium. Initial analysis of the extract revealed antioxidant abilities and high levels of polyphenols, particularly catechin. Its potential renal benefits was further explored in rats treated with vehicle, CNFE, cadmium (2 mg/kg), and cadmium plus CNFE (0.5, 1, 2 g/kg) for four weeks. Oxidative renal injury was developed after cadmium exposure as evidenced by blood urea nitrogen and creatinine retention, glomerular filtration reduction, renal structural damage, together with increased nitric oxide and malondialdehyde, but decreased antioxidant thiols, superoxide dismutase, and catalase in renal tissues. Cadmium-induced nephrotoxicity was diminished in rats supplemented with CNFE, particularly at the doses of 1 and 2 g/kg. It is concluded that CNFE is able to protect against the progression of cadmium nephrotoxicity, mostly via its antioxidant power. The results also point towards a promising role for this naturally-occurring antioxidant to combat other human disorders elicited by disruption of redox homeostasis. PMID:26805807

  19. Prognosis and evaluation of tooth damage caused by implant fixtures

    PubMed Central

    Yoon, Wook-Jae; Jeong, Mi-Ae; Oh, Ji-Su; You, Jae-Seek

    2013-01-01

    Damage to adjacent teeth is one of the various complications that may occur during implant placement and is often the result of improper direction during fixture placement or excessive depth of placement. In general, if detrimental symptoms, such as reaction to percussion in damaged teeth, mobility, and pulp necrosis, are not present, osseointegration should be observed at follow-up. In three cases, the possibility of root damage due to an implant fixture placed too close to each adjacent tooth was perceived on radiographs. However, in all of these cases, there were no clinical symptoms or radiographic changes present in the tooth, and the implants did not exhibit decreased stability or peri-implantitis. Therefore, we can carefully predict that the implant fixture close to the adjacent tooth did not invade the cementum of the root, and therefore did not produce the suspected pulpal damage or periradicular symptoms. In this study, we considered both the implant status as well as the adjacent tooth. PMID:24471033

  20. 76 FR 44985 - Pipeline Safety: Potential for Damage to Pipeline Facilities Caused by Flooding

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-27

    ... Pipeline and Hazardous Materials Safety Administration Pipeline Safety: Potential for Damage to Pipeline... owners and operators of gas and hazardous liquid pipelines to communicate the potential for damage to.... Subject: Potential for damage to pipeline facilities caused by severe flooding. Advisory: Severe...

  1. Can intense endurance exercise cause myocardial damage and fibrosis?

    PubMed

    La Gerche, Andre

    2013-01-01

    There has been long-standing debate as to whether intense endurance exercise provokes acute myocardial damage and whether cardiac remodeling associated with long-standing endurance training is entirely physiological. Despite the lack of concrete evidence on either side, the potential for serious clinical consequences, including life-threatening arrhythmias, elevates the importance of the debate. Studies have taught us that elite athletes enjoy excellent health, and athletic animal models consistently show up-regulation of molecular pathways, which are free of fibrosis and entirely different from those induced through pathological cardiac loading. On the other hand, extreme exercise has been associated with biochemical and functional evidence of acute damage, and some recent imaging techniques raise the possibility of small areas of myocardial scar. Moreover, some arrhythmias appear to be more prevalent amongst endurance athletes. Only large prospective trials will enable us to really assess the health benefits and risks of regular intense endurance sports. PMID:23478555

  2. Telomeric DNA damage is irreparable and causes persistent DNA damage response activation

    PubMed Central

    Fumagalli, Marzia; Rossiello, Francesca; Clerici, Michela; Barozzi, Sara; Cittaro, Davide; Kaplunov, Jessica M.; Bucci, Gabriele; Dobreva, Miryana; Matti, Valentina; Beausejour, Christian M.; Herbig, Utz; Longhese, Maria Pia; di Fagagna, Fabrizio d’Adda

    2013-01-01

    The DNA damage response (DDR) arrests cell-cycle progression until damage is removed. DNA damage-induced cellular senescence is associated with persistent DDR. The molecular bases that distinguish transient from persistent DDR are unknown. Here we show that a large fraction of exogenously-induced persistent DDR markers are associated with telomeric DNA in cultured cells and mammalian tissues. In yeast, a chromosomal DNA double-strand break (DSB) next to telomeric sequences resists repair and impairs DNA ligase 4 recruitment. In mammalian cells, ectopic localization of telomeric factor TRF2 next to a DSB induces persistent DNA damage and DDR. Linear telomeric DNA, but not circular or scrambled DNA, induces a prolonged checkpoint in normal cells. In terminally-differentiated tissues of old primates, DDR markers accumulate at telomeres which are not critically short. We propose that linear genomes are not uniformly reparable and telomeric DNA tracts, if damaged, are irreparable and trigger persistent DDR and cellular senescence. PMID:22426077

  3. Rise in Kidney Stones in Teens a Cause for Concern: Study

    MedlinePlus

    ... than among males in the same age group. After age 25, kidney stones were more common in men, the study authors said. Kidney stone incidence rose 15 percent more in blacks than in whites during each five-year period ...

  4. Screening for the markers of kidney damage in men and women on long-term lithium treatment

    PubMed Central

    Rybakowski, Janusz K.; Abramowicz, Maria; Drogowska, Joanna; Chłopocka-WoŸniak, Maria; Michalak, Michał; Czekalski, Stanisław

    2012-01-01

    Summary Background Lithium is the most effective therapeutic modality for the prevention of recurrences in bipolar disorder. An important adverse effect of lithium, especially with long-term treatment, is a possibility of a toxic effect on kidney function. Therefore, the aim of the study was to assess kidney function in a group of long-term lithium-treated patients. Material/Methods The study comprised 80 patients with bipolar mood disorder (26 male, 54 female), aged 60±11 years. They had been receiving lithium for 5–38 (16±9) years. Random urine sample was examined for albumin and creatinine excretion, and urinary albumin to creatinine ratio (UACR) was calculated. Specific gravity of the urine sample was recorded. Serum concentration of creatinine was measured and estimated glomerular filtration rate (eGFR) was calculated. Serum concentration of albumin was also measured. Results Decreased eGFR values <60 ml/min/1.73 m2 were found in 23% of patients, significantly more frequently in men that in women (38% vs. 16%, p=0.04). Elevated UACR values (>30 mg/g) were found in 25% of men and 12% of women, respectively. Serum albumin concentration >52 g/l was detected in 19% of patients (17% of men and 20% of women). Specific gravity of the urine, equal to or below 1.005, was recorded in 21% of men and 14% of women. Conclusions The results confirm the opinion that screening for the markers of kidney damage should be performed in long-term lithium-treated patients for identification of persons with impaired kidney function. Male sex seems to be the risk factor for the development of kidney damage during long-term lithium treatment. PMID:23111741

  5. Exposure to benzene metabolites causes oxidative damage in Saccharomyces cerevisiae.

    PubMed

    Raj, Abhishek; Nachiappan, Vasanthi

    2016-06-01

    Hydroquinone (HQ) and benzoquinone (BQ) are known benzene metabolites that form reactive intermediates such as reactive oxygen species (ROS). This study attempts to understand the effect of benzene metabolites (HQ and BQ) on the antioxidant status, cell morphology, ROS levels and lipid alterations in the yeast Saccharomyces cerevisiae. There was a reduction in the growth pattern of wild-type cells exposed to HQ/BQ. Exposure of yeast cells to benzene metabolites increased the activity of the anti-oxidant enzymes catalase, superoxide dismutase and glutathione peroxidase but lead to a decrease in ascorbic acid and reduced glutathione. Increased triglyceride level and decreased phospholipid levels were observed with exposure to HQ and BQ. These results suggest that the enzymatic antioxidants were increased and are involved in the protection against macromolecular damage during oxidative stress; presumptively, these enzymes are essential for scavenging the pro-oxidant effects of benzene metabolites. PMID:27016252

  6. Vanuatu earthquake and tsunami cause much damage, few casualties

    NASA Astrophysics Data System (ADS)

    Caminade, Philip; Charlie, Douglas; Kanoglu, Utku; Koshimura, Shun-Ichi; Matsutomi, Hideo; Moore, Andrew; Ruscher, Christophe; Synolakis, Costas; Takahashi, Tomoyuki

    Vanuatu is a volcanic archipelago located some 2000 km northeast of Australia, in the heart of Melanesia. Though the islands are mainly agricultural, they are also a tourist destination for Australians and New Zealanders, many of whom come to see the active volcanoes on Ambrym and Tanna and the annual practice of “land diving” on Pentecost. An earthquake estimated between moment magnitude 7.1 and 7.5 occurred off the east coast of Vanuatu on November 26, 1999, at 13:21 UTC. The earthquake generated a damaging tsunami that struck the coast of Vanuatu, where it reached as high as 6.6 m above sea level and destroyed an entire village (Figures 1 and 2).

  7. Thirdhand smoke causes DNA damage in human cells

    PubMed Central

    Hang, Bo

    2013-01-01

    Exposure to thirdhand smoke (THS) is a newly described health risk. Evidence supports its widespread presence in indoor environments. However, its genotoxic potential, a critical aspect in risk assessment, is virtually untested. An important characteristic of THS is its ability to undergo chemical transformations during aging periods, as demonstrated in a recent study showing that sorbed nicotine reacts with the indoor pollutant nitrous acid (HONO) to form tobacco-specific nitrosamines (TSNAs) such as 4-(methylnitrosamino)-4-(3-pyridyl)butanal (NNA) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). The goal of this study was to assess the genotoxicity of THS in human cell lines using two in vitro assays. THS was generated in laboratory systems that simulated short (acute)- and long (chronic)-term exposures. Analysis by liquid chromatography–tandem mass spectrometry quantified TSNAs and common tobacco alkaloids in extracts of THS that had sorbed onto cellulose substrates. Exposure of human HepG2 cells to either acute or chronic THS for 24h resulted in significant increases in DNA strand breaks in the alkaline Comet assay. Cell cultures exposed to NNA alone showed significantly higher levels of DNA damage in the same assay. NNA is absent in freshly emitted secondhand smoke, but it is the main TSNA formed in THS when nicotine reacts with HONO long after smoking takes place. The long amplicon–quantitative PCR assay quantified significantly higher levels of oxidative DNA damage in hypoxanthine phosphoribosyltransferase 1 (HPRT) and polymerase β (POLB) genes of cultured human cells exposed to chronic THS for 24h compared with untreated cells, suggesting that THS exposure is related to increased oxidative stress and could be an important contributing factor in THS-mediated toxicity. The findings of this study demonstrate for the first time that exposure to THS is genotoxic in human cell lines. PMID:23462851

  8. Podocin Inactivation in Mature Kidneys Causes Focal Segmental Glomerulosclerosis and Nephrotic Syndrome

    PubMed Central

    Mollet, Géraldine; Ratelade, Julien; Boyer, Olivia; Muda, Andrea Onetti; Morisset, Ludivine; Lavin, Tiphaine Aguirre; Kitzis, David; Dallman, Margaret J.; Bugeon, Laurence; Hubner, Norbert; Gubler, Marie-Claire; Esquivel, Ernie L.

    2009-01-01

    Podocin is a critical component of the glomerular slit diaphragm, and genetic mutations lead to both familial and sporadic forms of steroid-resistant nephrotic syndrome. In mice, constitutive absence of podocin leads to rapidly progressive renal disease characterized by mesangiolysis and/or mesangial sclerosis and nephrotic syndrome. Using established Cre-loxP technology, we inactivated podocin in the adult mouse kidney in a podocyte-specific manner. Progressive loss of podocin in the glomerulus recapitulated albuminuria, hypercholesterolemia, hypertension, and renal failure seen in nephrotic syndrome in humans. Lesions of FSGS appeared after 4 wk, with subsequent development of diffuse glomerulosclerosis and tubulointerstitial damage. Interestingly, conditional inactivation of podocin at birth resulted in a gradient of glomerular lesions, including mesangial proliferation, demonstrating a developmental stage dependence of renal histologic patterns of injury. The development of significant albuminuria in this model occurred only after early and focal foot process effacement had progressed to diffuse involvement, with complete absence of podocin immunolabeling at the slit diaphragm. Finally, we identified novel potential mediators and perturbed molecular pathways, including cellular proliferation, in the course of progression of renal disease leading to glomerulosclerosis, using global gene expression profiling. PMID:19713307

  9. Rotator Cuff Damage: Reexamining the Causes and Treatments.

    ERIC Educational Resources Information Center

    Nash, Heyward L.

    1988-01-01

    Sports medicine specialists are beginning to reexamine the causes and treatments of rotator cuff problems, questioning the role of primary impingement in a deficient or torn cuff and trying new surgical procedures as alternatives to the traditional open acromioplasty. (Author/CB)

  10. Solastalgia: living with the environmental damage caused by natural disasters.

    PubMed

    Warsini, Sri; Mills, Jane; Usher, Kim

    2014-02-01

    Forced separation from one's home may trigger emotional distress. People who remain in their homes may experience emotional distress due to living in a severely damaged environment. These people experience a type of 'homesickness' similar to nostalgia because the land around them no longer resembles the home they knew and loved. What they lack is solace or comfort from their home; they long for the home environment to be the way it was before. "Solastalgia" is a term created to describe feelings which arise in people when an environment changes so much that it negatively affects an individual's quality of life. Such changed environments may include drought-stricken areas and open-cut mines. The aim of this article is to describe how solastalgia, originally conceptualized as the result of man-made environmental change, can be similarly applied to the survivors of natural disasters. Using volcanic eruptions as a case example, the authors argue that people who experience a natural disaster are likely to suffer from solastalgia for a number of reasons, which may include the loss of housing, livestock and farmland, and the ongoing danger of living in a disaster-prone area. These losses and fears challenge people's established sense of place and identity and can lead to feelings of helplessness and depression. PMID:24438454

  11. Damage to Italian Crops caused by Cyst-forming Nematodes.

    PubMed

    Greco, N; D'Addabbo, T; Brandonisio, A; Elia, F

    1993-12-01

    Investigations were undertaken in 1982-88 to estimate yield losses of carrot, sugarbeet, wheat, and potato caused by cyst-forming nematodes (Heterodera and Globodera species) in several provinces of Italy. Soil samples were collected at planting in 0.5-ha sampling areas distributed in each crop's major production area. Yield loss estimates were based on nematode population estimates and on curves derived earlier relating nematode densities with crop yields in Italy. Estimated yield loss values were based on the average prices reported for Italy in 1989. Heterodera carotae caused carrot yield losses in the Foggia (20%) and Venice (12%) provinces. Heterodera schachtii was common in our samples, but sugarbeet yield losses were highest in the province of L'Aquila (21%), followed by Ferrara (4.2%), Ravenna (3.3%), Modena (2.7%), and Rovigo (2.6%). Globodera rostochiensis and G. pallida were widespread in only a few of the major potato growing areas, but yield losses are remarkably high at Forli (17%) followed by Bari (9%), Catanzaro (6%), Foggia (3%), and Trento (3%). Heterodera avenae was common on wheat in the sampled provinces, but caused less than 1% yield reductions. Values of total estimated yield losses were 21.1 billion (Italian liras) for potato, 13.8 billion for sugarbeet, 3.2 billion for carrot, and 2.6 billion for wheat. PMID:19279850

  12. Plasmid DNA damage caused by stibine and trimethylstibine.

    PubMed

    Andrewes, Paul; Kitchin, Kirk T; Wallace, Kathleen

    2004-01-01

    Antimony is classified as "possibly carcinogenic to humans" and there is also sufficient evidence for antimony carcinogenicity in experimental animals. Stibine is a volatile inorganic antimony compound to which humans can be exposed in occupational settings (e.g., lead-acid battery charging). Because it is highly toxic, stibine is considered a significant health risk; however, its genotoxicity has received little attention. For the work reported here, stibine was generated by sodium borohydride reduction of potassium antimony tartrate. Trimethylstibine is a volatile organometallic antimony compound found commonly in landfill and sewage fermentation gases at concentrations ranging between 0.1 and 100 microg/m3. Trimethylstibine is generally considered to pose little environmental or health risk. In the work reported here, trimethylstibine was generated by reduction of trimethylantimony dichloride using either sodium borohydride or the thiol compounds, dithioerythritol (DTE), L-cysteine, and glutathione. Here we report the evaluation of the in vitro genotoxicities of five antimony compounds-potassium antimony tartrate, stibine, potassium hexahydroxyantimonate, trimethylantimony dichloride, and trimethylstibine-using a plasmid DNA-nicking assay. Of these five antimony compounds, only stibine and trimethylstibine were genotoxic (significant nicking to pBR 322 plasmid DNA). We found stibine and trimethylstibine to be about equipotent with trimethylarsine using this plasmid DNA-nicking assay. Reaction of trimethylantimony dichloride with either glutathione or L-cysteine to produce DNA-damaging trimethylstibine was observed with a trimethylantimony dichloride concentration as low as 50 microM and L-cysteine or glutathione concentrations as low as 500 and 200 microM, respectively, for a 24 h incubation. PMID:14728978

  13. The Decline in Living Kidney Donation in the United States: Random Variation or Cause for Concern?

    PubMed Central

    Rodrigue, James R.; Schold, Jesse D.; Mandelbrot, Didier A.

    2013-01-01

    The annual number of living kidney donors in the United States peaked at 6,647 in 2004. The preceding decade saw a 120% increase in living kidney donation. However, since 2004, living kidney donation has declined in all but one year, resulting in a 13% decline in the annual number of living kidney donors from 2004 to 2011. The proportional decline in living kidney donation has been more pronounced among men, blacks, younger adults, siblings, and parents. In this paper, we explore several possible explanations for the decline in living kidney donation, including an increase in medical unsuitability, an aging transplant patient population, financial disincentives, public policies, and shifting practice patterns, among others. We conclude that the decline in living donation is not merely reflective of random variation, but one that warrants action by transplant centers, the broader transplant community, and state and national governments. PMID:23759882

  14. Association of Kidney Disease Measures with Cause-Specific Mortality: The Korean Heart Study

    PubMed Central

    Mok, Yejin; Matsushita, Kunihiro; Sang, Yingying; Ballew, Shoshana H.; Grams, Morgan; Shin, Sang Yop; Jee, Sun Ha; Coresh, Josef

    2016-01-01

    Background The link of low estimated glomerular filtration rate (eGFR) and high proteinuria to cardiovascular disease (CVD) mortality is well known. However, its link to mortality due to other causes is less clear. Methods We studied 367,932 adults (20–93 years old) in the Korean Heart Study (baseline between 1996–2004 and follow-up until 2011) and assessed the associations of creatinine-based eGFR and dipstick proteinuria with mortality due to CVD (1,608 cases), cancer (4,035 cases), and other (non-CVD/non-cancer) causes (3,152 cases) after adjusting for potential confounders. Results Although cancer was overall the most common cause of mortality, in participants with chronic kidney disease (CKD), non-CVD/non-cancer mortality accounted for approximately half of cause of death (47.0%for eGFR <60 ml/min/1.73m2 and 54.3% for proteinuria ≥1+). Lower eGFR (<60 vs. ≥60 ml/min/1.73m2) was significantly associated with mortality due to CVD (adjusted hazard ratio 1.49 [95% CI, 1.24–1.78]) and non-CVD/non-cancer causes (1.78 [1.54–2.05]). The risk of cancer mortality only reached significance at eGFR <45 ml/min/1.73m2 when eGFR 45–59 ml/min/1.73m2 was set as a reference (1.62 [1.10–2.39]). High proteinuria (dipstick ≥1+ vs. negative/trace) was consistently associated with mortality due to CVD (1.93 [1.66–2.25]), cancer (1.49 [1.32–1.68]), and other causes (2.19 [1.96–2.45]). Examining finer mortality causes, low eGFR and high proteinuria were commonly associated with mortality due to coronary heart disease, any infectious disease, diabetes, and renal failure. In addition, proteinuria was also related to death from stroke, cancers of stomach, liver, pancreas, and lung, myeloma, pneumonia, and viral hepatitis. Conclusion Low eGFR was associated with CVD and non-CVD/non-cancer mortality, whereas higher proteinuria was consistently related to mortality due to CVD, cancer, and other causes. These findings suggest the need for multidisciplinary prevention and management strategies in individuals with CKD, particularly when proteinuria is present. PMID:27092943

  15. Understanding transportation-caused rangeland damage in Mongolia.

    PubMed

    Keshkamat, S S; Tsendbazar, N E; Zuidgeest, M H P; Shiirev-Adiya, S; van der Veen, A; van Maarseveen, M F A M

    2013-01-15

    Mongolia, a vast and sparsely populated semi-arid country, has very little formal road infrastructure. Since the 1990s, private ownership and usage of vehicles has been increasing, which has created a web of dirt track corridors due to the communal land tenure and unobstructed terrain, with some of these corridors reaching over 4 km in width. This practice aids wind- and water-aided erosion and desertification, causing enormous negative environmental effects. Little is being done to counter the phenomenon, mainly because the logic of the driving behaviour that causes this dirt road widening is not fully understood. The research in this article postulates that this driving behaviour has rational foundations and is linked to various geographical factors (natural and man-made geographical features). We analysed 11,000 km of arterial routes in the country using spatial statistics and determined that geographically weighted regression (GWR) analysis offers a good explanation for whether, and by how much, the selected geographical factors affect the creation of corridor widths and how their effect varies across the landscape. We determined that corridor widths are correlated to factors such as proximity to river crossings, traffic intensity, and vegetation abundance. Knowing these factors can help local planners and engineers design counter-measures that could help to control and reduce the widths of these corridors, until paved roads can replace the dirt track corridors. PMID:23192175

  16. Using insurance data to learn more about damages to buildings caused by surface runoff

    NASA Astrophysics Data System (ADS)

    Bernet, Daniel; Roethlisberger, Veronika; Prasuhn, Volker; Weingartner, Rolf

    2015-04-01

    In Switzerland, almost forty percent of total insurance loss due to natural hazards in the last two decades was caused by flooding. Those flood damages occurred not only within known inundation zones of water courses. Practitioners expect that roughly half of all flood damages lie outside of known inundation zones. In urban areas such damages may simply be caused by drainage system overload for instance. However, as several case studies show, natural and agricultural land play a major role in surface runoff formation leading to damages in rural and peri-urban areas. Although many damages are caused by surface runoff, the whole process chain including surface runoff formation, propagation through the landscape and damages to buildings is not well understood. Therefore, within the framework of a project, we focus our research on this relevant process. As such flash flood events have a very short response time and occur rather diffusely in the landscape, this process is very difficult to observe directly. Therefore indirect data sources with the potential to indicate spatial and temporal distributions of the process have to be used. For that matter, post-flood damage data may be a profitable source. Namely, insurance companies' damage claim records could provide a good picture about the spatial and temporal distributions of damages caused by surface runoff and, thus, about the process itself. In our research we analyze insurance data records of flood damage claims systematically to infer main drivers and influencing factors of surface runoff causing damages to buildings. To demonstrate the potential and drawbacks of using data from insurance companies in relation to damages caused by surface runoff, a case study is presented. A well-documented event with data from a public as well as a private insurance company is selected. The case study focuses on the differences of the datasets as well as the associated problems and advantages respectively. Furthermore, the analysis of the data, especially the crucial identification of damages caused by surface runoff opposed to damages caused by other processes such as riverine flooding, drainage system surcharges etc. are discussed.

  17. [Annoyance, disturbance and damage caused by noise and vibrations].

    PubMed

    Cosa, M; Cosa, G

    1989-01-01

    The pathogenic effects derived by the emission of noises and vibrations, essentially, are conditioned from three etiological factors. The first of those is the energetic level of the sound emission, whereas the second is the exposure time and the last is the spectral composition. We, making reference to sound source, can associate to the first etiological factors the influence of impulsive components present in the noise; whereas to the second the importance of the functional recovery time of auditory acuity and, at last, to the third etiological factors the annoyance caused by the superimposition of pure tone or of tight band noise, contained in 1/3 of octave. The specific effects, caused by the noise exposure, affect the auditory system (acoustic trauma, auditory weariness, noise deafness) and the vestibular system (vertigo, sickness, trouble of balance). Those effects are fortly dependent to the entity of the sound energy accepted in a calculated time interval (LEP), and after the end of noise expositions they aren't developed. The specific effects became permanent when the degeneration of the Corti's cells occurred. The noise deafness, in first time, impair the frequencies included between 3000 and 6000 Hz, particularly it concerns the thigh band of 4000 Hz. Those lesions happen after a prolonged exposition to LEP greater than 80-85 dBA, and its evolutions, usually, follow a succession of clinical stages that can be monitored through audiometric controls to allow the necessary preventive measures. The nonspecific effects, derived to the noise exposition can be divided in: 1) neuroendocrinologic and psychological effects; 2) psychosomatic effects; 3) psychosocial effects. The psychological effects (anxiety, depression, conflict condiction) are strictly related with neuroendocrinological responses to the sound impact, this, for the smaller entity of stimulation, is identical to locality reaction, on the contrary for more violent stimulations those determine and adaptative reaction (Selye syndrome) that consist in a excitement of the thalamus and pituitary gland, this determines a multiple endocrine hyperactivity followed from a inhibition period or, possibly, an adaptation period. The noise exposure determines, besides, same E.E.G. alterations and a reduction of walls' tone of the brain's arteries. The psychosomatic effects of the noise appear with emission greater than or equal to 70 dBA and these can be distinguished in: cardiovascular effects, gastrointestinal effects, respiratory effects, visual and genitals effects. The noise in these cases, mainly, acts as a risk's factors. The noise is, again, the cause of the arising of psychosocial effects. These can be classified as: interference on the transmission and understanding of the words, perfect healthy respect the efficiency and the learning capacity of the exposed subject, interference on the duration and quality of the sleep.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2483061

  18. Nickel chloride (NiCl2)-caused inflammatory responses via activation of NF-κB pathway and reduction of anti-inflammatory mediator expression in the kidney

    PubMed Central

    Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Xun; Wu, Bangyuan; Chen, Kejie

    2015-01-01

    Nickel (Ni) or Ni compounds target a number of organs and produce multiple toxic effects. Kidney is the major organ for Ni accumulation and excretion. There are no investigations on the Ni- or Ni compounds-induced renal inflammatory responses in human beings and animals at present. Therefore, we determined NiCl2-caused alteration of inflammatory mediators, and functional damage in the broiler's kidney by the methods of biochemistry, immunohistochemistry and quantitative real-time polymerase chain reaction (qRT-PCR). Dietary NiCl2 in excess of 300 mg/kg caused the renal inflammatory responses that characterized by increasing mRNA expression levels of the pro-inflammatory mediators including tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8) and interleukin-18 (IL-18) via the activation of nucleic factor κB (NF-κB), and decreasing mRNA expression levels of the anti-inflammatory mediators including interleukin-2 (IL-2), interleukin-4 (IL-4) and interleukin-13 (IL-13). Concurrently, NiCl2 caused degeneration, necrosis and apoptosis of the tubular cells, which was consistent with the alteration of renal function parameters including elevated alkaline phosphatase (AKP) activity, and reduced activities of sodium-potassium adenosine triphosphatase (Na+/K+-ATPase), calcium adenosine triphosphatase (Ca2+-ATPase), lactic dehydrogenase (LDH), succinate dehydrogenase (SDH) and acid phosphatase (ACP) in the kidney. The above-mentioned results present that the activation of NF-κB pathway and reduction of anti-inflammatory mediator expression are main mechanisms of NiCl2-caused renal inflammatory responses and that the renal function is decreased or impaired after NiCl2-treated. PMID:26417933

  19. The cosmetic dye quinoline yellow causes DNA damage in vitro.

    PubMed

    Chequer, Farah Maria Drumond; Venâncio, Vinícius de Paula; de Souza Prado, Maíra Rocha; Campos da Silva e Cunha Junior, Luiz Raimundo; Lizier, Thiago Mescoloto; Zanoni, Maria Valnice Boldrin; Rodríguez Burbano, Rommel; Bianchi, Maria Lourdes Pires; Antunes, Lusânia Maria Greggi

    2015-01-01

    Quinoline yellow (QY) is a chinophthalon derivative used in cosmetic compositions for application to the skin, lips, and/or body surface. However, regulatory data about the genotoxicity and/or mutagenicity of this compound are still controversial. Therefore, this work evaluated the genotoxicity of QY using the comet assay and the cytokinesis-block micronucleus cytome assay (CBMN-Cyt) in the metabolically competent cell line HepG2, which closely mimics phase I metabolism. This research also identified the products formed after electrochemical oxidation of the QY dye, which simulates hepatic biotransformation. The primary products generated after the oxidation process were analyzed by High Performance Liquid Chromatography coupled with a Diode Array Detector (HPLC/DAD), which detected the production of 4,4'-diaminodiphenylmethane, 2-methoxy-5-methylaniline and 4,4'-oxydianiline. The results demonstrated that low (from 0.5 to 20 μg mL(-1)) QY concentrations were genotoxic in HepG2 cells on both assays and those harmful compounds were detected after the oxidation process. Our findings suggest that this colorant could cause harmful effects to humans if it is metabolized or absorbed through the skin. PMID:25726175

  20. Methanol exposure does not produce oxidatively damaged DNA in lung, liver or kidney of adult mice, rabbits or primates

    SciTech Connect

    McCallum, Gordon P.; Siu, Michelle; Sweeting, J. Nicole; Wells, Peter G.

    2011-01-15

    In vitro and in vivo genotoxicity tests indicate methanol (MeOH) is not mutagenic, but carcinogenic potential has been claimed in one controversial long-term rodent cancer bioassay that has not been replicated. To determine whether MeOH could indirectly damage DNA via reactive oxygen species (ROS)-mediated mechanisms, we treated male CD-1 mice, New Zealand white rabbits and cynomolgus monkeys with MeOH (2.0 g/kg ip) and 6 h later assessed oxidative damage to DNA, measured as 8-oxo-2'-deoxyguanosine (8-oxodG) by HPLC with electrochemical detection. We found no MeOH-dependent increases in 8-oxodG in lung, liver or kidney of any species. Chronic treatment of CD-1 mice with MeOH (2.0 g/kg ip) daily for 15 days also did not increase 8-oxodG levels in these organs. These results were corroborated in DNA repair-deficient oxoguanine glycosylase 1 (Ogg1) knockout (KO) mice, which accumulated 8-oxodG in lung, kidney and liver with age, but exhibited no increase following MeOH, despite a 2-fold increase in renal 8-oxodG in Ogg1 KO mice following treatment with a ROS-initiating positive control, the renal carcinogen potassium bromate (KBrO{sub 3}; 100 mg/kg ip). These observations suggest that MeOH exposure does not promote the accumulation of oxidatively damaged DNA in lung, kidney or liver, and that environmental exposure to MeOH is unlikely to initiate carcinogenesis in these organs by DNA oxidation.

  1. A Rare Cause of Diarrhea in a Kidney Transplant Recipient: Dipylidium caninum.

    PubMed

    Sahin, I; Köz, S; Atambay, M; Kayabas, U; Piskin, T; Unal, B

    2015-09-01

    We report the first case of dipylidiasis in a kidney transplant recipient. Watery diarrhea due to Dipylidium caninum was observed in a male patient who had been undergone kidney transplantation 2 years before. The patient was successfully treated with niclosamide. D. caninum should be considered as an agent of diarrhea in transplant patients. PMID:26361689

  2. Discovery of ZIP transporters that participate in cadmium damage to testis and kidney

    PubMed Central

    He, Lei; Wang, Bin; Hay, Everett B.; Nebert, Daniel W.

    2009-01-01

    It has been known for decades that cadmium (Cd) must enter the cell to cause damage, but there was no mechanism to explain genetic differences in response to Cd toxicity until 2005. Starting with the mouse Cdm locus associated with differences in Cd-induced testicular necrosis between inbred strains, a 24.6-centiMorgan region on chromosome 3 was reduced ultimately to 880 kb; in this segment is the Slc39a8 gene encoding the ZIP8 Zn2+/HCO3− symporter. In endothelial cells of the testis vasculature, Cd-sensitive mice exhibit high ZIP8 expression, Cd-resistant mice exhibit very low expression. A 168.7-kb bacterial artificial chromosome (BAC) from a 129S6 (Cd-sensitive) BAC library containing the Slc39a8 gene was inserted into the Cd-resistant C57BL/6J genome: Cd treatment produced testicular necrosis in BAC-transgenic BTZIP8-3 mice but not in non-transgenic littermates, thereby proving that the Slc39a8 gene is indeed the Cdm locus. Cd-induced renal failure also occurred in these BTZIP8-3 mice. Immunohistochemistry showed highly expressed ZIP8 protein in the renal proximal tubular epithelial apical surface, suggesting that ZIP8 participates in Cd-induced renal failure. Slc39a14, most closely evolutionarily related to Slc39a8, encodes differentially-spliced products ZIP14A and ZIP14B that display properties similar to ZIP8. ZIP8 in alveolar cells brings environmental Cd into the organism and ZIP14 in intestinal enterocytes carries Cd into the organism and into the hepatocyte. We believe these two transporters function endogenously as Zn2+/HCO3− symporters important in combating inflammation and carrying out other physiological functions; Cd is able to displace the endogenous cation, enter the cell, and produce tissue damage and disease. PMID:19265717

  3. Discovery of ZIP transporters that participate in cadmium damage to testis and kidney

    SciTech Connect

    He Lei; Wang Bin; Hay, Everett B.; Nebert, Daniel W.

    2009-08-01

    It has been known for decades that cadmium (Cd) must enter the cell to cause damage, but there was no mechanism to explain genetic differences in response to Cd toxicity until 2005. Starting with the mouse Cdm locus associated with differences in Cd-induced testicular necrosis between inbred strains, a 24.6-centiMorgan region on chromosome 3 was reduced ultimately to 880 kb; in this segment is the Slc39a8 gene encoding the ZIP8 Zn{sup 2+}/HCO{sub 3}{sup -} symporter. In endothelial cells of the testis vasculature, Cd-sensitive mice exhibit high ZIP8 expression, Cd-resistant mice exhibit very low expression. A 168.7-kb bacterial artificial chromosome (BAC) from a 129S6 (Cd-sensitive) BAC library containing the Slc39a8 gene was inserted into the Cd-resistant C57BL/6J genome: Cd treatment produced testicular necrosis in BAC-transgenic BTZIP8-3 mice but not in non-transgenic littermates, thereby proving that the Slc39a8 gene is indeed the Cdm locus. Cd-induced renal failure also occurred in these BTZIP8-3 mice. Immunohistochemistry showed highly expressed ZIP8 protein in the renal proximal tubular epithelial apical surface, suggesting that ZIP8 participates in Cd-induced renal failure. Slc39a14, most closely evolutionarily related to Slc39a8, encodes differentially-spliced products ZIP14A and ZIP14B that display properties similar to ZIP8. ZIP8 in alveolar cells brings environmental Cd into the organism and ZIP14 in intestinal enterocytes carries Cd into the organism and into the hepatocyte. We believe these two transporters function endogenously as Zn{sup 2+}/HCO{sub 3}{sup -} symporters important in combating inflammation and carrying out other physiological functions; Cd is able to displace the endogenous cation, enter the cell, and produce tissue damage and disease.

  4. Short term ex vivo storage of kidneys cause progressive nuclear ploidy changes of renal tubular epitheliocytes

    PubMed Central

    Sun, Huaibin; Tian, Jun; Xian, Wanhua; Xie, Tingting; Yang, Xiangdong

    2015-01-01

    In renal transplantation, there has been considerable success, mainly in term of post-transplant graft function. However, upon closer scrutiny, it is known that severe dysfunction, including persistence of renal failure is seen after transplantation. The major condition that potentially cause significant lesion may be hypothesized to be related to the hypothermic approach to storage. To systematically examine these issues, we stored mammalian (sheep) kidneys in UWS at 4 °C for four different time points (0, 1, 3 and 6 hours). We obtained renal histological sections and examined tubular architecture as well as nuclear characteristics of tubular epitheliocytes. The results of our preliminary investigations suggest that there are temporal changes of tubular epitheliocytes, as well as genomic changes. These changes were also seen in tissues stored at room temperature. Our observations suggest the need for additional studies for redesigning of improvised storage solutions. Pilot studies using Celsior also revelaed similar kind of nuclear changes, suggesting that storage conditons are contributory, including perfusion versus static conditions. The results may explain persistence of tubular injury several days after orthotopic transplantation, and may potentially be contributory to delayed graft function (DGF). PMID:26036971

  5. Retroperitoneal hematoma compressing a single functioning kidney: an unusual cause of obstructive renal failure.

    PubMed

    Monge, M; Vaida, I; Modeliar, S S; Solanilla, A; Airapetian, N; Presne, C; Makdassi, R; Fournier, A; Choukroun, G

    2007-05-01

    We report a case of a retroperitoneal hematoma occurring in a patient under anticoagulation therapy for deep-venous thrombosis and presenting as an anuric acute renal failure. A coexisting polycythemia vera led to misdiagnosis that could have been life-threatening. A woman, known for polycythemia vera and a single functioning right kidney, was admitted with mild abdominal pain in a context of recent deep venous thrombosis under low-molecular weight heparin. Clinical examination revealed hepatomegaly associated with polycythemia vera. Biochemical evaluation disclosed an acute renal failure, and renal ultrasonography showed no dilation of the renal pelvis. Retroperitoneal hematoma resulted in shock, progressive anemia and obstructive renal failure, related to renal pelvic compression. A right renal indwelling catheter was introduced to restore urine flow after one hemodialysis session, and an inferior vena cava filter was placed because of anti-coagulation contra-indication. However, pulmonary embolism occurred, so that oral anticoagulants were introduced. The hematoma resorbed spontaneously, and a year after this episode, the patient is still alive and well. Retroperitoneal hematoma is a rare cause of obstructive acute renal failure and a life-threatening complication of anti-coagulation therapy. PMID:17542341

  6. Chronic Kidney Disease

    MedlinePlus

    You have two kidneys, each about the size of your fist. Their main job is to filter wastes and excess water out of ... help control blood pressure, and make hormones. Chronic kidney disease (CKD) means that your kidneys are damaged ...

  7. Hyperactivation of Akt/mTOR and deficiency in tuberin increased the oxidative DNA damage in kidney cancer patients with diabetes

    PubMed Central

    Habib, Samy L.; Liang, Sitai

    2014-01-01

    Recent study from our laboratory showed that patients with diabetes are at a higher risk of developing kidney cancer. In the current study, we have explored one of the mechanisms by which diabetes accelerates tumorigenesis in the kidney. Kidney cancer tissue from patients with diabetes showed a higher activity of Akt and decreased in total protein of tuberin compared to kidney cancer patient without diabetes or diabetes alone. In addition, a significant increase in phospho-Akt/tuberin expression was associated with an increase in Ki67 expression and activation of mTOR in kidney tumor with or without diabetes compared to diabetes alone. In addition, decrease in tuberin expression resulted in a significant decrease in protein expression of OGG1 and increased in oxidative DNA damage, 8-oxodG in kidney tissues from patients with cancer or cancer+diabetes. Importantly, these data showed that the majority of the staining of Akt/tuberin/p70S6K phosphorylation was more prominently in the tubular cells. In addition, accumulation of oxidative DNA damage is localized only in the nucleus of tubular cells within the cortex region. These data suggest that Akt/tuberin/mTOR pathway plays an important role in the regulation DNA damage and repair pathways that may predispose diabetic kidneys to pathogenesis of renal cell carcinoma. PMID:24797175

  8. Aristolochic Acid Causes Albuminuria by Promoting Mitochondrial DNA Damage and Dysfunction in Podocyte

    PubMed Central

    Fang, Li; He, Weichun; Dai, Chunsun; Yang, Junwei

    2013-01-01

    Aristolochic acid nephropathy, initially found in patients intaking of slimming herbs containing aristolochic acid (AA), was previously considered as a progressive renal interstitial fibrosis and urothelial malignancy. However, the presence of albuminuria in some patients with AAN suggests that AA may also damage the glomerular filtration barrier. In this study, mice AAN model was generated by daily administration of aristolochic acid I sodium salt intraperitoneally at a dose of 6 mg/kg body weight for 3 days. All of the mice developed heavy albuminuria at day 3 and 7 after receiving AA. In the mice received AA, morphologic change of glomeruli was minor under light microscopy but podocyte foot-process effacement was evident under electron microscopy. In mitochondria isolated from kidney, prominent mitochondrial DNA (mtDNA) damage was accompanied with marked decrease of mtDNA copy number and mitochondrial protein expression level. Similar to those in vivo results, AA treatment impaired the filtration barrier function of cultured podocytes. AA promoted mtDNA damage, decreased mtDNA copy number and mitochondrial protein expression in cultured podocytes. In addition, AA treatment also decreased ATP content, oxygen consumption rate and mitochondrial membrane potential as well as increased cellular reactive oxygen species in cultured podocytes. This study highlighted that AA could induce podocyte damage and albuminuria, which may be mediated by promoting mtDNA damage and mitochondrial dysfunction in podocytes. PMID:24349506

  9. Change in kidney damage biomarkers after 13 weeks of exposing rats to the complex of Paecilomyces sinclairii and its host Bombyx mori larvae.

    PubMed

    Jeong, Mihye; Kim, Young-Won; Min, Jeong-Ran; Kwon, Min; Han, Beom-Suk; Kim, Jeong-Gyu; Jeong, Sang-Hee

    2013-09-01

    Complex of Paecilomyces sinclairii and host larvae, Bombyx mori, is a well known health food; however, concerns about nephrotoxicity have been raised. Kidney toxicity was investigated after 13 weeks of administering the complex orally to rats with parameters including blood urea nitrogen (BUN), creatinine, and kidney damage biomarkers, beta-2-microglobulin (β2m), glutathione S-transferase alpha (GST-α), kidney injury molecule 1 (KIM-1), tissue inhibitor of matrix metalloproteinase 1 (TIMP-1), vascular endothelial growth factor (VEGF), calbindin, clusterin, cystatin C, neutrophil gelatinase-associated lipocalin (NGAL), and osteopontin. Dose-dependent kidney cell karyomegaly and tubular hypertrophy were observed, with higher severity in males. There was a dose-dependent increase in KIM-1 and TIMP-1 levels in kidney and urinary KIM-1, cystatin C, β2m, and osteopontin levels. KIM-1 and TIMP-1 increased in male kidneys had not recovered by 2 weeks after stopping exposure. Cystatin C in kidney was significantly lowered in all treatment groups at 13 weeks of administration. All the changes were more noticeable in males. These data indicate that the complex damage renal tubule cells with histopathological lesions and changes in biomarker levels. Kidney and urinary KIM-1 and cystatin C were the most markedly affected and early increased indicators among biomarkers tested, whereas BUN and creatinine were not affected. PMID:23747716

  10. Causes of forest damage in Europe: Major hypotheses and factors. [Picea rubens; Abies balsmea; Abies fraseri

    SciTech Connect

    Prinz, B. )

    1987-11-01

    Forest damage has become a major topic of public and scientific discussion in recent years. Significant controversy has developed regarding the causes of this damage. This is especially true in West Germany (Federal Republic of Germany), where forests are considered in both economic and emotional terms. The mythic bonds between man and forest go back into ancient history. This article first explains the difference between the novel character of recent forest damage and the classic form of smoke damage. The different forms of forest damage in Central Europe and North America are then compared, and evidence for and against several hypotheses of causation of chlorosis, or yellowing, of evergreen needles at upper elevations - the most important type of forest damage in Germany - is discussed in detail.

  11. DNA damage in hemodialysis patients with chronic kidney disease; a test of the role of diabetes mellitus; a comet assay investigation.

    PubMed

    Mamur, Sevcan; Unal, Fatma; Altok, Kadriye; Deger, Serpil Muge; Yuzbasioglu, Deniz

    2016-04-01

    The incidence of chronic kidney disease (CKD) is increasing rapidly. Diabetes mellitus (DM) is the most important cause of CKD. We studied the possible role of DM in CKD patients with respect to DNA damage, as assessed by the comet assay in 60 CKD patients (with or without DM) undergoing hemodialysis and in 26 controls. Effects of other factors, such as age, sex, hypertension, duration of hemodialysis, body mass index (BMI), and levels of hemoglobin (HB), intact parathormone (iPTH), and ferritin (FER), were also examined. Primary DNA damage measured by the comet assay was significantly higher in CKD patients than in controls. Among CKD patients, the following correlations were observed. (1) There was no difference in comet tail length or tail intensity between diabetic and non-diabetic individuals. (2) Age, sex, hemoglobin, hypertension, duration of hemodialysis, and ferritin levels affected neither tail length nor intensity. (3) BMI values above 25kg/m(2) and iPTH levels above 300pg/ml were associated with significantly greater comet tail length. Our results indicate that primary DNA damage is increased in CKD patients undergoing hemodialysis, compared to controls; however, DM had no additional effect. PMID:27085471

  12. Association of Proteinuria with Race, Cause of Chronic Kidney Disease, and Glomerular Filtration Rate in the Chronic Kidney Disease in Children Study

    PubMed Central

    Wong, Craig S.; Pierce, Christopher B.; Cole, Stephen R.; Warady, Bradley A.; Mak, Robert H.K.; Benador, Nadine M.; Kaskel, Fredrick; Furth, Susan L.; Schwartz, George J.

    2009-01-01

    Background and objectives: Proteinuria is associated with chronic kidney disease (CKD), and heavy proteinuria predicts a rapid decline in kidney function. However, the epidemiologic distribution of this important biomarker study is not well described in the pediatric CKD population. Design, setting, participants & measurements: This cross-sectional study of North American children with CKD examined the association of proteinuria among the baseline clinical variables in the cohort. Urinary protein-to-creatinine ratios (Up/c) were used to measure level of proteinuria. Results: Of the 419 subjects studied, the median GFR as measured by iohexol disappearance (iGFR) was 42 ml/min per 1.73 m2, median duration of CKD was six yr, and glomerular diseases accounted for 22% of the CKD diagnoses. Twenty-four percent of children had normal range (Up/c <0.2), 62% had significant, and 14% had nephrotic-range proteinuria (Up/c >2.0). A decrease in iGFR was associated with an increase in Up/c. At any level of GFR, a higher Up/c was associated with a glomerular cause of CKD and non-Caucasian race. Among subjects with a glomerular cause of CKD, Up/c was lower in subjects reporting utilization of renin-angiotensin system (RAS) antagonists (median Up/c = 0.93) compared with those who did not (median Up/c = 3.78). Conclusions: Proteinuria is associated with level of iGFR, cause of CKD, and race. The longitudinal study design of Chronic Kidney Disease in Children (CKiD) cohort study and the large number of subjects being studied has created an opportunity to better define the association between proteinuria and CKD progression. PMID:19297612

  13. CYTOCHROME P450 1B1 CONTRIBUTES TO RENAL DYSFUNCTION AND DAMAGE CAUSED BY ANGIOTENSIN II IN MICE

    PubMed Central

    Jennings, Brett L.; Anderson, Larry J.; Estes, Anne M.; Yaghini, Fariborz A.; Fang, Xiao R.; Porter, Jason; Gonzalez, Frank J.; Campbell, William B.; Malik, Kafait U.

    2012-01-01

    Cytochrome P450 1B1 contributes to the development of angiotensin II-induced hypertension and associated cardiovascular pathophysiology. In view of the critical role of angiotensin II in the kidney, as well as in salt and water homeostasis, and blood pressure regulation, we determined the contribution of cytochrome P450 1B1 to renal dysfunction and injury associated with angiotensin II-induced hypertension in male Cyp1b1+/+ and Cyp1b1−/− mice. Angiotensin II infusion (700 ng/kg/min) given by miniosmotic pumps for 13 and 28 days increased systolic blood pressure in Cyp1b1+/+ mice; this increase was significantly reduced in Cyp1b1−/− mice. Angiotensin II increased renal Cyp1b1 activity, vascular resistance and reactivity to vasoconstrictor agents, and caused endothelial dysfunction in Cyp1b1+/+ but not Cyp1b1−/− mice. Angiotensin II increased water consumption and urine output, decreased urine osmolality, increased urinary Na+ and K+ excretion, and caused proteinuria and albuminuria in Cyp1b1+/+ mice that was diminished in Cyp1b1−/− mice. Infusion of angiotensin II for 28, but not 13 days, caused renal fibrosis, tubular damage and inflammation in Cyp1b1+/+ mice, which was minimized in Cyp1b1−/− mice. Angiotensin II increased levels of 12- and 20-hydroxyeicosatetraenoic acids; reactive oxygen species; and activity of NADPH oxidase, ERK1/2, p38 MAPK, and c-Src in the kidneys of Cyp1b1+/+ but not Cyp1b1−/− mice. These data suggest that increased thirst, renal dysfunction, and injury and inflammation associated with angiotensin II-induced hypertension in mice depend on cytochrome P450 1B1 activity thus indicating that cytochrome P450 1B1 could serve as a novel target for treating renal disease and hypertension. PMID:22184325

  14. Nontransgenic Hyperexpression of a Complement Regulator in Donor Kidney Modulates Transplant Ischemia/Reperfusion Damage, Acute Rejection, and Chronic Nephropathy

    PubMed Central

    Pratt, Julian R.; Jones, Miriam E.; Dong, Jun; Zhou, Wuding; Chowdhury, Paramit; Smith, Richard A. G.; Sacks, Steven H.

    2003-01-01

    Complement activation during ischemia and reperfusion contributes to the development of tissue injury with severe negative impact on outcomes in transplantation. To counter the effect of complement, we present a strategy to deliver a novel complement regulator stabilized on cell surfaces within donor organs. The membrane-bound complement regulator is able to inhibit complement activation when the donor organ is revascularized and exposed to host-circulating complement. Application of this construct to donor kidneys protected transplanted tissues from ischemia/reperfusion injury and reduced the deposition of activated complement and histological signs of damage under conditions in which a nontargeted control construct was ineffective. Treatment of donor organs in this way improved graft performance in the short and long term. An analysis of the immune response in allograft recipients showed that reducing graft damage at the time of transplantation through complement regulation also modulated the alloresponse. Additionally, the results of perfusion studies with human kidneys demonstrated the feasibility of targeting endothelial and epithelial surfaces with this construct, to allow investigation in clinical transplantation. PMID:14507653

  15. Assessment of ozone damage to crop and forest in Europe caused by Danish emissions

    NASA Astrophysics Data System (ADS)

    Siggaard-Andersen, M.-L.; Zakey, A.; Nuterman, R.; Brandt, J.

    2012-04-01

    Tropospheric Ozone has a damaging effect on vegetation, where it inhibits growth and reduces yield of crop production, as well as causing visible damage to plant leaves. The reduced crop production and growth of forest trees can be assessed using species specific sensitivity factors and market prices. The damages to agriculture are severe and a treat to food security. However, anthropogenic emissions of air pollution are not causing ozone damage to vegetation locally because of redox titration of ozone in the pollution source area. The ozone damage is taking effect hundreds of kilometers further downwind, where the atmospheric content of ozone has stabilized. This means that ozone damage can have a large effect outside an emitting country's borders, while the effects inside are limited or even have reducing effects of ozone damage from other sources. As part of CEEH (Centre for energy, environment and health), we are assessing ozone damage to forest and vegetation in European countries from Danish emissions using atmospheric chemical transport simulations.

  16. Murine lethal milk mutation causes maternal accumulation of zinc in intestine and kidney and reduced zinc transport to milk

    SciTech Connect

    Dohyeel Lee; Cousins, R.J. )

    1991-03-15

    The lethal milk (Lm) mutation is autosomal recessive in C57BL/6J mice and causes Zn deficiency in pups nursed by Lm dams. The genetic defect may cause a shift in the tissue Zn distribution in Lm dams since their milk has a 34-45% lower Zn concentration than milk of normal (N) dams. To examine tissue Zn distribution and Zn transport to milk and pups, 1 {mu}Ci of {sup 65}Zn was administered ip to lactating N and Lm dams. They also received 800 {mu}g Zn/ml in their drinking water to preclude short term, terminal zinc deficiency in the neonates nursed by Lm dams. {sup 65}Zn content of milk and tissues of dams and tissues of pups was measured. Transport of {sup 65}Zn to milk of Lm dams was about 50% compared to milk of N dams. The percentage of the {sup 65}Zn dose recovered in the intestine, liver, and kidney of N pups nursed by LM dams was markedly lower than those of N pups nursed by N dams. In contrast, the percentage of {sup 65}Zn in the intestine and kidney of Lm dams was about twice that of N dams. The elevated intestinal {sup 65}Zn was paralleled by and elevated metallothionein concentration, but the increased {sup 65}Zn in the kidney was not. The Lm gene defect might limit Zn transport to milk by shifting the Zn distribution in lactating dams to the intestine, kidney, and perhaps other tissues.

  17. Immune reactivity to heat shock protein 70 expressed in the kidney is cause of salt-sensitive hypertension

    PubMed Central

    Pons, Héctor; Ferrebuz, Atilio; Quiroz, Yasmir; Romero-Vasquez, Freddy; Parra, Gustavo; Johnson, Richard J.

    2013-01-01

    Hypertension affects one-third of the adult population of the world. The causes of hypertension are incompletely understood, but relative impairment of sodium excretion is central to its pathogenesis. Immune cell infiltration in the kidney is a constant finding in hypertension that in association with local angiotensin and oxidants causes a defect in sodium excretion. However, it is unclear if the T cell influx into the kidney responds to nonspecific chemokine cues or is due to antigen-driven immune attraction. We found that T cells in experimentally induced salt-driven hypertension present a CD4 clonal response to heat shock protein 70 (HSP70) that is overexpressed in the kidney. We used a highly preserved amino acid sequence within the HSP molecule to induce immune tolerance associated with the generation of IL-10 producing regulatory T cells. Immune tolerant rats to HSP70 developed minimal renal inflammation and were protected from the development of salt-sensitive hypertension. Adoptive transfer of T lymphocytes isolated from spleen of tolerized rats also reversed hypertension. HSP70 gene delivery to the renal vein of the kidneys of rats sensitized to HSP70 caused an increment in blood pressure in response to a high-salt diet. The HSP70 peptide used in this work induces a strong proliferative response in peripheral blood lymphocytes of patients with essential hypertension. These studies provide evidence that autoimmunity plays a role in salt-sensitive hypertension and identifies HSP70 expressed in the kidney as one key antigen. These findings raise the possibility of novel approaches to the treatment of this condition. PMID:23097471

  18. Subcutis calcinosis caused by injection of calcium-containing heparin in a chronic kidney injury patient.

    PubMed

    Fatma, Lilia Ben; El Ati, Zohra; Azzouz, Haifa; Rais, Lamia; Krid, Madiha; Smaoui, Wided; Maiz, Hédi Ben; Béji, Soumaya; Zouaghi, Karim; Zitouna, Moncef; Moussa, Fatma Ben

    2014-09-01

    Subcutis calcinosis, characterized by abnormal calcium deposits in the skin, is a rare complication of using calcium-containing heparin occurring in patients with advanced renal failure. We report the case of an 83-year-old female, a known case of chronic kidney disease (CKD) for four years with recent worsening of renal failure requiring hospitalization and hemodialysis. She developed subcutis calcinosis following injection of calcium-containing heparin. Biochemical tests showed serum parathormone level at 400 pg/dL, hypercalcemia, elevated calcium-phosphate product and monoclonal gammopathy related to multiple myeloma. She developed firm subcutaneous nodules in the abdomen and the thighs, the injection sites of Calciparin ® (calcium nadroparin) that was given as a preventive measure against deep vein thrombosis. The diagnosis of subcutis calcinosis was confirmed by the histological examination showing calcium deposit in the dermis and hypodermis. These lesions completely disappeared after discontinuing calcium nadroparin injections. Subcutis calcinosis caused by injections of calcium-containing heparin is rare, and, to the best our knowledge, not more than 12 cases have been reported in the literature. Pathogenesis is not well established but is attributed to the calcium disorders usually seen in advanced renal failure. Diagnosis is confirmed by histological tests. Outcome is mostly favorable. The main differential diagnosis is calciphylaxis, which has a poor prognosis. Even though rarely reported, we should be aware that CKD patients with elevated calcium-phosphorus product can develop subcutis calcinosis induced by calcium-containing heparin. When it occurs, fortunately and unlike calciphylaxis, outcome is favorable. PMID:25193911

  19. Chronic kidney disease of unknown aetiology in Sri Lanka: is cadmium a likely cause?

    PubMed Central

    2011-01-01

    Background The rising prevalence of chronic kidney disease (CKD) and subsequent end stage renal failure necessitating renal replacement therapy has profound consequences for affected individuals and health care resources. This community based study was conducted to identify potential predictors of microalbuminuria in a randomly selected sample of adults from the North Central Province (NCP) of Sri Lanka, where the burden of CKD is pronounced and the underlying cause still unknown. Methods Exposures to possible risk factors were determined in randomly recruited subjects (425 females and 461 males) from selected areas of the NCP of Sri Lanka using an interviewer administered questionnaire. Sulphosalicylic acid and the Light Dependent Resister microalbumin gel filtration method was used for initial screening for microalbuminuria and reconfirmed by the Micral strip test. Results Microalbumnuria was detected in 6.1% of the females and 8.5% of the males. Smoking (p < 0.001), alcohol use (p = 0.003), hypertension (p < 0.001), diabetes (p < 0.001), urinary tract infection (UTI) (p = 0.034) and consumption of water from wells in the fields (p = 0.025) were associated with microalbuminuria. In the binary logistic regression analysis, hypertension, diabetes mellitus, UTI, drinking well water in the fields, smoking and pesticide spraying were found to be significant predictors of microalbuminuria. Conclusions Hypertension, diabetes mellitus, UTI, and smoking are known risk factors for microalbuminuria. The association between microalbuminuria and consumption of well water suggests an environmental aetiology to CKD in NCP. The causative agent is yet to be identified. Investigations for cadmium as a potential causative agent needs to be initiated. PMID:21726464

  20. Untethering an unusual cause of kidney injury in a teenager with Down syndrome.

    PubMed

    Yen, Elizabeth; Miele, Niel F; Barone, Joseph G; Tyagi, Rachana; Weiss, Lynne S

    2014-11-01

    Acute kidney injury (AKI) is characterized by the acute nature and the inability of kidneys to maintain fluid homeostasis as well as adequate electrolyte and acid-base balance, resulting in an accumulation of nitrogenous waste and elevation of serum blood urea nitrogen and creatinine values. Acute kidney injury may be a single isolated event, yet oftentimes, it results from an acute chronic kidney disease. It is critical to seek out the etiology of AKI and to promptly manage the underlying chronic kidney disease to prevent comorbidities and mortality that may ensue. We described a case of a 16-year-old adolescent girl with Down syndrome who presented with AKI and electrolyte aberrance.Abdominal and renal ultrasounds demonstrated a significantly dilated bladder as well as frank hydronephrosis and hydroureter bilaterally. Foley catheter was successful in relieving the obstruction and improving her renal function. However, a magnetic resonance imaging was pursued in light of her chronic constipation and back pain, and it revealed a structural defect (tethered cord) that underlies a chronic process that was highly likely contributory to her AKI. She was managed accordingly with a guarded result and required long-term and close monitoring. PMID:25373571

  1. Protective effect of ω-3 polyunsaturated fatty acids (PUFAs) on sodium nitroprusside-induced nephrotoxicity and oxidative damage in rat kidney.

    PubMed

    Khan, M W; Priyamvada, S; Khan, S A; Khan, S; Naqshbandi, A; Yusufi, A N K

    2012-10-01

    Sodium nitroprusside (SNP) a nitric oxide (NO) donor has proven toxic effects. Dietary ω-3 polyunsaturated fatty acid (PUFA) has been shown to reduce the severity of numerous ailments. Present study examined whether intake of fish oil (FO)/flaxseed oil (FXO, Omega Nutrition, St Vancouver, Canada) would have protective effect against SNP-induced toxicity. Male Wistar rats (150 ± 10 g) were used in this study. Initially animals were divided into two groups: one fed on normal diet and the other on 15% FO/FXO for 15 days. On the 16th day, SNP (1.5 mg/kg body weight) was administered intraperitoneally for 7 days daily. After 7 days animals were killed, kidneys were harvested for further analysis. SNP induced nephrotoxicity by increasing serum creatinine and blood urea nitrogen, SNP significantly decreased malate dehydrogenase, glucose-6-phosphatase, fructose-1,6-bisphosphatase and malic enzyme but increased lactate dehydrogenase and glucose-6-phosphate dehydrogenase. Brush border membrane enzymes such as alkaline phosphatase, γ-glutamyl transpeptidase and leucine amino peptidase were also decreased. The activity of catalase and glutathione peroxidase decreased concomitantly with increased lipid peroxidation, indicating that the significant kidney damage has been inflicted by SNP. Feeding of FO and FXO with SNP ameliorated the changes in various parameters caused by SNP. The results of the present study suggest that ω-3 PUFA-enriched FO and FXO from seafoods and plant sources, respectively, are similarly effective in reducing SNP-induced nephrotoxicity and oxidative damage. Thus, vegetarians who cannot consume FO can have similar health benefits from plant-derived ω-3 PUFA. PMID:22549094

  2. Escalating chronic kidney diseases of multi-factorial origin in Sri Lanka: causes, solutions, and recommendations.

    PubMed

    Wimalawansa, Sunil J

    2014-11-01

    During the last two decades, Sri Lanka, located close to the equator, has experienced an escalating incidence of chronic kidney disease (CKD) of unknown aetiology (CKDue) in dry zonal areas. Similar incidences of unusual CKDs have been reported in the dry zonal, agricultural areas of several other equatorial countries. In Sri Lanka, the incidence of CKDue is highest in the North Central Province (NCP), where approximately 45 % of the country's paddy fields are located. However, in recent years, the disease has spread into areas adjacent to as well as distant from the NCP. The cause of CKD in Sri Lanka is unknown, and may likely due to interactions of different potential agents; thus, CKD is of multi-factorial origin (CKD-mfo). These factors include, the negative effects from overuse of agrochemicals. Nevertheless, the potential interactions and synergism between probable agents have not been studied. This systematic review discusses the proposed hypotheses and causes of CKD-mfo in Sri Lanka, and ways to decrease the incidence of this disease and to eradicate it, and provide some recommendations. During the past decade, a number of groups have investigated this disorder using different methodologies and reported various correlations, but failed to find a cause. Research has focussed on the contamination of water with heavy metals, agrochemicals, hard water, algae, ionicity, climate change, and so forth. Nevertheless, the levels of any of the pollutants or conditions reported in water in NPC are inconsistent not correlated with the prevalence of the disease, and are too low to be the sole cause of CKD-mfo. Meanwhile, several nephrotoxins prevalent in the region, including medications, leptospirosis, toxic herbs, illicit alcohol, locally grown tobacco, and petrochemicals, as well as the effects of changed habits occured over the past four decades have not been studied to date. Taken together, the geographical distribution and overall findings indicate that combinations of factors and/or their interactions are likely to precipitate CKD-mfo, which kills more than 5,000 people annually in Sri Lanka; most victims are middle-aged male farmers. Much anecdotal evidence from this region suggests that consumption of contaminated water is the most likely source of this deadly disease. Although the aetiology is unknown, prevention of this "environmentally acquired" disease seems relatively straightforward. Solutions include (a) preventing environmental pollution, (b) stopping the irresponsible use and decreasing the usage of agrochemicals, and encouraging the use of environmentally friendly agricultural methods, (c) taking proper precautions when using agrochemicals and safe disposal of their containers, (d) changing the risky behaviour of farmers and educating them to preserve the environment, and (e) providing clean potable water to all affected regions. Implementing a well-coordinated, in-depth, region-wide, broad-based research study together with a long-term effective surveillance programme across the country is essential to curbing this disease. Unless firm actions are taken promptly, more than three million healthy people in the country, live in agricultural regions, are at risk for contracting CKD-mfo and succumb to premature deaths, which are preventable. PMID:25239006

  3. Pulmonary Phaeohyphomycosis Caused by Phaeoacremonium in a Kidney Transplant Recipient: Successful Treatment with Posaconazole

    PubMed Central

    Monaganti, Saivaralaxmi; Santos, Carlos A. Q.; Markwardt, Andrea; Pence, Morgan A.; Brennan, Daniel C.

    2014-01-01

    We report a rare case of pulmonary phaeohyphomycosis in a 49-year-old woman 6 years after kidney transplantation. She presented with dyspnea, cough, and fatigue. Her chest CT scan revealed nodular opacities in the right upper lung. A fine needle aspirate biopsy culture yielded Phaeoacremonium and surgical pathology of the biopsy showed chronic inflammation. We successfully treated her with posaconazole and managed drug interactions between posaconazole and tacrolimus. This is the second reported case of biopsy-proven pulmonary infection by Phaeoacremonium in a kidney transplant recipient and successfully treated with posaconazole. PMID:24959182

  4. Ricin Crosses Polarized Human Intestinal Cells and Intestines of Ricin-Gavaged Mice without Evident Damage and Then Disseminates to Mouse Kidneys

    PubMed Central

    Flora, Alyssa D.; Teel, Louise D.; Smith, Mark A.; Sinclair, James F.; Melton-Celsa, Angela R.; O’Brien, Alison D.

    2013-01-01

    Ricin is a potent toxin found in the beans of Ricinus communis and is often lethal for animals and humans when aerosolized or injected and causes significant morbidity and occasional death when ingested. Ricin has been proposed as a bioweapon because of its lethal properties, environmental stability, and accessibility. In oral intoxication, the process by which the toxin transits across intestinal mucosa is not completely understood. To address this question, we assessed the impact of ricin on the gastrointestinal tract and organs of mice after dissemination of toxin from the gut. We first showed that ricin adhered in a specific pattern to human small bowel intestinal sections, the site within the mouse gut in which a variable degree of damage has been reported by others. We then monitored the movement of ricin across polarized human HCT-8 intestinal monolayers grown in transwell inserts and in HCT-8 cell organoids. We observed that, in both systems, ricin trafficked through the cells without apparent damage until 24 hours post intoxication. We delivered a lethal dose of purified fluorescently-labeled ricin to mice by oral gavage and followed transit of the toxin from the gastrointestinal tracts to the internal organs by in vivo imaging of whole animals over time and ex vivo imaging of organs at various time points. In addition, we harvested organs from unlabeled ricin-gavaged mice and assessed them for the presence of ricin and for histological damage. Finally, we compared serum chemistry values from buffer-treated versus ricin-intoxicated animals. We conclude that ricin transverses human intestinal cells and mouse intestinal cells in situ prior to any indication of enterocyte damage and that ricin rapidly reaches the kidneys of intoxicated mice. We also propose that mice intoxicated orally with ricin likely die from distributive shock. PMID:23874986

  5. Long-term treatment with a beta-blocker timolol attenuates renal-damage in diabetic rats via enhancing kidney antioxidant-defense system.

    PubMed

    Gokturk, Hilal; Ulusu, N Nuray; Gok, Muslum; Tuncay, Erkan; Can, Belgin; Turan, Belma

    2014-10-01

    The factors with increasing diabetes-prevalence lead to significant global increases in chronic kidney disease. Since hyperglycemia generates more ROS and attenuates cellular antioxidant-defense mechanisms, numerous studies demonstrated that hyperglycemia-induced oxidative stress played a major role in the extracellular matrix expansion in tissues. Although no direct relation between activation of beta-adrenergic (β-AR) system and kidney disease in diabetes and since β-blockers demonstrate marked beneficial effects due to their scavenging free radicals and/or acting as an antioxidant in diabetic animal studies, the eventual objective of the present study was to determine whether timolol-treatment of streptozotocin-induced diabetic rats (5 mg/kg, daily following diabetes-induction, for 12-week) has advantage to prevent hyperglycemia-induced renal-damage via enhancing the depressed antioxidant defense in the kidney. Light microscopy data and their quantification demonstrated that timolol-treatment prevented basically glomerular hypertrophy, expansion in mesangium cell size, thickening and fibrosis in glomerular basement membrane, and accumulation of glycogen into tubular epithelial cells. Additionally, electron microscopy data demonstrated that timolol-treatment could also prevent diabetes-induced changes in the kidney tissue such as hypertrophy in podocytes, lost of filtration gaps and slit-diaphragms, and vacuolization in the distal tubular cells. Biochemical analysis basically on enzymes of antioxidant-defense system, including glutathione-S-transferase, glutathione reductase, and glucose-6-phosphate dehydrogenase, further supported that diabetes-induced damage in the kidney is mostly dependent on the increased oxidative stress and timolol, having an antioxidant-like action, could protect the kidney against hyperglycemia-induced damage without normalization of high-blood glucose level. Consequently, it can be suggested that although β-blockers are widely used for the treatment of cardiovascular diseases, β-blocker therapy of diabetics seems to be a new therapeutic approach against hyperglycemia-induced kidney damage in diabetic patients. PMID:24947049

  6. Fatal Granulomatous Amoebic Encephalitis Caused by Acanthamoeba in a Patient With Kidney Transplant: A Case Report

    PubMed Central

    Salameh, Ahmad; Bello, Nancy; Becker, Jennifer; Zangeneh, Tirdad

    2015-01-01

    Granulomatous amoebic encephalitis (GAE) due to Acanthamoeba is almost a uniformly fatal infection in immune-compromised hosts despite multidrug combination therapy. We report a case of GAE in a female who received a deceased donor kidney graft. She was treated with a combination of miltefosine, pentamidine, sulfadiazine, fluconazole, flucytosine, and azithromycin. PMID:26280011

  7. An unexpected cause of acute kidney injury in a patient with ANCA associated vasculitis.

    PubMed

    Choudhry, Wajid M; Nori, Uday S; Nadasdy, Tibor; Satoskar, Anjali A

    2016-05-01

    Diagnostic kidney biopsies sometimes yield clinically unsuspected diagnoses. We present a case of a 69-year-old woman with established ANCA-associated vasculitis (AAV) of 4 years duration who was in clinical remission following cytotoxic therapy and was on maintenance immunosuppression. She presented to the hospital with acute kidney injury (AKI), symptoms suggestive of a systemic vasculitis, and in addition had hypercalcemia, metabolic alkalosis. A relapse in the AAV was suspected but a diagnostic kidney biopsy showed acute tubular necrosis, patchy interstitial inflammation, and calcium phosphate deposits. It was found that the patient recently started consuming large doses of over-the-counter calcium-containing antacids and vitamin Dcontaining multivitamin supplements. Cessation of these drugs led to improvement of renal function to baseline. This case highlights several teaching points: (1) the kidney biopsy can prove to be critically important even in cases where there appears to be a more obvious clinical diagnosis, (2) AK due to calcium-alkali syndrome has characteristic histopathological changes, and (3) that the triad of hypercalcemia, metabolic alkalosis, and AKI is exclusively associated with the ingestion of excessive quantities of calcium-containing antacids. The physician should keep this in mind, and pro-actively seek pertinent medication history from the patient. A brief review of calcium-alkali syndrome is given. PMID:26932179

  8. Regression of Renal Disease by Angiotensin II Antagonism Is Caused by Regeneration of Kidney Vasculature.

    PubMed

    Remuzzi, Andrea; Sangalli, Fabio; Macconi, Daniela; Tomasoni, Susanna; Cattaneo, Irene; Rizzo, Paola; Bonandrini, Barbara; Bresciani, Elena; Longaretti, Lorena; Gagliardini, Elena; Conti, Sara; Benigni, Ariela; Remuzzi, Giuseppe

    2016-03-01

    Chronic renal insufficiency inexorably progresses in patients, such as it does after partial renal ablation in rats. However, the progression of renal diseases can be delayed by angiotensin II blockers that stabilize renal function or increase GFR, even in advanced phases of the disease. Regression of glomerulosclerosis can be induced by angiotensin II antagonism, but the effect of these treatments on the entire vascular tree is unclear. Here, using microcomputed tomography and scanning electron microscopy, we compared the size and extension of kidney blood vessels in untreated Wistar rats with those in untreated and angiotensin II antagonist-treated Munich Wistar Frömter (MWF) rats that spontaneously develop kidney disease with age. The kidney vasculature underwent progressive rarefaction in untreated MWF rats, substantially affecting intermediate and small vessels. Microarray analysis showed increased Tgf-β and endothelin-1 gene expression with age. Notably, 10-week inhibition of the renin-angiotensin system regenerated kidney vasculature and normalized Tgf-β and endothelin-1 gene expression in aged MWF rats. These changes were associated with reduced apoptosis, increased endothelial cell proliferation, and restoration of Nrf2 expression, suggesting mechanisms by which angiotensin II antagonism mediates regeneration of capillary segments. These results have important implications in the clinical setting of chronic renal insufficiency. PMID:26116358

  9. Fatal Granulomatous Amoebic Encephalitis Caused by Acanthamoeba in a Patient With Kidney Transplant: A Case Report.

    PubMed

    Salameh, Ahmad; Bello, Nancy; Becker, Jennifer; Zangeneh, Tirdad

    2015-09-01

    Granulomatous amoebic encephalitis (GAE) due to Acanthamoeba is almost a uniformly fatal infection in immune-compromised hosts despite multidrug combination therapy. We report a case of GAE in a female who received a deceased donor kidney graft. She was treated with a combination of miltefosine, pentamidine, sulfadiazine, fluconazole, flucytosine, and azithromycin. PMID:26280011

  10. Effects of atrazine on the oxidative damage of kidney in Wister rats

    PubMed Central

    Liu, Wei; Du, Yanwei; Liu, Jian; Wang, Hebin; Sun, Daguang; Liang, Dongmei; Zhao, Lijing; Shang, Jincheng

    2014-01-01

    The environmental persistence and bioaccumulation of herbicide atrazine may pose a significant threat to human health. In this experiment, 4 weeks old female Wister rats were treated by 0, 5, 25 and 125 mg/kg atrazine respectively for 28 days, and the oxidative stress responses as well as the activations of Nrf2 signaling pathway in kidney tissues induced by atrazine were observed. The results showed that after be treated by atrazine, the Blood urea nitrogen (BUN) and creatinine (CREA) levels in serum were increased, the contents of nitric oxide (NO) and malondialdehyde (MDA) in the kidney tissue homogenates were increased, the over-expressed Nrf2 transferred into the nuclei and played an antioxidant role by up-regulated the expression of II phase detoxifying enzymes such as heme oxygenase-1 (HO1) and NAD(P)H quinone oxidoreductase (NQO1) and the expression of antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). PMID:25419354

  11. Serum Calcification Propensity Is a Strong and Independent Determinant of Cardiac and All-Cause Mortality in Kidney Transplant Recipients.

    PubMed

    Dahle, D O; Åsberg, A; Hartmann, A; Holdaas, H; Bachtler, M; Jenssen, T G; Dionisi, M; Pasch, A

    2016-01-01

    Calcification of the vasculature is associated with cardiovascular disease and death in kidney transplant recipients. A novel functional blood test measures calcification propensity by quantifying the transformation time (T50 ) from primary to secondary calciprotein particles. Accelerated T50 indicates a diminished ability of serum to resist calcification. We measured T50 in 1435 patients 10 weeks after kidney transplantation during 2000-2003 (first era) and 2009-2012 (second era). Aortic pulse wave velocity (APWV) was measured at week 10 and after 1 year in 589 patients from the second era. Accelerated T50 was associated with diabetes, deceased donor, first transplant, rejection, stronger immunosuppression, first era, higher serum phosphate and lower albumin. T50 was not associated with progression of APWV. During a median follow-up of 5.1 years, 283 patients died, 70 from myocardial infarction, cardiac failure or sudden death. In Cox regression models, accelerated T50 was strongly and independently associated with both all-cause and cardiac mortality, low versus high T50 quartile: hazard ratio 1.60 (95% confidence interval [CI] 1.00-2.57), ptrend   = 0.03, and 3.60 (95% CI 1.10-11.83), ptrend   = 0.02, respectively. In conclusion, calcification propensity (T50 ) was strongly associated with all-cause and cardiac mortality of kidney transplant recipients, potentially via a cardiac nonAPWV-related pathway. Whether therapeutic improvement of T50 improves outcome awaits clarification in a randomized trial. PMID:26375609

  12. Severe mortality in wild Atlantic salmon Salmo salar due to proliferative kidney disease (PKD) caused by Tetracapsuloides bryosalmonae (myxozoa).

    PubMed

    Sterud, Erik; Forseth, Torbjørn; Ugedal, Ola; Poppe, Trygve T; Jørgensen, Anders; Bruheim, Torkjell; Fjeldstad, Hans-Petter; Mo, Tor Atle

    2007-10-15

    Extensive mortality in Atlantic salmon fry was reported in the River Aelva from 2002 to 2004. Dead fish were collected in late summer 2006, and live fish were sampled by electrofishing in September the same year. At autopsy and in histological sections, the fish kidneys were found to be pale and considerably enlarged. Proliferative lesions with characteristic PKX cells were seen in a majority of the fish. DNA from kidney samples of diseased fish was subjected to PCR and sequencing, and the amplified sequences matched those of Tetracapsuloides bryosalmonae. We concluded that this myxozoan transmitted from bryozoans was the main cause of the observed mortality in salmon fry in 2006. Results from quantitative electrofishing in 2005 and 2006, combined with the observed fry mortality from 2002 to 2004, show that the smolt production in the river is severely reduced and that T. bryosalmonae is the most likely explanation for this decline. The present study is the first to report a considerable negative population effect in wild Atlantic salmon due to proliferative kidney disease (PKD). It also represents the northernmost PKD outbreak in wild fish. The river is regulated for hydroelectric power purposes, causing reduced water flow and elevated summer temperatures, and the present PKD outbreak may serve as an example of increased disease vulnerability of northern fish populations in a warmer climate. PMID:18062470

  13. Delamination and other types of damage of graphite/expoxy composite caused by machining

    SciTech Connect

    Sadat, A.B.

    1995-12-31

    Fibrous composites are often used as preshaped and preformed for the construction of the structures that are small in size and simple in shape. However, for structures that are large in size and have complicated shapes, composite components are usually assembled and joined together. Therefore secondary machining processes such as drilling, sawing, trimming, etc. are often required for assembling and joining composite components. The two major problems that are associated with machining graphite/epoxy composites are (1) damaged machine zone and (2) rapid tool wear. This paper deals with the damaged machine zone caused by drilling and sawing operations. The various types of damage are identified and their cause and origin is explained. In addition, preventing delamination during machining is discussed and the use of a specially made device in preventing delamination in a drilling operation is presented.

  14. Mutations in 12 known dominant disease-causing genes clarify many congenital anomalies of the kidney and urinary tract

    PubMed Central

    Hwang, Daw-Yang; Dworschak, Gabriel C.; Kohl, Stefan; Saisawat, Pawaree; Vivante, Asaf; Hilger, Alina C.; Reutter, Heiko M.; Soliman, Neveen A.; Bogdanovic, Radovan; Kehinde, Elijah O.; Tasic, Velibor; Hildebrandt, Friedhelm

    2014-01-01

    Congenital anomalies of the kidney and urinary tract (CAKUT) account for approximately half of children with chronic kidney disease. CAKUT can be caused by monogenic mutations, however, data are lacking on their frequency. Genetic diagnosis has been hampered by genetic heterogeneity and lack of genotype-phenotype correlation. To determine the percentage of cases with CAKUT that can be explained by mutations in known CAKUT genes, we analyzed the coding exons of the 17 known dominant CAKUT-causing genes in a cohort of 749 individuals from 650 families with CAKUT. The most common phenotypes in this CAKUT cohort were 288 with vesicoureteral reflux, 120 with renal hypodysplasia and 90 with unilateral renal agenesis. We identified 37 different heterozygous mutations (33 novel) in 12 of the 17 known genes in 47 patients from 41 of the 650 families (6.3%). These mutations include (number of families): BMP7 (1), CDC5L (1), CHD1L (5), EYA1 (3), GATA3 (2), HNF1B (6), PAX2 (5), RET (3), ROBO2 (4), SALL1 (9), SIX2 (1), and SIX5 (1). Furthermore, several mutations previously reported to be disease-causing are most likely benign variants. Thus, in a large cohort over 6% of families with isolated CAKUT are caused by a mutation in 12 of 17 dominant CAKUT genes. Our report represents one of the most in-depth diagnostic studies of monogenic causes of isolated CAKUT in children. PMID:24429398

  15. Crop damage caused by Powdery Mildew on Hop and its relationship to late season management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Powdery mildew of hop (Podosphaera macularis) may cause economic loss due to reductions in cone yield and quality. Quantitative estimates of crop damage from powdery mildew remain poorly characterised, especially the effect of late season disease management on crop yield and quality. Field studies i...

  16. Foliar Nutritional Quality Explains Patchy Browsing Damage Caused by an Invasive Mammal

    PubMed Central

    Windley, Hannah R.; Barron, Mandy C.; Holland, E. Penelope; Starrs, Danswell; Ruscoe, Wendy A.; Foley, William J.

    2016-01-01

    Introduced herbivores frequently inflict significant, yet patchy damage on native ecosystems through selective browsing. However, there are few instances where the underlying cause of this patchy damage has been revealed. We aimed to determine if the nutritional quality of foliage could predict the browsing preferences of an invasive mammalian herbivore, the common brushtail possum (Trichosurus vulpecula), in a temperate forest in New Zealand. We quantified the spatial and temporal variation in four key aspects of the foliar chemistry (total nitrogen, available nitrogen, in vitro dry matter digestibility and tannin effect) of 275 trees representing five native tree species. Simultaneously, we assessed the severity of browsing damage caused by possums on those trees in order to relate selective browsing to foliar nutritional quality. We found significant spatial and temporal variation in nutritional quality among individuals of each tree species examined, as well as among tree species. There was a positive relationship between the available nitrogen concentration of foliage (a measure of in vitro digestible protein) and the severity of damage caused by browsing by possums. This study highlights the importance of nutritional quality, specifically, the foliar available nitrogen concentration of individual trees, in predicting the impact of an invasive mammal. Revealing the underlying cause of patchy browsing by an invasive mammal provides new insights for conservation of native forests and targeted control of invasive herbivores in forest ecosystems. PMID:27171381

  17. A potential cause for kidney stone formation during space flights: enhanced growth of nanobacteria in microgravity

    NASA Technical Reports Server (NTRS)

    Ciftcioglu, Neva; Haddad, Ruwaida S.; Golden, D. C.; Morrison, Dennis R.; McKay, David S.

    2005-01-01

    BACKGROUND: Although some information is available regarding the cellular/molecular changes in immune system exposed to microgravity, little is known about the reasons of the increase in the kidney stone formation in astronauts during and/or after long duration missions at zero gravity (0 g). In our earlier studies, we have assessed a unique agent, nanobacteria (NB), in kidney stones and hypothesized that NB have an active role in calcium phosphate-carbonate deposition in kidney. In this research we studied effect of microgravity on multiplication and calcification of NB in vitro. METHODS: We examined NB cultures in High Aspect Rotating Vessels (HARVs) designed at the NASA's Johnson Space Center, which are designed to stimulate some aspects of microgravity. Multiplication rate and calcium phosphate composition of those NB were compared with NB cultured on stationary and shaker flasks. Collected aliquots of the cultures from different incubation periods were analyzed using spectrophotometer, SEM, TEM, EDX, and x-ray diffraction techniques. RESULTS: The results showed that NB multiplied 4.6x faster in HARVs compared to stationary cultures, and 3.2x faster than shaker flask conditions. X-ray diffraction and EDX analysis showed that the degree of apatite crystal formation and the properties of the apatite depend on the specific culture conditions used. CONCLUSION: We now report an increased multiplication rate of NB in microgravity-simulated conditions. Thus, NB infection may have a potential role in kidney stone formation in crew members during space flights. For further proof to this hypothesis, screening of the NB antigen and antibody level in flight crew before and after flight would be necessary.

  18. Deficiency of the Calcium-Sensing Receptor in the Kidney Causes Parathyroid Hormone–Independent Hypocalciuria

    PubMed Central

    Toka, Hakan R.; Al-Romaih, Khaldoun; Koshy, Jacob M.; DiBartolo, Salvatore; Kos, Claudine H.; Quinn, Stephen J.; Curhan, Gary C.; Mount, David B.; Brown, Edward M.

    2012-01-01

    Rare loss-of-function mutations in the calcium-sensing receptor (Casr) gene lead to decreased urinary calcium excretion in the context of parathyroid hormone (PTH)–dependent hypercalcemia, but the role of Casr in the kidney is unknown. Using animals expressing Cre recombinase driven by the Six2 promoter, we generated mice that appeared grossly normal but had undetectable levels of Casr mRNA and protein in the kidney. Baseline serum calcium, phosphorus, magnesium, and PTH levels were similar to control mice. When challenged with dietary calcium supplementation, however, these mice had significantly lower urinary calcium excretion than controls (urinary calcium to creatinine, 0.31±0.03 versus 0.63±0.14; P=0.001). Western blot analysis on whole-kidney lysates suggested an approximately four-fold increase in activated Na+-K+-2Cl− cotransporter (NKCC2). In addition, experimental animals exhibited significant downregulation of Claudin14, a negative regulator of paracellular cation permeability in the thick ascending limb, and small but significant upregulation of Claudin16, a positive regulator of paracellular cation permeability. Taken together, these data suggest that renal Casr regulates calcium reabsorption in the thick ascending limb, independent of any change in PTH, by increasing the lumen-positive driving force for paracellular Ca2+ transport. PMID:22997254

  19. Analyses of the Secondary Particle Radiation and the DNA Damage it Causes to Human Keratinocytes

    SciTech Connect

    Lebel E. A.; Tafrov S.; Rusek, A.; Sivertz, M. B.; Yip, K.; Thompson, K. H.

    2011-11-01

    High-energy protons, and high mass and energy ions, along with the secondary particles they produce, are the main contributors to the radiation hazard during space explorations. Skin, particularly the epidermis, consisting mainly of keratinocytes with potential for proliferation and malignant transformation, absorbs the majority of the radiation dose. Therefore, we used normal human keratinocytes to investigate and quantify the DNA damage caused by secondary radiation. Its manifestation depends on the presence of retinol in the serum-free media, and is regulated by phosphatidylinositol 3-kinases. We simulated the generation of secondary radiation after the impact of protons and iron ions on an aluminum shield. We also measured the intensity and the type of the resulting secondary particles at two sample locations; our findings agreed well with our predictions. We showed that secondary particles inflict DNA damage to different extents, depending on the type of primary radiation. Low-energy protons produce fewer secondary particles and cause less DNA damage than do high-energy protons. However, both generate fewer secondary particles and inflict less DNA damage than do high mass and energy ions. The majority of cells repaired the initial damage, as denoted by the presence of 53BPI foci, within the first 24 hours after exposure, but some cells maintained the 53BP1 foci longer.

  20. Analyses of the secondary particle radiation and the DNA damage it causes to human keratinocytes

    SciTech Connect

    Lebel E.; Rusek A.; Sivertz, M.; Yip, K.; Thompson, K.; Tafrov, S.

    2011-11-22

    High-energy protons, and high mass and energy ions, along with the secondary particles they produce, are the main contributors to the radiation hazard during space explorations. Skin, particularly the epidermis, consisting mainly of keratinocytes with potential for proliferation and malignant transformation, absorbs the majority of the radiation dose. Therefore, we used normal human keratinocytes to investigate and quantify the DNA damage caused by secondary radiation. Its manifestation depends on the presence of retinol in the serum-free media, and is regulated by phosphatidylinositol 3-kinases. We simulated the generation of secondary radiation after the impact of protons and iron ions on an aluminum shield. We also measured the intensity and the type of the resulting secondary particles at two sample locations; our findings agreed well with our predictions. We showed that secondary particles inflict DNA damage to different extents, depending on the type of primary radiation. Low-energy protons produce fewer secondary particles and cause less DNA damage than do high-energy protons. However, both generate fewer secondary particles and inflict less DNA damage than do high mass and energy ions. The majority of cells repaired the initial damage, as denoted by the presence of 53BPI foci, within the first 24 hours after exposure, but some cells maintained the 53BP1 foci longer.

  1. Enhanced UV-mediated free radical generation; DNA and mitochondrial damage caused by retinol supplementation.

    PubMed

    Klamt, Fábio; Dal-Pizzol, Felipe; Bernard, Elena Aida; Moreira, José Cláudio Fonseca

    2003-08-01

    Retinoid supplementation has been therapeutically used against various human disorders. We and others have demonstrated that retinol treatment causes free radical generation and increased iron uptake, iron storage and oxidative damage, both in vitro and in vivo. Here, we investigate the possible synergistic effect of retinol on UV-mediated free radical generation, oxidative damage to biomolecules and decreased cellular viability in primary cultured mammalian cells. Retinol treatment (7 microM) resulted in a threefold increase in UV-mediated free radical generation and a 40%, increase in lipoperoxidation. DNA fragmentation and mitochondrial oxidative damage also increased significantly in retinol-supplemented UV-irradiated cultured cells as compared to UV-irradiated control cells, which were only treated with the solvent used to deliver the retinol (0.1% ethanol). All measurements were restored to control values when an iron chelator, 1,10-phenanthroline (100 microM), or an OH* scavenger, mannitol (1 mM), was co-administrated. Rather than protecting against free radical generation, retinol seems to enhance UV-mediated oxidative damage and decreases cellular viability in cultured cells. We suggest that retinol-enhanced iron uptake and storage and increased reactive oxygen species generated by the Fenton reaction may act synergistically with UV-irradiation in causing oxidative damage to cells. PMID:14521222

  2. Example Building Damage Caused by Mining Exploitation in Disturbed Rock Mass

    NASA Astrophysics Data System (ADS)

    Florkowska, Lucyna

    2013-06-01

    Issues concerning protection of buildings against the impact of underground coal mining pose significant scientific and engineering challenges. In Poland, where mining is a potent and prominent industry assuring domestic energy security, regions within reach of mining influences are plenty. Moreover, due to their industrial character they are also densely built-up areas. Because minerals have been extracted on an industrial scale in majority of those areas for many years, the rock mass structure has been significantly disturbed. Hence, exploitation of successive layers of multi-seam deposits might cause considerable damage - both in terms of surface and existing infrastructure networks. In the light of those facts, the means of mining and building prevention have to be improved on a regular basis. Moreover, they have to be underpinned by reliable analyses holistically capturing the comprehensive picture of the mining, geotechnical and constructional situation of structures. Scientific research conducted based on observations and measurements of mining-induced strain in buildings is deployed to do just that. Presented in this paper examples of damage sustained by buildings armed with protection against mining influences give an account of impact the mining exploitation in disturbed rock mass can have. This paper is based on analyses of mining damage to church and Nursing Home owned by Evangelical Augsburg Parish in Bytom-Miechowice. Neighbouring buildings differ in the date they were built, construction, building technology, geometry of the building body and fitted protection against mining damage. Both the buildings, however, have sustained lately significant deformation and damage caused by repeated mining exploitation. Selected damage has been discussed hereunder. The structures have been characterised, their current situation and mining history have been outlined, which have taken their toll on character and magnitude of damage. Description has been supplemented with photographic documentation.

  3. Management of wildlife causing damage at Argonne National Laboratory-East, DuPage County, Illinois

    SciTech Connect

    1995-04-01

    The DOE, after an independent review, has adopted an Environmental Assessment (EA) prepared by the US Department of Agriculture (USDA) which evaluates use of an Integrated Wildlife Damage Management approach at Argonne National Laboratory-East (ANL-E) in DuPage County, Illinois (April 1995). In 1994, the USDA issued a programmatic Environmental Impact Statement (EIS) that covers nationwide animal damage control activities. The EA for Management of Wildlife Causing Damage at ANL-E tiers off this programmatic EIS. The USDA wrote the EA as a result of DOE`s request to USDA to prepare and implement a comprehensive Wildlife Management Damage Plan; the USDA has authority for animal damage control under the Animal Damage Control Act of 1931, as amended, and the Rural Development, Agriculture and Related Agencies Appropriations Act of 1988. DOE has determined, based on the analysis in the EA, that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an EIS is not required. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact (FONSI).

  4. Systemic Autoimmunity in TAM Triple Knockout Mice Causes Inflammatory Brain Damage and Cell Death

    PubMed Central

    Li, Qiutang; Lu, Qingjun; Lu, Huayi; Tian, Shifu; Lu, Qingxian

    2013-01-01

    The Tyro3, Axl and Mertk (TAM) triply knockout (TKO) mice exhibit systemic autoimmune diseases, with characteristics of increased proinflammatory cytokine production, autoantibody deposition and autoreactive lymphocyte infiltration into a variety of tissues. Here we show that TKO mice produce high level of serum TNF-α and specific autoantibodies deposited onto brain blood vessels. The brain-blood barrier (BBB) in mutant brains exhibited increased permeability for Evans blue and fluorescent-dextran, suggesting a breakdown of the BBB in the mutant brains. Impaired BBB integrity facilitated autoreactive T cells infiltrating into all regions of the mutant brains. Brain autoimmune disorder caused accumulation of the ubiquitin-reactive aggregates in the mutant hippocampus, and early formation of autofluorescent lipofuscins in the neurons throughout the entire brains. Chronic neuroinflammation caused damage of the hippocampal mossy fibers and neuronal apoptotic death. This study shows that chronic systemic inflammation and autoimmune disorders in the TKO mice cause neuronal damage and death. PMID:23840307

  5. Screw insertion in trabecular bone causes peri-implant bone damage.

    PubMed

    Steiner, Juri A; Ferguson, Stephen J; van Lenthe, G Harry

    2016-04-01

    Secure fracture fixation is still a major challenge in orthopedic surgery, especially in osteoporotic bone. While numerous studies have investigated the effect of implant loading on the peri-implant bone after screw insertion, less focus has been put on bone damage that may occur due to the screw insertion process itself. Therefore, the aim of this study was to localize and quantify peri-implant bone damage caused by screw insertion. We used non-invasive three-dimensional micro-computed tomography to scan twenty human femoral bone cores before and after screw insertion. After image registration of the pre- and post-insertion scans, changes in the bone micro-architecture were identified and quantified. This procedure was performed for screws with a small thread size of 0.3mm (STS, N=10) and large thread size of 0.6mm (LTS, N=10). Most bone damage occurred within a 0.3mm radial distance of the screws. Further bone damage was observed up to 0.6mm and 0.9mm radial distance from the screw, for the STS and LTS groups, respectively. While a similar amount of bone damage was found within a 0.3mm radial distance for the two screw groups, there was significantly more bone damage for the LTS group than the STS group in volumes of interest between 0.3-0.6mm and 0.6-0.9mm. In conclusion, this is the first study to localize and quantify peri-implant bone damage caused by screw insertion based on a non-invasive, three-dimensional, micro-CT imaging technique. We demonstrated that peri-implant bone damage already occurs during screw insertion. This should be taken into consideration to further improve primary implant stability, especially in low quality osteoporotic bone. We believe that this technique could be a promising method to assess more systematically the effect of peri-implant bone damage on primary implant stability. Furthermore, including peri-implant bone damage due to screw insertion into patient-specific in silico models of implant-bone systems could improve the accuracy of these models. PMID:26920074

  6. Meta-analysis of attitudes toward damage-causing mammalian wildlife.

    PubMed

    Kansky, Ruth; Kidd, Martin; Knight, Andrew T

    2014-08-01

    Many populations of threatened mammals persist outside formally protected areas, and their survival depends on the willingness of communities to coexist with them. An understanding of the attitudes, and specifically the tolerance, of individuals and communities and the factors that determine these is therefore fundamental to designing strategies to alleviate human-wildlife conflict. We conducted a meta-analysis to identify factors that affected attitudes toward 4 groups of terrestrial mammals. Elephants (65%) elicited the most positive attitudes, followed by primates (55%), ungulates (53%), and carnivores (44%). Urban residents presented the most positive attitudes (80%), followed by commercial farmers (51%) and communal farmers (26%). A tolerance to damage index showed that human tolerance of ungulates and primates was proportional to the probability of experiencing damage while elephants elicited tolerance levels higher than anticipated and carnivores elicited tolerance levels lower than anticipated. Contrary to conventional wisdom, experiencing damage was not always the dominant factor determining attitudes. Communal farmers had a lower probability of being positive toward carnivores irrespective of probability of experiencing damage, while commercial farmers and urban residents were more likely to be positive toward carnivores irrespective of damage. Urban residents were more likely to be positive toward ungulates, elephants, and primates when probability of damage was low, but not when it was high. Commercial and communal farmers had a higher probability of being positive toward ungulates, primates, and elephants irrespective of probability of experiencing damage. Taxonomic bias may therefore be important. Identifying the distinct factors explaining these attitudes and the specific contexts in which they operate, inclusive of the species causing damage, will be essential for prioritizing conservation investments. PMID:24661270

  7. Testicular necrosis and DNA damage caused by deuterated and methylated analogs of 1,2-dibromo-3-chloropropane in the rat

    SciTech Connect

    Soderlund, E.J.; Brunborg, G.; Omichinski, J.G.; Holme, J.A.; Dahl, J.E.; Nelson, S.D.; Dybing, E.

    1988-07-01

    To study the role of metabolism in 1,2-dibromo-3-chloropropane (DBCP)-induced testicular damage in rats, selectively deuterated and methylated analogs of DBCP were given as a single ip dose of 340 mumol/kg and testicular toxicity was determined 10 days after treatment. None of the four deuterated analogs C1-D2-, C2-D1-, C3-D2-, or C1-C2-C3-D5-DBCP reduced the degree of testicular damage compared to DBCP, indicating that metabolic cleavage of a C-H bond was not rate-limiting in DBCP-induced testicular toxicity. Of the five methylated analogs, C1-methyl-, C1-dimethyl-, C2-methyl-, and C3-methyl-DBCP and 1,2-dibromo-4-chlorobutane, only C3-methyl-DBCP caused testicular toxicity. DBCP treatment resulted in increased testicular DNA damage at doses of 85-170 mumol/kg as measured by alkaline elution of DNA from testicular cells isolated 3 hr after in vivo treatment. The perdeutero-DBCP analog induced testicular DNA damage that was at least as extensive as that induced by DBCP. Of the methylated analogs tested, only C3-methyl-DBCP gave a marked dose-dependent increase in testicular DNA damage between 170 and 540 mumol/kg. There were no significant differences in the testicular tissue distribution between DBCP, perdeutero-DBCP, and the methylated DBCP analogs. Furthermore, in distribution studies with DBCP, C1-methyl- and C3-methyl-DBCP, and 1,2-dibromo-4-chlorobutane, the highest tissue concentrations were found in the kidneys, followed by the liver and then the testes. The fact that testicular DNA damage of DBCP and its deuterated and methylated analogs paralleled their ability to cause testicular necrosis and atrophy makes measurement of DNA damage a very useful correlate in mechanistic studies of DBCP-induced testicular cell death.

  8. Procidentia as a Cause of Obstructive Uropathy and Acute Kidney Injury

    PubMed Central

    Dubowitch, Elliot; Cahn, David; Ross, Curtis; Husain, Ali; Harkaway, Richard; Metro, Michael; Ginsberg, Philip

    2014-01-01

    Pelvic organ prolapse can affect urinary tract function by reducing flow rates and increasing post void residual urine volumes secondary to outlet obstruction. If the diagnosis is missed or left untreated, pelvic organ prolapse can lead to acute renal injury, chronic renal failure or even end stage renal disease. Herein, we present a case of a patient who presented to Albert Einstein Medical Center in Philadelphia, PA with urinary retention and acute kidney injury secondary to complete uterine prolapse, also referred to as procidentia. PMID:26195953

  9. Stochastic activation of a DNA damage response causes cell-to-cell mutation rate variation.

    PubMed

    Uphoff, Stephan; Lord, Nathan D; Okumus, Burak; Potvin-Trottier, Laurent; Sherratt, David J; Paulsson, Johan

    2016-03-01

    Cells rely on the precise action of proteins that detect and repair DNA damage. However, gene expression noise causes fluctuations in protein abundances that may compromise repair. For the Ada protein in Escherichia coli, which induces its own expression upon repairing DNA alkylation damage, we found that undamaged cells on average produce one Ada molecule per generation. Because production is stochastic, many cells have no Ada molecules and cannot induce the damage response until the first expression event occurs, which sometimes delays the response for generations. This creates a subpopulation of cells with increased mutation rates. Nongenetic variation in protein abundances thus leads to genetic heterogeneity in the population. Our results further suggest that cells balance reliable repair against toxic side effects of abundant DNA repair proteins. PMID:26941321

  10. p-Cresyl sulfate causes renal tubular cell damage by inducing oxidative stress by activation of NADPH oxidase.

    PubMed

    Watanabe, Hiroshi; Miyamoto, Yohei; Honda, Daisuke; Tanaka, Hisae; Wu, Qiong; Endo, Masayuki; Noguchi, Tsuyoshi; Kadowaki, Daisuke; Ishima, Yu; Kotani, Shunsuke; Nakajima, Makoto; Kataoka, Keiichiro; Kim-Mitsuyama, Shokei; Tanaka, Motoko; Fukagawa, Masafumi; Otagiri, Masaki; Maruyama, Toru

    2013-04-01

    The accumulation of p-cresyl sulfate (PCS), a uremic toxin, is associated with the mortality rate of chronic kidney disease patients; however, the biological functions and the mechanism of its action remain largely unknown. Here we determine whether PCS enhances the production of reactive oxygen species (ROS) in renal tubular cells resulting in cytotoxicity. PCS exhibited pro-oxidant properties in human tubular epithelial cells by enhancing NADPH oxidase (nicotinamide adenine dinucleotide phosphate-oxidase) activity. PCS also upregulated mRNA levels of inflammatory cytokines and active TGF-β1 protein secretion associated with renal fibrosis. Knockdown of p22(phox) or Nox4 expression suppressed the effect of PCS, underlining the importance of NADPH oxidase activation on its mechanism of action. PCS also reduced cell viability by increasing ROS production. The toxicity of PCS was largely suppressed in the presence of probenecid, an organic acid transport inhibitor. Administration of PCS for 4 weeks caused significant renal tubular damage in 5/6-nephrectomized rats by enhancing oxidative stress. Thus, the renal toxicity of PCS is attributed to its intracellular accumulation, leading to both increased NADPH oxidase activity and ROS production, which, in turn, triggers induction of inflammatory cytokines involved in renal fibrosis. This mechanism is similar to that for the renal toxicity of indoxyl sulfate. PMID:23325087

  11. White and dark kidney beans reduce colonic mucosal damage and inflammation in response to dextran sodium sulfate.

    PubMed

    Monk, Jennifer M; Zhang, Claire P; Wu, Wenqing; Zarepoor, Leila; Lu, Jenifer T; Liu, Ronghua; Pauls, K Peter; Wood, Geoffrey A; Tsao, Rong; Robinson, Lindsay E; Power, Krista A

    2015-07-01

    Common beans are a rich source of nondigestible fermentable components and phenolic compounds that have anti-inflammatory effects. We assessed the gut-health-promoting potential of kidney beans in healthy mice and their ability to attenuate colonic inflammation following dextran sodium sulphate (DSS) exposure (via drinking water, 2% DSS w/v, 7 days). C57BL/6 mice were fed one of three isocaloric diets: basal diet control (BD), or BD supplemented with 20% cooked white (WK) or dark red kidney (DK) bean flour for 3 weeks. In healthy mice, anti-inflammatory microbial-derived cecal short chain fatty acid (SCFA) levels (acetate, butyrate and propionate), colon crypt height and colonic Mucin 1 (MUC1) and Resistin-like Molecule beta (Relmβ) mRNA expression all increased in WK- and DK-fed mice compared to BD, indicative of enhanced microbial activity, gut barrier integrity and antimicrobial defense response. During colitis, both bean diets reduced (a) disease severity, (b) colonic histological damage and (c) increased mRNA expression of antimicrobial and barrier integrity-promoting genes (Toll-like Receptor 4 (TLR4), MUC1-3, Relmβ and Trefoil Factor 3 (TFF3)) and reduced proinflammatory mediator expression [interleukin (IL)-1β, IL-6, interferon (IFN)γ, tumor necrosis factor (TNF)α and monocyte chemoattractant protein-1], which correlated with reduced colon tissue protein levels. Further, bean diets exerted a systemic anti-inflammatory effect during colitis by reducing serum levels of IL-17A, IFNγ, TNFα, IL-1β and IL-6. In conclusion, both WK and DK bean-supplemented diets enhanced microbial-derived SCFA metabolite production, gut barrier integrity and the microbial defensive response in the healthy colon, which supported an anti-inflammatory phenotype during colitis. Collectively, these data demonstrate a beneficial colon-function priming effect of bean consumption that mitigates colitis severity. PMID:25841250

  12. Identification of high-risk population and prevalence of kidney damage among asymptomatic central government employees in Delhi, India.

    PubMed

    Mahapatra, Himanshu Sekhar; Gupta, Yadunanandan Prasad; Sharma, Neera; Buxi, Gurdeep

    2016-01-01

    Chronic kidney disease (CKD) has attained epidemic proportions in India due to increased incidence of diabetes and hypertension (HTN). It was surmised that identification of only high-risk groups (HRGs) through a questionnaire would be sufficient to identify cases of kidney damage (KD). The study attempted to device a questionnaire to classify the subjects in to HRG and low-risk group (LRG) and assess the extent of early KD. The central government employees were classified into HRG and LRG based on "SCreening for Occult REnal Disease (SCORED)" and "EXTENDED" questionnaire formulated after addition of 10 more parameters apart from diabetes and HTN. Urine examination by dipstick, quantitative microalbumin, serum creatinine, and estimated glomerular filtration rate were assessed to determine KD. The data were analyzed for risk-group classification. Sensitivity was calculated based on the number of KD cases in the HRG. Of the 1104 employees screened, 58% and 42% were classified in HRG and LRG, respectively. There were 306 KD cases of whom, 65% were in the HRG. The sensitivity of the EXTENDED questionnaire to detect CKD was much higher (60%) compared to the SCORED questionnaire (25%). The prevalence of KD according to stage was: stage-1, 13.4%; stage-2, 9.9%; and late stages (3, 4, and 5), 4.5%. Microalbuminuria and dipstick-positive proteinuria showed statistically higher proportion in the HRG (25% and 4.1%) than in the LRG (19% and 1%, respectively) (P <0.05). Although the EXTENDED questionnaire was more sensitive in detecting KD, only screening the high-risk population will leave behind 35% of KD cases. There is, therefore, a need for mass screening at regular intervals. PMID:26997392

  13. Circulating microRNAs associate with diabetic nephropathy and systemic microvascular damage and normalize after simultaneous pancreas-kidney transplantation.

    PubMed

    Bijkerk, R; Duijs, J M G J; Khairoun, M; Ter Horst, C J H; van der Pol, P; Mallat, M J; Rotmans, J I; de Vries, A P J; de Koning, E J; de Fijter, J W; Rabelink, T J; van Zonneveld, A J; Reinders, M E J

    2015-04-01

    Because microvascular disease is one of the most important drivers of diabetic complications, early monitoring of microvascular integrity may be of clinical value. By assessing profiles of circulating microRNAs (miRNAs), known regulators of microvascular pathophysiology, in healthy controls and diabetic nephropathy (DN) patients before and after simultaneous pancreas-kidney transplantation (SPK), we aimed to identify differentially expressed miRNAs that associate with microvascular impairment. Following a pilot study, we selected 13 candidate miRNAs and determined their circulating levels in DN (n?=?21), SPK-patients (n?=?37), healthy controls (n?=?19), type 1 diabetes mellitus patients (n?=?15) and DN patients with a kidney transplant (n?=?15). For validation of selected miRNAs, 14 DN patients were studied longitudinally up to 12 months after SPK. We demonstrated a direct association of miR-25, -27a, -126, -130b, -132, -152, -181a, -223, -320, -326, -340, -574-3p and -660 with DN. Of those, miR-25, -27a, -130b, -132, -152, -320, -326, -340, -574-3p and -660 normalized after SPK. Importantly, circulating levels of some of these miRNAs tightly associate with microvascular impairment as they relate to aberrant capillary tortuosity, angiopoietin-2/angiopoietin-1 ratios, circulating levels of soluble-thrombomodulin and insulin-like growth factor. Taken together, circulating miRNA profiles associate with DN and systemic microvascular damage, and might serve to identify individuals at risk of experiencing microvascular complications, as well as give insight into underlying pathologies. PMID:25716422

  14. Common noncoding UMOD gene variants induce salt-sensitive hypertension and kidney damage by increasing uromodulin expression

    PubMed Central

    Trudu, Matteo; Janas, Sylvie; Lanzani, Chiara; Debaix, Huguette; Schaeffer, Céline; Ikehata, Masami; Citterio, Lorena; Demaretz, Sylvie; Trevisani, Francesco; Ristagno, Giuseppe; Glaudemans, Bob; Laghmani, Kamel; Dell’Antonio, Giacomo; Loffing, Johannes; Rastaldi, Maria P.; Manunta, Paolo

    2013-01-01

    Elevated blood pressure (BP) and chronic kidney disease (CKD) are complex traits representing major global health problems1,2. Multiple genome-wide association studies (GWAS) identified common variants giving independent susceptibility for CKD and hypertension in the promoter of the UMOD gene3-9, encoding uromodulin, the major protein secreted in the normal urine. Despite compelling genetic evidence, the underlying biological mechanism is not understood. Here, we demonstrate that UMOD risk variants directly increase UMOD expression in vitro and in vivo. We modeled this effect in transgenic mice and showed that uromodulin overexpression leads to salt-sensitive hypertension and to age-dependent renal lesions that are similarly observed in elderly subjects homozygous for UMOD risk variants. We demonstrate that the link between uromodulin and hypertension is caused by activation of the renal sodium co-transporter NKCC2. This very mechanism is relevant in humans, as pharmacological inhibition of NKCC2 is more effective in lowering BP in hypertensive patients homozygous for UMOD risk variants. Our findings establish a link between the genetic susceptibility to hypertension and CKD, the control of uromodulin expression and its role in a salt-reabsorbing tubular segment of the kidney. These data point to uromodulin as a novel therapeutic target to lower BP and preserve renal function. PMID:24185693

  15. Exposure to Silica Nanoparticles Causes Reversible Damage of the Spermatogenic Process in Mice

    PubMed Central

    Yu, Yang; Li, Yang; Li, Yan-Bo; Yu, Yong-Bo; Zhou, Xian-Qing; Sun, Zhi-Wei

    2014-01-01

    Environmental exposure to nanomaterials is inevitable, as nanomaterials have become part of our daily life now. In this study, we firstly investigated the effects of silica nanoparticles on the spermatogenic process according to their time course in male mice. 48 male mice were randomly divided into control group and silica nanoparticle group with 24 mice per group, with three evaluation time points (15, 35 and 60 days after the first dose) per group. Mice were exposed to the vehicle control and silica nanoparticles at a dosage of 20 mg/kg every 3 days, five times over a 13-day period, and were sacrificed at 15, 35 and 60 days after the first dose. The results showed that silica nanoparticles caused damage to the mitochondrial cristae and decreased the levels of ATP, resulting in oxidative stress in the testis by days 15 and 35; however, the damage was repaired by day 60. DNA damage and the decreases in the quantity and quality of epididymal sperm were found by days 15 and 35; but these changes were recovered by day 60. In contrast, the acrosome integrity and fertility in epididymal sperm, the numbers of spermatogonia and sperm in the testes, and the levels of three major sex hormones were not significantly affected throughout the 60-day period. The results suggest that nanoparticles can cause reversible damage to the sperms in the epididymis without affecting fertility, they are more sensitive than both spermatogonia and spermatocytes to silica nanoparticle toxicity. Considering the spermatogenesis time course, silica nanoparticles primarily influence the maturation process of sperm in the epididymis by causing oxidative stress and damage to the mitochondrial structure, resulting in energy metabolism dysfunction. PMID:25003337

  16. Vitamin E protects against the mitochondrial damage caused by cyclosporin A in LLC-PK1 cells

    SciTech Connect

    Arriba, G. de Perez de Hornedo, J.; Ramirez Rubio, S.; Calvino Fernandez, M.; Benito Martinez, S.; Maiques Camarero, M.; Parra Cid, T.

    2009-09-15

    Cyclosporin A (CsA) has nephrotoxic effects known to involve reactive oxygen species (ROS), since antioxidants prevent the kidney damage induced by this drug. Given that mitochondria are among the main sources of intracellular ROS, the aims of our study were to examine the mitochondrial effects of CsA in the porcine renal endothelial cell line LLC-PK1 and the influence of the antioxidant Vitamin E (Vit E). Following the treatment of LLC-PK1 cells with CsA, we assessed the mitochondrial synthesis of superoxide anion, permeability transition pore opening, mitochondrial membrane potential, cardiolipin peroxidation, cytochrome c release and cellular apoptosis, using flow cytometry and confocal microscopy procedures. Similar experiments were done after Vit E preincubation of cells. CsA treatment increased superoxide anion in a dose-dependent way. CsA opened the permeability transition pores, caused Bax migration to mitochondria, and decreased mitochondrial membrane potential and cardiolipin content. Also CsA released cytochrome c into cytosol and provoked cellular apoptosis. Vit E pretreatment inhibited the effects that CsA induced on mitochondrial structure and function in LLC-PK1 cells and avoided apoptosis. CsA modifies mitochondrial LLC-PK1 cell physiology with loss of negative electrochemical gradient across the inner mitochondrial membrane and increased lipid peroxidation. These features are related to apoptosis and can explain the cellular damage that CsA induces. As Vit E inhibited these effects, our results suggest that they were mediated by an increase in ROS production by mitochondria.

  17. Vitamin E protects against the mitochondrial damage caused by cyclosporin A in LLC-PK1 cells.

    PubMed

    de Arriba, G; de Hornedo, J Pérez; Rubio, S Ramírez; Fernández, M Calvino; Martínez, S Benito; Camarero, M Maiques; Cid, T Parra

    2009-09-15

    Cyclosporin A (CsA) has nephrotoxic effects known to involve reactive oxygen species (ROS), since antioxidants prevent the kidney damage induced by this drug. Given that mitochondria are among the main sources of intracellular ROS, the aims of our study were to examine the mitochondrial effects of CsA in the porcine renal endothelial cell line LLC-PK1 and the influence of the antioxidant Vitamin E (Vit E). Following the treatment of LLC-PK1 cells with CsA, we assessed the mitochondrial synthesis of superoxide anion, permeability transition pore opening, mitochondrial membrane potential, cardiolipin peroxidation, cytochrome c release and cellular apoptosis, using flow cytometry and confocal microscopy procedures. Similar experiments were done after Vit E preincubation of cells. CsA treatment increased superoxide anion in a dose-dependent way. CsA opened the permeability transition pores, caused Bax migration to mitochondria, and decreased mitochondrial membrane potential and cardiolipin content. Also CsA released cytochrome c into cytosol and provoked cellular apoptosis. Vit E pretreatment inhibited the effects that CsA induced on mitochondrial structure and function in LLC-PK1 cells and avoided apoptosis. CsA modifies mitochondrial LLC-PK1 cell physiology with loss of negative electrochemical gradient across the inner mitochondrial membrane and increased lipid peroxidation. These features are related to apoptosis and can explain the cellular damage that CsA induces. As Vit E inhibited these effects, our results suggest that they were mediated by an increase in ROS production by mitochondria. PMID:19523970

  18. MCPIP is induced by cholesterol and participated in cholesterol-caused DNA damage in HUVEC

    PubMed Central

    Da, Jingjing; Zhuo, Ming; Qian, Minzhang

    2015-01-01

    Hypercholesterolemia is an important risk factor for atherosclerosis and cholesterol treatment would cause multiple damages, including DNA damage, on endothelial cells. In this work, we have used human umbilical vein endothelial cell line (HUVEC) to explore the mechanism of cholesterol induced damage. We have found that cholesterol treatment on HUVEC could induce the expression of MCPIP1. When given 12.5 mg/L cholesterol on HUVEC, the expression of MCPIP1 starts to increase since 4 hr after treatment and at 24 hr after treatment it could reach to 10 fold of base line level. We hypothesis this induction of MCPIP1 may contribute to the damaging process and we have used siRNA of MCPIP1 in further research. This MCPIP1 siRNA (siMCPIP) could down regulate MCPIP1 by 73.4% and when using this siRNA on HUVECs, we could see the cholesterol induced DNA damage have been reduced. We have detected DNA damage by γH2AX foci formation in nuclear, γH2AX protein level and COMET assay. Compare to cholesterol alone group, siMCPIP group shows much less γH2AX foci formation in nuclear after cholesterol treatment, less γH2AX protein level in cell and also less tail moment detected in COMET assay. We have also seen that using siMCPIP1 could result in less reactive oxygen species (ROS) in cell after cholesterol treatment. We have also seen that using siMCPIP could reduce the protein level of Nox4 and p47phox, two major regulators in ROS production. These results suggest that MCPIP1 may play an important role in cholesterol induced damage. PMID:26617772

  19. ANALYSIS OF DAMAGE TO WASTE PACKAGES CAUSED BY SEISMIC EVENTS DURING POST-CLOSURE

    SciTech Connect

    Alves, S W; Blair, S C; Carlson, S R; Gerhard, M; Buscheck, T A

    2008-05-27

    This paper presents methodology and results of an analysis of damage due to seismic ground motion for waste packages emplaced in a nuclear waste repository at Yucca Mountain, Nevada. A series of three-dimensional rigid body kinematic simulations of waste packages, pallets, and drip shields subjected to seismic ground motions was performed. The simulations included strings of several waste packages and were used to characterize the number, location, and velocity of impacts that occur during seismic ground motion. Impacts were categorized as either waste package-to-waste package (WP-WP) or waste package-to-pallet (WP-P). In addition, a series of simulations was performed for WP-WP and WP-P impacts using a detailed representation of a single waste package. The detailed simulations were used to determine the amount of damage from individual impacts, and to form a damage catalog, indexed according to the type, angle, location and force/velocity of the impact. Finally, the results from the two analyses were combined to estimate the total damage to a waste package that may occur during an episode of seismic ground motion. This study addressed two waste package types, four levels of peak ground velocity (PGV), and 17 ground motions at each PGV. Selected aspects of waste package degradation, such as effective wall thickness and condition of the internals, were also considered. As expected, increasing the PGV level of the vibratory ground motion increases the damage to the waste packages. Results show that most of the damage is caused by WP-P impacts. TAD-bearing waste packages with intact internals are highly resistant to damage, even at a PGV of 4.07 m/s, which is the highest level analyzed.

  20. Hemolysis during cardiac surgery is associated with increased intravascular nitric oxide consumption and perioperative kidney and intestinal tissue damage

    PubMed Central

    Vermeulen Windsant, Iris C.; de Wit, Norbert C. J.; Sertorio, Jonas T. C.; van Bijnen, Annemarie A.; Ganushchak, Yuri M.; Heijmans, John H.; Tanus-Santos, Jose E.; Jacobs, Michael J.; Maessen, Jos G.; Buurman, Wim A.

    2014-01-01

    Introduction: Acute kidney injury (AKI) and intestinal injury negatively impact patient outcome after cardiac surgery. Enhanced nitric oxide (NO) consumption due to intraoperative intravascular hemolysis, may play an important role in this setting. This study investigated the impact of hemolysis on plasma NO consumption, AKI, and intestinal tissue damage, after cardiac surgery. Methods: Hemolysis (by plasma extracellular (free) hemoglobin; fHb), plasma NO-consumption, plasma fHb-binding capacity by haptoglobin (Hp), renal tubular injury (using urinary N-Acetyl-β-D-glucosaminidase; NAG), intestinal mucosal injury (through plasma intestinal fatty acid binding protein; IFABP), and AKI were studied in patients undergoing off-pump cardiac surgery (OPCAB, N = 7), on-pump coronary artery bypass grafting (CABG, N = 30), or combined CABG and valve surgery (CABG+Valve, N = 30). Results: FHb plasma levels and NO-consumption significantly increased, while plasma Hp concentrations significantly decreased in CABG and CABG+Valve patients (p < 0.0001) during surgery. The extent of hemolysis and NO-consumption correlated significantly (r2 = 0.75, p < 0.0001). Also, NAG and IFABP increased in both groups (p < 0.0001, and p < 0.001, respectively), and both were significantly associated with hemolysis (Rs = 0.70, p < 0.0001, and Rs = 0.26, p = 0.04, respectively) and NO-consumption (Rs = 0.55, p = 0.002, and Rs = 0.41, p = 0.03, respectively), also after multivariable logistic regression analysis. OPCAB patients did not show increased fHb, NO-consumption, NAG, or IFABP levels. Patients suffering from AKI (N = 9, 13.4%) displayed significantly higher fHb and NAG levels already during surgery compared to non-AKI patients. Conclusions: Hemolysis appears to be an important contributor to postoperative kidney injury and intestinal mucosal damage, potentially by limiting NO-bioavailability. This observation offers a novel diagnostic and therapeutic target to improve patient outcome after cardiothoracic surgery. PMID:25249983

  1. Nitrative and oxidative DNA damage caused by K-ras mutation in mice

    SciTech Connect

    Ohnishi, Shiho; Saito, Hiromitsu; Suzuki, Noboru; Ma, Ning; Hiraku, Yusuke; Murata, Mariko; Kawanishi, Shosuke

    2011-09-23

    Highlights: {yields} Mutated K-ras in transgenic mice caused nitrative DNA damage, 8-nitroguanine. {yields} The mutagenic 8-nitroguanine seemed to be generated by iNOS via Ras-MAPK signal. {yields} Mutated K-ras produces additional mutagenic lesions, as a new oncogenic role. -- Abstract: Ras mutation is important for carcinogenesis. Carcinogenesis consists of multi-step process with mutations in several genes. We investigated the role of DNA damage in carcinogenesis initiated by K-ras mutation, using conditional transgenic mice. Immunohistochemical analysis revealed that mutagenic 8-nitroguanine and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) were apparently formed in adenocarcinoma caused by mutated K-ras. 8-Nitroguanine was co-localized with iNOS, eNOS, NF-{kappa}B, IKK, MAPK, MEK, and mutated K-ras, suggesting that oncogenic K-ras causes additional DNA damage via signaling pathway involving these molecules. It is noteworthy that K-ras mutation mediates not only cell over-proliferation but also the accumulation of mutagenic DNA lesions, leading to carcinogenesis.

  2. Caffeic Acid Phenethyl Ester as a Protective Agent against Nephrotoxicity and/or Oxidative Kidney Damage: A Detailed Systematic Review

    PubMed Central

    Akyol, Sumeyya; Ugurcu, Veli; Altuntas, Aynur; Hasgul, Rukiye; Cakmak, Ozlem

    2014-01-01

    Caffeic acid phenethyl ester (CAPE), an active component of propolis, has been attracting the attention of different medical and pharmaceutical disciplines in recent years because of its antioxidant, anti-inflammatory, antiproliferative, cytotoxic, antiviral, antifungal, and antineoplastic properties. One of the most studied organs for the effects of CAPE is the kidney, particularly in the capacity of this ester to decrease the nephrotoxicity induced by several drugs and the oxidative injury after ischemia/reperfusion (I/R). In this review, we summarized and critically evaluated the current knowledge regarding the protective effect of CAPE in nephrotoxicity induced by several special medicines such as cisplatin, doxorubicin, cyclosporine, gentamycin, methotrexate, and other causes leading to oxidative renal injury, namely, I/R models and senility. PMID:25003138

  3. Deficiency of antidiuretic hormone: a rare cause of massive polyuria after kidney transplantation

    PubMed Central

    Jang, Kyung Mi; Sohn, Young Soo; Hwang, Young Ju; Choi, Bong Seok

    2016-01-01

    A 15-year-old boy, who was diagnosed with Alport syndrome and end-stage renal disease, received a renal transplant from a living-related donor. On postoperative day 1, his daily urine output was 10,000 mL despite normal graft function. His laboratory findings including urine, serum osmolality, and antidiuretic hormone levels showed signs similar to central diabetes insipidus, so he was administered desmopressin acetate nasal spray. After administering the desmopressin, urine specific gravity and osmolality increased abruptly, and daily urine output declined to the normal range. The desmopressin acetate was tapered gradually and discontinued 3 months later. Graft function was good, and urine output was maintained within the normal range without desmopressin 20 months after the transplantation. We present a case of a massive polyuria due to transient deficiency of antidiuretic hormone with the necessity of desmopressin therapy immediately after kidney transplantation in a pediatric patient. PMID:27186232

  4. Intra-Abdominal Hypertension and Abdominal Compartment Syndrome: An Underappreciated Cause of Acute Kidney Injury.

    PubMed

    Patel, Deepa M; Connor, Michael J

    2016-05-01

    Intra-abdominal hypertension (IAH) and abdominal compartment syndrome are increasingly recognized in both medical and surgical critically ill patients and are predictive of death and the development of acute kidney injury. Although there are many risk factors for the development of IAH, in the era of goal-directed therapy for shock, brisk volume resuscitation and volume overload are the most common contributors. Abdominal examination is an unreliable predictor of intra-abdominal pressure (IAP), but IAP can be easily measured in a reproducible and reliable manner by a number of simple bedside techniques. Prompt recognition and intervention to decrease IAP and improve vital organ perfusion are essential to minimize the negative effects of IAH on somatic and visceral organ functions. PMID:27113692

  5. Renal fibrosis is the common feature of autosomal dominant tubulointerstitial kidney diseases caused by mutations in mucin 1 or uromodulin.

    PubMed

    Ekici, Arif B; Hackenbeck, Thomas; Morinière, Vincent; Pannes, Andrea; Buettner, Maike; Uebe, Steffen; Janka, Rolf; Wiesener, Antje; Hermann, Ingo; Grupp, Sina; Hornberger, Martin; Huber, Tobias B; Isbel, Nikky; Mangos, George; McGinn, Stella; Soreth-Rieke, Daniela; Beck, Bodo B; Uder, Michael; Amann, Kerstin; Antignac, Corinne; Reis, André; Eckardt, Kai-Uwe; Wiesener, Michael S

    2014-09-01

    For decades, ill-defined autosomal dominant renal diseases have been reported, which originate from tubular cells and lead to tubular atrophy and interstitial fibrosis. These diseases are clinically indistinguishable, but caused by mutations in at least four different genes: UMOD, HNF1B, REN, and, as recently described, MUC1. Affected family members show renal fibrosis in the biopsy and gradually declining renal function, with renal failure usually occurring between the third and sixth decade of life. Here we describe 10 families and define eligibility criteria to consider this type of inherited disease, as well as propose a practicable approach for diagnosis. In contrast to what the frequently used term 'Medullary Cystic Kidney Disease' implies, development of (medullary) cysts is neither an early nor a typical feature, as determined by MRI. In addition to Sanger and gene panel sequencing of the four genes, we established SNaPshot minisequencing for the predescribed cytosine duplication within a distinct repeat region of MUC1 causing a frameshift. A mutation was found in 7 of 9 families (3 in UMOD and 4 in MUC1), with one indeterminate (UMOD p.T62P). On the basis of clinical and pathological characteristics we propose the term 'Autosomal Dominant Tubulointerstitial Kidney Disease' as an improved terminology. This should enhance recognition and correct diagnosis of affected individuals, facilitate genetic counseling, and stimulate research into the underlying pathophysiology. PMID:24670410

  6. 10 Symptoms of Kidney Disease

    MedlinePlus

    ... the liver, can cause pain. Kidney infections and kidney stones can cause severe pain, often in spasms. Bladder infections can cause burning when you urinate. People who have medullary sponge kidney say it is painful. What patients said: "About ...

  7. Ensemble analysis of frost damage on vegetation caused by spring backlashes in a warmer Europe

    NASA Astrophysics Data System (ADS)

    Jönsson, A. M.; Bärring, L.

    2011-02-01

    Tree dehardening and budburst will occur earlier in a warmer climate, and this could lead to an increased risk of frost damage caused by temperature backlashes. By using a spring backlash index and a cold hardiness model, we assessed different aspects of risk for frost damage in Norway spruce forests during the present climate and for one future emission scenario. Uncertainties associated with climate modelling were quantified by using temperature data from three climate data sets: (1) E-Obs gridded observed climate data, (2) an ensemble of data from eight regional climate models (RCM) forced by ERA-40 reanalysis data, (3) an ensemble of regional climate scenarios produced by the regional climate model RCA3 driven at the boundary conditions by seven global climate models (GCM), all representing the SRES A1B emission scenario. The frost risk was analysed for three periods, 1961-1990, 2011-2040 and 2070-2097. The RCA3_GCM ensemble indicated that the risk for spring frost damage may increase in the boreo-nemoral forest zone of southern Scandinavia and the Baltic states/Belarus. This is due to an increased frequency of backlashes, lower freezing temperatures after the onset of the vegetation period and the last spring frost occurring when the trees are closer to budburst. The changes could be transient due to the fine balance between an increased risk of frost damage caused by dehardening during a period when freezing temperatures are common and a decreased risk caused by warmer temperatures. In the nemoral zone, the zone with highest risk for spring backlashes during the reference period (1961-1990), the spring frost severity may increase due to frost events occurring when the trees are closer to budburst. However, the risk in terms of frequency of backlashes and freezing temperature were projected to become lower already in the beginning of this century.

  8. Climate change and the effect of temperature backlashes causing frost damage in Picea abies

    NASA Astrophysics Data System (ADS)

    Jönsson, Anna Maria; Linderson, Maj-Lena; Stjernquist, Ingrid; Schlyter, Peter; Bärring, Lars

    2004-12-01

    In boreal and nemoboreal forests, tree frost hardiness is modified in reaction to cues from day length and temperature. The dehardening processes in Norway spruce, Picea abies, could be estimated to start when the daily mean temperature is above 5 °C for 5 days. Bud burst will occur approximately after 120-170 degree-days above 5 °C, dependent on genetic differences among provenances. A reduced cold hardiness level during autumn and spring and an advanced onset of bud burst are expected impacts of projected future global warming. The aim of this study was to test if this will increase the risk for frost damage caused by temperature backlashes. This was tested for Sweden by comparing output from the Hadley Centre regional climate model, HadRM3H, for the period 1961-1990 with future IPCC scenario SRES A2 and B2 for 2070-2099. Different indices for calculating the susceptibility to frost damage were used to assess changes in frost damage risk. The indices were based on: (1) the start of dehardening; (2) the severity of the temperature backlash; (3) the timing of bud burst; and (4) the cold hardiness level. The start of dehardening and bud burst were calculated to occur earlier all over the country, which is in line with the overall warming in both climate change scenarios. The frequency of temperature backlashes that may cause frost damage was calculated to increase in the southern part, an effect that became gradually less pronounced towards the north. The different timing of the onset of dehardening mainly caused this systematic latitudinal pattern. In the south, it occurs early in the year when the seasonal temperature progression is slow and large temperature variations occur. In the north, dehardening will occur closer to the spring equinox when the temperature progression is faster.

  9. Urinary CD133+ Extracellular Vesicles Are Decreased in Kidney Transplanted Patients with Slow Graft Function and Vascular Damage

    PubMed Central

    Dimuccio, Veronica; Ranghino, Andrea; Praticò Barbato, Loredana; Fop, Fabrizio; Biancone, Luigi; Camussi, Giovanni; Bussolati, Benedetta

    2014-01-01

    Extracellular vesicles (EVs) present in the urine are mainly released from cells of the nephron and can therefore provide information on kidney function. We here evaluated the presence of vesicles expressing the progenitor marker CD133 in the urine of normal subjects and of patients undergoing renal transplant. We found that EV expressing CD133 were present in the urine of normal subjects, but not of patients with end stage renal disease. The first day after transplant, urinary CD133+ EVs were present at low levels, to increase thereafter (at day 7). Urinary CD133+ EVs significantly increased in patients with slow graft function in respect to those with early graft function. In patients with a severe pre-transplant vascular damage of the graft, CD133+ EVs did not increase at day 7. At variance, the levels of EVs expressing the renal exosomal marker CD24 did not vary in the urine of patients with end stage renal disease or in transplanted patients in respect to controls. Sorted CD133+ EVs were found to express glomerular and proximal tubular markers. These data indicate that urinary CD133+ EVs are continuously released during the homeostatic turnover of the nephron and may provide information on its function or regenerative potential. PMID:25100147

  10. Damage to lens fiber cells causes TRPV4-dependent Src family kinase activation in the epithelium.

    PubMed

    Shahidullah, M; Mandal, A; Delamere, N A

    2015-11-01

    The bulk of the lens consists of tightly packed fiber cells. Because mature lens fibers lack mitochondria and other organelles, lens homeostasis relies on a monolayer of epithelial cells at the anterior surface. The detection of various signaling pathways in lens epithelial cells suggests they respond to stimuli that influence lens function. Focusing on Src Family Kinases (SFKs) and Transient Receptor Potential Vanilloid 4 (TRPV4), we tested whether the epithelium can sense and respond to an event that occurs in fiber mass. The pig lens was subjected to localized freeze-thaw (FT) damage to fibers at posterior pole then the lens was incubated for 1-10 min in Krebs solution at 37 °C. Transient SFK activation in the epithelium was detectable at 1 min. Using a western blot approach, the ion channel TRPV4 was detected in the epithelium but was sparse or absent in fiber cells. Even though TRPV4 expression appears low at the actual site of FT damage to the fibers, SFK activation in the epithelium was suppressed in lenses subjected to FT damage then incubated with the TRPV4 antagonist HC067047 (10 μM). Na,K-ATPase activity was examined because previous studies report changes of Na,K-ATPase activity associated with SFK activation. Na,K-ATPase activity doubled in the epithelium removed from FT-damaged lenses and the response was prevented by HC067047 or the SFK inhibitor PP2 (10 μM). Similar changes were observed in response to fiber damage caused by injection of 5 μl hyperosmotic NaCl or mannitol solution beneath the surface of the posterior pole. The findings point to a TRPV4-dependent mechanism that enables the epithelial cells to detect remote damage in the fiber mass and respond within minutes by activating SFK and increasing Na,K-ATPase activity. Because TRPV4 channels are mechanosensitive, we speculate they may be stimulated by swelling of the lens structure caused by damage to the fibers. Increased Na,K-ATPase activity gives the lens greater capacity to control ion concentrations in the fiber mass and the Na,K-ATPase response may reflect the critical contribution of the epithelium to lens ion homeostasis. PMID:26318609

  11. Amphetamine exposure imbalanced antioxidant activity in the bivalve Dreissena polymorpha causing oxidative and genetic damage.

    PubMed

    Parolini, Marco; Magni, Stefano; Castiglioni, Sara; Binelli, Andrea

    2016-02-01

    Illicit drugs have been recognized as emerging aquatic pollutants due to their presence in aquatic ecosystems up to µg/L level. Among these, the synthetic psycho-stimulant drug amphetamine (AMPH) is commonly found in both surface and wastewaters worldwide. Even though the environmental occurrence of AMPH is well-known, the information on its toxicity towards non-target freshwater organisms is completely lacking. This study investigated the imbalance of the oxidative status and both oxidative and genetic damage induced by a 14-day exposure to two concentrations (500 ng/L and 5000 ng/L) of AMPH on the freshwater bivalve Dreissena polymorpha by the application of a biomarker suite. We investigated the activity of antioxidant enzymes (SOD, CAT and GPx), the phase II detoxifying enzyme GST, the lipid peroxidation level (LPO) and protein carbonyl content (PCC), as well as primary (Single Cell Gel Electrophoresis assay) and fixed (DNA diffusion assay and Micronucleus test) genetic damage. Our results showed that a current realistic AMPH concentration (500 ng/L) did neither cause notable imbalances in enzymatic activities, nor oxidative and genetic damage to cellular macromolecules. In contrast, the bell-shaped trend of antioxidants showed at the highest tested concentration (5000 ng/L) suggested an overproduction of reactive oxygen species, leading to oxidative damage, as confirmed by the significant increase of protein carbonylation and DNA fragmentation. PMID:26363322

  12. Time-resolved optical spectroscopic quantification of red blood cell damage caused by cardiovascular devices

    NASA Astrophysics Data System (ADS)

    Sakota, D.; Sakamoto, R.; Sobajima, H.; Yokoyama, N.; Yokoyama, Y.; Waguri, S.; Ohuchi, K.; Takatani, S.

    2008-02-01

    Cardiovascular devices such as heart-lung machine generate un-physiological level of shear stress to damage red blood cells, leading to hemolysis. The diagnostic techniques of cell damages, however, have not yet been established. In this study, the time-resolved optical spectroscopy was applied to quantify red blood cell (RBC) damages caused by the extracorporeal circulation system. Experimentally, the fresh porcine blood was subjected to varying degrees of shear stress in the rotary blood pump, followed with measurement of the time-resolved transmission characteristics using the pico-second pulses at 651 nm. The propagated optical energy through the blood specimen was detected using a streak camera. The data were analyzed in terms of the mean cell volume (MCV) and mean cell hemoglobin concentration (MCHC) measured separately versus the energy and propagation time of the light pulses. The results showed that as the circulation time increased, the MCV increased with decrease in MCHC. It was speculated that the older RBCs with smaller size and fragile membrane properties had been selectively destroyed by the shear stress. The time-resolved optical spectroscopy is a useful technique in quantifying the RBCs' damages by measuring the energy and propagation time of the ultra-short light pulses through the blood.

  13. Neutrophil elastase causes tissue damage that decreases host tolerance to lung infection with burkholderia species.

    PubMed

    Sahoo, Manoranjan; Del Barrio, Laura; Miller, Mark A; Re, Fabio

    2014-08-01

    Two distinct defense strategies can protect the host from infection: resistance is the ability to destroy the infectious agent, and tolerance is the ability to withstand infection by minimizing the negative impact it has on the host's health without directly affecting pathogen burden. Burkholderia pseudomallei is a Gram-negative bacterium that infects macrophages and causes melioidosis. We have recently shown that inflammasome-triggered pyroptosis and IL-18 are equally important for resistance to B. pseudomallei, whereas IL-1β is deleterious. Here we show that the detrimental role of IL-1β during infection with B. pseudomallei (and closely related B. thailandensis) is due to excessive recruitment of neutrophils to the lung and consequent tissue damage. Mice deficient in the potentially damaging enzyme neutrophil elastase were less susceptible than the wild type C57BL/6J mice to infection, although the bacterial burdens in organs and the extent of inflammation were comparable between C57BL/6J and elastase-deficient mice. In contrast, lung tissue damage and vascular leakage were drastically reduced in elastase-deficient mice compared to controls. Bradykinin levels were higher in C57BL/6 than in elastase-deficient mice; administration of a bradykinin antagonist protected mice from infection, suggesting that increased vascular permeability mediated by bradykinin is one of the mechanisms through which elastase decreases host tolerance to melioidosis. Collectively, these results demonstrate that absence of neutrophil elastase increases host tolerance, rather than resistance, to infection by minimizing host tissue damage. PMID:25166912

  14. Mitochondrial aldehyde dehydrogenase 2 protects gastric mucosa cells against DNA damage caused by oxidative stress.

    PubMed

    Duan, Yantao; Gao, Yaohui; Zhang, Jun; Chen, Yinan; Jiang, Yannan; Ji, Jun; Zhang, Jianian; Chen, Xuehua; Yang, Qiumeng; Su, Liping; Zhang, Jun; Liu, Bingya; Zhu, Zhenggang; Wang, Lishun; Yu, Yingyan

    2016-04-01

    Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is a member of the aldehyde dehydrogenase superfamily and is involved with the metabolic processing of aldehydes. ALDH2 plays a cytoprotective role by removing aldehydes produced during normal metabolism. We examined the cytoprotective role of ALDH2 specifically in gastric mucosa cells. Overexpression of ALDH2 increased the viability of gastric mucosa cells treated with H2O2, while knockdown of ALDH2 had an opposite effect. Moreover, overexpression of ALDH2 protected gastric mucosa cells against oxidative stress-induced apoptosis as determined by flow cytometry, Hoechst 33342, and TUNEL assays. Consistently, ALDH2 knockdown had an opposite effect. Additionally, DNA damage was ameliorated in ALDH2-overexpressing gastric mucosa cells treated with H2O2. We further identified that this cytoprotective role of ALDH2 was mediated by metabolism of 4-hydroxynonenal (4-HNE). Consistently, 4-HNE mimicked the oxidative stress induced by H2O2 in gastric mucosa cells. Treatment with 4-HNE increased levels of DNA damage in ALDH2-knockdown GES-1 cells, while overexpression of ALDH2 decreased 4-HNE-induced DNA damage. These findings suggest that ALDH2 can protect gastric mucosa cells against DNA damage caused by oxidative stress by reducing levels of 4-HNE. PMID:26855420

  15. Acrocomia aculeata prevents toxicogenetic damage caused by the antitumor agent cyclophosphamide.

    PubMed

    Magosso, M F; Carvalho, P C; Shneider, B U C; Pessatto, L R; Pesarini, J R; Silva, P V B; Correa, W A; Kassuya, C A L; Muzzi, R M; Oliveira, R J

    2016-01-01

    Acrocomia aculeata is a plant rich in antioxidant compounds. Studies suggest that this plant has anti-inflammatory, antidiabetic, and diuretic potential. We assessed the antigenotoxic, antimutagenic, immunomodulation, and apoptotic potentials of A. aculeata alone and in combination with an antitumor agent, cyclophosphamide. Swiss male mice (N = 140) were used. The animals were divided into 14 experimental groups as follows: a negative group, a positive group (100 mg/kg cyclophosphamide), groups that only received the oil extracted from the almond (AO) and from the pulp (PO) of A. aculeata at doses of 3, 15, and 30 mg/kg, and the associated treatment groups (oils combined with cyclophosphamide) involving pretreatment, simultaneous, and post-treatment protocols. Data suggest that both oils were chemopreventive at all doses, based on the tested protocols. The highest damage reduction percentages, observed for AO and PO were 88.19 and 90.03%, respectively, for the comet assay and 69.73 and 70.93%, respectively, for the micronucleus assay. Both AO and PO demonstrated immunomodulatory activity. The oils reduced the capacity of cyclophosphamide to trigger apoptosis in the liver, spleen, and kidney cells. These results suggest that A. aculeate AO and PO can be classified as a functional food and also enrich other functional foods and nutraceuticals with chemopreventive features. However, they are not appropriate sources for chemotherapeutic adjuvants, in particular for those used in combination with cyclophosphamide. PMID:27173316

  16. [Kidney toxicity's "HAART" therapy].

    PubMed

    Marino, Alfonsina; Ardu, Francesco; Dentone, Chiara; Secondo, Giovanni; Ferrea, G

    2015-01-01

    Human immunodeficiency virus (HIV) and antiretroviral therapy can damage the kidney. Highly active antiretroviral therapy (HAART) generally improves the renal function as it reduces the viral replication, although the renal function may be reduced by certain antiretroviral drugs. HAART causes acute tubular necrosis, acute interstitial nephritis, calculi, Fanconi Syndrome, crystal nephropathy, elevated lipid levels as well as calcium and phosphorus alteration. The physician must estimate renal function before and during antiretroviral therapy, especially when HIV-infected patients have some risk factors for renal damage such as high-blood pressure or hepatitis B or C infections. PMID:26480259

  17. Cinacalcet HCl: a novel treatment for secondary hyperparathyroidism caused by chronic kidney disease.

    PubMed

    Torres, Pablo Ureña

    2006-07-01

    Secondary hyperparathyroidism (SHPT) develops as a result of impaired calcium homeostasis when the failing kidneys disturb the complicated interactions between parathyroid hormone (PTH), calcium, phosphorus, and vitamin D. Twelve years ago, the calcium-sensing receptor (CaR) of the parathyroid gland was first cloned and identified as the principal regulator of PTH secretion. The activation of the CaR by small changes in extracellular calcium (ec(Ca2+)) regulates PTH, calcitonin secretion, urinary calcium excretion, and ultimately, bone turnover. The CaR became an ideal target for the development of calcimimetics, which are able to amplify its sensitivity to ec(Ca2+) suppressing PTH secretion. Cinacalcet HCl, a first-in-class calcimimetic, approved in both the United States and the European Union, offers a new therapeutic approach to the treatment of SHPT. The efficacy of cinacalcet HCl in treating SHPT in dialysis patients (n = 1,136) was studied in three similarly designed phase III clinical trials comparing patients receiving standard SHPT therapy plus cinacalcet HCl or plus placebo. Cinacalcet HCl, dosed from 30 to 180 mg/day, significantly reduced PTH while simultaneously lowering calcium, phosphorus, and calcium-phosphorus product in each of the three studies. Respective to the National Kidney Foundation-Kidney Disease Outcomes and Quality Initiative (NKF-K/DOQI) recommended targets for bone and mineral metabolism, 41% of cinacalcet HCl-treated patients achieved both PTH and calcium-phosphorus product targets, compared with only 6% in the placebo group. Results from 2 recent phase IIIb studies (TARGET and CONTROL) conducted in the United States also showed that cinacalcet HCl can significantly reduce or maintain reduction in PTH while simultaneously lowering calcium, phosphorus, and calcium-phosphorus product. In addition, patients taking vitamin D at baseline of these 2 trials were able to see significant mean reductions in vitamin D dose. Further assessment of cinacalcet HCl trial data has shown some important effects in SHPT patient clinical outcomes. A combined post-hoc analysis of clinical events using data from 4 (n = 1,184) cinacalcet HCl phase II and III studies suggests that treatment with cinacalcet HCl has a beneficial effect on relative risks of parathyroidectomy, fracture, and hospitalization for cardiovascular complications. Nausea and vomiting occurred more often in patients taking cinacalcet HCl than in those taking a placebo. There were also transient episodes of hypocalcemia in 5% of cinacalcet HCl patients versus 1% of placebo patients. However, these episodes were rarely associated with symptoms. The development of calcimimetics has already changed the treatment of SHPT in renal patients. Its effectiveness on the control of PTH secretion, along with simultaneous reductions in calcium, phosphorus, and calcium-phosphorus product, give this agent an advantage over traditional therapies in all levels of severity of SHPT. PMID:16825031

  18. Comparison between myocardial infarction and diabetes mellitus damage caused angiogenesis or energy metabolism

    PubMed Central

    Li, Chao; Lu, Chengzhi; Zhao, Xiangdong; Chen, Xin

    2015-01-01

    This study aims to compare and analyze lactate dehydrogenase (LDH), succinic dehydrogenase (SDH) and differences in capillary density level in the model of myocardial damage which caused by rats diabetes. The Wistar rats were divided into 4 groups, including control, diabetic, myocardial infarction and two diseases combined group. Ligate descending branch of left coronary artery on 1/3 position or inject streptozotocin into abdominal cavity to establish two kinds of disease models. After 6 w, obtain the myocardial tissues to do the vascular density analysis of tissue sections which are stained and cell tissue enzyme. Explore change of relevant index and differences among groups. Results indicated that degree of LDH and SDH decrease in two kinds of disease model. Compared with control group, level of myocardial vascular of myocardial injury group is higher, and diabetic group is higher than non diabetic group. Quantitative result of FFA in mitochondrial suspension of single disease group is higher than that of control group and two diseases combined group. Level of FFA and LDH of two diseases combined group is consistent with control group. In conclusion, after myocardial damage, which is caused by diabetes mellitus or myocardial infarction, degree of local vascularization increases, diabetes mellitus is more obvious. After myocardial damage, process of myocardial mitochondrial glycolysis and oxidative phosphorylation has some obstacles. But these two kinds of diseases all have cardiac muscle cell which can keep generated procedure of aerobic and anaerobic energy to instead the normal function of cardiac muscle. PMID:26885216

  19. Ursolic acid ameliorates carbon tetrachloride-induced oxidative DNA damage and inflammation in mouse kidney by inhibiting the STAT3 and NF-κB activities.

    PubMed

    Ma, Jie-Qiong; Ding, Jie; Xiao, Zheng-Hua; Liu, Chan-Min

    2014-08-01

    Ursolic acid (UA), a common pentacyclic triterpenoid compound, has been reported to have many benefits and medicinal properties. However, its protective effects against carbon tetrachloride (CCl4) induced injury in kidneys are not yet clear. In the current report, we investigated whether UA inhibited the oxidative stress and inflammation in the kidneys of CCl4 treated mice. Male ICR mice were injected with CCl4 with or without UA co-administration (25 and 50mg/kg intragastrically once daily) for six weeks. Our data showed that UA significantly prevented CCl4-induced nephrotoxicity in a dose-dependent manner, indicated by both diagnostic indicators of kidney damage and histopathological analysis. Moreover, CCl4-induced profound elevation of ROS and oxidative stress, as evidenced by the increase of lipid peroxidation level and the depletion of the total antioxidant capacity (TAC) level in the kidney, was suppressed by treatment with UA. UA also decreased 8-hydroxy-2-deoxyguanosine (one product of oxidative DNA damage) levels. Furthermore, protein expression by Western blot analysis showed that UA significantly decreased production of pro-inflammatory markers including tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), interleukin-17 (IL-17) and cyclooxygenase-2 (COX-2) in CCl4-treated mouse kidney. In exploring the underlying mechanisms of UA action, we found that UA increased the phosphorylation of transcription 3 (STAT3), which in turn activated the nuclear factor kappa B (NF-kappaB) and the inflammatory cytokines in the kidneys. In conclusion, these results suggested that the inhibition of CCl4-induced inflammation by UA is due at least in part to its anti-oxidant activity and its ability to modulate the STAT3 and NF-κB signaling pathways. PMID:24880019

  20. Assessing the damage caused by Deepwater Horizon: not just another Exxon Valdez.

    PubMed

    Perrons, Robert K

    2013-06-15

    In light of the high stakes of the Deepwater Horizon civil trial and the important precedent-setting role that the case will have on the assessment of future marine disasters, the methodologies underpinning the calculations of damage on both sides will be subjected to considerable scrutiny. Despite the importance of the case, however, there seems to be a pronounced lack of convergence about it in the academic literature. Contributions from scientific journals frequently make comparisons to the Ixtoc I oil spill off the coast of Mexico in 1979; the legal literature, by stark contrast, seems to be much more focused on the Exxon Valdez spill that occurred off the shores of Alaska in 1989. This paper accordingly calls for a more thorough consideration of other analogs beyond the Exxon Valdez spill-most notably, the Ixtoc I incident-in arriving at an assessment of the damage caused by the Deepwater Horizon disaster. PMID:23602264

  1. Mode of Proximal Tubule Damage: Differential Cause for the Release of TFF3?

    PubMed Central

    Zwaini, Zinah; Alammari, Dalia; Byrne, Simon; Stover, Cordula

    2016-01-01

    Proximal tubular epithelial cells are particularly sensitive to damage. In search of a biomarker, this study evaluated the potential of different cell activation models (hypoxia/replenishment and protein overload) to lead to a release of trefoil factor 3 (TFF3). Surprisingly, we found disparity in the ability of the different stimuli to enhance the intracellular abundance of TFF3 and its release: while conditions of nutrient starvation and damage associated with replenishment lead to intracellular abundance of TFF3 in the absence of TFF3 release, stimulation with an excess amount of albumin did not yield accumulation of TFF3. By contrast, incubation of cells with a purified λ light chain preparation from a patient with multiple myeloma provoked the presence of TFF3 in the cell supernatant. We, therefore, propose that elevations of TFF3 in renal disease might be more revelatory for the cause of restitution than previously thought.

  2. Inhibition of de novo NAD(+) synthesis by oncogenic URI causes liver tumorigenesis through DNA damage.

    PubMed

    Tummala, Krishna S; Gomes, Ana L; Yilmaz, Mahmut; Graña, Osvaldo; Bakiri, Latifa; Ruppen, Isabel; Ximénez-Embún, Pilar; Sheshappanavar, Vinayata; Rodriguez-Justo, Manuel; Pisano, David G; Wagner, Erwin F; Djouder, Nabil

    2014-12-01

    Molecular mechanisms responsible for hepatocellular carcinoma (HCC) remain largely unknown. Using genetically engineered mouse models, we show that hepatocyte-specific expression of unconventional prefoldin RPB5 interactor (URI) leads to a multistep process of HCC development, whereas its genetic reduction in hepatocytes protects against diethylnitrosamine (DEN)-induced HCC. URI inhibits aryl hydrocarbon (AhR)- and estrogen receptor (ER)-mediated transcription of enzymes implicated in L-tryptophan/kynurenine/nicotinamide adenine dinucleotide (NAD(+)) metabolism, thereby causing DNA damage at early stages of tumorigenesis. Restoring NAD(+) pools with nicotinamide riboside (NR) prevents DNA damage and tumor formation. Consistently, URI expression in human HCC is associated with poor survival and correlates negatively with L-tryptophan catabolism pathway. Our results suggest that boosting NAD(+) can be prophylactic or therapeutic in HCC. PMID:25453901

  3. Localized-impact damage caused by proton bombarding in mercury target

    NASA Astrophysics Data System (ADS)

    Futakawa, M.; Kogawa, H.; Ishikura, S.; Kyudo, H.; Soyama, H.

    2003-09-01

    A liquid-mercury target system for the MW-scale target is being developed in the world. The moment the proton beams bombard the target, stress waves will be imposed on the beam window and pressure waves will be generated in the mercury by the thermally shocked heat deposition. Provided that the negative pressure generates through its propagation in the mercury target and causes cavitation in the mercury, there is the possibility for the cavitation bubbles collapse to form pits on the interface between the mercury and the target vessel wall. In order to estimate the cavitation erosion damage off-line tests were performed using Split Hopkinson Pressure Bar (SHPB) technique. It was confirrned through the experiments that the pitfing damage is suppressed by surface hardening treatments : Kolsterising, coatings, etc. Relative hardness appears to be a good correlating parameter on impact erosion resistance evaluated by the SHBP and conventional vibratory hone tests.

  4. Repeated administrations of carbon nanotubes in male mice cause reversible testis damage without affecting fertility

    NASA Astrophysics Data System (ADS)

    Bai, Yuhong; Zhang, Yi; Zhang, Jingping; Mu, Qingxin; Zhang, Weidong; Butch, Elizabeth R.; Snyder, Scott E.; Yan, Bing

    2010-09-01

    Soluble carbon nanotubes show promise as materials for in vivo delivery and imaging applications. Several reports have described the in vivo toxicity of carbon nanotubes, but their effects on male reproduction have not been examined. Here, we show that repeated intravenous injections of water-soluble multiwalled carbon nanotubes into male mice can cause reversible testis damage without affecting fertility. Nanotubes accumulated in the testes, generated oxidative stress and decreased the thickness of the seminiferous epithelium in the testis at day 15, but the damage was repaired at 60 and 90 days. The quantity, quality and integrity of the sperm and the levels of three major sex hormones were not significantly affected throughout the 90-day period. The fertility of treated male mice was unaffected; the pregnancy rate and delivery success of female mice that mated with the treated male mice did not differ from those that mated with untreated male mice.

  5. Diamondoid naphthenic acids cause in vivo genetic damage in gills and haemocytes of marine mussels.

    PubMed

    Dissanayake, Awantha; Scarlett, Alan G; Jha, Awadhesh N

    2016-04-01

    Diamondoids are polycyclic saturated hydrocarbons that possess a cage-like carbon skeleton approaching that of diamond. These 'nano-diamonds' are used in a range of industries including nanotechnologies and biomedicine. Diamondoids were thought to be highly resistant to degradation, but their presumed degradation acid products have now been found in oil sands process-affected waters (OSPW) and numerous crude oils. Recently, a diamondoid-related structure, 3-noradamantane carboxylic acid, was reported to cause genetic damage in trout hepatocytes under in vitro conditions. This particular compound has never been reported in the environment but led us to hypothesise that other more environmentally relevant diamondoid acids could also be genotoxic. We carried out in vivo exposures (3 days, semi-static) of marine mussels to two environmentally relevant diamondoid acids, 1-adamantane carboxylic acid and 3,5-dimethyladamantane carboxylic acid plus 3-noradamantane carboxylic acid with genotoxic damage assessed using the Comet assay. An initial screening test confirmed that these acids displayed varying degrees of genotoxicity to haemocytes (increased DNA damage above that of controls) when exposed in vivo to a concentration of 30 μmol L(-1). In a further test focused on 1-adamantane carboxylic acid with varying concentrations (0.6, 6 and 30 μmol L(-1)), significant (P < 0.05 %) DNA damage was observed in different target cells (viz. gills and haemocytes) at 0.6 μmol L(-1). Such a level of induced genetic damage was similar to that observed following exposure to a known genotoxin, benzo(a)pyrene (exposure concentration, 0.8 μmol L(-1)). These findings may have implications for a range of worldwide industries including oil extraction, nanotechnology and biomedicine. PMID:26884235

  6. Cutaneous and renal glomerular vasculopathy as a cause of acute kidney injury in dogs in the UK

    PubMed Central

    Hawkins, I.; Robin, C.; Newton, R. J.; Jepson, R.; Stanzani, G.; McMahon, L. A.; Pesavento, P.; Carr, T.; Cogan, T.; Couto, C. G.; Cianciolo, R.; Walker, D. J.

    2015-01-01

    To describe the signalment, clinicopathological findings and outcome in dogs presenting with acute kidney injury (AKI) and skin lesions between November 2012 and March 2014, in whom cutaneous and renal glomerular vasculopathy (CRGV) was suspected and renal thrombotic microangiopathy (TMA) was histopathologically confirmed. The medical records of dogs with skin lesions and AKI, with histopathologically confirmed renal TMA, were retrospectively reviewed. Thirty dogs from across the UK were identified with clinicopathological findings compatible with CRGV. These findings included the following: skin lesions, predominantly affecting the distal extremities; AKI; and variably, anaemia, thrombocytopaenia and hyperbilirubinaemia. Known causes of AKI were excluded. The major renal histopathogical finding was TMA. All thirty dogs died or were euthanised. Shiga toxin was not identified in the kidneys of affected dogs. Escherichia coli genes encoding shiga toxin were not identified in faeces from affected dogs. CRGV has previously been reported in greyhounds in the USA, a greyhound in the UK, without renal involvement, and a Great Dane in Germany. This is the first report of a series of non-greyhound dogs with CRGV and AKI in the UK. CRGV is a disease of unknown aetiology carrying a poor prognosis when azotaemia develops. PMID:25802439

  7. Early invasive pulmonary aspergillosis in a kidney transplant recipient caused by Aspergillus lentulus: first Brazilian report.

    PubMed

    Bastos, Viviane Reis de Azevedo; Santos, Daniel Wagner de Castro Lima; Padovan, Ana Carolina Barbosa; Melo, Analy Salles Azevedo; Mazzolin, Milene de Abreu; Camargo, Luis Fernando Aranha; Colombo, Arnaldo Lopes

    2015-04-01

    We report the first Brazilian case of pulmonary invasive aspergillosis caused by Aspergillus lentulus, a new opportunistic Aspergillus species included in the section fumigati that is usually resistant to amphotericin B and azoles. PMID:25515242

  8. Post-Natal Inhibition of NF-κB Activation Prevents Renal Damage Caused by Prenatal LPS Exposure

    PubMed Central

    Sun, Xiongshan; Wang, Fangjie; Ji, Yan; Huang, Pei; Deng, Yafei; Zhang, Qi; Han, Qi; Yi, Ping; Namaka, Michael; Liu, Ya; Li, Xiaohui

    2016-01-01

    Prenatal exposure to an inflammatory stimulus has been shown to cause renal damage in offspring. Our present study explored the role of intra-renal NF-κB activation in the development of progressive renal fibrosis in offspring that underwent prenatal exposure to an inflammatory stimulus. Time-dated pregnant rats were treated with saline (control group) or 0.79 mg/kg lipopolysaccharide (LPS) through intra-peritoneal injection on gestational day 8, 10 and 12. At the age of 7 weeks, offspring from control or LPS group were treated with either tap water (Con+Ve or LPS+Ve group) or pyrollidine dithiocarbamate (PDTC, 120mg/L), a NF-κB inhibitor, via drinking water starting (Con+PDTC or LPS+PDTC group), respectively, till the age of 20 or 68 weeks. The gross structure of kidney was assessed by hematoxylin-eosin, periodic acid–Schiff staining and Sirius red staining. The expression levels of TNF-α, IL-6, α-smooth muscle actin (α-SMA) and renin-angiotensin system (RAS) genes were determined by real time polymerase chain reaction and/or immunohistochemical staining. Our data showed that post-natal persistent PDTC administration efficiently repressed intra-renal NF-κB activation, TNF-α and IL-6 expression. Post-natal PDTC also prevented intra-renal glycogen deposition and collagenous fiber generation as evident by the reduced expression of collagen III and interstitial α-SMA in offspring of prenatal LPS exposure. Furthermore, post-natal PDTC administration reversed the intra-renal renin-angiotensin system (RAS) over-activity in offspring of prenatal LPS exposure. In conclusion, prenatal inflammatory exposure results in offspring’s intra-renal NF-κB activation along with inflammation which cross-talked with excessive RAS activation that caused exacerbation of renal fibrosis and dysfunction in the offspring. Thus, early life prevention of NF-κB activation may be a potential preventive strategy for chronic renal inflammation and progressive renal damage. PMID:27073902

  9. Post-Natal Inhibition of NF-κB Activation Prevents Renal Damage Caused by Prenatal LPS Exposure.

    PubMed

    Guo, Wei; Guan, Xiao; Pan, Xiaodong; Sun, Xiongshan; Wang, Fangjie; Ji, Yan; Huang, Pei; Deng, Yafei; Zhang, Qi; Han, Qi; Yi, Ping; Namaka, Michael; Liu, Ya; Deng, Youcai; Li, Xiaohui

    2016-01-01

    Prenatal exposure to an inflammatory stimulus has been shown to cause renal damage in offspring. Our present study explored the role of intra-renal NF-κB activation in the development of progressive renal fibrosis in offspring that underwent prenatal exposure to an inflammatory stimulus. Time-dated pregnant rats were treated with saline (control group) or 0.79 mg/kg lipopolysaccharide (LPS) through intra-peritoneal injection on gestational day 8, 10 and 12. At the age of 7 weeks, offspring from control or LPS group were treated with either tap water (Con+Ve or LPS+Ve group) or pyrollidine dithiocarbamate (PDTC, 120mg/L), a NF-κB inhibitor, via drinking water starting (Con+PDTC or LPS+PDTC group), respectively, till the age of 20 or 68 weeks. The gross structure of kidney was assessed by hematoxylin-eosin, periodic acid-Schiff staining and Sirius red staining. The expression levels of TNF-α, IL-6, α-smooth muscle actin (α-SMA) and renin-angiotensin system (RAS) genes were determined by real time polymerase chain reaction and/or immunohistochemical staining. Our data showed that post-natal persistent PDTC administration efficiently repressed intra-renal NF-κB activation, TNF-α and IL-6 expression. Post-natal PDTC also prevented intra-renal glycogen deposition and collagenous fiber generation as evident by the reduced expression of collagen III and interstitial α-SMA in offspring of prenatal LPS exposure. Furthermore, post-natal PDTC administration reversed the intra-renal renin-angiotensin system (RAS) over-activity in offspring of prenatal LPS exposure. In conclusion, prenatal inflammatory exposure results in offspring's intra-renal NF-κB activation along with inflammation which cross-talked with excessive RAS activation that caused exacerbation of renal fibrosis and dysfunction in the offspring. Thus, early life prevention of NF-κB activation may be a potential preventive strategy for chronic renal inflammation and progressive renal damage. PMID:27073902

  10. Evaluation of the damages caused by lightning current flowing through bearings

    NASA Technical Reports Server (NTRS)

    Celi, O.; Pigini, A.; Garbagnati, E.

    1991-01-01

    A laboratory for lightning current tests was set up allowing the generation of the lightning currents foreseen by the Standards. Lightning tests are carried out on different objects, aircraft materials and components, evaluating the direct and indirect effects of lightning. Recently a research was carried out to evaluate the effects of the lightning current flow through bearings with special reference to wind power generator applications. For this purpose, lightning currents of different amplitude were applied to bearings in different test conditions and the damages caused by the lightning current flow were analyzed. The influence of the load acting on the bearing, the presence of lubricant and the bearing rotation were studied.

  11. Methoxychlor causes mitochondrial dysfunction and oxidative damage in the mouse ovary

    SciTech Connect

    Gupta, R.K.; Schuh, R.A.; Fiskum, G.; Flaws, J.A. . E-mail: jflaws@epi.umaryland.edu

    2006-11-01

    Methoxychlor (MXC) is an organochlorine pesticide that reduces fertility in female rodents by causing ovarian atrophy, persistent estrous cyclicity, and antral follicle atresia (apoptotic cell death). Oxidative damage resulting from reactive oxygen species (ROS) generation has been demonstrated to lead to toxicant-induced cell death. Thus, this work tested the hypothesis that MXC causes oxidative damage to the mouse ovary and affects mitochondrial respiration in a manner that stimulates ROS production. For the in vitro experiments, mitochondria were collected from adult cycling mouse ovaries, treated with vehicle (dimethyl sulfoxide; DMSO) or MXC, and subjected to polarographic measurements of respiration. For the in vivo experiments, adult cycling CD-1 mice were dosed with either vehicle (sesame oil) or MXC for 20 days. After treatment, ovarian mitochondria were isolated and subjected to measurements of respiration and fluorimetric measurements of H{sub 2}O{sub 2} production. Some ovaries were also fixed and processed for immunohistochemistry using antibodies for ROS production markers: nitrotyrosine and 8-hydroxy-2'-deoxyguanosine (8-OHG). Ovaries from in vivo experiments were also used to measure the mRNA expression and activity of antioxidants such as Cu/Zn superoxide dismutase (SOD1), glutathione peroxidase (GPX), and catalase (CAT). The results indicate that MXC significantly impairs mitochondrial respiration, increases production of H{sub 2}O{sub 2}, causes more staining for nitrotyrosine and 8-OHG in antral follicles, and decreases the expression and activity of SOD1, GPX, and CAT as compared to controls. Collectively, these data indicate that MXC inhibits mitochondrial respiration, causes ROS production, and decreases antioxidant expression and activity in the ovary, specifically in the antral follicles. Therefore, it is possible that MXC causes atresia of ovarian antral follicles by inducing oxidative stress through mitochondrial production of ROS.

  12. Heterozygous mutations in PALB2 cause DNA replication and damage response defects.

    PubMed

    Nikkil, Jenni; Parplys, Ann Christin; Pylks, Katri; Bose, Muthiah; Huo, Yanying; Borgmann, Kerstin; Rapakko, Katrin; Nieminen, Pentti; Xia, Bing; Pospiech, Helmut; Winqvist, Robert

    2013-01-01

    Besides mutations in BRCA1/BRCA2, heterozygous defects in PALB2 are important in breast cancer predisposition. PALB2 heterozygosity increases the risk of malignancy about sixfold. PALB2 interacts with BRCA1 and BRCA2 to regulate homologous recombination and mediate DNA damage response. Here we show, by analysing lymphoblastoid cell lines from heterozygous female PALB2 mutation carriers, that PALB2 haploinsufficiency causes aberrant DNA replication/damage response. Mutation carrier cells show increased origin firing and shorter distance between consecutive replication forks. Carrier cell lines also show elevated ATR protein, but not phosphorylation levels, and a majority of them display aberrant Chk1-/Chk2-mediated DNA damage response. Elevated chromosome instability is observed in primary blood lymphocytes of PALB2 mutation carriers, indicating that the described mechanisms of genome destabilization operate also at the organism level. These findings provide a new mechanism for early stages of breast cancer development that may also apply to other heterozygous homologous recombination signalling pathway gene mutations in hereditary cancer predisposition. PMID:24153426

  13. Determination of damages of photosynthetic metabolism caused by herbicides using a delayed fluorescence technique

    NASA Astrophysics Data System (ADS)

    Zhang, Lingrui; Xing, Da; Zhou, Xiaoming; Li, Qiang

    2007-11-01

    The structure and function of chloroplast in plant can be affected by herbicide, resulting in the decrease in photosynthetic capacity. The photosystem II (PSII) in plants is considered to be the primary site where light-induced delayed fluorescence (DF) is produced. In this study, a simple analytical model of DF has been developed to diagnose the damages of photosynthesis caused by herbicides based on the charge recombination theory. Using a home-made portable DF detection system, we have studied the effects of two different kinds of herbicides on decay kinetics of DF in soybean (Glycine max (L.), Jinghuang No. 3). Current investigations have demonstrated that the analytic equation of DF decay dynamics we proposed here can accurately determine the extent of damage of herbicides to photosynthetic metabolism and truly reflect the mechanism and site about which herbicides inhibit photosynthetic electron transport chain. Therefore, the decay kinetics of DF with proper calibration may provide a promisingly new and practical means for pharmacological analysis of herbicides and damage-diagnosis of photosynthetic metabolism. The DF technique could be potentially useful for detecting the effects of herbicide on plant performance in vivo and screening new generation of promising herbicides with low toxicity and superhigh efficiency.

  14. Causes and Consequences of Sensory Hair Cell Damage and Recovery in Fishes.

    PubMed

    Smith, Michael E; Monroe, J David

    2016-01-01

    Sensory hair cells are the mechanotransductive receptors that detect gravity, sound, and vibration in all vertebrates. Damage to these sensitive receptors often results in deficits in vestibular function and hearing. There are currently two main reasons for studying the process of hair cell loss in fishes. First, fishes, like other non-mammalian vertebrates, have the ability to regenerate hair cells that have been damaged or lost via exposure to ototoxic chemicals or acoustic overstimulation. Thus, they are used as a biomedical model to understand the process of hair cell death and regeneration and find therapeutics that treat or prevent human hearing loss. Secondly, scientists and governmental natural resource managers are concerned about the potential effects of intense anthropogenic sounds on aquatic organisms, including fishes. Dr. Arthur N. Popper and his students, postdocs and research associates have performed pioneering experiments in both of these lines of fish hearing research. This review will discuss the current knowledge regarding the causes and consequences of both lateral line and inner ear hair cell damage in teleost fishes. PMID:26515323

  15. Evaluation of oxidative stress and genetic damage caused by detergents in the zebrafish Danio rerio (Cyprinidae).

    PubMed

    Sobrino-Figueroa, Alma S

    2013-08-01

    Detergents are used in large quantities and some of their ingredients are highly toxic to aquatic organisms. In the present study the toxicity (lipid peroxidation) and genotoxic (frequency of DNA strand breaks) effects were evaluated in the gill and liver tissues of zebrafish (Danio rerio), exposed for 16days to a sublethal concentration (CL10) of two commercial detergents (laundry and dishwasher use) and an anionic surfactant: alkyl lauryl sulfonate (LAS). The results demonstrated high toxicity with dishwasher detergent, resulting in high lipid peroxidation levels (MDA malondialdehyde evaluation). No differences in MDA concentrations were found among fish exposed to laundry detergent and organisms exposed to LAS. In the genetic damage evaluation, significant differences in the number of cells with DNA strand breaks (comets) were observed: the fish exposed to dishwasher detergent presented the highest number of damaged cells (79%), in comparison with those exposed to other products (laundry and LAS) and the control group (8% damaged cells). The toxicity of dishwasher detergent (biological detergent containing enzymes and perfume) was higher than the value observed with LAS. Laundry detergent does not contain enzymes or perfume and its toxicity was similar to LAS. Since detergents are complex mixtures of different substances, in which additive and/or synergistic effects may occur, the deleterious effect caused by the dishwasher detergent was probably due to the combined effects of the ingredients of detergent. PMID:23542746

  16. Localized damage caused by topographic amplification during the 2010 M7.0 Haiti earthquake

    USGS Publications Warehouse

    Hough, S.E.; Altidor, J.R.; Anglade, D.; Given, D.; Janvier, M.G.; Maharrey, J.Z.; Meremonte, M.; Mildor, B.S.-L.; Prepetit, C.; Yong, A.

    2010-01-01

    Local geological conditions, including both near-surface sedimentary layers and topographic features, are known to significantly influence ground motions caused by earthquakes. Microzonation maps use local geological conditions to characterize seismic hazard, but commonly incorporate the effect of only sedimentary layers. Microzonation does not take into account local topography, because significant topographic amplification is assumed to be rare. Here we show that, although the extent of structural damage in the 2010 Haiti earthquake was primarily due to poor construction, topographic amplification contributed significantly to damage in the district of Petionville, south of central Port-au-Prince. A large number of substantial, relatively well-built structures situated along a foothill ridge in this district sustained serious damage or collapse. Using recordings of aftershocks, we calculate the ground motion response at two seismic stations along the topographic ridge and at two stations in the adjacent valley. Ground motions on the ridge are amplified relative to both sites in the valley and a hard-rock reference site, and thus cannot be explained by sediment-induced amplification. Instead, the amplitude and predominant frequencies of ground motion indicate the amplification of seismic waves by a narrow, steep ridge. We suggest that microzonation maps can potentially be significantly improved by incorporation of topographic effects. ?? 2010 Macmillan Publishers Limited. All rights reserved.

  17. Calcium citrate without aluminum antacids does not cause aluminum retention in patients with functioning kidneys

    NASA Technical Reports Server (NTRS)

    Sakhaee, K.; Wabner, C. L.; Zerwekh, J. E.; Copley, J. B.; Pak, L.; Poindexter, J. R.; Pak, C. Y.

    1993-01-01

    It has been suggested that calcium citrate might enhance aluminum absorption from food, posing a threat of aluminum toxicity even in patients with normal renal function. We therefore measured serum and urinary aluminum before and following calcium citrate therapy in patients with moderate renal failure and in normal subjects maintained on constant metabolic diets with known aluminum content (967-1034 mumol/day, or 26.1-27.9 mg/day, in patients and either 834 or 1579 mumol/day, or 22.5 and 42.6 mg/day, in normal subjects). Seven patients with moderate renal failure (endogenous creatinine clearance of 43 ml/min) took 50 mmol (2 g) calcium/day as effervescent calcium citrate with meals for 17 days. Eight normal women received 25 mmol (1 g) calcium/day as tricalcium dicitrate tablets with meals for 7 days. In patients with moderate renal failure, serum and urinary aluminum were normal before treatment at 489 +/- 293 SD nmol/l (13.2 +/- 7.9 micrograms/l) and 767 +/- 497 nmol/day (20.7 +/- 13.4 micrograms/day), respectively. They remained within normal limits and did not change significantly during calcium citrate treatment (400 +/- 148 nmol/l and 600 +/- 441 nmol/day, respectively). Similarly, no significant change in serum and urinary aluminum was detected in normal women during calcium citrate administration (271 +/- 59 vs 293 +/- 85 nmol/l and 515 +/- 138 vs 615 +/- 170 nmol/day, respectively). In addition, skeletal bone aluminum content did not change significantly in 14 osteoporotic patients (endogenous creatinine clearance of 68.5 ml/min) treated for 24 months with calcium citrate, 10 mmol calcium twice/day separately from meals (29.3 +/- 13.9 ng/mg ash bone to 27.9 +/0- 10.4, P = 0.727). In them, histomorphometric examination did not show any evidence of mineralization defect. Thus, calcium citrate given alone without aluminum-containing drugs does not pose a risk of aluminum toxicity in subjects with normal or functioning kidneys, when it is administered on an empty stomach at a recommended dose of 20 mmol calcium/day.

  18. Genetic analysis of genes causing hypertension and stroke in spontaneously hypertensive rats: Gene expression profiles in the kidneys

    PubMed Central

    WATANABE, YUKO; YOSHIDA, MOMOKO; YAMANISHI, KYOSUKE; YAMAMOTO, HIDEYUKI; OKUZAKI, DAISUKE; NOJIMA, HIROSHI; YASUNAGA, TERUO; OKAMURA, HARUKI; MATSUNAGA, HISATO; YAMANISHI, HIROMICHI

    2015-01-01

    Spontaneously hypertensive rats (SHRs) and stroke-prone SHRs (SHRSP) are frequently used as models not only of essential hypertension and stroke, but also of attention-deficit hyperactivity disorder (ADHD). Normotensive Wistar-Kyoto (WKY) rats are normally used as controls in these studies. In the present study, we aimed to identify the genes causing hypertension and stroke, as well as the genes involved in ADHD using these rats. We previously analyzed gene expression profiles in the adrenal glands and brain. Since the kidneys can directly influence the functions of the cardiovascular, endocrine and sympathetic nervous systems, gene expression profiles in the kidneys of the 3 rat strains were examined using genome-wide microarray technology when the rats were 3 and 6 weeks old, a period in which rats are considered to be in a pre-hypertensive state. Gene expression profiles were compared between the SHRs and WKY rats and also between the SHRSP and SHRs. A total of 232 unique genes showing more than a 4-fold increase or less than a 4-fold decrease in expression were isolated as SHR- and SHRSP-specific genes. Candidate genes were then selected using two different web tools: the 1st tool was the Database for Annotation, Visualization and Integrated Discovery (DAVID), which was used to search for significantly enriched genes and categorized them using Gene Ontology (GO) terms, and the 2nd was Ingenuity Pathway Analysis (IPA), which was used to search for interactions among SHR- and also SHRSP-specific genes. The analyses of SHR-specific genes using IPA revealed that B-cell CLL/lymphoma 6 (Bcl6) and SRY (sex determining region Y)-box 2 (Sox2) were possible candidate genes responsible for causing hypertension in SHRs. Similar analyses of SHRSP-specific genes revealed that angiotensinogen (Agt), angiotensin II receptor-associated protein (Agtrap) and apolipoprotein H (Apoh) were possible candidate genes responsible for triggering strokes. Since our results revealed that SHRSP-specific genes isolated from the kidneys of rats at 6 weeks of age, included 6 genes related to Huntington's disease, we discussed the genetic association between ADHD and Huntington's disease. PMID:26165378

  19. Genetic analysis of genes causing hypertension and stroke in spontaneously hypertensive rats: Gene expression profiles in the kidneys.

    PubMed

    Watanabe, Yuko; Yoshida, Momoko; Yamanishi, Kyosuke; Yamamoto, Hideyuki; Okuzaki, Daisuke; Nojima, Hiroshi; Yasunaga, Teruo; Okamura, Haruki; Matsunaga, Hisato; Yamanishi, Hiromichi

    2015-09-01

    Spontaneously hypertensive rats (SHRs) and stroke-prone SHRs (SHRSP) are frequently used as models not only of essential hypertension and stroke, but also of attention-deficit hyperactivity disorder (ADHD). Normotensive Wistar-Kyoto (WKY) rats are normally used as controls in these studies. In the present study, we aimed to identify the genes causing hypertension and stroke, as well as the genes involved in ADHD using these rats. We previously analyzed gene expression profiles in the adrenal glands and brain. Since the kidneys can directly influence the functions of the cardiovascular, endocrine and sympathetic nervous systems, gene expression profiles in the kidneys of the 3 rat strains were examined using genome-wide microarray technology when the rats were 3 and 6 weeks old, a period in which rats are considered to be in a pre-hypertensive state. Gene expression profiles were compared between the SHRs and WKY rats and also between the SHRSP and SHRs. A total of 232 unique genes showing more than a 4-fold increase or less than a 4-fold decrease in expression were isolated as SHR- and SHRSP-specific genes. Candidate genes were then selected using two different web tools: the 1st tool was the Database for Annotation, Visualization and Integrated Discovery (DAVID), which was used to search for significantly enriched genes and categorized them using Gene Ontology (GO) terms, and the 2nd was Ingenuity Pathway Analysis (IPA), which was used to search for interactions among SHR- and also SHRSP‑specific genes. The analyses of SHR-specific genes using IPA revealed that B-cell CLL/lymphoma 6 (Bcl6) and SRY (sex determining region Y)-box 2 (Sox2) were possible candidate genes responsible for causing hypertension in SHRs. Similar analyses of SHRSP-specific genes revealed that angiotensinogen (Agt), angiotensin II receptor-associated protein (Agtrap) and apolipoprotein H (Apoh) were possible candidate genes responsible for triggering strokes. Since our results revealed that SHRSP-specific genes isolated from the kidneys of rats at 6 weeks of age, included 6 genes related to Huntington's disease, we discussed the genetic association between ADHD and Huntington's disease. PMID:26165378

  20. p-Cresyl sulfate, a uremic toxin, causes vascular endothelial and smooth muscle cell damages by inducing oxidative stress

    PubMed Central

    Watanabe, Hiroshi; Miyamoto, Yohei; Enoki, Yuki; Ishima, Yu; Kadowaki, Daisuke; Kotani, Shunsuke; Nakajima, Makoto; Tanaka, Motoko; Matsushita, Kazutaka; Mori, Yoshitaka; Kakuta, Takatoshi; Fukagawa, Masafumi; Otagiri, Masaki; Maruyama, Toru

    2015-01-01

    The major cause of death in patients with chronic kidney disease (CKD) is cardiovascular disease. Here, p-Cresyl sulfate (PCS), a uremic toxin, is considered to be a risk factor for cardiovascular disease in CKD. However, our understanding of the vascular toxicity induced by PCS and its mechanism is incomplete. The purpose of this study was to determine whether PCS enhances the production of reactive oxygen species (ROS) in vascular endothelial and smooth muscle cells, resulting in cytotoxicity. PCS exhibited pro-oxidant properties in human umbilical vein endothelial cells (HUVEC) and aortic smooth muscle cells (HASMC) by enhancing NADPH oxidase expression. PCS also up-regulates the mRNA levels and the protein secretion of monocyte chemotactic protein-1 (MCP-1) in HUVEC. In HASMC, PCS increased the mRNA levels of alkaline phosphatase (ALP), osteopontin (OPN), core-binding factor alpha 1, and ALP activity. The knockdown of Nox4, a subunit of NADPH oxidase, suppressed the cell toxicity induced by PCS. The vascular damage induced by PCS was largely suppressed in the presence of probenecid, an inhibitor of organic anion transporters (OAT). In PCS-overloaded 5/6-nephrectomized rats, plasma MCP-1 levels, OPN expression, and ALP activity of the aortic arch were increased, accompanied by the induction of Nox4 expression. Collectively, the vascular toxicity of PCS can be attributed to its intracellular accumulation via OAT, which results in an enhanced NADPH oxidase expression and increased ROS production. In conclusion, we found for the first time that PCS could play an important role in the development of cardiovascular disease by inducing vascular toxicity in the CKD condition. PMID:25692011

  1. Oxidative DNA damage caused by pulsed discharge with cavitation on the bactericidal function

    NASA Astrophysics Data System (ADS)

    Kudo, Ken-ichi; Ito, Hironori; Ihara, Satoshi; Terato, Hiroaki

    2015-09-01

    Plasma-based techniques are expected to have practical use for wastewater purification with a potential for killing contaminated microorganisms and degrading recalcitrant materials. In the present study, we analysed oxidative DNA damage in bacterial cells treated by the plasma to unveil its mechanisms in the bactericidal process. Escherichia coli cell suspension was exposed to the plasma induced by applying an alternating-current voltage of about 1 kV with bubbling formed by water-cavitation, termed pulsed discharge with cavitation. Chromosomal DNA damage, such as double strand break (DSB) and oxidative base lesions, increased proportionally with the applied energy, as determined by electrophoretic and mass spectrometric analyses. Among the base lesions identified, the yields of 8-hydroxyguanine (8-OH-G) and 5-hydroxycytosine (5-OH-C) in chromosomal DNA increased by up to 4- and 15-fold, respectively, compared to untreated samples. The progeny DNA sequences, derived from plasmid DNA exposed to the plasma, indicated that the production rate of 5-OH-C exceeded that of 8-OH-G, as G:C to A:T transitions accounted for 65% of all base changes, but only a few G:C to T:A transversions were observed. The cell viabilities of E. coli cells decreased in direct proportion to increases in the applied energy. Therefore, the plasma-induced bactericidal mechanism appears to relate to oxidative damage caused to bacterial DNA. These results were confirmed by observing the generation of hydroxyl radicals and hydrogen peroxide molecules following the plasma exposure. We also compared our results with the plasma to those obtained with 137Cs γ-rays, as a well-known ROS generator to confirm the DNA-damaging mechanism involved.

  2. Moderate Thermal Stress Causes Active and Immediate Expulsion of Photosynthetically Damaged Zooxanthellae (Symbiodinium) from Corals

    PubMed Central

    Fujise, Lisa; Yamashita, Hiroshi; Suzuki, Go; Sasaki, Kengo; Liao, Lawrence M.; Koike, Kazuhiko

    2014-01-01

    The foundation of coral reef biology is the symbiosis between corals and zooxanthellae (dinoflagellate genus Symbiodinium). Recently, coral bleaching, which often results in mass mortality of corals and the collapse of coral reef ecosystems, has become an important issue around the world as coral reefs decrease in number year after year. To understand the mechanisms underlying coral bleaching, we maintained two species of scleractinian corals (Acroporidae) in aquaria under non-thermal stress (27°C) and moderate thermal stress conditions (30°C), and we compared the numbers and conditions of the expelled Symbiodinium from these corals. Under non-thermal stress conditions corals actively expel a degraded form of Symbiodinium, which are thought to be digested by their host coral. This response was also observed at 30°C. However, while the expulsion rates of Symbiodinium cells remained constant, the proportion of degraded cells significantly increased at 30°C. This result indicates that corals more actively digest and expel damaged Symbiodinium under thermal stress conditions, likely as a mechanism for coping with environmental change. However, the increase in digested Symbiodinium expulsion under thermal stress may not fully keep up with accumulation of the damaged cells. There are more photosynthetically damaged Symbiodinium upon prolonged exposure to thermal stress, and corals release them without digestion to prevent their accumulation. This response may be an adaptive strategy to moderate stress to ensure survival, but the accumulation of damaged Symbiodinium, which causes subsequent coral deterioration, may occur when the response cannot cope with the magnitude or duration of environmental stress, and this might be a possible mechanism underlying coral bleaching during prolonged moderate thermal stress. PMID:25493938

  3. Cystinosin deficiency causes podocyte damage and loss associated with increased cell motility.

    PubMed

    Ivanova, Ekaterina A; Arcolino, Fanny O; Elmonem, Mohamed A; Rastaldi, Maria P; Giardino, Laura; Cornelissen, Elisabeth M; van den Heuvel, Lambertus P; Levtchenko, Elena N

    2016-05-01

    The involvement of the glomerulus in the pathogenesis of cystinosis, caused by loss-of-function mutations in cystinosin (CTNS, 17p13), is a matter of controversy. Although patients with cystinosis demonstrate glomerular lesions and high-molecular-weight proteinuria starting from an early age, a mouse model of cystinosis develops only signs of proximal tubular dysfunction. Here we studied podocyte damage in patients with cystinosis by analyzing urinary podocyte excretion and by in vitro studies of podocytes deficient in cystinosin. Urine from patients with cystinosis presented a significantly higher amount of podocytes compared with controls. In culture, cystinotic podocytes accumulated cystine compatible with cystinosin deficiency. The expression of podocyte specific genes CD2AP, podocalyxin, and synaptopodin and of the WT1 protein was evident in all cell lines. Conditionally immortalized podocyte lines of 2 patients with different CTNS mutations had altered cytoskeleton, impaired cell adhesion sites, and increased individual cell motility. Moreover, these cells showed enhanced phosphorylation of both Akt1 and Akt2 (isoforms of protein kinase B). Inhibition of Akt by a specific inhibitor (Akti inhibitor 1/2) resulted in normalization of the hypermotile phenotype. Thus, our study extends the list of genetic disorders causing podocyte damage and provides the evidence of altered cell signaling cascades resulting in impaired cell adhesion and enhanced cell motility in cystinosis. PMID:27083281

  4. The natural product citral can cause significant damage to the hyphal cell walls of Magnaporthe grisea.

    PubMed

    Li, Rong-Yu; Wu, Xiao-Mao; Yin, Xian-Hui; Liang, Jing-Nan; Li, Ming

    2014-01-01

    In order to find a natural alternative to the synthetic fungicides currently used against the devastating rice blast fungus, Magnaporthe grisea, this study explored the antifungal potential of citral and its mechanism of action. It was found that citral not only inhibited hyphal growth of M. grisea, but also caused a series of marked hyphal morphological and structural alterations. Specifically, citral was tested for antifungal activity against M. grisea in vitro and was found to significantly inhibit colony development and mycelial growth with IC50 and IC90 values of 40.71 and 203.75 μg/mL, respectively. Furthermore, citral reduced spore germination and germ tube length in a concentration-dependent manner. Following exposure to citral, the hyphal cell surface became wrinkled with folds and cell breakage that were observed under scanning electron microscopy (SEM). There was damage to hyphal cell walls and membrane structures, loss of villous-like material outside of the cell wall, thinning of the cell wall, and discontinuities formed in the cell membrane following treatment based on transmission electron microscopy (TEM). This increase in chitinase activity both supports the morphological changes seen in the hyphae, and also suggests a mechanism of action. In conclusion, citral has strong antifungal properties, and treatment with this compound is capable of causing significant damage to the hyphal cell walls of M. grisea. PMID:25029074

  5. Ziram Causes Dopaminergic Cell Damage by Inhibiting E1 Ligase of the Proteasome*

    PubMed Central

    Chou, Arthur P.; Maidment, Nigel; Klintenberg, Rebecka; Casida, John E.; Li, Sharon; Fitzmaurice, Arthur G.; Fernagut, Pierre-Olivier; Mortazavi, Farzad; Chesselet, Marie-Francoise; Bronstein, Jeff M.

    2008-01-01

    The etiology of Parkinson disease (PD) is unclear but may involve environmental toxins such as pesticides leading to dysfunction of the ubiquitin proteasome system (UPS). Here, we measured the relative toxicity of ziram (a UPS inhibitor) and analogs to dopaminergic neurons and examined the mechanism of cell death. UPS (26 S) activity was measured in cell lines after exposure to ziram and related compounds. Dimethyl- and diethyldithiocarbamates including ziram were potent UPS inhibitors. Primary ventral mesencephalic cultures were exposed to ziram, and cell toxicity was assessed by staining for tyrosine hydroxylase (TH) and NeuN antigen. Ziram caused a preferential damage to TH+ neurons and elevated α-synuclein levels but did not increase aggregate formation. Mechanistically, ziram altered UPS function through interfering with the targeting of substrates by inhibiting ubiquitin E1 ligase. Sodium dimethyldithiocarbamate administered to mice for 2 weeks resulted in persistent motor deficits and a mild reduction in striatal TH staining but no nigral cell loss. These results demonstrate that ziram causes selective dopaminergic cell damage in vitro by inhibiting an important degradative pathway implicated in the etiology of PD. Chronic exposure to widely used dithiocarbamate fungicides may contribute to the development of PD, and elucidation of its mechanism would identify a new potential therapeutic target. PMID:18818210

  6. Does intravenous contrast-enhanced computed tomography cause acute kidney injury? Protocol of a systematic review of the evidence

    PubMed Central

    2014-01-01

    Background Contrast-induced acute kidney injury is a common cause of iatrogenic acute kidney injury (AKI). Most of the published estimates of AKI after contrast use originate from the cardiac catheterization literature despite contrast-enhanced computed tomography (CT) scans being the more common setting for contrast use. This systematic review aims to summarize the current evidence about (1)the risk of AKI following intravenous (IV) contrast-enhanced CT scans and(2) the risk of clinical outcomes (i.e. death, hospitalization and need for renal replacement therapy) due to IV contrast-enhanced CT scans. Methods/Design A systematic literature search for published studies will be performed using MEDLINE, EMBASE and The COCHRANE Library databases. Unpublished studies will be identified by searching through grey literature. No language restriction will be applied. The review will consider all studies that have examined the association between IV contrast media and AKI. To be selected, the study should include two arms: one group of exposed patients who received IV contrast material before CT scans and one group of unexposed group who did not receive contrast material before CT scans. Two authors will independently screen titles and abstracts obtained from electronic databases, extract data and will assess the quality of the studies selected using the Cochrane's ‘Risk of Bias’ assessment tool for randomized trials and the Newcastle-Ottawa Scale for observational studies. A random-effects meta-analysis will be performed if there is no remarkable heterogeneity between studies. Discussion This systematic review will provide synthesis of current evidence around the effect of IV contrast material on AKI and other clinical outcomes. Results will be helpful for making evidence-based recommendations and guidelines for clinical and radiologic settings. Systematic review registration PROSPERO CRD42013003799. PMID:25148933

  7. Scrum kidney: epidemic pyoderma caused by a nephritogenic Streptococcus pyogenes in a rugby team.

    PubMed

    Ludlam, H; Cookson, B

    1986-08-01

    In December, 1984, an outbreak of pyoderma affected five scrum players in the St Thomas' Hospital rugby team. The causative organism, Streptococcus pyogenes, was acquired during a match against a team experiencing an outbreak of impetigo, and was transmitted to two front row players of another team a week later, and to two girlfriends of affected St Thomas' players a month later. The strain was M-type 49, tetracycline-resistant, and virulent. It caused salpingitis in a girlfriend and acute glomerulonephritis in one rugby player. No case of subclinical glomerulonephritis was detected in eight patients with pyoderma. Screening of the St Thomas' Hospital team revealed four further cases of non-streptococcal skin infection, with evidence for contemporaneous spread of Staphylococcus aureus. Teams should not field players with sepsis, and it may be advisable to apply a skin antiseptic to traumatised skin after the match. PMID:2874337

  8. Dietary NiCl2 causes G2/M cell cycle arrest in the broiler's kidney

    PubMed Central

    Guo, Hongrui; Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Xun; Wu, Bangyuan; Chen, Kejie; Deng, Jie

    2015-01-01

    Here we showed that dietary NiCl2 in excess of 300 mg/kg caused the G2/M cell cycle arrest and the reduction of cell proportion at S phase. The G2/M cell cycle arrest was accompanied by up-regulation of phosphorylated ataxia telangiectasia mutated (p-ATM), p53, p-Chk1, p-Chk2, p21 protein expression and ATM, p53, p21, Chk1, Chk2 mRNA expression, and down-regulation of p-cdc25C, cdc2, cyclinB and proliferating cell nuclear antigen (PCNA) protein expression and the cdc25, cdc2, cyclinB, PCNA mRNA expression. PMID:26440151

  9. Role of kidney biomarkers of chronic kidney disease: An update

    PubMed Central

    Khan, Zeba; Pandey, Manoj

    2014-01-01

    Chronic kidney disease (CKD) is a progressive pathological condition marked by deteriorating renal function over time. Diagnostic of kidney disease depend on serum creatinine level and glomerular filtration rate which is detectable when kidney function become half. The detection of kidney damage in an early stage needs robust biomarkers. Biomarkers allow monitoring the disease progression at initial stages of disease. On the onset of impairment in cellular organization there is perturbation in signaling molecules which are either up-regulated or down-regulated and act as an indicator or biomarker of diseased stage. This review compiled the cell signaling of different kidney biomarkers associated with the onset of chronic kidney diseases. Delay in diagnosis of CKD will cause deterioration of nephron function which leads to End stage renal disease and at that point patients require dialysis or kidney transplant. Detailed information on the complex network in signaling pathway leading to a coordinated pattern of gene expression and regulation in CKD will undoubtedly provide important clues to develop novel prognostic and therapeutic strategies for CKD. PMID:25183938

  10. Assessment of infrastructure functional damages caused by natural-technological disasters

    NASA Astrophysics Data System (ADS)

    Massabò, Marco; Trasforini, Eva; Traverso, Stefania; Rudari, Roberto; De Angeli, Silvia; Cecinati, Francesca; Cerruti, Valentina

    2013-04-01

    The assessment of infrastructure damages caused by technological disaster poses several challenges, from gathering needed information on the territorial system to the definition of functionality curves for infrastructures elements (such as, buildings, road school) that are exposed to both natural and technological event. Moreover, areas affected by natural or natech (technological disasters triggered by natural events) disasters have often very large extensions and a rapid survey of them to gather all the needed information is a very difficult task, for many reasons, not least the difficult access to the existing databases and resources. We use multispectral optical imagery with other geographical and unconventional data to identify and characterize exposed elements. Our efforts in the virtual survey and during the investigation steps have different aims: to identify the vulnerability of infrastructures, buildings or activities; to execute calculations of exposition to risk; to estimate physical and functional damages. Subsequently, we apply specific algorithms to estimate values of acting forces and physical and functional damages. The updated picture of target areas in terms of risk-prone people, infrastructures and their connections is very important. It is possible to develop algorithms providing values of systemic functionality for each network element. The methodology is here applied to a natech disaster, arising from the combination of a flood event (specifically, the January 2010 flooding of Drin and Buna rivers, with a worsening in the road safety levels in the Shkoder area) with and the subsequent overturning of a truck transporting hazardous material. The accident causes the loss of containment and the total material release. Once the release has taken place, the evolution will depend on the physical state of the substance spilled (liquid, gas or dust). As a specific case we consider the rupture of a trucks transporting liquid fuels such as gasoline through Shkoder downtown. Goods entering in Albania from north pass through Shkoder, indeed a high traffic road that connects Albania with Montenegro and Kosovo crosses Shkoder downtown. We consider a truck overturned in downtown Shkoder during the flooding of January 2010; the gasoline transported by the truck is completely released and a pool fire develops damaging roads. We use the model CHESRM (Chemical Spill Risk Mapper) for identify the threat zones of the accident and as a basis for assessing the potential leads to functional damages to other elements of the considered system. The application of the methodology shows the potential use not only on real time emergency management or prevention but also during post-event management for the evaluation of the functional damage to the affected infrastructure (villages isolated from the rest of the network, villages unable to reach schools, hospitals or other services...) and to set a hierarchy in restoration activities, giving priority to the reconstruction of links between primary nodes.

  11. ACUTE KIDNEY INJURY CAUSED BY Crotalus AND Bothrops SNAKE VENOM: A REVIEW OF EPIDEMIOLOGY, CLINICAL MANIFESTATIONS AND TREATMENT

    PubMed Central

    Albuquerque, Polianna L.M.M.; Jacinto, Camilla N.; Silva, Geraldo B.; Lima, Juliana B.; Veras, Maria do Socorro B.; Daher, Elizabeth F.

    2013-01-01

    SUMMARY Ophidic accidents are an important public health problem due to their incidence, morbidity and mortality. An increasing number of cases have been registered in Brazil in the last few years. Several studies point to the importance of knowing the clinical complications and adequate approach in these accidents. However, knowledge about the risk factors is not enough and there are an increasing number of deaths due to these accidents in Brazil. In this context, acute kidney injury (AKI) appears as one of the main causes of death and consequences for these victims, which are mainly young males working in rural areas. Snakes of the Bothrops and Crotalus genera are the main responsible for renal involvement in ophidic accidents in South America. The present study is a literature review of AKI caused by Bothrops and Crotalus snake venom regarding diverse characteristics, emphasizing the most appropriate therapeutic approach for these cases. Recent studies have been carried out searching for complementary therapies for the treatment of ophidic accidents, including the use of lipoic acid, simvastatin and allopurinol. Some plants, such as Apocynaceae, Lamiaceae and Rubiaceae seem to have a beneficial role in the treatment of this type of envenomation. Future studies will certainly find new therapeutic measures for ophidic accidents. PMID:24037282

  12. Fulminant and fatal encephalitis caused by Acanthamoeba in a kidney transplant recipient: case report and literature review.

    PubMed

    Satlin, M J; Graham, J K; Visvesvara, G S; Mena, H; Marks, K M; Saal, S D; Soave, R

    2013-12-01

    Acanthamoeba is the most common cause of granulomatous amebic encephalitis, a typically fatal condition that is classically described as indolent and slowly progressive. We report a case of Acanthamoeba encephalitis in a kidney transplant recipient that progressed to death within 3 days of symptom onset and was diagnosed at autopsy. We also review clinical characteristics, treatments, and outcomes of all published cases of Acanthamoeba encephalitis in solid organ transplant (SOT) recipients. Ten cases were identified, and the infection was fatal in 9 of these cases. In 6 patients, Acanthamoeba presented in a fulminant manner and death occurred within 2 weeks after the onset of neurologic symptoms. These acute presentations are likely related to immunodeficiencies associated with solid organ transplantation that result in an inability to control Acanthamoeba proliferation. Skin lesions may predate neurologic involvement and provide an opportunity for early diagnosis and treatment. Acanthamoeba is an under-recognized cause of encephalitis in SOT recipients and often presents in a fulminant manner in this population. Increased awareness of this disease and its clinical manifestations is essential to attain an early diagnosis and provide the best chance of cure. PMID:24010955

  13. A Long-Term High-Fat/High-Sucrose Diet Promotes Kidney Lipid Deposition and Causes Apoptosis and Glomerular Hypertrophy in Bama Minipigs

    PubMed Central

    Li, Li; Zhao, Zhanzhao; Xia, Jihan; Xin, Leilei; Chen, Yaoxing; Yang, Shulin; Li, Kui

    2015-01-01

    Metabolic syndrome can induce chronic renal injury in humans. In the present study, Bama minipigs were fed a high-fat/high-sucrose diet (HFHSD) for 23 months, which caused them to develop the pathological characteristics of metabolic syndrome, including obesity, hyperinsulinemia, and hyperlipidemia, and resulted in kidney tissue damage. In the HFHSD group, the ratio of the glomus areas to the glomerulus area and the glomerular density inside the renal cortex both decreased. Lipid deposition in the renal tubules was detected in the HFHSD group, and up-regulated expression levels of SREBP-1, FABP3 and LEPR promoted lipid deposition. The decreased levels of SOD, T-AOC and GSH-PX indicated that the antioxidant capacity of the renal tissues was diminished in the HFHSD group compared with MDA, which increased. The renal tissue in the HFHSD group exhibited clear signs of inflammation as well as significantly elevated expression of key genes associated with inflammation, including tumor necrosis factor-α (TNF-α) and macrophage migration inhibitory factor (MIF), compared with the control group. The tubular epithelial cells in the HFHSD group displayed significantly greater numbers of apoptotic cells, and the expression of proliferating cell nuclear antigen (PCNA) in the renal tubules decreased. Caspase-3 expression increased significantly, and the transcription factor nuclear factor κB (NF-κB) was activated and translocated into the nucleus. In conclusion, long-term HFHSDs cause metabolic syndrome and chronic renal tissue injury in Bama minipigs. These findings provide a foundation for further studies investigating metabolic syndrome and nephropathy. PMID:26571016

  14. Blast Wave Exposure to the Extremities Causes Endothelial Activation and Damage

    PubMed Central

    Spear, Abigail M.; Davies, Emma M.; Taylor, Christopher; Whiting, Rachel; Macildowie, Sara; Kirkman, Emrys; Midwinter, Mark; Watts, Sarah A.

    2015-01-01

    ABSTRACT Extremity injury is a significant burden to those injured in explosive incidents and local ischaemia can result in poor functionality in salvaged limbs. This study examined whether blast injury to a limb resulted in a change in endothelial phenotype leading to changes to the surrounding tissue. The hind limbs of terminally anaesthetized rabbits were subjected to one of four blast exposures (high, medium, low, or no blast). Blood samples were analyzed for circulating endothelial cells pre-injury and at 1, 6, and 11 h postinjury as well as analysis for endothelial activation pre-injury and at 1, 6, and 12 h postinjury. Post-mortem tissue (12 h post-injury) was analysed for both protein and mRNA expression and also for histopathology. The high blast group had significantly elevated levels of circulating endothelial cells 6 h postinjury. This group also had significantly elevated tissue mRNA expression of IL-6, E-selectin, TNF-α, HIF-1, thrombomodulin, and PDGF. There was a significant correlation between blast dose and the degree of tissue pathology (hemorrhage, neutrophil infiltrate, and oedema) with the worst scores in the high blast group. This study has demonstrated that blast injury can activate the endothelium and in some cases cause damage that in turn leads to pathological changes in the surrounding tissue. For the casualty injured by an explosion the damaging effects of hemorrhage and shock could be exacerbated by blast injury and vice versa so that even low levels of blast become damaging, all of which could affect tissue functionality and long-term outcomes. PMID:26418548

  15. The Chorioretinal Damage Caused by Different Half Parameters of Photodynamic Therapy in Rabbits

    PubMed Central

    Chuang, Lan-Hsin; Hwang, Yih-Shiou; Wang, Nan-Kai; Chen, Yen-Po; Liu, Laura; Yeung, Ling; Chen, Kuan-Jen; Chen, Tun-Lu; Wu, Wei-Chi

    2014-01-01

    Abstract Purpose: To compare the chorioretinal tissue response after different half-strength parameters of photodynamic therapy (PDT) in rabbits. Methods: The study included 4 groups, and each group contained 4 animals. The full dose served as the control group: verteporfin (4 mg/kg) with 600 mW/cm2 irradiance from a diode laser at 689 nm applied to the retina for 8 s. One parameter was changed to half-strength in the other 3 groups. The HLaser group received half-strength laser irradiance. The HTime group was exposed to photosensitization for half the time, and the HDose group received half the drug dose. Six laser spots were generated in each of the eyes of every rabbit and documented graphically. The lesions were examined on days 1, 7, and 42 after PDT treatment using color fundus imaging, fluorescein angiography (FA), and histopathology analysis. Results: PDT treatment in rabbits caused chorioretinal damage in all 4 groups. FA on day 1 showed that the use of half the laser irradiance, half the drug dose, or half the photosensitizing time tended to decrease the damage to the chorioretinal tissue in terms of the number of occlusions and the area of occlusion, but only the results from half the laser irradiance were significantly different. In addition, the HLaser and HDose groups showed significantly less apoptosis by TUNEL staining on day 1. Conclusions: Among these PDT parameters, decreasing the laser irradiance by half showed the greatest decrease in chorioretinal damage in an experimental animal model. PMID:24949836

  16. Blast Wave Exposure to the Extremities Causes Endothelial Activation and Damage.

    PubMed

    Spear, Abigail M; Davies, Emma M; Taylor, Christopher; Whiting, Rachel; Macildowie, Sara; Kirkman, Emrys; Midwinter, Mark; Watts, Sarah A

    2015-11-01

    Extremity injury is a significant burden to those injured in explosive incidents and local ischaemia can result in poor functionality in salvaged limbs. This study examined whether blast injury to a limb resulted in a change in endothelial phenotype leading to changes to the surrounding tissue.The hind limbs of terminally anaesthetized rabbits were subjected to one of four blast exposures (high, medium, low, or no blast). Blood samples were analyzed for circulating endothelial cells pre-injury and at 1, 6, and 11 h postinjury as well as analysis for endothelial activation pre-injury and at 1, 6, and 12  h postinjury. Post-mortem tissue (12  h post-injury) was analysed for both protein and mRNA expression and also for histopathology. The high blast group had significantly elevated levels of circulating endothelial cells 6  h postinjury. This group also had significantly elevated tissue mRNA expression of IL-6, E-selection, TNF-α, HIF-1, thrombomodulin, and PDGF. There was a significant correlation between blast dose and the degree of tissue pathology (hemorrhage, neutrophil infiltrate, and oedema) with the worst scores in the high blast group. This study has demonstrated that blast injury can activate the endothelium and in some cases cause damage that in turn leads to pathological changes in the surrounding tissue. For the casualty injured by an explosion the damaging effects of hemorrhage and shock could be exacerbated by blast injury and vice versa so that even low levels of blast become damaging, all of which could affect tissue functionality and long-term outcomes. PMID:26418548

  17. Damage to Trichothecium roseum caused by sodium silicate is independent from pH.

    PubMed

    Niu, Li-Li; Bi, Yang; Bai, Xiao-Dong; Zhang, Sheng-Gui; Xue, Hua-Li; Li, Yong-Cai; Wang, Yi; Calderón-Urrea, Alejandro

    2016-02-01

    Trichothecium roseum is one of the most important postharvest pathogens in arid and semiarid regions. Sodium silicate (NaSi) and environmental pH have significant inhibitory effects on fungal growth. However, no study has addressed the relationship of NaSi and pH in combination and the effects on T. roseum. In this work, we showed that spore germination, germ tube elongation, and mycelial growth of T. roseum were significantly inhibited by various NaSi concentrations, which had corresponding increasing pHs. Furthermore, these NaSi solutions showed a much greater impact than did pH treatments alone. The pathogenicity of NaSi-treated conidia on a model assay (conidia-inoculated apple fruit) was dramatically reduced, whereas no changes of pathogenicity were evident for the corresponding pH (various sodium hydroxide (NaOH) solutions) treatments. Fluorescent microscopy, using propidium iodide staining, showed damage of the plasma membranes of T. roseum conidia treated with both NaSi and NaOH, although the damage was more severe with NaSi. Leakage of proteins and sugars was significantly higher in NaSi-treated and NaOH-treated conidia than in untreated controls. In addition, serious damage was observed in the conidia exposed to NaSi for longer periods of time. Ultrastructural observations showed that treatment with either NaSi or NaOH caused a plasmolysis state and disorganized organelles. Taken together the results show that NaSi has inhibitory effects on T. roseum and that the inherent higher pH of NaSi solutions of higher concentrations simply acts as an enhancer of the inhibitory effects of NaSi. PMID:26751338

  18. DNA damage and genetic methylation changes caused by Cd in Arabidopsis thaliana seedlings.

    PubMed

    Li, Zhaoling; Liu, Zhihong; Chen, Ruijuan; Li, Xiaojun; Tai, Peidong; Gong, Zongqiang; Jia, Chunyun; Liu, Wan

    2015-09-01

    Amplified fragment length polymorphism (AFLP) and methylation-sensitive amplification polymorphism (MASP) techniques are sensitive to deoxyribonucleic acid (DNA) damage and genetic methylation, respectively. Using these 2 techniques, Arabidopsis thaliana cultured with 0 mg/L (control), 0.5 mg/L, 1.5 mg/L, and 5.0 mg/L Cd(2+) for 16 d was used to analyze the DNA damage and methylation changes as a result of cadmium (Cd). The DNA was amplified by 14 AFLP primer pairs and 13 MSAP primer combinations. In the AFLP experiment, 62 polymorphic sites were found in the patterns of 11 primer combinations and a total of 1116 fragments were obtained in these patterns. There were no polymorphic bands in the remaining 3 pairs. The proportions of polymorphic sites in the 0.5-mg/L Cd(2+) and 5.0-mg/L Cd(2+) treatments were significantly different. Seven polymorphic fragments were then separated and successfully sequenced, yielding 6 nucleobase substitutions and 1 nucleobase deletion. Similarly, in the MSAP experiment, the MSAP% and number of demethylated-type bands were unchanged after Cd treatment, but the number of methylated-type bands was increased significantly in the 5.0-mg/L Cd(2+) treatment group, a finding that may be associated with the AFLP results. The polymorphic bands were also sequenced and the functions of their homologous genes were determined. The DNA damage and methylation changes may be the primary cause of certain pathology changes as a result of Cd uptake in plants. PMID:25914311

  19. Effects of radiation damage caused by proton irradiation on Multi-Pixel Photon Counters (MPPCs)

    NASA Astrophysics Data System (ADS)

    Matsumura, T.; Matsubara, T.; Hiraiwa, T.; Horie, K.; Kuze, M.; Miyabayashi, K.; Okamura, A.; Sawada, T.; Shimizu, S.; Shinkawa, T.; Tsunemi, T.; Yosoi, M.

    2009-05-01

    We have investigated the effects caused by proton-induced radiation damage on Multi-Pixel Photon Counter (MPPC), a pixelized photon detector developed by Hamamatsu Photonics. The leakage current of irradiated MPPC samples linearly increases with total irradiated doses due to radiation damage, which is not completely recovered even after a year from the irradiation. No significant change has been observed in the gains at least up to 8.0 Gy ( 9.1×107 n/mm2 in 1 MeV neutron equivalent fluence, Φeq). The device has completely lost its photon-counting capability due to baseline fluctuations and noise pile-up after 21 Gy irradiation ( 2.4×108 n/mm2 in Φeq), which might be problematic for some applications, such as ring-imaging Cherenkov detectors. We have found that the pulse-height resolution has been slightly deteriorated after 42 Gy irradiation ( 4.8×108 n/mm2 in Φeq), where the measured sample has been illuminated with a few hundred photons. This effect should be considered in the case of energy-measurement applications.

  20. Assessment of concrete damage and strength degradation caused by reinforcement corrosion

    NASA Astrophysics Data System (ADS)

    Nepal, Jaya; Chen, Hua-Peng

    2015-07-01

    Structural performance deterioration of reinforced concrete structures has been extensively investigated, but very limited studies have been carried out to investigate the effect of reinforcement corrosion on time-dependent reliability with consideration of the influence of mechanical characteristics of the bond interface due to corrosion. This paper deals with how corrosion in reinforcement creates different types of defects in concrete structure and how they are responsible for the structural capacity deterioration of corrosion affected reinforced concrete structures during their service life. Cracking in cover concrete due to reinforcement corrosion is investigated by using rebar-concrete model and realistic concrete properties. The flexural strength deterioration is analytically predicted on the basis of bond strength evolution due to reinforcement corrosion, which is examined by the experimental data available. The time-dependent reliability analysis is undertaken to calculate the life time structural reliability of corrosion damaged concrete structures by stochastic deterioration modelling of reinforced concrete. The results from the numerical example show that the proposed approach is capable of evaluating the damage caused by reinforcement corrosion and also predicting the structural reliability of concrete structures during their lifecycle.

  1. Perfluorooctane sulfonate exposure causes gonadal developmental toxicity in Caenorhabditis elegans through ROS-induced DNA damage.

    PubMed

    Guo, Xiaoying; Li, Qingqing; Shi, Jue; Shi, Liulin; Li, Buqing; Xu, An; Zhao, Guoping; Wu, Lijun

    2016-07-01

    Perfluorooctane sulfonate (PFOS), a common persistent organic pollutant, has been reported to show potential developmental toxicity in many animal studies. However, little was known about its effects on reproductive tissues, especially in the germ line. In the present study, Caenorhabditis elegans was used as an in vivo experimental model to study the developmental toxicity caused by PFOS exposure, especially in the gonads. Our results showed that PFOS exposure significantly retarded gonadal development, as shown by the increased number of worms that remained in the larval stages after hatched L1-stage larvae were exposed to PFOS for 72 h. Investigation of germ line proliferation following PFOS exposure showed that the number of total germ cells reduced in a dose-dependent manner when L1-stage larvae were exposed to 0-25.0 μM PFOS. PFOS exposure induced transient mitotic cell cycle arrest and apoptosis in the germ line. Quantification of DNA damage in proliferating germ cells and production of reactive oxygen species (ROS) showed that distinct foci of HUS-1:GFP and ROS significantly increased in the PFOS-treated groups, whereas the decrease in mitotic germ cell number and the enhanced apoptosis induced by PFOS exposure were effectively rescued upon addition of dimethyl sulfoxide (DMSO) and mannitol (MNT). These results suggested that ROS-induced DNA damage might play a pivotal role in the impairment of gonadal development indicated by the reduction in total germ cells, transient mitotic cell cycle arrest, and apoptosis. PMID:27108369

  2. Repair of clustered DNA damage caused by high LET radiation in human fibroblasts

    NASA Technical Reports Server (NTRS)

    Rydberg, B.; Lobrich, M.; Cooper, P. K.; Chatterjee, A. (Principal Investigator)

    1998-01-01

    It has recently been demonstrated experimentally that DNA damage induced by high LET radiation in mammalian cells is non-randomly distributed along the DNA molecule in the form of clusters of various sizes. The sizes of such clusters range from a few base-pairs to at least 200 kilobase-pairs. The high biological efficiency of high LET radiation for induction of relevant biological endpoints is probably a consequence of this clustering, although the exact mechanisms by which the clustering affects the biological outcome is not known. We discuss here results for induction and repair of base damage, single-strand breaks and double-strand breaks for low and high LET radiations. These results are discussed in the context of clustering. Of particular interest is to determine how clustering at different scales affects overall rejoining and fidelity of rejoining of DNA double-strand breaks. However, existing methods for measuring repair of DNA strand breaks are unable to resolve breaks that are close together in a cluster. This causes problems in interpretation of current results from high LET radiation and will require new methods to be developed.

  3. Prolonged electrical stimulation causes no damage to sacral nerve roots in rabbits

    PubMed Central

    Yan, Peng; Yang, Xiaohong; Yang, Xiaoyu; Zheng, Weidong; Tan, Yunbing

    2014-01-01

    Previous studies have shown that, anode block electrical stimulation of the sacral nerve root can produce physiological urination and reconstruct urinary bladder function in rabbits. However, whether long-term anode block electrical stimulation causes damage to the sacral nerve root remains unclear, and needs further investigation. In this study, a complete spinal cord injury model was established in New Zealand white rabbits through T9–10 segment transection. Rabbits were given continuous electrical stimulation for a short period and then chronic stimulation for a longer period. Results showed that compared with normal rabbits, the structure of nerve cells in the anterior sacral nerve roots was unchanged in spinal cord injury rabbits after electrical stimulation. There was no significant difference in the expression of apoptosis-related proteins such as Bax, Caspase-3, and Bcl-2. Experimental findings indicate that neurons in the rabbit sacral nerve roots tolerate electrical stimulation, even after long-term anode block electrical stimulation. PMID:25206785

  4. Using magnetic nanoparticles to probe protein damage in ferritin caused by freeze concentration

    NASA Astrophysics Data System (ADS)

    Chagas, E. F.; Correia Carreira, S.; Schwarzacher, W.

    2015-11-01

    We demonstrate a method for monitoring the damage caused to a protein during freeze-thawing in the presence of glycerol, a cryo-protectant. For this work we synthesized magnetite nanoparticles doped with 2.5% cobalt inside the protein ferritin (CMF), dissolved them in different concentration glycerol solutions and measured their magnetization after freezing in a high applied field (5 T). As the temperature was raised, a step-like decrease in the sample magnetization was observed, corresponding to the onset of Brownian relaxation as the viscosity of the freeze-concentrated glycerol solution decreased. The position of the step reveals changes to the protein hydrodynamic radius that we attribute to protein unfolding, while its height depends on how much protein is trapped by ice during freeze concentration. Changes to the protein hydrodynamic radius are confirmed by dynamic light scattering (DLS) measurements, but unlike DLS, the magnetic measurements can provide hydrodynamic data while the solution remains mainly frozen.

  5. Monitoring of Maize Damage Caused by Western Corn Rootworm by Remote Sensing

    NASA Astrophysics Data System (ADS)

    Nádor, G.; Fényes, D.; Vasas, L.; Surek, G.

    2009-04-01

    The gradual dispersion of western corn rootworm (WCR) is becoming a serious maize pest in Europe, and all over the world. In 2008 using remote sensing data, the Remote Sensing Centre of Institute of Geodesy, Cartography and Remote Sensing (FÖMI RSC) carried out this project to identify WCR larval damage. Our goal with the present project is to assess and identify the disorder and structural changes caused by WCR larvae using optical (IRS-P6 AWiFS, IRS-P6 LISS, SPOT4 and SPOT5) and polarimetic radar (ALOS PALSAR) satellite images. We used 3 different individual features (Mono-maize feature, Optical feature, Radar feature) derived from remote sensing data to accomplish this goal. Findings were tested against on-the-spot ground assessments. Using radar polarimetry increased the accuracy significantly. The final results have implications for plant protection strategy, farming practices, pesticide producers, state authorities and research institutes.

  6. Mutations of the Thyroid Hormone Transporter MCT8 Cause Prenatal Brain Damage and Persistent Hypomyelination

    PubMed Central

    López-Espíndola, Daniela; Morales-Bastos, Carmen; Grijota-Martínez, Carmen; Liao, Xiao-Hui; Lev, Dorit; Sugo, Ella; Verge, Charles F.; Refetoff, Samuel

    2014-01-01

    Context: Mutations in the MCT8 (SLC16A2) gene, encoding a specific thyroid hormone transporter, cause an X-linked disease with profound psychomotor retardation, neurological impairment, and abnormal serum thyroid hormone levels. The nature of the central nervous system damage is unknown. Objective: The objective of the study was to define the neuropathology of the syndrome by analyzing brain tissue sections from MCT8-deficient subjects. Design: We analyzed brain sections from a 30th gestational week male fetus and an 11-year-old boy and as controls, brain tissue from a 30th and 28th gestational week male and female fetuses, respectively, and a 10-year-old girl and a 12-year-old boy. Methods: Staining with hematoxylin-eosin and immunostaining for myelin basic protein, 70-kDa neurofilament, parvalbumin, calbindin-D28k, and synaptophysin were performed. Thyroid hormone determinations and quantitative PCR for deiodinases were also performed. Results: The MCT8-deficient fetus showed a delay in cortical and cerebellar development and myelination, loss of parvalbumin expression, abnormal calbindin-D28k content, impaired axonal maturation, and diminished biochemical differentiation of Purkinje cells. The 11-year-old boy showed altered cerebellar structure, deficient myelination, deficient synaptophysin and parvalbumin expression, and abnormal calbindin-D28k expression. The MCT8-deficient fetal cerebral cortex showed 50% reduction of thyroid hormones and increased type 2 deiodinase and decreased type 3 deiodinase mRNAs. Conclusions: The following conclusions were reached: 1) brain damage in MCT8 deficiency is diffuse, without evidence of focal lesions, and present from fetal stages despite apparent normality at birth; 2) deficient hypomyelination persists up to 11 years of age; and 3) the findings are compatible with the deficient action of thyroid hormones in the developing brain caused by impaired transport to the target neural cells. PMID:25222753

  7. 99mTc-Labeled HYNIC-DAPI Causes Plasmid DNA Damage with High Efficiency

    PubMed Central

    Kotzerke, Joerg; Punzet, Robert; Runge, Roswitha; Ferl, Sandra; Oehme, Liane; Wunderlich, Gerd; Freudenberg, Robert

    2014-01-01

    99mTc is the standard radionuclide used for nuclear medicine imaging. In addition to gamma irradiation, 99mTc emits low-energy Auger and conversion electrons that deposit their energy within nanometers of the decay site. To study the potential for DNA damage, direct DNA binding is required. Plasmid DNA enables the investigation of the unprotected interactions between molecules and DNA that result in single-strand breaks (SSBs) or double-strand breaks (DSBs); the resulting DNA fragments can be separated by gel electrophoresis and quantified by fluorescent staining. This study aimed to compare the plasmid DNA damage potential of a 99mTc-labeled HYNIC-DAPI compound with that of 99mTc pertechnetate (99mTcO4−). pUC19 plasmid DNA was irradiated for 2 or 24 hours. Direct and radical-induced DNA damage were evaluated in the presence or absence of the radical scavenger DMSO. For both compounds, an increase in applied activity enhanced plasmid DNA damage, which was evidenced by an increase in the open circular and linear DNA fractions and a reduction in the supercoiled DNA fraction. The number of SSBs elicited by 99mTc-HYNIC-DAPI (1.03) was twice that caused by 99mTcO4− (0.51), and the number of DSBs increased fivefold in the 99mTc-HYNIC-DAPI-treated sample compared with the 99mTcO4− treated sample (0.02 to 0.10). In the presence of DMSO, the numbers of SSBs and DSBs decreased to 0.03 and 0.00, respectively, in the 99mTcO4– treated samples, whereas the numbers of SSBs and DSBs were slightly reduced to 0.95 and 0.06, respectively, in the 99mTc-HYNIC-DAPI-treated samples. These results indicated that 99mTc-HYNIC-DAPI induced SSBs and DSBs via a direct interaction of the 99mTc-labeled compound with DNA. In contrast to these results, 99mTcO4− induced SSBs via radical formation, and DSBs were formed by two nearby SSBs. The biological effectiveness of 99mTc-HYNIC-DAPI increased by approximately 4-fold in terms of inducing SSBs and by approximately 10-fold in terms of inducing DSBs. PMID:25098953

  8. Reactive oxygen species cause direct damage of Engelbreth-Holm-Swarm matrix.

    PubMed Central

    Riedle, B.; Kerjaschki, D.

    1997-01-01

    Reactive oxygen species (ROS) are produced and released into the extracellular spaces in numerous diseases and contribute to development and progression, for example, of inflammatory diseases, proteinuria, and tumor invasion. However, little is known about ROS-induced chemical changes of interstitial matrix proteins and their consequences for the integrity of the matrix meshwork. As basement membranes and other matrices are highly cross-linked and complex, the relatively simple matrix produced by Engelbreth-Holm-Swarm (EHS) sarcoma, and proteins isolated therefrom, were incubated in vitro with defined concentrations of ROS that were generated by the Fenton or xanthine oxidase/xanthine reactions. This resulted in two counter-current effects. Although up to approximately 15% of the EHS matrix proteins were released into the supernatant in a ROS dose-response relationship, the residual insoluble matrix was partially cross-linked by ROS. Matrix proteins released into the supernatants were examined by rotary shadowing, quantitative sodium dodecyl sulfate polyacrylamide gel electrophoresis, immunoblotting, and fluorospectrometry for loss of tryptophans and formation of bityrosine residues. At relatively low ROS concentrations, selective liberation of morphologically intact laminin/entactin was found that, however, failed to reassociate and showed oxidative damage of its tryptophan residues. At higher ROS concentrations, laminin and entactin were progressively disintegrated, partially fragmented, and eventually completely degraded. At this point oligomers of type IV collagen predominated in the supernatant, and proteoglycans were not encountered at any concentration of ROS. Similar gradual molecular changes were also obtained when fractions of isolated soluble EHS matrix proteins were incubated with graded concentrations of ROS. In these experiments, the formation of covalently linked oligomers and aggregates paralleled the ROS-dependent formation of cross-linking bityrosine groups. ROS scavengers pinpointed to the hydroxyl radical as the most damaging radical species. Protease inhibitor experiments suggested that degradation of matrix proteins was caused primarily by the direct action of ROS and not by proteolysis by potentially contaminating proteases. Collectively, these results provide evidence that EHS matrix proteins show differential sensitivity to ROS-induced damage in a reproducible, sequential pattern, in the order entactin > laminin > type IV collagen, and that ROS cause partial dissociation and cross-linking of the EHS matrix. Images Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 11 PMID:9212747

  9. The Carrier's Liability for Damage Caused by Delay in International Air Transport

    NASA Technical Reports Server (NTRS)

    Lee, Kang Bin

    2003-01-01

    Delay in the air transport occurs when passengers, baggage or cargo do not arrive at their destination at the time indicated in the contract of carriage. The causes of delay in the carriage of passengers are booking errors or double booking, delayed departure of aircraft, incorrect information regarding the time of departure, failure to land at the scheduled destination and changes in flight schedule or addition of extra landing stops. Delay in the carriage of baggage or cargo may have different causes: no reservation, lack of space, failure to load the baggage or cargo at the right place, or to deliver the covering documents at the right place. The Montreal Convention of 1999 Article 19 provides that 'The carrier is liable for damage occasioned by delay in the carriage by air of passengers, baggage or cargo. Nevertheless, the carder shall not be liable for damage occasioned by delay if it proves that it and its servants and agents took all measures that could reasonably be required to avoid the damage or that it was impossible for it or them to take such measures'. The Montreal Convention Article 22 provides liability limits of the carrier in case of delay for passengers and their baggage and for cargo. In the carriage of persons, the liability of the carrier for each passenger is limited to 4,150 SDR. In the carriage of baggage, the liability of the carrier is limited to 1,000 SDR for each passenger unless a special declaration as to the value of the baggage has been made. In the carriage of cargo, the liability of the carrier is limited to 17 SDR per kilogram unless a special declaration as to the value of the cargo has been made. The Montreal Convention Article 19 has shortcomings: it is silent on the duration of the liability for carriage,andit does not make any distinction between persons and good. It does not give any indication concerning the circumstances to be taken into account in cases of delay, and about the length of delay. In conclusion, it is desirable to define the period of carriage with accuracy, and to insert the word 'unreasonable' in Article 19.

  10. Evaluation of kidney damage in patients with acute lymphoblastic leukemia in long-term follow-up: value of renal scan.

    TOXLINE Toxicology Bibliographic Information

    Yetgin S; Olgar S; Aras T; Cetin M; Düzova A; Beylergil V; Akhan O; Oĝuz O; Saraçbaşi O

    2004-10-01

    In order to evaluate potential long-term kidney damage of childhood leukemia and risk factors affecting renal damage, we studied 116 children treated for acute lymphoblastic leukemia (ALL) using the St. Jude Total XI and XIII protocols in 1991-1998. The median follow-up period after the completion of treatment was 35 months. The following parameters were examined: urinalysis, urinary creatinine (Cr), calcium (Ca), phosphorus, beta2-microglobulin, glomerular filtration rate (GFR), tubular phosphorus reabsorption (TPR), and renal function tests. Radiological evaluation included renal ultrasonography (US), and renal scans with DMSA or MAG-3 were performed. Blood chemistry and renal US patients were normal in all patients except two. GFR, TPR, urinary Ca/Cr, beta2-microglobulin, and renal scan were abnormal in 19.0%, 16.4%, 13.8%, 6.0%, and 40.5% of patients, respectively. The abnormality rate in GFR was significantly higher in patients <2 years of age. TPR abnormality was found to be significantly higher in patients who did not have G-CSF. An abnormal renal scan was associated with Hb < 10 g/dL, kidney infiltration, or hypertension at presentation and also occurred patients who underwent methotrexate treatment with frequent intervals during the follow-up period. Patients should be followed-up after cessation of therapy with the conventional tests mentioned above. In case of any abnormality, further detailed tests should be performed; renal scan seems to be more predictive for renal damage.

  11. Evaluation of kidney damage in patients with acute lymphoblastic leukemia in long-term follow-up: value of renal scan.

    PubMed

    Yetgin, Sevgi; Olgar, Seref; Aras, Tülin; Cetin, Mualla; Düzova, Ali; Beylergil, Volkan; Akhan, Okan; Oĝuz, Oĝuzhan; Saraçbaşi, Osman

    2004-10-01

    In order to evaluate potential long-term kidney damage of childhood leukemia and risk factors affecting renal damage, we studied 116 children treated for acute lymphoblastic leukemia (ALL) using the St. Jude Total XI and XIII protocols in 1991-1998. The median follow-up period after the completion of treatment was 35 months. The following parameters were examined: urinalysis, urinary creatinine (Cr), calcium (Ca), phosphorus, beta2-microglobulin, glomerular filtration rate (GFR), tubular phosphorus reabsorption (TPR), and renal function tests. Radiological evaluation included renal ultrasonography (US), and renal scans with DMSA or MAG-3 were performed. Blood chemistry and renal US patients were normal in all patients except two. GFR, TPR, urinary Ca/Cr, beta2-microglobulin, and renal scan were abnormal in 19.0%, 16.4%, 13.8%, 6.0%, and 40.5% of patients, respectively. The abnormality rate in GFR was significantly higher in patients <2 years of age. TPR abnormality was found to be significantly higher in patients who did not have G-CSF. An abnormal renal scan was associated with Hb < 10 g/dL, kidney infiltration, or hypertension at presentation and also occurred patients who underwent methotrexate treatment with frequent intervals during the follow-up period. Patients should be followed-up after cessation of therapy with the conventional tests mentioned above. In case of any abnormality, further detailed tests should be performed; renal scan seems to be more predictive for renal damage. PMID:15389822

  12. Murine liver damage caused by exposure to nano-titanium dioxide

    NASA Astrophysics Data System (ADS)

    Hong, Jie; Zhang, Yu-Qing

    2016-03-01

    Due to its unique physiochemical properties, nano-titanium dioxide (nano-TiO2) is widely used in all aspects of people’s daily lives, bringing it into increasing contact with humans. Thus, this material’s security issues for humans have become a heavily researched subject. Nano-TiO2 can enter the body through the mouth, skin, respiratory tract or in other ways, after which it enters the blood circulation and is deposited in the liver, changing biochemical indicators and causing liver inflammation. Meanwhile, the light sensitivity of these nanoparticles allows them to become media-generating reactive oxygen species (ROS), causing an imbalance between oxidation and anti-oxidation that leads to oxidative stress and liver damage. Nano-TiO2 can be transported into cells via phagocytosis, where the nanoparticles bind to the mitochondrial membrane, resulting in the disintegration of the membrane and the electron transport chain within the mitochondria. Thus, more ROS are produced. Nano-TiO2 can also enter the nucleus, where it can directly embed into or indirectly affect DNA, thereby causing DNA breakage or affecting gene expression. These effects include increased mRNA and protein expression levels of inflammation-related factors and decreased mRNA and protein expression levels of IκB and IL-2, resulting in inflammation. Long-term inflammation of the liver causes HSC cell activation, and extracellular matrix (ECM) deposition is promoted by multiple signalling pathways, resulting in liver fibrosis. In this paper, the latest progress on murine liver injury induced by environmental TiO2 is systematically described. The toxicity of nano-TiO2 also depends on size, exposure time, surface properties, dosage, administration route, and its surface modification. Therefore, its toxic effects in humans should be studied in greater depth. This paper also provides useful reference information regarding the safe use of nano-TiO2 in the future.

  13. Murine liver damage caused by exposure to nano-titanium dioxide.

    PubMed

    Hong, Jie; Zhang, Yu-Qing

    2016-03-18

    Due to its unique physiochemical properties, nano-titanium dioxide (nano-TiO2) is widely used in all aspects of people's daily lives, bringing it into increasing contact with humans. Thus, this material's security issues for humans have become a heavily researched subject. Nano-TiO2 can enter the body through the mouth, skin, respiratory tract or in other ways, after which it enters the blood circulation and is deposited in the liver, changing biochemical indicators and causing liver inflammation. Meanwhile, the light sensitivity of these nanoparticles allows them to become media-generating reactive oxygen species (ROS), causing an imbalance between oxidation and anti-oxidation that leads to oxidative stress and liver damage. Nano-TiO2 can be transported into cells via phagocytosis, where the nanoparticles bind to the mitochondrial membrane, resulting in the disintegration of the membrane and the electron transport chain within the mitochondria. Thus, more ROS are produced. Nano-TiO2 can also enter the nucleus, where it can directly embed into or indirectly affect DNA, thereby causing DNA breakage or affecting gene expression. These effects include increased mRNA and protein expression levels of inflammation-related factors and decreased mRNA and protein expression levels of IκB and IL-2, resulting in inflammation. Long-term inflammation of the liver causes HSC cell activation, and extracellular matrix (ECM) deposition is promoted by multiple signalling pathways, resulting in liver fibrosis. In this paper, the latest progress on murine liver injury induced by environmental TiO2 is systematically described. The toxicity of nano-TiO2 also depends on size, exposure time, surface properties, dosage, administration route, and its surface modification. Therefore, its toxic effects in humans should be studied in greater depth. This paper also provides useful reference information regarding the safe use of nano-TiO2 in the future. PMID:26871200

  14. Protective effect of ω-3 polyunsaturated fatty acids on L-arginine-induced nephrotoxicity and oxidative damage in rat kidney.

    PubMed

    Khan, M W; Priyamvada, S; Khan, S A; Khan, S; Naqshbandi, A; Yusufi, A N K

    2012-10-01

    L-Arginine (ARG), an essential amino acid, is the endogenous source of the deleterious nitric oxide. Dietary ω-3 polyunsaturated fatty acid (PUFA)-enriched fish oil (FO) has been shown to reduce the severity of certain types of cancers, cardiovascular disease, and renal disease. Present study examined whether feeding of FO/flaxseed oil (FXO) would have protective effect against ARG-induced nephrotoxicity. ARG-induced nephrotoxicity was recorded by increased serum creatinine and blood urea nitrogen. ARG significantly altered the activities of metabolic and brush border membrane (BBM) enzymes. ARG caused significant imbalances in the antioxidant system. These alterations were associated with increased lipid peroxidation (LPO) and altered antioxidant enzyme activities. Feeding of FO and FXO with ARG ameliorated the changes in various parameters caused by ARG. Nephrotoxicity parameters lowered and enzyme activities of carbohydrate metabolism, BBM and inorganic phosphate (32Pi) transport were improved to near control values. ARG-induced LPO declined and antioxidant defense mechanism was strengthened by both FO and FXO alike. The results of the present study suggest that ω-3 PUFA-enriched FO and FXO from seafoods and plant sources, respectively, are similarly effective in reducing ARG-induced nephrotoxicity and oxidative damage. Thus, vegetarians who cannot consume FO can have similar health benefits from plant-derived ω-3 PUFA. PMID:22531969

  15. Sulfur mustard causes oxidative stress and depletion of antioxidants in muscles, livers, and kidneys of Wistar rats.

    PubMed

    Pohanka, Miroslav; Stetina, Rudolf; Svobodova, Hana; Ruttkay-Nedecky, Branislav; Jilkova, Martina; Sochor, Jiri; Sobotka, Jakub; Adam, Vojtech; Kizek, Rene

    2013-07-01

    Sulfur mustard (SM) is a chemical warfare agent with cytotoxic effect and a tight link to oxidative stress (OS). Depletion of antioxidants is considered as a cause of detrimental consequence and belongs to the important steps leading to cell death. The oxidative injury appearing after SM exposure is not well understood. Nevertheless, identification of the pathological processes would be a good opportunity to establish an efficient therapy. Here, we focused our effort on an estimation of reactive oxygen species homeostasis and apoptotic processes in Wistar rats exposed to 0-160?mg/kg of SM. We assayed antioxidant activity, thiobarbituric acid reactive substances, reduced glutathione/oxidized glutathione, metallothionein, glutathione reductase, glutathione peroxidase, glutathione S-transferase, caspase 3, and glucose in the livers, kidneys, and muscles of the animals. Significant OS, depletion of low-molecular-mass antioxidants, increase in caspase activity, and some other processes related to SM action were determined. Moreover, we infer a principal role of OS in the tested organs. PMID:22947058

  16. De Novo Kidney Regeneration with Stem Cells

    PubMed Central

    Yokote, Shinya; Yamanaka, Shuichiro; Yokoo, Takashi

    2012-01-01

    Recent studies have reported on techniques to mobilize and activate endogenous stem-cells in injured kidneys or to introduce exogenous stem cells for tissue repair. Despite many recent advantages in renal regenerative therapy, chronic kidney disease (CKD) remains a major cause of morbidity and mortality and the number of CKD patients has been increasing. When the sophisticated structure of the kidneys is totally disrupted by end stage renal disease (ESRD), traditional stem cell-based therapy is unable to completely regenerate the damaged tissue. This suggests that whole organ regeneration may be a promising therapeutic approach to alleviate patients with uncured CKD. We summarize here the potential of stem-cell-based therapy for injured tissue repair and de novo whole kidney regeneration. In addition, we describe the hurdles that must be overcome and possible applications of this approach in kidney regeneration. PMID:23251079

  17. Methylarsonous acid causes oxidative DNA damage in cells independent of the ability to biomethylate inorganic arsenic

    PubMed Central

    Tokar, Erik J.; Kojima, Chikara; Waalkes, Michael P.

    2013-01-01

    Inorganic arsenic (iAs) and its toxic methylated metabolite, methylarsonous acid (MMAIII), both have carcinogenic potential. Prior study shows iAs induced malignant transformation in both arsenic methylation-proficient (liver) and methylation-deficient (prostate) cells, but only methylation-proficient cells show oxidative DNA damage (ODD) during this transformation. To further define if arsenic methylation is necessary for transformation or ODD induction, here we chronically exposed these same liver or prostate cell lines to MMAIII (0.25–1.0 μM) and tested for acquired malignant phenotype. Various metrics of oncogenic transformation were periodically assessed along with ODD during chronic MMAIII exposure. Methylation-deficient and methylation-proficient cells both acquired a cancer phenotype with MMAIII exposure at about 20 weeks, based on increased matrix metalloproteinase secretion, colony formation and invasion. In contrast, prior work showed iAs-induced transformation took longer in biomethylation-deficient cells (~30 weeks) than in biomethylation-proficient cells (~18 weeks). In the present study, MMAIII caused similar peak ODD levels at similar concentrations and at similar exposure times (18–22 weeks) in both cell types. At the approximate peak of ODD production both cell types showed similar alterations in arsenic and oxidative stress adaptation factors (i.e. ABCC1, ABCC2, GST-π, SOD-1). Thus, MMAIII causes oncogenic transformation associated with ODD in methylation-deficient cells, indicating further methylation is not required to induce ODD. Together, these results show that, MMAIII and iAs cause an acquired malignant phenotype in methylation-deficient cells, yet iAs does not induce ODD. This indicates iAs likely has both genotoxic and non-genotoxic mechanisms dictated by the target cell’s ability to methylate arsenic. PMID:24091636

  18. DNA Damage, Cell Cycle Arrest, and Apoptosis Induction Caused by Lead in Human Leukemia Cells

    PubMed Central

    Yedjou, Clement G.; Tchounwou, Hervey M.; Tchounwou, Paul B.

    2015-01-01

    In recent years, the industrial use of lead has been significantly reduced from paints and ceramic products, caulking, and pipe solder. Despite this progress, lead exposure continues to be a significant public health concern. The main goal of this research was to determine the in vitro mechanisms of lead nitrate [Pb(NO3)2] to induce DNA damage, apoptosis, and cell cycle arrest in human leukemia (HL-60) cells. To reach our goal, HL-60 cells were treated with different concentrations of Pb(NO3)2 for 24 h. Live cells and necrotic death cells were measured by the propidium idiode (PI) assay using the cellometer vision. Cell apoptosis was measured by the flow cytometry and DNA laddering. Cell cycle analysis was evaluated by the flow cytometry. The result of the PI demonstrated a significant (p < 0.05) increase of necrotic cell death in Pb(NO3)2-treated cells, indicative of membrane rupture by Pb(NO3)2 compared to the control. Data generated from the comet assay indicated a concentration-dependent increase in DNA damage, showing a significant increase (p < 0.05) in comet tail-length and percentages of DNA cleavage. Data generated from the flow cytometry assessment indicated that Pb(NO3)2 exposure significantly (p < 0.05) increased the proportion of caspase-3 positive cells (apoptotic cells) compared to the control. The flow cytometry assessment also indicated Pb(NO3)2 exposure caused cell cycle arrest at the G0/G1 checkpoint. The result of DNA laddering assay showed presence of DNA smear in the agarose gel with little presence of DNA fragments in the treated cells compared to the control. In summary, Pb(NO3)2 inhibits HL-60 cells proliferation by not only inducing DNA damage and cell cycle arrest at the G0/G1 checkpoint but also triggering the apoptosis through caspase-3 activation and nucleosomal DNA fragmentation accompanied by secondary necrosis. We believe that our study provides a new insight into the mechanisms of Pb(NO3)2 exposure and its associated adverse health effects. PMID:26703663

  19. DNA Damage, Cell Cycle Arrest, and Apoptosis Induction Caused by Lead in Human Leukemia Cells.

    PubMed

    Yedjou, Clement G; Tchounwou, Hervey M; Tchounwou, Paul B

    2015-01-01

    In recent years, the industrial use of lead has been significantly reduced from paints and ceramic products, caulking, and pipe solder. Despite this progress, lead exposure continues to be a significant public health concern. The main goal of this research was to determine the in vitro mechanisms of lead nitrate [Pb(NO₃)₂] to induce DNA damage, apoptosis, and cell cycle arrest in human leukemia (HL-60) cells. To reach our goal, HL-60 cells were treated with different concentrations of Pb(NO₃)₂ for 24 h. Live cells and necrotic death cells were measured by the propidium idiode (PI) assay using the cellometer vision. Cell apoptosis was measured by the flow cytometry and DNA laddering. Cell cycle analysis was evaluated by the flow cytometry. The result of the PI demonstrated a significant (p < 0.05) increase of necrotic cell death in Pb(NO₃)₂-treated cells, indicative of membrane rupture by Pb(NO₃)₂ compared to the control. Data generated from the comet assay indicated a concentration-dependent increase in DNA damage, showing a significant increase (p < 0.05) in comet tail-length and percentages of DNA cleavage. Data generated from the flow cytometry assessment indicated that Pb(NO₃)₂ exposure significantly (p < 0.05) increased the proportion of caspase-3 positive cells (apoptotic cells) compared to the control. The flow cytometry assessment also indicated Pb(NO₃)₂ exposure caused cell cycle arrest at the G₀/G₁ checkpoint. The result of DNA laddering assay showed presence of DNA smear in the agarose gel with little presence of DNA fragments in the treated cells compared to the control. In summary, Pb(NO₃)₂ inhibits HL-60 cells proliferation by not only inducing DNA damage and cell cycle arrest at the G₀/G₁ checkpoint but also triggering the apoptosis through caspase-3 activation and nucleosomal DNA fragmentation accompanied by secondary necrosis. We believe that our study provides a new insight into the mechanisms of Pb(NO₃)₂ exposure and its associated adverse health effects. PMID:26703663

  20. Meta-Analysis of Attitudes toward Damage-Causing Mammalian Wildlife

    PubMed Central

    KANSKY, RUTH; KIDD, MARTIN; KNIGHT, ANDREW T

    2014-01-01

    Many populations of threatened mammals persist outside formally protected areas, and their survival depends on the willingness of communities to coexist with them. An understanding of the attitudes, and specifically the tolerance, of individuals and communities and the factors that determine these is therefore fundamental to designing strategies to alleviate human-wildlife conflict. We conducted a meta-analysis to identify factors that affected attitudes toward 4 groups of terrestrial mammals. Elephants (65%) elicited the most positive attitudes, followed by primates (55%), ungulates (53%), and carnivores (44%). Urban residents presented the most positive attitudes (80%), followed by commercial farmers (51%) and communal farmers (26%). A tolerance to damage index showed that human tolerance of ungulates and primates was proportional to the probability of experiencing damage while elephants elicited tolerance levels higher than anticipated and carnivores elicited tolerance levels lower than anticipated. Contrary to conventional wisdom, experiencing damage was not always the dominant factor determining attitudes. Communal farmers had a lower probability of being positive toward carnivores irrespective of probability of experiencing damage, while commercial farmers and urban residents were more likely to be positive toward carnivores irrespective of damage. Urban residents were more likely to be positive toward ungulates, elephants, and primates when probability of damage was low, but not when it was high. Commercial and communal farmers had a higher probability of being positive toward ungulates, primates, and elephants irrespective of probability of experiencing damage. Taxonomic bias may therefore be important. Identifying the distinct factors explaining these attitudes and the specific contexts in which they operate, inclusive of the species causing damage, will be essential for prioritizing conservation investments. Meta-Análisis de las Posturas hacia la Mamíferos Silvestres Causantes de Daños Resumen Muchas poblaciones de mamíferos amenazados persisten fuera de áreas protegidas formales y su supervivencia depende de la buena voluntad de las comunidades que coexisten con ellos. Un entendimiento de las posturas, y específicamente de la tolerancia, de los individuos y las comunidades y los factores que los determinan es fundamental para diseñar estrategias que alivien el conflicto humano – vida silvestre. Llevamos a cabo un meta-análisis para identificar los factores que afectaron las posturas hacia cuatro grupos de mamíferos terrestres. Los elefantes (65%) provocaron las posturas más positivas. Los siguieron los primates (55%), los ungulados (53%) y los carnívoros (44%). Los residentes urbanos presentaron las posturas más positivas (80%), seguidos por los granjeros comerciales (51%) y los granjeros comunales (26%). Un índice de tolerancia a los daños mostró que la tolerancia humana a los ungulados y primates fue proporcional a la probabilidad de experimentar daños mientras que los elefantes provocaron niveles de tolerancia más altos de lo esperado y los carnívoros provocaron niveles de tolerancia más bajos de lo esperado. Contrario a la sabiduría convencional, experimentar daños no fue siempre el factor dominante para determinar las posturas. Los granjeros comunales tuvieron una baja probabilidad de ser positivos hacia los carnívoros independientemente de la probabilidad de experimentar daños, mientras que los granjeros comerciales y los residentes urbanos tuvieron mayor probabilidad de ser positivos hacia los carnívoros independientemente de los daños. Los residentes urbanos tuvieron mayor probabilidad de ser positivos hacia los ungulados, los elefantes y los primates cuando la probabilidad de daños fue baja, pero no cuando fue alta. Los granjeros comerciales y comunales tuvieron una mayor probabilidad de ser positivos hacia los ungulados, los primates y los elefantes independientemente de la probabilidad de experimentar daños. El prejuicio taxonómico por eso puede ser importante. El identificar los distintos factores que explican estas posturas y los contextos específicos en los cuales operan, inclusivo de especies que causan daños, será esencial para priorizar las inversiones en la conservación. PMID:24661270

  1. Measures of kidney function by minimally invasive techniques correlate with histological glomerular damage in SCID mice with adriamycin-induced nephropathy

    PubMed Central

    Scarfe, Lauren; Rak-Raszewska, Aleksandra; Geraci, Stefania; Darssan, Darsy; Sharkey, Jack; Huang, Jiaguo; Burton, Neal C.; Mason, David; Ranjzad, Parisa; Kenny, Simon; Gretz, Norbert; Lévy, Raphaël; Kevin Park, B.; García-Fiñana, Marta; Woolf, Adrian S.; Murray, Patricia; Wilm, Bettina

    2015-01-01

    Maximising the use of preclinical murine models of progressive kidney disease as test beds for therapies ideally requires kidney function to be measured repeatedly in a safe, minimally invasive manner. To date, most studies of murine nephropathy depend on unreliable markers of renal physiological function, exemplified by measuring blood levels of creatinine and urea, and on various end points necessitating sacrifice of experimental animals to assess histological damage, thus counteracting the principles of Replacement, Refinement and Reduction. Here, we applied two novel minimally invasive techniques to measure kidney function in SCID mice with adriamycin-induced nephropathy. We employed i) a transcutaneous device that measures the half-life of intravenously administered FITC-sinistrin, a molecule cleared by glomerular filtration; and ii) multispectral optoacoustic tomography, a photoacoustic imaging device that directly visualises the clearance of the near infrared dye, IRDye 800CW carboxylate. Measurements with either technique showed a significant impairment of renal function in experimental animals versus controls, with significant correlations with the proportion of scarred glomeruli five weeks after induction of injury. These technologies provide clinically relevant functional data and should be widely adopted for testing the efficacies of novel therapies. Moreover, their use will also lead to a reduction in experimental animal numbers. PMID:26329825

  2. Optical Coherence Tomography in Kidney Transplantation

    NASA Astrophysics Data System (ADS)

    Andrews, Peter M.; Wierwille, Jeremiah; Chen, Yu

    End-stage renal disease (ESRD) is associated with both high mortality rates and an enormous economic burden [1]. The preferred treatment option for ESRD that can extend patients' lives and improve their quality of life is kidney transplantation. However, organ shortages continue to pose a major problem in kidney transplantation. Most kidneys for transplantation come from heart-beating cadavers. Although non-heart-beating cadavers represent a potentially large pool of donor kidneys, these kidneys are not often used due to the unknown extent of damage to the renal tubules (i.e., acute tubular necrosis or "ATN") induced by ischemia (i.e., lack of blood flow). Also, ischemic insult suffered by kidneys awaiting transplantation frequently causes ATN that leads to varying degrees of delayed graft function (DGF) after transplantation. Finally, ATN represents a significant risk for eventual graft and patient survival [2, 3] and can be difficult to discern from rejection. In present clinical practice, there is no reliable real-time test to determine the viability of donor kidneys and whether or not donor kidneys might exhibit ATN. Therefore, there is a critical need for an objective and reliable real-time test to predict ATN to use these organs safely and utilize the donor pool optimally. In this review, we provided preliminary data indicating that OCT can be used to predict the post-transplant function of kidneys used in transplantation.

  3. On the monitoring and implications of growing damages caused by manufacturing defects in composite structures

    NASA Astrophysics Data System (ADS)

    Schagerl, M.; Viechtbauer, C.; Hörrmann, S.

    2015-07-01

    Damage tolerance is a classical safety concept for the design of aircraft structures. Basically, this approach considers possible damages in the structure, predicts the damage growth under applied loading conditions and predicts the following decrease of the structural strength. As a fundamental result the damage tolerance approach yields the maximum inspection interval, which is the time a damage grows from a detectable to a critical level. The above formulation of the damage tolerance safety concept targets on metallic structures where the damage is typically a simple fatigue crack. Fiber-reinforced polymers show a much more complex damage behavior, such as delaminationsin laminated composites. Moreover, progressive damage in composites is often initiated by manufacturing defects. The complex manufacturing processes for composite structures almost certainly yield parts with defects, e.g. pores in the matrix or undulations of fibers. From such defects growing damages may start after a certain time of operation. The demand to simplify or even avoid the inspection of composite structures has therefore led to a comeback of the traditional safe-life safety concept. The aim of the so-called safe-life flaw tolerance concept is a structure that is capable of carrying the static loads during operation, despite significant damages and after a representative fatigue load spectrum. A structure with this property does not need to be inspected, respectively monitored at all during its service life. However, its load carrying capability is thereby not fully utilized. This article presents the possible refinement of the state-of-the-art safe-life flaw tolerance concept for composite structures towards a damage tolerance approach considering also the influence of manufacturing defects on damage initiation and growth. Based on fundamental physical relations and experimental observations the challenges when developing damage growth and residual strength curves are discussed.

  4. Topiramate as a rare cause of reversible Fanconi syndrome and acute kidney injury: a case report and literature review.

    PubMed

    Meseeha, Marcelle G; Attia, Maximos N; Kolade, Victor O

    2016-01-01

    Topiramate (TPM) is a sulfa-derivative monosaccharide that has been used for multiple indications in the last several years. We describe a 53-year-old woman with known chronic kidney disease stage 2 and baseline creatinine of 1 mg/dL who developed acute kidney injury and proximal renal tubular dysfunction while on TPM for depression. The Naranjo Adverse Drug Reaction Probability Scale indicated a probable relationship (score of 6) between TPM and acute kidney injury as well as proximal tubular dysfunction; these renal conditions resolved on withdrawal of TPM. To our knowledge, this is the first report of such a scenario. Patients receiving TPM therapy should be closely monitored for evidence of kidney dysfunction and electrolyte abnormalities. PMID:26908388

  5. Topiramate as a rare cause of reversible Fanconi syndrome and acute kidney injury: a case report and literature review

    PubMed Central

    Meseeha, Marcelle G.; Attia, Maximos N.; Kolade, Victor O.

    2016-01-01

    Topiramate (TPM) is a sulfa-derivative monosaccharide that has been used for multiple indications in the last several years. We describe a 53-year-old woman with known chronic kidney disease stage 2 and baseline creatinine of 1 mg/dL who developed acute kidney injury and proximal renal tubular dysfunction while on TPM for depression. The Naranjo Adverse Drug Reaction Probability Scale indicated a probable relationship (score of 6) between TPM and acute kidney injury as well as proximal tubular dysfunction; these renal conditions resolved on withdrawal of TPM. To our knowledge, this is the first report of such a scenario. Patients receiving TPM therapy should be closely monitored for evidence of kidney dysfunction and electrolyte abnormalities. PMID:26908388

  6. Pumping bottom water to prevent Korean red tide damage caused by Cochlodinium polykrikoides Margalef.

    PubMed

    Cho, Eun Seob; Moon, Seong Yong; Shu, Young Sang; Hwang, Jae Dong; Youn, Seok Hyun

    2015-09-01

    Cochlodinium polykrikoides Margalef produces annual massive blooms in Korean coastal waters which cause great damage to aquaculture and fisheries. Although various methods have been developed to remove the red tide of C. polykrikoides, release of yellow loess has been regarded as the most desirable technique for mitigation for over 10 years. Each August, strong irradiation generates water column stratification separating warm surface from colder bottom waters. Water from a distance of 0 (St. 1), 5 (St. 2), 10 (St. 3), and 15 m (St. 4) was pumped by running a pump for 0, 10, 30 and 90 min and characterized water temperature, salinity collected, suspended solids, Chl-a, and phytoplankton including C. polykrikoides. After running for 30 min, was temperature and salinity in surface water was similar to those of bottom water, and water column stratification completely reversed after 90 min. Likewise, suspended solids, Chl-a, and total phytoplankton cell density decreased after 30 min, but C. polykrikoides did not show strong removal because of low cell density during sampling. However, the number of C. polykrikoides was significantly diluted (80%) after 90 min. These results suggested that pumping device was as an environmentally-friendly method convenient to be install in fish cages and effective to remove C. polykrikoides stratified water column conditions. PMID:26521549

  7. Neuroprotective effect of quercetin against oxidative damage and neuronal apoptosis caused by cadmium in hippocampus.

    PubMed

    Kanter, Mehmet; Unsal, Cuneyt; Aktas, Cevat; Erboga, Mustafa

    2016-03-01

    The purpose of the present investigation was to evaluate cadmium (Cd)-induced neurotoxicity in hippocampal tissues and beneficial effect of quercetin (QE) against neuronal damage. A total of 30 male rats were divided into 3 groups: control, Cd-treated, and Cd + QE-treated groups. After the treatment, the animals were killed and hippocampal tissues were removed for biochemical and histopathological investigation. Cd significantly increased tissue malondialdehyde (MDA) and protein carbonyl (PC) levels and also decreased superoxide dismutase (SOD) and catalase (CAT) enzyme activities in hippocampal tissue compared with the control. Administration of QE with Cd significantly decreased the levels of MDA and PC and significantly elevated the levels of antioxidant enzymes in hippocampal tissue. In the Cd-treated group, the neurons of both tissues became extensively dark and degenerated with pyknotic nuclei. The morphology of neurons in Cd + QE group was well protected, but not as neurons of the control group. The caspase-3 immunopositivity was increased in degenerating neurons of the Cd-treated group. Treatment of QE markedly reduced the immunoreactivity of degenerating neurons. The results of the present study show that QE therapy causes morphologic improvement in neurodegeneration of hippocampus after Cd exposure in rats. PMID:24193051

  8. 6-Gingerol-Rich Fraction from Zingiber officinale Prevents Hematotoxicity and Oxidative Damage in Kidney and Liver of Rats Exposed to Carbendazim.

    PubMed

    Salihu, Mariama; Ajayi, Babajide O; Adedara, Isaac A; Farombi, Ebenezer O

    2016-07-01

    Ginger (Zingiber officinale) is a globally marketed flavoring agent and cooking spice with a long history of human health benefits. The fungicide carbendazim (CBZ) is often detected in fruits and vegetables for human nutrition and has been reported to elicit toxic effects in different experimental animal models. The present study investigated the protective effects of 6-Gingerol-rich fraction (6-GRF) from ginger on hematotoxicity and hepatorenal damage in rats exposed to CBZ. CBZ was administered at a dose of 50 mg/kg alone or simultaneously administered with 6-GRF at 50, 100, and 200 mg/kg, whereas control rats received corn oil alone at 2 mL/kg for 14 days. Hematological examination showed that CBZ-mediated toxicity to the total white blood cell (WBC), neutrophils, lymphocytes, and platelets counts were normalized to the control values in rats cotreated with 6-GRF. Moreover, administration of CBZ significantly decreased the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione S-transferase as well as glutathione level in the livers and kidneys of rats compared with control. However, the levels of hydrogen peroxide (H2O2) and malondialdehyde were markedly elevated in kidneys and livers of CBZ-treated rats compared with control. The significant elevation in the plasma indices of renal and hepatic dysfunction in CBZ-treated rats was confirmed by light microscopy. Coadministration of 6-GRF exhibited chemoprotection against CBZ-mediated hematotoxicity, augmented antioxidant status, and prevented oxidative damage in the kidney and liver of rats. PMID:26673969

  9. SERIES: Genomic instability in cancer Balancing repair and tolerance of DNA damage caused by alkylating agents

    PubMed Central

    Fu, Dragony; Calvo, Jennifer A.; Samson, Leona D

    2013-01-01

    Alkylating agents comprise a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER), and mismatch repair (MMR) respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial for an organism's favorable response to alkylating agents. Furthermore, an individual's response to alkylating agents can vary considerably from tissue to tissue and from person to person, pointing to genetic and epigenetic mechanisms that modulate alkylating agent toxicity. PMID:22237395

  10. Methodology to improve process understanding of surface runoff causing damages to buildings by analyzing insurance data records

    NASA Astrophysics Data System (ADS)

    Bernet, Daniel; Prasuhn, Volker; Weingartner, Rolf

    2015-04-01

    Several case studies in Switzerland highlight that many buildings which are damaged by floods are not located within the inundation zones of rivers, but outside the river network. In urban areas, such flooding can be caused by drainage system surcharge, low infiltration capacity of the urbanized landscape etc. However, in rural and peri-urban areas inundations are more likely caused by surface runoff formed on natural and arable land. Such flash floods have very short response time, occur rather diffusely and, thus, are very difficult to observe directly. In our approach, we use data records from private, but mostly from public insurance companies. The latter, present in 19 out of the total 26 Cantons of Switzerland, insure (almost) every building within the respective administrative zones and, in addition, hold a monopoly position. Damage claims, including flood damages, are usually recorded and, thus, data records from such public insurance companies are a very profitable data source to better understand surface runoff leading to damages. Although practitioners agree that this process is relevant, there seems to be a knowledge gap concerning spatial and temporal distributions as well as triggers and influencing factors of such damage events. Within the framework of a research project, we want to address this research gap and improve the understanding of the process chain from surface runoff formation up to possible damages to buildings. This poster introduces the methodology, which will be applied to a dataset including data from the majority of all 19 public insurance companies for buildings in Switzerland, counting over 50'000 damage claims, in order to better understand surface runoff. The goal is to infer spatial and temporal patterns as well as drivers and influencing factors of surface runoff possibly causing damages. In particular, the workflow of data acquisition, harmonization and treatment is outlined. Furthermore associated problems and challenges are discussed. Ultimately, the improved process understanding will be used to develop a new modeling approach.

  11. Distinct illusory own-body perceptions caused by damage to posterior insula and extrastriate cortex.

    PubMed

    Heydrich, Lukas; Blanke, Olaf

    2013-03-01

    Recent research in cognitive neuroscience using virtual reality, robotic technology and brain imaging has linked self-consciousness to the processing and integration of multisensory bodily signals. This work on bodily self-consciousness has implicated the temporo-parietal, premotor and extrastriate cortex and partly originated in work on neurological patients with different disorders of bodily self-consciousness. One class of such disorders is autoscopic phenomena, which are defined as illusory own-body perceptions, during which patients experience the visual illusory reduplication of their own body in extrapersonal space. Three main forms of autoscopic phenomena have been defined. During autoscopic hallucinations, a second own body is seen without any changes in bodily self-consciousness. During out-of-body experiences, the second own body is seen from an elevated perspective and location associated with disembodiment. During heautoscopy, subjects report strong self-identification with the second own body, often associated with the experience of existing at and perceiving the world from two places at the same time. Although it has been proposed that each autoscopic phenomenon is associated with different impairments of bodily self-consciousness, past research on neurological patients and the development of experimental paradigms for the study of bodily self-consciousness has focused on out-of-body experiences and the association with temporo-parietal cortex. Here, we performed quantitative lesion analysis in the-to date-largest group of patients with autoscopic hallucination and heautoscopy and compared the location of brain damage with those of control patients suffering from complex visual hallucinations. We found that heautoscopy was associated with lesions to the left posterior insula, and that autoscopic hallucinations were associated with damage to the right occipital cortex. Autoscopic hallucination and heautoscopy were further associated with distinct symptoms and deficits. The present data suggest that the autoscopic hallucination is a visuo-somatosensory deficit implicating extrastriate cortex and is, despite the visual hallucination of the own body, not associated with major deficits in bodily self-consciousness. Based on the symptoms and deficits in patients with heautoscopy and the implication of the left posterior insula, we suggest that abnormal bodily self-consciousness during heautoscopy is caused by a breakdown of self-other discrimination regarding affective somatosensory experience due to a disintegration of visuo-somatosensory signals with emotional (and/or interoceptive) bodily signals. These brain mechanisms are distinct from those described for out-of-body experiences. The present data extend previous models of autoscopic phenomena and provide clinical evidence for the importance of emotional and interoceptive signal processing in the posterior insula in relation to bodily self-consciousness. PMID:23423672

  12. Multilocus variable-number tandem-repeat genotyping of Renibacterium salmoninarum, a bacterium causing bacterial kidney disease in salmonid fish

    PubMed Central

    2013-01-01

    Background Bacterial kidney disease (BKD), caused by Renibacterium salmoninarum, is a bacterial disease of fish, which is both geographically widespread and difficult to control. Previously, application of various molecular typing methods has failed to reliably discriminate between R. salmoninarum isolates originating from different host species and geographic areas. The current study aimed to utilize multilocus variable number tandem repeats (VNTR) to investigate inter-strain variation of R. salmoninarum to establish whether host-specific populations exist in Atlantic salmon and rainbow trout respectively. Such information would be valuable in risk assessment of transmission of R. salmoninarum in a multispecies aquaculture environment. Results The present analysis utilizing sixteen VNTRs distinguished 17 different haplotypes amongst 41 R. salmoninarum isolates originating from Atlantic salmon and rainbow trout in Scotland, Norway and the US. The VNTR typing system revealed two well supported groups of R. salmoninarum haplotypes. The first group included R. salmoninarum isolates originating from both Atlantic salmon and rainbow trout circulating in Scottish and Norwegian aquaculture, in addition to the type strain ATCC33209T originating from Chinook salmon in North America. The second group comprised isolates found exclusively in Atlantic salmon, of mainly wild origin, including isolates NCIB1114 and NCIB1116 associated with the original Dee disease in Scotland. Conclusions The present study confirmed that VNTR analysis can be successfully applied to discriminate R. salmoninarum strains. There was no clear distinction between isolates originating from Atlantic salmon and rainbow trout as several haplotypes in group 1 clustered together R. salmoninarum isolates from both species. These findings indicate a potential exchange of pathogens between Atlantic salmon and rainbow trout in Scottish and Norwegian aquaculture during the last 20 years. In a scenario of expansion of rainbow trout farming into the marine environment, appropriate biosecurity measures to minimize disease occurrence are advised. The present results also suggest that R. salmoninarum isolates circulating in European aquaculture over the last 20 years are genetically distant to the wild strains originally causing BKD in the rivers Dee and Spey. PMID:24313994

  13. 78 FR 41991 - Pipeline Safety: Potential for Damage to Pipeline Facilities Caused by Flooding

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-12

    ... July 29, 1993 (ADB-93-03), and the most recent Advisory Bulletin (ADB-11-04) on July 27, 2011, 76 FR... Pipeline and Hazardous Materials Safety Administration Pipeline Safety: Potential for Damage to Pipeline... owners and operators of gas and hazardous liquid pipelines to communicate the potential for damage...

  14. Oxidative DNA damage induced by Ochratoxin A in the HK-2 human kidney cell line: evidence of the relationship with cytotoxicity.

    PubMed

    Arbillaga, Leire; Azqueta, Amaia; Ezpeleta, Olga; López de Cerain, Adela

    2007-01-01

    Ochratoxin A (OTA) is a mycotoxin produced by species of the genera Aspergillus and Penicillium. The kidneys are the target organ of this mycotoxin and it is considered a potent renal carcinogen in male rats. The mechanisms of its genotoxicity and carcinogenicity have been studied thoroughly, but controversial results have been published. The aim of this study was to evaluate the ability of OTA to produce single-strand DNA breaks and oxidative DNA damage in the human renal proximal tubular epithelial cell line (HK-2), due to the fact that there is no study on human kidney cells as the toxic target. In addition, we attempted to determine if biotransformation processes mediate OTA genotoxicity. Therefore, single-cell gel electrophoresis assay (comet assay) was performed after 3h- and 6h-treatments using different OTA concentrations, both cytotoxic and non-cytotoxic, in order to be able to distinguish a genotoxic effect of the mycotoxin from an indirect effect derived from its general cellular toxicity. No effect was shown where no cytotoxicity was found, both in the presence and in the absence of metabolic activation (10% rat liver S9-mix). However, oxidative DNA damage was shown at cytotoxic concentrations when formamidopyrimidine DNA glycosylase (FPG) and endonucleaseIII (EndoIII) were introduced in the assay with or without metabolic activation. Furthermore, at these concentrations, an elevation of reactive oxygen species was measured and pre-incubation with N-acetyl-L-cysteine was able to produce a slight protective effect on OTA-induced oxidative DNA damage as well as cytotoxicity. These data suggest that OTA is not acting as a direct genotoxic carcinogen and that oxidative stress is implicated in the genotoxicity and cytotoxicity observed in these human renal cells. PMID:17130176

  15. Comparison of the Tendon Damage Caused by Four Different Anchor Systems Used in Transtendon Rotator Cuff Repair

    PubMed Central

    Zhang, Qing-Song; Liu, Sen; Zhang, Qiuyang; Xue, Yun; Ge, Dongxia; O'Brien, Michael J.; Savoie, Felix H.; You, Zongbing

    2012-01-01

    Objectives. The objective of this study was to compare the damage to the rotator cuff tendons caused by four different anchor systems. Methods. 20 cadaveric human shoulder joints were used for transtendon insertion of four anchor systems. The Healix Peek, Fastin RC, Bio-Corkscrew Suture, and Healix Transtend anchors were inserted through the tendons using standard transtendon procedures. The areas of tendon damage were measured. Results. The areas of tendon damage (mean ± standard deviation, n = 7) were 29.1 ± 4.3 mm2 for the Healix Peek anchor, 20.4 ± 2.3 mm2 for the Fastin RC anchor, 23.4 ± 1.2 mm2 for the Bio-Corkscrew Suture anchor, 13.7 ± 3.2 mm2 for the Healix Transtend anchor inserted directly, and 9.1 ± 2.1 mm2 for the Healix Transtend anchor inserted through the Percannula system (P < 0.001 or P < 0.001, compared to other anchors). Conclusions. In a cadaver transtendon rotator cuff repair model, smaller anchors caused less damage to the tendon tissues. The Healix Transtend implant system caused the least damage to the tendon tissues. Our findings suggest that smaller anchors should be considered when performing transtendon procedures to repair partial rotator cuff tears. PMID:22811923

  16. Russell's viper venom affects regulation of small GTPases and causes nuclear damage.

    PubMed

    Pathan, Jigni; Martin, Ansie; Chowdhury, Rajdeep; Chakrabarty, Dibakar; Sarkar, Angshuman

    2015-12-15

    Russell's viper with its five sub-species is found throughout the Indian subcontinent. Its venom is primarily hemotoxic. However, its envenomation causes damage to several physiological systems. The present work was aimed to study the dose and time dependent cytotoxic effects of Russell's viper venom (RVV) on human A549 cells grown in vitro. Time dependent changes have been observed in cellular morphology following exposure to RVV. Presence of stress granules, rounding-off of the cells, and formation of punctate structure and loss of cell-cell contact characterized the cellular effects. Fluorescence microscopic studies revealed that apoptotic cell population increased on exposure to RVV. Further to understand the mechanism of these effects, status of small GTPase (smGTPases) expression were studied by Western blot and RT-PCR; as smGTPases play pivotal roles in deciding the cellular morphology, polarity, cell movement and overall signaling cascade. It was shown for the first time that expression patterns of Rac, Rho and CDC42 genes are altered on exposure to RVV. Similarly, significant difference in the expression pattern of HSP70 and p53 at the mRNA levels were noted. Our results confirmed that RVV induces apoptosis in A549 cells; this was further confirmed by AO/EtBr staining as well as caspase-3 assay. All experiments were compared using RVV unexposed cells. We propose for the first time that RVV induces morphological changes in human A549 cells through modulation of smGTPase expression and affects the cellular-nuclear architecture which in turn interferes in proliferation and migration of these cells along with apoptosis. PMID:26519780

  17. Schinus terebinthifolius Leaf Extract Causes Midgut Damage, Interfering with Survival and Development of Aedes aegypti Larvae.

    PubMed

    Procópio, Thamara Figueiredo; Fernandes, Kenner Morais; Pontual, Emmanuel Viana; Ximenes, Rafael Matos; de Oliveira, Aline Rafaella Cardoso; Souza, Carolina de Santana; Melo, Ana Maria Mendonça de Albuquerque; Navarro, Daniela Maria do Amaral Ferraz; Paiva, Patrícia Maria Guedes; Martins, Gustavo Ferreira; Napoleão, Thiago Henrique

    2015-01-01

    In this study, a leaf extract from Schinus terebinthifolius was evaluated for effects on survival, development, and midgut of A. aegypti fourth instar larvae (L4), as well as for toxic effect on Artemia salina. Leaf extract was obtained using 0.15 M NaCl and evaluated for phytochemical composition and lectin activity. Early L4 larvae were incubated with the extract (0.3-1.35%, w/v) for 8 days, in presence or absence of food. Polymeric proanthocyanidins, hydrolysable tannins, heterosid and aglycone flavonoids, cinnamic acid derivatives, traces of steroids, and lectin activity were detected in the extract, which killed the larvae at an LC50 of 0.62% (unfed larvae) and 1.03% (fed larvae). Further, the larvae incubated with the extract reacted by eliminating the gut content. No larvae reached the pupal stage in treatments at concentrations between 0.5% and 1.35%, while in the control (fed larvae), 61.7% of individuals emerged as adults. The extract (1.0%) promoted intense disorganization of larval midgut epithelium, including deformation and hypertrophy of cells, disruption of microvilli, and vacuolization of cytoplasms, affecting digestive, enteroendocrine, regenerative, and proliferating cells. In addition, cells with fragmented DNA were observed. Separation of extract components by solid phase extraction revealed that cinnamic acid derivatives and flavonoids are involved in larvicidal effect of the extract, being the first most efficient in a short time after larvae treatment. The lectin present in the extract was isolated, but did not show deleterious effects on larvae. The extract and cinnamic acid derivatives were toxic to A. salina nauplii, while the flavonoids showed low toxicity. S. terebinthifolius leaf extract caused damage to the midgut of A. aegypti larvae, interfering with survival and development. The larvicidal effect of the extract can be attributed to cinnamic acid derivatives and flavonoids. The data obtained using A. salina indicates that caution should be used when employing this extract as a larvicidal agent. PMID:25974067

  18. Cafeteria diet-induced obesity causes oxidative damage in white adipose.

    PubMed

    Johnson, Amy R; Wilkerson, Matthew D; Sampey, Brante P; Troester, Melissa A; Hayes, D Neil; Makowski, Liza

    2016-04-29

    Obesity continues to be one of the most prominent public health dilemmas in the world. The complex interaction among the varied causes of obesity makes it a particularly challenging problem to address. While typical high-fat purified diets successfully induce weight gain in rodents, we have described a more robust model of diet-induced obesity based on feeding rats a diet consisting of highly palatable, energy-dense human junk foods - the "cafeteria" diet (CAF, 45-53% kcal from fat). We previously reported that CAF-fed rats became hyperphagic, gained more weight, and developed more severe hyperinsulinemia, hyperglycemia, and glucose intolerance compared to the lard-based 45% kcal from fat high fat diet-fed group. In addition, the CAF diet-fed group displayed a higher degree of inflammation in adipose and liver, mitochondrial dysfunction, and an increased concentration of lipid-derived, pro-inflammatory mediators. Building upon our previous findings, we aimed to determine mechanisms that underlie physiologic findings in the CAF diet. We investigated the effect of CAF diet-induced obesity on adipose tissue specifically using expression arrays and immunohistochemistry. Genomic evidence indicated the CAF diet induced alterations in the white adipose gene transcriptome, with notable suppression of glutathione-related genes and pathways involved in mitigating oxidative stress. Immunohistochemical analysis indicated a doubling in adipose lipid peroxidation marker 4-HNE levels compared to rats that remained lean on control standard chow diet. Our data indicates that the CAF diet drives an increase in oxidative damage in white adipose tissue that may affect tissue homeostasis. Oxidative stress drives activation of inflammatory kinases that can perturb insulin signaling leading to glucose intolerance and diabetes. PMID:27033600

  19. Mechanism of action of lung damage caused by a nanofilm spray product.

    PubMed

    Larsen, Søren T; Dallot, Constantin; Larsen, Susan W; Rose, Fabrice; Poulsen, Steen S; Nørgaard, Asger W; Hansen, Jitka S; Sørli, Jorid B; Nielsen, Gunnar D; Foged, Camilla

    2014-08-01

    Inhalation of waterproofing spray products has on several occasions caused lung damage, which in some cases was fatal. The present study aims to elucidate the mechanism of action of a nanofilm spray product, which has been shown to possess unusual toxic effects, including an extremely steep concentration-effect curve. The nanofilm product is intended for application on non-absorbing flooring materials and contains perfluorosiloxane as the active film-forming component. The toxicological effects and their underlying mechanisms of this product were studied using a mouse inhalation model, by in vitro techniques and by identification of the binding interaction. Inhalation of the aerosolized product gave rise to increased airway resistance in the mice, as evident from the decreased expiratory flow rate. The toxic effect of the waterproofing spray product included interaction with the pulmonary surfactants. More specifically, the active film-forming components in the spray product, perfluorinated siloxanes, inhibited the function of the lung surfactant due to non-covalent interaction with surfactant protein B, a component which is crucial for the stability and persistence of the lung surfactant film during respiration. The active film-forming component used in the present spray product is also found in several other products on the market. Hence, it may be expected that these products may have a toxicity similar to the waterproofing product studied here. Elucidation of the toxicological mechanism and identification of toxicological targets are important to perform rational and cost-effective toxicological studies. Thus, because the pulmonary surfactant system appears to be an important toxicological target for waterproofing spray products, study of surfactant inhibition could be included in toxicological assessment of this group of consumer products. PMID:24863969

  20. Mechanism of Action of Lung Damage Caused by a Nanofilm Spray Product

    PubMed Central

    Larsen, Søren T.; Dallot, Constantin; Larsen, Susan W.; Rose, Fabrice; Poulsen, Steen S.; Nørgaard, Asger W.; Hansen, Jitka S.; Sørli, Jorid B.; Nielsen, Gunnar D.; Foged, Camilla

    2014-01-01

    Inhalation of waterproofing spray products has on several occasions caused lung damage, which in some cases was fatal. The present study aims to elucidate the mechanism of action of a nanofilm spray product, which has been shown to possess unusual toxic effects, including an extremely steep concentration-effect curve. The nanofilm product is intended for application on non-absorbing flooring materials and contains perfluorosiloxane as the active film-forming component. The toxicological effects and their underlying mechanisms of this product were studied using a mouse inhalation model, by in vitro techniques and by identification of the binding interaction. Inhalation of the aerosolized product gave rise to increased airway resistance in the mice, as evident from the decreased expiratory flow rate. The toxic effect of the waterproofing spray product included interaction with the pulmonary surfactants. More specifically, the active film-forming components in the spray product, perfluorinated siloxanes, inhibited the function of the lung surfactant due to non-covalent interaction with surfactant protein B, a component which is crucial for the stability and persistence of the lung surfactant film during respiration. The active film-forming component used in the present spray product is also found in several other products on the market. Hence, it may be expected that these products may have a toxicity similar to the waterproofing product studied here. Elucidation of the toxicological mechanism and identification of toxicological targets are important to perform rational and cost-effective toxicological studies. Thus, because the pulmonary surfactant system appears to be an important toxicological target for waterproofing spray products, study of surfactant inhibition could be included in toxicological assessment of this group of consumer products. PMID:24863969

  1. Schinus terebinthifolius Leaf Extract Causes Midgut Damage, Interfering with Survival and Development of Aedes aegypti Larvae

    PubMed Central

    Procópio, Thamara Figueiredo; Fernandes, Kenner Morais; Pontual, Emmanuel Viana; Ximenes, Rafael Matos; de Oliveira, Aline Rafaella Cardoso; Souza, Carolina de Santana; Melo, Ana Maria Mendonça de Albuquerque; Navarro, Daniela Maria do Amaral Ferraz; Paiva, Patrícia Maria Guedes; Martins, Gustavo Ferreira; Napoleão, Thiago Henrique

    2015-01-01

    In this study, a leaf extract from Schinus terebinthifolius was evaluated for effects on survival, development, and midgut of A. aegypti fourth instar larvae (L4), as well as for toxic effect on Artemia salina. Leaf extract was obtained using 0.15 M NaCl and evaluated for phytochemical composition and lectin activity. Early L4 larvae were incubated with the extract (0.3–1.35%, w/v) for 8 days, in presence or absence of food. Polymeric proanthocyanidins, hydrolysable tannins, heterosid and aglycone flavonoids, cinnamic acid derivatives, traces of steroids, and lectin activity were detected in the extract, which killed the larvae at an LC50 of 0.62% (unfed larvae) and 1.03% (fed larvae). Further, the larvae incubated with the extract reacted by eliminating the gut content. No larvae reached the pupal stage in treatments at concentrations between 0.5% and 1.35%, while in the control (fed larvae), 61.7% of individuals emerged as adults. The extract (1.0%) promoted intense disorganization of larval midgut epithelium, including deformation and hypertrophy of cells, disruption of microvilli, and vacuolization of cytoplasms, affecting digestive, enteroendocrine, regenerative, and proliferating cells. In addition, cells with fragmented DNA were observed. Separation of extract components by solid phase extraction revealed that cinnamic acid derivatives and flavonoids are involved in larvicidal effect of the extract, being the first most efficient in a short time after larvae treatment. The lectin present in the extract was isolated, but did not show deleterious effects on larvae. The extract and cinnamic acid derivatives were toxic to A. salina nauplii, while the flavonoids showed low toxicity. S. terebinthifolius leaf extract caused damage to the midgut of A. aegypti larvae, interfering with survival and development. The larvicidal effect of the extract can be attributed to cinnamic acid derivatives and flavonoids. The data obtained using A. salina indicates that caution should be used when employing this extract as a larvicidal agent. PMID:25974067

  2. Endotoxin-induced lung alveolar cell injury causes brain cell damage.

    PubMed

    Rodríguez-González, Raquel; Ramos-Nuez, Ángela; Martín-Barrasa, José Luis; López-Aguilar, Josefina; Baluja, Aurora; Álvarez, Julián; Rocco, Patricia R M; Pelosi, Paolo; Villar, Jesús

    2015-01-01

    Sepsis is the most common cause of acute respiratory distress syndrome, a severe lung inflammatory disorder with an elevated morbidity and mortality. Sepsis and acute respiratory distress syndrome involve the release of inflammatory mediators to the systemic circulation, propagating the cellular and molecular response and affecting distal organs, including the brain. Since it has been reported that sepsis and acute respiratory distress syndrome contribute to brain dysfunction, we investigated the brain-lung crosstalk using a combined experimental in vitro airway epithelial and brain cell injury model. Conditioned medium collected from an in vitro lipopolysaccharide-induced airway epithelial cell injury model using human A549 alveolar cells was subsequently added at increasing concentrations (no conditioned, 2%, 5%, 10%, 15%, 25%, and 50%) to a rat mixed brain cell culture containing both astrocytes and neurons. Samples from culture media and cells from mixed brain cultures were collected before treatment, and at 6 and 24 h for analysis. Conditioned medium at 15% significantly increased apoptosis in brain cell cultures 24 h after treatment, whereas 25% and 50% significantly increased both necrosis and apoptosis. Levels of brain damage markers S100 calcium binding protein B and neuron-specific enolase, interleukin-6, macrophage inflammatory protein-2, as well as matrix metalloproteinase-9 increased significantly after treating brain cells with ≥2% conditioned medium. Our findings demonstrated that human epithelial pulmonary cells stimulated with bacterial lipopolysaccharide release inflammatory mediators that are able to induce a translational clinically relevant and harmful response in brain cells. These results support a brain-lung crosstalk during sepsis and sepsis-induced acute respiratory distress syndrome. PMID:25135986

  3. Repeated renal infarction in native and transplanted kidneys due to left ventricular thrombus formation caused by antiphospholipid antibody syndrome

    PubMed Central

    Scully, Paul; Leckstroem, Daniel C; McGrath, Andrew; Chambers, John; Goldsmith, David J

    2013-01-01

    Antiphospholipid syndrome can be a feature of several underlying conditions, such as lupus, but it can also occur idiopathically. Diagnosis usually comes after investigation of recurrent venous or arterial thromboses, emboli, or hypertension/proteinuria where the kidney is involved and is usually confirmed by laboratory testing. We describe a case of a man with a myocardial infarction who developed mural thrombus in an akinetic left ventricular segment but then who recurrently embolized first to one of his native kidneys and then later to a transplanted kidney. Although the clinical behavior was typical of antiphospholipid syndrome, it took numerous laboratory assays over many years until finally the problem was confirmed and life-long warfarin therapy instituted. PMID:23750104

  4. Semi-auto assessment system on building damage caused by landslide disaster with high-resolution satellite and aerial images

    NASA Astrophysics Data System (ADS)

    Sun, Bo; Xu, Qihua; He, Jun; Ge, Fengxiang; Wang, Ying

    2015-10-01

    In recent years, earthquake and heavy rain have triggered more and more landslides, which have caused serious economic losses. The timely detection of the disaster area and the assessment of the hazard are necessary and primary for disaster mitigation and relief. As high-resolution satellite and aerial images have been widely used in the field of environmental monitoring and disaster management, the damage assessment by processing satellite and aerial images has become a hot spot of research work. The rapid assessment of building damage caused by landslides with high-resolution satellite or aerial images is the focus of this article. In this paper, after analyzing the morphological characteristics of the landslide disaster, we proposed a set of criteria for rating building damage, and designed a semi-automatic evaluation system. The system is applied to the satellite and aerial images processing. The performance of the experiments demonstrated the effectiveness of our system.

  5. Further development of FLEMOps for the modelling of damage to residential buildings caused by high groundwater levels

    NASA Astrophysics Data System (ADS)

    Kreibich, H.; Meyer, S.; Diekkrüger, B.

    2012-04-01

    Flood mitigation measures at the surface cause an increasing importance of losses due to high groundwater levels. Although problems are severe, losses caused by high groundwater levels are often neglected in loss assessment studies. However, reliable damage models are required to evaluate the cost-effectiveness of mitigation measures and to support a comprehensive risk management. Therefore, the "Flood Loss Estimation Model for the private sector" FLEMOps was further developed for modelling damage due to high groundwater levels. FLEMOps is empirically based and considers several damage influencing factors. In addition to water depth, information on the quality and type of building as well as the level of precaution and contamination are taken into account. After performing a sensitivity analysis, FLEMOps for groundwater flooding was successfully validated at the micro- and meso-scale by simulating the 2002 flood in the city of Dresden, Germany.

  6. Nondestructive quantification of internal damage in rough rice caused by insects and fungus

    NASA Astrophysics Data System (ADS)

    Cardarelli, Anthony J.; Tao, Yang; Bernhardt, John L.; Lee, Fleet N.

    1999-01-01

    A machine vision system was developed to inspect and estimate the internal damage of rough rice. A modified dark field illumination technique was use to direct light through the rice kernels without saturating the CCD camera. Under modified dark field illumination, the good portions of the rice kernels appeared translucent, while the damaged portions appeared opaque as well as some portions of the hull and the germ of the kernel. A combination of thresholding and morphological operators were used to segment the dark areas and to approximate the actual damaged area. The rice was visually separated into categories of undamaged, spot dammed, and damaged by trained entomologist and plant pathologists. The machine vision system was 91.5 percent successful overall for correctly categorizing a test sample of rice kernels.

  7. DNA damage in the kidney tissue cells of the fish Rhamdia quelen after trophic contamination with aluminum sulfate

    PubMed Central

    Klingelfus, Tatiane; da Costa, Paula Moiana; Scherer, Marcos; Cestari, Marta Margarete

    2015-01-01

    Abstract Even though aluminum is the third most common element present in the earth's crust, information regarding its toxicity remains scarce. It is known that in certain cases, aluminum is neurotoxic, but its effect in other tissues is unknown. The aim of this work was to analyze the genotoxic potential of aluminum sulfate in kidney tissue of the fish Rhamdia quelen after trophic contamination for 60 days. Sixty four fish were subdivided into the following groups: negative control, 5 mg, 50 mg and 500 mg of aluminum sulfate per kg of fish. Samples of the posterior kidney were taken and prepared to obtain mitotic metaphase, as well as the comet assay. The three types of chromosomal abnormalities (CA) found were categorized as chromatid breaks, decondensation of telomeric region, and early separation of sister chromatids. The tests for CA showed that the 5 mg/kg and 50 mg/kg doses of aluminum sulfate had genotoxic potential. Under these treatments, early separation of the sister chromatids was observed more frequently and decondensation of the telomeric region tended to increase in frequency. We suggest that structural changes in the proteins involved in DNA compaction may have led to the decondensation of the telomeric region, making the DNA susceptible to breaks. Moreover, early separation of the sister chromatids may have occurred due to changes in the mobility of chromosomes or proteins that keep the sister chromatids together. The comet assay confirmed the genotoxicity of aluminum sulfate in the kidney tissue of Rhamdia quelen at the three doses of exposure. PMID:26692157

  8. Pathways of load-induced cartilage damage causing cartilage degeneration in the knee after meniscectomy.

    PubMed

    Wilson, W; van Rietbergen, B; van Donkelaar, C C; Huiskes, R

    2003-06-01

    Results of both clinical and animal studies show that meniscectomy often leads to osteoarthritic degenerative changes in articular cartilage. It is generally assumed that this process of cartilage degeneration is due to changes in mechanical loading after meniscectomy. It is, however, not known why and where this cartilage degeneration starts. Load induced cartilage damage is characterized as either type (1)--damage without disruption of the underlying bone or calcified cartilage layer--or type (2), subchondral fracture with or without damage to the overlying cartilage. We asked the question whether cartilage degeneration after meniscectomy is likely to be initiated by type (1) and/or type (2) cartilage damage. To investigate that we applied an axisymmetric biphasic finite element analysis model of the knee joint. In this model the articular cartilage layers of the tibial and the femoral condyles, the meniscus and the bone underlying the articular cartilage of the tibia plateau were included. The model was validated with data from clinical studies, in which the effects of meniscectomy on contact areas and pressures were measured. It was found that both the maximal values and the distributions of the shear stress in the articular cartilage changed after meniscectomy, and that these changes could lead to both type (1) and type (2) cartilage damage. Hence it likely that the cartilage degeneration seen after meniscectomy is initiated by both type (1) and type (2) cartilage damage. PMID:12742452

  9. An introduction to alcohol-induced brain damage and its causes.

    PubMed

    Harper, C; Kril, J

    1994-01-01

    The aim of the symposium on alcohol-induced brain damage is to review current opinion and recent advances concerning factors which are thought to play a significant role in this disorder. The three principal factors are: alcohol specific neurotoxicity, associated vitamin B1 (thiamine) deficiency (the Wernicke-Korsakoff syndrome) and liver failure secondary to alcoholic cirrhosis. There is a complex interaction of these and other factors and it is difficult to dissect out the relative importance of each in the pathogenesis of alcohol-related brain damage. Moreover recent molecular and biochemical studies suggest that several of these factors may have pathogenetic mechanisms in common-for example, excitotoxicity, mitric oxide and free radicals. The application of new technologies in neuropathological studies of carefully selected groups of alcoholic cases is beginning to reveal a far more complex pattern of damage than current view holds. Quantitative morphometry and immunohistochemistry can be combined to create three dimensional images of various anatomical regions of the brain together with detailed analyses of neuronal counts, sizes and neurochemical type. In the Wernicke-Korsakoff syndrome (WKS) there is good evidence (in support of neuropsychological and neuroradiological data) to suggest that specific populations of neurons are damaged in cortical and subcortical regions. In those cases with the WKS there is also evidence of pathological damage in cortical and subcortical regions other than the well described periventricular distributions. These more detailed studies provide us with a more comprehensive understanding of alcohol-related brain damage. PMID:8974342

  10. Could humic acid relieve the biochemical toxicities and DNA damage caused by nickel and deltamethrin in earthworms (Eisenia foetida)?

    PubMed

    Shen, Chen-Chao; Shen, Dong-Sheng; Shentu, Jia-Li; Wang, Mei-Zhen; Wan, Ming-Yang

    2015-12-01

    The aim of the study was to determine whether humic acid (HA) prevented gene and biochemical toxic effects in earthworms (Eisenia foetida) exposed to nickel and deltamethrin (at 100 and 1 mg kg(-1), respectively) in soil. Cellular- and molecular-level toxic effects of nickel and deltamethrin in earthworms were evaluated by measuring damage to lipid membranes and DNA and the production of protein carbonyls over 42 days of exposure. Nickel and deltamethrin induced significant levels of oxidative stress in earthworms, increasing the production of peroxidation products (malondialdehyde and protein carbonyls) and increasing the comet assay tail DNA% (determined by single-cell gel electrophoresis). DNA damage was the most sensitive of the three indices because it gave a higher sample/control ratio than did the other indices. The presence of HA alleviated (in decreasing order of effectiveness) damage to DNA, proteins, and lipid membranes caused by nickel and deltamethrin. A low HA dose (0.5-1% HA in soil) prevented a great deal of lipid membrane damage, but the highest HA dose (3% HA in soil) prevented still more DNA damage. However, the malondialdehyde concentrations in earthworms were higher at the highest HA dose than at the lower HA doses. The amounts of protein carbonyls produced at different HA doses were not significantly different. The toxic effects to earthworms caused by increased oxidizable nickel concentrations could be relieved by adding HA. PMID:26511644

  11. Preactivation of AMPK by metformin may ameliorate the epithelial cell damage caused by renal ischemia.

    PubMed

    Seo-Mayer, Patricia W; Thulin, Gunilla; Zhang, Li; Alves, Daiane S; Ardito, Thomas; Kashgarian, Michael; Caplan, Michael J

    2011-12-01

    Alterations in epithelial cell polarity and in the subcellular distributions of epithelial ion transport proteins are key molecular consequences of acute kidney injury and intracellular energy depletion. AMP-activated protein kinase (AMPK), a cellular energy sensor, is rapidly activated in response to renal ischemia, and we demonstrate that its activity is upregulated by energy depletion in Madin-Darby canine kidney (MDCK) cells. We hypothesized that AMPK activity may influence the maintenance or recovery of epithelial cell organization in mammalian renal epithelial cells subjected to energy depletion. MDCK cells were ATP depleted through a 1-h incubation with antimycin A and 2-deoxyglucose. Immunofluoresence localization demonstrated that this regimen induces mislocalization of the Na-K-ATPase from its normal residence at the basolateral plasma membrane to intracellular vesicular compartments. When cells were pretreated with the AMPK activator metformin before energy depletion, basolateral localization of Na-K-ATPase was preserved. In MDCK cells in which AMPK expression was stably knocked down with short hairpin RNA, preactivation of AMPK with metformin did not prevent Na-K-ATPase redistribution in response to energy depletion. In vivo studies demonstrate that metformin activated renal AMPK and that treatment with metformin before renal ischemia preserved cellular integrity, preserved Na-K-ATPase localization, and led to reduced levels of neutrophil gelatinase-associated lipocalin, a biomarker of tubular injury. Thus AMPK may play a role in preserving the functional integrity of epithelial plasma membrane domains in the face of energy depletion. Furthermore, pretreatment with an AMPK activator before ischemia may attenuate the severity of renal tubular injury in the context of acute kidney injury. PMID:21849490

  12. Fingolimod protects against neonatal white matter damage and long-term cognitive deficits caused by hyperoxia.

    PubMed

    Serdar, Meray; Herz, Josephine; Kempe, Karina; Lumpe, Katharina; Reinboth, Barbara S; Sizonenko, Stéphane V; Hou, Xinlin; Herrmann, Ralf; Hadamitzky, Martin; Heumann, Rolf; Hansen, Wiebke; Sifringer, Marco; van de Looij, Yohan; Felderhoff-Müser, Ursula; Bendix, Ivo

    2016-02-01

    Cerebral white matter injury is a leading cause of adverse neurodevelopmental outcome in prematurely born infants involving cognitive deficits in later life. Despite increasing knowledge about the pathophysiology of perinatal brain injury, therapeutic options are limited. In the adult demyelinating disease multiple sclerosis the sphingosine-1-phosphate (S1P) receptor modulating substance fingolimod (FTY720) has beneficial effects. Herein, we evaluated the neuroprotective potential of FTY720 in a neonatal model of oxygen-toxicity, which is associated with hypomyelination and impaired neuro-cognitive outcome. A single dose of FTY720 (1mg/kg) at the onset of neonatal hyperoxia (24h 80% oxygen on postnatal day 6) resulted in improvement of neuro-cognitive development persisting into adulthood. This was associated with reduced microstructural white matter abnormalities 4 months after the insult. In search of the underlying mechanisms potential non-classical (i.e. lymphocyte-independent) pathways were analysed shortly after the insult, comprising modulation of oxidative stress and local inflammatory responses as well as myelination, oligodendrocyte degeneration and maturation. Treatment with FTY720 reduced hyperoxia-induced oxidative stress, microglia activation and associated pro-inflammatory cytokine expression. In vivo and in vitro analyses further revealed that oxygen-induced hypomyelination is restored to control levels, which was accompanied by reduced oligodendrocyte degeneration and enhanced maturation. Furthermore, hyperoxia-induced elevation of S1P receptor 1 (S1P1) protein expression on in vitro cultured oligodendrocyte precursor cells was reduced by activated FTY720 and protection from degeneration is abrogated after selective S1P1 blockade. Finally, FTY720s' classical mode of action (i.e. retention of immune cells within peripheral lymphoid organs) was analysed demonstrating that FTY720 diminished circulating lymphocyte counts independent from hyperoxia. Cerebral immune cell counts remained unchanged by hyperoxia and by FTY720 treatment. Taken together, these results suggest that beneficial effects of FTY720 in neonatal oxygen-induced brain injury may be rather attributed to its anti-oxidative and anti-inflammatory capacity acting in concert with a direct protection of developing oligodendrocytes than to a modulation of peripheral lymphocyte trafficking. Thus, FTY720 might be a potential new therapeutic option for the treatment of neonatal brain injury through reduction of white matter damage. PMID:26456693

  13. Assessment of the deoxyribonucleic acid damage caused by occupational exposure to chemical compounds in Isfahan Polyacryl Company

    PubMed Central

    Etebari, Mahmoud; Jafarian-Dehkordi, Abbas; Kahookar, Ahmad; Moradi, Shahla

    2014-01-01

    Background: Chemical pollutants found in industrial environments can cause chronic genotoxicity in vulnerable individuals during the long-term exposure. The primary purpose of the present study was to assess the deoxyribonucleic acid (DNA) damage caused by occupational exposure to industrial chemicals and secondary purpose is to investigate the effect of possible risk factors of genotoxicity. Materials and Methods: The blood samples of the workers of Isfahan Polyacryl Company were evaluated in terms of genotoxicity using the comet assay method. The percentage of DNA in the tail and tail moment were measured and DNA damage was evaluated. Furthermore, the effect of age, smoking, duration of working in the company and working in two parts of the company on the degree of vulnerability to genotoxicity was assessed. Results: The amount of DNA damage in the target group (the production line workers) was significantly higher than the control group (the staffs), 3.87 versus 1.52 as tail moment, (P < 0.0001). DNA damage was significantly higher in smoker groups compared with non-smoker target group and control group, 4.18 versus 3.07 and 1.52 respectively as tail moment, (P < 0.0001). Furthermore, it was higher in person working in two different parts of the company compared to those work in one part and control group, 4.63 versus 3.74 and 1.52 respectively as tail moment, (P < 0.0001). Conclusion: Occupational exposure to Polyacryl caused DNA damage. Smoking and working in two parts of the company may have a significant role in DNA damage. PMID:25197297

  14. Toward resolving an earthquake ground motion mystery in west Seattle, Washington State: Shallow seismic focusing may cause anomalous chimney damage

    NASA Astrophysics Data System (ADS)

    Stephenson, William J.; Frankel, Arthur D.; Odum, Jack K.; Williams, Robert A.; Pratt, Thomas L.

    2006-03-01

    A shallow bedrock fold imaged by a 1.3-km long high-resolution shear-wave seismic reflection profile in west Seattle focuses seismic waves arriving from the south. This focusing may cause a pocket of amplified ground shaking and the anomalous chimney damage observed in earthquakes of 1949, 1965 and 2001. The 200-m bedrock fold at ~300-m depth is caused by deformation across an inferred fault within the Seattle fault zone. Ground motion simulations, using the imaged geologic structure and northward-propagating north-dipping plane wave sources, predict a peak horizontal acceleration pattern that matches that observed in strong motion records of the 2001 Nisqually event. Additionally, a pocket of chimney damage reported for both the 1965 and the 2001 earthquakes generally coincides with a zone of simulated amplification caused by focusing. This study further demonstrates the significant impact shallow (<1km) crustal structures can have on earthquake ground-motion variability.

  15. Toward resolving an earthquake ground motion mystery in west Seattle, Washington State: Shallow seismic focusing may cause anomalous chimney damage

    USGS Publications Warehouse

    Stephenson, W.J.; Frankel, A.D.; Odum, J.K.; Williams, R.A.; Pratt, T.L.

    2006-01-01

    A shallow bedrock fold imaged by a 1.3-km long high-resolution shear-wave seismic reflection profile in west Seattle focuses seismic waves arriving from the south. This focusing may cause a pocket of amplified ground shaking and the anomalous chimney damage observed in earthquakes of 1949, 1965 and 2001. The 200-m bedrock fold at ???300-m depth is caused by deformation across an inferred fault within the Seattle fault zone. Ground motion simulations, using the imaged geologic structure and northward-propagating north-dipping plane wave sources, predict a peak horizontal acceleration pattern that matches that observed in strong motion records of the 2001 Nisqually event. Additionally, a pocket of chimney damage reported for both the 1965 and the 2001 earthquakes generally coincides with a zone of simulated amplification caused by focusing. This study further demonstrates the significant impact shallow (<1km) crustal structures can have on earthquake ground-motion variability.

  16. Human kidney damage in fatal dengue hemorrhagic fever results of glomeruli injury mainly induced by IL17.

    PubMed

    Pagliari, Carla; Simões Quaresma, Juarez Antônio; Kanashiro-Galo, Luciane; de Carvalho, Leda Viegas; Vitoria, Webster Oliveira; da Silva, Wellington Luiz Ferreira; Penny, Ricardo; Vasconcelos, Barbara Cristina Baldez; da Costa Vasconcelos, Pedro Fernando; Duarte, Maria Irma Seixas

    2016-02-01

    Acute kidney injury is an unusual complication during dengue infection. The objective of this study was to better identify the characteristics of glomerular changes focusing on in situ immune cells and cytokines. An immunohistochemical assay was performed on 20 kidney specimens from fatal human cases of dengue hemorrhagic fever (DHF). It was observed a lymphomononuclear infiltrate, neutrophils and nuclear fragmentation in the glomeruli, hydropic degeneration, nuclear retraction, eosinophilic tubules and intense acute congestion. Sickle erythrocytes were frequent in glomeruli and inflammatory infiltrate. The glomeruli presented endothelial swelling and mesangial proliferation. Lymphocytes CD4+ predominated over CD8+ T cells, B cells and natural killer cells. There were also an expressive number of macrophagic CD68+ cells. S100, Foxp3 and CD123 cells were not identified. Cells expressing IL17 and IL18+ cytokines predominated in the renal tissues, while IL4, IL6, IL10, IL13, TNF-alpha and IFN-gamma were rarely visualized. The high number of cells expressing IL17 and IL18+ could reflect the acute inflammatory response and possibly contribute to the local lesion. CD8+ T cells could play a role in the cytotoxic response. DHF is a multifactorial disease of capillary leakage associated with a "Tsunami of cytokines expression". The large numbers of cells expressing IL17 seems to play a role favoring the increased permeability. PMID:26741825

  17. Genotoxicity of freshwater ecosystem shows DNA damage in preponderant fish as validated by in vivo micronucleus induction in gill and kidney erythrocytes.

    PubMed

    Obiakor, M O; Okonkwo, J C; Ezeonyejiaku, C D

    2014-12-01

    Genotoxicity of Anambra River was studied by micronucleus (MN) assay of preponderant fish species in the river. The micronucleus indices obtained were used as biomarker to estimate and predict pollution profile and possible danger of feeding on the aquatic species. Micronuclei profile of the fish was measured from gill and kidney erythrocytes using microscopic technique. Season, species and location effects on micronuclei, together with their interactions were also determined. Two major seasons (rainy and dry) and preponderant fish species in the river (Synodontis clarias, Linnaeus, 1758 and Tilapia nilotica, Linnaeus, 1757) were studied at five distinct locations that displayed differential environmental stresses. The study showed that the micronucleus index of fish is an excellent biomarker for measuring pollution level and genotoxicity of freshwater habitat. Season, species of fish and location affect micronuclei profile of the fish species sampled in the river. Disease outbreak among rural dwellers depending on the river for domestic and other uses is imminent and they lack knowledge on its health implication. Moreover, the study maintained that the micronuclei in fish could be measured from either the gill or kidney; however, gill is more efficient as it enables collection of several samples from the same individuals without sacrificing it, and Synodontis clarias fish species appeared to be more vulnerable to the genotoxic damage than Tilapia nilotica. Consequently, the study recommended regular monitoring (micronucleus tests) of edible aquatic life such as Synodontis clarias in order to eliminate the danger of people feeding on toxic metals, some of which are carcinogenic. PMID:25435352

  18. Lipid Peroxidative Damage on Cisplatin Exposure and Alterations in Antioxidant Defense System in Rat Kidneys: A Possible Protective Effect of Selenium

    PubMed Central

    Ognjanović, Branka I.; Djordjević, Nataša Z.; Matić, Miloš M.; Obradović, Jasmina M.; Mladenović, Jelena M.; Štajn, Andraš Š.; Saičić, Zorica S.

    2012-01-01

    Cisplatin (Cis-diamminedichloroplatinum II, CP) is an important chemotherapeutic agent, useful in the treatment of several cancers, but with several side effects such as nephrotoxicity. The present study investigated the possible protective effect of selenium (Se) against CP-induced oxidative stress in the rat kidneys. Male Wistar albino rats were injected with a single dose of cisplatin (7 mg CP/kg b.m., i.p.) and selenium (6 mg Se/kg b.m, as Na2SeO3, i.p.), alone or in combination. The obtained results showed that CP increased lipid peroxidation (LPO) and decreased reduced glutathione (GSH) concentrations, suggesting the CP-induced oxidative stress, while Se treatment reversed this change to control values. Acute intoxication of rats with CP was followed by statistically significant decreased activity of antioxidant defense enzymes: superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GR) and glutathione-S-transferase (GST). Treatment with Se reversed CP-induced alterations of antioxidant defense enzyme activities and significantly prevented the CP-induced kidney damage. PMID:22408424

  19. Evaluation of the surface damage to stainless steel caused by a micro-jet in seawater

    NASA Astrophysics Data System (ADS)

    Chong, Sang-Ok; Kim, Seong-Jong; Jeong, Jae-Yong

    2016-01-01

    As high-speed machines have been developed in marine and offshore industry cavitation damage due to the high speed of rotation of a fluid has been gradually increasing. The damage on the material's surface is a combination of electrochemical corrosion due to the passivity of the films being destroyed by Cl- and cavitation erosion due to the collapse of cavity bubbles. Hence, in this paper, the damage mechanisms for electrochemical corrosion and physical pressure for 415 stainless-steel cavities were evaluated in seawater solutions. The experiments included a galvanostatic experiment in a cavitation environment and a cavitation test with an ultrasonic amplitude of 30 µm at various times. The complex damage behaviors were compared and analyzed by scanning electron microscope (SEM) and 3D microscopy after completion of the experiment. As a result of the galvanostatic experiment under a cavitation condition in seawater, damage under a cavitation condition owing to the water cavitation peening effect was relatively less compared to that under a static condition.

  20. Low doses of ionizing radiation to mammalian cells may rather control than cause DNA damage

    SciTech Connect

    Feinendegen, L.E.; Bond, V.P.; Sondhaus, C.A.; Altman, K.I.

    1998-12-31

    This report examines the origin of tissue effects that may follow from different cellular responses to low-dose irradiation, using published data. Two principal categories of cellular responses are considered. One response category relates to the probability of radiation-induced DNA damage. The other category consists of low-dose induced metabolic changes that induce mechanisms of DNA damage mitigation, which do not operate at high levels of exposure. Modeled in this way, tissue is treated as a complex adaptive system. The interaction of the various cellular responses results in a net tissue dose-effect relation that is likely to deviate from linearity in the low-dose region. This suggests that the LNT hypothesis should be reexamined. This paper aims at demonstrating tissue effects as an expression of cellular responses, both damaging and defensive, in relation to the energy deposited in cell mass, by use of microdosimetric concepts.

  1. Measurement of lattice damage caused by ion-implantation doping of semiconductors.

    NASA Technical Reports Server (NTRS)

    Hunsperger, R. G.; Wolf, E. D.; Shifrin, G. A.; Marsh, O. J.; Jamba, D. M.

    1971-01-01

    Discussion of two new techniques used to measure the lattice damage produced in GaAs by the implantation of 60 keV cadmium ions. In the first method, optical reflection spectra of the ion-implanted samples were measured in the wavelength range from 2000 to 4600 A. The decrease in reflectivity resulting from ion-implantation was used to determine the relative amount of lattice damage as a function of ion dose. The second technique employed the scanning electron microscope. Patterns very similar in appearance to Kikuchi electron diffraction patterns are obtained when the secondary and/or backscattered electron intensity is displayed as a function of the angle of incidence of the electron beam on a single crystal surface. The results of measurements made by both methods are compared with each other and with data obtained by the method of measuring lattice damage by Rutherford scattering of 1 MeV helium ions.

  2. Kidney Size Comparison of BEN Victims

    Normal size kidney (left) and a Balkan endemic nephropathy (BEN) kidney (right). The BEN kidney is reduced by one third compared to a normal kidney. The collapse of the kidney structure in the BEN kidney causes the organ to cease to function, resulting in uremia (blood poisoning) and requiring dialy...

  3. [Structural mechanisms and mathematical modeling of the bone tissue damage caused by hyper-speed impact].

    PubMed

    Ishchenko, A N; Belov, N N; Gaĭdash, A A; Iugov, N T; Bashirov, R S; Afanas'eva, S A; Sinitsa, L N

    2011-03-01

    Method of computer modeling of behavior of cylindrical and lamellar bones under the hypervelocity impact is suggested. This method allows in the frame of mechanics of continuous medium to calculate the stress strain behavior and damage in bone tissues under the shock wave impact. The processes of shock correlation of steel fragments of different shape with diaphysis of cylindrical bones and flat bone of calvaria under the impact 500 m/s are studied. The given method can be used for the evaluation of damage area of bone tissue of shock wave osteoporosis under the gunshot wound. PMID:21770310

  4. A disease-causing mutation illuminates the protein membrane topology of the kidney-expressed prohibitin homology (PHB) domain protein podocin.

    PubMed

    Schurek, Eva-Maria; Völker, Linus A; Tax, Judit; Lamkemeyer, Tobias; Rinschen, Markus M; Ungrue, Denise; Kratz, John E; Sirianant, Lalida; Kunzelmann, Karl; Chalfie, Martin; Schermer, Bernhard; Benzing, Thomas; Höhne, Martin

    2014-04-18

    Mutations in the NPHS2 gene are a major cause of steroid-resistant nephrotic syndrome, a severe human kidney disorder. The NPHS2 gene product podocin is a key component of the slit diaphragm cell junction at the kidney filtration barrier and part of a multiprotein-lipid supercomplex. A similar complex with the podocin ortholog MEC-2 is required for touch sensation in Caenorhabditis elegans. Although podocin and MEC-2 are membrane-associated proteins with a predicted hairpin-like structure and amino and carboxyl termini facing the cytoplasm, this membrane topology has not been convincingly confirmed. One particular mutation that causes kidney disease in humans (podocin(P118L)) has also been identified in C. elegans in genetic screens for touch insensitivity (MEC-2(P134S)). Here we show that both mutant proteins, in contrast to the wild-type variants, are N-glycosylated because of the fact that the mutant C termini project extracellularly. Podocin(P118L) and MEC-2(P134S) did not fractionate in detergent-resistant membrane domains. Moreover, mutant podocin failed to activate the ion channel TRPC6, which is part of the multiprotein-lipid supercomplex, indicative of the fact that cholesterol recruitment to the ion channels, an intrinsic function of both proteins, requires C termini facing the cytoplasmic leaflet of the plasma membrane. Taken together, this study demonstrates that the carboxyl terminus of podocin/MEC-2 has to be placed at the inner leaflet of the plasma membrane to mediate cholesterol binding and contribute to ion channel activity, a prerequisite for mechanosensation and the integrity of the kidney filtration barrier. PMID:24596097

  5. Thrombotic Microangiopathy as a Cause of Chronic Kidney Transplant Dysfunction: Case Report Demonstrating Successful Treatment with Eculizumab.

    PubMed

    Iqbal, Z; Wood, K; Carter, V; Goodship, T H; Brown, A L; Sheerin, N S

    2015-09-01

    Atypical hemolytic uremic syndrome is a rare disease associated with genetic or acquired defects in complement regulation which frequently leads to renal failure. Disease often recurs early after kidney transplantation, leading to a rapid irreversible loss of function. Extrarenal features, such as hemolysis and thrombocytopenia, may not always occur, and diagnosis is made by demonstrating the classic features of thrombotic microangiopathy on renal biopsy. Eculizumab, a terminal complement inhibitor, has been used successfully to treat fulminant early recurrent disease after transplantation. We describe a case of disease recurrence presenting in the second year after transplantation with a gradual decline in function and the first report of eculizumab treatment for chronic thrombotic microangiopathy in a transplanted kidney. The resultant diagnostic challenges and successful response to eculizumab in this setting are discussed. PMID:26361694

  6. Gill Damage to Atlantic Salmon (Salmo salar) Caused by the Common Jellyfish (Aurelia aurita) under Experimental Challenge

    PubMed Central

    Baxter, Emily J.; Sturt, Michael M.; Ruane, Neil M.; Doyle, Thomas K.; McAllen, Rob; Harman, Luke; Rodger, Hamish D.

    2011-01-01

    Background Over recent decades jellyfish have caused fish kill events and recurrent gill problems in marine-farmed salmonids. Common jellyfish (Aurelia spp.) are among the most cosmopolitan jellyfish species in the oceans, with populations increasing in many coastal areas. The negative interaction between jellyfish and fish in aquaculture remains a poorly studied area of science. Thus, a recent fish mortality event in Ireland, involving Aurelia aurita, spurred an investigation into the effects of this jellyfish on marine-farmed salmon. Methodology/Principal Findings To address the in vivo impact of the common jellyfish (A. aurita) on salmonids, we exposed Atlantic salmon (Salmo salar) smolts to macerated A. aurita for 10 hrs under experimental challenge. Gill tissues of control and experimental treatment groups were scored with a system that rated the damage between 0 and 21 using a range of primary and secondary parameters. Our results revealed that A. aurita rapidly and extensively damaged the gills of S. salar, with the pathogenesis of the disorder progressing even after the jellyfish were removed. After only 2 hrs of exposure, significant multi-focal damage to gill tissues was apparent. The nature and extent of the damage increased up to 48 hrs from the start of the challenge. Although the gills remained extensively damaged at 3 wks from the start of the challenge trial, shortening of the gill lamellae and organisation of the cells indicated an attempt to repair the damage suffered. Conclusions Our findings clearly demonstrate that A. aurita can cause severe gill problems in marine-farmed fish. With aquaculture predicted to expand worldwide and evidence suggesting that jellyfish populations are increasing in some areas, this threat to aquaculture is of rising concern as significant losses due to jellyfish could be expected to increase in the future. PMID:21490977

  7. Remote sensing analysis of the distribution and genetic mechanisms of transportation network damage caused by the Wenchuan earthquake

    NASA Astrophysics Data System (ADS)

    Huang, Xiaoxia; Wei, Chenjie; Li, Hongga

    2009-05-01

    Transportation networks are among the most important lifelines for post-seismic relief and reconstruction. It is imperative to investigate, monitor, and analyze transportation network damage caused by earthquake disasters in near real-time. Herein, we present a method for the analysis of seismic hazards and the subsequent assessment of the impact of the Wenchuan earthquake on transportation networks employing remote sensing and geographical information systems. In this method, the locations, shapes, lengths, and areas of the main damaged segments of state and provincial highways are interpreted and surveyed based on airborne ADS40 data and diverse remotely sensed satellite images of varying resolutions before and after the disaster. Next, the spatial distributions of geological disasters such as landslides, land-collapses, mud-rock flows, bank-collapses, earthquake rifts, and faults, as well as barrier lakes, were analyzed. These types of geological disasters commonly cause transportation network blockage and damage. Finally, geographical factors, including geological structures, topography, and landscapes, were collected and integrated with the disaster statistics to quantitatively analyze the primary transportation seismic disaster indices, and evaluate the geographical characteristics and genetic mechanisms of seismic disasters. Our results indicate that transportation network blockage and damage occurred in 808 segments, with a total length of 170.2 km, and occupied 29.66% of the total length of the state and provincial highways in the core disaster regions. The distribution of transportation network blockage and damage has obvious geographical characteristics. It is concentrated in regions near geological faults, folds, rock crushes, and breaks, especially near the Longmenshan-controlling fault, which played a decisive role in the Wenchuan earthquake. The remotely sensed images, maps, and analytical results on the geographical distribution and genetic mechanisms of the transportation network blockage and damage effectively guided the national department of transportation repair and reconstruction planning for the disaster areas.

  8. Satellite detection of vegetative damage and alteration caused by pollutants emitted by a zinc smelter

    NASA Technical Reports Server (NTRS)

    Mcmurtry, G. J.; Petersen, G. W. (Principal Investigator); Fritz, E. L.; Pennypacker, S. P.

    1974-01-01

    The author has identified the following significant results. Field observations and data collected by low flying aircraft were used to verify the accuracy of maps produced from the satellite data. Although areas of vegetation as small as six acres can accurately be detected, a white pine stand that was severely damaged by sulfur dioxide could not be differentiated from a healthy white pine stand because spectral differences were not large enough. When winter data were used to eliminate interference from herbaceous and deciduous vegetation, the damage was still undetectable. The analysis was able to produce a character map that accurately delineated areas of vegetative alteration due to high zinc levels accumulating in the soil. The map depicted a distinct gradient of less damage and alteration as the distance from the smelter increased. Although the satellite data will probably not be useful for detecting small acreages of damaged vegetation, it is concluded that the data may be very useful as an inventory tool to detect and delineate large vegetative areas possessing differing spectral signatures.

  9. PARP and CHK inhibitors interact to cause DNA damage and cell death in mammary carcinoma cells.

    PubMed

    Booth, Laurence; Cruickshanks, Nichola; Ridder, Thomas; Dai, Yun; Grant, Steven; Dent, Paul

    2013-05-01

    The present studies examined viability and DNA damage levels in mammary carcinoma cells following PARP1 and CHK1 inhibitor drug combination exposure. PARP1 inhibitors [AZD2281 ; ABT888 ; NU1025 ; AG014699] interacted with CHK1 inhibitors [UCN-01 ; AZD7762 ; LY2603618] to kill mammary carcinoma cells. PARP1 and CHK1 inhibitors interacted to increase both single strand and double strand DNA breaks that correlated with increased γH2AX phosphorylation. Treatment of cells with CHK1 inhibitors increased the phosphorylation of CHK1 and ERK1/2. Knock down of ATM suppressed the drug-induced increases in CHK1 and ERK1/2 phosphorylation and enhanced tumor cell killing by PARP1 and CHK1 inhibitors. Expression of dominant negative MEK1 enhanced drug-induced DNA damage whereas expression of activated MEK1 suppressed both the DNA damage response and tumor cell killing. Collectively our data demonstrate that PARP1 and CHK1 inhibitors interact to kill mammary carcinoma cells and that increased DNA damage is a surrogate marker for the response of cells to this drug combination. PMID:23917378

  10. PLASMID DNA DAMAGE CAUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN

    EPA Science Inventory

    PLASMID DNA DAMAGE CAOUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN

    ABSTRACT

    Both dimethylarsinic acid (DMA(V)) and dimethylarsinous acid (DMA(III)) release iron from human liver ferritin (HLF) with or without the presence of ascorbic acid. ...

  11. Field data analysis of asphalt road paving damages caused by tree roots

    NASA Astrophysics Data System (ADS)

    Weissteiner, Clemens; Rauch, Hans Peter

    2015-04-01

    Tree root damages are a frequent problem along paved cycling paths and service roads of rivers and streams. Damages occur mostly on streets with thin asphalt layers and especially in the upper part of the pavement structure. The maintainers of these roads are faced with frequent and high annual repair costs in order to guarantee traffic safety and pleasant cycling conditions. The focus of this research project is to get an insight in the processes governing the growth of the tree roots in asphalt layers and to develop test methods to avoid rood penetration into the road structure. Tree vegetation has been analysed selectively along a 300 km long cycle and service path of the Danube River in the region of Austria. Tree characteristics, topographic as well as hydrologic conditions have been analysed at 119 spots with different asphalt damage intensities. On 5 spots additional investigations on the root growth characteristics where performed. First results underline a high potential damage of pioneer trees which are growing naturally along rivers. Mostly, local occurring fast growing tree species penetrated the road layer structure. In a few cases other tree species where as well responsible for road structure damages. The age respectively the size of the trees didn't seem to influence significantly the occurrence of asphalt damages. Road structure damages were found to appear unaffected by hydrologic or topographic conditions. However, results have to be interpreted with care as the investigations represent a temporally limited view of the problem situation. The investigations of the root growth characteristics proved that tree roots penetrate the road structure mostly between the gravel sublayer and the asphalt layer as the layers it selves don't allow a penetration because of their high compaction. Furthermore roots appear to be attracted by condensed water at the underside of the asphalt layer. Further steps of the research project imply testing of different compositions of gravel size mixtures as sublayer material. A coarse gravel size mixture allows the condensed water to drain in deeper layers and inhibits root growth because of mechanical impedance and air pruning of roots.

  12. Genetic damage caused by methyl-parathion in mouse spermatozoa is related to oxidative stress

    SciTech Connect

    Pina-Guzman, B.; Solis-Heredia, M.J.; Rojas-Garcia, A.E.; Uriostegui-Acosta, M.; Quintanilla-Vega, B. . E-mail: mquintan@cinvestav.mx

    2006-10-15

    Organophosphorous (OP) pesticides are considered genotoxic mainly to somatic cells, but results are not conclusive. Few studies have reported OP alterations on sperm chromatin and DNA, and oxidative stress has been related to their toxicity. Sperm cells are very sensitive to oxidative damage which has been associated with reproductive dysfunctions. We evaluated the effects of methyl-parathion (Me-Pa; a widely used OP) on sperm DNA, exploring the sensitive stage(s) of spermatogenesis and the relationship with oxidative stress. Male mice (10-12-weeks old) were administered Me-Pa (3-20 mg/kg bw/i.p.) and euthanized at 7- or 28-days post-treatment. Mature spermatozoa were obtained and evaluated for chromatin structure through SCSA (Sperm Chromatin Structure Assay; DNA Fragmentation Index parameters: Mean DFI and DFI%) and chromomycin-A{sub 3} (CMA{sub 3})-staining, for DNA damage through in situ-nick translation (NT-positive) and for oxidative stress through lipid peroxidation (LPO; malondialdehyde production). At 7-days post-treatment (mature spermatozoa when Me-Pa exposure), dose-dependent alterations in chromatin structure (Mean DFI and CMA{sub 3}-staining) were observed, as well as increased DNA damage, from 2-5-fold in DFI% and NT-positive cells. Chromatin alterations and DNA damage were also observed at 28-days post-treatment (cells at meiosis at the time of exposure); suggesting that the damage induced in spermatocytes was not repaired. Positive correlations were observed between LPO and sperm DNA-related parameters. These data suggest that oxidative stress is related to Me-Pa alterations on sperm DNA integrity and cells at meiosis (28-days post-treatment) and epididymal maturation (7-days post-treatment) are Me-Pa targets. These findings suggest a potential risk of Me-Pa to the offspring after transmission.

  13. The psychosocial impact of the environmental damage caused by the MT Merapi eruption on survivors in Indonesia.

    PubMed

    Warsini, Sri; Buettner, Petra; Mills, Jane; West, Caryn; Usher, Kim

    2014-12-01

    The eruption of Indonesia's Mount Merapi volcano in 2010 caused extensive environmental degradation. Settlements and hundreds of hectares of farmlands were buried under volcanic ash. Until now, there has been no research on the psychosocial impact of living in an environment damaged by a volcanic eruption. We studied and compared the psychosocial impact of environmental damage on volcano survivors from two subdistricts-Cangkringan and Pakem. Cangkringan survivors affected by the 2010 eruption continue to live in a damaged environment. The Pakem subdistrict was damaged by eruptions of Mt Merapi in the 1990s but there is no recent damage to their environment. The Indonesian-Environmental Distress Scale (I-EDS), a translated revision of the original Environmental Distress Scale (EDS), was used to collect data. Exploratory statistical methods and multivariate linear regression analyses were performed to examine the relative contributions of demographic variables on the psychosocial impact of living in an environment damaged by volcanic eruption. A total of 348 survivors of the Mt Merapi eruption participated in the survey. The mean I-EDS score for Cangkringan district was 15.8 (SD 1.6; range 11.8-19.8) compared to 14.6 (SD 1.3; range 11.8-18.3) for Pakem district (P < 0.001). This result was confirmed by multiple linear regression analysis showing further that older respondents (P < 0.001), unemployed and retired respondents (P = 0.007), and respondents with no formal school education (P = 0.037) had lower I-EDS scores compared to the respective reference groups. Survivors of the Mt Merapi eruption who continue to live in the environment damaged by the 2010 volcanic eruption experience environmental distress. Relevant interventions should target those from low sosioeconomic groups to deal with the distress. PMID:24763946

  14. Molecular mechanisms of silk gland damage caused by phoxim exposure and protection of phoxim-induced damage by cerium chloride in Bombyx mori.

    PubMed

    Li, Bing; Sun, Qingqing; Yu, Xiaohong; Xie, Yi; Hong, Jie; Zhao, Xiaoyang; Sang, Xuezi; Shen, Weide; Hong, Fashui

    2015-09-01

    It is known that exposure to organophosphorus pesticides (OP) including phoxim can produce oxidative stress, neurotoxicity, and greatly attenuate cocooning rate in the silkworm, Bombyx mori. Cerium treatment has been demonstrated to relieve phoxim-induced toxicity in B. mori; however, very little is known about the molecular mechanisms of silk gland injury due to OP exposure and protection of gland damage due to cerium pretreatment. The aim of this study was to evaluate silk gland damage and its molecular mechanisms in phoxim-induced silkworm toxicity and the protective mechanisms of cerium following exposure to phoxim. The results showed that phoxim exposure resulted in severe gland damage, reductions in protein synthesis and the cocooning rate of silkworms. Cerium (Ce) attenuated gland damage caused by phoxim, promoted protein synthesis, increased the antioxidant capacity of the gland and increased the cocooning rate of B. mori. Furthermore, digital gene expression data suggested that phoxim exposure led to significant up-regulation of 714 genes and down-regulation of 120 genes. Of these genes, 122 were related to protein metabolism, specifically, the down-regulated Ser2, Ser3, Fib-L, P25, and CYP450. Ce pretreatment resulted in up-regulation of 162 genes, and down-regulation of 141 genes, importantly, Ser2, Ser3, Fib-L, P25, and CYP333B8 were up-regulated. Treatment with CeCl3 + phoxim resulted in higher levels of Fib-L, P25, Ser2, Ser3, CAT, TPx, and CYP333B8 expression in the silk gland of silkworms. These findings indicated that Ce increased cocooning rate via the promotion of silk protein synthesis-related gene expression in the gland under phoxim-induced toxicity. These findings may expand the application of rare earths in sericulture. PMID:24616058

  15. Early changes in scores of chronic damage on transplant kidney protocol biopsies reflect donor characteristics, but not future graft function.

    PubMed

    Caplin, Ben; Veighey, Kristin; Mahenderan, Arundathi; Manook, Miriam; Henry, Joanne; Nitsch, Dorothea; Harber, Mark; Dupont, Peter; Wheeler, David C; Jones, Gareth; Fernando, Bimbi; Howie, Alexander J; Veitch, Peter

    2013-01-01

    The amount of irreversible injury on renal allograft biopsy predicts function, but little is known about the early evolution of this damage. In a single-center cohort, we examined the relationship between donor-, recipient-, and transplantation-associated factors and change in a morphometric index of chronic damage (ICD) between protocol biopsies performed at implantation and at 2-3 months. We then investigated whether early delta ICD predicted subsequent biochemical outcomes. We found little evidence to support differences between the study group, who had undergone serial biopsies, and a contemporaneous control group, who had not. In allografts with serial biopsies (n = 162), there was an increase in ICD between implantation (median: 2%, IQR:0-8) and 2-3 months post-transplant (median 8% IQR:4-15; p < 0.0001). Donation from younger or live donors was independently associated with smaller early post-transplant increases in ICD. There was no evidence for a difference in delta ICD between donation after cardiac death vs. donation after brain death, nor association with length of cold ischemia. After adjustment for GFR at the time of the second biopsy, delta ICD after three months did not predict allograft function at one yr. These findings suggest that graft damage develops shortly after transplantation and reflects donor factors, but does not predict future biochemical outcomes. PMID:24118300

  16. Early changes in scores of chronic damage on transplant kidney protocol biopsies reflect donor characteristics, but not future graft function

    PubMed Central

    Caplin, Ben; Veighey, Kristin; Mahenderan, Arundathi; Manook, Miriam; Henry, Joanne; Nitsch, Dorothea; Harber, Mark; Dupont, Peter; Wheeler, David C; Jones, Gareth; Fernando, Bimbi; Howie, Alexander J; Veitch, Peter

    2013-01-01

    The amount of irreversible injury on renal allograft biopsy predicts function, but little is known about the early evolution of this damage. In a single-center cohort, we examined the relationship between donor-, recipient-, and transplantation-associated factors and change in a morphometric index of chronic damage (ICD) between protocol biopsies performed at implantation and at 2–3 months. We then investigated whether early delta ICD predicted subsequent biochemical outcomes. We found little evidence to support differences between the study group, who had undergone serial biopsies, and a contemporaneous control group, who had not. In allografts with serial biopsies (n = 162), there was an increase in ICD between implantation (median: 2%, IQR:0–8) and 2–3 months post-transplant (median 8% IQR:4–15; p < 0.0001). Donation from younger or live donors was independently associated with smaller early post-transplant increases in ICD. There was no evidence for a difference in delta ICD between donation after cardiac death vs. donation after brain death, nor association with length of cold ischemia. After adjustment for GFR at the time of the second biopsy, delta ICD after three months did not predict allograft function at one yr. These findings suggest that graft damage develops shortly after transplantation and reflects donor factors, but does not predict future biochemical outcomes. PMID:24118300

  17. Structure-specific DNA endonuclease Mus81/Eme1 generates DNA damage caused by Chk1 inactivation.

    PubMed

    Forment, Josep V; Blasius, Melanie; Guerini, Ilaria; Jackson, Stephen P

    2011-01-01

    The DNA-damage checkpoint kinase Chk1 is essential in higher eukaryotes due to its role in maintaining genome stability in proliferating cells. CHK1 gene deletion is embryonically lethal, and Chk1 inhibition in replicating cells causes cell-cycle defects that eventually lead to perturbed replication and replication-fork collapse, thus generating endogenous DNA damage. What is the cause of replication-fork collapse when Chk1 is inactivated, however, remains poorly understood. Here, we show that generation of DNA double-strand breaks at replication forks when Chk1 activity is compromised relies on the DNA endonuclease complex Mus81/Eme1. Importantly, we show that Mus81/Eme1-dependent DNA damage--rather than a global increase in replication-fork stalling--is the cause of incomplete replication in Chk1-deficient cells. Consequently, Mus81/Eme1 depletion alleviates the S-phase progression defects associated with Chk1 deficiency, thereby increasing cell survival. Chk1-mediated protection of replication forks from Mus81/Eme1 even under otherwise unchallenged conditions is therefore vital to prevent uncontrolled fork collapse and ensure proper S-phase progression in human cells. PMID:21858151

  18. Iatrogenic Damage to the Periodontium Caused by Endodontic Treatment Procedures: An Overview

    PubMed Central

    Bhat, Aishwarya; Sirajuddin, Syed; Prabhu, Sandeep S; Chungkham, Sachidananda; Bilichodmath, Chandrasekhar

    2015-01-01

    The tooth, the pulp tissue within it and its supporting structures should be viewed as one biologic unit. The interrelationship of these structures influences each other during health, function and disease. The interrelationship between periodontal and endodontic diseases has aroused much speculation, confusion and controversy. The endodontium and periodontiumare closely related and disease or damage of one tissue may lead to the involvement of the other. PMID:26312090

  19. Experimental demonstration of laser damage caused by interface coupling effects of substrate surface and coating layers.

    PubMed

    Chai, Yingjie; Zhu, Meiping; Yi, Kui; Zhang, Weili; Wang, Hu; Fang, Zhou; Bai, Zhengyuan; Cui, Yun; Shao, Jianda

    2015-08-15

    The laser damage resistance of the coatings for high-power laser systems depends greatly on the surface quality of the substrate. In our work, experimental approaches were employed to understand the interface coupling effect of the substrate surface and coatings on the laser resistance of the coatings. A 1064 nm anti-reflection (AR) coating was deposited by an e-beam coater onto fused silica with and without micro-scale pits (structural defects). The micro-scale pits were precisely fabricated by femtosecond laser processing to prevent the emergence of subsurface cracks. Different deposition temperatures were characterized in order to verify the intensity of the interface coupling effect of the substrate and coating layers. Our experimental results indicate that impurities that are introduced in the finishing process, shifted to the substrate surface, and aggregated during the heating process, play a much more crucial role than structural defects (length: ∼7  μm; width: ∼3  μm; depth: ∼0.8  μm) in the laser-induced damage process. By effectively reducing the intensity of the interface coupling effect, the e-beam AR coatings, whose laser-induced damage resistance was closed to the bare substrate, was prepared. PMID:26274646

  20. Kidney Cysts

    MedlinePlus

    ... fluid-filled sac. There are two types of kidney cysts. Polycystic kidney disease (PKD) runs in families. In PKD, the ... place of the normal tissue. They enlarge the kidneys and make them work poorly, leading to kidney ...

  1. Kidney Transplant

    MedlinePlus

    ... Rate Your Risk Quiz Featured Story African Americans & Kidney Disease Did you know that African Americans are ... checks Your Kidneys and You Meetings Featured Story Kidney Walk The Kidney Walk is the nation's largest ...

  2. Kidney Biopsy

    MedlinePlus

    ... More Information American Kidney Fund National Kidney Foundation Kidney and Urologic Disease Organizations Many organizations provide support ... Disease Organizations​​ . (PDF, 345 KB) Alternate Language URL Kidney Biopsy Page Content On this page: What is ...

  3. Kidney Failure

    MedlinePlus

    ... upcoming screening events. Kidney Action Day Kidney Action Day Learn about our signature outreach event. About AKF ... support of AKF. Kidney Action Day Kidney Action Day Learn about our signature outreach event. Free health ...

  4. [Renal damage caused by Rhupus syndrome associated with anti-neutrophil cytoplasmic antibodies vasculitis and cryoglobulinemia].

    PubMed

    Zhao, Xin-ju; Wei, Tao; Dong, Bao; Jia, Yuan; Wang, Mei

    2015-10-18

    We analyzed the clinicopathological characteristics of one patient with Rhupus syndrome associated nephropathy in Peking University People's Hospital, and reviewed the related literature. The patient was a middle aged female. She developed rheumatoid arthritis first, and then manifested mild systemic lupus erythematosus together with positive anti-neutrophil cytoplasmic antibodies (ANCA) and cryoglobulinemia several years later. The renal biopsy was performed and manifested as lupus nephritis. The transmission electron microscopy revealed cryoglobulinemia associated renal damage. This report shows that the clinicopathological characteristics in patients with Rhupus syndrome associated nephropathy are complicated. The renal pathology can be used as a diagnostic tool. PMID:26474633

  5. Prospects for studying how high-intensity compression waves cause damage in human blast injuries

    NASA Astrophysics Data System (ADS)

    Brown, Katherine; Bo, Chiara; Ramaswamy, Arul; Masouros, Spiros; Newell, Nicolas; Hill, Adam; Clasper, Jon; Bull, Anthony; Proud, William

    2011-06-01

    Blast injuries arising from improvised explosive devices are often complex leading to long-term disability in survivors. There is an urgent need to mitigate against the effects of blast that lead to these injuries, and to also improve post-traumatic therapeutic treatments related to problems associated with damage and healing processes and infections. We have initiated multidisciplinary studies to develop experimental facilities and strategies for analyzing the effects blast waves upon the human body, from cellular through to skeletal functions. This work is supported by the Atomic Weapons Establishment and the Defence Science and Technology Laboratory, UK.

  6. Reactive oxygen species do not cause arsine-induced hemoglobin damage

    SciTech Connect

    Hatlelid, K.M.; Carter, D.E.

    1997-04-11

    Previous work suggested that arsine- (AsH{sub 3}-) induced hemoglobin (HbO{sub 2}) damage may lead to hemolysis (Hatlelid et al., 1996). The purpose of the work presented here was to determine whether reactive oxygen species are formed by AsH{sub 3} in solution, in hemoglobin solutions, or in intact red blood cells, and, if so, to determine whether these species are responsible for the observed hemoglobin damage. Hydrogen peroxide (H{sub 2}O{sub 2}) was detected in aqueous solutions containing AsH{sub 3} and HbO{sub 2} or AsH{sub 3} alone but not in intact red blood cells or lysates. Additionally, high-activity catalase (19,200 U/ml) or glutathione peroxidase (68 U/ml) added to solutions of HbO{sub 2} and AsH{sub 3} had only a minor protective effect against AsH{sub 3}-induced damage. Further, the differences between the visible spectra of AsH{sub 3}-treated HbO{sub 2} and H{sub 2}O{sub 2}-treated HbO{sub 2} indicate that two different degradative processes occur. The presence of superoxide anion (O{sub 2}{sup {minus}}) was measured by O{sub 2}{sup {minus}} -dependent reduction of nitro blue tetrazolium (NBT). The results were negative for O{sub 2}{sup {minus}}. Exogenous superoxide dismutase (100 {mu}g/ml) did not affect AsH{sub 3}-induced HbO{sub 2} spectral changes, nor did the hydroxyl radical scavengers, mannitol, and DMSO (20mM each). The general antioxidants ascorbate ({le} 10 mM) and glutathione ({le}1 mM) also had no effect. These results indicate that the superoxide anion and the hydroxyl radical (OH) are not involved in the mechanism of AsH{sub 3}-induced HbO{sub 2} damage. The results also indicate that although AsH{sub 3} contributes to H{sub 2}O{sub 2} production in vitro, cellular defenses are adequate to detoxify the amount formed. An alternative mechanism by which an arsenic species is the hemolytic agent is proposed. 16 refs., 4 figs., 2 tabs.

  7. Role of complement receptor 1 (CR1; CD35) on epithelial cells: A model for understanding complement-mediated damage in the kidney.

    PubMed

    Java, Anuja; Liszewski, M Kathryn; Hourcade, Dennis E; Zhang, Fan; Atkinson, John P

    2015-10-01

    The regulators of complement activation gene cluster encodes a group of proteins that have evolved to control the amplification of complement at the critical step of C3 activation. Complement receptor 1 (CR1) is the most versatile of these inhibitors with both receptor and regulatory functions. While expressed on most peripheral blood cells, the only epithelial site of expression in the kidney is by the podocyte. Its expression by this cell population has aroused considerable speculation as to its biologic function in view of many complement-mediated renal diseases. The goal of this investigation was to assess the role of CR1 on epithelial cells. To this end, we utilized a Chinese hamster ovary cell model system. Among our findings, CR1 reduced C3b deposition by ∼ 80% during classical pathway activation; however, it was an even more potent regulator (>95% reduction in C3b deposition) of the alternative pathway. This inhibition was primarily mediated by decay accelerating activity. The deposited C4b and C3b were progressively cleaved with a t½ of ∼ 30 min to C4d and C3d, respectively, by CR1-dependent cofactor activity. CR1 functioned intrinsically (i.e, worked only on the cell on which it was expressed). Moreover, CR1 efficiently and stably bound but didn't internalize C4b/C3b opsonized immune complexes. Our studies underscore the potential importance of CR1 on an epithelial cell population as both an intrinsic complement regulator and an immune adherence receptor. These results provide a framework for understanding how loss of CR1 expression on podocytes may contribute to complement-mediated damage in the kidney. PMID:26260209

  8. Optimal choice: assessing the probability of additional damage to buildings caused by water level changes of larger areas

    NASA Astrophysics Data System (ADS)

    Bijnagte, J. L.; Luger, D.

    2012-12-01

    In the Northern parts of the Netherlands exploration of natural gas reservoirs causes subsidence over large areas. As a consequence, the water levels in canals and polders have to be adjusted over time in order to keep the groundwater levels at a constant depth relative to the surface level. In the middle of the subsidence area it is relatively easy to follow the settlements by a uniform lowering of the water level. This would however result in a relative lowering of the groundwater table at the edges of the subsidence area. Given the presence of soft compressible soils, this would result in induced settlements. For buildings in these areas this will increase the chance of damage. A major design challenge lies therefore in the optimisation of the use of compartments. The more compartments the higher the cost therefore the aim is to make compartments in the water management system that are as large as possible without causing inadmissible damage to buildings. In order to asses expected damage from different use of compartments three tools are needed. The first is a generally accepted method of damage determination, the second a method to determine the contribution to damage of a new influence, e.g. a groundwater table change. Third, and perhaps most importantly, a method is needed to evaluate effects not for single buildings but for larger areas. The first need is covered by established damage criteria like those of Burland & Wroth or Boscardin & Cording. Up until now the second and the third have been problematic. This paper presents a method which enables to assign a contribution to the probability of damage of various recognised mechanisms such as soil and foundation inhomogeneity, uneven loading, ground water level changes. Shallow subsidence due to peat oxidation and deep subsidence due to reservoir depletion can be combined. In order to address the third issue: evaluation of effects for larger areas, the method uses a probabilistic approach. Apart from a description of the method itself validation of the approach is described by applying the theory to an area in the North of The Netherlands, near a canal, where a water level change was considered. This area consists of soft soil overlying sandy deposits. It was found that the damage percentages as given by the theory are in the right order of magnitude when compared to the actual damage observed in this area. For study of a large area affected by subsidence, input parameters have been established based on a field inspection of the state of the buildings present in that area. Groundwater changes resulting from water level adaptations have been calculated based on measurements of the present situation for ten cross sections. Results of the analyses show that lowering of the water table by 0.1-0.15 m influences a relatively small zone next to the canal only. Use of the new damage assesment method shows that even within this influenced zone, which is mostly less than 10 m wide, effects on buildings are rather limited. Almost in all cases the increase of chance of building damage is negligible.

  9. Solanum torvum Swartz. fruit attenuates cadmium-induced liver and kidney damage through modulation of oxidative stress and glycosylation.

    PubMed

    Ramamurthy, C H; Subastri, A; Suyavaran, A; Subbaiah, K C V; Valluru, L; Thirunavukkarasu, C

    2016-04-01

    Increased levels of environmental pollutants are linked to almost all human disorders; the efficient method to manage the human health is through naturally available dietary molecule. Solanum torvum (ST) Swartz (Solanaceae) commonly called Turkey Berry is found in Africa, Asia, and South America. Its fruit, part of traditional Indian cuisine, is a widely consumed nutritious herb, acclaimed for its medicinal value. ST aqueous extract (STAe) (250, 500, and 1000 mg/kg b.w., 6 days; oral) against acute Cadmium (Cd) (6.3 mg/kg b.w., single dose; oral) toxicity was evaluated in rats. Protective effect was assessed using serum markers, tissue antioxidants, oxidant derivatives, glycoprotein, and histopathological studies. The activities of serum marker enzymes were increased (40-60 %); antioxidant enzymes such as SOD and CAT, GSH, and its metabolic enzyme activities were decreased (50-80 %) in the liver and kidney upon Cd intoxication. During STAe pre-treatment, at doses of 250 and 500 mg/kg b.w., the above changes were brought to near normal (25-63 %). Tissue 4-hydroxynonenal, 3-nitrotyrosine, and protein carbonyls were increased (8-15 fold) in Cd-alone-treated rats, whereas pre-supplementation of STAe significantly decreased their levels and inhibited the protein glycosylation effectively. The pharmacological effect of STAe was confirmed by histopathological observations. Based on previous literature and present investigation, we conclude that ST may serve as a potential functional food against environmental contaminant such as heavy metal-induced oxidative stress. PMID:26762936

  10. Inhibition of root growth by narciclasine is caused by DNA damage-induced cell cycle arrest in lettuce seedlings.

    PubMed

    Hu, Yanfeng; Li, Jiaolong; Yang, Lijing; Nan, Wenbin; Cao, Xiaoping; Bi, Yurong

    2014-09-01

    Narciclasine (NCS) is an Amaryllidaceae alkaloid isolated from Narcissus tazetta bulbs. Its phytotoxic effects on plant growth were examined in lettuce (Lactuca sativa L.) seedlings. Results showed that high concentrations (0.5-5 μM) of NCS restricted the growth of lettuce roots in a dose-dependent manner. In NCS-treated lettuce seedlings, the following changes were detected: reduction of mitotic cells and cell elongation in the mature region, inhibition of proliferation of meristematic cells, and cell cycle. Moreover, comet assay and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay indicated that higher levels NCS (0.5-5 μM) induced DNA damage in root cells of lettuce. The decrease in meristematic cells and increase in DNA damage signals in lettuce roots in responses to NCS are in a dose-dependent manner. NCS-induced reactive oxygen species accumulation may explain an increase in DNA damage in lettuce roots. Thus, the restraint of root growth is due to cell cycle arrest which is caused by NCS-induced DNA damage. In addition, it was also found that NCS (0.5-5 μM) inhibited the root hair development of lettuce seedlings. Further investigations on the underlying mechanism revealed that both auxin and ethylene signaling pathways are involved in the response of root hairs to NCS. PMID:24482192

  11. Tissue damage caused by the intramuscular injection of long-acting penicillin.

    PubMed

    Schanzer, H; Jacobson, J H

    1985-04-01

    In order to elucidate whether tissue damage produced on occasion by intramuscular injection of long-acting penicillin is due to accidental intra-arterial injection or vasospasm, two types of experiments were carried out in rabbits. In the first set of experiments, six New Zealand White rabbits were given intra-arterial injections of 0.4 mL of a mixture containing 300,000 U of penicillin G benzathine and 300,000 units of penicillin procaine per milliliter (Bicillin C-R) into the left femoral artery and 0.4 mL of normal saline into the right femoral artery as autocontrol. In a second set of experiments, 0.4 mL of the same penicillin preparation was injected in the space surrounding the left femoral artery in five New Zealand rabbits, and 0.4 mL of normal saline was injected in a similar fashion around the right femoral artery as control. The legs of the rabbits that received the intra-arterial injection of penicillin invariably developed ischemic manifestations. None of the legs of rabbits given intra-arterial injections of normal saline had pathologic manifestations. None of the rabbits that received the periarterial penicillin preparation or normal saline developed abnormalities. These results strongly suggest that the tissue damage produced by penicillin is secondary to the intra-arterial administration of the drug. PMID:3982907

  12. Long-term intrathecal infusion of outer surface protein C from Borrelia burgdorferi causes axonal damage.

    PubMed

    Tauber, Simone C; Ribes, Sandra; Ebert, Sandra; Heinz, Torsten; Fingerle, Volker; Bunkowski, Stephanie; Kugelstadt, Dominik; Spreer, Annette; Jahn, Olaf; Eiffert, Helmut; Nau, Roland

    2011-09-01

    Lyme neuroborreliosis (LNB) is the most frequent tick-borne infectious disease of the central nervous system. In acute LNB and the rare chronic state of infection, patients can experience cognitive deficits such as attention and memory disturbances. During LNB, single compounds of Borrelia burgdorferi sensu lato are released into the subarachnoid space.To investigate the pathogenesis of neurologic dysfunction in LNB, we determined that the outer surface protein C (OspC), a major virulence factor of B. burgdorferi, stimulated mouse microglial cells in a dose-dependent manner to release nitric oxide (EC50 = 0.24 mg/L) in vitro. To mimic pathophysiologic conditions of long-term release of this bacterial component in vivo, we treated C57BL/6 mice with recombinant OspC from Borrelia garinii or buffer by intraventricular infusion and tested them for behavioral deficits. After 4weeks, brains were examined by routine histology and immunohistochemistry. Assessment of spatial learning and memory of treated mice during OspC exposure did not reveal significant differences from controls. Continuous exposure to intrathecal B. burgdorferi OspC led to activation of microglia and axonal damage without demonstrable cognitive impairment in experimental mice. These results suggest that long-term intrathecal exposure to OspC resulted in axonal damage that may underlie the neurologic manifestations in chronic LNB. PMID:21865883

  13. Optical properties and surface damage studies of crystalline silicon caused by swift iron ions

    NASA Astrophysics Data System (ADS)

    Dubey, S. K.

    2016-05-01

    p-Type silicon samples irradiated with 70 MeV 56Fe5+ ions for various fluences varying between 5 × 1012 and 4 × 1014 ions cm-2 have been studied using spectroscopic ellipsometry and Fourier transform infrared spectroscopy. The microstructure of the irradiated samples was modeled from ellipsometric data, using a multilayer optical model and Bruggeman effective medium approximation. The values of pseudodielectric function, absorption coefficient and Penn gap energy were determined with respect to ion fluence. The effective medium analysis suggests that the superficial silicon layer can be explained as a mixture of crystalline and damaged silicon. The thickness of the damaged layer and percentage of voids present in the layer were found to increase with increase in the ion fluence. The effect of disorder on the interband optical spectra, especially on the critical point E1 at 3.4 eV was found to vary with ion fluence. A red shift in the critical point E1 with increasing ion fluence was observed. FTIR study showed of silicon samples irradiated with 70 MeV 56Fe5+ ions produced the oscillations in the spectral region 1000-400 cm-1. As irradiated sample showed more pronounced fringes, while contrast of the fringes and amplitude both were found to decrease with increase in depth.

  14. TRAIL+ monocytes and monocyte-related cells cause lung damage and thereby increase susceptibility to influenza–Streptococcus pneumoniae coinfection

    PubMed Central

    Ellis, Gregory T; Davidson, Sophia; Crotta, Stefania; Branzk, Nora; Papayannopoulos, Venizelos; Wack, Andreas

    2015-01-01

    Streptococcus pneumoniae coinfection is a major cause of influenza-associated mortality; however, the mechanisms underlying pathogenesis or protection remain unclear. Using a clinically relevant mouse model, we identify immune-mediated damage early during coinfection as a new mechanism causing susceptibility. Coinfected CCR2−/− mice lacking monocytes and monocyte-derived cells control bacterial invasion better, show reduced epithelial damage and are overall more resistant than wild-type controls. In influenza-infected wild-type lungs, monocytes and monocyte-derived cells are the major cell populations expressing the apoptosis-inducing ligand TRAIL. Accordingly, anti-TRAIL treatment reduces bacterial load and protects against coinfection if administered during viral infection, but not following bacterial exposure. Post-influenza bacterial outgrowth induces a strong proinflammatory cytokine response and massive inflammatory cell infiltrate. Depletion of neutrophils or blockade of TNF-α facilitate bacterial outgrowth, leading to increased mortality, demonstrating that these factors aid bacterial control. We conclude that inflammatory monocytes recruited early, during the viral phase of coinfection, induce TRAIL-mediated lung damage, which facilitates bacterial invasion, while TNF-α and neutrophil responses help control subsequent bacterial outgrowth. We thus identify novel determinants of protection versus pathology in influenza–Streptococcus pneumoniae coinfection. PMID:26265006

  15. {beta}-carboline derivatives: Novel photosensitizers that intercalate into DNA to cause direct DNA damage in photodynamic therapy

    SciTech Connect

    Guan Huaji; Liu Xiaodong; Peng Wenlie; Cao Rihui; Ma Yan; Chen Hongsheng; Xu Anlong . E-mail: ls36@zsu.edu.cn

    2006-04-14

    Novel 1,3,9-trisubstituted {beta}-carboline derivatives were found to exhibit DNA photocleavage properties under visible light irradiation in a cell-free system, which could be reduced by antioxidant vitamin E. Their photo-cytotoxicity to human tumor cell line HeLa was confirmed, in which apoptosis only contributed a small part to the cell death, and necrosis was the dominating outcome of HeLa cells in photodynamic therapy (PDT) using {beta}-carboline derivatives. Different from other clinical PDT drugs, {beta}-carboline derivatives were demonstrated to be able to distribute in the nucleus and intercalate into DNA, and consequently cause direct DNA damage by photochemical reaction products in PDT, which was proved by the distinct DNA tails in the comet assay and the considerable amount of DNA damaged cells quantified by flow cytometry. This mechanism could be the explanation for the delay of cell proliferation at DNA synthesis and mitosis.

  16. Metabolic Damage and Premature Thymus Aging Caused by Stromal Catalase Deficiency.

    PubMed

    Griffith, Ann V; Venables, Thomas; Shi, Jianjun; Farr, Andrew; van Remmen, Holly; Szweda, Luke; Fallahi, Mohammad; Rabinovitch, Peter; Petrie, Howard T

    2015-08-18

    T lymphocytes are essential mediators of immunity that are produced by the thymus in proportion to its size. The thymus atrophies rapidly with age, resulting in progressive diminution of new T cell production. This decreased output is compensated by duplication of existing T cells, but it results in gradual dominance by memory T cells and decreased ability to respond to new pathogens or vaccines. Here, we show that accelerated and irreversible thymic atrophy results from stromal deficiency in the reducing enzyme catalase, leading to increased damage by hydrogen peroxide generated by aerobic metabolism. Genetic complementation of catalase in stromal cells diminished atrophy, as did chemical antioxidants, thus providing a mechanistic link between antioxidants, metabolism, and normal immune function. We propose that irreversible thymic atrophy represents a conventional aging process that is accelerated by stromal catalase deficiency in the context of an intensely anabolic (lymphoid) environment. PMID:26257169

  17. On the inlet vortex system. [preventing jet engine damage caused by debris pick-up

    NASA Technical Reports Server (NTRS)

    Bissinger, N. C.; Braun, G. W.

    1974-01-01

    The flow field of a jet engine with an inlet vortex, which can pick up heavy debris from the ground and damage the engine, was simulated in a small water tunnel by means of the hydrogen bubble technique. It was found that the known engine inlet vortex is accompained by a vortex system, consisting of two inlet vortices (the ground based and the trailing one), secondary vortices, and ground vortices. Simulation of the ground effect by an inlet image proved that the inlet vortex feeds on free stream vorticity and can exist without the presence of a ground boundary layer. The structural form of the inlet vortex system was explained by a simple potential flow model, which showed the number, location, and the importance of the stagnation points. A retractable horizontal screen or an up-tilt of the engine is suggested as countermeasure against debris ingestion.

  18. An enterovirus 71 strain causes skeletal muscle damage in infected mice

    PubMed Central

    Lin, Peixin; Gao, Lulu; Huang, Yeen; Chen, Qing; Shen, Hong

    2015-01-01

    Objective: To study the target organs for enterovirus 71 (EV71) in infected suckling mice. Methods: 5-day-old BALB/c suckling mice were infected with an EV71 strain. Tissues of the infected mice were processed for histopathological examination, including immunohistochemistry, in situ hybridization, ultrastructural observation. Results: Some mice developed limb paralysis, trouble walking and loss of balance. Results of the histopathological study showed that a large amount of EV71 existed in the skeletal muscle tissues, accounting for the damage of the skeletal muscles. Conclusion: The EV71 clinical isolate used in this study presented evident myotropism. Skeletal muscles are important target organs for EV71 in the infected suckling mice. To clarify the relationship between EV71 infection and muscle diseases may contribute to a better understanding of the pathogenesis of EV71. PMID:26097530

  19. Azoxystrobin causes oxidative stress and DNA damage in the aquatic macrophyte Myriophyllum quitense.

    PubMed

    Garanzini, Daniela S; Menone, Mirta L

    2015-02-01

    Among the search for new types of pesticides, the fungicide azoxystrobin (AZX) was the first patent of the strobilurin compounds, entering in the market in 1996. Its use worldwide is growing, mainly linked to soybean production, although its effects in non-target organisms are almost unknown. The goal of the present work was to evaluate effects of short-term AZX exposure to the aquatic macrophyte Myriophyllum quitense, focusing on oxidative stress parameters and DNA fragmentation. Significant inhibition of the antioxidant enzyme systems were observed at 50 μg/L AZX for catalase and peroxidase (p < 0.05). Lipid and DNA damage were significant at 50 and 100 μg/L AZX. These biomarkers were sensitive to AZX and can be used in a battery to evaluate the occurrence of AZX in freshwater ecosystems. PMID:25416866

  20. War on Carcinogens: industry disputes human relevance of chemicals causing cancer in laboratory animals based on unproven hypotheses, using kidney tumors as an example.

    PubMed

    Melnick, Ronald L; Ward, Jerrold M; Huff, James

    2013-01-01

    Evidence from studies in animals is essential for identifying chemicals likely to cause or contribute to many diseases in humans, including cancers. Yet, to avoid or delay the implementation of protective public health standards, the chemical industry typically denies cancer causation by agents they produce. The spurious arguments put forward to discount human relevance are often based on inadequately tested hypotheses or modes of action that fail to meet Bradford Hill criteria for causation. We term the industry attacks on the relevance of animal cancer findings as the "War on Carcinogens." Unfortunately, this tactic has been effective in preventing timely and appropriate health protective actions on many economically important yet carcinogenic chemicals, including: arsenic, asbestos, benzene, 1,3-butadiene, formaldehyde, methylene chloride, phthalates, tobacco usage, trichloroethylene [TCE], and others. Recent examples of the "War on Carcinogens" are chemicals causing kidney cancer in animals. Industry consultants argue that kidney tumor findings in rats with exacerbated chronic progressive nephropathy (CPN) are not relevant to humans exposed to these chemicals. We dispute and dismiss this unsubstantiated claim with data and facts, and divulge unprofessional actions from a leading toxicology journal. PMID:24588032

  1. Targeted inactivation of hepatic Abca1 causes profound hypoalphalipoproteinemia and kidney hypercatabolism of apoA-I.

    PubMed

    Timmins, Jenelle M; Lee, Ji-Young; Boudyguina, Elena; Kluckman, Kimberly D; Brunham, Liam R; Mulya, Anny; Gebre, Abraham K; Coutinho, Jonathan M; Colvin, Perry L; Smith, Thomas L; Hayden, Michael R; Maeda, Nobuyo; Parks, John S

    2005-05-01

    Patients with Tangier disease exhibit extremely low plasma HDL concentrations resulting from mutations in the ATP-binding cassette, sub-family A, member 1 (ABCA1) protein. ABCA1 controls the rate-limiting step in HDL particle assembly by mediating efflux of cholesterol and phospholipid from cells to lipid-free apoA-I, which forms nascent HDL particles. ABCA1 is widely expressed; however, the specific tissues involved in HDL biogenesis are unknown. To determine the role of the liver in HDL biogenesis, we generated mice with targeted deletion of the second nucleotide-binding domain of Abca1 in liver only (Abca1(-L/-L)). Abca1(-L/-L) mice had total plasma and HDL cholesterol concentrations that were 19% and 17% those of wild-type littermates, respectively. In vivo catabolism of HDL apoA-I from wild-type mice or human lipid-free apoA-I was 2-fold higher in Abca1(-L/-L) mice compared with controls due to a 2-fold increase in the catabolism of apoA-I by the kidney, with no change in liver catabolism. We conclude that in chow-fed mice, the liver is the single most important source of plasma HDL. Furthermore, hepatic, but not extrahepatic, Abca1 is critical in maintaining the circulation of mature HDL particles by direct lipidation of hepatic lipid-poor apoA-I, slowing its catabolism by the kidney and prolonging its plasma residence time. PMID:15841208

  2. APOL1 kidney disease risk variants cause cytotoxicity by depleting cellular potassium and inducing stress-activated protein kinases.

    PubMed

    Olabisi, Opeyemi A; Zhang, Jia-Yue; VerPlank, Lynn; Zahler, Nathan; DiBartolo, Salvatore; Heneghan, John F; Schlöndorff, Johannes S; Suh, Jung Hee; Yan, Paul; Alper, Seth L; Friedman, David J; Pollak, Martin R

    2016-01-26

    Two specific genetic variants of the apolipoprotein L1 (APOL1) gene are responsible for the high rate of kidney disease in people of recent African ancestry. Expression in cultured cells of these APOL1 risk variants, commonly referred to as G1 and G2, results in significant cytotoxicity. The underlying mechanism of this cytotoxicity is poorly understood. We hypothesized that this cytotoxicity is mediated by APOL1 risk variant-induced dysregulation of intracellular signaling relevant for cell survival. To test this hypothesis, we conditionally expressed WT human APOL1 (G0), the APOL1 G1 variant, or the APOL1 G2 variant in human embryonic kidney cells (T-REx-293) using a tetracycline-mediated (Tet-On) system. We found that expression of either G1 or G2 APOL1 variants increased apparent cell swelling and cell death compared with G0-expressing cells. These manifestations of cytotoxicity were preceded by G1 or G2 APOL1-induced net efflux of intracellular potassium as measured by X-ray fluorescence, resulting in the activation of stress-activated protein kinases (SAPKs), p38 MAPK, and JNK. Prevention of net K(+) efflux inhibited activation of these SAPKs by APOL1 G1 or G2. Furthermore, inhibition of SAPK signaling and inhibition of net K(+) efflux abrogated cytotoxicity associated with expression of APOL1 risk variants. These findings in cell culture raise the possibility that nephrotoxicity of APOL1 risk variants may be mediated by APOL1 risk variant-induced net loss of intracellular K(+) and subsequent induction of stress-activated protein kinase pathways. PMID:26699492

  3. Proteolytic activity of the Bacteroides fragilis enterotoxin causes fluid secretion and intestinal damage in vivo.

    PubMed Central

    Obiso, R J; Lyerly, D M; Van Tassell, R L; Wilkins, T D

    1995-01-01

    Strains of Bacteroides fragilis that produce an enterotoxin have been implicated in diarrheal disease in farm animals and humans during the past decade. Our laboratory has purified and characterized this enterotoxin as a single polypeptide (M(r), approximately 20,000). Recently, we used PCR to clone and sequence the enterotoxin gene from B. fragilis and showed that it exhibits significant homology with extracellular metalloproteases. Further studies showed that the purified enterotoxin has protease activity. To further characterize the role of this enterotoxin in diarrheal disease, we studied the histological and pathological effects of highly purified B. fragilis enterotoxin in lamb, rabbit, and rat ligated intestinal loops. When the enterotoxin was injected into ligated ileal and colonic loops, there was significant tissue damage and subsequent fluid accumulation. The fluid response in the ileum was greater in lambs than in rabbits and rats, whereas the fluid response in the colon was greater in rabbits than in lambs and rats. Analysis of the intestinal fluid elicited by the enterotoxin revealed an accumulation of chloride and sodium as well as albumin and total protein. Histological examination revealed mild necrosis of epithelial cells, crypt elongation, villus attenuation, and hyperplasia. There was extensive detachment and rounding of surface epithelial cells and an infiltration of neutrophils. Enterotoxic activity was inhibited by the metal chelators EDTA and 1,10-phenanthroline; to some degree, the enterotoxic activity could be reconstituted by the addition of zinc to the chelated enterotoxin. Our results indicate that the enterotoxin elicits a significant fluid response subsequent to tissue damage in the small and large intestine. These data further support the idea that this enterotoxin is an important virulence factor in B. fragilis-associated diarrhea. PMID:7558286

  4. Environmental Pollutant Ozone Causes Damage to Lung Surfactant Protein B (SP-B).

    PubMed

    Hemming, Joanna M; Hughes, Brian R; Rennie, Adrian R; Tomas, Salvador; Campbell, Richard A; Hughes, Arwel V; Arnold, Thomas; Botchway, Stanley W; Thompson, Katherine C

    2015-08-25

    Lung surfactant protein B (SP-B) is an essential protein found in the surfactant fluid at the air-water interface of the lung. Exposure to the air pollutant ozone could potentially damage SP-B and lead to respiratory distress. We have studied two peptides, one consisting of the N-terminus of SP-B [SP-B(1-25)] and the other a construct of the N- and C-termini of SP-B [SP-B(1-25,63-78)], called SMB. Exposure to dilute levels of ozone (~2 ppm) of monolayers of each peptide at the air-water interface leads to a rapid reaction, which is evident from an increase in the surface tension. Fluorescence experiments revealed that this increase in surface tension is accompanied by a loss of fluorescence from the tryptophan residue at the interface. Neutron and X-ray reflectivity experiments show that, in contrast to suggestions in the literature, the peptides are not solubilized upon oxidation but rather remain at the interface with little change in their hydration. Analysis of the product material reveals that no cleavage of the peptides occurs, but a more hydrophobic product is slowly formed together with an increased level of oligomerization. We attributed this to partial unfolding of the peptides. Experiments conducted in the presence of phospholipids reveal that the presence of the lipids does not prevent oxidation of the peptides. Our results strongly suggest that exposure to low levels of ozone gas will damage SP-B, leading to a change in its structure. The implication is that the oxidized protein will be impaired in its ability to interact at the air-water interface with negatively charged phosphoglycerol lipids, thus compromising what is thought to be its main biological function. PMID:26270023

  5. Genotoxic Evaluation of Mikania laevigata Extract on DNA Damage Caused by Acute Coal Dust Exposure

    SciTech Connect

    Freitas, T.P.; Heuser, V.D.; Tavares, P.; Leffa, D.D.; da Silva, G.A.; Citadini-Zanette, V.; Romao, P.R.T.; Pinho, R.A.; Streck, E.L.; Andrade,V.M.

    2009-06-15

    We report data on the possible antigenotoxic activity of Mikania laevigata extract (MLE) after acute intratracheal instillation of coal dust using the comet assay in peripheral blood, bone marrow, and liver cells and the micronucleus test in peripheral blood of Wistar rats. The animals were pretreated for 2 weeks with saline solution (groups 1 and 2) or MLE (100 mg/kg) (groups 3 and 4). On day 15, the animals were anesthetized with ketamine (80 mg/kg) and xylazine (20 mg/kg), and gross mineral coal dust (3 mg/0.3 mL saline) (groups 2 and 4) or saline solution (0.3 mL) (groups 1 and 3) was administered directly in the lung by intratracheal administration. Fifteen days after coal dust or saline instillation, the animals were sacrificed, and the femur, liver, and peripheral blood were removed. The results showed a general increase in the DNA damage values at 8 hours for all treatment groups, probably related to surgical procedures that had stressed the animals. Also, liver cells from rats treated with coal dust, pretreated or not with MLE, showed statistically higher comet assay values compared to the control group at 14 days after exposure. These results could be expected because the liver metabolizes a variety of organic compounds to more polar by-products. On the other hand, the micronucleus assay results did not show significant differences among groups. Therefore, our data do not support the antimutagenic activity of M. laevigata as a modulator of DNA damage after acute coal dust instillation.

  6. Environmental Pollutant Ozone Causes Damage to Lung Surfactant Protein B (SP-B)

    PubMed Central

    2015-01-01

    Lung surfactant protein B (SP-B) is an essential protein found in the surfactant fluid at the air–water interface of the lung. Exposure to the air pollutant ozone could potentially damage SP-B and lead to respiratory distress. We have studied two peptides, one consisting of the N-terminus of SP-B [SP-B(1–25)] and the other a construct of the N- and C-termini of SP-B [SP-B(1–25,63–78)], called SMB. Exposure to dilute levels of ozone (∼2 ppm) of monolayers of each peptide at the air–water interface leads to a rapid reaction, which is evident from an increase in the surface tension. Fluorescence experiments revealed that this increase in surface tension is accompanied by a loss of fluorescence from the tryptophan residue at the interface. Neutron and X-ray reflectivity experiments show that, in contrast to suggestions in the literature, the peptides are not solubilized upon oxidation but rather remain at the interface with little change in their hydration. Analysis of the product material reveals that no cleavage of the peptides occurs, but a more hydrophobic product is slowly formed together with an increased level of oligomerization. We attributed this to partial unfolding of the peptides. Experiments conducted in the presence of phospholipids reveal that the presence of the lipids does not prevent oxidation of the peptides. Our results strongly suggest that exposure to low levels of ozone gas will damage SP-B, leading to a change in its structure. The implication is that the oxidized protein will be impaired in its ability to interact at the air–water interface with negatively charged phosphoglycerol lipids, thus compromising what is thought to be its main biological function. PMID:26270023

  7. [Micro-particles of bioceramics could cause cell and tissue damage].

    PubMed

    Lu, Jianxi; Tang, Tingting; Ding, Huifeng; Dai, Kerong

    2006-02-01

    We conducted studies to confirm the hypothesis that the cellular damage occurring around implanted biphasic bioceramics could be related to a micro-particles release because of an insufficient sintering. An in vitro cytotoxicity study was performed on four biphasic ceramic (BCP) samples. Without the treatment of extraction medium, a cytotoxicity was observed, although after centrifugation this cytotoxicity disappeared in all samples. (2) Micro-particles of HA, beta-TCP and 40%beta-TCP/60%HA mixture were used for a cell inhibition study. A decrease of cell viability was observed with the increase in particles concentration. At 10000 particles/ cell, the viability and proliferation were completely inhibited. (3) HA, beta-TCP and BCP ceramic granules were implanted in rabbit femoral cavities for 12 weeks. No degradation of HA granules was observed. The degradation was higher for beta-TCP (40%) than for BCP (5%). On the other hand, new bone formation was significantly higher for beta-TCP (21%) and HA (18%) than for BCP (12%). Much more micro-particles were formed around BCP granules than around beta-TCP, and were phagocytosed by macrophages. The release of ceramic micro-particles could be related to the sintering process. BCP ceramics have to be sintered at only 1160 degrees C. Consequently, HA microparticles of BCP ceramic are incompletely sintered and easily released after immersion or implantation. The microparticles could be at the origin of local inflammation and cell damage and could perhaps modify osteogenesis. Particular attention must be paid to this problem with regard to BCP ceramics because of the sintering difficulties of this bioceramic. PMID:16532817

  8. DNA damage and apoptosis of endometrial cells cause loss of the early embryo in mice exposed to carbon disulfide

    SciTech Connect

    Zhang, Bingzhen; Shen, Chunzi; Yang, Liu; Li, Chunhui; Yi, Anji; Wang, Zhiping

    2013-12-01

    Carbon disulfide (CS{sub 2}) may lead to spontaneous abortion and very early pregnancy loss in women exposed in the workplace, but the mechanism remains unclear. We designed an animal model in which gestating Kunming strain mice were exposed to CS{sub 2} via i.p. on gestational day 4 (GD4). We found that the number of implanted blastocysts on GD8 was significantly reduced by each dose of 0.1 LD{sub 50} (157.85 mg/kg), 0.2 LD{sub 50} (315.7 mg/kg) and 0.4 LD{sub 50} (631.4 mg/kg). In addition, both the level of DNA damage and apoptosis rates of endometrial cells on GD4.5 were increased, showed definite dose–response relationships, and inversely related to the number of implanted blastocysts. The expressions of mRNA and protein for the Bax and caspase-3 genes in the uterine tissues on GD4.5 were up-regulated, while the expressions of mRNA and protein for the Bcl-2 gene were dose-dependently down-regulated. Our results indicated that DNA damage and apoptosis of endometrial cells were important reasons for the loss of implanted blastocysts induced by CS{sub 2}. - Highlights: • We built an animal model of CS2 exposure during blastocyst implantation. • Endometrial cells were used in the comet assay to detect DNA damage. • CS2 exposure caused DNA damage and endometrial cell apoptosis. • DNA damage and endometrial cell apoptosis were responsible for embryo loss.

  9. UV-B exposure causes DNA damage and changes in protein expression in northern pike (Esox lucius) posthatched embryos.

    PubMed

    Vehniäinen, Eeva-Riikka; Vähäkangas, Kirsi; Oikari, Aimo

    2012-01-01

    The ongoing anthropogenically caused ozone depletion and climate change has increased the amount of biologically harmful UV-B radiation, which is detrimental to fish in embryonal stages. The effects of UV-B radiation on the levels and locations of DNA damage manifested as cyclobutane pyrimidine dimers (CPDs), heat shock protein 70 (HSP70) and p53 protein in newly hatched embryos of pike were examined. Pike larvae were exposed in the laboratory to current and enhanced doses of UV-B radiation. UV-B exposure caused the formation of CPDs in a fluence rate-dependent manner, and the CPDs were found deeper in the tissues with increasing fluence rates. UV-B radiation induced HSP70 in epidermis, and caused plausible p53 activation in the brain and epidermis of some individuals. Also at a fluence rate occurring in nature, the DNA damage in the brain and eyes of pike and changes in protein expression were followed by severe behavioral disorders, suggesting that neural molecular changes were associated with functional consequences. PMID:22145705

  10. [Hyperhydration and dialysis in acute kidney failure].

    PubMed

    Saner, Fuat H; Bienholz, Anja; Tyczynski, Bartosz; Kribben, Andreas; Feldkamp, Thorsten

    2015-05-01

    Despite the advances in critical care medicine, the hospital mortality in patients with acute kidney injury (AKI) requiring dialysis remains high. Depending on the underlying disease the in-house mortality is reported to be up to 80%. Several observational studies demonstrated an association between mortality and fluid overload. A primary mechanism of interest is that fluid overload causes tissue edema and subsequent reduction of perfusion, oxygenation and nutrient delivery. This results in further renal damage. In addition, fluid overload-related dilution within the extracellular space causes artificially low serum creatinine, which masks AKI diagnosis. As a consequence, renal protective management strategies are deferred, which further aggravates kidney injury. This aggravation of renal damage subsequently increases the mortality. This review discusses the role of fluid overload for outcomes in critically ill patients as described in the current literature and assesses criteria for the initiation of renal replacement therapy in this critically ill population. PMID:25970415

  11. Association of nitric oxide production by kidney proximal tubular cells in response to lipopolysaccharide and cytokines with cellular damage.

    PubMed Central

    Kaboré, A F; Denis, M; Bergeron, M G

    1997-01-01

    Recent findings suggest that nitric oxide (NO) is an important biologic mediator which exerts a wide variety of effects on numerous physiological and pathophysiological processes. L-Arginine is oxidized to L-citrulline with concomitant NO production; as a result, nitrate and nitrite accumulates. This study was conducted to determine the potential NO production by proximal tubular cells (PTC) in response to bacterial lipopolysac-charides (LPS) and cytokines and to evaluate the cytotoxic effect associated with NO release. After a 7-day stimulation with LPS (100 micrograms/ml), interleukin-1 beta (IL-1 beta) (10 ng/ml), and tumor necrosis factor alpha (TNF-alpha) (10 ng/ml), the nitrate and nitrite levels were determined by a spectrophotometric method based on the Griess reaction. Moreover, alpha-methylglucopyranoside phosphate and lactate dehydrogenase release and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay served as indicators of sodium-dependent hexose transport integrity and cell death, respectively. IL-1 beta and TNF-alpha used alone or together or combined with LPS led to a significant generation of NO by PTC. Our results also demonstrate that NO induced by LPS and cytokines could inhibit sodium-dependent transport and could induce PTC damage. PMID:9055992

  12. Whole-body proton irradiation causes long-term damage to hematopoietic stem cells in mice.

    PubMed

    Chang, Jianhui; Feng, Wei; Wang, Yingying; Luo, Yi; Allen, Antio R; Koturbash, Igor; Turner, Jennifer; Stewart, Blair; Raber, Jacob; Hauer-Jensen, Martin; Zhou, Daohong; Shao, Lijian

    2015-02-01

    Space flight poses certain health risks to astronauts, including exposure to space radiation, with protons accounting for more than 80% of deep-space radiation. Proton radiation is also now being used with increasing frequency in the clinical setting to treat cancer. For these reasons, there is an urgent need to better understand the biological effects of proton radiation on the body. Such improved understanding could also lead to more accurate assessment of the potential health risks of proton radiation, as well as the development of improved strategies to prevent and mitigate its adverse effects. Previous studies have shown that exposure to low doses of protons is detrimental to mature leukocyte populations in peripheral blood, however, the underlying mechanisms are not known. Some of these detriments may be attributable to damage to hematopoietic stem cells (HSCs) that have the ability to self-renew, proliferate and differentiate into different lineages of blood cells through hematopoietic progenitor cells (HPCs). The goal of this study was to investigate the long-term effects of low-dose proton irradiation on HSCs. We exposed C57BL/6J mice to 1.0 Gy whole-body proton irradiation (150 MeV) and then studied the effects of proton radiation on HSCs and HPCs in the bone marrow (BM) 22 weeks after the exposure. The results showed that mice exposed to 1.0 Gy whole-body proton irradiation had a significant and persistent reduction of BM HSCs compared to unirradiated controls. In contrast, no significant changes were observed in BM HPCs after proton irradiation. Furthermore, irradiated HSCs and their progeny exhibited a significant impairment in clonogenic function, as revealed by the cobblestone area-forming cell (CAFC) and colony-forming cell assays, respectively. These long-term effects of proton irradiation on HSCs may be attributable to the induction of chronic oxidative stress in HSCs, because HSCs from irradiated mice exhibited a significant increase in NADPH oxidase 4 (NOX4) mRNA expression and reactive oxygen species (ROS) production. In addition, the increased production of ROS in HSCs was associated with a significant reduction in HSC quiescence and an increase in DNA damage. These findings indicate that exposure to proton radiation can lead to long-term HSC injury, probably in part by radiation-induced oxidative stress. PMID:25635345

  13. Mouse neuropathogenic poliovirus strains cause damage in the central nervous system distinct from poliomyelitis.

    PubMed

    Gromeier, M; Lu, H H; Wimmer, E

    1995-04-01

    Poliomyelitis as a consequence of poliovirus infection is observed only in primates. Despite a host range restricted to primates, experimental infection of rodents with certain genetically well defined poliovirus strains produces neurological disease. The outcome of infection of mice with mouse-adapted poliovirus strains has been described previously mainly in terms of paralysis and death, and it was generally assumed that these strains produce the same disease syndromes in normal mice and in mice transgenic for the human poliovirus receptor (hPVR-tg mice). We report a comparison of the clinical course and the histopathological features of neurological disease resulting from intracerebral virus inoculation in normal mice with those of murine poliomyelitis in hPVR-tg mice. The consistent pattern of clinical deficits in poliomyelitic transgenic mice contrasted with highly variable neurologic disease that developed in mice infected with different mouse-adapted polioviruses. Histopathological analysis showed a diffuse encephalomyelitis induced by specific poliovirus serotype 2 isolates in normal mice, that affected neuronal cell populations without discrimination, whereas in hPVR-tg animals, damage was restricted to spinal motor neurons. Mouse neurovirulent strains of poliovirus type 2 differed from mouse neurovirulent poliovirus type 1 derivatives in their ability to induce CNS lesions. Our findings indicate that the characteristic clinical appearance and highly specific histopathological features of poliomyelitis are mediated by the hPVR.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7476091

  14. Damage on fused silica optics caused by laser ablation of surface-bound microparticles.

    PubMed

    Raman, Rajesh N; Demos, Stavros G; Shen, Nan; Feigenbaum, Eyal; Negres, Raluca A; Elhadj, Selim; Rubenchik, Alexander M; Matthews, Manyalibo J

    2016-02-01

    High peak power laser systems are vulnerable to performance degradation due to particulate contamination on optical surfaces. In this work, we show using model contaminant particles that their optical properties decisively determine the nature of the optical damage. Borosilicate particles with low intrinsic optical absorption undergo ablation initiating in their sub-surface, leading to brittle fragmentation, distributed plasma formation, material dispersal and ultimately can lead to micro-fractures in the substrate optical surface. In contrast, energy coupling into metallic particles is highly localized near the particle-substrate interface leading to the formation of a confined plasma and subsequent etching of the substrate surface, accompanied by particle ejection driven by the recoil momentum of the ablation plume. While the tendency to create fractured surface pitting from borosilicate is stochastic, the smooth ablation pits created by metal particles is deterministic, with pit depths scaling linearly with laser fluence. A simple model is employed which predicts ~3x electric field intensity enhancement from surface-bound fragments. In addition, our results suggest that the amount of energy deposited in metal particles is at least twice that in transparent particles. PMID:26906835

  15. Limited Mitochondrial Permeabilization Causes DNA Damage and Genomic Instability in the Absence of Cell Death

    PubMed Central

    Ichim, Gabriel; Lopez, Jonathan; Ahmed, Shafiq U.; Muthalagu, Nathiya; Giampazolias, Evangelos; Delgado, M. Eugenia; Haller, Martina; Riley, Joel S.; Mason, Susan M.; Athineos, Dimitris; Parsons, Melissa J.; van de Kooij, Bert; Bouchier-Hayes, Lisa; Chalmers, Anthony J.; Rooswinkel, Rogier W.; Oberst, Andrew; Blyth, Karen; Rehm, Markus; Murphy, Daniel J.; Tait, Stephen W.G.

    2015-01-01

    Summary During apoptosis, the mitochondrial outer membrane is permeabilized, leading to the release of cytochrome c that activates downstream caspases. Mitochondrial outer membrane permeabilization (MOMP) has historically been thought to occur synchronously and completely throughout a cell, leading to rapid caspase activation and apoptosis. Using a new imaging approach, we demonstrate that MOMP is not an all-or-nothing event. Rather, we find that a minority of mitochondria can undergo MOMP in a stress-regulated manner, a phenomenon we term “minority MOMP.” Crucially, minority MOMP leads to limited caspase activation, which is insufficient to trigger cell death. Instead, this caspase activity leads to DNA damage that, in turn, promotes genomic instability, cellular transformation, and tumorigenesis. Our data demonstrate that, in contrast to its well-established tumor suppressor function, apoptosis also has oncogenic potential that is regulated by the extent of MOMP. These findings have important implications for oncogenesis following either physiological or therapeutic engagement of apoptosis. PMID:25702873

  16. [Risk predictive model for damage caused by the spittlebug Aeneolamiapostica (Walker) Fennah (Hemiptera: Cercopidae)].

    PubMed

    García-García, Carlos G; López-Collado, José; Nava-Tablada, Martha E; Villanueva-Jiménez, Juan A; Vera-Graziano, Jorge

    2006-01-01

    This paper evaluated the risk that Aenolamia postica (Walker) Fennah populations reach the economic threshold in sugar cane fields in Veracruz, México. A risk deductive model was constructed to include the sequence of events leading to damaging populations, considered the top event or critical failure in the crop. Model events were identified and quantified, and model was validated on field conditions. The model components and their state values were identified as: temperature e" 28 degrees C, precipitation e" 45% during June and July, soil clay content e" 40%, infested adjoining fields, deficient weed control, wind dominance, crop phenology and variety, deficient chemical and biological control, and irrigation. Sensitivity analysis showed that the most important events triggering high densities of A. postica were high temperatures and precipitation, previous field infestation, nymph and weed presence. Event probability estimates were combined using Boolean algebra to compute the minimum, mean and maximum probabilities for the top event, yielding values of 0.417, 0.563, y 0.734 respectively. Model was tested in field, by selecting sugar cane fields having the model properties and compared to fields without these features. Fields were sampled in both conditions during 2004 year and high-risk fields had significantly (F = 13, 4, gl = 1, 18, P = 0,0018) higher densities (2.4 adults m(-1)) than low-risk plots (0.4 adults m(-1)) thus agreeing with the model forecast. PMID:17144142

  17. Role of DNA damage response pathways in preventing carcinogenesis caused by intrinsic replication stress.

    PubMed

    Wallace, M D; Southard, T L; Schimenti, K J; Schimenti, J C

    2014-07-10

    Defective DNA replication can result in genomic instability, cancer and developmental defects. To understand the roles of DNA damage response (DDR) genes on carcinogenesis in mutants defective for core DNA replication components, we utilized the Mcm4(Chaos3/Chaos3) ('Chaos3') mouse model that, by virtue of an amino-acid alteration in MCM4 that destabilizes the MCM2-7 DNA replicative helicase, has fewer dormant replication origins and an increased number of stalled replication forks. This leads to genomic instability and cancer in most Chaos3 mice. We found that animals doubly mutant for Chaos3 and components of the ataxia telangiectasia-mutated (ATM) double-strand break response pathway (Atm, p21/Cdkn1a and Chk2/Chek2) had decreased tumor latency and/or increased tumor susceptibility. Tumor latency and susceptibility differed between genetic backgrounds and genders, with females demonstrating an overall greater cancer susceptibility to Atm and p21 deficiency than males. Atm deficiency was semilethal in the Chaos3 background and impaired embryonic fibroblast proliferation, suggesting that ATM drug inhibitors might be useful against tumors with DNA replication defects. Hypomorphism for the 9-1-1 component Hus1 did not affect tumor latency or susceptibility in Chaos3 animals, and tumors in these mice did not exhibit impaired ATR pathway signaling. These and other data indicate that under conditions of systemic replication stress, the ATM pathway is particularly important both for cancer suppression and viability during development. PMID:23975433

  18. Acute kidney injury and dermonecrosis after Loxosceles reclusa envenomation

    PubMed Central

    Nag, A.; Datta, J.; Das, A.; Agarwal, A. K.; Sinha, D.; Mondal, S.; Ete, T.; Chakraborty, A.; Ghosh, S.

    2014-01-01

    Spiders of the Loxosceles species can cause dermonecrosis and acute kidney injury (AKI). Hemolysis, rhabdomyolysis and direct toxin-mediated renal damage have been postulated. There are very few reports of Loxoscelism from India. We report a case of AKI, hemolysis and a “gravitational” pattern of ulceration following the bite of the brown recluse spider (Loxosceles spp). PMID:25097339

  19. Acute kidney injury and dermonecrosis after Loxosceles reclusa envenomation.

    PubMed

    Nag, A; Datta, J; Das, A; Agarwal, A K; Sinha, D; Mondal, S; Ete, T; Chakraborty, A; Ghosh, S

    2014-07-01

    Spiders of the Loxosceles species can cause dermonecrosis and acute kidney injury (AKI). Hemolysis, rhabdomyolysis and direct toxin-mediated renal damage have been postulated. There are very few reports of Loxoscelism from India. We report a case of AKI, hemolysis and a "gravitational" pattern of ulceration following the bite of the brown recluse spider (Loxosceles spp). PMID:25097339

  20. Cytotoxicity, apoptosis, DNA damage and methylation in mammary and kidney epithelial cell lines exposed to ochratoxin A.

    PubMed

    Giromini, Carlotta; Rebucci, Raffaella; Fusi, Eleonora; Rossi, Luciana; Saccone, Francesca; Baldi, Antonella

    2016-06-01

    This study aimed to investigate the in vitro damage induced by ochratoxin A (OTA) in BME-UV1 and MDCK epithelial cells. Both cells lines were treated with OTA (0 up to 10 μg/mL), and cell viability (MTT assay), membrane stability (lactate dehydrogenase (LDH) release assay) and apoptotic cell rate (Tunel assay) were investigated. Further, the effect of the incubation with OTA has been evaluated at DNA level by the determination of DNA integrity, by the quantification of DNA adduct formation (8-hydroxy-2'-deoxyguanosine (8-OHdG)) and by the assessment of the global DNA methylation status (5-methyl-cytosine (5-mC)). The obtained results showed that after 24 h of OTA treatment, BME-UV1 cell viability was reduced in a dose-dependent way. OTA significantly (P < 0.05) increased LDH release in BME-UV1 cells at all concentrations tested. OTA (1.25 μg/mL) induced 35 % LDH release in MDCK cells (P < 0.05). A significant (P < 0.05) change in percentages of apoptotic BME-UV1 (10 ± 0.86) and MDCK (25 ± 0.88) cells was calculated when the cells were co-incubated with OTA. The level of 8-OHdG adduct formation was significantly (P < 0.05) increased in BME-UV1 cells treated with 1.25 μg/mL of OTA. The results of the present study suggest that a different mechanism of action may occur in these cell lines. Graphical abstract Study results overview. PMID:27154019

  1. Biological properties of Alsidium corallinum and its potential protective effects against damage caused by potassium bromate in the mouse liver.

    PubMed

    Ben Saad, Hajer; Kharrat, Nadia; Krayem, Najeh; Boudawara, Ons; Boudawara, Tahia; Zeghal, Najiba; Ben Amara, Ibtissem

    2016-02-01

    In the course of searching for hepatoprotective agents from natural sources, the protective effect of chemical constituents of the marine red alga Alsidium corallinum (A. corallinum) against potassium bromate (KBrO3)-induced liver damage in adult mice was investigated. The in vitro antioxidant and antibacterial properties of A. corallinum were firstly investigated. Then, A. corallinum was tested in vivo for its potential protective effects against damage caused by KBrO3 in mice models divided into four groups: controls, KBrO3, KBrO3 + A. corallinum, and A. corallinum. Our results demonstrated the rich composition of A. corallinum in antioxidant compounds like phenolics, flavonoids, anthocyanins, polysaccharides, chlorophyll and carotenoids. Its antioxidant activity was also confirmed using β-carotene bleaching by linoleic acid assay, reducing sugar test and trolox equivalent antioxidant capacity. The ethanolic extract of A. corallinum also showed good inhibition of the tested bacteria. The coadministration of the red alga associated to the KBrO3 alleviated hepatotoxicity as monitored by the improvement of hepatic oxidative stress biomarkers and plasma biochemical parameters, when compared to the KBrO3-treated mice. These results were confirmed by the improvement of histological and molecular changes. Treatment with A. corallinum prevented liver damage induced by KBrO3, thus protecting the body against free radicals and reducing inflammation and hypercholesterolemia risks. PMID:26498820

  2. Cyclooxygenase-2 and kidney failure.

    PubMed

    Rios, Amelia; Vargas-Robles, Hilda; Gámez-Méndez, Ana Maria; Escalante, Bruno

    2012-08-01

    Cyclooxygenase (COX)-dependent prostaglandins are necessary for normal kidney function. These prostaglandins are associated with inflammation, maintenance of sodium and water homeostasis, control of renin release, renal vasodilation, vasoconstriction attenuation, and prenatal renal development. COX-2 expression is regulated by the renin-angiotensin system, glucocorticoids or mineralcorticoids, and aldosterone, supporting a role for COX-2 in kidney function. Indeed, COX-2 mRNA and protein levels as well as enzyme activity are increased, along with PGE2, during kidney failure. In addition, changes in COX-2 expression are associated with increased blood pressure, urinary volume, sodium and protein and decreased urinary osmolarity. Intrarenal mechanisms such as angiotensin II (Ang II) production, increased sodium delivery, glomerular hypertension, and renal tubular inflammation have been suggested to be responsible for the increase in COX-2 expression. Although, specific COX-2 pharmacological inhibition has been related to the prevention of kidney damage, clinical studies have reported that COX-2 inhibition may cause side effects such as edema or a modest elevation in blood pressure and could possibly interfere with antihypertensive drugs and increase the risk of cardiovascular complications. Thus, administration of COX-2 inhibitors requires caution, especially in the presence of underlying cardiovascular disease. PMID:22119250

  3. Protective effect of Xingnaojia formulation on rats with brain and liver damage caused by chronic alcoholism

    PubMed Central

    LI, SHUANG; WANG, SU; GUO, ZHI-GANG; HUANG, NING; ZHAO, FAN-RONG; ZHU, MO-LI; MA, LI-JUAN; LIANG, JIN-YING; ZHANG, YU-LIN; HUANG, ZHONG-LIN; WAN, GUANG-RUI

    2015-01-01

    The aim of this study was to observe the effect of a formulation of traditional Chinese medicine extracts known as Xingnaojia (XNJ) on the liver function, learning ability and memory of rats with chronic alcoholism and to verify the mechanism by which it protects the brain and liver. A rat model of chronic alcoholism was used in the study. The spatial learning ability and memory of the rats were tested. The rats were then sacrificed and their brains and hepatic tissues were isolated. The activity of superoxide dismutase (SOD) and levels of glutamate (Glu), N-methyl D-aspartate receptor subtype 2B (NR2B), cyclin-dependent kinase 5 (CDK5) and cannabinoid receptor 1 (CB1) in the hippocampus were analyzed. The ultrastructure of the hepatic tissue was observed by electron microscopy. In addition, the activities of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) in serum were tested and the levels of low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides (TG) and total cholesterol (TCHOL) were analyzed. XNJ enhanced the learning and memory of rats with chronic alcoholism. Treatment with XNJ increased the activity of SOD, and decreased the expression levels of NR2B mRNA and NR2B, CB1 and CDK5 proteins in the brain tissues compared with those in the model rats. It also increased the activity of ALDH in the serum and liver, decreased the serum levels of LDL, TG and TCHOL and increased the serum level of HDL. These results indicate that XNJ exhibited a protective effect against brain and liver damage in rats with chronic alcoholism. PMID:26640531

  4. Application of molecular markers to detect DNA damage caused by environmental pollutants in lichen species.

    PubMed

    Cansaran-Duman, D; Altunkaynak, E; Aslan, A; Byk, I; Aras, S

    2015-01-01

    Pseudevernia furfuracea L. (Zopf), Peltigera praetextata (Flrke ex Sommerf.) Zopf, Lobaria pulmonaria (L.) Hoffm., and Usnea longissima Ach. lichen species were used as bioindicators to assess the genotoxicity of air pollutants. In the present study, we examined significant environmetal pollutants and investigate how changes may lead to damage in DNA structure using RAPD markers. In the study area (Erzurum, Turkey), poor-quality lignite, which generates a large amount of sulfur dioxide, nitrogen oxides, and particle matter, is used for domestic heating, and vehicles also contribute to air pollution. Control lichen samples were collected far from large urban and industrial settlements and transplanted to four polluted sites for 4, 8, or 12 months. The total soluble protein content of the examined four lichen species did not significantly change with exposure time (P < 0.05). The four lichen samples exposed to the pollutants for 8 months had the highest ratio of DNA changes. The ratio of band differences in P. praetextata was higher than that in the other three lichen species, possibly because it has broad leaves that accumulated more pollutants. The average incidences of polymorphism were 64.14, 54.58, 65.76, and 43.06% for P. furfuracea, P. praetextata, L. pulmonaria, and U. longissima, respectively. The genomic template stability (GTS) significantly decreased following exposure to pollutants. GTS ratios revealed that the highest value (98.36%) belonged to U. longissima samples from Site 1 (10 m) after 4 months of exposure, and the lowest values belonged to P. praetextata (73.58%) from Site 3 (100 m) after 8 months of exposure. Based on our findings, we recommend the use of P. praetextata as an indicator of genotoxicity. PMID:25966238

  5. Methanolic Extract of Curcuma caesia Roxb. Prevents the Toxicity Caused by Cyclophosphamide to Bone Marrow Cells, Liver and Kidney of Mice

    PubMed Central

    Devi, Heisanam Pushparani; Mazumder, Pranab Behari

    2016-01-01

    Introduction: With an ever increasing cause of cancer, it has been recommended to treat with conventional drugs, however because of the side effects caused by the conventional drugs, the research on medicinal plants has been intensified due to their less adverse and toxic effects. Objectives: The primary objective of the present study was to evaluate the protective effect of the medicinal plant Curcuma caesia Roxb. against free radicals ABTS+ and O2-. Also it was aimed to evaluate the protective effect of C.caesia Roxb. against the chemotherapeutic drug Cyclophosphamide and its side effects in liver and kidney. Methods: The rhizomes of the plant was extracted with methanol through soxhlet and its antioxidant activity was tested against ABTS+ and O2-. For antigenotoxic studies, animals were divided into eight groups and micronucleus assay was employed and for biochemical analysis serum sample was collected from the blood and SGOT, SGPT analysis was performed. Also the biochemical analysis was performed from both the liver and kidney. Results: The methanolic extract of Curcuma caesia Roxb. was found to scavenge the free radicals ABTS+ and O2-. the micronuclei formation was found to be increased in the positive control group as compared to the negative control group significantly (P<0.002) however increase in the number of micronuclei was found to be decrease with the pretreatment of the extract at different concentrations significantly as compared to the negative control groups (P<0.01, P<0.005, P<0.001). The increased level of serum SGPT and SGOT as well as peroxidation level in both liver and kidney due to treatment of cyclophosphamide was also found to be decreased with the pretreatment of the extract significantly as compared to the positive control groups. There was decreased in the level of endogenous antioxidant such as GSH and GR in the positive control group however decreased level of GSH and GR was found to be increased with the pretreatment of the methanolic extract of C. caesia Roxb. Conclusion: The present study suggested that the methanolic extract of C. caesia Roxb has not shown any genotoxicity and reduces the genotoxicity caused by cyclophosphamide. It was also to have the protective effects against the liver and kidney. So it could be provided as one of the herbal supplementation in chemoprevention of CP to ameliorate the side effects of it. SUMMARY Cancer is characterized by uncontrolled growth of cells and much research has been done for the past several years from various disciplines for the treatment of cancer but till now no therapy has been discovered. Treatment of cancer with chemotherapeutic drugs has been suggested to prevent cancer cells however they are often limited with their toxicity to normal cells. Therefore it has been suggested that the supplementation of medicinal plants which are rich source of antioxidants can decrease the toxic effect caused by chemotherapeutic drugs. Curcuma caesia Roxb is a medicinal plant which has high antioxidant activity, as per present study, methanolic extract of Curcuma caesia Roxb prevents the toxicity caused by cyclophosphosphamide (chemotherapeutic drug) in bone marrow cells by reducing the micronuclei formation; it also prevents the hepatotoxicity and nephrotoxicity caused by cyclophosphamide, so it can be used as a supplement in cancer treatment with cyclophosphamide. PMID:26941535

  6. Iatrogenic Damage to the Periodontium Caused by Fixed Prosthodontic Treatment Procedures

    PubMed Central

    Harish, PV; Joseph, Sonila Anne; Sirajuddin, Syed; Gundapaneni, Veenadharini; Chungkham, Sachidananda; ., Ambica

    2015-01-01

    Missing teeth should be replaced as soon as possible to maintain arch integrity and thereby avoid both morphologic and functional derangements in the occlusion. Otherwise, changes occur that upset the masticatory system, such as extrusion of the teeth opposing the edentulous areas along with their alveolar housing, their supporting tissues and ultimately the maxillary sinus. Concurrently with extrusion, shifting of the interproximal contacts and migration of the adjacent teeth occur, thereby impairing function and causing disharmony. Good oral health cannot be achieved when changes in tooth position alter the coronal contour and occlusion interfering with mutual support, which encourages food impaction and retention, further leading to osseous defects.

  7. Effect of temperature and tree species on damage progression caused by whitespotted sawyer (Coleoptera: Cerambycidae) larvae in recently burned logs.

    PubMed

    Bélanger, Sébastien; Bauce, Eric; Berthiaume, Richard; Long, Bernard; Labrie, Jacques; Daigle, Louis-Frédéric; Hébert, Christian

    2013-06-01

    The whitespotted sawyer, Monochamus scutellatus scutellatus (Say) (Coleoptera: Ce-rambycidae), is one of the most damaging wood-boring insects in recently burned boreal forests of North America. In Canada, salvage logging after wildfire contributes to maintaining the timber volume required by the forest industry, but larvae of this insect cause significant damage that reduces the economic value of lumber products. This study aimed to estimate damage progression as a function of temperature in recently burned black spruce (Picea mariana (Miller) Britton, Sterns, and Poggenburg) and jack pine (Pinus banksiana Lambert) trees. Using axial tomographic technology, we modeled subcortical development and gallery depth progression rates as functions of temperature for both tree species. Generally, these rates were slightly faster in black spruce than in jack pine logs. Eggs laid on logs kept at 12 degrees C did not hatch or larvae were unable to establish themselves under the bark because no larval development was observed. At 16 degrees C, larvae stayed under the bark for > 200 d before penetrating into the sapwood. At 20 degrees C, half of the larvae entered the sapwood after 30-50 d, but gallery depth progression stopped for approximately 70 d, suggesting that larvae went into diapause. The other half of the larvae entered the sapwood only after 100-200 d. At 24 and 28 degrees C, larvae entered the sapwood after 26-27 and 21 d, respectively. At 28 degrees C, gallery depth progressed at a rate of 1.44 mm/d. Temperature threshold for subcortical development was slightly lower in black spruce (12.9 degrees C) than in jack pine (14.6 degrees C) and it was 1 degrees C warmer for gallery depth progression for both tree species. These results indicate that significant damage may occur within a few months after fire during warm summers, particularly in black spruce, which highlights the importance of beginning postfire salvage logging as soon as possible to reduce economic losses. PMID:23865199

  8. Low-temperature atmospheric plasma increases the expression of anti-aging genes of skin cells without causing cellular damages.

    PubMed

    Choi, Jeong-Hae; Lee, Hyun-Wook; Lee, Jae-Koo; Hong, Jin-woo; Kim, Gyoo-cheon

    2013-03-01

    Efforts to employ various types of plasma in the field of skin care have increased consistently because it can regulate many biochemical reactions that are normally unaffected by light-based therapy. One method for skin rejuvenation adopted a high-temperature plasma generator to remove skin epithelial cells. In this case, the catalyzing effects of the plasma were rarely used due to the high temperature. Hence, the benefits of the plasma were not magnified. Recently, many types of low-temperature plasma devices have been developed for medical applications but their detailed functions and working mechanisms are unclear. The present study examined the effect of low-temperature microwave plasma on skin cells. Treatment with low-temperature plasma increased the expression of anti-aging genes in skin cells, including collagen, fibronectin and vascular endothelial growth factor. Furthermore, the plasma treatment did not cause cell death, but only induced slight cell growth arrest at the G2 phase. Although the cells treated with low-temperature plasma showed moderate growth arrest, there were no signs of thermal or genetic damage of skin cells. Overall, this low-temperature microwave plasma device induces the expressions of some anti-aging-related genes in skin cells without causing damage. PMID:22773133

  9. Inhibition of the transient receptor potential melastatin-2 channel causes increased DNA damage and decreased proliferation in breast adenocarcinoma cells

    PubMed Central

    HOPKINS, MANDI M.; FENG, XIAOXING; LIU, MENGWEI; PARKER, LAUREN P.; KOH, DAVID W.

    2015-01-01

    Transient receptor potential, melastatin-2 (TRPM2) is a plasma membrane cation channel with important roles in sensory functions and promoting cell death. However, we demonstrated here that TRPM2 was present in the nuclei of MCF-7 and MDA-MB-231 human breast adenocarcinoma cells, and its pharmacologic inhibition or RNAi silencing caused decreased cell proliferation. Neither an effect on proliferation nor a localization of TRPM2 in the nucleus was observed in noncancerous HMEC and MCF-10A human mammary epithelial cells. Investigation of possible effects of TRPM2 function in the nucleus demonstrated that pharmacologic inhibition or RNAi silencing of TRPM2 in MCF-7 and MDA-MB-231 human breast adenocarcinoma cells caused up to 4-fold increases in DNA damage levels, as compared to noncancerous breast cells after equivalent treatments. These results indicate that TRPM2 has a novel nuclear function in human breast adenocarcinoma cells that facilitates the integrity of genomic DNA, a finding that is distinct from its previously reported role as a plasma membrane cation channel in noncancerous cells. In summary, we report here a novel effect promoted by TRPM2, where it functions to minimize DNA damage and thus may have a role in the protection of genomic DNA in breast cancer cells. Our study therefore provides compelling evidence that TRPM2 has a unique role in breast adenocarcinoma cells. Accordingly, these studies suggest that TRPM2 is a potential therapeutic target, where its pharmacologic inhibition may provide an innovative strategy to selectively increase DNA damage levels in breast cancer cells. PMID:25760245

  10. GPR measurements and estimation for road subgrade damage caused by neighboring train vibration load

    NASA Astrophysics Data System (ADS)

    Zhao, Yonghui; Lu, Gang; Ge, Shuangcheng

    2015-04-01

    Generally, road can be simplified as a three-layer structure, including subgrade, subbase and pavement. Subgrade is the native material underneath a constructed road. It is commonly compacted before the road construction, and sometimes stabilized by the addition of asphalt, lime or other modifiers. As the mainly supporting structure, subgrade damage would lead in pavement settlement, displacement and crack. Assessment and monitoring of the subgrade condition currently involves trial pitting and subgrade sampling. However there is a practical limit on spatial density at which trail pits and cores can be taken. Ground penetrating radar (GPR) has been widely used to characterize highway pavement profiling, concrete structure inspection and railroad track ballast estimation. GPR can improve the economics of road maintenance. Long-term train vibration load might seriously influence the stability of the subgrade of neighboring road. Pavement settlement and obvious cracks have been found at a municipal road cross-under a railway with culvert box method. GPR test was conducted to estimate the subgrade and soil within 2.0 m depth for the further road maintenance. Two survey lines were designed in each lane, and total 12 GPR sections have been implemented. Considering both the penetrating range and the resolution, a antenna with a 500 MHz central frequency was chosen for on-site GPR data collection. For data acquisition, we used the default operating environment and scanning parameters for the RAMAC system: 60kHz transmission rate, 50 ns time window, 1024 samples per scan and 0.1 m step-size. Continuous operation was used; the antenna was placed on the road surface and slowly moved along the road. The strong surrounding disturbance related to railroad and attachments, might decrease the reliability of interpretation results. Some routine process methods (including the background removing, filtering) have been applied to suppress the background noise. Additionally, attribute analysis is an important tool that focused on the multi-properties of the signal. Here, cross-correlation attribute analysis has been applied for GPR profile interpretation. It compares one trace with surrounding traces to determine degrees of similar, and improves the difference between the reflected wave from detection target and its surrounding mediums, which makes it easy to detect the anomaly that couldn't be found in original GPR time profile. It's possible to identify sections of subgrade in good or worse condition, which may require specific maintenance or trail pitting investigation.

  11. Kidney Failure: What to Expect

    MedlinePlus

    ... have leg cramps. These problems are caused by waste products that build up in the blood, a condition known as uremia. Healthy kidneys remove waste products from the blood. When the kidneys stop ...

  12. Valuing the human health damage caused by the fraud of Volkswagen.

    PubMed

    Oldenkamp, Rik; van Zelm, Rosalie; Huijbregts, Mark A J

    2016-05-01

    Recently it became known that Volkswagen Group has been cheating with emission tests for diesel engines over the last six years, resulting in on-road emissions vastly exceeding legal standards for nitrogen oxides in Europe and the United States. Here, we provide an estimate of the public health consequences caused by this fraud. From 2009 to 2015, approximately nine million fraudulent Volkswagen cars, as sold in Europe and the US, emitted a cumulative amount of 526 ktonnes of nitrogen oxides more than was legally allowed. These fraudulent emissions are associated with 45 thousand disability-adjusted life years (DALYs) and a value of life lost of at least 39 billion US dollars, which is approximately 5.3 times larger than the 7.3 billion US dollars that Volkswagen Group has set aside to cover worldwide costs related to the diesel emissions scandal. PMID:26840525

  13. Impaired pressure natriuresis resulting in salt-sensitive hypertension is caused by tubulointerstitial immune cell infiltration in the kidney.

    PubMed

    Franco, Martha; Tapia, Edilia; Bautista, Rocio; Pacheco, Ursino; Santamaria, Jose; Quiroz, Yasmir; Johnson, Richard J; Rodriguez-Iturbe, Bernardo

    2013-04-01

    Immune cell infiltration of the kidney is a constant feature in salt-sensitive hypertension (SSHTN). We evaluated the relationship between the renal inflammation and pressure natriuresis in the model of SSHTN that results from transient oral administration of N(ω)-nitro-L-arginine methyl ester (L-NAME). Pressure natriuresis was determined in Wistar rats that received 4 wk of a high-salt (4% NaCl) diet, starting 1 wk after stopping L-NAME, which was administered alone (SSHTN group, n = 17) or in association with mycophenolate mofetil (MMF; MMF group, n = 15). The administration of MMF in association with L-NAME is known to prevent the subsequent development of SSHTN. Control groups received a high (n = 12)- and normal (0.4%)-salt diet (n = 20). Rats with SSHTN had increased expression of inflammatory cytokines and oxidative stress. The severity of hypertension correlated directly (P < 0.0001) with the number of tubulointerstitial immune cells and angiotensin II-expressing cells. Pressure natriuresis was studied at renal arterial pressures (RAPs) of 90, 110, 130, and 150 mmHg. Glomerular filtration rate was similar and stable in all groups, and renal blood flow was decreased in the SSHTN group. Significantly decreased natriuresis (P < 0.05) was found in the SSHTN group at RAPs of 130 and 150 mmHg, and there was an inverse correlation (P < 0.01) between the urinary sodium excretion and the number of tubulointerstitial inflammatory cells (lymphocytes and macrophages) and cells expressing angiotensin II. We conclude that tubulointerstitial inflammation plays a key role in the impairment of pressure natriuresis that results in salt-dependent hypertension in this experimental model. PMID:23364804

  14. Normal black kidney

    PubMed Central

    Yarmohamadi, Aliasghar; Rezayat, Ali Reza Akhavan; Memar, Bahram; Rahimi, Hamid Reza; Cand, PhD

    2014-01-01

    A black kidney has 3 major differential diagnoses: hemosiderosis, lipofuscin pigment and melanotic renal cell carcinoma. Excluding lipofuscin, the other 2 are accompanied by an abnormal renal function. We report on a 25-year-old man who intended to donate a kidney to his cousin. On the operating room table when we incised the left flank region and exposed the kidney, we found a firm and black kidney so the operation was cancelled due to potential vascular injuries. Days after the incomplete procedure, we reviewed the donor’s biochemistry and imaging to reassess his renal function, but the results showed quite normal renal function again. The result of Ham test was also negative. Two weeks later, we began the operation, removed the same left kidney and found that it was in the same conditions as it was before. We took the opportunity to send needle biopsies of the kidney for histopathologic analysis. The analysis showed a melanotic kidney without pathological changes in glomeruli and interstitium and vessels. A black kidney may result in hemosiderin, lipofuscin or melanin deposits in the kidney, which can confirm the diagnosis; however, special tests for underlying disease and renal function should be considered. Some causes of black kidney lead to abnormal function, but our patients’s kidney returned to normal. PMID:24839502

  15. Zika Virus Infection during Pregnancy in Mice Causes Placental Damage and Fetal Demise.

    PubMed

    Miner, Jonathan J; Cao, Bin; Govero, Jennifer; Smith, Amber M; Fernandez, Estefania; Cabrera, Omar H; Garber, Charise; Noll, Michelle; Klein, Robyn S; Noguchi, Kevin K; Mysorekar, Indira U; Diamond, Michael S

    2016-05-19

    Zika virus (ZIKV) infection in pregnant women causes intrauterine growth restriction, spontaneous abortion, and microcephaly. Here, we describe two mouse models of placental and fetal disease associated with in utero transmission of ZIKV. Female mice lacking type I interferon signaling (Ifnar1(-/-)) crossed to wild-type (WT) males produced heterozygous fetuses resembling the immune status of human fetuses. Maternal inoculation at embryonic day 6.5 (E6.5) or E7.5 resulted in fetal demise that was associated with ZIKV infection of the placenta and fetal brain. We identified ZIKV within trophoblasts of the maternal and fetal placenta, consistent with a trans-placental infection route. Antibody blockade of Ifnar1 signaling in WT pregnant mice enhanced ZIKV trans-placental infection although it did not result in fetal death. These models will facilitate the study of ZIKV pathogenesis, in utero transmission, and testing of therapies and vaccines to prevent congenital malformations. PMID:27180225

  16. Radio frequency radiation causes no nonthermal damage in enzymes and living cells.

    PubMed

    Fortune, Jennifer A; Wu, Bae-Ian; Klibanov, Alexander M

    2010-01-01

    The ability of radio frequency radiation (RFR) to exert irreversible nonthermal (i.e., not caused by accompanying heat) effects on biologics has been widely debated due to a relative paucity of comprehensive critical details in published reports dealing with this issue. In this study, we used rigorous control over experimental conditions to determine whether continuous RFR nonthermally affects commercially important enzymes and live bacterial and human cells using three most commonly used frequencies in current RF identification technology, namely 2.45 GHz, 915 MHz, and 13.56 MHz. Diverse biological samples were exposed to RFR under deliberately harsh conditions to increase the likelihood of observing such effects should they exist. Enzymatic activities of horseradish peroxidase and β-galactosidase in aqueous solution exhibited no statistically discernable consequences of even very intense RFR. Likewise, with putative thermal effects excluded, the viabilities of bacteria (both gram-positive and gram-negative) and of human cells were not detectably compromised by such an RFR exposure. PMID:20572294

  17. Feeding behavior and crop damage caused by capybaras (Hydrochoerus hydrochaeris) in an agricultural landscape.

    PubMed

    Felix, G A; Almeida Paz, I C L; Piovezan, U; Garcia, R G; Lima, K A O; Nääs, I A; Salgado, D D; Pilecco, M; Belloni, M

    2014-11-01

    This study aimed to assess the yield loss caused by capybaras in rural areas of Dourados-MS, their feeding periods, crop preferences and the landscape characteristics of farms that may affect the occurrence of capybara's herds. Semi-structured interviews in 24 different farms were done during a period between April 2010 and August 2011. Field observations were held at different times of the day, and also during the night in order to record peaks of the feeding behavior in six farms. Direct counting of capybaras along with the group of animals reported as seen by the farmers during the interviews was used to estimate the size of herds. Data was analyzed using the Principal Components Analyses and the Analytic Hierarchy Process. The average number of capybaras found in a regular herd was 18.8 ± 7.90 animals. The average number of capybara herd by farms was of 1.38 ± 0.92 while the average number of capybaras by farms was 32.33 ± 27.87. Capybaras selected rice (Oryza sativa) when it was available (14.5% of devastation in 1.18% of total planted area); however, the most eaten crop was corn (Zea mays) with 38.55% of loss rate in 16.17% of the total planted area. Capybaras ate mostly in the evening and during the night. The availability of water resources in the rural area predisposed the occurrence of capybara's herds. PMID:25627586

  18. [Sudden death associated with myocardial damage caused by microthrombi in a patient with thrombotic thrombocytopenic purpura].

    PubMed

    Yamamoto, Kiyoko; Hattori, Yukinori; Shimada, Koki; Araki, Yoko; Adachi, Tatsuya; Tsushita, Keitaro

    2015-11-01

    We describe a 35-year-old woman with Down's syndrome who was admitted to a clinic with anorexia and vomiting. Since laboratory findings showed anemia (Hb 7.4 g/dl) and thrombocytopenia (0.5 × 10⁴/μl), she was transferred to our hospital for treatment. Further laboratory examinations revealed schistocytes, LDH elevation, and a negative Coombs' test. Thrombotic thrombocytopenic purpura (TTP) was suspected. Plasma exchange (PEX) and prednisolone administration were thus immediately initiated. Prior to these treatments, ADAMTS13 activity was less than 5% and inhibitors were detected at a level of 0.8 Bethesda U/ml. Although her platelet count had risen to 13.0 × 10⁴/μl by day 6 (post 4 sessions of PEX), it had decreased to 1.8 × 10⁴/μl on day 7. Despite ongoing PEX, thrombocytopenia persisted. On day 21, she suddenly died. Autopsy findings revealed no evidence of myocardial necrosis or coronary artery thrombosis. Extensive microthrombi were, however, detected in precapillary arterioles, capillaries, and post-capillary venules of the heart. Therefore, this patient's sudden death was clinically suspected to have been caused by cardiomyopathy, which had produced cardiogenic shock. PMID:26666721

  19. Kidney School

    MedlinePlus

    ... copies? Read our licensing agreement Living Successfully with Kidney Disease People with kidney disease can live long ... Listen Printing multiple copies? Read our licensing agreement Kidneys: How They Work, How They Fail, What You ...

  20. Kidney Problems

    MedlinePlus

    ... our e-newsletter! Aging & Health A to Z Kidney Problems Basic Facts & Information The kidneys are two ... the production of red blood cells. What are Kidney Diseases? For about one-third of older people, ...

  1. Kidney biopsy

    MedlinePlus

    ... through the kidney Connective tissue diseases such as systemic lupus erythematosus Other diseases that may be affecting the kidney, such as diabetes Kidney transplant rejection , if you had a transplant

  2. Oxidative stress and autophagy: Crucial modulators of kidney injury

    PubMed Central

    Sureshbabu, Angara; Ryter, Stefan W.; Choi, Mary E.

    2015-01-01

    Both acute kidney injury (AKI) and chronic kidney disease (CKD) that lead to diminished kidney function are interdependent risk factors for increased mortality. If untreated over time, end stage renal disease (ESRD) is an inevitable outcome. Acute and chronic kidney diseases occur partly due to imbalance between the molecular mechanisms that govern oxidative stress, inflammation, autophagy and cell death. Oxidative stress refers to the cumulative effects of highly reactive oxidizing molecules that cause cellular damage. Autophagy removes damaged organelles, protein aggregates and pathogens by recruiting these substrates into double membrane vesicles called autophagosomes which subsequently fuse with lysosomes. Mounting evidence suggests that both oxidative stress and autophagy are significantly involved in kidney health and disease. However, very little is known about the signaling processes that link them. This review is focused on understanding the role of oxidative stress and autophagy in kidney diseases. In this review, we also discuss the potential relationships between oxidative stress and autophagy that may enable the development of better therapeutic intervention to halt the progression of kidney disease and promote its repair and resolution. PMID:25613291

  3. Dominant Repression by Arabidopsis Transcription Factor MYB44 Causes Oxidative Damage and Hypersensitivity to Abiotic Stress

    PubMed Central

    Persak, Helene; Pitzschke, Andrea

    2014-01-01

    In any living species, stress adaptation is closely linked with major changes of the gene expression profile. As a substrate protein of the rapidly stress-induced mitogen-activated protein kinase MPK3, Arabidopsis transcription factor MYB44 likely acts at the front line of stress-induced re-programming. We recently characterized MYB44 as phosphorylation-dependent positive regulator of salt stress signaling. Molecular events downstream of MYB44 are largely unknown. Although MYB44 binds to the MBSII element in vitro, it has no discernible effect on MBSII-driven reporter gene expression in plant co-transfection assays. This may suggest limited abundance of a synergistic co-regulator. MYB44 carries a putative transcriptional repression (Ethylene responsive element binding factor-associated Amphiphilic Repression, EAR) motif. We employed a dominant repressor strategy to gain insights into MYB44-conferred stress resistance. Overexpression of a MYB44-REP fusion markedly compromised salt and drought stress tolerance—the opposite was seen in MYB44 overexpression lines. MYB44-mediated resistance likely results from induction of tolerance-enhancing, rather than from repression of tolerance-diminishing factors. Salt stress-induced accumulation of destructive reactive oxygen species is efficiently prevented in transgenic MYB44, but accelerated in MYB44-REP lines. Furthermore, heterologous overexpression of MYB44-REP caused tissue collapse in Nicotiana. A mechanistic model of MAPK-MYB-mediated enhancement in the antioxidative capacity and stress tolerance is proposed. Genetic engineering of MYB44 variants with higher trans-activating capacity may be a means to further raise stress resistance in crops. PMID:24531138

  4. Simulated climate change causes immune suppression and protein damage in the crustacean Nephrops norvegicus.

    PubMed

    Hernroth, Bodil; Skld, Helen Nilsson; Wiklander, Kerstin; Jutfelt, Fredrik; Baden, Susanne

    2012-11-01

    Rising atmospheric carbon dioxide concentration is causing global warming, which affects oceans by elevating water temperature and reducing pH. Crustaceans have been considered tolerant to ocean acidification because of their retained capacity to calcify during subnormal pH. However, we report here that significant immune suppression of the Norway lobster, Nephrops norvegicus, occurs after a 4-month exposure to ocean acidification (OA) at a level predicted for the year 2100 (hypercapnic seawater with a pH lowered by 0.4 units). Experiments carried out at different temperatures (5, 10, 12, 14, 16, and 18C) demonstrated that the temperature within this range alone did not affect lobster immune responses. In the OA-treatment, hemocyte numbers were reduced by almost 50% and the phagocytic capacity of the remaining hemocytes was inhibited by 60%. The reduction in hemocyte numbers was not due to increased apoptosis in hematopoetic tissue. Cellular responses to stress were investigated through evaluating advanced glycation end products (AGE) and lipid oxidation in lobster hepatopancreata, and OA-treatment was shown to significantly increase AGEs', indicating stress-induced protein alterations. Furthermore, the extracellular pH of lobster hemolymph was reduced by approximately 0.2 units in the OA-treatment group, indicating either limited pH compensation or buffering capacity. The negative effects of OA-treatment on the nephropidae immune response and tissue homeostasis were more pronounced at higher temperatures (12-18C versus 5C), which may potentially affect disease severity and spread. Our results signify that ocean acidification may have adverse effects on the physiology of lobsters, which previously had been overlooked in studies of basic parameters such as lobster growth or calcification. PMID:22974540

  5. Can Diopatra neapolitana (Annelida: Onuphidae) regenerate body damage caused by bait digging or predation?

    NASA Astrophysics Data System (ADS)

    Pires, A.; Freitas, R.; Quintino, V.; Rodrigues, A. M.

    2012-09-01

    The regenerative ability of Diopatra neapolitana was evaluated under laboratory conditions following nine experimental amputation levels: before the beginning of the branchiae (chaetiger 3 or 4), in the branchial region, at chaetigers 10, 15, 20, 25, 30, 35 and 40 and after the branchiae, at chaetigers 45-55. Specimens amputated at the 20th chaetiger were not able to regenerate and did not survive. The posterior portion of the specimens amputated up to chaetiger 15, regenerated the anterior part but the anterior ends were unable to survive. The anterior end of the specimens amputated at and beyond the 25th chaetiger regenerated the posterior part but the posterior ends were not able to regenerate an anterior part. Percent survival was directly related to the number of branchial segments left in the regenerating specimen and reached 100% only when the specimens were amputated beyond the branchial region. These results indicate that the species has regenerative ability and should survive the loss of a few anterior chaetigers, namely caused by predation. However, the results also indicate that bait digging could impair the survival of the posterior part remaining in the tube, as usually more than 20 chaetigers are harvested by bait collectors. Regarding field-collected specimens, D. neapolitana was found regenerating a mean of 9.0 ± 2.51 chaetigers, and Diopatra marocensis 7.5 ± 1.93 chaetigers, at the anterior end. The higher percentage of field-collected specimens showing regeneration of the anterior end belonged to D. marocensis. Only very few specimens, for both species, were found regenerating the posterior part of the body.

  6. Polycystic Kidney Disease in the Medaka (Oryzias latipes) pc Mutant Caused by a Mutation in the Gli-Similar3 (glis3) Gene

    PubMed Central

    Hashimoto, Hisashi; Miyamoto, Rieko; Watanabe, Naoki; Shiba, Dai; Ozato, Kenjiro; Inoue, Chikako; Kubo, Yuko; Koga, Akihiko; Jindo, Tomoko; Narita, Takanori; Naruse, Kiyoshi; Ohishi, Kazuko; Nogata, Keiko; Shin-I, Tadasu; Asakawa, Shuichi; Shimizu, Nobuyoshi; Miyamoto, Tomotsune; Mochizuki, Toshio; Yokoyama, Takahiko; Hori, Hiroshi; Takeda, Hiroyuki; Kohara, Yuji; Wakamatsu, Yuko

    2009-01-01

    Polycystic kidney disease (PKD) is a common hereditary disease in humans. Recent studies have shown an increasing number of ciliary genes that are involved in the pathogenesis of PKD. In this study, the Gli-similar3 (glis3) gene was identified as the causal gene of the medaka pc mutant, a model of PKD. In the pc mutant, a transposon was found to be inserted into the fourth intron of the pc/glis3 gene, causing aberrant splicing of the pc/glis3 mRNA and thus a putatively truncated protein with a defective zinc finger domain. pc/glis3 mRNA is expressed in the epithelial cells of the renal tubules and ducts of the pronephros and mesonephros, and also in the pancreas. Antisense oligonucleotide-mediated knockdown of pc/glis3 resulted in cyst formation in the pronephric tubules of medaka fry. Although three other glis family members, glis1a, glis1b and glis2, were found in the medaka genome, none were expressed in the embryonic or larval kidney. In the pc mutant, the urine flow rate in the pronephros was significantly reduced, which was considered to be a direct cause of renal cyst formation. The cilia on the surface of the renal tubular epithelium were significantly shorter in the pc mutant than in wild-type, suggesting that shortened cilia resulted in a decrease in driving force and, in turn, a reduction in urine flow rate. Most importantly, EGFP-tagged pc/glis3 protein localized in primary cilia as well as in the nucleus when expressed in mouse renal epithelial cells, indicating a strong connection between pc/glis3 and ciliary function. Unlike human patients with GLIS3 mutations, the medaka pc mutant shows none of the symptoms of a pancreatic phenotype, such as impaired insulin expression and/or diabetes, suggesting that the pc mutant may be suitable for use as a kidney-specific model for human GLIS3 patients. PMID:19609364

  7. Nuclear magnetic resonance: a tool for imaging belowground damage caused by Heterodera schachtii and Rhizoctonia solani on sugar beet.

    PubMed

    Hillnhütter, C; Sikora, R A; Oerke, E-C; van Dusschoten, D

    2012-01-01

    Belowground symptoms of sugar beet caused by the beet cyst nematode (BCN) Heterodera schachtii include the development of compensatory secondary roots and beet deformity, which, thus far, could only be assessed by destructively removing the entire root systems from the soil. Similarly, the symptoms of Rhizoctonia crown and root rot (RCRR) caused by infections of the soil-borne basidiomycete Rhizoctonia solani require the same invasive approach for identification. Here nuclear magnetic resonance imaging (MRI) was used for the non-invasive detection of belowground symptoms caused by BCN and/or RCRR on sugar beet. Excessive lateral root development and beet deformation of plants infected by BCN was obvious 28 days after inoculation (dai) on MRI images when compared with non-infected plants. Three-dimensional images recorded at 56 dai showed BCN cysts attached to the roots in the soil. RCRR was visualized by a lower intensity of the MRI signal at sites where rotting occurred. The disease complex of both organisms together resulted in RCRR development at the site of nematode penetration. Damage analysis of sugar beet plants inoculated with both pathogens indicated a synergistic relationship, which may result from direct and indirect interactions. Nuclear MRI of plants may provide valuable, new insight into the development of pathogens infecting plants below- and aboveground because of its non-destructive nature and the sufficiently high spatial resolution of the method. PMID:21948851

  8. Intense THz pulses cause H2AX phosphorylation and activate DNA damage response in human skin tissue

    PubMed Central

    Titova, Lyubov V.; Ayesheshim, Ayesheshim K.; Golubov, Andrey; Fogen, Dawson; Rodriguez-Juarez, Rocio; Hegmann, Frank A.; Kovalchuk, Olga

    2013-01-01

    Recent emergence and growing use of terahertz (THz) radiation for medical imaging and public security screening raise questions on reasonable levels of exposure and health consequences of this form of electromagnetic radiation. In particular, picosecond-duration THz pulses have shown promise for novel diagnostic imaging techniques. However, the effects of THz pulses on human cells and tissues thus far remain largely unknown. We report on the investigation of the biological effects of pulsed THz radiation on artificial human skin tissues. We observe that exposure to intense THz pulses for ten minutes leads to a significant induction of H2AX phosphorylation, indicating that THz pulse irradiation may cause DNA damage in exposed skin tissue. At the same time, we find a THz-pulse-induced increase in the levels of several proteins responsible for cell-cycle regulation and tumor suppression, suggesting that DNA damage repair mechanisms are quickly activated. Furthermore, we find that the cellular response to pulsed THz radiation is significantly different from that induced by exposure to UVA (400 nm). PMID:23577291

  9. Oxidative Damage of U937 Human Leukemic Cells Caused by Hydroxyl Radical Results in Singlet Oxygen Formation

    PubMed Central

    Rác, Marek; Křupka, Michal; Binder, Svatopluk; Sedlářová, Michaela; Matušková, Zuzana; Raška, Milan; Pospíšil, Pavel

    2015-01-01

    The exposure of human cells to oxidative stress leads to the oxidation of biomolecules such as lipids, proteins and nuclei acids. In this study, the oxidation of lipids, proteins and DNA was studied after the addition of hydrogen peroxide and Fenton reagent to cell suspension containing human leukemic monocyte lymphoma cell line U937. EPR spin-trapping data showed that the addition of hydrogen peroxide to the cell suspension formed hydroxyl radical via Fenton reaction mediated by endogenous metals. The malondialdehyde HPLC analysis showed no lipid peroxidation after the addition of hydrogen peroxide, whereas the Fenton reagent caused significant lipid peroxidation. The formation of protein carbonyls monitored by dot blot immunoassay and the DNA fragmentation measured by comet assay occurred after the addition of both hydrogen peroxide and Fenton reagent. Oxidative damage of biomolecules leads to the formation of singlet oxygen as conformed by EPR spin-trapping spectroscopy and the green fluorescence of singlet oxygen sensor green detected by confocal laser scanning microscopy. It is proposed here that singlet oxygen is formed by the decomposition of high-energy intermediates such as dioxetane or tetroxide formed by oxidative damage of biomolecules. PMID:25730422

  10. Oxidative damage of U937 human leukemic cells caused by hydroxyl radical results in singlet oxygen formation.

    PubMed

    Rác, Marek; Křupka, Michal; Binder, Svatopluk; Sedlářová, Michaela; Matušková, Zuzana; Raška, Milan; Pospíšil, Pavel

    2015-01-01

    The exposure of human cells to oxidative stress leads to the oxidation of biomolecules such as lipids, proteins and nuclei acids. In this study, the oxidation of lipids, proteins and DNA was studied after the addition of hydrogen peroxide and Fenton reagent to cell suspension containing human leukemic monocyte lymphoma cell line U937. EPR spin-trapping data showed that the addition of hydrogen peroxide to the cell suspension formed hydroxyl radical via Fenton reaction mediated by endogenous metals. The malondialdehyde HPLC analysis showed no lipid peroxidation after the addition of hydrogen peroxide, whereas the Fenton reagent caused significant lipid peroxidation. The formation of protein carbonyls monitored by dot blot immunoassay and the DNA fragmentation measured by comet assay occurred after the addition of both hydrogen peroxide and Fenton reagent. Oxidative damage of biomolecules leads to the formation of singlet oxygen as conformed by EPR spin-trapping spectroscopy and the green fluorescence of singlet oxygen sensor green detected by confocal laser scanning microscopy. It is proposed here that singlet oxygen is formed by the decomposition of high-energy intermediates such as dioxetane or tetroxide formed by oxidative damage of biomolecules. PMID:25730422

  11. Evaluation of melioration area damage on the river Danube caused by the hydroelectric power plant 'Djerdap 1' backwater.

    PubMed

    Pajic, P; Andjelic, L; Urosevic, U; Polomcic, D

    2014-01-01

    Construction of the hydroelectric power plant (HPP) 'Djerdap 1' formed a backwater effect on the Danube and its tributaries, which had an inevitable influence on groundwater level, causing it to rise and thus creating additional threats to all melioration areas on more than 300 km of the Danube riversides, as well as on the riversides of its tributaries: the Sava (100 km) and the Tisa (60 km). In this paper, the HPP 'Djerdap 1' backwater effect on some characteristic melioration areas (34 in all) has been analyzed. In most of these areas intensive agricultural activity has always been present. An assessment of agricultural production damage was carried out by complex hydrodynamic calculations (60 calculation profiles) for different backwater regimes, with the aim to precisely quantify the HPP 'Djerdap 1' backwater effect on groundwater piezometric levels. Combining them with complex agroeconomic analyses, the aim is to quantify agricultural production damage and to consider the perspective of melioration area users. This method, which combines two different, but compatible, aspects of the melioration area threat assessment (hydrodynamic and agroeconomic), may present a quality base for further agricultural production threat assessment on all melioration areas on the Danube riversides, with the final aim to consider the economic effects and the importance of its further protection. PMID:25051487

  12. Image analysis of epicuticular damage to foliage caused by dry deposition of the air pollutant nitric acid.

    PubMed

    Padgett, Pamela E; Parry, Sally D; Bytnerowicz, Andrzej; Heath, Robert L

    2009-01-01

    Nitric acid vapor is produced by the same photochemical processes that produce ozone. In the laboratory, concentrated nitric acid is a strong acid and a powerful oxidant. In the environment, where the concentrations are much lower, it is an innocuous source of plant nitrogen. As an air pollutant, which mode of action does dry deposition of nitric acid follow? We investigated the effects of dry deposition of nitric acid on the foliage of four tree species native to the western United States. A novel controlled environment, fumigation system enabled a four-week exposure at concentrations consistent with ambient diurnal patterns. Scanning electron microscopy and automated image analysis revealed changes in the epicuticular wax layer during fumigation. Exposure to nitric acid resulted in a reproducible suite of damage symptoms that increased with increasing dose. Each tree species tested exhibited a unique set of damage features, including cracks, lesions, and conformation changes to epicuticular crystallite structures. Dry deposition of atmospheric nitric acid caused substantial perturbation to the epicuticular surface of all four tree species investigated, consistent with the chemical oxidation of epicuticular waxes. Automated image analysis eliminated many biases that can trouble microscopy studies. Trade names and commercial enterprises or products are mentioned solely for information. No endorsements by the U.S. Department of Agriculture are implied. PMID:19137141

  13. Dysplastic kidneys.

    PubMed

    Winyard, Paul; Chitty, Lyn S

    2008-06-01

    Dysplastic kidneys are common malformations affecting up to 1 in 1000 of the general population. They are part of the spectrum of Congenital Abnormalities of the Kidney and Urinary Tract (CAKUT) and an increasing number of children are being diagnosed on antenatal ultrasound. In the past, these patients may not have been detected until adulthood following investigation for other illness, or even as incidental findings at post mortem, unless there was severe bilateral dysplasia leading to Potter's sequence or renal failure in childhood. Excluding syndromic cases with defects in other organ systems, features linked to worse prognosis at presentation are: (1) bilateral disease; (2) decreased functional renal mass (which encompasses not just small kidneys but also large ones where cysts replace normal architecture); (3) lower urinary tract obstruction; and (4) anhydramnios or severe oligohydramnios. Dysplasia and renal function are dynamic and can evolve during pregnancy, so repeated assessment is necessary when pathology is expected. Worsening dimensions or decreasing amniotic fluid levels imply poorer prognosis, but there are no proven therapies during pregnancy, though vesicoamniotic shunting may be indicated with obstruction. Postnatal investigations aim to define the anatomy, which helps to estimate risks of infection and kidney function. Management might then involve observation, prophylactic antibiotics, surgery and/or renal support. Risks of renal malignancy and hypertension are low during childhood, but longer-term follow-up is needed, particularly to determine blood pressure and renal function in adulthood and pregnancy. Around 10% of cases have a family history of significant renal/urinary tract malformation. Monogenic causes include mutations in individual genes, such as TCF2/hepatocyte nuclear factor 1ss (HNF1beta), PAX2 and uroplakins, but there are also recent reports of children with compound heterozygote mutations in several renal/urinary tract developmental genes. Effective genetic screening in future may require gene chip or other techniques to assess multiple genes concurrently, but this should not replace a multidisciplinary approach to these often difficult cases. PMID:18065301

  14. The Self-Injury Trauma (SIT) Scale: a method for quantifying surface tissue damage caused by self-injurious behavior.

    PubMed Central

    Iwata, B A; Pace, G M; Kissel, R C; Nau, P A; Farber, J M

    1990-01-01

    A method is described for classifying and quantifying surface tissue damage caused by self-injurious behavior. The Self-Injury Trauma Scale permits differentiation of self-injurious behavior according to topography, location of the injury on the body, type of injury, number of injuries, and estimate of severity. Fifty pairs of independently scored records were subjected to interrater reliability analyses, and the following mean (median) percentage agreement scores were obtained: overall agreement, 97% (98%); location of injury, 99% (100%); type of injury, 96% (100%); number of injuries, 89% (100%); and severity of injury, 94% (100%). Percentage agreement also was calculated for three summary scores: Number Index, 90%; Severity Index, 92%; and Estimate of Current Risk, 100%. Potential applications and limitations of the scale are discussed. PMID:2335488

  15. Kidney-brain crosstalk in the acute and chronic setting.

    PubMed

    Lu, Renhua; Kiernan, Matthew C; Murray, Anne; Rosner, Mitchell H; Ronco, Claudio

    2015-12-01

    Patients with kidney disease often exhibit multiple organ dysfunction that is caused, in part, by marked connectivity between the kidney and other organs and tissues. Substantial crosstalk occurs between the kidney and the brain, as indicated by the frequent presentation of neurological disorders, such as cerebrovascular disease, cognitive impairment, and neuropathy during the natural history of chronic kidney disease. The underlying pathophysiology of such comorbid neurological disorders in kidney disease is governed by shared anatomic and vasoregulatory systems and humoral and non-humoral bidirectional pathways that affect both the kidney and the brain. During acute kidney injury, the brain and kidney might interact through the amplification of cytokine-induced damage, extravasation of leukocytes, oxidative stress, and dysregulation of sodium, potassium, and water channels. The advent of dialysis and renal transplantation programmes has led to a reduction in the rate of neurological complications associated with uraemia, but a new set of complications have arisen as a consequence of the effects of dialysis on the central nervous system over the short and long term. This Review discusses the clinical complications of acute and chronic renal failure from a neurologic perspective, and highlights current understanding of the underlying pathophysiologies. PMID:26281892

  16. Causes and consequences of the Sinkhole at "El Trebol" of Quito, Ecuador - Implications to economic damage and risk assessment

    NASA Astrophysics Data System (ADS)

    Toulkeridis, Theofilos; Rodríguez, Fabián; Arias Jiménez, Nelson; Simón Baile, Débora; Salazar Martínez, Rodolfo; Addison, Aaron; Carreón Freyre, Dora; Mato, Fernando; Díaz Perez, Carmen

    2016-02-01

    The so-called "El Trébol" is a critical road interchange in Quito connecting the north and south regions of the city. In addition, it connects Quito with the highly populated "Los Chillos" valley, one of the most traveled zones in the Ecuadorian capital. El Trébol was constructed in the late sixties in order to resolve the traffic jams of the capital city and for that purpose the Machángara river was rerouted through a concrete box tunnel. In March 2008, the tunnel contained a high amount of trash furniture that had been impacting the top portion of the tunnel, compromising the structural integrity. On the 31st of March 2008 after a heavy rainfall a sinkhole of great proportions was formed in the Trébol traffic hub. In the first few minutes, with an initial diameter of 30 meters. The collapse continued to grow in the following days until the final dimensions of 120 meters in diameter and some 40 meters of depth, revealing the Machángara river at the base of the sinkhole. A state of emergency was declared, the cause of the sinkhole was a result of the lack of monitoring of the older subterranean infrastructure where trash had accumulated and damaged the concrete tunnel that channelized the Machángara river until it was worn away for a length of some 20 meters, leaving behind the sinkhole and the fear of recurrence in populated areas. In an intend to understand the causes and consequences of this sinkhole event, rainfall data are shown together with hydrogeological characteristics and a view back to the recent history of sinkhole lineation or arrangement of the city of Quito. The economic impact is also emphasized, where the direct costs of the damage and the reconstruction are presented and compared to indirect costs associated with this socio-natural disaster. These analyses suggest that the costs of indirect financial damage, like time loss or delay, and subsequent higher expenses for different types of of vehicles, are equivalent to many times the costs of the reconstruction of El Trébol.

  17. Secondary radiation damage as the main cause for unexpected volume effects: A histopathologic study of the parotid gland

    SciTech Connect

    Konings, Antonius W.T. . E-mail: a.w.t.konings@med.umcg.nl; Faber, Hette; Cotteleer, Femmy; Vissink, Arjan; Coppes, Rob P.

    2006-01-01

    Purpose: To elucidate with a histopathological study the mechanism of region-dependent volume effects in the partly irradiated parotid gland of the rat. Methods and Materials: Wistar rats were locally X-irradiated with collimators with conformal radiation portals for 100% volume and 50% cranial/caudal partial volumes. Single doses up to 40 Gy were applied. Parotid saliva samples were collected, and the three lobes of the parotid gland were examined individually on the macro- and micromorphologic level up to 1 year after irradiation. Results: Dose-dependent loss of gland weight was observed 1 year after total or partial X-irradiation. Weight loss of the glands correlated very well with loss of secretory function. Irradiating the cranial 50% volume (implicating a shielded lateral lobe) resulted in substantially more damage in terms of weight loss and loss of secretory function than 50% caudal irradiation (shielding the ventral and dorsal lobe). Histologic examinations of the glands 1 year after irradiation revealed that the shielded lateral lobe was severely affected, in contrast to the shielded ventral and dorsal lobes. Time studies showed that irradiation of the cranial 50% volume caused late development of secondary damage in the shielded lateral lobe, becoming manifest between 240 and 360 days after irradiation. The possible clinical significance of this finding is discussed. Conclusion: It is concluded that the observed region-dependent volume effect for late function loss in the rat parotid gland after partial irradiation is mainly caused by secondary events in the shielded lateral lobe. The most probable first step (primary radiation event) in the development of this secondary damage is radiation exposure to the hilus region (located between the ventral and dorsal lobe). By injuring major excretory ducts and supply routes for blood and nerves in this area, the facility system necessary for proper functioning of the nonexposed lateral lobe is seriously affected. The unexpected volume effect in the rat might have consequences for treatment strategies in radiotherapy, implicating not only salivary glands but also other organs with a seemingly homogeneous distribution of radiosensitive elements, a situation wherein volume effects have not been anticipated up to now.

  18. Do Native Parasitic Plants Cause More Damage to Exotic Invasive Hosts Than Native Non-Invasive Hosts? An Implication for Biocontrol

    PubMed Central

    Li, Junmin; Jin, Zexin; Song, Wenjing

    2012-01-01

    Field studies have shown that native, parasitic plants grow vigorously on invasive plants and can cause more damage to invasive plants than native plants. However, no empirical test has been conducted and the mechanism is still unknown. We conducted a completely randomized greenhouse experiment using 3 congeneric pairs of exotic, invasive and native, non-invasive herbaceous plant species to quantify the damage caused by parasitic plants to hosts and its correlation with the hosts' growth rate and resource use efficiency. The biomass of the parasitic plants on exotic, invasive hosts was significantly higher than on congeneric native, non-invasive hosts. Parasites caused more damage to exotic, invasive hosts than to congeneric, native, non-invasive hosts. The damage caused by parasites to hosts was significantly positively correlated with the biomass of parasitic plants. The damage of parasites to hosts was significantly positively correlated with the relative growth rate and the resource use efficiency of its host plants. It may be the mechanism by which parasitic plants grow more vigorously on invasive hosts and cause more damage to exotic, invasive hosts than to native, non-invasive hosts. These results suggest a potential biological control effect of native, parasitic plants on invasive species by reducing the dominance of invasive species in the invaded community. PMID:22493703

  19. Sodium butyrate, a HDAC inhibitor ameliorates eNOS, iNOS and TGF-β1-induced fibrogenesis, apoptosis and DNA damage in the kidney of juvenile diabetic rats.

    PubMed

    Khan, Sabbir; Jena, Gopabandhu

    2014-11-01

    Recent reports highlighted the role of histone deacetylases (HDACs) in the pathogenesis of diabetic nephropathy (DN), but the exact molecular mechanisms by which HDAC inhibitors ameliorate DN still remain unclear. The present study was aimed to investigate the renoprotective effects of sodium butyrate (NaB) in diabetes-induced renal damages, apoptosis and fibrosis in juvenile rats. Diabetes was induced by single injection of STZ (60mg/kg), whereas NaB (500mg/kg/day) was administrated for 21days by i.p. route in a pre- and post-treatment schedule. End-points of evaluation included biochemical estimation, histology, protein expression as well as apoptosis and DNA damage examinations. Post-treatment with NaB significantly decreased plasma glucose, creatinine, urea, histological alterations including the fibrosis and collagen deposition as well as decreased the HDACs activity, expression of eNOS, iNOS, α-SMA, collagen I, fibronectin, TGFβ-1, NFκB, apoptosis and DNA damage in the diabetic kidney. These results showed that NaB treatment improved the renal function and ameliorated the histological alterations, fibrosis, apoptosis and DNA damage in the kidney of juvenile rats. PMID:25158305

  20. Solitary Kidney

    MedlinePlus

    ... Institute, Inc., Kidney School National Kidney Foundation MedlinePlus Kidney and Urologic Disease Organizations Many organizations provide support ... Organizations​​ . (PDF, 345 KB)​​​​​ Alternate Language URL Solitary Kidney Page Content On this page: What is a ...

  1. Upper gastrointestinal bleeding as a risk factor for dialysis and all-cause mortality: a cohort study of chronic kidney disease patients in Taiwan

    PubMed Central

    Liang, Chih-Chia; Chang, Chiz-Tzung; Wang, I-Kuan; Huang, Chiu-Ching

    2016-01-01

    Objective Impaired renal function is associated with higher risk of upper gastrointestinal bleeding (UGIB) in patients with chronic kidney disease and not on dialysis (CKD-ND). It is unclear if UGIB increases risk of chronic dialysis. The aim of the study was to investigate risk of chronic dialysis in CKD-ND patients with UGIB. Setting All CKD-ND stage 3–5 patients of a CKD programme in one hospital between 2003 and 2009 were enrolled and prospectively followed until September 2012. Primary and secondary outcome measures Chronic dialysis (dialysis for more than 3 months) started and all-cause mortality. The risk of chronic dialysis was analysed using Cox proportional hazard regression with adjustments for age, gender and renal function, followed by competing-risks analysis. Results We analysed 3126 CKD-ND patients with a mean age of 65±14 years for 2.8 years. Of 3126 patients, 387 (12.4%) patients developed UGIB, 989 (31.6%) patients started chronic dialysis and 197 (6.3%) patients died. UGIB increased all-cause mortality (adjusted HR (aHR): 1.51, 95% CI 1.07 to 2.13) and the risk of chronic dialysis (aHR; 1.29, 95% CI 1.11 to 1.50). The subdistribution HR (SHR) of UGIB for chronic dialysis (competing event: all-cause mortality) was 1.37 (95% CI 1.15 to 1.64) in competing-risks analysis with adjustments for age, renal function, gender, diabetes, haemoglobin, albumin and urine protein/creatinine ratio. Conclusions UGIB is associated with increased risk of chronic dialysis and all-cause mortality in patients with CKD-ND stages 3–5. This association is independent of age, gender, basal renal function, haemoglobin, albumin and urine protein levels. PMID:27150184

  2. α-Actinin-4-Mediated FSGS: An Inherited Kidney Disease Caused by an Aggregated and Rapidly Degraded Cytoskeletal Protein

    PubMed Central

    2004-01-01

    Focal segmental glomerulosclerosis (FSGS) is a common pattern of renal injury, seen as both a primary disorder and as a consequence of underlying insults such as diabetes, HIV infection, and hypertension. Point mutations in theα-actinin-4 gene ACTN4 cause an autosomal dominant form of human FSGS. We characterized the biological effect of these mutations by biochemical assays, cell-based studies, and the development of a new mouse model. We found that a fraction of the mutant protein forms large aggregates with a high sedimentation coefficient. Localization of mutant α-actinin-4 in transfected and injected cells, as well as in situ glomeruli, showed aggregates of the mutant protein. Video microscopy showed the mutant α-actinin-4 to be markedly less dynamic than the wild-type protein. We developed a “knockin” mouse model by replacing Actn4 with a copy of the gene bearing an FSGS-associated point mutation. We used cells from these mice to show increased degradation of mutant α-actinin-4, mediated, at least in part, by the ubiquitin–proteasome pathway. We correlate these findings with studies of α-actinin-4 expression in human samples. “Knockin” mice with a disease-associated Actn4 mutation develop a phenotype similar to that observed in humans. Comparison of the phenotype in wild-type, heterozygous, and homozygous Actn4 “knockin” and “knockout” mice, together with our in vitro data, suggests that the phenotypes in mice and humans involve both gain-of-function and loss-of-function mechanisms. PMID:15208719

  3. 76 FR 54531 - Pipeline Safety: Potential for Damage to Pipeline Facilities Caused by the Passage of Hurricanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-01

    ... Pipeline and Hazardous Materials Safety Administration Pipeline Safety: Potential for Damage to Pipeline... bulletin to remind owners and operators of gas and hazardous liquid pipelines of the potential for damage...-related issues that can result from the passage of hurricanes. That includes the potential for damage...

  4. Somatic cell mutations caused by 365 nm LED-UVA due to DNA double-strand breaks through oxidative damage.

    PubMed

    Fang, Xing; Ide, Naohiro; Higashi, Sho-Ichi; Kamei, Yasuhiro; Toyooka, Tatsushi; Ibuki, Yuko; Kawai, Kazuaki; Kasai, Hiroshi; Okamoto, Keinosuke; Arimoto-Kobayashi, Sakae; Negishi, Tomoe

    2014-09-01

    Evidence is accumulating indicating that UVA (320-400 nm ultraviolet light) plays an important role in photo-carcinogenesis. UVA is thought to produce reactive oxygen species in irradiated cells through photo-activation of inherent photosensitizers, and was recently reported to cause DNA double-strand breaks (DSBs) in exposed cells. We have investigated the involvement of UVA in mutations and DNA damage in somatic cells using Drosophila melanogaster larvae. Using the Okazaki Large Spectrograph, we previously observed that longer wavelength UVA (>330 nm) was more mutagenic in post-replication repair-deficient D. melanogaster (mei-41) than in the nucleotide excision repair-deficient strain (mei-9). LED-light has recently been developed as a high-dose-rate UVA source. LED-UVA light (365 nm) was also more mutagenic in mei-41 than in mei-9. The mei-41 gene was shown to be an orthologue of the human ATR gene, which is involved in the repair of DSBs through phosphorylation of histone H2AX. In order to estimate the extent to which oxidative damage contributes to mutation, we established a new D. melanogaster strain (urate-null mutant) that is sensitive to oxidative damage and has a marker to detect somatic cell mutations. When somatic cell mutations were examined using this strain, LED-UVA was mutagenic in the urate-null strain at doses that were non-mutagenic in the urate-positive strain. In an effort to investigate the generation of DSBs, we examined the presence of phosphorylated histone H2AvD (H2AX D. melanogaster homologue). At high doses of LED-UVA (>800 kJ m(-2)), levels of phosphorylated H2AvD (?-H2AvD) increased significantly in the urate-null strain. Moreover, the level of ?-H2AvD increased in the excision repair-deficient strain but not in the ATR-deficient strain following UVA-irradiation. These results supported the notion that the generation of ?-H2AvD was mediated by the function of the mei-41 gene. It was reported that ATR functions on DSB repair in D. melanogaster. Taken together, we propose a possible pathway for UVA-induced mutation, whereby DNA double-strand breaks resulting from oxidative stress might be responsible for UVA-induced mutation in somatic cells of D. melanogaster larvae. PMID:25027494

  5. Heavy metals, arsenic, and pesticide contamination in an area with high incidence of chronic kidney disease of non-traditional causes in El Salvador

    NASA Astrophysics Data System (ADS)

    Lopez, D. A.; Ribó, A.; Quinteros, E.; Mejia, R.; Jovel, R.; VanDervort, D.; Orantes, C. M.

    2013-12-01

    Chronic kidney disease of non-traditional causes is epidemic in Central America, Southern Mexico and other regions of the world such as Sri Lanka, where the origin of the illness is attributed to exposure to agrochemicals and arsenic in soils and groundwater. In Central America, several causes have been suggested for this illness including: high ambient temperatures and chronic dehydration, and toxic effects of agrochemicals. Previous research using step-wise multivariate regression in El Salvador found statistically significant correlation between the spatial distribution of the number of sick people per thousand inhabitants and the percent area cultivated with sugar cane, cotton, and beans, and maximum ambient temperature, with sugar cane cultivation as the most significant factor. This study aims to investigate the possible effects of agricultural activities in the occurrence of this illness looking at heavy metal, arsenic and pesticide contamination in soil, water and sediments of a community located in Bajo Lempa region (Ciudad Romero, El Salvador) and heavily affected by this illness. The Bajo Lempa region is close to Lempa River delta, in the Pacific coast. Ground and surface water, sediment and soil samples were collected in the village where the patients live and in the agricultural areas where they work. With respect to the heavy metals, lead and cadmium where detected in the soils but below the standards for cultivated soils, however, they were not detected in the majority of surface and groundwater. Of the inorganic contaminants, arsenic was present in most soil, sediments, and water samples with some concentrations considerable higher than the standards for cultivated lands and drinking water. Statistically different concentrations in soils were found for the village soils and the cultivated soils, with arsenic higher in the cultivated soils. For the pesticides, results show a significant pollution of soil and groundwater of organochlorine pesticides such as DDT and its metabolites (DDE and DDD), which are banned in El Salvador, Endosulfan Alpha isomer and Beta isomer, Endosulfan sulfate and 2.4 D. Lindane and Heptachlor Hexachlorobenzene also were found. Glyphosate and 2,4-D were found in the soils. These herbicides together with Paraquat are the most used herbicides in El Salvador. Paraquat contamination was found in drinking water from the local distribution network and in groundwater from domestic wells. These results show that the people of Bajo Lempa have been exposed to a variety of contaminants that have known toxic effects on the kidney. Investigation of these contaminants in the affected population is the next step to know the origin of this illness in El Salvador.

  6. Cationic liposomes formulated with DMPC and a gemini surfactant traverse the cell membrane without causing a significant bio-damage.

    PubMed

    Stefanutti, E; Papacci, F; Sennato, S; Bombelli, C; Viola, I; Bonincontro, A; Bordi, F; Mancini, G; Gigli, G; Risuleo, G

    2014-10-01

    Cationic liposomes have been intensively studied both in basic and applied research because of their promising potential as non-viral molecular vehicles. This work was aimed to gain more information on the interactions between the plasmamembrane and liposomes formed by a natural phospholipid and a cationic surfactant of the gemini family. The present work was conducted with the synergistic use of diverse experimental approaches: electro-rotation measurements, atomic force microscopy, ζ-potential measurements, laser scanning confocal microscopy and biomolecular/cellular techniques. Electro-rotation measurements pointed out that the interaction of cationic liposomes with the cell membrane alters significantly its dielectric and geometric parameters. This alteration, being accompanied by significant changes of the membrane surface roughness as measured by atomic force microscopy, suggests that the interaction with the liposomes causes locally substantial modifications to the structure and morphology of the cell membrane. However, the results of electrophoretic mobility (ζ-potential) experiments show that upon the interaction the electric charge exposed on the cell surface does not vary significantly, pointing out that the simple adhesion on the cell surface of the cationic liposomes or their fusion with the membrane is to be ruled out. As a matter of fact, confocal microscopy images directly demonstrated the penetration of the liposomes inside the cell and their diffusion within the cytoplasm. Electro-rotation experiments performed in the presence of endocytosis inhibitors suggest that the internalization is mediated by, at least, one specific pathway. Noteworthy, the liposome uptake by the cell does not cause a significant biological damage. PMID:25017801

  7. Relationship between increase of serum homocysteine caused by smoking and oxidative damage in elderly patients with cardiovascular disease

    PubMed Central

    Chen, Shengfang; Wu, Ping; Zhou, Lin; Shen, Yuqin; Li, Yunjie; Song, Haoming

    2015-01-01

    Background: To investigate the mechanism of smoking on cardiovascular diseases. Material and methods: 576 elderly patients with cardiovascular diseases in stable condition were consecutive recruited, asked about the living habits and smoking history in a way of face to face. Results: Of all the enrolled patients, current smoking rate was 34.8% for males and 3.4% for females. Average smoking quantity was 17 cigarettes per day and incidence of hyperhomocysteinemia was 38.0%. The homocysteine level in current smokers was significantly higher than that in never smokers (P = 0.004); while the serum folic acid and serum superoxide dismutase (SOD) level were significantly lower those in never smokers (P = 0.012; P = 0.004). The daily smoking consumption and the pack-years of smoking were significantly positively correlated with total homocysteine (tHcy) level (P = 0.020; P = 0.003). The reduced serum SOD level might be associated with increased risk of hypertension (P = 0.023), coronary heart disease (P = 0.018), and stroke (P = 0.035). However, the elevated serum tHcy level was not correlated with increased risk of hypertension and coronary heart disease, while may increase the risk of ischemic stroke (P = 0.075). Conclusions: Smoking status is still prevalent among Chinese elderly patients with cardiovascular diseases, which causes the increase of serum tHcy and the decrease of serum folate as well as SOD; smoking consumption per day and pack-years of smoking have indirect effects on tHcy. And decrease of serum SOD is a risk factor for cardiovascular diseases, increase of serum tHcy may be associated with changes of metabolism caused by oxidative damage. PMID:26064368

  8. Oxidative stress-induced cellular damage caused by UV and methyl viologen in Euglena gracilis and its suppression with rutin.

    PubMed

    Palmer, Helen; Ohta, Mari; Watanabe, Masumi; Suzuki, Tetsuya

    2002-06-01

    The effects of ultraviolet radiation (UV-A: 320-400 nm and UV-B: 280-320 nm) and methyl viologen (MV) single or combined exposure, on the cell growth, viability and morphology of two strains of the unicellular flagellate Euglena gracilis, using the Z strain as a plant model and the achlorophyllous mutant SMZ strain as an animal model were investigated. Cell growth was not affected by MV only, whereas UV-A or UV-B single and combined exposure with MV inhibited the cell growth or decreased the viability. The SMZ strain had a higher number of abnormal cells than the Z strain after the third dose of UV-B was delivered simultaneously with MV. The abnormal cell number decreased when E. gracilis SMZ cells were preincubated with 100 microM rutin prior to the UV-B and MV exposure. There were higher abnormal cell numbers with groups exposed to UV rather than MV single exposure. Combined exposure to UV-B and 200 microM MV induced the highest levels of TBARS in both strains, and with the supplementation of rutin these high levels were suppressed. These results suggest that UV-A or UV-B irradiation alone or combined with MV cause considerable oxidative damage in E. gracilis cells, and rutin supplementation may suppress their adverse effects. PMID:12031812

  9. Inhibitory effect and cell damage on bacterial flora of fish caused by chitosan, nisin and sodium lactate.

    PubMed

    Schelegueda, Laura Inés; Zalazar, Aldana Lourdes; Gliemmo, María Fernanda; Campos, Carmen Adriana

    2016-02-01

    The effect of the combined use of chitosan, nisin and sodium lactate on the growth of Listeria innocua, Shewanella putrefaciens and psychrophilic bacteria isolated from fish was investigated in broth by means of minimum inhibitory concentrations (MIC). Furthermore, the sites of cell-injury caused by mentioned antimicrobials and their combinations on L. innocua and S. putrefaciens were studied. MIC of antimicrobial mixtures were evaluated by Berembaum design and check board method. Antimicrobials' sites of injury were investigated by the evaluation of cell constituents' release, cell surface hydrophobicity and differential scanning calorimetry. Results depended on antimicrobial used; several combinations inhibited the growth of L. innocua and S. putrefaciens and all combinations inhibited psychrophilic bacteria. Besides, some mixtures showed synergistic effects. All the mixtures affected ribosomes and DNA of the studied bacteria. Regarding cellular envelope, antimicrobials acted according to the structural characteristics of target microorganisms. Cell damage was higher when antimicrobials were combined, which could explain the observed synergistic effects. This study demonstrates and justifies the synergistic action of chitosan, nisin and sodium lactate on the inhibition of microorganisms related to fish spoilage and remarks the promissory use of the synergic combination of antimicrobials for fish preservation. PMID:26597566

  10. (1?3)-?-D-Glucan reduces the damages caused by reactive oxygen species induced in human platelets by lipopolysaccharides.

    PubMed

    Saluk, Joanna; Bijak, Micha?; Ponczek, Micha? B?a?ej; Nowak, Pawe?; Wachowicz, Barbara

    2013-09-12

    LPS (lipopolysaccharide) induces platelet activation and is a well-known fundamental agent of septic shock and disseminated intravascular coagulation (DIC). Biological activity of (1?3)-?-D-glucan is related due to its anti-inflammatory, antioxidant, and antitumor properties. We focus our attention on the (1?3)-?-D-glucan (antiplatelet) properties. The main purpose of our study was to evaluate the influence of (1?3)-?-D-glucan from Saccharomyces cerevisiae on destructive activity of LPS (from Escherichia coli and Pseudomonas aeruginosa) on human blood platelets. We assess biochemically in vitro if (1?3)-?-D-glucan might combat the oxidative stress caused by LPS stroke associated with nitrative and oxidative damages of human platelet biomolecules. We also make an attempt by in silico molecular docking to determine the interactions between the molecules of (1?3)-?-D-glucan and LPS. Our conclusion is that protective mechanism of (1?3)-?-D-glucan against LPS action on blood platelets is due to as well: its antioxidant properties, as to its interaction with LPS-binding region of TLR4-MD-2 complex. PMID:23911506

  11. Adult Human CD133/1+ Kidney Cells Isolated from Papilla Integrate into Developing Kidney Tubules

    PubMed Central

    Ward, Heather H.; Romero, Elsa; Welford, Angela; Pickett, Gavin; Bacallao, Robert; Gattone, Vincent H.; Ness, Scott A.; Wandinger-Ness, Angela; Roitbak, Tamara

    2011-01-01

    Approximately 60,000 patients in the US are waiting for a kidney transplant due to genetic, immunologic and environmentally caused kidney failure. Adult human renal stem cells could offer opportunities for autologous transplant and repair of damaged organs. Current data suggest that there are multiple progenitor types in the kidney with distinct localizations. In the present study, we characterize cells derived from human kidney papilla and show their capacity for tubulogenesis. In situ, nestin+ and CD133/1+ cells were found extensively intercalated between tubular epithelia in the loops of Henle of renal papilla, but not of the cortex. Populations of primary cells from the renal cortex and renal papilla were isolated by enzymatic digestion from human kidneys unsuited for transplant and immuno-enriched for CD133/1+ cells. Isolated CD133/1+ papillary cells were positive for nestin, as well as several human embryonic stem cell markers (SSEA4, Nanog, SOX2, and OCT4/POU5F1) and could be triggered to adopt tubular epithelial and neuronal like phenotypes. Isolated papillary cells exhibited morphologic plasticity upon modulation of culture conditions and inhibition of asymmetric cell division. Labeled papillary cells readily associated with cortical tubular epithelia in co-culture and 3-dimensional collagen gel cultures. Heterologous organ culture demonstrated that CD133/1+ progenitors from the papilla and cortex, became integrated into developing kidney tubules. Tubular epithelia did not participate in tubulogenesis. Human renal papilla harbor cells with the hallmarks of adult kidney stem/progenitor cells that can be amplified and phenotypically modulated in culture while retaining the capacity to form new kidney tubules. PMID:21255643

  12. A Protein Kinase A–Independent Pathway Controlling Aquaporin 2 Trafficking as a Possible Cause for the Syndrome of Inappropriate Antidiuresis Associated with Polycystic Kidney Disease 1 Haploinsufficiency

    PubMed Central

    Lasorsa, Domenica; Trimpert, Christiane; Ranieri, Marianna; Di Mise, Annarita; Mola, Maria Grazia; Mastrofrancesco, Lisa; Devuyst, Olivier; Svelto, Maria; Deen, Peter M.T.; Valenti, Giovanna

    2014-01-01

    Renal water reabsorption is controlled by arginine vasopressin (AVP), which binds to V2 receptors, resulting in protein kinase A (PKA) activation, phosphorylation of aquaporin 2 (AQP2) at serine 256, and translocation of AQP2 to the plasma membrane. However, AVP also causes dephosphorylation of AQP2 at S261. Recent studies showed that cyclin-dependent kinases (cdks) can phosphorylate AQP2 peptides at S261 in vitro. We investigated the possible role of cdks in the phosphorylation of AQP2 and identified a new PKA-independent pathway regulating AQP2 trafficking. In ex vivo kidney slices and MDCK-AQP2 cells, R-roscovitine, a specific inhibitor of cdks, increased pS256 levels and decreased pS261 levels. The changes in AQP2 phosphorylation status were paralleled by increases in cell surface expression of AQP2 and osmotic water permeability in the absence of forskolin stimulation. R-Roscovitine did not alter cAMP-dependent PKA activity but specifically reduced protein phosphatase 2A (PP2A) expression and activity in MDCK cells. Notably, we found reduced PP2A expression and activity and reduced pS261 levels in Pkd1+/− mice displaying a syndrome of inappropriate antidiuresis with high levels of pS256, despite unchanged AVP and cAMP. Similar to previous findings in Pkd1+/− mice, R-roscovitine treatment caused a significant decrease in intracellular calcium in MDCK cells. Our data indicate that reduced activity of PP2A, secondary to reduced intracellular Ca2+ levels, promotes AQP2 trafficking independent of the AVP–PKA axis. This pathway may be relevant for explaining pathologic states characterized by inappropriate AVP secretion and positive water balance. PMID:24700872

  13. Hazard evaluation of chemicals that cause accumulation of alpha 2u-globulin, hyaline droplet nephropathy, and tubule neoplasia in the kidneys of male rats.

    PubMed Central

    Hard, G C; Rodgers, I S; Baetcke, K P; Richards, W L; McGaughy, R E; Valcovic, L R

    1993-01-01

    This review paper examines the relationship between chemicals inducing excessive accumulation of alpha 2u-globulin (alpha 2u-g) (CIGA) in hyaline droplets in male rat kidneys and the subsequent development of nephrotoxicity and renal tubule neoplasia in the male rat. This dose-responsive hyaline droplet accumulation distinguishes CIGA carcinogens from classical renal carcinogens. CIGA carcinogens also do not appear to react with DNA and are generally negative in short-term tests for genotoxicity, CIGA or their metabolites bind specifically, but reversibly, to male rat alpha 2u-g. The resulting complex appears to be more resistant to hydrolytic degradation in the proximal tubule than native, unbound alpha 2u-g. Single cell necrosis of the tubule epithelium, with associated granular cast formation and papillary mineralization, is followed by sustained regenerative tubule cell proliferation, foci of tubule hyperplasia in the convoluted proximal tubules, and renal tubule tumors. Although structurally similar proteins have been detected in other species, including humans, renal lesions characteristic of alpha 2u-g nephropathy have not been observed. Epidemiologic investigation has not specifically examined the CIGA hypothesis for humans. Based on cancer bioassays, hormone manipulation studies, investigations in an alpha 2u-g-deficient strain of rat, and other laboratory data, an increased proliferative response caused by chemically induced cytotoxicity appears to play a role in the development of renal tubule tumors in male rats. Thus, it is reasonable to suggest that the renal effects induced in male rats by chemicals causing alpha 2u-g accumulation are unlikely to occur in humans. Images FIGURE 1. FIGURE 2. FIGURE 3. FIGURE 4. FIGURE 5. FIGURE 6. FIGURE 7. FIGURE 8. FIGURE 9. FIGURE 10. FIGURE 11. FIGURE 12. FIGURE 13. PMID:7686485

  14. Bioengineering Kidneys for Transplantation

    PubMed Central

    Madariaga, Maria Lucia L.; Ott, Harald C.

    2014-01-01

    One in ten Americans suffer from chronic kidney disease, and close to 90,000 people die each year from causes related to kidney failure. Patients with end-stage renal disease are faced with two options: hemodialysis or transplantation. Unfortunately, the reach of transplantation is limited because of the shortage of donor organs and the need for immunosuppression. Bioengineered kidney grafts theoretically present a novel solution to both problems. Herein we discuss the history of bioengineering organs, the current status of bioengineered kidneys, considerations for the future of the field, and challenges to clinical translation. We hope that by integrating principles of tissue engineering, and stem cell and developmental biology, bioengineered kidney grafts will advance the field of regenerative medicine while meeting a critical clinical need. PMID:25217267

  15. Kidney Diseases

    MedlinePlus

    Your kidneys are two bean-shaped organs, each about the size of your fists. They are located near the ... back, just below the rib cage. Inside each kidney about a million tiny structures called nephrons filter ...

  16. Kidney stones

    MedlinePlus

    ... dissolved in the urine can crystallize, forming a kidney stone (renal calculus). Usually the calculus is the size ... painful. Often, people may not know they have kidney stones until they feel the painful symptoms resulting from ...

  17. Kidney transplant

    MedlinePlus

    ... Side effects from medicines used to prevent transplant rejection Loss of transplanted kidney ... tries to destroy it. In order to avoid rejection, almost all kidney transplant recipients must take medicines ...

  18. Ectopic Kidney

    MedlinePlus

    ... kidneys filter about 3 ounces of blood, removing wastes and extra water. The wastes and extra water make up the 1 to ... until being released through urination. The kidneys remove wastes and extra water from the blood to form ...

  19. Kidney Biopsy

    MedlinePlus

    ... right diagnosis. [ Top ] What should a person do days before a kidney biopsy? Days before the procedure, ... Top ] What can a person expect on the day of the kidney biopsy? A person should arrive ...

  20. The administration of food supplemented with cocoa powder during nutritional recovery reduces damage caused by oxidative stress in rat brain.

    PubMed

    Barragán Mejía, Gerardo; Calderón Guzmán, David; Juárez Olguín, Hugo; Hernández Martínez, Nancy; García Cruz, Edna; Morales Ramírez, Aline; Labra Ruiz, Norma; Esquivel Jiménez, Gabriela; Osnaya Brizuela, Norma; García Álvarez, Raquel; Ontiveros Mendoza, Esperanza

    2011-12-01

    Malnutrition contributes to the development of oxidative damage in the central nervous system. The selective administration of nutrients tends to show positive results in individuals who have suffered from malnutrition. To determine the effect of the administration of cocoa powder on the peroxidation of lipids and glutathione level during the nutritional recovery in brain, rats of 21 days old were subjected to a protocol that resembles malnutrition (MN) by feeding them with 60% of the daily food consumption of the control group (WN) and later to nutritional recovery with regular rodent feed (RFR) or added with cocoa (10 g of cocoa powder/kg of regular rodent feed) (CCR). Animals fed with regular rodent food showed significant reduction in brain glutathione: RFR (84.18 ± 6.38 ng/mg protein) vs. CCR (210.61 ± 50.10 ng/mg protein) and WN (186.55 ± 33.18 ng/mg protein), but with similar level to that of MN (92.12 ± 15.60 ng/mg protein). On the contrary, lipid peroxidation in RFR-fed animals increased RFR (1.32 ± 0.2 μM malondialdehyde/g of tissue), CCR (0.86 ± 0.07 μM malondialdehyde/g of tissue), WN (0.89 ± 0.09 μM malondialdehyde/g of tissue), but their thiobarbituric acid reactive substances concentration is similar to that of MN group (1.50 ± 0.2 μM malondialdehyde/g of tissue). Consumption of cocoa powder as a source of antioxidants favors the restoration of the concentration of glutathione and reduces the damage caused by oxidative stress during nutritional recovery in rat brain. PMID:21826449

  1. [Drug-induced acute kidney injury].

    PubMed

    Derungs, Adrian

    2015-12-01

    Due to their physiological function, the kidneys are exposed to high concentrations of numerous drugs and their metabolites, making them vulnerable to drug-related injuries. This article provides an overview of the pathophysiological mechanisms involved in nephrotoxicity, the most common nephrotoxic drugs, and the risk factors for the occurrence of drug-induced acute kidney injuries. NSAIDs, diuretics, ACE inhibitors, and angiotensin II receptor blockers (ARBs} are the most frequent prerenal causes of an acute elevation in creatinine levels. Primary vascular damage arises from thrombotic microangiopathy (e. g. due to cic/osporin, tacrolimus, muromonab-CD3, mitomycin C, quinine, ticlopidine, clopidogrel}. Anticoagulants and thrombolytic medications lead to secondary blood vessel damage by cholesterol emboli, embolism of thrombus material into the periphery or bleeding. Tubulopathies can be observed on treatment with ifosfamide and cisplatin (rarely with cyclophosphamide or carboplatin), aminoglycosides, vancomycin, and radiocontrast agents. Immunological mechanisms underlie interstitial nephritides, which are induced by drugs in about 85% of cases. In drug-induced glomerulopathies;- renal biopsy allows closer identification of the triggering medication. Drug-induced systemic lupus erythematosus (SLE} represents a special form of immune complex glomerulonephritis and can be triggered by procainamide, hydralazine, isoniazid, methyldopa, quinidine, chlorpromazine, and propylthiouracil. Crystal-induced kidney injury is caused by precipitation of drugs (e. g. aciclovir, sulfonamide antibiotics, methotrexate, indinavir) in the renal tubules and the urine-conducting organs with consecutive obstruction thereof. PMID:26654816

  2. A review of the impact of oxidative stress and some antioxidant therapies on renal damage.

    PubMed

    Tamay-Cach, F; Quintana-Pérez, J C; Trujillo-Ferrara, J G; Cuevas-Hernández, R I; Del Valle-Mondragón, L; García-Trejo, E M; Arellano-Mendoza, M G

    2016-03-01

    An increase in the generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) leads to complications during chronic kidney disease (CKD). This increase essentially derives from the impairment of natural antioxidant systems of the organism. The resulting oxidative stress produces damage to kidney tissue, especially by affecting nephrons and more generally by disrupting the function and structure of the glomerulus and interstitial tubule. This leads to a rapid decline in the condition of the patient and finally renal failure. Possible causes of kidney tissue damage are explored, as are different therapies, especially those related to the administration of antioxidants. PMID:26643776

  3. Kidney Dysplasia

    MedlinePlus

    ... Dimes National Kidney Foundation Urology Care Foundation MedlinePlus Kidney and Urologic Disease Organizations Many organizations provide support ... Disease Organizations​​ . (PDF, 345 KB)​​​​​ Alternate Language URL Kidney Dysplasia Page Content On this page: What is ...

  4. Kidney diseases and tissue engineering.

    PubMed

    Moon, Kyung Hyun; Ko, In Kap; Yoo, James J; Atala, Anthony

    2016-04-15

    Kidney disease is a worldwide public health problem. Renal failure follows several disease stages including acute and chronic kidney symptoms. Acute kidney injury (AKI) may lead to chronic kidney disease (CKD), which can progress to end-stage renal disease (ESRD) with a mortality rate. Current treatment options are limited to dialysis and kidney transplantation; however, problems such as donor organ shortage, graft failure and numerous complications remain a concern. To address this issue, cell-based approaches using tissue engineering (TE) and regenerative medicine (RM) may provide attractive approaches to replace the damaged kidney cells with functional renal specific cells, leading to restoration of normal kidney functions. While development of renal tissue engineering is in a steady state due to the complex composition and highly regulated functionality of the kidney, cell therapy using stem cells and primary kidney cells has demonstrated promising therapeutic outcomes in terms of restoration of renal functions in AKI and CKD. In this review, basic components needed for successful renal kidney engineering are discussed, and recent TE and RM approaches to treatment of specific kidney diseases will be presented. PMID:26134528

  5. Vitamins as radioprotectors in vivo II. protection by vitamin A and soybean oil against radiation damage caused by internal radionuclides

    SciTech Connect

    Harapanhalli, R.S.; Narra, V.R.; Yaghmai, V.; Azure, M.T.; Goddu, M.; Howell, R.W.; Rao, D.V.

    1994-07-01

    Tissue-incorporated radionuclides impart radiation energy over extended periods of time depending on their effective half-lives. The capacity of vitamin A dissolved in soybean oil to protect against the biological effects caused by internal radionuclides is investigated. The radiochemicals examined are DNA-binding {sup 125}IdU, cytoplasmically localized H{sup 125}IPDM and the {alpha}-particle emitter {sup 210}Po citrate. As in our previous studies, spermatogenesis in mice is used as the experimental model and spermatogonial cell survival is the biological end point. Surprisingly, soybean oil itself provides substantial and equal protection against the Auger effect of {sup 125}IdU, which is comparable to a high-LET radiation effect, as well as the low-LET effects of H{sup 125}IPDM, the dose modification factors (DMFs) being 3.6 {+-} 0.9 (SEM) and 3.4 {+-} 0.9, respectively. The protection afforded by the oil against the effects of 5.3 MeV {alpha} particles emitted by 210Po is also significant (DMF = 2.2 {+-} 0.4). The presence of vitamin A in the oil further enhanced the radioprotection against the effect of {sup 125}IdU (DMF = 4.8 {+-} 1.3) and H{sup 125}IKPDM (DMF = 5.1 {+-} 0.6); however, no enhancement is provided against the effects of {alpha} particles. These interesting results with soybean oil and vitamin A, together with data on the subcellular distribution of the protectors, provide clues regarding the mechanistic aspects of the protection. In addition, the data for vitamin A reaffirm our earlier conclusion that the mechanism by which DNA-bound Auger emitters impart biological damage is primarily indirect in nature. 29 refs., 7 figs., 2 tabs.

  6. Identification of Personal Lubricants That Can Cause Rectal Epithelial Cell Damage and Enhance HIV Type 1 Replication in Vitro

    PubMed Central

    Begay, Othell; Jean-Pierre, Ninochka; Abraham, Ciby J.; Chudolij, Anne; Seidor, Samantha; Rodriguez, Aixa; Ford, Brian E.; Henderson, Marcus; Katz, David; Zydowsky, Thomas; Robbiani, Melissa

    2011-01-01

    Abstract Over-the-counter personal lubricants are used frequently during vaginal and anal intercourse, but they have not been extensively tested for biological effects that might influence HIV transmission. We evaluated the in vitro toxicity anti-HIV-1 activity and osmolality of popular lubricants. A total of 41 lubricants were examined and compared to Gynol II and Carraguard as positive and negative controls for toxicity, respectively. Cytotoxicity was assessed using the XTT assay. The MAGI assay with R5 and X4 HIV-1 laboratory strains was used to evaluate antiviral activity. The effect of the lubricants on differentiated Caco-2 cell monolayers (transepithelial electrical resistance, TEER) was also measured. None of the lubricants tested showed significant activity against HIV-1. Surprisingly, four of them, Astroglide Liquid, Astroglide Warming Liquid, Astroglide Glycerin & Paraben-Free Liquid, and Astroglide Silken Secret, significantly enhanced HIV-1 replication (p<0.0001). A common ingredient in three of these preparations is polyquaternium-15. In vitro testing of a chemically related compound (MADQUAT) confirmed that this similarly augmented HIV-1 replication. Most of the lubricants were found to be hyperosmolar and the TEER value dropped approximately 60% 2?h after exposure to all lubricants tested. Cells treated with Carraguard, saline, and cell controls maintained about 100% initial TEER value after 26?h. We have identified four lubricants that significantly increase HIV-1 replication in vitro. In addition, the epithelial damage caused by these and many other lubricants may have implications for enhancing HIV transmission in vivo. These data emphasize the importance of performing more rigorous safety testing on these products. PMID:21309617

  7. Characterization of radiation damage caused by 23 MeV protons in Multi-Pixel Photon Counter (MPPC)

    NASA Astrophysics Data System (ADS)

    Li, Zhengwei; Xu, Yupeng; Liu, Congzhan; Gu, Yudong; Xie, Fei; Li, Yanguo; Hu, Hongliang; Zhou, Xu; Lu, Xuefeng; Li, Xufang; Zhang, Shuo; Chang, Zhi; Zhang, Juan; Xu, Zhenling; Zhang, Yifei; Zhao, Jianling

    2016-06-01

    A automatic gain control system (AGC) is designed to continuously monitor and automatically control the gain of the phoswich detectors onboard the Hard X-ray Modulation Telescope (HXMT). It consists of a Am241 radioactive source and a photo-detector. The Am241 radioactive source is tagged within a plastic scintillator (BC440M). The scintillating photons produced by the decayed alpha particles from the radioactive source is readout by the photo-detector. The Multi-Pixel Photon Counter (MPPC) produced by Hamamatsu is used as the photo-detector for AGC. To verify the feasibility of its application in space environment, four MPPCs (S10362-33-050C) were irradiated by a beam of 23 MeV protons. The integrated proton fluence that exposed to the four MPPC samples are 1.0 ×108 p cm-2 , 2.0 ×108 p cm-2 , 4.0 ×108 p cm-2 and 1.0 ×1010 p cm-2 respectively. It is found that the increment leakage current of the MPPC samples caused by irradiation damage increase linearly with the integrated fluence. The pulse-height resolution of the MPPC has deteriorated hardly after irradiation. When irradiated up to 1.1 ×109cm-2 1 MeV equivalent neutrons, the MPPC completely lost its photon-counting capability but could still work as a photo-detector for AGC. The MPPC fails as a photo-detector for the AGC when the irradiated 1 MeV neutron equivalent fluences is up to 2.7 ×1010cm-2 .

  8. Delayed diagnosis of Townes-Brocks syndrome with multicystic kidneys and renal failure caused by a novel SALL1 nonsense mutation: A case report

    PubMed Central

    LIN, FU-JUN; LU, WEI; GALE, DANIEL; YAO, YAO; ZOU, REN; BIAN, FAN; JIANG, GENG-RU

    2016-01-01

    Townes-Brocks syndrome (TBS) is a rare autosomal dominant congenital anomaly syndrome characterized by the triad of anorectal, hand and external ear malformations. Kidney involvement is less common and may progress to end-stage renal failure (ESRF) early in life. The present study reports the case of a male patient presenting with multiple bilateral cortical kidney cysts at the age of 4 years, at which time the kidneys were of normal size and function. A clinical diagnosis of autosomal recessive polycystic kidney disease was made initially as the patient's parents are clinically healthy. However, the consideration of extra-renal involvements (imperforate anus at birth, preaxial polydactyly and dysplastic right ear) following the progression of the patient to ESRF at the age of 16 years, led to the diagnosis of TBS. This prompted sequencing of the SALL1 gene, which identified a novel heterozygous nonsense mutation in the mutational ‘hotspot’ of exon 2 (c.874C>T, p.Q292X), and this mutation was not detected in healthy controls. The current case highlights that TBS may present with normal sized, cystic kidneys in childhood, while recognition of extra-renal features of cystic kidney diseases, such as TBS, and genetic testing may facilitate the correct diagnosis and transmission mode. Reaching a correct diagnosis of as TBS is important since this condition has a 50% rate of transmission to offspring and can progress to ESRF early in life. PMID:27073431

  9. Induction of cytotoxicity of Pelagia noctiluca venom causes reactive oxygen species generation, lipid peroxydation induction and DNA damage in human colon cancer cells

    PubMed Central

    2011-01-01

    Background The long-lasting and abundant blooming of Pelagia noctiluca in Tunisian coastal waters compromises both touristic and fishing activities and causes substantial economic losses. Determining their molecular mode of action is, important in order to limit or prevent the subsequent damages. Thus, the aim of the present study was to investigate the propensity of Pelagia noctiluca venom to cause oxidative damage in HCT 116 cells and its associated genotoxic effects. Results Our results indicated an overproduction of ROS, an induction of catalase activity and an increase of MDA generation. We looked for DNA fragmentation by means of the comet assay. Results indicated that venom of Pelagia noctiluca induced DNA fragmentation. SDS-PAGE analysis of Pelagia noctiluca venom revealed at least 15 protein bands of molecular weights ranging from 4 to 120 kDa. Conclusion Oxidative damage may be an initiating event and contributes, in part, to the mechanism of toxicity of Pelagia noctiluca venom. PMID:22151830

  10. Polygalacturonase Causes Lygus-like Damage on Plants: Cloning and Identification of Western Tarnished Plant Bug (Lygus hesperus) Polygalacturonases Secreted During Feeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abstract: Polygalacturonase (PG), an enzyme that degrades pectin within the plant tissue cell wall, has been postulated as the chemical cause of damage to plants by the mirid Lygus hesperus. Micro-injection of two pure recombinant Aspergillus niger PG II protein forms, the wild type enzymically acti...

  11. Clinical Scenarios in Chronic Kidney Disease: Kidneys' Structural Changes in End-Stage Renal Disease.

    PubMed

    Meola, Mario; Samoni, Sara; Petrucci, Ilaria

    2016-01-01

    Acquired cystic kidney disease (ACKD) and renal cell carcinoma (RCC) are the most important manifestations of end-stage kidneys' structural changes. ACKD is caused by kidney damage or scarring and it is characterized by the presence of small, multiple cortical and medullary cysts filled with a fluid similar to preurine. ACKD prevalence varies according to predialysis and dialysis age and its pathogenesis is unknown, although it is stated that progressive destruction of renal tissue induces hypertrophy/compensatory hyperplasia of residual nephrons and may trigger the degenerative process. ACKD is almost asymptomatic, but it can lead to several complications (bleeding, rupture, infections, RCC). Ultrasound (US) is the first level imaging technique in ACKD, because of its sensitivity and reliability. The most serious complication of ACKD is RCC, which is stimulated by the same growth factors and proto-oncogenes that lead to the genesis of cysts. Two different histological types of RCC have been identified: (1) RCC associated with ACKD and (2) papillary renal clear cell carcinoma. Tumors in end-stage kidneys are mainly small, multifocal and bilateral, with a papillary structure and a low degree of malignancy. At US, RCC appears as a small inhomogeneous nodule (<3 cm), clearly outlined from the renal profile and hypoechoic if compared with sclerotic parenchyma. In some cases, tumor appears as a homogeneous and hyperechoic multifocal mass. The most specific US sign of a small tumor in end-stage kidney is the important arterial vascularization, in contrast with renal parenchymal vascular sclerosis. PMID:27169876

  12. Neonatal polycystic kidney disease.

    PubMed

    Verghese, Priya; Miyashita, Yosuke

    2014-09-01

    This article provides an up-to-date comprehensive review and summary on neonatal polycystic kidney disease (PKD) with emphasis on the differential diagnosis, clinical manifestations, diagnostic techniques, and potential therapeutic approaches for the major causes of neonatal PKD, namely hereditary disease, including autosomal recessive and autosomal dominant PKD and nonhereditary PKD, with particular emphasis on multicystic dysplastic kidney. A brief overview of obstructive cystic dysplasia and simple and complex cysts is also included. PMID:25155726

  13. 20 CFR 670.900 - Are damages caused by students eligible for reimbursement under the Tort Claims Act?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Act (28 U.S.C. 2671 et seq.). If a student is alleged to be involved in the damage, loss, or... investigate all of the facts, including accident and medical reports, and interview witnesses, and submit...

  14. 20 CFR 670.900 - Are damages caused by students eligible for reimbursement under the Tort Claims Act?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Claims Act (28 U.S.C. 2671 et seq.). If a student is alleged to be involved in the damage, loss, or... investigate all of the facts, including accident and medical reports, and interview witnesses, and submit...

  15. 20 CFR 670.900 - Are damages caused by students eligible for reimbursement under the Tort Claims Act?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Act (28 U.S.C. 2671 et seq.). If a student is alleged to be involved in the damage, loss, or... investigate all of the facts, including accident and medical reports, and interview witnesses, and submit...

  16. The cardiotoxicity and myocyte damage caused by small molecule anticancer tyrosine kinase inhibitors is correlated with lack of target specificity

    SciTech Connect

    Hasinoff, Brian B.

    2010-04-15

    The use of the new anticancer tyrosine kinase inhibitors (TKI) has revolutionized the treatment of certain cancers. However, the use of some of these results in cardiotoxicity. Large-scale profiling data recently made available for the binding of 7 of the 9 FDA-approved tyrosine kinase inhibitors to a panel of 317 kinases has allowed us to correlate kinase inhibitor binding selectivity scores with TKI-induced damage to neonatal rat cardiac myocytes. The tyrosine kinase selectivity scores, but not the serine-threonine kinase scores, were highly correlated with the myocyte damaging effects of the TKIs. Additionally, we showed that damage to myocytes gave a good rank order correlation with clinical cardiotoxicity. Finally, strength of TKI binding to colony-stimulating factor 1 receptor (CSF1R) was highly correlated with myocyte damage, thus possibly implicating this kinase in contributing to TKI-induced cardiotoxicity.

  17. Chronic Kidney Disease Screening Methods and Its Implication for Malaysia: An in Depth Review

    PubMed Central

    Almualm, Yasmin; Huri, Hasniza Zaman

    2015-01-01

    Chronic Kidney Disease has become a public health problem, imposing heath, social and human cost on societies worldwide. Chronic Kidney Disease remains asymptomatic till late stage when intervention cannot stop the progression of the disease. Therefore, there is an urgent need to detect the disease early. Despite the high prevalence of Chronic Kidney Disease in Malaysia, screening is still lacking behind. This review discusses the strengths and limitations of current screening methods for Chronic Kidney Disease from a Malaysian point of view. Diabetic Kidney Disease was chosen as focal point as Diabetes is the leading cause of Chronic Kidney Disease in Malaysia. Screening for Chronic Kidney Disease in Malaysia includes a urine test for albuminuria and a blood test for serum creatinine. Recent literature indicates that albuminuria is not always present in Diabetic Kidney Disease patients and serum creatinine is only raised after substantial kidney damage has occurred. Recently, cystatin C was proposed as a potential marker for kidney disease but this has not been studied thoroughly in Malaysia. Glomerular Filtration Rate is the best method for measuring kidney function and is widely estimated using the Modification of Diet for Renal Disease equation. Another equation, the Chronic Kidney Disease Epidemiology Collaboration Creatinine equation was introduced in 2009. The new equation retained the precision and accuracy of the Modification of Diet for Renal Disease equation at GFR < 60ml/min/1.73m2, showed less bias and improved precision at GFR>60ml/min/1.73m2. In Asian countries, adding an ethnic coefficient to the equation enhanced its performance. In Malaysia, a multi-ethnic Asian population, the Chronic Kidney Disease Epidemiology Collaboration equation should be validated and the Glomerular Filtration Rate should be reported whenever serum creatinine is ordered. Reporting estimated Glomerular Filtration Rate will help diagnose patients who would have been otherwise missed if only albuminuria and serum creatinine are measured. PMID:25946939

  18. Adult stem-like cells in kidney.

    PubMed

    Hishikawa, Keiichi; Takase, Osamu; Yoshikawa, Masahiro; Tsujimura, Taro; Nangaku, Masaomi; Takato, Tsuyoshi

    2015-03-26

    Human pluripotent cells are promising for treatment for kidney diseases, but the protocols for derivation of kidney cell types are still controversial. Kidney tissue regeneration is well confirmed in several lower vertebrates such as fish, and the repair of nephrons after tubular damages is commonly observed after renal injury. Even in adult mammal kidney, renal progenitor cell or system is reportedly presents suggesting that adult stem-like cells in kidney can be practical clinical targets for kidney diseases. However, it is still unclear if kidney stem cells or stem-like cells exist or not. In general, stemness is defined by several factors such as self-renewal capacity, multi-lineage potency and characteristic gene expression profiles. The definite use of stemness may be obstacle to understand kidney regeneration, and here we describe the recent broad findings of kidney regeneration and the cells that contribute regeneration. PMID:25815133

  19. In vitro studies of DNA damage caused by tricyclic antidepressants: a role of peroxidase in the side effects of the drugs.

    PubMed

    Korobkova, Ekaterina A; Ng, William; Venkatratnam, Abhishek; Williams, Alicia K; Nizamova, Madina; Azar, Nikolay

    2010-09-20

    Studies show that tricyclic antidepressants prescribed for migraines, anxiety, and child enuresis have numerous adverse effects in living cells. One of the undesired outcomes observed under treatment with these drugs is DNA damage. However, the mechanisms underlying damage have yet to be elucidated. We performed in vitro studies of the DNA damage caused by four tricyclic antidepressants: imipramine, amitriptyline, opipramol, and protriptyline. We focused particularly on the DNA damage aided by peroxidases. As a model of a peroxidase, we used horseradish peroxidase (HRP). At pH 7, reactions of HRP with excess hydrogen peroxide and imipramine yielded an intense purple color and a broad absorption spectrum with the maximum intensity at 522 nm. Reactions performed between DNA and imipramine in the presence of H(2)O(2) and HRP resulted in the disappearance of the DNA band. In the case of the other three drugs, this effect was not observed. Extraction of the DNA from the reaction mixture indicated that DNA is degraded in the reaction between imipramine and H(2)O(2) catalyzed by HRP. The final product of imipramine oxidation was identified as iminodibenzyl. We hypothesize that the damage to DNA was caused by an imipramine reactive intermediate. PMID:20804147

  20. Quantitative measurement of damage caused by 1064-nm wavelength optical trapping of Escherichia coli cells using on-chip single cell cultivation system

    SciTech Connect

    Ayano, Satoru; Wakamoto, Yuichi; Yamashita, Shinobu; Yasuda, Kenji . E-mail: yasuda.bmi@tmd.ac.jp

    2006-11-24

    We quantitatively examined the possible damage to the growth and cell division ability of Escherichia coli caused by 1064-nm optical trapping. Using the synchronous behavior of two sister E. coli cells, the growth and interdivision times between those two cells, one of which was trapped by optical tweezers, the other was not irradiated, were compared using an on-chip single cell cultivation system. Cell growth stopped during the optical trapping period, even with the smallest irradiated power on the trapped cells. Moreover, the damage to the cell's growth and interdivision period was proportional to the total irradiated energy (work) on the cell, i.e., irradiation time multiplied by irradiation power. The division ability was more easily affected by a smaller energy, 0.36 J, which was 30% smaller than the energy that adversely affected growth, 0.54 J. The results indicate that the damage caused by optical trapping can be estimated from the total energy applied to cells, and furthermore, that the use of optical trapping for manipulating cells might cause damage to cell division and growth mechanisms, even at wavelengths under 1064 nm, if the total irradiation energy is excessive.

  1. What Are the Risk Factors for Kidney Cancer?

    MedlinePlus

    ... know what causes kidney cancer? What are the risk factors for kidney cancer? A risk factor is anything ... develop kidney cancer. Lifestyle-related and job-related risk factors Smoking Smoking increases the risk of developing renal ...

  2. What I Need to Know about Kidney Stones

    MedlinePlus

    ... Alternate Language URL Español What I need to know about Kidney Stones Page Content On this page: ... stones? To prevent kidney stones, you need to know what caused your kidney stone. Your doctor may ...

  3. [Factors causing damage and destruction of beta-cells of the islets of Langerhans in the pancreas].

    PubMed

    Anděl, Michal; Němcová, Vlasta; Pavlíková, Nela; Urbanová, Jana; Cecháková, Marie; Havlová, Andrea; Straková, Radka; Večeřová, Livia; Mandys, Václav; Kovář, Jan; Heneberg, Petr; Trnka, Jan; Polák, Jan

    2014-09-01

    Insulin secretion in patients with manifested diabetes mellitus tends to disappear months to decades after the diagnosis, which is a clear sign of a gradual loss of pancreatic islet beta-cells. In our sample of 30 type 2 diabetic patients, whose disease manifested between 30 and 45 years of age, about a half have retained or even increased insulin secretion 30 years later, while the other half exhibit a much diminished or lost insulin secretion. Factors that can damage or destroy beta-cells can be divided into the following groups: Metabolic factors: hyperglycemia and glucotoxicity, lipotoxicity, hypoxia, reactive oxygen species; Pharmacological factors: antimicrobial medication pentamidine, SSRI antidepressants; Factors related to impaired insulin secretion: MODY type diabetes; Environmental toxic factors: rat poison Vacor, streptozotocin, polychlorinated and polybrominated hydrocarbons; Disorders of the exocrine pancreas: tumor infiltration, fibrous infiltration, chronic pancreatitis, cystic fibrosis; Infections, inflammation, autoimmunity, viral factors: Coxsackie viruses, H1N1 influenza, enteroviruses. We are currently working on finding other factors leading to beta-cell damage, studying their effect on apoptosis and necrosis and looking for possible protective factors to prevent this damage. We our increasing knowledge about the mechanisms of beta-cell damage and destruction we come ever closer to suggest measures for their prevention. In this review we offer a brief and simplified summary of some of the findings related to this area.Key words: pancreatic islet beta-cells of Langerhans - factors damaging or destroying beta-cells - insulin secretion. PMID:25294754

  4. D1 fragmentation in photosystem II repair caused by photo-damage of a two-step model.

    PubMed

    Kato, Yusuke; Ozawa, Shin-Ichiro; Takahashi, Yuichiro; Sakamoto, Wataru

    2015-12-01

    Light energy drives photosynthesis, but it simultaneously inactivates photosynthetic mechanisms. A major target site of photo-damage is photosystem II (PSII). It further targets one reaction center protein, D1, which is maintained efficiently by the PSII repair cycle. Two proteases, FtsH and Deg, are known to contribute to this process, respectively, by efficient degradation of photo-damaged D1 protein processively and endoproteolytically. This study tested whether the D1 cleavage accomplished by these proteases is affected by different monochromic lights such as blue and red light-emitting-diode light sources, remaining mindful that the use of these lights distinguishes the current models for photoinhibition: the excess-energy model and the two-step model. It is noteworthy that in the two-step model, primary damage results from the absorption of light energy in the Mn-cluster, which can be enhanced by a blue rather than a red light source. Results showed that blue and red lights affect D1 degradation differently. One prominent finding was that D1 fragmentation that is specifically generated by luminal Deg proteases was enhanced by blue light but not by red light in the mutant lacking FtsH2. Although circumstantial, this evidence supports a two-step model of PSII photo-damage. We infer that enhanced D1 fragmentation by luminal Deg proteases is a response to primary damage at the Mn-cluster. PMID:25893898

  5. Kidney Stones

    PubMed Central

    Kleeman, Charles R.; Coburn, Jack W.; Brickman, Arnold S.; Lee, David B. N.; Narins, Robert G.; Ehrlich, Richard M.

    1980-01-01

    The prevalence of kidney stones has steadily risen during this century; passage of a calculus and a positive family history increase the probability of recurrence. Findings from recent studies on the cause of renal calculi have stressed crystallization and crystal aggregation of stone minerals from supersaturated urine, rather than excessive organic matrix. Absence of normal urine inhibitors of calcium salts is also stressed. Formation of calcium oxalate stones is the major problem. Therapy with decreased calcium and oxalate intake, thiazides, phosphate salts and allopurinol in various combinations has substantially decreased the prevalence of recurrent stones. The rationale for the use of allopurinol is that uric acid salts enhance the tendency for calcium oxalate to crystallize from supersaturated urine. The hypercalciuria seen in 30 percent to 40 percent of patients with oxalate stones is usually caused by intestinal hyperabsorption of calcium. Although patients with uric acid calculi constitute only a small fraction of those in whom stones form, they represent a group in whom good medical therapy, based on sound physiologic principles, has proved extremely successful. Renal tubular syndromes lead to nephrocalcinosis and lithiasis through hypercalciuria, alkaline urine and hypocitraturia, the latter an inhibitor of calcium salt precipitation. Recent advances in surgical techniques are discussed, including the rationale for removing staghorn calculi. The ileal ureter and coagulum pyelolithotomy deserve special emphasis. ImagesFigure 2.Figure 4.Figure 5.Figure 7. PMID:7385835

  6. Sulfadiazine for kidney disease

    USGS Publications Warehouse

    Rucker, R.R.; Bernier, A.F.; Whipple, W.J.; Burrows, R.E.

    1951-01-01

    The blueback salmon fingerlings (Oncorhynchus nerka) at the U.S. Fish-Cultural Station at Winthrop, Washington, underwent an infection that was caused by a very short, Gram-positive, nonmotile, rod-shaped bacterium. A further description is impossible at this time, as the organism has not been grown satisfactorily for proper identification. The disease was characterized by white, raised areas of dead tissue mainly in the kidney: for this reason it is referred to as kidney disease. Belding and Merrill (1935) described a disease among the brook, brown, and rainbow trout at a State hatchery in Massachusetts which, from the description, might be the same as kidney disease. J.H. Wales of the California Division of Fish and Game described (unpublished manuscript, 1941) a disease in hatchery trout in California which seems to be identical to kidney disease.

  7. Four danger response programs determine glomerular and tubulointerstitial kidney pathology

    PubMed Central

    Anders, Hans-Joachim

    2012-01-01

    Renal biopsies commonly display tissue remodeling with a combination of many different findings. In contrast to trauma, kidney remodeling largely results from intrinsic responses, but why? Distinct danger response programs were positively selected throughout evolution to survive traumatic injuries and to regenerate tissue defects. These are: (1) clotting to avoid major bleeding, (2) immunity to control infection, (3) epithelial repair and (4) mesenchymal repair. Collateral damages are acceptable for the sake of host survival but causes for kidney injury commonly affect the kidneys in a diffuse manner. This way, coagulation, inflammation, deregulated epithelial healing or fibrosis contribute to kidney remodeling. Here, I focus on how these ancient danger response programs determine renal pathology mainly because they develop in a deregulated manner, either as insufficient or overshooting processes that modulate each other. From a therapeutic point of view, immunopathology can be prevented by suppressing sterile renal inflammation, a useless atavism with devastating consequences. In addition, it appears as an important goal for the future to promote podocyte and tubular epithelial cell repair, potentially by stimulating the differentiation of their newly discovered intrarenal progenitor cells. By contrast, it is still unclear whether selectively targeting renal fibrogenesis can preserve or bring back lost renal parenchyma, which would be required to maintain or improve kidney function. Thus, renal pathology results from ancient danger responses that evolved because of their evolutional benefits upon trauma. Understanding these causalities may help to shape the search for novel treatments for kidney disease patients. PMID:22692229

  8. Primary hyperparathyroidism caused by a parathyroid carcinoma in a 16-year-old male neutered cat with concurrent chronic kidney disease.

    PubMed

    Faucher, Mathieu R; Freiche, Valérie; Bongrand, Yannick; German, Alexander J

    2014-01-01

    A 16-year-old domestic shorthaired cat with chronic kidney disease was presented with a subacute history of weakness and anorexia. Severe hypercalcaemia was identified and attributed to a cervical mass, diagnosed as a parathyroid carcinoma after surgery. Renal function, as evaluated by plasma creatinine, initially worsened during hypercalcaemia but fully returned to previously documented values two months post-operatively. PMID:24593857

  9. TiO2 Photocatalysis Causes DNA Damage via Fenton Reaction-Generated Hydroxyl Radicals during the Recovery Period▿

    PubMed Central

    Gogniat, Gaëtan; Dukan, Sam

    2007-01-01

    Here, we show that resistance of Escherichia coli to TiO2 photocatalysis involves defenses against reactive oxygen species. Results support the idea that TiO2 photocatalysis generates damage which later becomes deleterious during recovery. We found this to be partly due to DNA attack via hydroxyl radicals generated by the Fenton reaction during recovery. PMID:17933934

  10. TiO2 photocatalysis causes DNA damage via fenton reaction-generated hydroxyl radicals during the recovery period.

    PubMed

    Gogniat, Gaëtan; Dukan, Sam

    2007-12-01

    Here, we show that resistance of Escherichia coli to TiO2 photocatalysis involves defenses against reactive oxygen species. Results support the idea that TiO2 photocatalysis generates damage which later becomes deleterious during recovery. We found this to be partly due to DNA attack via hydroxyl radicals generated by the Fenton reaction during recovery. PMID:17933934

  11. Structural damage to proteins caused by free radicals: asessment, protection by antioxidants, and influence of protein binding.

    PubMed

    Salvi, A; Carrupt, P; Tillement, J; Testa, B

    2001-05-15

    Oxidative damage to proteins results in biological dysfunctions such as perturbed activity in enzymes, transport proteins, and receptors. Here, we investigated structural damage to proteins induced by free radicals. Structural alterations to lysozyme, human serum albumin (HSA) and beta-lactoglobulin A were monitored by capillary zone electrophoresis. Four well-known antioxidants (quercetin, melatonin, Trolox, and chlorogenic acid) were examined for their ability to inhibit protein damage and to bind to these proteins. Melatonin and chlorogenic acid, which did not bind to any of the three proteins under study, showed scavenging and protective activities well correlated with the amount of free radicals generated. Trolox, which bound only to HSA, was a better protector of HSA than of the two other proteins, indicating that its antioxidant capacity is increased by a shielding effect. Finally, quercetin was a good antioxidant in protecting lysozyme and beta-lactoglobulin A, but its binding to HSA resulted in a pro-oxidant effect that accelerated HSA fragmentation. These results demonstrate that binding of an antioxidant to a protein may potentiate protection or damage depending on the properties of the antioxidant. PMID:11322927

  12. Riboflavin Deficiency Causes Protein and DNA Damage in HepG2 cells, Triggering Arrest in G1 Phase of the Cell Cycle*

    PubMed Central

    Manthey, Karoline C.; Rodriguez-Melendez, Rocio; Hoi, Jia Tse; Zempleni, Janos

    2005-01-01

    Eukaryotes convert riboflavin to flavin adenine dinucleotide, which serves as a coenzyme for glutathione reductase and other enzymes. Glutathione reductase mediates the regeneration of reduced glutathione, which plays an important role in scavenging free radicals and reactive oxygen species. Here we tested the hypothesis that riboflavin deficiency decreases glutathione reductase activity in HepG2 liver cells, causing oxidative damage to proteins and DNA, and cell cycle arrest. As a secondary goal we determined whether riboflavin deficiency is associated with gene expression patterns indicating cell stress. Cells were cultured in riboflavin-deficient and riboflavin-supplemented media for four days. Activity of glutathione reductase was not detectable in cells cultured in riboflavin-deficient medium. Riboflavin deficiency was associated with an increase in the abundance of damaged (carbonylated) proteins, and with increased incidence of DNA strand breaks. Damage to proteins and DNA was parall