Science.gov

Sample records for kilombero valley southern

  1. Agricultural Development, Land Change, and Livelihoods in Tanzania's Kilombero Valley

    NASA Astrophysics Data System (ADS)

    Connors, John Patrick

    The Kilombero Valley lies at the intersection of a network of protected areas that cross Tanzania. The wetlands and woodlands of the Valley, as well as the forest of surrounding mountains are abundant in biodiversity and are considered to be critical areas for conservation. This area, however, is also the home to more than a half million people, primarily poor smallholder farmers. In an effort to support the livelihoods and food security of these farmers and the larger Tanzanian population, the country has recently targeted a series of programs to increase agricultural production in the Kilombero Valley and elsewhere in the country. Bridging concepts and methods from land change science, political ecology, and sustainable livelihoods, I present an integrated assessment of the linkages between development and conservation efforts in the Kilombero Valley and the implications for food security. This dissertation uses three empirical studies to understand the process of development in the Kilombero Valley and to link the priorities and perceptions of conservation and development efforts to the material outcomes in food security and land change. The first paper of this dissertation examines the changes in land use in the Kilombero Valley between 1997 and 2014 following the privatization of agriculture and the expansion of Tanzania's Kilimo Kwanza program. Remote sensing analysis reveals a two-fold increase in agricultural area during this short time, largely at the expense of forest. Protected areas in some parts of the Valley appear to be deterring deforestation, but rapid agricultural growth, particularly surrounding a commercial rice plantation, has led to loss of extant forest and sustained habitat fragmentation. The second paper focuses examines livelihood strategies in the Valley and claims regarding the role of agrobiodiversity in food security. The results of household survey reveal no difference or lower food security among households that diversify their

  2. Capturing and Explaining Preference Heterogeneity for Wetland Management Options in the Kilombero Valley, Tanzania

    NASA Astrophysics Data System (ADS)

    Speelman, Stijn; Mombo, Felister; Vandermeulen, Valerie; Phillip, Damas; Van Huylenbroeck, Guido

    2015-01-01

    Wetland degradation has recently received considerable research attention. Although wetlands are valuable ecosystems, their actual value is difficult to measure because the services they provide often do not have market values. The current study seeks to investigate the preferences for wetland management options in the Kilombero Valley, central Tanzania using choice modeling. The results show that both respondents from the Kilombero Valley and Morogoro Municipality desire improvements in the condition of the wetlands. This indicates that the ongoing degradation is not socially optimal. A second finding is that the preferences for wetland conservation are heterogeneous and can be linked to livelihood characteristics. Communities living in the area, for example, are highly dependent on the wetland for their livelihood and would be impacted by conservation measures. Therefore, in order to reduce the pressure on wetlands, it is necessary and imperative to explore the options for alternative income-generating activities or to focus, for example, on technologies to improve efficiency and effectiveness in crop production.

  3. Factors determining the choice of hunting and trading bushmeat in the Kilombero Valley, Tanzania.

    PubMed

    Nielsen, Martin Reinhardt; Jacobsen, Jette Bredahl; Thorsen, Bo Jellesmark

    2014-04-01

    Regulation of illegal bushmeat trade is a major conservation challenge in Africa. We investigated what factors are most likely to induce actors in the bushmeat trade to shift to an alternative occupation by conducting a choice experiment with 325 actors in the bushmeat trade in the Kilombero Valley, Tanzania. Specifically, we asked respondents to choose between hunting or trading bushmeat and alternative salary-paying work, in a set of hypothetical scenarios where the attributes of these alternatives were varied and included measures of command and control, price of substitute meat, daily salary in the work option, and whether or not cows were donated to the respondent. We modeled the choice contingent on socioeconomic characteristics. The magnitude of fines and patrolling frequency had a significant but very low negative effect on the probability of choosing to engage in hunting or trading bushmeat compared with the salary of an alternative occupation. Donation of livestock and the price of substitute meats in the local market both affected the choice significantly in a negative and a positive direction, respectively. The wealthier a household was the more likely the respondent was to choose to continue hunting or trading bushmeat. On the margin, our results suggest that given current conditions in the Kilombero Valley on any given day 90% of the respondents would choose salary work at US$3.37/day over their activities in the bushmeat trade, all else equal. PMID:24372874

  4. Capturing and explaining preference heterogeneity for wetland management options in the Kilombero Valley, Tanzania.

    PubMed

    Speelman, Stijn; Mombo, Felister; Vandermeulen, Valerie; Phillip, Damas; Van Huylenbroeck, Guido

    2015-01-01

    Wetland degradation has recently received considerable research attention. Although wetlands are valuable ecosystems, their actual value is difficult to measure because the services they provide often do not have market values. The current study seeks to investigate the preferences for wetland management options in the Kilombero Valley, central Tanzania using choice modeling. The results show that both respondents from the Kilombero Valley and Morogoro Municipality desire improvements in the condition of the wetlands. This indicates that the ongoing degradation is not socially optimal. A second finding is that the preferences for wetland conservation are heterogeneous and can be linked to livelihood characteristics. Communities living in the area, for example, are highly dependent on the wetland for their livelihood and would be impacted by conservation measures. Therefore, in order to reduce the pressure on wetlands, it is necessary and imperative to explore the options for alternative income-generating activities or to focus, for example, on technologies to improve efficiency and effectiveness in crop production. PMID:25403812

  5. Antenatal care in practice: an exploratory study in antenatal care clinics in the Kilombero Valley, south-eastern Tanzania

    PubMed Central

    2011-01-01

    Background The potential of antenatal care for reducing maternal morbidity and improving newborn survival and health is widely acknowledged. Yet there are worrying gaps in knowledge of the quality of antenatal care provided in Tanzania. In particular, determinants of health workers' performance have not yet been fully understood. This paper uses ethnographic methods to document health workers' antenatal care practices with reference to the national Focused Antenatal Care guidelines and identifies factors influencing health workers' performance. Potential implications for improving antenatal care provision in Tanzania are discussed. Methods Combining different qualitative techniques, we studied health workers' antenatal care practices in four public antenatal care clinics in the Kilombero Valley, south-eastern Tanzania. A total of 36 antenatal care consultations were observed and compared with the Focused Antenatal Care guidelines. Participant observation, informal discussions and in-depth interviews with the staff helped to identify and explain health workers' practices and contextual factors influencing antenatal care provision. Results The delivery of antenatal care services to pregnant women at the selected antenatal care clinics varied widely. Some services that are recommended by the Focused Antenatal Care guidelines were given to all women while other services were not delivered at all. Factors influencing health workers' practices were poor implementation of the Focused Antenatal Care guidelines, lack of trained staff and absenteeism, supply shortages and use of working tools that are not consistent with the Focused Antenatal Care guidelines. Health workers react to difficult working conditions by developing informal practices as coping strategies or "street-level bureaucracy". Conclusions Efforts to improve antenatal care should address shortages of trained staff through expanding training opportunities, including health worker cadres with little pre

  6. Introducing insecticide-treated nets in the Kilombero Valley, Tanzania: the relevance of local knowledge and practice for an information, education and communication (IEC) campaign.

    PubMed

    Minja, H; Schellenberg, J A; Mukasa, O; Nathan, R; Abdulla, S; Mponda, H; Tanner, M; Lengeler, C; Obrist, B

    2001-08-01

    Since 1997 the WHO has been recommending an integrative strategy to combat malaria including new medicines, vaccines, improvements of health care systems and insecticide-treated nets (ITNs). After successful controlled trials with ITNs in the past decade, large-scale interventions and research now focus on operational issues of distribution and financing. In developing a social marketing approach in the Kilombero Valley in south-east Tanzania in 1996, a combination of qualitative and quantitative methods was employed to investigate local knowledge and practice relating to malaria. The findings show that the biomedical concept of malaria overlaps with several local illness concepts, one of which is called malaria and refers to mild malaria. Most respondents linked malaria to mosquitoes (76%) and already used mosquito nets (52%). But local understandings of severe malaria differed from the biomedical concept and were not linked to mosquitoes or malaria. A social marketing strategy to promote ITNs was developed on the basis of these findings, which reinforced public health messages and linked them with nets and insecticide. Although we did not directly evaluate the impact of promotional activities, the sharp rise in ownership and use of ITNs by the population (from 10 to > 50%) suggests that they contributed significantly to the success of the programme. Local knowledge and practice is highly relevant for social marketing strategies of ITNs. PMID:11555427

  7. Hydrothermal system in Southern Grass Valley, Pershing County, Nevada

    SciTech Connect

    Welch, A.H.; Sorey, M.L.; Olmsted, F.H.

    1981-01-01

    Southern Grass Valley is a fairly typical extensional basin in the Basin and Range province. Leach Hot Springs, in the southern part of the valley, represents the discharge end of an active hydrothermal flow system with an estimated deep aquifer temperature of 163 to 176/sup 0/C. Results of geologic, hydrologic, geophysical and geochemical investigations are discussed in an attempt to construct an internally consistent model of the system.

  8. Surface Deformation in Imperial Valley, Southern California

    NASA Astrophysics Data System (ADS)

    Eneva, M.; Adams, D.; Falorni, G.; Morgan, J.

    2013-12-01

    The Imperial Valley in southern California is subjected to significant tectonic deformation resulting from the relative movement of the North American and Pacific plates. It is characterized by large earthquakes, frequent swarm activity, and aseismic events. High heat flow makes possible the operation of geothermal fields, some of which cause man-made surface displacements superimposed on the tectonic deformation. We apply radar interferometry (InSAR) to analyze Envisat ASAR data for the period 2003-2010. The SqueeSAR technique is used to obtain deformation time series and annual rates at numerous locations of permanent and distributed scatterers (PS and DS). SqueeSAR works very well in agricultural areas, where conventional differential InSAR (DinSAR) fails. We observe differential movements marking the Superstition Hills, San Andreas, and Imperial faults. The Imperial fault traverses agricultural fields, where DInSAR does not work and thus our SqueeSAR observations are the first for this fault (Fig. 1). We also observe steps in the deformation time series around the Superstition Hills fault from an October 2006 aseismic event and the April 2010 M7.2 earthquake south of the U.S.-Mexico border. Significant annual deformation rates are detected in the current geothermal fields. For example, subsidence of up to -50 mm/year is seen at the Salton Sea field (Fig. 2), and both subsidence and uplift are seen at Heber. We also determine the deformation baseline at prospective geothermal fields, thus making it possible in the future to distinguish between man-made and tectonic causes of surface deformation. Fig. 1. Line-of-sight (LOS) deformation indicates differential displacement on both sides of Imperial Fault. Movements away from the satellite are shown in yellow to red, and towards the satellite in blue. Larger deformation is associated with two geothermal fields, Heber (to the south-west) and East Mesa (to the east). Fig. 2. Subsidence in the Salton Sea geothermal

  9. Is It Working? Lysimeter Monitoring in the Southern Willamette Valley Groundwater Management Area

    EPA Science Inventory

    Groundwater nitrate contamination affects thousands of households in the southern Willamette Valley and many more across the Pacific Northwest. The southern Willamette Valley Groundwater Management Area (SWV GWMA) was established in 2004 due to nitrate levels in the groundwater ...

  10. Model Program: Southern Lehigh High School, Center Valley, PA

    ERIC Educational Resources Information Center

    Colelli, Richard

    2009-01-01

    In this article, the author describes the technology education program at Southern Lehigh High School, Center Valley, Pennsylvania. The school district is presently providing an educational program known for its excellence and forward-looking perspective, which is sensitive to the changing needs of its students. Within the technology education…

  11. Hydrologic Evaluation of the Jungo Area, Southern Desert Valley, Nevada

    USGS Publications Warehouse

    Lopes, Thomas J.

    2010-01-01

    RecologyTM, the primary San Francisco waste-disposal entity, is proposing to develop a Class 1 landfill near Jungo, Nevada. The proposal calls for the landfill to receive by rail about 20,000 tons of waste per week for up to 50 years. On September 22, 2009, the Interior Appropriation (S.A. 2494) was amended to require the U.S. Geological Survey to evaluate the proposed Jungo landfill site for: (1) potential water-quality impacts on nearby surface-water resources, including Rye Patch Reservoir and the Humboldt River; (2) potential impacts on municipal water resources of Winnemucca, Nevada; (3) locations and altitudes of aquifers; (4) how long it will take waste seepage from the site to contaminate local aquifers; and (5) the direction and distance that contaminated groundwater would travel at 95 and 190 years. This evaluation was based on review of existing data and information. Desert Valley is tributary to the Black Rock Desert via the Quinn River in northern Desert Valley. The Humboldt River and Rye Patch Reservoir would not be affected by surface releases from the proposed Jungo landfill site because they are in the Humboldt basin. Winnemucca, on the Humboldt River, is 30 miles east of the Jungo landfill site and in the Humboldt basin. Groundwater-flow directions indicate that subsurface flow near the proposed Jungo landfill site is toward the south-southwest. Therefore, municipal water resources of Winnemucca would not be affected by surface or subsurface releases from the proposed Jungo landfill site. Basin-fill aquifers underlie the 680-square-mile valley floor in Desert Valley. Altitudes around the proposed Jungo landfill site range from 4,162 to 4,175 feet. Depth to groundwater is fairly shallow in southern Desert Valley and is about 60 feet below land surface at the proposed Jungo landfill site. A groundwater divide exists about 7 miles north of the proposed Jungo landfill site. Groundwater north of the divide flows north towards the Quinn River. South of

  12. Paleoseismology of the Southern Section of the Black Mountains and Southern Death Valley Fault Zones, Death Valley, United States

    USGS Publications Warehouse

    Sohn, Marsha S.; Knott, Jeffrey R.; Mahan, Shannon

    2014-01-01

    The Death Valley Fault System (DVFS) is part of the southern Walker Lane–eastern California shear zone. The normal Black Mountains Fault Zone (BMFZ) and the right-lateral Southern Death Valley Fault Zone (SDVFZ) are two components of the DVFS. Estimates of late Pleistocene-Holocene slip rates and recurrence intervals for these two fault zones are uncertain owing to poor relative age control. The BMFZ southernmost section (Section 1W) steps basinward and preserves multiple scarps in the Quaternary alluvial fans. We present optically stimulated luminescence (OSL) dates ranging from 27 to 4 ka of fluvial and eolian sand lenses interbedded with alluvial-fan deposits offset by the BMFZ. By cross-cutting relations, we infer that there were three separate ground-rupturing earthquakes on BMFZ Section 1W with vertical displacement between 5.5 m and 2.75 m. The slip-rate estimate is ∼0.2 to 1.8 mm/yr, with an earthquake recurrence interval of 4,500 to 2,000 years. Slip-per-event measurements indicate Mw 7.0 to 7.2 earthquakes. The 27–4-ka OSL-dated alluvial fans also overlie the putative Cinder Hill tephra layer. Cinder Hill is offset ∼213 m by SDVFZ, which yields a tentative slip rate of 1 to 8 mm/yr for the SDVFZ.

  13. Is it working? A look at the changing nutrient practices in the Southern Willamette Valley's Groundwater Management Area

    EPA Science Inventory

    Groundwater nitrate contamination affects thousands of households in the southern Willamette Valley and many more across the Pacific Northwest. The southern Willamette Valley Groundwater Management Area (SWV GWMA) was established in 2004 due to nitrate levels in the groundwater ...

  14. 77 FR 47921 - Pecos Valley Permian Railroad, L.L.C. d/b/a Pecos Valley Southern Railway Company-Lease Exemption...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-10

    ... Company--Lease Exemption--Pecos Valley Southern Railway Company Pecos Valley Permian Railroad, L.L.C. d/b... exemption pursuant to 49 CFR 1150.31 to lease from the Pecos Valley Southern Railway Company (PVS) and... states that the lease agreement between PVS and PVR will not contain any interchange commitments....

  15. Analysis of gravity data in Central Valleys, Oaxaca, southern, Mexico

    NASA Astrophysics Data System (ADS)

    Gonzalez, T.; Ferrusquia, I.

    2015-12-01

    The region known as Central Valleys is located in the state of Oaxaca, southern, Mexico (16.3o- 17.7 o N Lat. and 96 o - 97 o W Long.) In its central portion is settled the capital of the state. There are very few published detailed geological studies.. Geomorphological and geological features, indicates that Central Valleys and surrounding mountains conform a graben structure. Its shape is an inverted Y, centred on Oaxaca City. The study area was covered by a detailed gravity survey with a homogenous distribution of stations. The Bouguer gravity map is dominated by a large gravity low, oriented NW-SE. In order to know the characteristics of anomalies observed gravity, data transformations were used. The use of spectral methods has increased in recent years, especially for the estimation of the depth of the source. Analysis of the gravity data sheds light on the regional depth of the Graben basement and the spatial distribution of the volcanic rocks

  16. Magnetotelluric investigation in the High Agri Valley (southern Apennine, Italy)

    NASA Astrophysics Data System (ADS)

    Balasco, M.; Giocoli, A.; Piscitelli, S.; Romano, G.; Siniscalchi, A.; Stabile, T. A.; Tripaldi, S.

    2015-04-01

    In this paper we present the result of a magnetotelluric (MT) investigation carried out across the High Agri Valley (HAV), southern Italy. Several MT soundings were carried out in order to obtain a ~15 km long 2-D resistivity model with an investigation depth of ~10 km. The main aim was to provide valuable data on the geological and structural setting of the HAV. The MT model was compared with pre-existing geological, geophysical and seismic data. The MT model can be schematized as a superposition of three stack lateral varying layers with different thickness and resistivity values: a surficial low-medium resistivity layer associated with the Quaternary deposits and to the allochthonous units; and a deeper high resistivity layer related to the Apulia Platform, separated by a thin layer connected to the mélange zone and to the Pliocene terrigenous marine deposits. Sharp lateral resistivity variations are interpreted as faults that, on the basis of accurate focal mechanism computations, display normal-faulting kinematics.

  17. Magnetotelluric investigation in the High Agri Valley (southern Apennine, Italy)

    NASA Astrophysics Data System (ADS)

    Balasco, M.; Giocoli, A.; Piscitelli, S.; Romano, G.; Siniscalchi, A.; Stabile, T. A.; Tripladi, S.

    2014-11-01

    In this paper we present the result of a Magnetotelluric (MT) investigation carried out across the High Agri Valley (HAV), southern Italy. Several MT soundings were carried out in order to obtain a ~15 km long 2-D resistivity model with an investigation depth of ~10 km. The main aim was to provide valuable data on the geological and structural setting of the HAV. The MT model was compared with pre-existing geological, geophysical and seismic data. The MT model can be schematized as a superposition of three stack lateral varying layers with different thickness and resistivity values: a surficial low-medium resistivity layer, associated to the Quaternary deposits and to the allochthonous units, and a deeper high resistivity layer, related to the Apulia Platform, separated by a thin layer connected to the mélange zone and to the Pliocene terrigenous marine deposits. Sharp lateral resistivity variations are interpreted as faults that, on the basis of accurate focal mechanism computations, display normal-faulting kinematics.

  18. Morphological properties of tunnel valleys beneath the southern sector of the former Laurentide Ice Sheet

    NASA Astrophysics Data System (ADS)

    Livingstone, Stephen; Clark, Chris

    2016-04-01

    Tunnel valleys have been widely reported on the bed of former ice sheets and are considered an important expression of subglacial meltwater drainage. Although known to have been cut by erosive meltwater flow, the water source and development of channels has been widely debated. Possible mechanisms include: (i) gradual formation by water flow in a subglacially deforming bed into channels under steady-state conditions; (ii) time-transgressive formation close to the ice margin by drainage of supraglacial meltwater to the bed or of meltwater temporarily impounded behind a permafrost wedge; and or (iii) by catastrophic subglacial meltwater floods. We have mapped and analysed the spatial pattern and morphometry of tunnel valleys and associated glacial bedforms along the southern sector of the former Laurentide Ice Sheet from high-resolution digital elevation models. Around 2000 tunnel valleys have been mapped, revealing a well-organised pattern of sub-parallel, semi-regularly spaced valleys that cluster together in distinctive networks. The tunnel valleys are typically <20 km long, and 0.5-3 km wide and preferentially terminate at moraines. They tend to be associated with outwash fans, eskers, glacial curvilineations, giant current ripples, and hill-hole-pairs. A relative age of the tunnel valleys, based on cross-cutting relationships, is used to resolve when individual tunnel valleys and networks were eroded. Our results suggest a time-transgressive origin for most tunnel valleys (i.e. they grow upstream) with some contributions from large meltwater drainage events.

  19. Geophysical Investigations of Structures within Southern Fish Lake Valley, California

    NASA Astrophysics Data System (ADS)

    McBride, K.; Ferguson, J. F.; Oldow, J. S.

    2015-12-01

    The 80km Fish Lake Valley Fault Zone makes up the northern portion of the Furnace Creek - Death Valley Fault Zone, a 250km right lateral oblique strike slip system that accounts for up to 25% of the relative motion between the Pacific and North American Plates. The Cucomongo Canyon Restraining bend lies to the south of Fish Lake Valley, and causes localized uplift. The developmental history of the Cucomongo Canyon restraining bend and the resultant uplift, deformation, and displacement is the focus of an integrated study by the Miles Geoscience Center at the University of Texas at Dallas. This specific part of the study focuses on the southernmost section of Fish Lake Valley, where Paleozoic sedimentary rocks are juxtaposed with Cenozoic sediments on multiple faulted boundaries. Structural constraints are not very well known as the faults are locally obscured by Quaternary alluvial deposits of various ages. Analysis of high resolution topography, produced from LiDAR scanning performed by the Miles team, and imagery shows subtle geomorphic expressions related to faulting. A near surface geophysical survey utilizing high resolution seismic refraction and microGal gravity measurements was done to explore the subsurface beneath the alluvium. Forward models were created to identify faults and ascertain vertical offsets and orientations. The geophysical models indicate a zone of extensional deformation north of the restraining bend

  20. 40 CFR 81.81 - Merrimack Valley-Southern New Hampshire Interstate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Merrimack Valley-Southern New Hampshire Interstate Air Quality Control Region. 81.81 Section 81.81 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING...

  1. 40 CFR 81.81 - Merrimack Valley-Southern New Hampshire Interstate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Merrimack Valley-Southern New Hampshire Interstate Air Quality Control Region. 81.81 Section 81.81 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING...

  2. 40 CFR 81.81 - Merrimack Valley-Southern New Hampshire Interstate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Merrimack Valley-Southern New Hampshire Interstate Air Quality Control Region. 81.81 Section 81.81 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality...

  3. 40 CFR 81.81 - Merrimack Valley-Southern New Hampshire Interstate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Merrimack Valley-Southern New Hampshire Interstate Air Quality Control Region. 81.81 Section 81.81 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING...

  4. 40 CFR 81.81 - Merrimack Valley-Southern New Hampshire Interstate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Merrimack Valley-Southern New Hampshire Interstate Air Quality Control Region. 81.81 Section 81.81 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING...

  5. Interaction of valleys and circulation patterns (CPs) on spatial precipitation patterns in southern Germany

    NASA Astrophysics Data System (ADS)

    Liu, M.; Bárdossy, A.; Zehe, E.

    2013-11-01

    Topography exerts influence on the spatial precipitation distribution over different scales, known typically at the large scale as the orographic effect, and at the small scale as the wind-drift rainfall (WDR) effect. At the intermediate scale (1~10 km), which is characterized by secondary mountain valleys, topography also demonstrates some effect on the precipitation pattern. This paper investigates such intermediate-scale topographic effects on precipitation patterns, focusing on narrow-steep valleys in the complex terrain of southern Germany, based on the daily observations over a 48 yr period (1960~2007) from a high-density rain-gauge network covering two sub-areas, Baden-Wuerttemberg (BW) and Bavaria (BY). Precipitation data at the valley and non-valley stations are compared under consideration of the daily general circulation patterns (CPs) classified by a fuzzy rule-based algorithm. Scatter plots of precipitation against elevation demonstrate a different behavior of valley stations comparing to non-valley stations. A detailed study of the precipitation time series for selected station triplets, each consisting of a valley station, a mountain station and an open station have been investigated by statistical analysis with the Kolmogorov-Smirnov (KS) test supplemented by the One-way analysis of variance (One-way ANOVA) and a graphical comparison of the mean precipitation amounts. The results show an interaction of valley orientation and the direction of the CPs at the intermediate scale, i.e. when the valley is shielded from the CP which carries the precipitation, the precipitation amount within the valley is comparable to that on the mountain crest, and both larger than the precipitation at the open station. When the valley is open to the CP, the precipitation within the valley is similar to the open station but much less than that on the mountain. Such phenomenon where the precipitation is "blind" to the valleys at the intermediate scale conditioned on CPs is

  6. Selected hydrologic data for southern Utah and Goshen Valleys, Utah, 1890-1992

    USGS Publications Warehouse

    Stolp, B.J.; Drumiler, M.J.; Brooks, L.E.

    1993-01-01

    This report contains hydrologic data collected in southern Utah and Goshen Valleys from 1890 to 1992. Southern Utah and Goshen Valleys are south of Salt Lake City in Utah County, north-central Utah. The area is bounded on the east and south by the Wasarch Range, on the south by Long Ridge, on the west by the East Tintic Mountains and the Mosida Hills, and on the north by a line through about the middle of T. 7 S. Southern Utah Valley and Goshen Valley are divided by the northern tip of Long Ridge, West Mountain, and Utah Lake. The area is in the Basin and Range physiographic province and includes about 390 square miles. Hydrologic data presented include records of over 400 wells. drillers' logs for selected wells, water-level data from wells, well discharge, and chemical analyses of water from about 90 wells. Discharge, water temperature, and specific conductance of water are given for about 15 selected springs and drains, and for streams and canals.

  7. Principal facts for gravity stations in the Elko, Steptoe Valley, Coyote Spring Valley, and Sheep Range areas, eastern and southern Nevada

    USGS Publications Warehouse

    Berger, D.L.; Schaefer, D.H.; Frick, E.A.

    1990-01-01

    Principal facts for 537 gravity stations in the carbonate-rock province of eastern and southern Nevada are tabulated and presented. The gravity data were collected in support of groundwater studies in several valleys. The study areas include the Elko area, northern Steptoe Valley, Coyote Spring Valley, and the western Sheep Range area. The data for each site include values for latitude, longitude, altitude, observed gravity, free- air anomaly, terrain correction, and Bouguer anomaly (calculated at a bedrock density of 2.67 g/cu cm. (USGS)

  8. Surface and subsurface structural analysis of a part of Washita Valley fault zone, southern Oklahoma

    SciTech Connect

    Palladino, D.L.

    1984-04-01

    The Washita Valley fault zone is one of the major northwest-trending structures in southern Oklahoma. This fault system is believed to have originated as a series of normal faults during the formation of the southern Oklahoma aulacogen by late Precambrian or early Cambrian time and to have been reactivated during the Arbuckle orogeny in the Pennsylvanian. Descriptions of movement along the Washita Valley fault zone during Pennsylvanian deformation include numerous interpretations, the most common being left-lateral strike slip with 30-40 mi (50-65 km) of displacement. Structures in the area, however, suggest an alternate model. A detailed field study of small folds, faults, fracture arrays, slickensides, and drainage patterns was conducted along the southeastern half of the Washita Valley fault zone. An attempt has been made to relate these small-scale features to the major structures in the area to determine the orientation of the major compressive stress during deformation and the relative amounts of strike-slip vs. reverse dip-slip movement along the fault zone. Exploration for oil and gas along the Washita Valley fault zone has identified several overturned folds and repeated sections. Field observations in the study area include small drag folds and thrust faults parallel to the trend of the Washita Valley fault zone. The two major anticlines in the area, the Arbuckle and the Tishomingo, are both nearly parallel to the trend of the fault zone. These data suggest a model of deformation involving a large component of reverse dip-slip faulting with major duplication of strata.

  9. Shallow velocity structure in the Imperial Valley region of Southern California

    NASA Astrophysics Data System (ADS)

    Ma, Y.; Stock, J. M.; Hole, J. A.; Fuis, G. S.

    2013-12-01

    The Imperial Valley, located south of the Salton Sea of Southern California, contains a pull-apart basin formed by the on-going oblique extension between the southernmost San Andreas fault and the northern Imperial fault. In this very seismically active area, the earthquakes tend to occur in the form of seismic swarms (e.g. events in August 2012), often related to the geothermal systems in the valley. Previous active seismic studies (e.g. Fuis et al. 1979, Parsons and McCarthy 1996) have revealed major crustal structures including the shallow basin structures in the valley and surroundings, based primarily on 2D models. A better 3D structure model is still awaiting construction to provide improved information on the location of earthquakes, faults, fault-zone properties, and the evolution of the basin. The 2011 Salton Seismic Imaging Project (SSIP) deployed a seismic array at 2-km grid spacing in the central northern part of the valley (Line 11), and three longer seismic lines across the valley with active sources (Lines 1, 2, and 3). Here we will present the shallow (to 8-km depth) 3D structure in this region obtained by modeling the traveltimes of the first arrivals in these recordings and from earlier experiments. We have processed arrivals from all shots at all receivers, from the SSIP dataset, in the region south of the Salton Sea. Relevant data from the 1979 Imperial Valley experiment has also been used. The 3D structure of the valley was inverted from the surface to 8-km depth using the technique of Hole (1992). On average, the velocity increases rapidly from ~2 km/s at the surface to 5.6 km/s at 5 km depth, a velocity range corresponding to the unmetamorphosed sediments (Fuis et al. 1984). Below 5-km depth, velocity increases slowly to 6.3 km/s at 8-km depth, a velocity range corresponding to the metasedimentary rocks, or 'basement' (Fuis et al. 1984). In depth slices, geothermal areas are characterized by high velocity zones. Specifically, we observe a

  10. Death Valley bright spot: a midcrustal magma body in the southern Great Basin, California

    SciTech Connect

    de Voogd, B.; Serpa, L.; Brown, L.; Hauser, E.; Kaufman, S.; Oliver, J.; Troxel, B.W.; Willemin, J.; Wright, L.A.

    1986-01-01

    A previously unrecognized midcrustal magma body may have been detected by COCORP deep seismic reflection profiles in the Death Valley region of the southern Great Basin. High-amplitude, relatively broad-band reflections at 6 s (15 km) are attributed to partially molten material within a subhorizontal intrusion. This bright spot extends laterally at least 15 km beneath central Death Valley. A moderately dipping normal fault can be traced from the inferred magma chamber upward to a 690,000-yr-old basaltic cinder cone. The fault zone is inferred to have been a magma conduit during the formation of the cinder cone. Vertical variations in crustal reflection character suggest that the Death Valley magma body may have been emplaced along a zone of decoupling that separates a faulted brittle upper crust from a more ductile and/or intruded lower crust. The Death Valley bright spot is similar to reflections recorded by COCORP in 1977 in the Rio Grande rift, where both geophysical and geodetic evidence support the inference of a tabular magma chamber at 20-km depth.

  11. Recurrent late Quaternary surface faulting along the southern Mohawk Valley fault zone, NE California

    SciTech Connect

    Sawyer, T.L.; Hemphill-Haley, M.A. ); Page, W.D. )

    1993-04-01

    The Mohawk Valley fault zone comprises NW- to NNW-striking, normal and strike-slip( ) faults that form the western edge of the Plumas province, a diffuse transitional zone between the Basin and Range and the northern Sierra Nevada. The authors detailed evaluation of the southern part of the fault zone reveals evidence for recurrent late Pleistocene to possibly Holocene, moderate to large surface-faulting events. The southern Mohawk fault zone is a complex, 6-km-wide zone of faults and related features that extends from near the crest of the Sierra Nevada to the middle of southern Sierra Valley. The fault zone has two distinct and generally parallel subzones, 3 km apart, that are delineated by markedly different geomorphic characteristics and apparently different styles of faulting. Paleoseismic activity of the western subzone was evaluated in two trenches: one across a fault antithetic to the main range-bounding fault, and the other across a splay fault delineated by a 3.7-m-high scarp in alluvium. Stratigraphic relations, soil development, and radiocarbon dates indicate that at least four mid- to late-Pleistocene surface-faulting events, having single-event displacements in excess of 1.6 to 2.6 m, occurred along the splay fault prior to 12 ka. The antithetic fault has evidence of three late Pleistocene events that may correspond to event documented on the splay fault, and a Holocene event that is inferred from youthful scarplets and small closed depressions.

  12. Biologically relevant physical measurements in the ice-free valleys of southern Victoria Land: soil temperature profiles and ultraviolet radiation

    NASA Technical Reports Server (NTRS)

    Nienow, J. A.; Meyer, M. A.; Friedmann, E. I. (Principal Investigator)

    1986-01-01

    As part of the ongoing comprehensive study of the cryptoendolithic microbial community in the ice-free valleys of southern Victoria Land, thermal properties of the soil and the ultraviolet radiation regime were measured. Although soil temperature profiles have been measured in the ice-free valleys (e.g., Cameron et al. 1970; Cameron 1972), these are the first such data from higher elevations. This is apparently the first time the ultraviolet radiation regime has been measured in the Antarctic.

  13. Post-Pennsylvanian reactivation along the Washita Valley fault, southern Oklahoma

    SciTech Connect

    VanArsdale, R.; Ward, C.; Cox, R.

    1989-06-01

    Surface exposures of faults of the Washita Valley fault (WVF) system in Garvin, Murray, Carter, and Johnston counties of southern Oklahoma were studied to determine if there has been post-Pennsylvanian fault reactivation and to determine if there has been any Quaternary fault movement. This was undertaken through field mapping, by dating alluvium which overlies the faults, and by logging trenches excavated across the WVF. In northern Murray County and southern Garvin County (site A), the WVF displaces Late-Pennsylvanian Oscar Group showing post-Pennsylvanian movement; however, no faulting was observed in 2000 year old alluvium of Wildhorse Creek along strike of the WVF. Three sites (B, C, and D) are located within the Arbuckle Mountains. Faulting of Virgilian age Vanoss Conglomerate and Vanoss Shale reveal post-Virgilian (Late Pennsylvanian) activity along a subsidiary fault in northern Murray County (site B). A 12000 to 15000 year old terrace at this site is unfaulted. Absence of any fault related features in paleosols which overly the WVF along the Washita River (site C) show that the fault has not been active during the last 1570 /+-/ 190 years in southern Murray County. Similarly, absence of any fault related features along Oil Creek (site D) indicates that the WVF has not been active during the last 1810 /+-/ 80 years in northern Carter and Johnston Counties. Faults in the Antlers Sandstone in southern Johnston County (site E) reveal post-Lower Cretaceous reactivation of the WVF. 49 refs., 28 figs., 1 tab.

  14. Impact of valley fills on streamside salamanders in southern West Virginia

    USGS Publications Warehouse

    Wood, Petra Bohall; Williams, Jennifer M.

    2013-01-01

    Valley fills associated with mountaintop-removal mining bury stream headwaters and affect water quality and ecological function of reaches below fills. We quantified relative abundance of streamside salamanders in southern West Virginia during 2002 in three streams below valley fills (VFS) and in three reference streams (RS). We surveyed 36 10- × 2-m stream transects, once in summer and fall, paired by order and structure. Of 2,343 salamanders captured, 66.7% were from RS. Total salamanders (adults plus larvae) were more abundant in RS than VFS for first-order and second-order reaches. Adult salamanders had greater abundance in first-order reaches of RS than VFS. Larval salamanders were more abundant in second-order reaches of RS than VFS. No stream width or mesohabitat variables differed between VFS and RS. Only two cover variables differed. Silt cover, greater in VFS than RS first-order reaches, is a likely contributor to reduced abundance of salamanders in VFS. Second-order RS had more boulder cover than second-order VFS, which may have contributed to the higher total and larval salamander abundance in RS. Water chemistry assessments of our VFS and RS reported elevated levels of metal and ion concentrations in VFS, which can depress macroinvertebrate populations and likely affect salamander abundance. Valley fills appear to have significant negative effects on stream salamander abundance due to alterations in habitat structure, water quality and chemistry, and macroinvertebrate communities in streams below fills.

  15. Thermal history of rocks in southern San Joaquin Valley, California: evidence from fission-track analysis

    USGS Publications Warehouse

    Naeser, N.D.; Naeser, C.W.; McCulloh, T.H.

    1990-01-01

    Fission-track analysis has been used to study the thermal and depositional history of the subsurface Tertiary sedimentary rocks on both sides of the active White Wolf reverse fault in the southern San Joaquin Valley. The distinctly different thermal histories of the rocks in the two structural blocks are clearly reflected in the apatite fission-track data, which suggest that rocks in the rapidly subsiding basin northwest of the fault have been near their present temperature for only about 1 m.y. compared with about 10 m.y. for rocks southeast of the fault. These estimates of heating time agree with previous estimates for these rocks. Zircon fission-track data indicate that the Tertiary sediments were derived from parent rocks of more than one age. However, from at least the Eocene to late Miocene or Pliocene, the major sediment source was rocks related to the youngest Sierra Nevada Mesozoic intrusive complexes, which are presently exposed east and south of the southern San Joaquin Valley. -from Authors

  16. Late Cenozoic crustal extension and magmatism, southern Death Valley region, California

    USGS Publications Warehouse

    Calzia, J.P.; Rämö, O.T.

    2000-01-01

    The late Cenozoic geologic history of the southern Death Valley region is characterized by coeval crustal extension and magamatism. Crustal extension is accommodated by numerous listric and planar normal faults as well as right- and left-lateral strike slip faults. The normal faults sip 30°-50° near the surface and flatten and merge leozoic miogeoclinal rocks; the strike-slip faults act as tear faults between crustal blocks that have extended at different times and at different rates. Crustal extension began 13.4-13.1 Ma and migrated northwestward with time; undeformed basalt flows and lacustrine deposits suggest that extension stopped in this region (but continued north of the Death Valley graben) between 5 and 7 Ma. Estimates of crustal extension in this region vary from 30-50 percent to more than 100 percent. Magmatic rocks syntectonic with crustal extension in the southern Death Valley region include 12.4-6.4 Ma granitic rocks as well as bimodal 14.0-4.0 Ma volcanic rocks. Geochemical and isotopic evidence suggest that the granitic rocks get younger and less alkalic from south to north; the volcanic rocks become more mafic with less evidence of crustal interaction as they get younger. The close spatial and temporal relation between crustal extension and magmatism suggest a genetic and probably a dynamic relation between these geologic processes. We propose a rectonic-magmatic model that requires heat to be transported into the crust by mantle-derived mafic magmas. These magmas pond at lithologic or rheologic boundaries, begin the crystallize, and partially melt the surrounding crustal rocks. With time, the thermally weakened crust is extended (given a regional extensional stress field) concurrent with granitic magmatism and bimodal volcanism.

  17. Morphological properties of tunnel valleys of the southern sector of the Laurentide Ice Sheet and implications for their formation

    NASA Astrophysics Data System (ADS)

    Livingstone, Stephen J.; Clark, Chris D.

    2016-07-01

    Tunnel valleys have been widely reported on the bed of former ice sheets and are considered an important expression of subglacial meltwater drainage. Although known to have been cut by erosive meltwater flow, the water source and development of channels has been widely debated; ranging between outburst flood events through to gradually occurring channel propagation. We have mapped and analysed the spatial pattern and morphometry of tunnel valleys and associated glacial landforms along the southern sector of the former Laurentide Ice Sheet from high-resolution digital elevation models. Around 2000 tunnel valleys have been mapped, revealing an organised pattern of sub-parallel, semi-regularly spaced valleys that form in distinctive clusters. The tunnel valleys are typically < 20 km long, and 0.5-3 km wide, although their width varies considerably down-valley. They preferentially terminate at moraines, which suggests that formation is time dependent; while we also observe some tunnel valleys that have grown headwards out of hill-hole pairs. Analysis of cross-cutting relationships between tunnel valleys, moraines and outwash fans permits reconstruction of channel development in relation to the retreating ice margin. This palaeo-drainage reconstruction demonstrates incremental growth of most valleys, with some used repeatedly or for long periods, during deglaciation, while others were abandoned shortly after their formation. Our data and interpretation support gradual (rather than a single-event) formation of most tunnel valleys with secondary contributions from flood drainage of subglacial and or supraglacially stored water down individual tunnel valleys. The distribution and morphology of tunnel valleys is shown to be sensitive to regional factors such as basal thermal regime, ice and bed topography, timing and climate.

  18. Paleontologic investigations of the uppermost Santa Susana Formation, south side of Simi Valley, southern California

    SciTech Connect

    Squires, R.L. )

    1991-02-01

    Strata assignable to the provincial macroinvertebrate Meganos stage, equivalent to the calcareous nannofossil CP8 zone (late Paleocene) to CP9 zone (early Eocene), are uncommon on the Pacific coast of North America. This stage has been recognized in southern California only in the uppermost Santa Susana Formation, north side of Simi Valley. Although early workers reported meganos stage strata from the south side of Simi Valley, most of these deposits have since been assigned to younger or older stages. Intensive collecting by the author now proves that Meganos stage fossils are present in the upper 100 m of the Santa Susana Formation on the south side of the Simi Valley, east of the Runkle Canyon fault. This 100-m-thick interval consists of gray, very fine-grained sandstone that has a gradational lithology from the underlying gray mudstone. Calcareous nannofossils were found only near the bottom of the 100-m-thick interval, and they are suggestive of the late Paleocene Discoaster multiradiatus (CP8) zone. Rare, macrofossil-bearing lenses near the bottom of the 100-m-thick interval contain the solitary coral Trochocyathus zitteli, the gastropods Turritella subuvasana and the Velates californicus( ), and the bivalve Fimbria susanensis. Sparsely occurring, macrofossil-bearing lenses in the upper 20 m of the 100-m-thick- interval contain the colonial coral Archohelia clarki and the gastropod Turritella andersoni susanae (= T. andersoni n. subsp. of authors). Turritella andersoni susanae indicates the early Eocene part of the Meganoz stage because it is found just above the earliest Eocene Discoaster diastypus (CP9) zone in the upper Santa Susana Formation on the north side of Simi Valley.

  19. Yield, pollination aspects and kernel qualities of almond (Prunus amygdalus Batsch) selections trialed in the Southern San Joaquin Valley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A field trial was established in the Southern San Joaquin Valley to determine yield potential for nine almond selections grown under commercial conditions. Kernel yields were first quantified in 2008, at the end of the third growing season, and continued through the 2010 harvest. Harvested tonnage...

  20. Prediction, Assessment of the Rift Valley fever Activity in East and Southern Africa 2006 - 2008 and Possible Vector Control Strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Historical outbreaks of Rift Valley fever (RVF) since the early 1950s have been associated with cyclical patterns of the El Nino/Southern Oscillation (ENSO) phenomenon which results in elevated and widespread rainfall over the RVF endemic areas of Africa. Using satellite measurements of global and ...

  1. Factors Motivating Latino College Students to Pursue STEM Degrees on CSU Campuses in the Southern San Joaquin Valley

    ERIC Educational Resources Information Center

    Ramirez, Gabriel

    2014-01-01

    The purpose of this study was to determine what factors were motivating Latino/a students in the southern San Joaquin Valley to pursue STEM degrees and whether these factors were specific to the Latino/a culture. A 12-question survey was administered to STEM majors at California State University, Bakersfield and California State University, Fresno…

  2. Prediction, Assessment of the Rift Valley Fever Activity in East and Southern Africa 2006 - 2008 and Possible Vector Control Strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Historical episodic outbreaks of Rift Valley fever (RVF) since the early 1950s have been associated with cyclical patterns (El Niño and La Niña) of El Niño Southern Oscillation (ENSO) phenomenon which results in elevated and widespread rainfall over the RVF endemic areas of Africa. Using satellite ...

  3. Impacts of changing irrigation practices on waterfowl habitat use in the southern San Joaquin Valley, California

    USGS Publications Warehouse

    Barnum, D.A.; Euliss, N. H ., Jr.

    1991-01-01

    We used diurnal aerial census data to examine habitat use patterns of ducks wintering in the southern San Joaquin Valley, California from 1980-87. We calculated densities (birds/ha) for the northern pintail (Anas acuta), mallard (A. platyrhynchos), green-winged teal (A. crecca), cinnamon teal (A. cyanoptera), shoveler (A. clypeata), ruddy duck (Oxyura jamaicensis), and total ducks in each of 5 habitats. Densities of pintail and total ducks were greater in September than in other months. From October through January, density of teal and total ducks was greatest on Kern National Wildlife Refuge (NWR). Densities of ruddy duck and pintail were greatest on agricultural drainwater evaporation ponds and preirrigated cropland, respectively.

  4. The Persistence of Glacial Valleys in the New Zealand Southern Alps

    NASA Astrophysics Data System (ADS)

    Prasicek, G.; Larsen, I. J.; Montgomery, D. R.

    2014-12-01

    One of the most fundamental insights for understanding how landscapes evolve is based on determining whether topography was modified by glaciers or rivers. Alpine landscapes featuring horns, knife-edged ridges, and U-shaped valleys are commonly associated with glacial sculpting, whereas fluvial erosion is known to produce V-shaped valleys via links between river incision and landsliding. Rivers, landslides, and glaciers are all capable of rapid erosion comparable to the highest rates of rock uplift, and there has been progress in modeling fluvial erosion and hillslope response, as well as understanding how landscapes react to the onset of glaciation. However, the timescale involved in the transition from a glacial to a fluvial landscape is poorly constrained and it is unclear how long glacial morphology can survive following deglaciation. We tested whether the fluvial and hillslope erosional response to tectonic forcing controls the timescale over which glacial topography persists into interglacial periods. We used digital terrain data to quantify the degree of glacial imprint on topography by geomorphometric analysis of cross-sectional valley shape across a spatial gradient in rock uplift and erosion rates in the New Zealand Southern Alps. Our results show that tectonic forcing is a first-order control on landscape evolution and on the persistence of glacial morphology. In Earth's most rapidly uplifting mountain ranges the lifespan of glacial topography is on the order of one interglacial period, preventing the development of a cumulative glacial signal from the added erosional impact of subsequent glacial stages. Thus we suggest that the present-day physiographic signature of glaciated landscapes is best expressed in, and limited by the extent of low uplift terrain. In addition, emphasizing that the presence of glacially preconditioned topography greatly influences glacial extent and erosion, our results imply that tectonic forcing governs the impact of climate

  5. Geochemical evidence for seasonal controls on the transportation of Holocene loess, Matanuska Valley, southern Alaska, USA

    NASA Astrophysics Data System (ADS)

    Muhs, Daniel R.; Budahn, James R.; Skipp, Gary L.; McGeehin, John P.

    2016-06-01

    Loess is a widespread Quaternary deposit in Alaska and loess accretion occurs today in some regions, such as the Matanuska Valley. The source of loess in the Matanuska Valley has been debated for more than seven decades, with the Knik River and the Matanuska River, both to the east, being the leading candidates and the Susitna River, to the west, as a less favorable source. We report here new stratigraphic, mineralogic, and geochemical data that test the competing hypotheses of these river sources. Loess thickness data are consistent with previous studies that show that a source or sources lay to the east, which rules out the Susitna River as a source. Knik and Matanuska River silts can be distinguished using Sc-Th-La, LaN/YbN vs. Eu/Eu∗, Cr/Sc, and As/Sb. Matanuska Valley loess falls clearly within the range of values for these ratios found in Matanuska River silt. Dust storms from the Matanuska River are most common in autumn, when river discharge is at a minimum and silt-rich point bars are exposed, wind speed from the north is beginning to increase after a low-velocity period in summer, snow depth is still minimal, and soil temperatures are still above freezing. Thus, seasonal changes in climate and hydrology emerge as critical factors in the timing of aeolian silt transport in southern Alaska. These findings could be applicable to understanding seasonal controls on Pleistocene loess accretion in Europe, New Zealand, South America, and elsewhere in North America.

  6. Geochemical evidence for seasonal controls on the transportation of Holocene loess, Matanuska Valley, southern Alaska, USA

    USGS Publications Warehouse

    Muhs, Daniel; Budahn, James R.; Skipp, Gary L.; McGeehin, John

    2016-01-01

    Loess is a widespread Quaternary deposit in Alaska and loess accretion occurs today in some regions, such as the Matanuska Valley. The source of loess in the Matanuska Valley has been debated for more than seven decades, with the Knik River and the Matanuska River, both to the east, being the leading candidates and the Susitna River, to the west, as a less favorable source. We report here new stratigraphic, mineralogic, and geochemical data that test the competing hypotheses of these river sources. Loess thickness data are consistent with previous studies that show that a source or sources lay to the east, which rules out the Susitna River as a source. Knik and Matanuska River silts can be distinguished using Sc–Th–La, LaN/YbN vs. Eu/Eu∗, Cr/Sc, and As/Sb. Matanuska Valley loess falls clearly within the range of values for these ratios found in Matanuska River silt. Dust storms from the Matanuska River are most common in autumn, when river discharge is at a minimum and silt-rich point bars are exposed, wind speed from the north is beginning to increase after a low-velocity period in summer, snow depth is still minimal, and soil temperatures are still above freezing. Thus, seasonal changes in climate and hydrology emerge as critical factors in the timing of aeolian silt transport in southern Alaska. These findings could be applicable to understanding seasonal controls on Pleistocene loess accretion in Europe, New Zealand, South America, and elsewhere in North America.

  7. Bioindicators from Mosquitofish (Gambusia affinis) Sampled from the Imperial Valley in Southern California

    USGS Publications Warehouse

    Jenkins, Jill A.; Draugelis-Dale, Rassa O.

    2006-01-01

    The Sonny Bono Salton Sea National Wildlife Refuge (SSNWR) is located 64 km north of the Mexican border at the southern end of the Salton Sea in California's Imperial Valley. Freshwater ponds and managed habitats at the SSNWR, Calipatria, Calif. are supplied with Colorado River water that carries compounds from upstream sources. Components include municipal and industrial discharges, agricultural drainage, and sewage plant inputs. Aquatic animals in these ecosystems are continuously exposed to multiple constituents, several of which have been demonstrated to be associated with hormonal disturbances. We investigated possible endocrine impacts to fish in the Imperial Valley, Calif., by addressing the null hypothesis that aquatic species in impacted sites did not exhibit evidence of endocrine disruption as compared with those from nonimpacted sites. The results presented are intended to provide managers with science-based information and interpretations about the condition of the animals in their ecosystems for the minimization of potential adverse effects to trust fish and wildlife resources and for the maximization of available water resources.

  8. Paleoseismic investigations of the Paintbrush Canyon fault in southern Midway Valley, Yucca Mountain, Nevada: Preliminary results

    SciTech Connect

    Swan, F.H.; Wesling, J.R.; Thomas, A.P. )

    1993-04-01

    Trench mapping in southern Midway Valley provides evidence of multiple surface-faulting events on a western splay of the Paintbrush Canyon fault during the middle to late Pleistocene. The 6-m-wide fault zone exposed in the trench strikes N30-45E and dips steeply ([approximately]78[degree]) to the west, although some shears within the zone dip to the east. Tertiary volcanic bedrock is exposed only on the footwall block within the trench. Unconsolidated colluvial and eolian deposits are present in the hanging-wall block and above bedrock in the footwall block. These deposits tentatively are assigned, respectively, mid Pleistocene and late Pleistocene ages based on correlations with surficial map units in Midway Valley. Three to five displacement events are inferred based on faulted colluvial and eolian deposits, and scarp-derived colluvial wedges. Total cumulative dip-slip displacement of the oldest middle Pleistocene subunit is estimated to be about 170 to 270 cm. The dip-slip displacement associated with the youngest event is about 15 cm. The earlier displacements are estimated to have produced between 40 and 85 cm of dip-slip displacement per event. The most recent event occurred after deposition of late Pleistocene colluvium deposited against the fault scarp but before deposition of an overlying hillslope-derived colluvium of probable late pleistocene age. Based on the preliminary results of the authors study, the middle to late Quaternary rate of dip-slip displacement is approximately 0.01 m/kyr or less. Ongoing work, including soil-stratigraphic studies and numerical dating of deposits, should better constrain the timing and a rate of faulting along this western splay of the Paintbrush Canyon fault.

  9. Geodetic constraints on frictional properties and earthquake hazard in the Imperial Valley, Southern California

    NASA Astrophysics Data System (ADS)

    Lindsey, Eric O.; Fialko, Yuri

    2016-02-01

    We analyze a suite of geodetic observations across the Imperial Fault in southern California that span all parts of the earthquake cycle. Coseismic and postseismic surface slips due to the 1979 M 6.6 Imperial Valley earthquake were recorded with trilateration and alignment surveys by Harsh (1982) and Crook et al. (1982), and interseismic deformation is measured using a combination of multiple interferometric synthetic aperture radar (InSAR)-viewing geometries and continuous and survey-mode GPS. In particular, we combine more than 100 survey-mode GPS velocities with InSAR data from Envisat descending tracks 84 and 356 and ascending tracks 77 and 306 (149 total acquisitions), processed using a persistent scatterers method. The result is a dense map of interseismic velocities across the Imperial Fault and surrounding areas that allows us to evaluate the rate of interseismic loading and along-strike variations in surface creep. We compare available geodetic data to models of the earthquake cycle with rate- and state-dependent friction and find that a complete record of the earthquake cycle is required to constrain key fault properties including the rate-dependence parameter (a - b) as a function of depth, the extent of shallow creep, and the recurrence interval of large events. We find that the data are inconsistent with a high (>30 mm/yr) slip rate on the Imperial Fault and investigate the possibility that an extension of the San Jacinto-Superstition Hills Fault system through the town of El Centro may accommodate a significant portion of the slip previously attributed to the Imperial Fault. Models including this additional fault are in better agreement with the available observations, suggesting that the long-term slip rate of the Imperial Fault is lower than previously suggested and that there may be a significant unmapped hazard in the western Imperial Valley.

  10. BAGC.m: Three dimensional gravity modeling software with an application in Southern Death Valley, CA

    NASA Astrophysics Data System (ADS)

    Eslick, Brian Eugene

    Basin Anomaly Gravity Calculator (BAGC.m) is a 3D interactive gravity modeling package designed to create, edit, and calculate the gravitational attraction of basin models entirely within the MATLAB(TM) environment. Gravity anomalies are calculated using the Rectangular Prism Method (Bott, 1960; Kane, 1962; and Plouff, 1966) which subdivides earth models into regularly spaced rectangular prisms. This approach requires large 3D matrices to store most realistic earth models. The process of model editing is simplified by storing basins as 2D gridded files which define the depth to the boundary between basement rock and sedimentary fill for each model cell. In order to minimize computation time, BAGC.m calculates and stores the gravitational attraction of each cell so that when the model is edited only those cells that change need to be recalculated. The performance of BAGC.m was tested by comparing the gravity anomaly produced by a modeled sphere of radius 4.5 km at a depth of 4.5 km with its analytical solution. The tests indicate that BAGC.m reproduces the analytical solution with an error of 0.6% for a sample spacing of 60 m which corresponds to 7.07x10-6% of the volume of the sphere. BAGC.m was used to calculate the gravitational attraction of a regional basin depth model of Death Valley developed by Blakely and Ponce (2001). Results were compared to a new high precision gravity data set and indicate that the structures within the Southern Death Valley Fault Zone (SDVFZ) are more complex than predicted by the regional basin depth model. However, the program did calculate the contributions of the basin fill to the regional gravity field based on that depth model.

  11. Epidemiologic and Environmental Risk Factors of Rift Valley Fever in Southern Africa from 2008 to 2011

    PubMed Central

    Glancey, Margaret M.; Linthicum, Kenneth J.

    2015-01-01

    Abstract Background: Rift Valley fever (RVF) outbreaks have been associated with periods of widespread and above-normal rainfall over several months. Knowledge on the environmental factors influencing disease transmission dynamics has provided the basis for developing models to predict RVF outbreaks in Africa. From 2008 to 2011, South Africa experienced the worst wave of RVF outbreaks in almost 40 years. We investigated rainfall-associated environmental factors in southern Africa preceding these outbreaks. Methods: RVF epizootic records obtained from the World Animal Health Information Database (WAHID), documenting livestock species affected, location, and time, were analyzed. Environmental variables including rainfall and satellite-derived normalized difference vegetation index (NDVI) data were collected and assessed in outbreak regions to understand the underlying drivers of the outbreaks. Results: The predominant domestic vertebrate species affected in 2008 and 2009 were cattle, when outbreaks were concentrated in the eastern provinces of South Africa. In 2010 and 2011, outbreaks occurred in the interior and southern provinces affecting over 16,000 sheep. The highest number of cases occurred between January and April but epidemics occurred in different regions every year, moving from the northeast of South Africa toward the southwest with each progressing year. The outbreaks showed a pattern of increased rainfall preceding epizootics ranging from 9 to 152 days; however, NDVI and rainfall were less correlated with the start of the outbreaks than has been observed in eastern Africa. Conclusions: Analyses of the multiyear RVF outbreaks of 2008 to 2011 in South Africa indicated that rainfall, NDVI, and other environmental and geographical factors, such as land use, drainage, and topography, play a role in disease emergence. Current and future investigations into these factors will be able to contribute to improving spatial accuracy of models to map risk areas

  12. Gravity and magnetic data in the vicinity of Virgin Valley, southern Nevada

    USGS Publications Warehouse

    Morin, Robert L.

    2006-01-01

    This report contains 10 interpretive cross sections and an integrated text describing the geology of parts of the Colorado, White River, and Death Valley regional ground-water flow systems, Nevada, Utah, and Arizona. The primary purpose of the report is to provide geologic framework data for input into a numerical ground-water model. Therefore, the stratigraphic and structural summaries are written in a hydrogeologic context. The oldest rocks (basement) are Early Proterozoic metamorphic and intrusive crystalline rocks that are considered confining units because of their low permeability. Late Proterozoic to Lower Cambrian clastic units overlie the crystalline rocks and are also considered confining units within the regional flow systems. Above the clastic units are Middle Cambrian to Lower Permian carbonate rocks that are the primary aquifers in the flow systems. The Middle Cambrian to Lower Permian carbonate rocks are overlain by a sequence of mainly clastic rocks of late Paleozoic to Mesozoic age that are mostly considered confining units, but they may be permeable where faulted. Tertiary volcanic and plutonic rocks are exposed in the northern and southern parts of the study area. In the Clover and Delamar Mountains, these rocks are highly deformed by north- and northwest-striking normal and strike-slip faults that are probably important conduits in transmitting ground water from the basins in the northern Colorado and White River flow systems to basins in the southern part of the flow systems. The youngest rocks in the region are Tertiary to Quaternary basin-fill deposits. These rocks consist of middle to late Tertiary sediments consisting of limestone, conglomerate, sandstone, tuff, and gypsum, and younger Quaternary surficial units consisting of alluvium, colluvium, playa deposits, and eolian deposits. Basin-fill deposits are both aquifers and aquitards.

  13. Holocene loess deposition and soil formation as competing processes, Matanuska Valley, southern Alaska

    USGS Publications Warehouse

    Muhs, D.R.; McGeehin, J.P.; Beann, J.; Fisher, E.

    2004-01-01

    Although loess-paleosol sequences are among the most important records of Quaternary climate change and past dust deposition cycles, few modern examples of such sedimentation systems have been studied. Stratigraphic studies and 22 new accelerator mass spectrometry radiocarbon ages from the Matanuska Valley in southern Alaska show that loess deposition there began sometime after ???6500 14C yr B.P. and has continued to the present. The silts are produced through grinding by the Matanuska and Knik glaciers, deposited as outwash, entrained by strong winds, and redeposited as loess. Over a downwind distance of ???40 km, loess thickness, sand content, and sand-plus-coarse-silt content decrease, whereas fine-silt content increases. Loess deposition was episodic, as shown by the presence of paleosols, at distances >10 km from the outwash plain loess source. Stratigraphic complexity is at a maximum (i.e., the greatest number of loesses and paleosols) at intermediate (10-25 km) distances from the loess source. Surface soils increase in degree of development with distance downwind from the source, where sedimentation rates are lower. Proximal soils are Entisols or Inceptisols, whereas distal soils are Spodosols. Ratios of mobile CaO, K2O, and Fe2O3 to immobile TiO2 show decreases in surface horizons with distance from the source. Thus, as in China, where loess deposition also takes place today, eolian sedimentation and soil formation are competing processes. Study of loess and paleosols in southern Alaska shows that particle size can vary over short distances, loess deposition can be episodic over limited time intervals, and soils developed in stabilized loess can show considerable variability under the same vegetation. ?? 2004 University of Washington. All rights reserved.

  14. 1995 Integrated Monitoring Study: Fog measurements in the Southern San Joaquin Valley - preliminary results

    SciTech Connect

    Collett, J. Jr.; Bator, A.; Sherman, D.E.

    1996-12-31

    Fogs were sampled at three ground-based stations in the southern portion of California`s San Joaquin Valley as part of the winter component of the 1995 Integrated Monitoring Study (IMS95). The three sampling sites included two urban locations (Bakersfield and Fresno) and one rural location (near the Kern Wildlife Refuge). Both bulk and drop size-fractionated samples were collected at each site. Several fog events were sampled, with three periods of extensive fog coverage that included all three sampling sites. Results of preliminary data analysis are presented. Fog collected at the sites was generally quite basic. Most bulk fog samples had pH values above 6 reflecting strong inputs from ammonia. Occasional strong sulfur plumes at Bakersfield, however, tended to lower the fog pH. Aside from these periods, nitrate was generally present at much higher concentrations in the fog than sulfate. Decreases in fogwater loadings of major species over the course of one extended fog episode at Fresno suggest significant deposition was occurring to the surface, consistent with observations of substantial droplet fluxes to exposed surfaces during that period. 16 refs., 7 figs., 1 tab.

  15. Geological and geophysical characterization of the southeastern side of the High Agri Valley (southern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Giocoli, A.; Stabile, T. A.; Adurno, I.; Perrone, A.; Gallipoli, M. R.; Gueguen, E.; Norelli, E.; Piscitelli, S.

    2015-02-01

    In the frame of a national project funded by Eni S.p.A. and developed by three institutes of the National Research Council (the Institute of Methodologies for Environmental Analysis, the Institute of Research for Hydrogeological Protection and the Institute for Electromagnetic Sensing of the Environment), a multidisciplinary approach based on the integration of satellite, aero-photogrammetric and in situ geophysical techniques was applied to investigate an area located in the Montemurro territory in the southeastern sector of the High Agri Valley (Basilicata Region, southern Italy). This paper reports the results obtained by the joint analysis of in situ geophysical surveys, aerial photos interpretation, morphotectonic investigation, geological field survey and borehole data. The joint analysis of different data allowed us (1) to show the shallow geological and structural setting, (2) to detect the geometry of the different lithological units and their mechanical and dynamical properties, (3) to image a previously unmapped fault beneath suspected scarps/warps and (4) to characterize the geometry of an active landslide affecting the study area.

  16. Decoupled extensional faulting and forced folding in the southern part of the Roer Valley Graben, Belgium

    NASA Astrophysics Data System (ADS)

    Deckers, Jef

    2015-12-01

    During late Oligocene incipient rifting, the southern part of the Roer Valley Graben was characterized by normal faulting and forced folding of its Paleogene pre-rift strata. The 2D seismic data used in this study shows that these faults and forced folds were geometrically decoupled from faults or fault zones in the underlying Triassic and older strata. Geometric decoupling consistently took place in an interval that comprises (latest Triassic to Early Jurassic) soft claystones on top of (Triassic) alternations of evaporites and claystones layers. This mechanically weak interval probably inhibited the upward propagation of (re)activated underlying faults, resulting in the formation of the observed forced folds (monoclines) in the overlying Paleogene pre-rift strata. Strain from the sub-detachment faults was distributed along the mechanically weak interval towards detachment edges, leading to the consistent presence of faults in the footwall domain of the supra-detachment monoclines. The mechanically weak interval was thereby able to maintain the kinematic coherency between geometrically decoupled under- and overlying deformation throughout late Oligocene rifting.

  17. Bovine trypanosomosis and Glossina distribution in selected areas of southern part of Rift Valley, Ethiopia.

    PubMed

    Sheferaw, Desie; Birhanu, Belay; Asrade, Biruhtesfa; Abera, Mesele; Tusse, Turist; Fikadu, Amha; Denbarga, Yifat; Gona, Zemedkun; Regassa, Alemayehu; Moje, Nebyou; Kussito, Engida; Mekibib, Berhanu; Asefa, Teshome; Woldesenbet, Zerihun

    2016-02-01

    Cross-sectional study was conducted in 9 selected districts of the southern part the Rift Valley, Ethiopia to estimate the dry period prevalence of bovine trypanosomosis as well as assessment of Glossina species. From a total of 1838 cattle examined for trypanosomosis by buffy coat technique 133 (7.2%) were found infected by trypanosome species. From the total positive animals 66.9 and 33.1% of them accounted to Trypanosoma congolense and Trypanosoma vivax, respectively. Significantly higher prevalence (19.4%., P<0.05) was recorded at Arba-Mnch district. Black colored cattle were the most highly affected (χ(2)=79.35, P<0.05) animals. The overall average PCV value for parasitaemic and aparasitaemic animals was 22.2 (95% CI=21.6-22.7) and 27% (95% CI=26.8-27.2), respectively. The fly caught per trap per day was 1.4 for Glossina species and 2.8 for other biting flies. Two species of Glossina identified namely Glossina pallidipes and Glossina fuscipes. PMID:26581831

  18. Fertilisation of the Southern Atlantic: Ephemeral River Valleys as a replenishing source of nutrient-enriched mineral aerosols

    NASA Astrophysics Data System (ADS)

    Dansie, Andrew; Wiggs, Giles; Thomas, David

    2016-04-01

    Oceanic dust deposition provides biologically important iron and macronutrients (Phosphorus (P) and Nitrogen-based (N) compounds) that contribute to phytoplankton growth, marine productivity and oceanic atmospheric CO2 uptake. Research on dust emission sources to date has largely focused on the northern hemisphere and on ephemeral lakes and pans. Our work considers the ephemeral river valleys of the west coast of Namibia as an important yet overlooked source of ocean-fertilizing dust. Dust plumes are frequently emitted from the river valleys by strong easterly winds during the Southern Hemisphere winter, when the upwelling of the Benguela Current is at its weakest. We present field data from dust emission source areas along the main river channels near the coastal termini of the Huab, Kuiseb and Tsauchab river valleys. Collected data include erodible surface sediment, wind-blown flux, and associated meteorological data. Extensive surface sediment sampling was also undertaken throughout the combined 34,250 km2 extent of each river valley catchment with samples collected from within the main river channels, the main branches of each river system, selected tributaries, and into the upper watersheds. Geochemical data show valley sediment and wind-blown flux material have high concentrations of bioavailable Fe, P and N, exceeding that measured at the major dry lake basin dust sources in southern Africa. The contribution of fertilising deposition material is enhanced by both the spatial proximity of the source areas to the ocean and enrichment of source material by ephemeral fluvial accumulation and desiccation. Results show that geographical factors within each watershed play a key role in the nutrient composition of the emitting fluvial deposits in the river valleys. Analysis explores potential relationships between land use, geology, climate and precipitation in the upper watersheds and their influence on bioavailability of Fe, P and N compounds in wind

  19. Orographic enhancement of rainfalls in the Rio San Francisco valley in southern Ecuador

    NASA Astrophysics Data System (ADS)

    Trachte, K.; Rollenbeck, R.; Bendix, J.

    2012-04-01

    In a tropical mountain rain forest in southern Ecuador diurnal dynamics of cloud development and precipitation behavior is investigated in the framework of the DFG research unit 816. With automatic climate stations and rain radar rainfalls in the Rio San Francisco valley are recorded. The observations showed the typical tropical late afternoon convective precipitation as well as local events such as mountain valley breezes and luv-lee effects. Additionally, the data revealed an unusually early morning peak that could be recognized as convective rainfalls. On the basis of GOES-E satellite imagery these rainfalls could be traced back to nocturnal convective clouds at the eastern Andes Mountains. There are some explanations for the occurrence of the clouds: One already examined mechanism is a katabatic induced cold front at the foothills of the Andes in the Peruvian Amazon basin. In this region the mountains form a quasi-concave configuration that contributes to a convergence of cold air drainage with subsequent convective activities. Another explanation for the events is the orographic enhancement by a local seeder-feeder mechanism. Mesoscale convective systems from the Amazon basin are transported to the west via the trade winds. At the Andes Mountains the complex and massive orography acts like a barrier to the clouds. The result is a disconnection of the upper part of the cloud from the lower part. The latter rains out at the eastern slopes and the upper cloud is transported further to the west. There it acts like a seeder to lower level clouds, i. e. the feeder. With the numerical model ARPS (Advanced Regional Prediction System) this procedure is investigated on the basis of two case studies. The events are detected and selected through the analysis of GOES-E brightness temperatures. They are also used to compare and validate the results of the model. Finally, the orographic enhancement of the clouds is examined. By using a vertically pointing radar the

  20. Wetland sedimentation and associated diatoms in the Pleistocene Olorgesailie Basin, southern Kenya Rift Valley

    NASA Astrophysics Data System (ADS)

    Owen, R. Bernhart; Renaut, Robin W.; Scott, Jennifer J.; Potts, Richard; Behrensmeyer, Anna K.

    2009-12-01

    The Olorgesailie Basin in the southern Kenya Rift Valley contains a variety of lacustrine, wetland and terrestrial facies that were laid down during the last 1.2 million years. This study integrates diatom, ichnofossil, and rhizolith (silica and carbonate) evidence in order to identify and characterize shallow wetland deposition at the top (Member 14; ca. 493 ka) of the Olorgesailie Formation. A key feature of these deposits is the presence of facies with aquatic indicators (diatoms) that are overprinted by ichnofossils and rhizoliths that suggest drier conditions. Diatom floras include several fresh water Aulacoseira spp. and saline indicators such as Thalassiosirarudolfi, T.faurii, Cyclotellameneghiniana and Anomoeoneissphaerophora. The main indicators of shallow fresh to mildly saline waters include Epithemia argus, Rhopalodiagibberula, Encyonema muelleri, and Synedra spp. Three main suites of ichnofossils indicate varying water table depths during their formation. These consist of 1) horizontal tunnels that suggest saturated substrates; 2) vertical burrows formed in substrates with relatively lower water tables; and 3) termite, hymenopteran, and beetle ichnofossils that indicate dry substrates. Member 14 of the Olorgesailie Formation also contains carbonate and siliceous rhizoliths, which occur both together and separately. Four possible models are suggested to explain the silica and carbonate rhizolith formation: 1) a complex of spring-fed marshes and dry areas; 2) ephemeral wetlands and floodplains; 3) wetlands with abundant organic decay, and 4) initial carbonate rhizoliths that were replaced by silica. Preservation of cellular structures and the reworking and incorporation of rhizoliths in overlying younger strata suggest that they formed early during diagenesis.

  1. Late Glacial and Holocene Record of Hydroclimate in the San Luis Valley, Southern Colorado, USA

    NASA Astrophysics Data System (ADS)

    Yuan, F.; Koran, M.

    2012-12-01

    Lake sediments from the San Luis Valley, south-central Colorado, archive a detailed record of Late Glacial and Holocene climatic fluctuations in the southern Rocky Mountains. Together with radiometric dating analysis, measurements of grain size, magnetic susceptibility, total inorganic carbon (TIC), oxygen and carbon isotopic composition of the TIC fraction on sediment samples from San Luis Lake (at an average resolution of 60 years per sample) allow us to generate a sediment record of climatic change in the region spanning the last 16ka (1 ka=1000 cal yrs). This record documents the timing and duration of major climate episodes and trends, comparable to the existing paleoclimate records from the American Southwest. The Late Glacial record of San Luis Lake contains a big wet episode in the late part of the Mystery Interval (MI), a relatively dry climate during Bølling-Allerød (B/A) warm interval, and a relatively wet episode during the Younger Dryas (YD) interval, similar to the lake-level record found in the Estancia basin in central New Mexico. The early to middle Holocene record of d18O in the San Luis Lake parallels the calcite d18O record of Bison Lake in northern Colorado, documenting a history of significant change in precipitation seasonality across the northern boundary of the North American monsoon (NAM). The middle Holocene epoch is characterized by greater variations in magnetic susceptibility, d18O and d13C, suggesting the prevalence of wet, variable or transitional climate conditions. In contrast, the late Holocene climate is relatively dry, as indicated by more positive values of d18O in San Luis Lake. The results of this study reveal a complex history of climate evolution due to the interactions of two seasonally distinct precipitation regimes with mountainous landforms in the region.

  2. UAV's for active tectonics : case example from the Longitudinal Valley and the Chishan Faults (Southern Taiwan)

    NASA Astrophysics Data System (ADS)

    Deffontaines, Benoit; Chang, Kuo-Jen; Chan, Yu-Chang; Chen, Rou-Fei; Hsieh, Yu-Chung

    2015-04-01

    Taiwan is a case example to study active tectonics due to the active NW-SE collision of the Philippine and Eurasian Sea Plates as the whole convergence reaches 10cm/y. In order to decipher the structural active tectonics geometry, we used herein UAV's to get high resolution Digital Terrain Model (DTM) in local active tectonics key areas. Classical photo-interpretation where then developped in order to structurally interprete these data, confirmed by field studies. Two location had first been choosen in order to highlight the contribution of such high resolution DTM in SW Taiwan on the Longitudinal Valley Fault (SE Taiwan) on its southern branch from Pinting to Luyeh terraces (Pinanshan) where UAV's lead to better interprete the location of the outcropping active deformations. Combined with available GPS data and PALSAR interferometry (Deffontaines et Champenois et al., submitted) it is then possible to reconstruct the way of the present deformation in this local area. In the Pinting terraces, If the western branch of the fault correspond to an outcroping thrust fault, the eastern branch act as a a growing active anticline that may be characterized and quantified independantly. The interpretation of the UAV's high resolution DTM data on the Chishan Fault (SW Taiwan) reveals also the geometry of the outcropping active faults complex structural behaviour. If the Chishan Fault act as a thrusting in its northern tip (close to Chishan city), it acts as a right lateral strike-slip fault north of Chaoshan (Kaohsiung city) as described by Deffontaines et al. 2014. Therefore UAV's are a so useful tool to get very high resolution topographic data in Taiwan that are of great help to get the geometry of the active neotectonic structures in Taiwan.

  3. Characterization of intrabasin faulting and deformation for earthquake hazards in southern Utah Valley, Utah, from high-resolution seismic imaging

    USGS Publications Warehouse

    Stephenson, William J.; Odum, Jack K.; Williams, Robert A.; McBride, John H.; Tomlinson, Iris

    2012-01-01

    We conducted active and passive seismic imaging investigations along a 5.6-km-long, east–west transect ending at the mapped trace of the Wasatch fault in southern Utah Valley. Using two-dimensional (2D) P-wave seismic reflection data, we imaged basin deformation and faulting to a depth of 1.4 km and developed a detailed interval velocity model for prestack depth migration and 2D ground-motion simulations. Passive-source microtremor data acquired at two sites along the seismic reflection transect resolve S-wave velocities of approximately 200 m/s at the surface to about 900 m/s at 160 m depth and confirm a substantial thickening of low-velocity material westward into the valley. From the P-wave reflection profile, we interpret shallow (100–600 m) bedrock deformation extending from the surface trace of the Wasatch fault to roughly 1.5 km west into the valley. The bedrock deformation is caused by multiple interpreted fault splays displacing fault blocks downward to the west of the range front. Further west in the valley, the P-wave data reveal subhorizontal horizons from approximately 90 to 900 m depth that vary in thickness and whose dip increases with depth eastward toward the Wasatch fault. Another inferred fault about 4 km west of the mapped Wasatch fault displaces horizons within the valley to as shallow as 100 m depth. The overall deformational pattern imaged in our data is consistent with the Wasatch fault migrating eastward through time and with the abandonment of earlier synextensional faults, as part of the evolution of an inferred 20-km-wide half-graben structure within Utah Valley. Finite-difference 2D modeling suggests the imaged subsurface basin geometry can cause fourfold variation in peak ground velocity over distances of 300 m.

  4. Warming and glacier recession in the Rakaia valley, Southern Alps of New Zealand, during Heinrich Stadial 1

    SciTech Connect

    Aaron E. Putnam; Joerg M. Schaefe; George H .Denton; DavidJ. A. Barrell; Bjørn G. Andersen; Tobias N.B. Koffman; Ann V. Rowan; Robert C. Finkel; Dylan H. Rood; Roseanne Schwartz; Marcus J. Vandergoes; Mitchell A. Plummer; Simon H. Brocklehurst; Samuel E. Kelley; Kathryn L. Ladig

    2013-11-01

    The termination of the last ice age featured a major reconfiguration of Earth's climate and cryosphere, yet the underlying causes of these massive changes continue to be debated. Documenting the spatial and temporal variations of atmospheric temperature during deglaciation can help discriminate among potential drivers. Here, we present a 10Be surface-exposure chronology and glaciological reconstruction of ice recession following the Last Glacial Maximum (LGM) in the Rakaia valley, Southern Alps of New Zealand. Innermost LGM moraines at Big Ben have an age of 17,840 +/- 240 yrs, whereas ice-marginal moraines or ice-molded bedrock surfaces at distances up-valley from Big Ben of 12.5 km (Lake Coleridge), approximately 25 km (Castle Hill), approximately 28 km (Double Hill), approximately 43 km (Prospect Hill), and approximately 58 km (Reischek knob) have ages of 17,020 +/- 70 yrs, 17,100 +/- 110 yrs, 16,960 +/- 370 yrs, 16,250 +/- 340 yrs, and 15,660 +/- 160 yrs, respectively. These results indicate extensive recession of the Rakaia glacier, which we attribute primarily to the effects of climatic warming. In conjunction with geomorphological maps and a glaciological reconstruction for the Rakaia valley, we use our chronology to infer timing and magnitude of past atmospheric temperature changes. Compared to an overall temperature rise of approximately 4.65?degrees C between the end of the LGM and the start of the Holocene, the glacier recession between approximately 17,840 and approximately 15,660 yrs ago is attributable to a net temperature increase of approximately 4.0?degrees C (from -6.25 to -2.25?degrees C), accounting for approximately 86% of the overall warming. Approximately 3.75?degrees C (approximately 70%) of the warming occurred between approximately 17,840 and approximately 16,250 yrs ago, with a further 0.75?degrees C (approximately 16%) increase between approximately 16,250 and approximately 15,660 yrs ago. A sustained southward shift of the Subtropical

  5. Geochemistry of Mesozoic plutons, southern Death Valley region, California: Insights into the origin of Cordilleran interior magmatism

    USGS Publications Warehouse

    Ramo, O.T.; Calzia, J.P.; Kosunen, P.J.

    2002-01-01

    Mesozoic granitoid plutons in the southern Death Valley region of southeastern California reveal substantial compositional and isotopic diversity for Mesozoic magmatism in the southwestern US Cordillera. Jurassic plutons of the region are mainly calc-alkaline mafic granodiorites with ??Ndi of -5 to -16, 87Sr/86Sri of 0.707-0.726, and 206Pb/204Pbi of 17.5-20.0. Cretaceous granitoids of the region are mainly monzogranites with ??Ndi of -6 to -19, 87Sr/86Sri of 0.707-0.723, and 206Pb/204Pbi of 17.4-18.6. The granitoids were generated by mixing of mantle-derived mafic melts and pre-existing crust - some of the Cretaceous plutons represent melting of Paleoproterozoic crust that, in the southern Death Valley region, is exceptionally heterogeneous. A Cretaceous gabbro on the southern flank of the region has an unuasually juvenile composition (??Ndi -3.2, 87Sr/86Sri 0.7060). Geographic position of the Mesozoic plutons and comparison with Cordillera plutonism in the Mojave Desert show that the Precambrian lithosphere (craton margin) in the eastern Mojave Desert region may consists of two crustal blocks separated by a more juvenile terrane.

  6. Fluid injection induced seismicity reveals a NE dipping fault in the southeastern sector of the High Agri Valley (southern Italy)

    NASA Astrophysics Data System (ADS)

    Stabile, T. A.; Giocoli, A.; Perrone, A.; Piscitelli, S.; Lapenna, V.

    2014-08-01

    On 2 June 2006 the wastewater produced during the oil and gas field exploitation in High Agri Valley (southern Italy) started to be managed by disposal through pumping the fluids back into the subsurface at the Costa Molina 2 (CM2) injection well, located in the southeastern sector of the valley. The onset of microearthquakes (Ml ≤ 2) after 4 days at about 1.3 km SW of CM2 well suggests fluid injection induced seismicity by the diffusion of pore pressure. Moreover, the space-time evolution of 196 high-resolution relocated events reveals a previously unmapped NE dipping fault. We investigate the physical processes related to the fluid injection induced seismicity and delineate the previously unmapped fault by jointly analyzing seismicity data, geological observations, fluid injection data, the stratigraphic log of the CM2 well, and the electrical resistivity tomography survey carried out in the study area.

  7. Chronology and provenance of alluvial fills in the dry valley environment of the lower Molopo River, southern Kalahari

    NASA Astrophysics Data System (ADS)

    Ramisch, Arne; Bens, Oliver; Eden, Marie; Hürkamp, Kerstin; Schwindt, Daniel; Völkel, Jörg

    2016-04-01

    The dry valleys of the Molopo-Kuruman and the Nossob-Auob system form the largest drainage basin of the southern Kalahari, with a total drainage area of over 100.000 km². The South-Kalahari drainage system is connected to the perennial Orange River by the lower Molopo valley which is therefore the only potential fluvial outlet for sediments originating from the southern Kalahari. Despite its key geomorphological position, little is known about Late Quaternary landscape dynamic in the lower Molopo section. To estimate the timing of fluvial sedimentation phases near the Molopo-Orange confluence, we sampled alluvial fills within the narrow trench of the Molopo canyon. The chronology was established using a total of 15 Optical Stimulated Luminescence (OSL) samples from key profiles within the canyon. The results suggest that landscape development was dominated by two phases of valley infill during a) the Mid Holocene and b) the Late Holocene. To gain insight into sediment dynamics during these intervals, we carried out a provenance analysis on the fine fraction (< 2 mm) of fluvial sediments. Sediment source areas were estimated by analyzing the elemental and mineralogical composition of 93 tributaries and 32 dune deposits throughout the reaches of the lower Molopo via X-ray fluorescence (XRF) and X-ray diffraction analysis (XRD). The appliance of a fuzzy cluster algorithm on the elemental and mineralogical composition of reference samples revealed three major sediment source areas: i) The Molopo canyon, ii) fluvial source areas north of the canyon and iii) eolian sands covering the recent lower Molopo valley in its upper reaches. A similarity analysis between fluvial sediments of the Molopo canyon to the previously identified source areas suggests that alluvial fills mainly originate from the canyon itself, suggesting short-distance sediment mobilization as the driving mechanism behind aggradation. Thereby, both Holocene intervals differ in the mean distance of

  8. Eliminating Rabies in Tanzania? Local Understandings and Responses to Mass Dog Vaccination in Kilombero and Ulanga Districts

    PubMed Central

    Bardosh, Kevin; Sambo, Maganga; Sikana, Lwitiko; Hampson, Katie; Welburn, Susan C.

    2014-01-01

    Background With increased global attention to neglected diseases, there has been a resurgence of interest in eliminating rabies from developing countries through mass dog vaccination. Tanzania recently embarked on an ambitious programme to repeatedly vaccinate dogs in 28 districts. To understand community perceptions and responses to this programme, we conducted an anthropological study exploring the relationships between dogs, society, geography and project implementation in the districts of Kilombero and Ulanga, Southern Tanzania. Methodology/Principal Findings Over three months in 2012, we combined the use of focus groups, semi-structured interviews, a household questionnaire and a population-based survey. Willingness to participate in vaccination was mediated by fear of rabies, high medical treatment costs and the threat of dog culling, as well as broader notions of social responsibility. However, differences between town, rural and (agro-) pastoralist populations in livelihood patterns and dog ownership impacted coverage in ways that were not well incorporated into project planning. Coverage in six selected villages was estimated at 25%, well below official estimates. A variety of problems with campaign mobilisation, timing, the location of central points, equipment and staff, and project organisation created barriers to community compliance. Resource-limitations and institutional norms limited the ability for district staff to adapt implementation strategies. Conclusions and Significance In the shadows of resource and institutional limitations in the veterinary sector in Africa, top-down interventions for neglected zoonotic diseases likes rabies need to more explicitly engage with project organisation, capacity and community participation. Greater attention to navigating local realities in planning and implementation is essential to ensuring that rabies, and other neglected diseases, are controlled sustainably. PMID:24945697

  9. Stratigraphical framework of basaltic lavas in Torres Syncline main valley, southern Parana-Etendeka Volcanic Province

    NASA Astrophysics Data System (ADS)

    Rossetti, Lucas M.; Lima, Evandro F.; Waichel, Breno L.; Scherer, Claiton M.; Barreto, Carla J.

    2014-12-01

    The Paraná-Etendeka Volcanic Province records the volcanism of the Early Cretaceous that precedes the fragmentation of the South-Gondwana supercontinent. Traditionally, investigations of these rocks prioritized the acquisition of geochemical and isotopic data, considering the volcanic stack as a monotonous succession of tabular flows. Torres Syncline is a tectonic structure located in southern Brazil and where the Parana-Etendeka basalts are well preserved. This work provides a detailed analysis of lithofacies and facies architecture, integrated to petrographic and geochemical data. We identified seven distinct lithofacies grouped into four facies associations related to different flow morphologies. The basaltic lava flows in the area can be divided into two contrasting units: Unit I - pahoehoe flow fields; and Unit II - simple rubbly flows. The first unit is build up by innumerous pahoehoe lava flows that cover the sandstones of Botucatu Formation. These flows occur as sheet pahoehoe, compound pahoehoe, and ponded lavas morphologies. Compound lavas are olivine-phyric basalts with intergranular pyroxenes. In ponded lavas and cores of sheet flows coarse plagioclase-phyric basalts are common. The first pahoehoe lavas are more primitive with higher contents of MgO. The emplacement of compound pahoehoe flows is related to low volume eruptions, while sheet lavas were emplaced during sustained eruptions. In contrast, Unit II is formed by thick simple rubbly lavas, characterized by a massive core and a brecciated/rubbly top. Petrographically these flows are characterized by plagioclase-phyric to aphyric basalts with high density of plagioclase crystals in the matrix. Chemically they are more differentiated lavas, and the emplacement is related to sustained high effusion rate eruptions. Both units are low TiO2 and have geochemical characteristics of Gramado magma type. The Torres Syncline main valley has a similar evolution when compared to other Large Igneous Provinces

  10. Striving for sustainable wildlife management: the case of Kilombero Game Controlled Area, Tanzania.

    PubMed

    Haule, K S; Johnsen, F H; Maganga, S L S

    2002-09-01

    The sustainability of wildlife resources in Africa is threatened by poaching for trophies and meat as well as changes in land use. In order to motivate local people for sustainable wildlife management, efforts to transfer decision-making power as well as benefits from central to local level have been made in several countries. Such efforts have not yet been seen in Kilombero Game Controlled Area, which is the area covered by the present study. The paper documents the importance of wildlife to local people, explores local people's perceptions on wildlife management and identifies constraints to sustainable wildlife management. A total of 177 household interviews in 5 villages and 129 interviews of pupils in schools have been conducted. The majority of pupils reported that their latest meal of meat was from a wild animal, and the most common species was buffalo. Apart from availability of cheap wildlife meat, advantages from living close to wildlife include the use of various parts of animals for, e.g. medical and ritual uses, and various plant products from wildlife habitats. Disadvantages include damages to crops, predation on livestock, and injuries to humans. The estimated loss of yield due to raiding by wildlife amounted to 21.9 and 47.8% of the harvest of rice and maize, respectively. Traditional wildlife management in Kilombero includes few rules to avoid resource depletion, because depletion has traditionally not been a problem due to low hunting technology and low human population. Government management includes strict rules, with hunting quotas as the main instrument, but the government has failed to enforce the rules. Ongoing discussions on new approaches to wildlife management like co-management and community-based management were largely unknown to the villagers in the area. Both poaching and agricultural expansion threaten the sustainability of Kilombero Game Controlled Area. It is suggested that transfers of decision-making power and benefits to local

  11. The Salton Seismic Imaging Project: Tomographic characterization of a sediment-filled rift valley and adjacent ranges, southern California

    NASA Astrophysics Data System (ADS)

    Davenport, K.; Hole, J. A.; Stock, J. M.; Fuis, G. S.; Carrick, E.; Tikoff, B.

    2011-12-01

    The Salton Trough in Southern California represents the northernmost rift of the Gulf of California extensional system. Relative motion between the Pacific and North American plates is accommodated by continental rifting in step-over zones between the San Andreas, Imperial, and Cerro Prieto transform faults. Rapid sedimentation from the Colorado River has isolated the trough from the southern portion of the Gulf of California, progressively filling the subsiding rift basin. Based on data from previous seismic surveys, the pre-existing continent has ruptured completely, and a new ~22 km thick crust has been created entirely by sedimentation overlying rift-related magmatism. The MARGINS, EarthScope, and USGS-funded Salton Seismic Imaging Project (SSIP) was designed to investigate the nature of this new crust, the ongoing process of continental rifting, and associated earthquake hazards. SSIP, acquired in March 2011, comprises 7 lines of onshore seismic refraction / wide-angle reflection data, 2 lines of refraction / reflection data in the Salton Sea, and a line of broadband stations. This presentation focuses on the refraction / wide-angle reflection line across the Imperial Valley, extending ~220 km across California from Otay Mesa, near Tijuana, to the Colorado River. The data from this line includes seventeen 100-160 kg explosive shots and receivers at 100 m spacing across the Imperial Valley to constrain the structure of the Salton Trough rift basin, including the Imperial Fault. Eight larger shots (600-920 kg) at 20-35 km spacing and receivers at 200-500 m spacing extend the line across the Peninsular Ranges and the Chocolate Mountains. These data will contrast the structure of the rift to that of the surrounding crust and provide constraints on whole-crust and uppermost mantle structure. Preliminary work has included tomographic inversion of first-arrival travel times across the Valley, emphasizing a minimum-structure approach to create a velocity model of the

  12. Use of model discrimination techniques to improve hydrologic models under ecological constraints: the case of the Maggia Valley, Southern Switzerland

    NASA Astrophysics Data System (ADS)

    Foglia, L.; Mehl, S. W.; Hill, M. C.; Burlando, P.

    2009-04-01

    Model discrimination techniques are used to evaluate alternative conceptual models. Thorough consideration of alternative conceptual models is an important and often neglected step in the study of many natural systems, including groundwater systems. This means that many modelling efforts are less useful for system management than they could be because they exclude alternatives considered important by some stakeholders, which makes them vulnerable to criticism. Important steps include identifying reasonable alternative models and possibly using model averaging to improve predictions and measures of prediction uncertainty. Here we used the computer code MMA (Multi-Model Analysis) as a modelling tool to help: (1) model development, (2) make predictions, and (3) understand the physical processes most important to the system. We focus on the ability of a groundwater model constructed using MODFLOW to predict heads and flows in the Maggia Valley, Southern Switzerland, where connections between groundwater, surface water and ecology are of interest. Sixty-four alternative models were designed deterministically and differ in how the river, recharge, bedrock topography, and hydraulic conductivity are characterized. None of the models correctly represent heads and flows in the Northern and Southern part of the valley simultaneously. A cross-validation experiment was conducted to compare model discrimination results with the ability of the models to predict eight heads and three flows to the stream along three reaches midway along the valley where ecological consequences and, therefore, model accuracy are of great concern. Results suggest: (1) Model averaging appears to have improved prediction accuracy in the problem considered. (2) The most significant model improvements occurred with introduction of spatially distributed recharge and improved bedrock topography. (3) The simplest models poorly represented the system in the area of interest.

  13. High resolution seismic imaging of an active normal fault in the Agri Valley, Southern Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Improta, L.; Bruno, P.; di Fiore, V.; Mariani, S.

    2004-12-01

    The Agri Valley is an intermontane basin located in the Southern Apennine seismic belt (Italy) whose formation in tied to large NW-trending trastensional and extensional faults active since Early Pleistocene. Recent faulting activity in the area is documented by faulted paleosoils and suggested by a M7 earthquake that struck the basin in 1857. On the contrary, present-day background seismicity in the area is extremely low. Despite intense geomorphic investigations, the identification of the source responsible for this historical event and of further large seismogenic faults in the area is still a matter of debate. A new NW trending normal faulting system has been recently recognized based on subtle geomorphic expressions on the ridge bounding the basin westward. Recent faulting activity along this structure is locally documented by a trench. Aimed at yielding new information about the shallow structure of the fault, we conducted a high resolution seismic experiment in a small lacustrine basin, located 4 km south of the trench, in which the presence of the fault is inferred by a linear surface warping but trench excavation is impractical. Both multi-fold wide-angle data and multichannel near vertical reflection data have been collected along a 220-m-long profile in order to obtain an accurate model of the basin combining seismic velocity and reflectivity images. About 3600 first arrival traveltimes picked on 36 wide-angle record sections have been inverted by a non-linear tomographic technique that is specially designed to image complex structures. The tomographic inversion provides a high-resolution velocity model of the basin down to 60 m depth. The model is strongly heterogeneous and displays sharp lateral velocity variations. Seismic reflection processing has been applied to both data sets. Data have been edited for trace quality and first (refracted and direct) arrivals have been muted. A following FK dip filtering on the shot gathers reduced the energy

  14. Interseismic Strain Accumulation in the Imperial Valley and Implications for Triggering of Large Earthquakes in Southern California

    NASA Astrophysics Data System (ADS)

    Crowell, B. W.; Bock, Y.; Sandwell, D. T.

    2009-12-01

    From February, 2008 to March, 2009, we performed three rapid-static Global Positioning System (GPS) surveys of 115 geodetic monuments stretching from the United States-Mexico border into the Coachella Valley using the method of instantaneous positioning. The monuments are located in key areas near the Imperial, Superstition Hills, San Jacinto, San Andreas and Brawley Faults with nominal baselines generally less than 10 km. We perform a bicubic spline interpolation on the crustal motion vectors from the campaign measurements and 1005 continuous GPS monuments in western North America and solve for the velocity gradient tensor to look at the maximum shear strain, dilatation and rotation rates in the Imperial Valley. We then compare our computed strain field to that computed using the Southern California Earthquake Center Crustal Motion Map 3.0, which extends through 2003 and includes 840 measurements. We show that there is an interseismic strain transient that corresponds to an increase in the maximum shear strain rate of 0.7 μstrain/yr near Obsidian Buttes since 2003 along a fault referred to as the Obsidian Buttes Fault (OBF). A strong subsidence signal of 27 mm/yr and a left-lateral increase of 10 mm/yr are centered along the OBF. Changes in the dilatation and rotation rates confirm the increase in left-lateral motion, as well as infer a strong increase in spreading rate in the southern Salton Sea. The increase in spreading rate has caused an accelerated slip rate along the southern San Andreas near Durmid Hill as evidenced by continuous GPS, which has the potential for earthquake triggering.

  15. Warming and glacier recession in the Rakaia valley, Southern Alps of New Zealand, during Heinrich Stadial 1

    NASA Astrophysics Data System (ADS)

    Putnam, Aaron E.; Schaefer, Joerg M.; Denton, George H.; Barrell, David J. A.; Andersen, Bjørn G.; Koffman, Tobias N. B.; Rowan, Ann V.; Finkel, Robert C.; Rood, Dylan H.; Schwartz, Roseanne; Vandergoes, Marcus J.; Plummer, Mitchell A.; Brocklehurst, Simon H.; Kelley, Samuel E.; Ladig, Kathryn L.

    2013-11-01

    The termination of the last ice age featured a major reconfiguration of Earth's climate and cryosphere, yet the underlying causes of these massive changes continue to be debated. Documenting the spatial and temporal variations of atmospheric temperature during deglaciation can help discriminate among potential drivers. Here, we present a 10Be surface-exposure chronology and glaciological reconstruction of ice recession following the Last Glacial Maximum (LGM) in the Rakaia valley, Southern Alps of New Zealand. Innermost LGM moraines at Big Ben have an age of 17,840 ± 240 yrs, whereas ice-marginal moraines or ice-molded bedrock surfaces at distances up-valley from Big Ben of 12.5 km (Lake Coleridge), ∼25 km (Castle Hill), ∼28 km (Double Hill), ∼43 km (Prospect Hill), and ∼58 km (Reischek knob) have ages of 17,020 ± 70 yrs, 17,100 ± 110 yrs, 16,960 ± 370 yrs, 16,250 ± 340 yrs, and 15,660 ± 160 yrs, respectively. These results indicate extensive recession of the Rakaia glacier, which we attribute primarily to the effects of climatic warming. In conjunction with geomorphological maps and a glaciological reconstruction for the Rakaia valley, we use our chronology to infer timing and magnitude of past atmospheric temperature changes. Compared to an overall temperature rise of ∼4.65 °C between the end of the LGM and the start of the Holocene, the glacier recession between ∼17,840 and ∼15,660 yrs ago is attributable to a net temperature increase of ∼4.0 °C (from -6.25 to -2.25 °C), accounting for ∼86% of the overall warming. Approximately 3.75 °C (∼70%) of the warming occurred between ∼17,840 and ∼16,250 yrs ago, with a further 0.75 °C (∼16%) increase between ∼16,250 and ∼15,660 yrs ago. A sustained southward shift of the Subtropical Front (STF) south of Australia between ∼17,800 and ∼16,000 yrs ago coincides with the warming over the Rakaia valley, and suggests a close link between Southern Ocean frontal boundary positions and

  16. Geochemical and Isotopic Interpretations of Groundwater Flow in the Oasis Valley Flow System, Southern Nevada

    SciTech Connect

    J.M. Thomas; F.C. Benedict, Jr.; T.P. Rose; R.L. Hershey; J.B. Paces; Z.E. Peterman; I.M. Farnham; K.H. Johannesson; A.K. Singh; K.J. Stetzenbach; G.B. Hudson; J.M. Kenneally; G.F. Eaton; D.K. Smith

    2003-01-08

    This report summarizes the findings of a geochemical investigation of the Pahute Mesa-Oasis Valley groundwater flow system in southwestern Nevada. It is intended to provide geochemical data and interpretations in support of flow and contaminant transport modeling for the Western and Central Pahute Mesa Corrective Action Units.

  17. A New Strategy for the Electromagnetic Monitoring of Seismic Areas: the Case-Study of Agri Valley (Southern Italy).

    NASA Astrophysics Data System (ADS)

    Lapenna, V.; Balasco, M.; Giocoli, A.; Piscitelli, S.; Rizzo, E.; Romano, G.; Siniscalchi, A.; Telesca, L.

    2008-12-01

    The Agri valley is one of the most active areas of Southern Apennine chain that was hidden by destructive events in historical and recent periods (i.e. the 1857 Great Neapolitan earthquake). The geological environment is extremely complex and the location of the main faults are still debated. The Agriu valley is a N- W elongated basin filled by quaternary deposits covering the pre-quaternary rock of the Apennine chain. The area is characterised by a very low man-made electromagnetic noise and it represents an ideal "outdoor laboratory" to test new strategies for geophysical monitoring of active faults. In this work we present a novel approach based on the integration of Deep Electrical Resistivity Tomography (DERT), Self-Potential (SP) and Magnetotelluric (MT) time-continuous measurements. The basic idea underlying this approach is to jointly analyse and modelling the electrical signals, observed on earth-surface, and the time-dependent changes of subsurface resistivity patterns. We are firmly convinced that any conclusions about the relationship between anomalous electrical signals and earthquake activity cannot be achieved without a good knowledge of subsurface resistivity structures and an accurate localisation of the electrical sources. In our work DERT has been applied for illuminating in-depth the geological structures and giving a contribute to better define the thickness and the shape of alluvial deposits covering the pre- quaternary bedrock of Agri valley. SP surveying and time-continuous monitoring have been carried to study electrokinetic effects due to groundwater patterns and to identify possible fingerprints of fluid migration phenomena. New SP stations with sensors in boreholes (200m) have been installed. MT time-continuous soundings have been performed to analyse the time-dependent changes in deep resistivity patterns. All data measured in the study area have been processed and filtered using robust statistical methodologies (DFA, wavelet, multi

  18. Seismic calibration shots conducted in 2009 in the Imperial Valley, southern California, for the Salton Seismic Imaging Project (SSIP)

    USGS Publications Warehouse

    Murphy, Janice; Goldman, Mark; Fuis, Gary; Rymer, Michael; Sickler, Robert; Miller, Summer; Butcher, Lesley; Ricketts, Jason; Criley, Coyn; Stock, Joann; Hole, John; Chavez, Greg

    2011-01-01

    Rupture of the southern section of the San Andreas Fault, from the Coachella Valley to the Mojave Desert, is believed to be the greatest natural hazard facing California in the near future. With an estimated magnitude between 7.2 and 8.1, such an event would result in violent shaking, loss of life, and disruption of lifelines (freeways, aqueducts, power, petroleum, and communication lines) that would bring much of southern California to a standstill. As part of the Nation's efforts to prevent a catastrophe of this magnitude, a number of projects are underway to increase our knowledge of Earth processes in the area and to mitigate the effects of such an event. One such project is the Salton Seismic Imaging Project (SSIP), which is a collaborative venture between the United States Geological Survey (USGS), California Institute of Technology (Caltech), and Virginia Polytechnic Institute and State University (Virginia Tech). This project will generate and record seismic waves that travel through the crust and upper mantle of the Salton Trough. With these data, we will construct seismic images of the subsurface, both reflection and tomographic images. These images will contribute to the earthquake-hazard assessment in southern California by helping to constrain fault locations, sedimentary basin thickness and geometry, and sedimentary seismic velocity distributions. Data acquisition is currently scheduled for winter and spring of 2011. The design and goals of SSIP resemble those of the Los Angeles Region Seismic Experiment (LARSE) of the 1990's. LARSE focused on examining the San Andreas Fault system and associated thrust-fault systems of the Transverse Ranges. LARSE was successful in constraining the geometry of the San Andreas Fault at depth and in relating this geometry to mid-crustal, flower-structure-like decollements in the Transverse Ranges that splay upward into the network of hazardous thrust faults that caused the 1971 M 6.7 San Fernando and 1987 M 5

  19. Interaction of valleys and circulation patterns (CPs) on small-scale spatial precipitation distribution in the complex terrain of southern Germany

    NASA Astrophysics Data System (ADS)

    Liu, M.; Bárdossy, A.; Zehe, E.

    2012-12-01

    Topography exerts influence on the spatial precipitation distribution over different scales, known typically at the large scale as the orographic effect, and at the small scale as the wind-drift rainfall (WDR) effect. At the intermediate scale (~ 1-10 km), which is characterized by secondary mountain valleys, topography also demonstrates some effect on the precipitation pattern. This paper investigates such intermediate-scale topographic effect on precipitation patterns, focusing on narrow-steep valleys in the complex terrain in southern Germany, based on the daily observations over a 48-yr period (~ 1960-2007) from a high-density rain-gauge network covering two sub-areas, Baden-Wuerttemberg (BW) and Bayern (BY). Precipitation data at the valley and non-valley stations are compared under consideration of the daily general circulation patterns (CPs) classified by a fuzzy-rule based algorithm. Scatter plots of precipitation against elevation demonstrate a different behavior of valley stations comparing to non-valley stations. A detailed study of the precipitation time series for selected station triplets, each consisting of a valley station, a mountain station and an open station have been investigated by statistical analysis with the Kolmogrov-Smirnov (KS) test supplemented by the one-way analysis of variance (one-way ANOVA) and a graphical comparison of the means. The results show an interaction of valley orientation and the moisture flow direction of the CPs at the intermediate-scale, i.e. when the valley is shielded from the moisture flow, the precipitation amount within the valley is comparable to that on the mountain crest; when the valley is open to the moisture flow, the precipitation within the valley is much less than that on the mountain. Such a phenomenon, whereby the precipitation is "blind" to the valleys at the intermediate scale conditioned on CPs, is defined as the "narrow-valley effect" in this work, and it cannot be captured by the widely used

  20. Inventory of San Joaquin kit fox on BLM lands in southern and southwestern San Joaquin Valley. Final report

    SciTech Connect

    O'Farrell, T.P.; Kato, T.; McCue, P.; Sauls, M.L.

    1980-08-01

    The objectives of this study were to provide the Bureau of Land Management, Bakersfield District, with information on the distribution of the San Joaquin kit fox, an endangered species, on public lands in the southern and southwestern San Joaquin Valley of California, and to develop information essential for designating kit fox critical habitats on lands under their jurisdiction as outlined by the Endangered Species Act and its amendments. A total of 31,860 acres of BLM lands were surveyed using line transects at a density of 8 per linear mile. Observations were recorded on: (1) kit fox dens, tracks, scats, and remains of their prey; (2) vegetation associations; (3) topography; (4) evidence of human activities; (5) species composition and abundance of wildlife seen, especially lagomorphs; (6) presence of Eriogonum gossypinum, a plant of special interest; and (7) presence of the blunt-nosed leopard lizard, another endangered species.

  1. Observational constraints on projections of the ozone response to NOx controls in the Southern San Joaquin Valley

    NASA Astrophysics Data System (ADS)

    Pusede, S. E.; Wooldridge, P. J.; Browne, E. C.; Russell, A. R.; Rollins, A.; Min, K.; Thomas, J.; Zhang, L.; Brune, W. H.; Henry, S. B.; DiGangi, J. P.; Keutsch, F. N.; Sanders, J. E.; Ren, X.; Weber, R.; Goldstein, A. H.; Cohen, R. C.

    2011-12-01

    We investigate the impact of NOx reductions on ozone production in the Southern San Joaquin Valley using a large suite of radical and trace gas measurements collected during CalNex-2010 in Bakersfield, California (May 15-June 28) combined with the historical record of O3, nitrogen oxides and temperature from CARB monitoring sites in the region. We calculate the instantaneous ozone production rate (PO3) by radical balance and investigate relationships between PO3 and NOx abundance; finding temperature to be a useful proxy for VOC reactivity. We show Bakersfield photochemistry is at peak PO3 and therefore at a minimum with respect to the effectiveness of NOx controls indicating: (1) more than 30% reductions from present day are required before sizable decreases in ozone will occur and (2) reduction from the lower weekend baseline NOx concentrations will result in weekend PO3 decreases with continued NOx controls at high temperatures when VOC reactivity is largest.

  2. Topographic growth around the Orange River valley, southern Africa: A Cenozoic record of crustal deformation and climatic change

    NASA Astrophysics Data System (ADS)

    Dauteuil, Olivier; Bessin, Paul; Guillocheau, François

    2015-03-01

    We reconstruct the history of topographic growth in southern Africa on both sides of the Orange River valley from an integrated analysis of erosion surfaces, crustal deformation and climate change. First, we propose an inventory of erosion surfaces observed in the study area and classify them according to their most likely formative process, i.e. chemical weathering or mechanical erosion. Among the various land units observed we define a new class of landform: the pedivalley, which corresponds to a wide valley with a flat erosional floor. In the Orange River valley, we mapped three low-relief erosion surfaces, each bevelling a variety of lithologies. The oldest and most elevated is (1) a stripped etchplain evolving laterally into (2) a stepped pediplain bearing residual inselbergs; (3) a younger pediplain later formed in response to a more recent event of crustal deformation. These are all Cenozoic landforms: the etchplain is associated with a late Palaeocene to middle Eocene weathering event, and the two pediplains are older than the middle Miocene alluvial terraces of the Orange River. Landscape evolution was first driven by slow uplift (10 m/Ma), followed by a second interval of uplift involving a cumulative magnitude of at least 200 m. This event shaped the transition between the two pediplains and modified the drainage pattern. A final phase of uplift (magnitude: 60 m) occurred after the Middle Miocene and drove the incision of the lower terraces of the Orange River. Climate exerted a major control over the denudation process, and involved very humid conditions responsible for lateritic weathering, followed by more arid conditions, which promoted the formation of pedivalleys. Collectively, these produce pediplains.

  3. Geologic map of the southern Funeral Mountains including nearby groundwater discharge sites in Death Valley National Park, California and Nevada

    USGS Publications Warehouse

    Fridrich, C.J.; Thompson, R.A.; Slate, J.L.; Berry, M.E.; Machette, M.N.

    2012-01-01

    This 1:50,000-scale geologic map covers the southern part of the Funeral Mountains, and adjoining parts of four structural basins—Furnace Creek, Amargosa Valley, Opera House, and central Death Valley—in California and Nevada. It extends over three full 7.5-minute quadrangles, and parts of eleven others—an area of about 1,000 square kilometers (km2). The boundaries of this map were drawn to include all of the known proximal hydrogeologic features that may affect the flow of groundwater that discharges from springs of the Furnace Creek basin, in the west-central part of the map. These springs provide the main potable water supply for Death Valley National Park. Major hydrogeologic features shown on this map include: (1) springs of the Furnace Creek basin, (2) a large Pleistocene groundwater discharge mound in the northeastern part of the map, (3) the exposed extent of limestones and dolomites that constitute the Paleozoic carbonate aquifer, and (4) the exposed extent of the alluvial conglomerates that constitute the Funeral Formation aquifer.

  4. Geomorphic and sedimentary responses of the Bull Creek Valley (Southern High Plains, USA) to Pleistocene and Holocene environmental change

    NASA Astrophysics Data System (ADS)

    Arauza, Hanna M.; Simms, Alexander R.; Bement, Leland C.; Carter, Brian J.; Conley, Travis; Woldergauy, Ammanuel; Johnson, William C.; Jaiswal, Priyank

    2016-01-01

    Fluvial geomorphology and stratigraphy often reflect past environmental and climate conditions. This study examines the response of Bull Creek, a small ephemeral creek in the Oklahoma panhandle, to environmental conditions through the late Pleistocene and Holocene. Fluvial terraces were mapped and their stratigraphy and sedimentology documented throughout the course of the main valley. Based on their elevations, terraces were broadly grouped into a late-Pleistocene fill terrace (T3) and two Holocene fill-cut terrace sets (T2 and T1). Terrace systems are marked by similar stratigraphies recording the general environmental conditions of the time. Sedimentary sequences preserved in terrace fills record the transition from a perennial fluvial system during the late glacial period and the Younger Dryas to a semiarid environment dominated by loess accumulation and punctuated by flood events during the middle to late Holocene. The highest rates of aeolian accumulation within the valley occurred during the early to middle Holocene. Our data provide significant new information regarding the late-Pleistocene and Holocene environmental history for this region, located between the well-studied Southern and Central High Plains of North America.

  5. Oil/gas pre-treatment plants and air quality hazards: PM1 measurements in Agri Valley (southern Italy)

    NASA Astrophysics Data System (ADS)

    Trippetta, S.; Caggiano, R.; Sabia, S.

    2014-04-01

    A PM1 (i.e., aerosol particles with aerodynamic diameter less 1.0 μm) short term monitoring campaign was carried out in Agri Valley (southern Italy) in September 2012. This area is of international concern since it houses the largest European on-shore reservoir and the largest oil/gas pre-treatment plant (i.e., Centro Olio Val d'Agri - COVA) within an anthropized context. PM1 measurements were performed in Viggiano, the nearest town to the COVA plant and one of the most populated town of the Agri Valley. During the study period, the PM1 daily concentrations ranged from 1.2 to 8.4 μg m-3 with a mean value of 4.6 μg m-3. Regarding the PM1 chemical composition, it can be observed that S and typical crustal elements were the most abundant constituents of the PM1 collected. By applying the Principal Component Analysis, it was pointed out that crustal soil, biomass and wood burning, secondary atmospheric reactions involving COVA plant emissions and local soil particles, and traffic were the main sources contributing to the PM1 measured in the area under study. Moreover, a possible contribution of the long-range transport of African dust was observed.

  6. Thrust faults of southern Diamond Mountains, central Nevada: Implications for hydrocarbons in Diamond Valley and at Yucca Mountain

    SciTech Connect

    French, D.E.

    1993-04-01

    Overmature Mississippian hydrocarbon source rocks in the southern Diamond Mountains have been interpreted to be a klippe overlying less mature source rocks and represented as an analogy to similar conditions near Yucca Mountain (Chamberlain, 1991). Geologic evidence indicates an alternative interpretation. Paleogeologic mapping indicates the presence of a thrust fault, referred to here as the Moritz Nager Thrust Fault, with Devonian rocks emplaced over Permian to Mississippian strata folded into an upright to overturned syncline, and that the overmature rocks of the Diamond Mountains are in the footwall of this thrust. The upper plate has been eroded from most of the Diamond Mountains but remnants are present at the head of Moritz Nager Canyon and at Sentinel Mountain. Devonian rocks of the upper plate comprised the earliest landslide megabreccia. Later, megabreccias of Pennsylvanian and Permian rocks of the overturned syncline of the lower plate were deposited. By this interpretation the maturity of lower-plate source rocks in the southern Diamond Mountains, which have been increased by tectonic burial, is not indicative of conditions in Diamond Valley, adjacent to the west, where upper-plate source rocks might be present in generating conditions. The interpretation that overmature source rocks of the Diamond Mountains are in a lower plate rather than in a klippe means that this area is an inappropriate model for the Eleana Range near Yucca Mountain.

  7. Geology and geophysics of the southern Raft River Valley geothermal area, Idaho, USA

    USGS Publications Warehouse

    Williams, Paul L.; Mabey, Don R.; Zohdy, Adel A.R.; Hans, Ackerman; Hoover, Donald B.; Pierce, Kenneth L.; Oriel, Steven S.

    1976-01-01

    The Raft River valley, near the boundary of the Snake River plain with the Basin and Range province, is a north-trending late Cenozoic downwarp bounded by faults on the west, south, and east. Pleistocene alluvium and Miocene-Pliocene tuffaceous sediments, conglomerate, and felsic volcanic rocks aggregate 2 km in thickness. Large gravity, magnetic, and total field resistivity highs probably indicate a buried igneous mass that is too old to serve as a heat source. Differing seismic velocities relate to known or inferred structures and to a suspected shallow zone of warm water. Resistivity anomalies reflect differences of both composition and degree of alteration of Cenozoic rocks. Resistivity soundings show a 2 to 5 ohm·m unit with a thickness of 1 km beneath a large part of the valley, and the unit may indicate partly hot water and partly clayey sediments. Observed self-potential anomalies are believed to indicate zones where warm water rises toward the surface. Boiling wells at Bridge, Idaho are near the intersection of north-northeast normal faults which have moved as recently as the late (?) Pleistocene, and an east-northeast structure, probably a right-lateral fault. Deep circulation of ground water in this region of relatively high heat flow and upwelling along faults is the probable cause of the thermal anomaly.

  8. Carbon and Isotopic Mass Balance Models of Oasis Valley-Fortymile Canyon Groundwater Basin, Southern Nevada

    NASA Astrophysics Data System (ADS)

    White, Art F.; Chuma, Nancy J.

    1987-04-01

    Environmental isotopes and carbon chemistry provide means of differentiating various recharge areas, flow paths, and ages of groundwater in portions of the Nevada Test Site and vicinity. Regional δD/δ18O trends are offset from the present-day meteoric line by a deuterium depletion of 5‰, suggesting paleoclimatic changes. Partial pressures of CO2 and the 18O and 13C data indicate solubility and isotopic equilibrium between the gas and water in the soil zone with progressive exchange with underlying groundwater in the shallow alluvium of Oasis Valley. Application of a closed system CO2 model using the EQ3NR/EQ6 reaction path simulator successfully reproduces chemical compositions observed in the alluvium in the Amargosa Desert and in the deep tuff aquifer beneath Pahute Mesa and Yucca Mountain. Initial PCO2 input to the soil zone during recharge was calculated to range from 0.03 to 0.10 atm, which is comparable to measured soil CO2 pressures in Oasis Valley. Results are compared for 14C ages using the δ13C dilution correction and a mass action correction term relating predicted and calculated ionic activity products of CaCO3. Results are generally comparable with discrepancies attributed to anomalous δ13C values.

  9. Geomorphology and Tectonics at the Intersection of Silurian and Death Valleys, Southern California - 2005 Guidebook Pacific Cell Friends of the Pleistocene

    USGS Publications Warehouse

    Miller, David M.; Valin, Zenon C.

    2007-01-01

    This publication describes results from new regional and detailed surficial geologic mapping, combined with geomorphologic, geochronologic, and tectonic studies, in Silurian Valley and Death Valley, California. The studies address a long-standing problem, the tectonic and geomorphic evolution of the intersection between three regional tectonic provinces: the eastern California shear zone, the Basin and Range region of southern Nevada and adjacent California, and the eastern Mojave Desert region. The chapters represent work presented on the 2005 Friends of the Pleistocene field trip and meeting as well as the field trip road log.

  10. Characterizing the hydrogeologic framework of the Death Valley region, Southern Nevada and California

    USGS Publications Warehouse

    Faunt, Claudia; D'Agnese, Frank; Downey, Joe S.; Turner, A. Keith

    1993-01-01

    Three-dimensional (3-D) hydrogeologic modeling of the complex geology of the Death Valley region requires the application of a number of Geoscientific Information System (GSIS) techniques. This study, funded by United States Department of Energy as a part of the Yucca Mountain Project, focuses on an area of approximately 100,000 square kilometers (three degrees of latitude by three degrees of longitude) and extends up to ten kilometers in depth. The geologic conditions are typical of the Basin and Range province; a variety of sedimentary and igneous intrusive and extrusive rocks have been subjected to both compressional and extensional deformation. GSIS techniques allow the synthesis of geologic, hydrologic and climatic information gathered from many sources, including satellite imagery and published maps and cross-sections. Construction of a 3-D hydrogeological model is possible with the combined use of software products available from several vendors, including traditional GIS products and sophisticated contouring, interpolation, visualization, and numerical modeling packages.

  11. 3-D Velocity Model of the Coachella Valley, Southern California Based on Explosive Shots from the Salton Seismic Imaging Project

    NASA Astrophysics Data System (ADS)

    Persaud, P.; Stock, J. M.; Fuis, G. S.; Hole, J. A.; Goldman, M.; Scheirer, D. S.

    2014-12-01

    We have analyzed explosive shot data from the 2011 Salton Seismic Imaging Project (SSIP) across a 2-D seismic array and 5 profiles in the Coachella Valley to produce a 3-D P-wave velocity model that will be used in calculations of strong ground shaking. Accurate maps of seismicity and active faults rely both on detailed geological field mapping and a suitable velocity model to accurately locate earthquakes. Adjoint tomography of an older version of the SCEC 3-D velocity model shows that crustal heterogeneities strongly influence seismic wave propagation from moderate earthquakes (Tape et al., 2010). These authors improve the crustal model and subsequently simulate the details of ground motion at periods of 2 s and longer for hundreds of ray paths. Even with improvements such as the above, the current SCEC velocity model for the Salton Trough does not provide a match of the timing or waveforms of the horizontal S-wave motions, which Wei et al. (2013) interpret as caused by inaccuracies in the shallow velocity structure. They effectively demonstrate that the inclusion of shallow basin structure improves the fit in both travel times and waveforms. Our velocity model benefits from the inclusion of known location and times of a subset of 126 shots detonated over a 3-week period during the SSIP. This results in an improved velocity model particularly in the shallow crust. In addition, one of the main challenges in developing 3-D velocity models is an uneven stations-source distribution. To better overcome this challenge, we also include the first arrival times of the SSIP shots at the more widely spaced Southern California Seismic Network (SCSN) in our inversion, since the layout of the SSIP is complementary to the SCSN. References: Tape, C., et al., 2010, Seismic tomography of the Southern California crust based on spectral-element and adjoint methods: Geophysical Journal International, v. 180, no. 1, p. 433-462. Wei, S., et al., 2013, Complementary slip distributions

  12. Early Eocene Molluscan biostratigraphy, Mount Pinos-Lockwood Valley area, northern Ventura County, southern California

    SciTech Connect

    Squires, R.L.; Wilson, M.

    1987-05-01

    A 600-m thick unnamed marine, predominantly transition-zone siltstone unit along the south flank of the Mount Pinos uplift, in the northern Lockwood Valley area, previously has been suggested to be early Eocene (Capay Stage) in age at its base. This present study shows the entire unit to be this age. Unconformably overlying the pre-Tertiary granite basement is 30 m of unfossiliferous muddy siltstone that grades upward into 50 m of very fine sandstone with rarely fossiliferous lenses of medium to coarse sandstone. Gradationally above the sandstone is 100 m of muddy siltstone with less rarely fossiliferous lenses of conglomeratic sandstone. Macrofossil collections made at 10 localities in these lower 180 m yielded a sparse fauna of subtropical shallow-marine gastropods and bivalves, as well as rare specimens of discocyclinid foraminifera. from 180 to 500 m above the base of the section is unfossiliferous siltstone with local occurrences of lower shoreface, alternating laminated and bioturbated very fine sandstone. The uppermost 100 m of the section is siltstone with rarely fossiliferous lenses of fine to medium sandstone. Collections made at five localities yielded subtropical shallow-marine mollusks. Evidence of a West Coast provincial molluscan Capay Stage (early Eocene) age for all the fossiliferous beds of the siltstone unit is the presence of Turritella andersoni, a species diagnostic of this stage. Commonly associated mollusks are Cryptoconus cooperi, Cylichnina tantilla, Ectinochilus (Macilentos) macilentus, and Turritella buwaldana. Unconformably overlying the unit is the Oligocene-lower Miocene nonmarine Plush Ranch Formation.

  13. High-precision U-Pb geochronology in the Minnesota River Valley subprovince and its bearing on the Neoarchean to Paleoproterozoic evolution of the southern Superior Province

    USGS Publications Warehouse

    Schmitz, M.D.; Bowring, S.A.; Southwick, D.L.; Boerboom, Terrence; Wirth, K.R.

    2006-01-01

    High-precision U-Pb ages have been obtained for high-grade gneisses, late-kinematic to postkinematic granitic plutons, and a crosscutting mafic dike of the Archean Minnesota River Valley tectonic subprovince, at the southern ramparts of the Superior craton of North America. The antiquity of the Minnesota River Valley terranes is confirmed by a high-precision U-Pb zircon age of 3422 ?? 2 Ma for a tonalitic phase of the Morton Gneiss. Voluminous, late-kinematic monzogranites of the Benson (Ortonville granite) and Morton (Sacred Heart granite) blocks yield identical crystallization ages of 2603 ?? 1 Ma, illustrating the synchrony and rapidity of deep crustal melting and plutonism throughout the Minnesota River Valley terranes. Postkinematic, 2591 ?? 2 Ma syenogranites and aplitic dikes in both blocks effectively constrain the final penetrative deformation of the Minnesota River Valley subprovince. Monazite growth from 2609 to 2595 Ma in granulitic paragneisses of the Benson and Montevideo blocks is interpreted to record prograde to peak granulite facies metamorphic conditions associated with crustal thickening and magmatism. Neoarchean metamorphism and plutonism are interpreted to record the timing of collisional accretion and terminal suturing of the Mesoarchean continental Minnesota River Valley terranes to the southern margin of the Superior Province, along the western Great Lakes tectonic zone. Subsequent Paleoproterozoic rifting of this margin is recorded by voluminous basaltic dike intrusion, expressed in the Minnesota River Valley by major WNW-trending tholeiitic diabase dikes dated at 2067 ?? 1 Ma, only slightly younger than the structurally and geochemically similar 2077 ?? 4 Ma Fort Frances (Kenora-Kabetogama) dike swarm of northern Minnesota and adjoining Canada. ?? 2006 Geological Society of America.

  14. A Study of the Connection Among Basin-Fill Aquifers, Carbonate-Rock Aquifers, and Surface-Water Resources in Southern Snake Valley, Nevada

    USGS Publications Warehouse

    U.S. Geological Survey

    2008-01-01

    The Secretary of the Interior through the Southern Nevada Public Lands Management Act approved funding for research to improve understanding of hydrologic systems that sustain numerous water-dependent ecosystems on Federal lands in Snake Valley, Nevada. Some of the streams and spring-discharge areas in and adjacent to Great Basin National Park have been identified as susceptible to ground-water withdrawals (Elliott and others, 2006) and research has shown a high potential for ground-water flow from southern Spring Valley into southern Snake Valley through carbonate rocks that outcrop along a low topographic divide known as the Limestone Hills (Welch and others, 2007). Comprehensive geologic, hydrologic, and chemical information will be collected and analyzed to assess the hydraulic connection between basin-fill aquifers and surface-water resources, water-dependent ecological features, and the regional carbonate-rock aquifer, the known source of many high-discharge springs. Understanding these connections is important because proposed projects to pump and export ground water from Spring and Snake Valleys in Nevada may result in unintended capture of water currently supplying springs, streams, wetlands, limestone caves, and other biologically sensitive areas (fig. 1). The methods that will be used in this study may be transferable to other areas in the Great Basin. The National Park Service, Bureau of Land Management, U.S. Fish and Wildlife Service, and U.S. Forest Service submitted the proposal for funding this research to facilitate science-based land management. Scientists from the U.S. Geological Survey (USGS) Water Resources and Geologic Disciplines, and the University of Nevada, Reno, will accomplish four research elements through comprehensive data collection and analysis that are concentrated in two distinct areas on the eastern and southern flanks of the Snake Range (fig. 2). The projected time line for this research is from July 2008 through September 2011.

  15. Aquatic Insect Emergence in Post-Harvest Flooded Agricultural Fields in the Southern San Joaquin Valley, California

    NASA Astrophysics Data System (ADS)

    Moss, R. C.; Blumenshine, S.; Fleskes, J.

    2005-05-01

    California's Southern San Joaquin Valley is one of the most important waterbird areas in North America, but has suffered a disproportionate loss of wetlands when compared to other California regions. This project analyzes the habitat value of post-harvest flooded cropland by measuring the emergence of aquatic insects across multiple crop types. Aquatic insect emergence was sampled from post-harvest flooded fields of four crop types (alfalfa, corn, tomato, wheat), August-October, 2003-2004. Emergence was measured using traps deployed with a stratified random distribution to sample between and within field variation. Emergence rate and emergent biomass was significantly higher in flooded tomato fields. Results from corn fields indicate that flooding depth was correlated (r=0.095) with both diel temperature fluctuation and emergence rate. Chironomus dilutus larvae were grown in environmental chambers, under two thermal treatments with the same mean but different amplitudes (high: 15°-32°C, low: 20°-26°C) to investigate thermal fluctuation effects on survival and biomass. Larval survival (4x) and biomass (2x) were significantly greater in the low versus high temperature fluctuation treatment. This research has the potential to affect agricultural management throughout the 12,600 km2 region, increase aquatic insect production and aid in the recovery of declining bird populations.

  16. Evidence for Alleghenian brine migration in the central and southern Appalachians: implications for Mississippi valley-type sulfide mineralization

    SciTech Connect

    Hearn, P.P.; Sutter, J.F.; Kunk, M.J.; Belkin, H.E.

    1985-01-01

    Authigenic K-feldspar has been found in rocks near Mississippi Valley-Type (MVT) sulfide mineralization in lower Paleozoic carbonate rocks of Pennsylvania, Maryland, Virginia, and Tennessee. Synthetic /sup 40/Ar//sup 39/Ar age spectra for the authigenic K-feldspar yield Carboniferous ages. Mass balance calculations indicate that the formation of the K-feldspar involved the flux of multiple pore volumes of fluid through the rocks. Estimates of vapor-liquid ratios and microthermometric homogenization temperatures of primary fluid inclusions in K-feldspar overgrowths, the presence of halite daughter crystals in some associated carbonate-hosted inclusions, and low whole-rock Cl/Br ratios indicate the K-feldspar formed by the interaction of connate brines with siliciclastic debris at temperatures between 100/sup 0/ and 200/sup 0/C. The common occurrence of feldspathized rocks stratigraphically below mineralized zones and the similarity of primary fluid inclusions in K-feldspar overgrowths to those observed in ore and qanque minerals suggest the authigenic K-feldspar and mineralization are coeval. The Carboniferous age suggested by /sup 40/Ar//sup 39/Ar age spectra is consistent with estimates based on (1) paleomagnetic studies and (2) analyses of sphalerite deformation fabrics. Accordingly, the authors suggest that MVT sulfide deposits in the central and southern Appalachians were emplaced by the migration of heated connate brines along structural pathways developed during the Alleghenian Orogeny.

  17. Geological and geophysical characterization of the south-eastern side of the High Agri Valley (southern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Giocoli, A.; Stabile, T. A.; Adurno, I.; Perrone, A.; Gallipoli, M. R.; Gueguen, E.; Norelli, E.; Piscitelli, S.

    2014-10-01

    In the frame of a national project funded by Eni S.p.A. and developed by three institutes of the National Research Council (the Institute of Methodologies for Environmental Analysis, the Institute of Research for Hydrogeological Protection and the Institute for Electromagnetic Sensing of the Environment), a multidisciplinary approach based on the integration of satellite, aero-photogrammetric and in situ geophysical techniques was applied to investigate an area located in the Montemurro territory in the south-eastern sector of the High Agri Valley (Basilicata Region, southern Italy). This paper reports the results of the in situ geophysical investigation. Electrical Resistivity Tomography (ERT) and Horizontal to Vertical Spectral Ratio (HVSR) by earthquakes and ambient noise measurements were carried out in the study area. The results were supported by interpretation of aerial photos, geological field surveys, morphotectonic investigation and borehole data. The joint analysis of geological, ERT and HVSR data allowed us to (1) show the shallow geological and structural setting, (2) detect the geometry of the different lithological units and their mechanical and dynamical properties, (3) image a previously unmapped fault beneath suspected scarps/warps and (4) characterize the geometry of an active landslide that caused damages to structures and infrastructures.

  18. Evaluation of the groundwater flow model for southern Utah and Goshen Valleys, Utah, updated to conditions through 2011, with new projections and groundwater management simulations

    USGS Publications Warehouse

    Brooks, Lynette E.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Southern Utah Valley Municipal Water Association, updated an existing USGS model of southern Utah and Goshen Valleys for hydrologic and climatic conditions from 1991 to 2011 and used the model for projection and groundwater management simulations. All model files used in the transient model were updated to be compatible with MODFLOW-2005 and with the additional stress periods. The well and recharge files had the most extensive changes. Discharge to pumping wells in southern Utah and Goshen Valleys was estimated and simulated on an annual basis from 1991 to 2011. Recharge estimates for 1991 to 2011 were included in the updated model by using precipitation, streamflow, canal diversions, and irrigation groundwater withdrawals for each year. The model was evaluated to determine how well it simulates groundwater conditions during recent increased withdrawals and drought, and to determine if the model is adequate for use in future planning. In southern Utah Valley, the magnitude and direction of annual water-level fluctuation simulated by the updated model reasonably match measured water-level changes, but they do not simulate as much decline as was measured in some locations from 2000 to 2002. Both the rapid increase in groundwater withdrawals and the total groundwater withdrawals in southern Utah Valley during this period exceed the variations and magnitudes simulated during the 1949 to 1990 calibration period. It is possible that hydraulic properties may be locally incorrect or that changes, such as land use or irrigation diversions, occurred that are not simulated. In the northern part of Goshen Valley, simulated water-level changes reasonably match measured changes. Farther south, however, simulated declines are much less than measured declines. Land-use changes indicate that groundwater withdrawals in Goshen Valley are possibly greater than estimated and simulated. It is also possible that irrigation

  19. Timing and slip for prehistoric earthquakes on the Superstition Mountain Fault, Imperial Valley, southern California

    NASA Astrophysics Data System (ADS)

    Gurrola, Larry D.; Rockwell, Thomas K.

    1996-03-01

    Trenches excavated across the Superstition Mountain fault in the Imperial Valley, California, have exposed evidence for four prehistorical earthquakes preserved in displaced lacustrine stratigraphy associated with ancient Lake Cahuilla. The presence of shoreline peat accumulations along with abundant detrital charcoal allows for high-precision age determination of some stratigraphic units, thereby providing constraints on the timing of three of the paleoearthquakes. These three events occurred within a 480- to 820-year interval during the past 1200 years. The most recent earthquake (event 1) occurred during a fluvial phase of deposition between A.D. 1440-1637, immediately prior to the inundation of the Cahuilla basin at about A.D. 1480 and 1660. A channel margin was offset 2.2 +0.4/-0.15 m in this rupture, suggesting an earthquake with a magnitude ≥7. The penultimate event (event 2) also occurred during fluvial deposition after A.D. 1280 but before another lakestand at A.D. 1440-1640. Lateral slip could not be resolved for event 2. However, based on juxtaposition of dissimilar units and the amount of deformation produced by this event, it is presumed that this was also a large earthquake. The timing of event 3 is constrained to have occurred between about A.D. 820 and 1280. This event is represented by several fractures and small displacements that rupture up to a distinct stratigraphic level or event horizon. Slip was not resolved for this event. Finally, the timing of event 4 is very poorly constrained to between A.D. 964 and 4670 B.C. Undoubtedly, many events may have occurred during this period. Notably, the past three earthquakes occurred within a period of less than 820 years, and it has been over 350 years since the last earthquake.

  20. Analysis of curved folds and fault/fold terminations in the southern Upper Magdalena Valley of Colombia

    NASA Astrophysics Data System (ADS)

    Jiménez, Giovanny; Rico, John; Bayona, German; Montes, Camilo; Rosero, Alexis; Sierra, Daniel

    2012-11-01

    We use surface and subsurface fold and fault geometries to document curved geometry of folds, along-strike termination of faults/folds and the change of dip of regional faults in four structural areas in the southern part of the Upper Magdalena Valley Basin. In La Cañada area, strike-slip deformation is dominant and cuts former compressional structures; faults and folds of this area end northward abruptly near Rio Paez. To the north of Paez River is the La Hocha area that includes the Tesalia Syncline and La Hocha Anticline, two curved folds that plunge at the same latitude. The southern domain of La Hocha Anticline is asymmetric and bounded by faults in both flanks, whereas the symmetry of the northern domain is related to subsurface fault bending. Paleomagnetic components uncovered in Jurassic rocks suggest a clockwise rotation of 15.2 ± 11.4 in the southern domain, and 31.7 ± 14.4 in the northern domain. The Iquira Area, North of La Hocha, the internal structure is controlled by east-verging faults that end abruptly to the north of this area. The northernmost area is the Upar area that includes fault systems with opposite vergence; west-verging faults at the east of this area decapitate east-verging faults and folds. Paleomagnetic data, geologic mapping and regional structural cross-sections suggest that: (1) pre-existing basement structure controls the curved geometry of La Hocha Anticline; (2) along-strike changes in structural style between adjacent areas and along-strike termination of faults and folds are related to the location of northwest-striking transverse structures in the subsurface; and (3) at least two deformation phases are documented: an Eocene-Oligocene phase associated with the growth of folds along detachment levels within Mesozoic rocks; and a late Miocene phase associated with transpressive faulting along the Chusma and San Jacinto faults. The latter event drove clockwise rotation of the La Hocha Anticline.

  1. Valley-fill alluviation during the Little Ice Age (ca. A.D. 1400-1880), Paria River basin and southern Colorado Plateau, United States

    USGS Publications Warehouse

    Hereford, R.

    2002-01-01

    Valley-fill alluvium deposited from ca. A.D. 1400 to 1880 is widespread in tributaries of the Paria River and is largely coincident with the Little Ice Age epoch of global climate variability. Previous work showed that alluvium of this age is a mappable stratigraphic unit in many of the larger alluvial valleys of the southern Colorado Plateau. The alluvium is bounded by two disconformities resulting from prehistoric and historic arroyo cutting at ca. A.D. 1200-1400 and 1860-1910, respectively. The fill forms a terrace in the axial valleys of major through-flowing streams. This terrace and underlying deposits are continuous and interfinger with sediment in numerous small tributary valleys that head at the base of hillslopes of sparsely vegetated, weakly consolidated bedrock, suggesting that eroded bedrock was an important source of alluvium along with in-channel and other sources. Paleoclimatic and high-resolution paleoflood studies indicate that valley-fill alluviation occured during a long-term decrease in the frequency of large, destructive floods. Aggradation of the valleys ended about A.D. 1880, if not two decades earlier, with the beginning of historic arroyo cutting. This shift from deposition to valley entrenchment near the close of the Little Ice Age generally coincided with the beginning of an episode of the largest floods in the preceding 400-500 yr, which was probably caused by an increased recurrence and intensity of flood-producing El Nin??o events beginning at ca. A.D. 1870.

  2. An evolved axial melt lens in the Northern Ibra Valley, Southern Oman Ophiolite

    NASA Astrophysics Data System (ADS)

    Loocke, M. P.; Lissenberg, C. J.; MacLeod, C. J.

    2014-12-01

    The axial melt lens (AML) is a common feature lying at the base of the upper crust at fast-spreading mid-ocean ridges. It is thought to play a major role in the evolution of MORB and, potentially, accretion of the plutonic lower crust. In order to better understand the petrological processes that operate in AMLs we have examined the nature and variability of the horizon equivalent to the AML preserved in the Oman ophiolite. We present the results of a detailed investigation of a section east of Fahrah in the Ibra Valley. Here, a suite of 'varitextured' gabbros separates the sheeted dykes above from foliated gabbros below. It comprises 3 distinct units: an ophitic gabbro with pegmatitic patches (patchy gabbro; 70 m thick), overlain by a spotty gabbro (50 m), capped by a quartz-diorite (120 m). The sheeted dykes are observed to root in the quartz-diorite. Contacts between the plutonic units are gradational and subhorizontal. All of the units are isotropic. A total of 110 samples were collected for detailed petrographic and chemical analysis. With the exception of a small number of the diorites, all of the samples have a 'cumulate' component. Primary igneous amphibole is ubiquitous, present even as a minor phase in the foliated gabbros beneath, and indicating extensive differentiation and/or the presence of water in the primary liquid. France et al. (2014, Lithos) report patches of granoblastic material from this horizon in the Fahrah area, and suggest they represent the restites of partially melted pieces of the sheeted dykes. We did not, however, find any such granoblastic material, nor can the quartz-diorites represent partial melt; instead, preliminary geochemical modeling suggests that all of the units can be related by simple progressive fractional crystallization of an Oman axial ('V1' or 'Geotimes') melt. Along with the field relationships, as well as the basaltic andesite to dacite composition of the overlying sheeted dykes, this suggests that the AML was the

  3. Estimating sources of Valley Fever pathogen propagation in southern Arizona: A remote sensing approach

    NASA Astrophysics Data System (ADS)

    Pianalto, Frederick S.

    Coccidioidomycosis (Valley Fever) is an environmentally-mediated respiratory disease caused by the inhalation of airborne spores from the fungi Coccidioides spp. The fungi reside in arid and semi-arid soils of the Americas. The disease has increased epidemically in Arizona and other areas within the last two decades. Despite this increase, the ecology of the fungi remains obscure, and environmental antecedents of the disease are largely unstudied. Two sources of soil disturbance, hypothesized to affect soil ecology and initiate spore dissemination, are investigated. Nocturnal desert rodents interact substantially with the soil substrate. Rodents are hypothesized to act as a reservoir of coccidioidomycosis, a mediator of soil properties, and a disseminator of fungal spores. Rodent distributions are poorly mapped for the study area. We build automated multi-linear regression models and decision tree models for ten rodent species using rodent trapping data from the Organ Pipe Cactus National Monument (ORPI) in southwest Arizona with a combination of surface temperature, a vegetation index and its texture, and a suite of topographic rasters. Surface temperature, derived from Landsat TM thermal images, is the most widely selected predictive variable in both automated methods. Construction-related soil disturbance (e.g. road construction, trenching, land stripping, and earthmoving) is a significant source of fugitive dust, which decreases air quality and may carry soil pathogens. Annual differencing of Landsat Thematic Mapper (TM) mid-infrared images is used to create change images, and thresholded change areas are associated with coordinates of local dust inspections. The output metric identifies source areas of soil disturbance, and it estimates the annual amount of dust-producing surface area for eastern Pima County spanning 1994 through 2009. Spatially explicit construction-related soil disturbance and rodent abundance data are compared with coccidioidomycosis

  4. Simulating Evapotranspiration In The DrÂa Valley, Southern Morocco: Model Sensitivity To Surface Properties

    NASA Astrophysics Data System (ADS)

    Hübener, H.; Sogalla, M.; Kerschgens, M.

    Within the interdisciplinary project IMPETUS (an integrated approach to the efficient management of scarce water resources in West Africa) the effect of interaction be- tween the earth's surface and atmosphere on fresh water availability is investigated. In this study the focus is laid upon model studies for for regions north and south of the Sahara. At the high-resolution end of the meteorological model chain employed in IMPETUS, simulations with the non-hydrostatic mesoscale model FOOT3DK (Flow Over Orographically structured Terrain, 3-Dimensional, Cologne-version) are carried out for two subcatchments in Morocco and Benin. The main objectives are: 1) to estab- lish high-resolution, area covering data-sets of evaporation, precipitation and related quantities, and 2) to assess the sensitivity of the atmospheric branch of the hydro- logical cycle to variations in the land surface. For this purpose, FOOT3DK is nested into the Local-Model (LM) of the German Weather Service (DWD), which is used for episode simulations within IMPETUS. For a first case study sensitivity tests have been carried out with FOOT3DK on 3 km horizontal resolution for the mid and lower Drâa valley in Morocco, south of the Atlas mountains. Special emphasis is given to response of the model to heterogeneities in soil water content and in soil type. Considering the response to heterogeneities in soil water content, two different methods were used to artificially enhance the water ressources available for transpiration. Results show not only enhanced transpiration rates, but also changes in near surface atmospheric flow patterns. This is due to stabilisation of the atmosphere on account of reduced near surface temperatures associated with enhanced evapotranspiration. To examine the model sensitivity to soil types, the uniform soil type taken from LM-simulations is replaced by a more realistic height dependent soil type distribution. Simulations show only small sensitivity to these changes

  5. The Verdesca landslide in the Agri Valley (Basilicata, southern Italy): a new geological and geomorphological framework

    NASA Astrophysics Data System (ADS)

    Gueguen, E.; Bentivenga, M.; Colaiacovo, R.; Margiotta, S.; Summa, V.; Adurno, I.

    2015-11-01

    A landslide, to the west of Montemurro (a small village in southern Italy), has recently caused damage to buildings and other infrastructure in an urbanized area; as a result the development of new economic activities has been prohibited. The landslide phenomenon started in the last century and has been studied since the 1990s using classical geotechnical methods; however the sliding body continues to move. This paper presents the results of a study carried out using field surveys, geognostic investigations and TDR (time domain reflectometry) measurements in order to reconstruct the stratigraphy of the sediments involved and to further understand the geological and geomorphological context of the slope. This study is part of a larger multidisciplinary project, the results of which will also be presented in this paper. The landslide (rotational slide in the upper sector, developing into a translational slide in the lower part) affects Quaternary continental clastic deposits resting on a bedrock formed by Tertiary siliciclastic sediments of the Gorgoglione Flysch. TDR measurements did not show any significant movement during the period monitored (January 2013-January 2014). Slip zone geometries were hypothesized using inclinometric measurements taken from previous studies, stratigraphic data and geomorphological interpretations of topographic scarps. Feedback from monitoring will confirm this hypothesis.

  6. The Verdesca landslide in the Agri Valley (Basilicata, southern Italy): a new geological and geomorphological framework

    NASA Astrophysics Data System (ADS)

    Gueguen, E.; Bentivenga, M.; Colaiacovo, R.; Margiotta, S.; Summa, V.; Adurno, I.

    2015-03-01

    A landslide, to the west of Montemurro (a small village in Southern Italy), has recently caused damage to buildings and other infrastructures in an urbanized area, as a result the development of new economic activities has been prohibited. The landslide was discovered in the last century and has been studied since the 1990's using classical geotechnical methods, but the sliding body continues to move. In this paper, we will present the results of a study carried out using field surveys, geognostic investigations and TDR (Time Domain Reflectometry) measurements in order to reconstruct the stratigraphy of the sediments involved and to further understand the geological and geomorphological context of the slope. This study is part of a larger multidisciplinary project of which the results will also be presented in this paper. The landslide (rotational slide in the upper sector, developing into a translational slide in the lower part) affects Quaternary continental clastic deposits resting on a bedrock formed by Tertiary siliciclastic sediments of the Gorgoglione Flysch. TDR measurements did not show any significant movement during the period monitored (January 2013-January 2014). Slip zone geometries were hypothesized using inclinometric measurements taken from previous studies, stratigraphic data and geomorphological interpretations of topographic scarps. Feedback from monitoring will confirm this hypothesis.

  7. A record of large earthquakes during the past two millennia on the southern Green Valley Fault, California

    USGS Publications Warehouse

    Lienkaemper, James J.; Baldwin, John N.; Turner, Robert; Sickler, Robert R.; Brown, Johnathan

    2013-01-01

    We document evidence for surface-rupturing earthquakes (events) at two trench sites on the southern Green Valley fault, California (SGVF). The 75-80-km long dextral SGVF creeps ~1-4 mm/yr. We identify stratigraphic horizons disrupted by upward-flowering shears and in-filled fissures unlikely to have formed from creep alone. The Mason Rd site exhibits four events from ~1013 CE to the Present. The Lopes Ranch site (LR, 12 km to the south) exhibits three events from 18 BCE to Present including the most recent event (MRE), 1610 ±52 yr CE (1σ) and a two-event interval (18 BCE-238 CE) isolated by a millennium of low deposition. Using Oxcal to model the timing of the 4-event earthquake sequence from radiocarbon data and the LR MRE yields a mean recurrence interval (RI or μ) of 199 ±82 yr (1σ) and ±35 yr (standard error of the mean), the first based on geologic data. The time since the most recent earthquake (open window since MRE) is 402 yr ±52 yr, well past μ~200 yr. The shape of the probability density function (pdf) of the average RI from Oxcal resembles a Brownian Passage Time (BPT) pdf (i.e., rather than normal) that permits rarer longer ruptures potentially involving the Berryessa and Hunting Creek sections of the northernmost GVF. The model coefficient of variation (cv, σ/μ) is 0.41, but a larger value (cv ~0.6) fits better when using BPT. A BPT pdf with μ of 250 yr and cv of 0.6 yields 30-yr rupture probabilities of 20-25% versus a Poisson probability of 11-17%.

  8. Comparison of peak discharges among sites with and without valley fills for the July 8-9, 2001 flood in the headwaters of Clear Fork, Coal River basin, mountaintop coal-mining region, southern West Virginia

    USGS Publications Warehouse

    Wiley, Jeffrey B.; Brogan, Freddie D.

    2003-01-01

    The effects of mountaintop-removal mining practices on the peak discharges of streams were investigated in six small drainage basins within a 7-square-mile area in southern West Virginia. Two of the small basins had reclaimed valley fills, one basin had reclaimed and unreclaimed valley fills, and three basins did not have valley fills. Indirect measurements of peak discharge for the flood of July 8-9, 2001, were made at six sites on streams draining the small basins. The sites without valley fills had peak discharges with 10- to 25-year recurrence intervals, indicating that rainfall intensities and totals varied among the study basins. The flood-recurrence intervals for the three basins with valley fills were determined as though the peak discharges were those from rural streams without the influence of valley fills, and ranged from less than 2 years to more than 100 years.

  9. Mapping the Risk of Rift Valley fever re-emergence in Southern Africa using remote sensing data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rift Valley fever is a viral disease of animals and humans that occurs throughout sub-Saharan Africa, Egypt and the Arabian Peninsula. Outbreaks of the disease are episodic and closely linked to climate variability, especially widespread elevated rainfall that facilitates Rift Valley fever virus tra...

  10. Structural and geochemical constraints on the reassembly of disrupted mid-Miocene volcanoes in the Lake Mead-Eldorado Valley area of southern Nevada

    NASA Astrophysics Data System (ADS)

    Weber, Michael E.; Smith, Eugene I.

    1987-06-01

    In the Lake Mead-Eldorado Valley (LMEV) area of southern Nevada, mid-Tertiary volcanic and plutonic rocks in the River, McCullough, and Eldorado mountains lie in the upper plate of a regional detachment structure. The detachment structure and strike-slip faults of the Lake Mead fault zone are temporally and kinematically related. Strike-slip systems and normal faults (Eldorado Valley fault) serve as boundaries between regions of variable extension in the upper plate of this detachment. Geochemical correlation and geometric reconstructions suggest that prior to extension, the LMEV area was characterized by three stratovolcano complexes, each above or adjacent to a chemically correlative pluton. Geochemical correlation techniques are useful tools that may have general application in reconstructing structurally disrupted volcanic-plutonic terranes. *Present address: Department of Geology, University of North Carolina, Chapel Hill, North Carolina 27514

  11. Surface Deformation Analysis of the Active Faults revealed by InSAR Observations and Geodetic Data in Southern Part of the Taitung Longitudinal Valley, Eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Tung, H.; Chen, H. Y.; Hu, J. C.

    2009-04-01

    The NNE-striking Longitudinal Valley Fault (LVF) in eastern Taiwan is an extremely active inverse fault, which is considered as a collision boundary between the Eurasian and the Philippine Sea plates. The fault segments of the LVF demonstrate different slip behaviors, especially in the southern segment of the LVF. The deformation is partitioned by the strike-slip (Lichi fault segment) and the reverse faulting (Luyeh segment). Thus we investigate crustal deformation pattern along the southern LVF by using SAR interferometry and precise leveling data. The SAR data of the Longitudinal Valley area were collected by ERS-1, ERS-2 and Envisat satellite of the European Space Agency in both descending (track: 232; frame: 3141) and ascending (track: 311; frame: 459) orbits. However, this area is so heavily vegetated that high coherence area is limited in the Taitung City and good interfergrams with better coherence are limited to short time span and small perpendicular baseline pairs. Therefore we made three stacking image from the higher coherence interferograms representing deformation interval from 1995-1996, 1996-1998 and 2006-2008 separately. These three results show a same relative subsidence between Luyeh fault and Lichi fault, which is consistent with leveling data measured that time. Besides, we also used the PSInSAR technique to trace the discrete points that were minimally affected by the decorrelation of radar signals through time. Finally we constrain the deformation map based on PSInSAR with leveling data for better understanding the deformation patterns in the southern Longitudinal Valley area.

  12. Ground-water outflow, San Timoteo-Smiley Heights area, upper Santa Ana Valley, Southern California, 1927 through 1968

    USGS Publications Warehouse

    Dutcher, L.C.; Fenzel, F.W.

    1972-01-01

    The San Timoteo-Smiley Heights area is in the upper Santa Ana Valley, San Bernardino and Riverside Counties, Calif., where the Yucaipa and San Timoteo-Beaumont ground-water basins border Bunker .Hill basin on the south between the San Jacinto and San Andreas faults. The area is broken by numerous faults, the topography is rough, and in a large part of the area few wells had been drilled prior to 196S. The alluvial deposits, which constitute the aquifers in the area, range in thickness from 0 where they lap onto exposed bedrock hills to about 1,000 feet. Beneath the southern part of the area near the San Jacinto fault the total thickness of alluvial and lacustrine deposits may be as much as 6,000 feet. The purpose of this study was to estimate ground-water outflow by an indirect method not involving balancing of the hydrologic budget. For this purpose it was necessary to estimate the permeability of the aquifer materials, the average annual hydraulic gradient, and the cross-sectional area through which the flow occurs; these values were estimated for five segments along a line of section between the San Jacinto fault and Crafton Hills. To provide data for the outflow estimates, several miles of reflection and refraction seismic traverses were made along and across the outflow section. Nineteen deep and shallow test holes were drilled; one of the deep test holes and several existing wells were pumped to obtain data on aquifer permeability. The estimated average permeabilities of the aquifer materials range from 5 gallons per day per square foot for the lower part of the San Timoteo beds of Frick (1921) and 40 gallons per day per square foot for the older alluvium to 220 gallons per day per square foot for the upper part of the San Timoteo beds. The estimated outflow in 1927 was 8,150 acre-feet. By 1967 the estimated total outflow was 5,350 acre-feet, a reduction of approximately 34 percent. During the 12-year period 1956 through 1967, however, the annual outflow

  13. Status of groundwater quality in the Southern, Middle, and Northern Sacramento Valley study units, 2005-08: California GAMA Priority Basin Project

    USGS Publications Warehouse

    Bennett, George L.; Fram, Miranda S.; Belitz, Kenneth

    2011-01-01

    Groundwater quality in the Southern, Middle, and Northern Sacramento Valley study units was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study units are located in California's Central Valley and include parts of Butte, Colusa, Glenn, Placer, Sacramento, Shasta, Solano, Sutter, Tehama, Yolo, and Yuba Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey and the Lawrence Livermore National Laboratory. The three study units were designated to provide spatially-unbiased assessments of the quality of untreated groundwater in three parts of the Central Valley hydrogeologic province, as well as to provide a statistically consistent basis for comparing water quality regionally and statewide. Samples were collected in 2005 (Southern Sacramento Valley), 2006 (Middle Sacramento Valley), and 2007-08 (Northern Sacramento Valley). The GAMA studies in the Southern, Middle, and Northern Sacramento Valley were designed to provide statistically robust assessments of the quality of untreated groundwater in the primary aquifer systems that are used for drinking-water supply. The assessments are based on water-quality data collected by the USGS from 235 wells in the three study units in 2005-08, and water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer systems (hereinafter, referred to as primary aquifers) assessed in this study are defined by the depth intervals of the wells in the CDPH database for each study unit. The quality of groundwater in shallow or deep water-bearing zones may differ from quality of groundwater in the primary aquifers; shallow groundwater may be more vulnerable to contamination from the surface. The status of the current quality of the groundwater resource was assessed by using data from samples analyzed for volatile organic

  14. Prediction, assessment of the Rift Valley fever activity in East and Southern Africa 2006-2008 and possible vector control strategies.

    PubMed

    Anyamba, Assaf; Linthicum, Kenneth J; Small, Jennifer; Britch, Seth C; Pak, Edwin; de La Rocque, Stephane; Formenty, Pierre; Hightower, Allen W; Breiman, Robert F; Chretien, Jean-Paul; Tucker, Compton J; Schnabel, David; Sang, Rosemary; Haagsma, Karl; Latham, Mark; Lewandowski, Henry B; Magdi, Salih Osman; Mohamed, Mohamed Ally; Nguku, Patrick M; Reynes, Jean-Marc; Swanepoel, Robert

    2010-08-01

    Historical outbreaks of Rift Valley fever (RVF) since the early 1950s have been associated with cyclical patterns of the El Niño/Southern Oscillation (ENSO) phenomenon, which results in elevated and widespread rainfall over the RVF endemic areas of Africa. Using satellite measurements of global and regional elevated sea surface temperatures, elevated rainfall, and satellite derived-normalized difference vegetation index data, we predicted with lead times of 2-4 months areas where outbreaks of RVF in humans and animals were expected and occurred in the Horn of Africa, Sudan, and Southern Africa at different time periods from September 2006 to March 2008. Predictions were confirmed by entomological field investigations of virus activity and by reported cases of RVF in human and livestock populations. This represents the first series of prospective predictions of RVF outbreaks and provides a baseline for improved early warning, control, response planning, and mitigation into the future. PMID:20682905

  15. Prediction, Assessment of the Rift Valley Fever Activity in East and Southern Africa 2006–2008 and Possible Vector Control Strategies

    PubMed Central

    Anyamba, Assaf; Linthicum, Kenneth J.; Small, Jennifer; Britch, Seth C.; Pak, Edwin; de La Rocque, Stephane; Formenty, Pierre; Hightower, Allen W.; Breiman, Robert F.; Chretien, Jean-Paul; Tucker, Compton J.; Schnabel, David; Sang, Rosemary; Haagsma, Karl; Latham, Mark; Lewandowski, Henry B.; Magdi, Salih Osman; Mohamed, Mohamed Ally; Nguku, Patrick M.; Reynes, Jean-Marc; Swanepoel, Robert

    2010-01-01

    Historical outbreaks of Rift Valley fever (RVF) since the early 1950s have been associated with cyclical patterns of the El Niño/Southern Oscillation (ENSO) phenomenon, which results in elevated and widespread rainfall over the RVF endemic areas of Africa. Using satellite measurements of global and regional elevated sea surface temperatures, elevated rainfall, and satellite derived-normalized difference vegetation index data, we predicted with lead times of 2–4 months areas where outbreaks of RVF in humans and animals were expected and occurred in the Horn of Africa, Sudan, and Southern Africa at different time periods from September 2006 to March 2008. Predictions were confirmed by entomological field investigations of virus activity and by reported cases of RVF in human and livestock populations. This represents the first series of prospective predictions of RVF outbreaks and provides a baseline for improved early warning, control, response planning, and mitigation into the future. PMID:20682905

  16. Right-lateral displacements and the Holocene slip rate associated with prehistoric earthquakes along the southern Panamint Valley fault zone: Implications for southern Basin and Range tectonics and coastal California deformation

    SciTech Connect

    Peizhen Zhang; Ellis, M.; Slemmons, D.B.; Fengying Mao )

    1990-04-10

    The N 20{degree}W-trending Panamint Valley fault zone is linked to the N 60{degree}W-trending Hunter Mountain strike-slip fault and the Saline Valley fault system, which represents on of the three major fault systems accommodating active crustal extension in the southern Great Basin. The displacement associated with the most recent event, determined through six detailed topographic maps of offset features, is 3.2 {plus minus} 0.5 m, and a number of larger offsets, in range of 6-7 m and 12 m, are also observed. If the larger displacements represent, respectively, two and three events, each of {approximately} 3 m, then the fault zone appears to be associated with a characteristic earthquake, which the authors estimate from the length of the rupture zone and the displacement to be between (Ms) 6.5 and 7.2. The Holocene slip rate is 2.36 {plus minus} 0.79 mm/yr, is determined from the displacement of two alluvial features whose maximum age is estimated from pluvial shorelines. Assuming a characterisitc earthquake model, the recurrence interval is between 860 and 2,360 years. The total slip vector of the southern Panamint Valley fault system is oriented toward {approximately} N 35{degree}W, making this a predominately strike-slip fault. In conjunction with the N 60{degree}W orientation of the Hunter mountain strike-slip fault, the authors suggest that the displacement vector for the southern Great Basin is toward the NW, consistent with results from VLBI data, rather than WNW as determined by combining VLBI and geological data. This is turn suggests that the coastal California deformation component involves, respectively, less shortening and more strike-slip displacement perpendicular and parallel to the San Andreas fault than is currently proposed.

  17. Greenhouse gas sources in the southern San Joaquin Valley of California derived from Positive Matrix Factorization of CalNex 2010 observations

    NASA Astrophysics Data System (ADS)

    Guha, A.; Gentner, D. R.; Weber, R.; Baer, D. S.; Gardner, A.; Provencal, R. A.; Goldstein, A. H.

    2012-12-01

    Quantifying the contributions of methane (CH4) and nitrous oxide (N2O) emission from sources in the southern San Joaquin valley is important for validation of the statewide greenhouse gas (GHG) inventory and subsequent AB32 law (California Global Warming Solutions Act 2006) implementation. The state GHG inventory is largely based on activity data and emission factor based estimates. The "bottom-up" emission factors for CH4 and N2O have large uncertainties and there is a lack of adequate "top-down" measurements to characterize emission rates from sources. Emissions from non-CO2 GHG sources display spatial heterogeneity and temporal variability, and are thus, often, poorly characterized. The Central Valley of California is an agriculture and industry intensive region with large concentration of dairies, refineries and active oil fields which are known CH4 sources while agricultural soil management and vehicular combustion are known sources of N2O. In summer of 2010, GHG sources in the southern San Joaquin valley were investigated as part of the CalNex (California at the Nexus of Air Quality and Climate Change) campaign. Measurements of GHG gases (CO2, CH4, and N2O) and the combustion tracer CO were performed at the Bakersfield super-site over a period of six weeks using fast response lasers based on cavity enhanced absorption spectroscopy (LGR Inc. CA). Coincident measurements of hundreds of volatile organic compounds (VOCs) served as anthropogenic and biogenic tracers of the GHG sources at local and regional levels. We present the results of Positive Matrix Factorization (PMF) analysis applied to the GHGs, CO, and 60 VOCs to define dominant source emission profiles. Seven source factors were identified and used to attribute the contribution of regional sources to enhancements above the background. Dairy operations were found to be the largest CH4 source in the region with approximately 80% of the regional emissions attributed to the 'dairy' factor. Factors dominated

  18. Interbasin flow in the Great Basin with special reference to the southern Funeral Mountains and the source of Furnace Creek springs, Death Valley, California, U.S.

    USGS Publications Warehouse

    Belcher, W.R.; Bedinger, M.S.; Back, J.T.; Sweetkind, D.S.

    2009-01-01

    Interbasin flow in the Great Basin has been established by scientific studies during the past century. While not occurring uniformly between all basins, its occurrence is common and is a function of the hydraulic gradient between basins and hydraulic conductivity of the intervening rocks. The Furnace Creek springs in Death Valley, California are an example of large volume springs that are widely accepted as being the discharge points of regional interbasin flow. The flow path has been interpreted historically to be through consolidated Paleozoic carbonate rocks in the southern Funeral Mountains. This work reviews the preponderance of evidence supporting the concept of interbasin flow in the Death Valley region and the Great Basin and addresses the conceptual model of pluvial and recent recharge [Nelson, S.T., Anderson, K., Mayo, A.L., 2004. Testing the interbasin flow hypothesis at Death Valley, California. EOS 85, 349; Anderson, K., Nelson, S., Mayo, A., Tingey, D., 2006. Interbasin flow revisited: the contribution of local recharge to high-discharge springs, Death Valley, California. Journal of Hydrology 323, 276-302] as the source of the Furnace Creek springs. We find that there is insufficient modern recharge and insufficient storage potential and permeability within the basin-fill units in the Furnace Creek basin for these to serve as a local aquifer. Further, the lack of high sulfate content in the spring waters argues against significant flow through basin-fill sediments and instead suggests flow through underlying consolidated carbonate rocks. The maximum temperature of the spring discharge appears to require deep circulation through consolidated rocks; the Tertiary basin fill is of insufficient thickness to generate such temperatures as a result of local fluid circulation. Finally, the stable isotope data and chemical mass balance modeling actually support the interbasin flow conceptual model rather than the alternative presented in Nelson et al. [Nelson

  19. Precipitation of lead-zinc ores in the Mississippi Valley-type deposit at Treves, Cevennes region of southern France

    USGS Publications Warehouse

    Leach, D.; Macquar, J.-C.; Lagneau, V.; Leventhal, J.; Emsbo, P.; Premo, W.

    2006-01-01

    The Trèves zinc–lead deposit is one of several Mississippi Valley-type (MVT) deposits in the Cévennes region of southern France. Fluid inclusion studies show that the ore was deposited at temperatures between approximately 80 and 150°C from a brine that derived its salinity mainly from the evaporation of seawater past halite saturation. Lead isotope studies suggest that the metals were extracted from local basement rocks. Sulfur isotope data and studies of organic matter indicate that the reduced sulfur in the ores was derived from the reduction of Mesozoic marine sulfate by thermochemical sulfate reduction or bacterially mediated processes at a different time or place from ore deposition. The large range of δ34S values determined for the minerals in the deposit (12.2–19.2‰ for barite, 3.8–13.8‰ for sphalerite and galena, and 8.7 to −21.2‰ for pyrite), are best explained by the mixing of fluids containing different sources of sulfur. Geochemical reaction path calculations, based on quantitative fluid inclusion data and constrained by field observations, were used to evaluate possible precipitation mechanisms. The most important precipitation mechanism was probably the mixing of fluids containing different metal and reduced sulfur contents. Cooling, dilution, and changes in pH of the ore fluid probably played a minor role in the precipitation of ores. The optimum results that produced the most metal sulfide deposition with the least amount of fluid was the mixing of a fluid containing low amounts of reduced sulfur with a sulfur-rich, metal poor fluid. In this scenario, large amounts of sphalerite and galena are precipitated, together with smaller quantities of pyrite precipitated and dolomite dissolved. The relative amounts of metal precipitated and dolomite dissolved in this scenario agree with field observations that show only minor dolomite dissolution during ore deposition. The modeling results demonstrate the important control of the reduced

  20. The combined effect of determinants on coverage of intermittent preventive treatment of malaria during pregnancy in the Kilombero Valley, Tanzania

    PubMed Central

    2011-01-01

    Background Intermittent preventive treatment during pregnancy (IPTp) at routine antenatal care (ANC) clinics is an important and efficacious intervention to reduce adverse health outcomes of malaria infections during pregnancy. However, coverage for the recommended two IPTp doses is still far below the 80% target in Tanzania. This paper investigates the combined impact of pregnant women's timing of ANC attendance, health workers' IPTp delivery and different delivery schedules of national IPTp guidelines on IPTp coverage. Methods Data on pregnant women's ANC attendance and health workers' IPTp delivery were collected from ANC card records during structured exit interviews with ANC attendees and through semi-structured interviews with health workers in south-eastern Tanzania. Women's timing of ANC visits and health worker's timing of IPTp delivery were analyzed in relation to the different national IPTp schedules and the outcome on IPTp coverage was modelled. Results Among all women eligible for IPTp, 79% received a first dose of IPTp and 27% were given a second dose. Although pregnant women initiated ANC attendance late, their timing was in line with the national guidelines recommending IPTp delivery between 20-24 weeks and 28-32 weeks of gestation. Only 15% of the women delayed to the extent of being too late to be eligible for a first dose of IPTp. Less than 1% of women started ANC attendance after 32 weeks of gestation. During the second IPTp delivery period health workers delivered IPTp to significantly less women than during the first one (55% vs. 73%) contributing to low second dose coverage. Simplified IPTp guidelines for front-line health workers as recommended by WHO could lead to a 20 percentage point increase in IPTp coverage. Conclusions This study suggests that facility and policy factors are greater barriers to IPTp coverage than women's timing of ANC attendance. To maximize the benefit of the IPTp intervention, revision of existing guidelines is needed. Training on simplified IPTp messages should be consolidated as part of the extended antenatal care training to change health workers' delivery practices and increase IPTp coverage. Pregnant women's knowledge about IPTp and the risks of malaria during pregnancy should be enhanced as well as their ability and power to demand IPTp and other ANC services. PMID:21599999

  1. Paleoseismologic evidence for late Holocene earthquakes on the Southern Panamint Valley fault zone: Implications for earthquake clustering in the Eastern California Shear Zone north of the Garlock fault

    NASA Astrophysics Data System (ADS)

    McAuliffe, L. J.; Dolan, J. F.; Kirby, E.; Haravitch, B.; Alm, S.

    2010-12-01

    New paleoseismological data from two trenches excavated across the southern end of the Panamint Valley fault (PVF), the most active of the three major faults in the eastern California shear zone (ECSZ) north of the Garlock fault, reveal the occurrence of at least two, and probably three, surface ruptures during the late Holocene. These trenches were designed to test the hypothesis that the earthquake clusters and intervening seismic lulls observed in the Mojave section of the ECSZ (Rockwell et al. 2000, Ganev et al. 2010) at 8-9.5 ka, 5-6 ka and during the past ~1-1.5 ka, also involved the fault systems of the ECSZ north of the Garlock fault. Well stratified playa sands, silts and clays exposed in the trench allowed precise identification of two event horizons; a likely third event horizon occurred during a period of soil development across the playa. Calibrated radiocarbon dates from 25 charcoal samples constrain the dates of the most recent event (MRE) to ~1450-1500 AD and the ante-penultimate event at 3.2-3.6 ka. The penultimate event occurred during a period of soil development spanning ~350-1400 AD. The presence of large blocks of soil in what appears to be scarp-derived colluvium in a large fissure opened during this event require that it occurred late during soil development, probably only a few hundred years before the MRE. The timing of the three events indicate that the southern PVF has ruptured at least once, and probably twice during the ongoing seismic cluster in the Mojave region. The PVF earthquakes also are similar in age to the 1872 Owens Valley earthquakes and the geomorphically youthful, but undated MRE in central Death Valley. Although we were unable to excavate deeply enough at this site to expose mid-to lower - Holocene playa strata, the timing of the ante-penultimate earthquake at our site shows that the PVF has ruptured at least once during the well-defined 2-5 ka seismic lull in the Mojave section of the ECSZ. Interestingly the 3.2-3.6 ka

  2. Predictors of mistimed, and unwanted pregnancies among women of childbearing age in Rufiji, Kilombero, and Ulanga districts of Tanzania

    PubMed Central

    2014-01-01

    Background While unintended pregnancies pose a serious threat to the health and well-being of families globally, characteristics of Tanzanian women who conceive unintentionally are rarely documented. This analysis identifies factors associated with unintended pregnancies—both mistimed and unwanted—in three rural districts of Tanzania. Methods A cross-sectional survey of 2,183 random households was conducted in three Tanzanian districts of Rufiji, Kilombero, and Ulanga in 2011 to assess women’s health behavior and service utilization patterns. These households produced 3,127 women age 15+ years from which 2,199 gravid women aged 15–49 were selected for the current analysis. Unintended pregnancies were identified as either mistimed (wanted later) or unwanted (not wanted at all). Correlates of mistimed, and unwanted pregnancies were identified through Chi-squared tests to assess associations and multinomial logistic regression for multivariate analysis. Results Mean age of the participants was 32.1 years. While 54.1% of the participants reported that their most recent pregnancy was intended, 32.5% indicated their most recent pregnancy as mistimed and 13.4% as unwanted. Multivariate analysis revealed that young age (<20 years), and single marital status were significant predictors of both mistimed and unwanted pregnancies. Lack of inter-partner communication about family planning increased the risk of mistimed pregnancy significantly, and multi-gravidity was shown to significantly increase the risk of unwanted pregnancy. Conclusions About one half of women in Rufiji, Kilombero, and Ulanga districts of Tanzania conceive unintentionally. Women, especially the most vulnerable should be empowered to avoid pregnancy at their own will and discretion. PMID:25102924

  3. Study of LANDSAT-D thematic mapper performance as applied to hydrocarbon exploration. [Southern Ontario, Lawton, Oklahoma; Owl Creek, Wyoming; Washington, D.C.; and Death Valley California

    NASA Technical Reports Server (NTRS)

    Everett, J. R. (Principal Investigator)

    1983-01-01

    Improved delineation of known oil and gas fields in southern Ontario and a spectacularly high amount of structural information on the Owl Creek, Wyoming scene were obtained from analysis of TM data. The use of hue, saturation, and value image processing techniques on a Death Valley, California scene permitted direct comparison of TM processed imagery with existing 1:250,000 scale geological maps of the area and revealed small outcrops of Tertiary volcanic material overlying Paleozoic sections. Analysis of TM data over Lawton, Oklahoma suggests that the reducing chemical environment associated with hydrocarbon seepage change ferric iron to soluble ferrous iron, allowing it to be leached. Results of the band selection algorithm show a suprising consistency, with the 1,4,5 combination selected as optimal in most cases.

  4. Cloud dynamics and their impact on local precipitation processes in a high mountain valley in southern Ecuador detected by satellite and ground-based remote sensing methods

    NASA Astrophysics Data System (ADS)

    Trachte, Katja; Rollenbeck, Rütger; Bendix, Jörg

    2015-04-01

    In the high Andean Mountains of southern Ecuador cloud and rainfall formation processes are strongly connected to the complex structure of the terrain. Due to local small-scale circulation systems such as mountain-valley breezes and luv-lee effects a high variability of rainfalls occur. Besides the thermally-induced convective events in the late afternoon, dynamical processes in interaction with the topography determine cloud and rainfall formation mechanisms. In the Rio San Francisco valley early morning rainfalls cloud be traced back to nocturnal katabatic-induced mesoscale convective systems (MCS) at the east Andean slopes. A further procedure is expected in a local seeding effect: frequently MCS, formed in the Amazon basin, are transported westward with the easterly trade winds. As a result of the barrier function of the Andes Mountains the lower part of the cloud system rains out at the eastern slopes, while the upper part (cap-cloud) is drifted into the inter-andean valleys. There it acts like a seeder to low stratus clouds (feeder), which occur due to high condensation rates above the canopy. On the basis of a vertical micro-rain radar (MRR), e.g. radar reflectivity and drop diameter, the seeding effects will be identified. The evaluation of the procedure is carried out with additional observational data: GOES and Nubiscope IR temperatures are employed to detect the appearance of the seeder and the height of the feeder cloud, respectively. The enhancement of the rainfalls are indicated by a disdrometer and in-situ measurements.

  5. A regional record of expanded Holocene wetlands and prehistoric human occupation from paleowetland deposits of the western Yarlung Tsangpo valley, southern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Hudson, Adam M.; Olsen, John W.; Quade, Jay; Lei, Guoliang; Huth, Tyler E.; Zhang, Hucai

    2016-07-01

    The Asian Monsoon, which brings ∼80% of annual precipitation to much of the Tibetan Plateau, provides runoff to major rivers across the Asian continent. Paleoclimate records indicate summer insolation and North Atlantic paleotemperature changes forced variations in monsoon rainfall through the Holocene, resulting in hydrologic and ecologic changes in plateau watersheds. We present a record of Holocene hydrologic variability in the Yarlung Tsangpo (YT) valley of the southern Tibetan Plateau, based on sedimentology and 14C dating of organic-rich 'black mats' in paleowetlands deposits, that shows changes in wetlands extent in response to changing monsoon intensity. Four sedimentary units indicate decreasing monsoon intensity since 10.4 ka BP. Wet conditions occurred at ∼10.4 ka BP, ∼9.6 ka BP and ∼7.9-4.8 ka BP, with similar-to-modern conditions from ∼4.6-2.0 ka BP, and drier-than-modern conditions from ∼2.0 ka BP to present. Wetland changes correlate with monsoon intensity changes identified in nearby records, with weak monsoon intervals corresponding to desiccation and erosion of wetlands. Dating of in situ ceramic and microlithic artifacts within the wetlands indicates Epipaleolithic human occupation of the YT valley after 6.6 ka BP, supporting evidence for widespread colonization of the Tibetan Plateau in the early and mid-Holocene during warm, wet post-glacial conditions.

  6. PM1 measurements at a site close to an oil/gas pre-treatment plant (Agri Valley - southern Italy): a preliminary study

    NASA Astrophysics Data System (ADS)

    Trippetta, S.; Caggiano, R.; Sabia, S.

    2014-09-01

    A PM1 (i.e. particulate matter with an aerodynamic diameter less than 1.0 μm) short-term monitoring campaign was carried out in the Agri Valley (southern Italy) in September 2012. This area is of international concern, since it houses one of the largest European on-shore reservoirs and the largest oil/gas pre-treatment plant (i.e. the Centro Olio Val d'Agri - COVA) within an anthropised context. PM1 measurements were performed in Viggiano, the nearest town to the COVA plant and one of the most populated towns of the Agri Valley. During the study period, the PM1 daily concentrations ranged from 1.2 to 8.4 μg m-3, with a mean value of 4.6 μg m-3. Regarding the PM1 chemical composition, it can be observed that S and typical crustal elements were the most abundant constituents of the PM1 collected. By applying principal component analysis (PCA), it was pointed out that crustal soil, biomass and wood burning, secondary atmospheric reactions involving COVA plant emissions and local soil particles, and traffic were the main sources contributing to the PM1 measured in the area under study. Moreover, a possible contribution of the long-range transport of African dust was observed.

  7. Status and understanding of groundwater quality in the two southern San Joaquin Valley study units, 2005-2006 - California GAMA Priority Basin Project

    USGS Publications Warehouse

    Burton, Carmen A.; Shelton, Jennifer L.; Belitz, Kenneth

    2012-01-01

    Groundwater quality in the southern San Joaquin Valley was investigated from October 2005 through March 2006 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project is conducted by the U.S. Geological Survey (USGS) in collaboration with the California State Water Resources Control Board and the Lawrence Livermore National Laboratory. There are two study units located in the southern San Joaquin Valley: the Southeast San Joaquin Valley (SESJ) study unit and the Kern County Subbasin (KERN) study unit. The GAMA Priority Basin Project in the SESJ and KERN study units was designed to provide a statistically unbiased, spatially distributed assessment of untreated groundwater quality within the primary aquifers. The status assessment is based on water-quality and ancillary data collected in 2005 and 2006 by the USGS from 130 wells on a spatially distributed grid, and water-quality data from the California Department of Public Health (CDPH) database. Data was collected from an additional 19 wells for the understanding assessment. The aquifer systems (hereinafter referred to as primary aquifers) were defined as that part of the aquifer corresponding to the perforation interval of wells listed in the CDPH database for the SESJ and KERN study units. The status assessment of groundwater quality used data from samples analyzed for anthropogenic constituents such as volatile organic compounds (VOCs) and pesticides, as well as naturally occurring inorganic constituents such as major ions and trace elements. The status assessment is intended to characterize the quality of untreated groundwater resources within the primary aquifers in the SESJ and KERN study units, not the quality of drinking water delivered to consumers. Although the status assessment applies to untreated groundwater, Federal and California regulatory and non-regulatory water-quality benchmarks that apply to drinking water are used

  8. Assessment of atmospheric trace element concentrations by lichen-bag near an oil/gas pre-treatment plant in the Agri Valley (southern Italy)

    NASA Astrophysics Data System (ADS)

    Caggiano, R.; Trippetta, S.; Sabia, S.

    2015-02-01

    The atmospheric concentrations of 17 trace elements (Al, Ca, Cd, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, P, Pb, S, Ti and Zn) were measured by means of the "lichen-bag" technique in the Agri Valley (southern Italy). The lichen samples were collected from an unpolluted site located in Rifreddo forest (southern Italy), about 30 km away from the study area along the north direction. The bags were exposed to ambient air for 6 and 12 months. The exposed-to-control (EC) ratio values highlighted that the used lichen species were suitable for biomonitoring investigations. The results showed that the concentrations of almost all the examined trace elements increased with respect to the control after 6-12-month exposures. Furthermore, Ca, Al, Fe, K, Mg and S were the most abundant trace elements both in the 6-month and 12-month-exposed samples. Moreover, principal component analysis (PCA) results highlighted that the major sources of the measured atmospheric trace elements were related both to anthropogenic contributions due to traffic, combustion processes agricultural practices, construction and quarrying activities, and to natural contributions mainly represented by the re-suspension of local soil and road dusts. In addition, the contribution both of secondary atmospheric reactions involving Centro Olio Val d'Agri (COVA) plant emissions and the African dust long-range transport were also identified.

  9. Assessment of atmospheric trace element concentrations by lichen-bag near an oil/gas pre-treatment plant in the Agri Valley (southern Italy)

    NASA Astrophysics Data System (ADS)

    Caggiano, R.; Trippetta, S.; Sabia, S.

    2014-10-01

    The atmospheric concentrations of 17 trace elements (Al, Ca, Cd, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, P, Pb, S, Ti and Zn) were measured by means of the "lichen-bag" technique in the Agri Valley (southern Italy). The lichen samples were collected from an unpolluted site located in Rifreddo forest (southern Italy). The bags were exposed to ambient air for 6 and 12 months. The exposed-to-control (EC) ratio values highlighted that the used lichen species were suitable for biomonitoring investigations. The results showed that the concentrations of almost all the examined trace elements increased with respect to the control after 6-12 month exposures. Furthermore, Ca, Al, Fe, K, Mg and S were the most abundant trace elements both in the 6 and 12 month-exposed samples. Moreover, principal component analysis (PCA) results highlighted that the major sources of the measured atmospheric trace elements were related both to anthropogenic contributions due to traffic, combustion processes, agricultural practices, construction and quarrying activities, and to natural contributions mainly represented by the re-suspension of local soil and road dusts. In addition, the contribution both of secondary atmospheric reactions involving Centro Olio Val d'Agri (COVA) plant emissions and the African dust long-range transport were also identified.

  10. Seismic Structure of the San Fernando and Antelope Valleys, Southern California: Results From LARSE II Refraction, Industry Reflection, and Oil-Test Well Data

    NASA Astrophysics Data System (ADS)

    Fuis, G. S.; Thygesen, K.; Lim, K.; Okaya, D. A.; Baher, S.; Simila, G.; Murphy, J. M.; Ryberg, T.; Langenheim, V. E.

    2003-12-01

    The second phase of the Los Angeles Region Seismic Experiment (LARSE II) recorded refraction and low-fold reflection data from the Santa Monica Mts. to the southern Sierra Nevada, in southern California. The LARSE II corridor crossed two sedimentary basins, underlying the San Fernando and Antelope Valleys, for which we have both industry reflection and oil-test well data to aid in interpretation of geologic structure. In the San Fernando Valley (SFV), refraction modeling of the main line and three cross lines reveal five primary layers. Layer 1 (1.3 km/s), up to 0.1 km thick, represents unsaturated, unconsolidated Quaternary (Q) sediments, and Layer 2 (1.8-2.3 km/s), up to 0.4 km thick, represents saturated, unconsolidated Q sediments and weathered Tertiary (T) sedimentary rocks. Using industry reflection sections and oil-test well data, we observe the following for deeper layers: South of the Northridge Hills fault (NHF), located in the northern SFV, Layer 3 (2.3-3.2 km/s), up to 1.6 km thick, corresponds chiefly to reflective T rocks, including Modelo through Saugus Formations, and Layer 4 (3.6-4.8 km/s), up to 2.2 km thick, corresponds chiefly to non-reflective Topanga Formation and older rocks. North of the NHF, the relationship of velocity layering to stratigraphy becomes more complex, and velocities appear to increase somewhat throughout the stratigraphic section. Layer 5 (5.0-6.0 km/s) is interpreted as basement rocks and may include Mesozoic igneous and metamorphic rocks. The top of layer 5 is deepest (4 km) just north of the surface trace of the NHF. Layers 3-5 thicken markedly northward in the southern SFV, and the boundary between layers 3 and 4 is offset, up to the north, along the north-dipping NHF. In the Antelope Valley (AV), located in the western Mojave Desert, refraction modeling has identified four basic layers. Preliminary interpretations are as follows: Layer 1 (0.1 km/s or less), up to 0.2 km thick, is unsaturated, unconsolidated Q sediments

  11. Tectonic problems revisited: The eastern terminus of the Miocene Garlock fault and the amount of slip on the southern Death Valley fault zone

    SciTech Connect

    Davis, G.A. . Dept. of Geological Sciences); Burchfiel, B.C. . Dept. of Earth, Atmospheric, and Planetary Science)

    1993-04-01

    Prior to 1973, the eastern end of the sinistral Garlock fault (GF) was generally assumed to lie at its junction with the southern Death Valley fault zone (SDVFZ). Although there seems little doubt that the Quaternary GF ends there in a complicated zone of interaction with the dextral SDVFZ, the location of the eastern terminus of a late Miocene GF has been more controversial. Davis and Burchfiel (1973) analyzed the geometry of geologic terranes and features offset > 50 km along the eastern half of the present GF (several within 15 km of the SDVFZ), that it had been offset dextrally [approximately] 8 km along the younger zone, and that the GF was an intracontinental transform structure separating a more extended northern terrane (Basin-and-Range) from a less extended southern terrane (Mojave Desert). USC field studies in areas east of the SDVFZ/GF intersection support the original contention of Davis and Burchfiel that the Miocene GF lies beneath alluvial deposits of Kingston Wash. A left-slip fault with a displacement of [approximately]3 km has been identified beneath upper reaches of the Wash north of Kingston Spring. It lies above the older (and coeval ) west-rooting, mid- to Late Miocene Kingston Range detachment fault, and it appears to bound the southern margin of a distributed breakaway zone of N-S-striking normal faults that distends the Kingston Peak pluton (ca 12.5 Ma). The authors believe that the cumulative effects of pre- and post-12.5 Ma east-west extension north of this buried fault may explain the geometry of offset terranes along the GF in areas west of the SDVFZ. If so, total dextral slip on the younger, cross-cutting SDVFZ must be 10 km or less.

  12. Chemical data and variation diagrams of igneous rocks from the Timber Mountain-Oasis Valley Caldera Complex, southern Nevada

    USGS Publications Warehouse

    Quinlivan, W.D.; Byers, F.M.

    1977-01-01

    Silica variation diagrams presented here are based on 162 chemical analyses of tuffs, lavas, and intrusives, representative of volcanic centers of the Timber Mountain-Oasis Valley caldera complex and cogenetic rocks of the Silent Canyon ca1dera. Most of the volcanic units sampled are shown on the U.S. Geological Survey geologic map of the Timber Mountain caldera area (I-891) and are described in U.S. Geological Survey Professional Paper 919. Early effusives of the complex, although slightly altered, are probably chemically, and petrographically, more like the calc-alkalic Fraction Tuff (Miocene) of the northern Nellis Air Force Base Bombing and Gunnery Range to the north, whereas effusives of later Miocene age, such as the Paintbrush and Timber Mountain Tuffs, are alkali-calcic.

  13. Development of an Upper Cambrian rimmed shelf along the Mississippi Valley Graben, Reelfoot Rift, and the southeastern Ozarks, southern Missouri

    SciTech Connect

    Palmer, J.R. . Dept. of Natural Resources)

    1993-03-01

    The paleogeographic distribution of intrashelf basin shales and limestones in the Bonneterre (Dresbachian) and Davis (Franconian) Formations, and associated data, suggests that rimmed shelf conditions separated the central Missouri part of the shelf from the Mississippi Valley Graben (MVG) of the Reelfoot Rift to the southeast. Middle Dresbachian rocks of the intrashelf basin area, predominantly limestones, indicate a discontinuous carbonate shelf rim. The succeeding widespread shales of the Franconian intrashelf basin indicate that a continuous rim had developed. The margin of the shelf rim is preserved in part of the 4,700-ft-thick Upper Cambrian succession along the northwest margin of the Mississippi Valley Graben (MVG) of the Reelfoot Rift. Equivalent rocks within the MVG are dominantly dark shales (1,600+ ft thick). The Amoco Spence test well penetrated the rim succession on the northwest margin of the MVG. At least 11 large-scale transgressive-regressive (T-R) carbonate cycles (120--600 ft thick) have been defined in this well; 7 cycles are equivalent to the Bonneterre and Davis Formations. These latter cycles have shaly limestone, or limestone at the base, and grade upward to dolostone or coarsely crystalline dolostone, which are interpreted to be shallowing-upward, bank margin-peritidal carbonates. Northwest of the rim margin and on the southeast side of the St. Francois Mountains, rocks equivalent to the rim succession consist of a series of ramp to platform cycles made up of dolostones and local limestones. Many carbonate shelves on passive margins are rimmed. The development of this Upper Cambrian rimmed shelf along the northwest margin of the MVG suggests that failed rifts can also localized such rims.

  14. Evidence for Late-Paleozoic brine migration in Cambrian carbonate rocks of the central and southern Appalachians: Implications for Mississippi Valley-type sulfide mineralization

    USGS Publications Warehouse

    Hearn, P.P., Jr.; Sutter, J.F.; Belkin, H.E.

    1987-01-01

    Many Lower Paleozoic limestones and dolostones in the Valley and Ridge province of the central and southern Appalachians contain 10 to 25 weight percent authigenic potassium feldspar. This was considered to be a product of early diagenesis, however, 40Ar 39Ar analyses of overgrowths on detrital K-feldspar in Cambrian carbonate rocks from Pennsylvania, Maryland, Virginia, and Tennessee yield Late Carboniferous-Early Permian ages (278-322 Ma). Simple mass balance calculations suggest that the feldspar could not have formed isochemically, but required the flux of multiple pore volumes of fluid through the rocks, reflecting regional fluid migration events during the Late-Paleozoic Alleghanian orogeny. Microthermometric measurements of fluid inclusions in overgrowths on detrital K-feldspar and quartz grains from unmineralized rocks throughout the study area indicate homogenization temperatures from 100?? to 200??C and freezing point depressions of -14?? to -18.5??C (18-21 wt.% NaCl equiv). The apparent similarity of these fluids to fluid inclusions in ore and gangue minerals of nearby Mississippi Valley-type (MVT) deposits suggests that the regional occurrences of authigenic K-feldspar and MVT mineralization may be genetically related. This hypothesis is supported by the discovery of authigenic K-feldspar intergrown with sphalerite in several mines of the Mascot-Jefferson City District, E. Tennessee. Regional potassic alteration in unmineralized carbonate rocks and localized occurrences of MVT mineralization are both explainable by a gravity-driven flow model, in which deep brines migrate towards the basin margin under a hydraulic gradient established during the Alleghanian orogeny. The authigenic K-feldspar may reflect the loss of K during disequilibrium cooling of the ascending brines. MVT deposits are probably localized manifestations of the same migrating fluids, occurring where the necessary physical and chemical traps are present. ?? 1987.

  15. Evidence for Late-Paleozoic brine migration in Cambrian carbonate rocks of the central and southern Appalachians: Implications for Mississippi Valley-type sulfide mineralization

    NASA Astrophysics Data System (ADS)

    Hearn, Paul P., Jr.; Sutter, John F.; Belkin, Harvey E.

    1987-05-01

    Many Lower Paleozoic limestones and dolostones in the Valley and Ridge province of the central and southern Appalachians contain 10 to 25 weight percent authigenic potassium feldspar. This was considered to be a product of early diagenesis, however, 40Ar /39Ar analyses of overgrowths on detrital K-feldspar in Cambrian carbonate rocks from Pennsylvania, Maryland, Virginia, and Tennessee yield Late Carboniferous-Early Permian ages (278-322 Ma). Simple mass balance calculations suggest that the feldspar could not have formed isochemically, but required the flux of multiple pore volumes of fluid through the rocks, reflecting regional fluid migration events during the Late-Paleozoic Alleghanian orogeny. Microthermometric measurements of fluid inclusions in overgrowths on detrital K-feldspar and quartz grains from unmineralized rocks throughout the study area indicate homogenization temperatures from 100° to 200°C and freezing point depressions of -14° to -18.5°C (18-21 wt.% NaCl equiv). The apparent similarity of these fluids to fluid inclusions in ore and gangue minerals of nearby Mississippi Valley-type (MVT) deposits suggests that the regional occurrences of authigenic K-feldspar and MVT mineralization may be genetically related. This hypothesis is supported by the discovery of authigenic K-feldspar intergrown with sphalerite in several mines of the Mascot-Jefferson City District, E. Tennessee. Regional potassic alteration in unmineralized carbonate rocks and localized occurrences of MVT mineralization are both explainable by a gravity-driven flow model, in which deep brines migrate towards the basin margin under a hydraulic gradient established during the Alleghanian orogeny. The authigenic K-feldspar may reflect the loss of K during disequilibrium cooling of the ascending brines. MVT deposits are probably localized manifestations of the same migrating fluids, occurring where the necessary physical and chemical traps are present.

  16. Systematic variations in stress state in the southern San Joaquin Valley: Inferences based on well-bore data and contemporary seismicity

    SciTech Connect

    Castillo, D.A.; Zoback, M.D. )

    1994-08-01

    Analysis of stress-induced well-bore breakouts in 35 wells from 10 production fields in the southern San Joaquin Valley (SSJV) indicates systematic spatial variations in the direction of the maximum horizontal stresses at three different scales. First, the regional northeast-southwest compressional stress direction seen along the western margin of the San Joaquin Valley in the Elk Hills, Kettleman Hills, and Coalinga areas, gradually changes to approximately north-south compression over a distance of 10-20 km in the SSJV. This major excursion in the stress field seen in the Yowlumne, Yowlumne North, Paloma, and Rio Viejo production fields represents an approximately 40[degrees] counterclockwise rotation in the direction of the maximum horizontal stress (MHS). This systematic reorientation is consistent with approximately north-south convergence as seen in the local fold axes and reverse faults of Pliocene age and younger. Second, at the extreme south of the SSJV in the San Emidio, Los Lobos, Pleito, Wheeler Ridge, and North Tejon fields, another systematic, but localized, reorientation in the stress field indicates an abrupt change to an approximately east-northeast-west-southwest compression over a distance of a few kilometers. This latter reorientation of MHS stress direction, which is inconsistent with the local east-west-trending fold axes and thrust faults, represents a 40-50[degrees] clockwise rotation in the stresses; this reorientation appears to be limited to oil production fields located within the inferred hanging wall of the White Wolf fault that ruptured during the 1952 Kern County earthquake. Inversion of earthquake focal mechanisms of events located below the perturbed stress field indicates approximately north-south compression. The stress drop associated with the 1952 earthquake may have been responsible for rotating the MHS stress direction, implying that the remote horizontal stresses are comparable in magnitude. 53 refs., 16 refs., 2 tabs.

  17. Seismic Imaging Evidence for the Extension of the Silver Creek Fault from the Southern Santa Clara Valley into the East Bay

    NASA Astrophysics Data System (ADS)

    Steedman, C. E.; Catchings, R. D.; Goldman, M. R.; Rymer, M. J.

    2003-12-01

    The San Francisco Bay is bounded by several strike-slip faults of the San Andreas fault system, including the San Andreas fault to the west and the Hayward and Calaveras faults to the east. Other faults in this complex system, however, are less well-mapped. The northwest-southeast trending Silver Creek fault (SCF) has been mapped in the southern Santa Clara Valley and seismically imaged in the northern part of the valley. Two seismic reflection profiles, gravity data, and water-well data, obtained between the Santa Clara Valley and Fremont, suggest that the SCF extends farther northwest of San Jose into the East Bay. To investigate the possible northwestward extension of the SCF into the East Bay, the USGS High Resolution Seismic Imaging Group acquired two high-resolution, combined seismic reflection and refraction profiles in the Fremont area along Coyote Creek at the southernmost San Francisco Bay. Each profile was about 1.5 km long with geophone and shot spacings of 5 m. Seismic sources were generated by a Betsy Seisgun using 8-gauge shotgun blanks in 0.3-m-deep holes. Each shot was recorded for 2 s at a sample rate of 0.5 ms on 180 channels using three Geometrics Strataview RX-60 seismographs. We observe reflections to about 1000 ms. Preliminary analysis of the data indicates shallow velocities range from 1000 to 1600 m/s in the upper 50 m with multiple low- and high-velocity zones. Shot gathers indicate unusual structure in the Coyote Creek Area (in the vicinity of Albrae Slough) along the northward projection of the SCF, suggesting that the structure may be related to the SCF. Farther northward projection of the SCF and the Albrae Slough structure aligns with a fault imaged in the San Leandro area, an INSAR lineament in the Oakland area, and a mapped fault in the Richmond area. If these indicators of faulting are all associated with the SCF, then the SCF can be interpreted to extend the length of the East Bay.

  18. Reinvestigating the Mission Creek Fault: Holocene slip rates in the northern Coachella Valley and implications for southern California earthquake hazard assessment

    NASA Astrophysics Data System (ADS)

    Wersan, Louis Samuel

    Coachella Valley. Constraining active slip on the Mission Creek fault has significant implications for southern California fault modeling and earthquake hazard assessment, and allows quantification of maximum strain transfer in the Coachella Valley from the Mission Creek fault to the Eastern California Shear Zone (˜9 mm/yr).

  19. Geophysical and hydrogeologic investigations of two primary alluvial aquifers embedded in the southern San Andreas fault system: San Bernardino basin and upper Coachella Valley

    NASA Astrophysics Data System (ADS)

    Wisely, Beth Ann

    This study of alluvial aquifer basins in southern California is centered on observations of differential surface displacement and the search for the mechanisms of deformation. The San Bernardino basin and the Upper Coachella Valley aquifers are bound by range fronts and fault segments of the southern San Andreas fault system. I have worked to quantify long-term compaction in these groundwater dependent population centers with a unique synthesis of data and methodologies using Interferometric Synthetic Aperture Radar (InSAR) and groundwater data. My dissertation contributes to the understanding of alluvial aquifer heterogeneity and partitioning. I model hydrogeologic and tectonic interpretations of deformation where decades of overdraft conditions and ongoing aquifer development contribute to extreme rapid subsidence. I develop the Hydrogeologic InSAR Integration (HII) method for the characterization of surface deformation in aquifer basins. The method allows for the separation of superimposed hydraulic and/or tectonic processes in operation. This formalization of InSAR and groundwater level integration provides opportunities for application in other aquifer basins where overdraft conditions may be causing permanent loss of aquifer storage capacity through compaction. Sixteen years of SAR data for the Upper Coachella Valley exhibit rapid vertical surface displacement (≤ 48mm/a) in sharply bound areas of the western basin margin. Using well driller logs, I categorize a generalized facies analysis of the western basin margin, describing heterogeneity of the aquifer. This allowed for assessment of the relationships between observed surface deformation and sub-surface material properties. Providing the setting and context for the hydrogeologic evolution of California's primary aquifers, the mature San Andreas transform fault is studied extensively by a broad range of geoscientists. I present a compilation of observations of creep, line integrals across the Pacific

  20. Messinian Salinity Crisis and Course of Messinian Valleys in the Southern Shelf of the Sea of Marmara

    NASA Astrophysics Data System (ADS)

    Çifçi, Günay; Barın, Burcu; Okay, Seda; Dondurur, Derman; Sorlien, Christopher; Suc, Jean-Pierre; Lericolais, Gilles

    2015-04-01

    The Messinian Salinity Crisis widely accepted as one of the most interesting events concerning the Mediterranean marine environment in the earth's geological history. Late Miocene tectonic changes in Mediterranean-Atlantic connectivity caused this huge event. The Sea of Marmara region has been improperly considered as a gateway between the Paratethys and Mediterranean since the Middle Miocene. However, it is a very important location for paleoclimatic research including the sea level change associated with the Messinian Salinity Crisis. Although considerable work has been carried out on the Messinian Salinity Crisis, very little has been reported on the status of the Marmara Sea during the Messinian. The case study includes the southern shelf and North İmrali Basin of the Marmara Sea, which is in the region located from the Çanakkale Strait (Dardanelles) to İmralı Island. The structural and stratigraphic interpretation were carried out using high resolution multi-channel seismic reflection (MCS) data which were collected with the facilities of Seismic Laboratory (SeisLab) in the Institute of Marine Sciences and Technology and R/V K. Piri Reis belonging to Dokuz Eylül University under the frame of several projects including TUBİTAK-NSF. Seismic profiles acquired in southern shelf of the Marmara Sea suggest that Messinian fluvial erosion has occurred at the base of all the main sub-basins. The southern shoreline has provided well-preserved evidence of Messinian fluvial erosion followed by the post-crisis marine reflooding. Interpretation is focused on the nature of erosion related to this acoustic basement and to a major angular unconformity that may merge with it. The basement and erosionalsurface are interpreted in the Çanakkale outletandon the southern shelf of the Sea of Marmara. A buried East-West to NW-SE channel cut into acoustic basement that may belong to the Messinian period was interpreted on the MCS data. For instance, based on interpretation of

  1. Occurrence of Cryptosporidium and Giardia in Wild Ducks along the Rio Grande River Valley in Southern New Mexico

    PubMed Central

    Kuhn, Ryan C.; Rock, Channah M.; Oshima, Kevin H.

    2002-01-01

    Fecal samples were taken from wild ducks on the lower Rio Grande River around Las Cruces, N. Mex., from September 2000 to January 2001. Giardia cysts and Cryptosporidium oocysts were purified from 69 samples by sucrose enrichment followed by cesium chloride (CsCl) gradient centrifugation and were viewed via fluorescent-antibody (FA) staining. For some samples, recovered cysts and oocysts were further screened via PCR to determine the presence of Giardia lamblia and Crytosporidium parvum. The results of this study indicate that 49% of the ducks were carriers of Cryptosporidium, and the Cryptosporidium oocyst concentrations ranged from 0 to 2,182 oocysts per g of feces (mean ± standard deviation, 47.53 ± 270.3 oocysts per g); also, 28% of the ducks were positive for Giardia, and the Giardia cyst concentrations ranged from 0 to 29,293 cysts per g of feces (mean ± standard deviation, 436 ± 3,525.4 cysts per g). Of the 69 samples, only 14 had (oo)cyst concentrations that were above the PCR detection limit. Samples did test positive for Cryptosporidium sp. However, C. parvum and G. lamblia were not detected in any of the 14 samples tested by PCR. Ducks on their southern migration through southern New Mexico were positive for Cryptosporidium and Giardia as determined by FA staining, but C. parvum and G. lamblia were not detected. PMID:11772622

  2. Occurrence of Cryptosporidium and Giardia in wild ducks along the Rio Grande River valley in southern New Mexico.

    PubMed

    Kuhn, Ryan C; Rock, Channah M; Oshima, Kevin H

    2002-01-01

    Fecal samples were taken from wild ducks on the lower Rio Grande River around Las Cruces, N. Mex., from September 2000 to January 2001. Giardia cysts and Cryptosporidium oocysts were purified from 69 samples by sucrose enrichment followed by cesium chloride (CsCl) gradient centrifugation and were viewed via fluorescent-antibody (FA) staining. For some samples, recovered cysts and oocysts were further screened via PCR to determine the presence of Giardia lamblia and Crytosporidium parvum. The results of this study indicate that 49% of the ducks were carriers of Cryptosporidium, and the Cryptosporidium oocyst concentrations ranged from 0 to 2,182 oocysts per g of feces (mean +/- standard deviation, 47.53 +/- 270.3 oocysts per g); also, 28% of the ducks were positive for Giardia, and the Giardia cyst concentrations ranged from 0 to 29,293 cysts per g of feces (mean +/- standard deviation, 436 +/- 3,525.4 cysts per g). Of the 69 samples, only 14 had (oo)cyst concentrations that were above the PCR detection limit. Samples did test positive for Cryptosporidium sp. However, C. parvum and G. lamblia were not detected in any of the 14 samples tested by PCR. Ducks on their southern migration through southern New Mexico were positive for Cryptosporidium and Giardia as determined by FA staining, but C. parvum and G. lamblia were not detected. PMID:11772622

  3. Emergency Assessment of Debris-Flow Hazards from Basins Burned by the 2007 Slide and Grass Valley Fires, San Bernardino County, Southern California

    USGS Publications Warehouse

    Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.

    2007-01-01

    INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Slide and Grass Valley Fires in San Bernardino County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 3.50 inches (88.90 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.

  4. The age and origin of the Labyrinth, western Dry Valleys, Antarctica: Evidence for extensive middle Miocene subglacial floods and freshwater discharge to the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Lewis, Adam R.; Marchant, David R.; Kowalewski, Douglas E.; Baldwin, Suzanne L.; Webb, Laura E.

    2006-07-01

    A 50+-km-long network of bedrock channels and scoured terrain occupies the ice-free portion of a major trough that crosses the Transantarctic Mountains in southern Victoria Land. The channels, collectively termed the Labyrinth, emerge from beneath the margin of the East Antarctic Ice Sheet (Wright Upper Glacier) and are incised into a 300-m-thick sill of Ferrar Dolerite at the head of Wright Valley. Upper- and intermediate-elevation erosion surfaces of the Labyrinth exhibit striations and molding characteristic of glacial erosion. Channels and canyons on the lower surface are as much as 600 m wide and 250 m deep, have longitudinal profiles with many reverse gradients, and contain potholes >35 m deep at tributary junctions. These characteristics are most consistent with incision from fast-flowing subglacial meltwater; estimated discharge is on the order of 1.6 2.2 × 106 m3s-1. Our 40Ar/39Ar analyses of volcanic tephra from the Labyrinth show that the channels are relict, that major channel incision predates 12.4 Ma, and that the last major subglacial flood occurred sometime between 14.4 Ma and 12.4 Ma. The most plausible origin for the Labyrinth is erosion associated with episodic drainage of subglacial lakes in East Antarctica. One compelling possibility is that discharge of large volumes of subglacial meltwater to the Southern Ocean, and to the Ross Sea in particular, may have coincided with, and contributed to, oscillations in regional and/or global climate during the middle Miocene.

  5. Hydrogeological aspects and environmental concerns of the New Valley Project, Western Desert, Egypt, with special emphasis on the southern area

    SciTech Connect

    Assaad, F.A. )

    1988-12-01

    The New Valley Project has been given much attention in the past 20 years especially from the hydrogeological point of view concerning groundwater utilization for the reclamation of a large area of the Western Desert. Lithological, petrophysical, and petrographical studies were conducted on four wells south of Beris Oasis. The Nubian sandstones in the area south of Beris Oasis contain hematitic stains and/or fine granular authigenic hematite, thin laminae of brown ferruginous quartzite is also recorded denoting oxidizing conditions in the basin of deposition. Thin streaks of carbonaceous shales are met with in different depths to the south of Beris area, may be taken to denote oscillations in the sea level and accordingly its depths, and are responsible for the change in the oxidation-reduction potential during the deposition of the corresponding beds. Petrographic examination of a thin section of the subsurface Nubia sandstones in the South of Beris Oasis showed that the lithified rocks fail into three types depending on the nature of cement being, silicious or ferruginous, and on the amount of primary matrix, which at present is reorganized into iron oxides, microquartz, and muscovite flakes, thus reaching the phyllomorphic stage of diagenesis. Rounding of the quartz grains shows that transportation had a minor effect on the grain morphology and favor a fluviatile transporting agent.

  6. Forest adjacent households' voices on their perceptions and adaptation strategies to climate change in Kilombero District, Tanzania.

    PubMed

    Balama, Chelestino; Augustino, Suzana; Eriksen, Siri; Makonda, Fortunatus B S

    2016-01-01

    Climate change is a global and local challenge to both sustainable livelihoods and economic development. Tanzania as other countries of the world has been affected. Several studies have been conducted on farmers' perceptions and adaptation to climate change in the country, but little attention has been devoted to forest adjacent households in humid areas. This study assessed this gap through assessing forest adjacent households' voices on perceptions and adaptation strategies to climate change in Kilombero District, Tanzania. Data collection involved key informant interviews, focus group discussions and household questionnaires. Results showed that the majority of households perceived changed climate in terms of temperature increase, unpredictable rainfall, frequent occurrence of floods, increased dry spells during rainy season coupled with decreased water sources and emergence of new pests and diseases. The perceived change in climate has impacted agriculture productivity as the main livelihood source. Different coping and adaptation strategies are employed. These are; crop diversification, changing cropping calendar, adopting modern farming technologies, and increasing reliance on non-timber forest products. These strategies were positively and significantly influenced by socio-economic factors including household size, residence period, land ownership and household income. The study concludes that, there are changes in climatic conditions; and to respond to these climatic changes, forest adjacent households have developed numerous coping and adaptation strategies, which were positively and significantly influenced by some socio-economic factors. The study calls for actual implementation of local climate change policies and strategies in order to enhance adaptive capacity at household level. PMID:27390633

  7. Mechanics of Alleghenian emplacement of thrust sheets along the Blue Ridge-Valley and Ridge boundary in the Southern Appalachians

    SciTech Connect

    Bartholomew, M.J.

    1985-01-01

    The structural interaction between emplacement of the crystalline Blue Ridge thrust sheet (BRTS) and associated Alleghenian deformation in the Valley and Ridge can be, in part, deduced from the deformational style and sequence found in the structurally underlying Pulaski thrust sheet (PTS). Within the PTS both crosscutting and superimposed structural relationships indicate that Alleghenian deformation proceeded through 5 distinct stages involving the PTS. Structures formed during: stage A- as the BRTS ascended a footwall ramp over the PTS and the major lower level decollement zone (LLDZ) in Cambrian strata formed at the base of the PTS; stage B- as the coupled BRTS-PTS ascended a footwall ramp across Cambrian through middle Ordovician strata; stage C- as the PTS crossed the upper Ordovician through Devonian portion of that ramp; stage D- as the BRTS-PTS crossed upper Devonian and Mississippian rocks and reached the upper level decollement zone in Mississippian strata; stage E- post BRTS-PTS emplacement. Stage A was characterized by development of both an imbricate fan in the Rome Formation beneath the BRTS and a thick LLDZ containing abundant tectonic breccia near the Rome/Elbrook contact. The upper bounding surface (UBS) of this LLDZ is folded by broad folds and cut by faults formed during later stages as footwall tectonic slices were incorporated into the base of the PTS. Thus, regional fold and fault trends and relationships with the UBS suggest that most of the complex deformation and tectonic breccia found within the LLDZ formed prior to the PTS ascending the footwall ramp.

  8. Geodetic Constraints on the Rigidity and Eastern Boundary of the Sierra Nevada Micro-Plate, from Mohawk Valley to Southern Walker Lane

    NASA Astrophysics Data System (ADS)

    Kreemer, C. W.; Hammond, W. C.; Blewitt, G.

    2009-12-01

    The Sierra Nevada - Great Valley (SNGV) micro-plate has long been recognized as a tectonically rigid, though mobile, entity within the Pacific - North America plate boundary zone. The motion of the SNGV relative to stable North America (and the Colorado Plateau) provides the kinematic boundary condition for, and perhaps drives, the deformation in the Basin and Range Province (BRP) and Walker Lane. In the north the motion of the SNGV is aligned with the Mohawk Valley fault zone, which could have a slip rate of over a few mm/yr. The crest of the Sierras marks the SNGV’s eastern edge, but the obliquity between orientation of this boundary and the block’s motion implies an expected increase in rangefront-normal extension from the northern to southern Walker Lane. We use new GPS data from the EarthScope Plate Boundary Observatory (PBO) and our own semi-continuous MAGNET network to revisit the following questions: 1) Do the data still support rigidity of the SNGV?; 2) How far east does the rigidity extend and how does this relate to SNGV lithology?; 3) How does the direction of SNGV motion relate to the strike of its eastern margin and observed strain partitioning (and its along strike variation) in the Walker Lane?; and 4) How is SNGV-BRP motion accommodated between the Walker Lane and the Cascadia forearc? We analyze data from all the available continuous GPS sites in the greater SNGV region, including new data from PBO, as well as data from MAGNET. All data are processed with the GIPSY-OASIS II precise point positioning software using recently reprocessed orbits from JPL's IGS Analysis Center. The processing includes satellite and station antenna calibrations and all data have the phase ambiguities fixed using the Ambizap algorithm. Positions are estimated in our custom-made North America reference frame in which continental-scale common-mode errors are removed. Velocities and uncertainties are estimated using the CATS software in which we assuming an error model

  9. Climate History of the Southern San Joaquin Valley of California, USA: Authentic Paleoclimate Research with K-12 Teachers

    NASA Astrophysics Data System (ADS)

    Baron, D.; Negrini, R. M.; Palacios-Fest, M. R.; Auffant, K.

    2006-12-01

    For three summers, the Department of Geology at California State University, Bakersfield (CSUB) has invited teachers from local schools to participate in a research program that is investigating the climate history of the San Joaquin Valley of California. In each 4-week summer project, three elementary/middle school teachers and three high school teachers worked with CSUB faculty, undergraduate geology students, and a small group of high school students. The research centers around the analysis of 50-foot (15 m) sediment cores from two locations in the Tulare Lake basin. These cores preserve a regional climate record dating back to about 35,000 years before the present. Research tasks include the description of sediments from the cores for parameters such as grain size, color, and mineralogy. Sediment analyses include total organic and total inorganic carbon, as well as magnetic susceptibility. Ostracode shells were separated from the sediments, ostracode species present were identified and their abundances determined. Each teacher was put in charge of the description and analysis of several 5-foot (1.5 m) core segments. Each teacher was the leader of a research group including a CSUB geology student and one or two high school students. The groups were responsible for all aspects of the description and analysis of their core segments. They were also in charge of the paleoclimate interpretations and the presentation of their research results at the end of the summer projects. Surveys conducted before and after the summer program indicate that teacher's knowledge of climate change and regional geology, as well as their confidence in teaching Earth science at their schools increased. Follow- up surveys conducted a year after the first summer program indicate that the research experience had a lasting positive impact on teacher's confidence and their enthusiasm for teaching Earth science. Several of the teachers have developed lesson plans and/or field trips for their

  10. Electrical resistivity imaging (ERI) and ground-penetrating radar (GPR) survey at the Giribaile site (upper Guadalquivir valley; southern Spain)

    NASA Astrophysics Data System (ADS)

    Martínez, J.; Rey, J.; Gutiérrez, L. M.; Novo, A.; Ortiz, A. J.; Alejo, M.; Galdón, J. M.

    2015-12-01

    The Giribaile archaeological site is one of the most important Iberian enclaves of the Alto Guadalquivir (Southern Spain). However, to date, only minimal excavation work has been performed at the site. Evaluation requires a preliminary, non-destructive general analysis to determine high-interest areas. This stage required a geophysical survey. Specifically, a 100 m2 grid was selected, where an initial campaign of nine electrical resistivity imaging (ERI) profiles was performed, where each profile was 111 m in length; these profiles were previously located using a detailed topographical survey. A total of 112 electrodes were used for each profile, spaced at 1 m apart with a Wenner-Schlumberger configuration. Secondly, 201 GPR profiles were created using a 500 MHz antenna. The 100 m long profiles were spaced 0.5 m apart and parallel to one another. The present research analyses the efficiency of each of these geophysical tools in supporting archaeological research. Using these methodologies, the position, morphology, and depth of different buried structures can be determined. 3D interpretation of the geophysical survey in 100 × 100 m grid allowed to differentiate structures square and rectangular, interesting buildings in a semicircle (interpreted as ovens) plus delineate different streets. From the geophysical survey follows the Carthaginian presence inside this ancient Iberian enclave.

  11. Stability conditions of the Vistula Valley attained by a multivariate approach - a case study from the Warsaw Southern Ring Road

    NASA Astrophysics Data System (ADS)

    Kaczmarek, Łukasz; Dobak, Paweł

    2015-12-01

    Localised landslide activity has been observed in the area of the plateau slope analysed, in the vicinity of the planned Warsaw Southern Ring Road. Using calculation models quantitative and qualitative evaluations of the impact of natural and anthropogenic load factors on slope stability (and hence, safety) are made. The present paper defines six stages of slope stability analysis, leading to an indication of optimum slope design in relation to the development planned. The proposed procedure produces a ranking of factors that affect slope stability. In the engineering geological conditions under consideration, the greatest factors impacting degradation and failure of slope stability are changes in soil strength due to local, periodic yielding and the presence of dynamic loads generated by intensification of road traffic. Calculation models were used to assess the impact of destabilisation factors and to obtain mutual equivalence with 3D-visualisation relations. Based on this methodology, various scenarios dedicated to specific engineering geological conditions can be developed and rapid stability evaluations of changing slope loads can be performed.

  12. Analysis of particulate matter in anthropized areas characterized by the presence of crude oil pre-treatment plants: The case study of the Agri Valley (Southern Italy)

    NASA Astrophysics Data System (ADS)

    Trippetta, Serena; Caggiano, Rosa; Telesca, Luciano

    2013-10-01

    Simultaneous measurements of PM10, PM2.5 and PM1 (i.e., aerosol particles with aerodynamic diameter less than 10, 2.5 and 1 μm, respectively) daily mass concentrations and daily particle number concentration were performed for the first time in Agri Valley (Basilicata Region - Southern Italy) from July to November 2011. This area is characterized by anthropogenic activities having high potential environmental and human health impacts. In fact, the Agri Valley houses the largest European on-shore reservoir and the largest crude oil pre-treatment plant within an anthropized area. The PM measurements were analyzed combining an innovative statistical methodology, the Singular Spectral Analysis, with forecast models and remote sensing observations. Our findings show that most of the PM collected was made up of particles in the fine and sub-micrometric fractions (i.e., PM2.5 and PM1, respectively) very likely originated by common anthropogenic sources. Moreover, PM2.5 and PM1 daily mass concentrations were characterized by a slightly increasing trend that could be related to the contribution of local sources, such as the crude oil pre-treatment plant, whose combustion processes also produce the emission of particles mainly in the fine and sub-micrometric size ranges. The integrated use of model forecasts, satellite observations and in-situ measurements shows that the only PM10 exceedance was affected by the contribution of Saharan dust, while the three PM2.5 exceedances were mainly due to local anthropogenic sources. Finally, the analysis of the PM10 and PM2.5 Air Quality Index (AQI) values shows that air quality was always “good” with respect to PM10 and “moderate” with respect to PM2.5 suggesting that fine particles, if they will be not kept under control, should represent a real problem also posing health risks to the population living close to the crude oil pre-treatment plant.

  13. Holocene planform change in broad valleys in the Southern Rocky Mountains: the role of vegetation type and beaver in shaping long-term channel complexity

    NASA Astrophysics Data System (ADS)

    Polvi-Pilgrim, L. E.; Wohl, E.

    2012-04-01

    Over the past decade, researchers have shown the importance of streambank vegetation in forming meandering channels. Recent work has also showed the importance of beaver in creating a more heterogeneous landscape, in terms of channel planform and complexity, sedimentation, and riparian vegetation. Streambank vegetation and beavers interact as ecosystem engineers to determine long-term channel planform, floodplain processes, and complexity. We use studies of Holocene beaver aggradation and effects on channel complexity, in addition to measurements of added bank strength by various riparian vegetation types, to predict Holocene planform change in broad (>200 m, disconnected from hillslopes), high-elevation (>2300 m) valleys of the Colorado Front Range in the Southern Rocky Mountains. Sediment core analyses and shallow subsurface geophysical measurements indicate that post-glacial beaver-related aggradation is significant. Additionally, historical and field evidence from the last century, when the beaver population steadily declined, shows that beaver contribute to the formation of a complex, multi-thread channel network. Streambank vegetation in the Colorado Front Range can be categorized based on its ability to provide added strength to the streambank, where riparian or rhizomatous shrubs and trees provide more strength than xeric trees or non-rhizomatous graminoids and herbs, depending on the bank texture and hydrologic conditions. Assuming a snowmelt-dominated flow regime in a gravel-bed channel system, four planform regimes are identified based on beaver populations and the abundance and presence of xeric or riparian vegetation. Following deglaciation, without beaver or bank-stabilizing vegetation, (1) a braided channel formed. The introduction of riparian vegetation and a more stable flow regime triggered a transition to (2) a meandering channel, which in turn provided habitat for beaver, allowing the formation of (3) a complex multi-thread channel system. The

  14. Escape of Sierra Nevada-Great Valley Block Motion Contributes to Upper-Plate Contraction Within the Southern Cascadia Margin Near Humboldt Bay, CA.

    NASA Astrophysics Data System (ADS)

    Williams, T. B.; Kelsey, H. M.; Freymueller, J. T.

    2002-12-01

    Recent GPS-derived site velocities (1993-2002) in northwestern California reveal that an additional mechanism other than subduction is in part accountable for observed upper plate contraction north of the migrating Mendocino triple junction. Sites at and near Cape Mendocino are moving approximately 30 mm/yr and are consistently oriented approximately N 10° W, sub-parallel to the southern Cascadia trench. Sites just north of latitude 40.4° N begin to be oriented east of north, sub-parallel to the Gorda-North America plate convergence direction. The transition from west-of-north to east-of-north site azimuths occurs 20 km north of the Mendocino Fault. The change in site azimuths is abrupt, with an eastward swing of 25°-30° occurring over a distance of approximately 8 km across the Eel River valley. North and east of Cape Mendocino, sites 50-300 km inland have velocities oriented west of north, consistent with the direction of northern Sierra Nevada-Great Valley (SNGV) block and Pacific-North America (P-NA) relative motion. Northern SNGV block motion is 11 mm/yr directed to the northwest. This velocity persists northwestward to within 50 km of the coast at the latitude of Humboldt Bay. Approximately 20 mm/yr of distributed P-NA motion occurs inland of Cape Mendocino across the northern projections of the Ma'acama and Bartlett Springs fault zones, and continues northward into the Humboldt Bay region. The direction of observed SNGV motion is obliquely convergent to the P-NA relative motion direction. The observed convergence between SNGV and the Coast Ranges begins approximately 130 km inland of the coast near Weaverville, CA. We observe 3-6 mm/yr of roughly east-west contraction in that area, which is near the location of the highest topography in the northern Coast Ranges. Near Humboldt Bay, NE-SW convergence of 16+/-2 mm/yr occurs from the coast to approximately 50 km inland. After removing an estimate of the interseismic subduction zone signal from the

  15. Effects of source rocks, soil features and climate on natural gamma radioactivity in the Crati valley (Calabria, Southern Italy).

    PubMed

    Guagliardi, Ilaria; Rovella, Natalia; Apollaro, Carmine; Bloise, Andrea; De Rosa, Rosanna; Scarciglia, Fabio; Buttafuoco, Gabriele

    2016-05-01

    The study, which represents an innovative scientific strategy to approach the study of natural radioactivity in terms of spatial and temporal variability, was aimed to characterize the background levels of natural radionuclides in soil and rock in the urban and peri-urban soil of a southern Italy area; to quantify their variations due to radionuclide bearing minerals and soil properties, taking into account nature and extent of seasonality influence. Its main novelty is taking into account the effect of climate in controlling natural gamma radioactivity as well as analysing soil radioactivity in terms of soil properties and pedogenetic processes. In different bedrocks and soils, activities of natural radionuclides ((238)U, (232)Th (4) K) and total radioactivity were measured at 181 locations by means of scintillation γ-ray spectrometry. In addition, selected rocks samples were collected and analysed, using a Scanning Electron Microscope (SEM) equipped with an Energy Dispersive Spectrometer (EDS) and an X-Ray Powder Diffraction (XRPD), to assess the main sources of radionuclides. The natural-gamma background is intimately related to differing petrologic features of crystalline source rocks and to peculiar pedogenetic features and processes. The radioactivity survey was conducted during two different seasons with marked changes in the main climatic characteristics, namely dry summer and moist winter, to evaluate possible effects of seasonal climatic variations and soil properties on radioactivity measurements. Seasonal variations of radionuclides activities show their peak values in summer. The activities of (238)U, (232)Th and (4) K exhibit a positive correlation with the air temperature and are negatively correlated with precipitations. PMID:26891362

  16. Out-of-phase decadal changes in boreal summer rainfall between Yellow-Huaihe River Valley and southern China around 2002/2003

    NASA Astrophysics Data System (ADS)

    Ha, Yao; Zhong, Zhong; Chen, Haishan; Hu, Yijia

    2016-07-01

    This study investigates the decadal variability of rainfall over China in boreal summer (June-August) since the early 1990s. Results show that the rainfall experiences an abrupt decadal change at around 2002/2003. The decadal change is statistically significant and characterized by an out-of-phase pattern between southern China (SC) and the Yellow-Huaihe River Valley (YHRV). The rainfall over SC decreases during the decade 2003-2012 compared to that in the preceding decade 1993-2002. A simultaneous decadal increase in rainfall has occurred over the YHRV. Meanwhile, a significant sea surface temperature warming appears over the western Pacific Ocean and the northern Indian Ocean after 2002 on the decadal time scale. Further analysis reveals that enhanced convections are activated over the tropical regions between 130°E and 160°E and west of 80°E due to the SST anomalies, which induce the dry air in an area of anomalous subsidence located over SC and the northern South China Sea (SCS) via zonal circulation. Accompanied by the anomalous descending flow over the northern SCS, tropical cyclone (TC) activities in the SCS also experience a concurrent decadal reduction. The decrease in landfall TCs contributes to the decadal decrease in SC rainfall since 2003. Corresponding to the anomalous descending motion that is dominant south of 30°N, an anomalous moist ascending flow develops over the YHRV at around 35°N. Meanwhile, the western Pacific subtropical high becomes stronger and extends further westward during 2003-2012, leading to enhanced moisture transport by the southwesterly in the northwestern flank of subtropical high. As a result, more precipitation occurs over the YHRV. The above analysis has revealed the physical-dynamical processes involved in the decadal changes in rainfall over China. The mechanisms behind the out-of-phase pattern of rainfall changes between SC and the YHRV that occurred at 2002/2003 are explored.

  17. GPS-derived strain in northwestern California: Termination of the San Andreas fault system and convergence of the Sierra Nevada Great Valley block contribute to southern Cascadia forearc contraction

    NASA Astrophysics Data System (ADS)

    Williams, Todd B.; Kelsey, Harvey M.; Freymueller, Jeffrey T.

    2006-02-01

    GPS-derived velocities (1993-2002) in northwestern California show that processes other than subduction are in part accountable for observed upper-plate contraction north of the Mendocino triple junction (MTJ) region. After removing the component of elastic strain accumulation due to the Cascadia subduction zone from the station velocities, two additional processes account for accumulated strain in northern California. The first is the westward convergence of the Sierra Nevada-Great Valley (SNGV) block toward the coast and the second is the north-northwest impingement of the San Andreas fault system from the south on the northern California coastal region in the vicinity of Humboldt Bay. Sierra Nevada-Great Valley block motion is northwest toward the coast, convergent with the more northerly, north-northwest San Andreas transform fault-parallel motion. In addition to the westward-converging Sierra Nevada-Great Valley block, San Andreas transform-parallel shortening also occurs in the Humboldt Bay region. Approximately 22 mm/yr of distributed Pacific-SNGV motion is observed inland of Cape Mendocino across the northern projections of the Maacama and Bartlett Springs fault zones but station velocities decrease rapidly north of Cape Mendocino. The resultant 6-10 mm/yr of San Andreas fault-parallel shortening occurs above the southern edge of the subducted Gorda plate and at the latitude of Humboldt Bay. Part of the San Andreas fault-parallel shortening may be due to the viscous coupling of the southern edge of the Gorda plate to overlying North American plate. We conclude that significant portions of the upper-plate contraction observed north of the MTJ region are not solely a result of subduction of the Gorda plate but also a consequence of impingement of the western edge of the Sierra Nevada-Great Valley block and growth of the northernmost segments of the San Andreas fault system.

  18. Vegetation and geomorphic significance of the riparian greenline in the Sprague River basin, southern Oregon: implications for biogeomorphic monitoring of riparian corridors in semi-arid mountain valleys

    NASA Astrophysics Data System (ADS)

    Hughes, M. L.; Leeseberg, C.

    2009-12-01

    Like many regions in the western U.S., valley-floor environments of the semi-arid Sprague River basin of southern Oregon are heavily irrigated and widely grazed by cattle. To better understand the impacts of grazing and other land uses on river quality, the Klamath Tribes have begun a long-term, basin-wide program aimed at: (1) establishing baseline geomorphic and vegetative conditions along the Sprague River and its tributaries, and (2) monitoring changes in these conditions over time. Because of its widespread use and ease of application, determining the composition of the lowest line of perennial vegetation above baseflow, or the “greenline,” has been included. The goal of this paper is to summarize results of 38 greenline surveys conducted at 19 sites in 2008-9 and to explore geomorphic hypotheses that may explain vegetation patterns evident in the surveys. Spikerush (Eleocharis ssp.) and reed-canary grass (Phalaris arudinacea) were the most commonly occurring vegetation in the greenline across all sites. Because these species are aggressive colonizers, they indicate high availability of fresh alluvium, which may be associated with sustained channel-bank disturbance. Sedges dominated some portions of the greenline at most of the sites, but occurred in less abundance. The late successional or early-to-late transitional state of these sedges, combined with their relatively low frequency, further supports the hypothesis that channel-bank systems remain chronically disturbed and dynamic. Grazing is common, but variable in intensity, at nearly all of the study sites, likely contributing to the persistence of channel-bank disturbance. Among meandering channels, the richness of dominant species (i.e., “community diversity”) was higher on the outer bends than on the inner bends of meanders at 10 of 12 sites. The variability of geomorphic surfaces (old floodplain, new floodplain, failed bank, accreted toe, etc.) incorporated in the greenline by the spatially

  19. Sources, trends and regional impacts of fine particulate matter in southern Mississippi valley: significance of emissions from sources in the Gulf of Mexico coast

    NASA Astrophysics Data System (ADS)

    Chalbot, M.-C.; McElroy, B.; Kavouras, I. G.

    2013-04-01

    The sources of fine particles over a 10 yr period at Little Rock, Arkansas, an urban area in the southern Mississippi Valley, were identified by positive matrix factorization. The annual trends of PM2.5 and its sources, and their associations with the pathways of air mass backward trajectories were examined. Seven sources were apportioned, namely, primary traffic particles, secondary nitrate and sulphate, biomass burning, diesel particles, aged/contaminated sea salt and mineral/road dust, accounting for more than 90% of measured PM2.5 (particles with aerodynamic diameter less than 2.5 μm) mass. The declining trend of PM2.5 mass (0.4 μg m-3 per year) was related to lower levels of SO42- (0.2 μg m-3 per year) due to SO2 reductions from point and mobile sources. The slower decline for NO3- particles (0.1 μg m-3 per year) was attributed to the increasing NH3 emissions in the Midwest. The annual variation of biomass burning particles was associated with fires in the southeast and northwest US. Of the four regions within 500 km from the receptor site, the Gulf Coast and the southeast US accounted cumulatively for more than 65% of PM2.5 mass, nitrate, sulphate and biomass burning aerosol. Overall, more than 50% of PM2.5 and its components originated from sources outside the state. Sources within the Gulf Coast and western Gulf of Mexico include 65% of the busiest ports in the US, intense marine traffic within 400 km of the coast burning rich in S diesel, and a large number of offshore oil and natural gas platforms and many refineries. This approach allowed for the quantitative assessment of the impacts of transport from regions representing diverse mixtures of sources and weather conditions for different types of particles. The findings of this effort demonstrated the influences of emission controls on SO2 and NOx on PM2.5 mass, the potential effect of events (i.e. fires) sensitive to climate change phenomena on air pollution and the potential of offshore activities

  20. Sources, trends and regional impacts of fine particulate matter in southern Mississippi Valley: significance of emissions from sources in the Gulf of Mexico coast

    NASA Astrophysics Data System (ADS)

    Chalbot, M.-C.; McElroy, B.; Kavouras, I. G.

    2013-01-01

    The sources of fine particles over a 10 yr period at Little Rock, Arkansas, an urban area in southern Mississippi Valley, were identified by positive matrix factorization. The annual trends of PM2.5 and its sources and their associations with the pathways of air mass backward trajectories were examined. Seven sources were apportioned, namely, primary traffic particles, secondary nitrate and sulphate, biomass burning, diesel particles, aged/contaminated sea salt and mineral/road dust, accounting for more than 90% of measured PM2.5 mass. The declining trend of PM2.5 mass (0.4 μg m-3 yr-1) was related to lower levels of SO42- (0.2 μg m-3 yr-1) due to SO2 reductions from point and mobile sources. The slower decline for NO3- particles (0.1 μg m-3 yr-1) was attributed to the spatial variability of NH3 in Midwest. The annual variation of biomass burning particles was associated with wildland fires in southeast and northwest US that are sensitive to climate changes. The four regions within 500 km from the receptor site, the Gulf Coast and southeast US accounted cumulatively for more than 65% of PM2.5 mass, nitrate, sulphate and biomass burning aerosol. Overall, more than 50% of PM2.5 and its sources originated from sources outside the state. Sources within the Gulf Coast and western Gulf of Mexico include 65% of the busiest ports in the US, intense marine traffic within 400 km of the coast burning rich in S diesel, and a large number of offshore oil and natural gas platforms and many refineries along the coast. This approach allowed for quantitatively assessing the impacts of transport from regions representing diverse mixtures of sources and weather conditions for different types of particles. The findings of this effort demonstrated the influences of emission controls on SO2 and NOx on PM2.5 mass, the potential effect of events (i.e. fires) sensitive to climate change phenomena on air pollution and the potential of offshore activities and shipping emissions to

  1. Timing, Duration, and Effects of Droughts in the Southern Sierra Nevada and San Joaquin Valley, CA Over the Last 2000 Years

    NASA Astrophysics Data System (ADS)

    Adams, K. D.; Negrini, R. M.; Rajagopal, S.; Cook, E. R.

    2015-12-01

    The Central Valley of California is one of the most prolific agricultural areas in the U.S., providing about 25 % of the nation's food. This system is reliant on winter snows in the Sierra Nevada that gradually melt through the spring, but over the last 4 years California has been in the grip of its worst drought of the last 150 years. The question remains, however, how unusual is this drought when compared to previous events over longer time scales? We used moisture sensitive tree-ring chronologies from the Living Blended Drought Atlas of Cook et al. (2010) to reconstruct annual discharges over the last 2000 years for the Kings, Kaweah, Tule, and Kern rivers in the southern Sierra and routed this discharge into a Tulare Lake water balance model to simulate lake-level fluctuations over this same time period. Although the current drought represents the driest consecutive four year period over the past 2000 years, in terms of discharge volumes, there are multiple periods of more severe, longer term drought represented by extended periods of low lake levels. Significant low-lake periods (< 61 m) include 793-814, 906-933, and 1140-1158, all of which occurred during the Medieval Climate Anomaly. Conversely, lake levels were predominately high during the ensuing Little Ice Age, separated by brief periods of low lake levels. Under natural flow conditions, the 1923-1935 drought would have lowered lake level to about 58 m, which is about 2 m lower than where lake level would have been in the current drought. Wavelet analyses of the streamflow and lake-level records reveal different periodicities of drought and wet conditions because lake-level is a state variable that changes relatively slowly, depending on inflow, precipitation on the lake, evaporation rate, and the hypsometry of the basin, whereas streamflow is a flux that responds immediately to climate perturbations. The streamflow records have a dominant period of 2-8 yrs but lake-level fluctuations follow longer

  2. Valley Fever

    MedlinePlus

    Valley Fever is a disease caused by a fungus (or mold) called Coccidioides. The fungi live in the soil ... from person to person. Anyone can get Valley Fever. But it's most common among older adults, especially ...

  3. A stacked Late Quaternary fluvio-periglacial sequence from the Axe valley, southern England with implications for landscape evolution and Palaeolithic archaeology

    NASA Astrophysics Data System (ADS)

    Brown, A. G.; Basell, L. S.; Toms, P. S.

    2015-05-01

    The current model of mid-latitude late Quaternary terrace sequences, is that they are uplift-driven but climatically controlled terrace staircases, relating to both regional-scale crustal and tectonic factors, and palaeohydrological variations forced by quasi-cyclic climatic conditions in the 100 K world (post Mid Pleistocene Transition). This model appears to hold for the majority of the river valleys draining into the English Channel which exhibit 8-15 terrace levels over approximately 60-100 m of altitudinal elevation. However, one valley, the Axe, has only one major morphological terrace and has long-been regarded as anomalous. This paper uses both conventional and novel stratigraphical methods (digital granulometry and terrestrial laser scanning) to show that this terrace is a stacked sedimentary sequence of 20-30 m thickness with a quasi-continuous (i.e. with hiatuses) pulsed, record of fluvial and periglacial sedimentation over at least the last 300-400 K yrs as determined principally by OSL dating of the upper two thirds of the sequence. Since uplift has been regional, there is no evidence of anomalous neotectonics, and climatic history must be comparable to the adjacent catchments (both of which have staircase sequences) a catchment-specific mechanism is required. The Axe is the only valley in North West Europe incised entirely into the near-horizontally bedded chert (crypto-crystalline quartz) and sand-rich Lower Cretaceous rocks creating a buried valley. Mapping of the valley slopes has identified many large landslide scars associated with past and present springs. It is proposed that these are thaw-slump scars and represent large hill-slope failures caused by Vauclausian water pressures and hydraulic fracturing of the chert during rapid permafrost melting. A simple 1D model of this thermokarstic process is used to explore this mechanism, and it is proposed that the resultant anomalously high input of chert and sand into the valley during terminations

  4. East African Rift Valley, Kenya

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This rare, cloud free view of the East African Rift Valley, Kenya (1.5N, 35.5E) shows a clear view of the Turkwell River Valley, an offshoot of the African REift System. The East African Rift is part of a vast plate fracture which extends from southern Turkey, through the Red Sea, East Africa and into Mozambique. Dark green patches of forests are seen along the rift margin and tea plantations occupy the cooler higher ground.

  5. Fault tectonics and earthquake hazards in the Peninsular Ranges, Southern California. [including San Diego River, Otay Mts., Japatul Valley, Barrett Lake, Horsethief Canyon, Pine Valley Creek, Pine Creek, and Mojave Desert

    NASA Technical Reports Server (NTRS)

    Merifield, P. M. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Thin sections of rock exposed along the San Diego River linear were prepared and determined to be fault breccia. Single band and ratio images of the western Mojave Desert were prepared from the multispectral scanner digital tapes. Subtle differences in color of soil and rock are enhanced on the ratio images. Two north-northeast trending linears (Horsethief Canyon and Pine Valley Creek) and an east-west linear (Pine Creek) were concluded to have resulted from erosion along well-developed foliation in crystalline basement rocks.

  6. 27 CFR 9.35 - Edna Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... northeastern flank of the San Luis Range, which forms the southwestern rim of Edna Valley, to the township line... Canyon and the southern rim of Canada Verde, crossing Corbit Canyon Road and continuing along the...

  7. 27 CFR 9.35 - Edna Valley.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... northeastern flank of the San Luis Range, which forms the southwestern rim of Edna Valley, to the township line... Canyon and the southern rim of Canada Verde, crossing Corbit Canyon Road and continuing along the...

  8. 27 CFR 9.35 - Edna Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... northeastern flank of the San Luis Range, which forms the southwestern rim of Edna Valley, to the township line... Canyon and the southern rim of Canada Verde, crossing Corbit Canyon Road and continuing along the...

  9. 27 CFR 9.35 - Edna Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... northeastern flank of the San Luis Range, which forms the southwestern rim of Edna Valley, to the township line... Canyon and the southern rim of Canada Verde, crossing Corbit Canyon Road and continuing along the...

  10. 27 CFR 9.35 - Edna Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... northeastern flank of the San Luis Range, which forms the southwestern rim of Edna Valley, to the township line... Canyon and the southern rim of Canada Verde, crossing Corbit Canyon Road and continuing along the...

  11. Desegregation in the South San Joaquin Valley.

    ERIC Educational Resources Information Center

    Serrano, Rodolfo G.

    Notably isolated from the large metropolitan centers by geography and predominantly agricultural in its economy, Kern County is California's third largest county in land area. About one-third of the county is situated on the flat valley floor at the extreme southern end of the San Joaquin Valley. The area relies heavily on Chicano and Black manual…

  12. Monitoring Seasonal Land Subsidence and Uplift in the Green Valley Area of the Tucson Active Management Area Groundwater Basin, Southern Arizona using Interferometric Synthetic Aperture Radar (InSAR) Data and Global Navigation Satellite System (GNSS) Data

    NASA Astrophysics Data System (ADS)

    Conway, B. D.

    2013-12-01

    The Green Valley land subsidence feature is located in southern Arizona, approximately 20 miles south of the Tucson metropolitan area within the town of Sahuarita. Groundwater levels fluctuate as much as 110 feet annually, caused by seasonal pumping demands of a nearby pecan orchard. Recent Arizona Department of Water Resources (ADWR) InSAR data and GNSS survey data reveal that seasonal land subsidence and subsequent uplift are occurring as a direct result of seasonal groundwater level fluctuations. Data from a nearby ADWR transducer shows that the groundwater level begins to decline around middle to late February, dropping as much as 110 feet by the end of June. Groundwater levels generally remain somewhat stable until the middle of October, when the groundwater level begins to rise. Groundwater levels will rise as much as 110 feet by the middle of February; a complete 12-month recovery. ADWR InSAR and GNSS survey data show that land subsidence occurs from February until May followed by a stable period, then uplift occurs from October to February. The Green Valley land subsidence feature is a dynamic hydrogeological system that requires continued deformation monitoring using both InSAR and GNSS data. Radarsat-2 Interferograms that illustrate both seasonal subsidence and uplift. Surveyed elevation and groundwater level change data that document how seasonal groundwater fluctuations result in seasonal land subsidence and uplift.

  13. Strontium isotopic signatures of the streams and lakes of Taylor Valley, Southern Victoria Land, Antarctica: Chemical weathering in a polar climate

    USGS Publications Warehouse

    Lyons, W.B.; Nezat, C.A.; Benson, L.V.; Bullen, T.D.; Graham, E.Y.; Kidd, J.; Welch, K.A.

    2002-01-01

    We have collected and analyzed a series of water samples from three closed-basin lakes (Lakes Bonney, Fryxell, and Hoare) in Taylor Valley, Antarctica, and the streams that flow into them. In all three lakes, the hypolimnetic waters have different 87Sr/86Sr ratios than the surface waters, with the deep water of Lakes Fryxell and Hoare being less radiogenic than the surface waters. The opposite occurs in Lake Bonney. The Lake Fryxell isotopic ratios are lower than modern-day ocean water and most of the whole-rock ratios of the surrounding geologic materials. A conceivable source of Sr to the system could be either the Cenozoic volcanic rocks that make up a small portion of the till deposited in the valley during the Last Glacial Maximum or from marble derived from the local basement rocks. The more radiogenic ratios from Lake Bonney originate from ancient salt deposits that flow into the lake from Taylor Glacier and the weathering of minerals with more radiogenic Sr isotopic ratios within the tills. The Sr isotopic data from the streams and lakes of Taylor Valley strongly support the notion documented by previous investigators that chemical weathering has been, and is currently, a major process in determining the overall aquatic chemistry of these lakes in this polar desert environment.

  14. Digital hydrographic, land use/land cover, and hydrologic unit boundary files for the Death Valley region of southern Nevada and southeastern California processed from US Geological Survey 1:100,000- and 1:250,000-scale digital data files

    SciTech Connect

    Turner, A.K.; D`Agnese, F.A.; Faunt, C.C.

    1996-04-01

    Digital hydrographic and land-use/land-cover data have been compiled into a digital geographic data base for an {approx}100,000-km{sup 2} area of the Southern Great Basin, the Death Valley region of southern Nevada and SE California, located between lat 35{degree}N, long 115{degree}W and lat 38{degree}N, long 118{degree}W. This region includes the Nevada Test Site at Yucca Mountain and adjacent parts of southern Nevada and eastern California. The data base was compiled from USGS data files distributed by the USGS Earth Scinece Information Center. The data files were converted into six thematic ARC/INFO map coverages representing the Death Valley region.

  15. A note on the correlation between geophysical observations and seismicity in the Arava/(Araba) Valley at the southern part of the Dead Sea fault

    USGS Publications Warehouse

    Rybakov, M.; Shapira, A.; Al-Zoubi, A.; ten Brink, U.; Hofstetter, R.; Kraeva, N.; Feldman, L.

    2006-01-01

    The spatial distribution of the earthquakes in the Arava Valley, a 150-km section of the Dead Sea Transform, is compared for the first time with the local subsurface geological features derived from geophysical and geological data. Gravity data suggested that the Gharandal, Timna, and Elat basins were filled by low-density young sediments. These features were confirmed by seismic reflection profiles and high-resolution aeromagnetic (HRAM) survey. The HRAM survey delineated the trace of the Dead Sea Transform (DST), which separates magnetic anomalies in the eastern and western parts of the valley, and revealed the occurrence of the unknown deep magmatics. Overall, the earthquake activity appears to be strongly related to the Dead Sea Transform. However, on a local scale, there is no apparent correlation between the seismicity and the mapped fault segments comprising the DST fault system. Absence of the correlation may be a result of insufficient accuracy of the earthquake localization and/or the inclined fault plane. However, in spite of such inaccuracy, it is clearly observed that the large clusters of the low-magnitude earthquakes coincide well with the sedimentary basins. Two pronounced clusters appear to coincide with the subsurface magmatics. We assume that the subsurface geology predetermines areas of stress accumulation and earthquakes. These areas can be the end of faults, or fault jogs, which sometimes create basins. Magmatism can also be affected by the stress field and predetermine the stress and earthquakes' allocation. ?? 2007 Science From Israel/LPPLtd.

  16. Luminescence ages for alluvial-fan deposits in Southern Death Valley: Implications for climate-driven sedimentation along a tectonically active mountain front

    USGS Publications Warehouse

    Sohn, M.F.; Mahan, S.A.; Knott, J.R.; Bowman, D.D.

    2007-01-01

    Controversy exists over whether alluvial-fan sedimentation along tectonically active mountain fronts is driven by climatic changes or tectonics. Knowing the age of sedimentation is the key to understanding the relationship between sedimentation and its cause. Alluvial-fan deposits in Death Valley and throughout the arid southwestern United States have long been the subjects of study, but their ages have generally eluded researchers until recently. Most mapping efforts have recognized at least four major relative-age groupings (Q1 (oldest), Q2, Q3, and Q4 (youngest)), using observed changes in surface soils and morphology, relation to the drainage net, and development of desert pavement. Obtaining numerical age determinations for these morphologic stages has proven challenging. We report the first optically stimulated luminescence (OSL) ages for three of these four stages deposited within alluvial-fans along the tectonically active Black Mountains of Death Valley. Deposits showing distinct, remnant bar and swale topography (Q3b) have OSL ages from 7 to 4 ka., whereas those with moderate to poorly developed desert pavement and located farther above the active channel (Q3a) have OSL ages from 17 to 11 ka. Geomorphically older deposits with well-developed desert pavement (Q2d) have OSL ages ???25 ka. Using this OSL-based chronology, we note that alluvial-fan deposition along this tectonically active mountain front corresponds to both wet-to-dry and dry-to-wet climate changes recorded globally and regionally. These findings underscore the influence of climate change on alluvial fan deposition in arid and semi-arid regions. ?? 2007 Elsevier Ltd and INQUA.

  17. Inter-epidemic Acquisition of Rift Valley Fever Virus in Humans in Tanzania

    PubMed Central

    Sumaye, Robert David; Abatih, Emmanuel Nji; Thiry, Etienne; Amuri, Mbaraka; Berkvens, Dirk; Geubbels, Eveline

    2015-01-01

    Background In East Africa, epidemics of Rift Valley fever (RVF) occur in cycles of 5–15 years following unusually high rainfall. RVF transmission during inter-epidemic periods (IEP) generally passes undetected in absence of surveillance in mammalian hosts and vectors. We studied IEP transmission of RVF and evaluated the demographic, behavioural, occupational and spatial determinants of past RVF infection. Methodology Between March and August 2012 we collected blood samples, and administered a risk factor questionnaire among 606 inhabitants of 6 villages in the seasonally inundated Kilombero Valley, Tanzania. ELISA tests were used to detect RVFV IgM and IgG antibodies in serum samples. Risk factors were examined by mixed effects logistic regression. Findings RVF virus IgM antibodies, indicating recent RVFV acquisition, were detected in 16 participants, representing 2.6% overall and in 22.5% of inhibition ELISA positives (n = 71). Four of 16 (25.0%) IgM positives and 11/71 (15.5%) of individuals with inhibition ELISA sero-positivity reported they had had no previous contact with host animals. Sero-positivity on inhibition ELISA was 11.7% (95% CI 9.2–14.5) and risk was elevated with age (odds ratio (OR) 1.03 per year; 95% CI 1.01–1.04), among milkers (OR 2.19; 95% CI 1.23–3.91), and individuals eating raw meat (OR 4.17; 95% CI 1.18–14.66). Households keeping livestock had a higher probability of having members with evidence of past infection (OR = 3.04, 95% CI = 1.42–6.48) than those that do not keep livestock. Conclusion There is inter-epidemic acquisition of RVFV in Kilombero Valley inhabitants. In the wake of declining malaria incidence, these findings underscore the need for clinicians to consider RVF in the differential diagnosis for febrile illnesses. Several types of direct contact with livestock are important risk factors for past infection with RVFV in this study’s population. However, at least part of RVFV transmission appears to have occurred

  18. Constraints on Shallow Crustal Structure across the San Andreas Fault Zone, Coachella Valley, Southern California: Results from the Salton Seismic Imaging Project (SSIP)

    NASA Astrophysics Data System (ADS)

    Hernandez, A.; Persaud, P.; Bauer, K.; Stock, J. M.; Fuis, G. S.; Hole, J. A.; Goldman, M.

    2015-12-01

    The strong influence of basin structure and crustal heterogeneities on seismic wave propagation suggests that these factors should be included in calculations of strong ground shaking. Knowledge of the shallow subsurface is thus essential for an accurate seismic hazard estimate for the densely populated Coachella Valley, the region north of the potential M7.8 rupture near the Salton Sea. Using SSIP data, we analyzed first arrivals from nine 65-911 kg explosive shots recorded along a profile in the Coachella Valley in order to evaluate the interpretation of our 2D tomographic results and give added details on the structural complexity of the shallow crust. The line extends 37 km from the Peninsular Ranges to the Little San Bernardino Mountains crossing the major strands of the San Andreas Fault Zone. We fit traveltime curves to our picks with forward modeling ray tracing, and determined 1D P-wave velocity models for traveltime arrivals east and west of each shot, and a 2D model for the line. We also inferred the geometry of near-vertical faults from the pre-stack line migration method of Bauer et al. (2013). In general, the 1D models east of individual shots have deeper basement contacts and lower apparent velocities, ~5 km/s at 4 km depth, whereas the models west of individual shots have shallower basement and velocities up to 6 km/s at 2 km depth. Mismatches in basement depths (assuming 5-6 km/s) between individual 1D models indicate a shallowly dipping basement, deepening eastward towards the Banning Fault and shoaling abruptly farther east. An east-dipping structure in the 2D model also gives a better fit than horizontal layers. Based on high velocity zones derived from traveltimes at 9-20 km from the western end of the line, we included an offset from ~2 km to 4 km depth near the middle of the line, which significantly improved the 2D model fit. If fault-related, this offset could represent the Garnet Hill Fault if it continues southward in the subsurface.

  19. Geochemical tracing of As pollution in the Orbiel Valley (southern France): 87Sr/86Sr as a tracer of the anthropogenic arsenic in surface and groundwater.

    NASA Astrophysics Data System (ADS)

    Khaska, Mahmoud; Le Gal La Salle, Corinnne; Lancelot, Joël; Verdoux, Patrick; Boutin, René

    2014-05-01

    The environmental impacts of arsenic mining activities and their effects on ecosystem and human health are observed in many stream waters and groundwater. The aim of this study is to identify the origin of As content in a mining environment using Sr isotopes. At the Salsigne gold mine, before the closure in 2004, high arsenic content has been observed in surface water and groundwater in the Orbiel valley. At the site, immobilization of As, in As rich leachate, is carried out by adding CaO. High contrast in 87Sr/86Sr between Arsenic rich minerals associated with Variscan metamorphic rocks (0.714888-0.718835), together with rich As waste water (0.713463-715477), and the CaO (0.707593) allows as to trace the origin of anthropogenic As. In 2012, Orbiel stream waters were sampled monthly upstream and downstream from the ancient ore processing site and once after an important rainy event (117mm). The upstream valley samples showed low and relatively constant As content with natural regional background of 3.6 and 5.6 μg/L. The rainy event induced only a slight increase in the As content up to 6.3 μg/L. High 87Sr/86Sr ratios suggested an influence of radiogenic Sr issued from the Variscan metamorphic basement. Downstream from the area, the As content was at least10 time as high. In the wet season, stream water As content clearly increased to 13.9-24 μg/L, reaching 120.5 μg/L during the rainy event. Associated 87Sr/86Sr ratio showed to be less radiogenic (0.712276-0.714002). The anti correlation observed between As and 87Sr/86Sr suggest that As issued from a natural origin is characterised by a high 87Sr/86Sr compared to As derived from the CaO treatement used on site and characterized by a low 87Sr/86Sr ratio. During the dry season, increase in As content was observed reaching 110 μg/L. These highlights the contribution of alluvial groundwater to base flow, probably associated with As reach leachate from the site. Contribution from the alluvial aquifer is confirmed by

  20. Long Valley caldera GIS Database

    NASA Astrophysics Data System (ADS)

    Williams, M. J.; Battaglia, M.; Hill, D.; Langbein, J.; Segall, P.

    2002-12-01

    In May of 1980, a strong earthquake swarm that included four magnitude 6 earthquakes struck the southern margin of Long Valley Caldera associated with a 25-cm, dome-shaped uplift of the caldera floor. These events marked the onset of the latest period of caldera unrest that continues to this day. This ongoing unrest includes recurring earthquake swarms and continued dome-shaped uplift of the central section of the caldera (the resurgent dome) accompanied by changes in thermal springs and gas emissions. Analysis of combined gravity and geodetic data confirms the intrusion of silicic magma beneath Long Valley caldera. In 1982, the U.S. Geological Survey under the Volcano Hazards Program began an intensive effort to monitor and study geologic unrest in Long Valley Caldera. This database provides an overview of the studies being conducted by the Long Valley Observatory in Eastern California from 1975 to 2000. The database includes geological, monitoring and topographic datasets related to the Long Valley Caldera, plus a number of USGS publications on Long Valley (e.g., fact-sheets, references). Datasets are available as text files or ArcView shapefiles. Database CD-ROM Table of Contents: - Geological data (digital geologic map) - Monitoring data: Deformation (EDM, GPS, Leveling); Earthquakes; Gravity; Hydrologic; CO2 - Topographic data: DEM, DRG, Landsat 7, Rivers, Roads, Water Bodies - ArcView Project File

  1. Is it working? A look at the changing nutrient practices in the Southern Willamette Valley’s Groundwater Management Area

    EPA Science Inventory

    Groundwater nitrate contamination affects thousands of households in the southern Willamette Valley and many more across the Pacific Northwest. The southern Willamette Valley Groundwater Management Area (SWV GWMA) was established in 2004 to address the occurrence of high groundw...

  2. Lithologic properties of carbonate-rock aquifers at five test wells in the Coyote Spring Valley Area, southern Nevada, as determined from geophysical logs. Water resources investigation report

    SciTech Connect

    Berger, D.L.

    1992-01-01

    Regional ground-water flow systems in the carbonate-rock aquifers in southern Nevada were evaluated as potential sources for water supply as part of the Nevada Carbonate Aquifers Program. Geophysical log analyses indicated that the test wells penetrate carbonate rocks, which vary in composition from limestone to dolomite and include mixtures of both. Calcite was found to be the predominant matrix mineral and shales made up of only a small percentage of the overall rock. Bulk-density measurements averaged 2.65 grams per cubic centimeter and the matrix density estimates averaged 2.76 grams per cubic centimeter. Increased amounts of silica in the matrix mineralogy were associated with greater total porosity values. The log analyses indicated an average of 4.7 percent porosity for 43 zones in the test wells.

  3. Effect of Low Quality Effluent from Wastewater Stabilization Ponds to Receiving Bodies, Case of Kilombero Sugar Ponds and Ruaha River, Tanzania

    PubMed Central

    Machibya, Magayane; Mwanuzi, Fredrick

    2006-01-01

    A study was conducted in a sewage system at Kilombero Sugar Company to review its design, configuration, effectiveness and the quality of influent and effluent discharged into the Ruaha river (receiving body). The concern was that, the water in the river, after effluent has joined the river, is used as drinking water by villages located downstream of the river. Strategic sampling at the inlet of the oxidation pond, at the outlet and in the river before and after the effluent has joined the receiving body (river) was undertaken. Samples from each of these locations were taken three times, in the morning, noon and evening. The sample were then analysed in the laboratory using standard methods of water quality analysis. The results showed that the configuration and or the layout of the oxidation ponds (treatment plant) were not in accordance with the acceptable standards. Thus, the BOD5 of the effluent discharged into the receiving body (Ruaha River) was in the order of 41 mg/l and therefore not meeting several standards as set out both by Tanzanian and international water authorities. The Tanzanian water authorities, for example, requires that the BOD5 of the effluent discharged into receiving bodies be not more that 30 mg/l while the World Health Organization (WHO) requires that the effluent quality ranges between 10 – 30 mg/l. The paper concludes that proper design of treatment plants (oxidation ponds) is of outmost importance especially for factories, industries, camps etc located in rural developing countries where drinking water from receiving bodies like rivers and lakes is consumed without thorough treatment. The paper further pinpoint that both owners of treatment plants and water authorities should establish monitoring/management plan such that treatment plants (oxidation ponds) could be reviewed regarding the change on quantity of influent caused by population increase. PMID:16823095

  4. Effect of low quality effluent from wastewater stabilization ponds to receiving bodies, case of Kilombero sugar ponds and Ruaha river, Tanzania.

    PubMed

    Machibya, Magayane; Mwanuzi, Fredrick

    2006-06-01

    A study was conducted in a sewage system at Kilombero Sugar Company to review its design, configuration, effectiveness and the quality of influent and effluent discharged into the Ruaha river (receiving body). The concern was that, the water in the river, after effluent has joined the river, is used as drinking water by villages located downstream of the river. Strategic sampling at the inlet of the oxidation pond, at the outlet and in the river before and after the effluent has joined the receiving body (river) was undertaken. Samples from each of these locations were taken three times, in the morning, noon and evening. The sample were then analysed in the laboratory using standard methods of water quality analysis. The results showed that the configuration and or the layout of the oxidation ponds (treatment plant) were not in accordance with the acceptable standards. Thus, the BOD5 of the effluent discharged into the receiving body (Ruaha River) was in the order of 41 mg/l and therefore not meeting several standards as set out both by Tanzanian and international water authorities. The Tanzanian water authorities, for example, requires that the BOD5 of the effluent discharged into receiving bodies be not more that 30 mg/l while the World Health Organization (WHO) requires that the effluent quality ranges between 10 - 30 mg/l. The paper concludes that proper design of treatment plants (oxidation ponds) is of outmost importance especially for factories, industries, camps etc located in rural developing countries where drinking water from receiving bodies like rivers and lakes is consumed without thorough treatment. The paper further pinpoint that both owners of treatment plants and water authorities should establish monitoring/management plan such that treatment plants (oxidation ponds) could be reviewed regarding the change on quantity of influent caused by population increase. PMID:16823095

  5. A 200,000-year record of late Quaternary Aeolian sedimentation on the Southern High Plains and nearby Pecos River Valley, USA

    NASA Astrophysics Data System (ADS)

    Rich, J.; Stokes, S.

    2011-03-01

    Presently stabilized Southern High Plains (SHP) dune systems have been repeatedly re-activated during the past 200,000 years, providing an archive of environmental and related climatic change for the late Quaternary. Our data set of 38 optically dated samples from four different localities identifies eolian activity from late-middle Pleistocene to the historic period. Oldest eolian sediments are from the Blackwater Draw Formation and indicate accretion during late-middle to late Pleistocene. Younger sediments dating from the later Pleistocene through the Holocene are found in the Muleshoe, Lea-Yoakum, Mescalero, and Monahans dunes that overlie the Blackwater Draw Formation. Muleshoe dunes accreted during the Late Pleistocene between 31 ± 3 and 27 ± 2 ka, while Holocene deposition transpired 7.5 ± 0.4, 4.0 ± 0.7 ka through 3.6 ± 0.4 ka, and between 1.3 ± 0.2 and 1.1 ± 0.1 ka. A period of dune building for Lea-Yoakum dune sediments occurred during the late Pleistocene (48 ± 5 ka), and the later Holocene (3.6 ± 0.4 ka). Mescalero and Monahans dunes were accreting during the later Pleistocene between 29 ± 3 and 22 ± 2 ka followed by a sequence of eolian sand deposited ca. 15 ka. Holocene eolian sedimentation for the Mescalero and Monahans dunes occurred 7.5 ± 0.8, 5.1 ± 0.5, 4.3 ± 0.4, and 2.0 ± 0.3 ka. Historic eolian deposition is identifiable in the dune chronology with multiple optical age estimates overlapping established drought events recorded ca. 1890, 1910, 1920, and during the 1930's when the North American "Dust Bowl" transpired. These Quaternary eolian deposits mantling the Southern High Plains are an important component of the surficial material of the region and provide a rich archive of past climatic change.

  6. The influence of pre-existing structures on the evolution of the southern Kenya Rift Valley — evidence from seismic and gravity studies

    NASA Astrophysics Data System (ADS)

    Birt, C. S.; Maguire, P. K. H.; Khan, M. A.; Thybo, H.; Keller, G. R.; Patel, J.

    1997-09-01

    The Kenya Rift is an active continental rift that has developed since the Late Oligocene. Although a thermal origin for the rifting episode is indicated by the scale of volcanism and its relative timing with uplift and faulting, the influence of pre-existing lithospheric structural controls is poorly understood. The interpretation of a 430-km-long seismic refraction and gravity line across the southern part of the Kenya Rift shows that the rift is developed across a transition zone, thought to represent the sheared Proterozoic boundary between the Archaean Nyanza Craton and the mobile Mozambique Belt. This zone of weakness has been exploited by the recent thermal rifting event. The Moho is at a depth of 33 km beneath the Archaean craton in the western part of the profile, and 40 km beneath the Mozambique Belt in the east. A few kilometres of localised crustal thinning has developed across the transition from thin to thick crust. At the surface, brittle faulting has formed an asymmetric rift basin 3.6 km deep, filled with low-velocity volcanic rocks. Basement velocities show a transition across the same area from low velocities (6.0 km s -1) in the Archaean, to high velocities (6.35 km s -1) in the Proterozoic. Mid-crustal layers show no deformation that can be attributed to the rifting event. Poorly constrained upper mantle velocities of 7.8 km s -1 beneath the southern rift confirm the continuation of the axial low-velocity zone imaged in previous seismic experiments. This is interpreted as the effect of small degrees of partial melt caused by elevated mantle temperatures. Gravity modelling suggests a contribution to the Bouguer anomaly from below the Moho, invoking the need for deep density contrasts. The regional gravity gradient necessary to model the Bouguer anomaly is used as supporting evidence for mantle-plume type circulation beneath the uplifted East African Plateau to the west of the Kenya Rift.

  7. Physical and institutional vulnerability assessment method applied in Alpine communities. Preliminary Results of the SAMCO-ANR Project in the Guil Valley (French Southern Alps)

    NASA Astrophysics Data System (ADS)

    Carlier, Benoit; Dujarric, Constance; Puissant, Anne; Lissak, Candide; Viel, Vincent; Bétard, François; Madelin, Malika; Fort, Monique; Arnaud-Fassetta, Gilles

    2015-04-01

    The Guil catchment is particularly prone to torrential and gravitational hazards such as floods, debris flows, landslides or avalanches due to several predisposing factors (bedrock supplying abundant debris, strong hillslope-channel connectivity) in a context of summer Mediterranean rainstorms as triggers. These hazards severely impact the local population (fatalities, destruction of buildings and infrastructures, loss of agricultural land, road closures). Since the second half of the 20th century, the progressive decline of agro-pastoralism and the development of tourism activities led to a concentration of human stakes on alluvial cones and valley bottom, therefore an increase of vulnerability for mountainous communities. Following the 1957 and 2000 catastrophic floods and the 1948 and 2008 avalanche episodes, some measures were taken to reduce exposure to risks (engineering works, standards of construction, rescue training…). Nevertheless, in front of urban expansion (land pressures and political pressures) and obsolescence of the existing protective measures, it is essential to reassess the vulnerability of the stakes exposed to hazards. Vulnerability analysis is, together with hazard evaluation, one of the major steps of risk assessment. In the frame of the SAMCO project designed for mountain risk assessment, our goal is to estimate specific form of vulnerability for communities living in the Upper Guil catchment in order to provide useful documentation for a better management of the valley bottom and the implementation of adequate mitigation measures. Here we present preliminary results on three municipalities of the upper Guil catchment: Aiguilles, Abriès, and Ristolas. We propose an empirical semi-quantitative indicator of potential hazards consequences on element at risk (based on GIS) with an application to different (local and regional scale) scales. This indicator, called Potential Damage Index, enable us to describe, quantify, and visualize direct

  8. Historic hydro-bio-morphological change (1855-2010) and control factors on an upper alpine valley floor (Guil river, Southern French Alps)

    NASA Astrophysics Data System (ADS)

    Arnaud-Fassetta, Gilles; Fort, Monique

    2013-04-01

    Much research carried out along mountain rivers has concluded that the general trend of decreasing bedload supply is primarily a result of human action, and only secondarily a response to changes in climate and vegetation. In contrast, we have recently shown that, in the upper reaches of alpine valleys, the shaping of active channels has been mostly dependent upon hydroclimatic variability, at least during the last fifty years. We propose to apply this hypothesis within a broader temporal framework so as to include the Little Ice Age period. The upper Guil river extends in the internal, « schistes lustrés » part of the Alps, and it is characterized by a strong hillslope-channel coupling, and by alternating sequences of fluvial and/or debris-flow. Our analysis rests on several types of data: longitudinal and cross profiles, old topographical maps, and aerial photographs. We took account of active channel width and area, sinuosity and incision index, and engineering structures. We used dendrochronology to improve constraints upon the age of terraces and to help to assess the impact of high magnitude floods on riparian forest development. We assert that, whereas the general trend is dominated by channel incision (tectonic uplift, reforestation), the overall instability of the active channel is mainly controlled by the passage of high-magnitude low-frequency hydroclimatic events (1897, 1957, 2000, 2002). We go on to show that, provided that flood control structures are generally efficient, the last 50-years of land-use changes have reduced the channel capacity of the Guil, and so have increased the vulnerability of human installations to damage.

  9. PM1 geochemical and mineralogical characterization using SEM-EDX to identify particle origin - Agri Valley pilot area (Basilicata, Southern Italy)

    NASA Astrophysics Data System (ADS)

    Margiotta, S.; Lettino, A.; Speranza, A.; Summa, V.

    2015-01-01

    A PM1 geochemical and mineralogical study using Scanning Electron Microscopy (SEM) was performed on a pilot site in the Agri Valley which is close to the oil pre-treatment plant (C.O.V.A) of the Europe's largest on-shore hydrocarbon reservoir. The study identified PM1 geochemical and mineralogical characters in a period before, during and immediately after a burning torch flare event. The finer fraction (DFe < 0.7 μm) consisted mainly of secondary particles and soot. In the coarser fraction (DFe ≥ 0.7 μm), natural particles originating from crustal erosion and soot were abundant. Fine quartz particles and lower Al/Si ratios are markers for desert dust origin, proving that a Saharan dust episode which occurred during the observation period played a significant role in supplying geogenic aerosol components to the PM1. Largest amounts of ≥0.7 μm fraction particles observed on the day of flare event may be due to a greater supply of Saharan geogenic particles. Soot had been significantly increasing long before the flare event, suggesting that this increase is also related to other causes, although we cannot exclude a contribution from flaring. S-rich aerosol consisted mainly of mixed particles originating from deposition and heterogeneous nucleation of secondary sulfates on mineral dust. Only-S particles were identified in the ≥0.7 μm fraction following the flare event. These particles may be indicators of larger amounts of sulphur in the atmosphere.

  10. PM1 geochemical and mineralogical characterization using SEM-EDX to identify particle origin - Agri Valley pilot area (Basilicata, southern Italy)

    NASA Astrophysics Data System (ADS)

    Margiotta, S.; Lettino, A.; Speranza, A.; Summa, V.

    2015-07-01

    A PM1 geochemical and mineralogical study using Scanning Electron Microscopy (SEM) was performed on a pilot site in the Agri Valley which is close to the oil pre-treatment plant (C.O.V.A) of Europe's largest on-shore hydrocarbon reservoir. The study identified PM1 geochemical and mineralogical characters in the period before, during and immediately after a burning torch flare event. The finer fraction (DFe < 0.7 μm) consisted mainly of secondary particles and soot. In the coarser fraction (DFe ≥ 0.7 μm), natural particles originating from crustal erosion and soot were abundant. Fine quartz particles and lower Al / Si ratios are markers for desert dust origin, proving that a Saharan dust episode which occurred during the observation period played a significant role in supplying geogenic aerosol components to the PM1. Largest amounts of ≥ 0.7 μm fraction particles observed on the day of flare event may be due to a greater supply of Saharan geogenic particles. Soot had been significantly increasing long before the flare event, suggesting that this increase is also related to other causes, although we cannot exclude a contribution from flaring. S-rich aerosol consisted mainly of mixed particles originating from deposition and heterogeneous nucleation of secondary sulfates on mineral dust. Only-S particles were identified in the ≥ 0.7 μm fraction following the flare event. These particles may be indicators of larger amounts of sulphur in the atmosphere.

  11. Hypothesis on the origin of lineaments in the LANDSAT and SLAR images of precambrian soil in the low Contas River Valley (southern Bahia)

    NASA Technical Reports Server (NTRS)

    Liu, C. C. (Principal Investigator); Rodrigues, J. E.

    1984-01-01

    Examination of LANDSAT and SLAR images in southern Bahia reveals numerous linear features, which are grouped in five sets, based on their trends: N65 degrees E, N70 degrees W, N45 degrees E and NS/N15 degrees E. Owing to their topographic expressions, distributive patterns, spacing between individual lineaments and their mutual relationships, the lineament sets of N65 degrees E and N70 degrees W, as well as the sets of N40 degrees E and N45 degrees W, are considered as two groups of conjugate shear fractures and the former is older and is always cut by the latter. Their conjugate shear angles are 45 degrees and 85 degrees and their bisector lines are approximately in east-west and north-south directions, respectively. According to Badgeley's argumentation on the conjugate shear angles, the former conjugate shear fractures would be caused by: (1) vertical movements, and the bisector of their conjugate angle would be parallel to the long axis of horsting or folding, or (2) by a compressive force in the east-west direction and under a condition of low confining pressure and temperature.

  12. Further Resolution of Past Earthquake Surface Ruptures at the Carrizo Wash Site, Superstition Mountain Strand of the San Jacinto Fault, Imperial Valley, Southern California.

    NASA Astrophysics Data System (ADS)

    Verdugo, D.; Ragona, D. E.; Rockwell, T. K.

    2005-12-01

    We present results from new trench exposures in Carrizo Wash along the northernmost part of the Superstition Mountain strand (SMF) of the San Jacinto Fault, southern California. Prior paleoseismic work by Ragona (2003) recovered evidence for 7 earthquake events, 3 of which occurred in the past 1000 years. The most recent event produced only 15 cm of slip and is only recognized along the Coyote Creek Fault (CCF). The other two recognized events cumulatively produced nearly 6 m of slip. However, an erosional unconformity in the initial excavations removed evidence for at least one event, based on problematic correlations to nearby sites resulting from mismatches in both the number of recognized lake units as well as the relative stratigraphic position of events with respect to the lakes. The new trenches, south of the effects of the erosional channel, contain evidence for an additional event and an additional delta-lake sequence not present in the original exposures. The new event likely correlates to the penultimate event at the Northern Shoreline site (Gurrola and Rockwell, 1996). Thus, the observed 6 m of slip was mostly accommodated by three events, suggesting about 2 m of slip per event for large SMF ruptures. Our new observations also agree well with data from four other nearby trench sites along the CCF and SMF, and suggest that 1) the SMF has ruptured in only three large events in the past 1100 years, 2) at least two of these events are likely recognized along the CCF, indicating that the step-over between SMF and CCF is soft in large events, 3) most CCF ruptures do not propagate onto the SMF, indicating that the step-over is hard for small displacements, such as 1968-type events (30-50 cm of slip). These observations support the concept of segmentation but indicate that a perceived segment boundary may be transparent if slip exceeds a threshold value.

  13. Meridiani Valleys

    NASA Technical Reports Server (NTRS)

    2005-01-01

    10 March 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows layered sedimentary rocks and the traces of valleys that were once underneath those rocks in northwestern Sinus Meridiani.

    Location near: 4.5oN, 2.4oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Northern Summer

  14. Physical, social and institutional vulnerability assessment in small Alpine communities. Results of the SAMCO-ANR project in the Upper Guil Valley (French Southern Alps)

    NASA Astrophysics Data System (ADS)

    Carlier, Benoit; Dujarric, Constance; Frison-Bruno, Nikita; Puissant, Anne; Lissak, Candide; Madelin, Malika; Viel, Vincent; Bétard, François; Fort, Monique; Arnaud-Fassetta, Gilles

    2016-04-01

    The Upper Guil catchment is particularly prone to hydromorphological hazards such as torrential floods, debris flows, landslides or avalanches. Following the catastrophic events of the last 60 years (1957, 1978, 2000, and 2008), some measures were taken to reduce exposure to risks (engineering works, standards of construction, rescue training…). Nevertheless, the development of urban settlement in endangered areas and the obsolescence of the existing protective measures revealed the necessity to reassess the vulnerability of the different stakes exposed to hazards and to take into account of these various component parts of the vulnerability (not only physical but also social, etc.). In addition, catastrophic events should be more frequent in the French Southern Alps, according to the last GIEC report. In the frame of the SAMCO project designed for mountain risk assessment in a context of global change, we developed a systemic approach to assess three specific components of vulnerability - physical, social and institutional - for the six municipalities of the Upper Guil catchment (Ristolas, Abriès, Aiguilles, Château-Ville-Vieille, Molines-en-Queyras and St-Véran). Physical vulnerability, which represents total potential consequences of hazards on stakes, was estimated and mapped using a GIS model based on an empirical semi-quantitative indicator, the Potential Damage Index (PDI). This index allowed us to quantify and describe both direct (physical injury, structural and functional damage on buildings, network and land cover) and indirect consequences (socio-economic impacts) induced by hazards, by combining weighted parameters (age, state, material, function, etc.) reflecting the exposure of elements at risk. At least 1890 buildings, 367 km² of land cover and 902 km of linear infrastructure were considered. To assess social and institutional vulnerability our approach was based on questionnaires (5% of the total population investigated), interviews and

  15. Martian oceans, valleys and climate

    USGS Publications Warehouse

    Carr, M.H.

    2000-01-01

    The new Mars Global Surveyor altimetry shows that the heavily cratered southern hemisphere of Mars is 5 km higher that the sparely cratered plains of the northern hemisphere. Previous suggestions that oceans formerly occupied that northern plains as evidenced by shorelines are partly supported by the new data. A previously identified outer boundary has a wide range of elevations and is unlikely to be a shoreline but an inner contact with a narrow range of elevations is a more likely candidate. No shorelines are visible in the newly acquired, 2.5 metre/pixel imaging. Newly imaged valleys provide strong support for sustained or episodic flow of water across the Martian surface. A major surprise, however, is the near absence of valleys less than 100 m across. Martian valleys seemingly do not divide into ever smaller valleys as terrestrial valleys commonly do. This could be due to lack of precipitation or lack of surface runoff because of high infiltration rates. High erosion rates and supports warm climates and presence of large bodies of water during heavy bombardment. The climate history and fate of the water after heavy bombardment remain cotroversial.

  16. Ohio Valley Community Health Information Network.

    ERIC Educational Resources Information Center

    Guard, Roger; And Others

    The Ohio Valley Community Health Information Network (OVCHIN) works to determine the efficacy of delivering health information to residents of rural southern Ohio and the urban and suburban Cincinnati area. OVCHIN is a community-based, consumer-defined demonstration grant program funded by the National Telecommunications and Information…

  17. 77 FR 47921 - Watco Holdings, Inc.-Continuance in Control Exemption-Pecos Valley Permian Railroad, L.L.C. d/b/a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-10

    ... Railroad, L.L.C. d/b/a Pecos Valley Southern Railway Company Watco Holdings, Inc. (Watco), a noncarrier, has filed a verified notice of exemption pursuant to 49 CFR 1180.2(d)(2) to continue in control of Pecos Valley Permian Railroad, L.L.C. d/b/a Pecos Valley Southern Railway Company (PVR), upon...

  18. Saline Valley

    NASA Technical Reports Server (NTRS)

    2001-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1 Figure 2

    These images of the Saline Valley area, California, were acquired March 30, 2000 and cover a full ASTER scene (60 by 60 km). Each image displays data from a different spectral region, and illustrates the complementary nature of surface compositional information available as a function of wavelength. This image displays visible and near infrared bands 3, 2, and 1 in red, green, and blue (RGB). Vegetation appears red, snow and dry salt lakes are white, and exposed rocks are brown, gray, yellow and blue. Rock colors mainly reflect the presence of iron minerals, and variations in albedo. Figure 1 displays short wavelength infrared bands 4, 6, and 8 as RGB. In this wavelength region, clay, carbonate, and sulfate minerals have diagnostic absorption features, resulting in distinct colors on the image. For example, limestones are yellow-green, and purple areas are kaolinite-rich. Figure 2 displays thermal infrared bands 13, 12 and 10 as RGB. In this wavelength region, variations in quartz content appear as more or less red; carbonate rocks are green, and mafic volcanic rocks are purple. The image is located at 36.8 degrees north latitude and 117.7 degrees west longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  19. Valley Divide

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03664 Valley Divide

    These small channels join to become Sabis Vallis.

    Image information: VIS instrument. Latitude -35.3N, Longitude 159.3E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  20. A brief history of oil and gas exploration in the southern San Joaquin Valley of California: Chapter 3 in Petroleum systems and geologic assessment of oil and gas in the San Joaquin Basin Province, California

    USGS Publications Warehouse

    Takahashi, Kenneth I.; Gautier, Donald L.

    2007-01-01

    The Golden State got its nickname from the Sierra Nevada gold that lured so many miners and settlers to the West, but California has earned much more wealth from so-called “black gold” than from metallic gold. The San Joaquin Valley has been the principal source for most of the petroleum produced in the State during the past 145 years. In attempting to assess future additions to petroleum reserves in a mature province such as the San Joaquin Basin, it helps to be mindful of the history of resource development. In this chapter we present a brief overview of the long and colorful history of petroleum exploration and development in the San Joaquin Valley. This chapter relies heavily upon the work of William Rintoul, who wrote extensively on the history of oil and gas exploration in California and especially in the San Joaquin Valley. No report on the history of oil and gas exploration in the San Joaquin Valley would be possible without heavily referencing his publications. We also made use of publications by Susan Hodgson and a U.S. Geological Survey Web site, Natural Oil and Gas Seeps in California (http://seeps.wr.usgs.gov/seeps/index.html), for much of the material describing the use of petroleum by Native Americans in the San Joaquin Valley. Finally, we wish to acknowledge the contribution of Don Arnot, who manages the photograph collection at the West Kern Oil Museum in Taft, California. The collection consists of more than 10,000 photographs that have been scanned and preserved in digital form on CD-ROM. Many of the historical photographs used in this paper are from that collection. Finally, to clarify our terminology, we use the term “San Joaquin Valley” when we refer to the geographical or topographical feature and the term “San Joaquin Basin” when we refer to geological province and the rocks therein.

  1. Hydrogeologic framework and estimates of groundwater storage for the Hualapai Valley, Detrital Valley, and Sacramento Valley basins, Mohave County, Arizona

    USGS Publications Warehouse

    Truini, Margot; Beard, L. Sue; Kennedy, Jeffrey; Anning, Dave W.

    2013-01-01

    We have investigated the hydrogeology of the Hualapai Valley, Detrital Valley, and Sacramento Valley basins of Mohave County in northwestern Arizona to develop a better understanding of groundwater storage within the basin fill aquifers. In our investigation we used geologic maps, well-log data, and geophysical surveys to delineate the sedimentary textures and lithology of the basin fill. We used gravity data to construct a basin geometry model that defines smaller subbasins within the larger basins, and airborne transient-electromagnetic modeled results along with well-log lithology data to infer the subsurface distribution of basin fill within the subbasins. Hydrogeologic units (HGUs) are delineated within the subbasins on the basis of the inferred lithology of saturated basin fill. We used the extent and size of HGUs to estimate groundwater storage to depths of 400 meters (m) below land surface (bls). The basin geometry model for the Hualapai Valley basin consists of three subbasins: the Kingman, Hualapai, and southern Gregg subbasins. In the Kingman subbasin, which is estimated to be 1,200 m deep, saturated basin fill consists of a mixture of fine- to coarse-grained sedimentary deposits. The Hualapai subbasin, which is the largest of the subbasins, contains a thick halite body from about 400 m to about 4,300 m bls. Saturated basin fill overlying the salt body consists predominately of fine-grained older playa deposits. In the southern Gregg subbasin, which is estimated to be 1,400 m deep, saturated basin fill is interpreted to consist primarily of fine- to coarse-grained sedimentary deposits. Groundwater storage to 400 m bls in the Hualapai Valley basin is estimated to be 14.1 cubic kilometers (km3). The basin geometry model for the Detrital Valley basin consists of three subbasins: northern Detrital, central Detrital, and southern Detrital subbasins. The northern and central Detrital subbasins are characterized by a predominance of playa evaporite and fine

  2. Valley polarization in bismuth

    NASA Astrophysics Data System (ADS)

    Fauque, Benoit

    2013-03-01

    The electronic structure of certain crystal lattices can contain multiple degenerate valleys for their charge carriers to occupy. The principal challenge in the development of valleytronics is to lift the valley degeneracy of charge carriers in a controlled way. In bulk semi-metallic bismuth, the Fermi surface includes three cigar-shaped electron valleys lying almost perpendicular to the high symmetry axis known as the trigonal axis. The in-plane mass anisotropy of each valley exceeds 200 as a consequence of Dirac dispersion, which drastically reduces the effective mass along two out of the three orientations. According to our recent study of angle-dependent magnetoresistance in bismuth, a flow of Dirac electrons along the trigonal axis is extremely sensitive to the orientation of in-plane magnetic field. Thus, a rotatable magnetic field can be used as a valley valve to tune the contribution of each valley to the total conductivity. As a consequence of a unique combination of high mobility and extreme mass anisotropy in bismuth, the effect is visible even at room temperature in a magnetic field of 1 T. Thus, a modest magnetic field can be used as a valley valve in bismuth. The results of our recent investigation of angle-dependent magnetoresistance in other semi-metals and doped semiconductors suggest that a rotating magnetic field can behave as a valley valve in a multi-valley system with sizeable mass anisotropy.

  3. Subglacial extensional fracture development and implications for Alpine Valley evolution

    NASA Astrophysics Data System (ADS)

    Leith, Kerry; Moore, Jeffrey R.; Amann, Florian; Loew, Simon

    2014-01-01

    stresses induced through exhumation and tectonic processes play a key role in the topographic evolution of alpine valleys. Using a finite difference model combining the effects of tectonics, erosion, and long-term bedrock strength, we assess the development of near-surface in situ stresses and predict bedrock behavior in response to glacial erosion in an Alpine Valley (the Matter Valley, southern Switzerland). Initial stresses are derived from the regional tectonic history, which is characterized by ongoing transtensional or extensional strain throughout exhumation of the brittle crust. We find that bedrock stresses beneath glacial ice in an initial V-shaped topography are sufficient to induce localized extensional fracturing in a zone extending laterally 600 m from the valley axis. The limit of this zone is reflected in the landscape today by a valley "shoulder," separating linear upper mountain slopes from the deep U-shaped inner valley. We propose that this extensional fracture development enhanced glacial quarrying between the valley shoulder and axis and identify a positive feedback where enhanced quarrying promoted valley incision, which in turn increased in situ stress concentrations near the valley floor, assisting erosion and further driving rapid U-shaped valley development. During interglacial periods, these stresses were relieved through brittle strain or topographic modification, and without significant erosion to reach more highly stressed bedrock, subsequent glaciation caused a reduction in differential stress and suppressed extensional fracturing. A combination of stress relief during interglacial periods, and increased ice accumulation rates in highly incised valleys, will reduce the likelihood of repeat enhanced erosion events.

  4. Down in the Valley.

    ERIC Educational Resources Information Center

    Salter, Linda Graef

    1999-01-01

    Describes the partnerships formed by West Valley Mission Community College District (California) with its surrounding Silicon Valley business community in an effort to benefit workforce development. Asserts that community colleges are uniquely positioned to provide a lifelong education that will yield a skilled workforce to meet the needs of…

  5. California: San Joaquin Valley

    Atmospheric Science Data Center

    2014-05-15

    article title:  Fog and Haze in California's San Joaquin Valley   ... is noted for its hazy overcasts and a low, thick ground fog known as the Tule. Owing to the effects of the atmosphere on reflected ... as the angle of view changes. An area of thick, white fog in the San Joaquin Valley is visible in all three of the images. However, ...

  6. Rift Valley Fever Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rift Valley fever virus (RVFV) is a mosquito-transmitted virus or arbovirus that is endemic in sub-Saharan Africa. In the last decade, Rift Valley fever (RVF) outbreaks have resulted in loss of human and animal life, as well as had significant economic impact. The disease in livestock is primarily a...

  7. Regional seismic reflection profile from Railroad Valley to Lake Valley, east-central Nevada, reveals a variety of structural styles beneath Neogene basins

    SciTech Connect

    Potter, C.J.; Grow, J.A.; Lund, K.; Perry, W.J. Jr.; Miller, J.J.; Lee, M.W. )

    1991-06-01

    Two seismic reflection lines that compose a 90-km east-west profile at approximately 38{degree}25{prime}N latitude, east-central Nevada, help define the structure beneath Railroad Valley, White River Valley, the southern Egan Range, Cave Valley, Muleshoe Valley, the southern Schell Creek Range, and Lake Valley, Preliminary seismic interpretations are being integrated with ongoing geologic mapping, gravity, and magnetic studies and with drill-hole data along this transect. In the Grant Canyon oil field of Railroad Valley, a gently west-dipping normal fault appears to have controlled the development of the Neogene basin. The fault is clearly defined by fault-plane reflections and by terminations of east-dipping reflections from Tertiary and Paleozoic strata that have rotated toward the fault; the fault projects to nearby outcrops of a major low-angle extensional fault mapped in the Grant Range to the east. White River Valley at this latitude consists of three east-dipping half-grabens and two intervening basement highs. Two half-grabens in the western part of the valley are bounded by west-dipping faults with intermediate to steep dips. East-dipping reflections in the southern Egan Range correspond to a homoclinal Paleozoic panel overlain by a veneer of Late Cretaceous and early Tertiary rocks. The north end of Muleshoe Valley yields a narrow sag basin pattern between the southern Schell Creek Range and Dutch John Mountain, with no well-defined bounding faults. Lake Valley, on the east end of the profile, is a broad, complex basin containing normal faults with opposing dips. The progressive steepening of westerly dips in basin-fill beneath the west side of the basin suggests the presence of a major east-dipping listric fault.

  8. The First Prediction of a Rift Valley Fever Outbreak

    NASA Technical Reports Server (NTRS)

    Anyamba, Assaf; Chretien, Jean-Paul; Small, Jennifer; Tucker, Compton J.; Formenty, Pierre; Richardson, Jason H.; Britch, Seth C.; Schnabel, David C.; Erickson, Ralph L.; Linthicum, Kenneth J.

    2009-01-01

    El Nino/Southern Oscillation (ENSO) related anomalies were analyzed using a combination of satellite measurements of elevated sea surface temperatures, and subsequent elevated rainfall and satellite derived normalized difference vegetation index data. A Rift Valley fever risk mapping model using these climate data predicted areas where outbreaks of Rift Valley fever in humans and animals were expected and occurred in the Horn of Africa from December 2006 to May 2007. The predictions were subsequently confirmed by entomological and epidemiological field investigations of virus activity in the areas identified as at risk. Accurate spatial and temporal predictions of disease activity, as it occurred first in southern Somalia and then through much of Kenya before affecting northern Tanzania, provided a 2 to 6 week period of warning for the Horn of Africa that facilitated disease outbreak response and mitigation activities. This is the first prospective prediction of a Rift Valley fever outbreak.

  9. Southern Appalachian Regional Seismic Network

    SciTech Connect

    Chiu, S.C.C.; Johnston, A.C.; Chiu, J.M.

    1994-08-01

    The seismic activity in the southern Appalachian area was monitored by the Southern Appalachian Regional Seismic Network (SARSN) since late 1979 by the Center for Earthquake Research and Information (CERI) at Memphis State University. This network provides good spatial coverage for earthquake locations especially in east Tennessee. The level of activity concentrates more heavily in the Valley and Ridge province of eastern Tennessee, as opposed to the Blue Ridge or Inner Piedmont. The large majority of these events lie between New York - Alabama lineament and the Clingman/Ocoee lineament, magnetic anomalies produced by deep-seated basement structures. Therefore SARSN, even with its wide station spacing, has been able to define the essential first-order seismological characteristics of the Southern Appalachian seismic zone. The focal depths of the southeastern U.S. earthquakes concentrate between 8 and 16 km, occurring principally beneath the Appalachian overthrust. In cross-sectional views, the average seismicity is shallower to the east beneath the Blue Ridge and Piedmont provinces and deeper to the west beneath the Valley and Ridge and the North American craton. Results of recent focal mechanism studies by using the CERI digital earthquake catalog between October, 1986 and December, 1991, indicate that the basement of the Valley and Ridge province is under a horizontal, NE-SW compressive stress. Right-lateral strike-slip faulting on nearly north-south fault planes is preferred because it agrees with the trend of the regional magnetic anomaly pattern.

  10. Morphology of the Ebro fan valleys from SeaMARC and sea beam profiles

    USGS Publications Warehouse

    Alonso, B.; Kastens, K.A.; Maldonado, A.; Malinverno, A.; Nelson, C.H.; O'Connell, S.; Palanques, A.; Ryan, William B. F.

    1985-01-01

    The northern continental slope off the Ebro Delta has a badland topography indicating major slope erosion and mass movement of material that deposits sediment into a ponded lobe. The southern slope has a low degree of mass movement activity and slope valleys feed channel levee-complexes on a steep continental rise. The last active fan valley is V-shaped with little meandering and its thalweg merges downstream with the Valencia Valley. The older and larger inactive channel-levee complex is smoother, U-shaped, and meanders more than the active fan valley. ?? 1985 Springer-Verlag New York Inc.

  11. 14. ALABAMA, SUMTER CO., EPES RAILROAD BRIDGE Southern RR at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. ALABAMA, SUMTER CO., EPES RAILROAD BRIDGE Southern RR at Epes Alabama Great Southern RR bridge. View from S. Copy of photo taken in 1922 by Jack Donnell, Columbus, Ms. Sarcone Photography, Columbus, Ms., Sep 1978. - Bridges of the Upper Tombigbee River Valley, Cochrane, Pickens County, AL

  12. Geothermal hydrology of Warner Valley, Oregon: a reconnaissance study

    SciTech Connect

    Sammel, E.A.; Craig, R.W.

    1981-01-01

    Warner Valley and its southern extension, Coleman Valley, are two of several high-desert valleys in the Basin and Range province of south-central Oregon that contain thermal waters. At least 20 thermal springs, defined as having temperatures of 20/sup 0/C or more, issue from Tertiary basaltic flows and tuffs in and near the valleys. Many shallow wells also produce thermal waters. The highest measured temperature is 127/sup 0/C, reported from a well known as Crump geyser, at a depth of 200 meters. The hottest spring, located near Crump geyser, has a surface temperature of 78/sup 0/C. The occurrence of these thermal waters is closely related to faults and fault intersections in the graben and horst structure of the valleys. Chemical analyses show that the thermal waters are of two types: sodium chloride and sodium bicarbonate waters. The warmer waters are likely to have higher concentrations of sodium and chloride, as well as sulfate, silica, and dissolved solids, than the cooler waters. Chemical indicators show that the geothermal system is a hot-water rather than a vapor-dominated system. Conductive heat flow in areas of the valley unaffected by hydrothermal convection is probably about 75 milliwatts per square meter. The normal thermal gradient in valley-fill deposits in these areas may be about 40/sup 0/C per kilometer. Extensive areas underlain by thermal ground water occur near Crump geyser and Fisher Hot Spring.

  13. Geothermal hydrology of Warner Valley, Oregon: a reconnaissance study

    SciTech Connect

    Sammel, E.A.; Craig, R.W.

    1981-01-01

    Warner Valley and its southern extension, Coleman Valley, are two of several high-desert valleys in the Basin and Range province of south-central Oregon that contain thermal waters. At least 20 thermal springs, defined as having temperatures of 20/sup 0/C or more, issue from Tertiary basaltic flows and tuffs in and near the valleys. Many shallow wells also produce thermal waters. The highest measured temperature is 127/sup 0/C, reported from a well known as Crump geyser, at a depth of 200 meters. The hottest spring, located near Crump geyser, has a surface temperature of 78/sup 0/C. The occurrence of these thermal waters is closely related to faults and fault intersections in the graben and horst structure of the valleys. Chemical analyses show that the thermal waters are of two types: sodium chloride and sodium bicarbonate waters. Chemical indicators show that the geothermal system is a hot-water rather than a vapor-dominated system. Conductive heat flow in areas of the valley unaffected by hydrothermal convection is probably about 75 milliwatts per square meter. The normal thermal gradient in valley-fill dpeosits in these areas may be about 40/sup 0/C per kilometer. Geothermometers and mixing models indicate that temperatures of equilibration are at least 170/sup 0/C for the thermal components of the hotter waters. The size and location of geothermal reservoirs are unknown.

  14. Rift Valley Fever (RVF)

    MedlinePlus

    ... Outbreak resources, VHF information for specific groups, virus ecology, references... RVF Distribution Map Rift Valley Fever Transmission ... Outbreaks Outbreak Summaries RVF Distribution Map Resources Virus Ecology File Formats Help: How do I view different ...

  15. Ariel's transecting valleys

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This highest-resolution Voyager 2 view of Ariel's terminator shows a complex array of transecting valleys with super-imposed impact craters. Voyager obtained this clear-filter, narrow-angle view from a distance of 130,000 kilometers (80,000 miles) and with a resolution of about 2.4 km (1.5 mi). Particularly striking to Voyager scientists is the fact that the faults that bound the linear valleys are not visible where they transect one another across the valleys. Apparently these valleys were filled with deposits sometime after they were formed by tectonic processes, leaving them flat and smooth. Sinuous rilles (trenches) later formed, probably by some flow process. Some type of fluid flow may well have been involved in their evolution. The Voyager project is managed for NASA by the Jet Propulsion Laboratory.

  16. Lily of the valley

    MedlinePlus

    ... of the valley poisoning occurs when someone eats parts of this plant. This article is for information only. DO NOT ... information: Person's age, weight, and condition Name and part of the plant swallowed, if known Time it was swallowed Amount ...

  17. NV PFA - Steptoe Valley

    DOE Data Explorer

    Jim Faulds

    2015-10-29

    All datasets and products specific to the Steptoe Valley model area. Includes a packed ArcMap project (.mpk), individually zipped shapefiles, and a file geodatabase for the northern Steptoe Valley area; a GeoSoft Oasis montaj project containing GM-SYS 2D gravity profiles along the trace of our seismic reflection lines; a 3D model in EarthVision; spreadsheet of links to published maps; and spreadsheets of well data.

  18. Analysis of crater valleys, Noachis Terra, Mars: Evidence of fluvial and glacial processes

    NASA Astrophysics Data System (ADS)

    Hobbs, S. W.; Clarke, J. D. A.; Paull, D. J.

    2016-05-01

    The precise mechanism for the formation and evolution of crater valley networks in the Martian southern highlands remains under debate, with precipitation, groundwater flow, and melting induced by impact being suggested. We studied valley networks within four craters of the Noachis Terra highlands that were representative of similar features in Noachis Terra and where orbital data existed for analysis in order to characterise their morphology and infer possible processes involved in their formation and evolution. We found evidence for valleys carved by liquid water and ice-related processes. This included strong evidence of liquid water-based valley formation through melting of ice-rich deposits throughout our study area, suggesting an alternative to previously suggested rainfall or groundwater-based scenarios. The location of these valleys on steeply sloping crater walls, as opposed to the shallow slopes of the highlands where Martian valleys are typically found, suggested that our 'fluvial' valleys had not evolved a more structured fluvial morphology as valley networks found on the Martian plains. Our studied valleys' association with ice-rich material and abundant evidence for erosion caused by downslope flow of ice-rich material are consistent with a cold, wet Mars hypothesis where accumulation, flow, and melting of ice have been dominant factors in eroding crater valleys. Additionally, analysis of valley morphology with slope and aspect suggested a greater dependence on local geology and presence of volatiles than larger valley networks, though ice-related valleys were consistently wider for their length than valleys assessed as fluvial carved. We assessed that local conditions such as climate, geology, and availability of ice-rich material played a major role in the erosion of crater valleys at our study site.

  19. Hydrogeology of the carbonate rocks of the Lebanon Valley, Pennsylvania

    USGS Publications Warehouse

    Meisler, Harold

    1963-01-01

    The Lebanon Valley, which is part of the Great Valley in southeastern Pennsylvania, is underlain by carbonate rocks in the southern part and by shale in the northern part. The carbonate rocks consist of alternating beds of limestone and dolomite of Cambrian and Ordovician age. Although the beds generally dip to the south, progressively younger beds crop out to the north, because the rocks are overturned. The stratigraphic units, from oldest to youngest, are: the Buffalo Springs Formation, Snitz Creek, Schaefferstown, Millbach, and Richland Formations of the Conococheague Group; the Stonehenge, Rickenbach, Epler, and Ontelaunee Formations of the Beekmantown Group; and the Annville, Myerstown, and Hershey Limestones.

  20. Diversity of micro-fungi in an Antarctic dry valley

    NASA Technical Reports Server (NTRS)

    Baublis, J. A.; Wharton, R. A. Jr; Volz, P. A.; Wharton RA, J. r. (Principal Investigator)

    1991-01-01

    The fungal microflora of a dry valley in Southern Victoria Land near McMurdo Sound, Antarctica, was investigated. Samples were collected from introduced objects such as a mummified penguin and spent chewing tobacco in addition to the sparse soil found in rock fissures, isolated moss colonies, shoreline deposit materials, CaCO3 precipitates, and microbial mat debris obtained from the frozen surface of the lake in the basin of Taylor Valley. Using conventional media and techniques, all collection sites yielded populations of yeasts and filamentous fungi. Water samples and live microbial mats from beneath the lake ice yielded species of fungi along with an abundance of bacteria.

  1. Geohydrology of the Unconsolidated Valley-Fill Aquifer in the Meads Creek Valley, Schuyler and Steuben Counties, New York

    USGS Publications Warehouse

    Miller, Todd S.; Bugliosi, Edward F.; Reddy, James E.

    2008-01-01

    The Meads Creek valley encompasses 70 square miles of predominantly forested uplands in the upper Susquehanna River drainage basin. The valley, which was listed as a Priority Waterbody by the New York State Department of Environmental Conservation in 2004, is prone to periodic flooding, mostly in its downstream end, where development is occurring most rapidly. Hydraulic characteristics of the unconsolidated valley-fill aquifer were evaluated, and seepage rates in losing and gaining tributaries were calculated or estimated, in an effort to delineate the aquifer geometry and identify the factors that contribute to flooding. Results indicated that (1) Meads Creek gained about 61 cubic feet of flow per second (about 6.0 cubic feet per second per mile of stream channel) from ground-water discharge and inflow from tributaries in its 10.2-mile reach between the northernmost and southernmost measurement sites; (2) major tributaries in the northern part of the valley are not significant sources of recharge to the aquifer; and (3) major tributaries in the central and southern part of the valley provide recharge to the aquifer. The ground-water portion of streamflow in Meads Creek (excluding tributary inflow) was 11.3 cubic feet per second (ft3/s) in the central part of the valley and 17.2 ft3/s in the southern part - a total of 28.5 ft3/s. Ground-water levels were measured in 29 wells finished in unconfined deposits for construction of a potentiometric-surface map to depict directions of ground-water flow within the valley. In general, ground water flows from the edges of the valley toward Meads Creek and ultimately discharges to it. The horizontal hydraulic gradient for the entire 12-mile-long aquifer averages about 30 feet per mile, whereas the gradient in the southern fourth of the valley averages about half that - about 17 feet per mile. A water budget for the aquifer indicated that 28 percent of recharge was derived from precipitation that falls on the aquifer, 32

  2. 76 FR 39261 - Tennessee Valley Authority Procedures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-06

    ... From the Federal Register Online via the Government Publishing Office TENNESSEE VALLEY AUTHORITY 18 CFR Part 1301 Tennessee Valley Authority Procedures AGENCY: Tennessee Valley Authority (TVA). ACTION: Final rule. SUMMARY: The Tennessee Valley Authority is amending its regulations which...

  3. Southern Africa

    Atmospheric Science Data Center

    2013-04-16

    article title:  Southern Africa     View larger JPEG image ... These Multi-angle Imaging SpectroRadiometer (MISR) images of Africa were acquired on August 25, 2000, during Terra orbit 3655. The left ... of smoke plumes and haze. The southern tip of South Africa is at the bottom of the image, and Zambia is at the top. Distinctive ...

  4. Treatment for Valley Fever (Coccidioidomycosis)

    MedlinePlus

    ... National Institutes of Health (NIH) is sponsoring a randomized controlled trial to learn more about the best ... recently called attention to Valley fever and this randomized controlled trial . How is Valley fever treated? For ...

  5. Session: Long Valley Exploratory Well

    SciTech Connect

    Tennyson, George P. Jr.; Finger, John T.; Eichelberger, John C.; Hickox, Charles E.

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of four presentations: ''Long Valley Exploratory Well - Summary'' by George P. Tennyson, Jr.; ''The Long Valley Well - Phase II Operations'' by John T. Finger; ''Geologic results from the Long Valley Exploratory Well'' by John C. Eichelberger; and ''A Model for Large-Scale Thermal Convection in the Long Valley Geothermal Region'' by Charles E. Hickox.

  6. Formation of Pedogenic Carbonates in the Semi-arid Rio Grande Valley: Insights from Carbon, Major elements, and U-series isotopes in Natural and Agricultural Soils of Southern New Mexico and Western Texas

    NASA Astrophysics Data System (ADS)

    Nyachoti, S. K.; Ma, L.; Jin, L.; Tweedie, C. E.

    2013-12-01

    Accumulation of pedogenic carbonates in arid and semi-arid soils affects soil porosity, water infiltration, and global carbon cycle. We investigate formation rates of these carbonates under different land uses in the semi-arid Rio Grande valley using mineralogy, concentrations of major elements (including C), and U-series isotopes. Our study sites include one alfalfa farm (Alfalfa) at El Paso, TX under frequent irrigation with saline water from the Rio Grande River, and one natural shrub field under natural rainfall conditions at the USDA Jornada Experimental Range (Jornada) in NM. Major minerals observed at Alfalfa and Jornada are calcite, quartz, and feldspars. Calcite/quartz ratios increase upward in the profile at Alfalfa, suggesting formation of carbonates in shallow soils. Consistently, total carbon increases toward the soil surface at Alfalfa, contributed by both soil organic carbon and soil inorganic carbon (pedogenic carbonates). Concentrations of major elements (e.g Ca, Mg, and Sr) also increase toward the surface at Alfalfa, suggesting surface addition. Alternating trends of enrichment and depletion are observed throughout the soil profiles. In contrast, calcite/quartz ratios decrease toward the surface at Jornada, indicative of leaching at shallow soils and redeposition of calcite at depth. This is in agreement with high soil inorganic carbon contents measured at depth. At Jornada however, the Ca, Mg and Sr concentrations decrease toward the surface, showing typical depletion profiles. (234U/238U) activity ratios in bulk soils increase upward at Alfalfa while at Jornada (234U/238U) ratios decrease toward the surface. (234U/238U) ratios at Alfalfa suggest surface addition of U onto shallow soils probably from irrigation water, which is known to have high (234U/238U) ratios. Jornada shows preferential loss of 234U upward. U-series disequilibrium in pedogenic carbonates enables calculation of their formation ages. At Alfalfa, carbonate ages range from 2

  7. 'Valley Red' Strawberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    'Valley Red' is a new June-bearing (short-day) strawberry (Fragaria ×ananassa Duchesne ex Rozier) cultivar from the U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS) breeding program in Corvallis, Ore., released in cooperation with the Oregon Agricultural Experiment Station, Th...

  8. Rift Valley Fever Review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rift Valley fever (RVF) is a disease of animals and humans that occurs in Africa and the Arabian Peninsula. A Phlebovirus in the family Bunyaviridae causes the disease that is transmitted by mosquitoes. Epidemics occur during years of unusually heavy rainfall that assessment models are being develo...

  9. Echoes of Spring Valley.

    ERIC Educational Resources Information Center

    Boyken, J. Clarine J.

    Designed to preserve the rich heritage of the rural school system which passed from the education scene in the 1930's and 1940's, this narrative, part history and part nostalgia, describes the author's own elementary education and the secure community life centered in the one room Spring Valley School in Hamilton County, Iowa, in the early decades…

  10. Smart Valley Infrastructure.

    ERIC Educational Resources Information Center

    Maule, R. William

    1994-01-01

    Discusses prototype information infrastructure projects in northern California's Silicon Valley. The strategies of the public and private telecommunications carriers vying for backbone services and industries developing end-user infrastructure technologies via office networks, set-top box networks, Internet multimedia, and "smart homes" are…

  11. Diurnal Evolution of Three-Dimensional Wind and Temperature Structure in California's Central Valley

    SciTech Connect

    Zhong, Shiyuan; Whiteman, Charles D.; Bian, Xindi

    2004-11-01

    The diurnal evolution of the three-dimensional summer season mean wind and temperature structure in California’s Sacramento and San Joaquin Valleys (collectively called the Central Valley) are investigated using data from 22 radar wind profiler/Radio Acoustic Sounding Systems (RASS) operated as part of the Central California Ozone Study in 2000. The profiler network revealed, for the first time, that the persistent summer season flow pattern documented by surface observations extends 800-1000 m above the surface. At most locations, up-valley winds persist both day and night except at the upper ends of the valleys and close to the valley sidewalls where diurnal wind reversals occur. Wind speeds exhibit pronounced diurnal oscillations, with amplitudes decreasing with height. A low-level wind maximum occurs in the lowest 300 m, with a sharp decrease in speed above the maximum. Especially well-defined nocturnal low-level jets occur at sites in the southern San Joaquin Valley, where maximum speeds of 10 m s-1 or more occur 1-2 h before midnight at heights near 300 m. The afternoon mixed layer, generally deeper than 1000 m, increases in depth with up-valley distance in both valleys. At night, temperature inversions develop in the lowest several hundred meters with near-isothermal layers above. Mean temperatures in the lowest 500 m of the valleys are always warmer than at the same altitude over the coast, and temperature increases from the lower to upper valleys. The diurnal oscillation of the coast-valley and along-valley temperature and pressure difference reach a maximum in late afternoon and a minimum in early morning. These oscillations are in phase with the diurnal variation of westerly onshore flows. The along-valley wind maxima, however, occur 1-2 h before midnight while the pressure gradient maxima are usually found just before sunset.

  12. Southern Rains

    Atmospheric Science Data Center

    2014-05-15

    ...   View Larger image Vigorous vegetation growth in the Southern United States after heavy rains fell during April and ... for atmospheric scattering and absorption effects, and use plant canopy structural models to determine the partitioning of solar ...

  13. Ground Watering of the Death Valley Region, Nevada and California

    SciTech Connect

    USGS

    2006-10-12

    Water is a precious commodity, especially in the arid southwest region of the US, where there is a limited supply of both surface water and ground water. Ground water has a variety of uses (such as agricultural, commercial, and domestic) in the Death Valley regional ground-water flow system (DVRFS) of southern Nevada and eastern California. The DVRFS, an area of about 100,000 square kilometers, contains very complex geology and hydrology. Using a computer model to represent this complex system the US Geological Survey (USGS) simulated ground-water flow in the Death Valley region for use with US Department of Energy (DOE) projects in southern Nevada. The model was created to help address contaminant cleanup activities associated with the underground nuclear testing conducted from 1951 to 1992 at the Nevada Test Site and to support the licensing process for the Nation's proposed geologic repository for high-level nuclear waste at Yucca Mountain, Nevada.

  14. Trapped mountain wave excitations over the Kathmandu valley, Nepal

    NASA Astrophysics Data System (ADS)

    Regmi, Ram P.; Maharjan, Sangeeta

    2015-11-01

    Mid-wintertime spatial and temporal distributions of mountain wave excitation over the Kathmandu valley has been numerically simulated using Weather Research and Forecasting (WRF) modeling system. The study shows that low-level trapped mountain waves may remain very active during the night and early morning in the sky over the southern rim of the surrounding mountains, particularly, over the lee of Mt. Fulchoki. Calculations suggest that mountain wave activities are at minimum level during afternoon. The low-level trapped mountain waves in the sky over southern gateway of Tribhuvan International Airport (TIA) may pose risk for landings and takeoffs of light aircrafts. Detailed numerical and observational studies would be very important to reduce risk of air accidents and discomfort in and around the Kathmandu valley.

  15. Hydrogeologic Framework and Ground Water in Basin-Fill Deposits of the Diamond Valley Flow System, Central Nevada

    USGS Publications Warehouse

    Tumbusch, Mary L.; Plume, Russell W.

    2006-01-01

    The Diamond Valley flow system, an area of about 3,120 square miles in central Nevada, consists of five hydrographic areas: Monitor, Antelope, Kobeh, and Diamond Valleys and Stevens Basin. Although these five areas are in a remote part of Nevada, local government officials and citizens are concerned that the water resources of the flow system eventually could be further developed for irrigation or mining purposes or potentially for municipal use outside the study area. In order to better understand the flow system, the U.S. Geological Survey in cooperation with Eureka, Lander, and Nye Counties and the Nevada Division of Water Resources, is conducting a multi-phase study of the flow system. The principal aquifers of the Diamond Valley flow system are in basin-fill deposits that occupy structural basins comprised of carbonate rocks, siliciclastic sedimentary rocks, igneous intrusive rocks, and volcanic rocks. Carbonate rocks also function as aquifers, but their extent and interconnections with basin-fill aquifers are poorly understood. Ground-water flow in southern Monitor Valley is from the valley margins toward the valley axis and then northward to a large area of discharge by evapotranspiration (ET) that is formed south of a group of unnamed hills near the center of the valley. Ground-water flow from northern Monitor Valley, Antelope Valley, and northern and western parts of Kobeh Valley converges to an area of ground-water discharge by ET in central and eastern Kobeh Valley. Prior to irrigation development in the 1960s, ground-water flow in Diamond Valley was from valley margins toward the valley axis and then northward to a large discharge area at the north end of the valley. Stevens Basin is a small upland basin with internal drainage and is not connected with other parts of the flow system. After 40 years of irrigation pumping, a large area of ground-water decline has developed in southern Diamond Valley around the irrigated area. In this part of Diamond

  16. Southern California as seen from the Apollo 7 spacecraft

    NASA Technical Reports Server (NTRS)

    1968-01-01

    This view of southern California as seen from the Apollo 7 spacecraft during its 18th revolution of the earth. Photographed from an altitude of 124 nautical miles. The coast of California can be seen from Point Mugu southward to Oceanside. Santa Catalina can be seen below the off shore clouds. Details of the Los Angeles area are obscured by pollution which extends from Banning westard for 100 miles to beyond Malibu. In the upper portion of the photograph can be seen (left to right) the San Joaquin Valley beyond Bakersfield, the Techachapi Mountains, the Sierra Nevada, Owens Valley, Death Valley and the Mojave Desert.

  17. Valley South of Cerberus

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-413, 6 July 2003

    To date, the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) narrow angle system has only imaged about 3% of the martian surface. Thus, a new discovery can come at any time, as additional places are covered every day. This MOC image shows a portion of a shallow valley south of Cerberus that was just discovered in April 2003. The valley may have been cut but torrents of mud-laden water; alternatively, an extremely fluid lava was involved. This picture was acquired in May 2003; it covers an area 3 km (1.9 mi) wide and is illuminated from the left. North is toward the top/upper right. The picture is located near 4.6oN, 204.3oW.

  18. Water-level changes (1975-1998) in the Antelope Valley ground-water basin, California

    USGS Publications Warehouse

    Carlson, Carl S.; Phillips, Steven P.

    1998-01-01

    Antelope Valley is in the western part of the Mojave Desert in southern California, about 50 mi northeast of Los Angeles. Between 1975 and 1998, water levels in the valley have changed in response to a shift in ground-water use from agricultural to urban, declining in some areas and rising in others. A study to document these changes was conducted by the U.S. Geological Survey in cooperation with the Antelope Valley Water Group. This report presents the water-level data and the changes that occurred during this study period.

  19. The Owens Valley LWA

    NASA Astrophysics Data System (ADS)

    Hallinan, Gregg

    2014-04-01

    The Owens Valley LWA is a new array of 256 dual polarization antennas at Caltech's Owens Valley Radio Observatory (OVRO). It hosts the LEDA correlator, which provides full cross-correlation capability and enables instantaneous snapshot imaging of most of the viewable sky, as well as a dedicated back-end for transient searching. Developed in collaboration between Caltech, JPL and the LEDA and LWA consortia, the array targets the 28-88 MHz band with primary focus on high redshift HI (Dark Ages), radio transients (particularly radio exoplanets), solar dynamic imaging spectroscopy and measurement of coronal magnetic fields, and production of a full-Stokes, low frequency, all-sky catalog. The array comprises a 230m diameter dense core and outriggers at 365m capable of imaging with a resolution of 1 degree. Over the next 12 months, 32 additional antennas will be installed, powered by solar panels and serviced by optical fiber, with the goal of delivering instantaneous all-sky images with ~10' resolution. The associated data rate for the latter array will be extremely large, at 1.5 GB per integration, corresponding to 45,000 baselines x 4 polarizations x 2000 channels (60 MHz). Our collaboration is also working towards a much larger next generation array for study of HI and transients, sited at or near the Owens Valley observatory. I will briefly discuss some of the related ongoing technical development and data processing challenges.

  20. Hudson Valley Fog Environments.

    NASA Astrophysics Data System (ADS)

    Fitzjaprald, David R.; Garland Lala, G.

    1989-12-01

    Observations of 14 cases of radiation fog in the Hudson River valley in New York State are presented. Our emphasis is to connect the fog prediction problem to mechanisms in the nocturnal boundary layer that influence heat and moisture balances. Surface layer and boundary layer fogs are distinguished by the difference in dominant terms in the saturation specific humidity deficit budget. Fogs that persist longer than approximately 30 minutes are most frequently thicker than 50 m. The ultimate depth to which the fog grows is shown to be determined by initial conditions at sunset and by subsequent evolution of winds in the nocturnal boundary layer, as well as by surface transports and radiative cooling. Estimates of the surface and boundary layer heat budget are presented. Two new phenomena are identified: 1) A jump in specific humidity occurring during the early evening transition that shortens the time required to reach surface layer saturation; and 2) along-valley jetlike winds with maxima near 100 m altitude are shown to be frequent and their occurrence is associated with a threshold value of the along-valley surface pressure gradient. Such jets appear to have an important influence on deep fog, increasing or decreasing its likelihood depending on the sign of heat and moisture advection they associate with.

  1. Understanding the coupled surface energy flux-valley wind system using observations in an alpine valley

    NASA Astrophysics Data System (ADS)

    Daniels, M. H.; Pardyjak, E.; Brutsaert, W. H.; Mage, R.; Parlange, M. B.

    2010-12-01

    Buoyancy-driven diurnal valley winds depend on relative partitioning of incoming solar radiation into the sensible and latent heat fluxes. Evaporation and transpiration at the surface contribute to the latent heat flux, while heating of the air near the surface results from the sensible heat flux. Thus if more moisture is available at the surface, (e.g. as soil moisture or dew) then more energy will be partitioned into the latent heat flux, and less will be available for the sensible heat flux. Presented here is an analysis of observations from surface weather stations placed throughout the La Fouly catchment (~20 km^2) in southern Switzerland during the summers of 2009 and 2010. The stations were equipped with sensors to measure atmospheric and land surface variables including: incoming solar radiation, 2 m air temperature, skin temperature, wind speed and direction, relative humidity, precipitation, soil moisture, and soil temperature. Scaling analysis is used to show how the balance between sensible and latent heat fluxes influences the buoyancy-driven valley winds. A preliminary analysis indicates that increased surface soil moisture tends to decrease the strength of slope winds both during the day and at night, while decreased soil moisture has the opposite effect. While this type of relation has been previously investigated through numerical simulations of valley or slope flows, it has not (to the authors' knowledge), been previously observed in the field.

  2. Addendum to sources of powerplant cooling water in the desert area of Southern California: a reconnaissance study

    USGS Publications Warehouse

    Koehler, J.H.; Mallory, Michael J.

    1981-01-01

    A hydrologic reconnaissance study was made in five basins in southern California previously classified as suitable for providing sufficient ground water for cooling a 1,000-megawatt electric-power generating plant. The criteria used to evaluate the basins were (1) theoretical aquifer response to pumping, (2) alternative sources of water, and (3) chemical quality of water. The basins were ranked relative to each other for the three criteria and in overall suitability. On the basis of subjective analysis, the basins were ranked in the following order for overall suitability: (1) Calzona-Vidal Valley, (2) Middle Amargosa Valley, (3) Chuckwalla Valley, (4) Soda Lake Valley, and (5) Caves Canyon Valley. (USGS)

  3. Synthetic River Valleys

    NASA Astrophysics Data System (ADS)

    Brown, R.; Pasternack, G. B.

    2011-12-01

    The description of fluvial form has evolved from anecdotal descriptions to artistic renderings to 2D plots of cross section or longitudinal profiles and more recently 3D digital models. Synthetic river valleys, artificial 3D topographic models of river topography, have a plethora of potential applications in fluvial geomorphology, and the earth sciences in general, as well as in computer science and ecology. Synthetic river channels have existed implicitly since approximately the 1970s and can be simulated from a variety of approaches spanning the artistic and numerical. An objective method of synthesizing 3D stream topography based on reach scale attributes would be valuable for sizing 3D flumes in the physical and numerical realms, as initial input topography for morphodynamic models, stream restoration design, historical reconstruction, and mechanistic testing of interactions of channel geometric elements. Quite simply - simulation of synthetic channel geometry of prescribed conditions can allow systematic evaluation of the dominant relationships between river flow and geometry. A new model, the control curve method, is presented that uses hierarchically scaled parametric curves in over-lapping 2D planes to create synthetic river valleys. The approach is able to simulate 3D stream geometry from paired 2D descriptions and can allow experimental insight into form-process relationships in addition to visualizing past measurements of channel form that are limited to two dimension descriptions. Results are presented that illustrate the models ability to simulate fluvial topography representative of real world rivers as well as how channel geometric elements can be adjusted. The testing of synthetic river valleys would open up a wealth of knowledge as to why some 3D attributes of river channels are more prevalent than others as well as bridging the gap between the 2D descriptions that have dominated fluvial geomorphology the past century and modern, more complete, 3D

  4. Land use in the northern Coachella Valley

    NASA Technical Reports Server (NTRS)

    Bale, J. B.; Bowden, L. W.

    1973-01-01

    Satellite imagery has proved to have great utility for monitoring land use change and as a data source for regional planning. In California, open space desert resources are under severe pressure to serve as a source for recreational gratification to individuals living in the heavily populated southern coastal plain. Concern for these sensitive arid environments has been expressed by both federal and state agencies. The northern half of the Coachella Valley has historically served as a focal point for weekend recreational activity and second homes. Since demand in this area has remained high, land use change from rural to urban residential has been occurring continuously since 1968. This area of rapid change is an ideal site to illustrate the utility of satellite imagery as a data source for planning information, and has served as the areal focus of this investigation.

  5. Researching Indigenous Indians in Southern California: Commentary, Bibliography, and Online Resources

    ERIC Educational Resources Information Center

    Sutton, Imre

    2006-01-01

    This article seeks to present a continuing bibliography of research on Southern California Indians from the past 20 years, and sometimes beyond. The coverage reaches outside the variably defined bounds of Southern California so that it includes peripheral groups such as the Timbisha Shoshone of Death Valley and one or more groups in the Owens…

  6. Global Positioning System measurements of strain accumulation across the Imperial Valley, California - 1986-1989

    NASA Astrophysics Data System (ADS)

    Larsen, Shawn; Reilinger, Robert

    1992-06-01

    The Global Positioning System (GPS) data collected in southern California from 1986 to 1989 indicate considerable strain accumulation across the Imperial Valley. Displacements are computed at 29 stations in and near the valley from 1986 to 1988, and at 11 sites from 1988 to 1989. The earlier measurements indicate 5.9 =/- 1.0 cm/yr right-lateral differential velocity across the valley, although the data are heavily influenced by the 1987 Superstition Hills earthquake sequence. Some measurements, especially the east-trending displacements, are suspects for large errors. The 1988 to 1989 GPS displacements are best modeled by 5.2 =/- 0.9 cm/yr of valley crossing deformation, but rates calculated from conventional geodetic measurements (3.4 to 4.3 cm/yr) fit the data nearly as well. There is evidence from GPS and Very Long Base Interferometry (VLBI) observations that the present slip rate along the southern San Andreas fault is smaller than the long-term geologic estimate, suggesting a lower earthquake potential than is currently assumed. Correspondingly, a higher earthquake potential is indicated for the San Jacinto fault. The Imperial Valley GPS sites form part of a 183 station network in southern California and northern Baja California, which spans a cross-section of the North American-Pacific plate boundary.

  7. GPS measurements of strain accumulation across the Imperial Valley, California: 1986-1989

    NASA Technical Reports Server (NTRS)

    Larsen, Shawn; Reilinger, Robert

    1989-01-01

    The Global Positioning System (GPS) data collected in southern California from 1986 to 1989 indicate considerable strain accumulation across the Imperial Valley. Displacements are computed at 29 stations in and near the valley from 1986 to 1988, and at 11 sites from 1988 to 1989. The earlier measurements indicate 5.9 +/- 1.0 cm/yr right-lateral differential velocity across the valley, although the data are heavily influenced by the 1987 Superstition Hills earthquake sequence. Some measurements, especially the east-trending displacements, are suspects for large errors. The 1988 to 1989 GPS displacements are best modeled by 5.2 +/- 0.9 cm/yr of valley crossing deformation, but rates calculated from conventional geodetic measurements (3.4 to 4.3 cm/yr) fit the data nearly as well. There is evidence from GPS and Very Long Base Interferometry (VLBI) observations that the present slip rate along the southern San Andreas fault is smaller than the long-term geologic estimate, suggesting a lower earthquake potential than is currently assumed. Correspondingly, a higher earthquake potential is indicated for the San Jacinto fault. The Imperial Valley GPS sites form part of a 183 station network in southern California and northern Baja California, which spans a cross-section of the North American-Pacific plate boundary.

  8. Global Positioning System measurements of strain accumulation across the Imperial Valley, California - 1986-1989

    NASA Technical Reports Server (NTRS)

    Larsen, Shawn; Reilinger, Robert

    1992-01-01

    The Global Positioning System (GPS) data collected in southern California from 1986 to 1989 indicate considerable strain accumulation across the Imperial Valley. Displacements are computed at 29 stations in and near the valley from 1986 to 1988, and at 11 sites from 1988 to 1989. The earlier measurements indicate 5.9 =/- 1.0 cm/yr right-lateral differential velocity across the valley, although the data are heavily influenced by the 1987 Superstition Hills earthquake sequence. Some measurements, especially the east-trending displacements, are suspects for large errors. The 1988 to 1989 GPS displacements are best modeled by 5.2 =/- 0.9 cm/yr of valley crossing deformation, but rates calculated from conventional geodetic measurements (3.4 to 4.3 cm/yr) fit the data nearly as well. There is evidence from GPS and Very Long Base Interferometry (VLBI) observations that the present slip rate along the southern San Andreas fault is smaller than the long-term geologic estimate, suggesting a lower earthquake potential than is currently assumed. Correspondingly, a higher earthquake potential is indicated for the San Jacinto fault. The Imperial Valley GPS sites form part of a 183 station network in southern California and northern Baja California, which spans a cross-section of the North American-Pacific plate boundary.

  9. Data network, collection, and analysis in the Diamond Valley flow system, central Nevada

    USGS Publications Warehouse

    Knochenmus, Lari A.; Berger, David L.; Moreo, Michael T.; Smith, J. LaRue

    2011-01-01

    Future groundwater development and its effect on future municipal, irrigation, and alternative energy uses in the Diamond Valley flow system are of concern for officials in Eureka County, Nevada. To provide a better understanding of the groundwater resources, the U.S. Geological Survey, in cooperation with Eureka County, commenced a multi-phase study of the Diamond Valley flow system in 2005. Groundwater development primarily in southern Diamond Valley has resulted in water-level declines since the 1960s ranging from less than 5 to 100 feet. Groundwater resources in the Diamond Valley flow system outside of southern Diamond Valley have been relatively undeveloped. Data collected during phase 2 of the study (2006-09) included micrometeorological data at 4 evapotranspiration stations, 3 located in natural vegetation and 1 located in an agricultural field; groundwater levels in 95 wells; water-quality constituents in aquifers and springs at 21 locations; lithologic information from 7 recently drilled wells; and geophysical logs from 3 well sites. This report describes what was accomplished during phase 2 of the study, provides the data collected, and presents the approaches to strengthen relations between evapotranspiration rates measured at micrometeorological stations and spatially distributed groundwater discharge. This report also presents the approach to improve delineation of areas of groundwater discharge and describes the current methodology used to improve the accuracy of spatially distributed groundwater discharge rates in the Diamond Valley flow system.

  10. [The Southern Sierra Nevada continental dynamics project]. Final technical report

    SciTech Connect

    Clayton, R.W.; Saleeby, J.B.

    1997-12-16

    The main objective of this study was to determine whether or not the Southern Sierra Nevada Mountain Range is supported by a crustal root. A secondary goal was to evaluate the relationship between the Sierra Nevada Range and the adjoining Death Valley extensional province. As part of the project, two seismic profiles were executed. The first was a north-south profile running from Ridgecrest to Chafant Valley. The second was an east-west profile from Death Valley to Coalinga. An NPE shot was recorded on the east-west receiver line, and the data were analyzed by forward modeling with a staggered-grid finite-difference code. Concurrently, the authors initiated an in-depth study of lower crustal and upper mantle xenoliths hosted by Neogene volcanic rocks of the central and southern Sierra Nevada region. This initial work focused on thermobarometric estimates of representative xenolith samples aimed at understanding the vertical composition of the Sierra Nevada lithosphere.

  11. Endolithic blue-green algae in the dry valleys: primary producers in the antarctic desert ecosystem.

    PubMed

    Friedmann, E I; Ocampo, R

    1976-09-24

    Endolithic unicellular blue-green algae occur under the surface of orthoquartzite rocks in the dry valleys of southern Victoria Land, Antarctica. This report of primary producers in the Antarctic desert ecosystem suggests that, in future efforts to detect life in extraterrestrial (for example, martian) environments, scientists should consider the possible existence of endolithic life forms. PMID:17837022

  12. Releases of exotic parasitoids of Bemisia tabaci in San Joaquin Valley, California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 1991, Bemisia tabaci was reported in the southern San Joaquin Valley infesting crops outside of greenhouses for the first time. From 1994 to 1996, 24 species/ strains of imported aphelinids, primarily species of Eretmocerus, were released in urban and agricultural settings for control of this whi...

  13. Salton Sea and Imperial Valley, California as seen from the Apollo 7 spacecra

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Salton Sea and Imperial Valley area of southern California, including a portion of northern Baja California, Mexico, as seen from the Apollo 7 spacecraft during its 17th revolution of the earth. Photographed from an altitude of 125 nautical miles, at ground elapsed time of 27 hours.

  14. Development of Enzyme-Linked Immunosorbent Assays Using Expressed Proteins of Rift Valley Fever Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rift Valley fever virus (RVFV) is a member of the genus Phlebovirus, family Bunyaviridae that can cause severe disease in both humans and animals. The disease is enzootic in sub-Saharan Africa and RVFV epidemics/epizootics occur periodically, primarily in eastern and southern Africa. Since the virus...

  15. Long Valley Coring Project

    USGS Publications Warehouse

    Sass, John; Finger, John; McConnel, Vicki

    1998-01-01

    In December 1997, the California Energy Commission (CEC) agreed to provide funding for Phase III continued drilling of the Long Valley Exploratory Well (LVEW) near Mammoth Lakes, CA, from its present depth. The CEC contribution of $1 million completes a funding package of $2 million from a variety of sources, which will allow the well to be cored continuously to a depth of between 11,500 and 12,500 feet. The core recovered from Phase III will be crucial to understanding the origin and history of the hydrothermal systems responsible for the filling of fractures in the basement rock. The borehole may penetrate the metamorphic roof of the large magmatic complex that has fed the volcanism responsible for the caldera and subsequent activity.

  16. Death Valley, California

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is an image of Death Valley, California, centered at 36.629 degrees north latitude, 117.069 degrees west longitude. The image shows Furnace Creek alluvial fan and Furnace Creek Ranch at the far right, and the sand dunes near Stove Pipe Wells at the center. The dark fork-shaped feature between Furnace Creek fan and the dunes is a smooth flood-plain which encloses Cottonball Basin. The bright dots near the center of the image are corner refectors that have been set-up to calibrate the radar as the Shuttle passes overhead with the SIR-C/X-SAR system. The Jet Propulsion Laboratory alternative photo number is P-43883.

  17. Coachella Valley, CA

    NASA Technical Reports Server (NTRS)

    2001-01-01

    These band composites, acquired on June 4, 2000, cover a 11 by 13.5 km sub-scene in the Coachella Valley, CA. The area is shown by the yellow box on the full scene in the LOWER RIGHT corner, northwest of the Salton Sea. This is a major agricultural region of California, growing fruit and produce throughout the year. Different combinations of ASTER bands help identify the different crop types. UPPER LEFT: bands 3, 2, 1 as red, green, and blue (RGB); UPPER RIGHT: bands 4, 2, 1 as RGB; LOWER LEFT: bands 4, 3, 2 as RGB. The image is centered at 33.6 degrees north latitude, 116.1 degrees west longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  18. Testing a Mars science outpost in the Antarctic dry valleys

    NASA Technical Reports Server (NTRS)

    Andersen, D. T.; Mckay, C. P.; Wharton, R. A.; Rummel, J. D.

    1992-01-01

    Field research conducted in the Antarctic has been providing insights about the nature of Mars in the science disciplines of exobiology and geology. Located in the McMurdo Dry Valleys of southern Victoria Land (160 deg and 164 deg E longitude and 76 deg 30 min and 78 deg 30 min S latitude), research outposts are inhabited by teams of 4-6 scientists. It is proposed that the design of these outposts be expanded to enable meaningful tests of many of the systems that will be needed for the successful conduct of exploration activities on Mars. Although there are some important differences between the environment in the Antarctic dry valleys and on Mars, the many similarities and particularly the field science activities, make the dry valleys a useful terrestrial analog to conditions on Mars. Three areas have been identified for testing at a small science outpost in the dry valleys: (1) studying human factors and physiology in an isolated environment; (2) testing emerging technologies (e.g. innovative power management systems, advanced life support facilities including partial bioregenerative life support systems for water recycling and food growth, telerobotics, etc.); and (3) conducting basic scientific research that will enhance understanding of Mars while contributing to the planning for human exploration. It is suggested that an important early result of a Mars habitat program will be the experience gained by interfacing humans and their supporting technology in a remote and stressful environment.

  19. 27 CFR 9.58 - Carmel Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Carmel Valley. 9.58... Carmel Valley. (a) Name. The name of the viticultural area described in this section is “Carmel Valley.” (b) Approved maps. The approved maps for determining the boundary of the Carmel Valley...

  20. Revisiting the Submerged Paleo Elbe Valley (S North Sea) with High-Resolution Shallow Seismics

    NASA Astrophysics Data System (ADS)

    Papenmeier, S.; Hass, H. C.

    2014-12-01

    The Elbe paleo valley is the most prominent subsurface structure in the southern North Sea (~10,000 km²) and constitutes an important part of Germany's largest marine Natura 2000-Reserve "Sylter Außenriff" (European environmental protection area). It is supposed that the valley was formed by epeirogenic movement during the Tertiary. The depression developed to its present form during the Weichselian sea-level lowstand (-130 m below present). Melt waters that discharged in north-westerly directions fed the paleo Elbe at that time. During the Holocene the valley drowned in the rising sea. A narrow raster of new shallow seismic data combined with high resolution sidescan sonar data is used to shed new light on the Holocene development of the paleo Elbe valley and its adjacent regions in detail. Cross sections distributed with transect distances of 400 and 800 m, respectively, over a length of 100 km (approximately one third of the total valley length) enable a good comprehensive analysis of the historical process of sedimentary valley infill and coastal evolution with the successive Holocene sea level rise. The eastern flank of the valley is characterized by a relatively steep slope with one or more terraces, representing moraine deposits which are today still present at the seafloor surface, partly covered with Holocene marine deposits. The western slip-off slope of the valley is much smoother than the eastern undercut slope. West of the valley, sediment cores show peat and tidal flat sediments. Shallow seismic data show the base of the valley. There are conspicuous internal seismic reflectors above the base, inclined in northeastern direction. They indicate a sedimentary infill of the valley from the southwest when the southern part of the Dogger Bank was flooded during the early Holocene sea-level rise. In this process the steeper eastern slope acted as a natural barrier towards the northeast, averted sediment transport beyond the eastern boundary of the paleo

  1. Accelerating optimization by tracing valley

    NASA Astrophysics Data System (ADS)

    Li, Qing-Xiao; He, Rong-Qiang; Lu, Zhong-Yi

    2016-06-01

    We propose an algorithm to accelerate optimization when an objective function locally resembles a long narrow valley. In such a case, a conventional optimization algorithm usually wanders with too many tiny steps in the valley. The new algorithm approximates the valley bottom locally by a parabola that is obtained by fitting a set of successive points generated recently by a conventional optimization method. Then large steps are taken along the parabola, accompanied by fine adjustment to trace the valley bottom. The effectiveness of the new algorithm has been demonstrated by accelerating the Newton trust-region minimization method and the Levenberg-Marquardt method on the nonlinear fitting problem in exact diagonalization dynamical mean-field theory and on the classic minimization problem of the Rosenbrock's function. Many times speedup has been achieved for both problems, showing the high efficiency of the new algorithm.

  2. Principal facts for gravity stations in the vicinity of Coyote Spring Valley, Nevada, with initial gravity modeling results

    USGS Publications Warehouse

    Phelps, Geoffrey A.; Jewel, E.B.; Langenheim, V.E.; Jachens, R.C.

    2000-01-01

    Gravity measurements were made along 5 profiles across parts of the Coyote Spring Valley and vicinity in order to aid in modeling the depth and shapes of the underlying basins and to locate faults concealed beneath the basin fill. Measurements were taken at 200 m (660 ft) spacing along the profiles. Models based on these and existing regional data reveal two north-south-trending basins beneath Coyote Spring Valley that reach maximum depths of greater than 1 km (0.6 mi). A small valley, located just east of Coyote Spring Valley and containing Dead Man Wash, includes a small basin about 500 m (1600 ft) deep that appears to be the southern continuation of the northern basin beneath Coyote Spring Valley. The profile gravity data are further used to identify the locations of possible faults concealed beneath the basin fill.

  3. Modelling photochemistry in alpine valleys

    NASA Astrophysics Data System (ADS)

    Brulfert, G.; Chemel, C.; Chaxel, E.; Chollet, J. P.

    2005-03-01

    Road traffic is a serious problem in the Chamonix Valley, France: traffic, noise and above all air pollution worry the inhabitants. The big fire in the Mont-Blanc tunnel made it possible, in the framework of the POVA project (POllution in Alpine Valleys), to undertake measurement campaigns with and without heavy-vehicle traffic through the valley, towards Italy (before and after the tunnel re-opening). Modelling in POVA should make it possible to explain the processes leading to episodes of atmospheric pollution, both in summer and in winter. Atmospheric prediction model ARPS 4.5.2 (Advanced Regional Prediction System), developed at the CAPS (Center for Analysis and Prediction of Storms) of the University of Oklahoma, enables to resolve the dynamics above a complex terrain. This model is coupled to the TAPOM 1.5.2 atmospheric chemistry (Transport and Air POllution Model) code developed at the Air and Soil Pollution Laboratory of the Ecole Polytechnique Fédérale de Lausanne. The numerical codes MM5 and CHIMERE are used to compute large scale boundary forcing. Using 300-m grid cells to calculate the dynamics and the reactive chemistry makes possible to accurately represent the dynamics in the valley (slope and valley winds) and to process chemistry at fine scale. Validation of campaign days allows to study chemistry indicators in the valley. NOy according to O3 reduction demonstrates a VOC controlled regime, different from the NOx controlled regime expected and observed in the nearby city of Grenoble.

  4. SRTM Perspective View with Landsat Overlay: San Joaquin Valley, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    San Joaquin, the name given to the southern portion of California's vast Central Valley, has been called the world's richest agricultural valley. In this perspective view generated using data from the Shuttle Radar Topography Mission and an enhanced Landsat image, we are looking toward the southwest over a checkerboard pattern of agricultural fields. Mt. Pinos, a popular location for stargazing at 2,692 meters (8,831 feet) looms above the valley floor and is visible on the left side of the image. The productive southern San Joaquin is in reality a desert, averaging less than 12.7 cm (5 inches) of rain per year. Through canals and irrigation, the region nurtures some two hundred crops including grapes, figs, apricots, oranges, and more than 4,047 square-km (1,000,000 acres) of cotton. The California Aqueduct, transporting water from the Sacramento River Delta through the San Joaquin, runs along the base of the low-lying Wheeler Ridge on the left side of the image. The valley is not all agriculture though. Kern County, near the valley's southern end, is the United States' number one oil producing county, and actually produces more crude oil than Oklahoma. For visualization purposes, topographic heights displayed in this image are exaggerated two times. Colors, from Landsat data, approximate natural color.

    The elevation data used in this image was acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of Earth's land surface. To collect the 3-D SRTM data, engineers added a mast 60 meters (about 200 feet)long, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the NASA, the National Imagery and Mapping Agency (NIMA) of the U

  5. Southern blotting.

    PubMed

    Brown, T

    2001-05-01

    Southern blotting is the transfer of DNA fragments from an electrophoresis gel to a membrane support (the properties and advantages of the different types of membrane, transfer buffer, and transfer method are discussed in detail), resulting in immobilization of the DNA fragments, so the membrane carries a semipermanent reproduction of the banding pattern of the gel. After immobilization, the DNA can be subjected to hybridization analysis, enabling bands with sequence similarity to a labeled probe to be identified. This appendix describes Southern blotting via upward capillary transfer of DNA from an agarose gel onto a nylon or nitrocellulose membrane, using a high-salt transfer buffer to promote binding of DNA to the membrane. With the high-salt buffer, the DNA becomes bound to the membrane during transfer but not permanently immobilized. Immobilization is achieved by UV irradiation (for nylon) or baking (for nitrocellulose). A Support Protocol describes how to calibrate a UV transilluminator for optimal UV irradiation of a nylon membrane. An alternate protocol details transfer using nylon membranes and an alkaline buffer, and is primarily used with positively charged nylon membranes. The advantage of this combination is that no post-transfer immobilization step is required, as the positively charged membrane binds DNA irreversibly under alkaline transfer conditions. The method can also be used with neutral nylon membranes but less DNA will be retained. A second alternate protocol describes a transfer method based on a different transfer-stack setup. The traditional method of upward capillary transfer of DNA from gel to membrane described in the first basic and alternate protocols has certain disadvantages, notably the fact that the gel can become crushed by the weighted filter papers and paper towels that are laid on top of it. This slows down the blotting process and may reduce the amount of DNA that can be transferred. The downward capillary method described in

  6. Railroad Valley, Nevada

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Information from images of Railroad Valley, Nevada captured on August 17,2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer(ASTER) may provide a powerful tool for monitoring crop health and maintenance procedures.

    These images cover an area of north central Nevada. The top image shows irrigated fields, with healthy vegetation in red. The middle image highlights the amount of vegetation. The color code shows highest vegetation content in red, orange, yellow, green, blue, and purple and the lowest in black. The final image is a thermal infrared channel, with warmer temperatures in white and colder in black.

    In the thermal image, the northernmost and westernmost fields are markedly colder on their northwest areas, even though no differences are seen in the visible image or the second, Vegetation Index image. This can be attributed to the presence of excess water, which can lead to crop damage.

    The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)is an imaging instrument that is flying on Terra, a satellite launched in December 1999 as part of NASA's Earth Observing System (EOS). The instrument is being used to obtain detailed maps of land surface temperature, emissivity, reflectance and elevation. The Earth Observing System (EOS) platforms are part of NASA's Earth Science Enterprise, whose goal is to obtain a better understanding of the interactions between the biosphere, hydrosphere, lithosphere and atmosphere.

    NASA's Jet Propulsion Laboratory is a division of the California Institute of Technology, Pasadena.

  7. Fog and Haze in California's San Joaquin Valley

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This illustration features images of southern California and southwestern Nevada acquired on January 3, 2001 (Terra orbit 5569), and includes data from three of MISR's nine cameras. The San Joaquin Valley, which comprises the southern extent of California's Central Valley, covers much of the viewed area. Also visible are several of the Channel Islands near the bottom, and Mono and Walker Lakes, which stand out as darker patches near the top center, especially in the vertical and backward oblique images. Near the lower right of each image is the Los Angeles Basin, with the distinctive chevron shape of the Mojave Desert to its north.

    The Central Valley is a well-irrigated and richly productive agricultural area situated between the Coast Range and the snow-capped Sierra Nevadas. During the winter, the region is noted for its hazy overcasts and a low, thick ground fog known as the Tule. Owing to the effects of the atmosphere on reflected sunlight, dramatic differences in the MISR images are apparent as the angle of view changes. An area of thick, white fog in the San Joaquin Valley is visible in all three of the images. However, the pervasive haze that fills most of the valley is only slightly visible in the vertical view. At the oblique angles, the haze is highly distinguishable against the land surface background, particularly in the forward-viewing direction. Just above image center, the forward view also reveals bluish-tinged plumes near Lava Butte in Sequoia National Forest, where the National Interagency Coordination Center reported an active forest fire.

    The changing surface visibility in the multi-angle data allows us to derive the amount of atmospheric haze. In the lower right quadrant is a map of haze amount determined from automated processing of the MISR imagery. Low amounts of haze are shown in blue, and a variation in hue through shades of green, yellow, and red indicates progressively larger amounts of airborne particulates. Due to the

  8. Lower Mississippian trilobites from southern New Mexico

    USGS Publications Warehouse

    Brezinski, D.K.

    2000-01-01

    Twenty-three species of trilobites are recognized in the lower Mississippian Caballero and Lake Valley Formations of southern New Mexico. Species exhibit a segregation into shelf and off-shelf faunas, and can be subdivided into three distinct stratigraphic faunas. Species found in the Caballero Formation are similar to those found in the Chouteau Formation of Missouri. A second fauna, comprising species found in the Alamogordo, Nunn, and Tierra Blanca Members of the Lake Valley Formation, is correlated with the Fern Glen and Burlington Formations of Missouri. The third fauna found in the Arcente and Dona Aha Members of the Lake Valley Formation is correlated with the Warsaw and Salem Formations of the United States midcontinent region. Named species from the Kinderhookian Caballero Formation include: Dixiphopyge armata (Vogdes, 1891), Comptonaspis swallowi (Shumard, 1855), Brachymetopus indianwellsensis new species, Ameropiltonia perplexa new species, Griffithidella caballeroensis new species, and Kollarcephalus granatai new genus and new species. Named species from the Lake Valley Formation include: Pudoproetus fernglenensis (Weller, 1909), Breviphillipsia semiteretis Hessler, 1963, Griffithidella doris (Hall 1860), Phillibole planucauda (Brezinski, 1998), Piltonia carlakertisae new species, Australosutura llanoensis Brezinski, 1998, Thigriffides triangulatus new species, Thigriffides? alamogordoensis new species, Namuropyge newmexicoensis new species, Nunnaspis stitti new genus and new species, Hesslerides arcentensis new genus and new species, as well as an unnamed species of Proetides Hessler, 1962, Namuropyge Brezinski, 1988, and Thigriffides Hessler, 1965.

  9. Hydrology of modern and late Holocene lakes, Death Valley, California

    SciTech Connect

    Grasso, D.N.

    1996-07-01

    Above-normal precipitation and surface-water runoff, which have been generally related to the cyclic recurrence of the El Nino-Southern Oscillation, have produced modern ephemeral lakes in the closed-basin Death Valley watershed. This study evaluates the regional hydroclimatic relations between precipitation, runoff, and lake transgressions in the Death Valley watershed. Recorded precipitation, runoff, and spring discharge data for the region are used in conjunction with a closed-basin, lake-water-budget equation to assess the relative contributions of water from these sources to modern lakes in Death Valley and to identify the requisite hydroclimatic changes for a late Holocene perennial lake in the valley. As part of the Yucca Mountain Site Characterization Program, an evaluation of the Quaternary regional paleoflood hydrology of the potential nuclear-waste repository site at Yucca Mountain, Nevada, was planned. The objectives of the evaluation were (1) to identify the locations and investigate the hydraulic characteristics of paleofloods and compare these with the locations and characteristics of modern floods, and (2) to evaluate the character and severity of past floods and debris flows to ascertain the potential future hazards to the potential repository during the pre-closure period (US Department of Energy, 1988). This study addresses the first of these objectives, and the second in part, by assessing and comparing the sizes, locations, and recurrence rates of modern, recorded (1962--83) floods and late Holocene paleofloods for the 8,533-mi{sup 2}, closed-basin, Death Valley watershed with its contributing drainage basins in the Yucca Mountain site area.

  10. Imperial Valley and Salton Sea, California

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Southern California's Salton Sea is a prominent visual for astronauts. This large lake supports the rich agricultural fields of the Imperial, Coachella and Mexicali Valleys in the California and Mexico desert. The Salton Sea formed by accident in 1905 when an irrigation canal ruptured, allowing the Colorado River to flood the Salton Basin. Today the Sea performs an important function as the sink for agricultural runoff; water levels are maintained by the runoff from the surrounding agricultural valleys. The Salton Sea salinity is high-nearly 1/4 saltier than ocean water-but it remains an important stopover point for migratory water birds, including several endangered species. The region also experiences several environmental problems. The recent increased demands for the limited Colorado River water threatens the amount of water allowed to flow into the Salton Sea. Increased salinity and decreased water levels could trigger several regional environmental crises. The agricultural flow into the Sea includes nutrients and agricultural by-products, increasing the productivity and likelihood of algae blooms. This image shows either a bloom, or suspended sediment (usually highly organic) in the water that has been stirred up by winds. Additional information: The Salton Sea A Brief Description of Its Current Conditions, and Potential Remediation Projects and Land Use Across the U.S.-Mexico Border Astronaut photograph STS111-E-5224 was taken by the STS-111 Space Shuttle crew that recently returned from the International Space Station. The image was taken June 12, 2002 using a digital camera. The image was provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.

  11. The gradational history of southern Ismenius Lacus

    NASA Technical Reports Server (NTRS)

    Grant, J. A.; Schultz, P. H.

    1991-01-01

    Two epochs of accelerated gradation affected the geomorphic evolution of southern Ismenius Lacus. These periods of enhanced gradational activity were likely related to periods of more clement climate induced by release of either recycled exogenic or juvenile endogenic atmospheric volatiles. Variations in the intensity and duration of gradation during the second epoch are indicated by the variability in the timing of cessation and degree of air fall deposit removal across the study area. Overall intensity of gradation decreased through successive epochs based on: (1) the decreasing diameter at which cumulative statistics from the respective surfaces cease to follow the expected production function; and (2) the decrease in size/increase in density of preserved valley networks incised into surfaces of differing age. A comparable decrease in valley density with time has been noted in the Isidis region.

  12. Quaternary Geochronology, Paleontology, and Archaeology of the Upper San Pedro River Valley, Sonora, Mexico

    NASA Astrophysics Data System (ADS)

    Gaines, E. P.

    2013-12-01

    This poster presents the results of multi-disciplinary investigations of the preservation and extent of Quaternary fossil-bearing strata in the San Pedro River Valley in Sonora, Mexico. Geologic deposits in the portions of the San Pedro Valley in southern Arizona contain one of the best late Cenozoic fossil records known in North America and the best record of early humans and extinct mammals on the continent. The basin in the U.S. is one of the type locations for the Blancan Land Mammal Age. Hemiphilian and Irvingtonian fossils are common. Rancholabrean remains are widespread. Strata in the valley adjacent to the international border with Mexico have yielded the densest concentration of archaeological mammoth-kill sites known in the western hemisphere. Despite more than 60 years of research in the U.S., however, and the fact that over one third of the San Pedro River lies south of the international boundary, little has been known about the late Cenozoic geology of the valley in Mexico. The study reported here utilized extensive field survey, archaeological documentation, paleontological excavations, stratigraphic mapping and alluvial geochronology to determine the nature and extent of Quaternary fossil-bearing deposits in the portions of the San Pedro Valley in Sonora, Mexico. The results demonstrate that the Plio-Pleistocene fossil -bearing formations known from the valley in Arizona extend into the uppermost reaches of the valley in Mexico. Several new fossil sites were discovered that yielded the remains of Camelids, Equus, Mammuthus, and other Proboscidean species. Late Pleistocene archaeological remains were found on the surface of the surrounding uplands. AMS radiocarbon dating demonstrates the widespread preservation of middle- to late- Holocene deposits. However, the late Pleistocene deposits that contain the archaeological mammoth-kill sites in Arizona are absent in the valley in Mexico, and are now known to be restricted to relatively small portions of

  13. New Zealand's Southern Alps

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The rugged Southern Alps extend some 650 kilometers along the western side of New Zealand's South Island. The mountains are often obscured by clouds, which is probably why the Maoris called New Zealand 'Aotearoa', the long white cloud. The higher peaks are snow-covered all year round. Westerly winds bring clouds that drop over 500 centimeters of rain annually on luxuriant rain forest along the west coast. The drier eastern seaboard is home to the majority of the island's population.

    This pair of MISR images is from April 13, 2000 (Terra orbit 1712). The upper image is a natural color view from the instrument's vertical-viewing (nadir) camera. It is presented at a resolution of 550 meters per pixel. The lower image is a stereo anaglyph generated from the instrument's 46-degree and 26-degree forward-viewing cameras, and is presented at 275-meter per pixel resolution to show the portion of the image containing the Southern Alps in greater detail. Viewing the anaglyph in 3-D requires the use of red/blue glasses with the red filter over your left eye. To facilitate stereoscopic viewing, both images have been oriented with north at the left.

    The tallest mountain in the Southern Alps is Mt. Cook, at an elevation of 3754 meters. Its snow-covered peak is visible to the left of center in each of these MISR images. From the high peaks, glaciers have gouged long, slender mountain lakes and coastal fiords. Immediately to the southeast of Mt. Cook (to the right in these images), the glacial pale-blue water of Lake Pukaki stands out. Further to the south in adjacent valleys you can easily see Lakes Hawea and Wanaka, between which (though not visible here) is the Haast Pass Road, the most southerly of the few links between the east and west coast road systems. Further to the south is the prominent 'S' shape of Lake Wakatipu, 83 kilometers long, on the northern shore of which is Queenstown, the principal resort town of the island. The remote and spectacular Fiordland National

  14. Tennessee Valley and Eastern Kentucky Wind Working Group

    SciTech Connect

    Katie Stokes

    2012-05-03

    In December 2009, the Southern Alliance for Clean Energy (SACE), through a partnership with the Appalachian Regional Commission, EKPC, Kentucky's Department for Energy Development and Independence, SACE, Tennessee's Department of Environment and Conservation, and TVA, and through a contract with the Department of Energy, established the Tennessee Valley and Eastern Kentucky Wind Working Group (TVEKWWG). TVEKWWG consists of a strong network of people and organizations. Working together, they provide information to various organizations and stakeholders regarding the responsible development of wind power in the state. Members include representatives from utility interests, state and federal agencies, economic development organizations, non-government organizations, local decision makers, educational institutions, and wind industry representatives. The working group is facilitated by the Southern Alliance for Clean Energy. TVEKWWG supports the Department of Energy by helping educate and inform key stakeholders about wind energy in the state of Tennessee.

  15. A new record of Potamanthellus caenoides Ulmer 1939 (Ephemeroptera: Neoephemereidae) from the southern Western Ghats of India

    PubMed Central

    Selvakumar, C.; Sivaramakrishnan, K.G.

    2015-01-01

    Abstract Background As part of ongoing exploration of the mayflies of hill streams of the southern Western Ghats of India, we establish a new record of mayfly. New information Potamanthellus caenoides Ulmer 1939 is newly recorded based on larval collection from the upstream of Silent Valley National Park of the southern Western Ghats. Brief ecological notes are appended. PMID:25977612

  16. The ValleyMorph Tool: An automated extraction tool for transverse topographic symmetry (T-) factor and valley width to valley height (Vf-) ratio

    NASA Astrophysics Data System (ADS)

    Daxberger, Heidi; Dalumpines, Ron; Scott, Darren M.; Riller, Ulrich

    2014-09-01

    In tectonically active regions on Earth, shallow-crustal deformation associated with seismic hazards may pose a threat to human life and property. The study of landform development, such as analysis of the valley width to valley height ratio (Vf-ratio) and the Transverse Topographic Symmetry Factor (T-factor), delineating drainage basin symmetry, can be used as a relative measure of tectonic activity along fault-bound mountain fronts. The fast evolution of digital elevation models (DEM) provides an ideal base for remotely-sensed tectonomorphic studies of large areas using Geographical Information Systems (GIS). However, a manual extraction of the above mentioned morphologic parameters may be tedious and very time consuming. Moreover, basic GIS software suites do not provide the necessary built-in functions. Therefore, we present a newly developed, Python based, ESRI ArcGIS compatible tool and stand-alone script, the ValleyMorph Tool. This tool facilitates an automated extraction of the Vf-ratio and the T-factor data for large regions. Using a digital elevation raster and watershed polygon files as input, the tool provides output in the form of several ArcGIS data tables and shapefiles, ideal for further data manipulation and computation. This coding enables an easy application among the ArcGIS user community and code conversion to earlier ArcGIS versions. The ValleyMorph Tool is easy to use due to a simple graphical user interface. The tool is tested for the southern Central Andes using a total of 3366 watersheds.

  17. Delta growth and river valleys: the influence of climate and sea level changes on the South Adriatic shelf (Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Maselli, V.; Trincardi, F.; Asioli, A.; Ceregato, A.; Rizzetto, F.; Taviani, M.

    2014-09-01

    Incised valleys across continental margins represent the response of fluvial systems to changes in their equilibrium dynamics, mainly driven by base level fall forced by glacial-eustatic cycles. The Manfredonia Incised Valley formed during the last glacial sea level lowstand, when most of the southern Adriatic shelf was sub-aerially exposed but the outer shelf remained under water. The pronounced upstream deepening of the valley is ascribed to river incision of the MIS5e highstand coastal prism and related subaqueous clinoform under the influence of MIS5-4 sea level fluctuations, while the downstream shallowing and narrowing mainly reflects the impact of increased rates of sea level fall at the MIS3-2 transition on a flatter mid-outer shelf. Until 15 ka BP, the valley fed an asymmetric delta confined to the mid-outer shelf, testifying that continental and deep marine systems remained disconnected during the lowstand. Sea level rise reached the inner shelf during the Early Holocene, drowning the valley and leading to the formation of a sheltered embayment confined toward the land: at this time part of the incision remained underfilled with a marked bathymetric expression. This mini-basin was rapidly filled by sandy bayhead deltas, prograding from both the northern and southern sides of the valley. In this environment, protected by marine reworking and where sediment dispersal was less effective, the accommodation space was reduced and autogenic processes forced the formation of multiple and coalescing delta lobes. Bayhead delta progradations occurred in few centuries, between 8 and 7.2 ka cal BP, confirming the recent hypothesis that in this area the valley was filled during the formation of sapropel S1. This proximal valley fill, representing the very shallow-water equivalent of the cm-thick sapropel layers accumulated offshore in the deeper southern Adriatic basin, is of key importance in following the signature of the sapropel in a facies-tract ideally from the

  18. Southern Crater

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03583 Southern Crater

    This crater is located south of Agassiz Crater. It is likely that the polar freeze/thaw/frost cycle is responsible for unusual appearance of the ejecta region around the crater.

    Image information: VIS instrument. Latitude 76.2S, Longitude 247.8E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  19. Geological and geothermal investigation of the lower Wind River valley, southwestern Washington Cascade Range

    SciTech Connect

    Berri, D.A.; Korosec, M.A.

    1983-01-01

    The detailed geology of the lower Wind River valley is presented with emphasis on those factors that bear significantly on development of a geothermal resource. The lower Wind River drainage consists primarily of the Ohanapecosh Formation, an Oligocene unit that is recognized across the entire southern Washington Cascade Range. The formation is at least 300 m thick in the Wind River valley area. It consists largely of volcaniclastic sediments, with minor massive pyroclastic flows, volcanic breccias and lava flows. Low grade zeolite facies metamorphism during the Miocene led to formation of hydrothermal minerals in Ohanapecosh strata. Metamorphism probably occurred at less than 180{sup 0}C.

  20. Role of seismogenic processes in fault-rock development: An example from Death Valley, California

    NASA Astrophysics Data System (ADS)

    Pavlis, Terry L.; Serpa, Laura F.; Keener, Charles

    1993-03-01

    Fault rocks developed along the Mormon Point turtleback of southern Death Valley suggest that a jog in the oblique-slip Death Valley fault zone served as an ancient seismic barrier, where dominantly strike-slip ruptures were terminated at a dilatant jog. Dramatic spatial variations in fault-rock thickness and type within the bend are interpreted as the products of: (1) fault "overshoot," in which planar ruptures bypass the intersection of the two faults composing the bend and slice into the underlying footwall; and (2) implosion brecciation, in which coseismic ruptures arrested at a releasing bend in the fault lead to catastrophic collapse brecciation, fluid influx, and mineralization.

  1. Modelling photochemistry in alpine valleys

    NASA Astrophysics Data System (ADS)

    Brulfert, G.; Chemel, C.; Chaxel, E.; Chollet, J. P.

    2005-09-01

    Road traffic is a serious problem in the Chamonix Valley, France: traffic, noise and above all air pollution worry the inhabitants. The big fire in the Mont-Blanc tunnel made it possible, in the framework of the POVA project (POllution in Alpine Valleys), to undertake measurement campaigns with and without heavy-vehicle traffic through the Chamonix and Maurienne valleys, towards Italy (before and after the tunnel re-opening). Modelling is one of the aspects of POVA and should make it possible to explain the processes leading to episodes of atmospheric pollution, both in summer and in winter. Atmospheric prediction model ARPS 4.5.2 (Advanced Regional Prediction System), developed at the CAPS (Center for Analysis and Prediction of Storms) of the University of Oklahoma, enables to resolve the dynamics above a complex terrain. This model is coupled to the TAPOM 1.5.2 atmospheric chemistry (Transport and Air POllution Model) code developed at the Air and Soil Pollution Laboratory of the Ecole Polytechnique Fédérale de Lausanne. The numerical codes MM5 and CHIMERE are used to compute large scale boundary forcing.

    This paper focuses on modelling Chamonix valley using 300-m grid cells to calculate the dynamics and the reactive chemistry which makes possible to accurately represent the dynamics in the Chamonix valley (slope and valley winds) and to process chemistry at fine scale. The summer 2003 intensive campaign was used to validate the model and to study chemistry. NOy according to O3 reduction demonstrates a VOC controlled regime, different from the NOx controlled regime expected and observed in the nearby city of Grenoble.

  2. Comparison of inversion models using AIRSAR data for Death Valley, California

    NASA Technical Reports Server (NTRS)

    Kierein-Young, Kathryn S.

    1993-01-01

    Polarimetric Airborne Synthetic Aperture Radar (AIRSAR) data were collected for the Geologic Remote Sensing Field Experiment (GRSFE) over Death Valley, California, USA, in September 1989. AIRSAR is a four-look, quid-polarizaiton, three frequency instrument. It collects measurements at C-band (5.66 cm), L-band (23.98 cm), and P-band (68.13 cm), and has a GIFOV of 10 meters and a swath width of 12 kilometers. Because the radar measures at three wavelengths, different scales of surface roughness are measured. Also, dielectric constants can be calculated from the data. The scene used in this study is in Death Valley, California and is located over Trail Canyon alluvial fan, the valley floor, and Artists Drive alluvial fan. The fans are very different in mineralogic makeup, size, and surface roughness. Trail Canyon fan is located on the west side of the valley at the base of the Panamint Range and is a large fan with older areas of desert pavement and younger active channels. The source for the material on southern part of the fan is mostly quartzites and there is an area of carbonate source on the northern part of the fan. Artists Drive fan is located at the base of the Black Mountains on the east side of the valley and is a smaller, young fan with its source mostly from volcanic rocks. The valley floor contains playa and salt deposits that range from smooth to Devil's Golf course type salt pinnacles.

  3. Valley evolution by meandering rivers

    NASA Astrophysics Data System (ADS)

    Limaye, Ajay Brian Sanjay

    Fluvial systems form landscapes and sedimentary deposits with a rich hierarchy of structures that extend from grain- to valley scale. Large-scale pattern formation in fluvial systems is commonly attributed to forcing by external factors, including climate change, tectonic uplift, and sea-level change. Yet over geologic timescales, rivers may also develop large-scale erosional and depositional patterns that do not bear on environmental history. This dissertation uses a combination of numerical modeling and topographic analysis to identify and quantify patterns in river valleys that form as a consequence of river meandering alone, under constant external forcing. Chapter 2 identifies a numerical artifact in existing, grid-based models that represent the co-evolution of river channel migration and bank strength over geologic timescales. A new, vector-based technique for bank-material tracking is shown to improve predictions for the evolution of meander belts, floodplains, sedimentary deposits formed by aggrading channels, and bedrock river valleys, particularly when spatial contrasts in bank strength are strong. Chapters 3 and 4 apply this numerical technique to establishing valley topography formed by a vertically incising, meandering river subject to constant external forcing---which should serve as the null hypothesis for valley evolution. In Chapter 3, this scenario is shown to explain a variety of common bedrock river valley types and smaller-scale features within them---including entrenched channels, long-wavelength, arcuate scars in valley walls, and bedrock-cored river terraces. Chapter 4 describes the age and geometric statistics of river terraces formed by meandering with constant external forcing, and compares them to terraces in natural river valleys. The frequency of intrinsic terrace formation by meandering is shown to reflect a characteristic relief-generation timescale, and terrace length is identified as a key criterion for distinguishing these

  4. 27 CFR 9.153 - Redwood Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Boundary. The Redwood Valley viticultural area is located in the east central interior portion of Mendocino County, California. The boundaries of the Redwood Valley viticultural area, using landmarks and points...

  5. 27 CFR 9.153 - Redwood Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) Boundary. The Redwood Valley viticultural area is located in the east central interior portion of Mendocino County, California. The boundaries of the Redwood Valley viticultural area, using landmarks and points...

  6. 27 CFR 9.153 - Redwood Valley.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) Boundary. The Redwood Valley viticultural area is located in the east central interior portion of Mendocino County, California. The boundaries of the Redwood Valley viticultural area, using landmarks and points...

  7. 27 CFR 9.153 - Redwood Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Boundary. The Redwood Valley viticultural area is located in the east central interior portion of Mendocino County, California. The boundaries of the Redwood Valley viticultural area, using landmarks and points...

  8. The Pioneer Valley Studies Summer Institute.

    ERIC Educational Resources Information Center

    Drabeck, Bernard A.

    1984-01-01

    Describes Greenfield Community College's Pioneer Valley Studies Summer Institute, which offers elementary and secondary school teachers in-depth exposure to the history, literature, science, art, and architecture of Pioneer Valley, Massachusetts. (DMM)

  9. 27 CFR 9.57 - Green Valley of Russian River Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Green Valley of Russian... Areas § 9.57 Green Valley of Russian River Valley. (a) Name. The name of the viticultural area described in this section is “Green Valley of Russian River Valley”. For purposes of part 4 of this...

  10. 27 CFR 9.57 - Green Valley of Russian River Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Green Valley of Russian... Areas § 9.57 Green Valley of Russian River Valley. (a) Name. The name of the viticultural area described in this section is “Green Valley of Russian River Valley”. For purposes of part 4 of this...

  11. 27 CFR 9.57 - Green Valley of Russian River Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Green Valley of Russian... Areas § 9.57 Green Valley of Russian River Valley. (a) Name. The name of the viticultural area described in this section is “Green Valley of Russian River Valley”. For purposes of part 4 of this...

  12. 27 CFR 9.57 - Green Valley of Russian River Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Green Valley of Russian... Areas § 9.57 Green Valley of Russian River Valley. (a) Name. The name of the viticultural area described in this section is “Green Valley of Russian River Valley”. For purposes of part 4 of this...

  13. 27 CFR 9.57 - Green Valley of Russian River Valley.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Green Valley of Russian... Areas § 9.57 Green Valley of Russian River Valley. (a) Name. The name of the viticultural area described in this section is “Green Valley of Russian River Valley”. For purposes of part 4 of this...

  14. Geochemical evolution of Mexicali Valley groundwaters

    SciTech Connect

    Makdisi, R.S.; Truesdell, A.H.; Thompson, J.M.; Coplen, T.B.; Sanchez R., J.

    1982-08-10

    Isotopic and chemical compositions of Mexicali Valley groundwaters vary widely. Observed variations reflect different water origins, mineral-water reactions, lateral variations of delta facies as well as evaporation. Regional treatment of the groundwater data shows that northern and central regions are a mixture of old and new Colorado River water. Variations in water chemistry result from different groundwaters origins and the effects of lateral delta facies changes. Dissolution of gypsum and precipitation of carbonates, silicates, and phosphates are suggested. The eastern Mesa de San Luis and southern region water originates primarily from the Gila River catchment area. This water is undersaturated with respect to gypsum and carbonates and is oversaturated with respect to silicates. Most of the western groundwaters are a mixture of Colorado River and geothermal waters in the proximity of the Cerro Prieto geothermal field. Recharge to the geothermal aquifer is from the west as well as the north and east. Calcite is being precipitated out as the groundwater temperatures rise in response to the geothermal anomaly. Other western groundwaters reflect a dominant mixture of Colorado River water and evaporated lake water. Some Western groundwater samples suggest dilution by local rainwater and/or irrigation water.

  15. Late Quaternary environments in Ruby Valley, Nevada

    USGS Publications Warehouse

    Thompson, R.S.

    1992-01-01

    Palynological data from sediment cores from the Ruby Marshes provide a record of environmental and climatic changes over the last 40,000 yr. The modern marsh waters are fresh, but no deeper than ???3 m. A shallow saline lake occupied this basin during the middle Wisconsin, followed by fresh and perhaps deep waters by 18,000 to 15,000 yr B.P. No sediments were recovered for the period between 15,000 and 11,000 yr B.P., possibly due to lake desiccation. By 10,800 yr B.P. a fresh-water lake was again present, and deeper-than-modern conditions lasted until 6800 yr B.P. The middle Holocene was characterized by very shallow water, and perhaps complete desiccation. The marsh system deepened after 4700 yr B.P., and fresh-water conditions persisted until modern times. Vegetation changes in Ruby Valley were more gradual than those seen in the paleolimno-logical record. Sagebrush steppe was more widespread than at present through the late Pleistocene and early Holocene, giving way somewhat to expanded shadscale vegetation between 8500 and 6800 yr B.P. Shadscale steppe contracted by 4000 yr B.P., but had greater than modern coverage until 1000 to 500 yr ago. Pinyon-juniper woodland was established in the southern Ruby Mountains by 4700 yr B.P. ?? 1992.

  16. Soil formation in the Tsauchab Valley, Namibia

    NASA Astrophysics Data System (ADS)

    Eden, Marie; Bens, Oliver; Ramisch, Arne; Schwindt, Daniel; Völkel, Jörg

    2016-04-01

    The BMBF-funded project GeoArchives (Spaces) investigates soils and sediments in Southern Africa. A focus area lies on the Tsauchab Valley (Namibia), South of the Naukluft mountain range (24°26'40'' S, 16°10'40'' E). On a gently sloping alluvial fan facing East towards the river, the surface is characterized by a desert pavement covering soils used as farmland. The landscape units were mapped and the area at the lower slope of a hill was divided into three units: a rinsing surface and a gravel plain, separated by a channel. On these surfaces soil profiles were excavated. Profile description followed the German system (Bodenkundliche Kartieranleitung KA 5) and disturbed samples were taken at various depths and analysed in the lab. Undisturbed soil cores with a volume of 100 cm³ were taken just below the surface at a depth of ~1-6 cm. Lab analyses included texture and gravel content, colour, pH, electrical conductivity, carbonates, CNS, cation exchange capacity, pedogenic oxides, main and trace elements (XRF), and clay mineral distribution (XRD). Undisturbed samples were used to determine soil water retention curve, air permeability and bulk density. The profiles revealed moderately developed cambic soils rich in clay minerals and with total carbon contents ranging up to 1.8 %, bearing shrubs and after episodic rainfall a dense grass vegetation. Their genesis is discussed and interpreted in the context of the landscape and climate history of this semi-desert environment.

  17. 27 CFR 9.154 - Chiles Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Chiles Valley. 9.154... Chiles Valley. (a) Name. The name of the viticultural area described in this section is “Chiles Valley.” (b) Approved maps. The appropriate maps for determining the boundary of the Chiles...

  18. 27 CFR 9.105 - Cumberland Valley.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Cumberland Valley. 9.105... Cumberland Valley. (a) Name. The name of the viticultural area described in this section is “Cumberland Valley.” (b) Approved maps. The appropriate maps for determining the boundary of the Cumberland...

  19. 27 CFR 9.105 - Cumberland Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Cumberland Valley. 9.105... Cumberland Valley. (a) Name. The name of the viticultural area described in this section is “Cumberland Valley.” (b) Approved maps. The appropriate maps for determining the boundary of the Cumberland...

  20. 27 CFR 9.105 - Cumberland Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Cumberland Valley. 9.105... Cumberland Valley. (a) Name. The name of the viticultural area described in this section is “Cumberland Valley.” (b) Approved maps. The appropriate maps for determining the boundary of the Cumberland...

  1. 27 CFR 9.105 - Cumberland Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Cumberland Valley. 9.105... Cumberland Valley. (a) Name. The name of the viticultural area described in this section is “Cumberland Valley.” (b) Approved maps. The appropriate maps for determining the boundary of the Cumberland...

  2. Diablo Valley College Trends, 1992.

    ERIC Educational Resources Information Center

    Birdsall, Les; And Others

    This report provides 31 charts showing trends in enrollment; transfer students; and ethnic and gender characteristics of students, faculty, and staff at Diablo Valley College (DVC), in California, up to fall 1992. Following a brief introduction highlighting statewide trends, charts are provided for the following areas: (1) DVC fall enrollments…

  3. Navigating the valley of death

    NASA Astrophysics Data System (ADS)

    Dacey, James

    2014-11-01

    Taking an innovation from the lab to the market is hard in any discipline, but physics start-ups face some unique challenges crossing the so-called "valley of death". James Dacey speaks to scientists and business professionals in the Boston area of the US who have dared to take on this journey.

  4. McMurdo Dry Valleys

    NASA Technical Reports Server (NTRS)

    2002-01-01

    One of the few areas of Antarctica not covered by thousands of meters of ice, the McMurdo Dry Valleys stand out in this satellite image. For a few weeks each summer temperatures are warm enough to melt glacial ice, creating streams that feed freshwater lakes that lie at the bottom of the valleys. Beneath a cap of ice these lakes remains unfrozen year-round, supporting colonies of bacteria and phytoplankton. Over the past 14 years, however, summers have been colder than usual, and the lakes are becoming more and more frozen. If the trend continues, the biological communities they support may go into hibernation. Most of Antarctica has cooled along with the Dry Valleys, in contrast to much of the rest of the Earth, which has warmed over the past 100 years. No one knows if the trend is related to global climate, or just a quirk in the weather. This image was acquired by Landsat 7's Enhanced Thematic Mapper plus (ETM+) instrument on December 18, 1999. For more information, visit: National Public Radio's Mixed Signals from Antarctica Declassified Satellite Imagery of the McMurdo Dry Valleys Image by Robert Simmon, based on data provided by the NASA GSFC Oceans and Ice Branch and the Landsat 7 Science Team

  5. The Performance of RAMS in Representing the Convective Boundary Layer Structure in a Very Steep Valley

    SciTech Connect

    De Wekker, Stephan; Steyn, D. G.; Fast, Jerome D.; Rotach, Mathias W.; Zhong, Shiyuan

    2005-04-01

    Data from a comprehensive field study in the Riviera Valley of Southern Switzerland are used to investigate convective boundary layer structure in a steep valley and to evaluate wind and temperature fields, convective boundary layer height, and surface sensible heat fluxes as predicted by the mesoscale model RAMS. Current parameterizations of surface and boundary layer processes in RAMS, as well as in other mesoscale models, are based on scaling laws strictly valid only for flat topography and uniform land cover. Model evaluation is required to investigate whether this limits the applicability of RAMS in steep, inhomogeneous terrain. One clear-sky day with light synoptic winds is selected from the field study. Observed temperature structure across and along the valley is nearly homogeneous while wind structure is complex with a wind speed maximum on one side of the valley. Upvalley flows are not purely thermally driven and mechanical effects near the valley entrance also affect the wind structure. RAMS captured many of the observed boundary layer characteristics within the steep valley. The wind field, temperature structure, and convective boundary layer height in the valley are qualitatively simulated by RAMS, but the horizontal temperature structure across and along the valley is less homogeneous in the model than in the observations. The model reproduced the observed net radiation, except around sunset and sunrise when RAMS does not take into account the shadows cast by the surrounding topography. The observed sensible heat fluxes fall within the range of simulated values at grid points surrounding the measurement sites. Some of the scatter between observed and simulated turbulent sensible heat fluxes are due to sub-grid scale effects related to local topography.

  6. Impacts from valley fill design and age on water quality in mountaintop mined watersheds

    NASA Astrophysics Data System (ADS)

    Ross, M. R.; Lindberg, T. T.; Voss, K.; Bernhardt, E. S.

    2012-12-01

    Mountaintop mining (MTM) for coal is the strongest driver of landscape disturbance throughout central Appalachia. The MTM process removes mountain ridges and deposits the resulting spoil into adjacent valleys. Recent research has shown that streams receiving waters from these valley fills exhibit consistent increases in the concentrations of base cations (Ca2+, Mg2+), metals, and anions (HCO3-SO42-) that correlate strongly with an increase in conductivity. Together, these chemical changes degrade the aquatic ecosystems downstream of valley fills and impair the ecosystem services they provide by extirpating sensitive macro-invertebrate taxa and toxicity to fish. Nearly 50% of the variability in conductivity and individual ion species concentration can be explained simply by the positive correlation between percent of catchment area mined and solute concentration. Yet, there is a wide range of valley fill size (0.25-225 hectares), age (1-40 years old), and design (from completely re-contoured landscapes to untouched, dumped spoil material) which may further explain observed patterns in water quality and biogeochemistry in MTM-impacted streams. For this study we asked the question: Do fill construction techniques and fill age predict patterns of stream water quality as measured by ion and metal concentration? To answer this question, we used a synoptic dataset collected from 30 valley fills in the Hobet mining complex in southern West Virginia and a comprehensive dataset collected by the West Virginia Department of Environmental Protection. We show that conductivity and ion concentrations are predicted better by valley fill size (p value < 0.05 ) than by valley fill age (statistically insignificant). These results suggest that impacts from MTM on aquatic ecosystems and the ecosystem services they provide may last over long time scales (>50 years), and that trends of expanding valley fill size over the 2000's may have disproportionately negative impacts on the streams

  7. 76 FR 62820 - Notice of Intent To Prepare an Environmental Impact Statement for the Proposed Valley Electric...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-11

    ... Electric Association Hidden Hills Transmission Project, Clark and Nye Counties, NV AGENCY: Bureau of Land... Bureau of Land Management (BLM) Southern Nevada District, Las Vegas Field Office, intends to prepare an... upon publication of the Draft EIS. ADDRESSES: You may submit comments related to the Valley...

  8. Forecasting the Temporal and Spatial Distribution of a Rift Valley fever Outbreak in East Africa: 2006-2007

    Technology Transfer Automated Retrieval System (TEKTRAN)

    El Niño/Southern Oscillation (ENSO) related climate anomalies have been shown to have a direct impact on Rift Valley fever (RVF) disease outbreaks. Knowledge of the links between ENSO driven climate anomalies and RVF can allow us to provide improved long range forecasts of an epidemic or epizootic. ...

  9. Spirit's West Valley Panorama

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA'S Mars Exploration Rover Spirit captured this westward view from atop a low plateau where Sprit spent the closing months of 2007.

    After several months near the base of the plateau called 'Home Plate' in the inner basin of the Columbia Hills range inside Gusev Crater, Spirit climbed onto the eastern edge of the plateau during the rover's 1,306th Martian day, or sol, (Sept. 5, 2007). It examined rocks and soils at several locations on the southern half of Home Plate during September and October. It was perched near the western edge of Home Plate when it used its panoramic camera (Pancam) to take the images used in this view on sols 1,366 through 1,369 (Nov. 6 through Nov. 9, 2007). With its daily solar-energy supply shrinking as Martian summer turned to fall, Spirit then drove to the northern edge of Home Plate for a favorable winter haven. The rover reached that northward-tilting site in December, in time for the fourth Earth-year anniversary of its landing on Mars. Spirit reached Mars on Jan. 4, 2004, Universal Time (Jan. 3, 2004, Pacific Standard Time). It landed at a site at about the center of the horizon in this image.

    This panorama covers a scene spanning left to right from southwest to northeast. The western edge of Home Plate is in the foreground, generally lighter in tone than the more distant parts of the scene. A rock-dotted hill in the middle distance across the left third of the image is 'Tsiolkovski Ridge,' about 30 meters or 100 feet from the edge of Home Plate and about that same distance across. A bump on the horizon above the left edge of Tsiolkovski Ridge is 'Grissom Hill,' about 8 kilometers or 5 miles away. At right, the highest point of the horizon is 'Husband Hill,' to the north and about 800 meters or half a mile away.

    This view combines separate images taken through Pancam filters centered on wavelengths of 753 nanometers, 535 nanometers and 432 nanometers to produce an approximately true-color panorama.

  10. Intersection of Southern Parkway and Southern Heights, looking toward the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Intersection of Southern Parkway and Southern Heights, looking toward the Beechmont Historic District, showing changes in landscaping, northeast - Southern Heights-Beechmont District Landscapes, Louisville, Jefferson County, KY

  11. Topological spin and valley pumping in silicene

    PubMed Central

    Luo, Wei; Sheng, L.; Wang, B. G.; Xing, D. Y.

    2016-01-01

    We propose to realize adiabatic topological spin and valley pumping by using silicene, subject to the modulation of an in-plane ac electric field with amplitude Ey and a vertical electric field consisting of an electrostatic component and an ac component with amplitudes and . By tuning and , topological valley pumping or spin-valley pumping can be achieved. The low-noise valley and spin currents generated can be useful in valleytronic and spintronic applications. Our work also demonstrates that bulk topological spin or valley pumping is a general characteristic effect of two-dimensional topological insulators, irrelevant to the edge state physics. PMID:27507592

  12. Topological spin and valley pumping in silicene.

    PubMed

    Luo, Wei; Sheng, L; Wang, B G; Xing, D Y

    2016-01-01

    We propose to realize adiabatic topological spin and valley pumping by using silicene, subject to the modulation of an in-plane ac electric field with amplitude Ey and a vertical electric field consisting of an electrostatic component and an ac component with amplitudes and . By tuning and , topological valley pumping or spin-valley pumping can be achieved. The low-noise valley and spin currents generated can be useful in valleytronic and spintronic applications. Our work also demonstrates that bulk topological spin or valley pumping is a general characteristic effect of two-dimensional topological insulators, irrelevant to the edge state physics. PMID:27507592

  13. Topological spin and valley pumping in silicene

    NASA Astrophysics Data System (ADS)

    Luo, Wei; Sheng, L.; Wang, B. G.; Xing, D. Y.

    2016-08-01

    We propose to realize adiabatic topological spin and valley pumping by using silicene, subject to the modulation of an in-plane ac electric field with amplitude Ey and a vertical electric field consisting of an electrostatic component and an ac component with amplitudes and . By tuning and , topological valley pumping or spin-valley pumping can be achieved. The low-noise valley and spin currents generated can be useful in valleytronic and spintronic applications. Our work also demonstrates that bulk topological spin or valley pumping is a general characteristic effect of two-dimensional topological insulators, irrelevant to the edge state physics.

  14. Early Permian conodont fauna and stratigraphy of the Garden Valley Formation, Eureka County, Nevada

    USGS Publications Warehouse

    Wardlaw, Bruce R.; Gallegos, Dora M.; Chernykh, Valery V.; Snyder, Walter S.

    2015-01-01

    The lower Part of the Garden Valley Formation yields two distinct conodont faunas. One of late Asselian age dominated by Mesogondolella and Streptognathodus and one of Artinskian age dominated by Sweetognathus with Mesogondolella. The Asselian fauna contains the same species as those found in the type area of the Asselian in the southern Urals including Mesogondolella dentiseparata, described for the first time outside of the Urals. Apparatuses for Sweetognathus whitei, Diplognathodus stevensi, and Idioprioniodus sp. are described. The Garden Valley Formation represents a marine pro-delta basin and platform, and marine and shore fan delta complex deposition. The fan-delta complex was most likely deposited from late Artinskian to lateWordian. The Garden Valley Formation records tremendous swings in depositional setting from shallow-water to basin to shore.

  15. Sediments, geomorphology, magnetostratigraphy, and vertebrate paleontology in the San Pedro Valley, Arizona

    SciTech Connect

    Lindsay, E.H.; Smith, G.A.; Haynes, C.V.; Opdyke, N.D. )

    1990-07-01

    The San Pedro Valley in southern Arizona was probably formed by block faulting during the Miocene. Sediments that filled the valley, primarily the St. David Formation, have yielded a robust vertebrate fossil record, calibrated during the last 25 years by magnetostratigraphy and isotopic dating of volcanic ejecta. This chronologic framework is combined with new sedimentologic, paleomagnetic, and geomorphic data to evaluate the influence of subsequent tectonism within the basin. The authors conclude that tectonism in the San Pedro Valley has been relatively quiescent following the initial block faulting and suggest that ensuring rates of sedimentation and incision were most likely controlled by climatic factors rather than tectonic-geologic ones. Vertebrate datum planes established in 1975 are revised on the basis of new paleontologic and geologic-isotopic data. The authors now recognize only three faunal datum planes in the St. David Formation, and have abandoned the youngest (Lepus) datum plane.

  16. Global positioning system surveying to monitor land subsidence in Sacramento Valley, California, USA

    USGS Publications Warehouse

    Ikehara, M.E.

    1994-01-01

    A subsidence research program began in 1985 to document the extent and magnitude of land subsidence in Sacramento Valley, California, an area of about 15 600 km2m, using Global Positioning System (GPS) surveying. In addition to periodic conventional spirit levelling, an examination was made of the changes in GPS-derived ellipsoidal height differences (summary differences) between pairs of adjacent bench marks in central Sacramento Valley from 1986 to 1989. The average rates of land subsidence in the southern Sacramento Valley for the past several decades were determined by comparing GPS-derived orthometric heights with historic published elevations. A maximum average rate of 0.053 m year-1 (0.90 m in 17 years) of subsidence has been measured. -Author

  17. Airborne electromagnetic and magnetic survey data of the Paradox and San Luis Valleys, Colorado

    USGS Publications Warehouse

    Ball, Lyndsay B.; Bloss, Benjamin R.; Bedrosian, Paul A.; Grauch, V.J.S.; Smith, Bruce D.

    2015-01-01

    In October 2011, the U.S. Geological Survey (USGS) contracted airborne magnetic and electromagnetic surveys of the Paradox and San Luis Valleys in southern Colorado, United States. These airborne geophysical surveys provide high-resolution and spatially comprehensive datasets characterizing the resistivity structure of the shallow subsurface of each survey region, accompanied by magnetic-field information over matching areas. These data were collected to provide insight into the distribution of groundwater brine in the Paradox Valley, the extent of clay aquitards in the San Luis Valley, and to improve our understanding of the geologic framework for both regions. This report describes these contracted surveys and releases digital data supplied under contract to the USGS.

  18. Impact of climate and parent material on chemical weathering in Loess-derived soils of the Mississippi River valley

    USGS Publications Warehouse

    Muhs, D.R.; Bettis, E. Arthur, III; Been, J.; McGeehin, J.P.

    2001-01-01

    Peoria Loess-derived soils on uplands east of the Mississippi River valley were studied from Louisiana to Iowa, along a south-to-north gradient of decreasing precipitation and temperature. Major element analyses of deep loess in Mississippi and Illinois show that the composition of the parent material is similar in the northern and southern parts of the valley. We hypothesized that in the warmer, wetter parts of the transect, mineral weathering should be greater than in the cooler, drier parts of the transect. Profile average values of CaO/TiO2, MgO/ TiO2, K2O/TiO2, and Na2O/TiO2, Sr/Zr, Ba/Zr, and Rb/Zr represent proxies for depletion of loess minerals such as calcite, dolomite, hornblende, mica, and plagioclase. All ratios show increases from south to north, supporting the hypothesis of greater chemical weathering in the southern part of the valley. An unexpected result is that profile average values of Al2O3/TiO2 and Fe2O3/TiO2 (proxies for the relative abundance of clay minerals) show increases from south to north. This finding, while contrary to the evidence of greater chemical weathering in the southern part of the transect, is consistent with an earlier study which showed higher clay contents in Bt horizons of loess-derived soils in the northern part of the transect. We hypothesize that soils in the northern part of the valley received fine-grained loess from sources to the west of the Mississippi River valley either late in the last glacial period, during the Holocene or both. In contrast, soils in the southern part of the valley were unaffected by such additions.

  19. Ground-Water Modeling of the Death Valley Region, Nevada and California

    USGS Publications Warehouse

    Belcher, W.R.; Faunt, C.C.; Sweetkind, D.S.; Blainey, J.B.; San Juan, C. A.; Laczniak, R.J.; Hill, M.C.

    2006-01-01

    The Death Valley regional ground-water flow system (DVRFS) of southern Nevada and eastern California covers an area of about 100,000 square kilometers and contains very complex geology and hydrology. Using a computer model to represent the complex system, the U.S. Geological Survey simulated ground-water flow in the Death Valley region for use with U.S. Department of Energy projects in southern Nevada. The model was created to help address contaminant cleanup activities associated with the underground nuclear testing conducted from 1951 to 1992 at the Nevada Test Site and to support the licensing process for the proposed geologic repository for high-level nuclear waste at Yucca Mountain, Nevada.

  20. An observational study of the summer Mediterranean Sea breeze front penetration into the complex topography of the Jordan Rift Valley

    NASA Astrophysics Data System (ADS)

    Naor, R.; Potchter, O.; Shafir, H.; Alpert, P.

    2015-09-01

    The Mediterranean summer sea breeze front (SBF) climatic features of penetration into the complex topography of the Jordan Rift Valley (JRV) were investigated. It was shown that the SBF penetration into the JRV occurs in a well-defined chronological order from north to south. One exception to this general rule is the breeze penetration of Sdom, which occurs after it has penetrated the Arava which is located further south, probably due to the micro-climatic effect of the Dead Sea. It was also noted that the breeze increases the local specific humidity as it reaches the JRV in spite of significant temperature increases. The temperature reaches its daily peak 2 to 3 h later in the southern valley compared to the northern valley and is suggested to be due to the later SBF penetration and the valley structure. The pre-SBF line features in the JRV are described.

  1. Foundering lithosphere imaged beneath the southern Sierra Nevada, California, USA.

    PubMed

    Boyd, Oliver S; Jones, Craig H; Sheehan, Anne F

    2004-07-30

    Seismic tomography reveals garnet-rich crust and mantle lithosphere descending into the upper mantle beneath the southeastern Sierra Nevada. The descending lithosphere consists of two layers: an iron-rich eclogite above a magnesium-rich garnet peridotite. These results place descending eclogite above and east of high P wave speed material previously imaged beneath the southern Great Valley, suggesting a previously unsuspected coherence in the lithospheric removal process. PMID:15286370

  2. Morphology of large valleys on Hawaii - Evidence for groundwater sapping and comparisons with Martian valleys

    NASA Technical Reports Server (NTRS)

    Kochel, R. Craig; Piper, Jonathan F.

    1986-01-01

    Morphometric data on the runoff and sapping valleys on the slopes of Hawaii and Molokai in Hawaii are analyzed. The analysis reveals a clear distinction between the runoff valleys and sapping valleys. The Hawaiian sapping valleys are characterized by: (1) steep valley walls and flat floors, (2) amphitheater heads, (3) low drainage density, (4) paucity of downstream tributaries, (5) low frequency of up-dip tributaries, and (6) structural and stratigraphic control on valley patterns. The characteristics of the Hawaiian sapping valleys are compared to Martian valleys and experimental systems, and good correlation between the data is detected. Flume experiments were also conducted to study the evolution of sapping valleys in response to variable structure and stratigraphy.

  3. Yellowstone and Long Valley - A Comparison of Two Restless Calderas

    NASA Astrophysics Data System (ADS)

    Hill, D. P.; Smith, R. B.

    2007-12-01

    Three large, silicic calderas in the conterminous United States have explosively erupted volumes > 300 km3 within in the last 2 million years -- Yellowstone caldera (Wyoming) Long Valley caldera (California) and the Vallez caldera (New Mexico) all located in extensional tectonic environments. All have shown varying levels of historic unrest. Pronounced unrest episodes at Yellowstone and Long Valley calderas over the past three decades stimulated extensive research on these two closely monitored calderas, and we explore some emerging similarities and differences. Yellowstone caldera is underlain by a long-lived (> 17 my) upper-mantle hot-spot that has fed a series of caldera-forming, extending to the southwest across southern Idaho to central Oregon including three caldera-forming eruptions from the Yellowstone caldera system in the last 2 my, the most recent at 600,000 ybp. It is marked by relatively low density and low seismic velocities extending to depths of at least 400 km and a regional topographic swell with elevations exceeding 2000 m. The extensive Yellowstone hydrothermal system has a thermal output of 5 GW. The most recent magmatic eruption dated at 70,000 ybp. By comparison, Long Valley caldera is underlain by a relatively modest "hot-spot", the locus of which appears to be influenced by a dilatational jog between the dextral Eastern California Shear Zone and the Walker Lane and westward delamination of the dense lithospheric root of the adjacent Sierra Nevada. The Long Valley system has fed multiple eruptions of over the past 4 my and a single caldera-forming eruption at 760,000 ybp. It is marked by a limited topographic swell but with the elevation of the caldera floor and adjacent basins comparable to the 2000-plus m elevation of the Yellowstone swell. Long Valley caldera hydrothermal system has a thermal output of 0.3 GW (including a 40 MW geothermal power plant). The most recent eruptions from the Long Valley Caldera- Mono Domes volcanic field

  4. Fog composition in the Central Valley of California over three decades

    NASA Astrophysics Data System (ADS)

    Herckes, P.; Marcotte, A. R.; Wang, Y.; Collett, J. L.

    2015-01-01

    Numerous fog studies have been conducted in the Central Valley of California since the 1980s, making it one of the most studied locations in the world in terms of fog chemistry. The present work reviews observational fog studies in the area and discusses overall chemical composition as well as spatial variability and temporal variability. Regionally there is a clear gradient in fog occurrence with less fog and lower density (liquid water content, LWC) fog in the southern part of the Valley (Bakersfield) compared to more northern locations like Fresno or Davis. Chemically, fogs in the southern valley have higher solute loadings and lower pH compared to more northern locations (Davis and Fresno). Overall fog chemistry is dominated in the valley by the ammonia-nitric acid-ammonium nitrate system with sulfate being a rather minor component, especially at more northern locations and in more recent years. Fog pH in recent years is consistently higher than 5, showing an absence of acid in fogs in this region. LWC values appear to have decreased over recent years (less dense fogs). An airport visibility assessment of fog frequency reveals that overall dense fogs (visibility of less than 1/4 mile) have decreased by ~ 50% over the last 30 years.

  5. Irrigation channels of the Upper Rhone valley (Switzerland). Geomorphological analysis of a cultural heritage

    NASA Astrophysics Data System (ADS)

    Reynard, Emmanuel

    2016-04-01

    The Upper Rhone valley (Canton of Valais, Switzerland) is characterised by dry climatic conditions that explain the presence of an important network (about 800 km) of irrigation channels - called Bisses in the French-speaking part of the canton or Suonen in the German-speaking area - dating back to the Middle Ages. This network constitutes a cultural heritage and during the last 30 years these agricultural infrastructures have sparked a renewed interest for tourist and cultural reasons. Indeed, the paths along the channels are used as tourist trails and several abandoned channels have been renovated for tourist use. Based on an inventory of the Bisses/Suonen of Valais, the proposed communication has three aims: (1) to analyse the geomorphological context (morphometric analysis, structural geomorphology, main processes) of various types of channels and to show the impact of the geomorphological context on the building techniques; (2) to identify particularly active processes along the channels; (3) to classify the Bisses/Suonen according to their geomorphological value and to their geomorphological sensitivity, and to propose managing measures. Structural and climatic conditions influence the geomorphological context of the channels. In a structural point of view, irrigation channels are developed in three main contexts: (1) in the Aar Massif crystalline basement; (2) in the limestone and marl cover nappes of the Helvetic Alps; (3) in the metamorphic cover nappes of the Penninic domain. The Rhone River valley is boarded by two high mountain ranges: the Penninic Alps in the South and the Bernese Alps in the North. Because of rain shadow effects, the climate is relatively dry and, between Brig and Martigny, annual rainfall is not more than 600 mm at 500 m ASL and 800 mm at 1600 m ASL. Nevertheless, due to important vertical precipitation gradients annual rainfall totals are high at high altitudes. On the southern facing tributary valleys, the dry climatic conditions

  6. Late Cenozoic sedimentation in Pilot Knob Valley, California

    NASA Astrophysics Data System (ADS)

    Rittase, W. M.; Walker, J. D.; Kirby, E.; Andrew, J.; Wan, E.

    2012-12-01

    In Pilot Knob Valley (PKV), active inversion of a Pliocene-mid Pleistocene basin presents the opportunity to understand the spatial and temporal development of an enigmatic basin astride a major transform boundary in California. Here, a ~1000-m-thick package of exposed Late Cenozoic strata has been uplifted and tilted to the northeast. Based on new age and provenance data, we adopt the name Pilot Knob formation (PKfm) to describe much of these exposed rocks north of the Garlock fault (GF) and east of Christmas Canyon gate. Post-Miocene development of PKV is strongly influenced by the sinistral GF, the newly identified Marine Gate fault (MGF) and dextral Eastern California shear zone. The PKfm consists of three lithofacies members, from base to top: (1) rocks derived from Eagle Crags to the south; (2) Randsburg Wash lacustrine rocks; and (3) an upper member derived from the Slate Range. Tephrochronologic data from four PKfm ash samples brackets deposition of lacustrine Randsburg Wash Member rocks between 3.7-3.1 Ma and lacustrine rocks of the Slate Range Member between 1.2-0.6 Ma. A fifth tephrochronologic sample from lacustrine-distal alluvial sediments south of the GF near Christmas Canyon brackets deposition of a possible PKfm facies at ~3.1 Ma. A 3-stage tectonic model for northern PKV explains changing provenance patterns. Prior to ~3.1 Ma, the western PKV paleo-low lay north of the current GF adjacent to the southern Slate Range and connected to Searles Valley. The MGF cuts adjacent to the southern face of the Slate Range and southern Searles Valley with up to 7.5 km of sinistral oblique-normal slip between ~5-2.5 Ma. Eagle Crags fanglomerate deposition may continue after 3.7 Ma west of the Randsburg Wash-Searles Valley spillway, but these rocks have been eroded away. By ~3.7 Ma, northward progradation of Eagle Crags fanglomerate waned and lacustrine sediments were deposited north of the GF and east of the Randsburg Wash-Searles Valley spillway. At ~3.1 Ma

  7. Topographic stress perturbations in southern Davis Mountains, west Texas 1. Polarity reversal of principal stresses

    USGS Publications Warehouse

    Savage, W.Z.; Morin, R.H.

    2002-01-01

    We have applied a previously developed analytical stress model to interpret subsurface stress conditions inferred from acoustic televiewer logs obtained in two municipal water wells located in a valley in the southern Davis Mountains near Alpine, Texas. The appearance of stress-induced breakouts with orientations that shift by 90?? at two different depths in one of the wells is explained by results from exact solutions for the effects of valleys on gravity and tectonically induced subsurface stresses. The theoretical results demonstrate that above a reference depth termed the hinge point, a location that is dependent on Poisson's ratio, valley shape, and magnitude of the maximum horizontal tectonic stress normal to the long axis of the valley, horizontal stresses parallel to the valley axis are greater than those normal to it. At depths below this hinge point the situation reverses and horizontal stresses normal to the valley axis are greater than those parallel to it. Application of the theoretical model at Alpine is accommodated by the fact that nearby earthquake focal mechanisms establish an extensional stress regime with the regional maximum horizontal principal stress aligned perpendicular to the valley axis. We conclude that the localized stress field associated with a valley setting can be highly variable and that breakouts need to be examined in this context when estimating the orientations and magnitudes of regional principal stresses.

  8. Mechanically and optically controlled graphene valley filter

    SciTech Connect

    Qi, Fenghua; Jin, Guojun

    2014-05-07

    We theoretically investigate the valley-dependent electronic transport through a graphene monolayer modulated simultaneously by a uniform uniaxial strain and linearly polarized light. Within the Floquet formalism, we calculate the transmission probabilities and conductances of the two valleys. It is found that valley polarization can appear only if the two modulations coexist. Under a proper stretching of the sample, the ratio of the light intensity and the light frequency squared is important. If this quantity is small, the electron transport is mainly contributed by the valley-symmetric central band and the conductance is valley unpolarized; but when this quantity is large, the valley-asymmetric sidebands also take part in the transport and the valley polarization of the conductance appears. Furthermore, the degree of the polarization can be tuned by the strain strength, light intensity, and light frequency. It is proposed that the detection of the valley polarization can be realized utilizing the valley beam splitting. Thus, a graphene monolayer can be used as a mechanically and optically controlled valley filter.

  9. Chlorine-36 tracing of salinity sources in the Dry Valleys of Victoria Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Carlson, Catherine A.; Phillips, Fred M.; Elmore, David; Bentley, Harold W.

    1990-02-01

    Chlorine-36 was used to trace the origins of salts in six saline lakes in the Dry Valleys of Southern Victoria Land, Antarctica. Characteristic 36Cl signatures were estimated for the various potential chloride sources, which include atmospheric deposition, rock weathering, seawater, and deep ground water. 36Cl /Cl ratios were measured in natural waters and salts from the Dry Valleys. Dilute lake waters (Cl - < 100 mg/l) were found to have 36Cl /Cl ratios in the range 100 × 10 -15 to 1,700 × 10 -15, whereas saline waters (Cl - > 1000 mg/l) had ratios in the range 9 × 10 -15 to 40 × 10 -15. Simple mixing models were employed to quantify the relative contributions of the various chloride sources to Lake Vanda and Don Juan Pond. These results show that Lake Vanda has received its chloride from both deep ground water and the Onyx River. Don Juan Pond has received nearly all its chloride from deep ground water, probably ultimately from rock-water interaction. Deep ground water is the principal source of chloride to the lakes of Wright Valley. However, preliminary data suggest that marine-derived salts or relict sea water may be a significant source of chloride to the lakes of Taylor Valley, implying a possible recent marine invasion that did not affect Wright Valley.

  10. Chlorine-36 tracing of salinity sources in the dry valleys of Victoria land, Antarctica

    SciTech Connect

    Carlson, C.A.; Phillips, F.M. ); Elmore, D. ); Bentley, H.W. )

    1990-02-01

    Chlorine-36 was used to trace the origins of salts in six saline lakes in the Dry Valleys of Southern Victoria Land, Antarctica. Characteristic {sup 36}Cl signatures were estimated for the various potential chloride sources, which include atmospheric deposition, rock weathering, seawater, and deep ground water. {sup 36}Cl/Cl ratios were measured in natural waters and salts from the Dry Valleys. Dilute lake waters (Cl{sup {minus}} < 100 mg/l) were found to have {sup 36}Cl/Cl ratios in the range 100 {times} 10{sup {minus}15} to 1,700 {times} 10{sup {minus}15}, whereas saline waters (Cl{sup {minus}} > 1000 mg/l) had ratios in the range 9 {times} 10{sup {minus}15} to 40 {times} 10{sup {minus}15}. Simple mixing models were employed to quantify the relative contributions of the various chloride sources to Lake Vanda and Don Juan Pond. These results show that Lake Vanda has received its chloride from both deep ground water and the Onyx River. Don Juan Pond has received nearly all its chloride from deep ground water, probably ultimately from rock-water interaction. Deep ground water is the principal sources of chloride to the lakes of Wright Valley. However, preliminary data suggest that marine-derived salts or relict sea water may be a significant sources of chloride to the lakes of Taylor Valley, implying a possible recent marine invasion that did not affect Wright Valley.

  11. A neotectonic tour of the Death Valley fault zone, Inyo County

    SciTech Connect

    Wills, C.J.

    1989-09-01

    The Death Valley fault zone has recently been evaluated by the Division of Mines and Geology for zoning under the Alquist-Priolo Special Studies Zones Act of 1972. This act requires the State Geologist to zone for special studies those faults that are sufficiently active and well defined as to constitute a potential hazard to structures from surface faulting or fault creep. The Death Valley fault zone is part of a system of faults that extends over 180 miles (300 km) from Fish Lake Valley in Nevada to the Garlock fault. The northern part of this system, the Northern Death Valley-Furnace Creek fault zone, is an active right-lateral fault zone. The southern part of the system, the Death Valley fault zone, is a right-lateral oblique-slip fault between Furnace Creek and Shoreline Butte. From Shoreline Butte to the Garlock fault, it is a right-lateral strike-slip fault. Landforms along this fault indicate that it is the source of many earthquakes and that it has been active in Holocene time. The heights of the scarps and magnitude of the smallest right-lateral offsets (4 feet; 1.2 m) suggest that the most recent of these events was M 6.5 or larger. The freshness of the geomorphic features and the youth of the offset materials suggest that event occurred late in the Holocene, and that multiple Holocene earthquakes have occurred.

  12. Surface Sediment Geochemistry in and around the Hudson Shelf Valley Offshore of New York

    NASA Astrophysics Data System (ADS)

    Mecray, E. L.; ten Brink, M. B.; Butman, B.; Denny, J.; Murray, R. W.

    2001-05-01

    The Hudson Shelf Valley, an ancient submerged portion of the Hudson River, extends across the continental shelf offshore of New York and New Jersey. Between 1959 and 1987, the area near the head of the valley was used for disposal of approximately 1.20 x 108 m3 of dredged material and sewage sludge. The distribution of metal concentrations and sediment characteristics were used to investigate the transport and fate of the sediments and their associated contaminants. Surface (0-2cm) sediments collected at 440 stations throughout the New York Bight between 1993 and 1998 were used to establish the regional distribution of pollutant metals, grain size, organic carbon, and Clostridium perfringens spores. Sediments in the New York Bight are generally sandy, however fine-grained sediments are found in the axis of the Valley. Statistical methods identified common sources and chemical mobility within groups of anthropogenic and naturally-occurring elements. High metal concentrations, fine-grained sediments, and higher organic carbon concentrations co-occur in depo-centers within the Valley. Normalization of the metal concentrations to these factors shows higher metal concentrations on the fine-grained particles in sandy areas of the Bight, particularly along the southern shore of Long Island. These distributions have implications for evaluating the impact of the mass distribution for contaminated metals in different habitats and areas. Decreasing concentrations of pollutants with time are observed, reflecting reduced contaminant loading in the upper region of the Valley; however, concentrations are still above natural background levels.

  13. Observations and numerical simulations of downslope flow separation at a valley inversion

    NASA Astrophysics Data System (ADS)

    Strauss, Lukas; Serafin, Stefano; Grubišić, Vanda

    2016-04-01

    Severe turbulence downwind of a mountain ridge is often associated with large-amplitude gravity waves that are excited as the air flows over the ridge. Mountain waves can exert an adverse pressure-gradient force on the boundary layer and make it detach from the ground, leading to the formation of atmospheric rotors. However, in a more complex topographic setting, with a second mountain ridge downstream of the first and a valley in between, thermally and dynamically forced processes in the valley (e.g., cold pools or along-valley flow channelling) may be equally important for flow separation. Observations supporting this idea were made during the Terrain-induced Rotor Experiment in Owens Valley (California, USA) in the nighttime hours of 16 April 2006. In that case, an inversion was present in the valley and resultant buoyancy forces appear to have contributed significantly to flow separation well above the valley floor. In an attempt to understand better the thermal and dynamic forces determining this case, numerical simulations with the Weather Research and Forecasting (WRF) Model are run in a nested-domain configuration. The innermost model domain exhibits a horizontal grid spacing of 400 m and a vertical spacing of ~25 m at the ground and spans the southern portion of the Sierra Nevada. The sensitivity of model results (e.g. the valley inversion strength) to the chosen boundary-layer parameterization (e.g., Bougeault-Lacarrère, Mellor-Yamada-Janjic, or Shin-Hong 'scale-aware' PBL schemes) is studied. In a next step, the evaluation of the terms in the momentum equations along the trajectories of separated air parcels will help elucidate the relative importance of pressure-gradient forces and buoyancy forces for flow separation.

  14. 77 FR 38793 - Grand Valley Rural Power Lines, Inc., Yampa Valley Electric Association, Inc., Intermountain...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... Energy Regulatory Commission Grand Valley Rural Power Lines, Inc., Yampa Valley Electric Association, Inc., Intermountain Rural Electric Association, Tri-State Generation and Transmission Association, Inc. v. Public... Association, Inc., Intermountain Rural Electric Association, and Tri-State Generation and...

  15. Morphology and downslope sediment displacement in a deep-sea valley, the Valencia Valley (Northwestern Mediterranean)

    USGS Publications Warehouse

    O'Connell, S.; Alonso, B.; Kastens, K.A.; Maldonado, A.; Malinverno, A.; Nelson, C.H.; Palanques, A.; Ryan, William B. F.

    1985-01-01

    The Valencia Valley is a Quaternary, 200 km long deep-sea valley in the Valencia Trough, Western Mediterranean Sea. A swathmapping survey approximately mid-way along the valley length, where the floor has an average gradient of 1:250 (0.2??), shows valley walls that rise 200 to 350 m above the valley floor, with slopes of 2 to 18??. Sediment forming the walls is undergoing retrogressive, upslope-directed slumping with increasing bedding disruption along steeper walls. The valley exhibits a winding course with steep outer and gentler inner walls around bends, and bedforms on the valley floor. Lateral migration around bends is less than 5 km and the valley is deeply entrenched into Quaternary-bedded sediments. ?? 1985 Springer-Verlag New York Inc.

  16. California's restless giant: the Long Valley Caldera

    USGS Publications Warehouse

    Hill, David P.; Bailey, Roy A.; Hendley, James W., II; Stauffer, Peter H.; Marcaida, Mae

    2014-01-01

    Scientists have monitored geologic unrest in the Long Valley, California, area since 1980. In that year, following a swarm of strong earthquakes, they discovered that the central part of the Long Valley Caldera had begun actively rising. Unrest in the area persists today. The U.S. Geological Survey (USGS) continues to provide the public and civil authorities with current information on the volcanic hazard at Long Valley and is prepared to give timely warnings of any impending eruption.

  17. Structure of Railroad Valley, Nye County, Nevada

    SciTech Connect

    Ehni, W.J.

    1987-08-01

    In 1976, the second oil field in Nevada - Trap Springs - was discovered in Railroad Valley. Since then, more than 100 oil wells have been drilled in Nye County, and most of these have been in Railroad Valley. This well-control helped to unravel the complex structure of Railroad Valley and enabled the construction of more accurate maps of this valley than any other. This information can be used to construct models for exploring other valleys in the Basin and Range Province of eastern Nevada. The basic stratigraphy of the valley consists of Paleozoic carbonates and shales overlain by Tertiary volcanics, overlain, in turn, by valley fill. The areal extent of Tertiary volcanics, which can be a good reservoir rock, is controlled by tensional normal faulting and paleotopography. In some areas, these volcanics can be in excess of 5000 ft thick, but absent within a few miles, owing to paleotopography and/or faulting. The Paleozoic rocks are deformed by a pre-basin and range compressional history that folded and faulted them. As a result, the structure within the Paleozoics is more complex. Thrust faulting played an important role in the deformation of these rocks. Crystalline basement rocks can be found juxtaposed between Paleozoic outcrops in the flanks of the valley, and Paleozoic rocks found in well control farther out in the valley. The geothermal history of Railroad Valley plays an important role in constructing a structural map of the valley, taking into account the Mesozoic thrust faulting and Tertiary normal faulting. Air photos, combined with good well control and published reports, assist in mapping the geologic structure in Railroad Valley.

  18. Trench Logs and Scarp Data from an Investigation of the Steens Fault Zone, Bog Hot Valley and Pueblo Valley, Humboldt County, Nevada

    USGS Publications Warehouse

    Personius, Stephen F.; Crone, Anthony J.; Machette, Michael N.; Kyung, Jai Bok; Cisneros, Hector; Lidke, David J.; Mahan, Shannon

    2006-01-01

    Introduction: This report contains field and laboratory data from a study of the Steens fault zone near Denio, Nev. The 200-km-long Steens fault zone forms the longest, most topographically prominent fault-bounded escarpment in the Basin and Range of southern Oregon and northern Nevada. The down-to-the-east normal fault is marked by Holocene fault scarps along nearly half its length, including the southern one-third of the fault from the vicinity of Pueblo Mountain in southern Oregon to the southern margin of Bog Hot Valley (BHV) southwest of Denio, Nev. We studied this section of the fault to better constrain late Quaternary slip rates, which we hope to compare to deformation rates derived from a recently established geodetic network in the region (Hammond and Thatcher, 2005). We excavated a trench in May 2003 across one of a series of right-stepping fault scarps that extend south from the southern end of the Pueblo Mountains and traverse the floor of Bog Hot Valley, about 4 km south of Nevada State Highway 140. This site was chosen because of the presence of well-preserved fault scarps, their development on lacustrine deposits thought to be suitable for luminescence dating, and the proximity of two geodetic stations that straddle the fault zone. We excavated a second trench in the southern BHV, but the fault zone in this trench collapsed during excavation and thus no information about fault history was documented from this site. We also excavated a soil pit on a lacustrine barrier bar in the southern Pueblo Valley (PV) to better constrain the age of lacustrine deposits exposed in the trench. The purpose of this report is to present photomosaics and trench logs, scarp profiles and slip data, soils data, luminescence and radiocarbon ages, and unit descriptions obtained during this investigation. We do not attempt to use the data presented herein to construct a paleoseismic history of this part of the Steens fault zone; that history will be the subject of a future

  19. 77 FR 33237 - Saline Valley Warm Springs Management Plan/Environmental Impact Statement, Death Valley National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-05

    ... National Park Service Saline Valley Warm Springs Management Plan/Environmental Impact Statement, Death...: Notice of Intent to Prepare an Environmental Impact Statement for the Saline Valley Warm Springs... environmental impact analysis process for the Saline Valley Warm Springs Management Plan for Death...

  20. Rift Valley Fever during Rainy Seasons, Madagascar, 2008 and 2009

    PubMed Central

    Andriamandimby, Soa Fy; Randrianarivo-Solofoniaina, Armand Eugène; Jeanmaire, Elisabeth M.; Ravololomanana, Lisette; Razafimanantsoa, Lanto Tiana; Rakotojoelinandrasana, Tsanta; Razainirina, Josette; Hoffmann, Jonathan; Ravalohery, Jean-Pierre; Rafisandratantsoa, Jean-Théophile; Rollin, Pierre E.

    2010-01-01

    During 2 successive rainy seasons, January 2008 through May 2008 and November 2008 through March 2009, Rift Valley fever virus (RVFV) caused outbreaks in Madagascar. Human and animal infections were confirmed on the northern and southern coasts and in the central highlands. Analysis of partial sequences from RVFV strains showed that all were similar to the strains circulating in Kenya during 2006–2007. A national cross-sectional serologic survey among slaughterhouse workers at high risk showed that RVFV circulation during the 2008 outbreaks included all of the Malagasy regions and that the virus has circulated in at least 92 of Madagascar’s 111 districts. To better predict and respond to RVF outbreaks in Madagascar, further epidemiologic studies are needed, such as RVFV complete genome analysis, ruminant movement mapping, and surveillance implementation. PMID:20507747

  1. Liquefaction sites, Imperial Valley, California.

    USGS Publications Warehouse

    Youd, T.L.; Bennett, M.J.

    1983-01-01

    Sands that did and did not liquefy at two sites during the 1979 Imperial Valley, Calif., earthquake (ML = 6.6) are identified and their properties evaluated. SPT tests were used to evaluate liquefaction susceptibility. Loose fine sands in an abandoned channel liquefied and produced sand boils, ground fissures, and a lateral spread at the Heber Road sites. Evidence of liquefaction was not observed over moderately dense over-bank sand east of the channel nor over dense point-bar sand to the west. -from ASCE Publications Information

  2. Kinematics at the Intersection of the Garlock and Death Valley Fault Zones, California: Integration of TM Data and Field Studies

    NASA Technical Reports Server (NTRS)

    Verosub, Kenneth L.; Brady, Roland H., III; Abrams, Michael

    1989-01-01

    Kinematic relationships at the intersection of the southern Death Valley and Garlock fault zones were examined to identify and delineate the eastern structural boundary between the Mojave and the Basin and Range geologic terrains, and to construct a model for the evolution of this boundary through time. In order to accomplish this, satellite imagery was combined with field investigations to study six areas in the vicinity of the intersection, or possible extensions, of the fault zones. The information gathered from these areas allows the test of various hypotheses that were proposed to explain the interaction between the Death Valley and Garlock fault zones.

  3. Aquaculture in the Imperial Valley -- A geothermal success story

    SciTech Connect

    Rafferty, K.

    1999-03-01

    The Salton Sea and Imperial Valley area of southern California has long been recognized as a hot spot of geothermal development. In the geothermal industry, this area has for some time been synonymous with electric power generation projects. Starting with the first plant in East Mesa in 1979, geothermal power has increased over the years to the present 400+ MW of installed capacity in the three primary areas of Salton Sea, Heber and East Mesa. Although most in the industry are aware of the millions of kilowatt-hours annually produced in this desert oasis of development, they remain surprisingly uninformed about the Valley`s other geothermal industry -- aquaculture. At present, there are approximately 15 fish farming (or aquaculture) operations clustered, for the most part, around the Salton Sea. All of these farms use geothermal fluids to control the temperature of the fish culture facilities so as to produce larger fish in a shorter period of time and to permit winter production which would otherwise not be possible. In aggregate, these farms produce on the order of 10,000,000 lbs of fish per year most of which is sold into the California market. Principle species are catfish, striped bass and tilapia. For the past several years, tilapia has been the fastest growing part of the aquaculture industry. In 1996, the total US consumption of tilapia was 62,000 lbs. Of this, only 16,000,000 lbs (26%) was domestically produced and the balance imported. The primary market for the fish on the West Coast is among the Asian-American populations in the major cities. Fish are shipped and sold liver at the retail level.

  4. Geologic history of the Yosemite Valley

    USGS Publications Warehouse

    Matthes, Francois E.

    1930-01-01

    Projection of the longitudinal profiles of these hanging valleys forward to the axis of the Merced Canyon shows that they are closely accordant in height. Their profiles indicate a series of points on a former profile of the Merced with respect to which the side streams had graded their courses prior to the last uplift. This old profile can be extended upward into the glaciated part of the Merced Canyon above El Portal and even into the profoundly glaciated Yosemite Valley, accordant points being furnished by a number of hanging side valleys (due allowance being made for glacial erosion suffered by those valleys). However, not all the hanging valleys of the Yosemite region are accordant with this set. Several of them, including the upland valley of Yosemite Creek, constitute a separate set indicating another old profile of the Merced at a level 600 to 1,000 feet higher than the first. Others, including the hanging gulch of lower Bridalveil Creek, point to an old profile of the Merced about 1,200 feet lower than the first. There are thus three distinct sets of hanging valleys produced in three cycles of stream erosion. The valleys of the upper set, like those of the middle set, were left hanging as a result of rapid trenching by the Merced induced by an uplift of the range, there having been two such uplifts. Only the valleys of the lower set hang because of glacial deepening and widening of the Yosemite Valley, the cycle in which they were cut having been interrupted by the advent of the Pleistocene glaciers. They consequently indicate the preglacial depth of the Yosemite Valley. That depth, measured from the brow of El Capitan, was about 2,400 feet; measured from the rim at Glacier Point it was about 2,000 feet.

  5. Origin and character of loesslike silt in the southern Qinghai-Xizang (Tibet) Plateau, China

    USGS Publications Warehouse

    Pewe, T.L.; Tungsheng, Liu; Slatt, R.M.; Bingyuan, Li

    1995-01-01

    Retransported, tan, loesslike silt is widespread in the southern Qinghai-Xizang (Tibet) Plateau. The silt occurs mainly in the lowlands and lower slopes and is absent on steep slopes and active flood plains. The silt covers most alluvial fans and is interbedded with the sand and gravel of the fans. It is well exposed in the agricultural fields on low terraces in the valleys and in the steep-walled scarps of dissected valley fill. The silt is primary loess on the low hill tops; however, the poorly to well-stratified loesslike silt on the lower slopes and in valley bottoms of the major river valleys is retransported loess. It probably was originally deposited by winds blowing across broad vegetation-free flood plains.

  6. A respiratory alert model for the Shenandoah Valley, Virginia, USA

    NASA Astrophysics Data System (ADS)

    Hondula, David M.; Davis, Robert E.; Knight, David B.; Sitka, Luke J.; Enfield, Kyle; Gawtry, Stephen B.; Stenger, Phillip J.; Deaton, Michael L.; Normile, Caroline P.; Lee, Temple R.

    2013-01-01

    Respiratory morbidity (particularly COPD and asthma) can be influenced by short-term weather fluctuations that affect air quality and lung function. We developed a model to evaluate meteorological conditions associated with respiratory hospital admissions in the Shenandoah Valley of Virginia, USA. We generated ensembles of classification trees based on six years of respiratory-related hospital admissions (64,620 cases) and a suite of 83 potential environmental predictor variables. As our goal was to identify short-term weather linkages to high admission periods, the dependent variable was formulated as a binary classification of five-day moving average respiratory admission departures from the seasonal mean value. Accounting for seasonality removed the long-term apparent inverse relationship between temperature and admissions. We generated eight total models specific to the northern and southern portions of the valley for each season. All eight models demonstrate predictive skill (mean odds ratio = 3.635) when evaluated using a randomization procedure. The predictor variables selected by the ensembling algorithm vary across models, and both meteorological and air quality variables are included. In general, the models indicate complex linkages between respiratory health and environmental conditions that may be difficult to identify using more traditional approaches.

  7. Audiomagnetotelluric investigation of Snake Valley, eastern Nevada and western Utah

    USGS Publications Warehouse

    McPhee, Darcy K.; Pari, Keith; Baird, Frank

    2009-01-01

    As support for an exploratory well-drilling and hydraulic-testing program, AMT data were collected using a Geometrics Stratagem EH4 system along four profiles that extend roughly east-west from the southern Snake Range into Snake Valley. The profiles range from 3 to 5 kilometers in length, and station spacing was 200 to 400 meters. Two-dimensional inverse models were computed using the data from the transverse-electric (TE), transverse-magnetic (TM), and combined (TE+TM) mode using a conjugate gradient, finite-difference method. Interpretation of the 2-D AMT models defines several faults, some of which may influence ground-water flow in the basins, as well as identify underlying Paleozoic carbonate and clastic rocks and the thickness of basin-fill sediments. These AMT data and models, coupled with the geologic mapping and other surface geophysical methods, form the basis for identifying potential well sites and defining the subsurface structures and stratigraphy within Snake Valley.

  8. Biostratigraphy of marine Pliocene-Pleistocene deposits, Simi Valley, California

    SciTech Connect

    Groves, L.T.; Squires, R.L.

    1988-03-01

    Richly fossiliferous, marine deltaic deposits exposed in the northern Simi Valley, southern California, are important biostratigraphically because they straddle the Pliocene-Pleistocene boundary. These deposits consist of fine to coarse-grained sandstone with interbedded conglomerate. The best exposure is in Gilibrand Quarry, where 250 m are exposed in a continuous section with four main fossiliferous zones rich in mollusks. Most of these mollusks are complete and display growth series that represent a life assemblage with minimal postmortem transport. An erosional surface is present between the second and third fossiliferous beds in the quarry. Beds below the erosional surface contain mollusks indicative of Pliocene age. These mollusks are the pectinid Patinopecten healeyi and the epitoniid gastropod Opalia varicostata. Beds above the erosional surface contain a calcareous nannofossil assemblage that suggests a Pleistocene age. These species are Coccolithus pelagicus, Helicosphaera carteri, and Dictyococcites productus. (An absence of discoaster species and Emiliana huxleyi would place this assemblage in the early or medial Pleistocene.) The name lower Saugus Formation is assigned to all of these marine Pliocene-Pleistocene deposits because W.S. W. Kew in 124 originally named and mapped these strata as Saugus Formation. Confusion will be avoided by discontinuing usage of the names Fernando Formation, Pico Formation, and Sunshine Ranch Member of the Saugus Formation in this area for these strata. The lower Saugus Formation in the Simi Valley is faunally similar and time-correlate with the San Diego Formation in San Diego County.

  9. Modeling Events in the Lower Imperial Valley Basin

    NASA Astrophysics Data System (ADS)

    Tian, X.; Wei, S.; Zhan, Z.; Fielding, E. J.; Helmberger, D. V.

    2010-12-01

    The Imperial Valley below the US-Mexican border has few seismic stations but many significant earthquakes. Many of these events, such as the recent El Mayor-Cucapah event, have complex mechanisms involving a mixture of strike-slip and normal slip patterns with now over 30 aftershocks with magnitude over 4.5. Unfortunately, many earthquake records from the Southern Imperial Valley display a great deal of complexity, ie., strong Rayleigh wave multipathing and extended codas. In short, regional recordings in the US are too complex to easily separate source properties from complex propagation. Fortunately, the Dec 30 foreshock (Mw=5.9) has excellent recordings teleseismically and regionally, and moreover is observed with InSAR. We use this simple strike-slip event to calibrate paths. In particular, we are finding record segments involving Pnl (including depth phases) and some surface waves (mostly Love waves) that appear well behaved, ie., can be approximated by synthetics from 1D local models and events modeled with the Cut-and-Paste (CAP) routine. Simple events can then be identified along with path calibration. Modeling the more complicated paths can be started with known mechanisms. We will report on both the aftershocks and historic events.

  10. A respiratory alert model for the Shenandoah Valley, Virginia, USA.

    PubMed

    Hondula, David M; Davis, Robert E; Knight, David B; Sitka, Luke J; Enfield, Kyle; Gawtry, Stephen B; Stenger, Phillip J; Deaton, Michael L; Normile, Caroline P; Lee, Temple R

    2013-01-01

    Respiratory morbidity (particularly COPD and asthma) can be influenced by short-term weather fluctuations that affect air quality and lung function. We developed a model to evaluate meteorological conditions associated with respiratory hospital admissions in the Shenandoah Valley of Virginia, USA. We generated ensembles of classification trees based on six years of respiratory-related hospital admissions (64,620 cases) and a suite of 83 potential environmental predictor variables. As our goal was to identify short-term weather linkages to high admission periods, the dependent variable was formulated as a binary classification of five-day moving average respiratory admission departures from the seasonal mean value. Accounting for seasonality removed the long-term apparent inverse relationship between temperature and admissions. We generated eight total models specific to the northern and southern portions of the valley for each season. All eight models demonstrate predictive skill (mean odds ratio = 3.635) when evaluated using a randomization procedure. The predictor variables selected by the ensembling algorithm vary across models, and both meteorological and air quality variables are included. In general, the models indicate complex linkages between respiratory health and environmental conditions that may be difficult to identify using more traditional approaches. PMID:22438053

  11. Valley-dependent band structure and valley polarization in periodically modulated graphene

    NASA Astrophysics Data System (ADS)

    Lu, Wei-Tao

    2016-08-01

    The valley-dependent energy band and transport property of graphene under a periodic magnetic-strained field are studied, where the time-reversal symmetry is broken and the valley degeneracy is lifted. The considered superlattice is composed of two different barriers, providing more degrees of freedom for engineering the electronic structure. The electrons near the K and K' valleys are dominated by different effective superlattices. It is found that the energy bands for both valleys are symmetric with respect to ky=-(AM+ξ AS) /4 under the symmetric superlattices. More finite-energy Dirac points, more prominent collimation behavior, and new crossing points are found for K' valley. The degenerate miniband near the K valley splits into two subminibands and produces a new band gap under the asymmetric superlattices. The velocity for the K' valley is greatly renormalized compared with the K valley, and so we can achieve a finite velocity for the K valley while the velocity for the K' valley is zero. Especially, the miniband and band gap could be manipulated independently, leading to an increase of the conductance. The characteristics of the band structure are reflected in the transmission spectra. The Dirac points and the crossing points appear as pronounced peaks in transmission. A remarkable valley polarization is obtained which is robust to the disorder and can be controlled by the strain, the period, and the voltage.

  12. Beaver assisted river valley formation

    USGS Publications Warehouse

    Westbrook, C.J.; Cooper, D.J.; Baker, B.W.

    2011-01-01

    We examined how beaver dams affect key ecosystem processes, including pattern and process of sediment deposition, the composition and spatial pattern of vegetation, and nutrient loading and processing. We provide new evidence for the formation of heterogeneous beaver meadows on riverine system floodplains and terraces where dynamic flows are capable of breaching in-channel beaver dams. Our data show a 1.7-m high beaver dam triggered overbank flooding that drowned vegetation in areas deeply flooded, deposited nutrient-rich sediment in a spatially heterogeneous pattern on the floodplain and terrace, and scoured soils in other areas. The site quickly de-watered following the dam breach by high stream flows, protecting the deposited sediment from future re-mobilization by overbank floods. Bare sediment either exposed by scouring or deposited by the beaver flood was quickly colonized by a spatially heterogeneous plant community, forming a beaver meadow. Many willow and some aspen seedlings established in the more heavily disturbed areas, suggesting the site may succeed to a willow carr plant community suitable for future beaver re-occupation. We expand existing theory beyond the beaver pond to include terraces within valleys. This more fully explains how beavers can help drive the formation of alluvial valleys and their complex vegetation patterns as was first postulated by Ruedemann and Schoonmaker in 1938. ?? 2010 John Wiley & Sons, Ltd.

  13. 27 CFR 9.153 - Redwood Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Redwood Valley. 9.153 Section 9.153 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.153 Redwood Valley. (a) Name. The name of...

  14. 27 CFR 9.82 - Potter Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Potter Valley. 9.82 Section 9.82 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.82 Potter Valley. (a) Name. The name of the...

  15. 27 CFR 9.86 - Anderson Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Anderson Valley. 9.86 Section 9.86 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.86 Anderson Valley. (a) Name. The name of...

  16. 27 CFR 9.212 - Leona Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Leona Valley. 9.212...) Approved maps. The four United States Geological Survey 1:24,000 scale topographic maps used to determine the boundary of the Leona Valley viticultural area are titled: (1) Ritter Ridge, Calif.,...

  17. Valley Pearl’ table grape

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Valley Pearl’ is an early to mid-season, white seedless table grape (Vitis vinifera L.) suitable for commercial table grape production where V. vinifera can be grown. Significant characteristics of ‘Valley Pearl’ are its high and consistent fruit production on spur pruned vines and large round berr...

  18. 27 CFR 9.142 - Bennett Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Bennett Valley. 9.142... Bennett Valley. (a) Name. The name of the viticultural area described in this section is “Bennett Valley”. (b) Approved maps. The appropriate maps for determining the boundary of the Bennett...

  19. 27 CFR 9.142 - Bennett Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Bennett Valley. 9.142... Bennett Valley. (a) Name. The name of the viticultural area described in this section is “Bennett Valley”. (b) Approved maps. The appropriate maps for determining the boundary of the Bennett...

  20. 27 CFR 9.142 - Bennett Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Bennett Valley. 9.142... Bennett Valley. (a) Name. The name of the viticultural area described in this section is “Bennett Valley”. (b) Approved maps. The appropriate maps for determining the boundary of the Bennett...

  1. 27 CFR 9.142 - Bennett Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Bennett Valley. 9.142... Bennett Valley. (a) Name. The name of the viticultural area described in this section is “Bennett Valley”. (b) Approved maps. The appropriate maps for determining the boundary of the Bennett...

  2. 27 CFR 9.142 - Bennett Valley.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Bennett Valley. 9.142... Bennett Valley. (a) Name. The name of the viticultural area described in this section is “Bennett Valley”. (b) Approved maps. The appropriate maps for determining the boundary of the Bennett...

  3. Atmospheric dispersion in mountain valleys and basins

    SciTech Connect

    Allwine, K.J.

    1992-01-01

    The primary goal of the research is to further characterize and understand dispersion in valley and basin atmospheres. A secondary, and related goal, is to identify and understand the dominant physical processes governing this dispersion. This has been accomplished through a review of the current literature, and analyses of recently collected data from two field experiments. This work should contribute to an improved understanding of material transport in the atmospheric boundary layer. It was found that dispersion in a freely draining valley (Brush Creek valley, CO) atmosphere is much greater than in an enclosed basin (Roanoke, VA) atmosphere primarily because of the greater wind speeds moving past the release point and the greater turbulence levels. The development of a cold air pool in the Roanoke basin is the dominant process governing nighttime dispersion in the basin, while the nighttime dispersion in the Brush Creek valley is dominated by turbulent diffusion and plume confinement between the valley sidewalls. The interaction between valley flows and above ridgetops flows is investigated. A ventilation rate'' of material transport between the valley and above ridgetop flows is determined. This is important in regional air pollution modeling and global climate modeling. A simple model of dispersion in valleys, applicable through a diurnal cycle, is proposed.

  4. Atmospheric dispersion in mountain valleys and basins

    SciTech Connect

    Allwine, K.J.

    1992-01-01

    The primary goal of the research is to further characterize and understand dispersion in valley and basin atmospheres. A secondary, and related goal, is to identify and understand the dominant physical processes governing this dispersion. This has been accomplished through a review of the current literature, and analyses of recently collected data from two field experiments. This work should contribute to an improved understanding of material transport in the atmospheric boundary layer. It was found that dispersion in a freely draining valley (Brush Creek valley, CO) atmosphere is much greater than in an enclosed basin (Roanoke, VA) atmosphere primarily because of the greater wind speeds moving past the release point and the greater turbulence levels. The development of a cold air pool in the Roanoke basin is the dominant process governing nighttime dispersion in the basin, while the nighttime dispersion in the Brush Creek valley is dominated by turbulent diffusion and plume confinement between the valley sidewalls. The interaction between valley flows and above ridgetops flows is investigated. A ``ventilation rate`` of material transport between the valley and above ridgetop flows is determined. This is important in regional air pollution modeling and global climate modeling. A simple model of dispersion in valleys, applicable through a diurnal cycle, is proposed.

  5. Detection and Response for Rift Valley fever

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rift Valley fever is a viral disease that impacts domestic livestock and humans in Africa and the Middle East, and poses a threat to military operations in these areas. We describe a Rift Valley fever Risk Monitoring website, and its ability to predict risk of disease temporally and spatially. We al...

  6. The San Joaquin Valley: 20 years later

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The history of irrigation development and the need for disposal of saline drainage water in the San Joaquin Valley was described to provide background for the drainage water disposal problem that resulted from the closure of the Kesterson Reservoir. A 5 year study developed in Valley alternatives fo...

  7. 1. ELEVATION OF BUILDING 223, LOOKING EASTNORTHEAST. Mill Valley ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. ELEVATION OF BUILDING 223, LOOKING EAST-NORTHEAST. - Mill Valley Air Force Station, Civil Engineering Administration Office, East Ridgecrest Boulevard, Mount Tamalpais, Mill Valley, Marin County, CA

  8. Valley Vortex States in Sonic Crystals

    NASA Astrophysics Data System (ADS)

    Lu, Jiuyang; Qiu, Chunyin; Ke, Manzhu; Liu, Zhengyou

    2016-03-01

    Valleytronics is quickly emerging as an exciting field in fundamental and applied research. In this Letter, we study the acoustic version of valley states in sonic crystals and reveal a vortex nature of such states. In addition to the selection rules established for exciting valley polarized states, a mimicked valley Hall effect of sound is proposed further. The extraordinary chirality of valley vortex states, detectable in experiments, may open a new possibility in sound manipulations. This is appealing to scalar acoustics that lacks a spin degree of freedom inherently. In addition, the valley selection enables a handy way to create vortex matter in acoustics, in which the vortex chirality can be controlled flexibly. Potential applications can be anticipated with the exotic interaction of acoustic vortices with matter, such as to trigger the rotation of the trapped microparticles without contact.

  9. The Long Valley Caldera GIS database

    USGS Publications Warehouse

    Battaglia, Maurizio; Williams, M.J.; Venezky, D.Y.; Hill, D.P.; Langbein, J.O.; Farrar, C.D.; Howle, J.F.; Sneed, M.; Segall, P.

    2003-01-01

    This database provides an overview of the studies being conducted by the Long Valley Observatory in eastern California from 1975 to 2001. The database includes geologic, monitoring, and topographic datasets related to Long Valley caldera. The CD-ROM contains a scan of the original geologic map of the Long Valley region by R. Bailey. Real-time data of the current activity of the caldera (including earthquakes, ground deformation and the release of volcanic gas), information about volcanic hazards and the USGS response plan are available online at the Long Valley observatory web page (http://lvo.wr.usgs.gov). If you have any comments or questions about this database, please contact the Scientist in Charge of the Long Valley observatory.

  10. Josephson π state induced by valley polarization

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Yang, Y. H.; Chan, K. S.

    2014-02-01

    We theoretically explore possible π-state Josephson junctions made from graphene-like two-dimensional materials (G) with the honeycomb lattice structure. It is shown that the valley polarization in the G sheet could lead to a 0-π state transition of the Josephson junction because of the valley-singlet Cooper pairs acquiring a nonzero momentum. When the valley-mixing scattering exists in the interfaces of the junction due to lattice mismatch, an odd-frequency valley-triplet supercurrent flows in the system even though the G sheet is fully valley polarized, and the supercurrent is characterized by a rapid atomic-scale oscillation with a periodicity of three lattice constants.

  11. Erosional valleys in the Thaumasia region of Mars: Hydrothermal and seismic origins

    USGS Publications Warehouse

    Tanaka, K.L.; Dohm, J.M.; Lias, J.H.; Hare, T.M.

    1998-01-01

    Analysis of erosional valleys, geologic materials and features, and topography through time in the Thaumasia region of Mars using co-registered digital spatial data sets reveals significant associations that relate to valley origin. Valleys tend to originate (1) on Noachian to Early Hesperian (stages 1 and 2) large volcanoes, (2) within 50-100 km of stages 1 and 2 rift systems, and (3) within 100 km of Noachian (stage 1) impact craters >50 km in diameter. These geologic preferences explain observations of higher valley-source densities (VSDs) in areas of higher elevations and regional slopes (>1??) because the volcanoes, rifts, and craters form high, steep topography or occur in terrain of high relief. Other stage 1 and stage 2 high, steep terrains, however, do not show high VSDs. The tendency for valleys to concentrate near geologic features and the overall low drainage densities in Thaumasia compared to terrestrial surfaces rule out widespread precipitation as a major factor in valley formation (as is proposed in wann, wet climate scenarios) except perhaps during the Early Noachian, for which much of the geologic record has been obliterated. Instead, volcanoes and rifts may indicate the presence of shallow crustal intrusions that could lead to local hydrothermal circulation, melting of ground ice and snow, and groundwater sapping. However, impact-crater melt would provide a heat source at the surface that might drive away water, forming valleys in the process. Post-stage 1 craters mostly have low nearby VSDs, which, for valleys incised in older rocks, suggests burial by e??jecta and, for . younger valleys, may indicate desiccation of near-surface water and deepening of the cryosphere. Later Hesperian and Amazonian (stages 3 and 4) valleys originate within 100-200 km of three young, large impact craters and near rifts systems at Warrego Valle??s and the southern part of Coprates rise. These valleys likely developed when the cryosphere was a couple kilometers or

  12. Lithological and structural controls for glacial valley development in the Valais, Swiss Alps

    NASA Astrophysics Data System (ADS)

    Valla, P. G.; Herman, F.; Champagnac, J.-D.

    2009-04-01

    variations. These results clearly indicate that glacial erosion can be highly modulated by structural and lithological conditions. References : - Anderson, R. S., Molnar, P. and Kessler, M. A. (2006). Features of glacial valley profiles simply explained. Journal of Geophysical Research Earth Surface, 111 (1), F01004. - Champagnac, J.-D., Sue, C., Delacou, B. and Burkhard, M. (2003). Brittle orogen-parallel extension in the internal zones of the Swiss Alps (South Valais). Ecologae Geologicae Helvetiae, 96 (3), pp. 325-338. - Harbor, J. M. (1995). Development of glacial-valley cross sections under conditions of spatially variable resistance to erosion. Geomorphology, 14 (2), pp. 99-10. - Herman, F. and Braun, J. (2008). Evolution of the glacial landscape of the Southern Alps of New Zealand: Insights from a glacial erosion model. Journal of Geophysical Research Earth Surface, 113 (2), F02009. - Hubbard, M., Mancktelow, N.S. (1992). Lateral displacement during Neogene convergence in the western and central Alps. Geology, 20 (10), pp. 943-946. - Hinderer, M. (2001). Late quaternary denudation of the Alps, Valley and lake fillings and modern river loads. Geodinamica Acta, 14 (4), pp. 231-263. - Kelly, M. A., Buoncristiani, J.-F. and Schlüchter, C. (2004). A reconstruction of the last glacial maximum (LGM) ice-surface geometry in the western Swiss Alps and contiguous Alpine regions in Italy and France. Eclogae Geologicae Helvetiae, 97(1), pp. 57-75. - MacGregor, K. R., Anderson, R. S., Anderson, S. P. and Waddington, E. D. (2000). Numerical simulations of glacial-valley longitudinal profile evolution. Geology, 28(11), pp. 1031-1034.

  13. Transforming the "Valley of Death" into a "Valley of Opportunity"

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Merceret, Francis J.; O'Brien, T. P.; Roeder, William P.; Huddleston, Lisa L.; Bauman, William H., III

    2014-01-01

    Transitioning technology from research to operations (23 R2O) is difficult. The problem's importance is exemplified in the literature and in every failed attempt to do so. Although the R2O gap is often called the "valley of death", a recent a Space Weather editorial called it a "Valley of Opportunity". There are significant opportunities for space weather organizations to learn from the terrestrial experience. Dedicated R2O organizations like those of the various NOAA testbeds and collaborative "proving ground" projects take common approaches to improving terrestrial weather forecasting through the early transition of research capabilities into the operational environment. Here we present experience-proven principles for the establishment and operation of similar space weather organizations, public or private. These principles were developed and currently being demonstrated by NASA at the Applied Meteorology Unit (AMU) and the Short-term Prediction Research and Transition (SPoRT) Center. The AMU was established in 1991 jointly by NASA, the U.S. Air Force (USAF) and the National Weather Service (NWS) to provide tools and techniques for improving weather support to the Space Shuttle Program (Madura et al., 2011). The primary customers were the USAF 45th Weather Squadron (45 WS) and the NWS Spaceflight Meteorology Group (SMG who provided the weather observing and forecast support for Shuttle operations). SPoRT was established in 2002 to transition NASA satellite and remote-sensing technology to the NWS. The continuing success of these organizations suggests the common principles guiding them may be valuable for similar endeavors in the space weather arena.

  14. Water availability and land subsidence in the Central Valley, California, USA

    NASA Astrophysics Data System (ADS)

    Faunt, Claudia C.; Sneed, Michelle; Traum, Jon; Brandt, Justin T.

    2015-11-01

    The Central Valley in California (USA) covers about 52,000 km2 and is one of the most productive agricultural regions in the world. This agriculture relies heavily on surface-water diversions and groundwater pumpage to meet irrigation water demand. Because the valley is semi-arid and surface-water availability varies substantially, agriculture relies heavily on local groundwater. In the southern two thirds of the valley, the San Joaquin Valley, historic and recent groundwater pumpage has caused significant and extensive drawdowns, aquifer-system compaction and subsidence. During recent drought periods (2007-2009 and 2012-present), groundwater pumping has increased owing to a combination of decreased surface-water availability and land-use changes. Declining groundwater levels, approaching or surpassing historical low levels, have caused accelerated and renewed compaction and subsidence that likely is mostly permanent. The subsidence has caused operational, maintenance, and construction-design problems for water-delivery and flood-control canals in the San Joaquin Valley. Planning for the effects of continued subsidence in the area is important for water agencies. As land use, managed aquifer recharge, and surface-water availability continue to vary, long-term groundwater-level and subsidence monitoring and modelling are critical to understanding the dynamics of historical and continued groundwater use resulting in additional water-level and groundwater storage declines, and associated subsidence. Modeling tools such as the Central Valley Hydrologic Model, can be used in the evaluation of management strategies to mitigate adverse impacts due to subsidence while also optimizing water availability. This knowledge will be critical for successful implementation of recent legislation aimed toward sustainable groundwater use.

  15. Delineation of the Pahute Mesa–Oasis Valley groundwater basin, Nevada

    USGS Publications Warehouse

    Fenelon, Joseph M.; Halford, Keith J.; Moreo, Michael T.

    2016-01-01

    This report delineates the Pahute Mesa–Oasis Valley (PMOV) groundwater basin, where recharge occurs, moves downgradient, and discharges to Oasis Valley, Nevada. About 5,900 acre-feet of water discharges annually from Oasis Valley, an area of springs and seeps near the town of Beatty in southern Nevada. Radionuclides in groundwater beneath Pahute Mesa, an area of historical underground nuclear testing at the Nevada National Security Site, are believed to be migrating toward Oasis Valley. Delineating the boundary of the PMOV groundwater basin is necessary to adequately assess the potential for transport of radionuclides from Pahute Mesa to Oasis Valley.The PMOV contributing area is defined based on regional water-level contours, geologic controls, and knowledge of adjacent flow systems. The viability of this area as the contributing area to Oasis Valley and the absence of significant interbasin flow between the PMOV groundwater basin and adjacent basins are shown regionally and locally. Regional constraints on the location of the contributing area boundary and on the absence of interbasin groundwater flow are shown by balancing groundwater discharges in the PMOV groundwater basin and adjacent basins against available water from precipitation. Internal consistency for the delineated contributing area is shown by matching measured water levels, groundwater discharges, and transmissivities with simulated results from a single-layer, steady-state, groundwater-flow model. An alternative basin boundary extending farther north than the final boundary was rejected based on a poor chloride mass balance and a large imbalance in the northern area between preferred and simulated recharge.

  16. Water availability and land subsidence in the Central Valley, California, USA

    NASA Astrophysics Data System (ADS)

    Faunt, Claudia C.; Sneed, Michelle; Traum, Jon; Brandt, Justin T.

    2016-05-01

    The Central Valley in California (USA) covers about 52,000 km2 and is one of the most productive agricultural regions in the world. This agriculture relies heavily on surface-water diversions and groundwater pumpage to meet irrigation water demand. Because the valley is semi-arid and surface-water availability varies substantially, agriculture relies heavily on local groundwater. In the southern two thirds of the valley, the San Joaquin Valley, historic and recent groundwater pumpage has caused significant and extensive drawdowns, aquifer-system compaction and subsidence. During recent drought periods (2007-2009 and 2012-present), groundwater pumping has increased owing to a combination of decreased surface-water availability and land-use changes. Declining groundwater levels, approaching or surpassing historical low levels, have caused accelerated and renewed compaction and subsidence that likely is mostly permanent. The subsidence has caused operational, maintenance, and construction-design problems for water-delivery and flood-control canals in the San Joaquin Valley. Planning for the effects of continued subsidence in the area is important for water agencies. As land use, managed aquifer recharge, and surface-water availability continue to vary, long-term groundwater-level and subsidence monitoring and modelling are critical to understanding the dynamics of historical and continued groundwater use resulting in additional water-level and groundwater storage declines, and associated subsidence. Modeling tools such as the Central Valley Hydrologic Model, can be used in the evaluation of management strategies to mitigate adverse impacts due to subsidence while also optimizing water availability. This knowledge will be critical for successful implementation of recent legislation aimed toward sustainable groundwater use.

  17. Aeromagnetic maps with geologic interpretations for the Tularosa Valley, south-central New Mexico

    USGS Publications Warehouse

    Bath, G.D.

    1977-01-01

    An aeromagnetic survey of the Tularosa Valley in south-central New Mexico has provided information on the igneous rocks that are buried beneath alluvium and colluvium. The data, compiled as residual magnetic anomalies, are shown on twelve maps at a scale of 1:62,500. Measurements of magnetic properties of samples collected in the valley and adjacent highlands give a basis for identifying the anomaly-producing rocks. Precambrian rocks of the crystalline basement have weakly induced magnetizations and produce anomalies having low magnetic intensities and low magnetic gradients. Late Cretaceous and Cenozoic intrusive rocks have moderately to strongly induced magnetizations. Precambrian rocks produce prominent magnetic anomalies having higher amplitudes and higher gradients. The Quaternary basalt has a strong remanent magnetization of normal polarity and produces narrow anomalies having high-magnetic gradients. Interpretations include an increase in elevation to the top of buried Precambrian rock in the northern part of the valley, a large Late Cretaceous and Cenozoic intrusive near Alamogordo, and a southern extension of the intrusive rock exposed in the Jarilla Mountains. Evidence for the southern extension comes from a quantitative analysis of the magnetic anomalies..

  18. Specters of Waste in India's "Silicon Valley": The Underside of Bangalore's Hi-Tech Economy

    ERIC Educational Resources Information Center

    Narayanareddy, Rajyashree

    2011-01-01

    The southern Indian city of Bangalore is extolled as India's "Silicon Valley," emerging over the past decade as a premier site for capital flows into India's Information Technology (IT) sector. In the dominant narrative of globalization Bangalore is lauded as an aspiring "global city" that attracts sizeable quantities…

  19. Pearl southern highbush blueberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA-ARS Southern Horticulture has developed and released a new productive early ripening southern highbush blueberry cultivar, Pearl. 'Pearl', tested as MS 812, came from the cross Bluecrisp X Magnolia. The pedigree of Bluecrisp is unknown but it was tested as Fla 84-40, and Magnolia came fr...

  20. Wave propagation and site response in the Santa Clara Valley

    USGS Publications Warehouse

    Fletcher, Joe B.; Boatwright, J.; Lindh, A.G.

    2003-01-01

    Forty-two portable digital instruments were deployed across the Santa Clara Valley from June until early November 1998; this array recorded 14 small and moderate local events and 7 large teleseismic events. We analyze the ground motion from these events to determine station delays and relative site amplification within the Valley. P waves from an event at the southern edge of the valley are early (??t > -0.35 sec) at stations over an axial ridge in the basement interface in the middle of the valley, but late (??t < 0.20 sec) for stations over the Cupertino and Evergreen basins to either side. The S-wave delays are approximately twice as large. Teleseismic P-waves from an M = 7.0 event beneath the Bonin Islands show a similar pattern in travel-time delays. The P waves are amplified by factors of 1.5-3 for frequencies below 2 Hz at stations within either basin, compared with stations on the axial ridge. The P-wave coda appear enhanced at 2-3 sec, but coda Q estimates at frequencies from 0.2 to 1.1 Hz are not markedly different at stations over the basin compared with stations on the ridge with the possible exceptions of consistently high values over the northern end of the Evergreen Basin. We invert the S-wave spectra for site-specific attenuation and amplification from the 14 local events by assuming a common source spectra for each event, 1/r geometrical spreading, and constraining the inversion using the 30-m velocity profile at four stations in the array. The largest amplifications occurred in the 1- to 6-Hz band at stations near the northwest edge of the Evergreen basin. While the highest amplifications occur at stations with the lowest S-wave velocities, the scatter obscures the correlation between velocity and amplification. The stations in the basins are characterized by higher attenuation than the stations on the basement ridge.

  1. South: in the mild southern tradition

    SciTech Connect

    Price, T.L.

    1980-01-01

    Trends in the development of current and future energy resources in the southern states of the U.S. are reviewed. The south has the advantages of a mild climate and abundant sources of natural gas, coal, and hydro power, however, the supply and distribution of energy are primarily controlled by private and federal monopolies. The Tennessee Valley Authority (TVA) has a program for funding 100,000 solar domestic hot water systems plus low interest loans for wood heaters, zero interest conservation loans, and financing of passive solar homes. TVA will also construct a large passive solar complex. Other applications of solar technology discussed include installation in a brewery, apartment buildings, abandoned city housing, a duplex, an environmental center, a planned community, and a kiln company.

  2. There's hope in the valley.

    PubMed

    Elliott, Elizabeth; Latimer, Jane; Fitzpatrick, James; Oscar, June; Carter, Maureen

    2012-03-01

    Aboriginal women in the remote Fitzroy Valley region in Western Australia's Kimberley were concerned about high rates of alcohol use in pregnancy and its possible impact on child development. They successfully lobbied for restricted access to alcohol in 2007. In 2009 they developed a strategy for the diagnosis and prevention of Fetal Alcohol Spectrum Disorders (FASD) and the support of parents and carers of affected children. Aboriginal organisations then partnered with research and clinical groups from Sydney to conduct a FASD prevalence study. This commenced in 2010 following extensive community consultation and receipt of community consent. Data from this study are still being collected and will be used by the community to advocate for improved services and new models of health care. Prevention of FASD is important to optimise health and development for future generations of Aboriginal children and to ensure the transfer of culture and language from one generation to the next. PMID:22417462

  3. Climate-disease connections: Rift Valley Fever in Kenya

    NASA Technical Reports Server (NTRS)

    Anyamba, A.; Linthicum, K. J.; Tucker, C. J.

    2001-01-01

    All known Rift Valley fever(RVF) outbreaks in Kenya from 1950 to 1998 followed periods of abnormally high rainfall. On an interannual scale, periods of above normal rainfall in East Africa are associated with the warm phase of the El Nino/Southern Oscillation (ENSO) phenomenon. Anomalous rainfall floods mosquito-breeding habitats called dambos, which contain transovarially infected mosquito eggs. The eggs hatch Aedes mosquitoes that transmit the RVF virus preferentially to livestock and to humans as well. Analysis of historical data on RVF outbreaks and indicators of ENSO (including Pacific and Indian Ocean sea surface temperatures and the Southern Oscillation Index) indicates that more than three quarters of the RVF outbreaks have occurred during warm ENSO event periods. Mapping of ecological conditions using satellite normalized difference vegetation index (NDVI) data show that areas where outbreaks have occurred during the satellite recording period (1981-1998) show anomalous positive departures in vegetation greenness, an indicator of above-normal precipitation. This is particularly observed in arid areas of East Africa, which are predominantly impacted by this disease. These results indicate a close association between interannual climate variability and RVF outbreaks in Kenya.

  4. Holocene geologic slip rate for the Banning strand of the southern San Andreas Fault, southern California

    USGS Publications Warehouse

    Gold, Peter O.; Behr, Whitney M.; Rood, Dylan; Sharp, Warren D.; Rockwell, Thomas; Kendrick, Katherine J.; Salin, Aaron

    2015-01-01

    Northwest directed slip from the southern San Andreas Fault is transferred to the Mission Creek, Banning, and Garnet Hill fault strands in the northwestern Coachella Valley. How slip is partitioned between these three faults is critical to southern California seismic hazard estimates but is poorly understood. In this paper, we report the first slip rate measured for the Banning fault strand. We constrain the depositional age of an alluvial fan offset 25 ± 5 m from its source by the Banning strand to between 5.1 ± 0.4 ka (95% confidence interval (CI)) and 6.4 + 3.7/−2.1 ka (95% CI) using U-series dating of pedogenic carbonate clast coatings and 10Be cosmogenic nuclide exposure dating of surface clasts. We calculate a Holocene geologic slip rate for the Banning strand of 3.9 + 2.3/−1.6 mm/yr (median, 95% CI) to 4.9 + 1.0/−0.9 mm/yr (median, 95% CI). This rate represents only 25–35% of the total slip accommodated by this section of the southern San Andreas Fault, suggesting a model in which slip is less concentrated on the Banning strand than previously thought. In rejecting the possibility that the Banning strand is the dominant structure, our results highlight an even greater need for slip rate and paleoseismic measurements along faults in the northwestern Coachella Valley in order to test the validity of current earthquake hazard models. In addition, our comparison of ages measured with U-series and 10Be exposure dating demonstrates the importance of using multiple geochronometers when estimating the depositional age of alluvial landforms.

  5. Holocene geologic slip rate for the Banning strand of the southern San Andreas Fault, southern California

    NASA Astrophysics Data System (ADS)

    Gold, Peter O.; Behr, Whitney M.; Rood, Dylan; Sharp, Warren D.; Rockwell, Thomas K.; Kendrick, Katherine; Salin, Aaron

    2015-08-01

    Northwest directed slip from the southern San Andreas Fault is transferred to the Mission Creek, Banning, and Garnet Hill fault strands in the northwestern Coachella Valley. How slip is partitioned between these three faults is critical to southern California seismic hazard estimates but is poorly understood. In this paper, we report the first slip rate measured for the Banning fault strand. We constrain the depositional age of an alluvial fan offset 25 ± 5 m from its source by the Banning strand to between 5.1 ± 0.4 ka (95% confidence interval (CI)) and 6.4 + 3.7/-2.1 ka (95% CI) using U-series dating of pedogenic carbonate clast coatings and 10Be cosmogenic nuclide exposure dating of surface clasts. We calculate a Holocene geologic slip rate for the Banning strand of 3.9 + 2.3/-1.6 mm/yr (median, 95% CI) to 4.9 + 1.0/-0.9 mm/yr (median, 95% CI). This rate represents only 25-35% of the total slip accommodated by this section of the southern San Andreas Fault, suggesting a model in which slip is less concentrated on the Banning strand than previously thought. In rejecting the possibility that the Banning strand is the dominant structure, our results highlight an even greater need for slip rate and paleoseismic measurements along faults in the northwestern Coachella Valley in order to test the validity of current earthquake hazard models. In addition, our comparison of ages measured with U-series and 10Be exposure dating demonstrates the importance of using multiple geochronometers when estimating the depositional age of alluvial landforms.

  6. Long Valley Exploratory Well - Summary

    SciTech Connect

    Tennyson, George P. Jr.

    1992-03-24

    As was stated by the first presenter, the Long Valley Exploratory Well represents a vital linking of geothermal theory, technology and applications. The five presenters take us through that linking to the extent the current progress at the well makes that possible. The site is, of course, a geothermally rich resource, a ''recently active'' caldera. In many ways, the site has a wealth of data preceding the present work. It is a site which has excited the interest of the geothermal community for a long time. As is often the case in geothermal work, the prior data has raised as many questions as were answered. It is on this basis that the further exploration of a probable high temperature resource is being explored to great depths. The first presentation represents the cooperation and coordination maintained between similar elements of the Basic Energy Sciences programs and those in the Geothermal programs of DOE's Conservation and Renewable Energy activities. Similarly, the work exemplifies the close coordination of the DOE work with the U. S. Geological Survey, the National Science Foundation, and the U. S. Continental Scientific Drilling Program. The first presentation also represents the theoretical and modeling portion of the session. Appropriate to geothermal technology, the central programmatic theme is geophysical and geochemical aspects of fluid flow and interaction in porous and fractured rocks. It was interesting to note that even the theoretical work and modeling addressed the applicability to earth-based energy resources, and as well their utilization in a manner such as to assure environmental acceptability. Topics addressed included: (1) fundamental properties and interactions of rocks, mineral, and fluids; (2) transport and flow of fluids in rocks; and (3) structure of geologic units. The session continued with the description of the Phase II operations at the Long Valley Exploratory Well. The drilling operations were described as relatively trouble

  7. Timing of Mississippi Valley-type mineralization: Relation to Appalachian orogenic events

    SciTech Connect

    Kesler, S.E.; van der Pluijm, B.A. )

    1990-11-01

    Although Mississippi Valley-type deposits in Lower Ordovician carbonate rocks of the Appalachian orogen are commonly interpreted to have been precipitated by basinal brines, the timing of brine migration remains poorly known. Late Paleozoic K-Ar isotopic ages on authigenic K-feldspar, which is widespread in Appalachian carbonate rocks, as well as evidence of paleomagnetic overprints of similar age, have focused attention on the possibility that these Mississippi Valley-type deposits formed as a result of late Paleozoic deformation. Geologic and geochemical similarities among most of these deposits, from Georgia to Newfoundland, including unusually high sphalerite/galena ratios, isotopically heavy sulfur, and relatively nonradiogenic lead, suggest that they are coeval. Sphalerite sand that parallels host-rock layering in many of the deposits indicates that mineralization occurred before regional deformation. Although the late Paleozoic age of deformation in the southern Appalachians provides little constraint on the age of Mississippi Valley-type mineralization, deformation of these deposits in the Newfoundland Appalachians is early to middle Paleozoic in age. Thus, if Ordovician-hosted, Appalachian Mississippi Valley-type deposits are coeval, they must have formed by middle Paleozoic time and cannot be the product of a late Paleozoic fluid-expulsion event. This hypothesis has important implications for basin evolution, fluid events, and remagnetization in the Appalachians.

  8. Inland diatoms from the McMurdo Dry Valleys and James Ross Island, Antarctica

    USGS Publications Warehouse

    Esposito, R.M.M.; Spaulding, S.A.; McKnight, Diane M.; Van De Vijver, B.; Kopalova, K.; Lubinski, D.; Hall, B.; Whittaker, T.

    2008-01-01

    Diatom taxa present in the inland streams and lakes of the McMurdo Dry Valleys and James Ross Island, Antarctica, are presented in this paper. A total of nine taxa are illustrated, with descriptions of four new species (Luticola austroatlantica sp. nov., Luticola dolia sp. nov., Luticola laeta sp. nov., Muelleria supra sp. nov.). In the perennially ice-covered lakes of the McMurdo Dry Valleys, diatoms are confined to benthic mats within the photic zone. In streams, diatoms are attached to benthic surfaces and within the microbial mat matrix. One species, L. austroatlantica, is found on James Ross Island, of the southern Atlantic archipelago, and the McMurdo Dry Valleys. The McMurdo Dry Valley populations are at the lower range of the size spectrum for the species. Streams flow for 6-10 weeks during the austral summer, when temperatures and solar radiation allow glacial ice to melt. The diatom flora of the region is characterized by species assemblages favored under harsh conditions, with naviculoid taxa as the dominant group and several major diatom groups conspicuously absent. ?? 2008 NRC.

  9. Catastrophic flooding origin of shelf valley systems in the English Channel.

    PubMed

    Gupta, Sanjeev; Collier, Jenny S; Palmer-Felgate, Andy; Potter, Graeme

    2007-07-19

    Megaflood events involving sudden discharges of exceptionally large volumes of water are rare, but can significantly affect landscape evolution, continental-scale drainage patterns and climate change. It has been proposed that a significant flood event eroded a network of large ancient valleys on the floor of the English Channel-the narrow seaway between England and France. This hypothesis has remained untested through lack of direct evidence, and alternative non-catastrophist ideas have been entertained for valley formation. Here we analyse a new regional bathymetric map of part of the English Channel derived from high-resolution sonar data, which shows the morphology of the valley in unprecedented detail. We observe a large bedrock-floored valley that contains a distinct assemblage of landforms, including streamlined islands and longitudinal erosional grooves, which are indicative of large-scale subaerial erosion by high-magnitude water discharges. Our observations support the megaflood model, in which breaching of a rock dam at the Dover Strait instigated catastrophic drainage of a large pro-glacial lake in the southern North Sea basin. We suggest that megaflooding provides an explanation for the permanent isolation of Britain from mainland Europe during interglacial high-sea-level stands, and consequently for patterns of early human colonisation of Britain together with the large-scale reorganization of palaeodrainage in northwest Europe. PMID:17637667

  10. Late Pleistocene deglaciation in the upper Gállego Valley, central Pyrenees

    NASA Astrophysics Data System (ADS)

    Palacios, David; de Andrés, Nuria; López-Moreno, Juan I.; García-Ruiz, José M.

    2015-05-01

    Deglaciation processes in the upper Gállego Valley, central-southern Pyrenees, were studied using geomorphological mapping and 36Cl cosmogenic dating of moraine and rock glacier boulders, as well as polished bedrock. Although the precise position of the Gállego Glacier during the global last glacial maximum is not known, there is evidence that ice tongues retreated to the headwaters, which caused subdivision of the main glacier into a number of individual glaciers prior to 17 ka. A range of ages (16 to 11 ka) was found among three tributary valleys within the general trend of deglaciation. The retreat rate to cirque was estimated to be relatively rapid (approximately 5 km per ka). The mapped glacial sedimentology and geomorphology appears to support the occurrence of multiple minor advances and retreats, or periods of stasis during the late deglaciation. Geomorphological and geological differences among the tributary valleys, and error estimates associated with the results obtained, prevented unambiguous correlations of the advances with the late Pleistocene cold periods. During the latter advances, small glaciers and rock glaciers developed close to the cirque headwalls, and co-occurred under the same climatic conditions. No evidence for Holocene re-advance was found for any of the three tributary valleys.

  11. Southern Identity in "Southern Living" Magazine

    ERIC Educational Resources Information Center

    Lauder, Tracy

    2012-01-01

    A fantasy-theme analysis of the editors' letters in "Southern Living" magazine shows an editorial vision of valuing the past and showcasing unique regional qualities. In addition, a content analysis of the visual representation of race in the magazine's formative years and recent past validates that inhabitants of the region were portrayed…

  12. Shallow structure and deformation along the San Andreas fault in Cholame Valley, California, based on high-resolution reflection profiling

    SciTech Connect

    Shedlock, K.M.; Harding, S.T. ); Brocher, T.M. )

    1990-04-10

    The mapped active traces of the San Andreas fault are separated by a 1-km-wide right-stepping offset in Cholame Valley. The authors collected 18 km of high-resolution seismic reflection data specifically designed to image the San Andreas fault zone in the shallow crust surrounding this offset. The reflection profiles and available well data indicate that west of the mapped active traces of the San Andreas fault the shallow subsurface structure of the crust consists of thin ({le} 400 m thick), offset packages of reflections, laterally coherent on the scale of tens of meters, overlying deformed clastic sedimentary rocks. East of the San Andreas fault, the structure of the shallow crust in southern Cholame Valley is characterized by thick packages of reflections, laterally coherent on the scale of kilometers, overlying the Franciscan complex. All of the strata east of the fault (within Cholame Valley) dip toward the San Andreas fault and the offset, into an approximately 1-km-deep sedimentary basin abutting the south strand of San Andreas fault. The offset in Cholame Valley is characterized by a gentle downwarping of sediments into the offset, the presence of many small faults and discontinuous reflections between the traces of the main fault, localized subsidence abutting the main strike-slip fault, the formation of a basin, near the offset, that is about as deep as the jog is wide, and the southward propagation of the deformation associated with the offset. Strain field modeling based on simple geometries of the San Andreas and associated faults successfully predicts the general features of the observed topography and subsurface structure of southern Cholame Valley, including subsidence and basin formation near the offset, a discontinuous San Andreas fault plane, and at least one fault in southeastern Cholame Valley.

  13. Quaternary tectonics and basin history of Pahrump and Stewart Valleys, Nevada and California. [Yucca Mountain Project

    SciTech Connect

    Hoffard, J.L. )

    1991-05-01

    The Pahrump fault system is an active fault system located in Pahrump and Stewart Valleys, Nevada and California, in the southern part of the Basin and Range Province. This system is 50 km long by 30 km wide and is comprised of three fault zones: the right-lateral East Nopah fault zone, the right-oblique Pahrump Valley fault zone, and the normal West Spring Mountains fault zone. All three zones have geomorphic evidence for late Quaternary activity. Analysis of active fault patterns and seismic reflection lines suggests that the Pahrump basin has had a two-stage genesis, an early history associated with a period of low angle detachment faulting probably active 10-15 Ma, and a more recent history related to the present dextral shear system, probably active post-4 Ma.

  14. Quaternary tectonics and basin history of Pahrump and Stewart Valleys, Nevada and California

    SciTech Connect

    Hoffard, J.L.

    1991-05-01

    The Pahrump fault system is an active fault system located in Pahrump and Stewart Valleys, Nevada and California, in the southern part of the Basin and Range Province. This system is 50 km long by 30 km wide and is comprised of three fault zones: the right-lateral East Nopah fault zone, the right-oblique Pahrump Valley fault zone, and the normal West Spring Mountains fault zone. All three zones have geomorphic evidence for late Quaternary activity. Analysis of active fault patterns and seismic reflection lines suggests that the Pahrump basin has had a two-stage genesis, an early history associated with a period of low angle detachment faulting probably active 10-15 Ma, and a more recent history related to the present dextral shear system, probably active post-4 Ma.

  15. Interpretive geologic cross sections for the Death Valley regional flow system and surrounding areas, Nevada and California

    SciTech Connect

    D.S. Sweetkind; R.P. Dickerson; R.J. Blakely; P.D. Denning

    2001-11-09

    This report presents a network of 28 geologic cross sections that portray subsurface geologic relations within the Death Valley regional ground-water system, a ground-water basin that encompasses a 3 degree x 3 degree area (approximately 70,000 square kilometers) in southern Nevada and eastern California. The cross sections transect that part of the southern Great Basin that includes Death Valley, the Nevada Test Site, and the potential high-level nuclear waste underground repository at Yucca Mountain. The specific geometric relationships portrayed on the cross sections are discussed in the context of four general sub-regions that have stratigraphic similarities and general consistency of structural style: (1) the Nevada Test Site vicinity; (2) the Spring Mountains, Pahrump Valley and Amargosa Desert region; (3) the Death Valley region; and (4) the area east of the Nevada Test Site. The subsurface geologic interpretations portrayed on the cross sections are based on an integration of existing geologic maps, measured stratigraphic sections, published cross sections, well data, and geophysical data and interpretations. The estimated top of pre-Cenozoic rocks in the cross sections is based on inversion of gravity data, but the deeper parts of the sections are based on geologic conceptual models and are more speculative.

  16. The north-northwest aftershock pattern of the June 28, 1992 Landers earthquake and the probability of large earthquakes in Indian Wells Valley

    SciTech Connect

    Roquemore, G.R. . Dept. of Geosciences); Simila, G.A. . Dept. of Geological Sciences)

    1993-04-01

    Immediately following the June 28, 1992 Landers earthquake, a strong north-northwest pattern of aftershocks and triggered earthquakes developed. The most intense pattern developed between the north end of primary rupture on the Emerson fault and southern Owens Valley. The trend of seismicity cuts through the east-west trending Garlock fault at a high angle. The Garlock fault has no apparent affect on the trend or pattern. Within the aftershock zone, south of the Garlock fault, the Calico and Blackwater faults provide the most likely pathway for the Mojave shear zone into Indian Wells and Owens Valleys. In Indian Wells Valley the seismically active Little Lake fault aligns well with the Blackwater fault to the south and the southern Owens Valley fault zone to the north. Several recent research papers suggest that Optimum Coulomb failure stress changes caused by the Landers earthquake have enhanced the probability of earthquakes within the north-northwest trending aftershock zone. This increase has greater significance when the presumed Optimum Coulomb failure stress changes caused by the 1872 Owens Valley earthquake and its affects on Indian Wells Valley are considered. Indian Wells Valley and the Coso Volcanic field may have received two significant stress increases from earthquakes of magnitude 7.5 or greater in the last 120 years. If these two earthquakes increased the shear stress of aults in the Indian Wells/Coso areas, the most likely site for the next large earthquake within the Mojave shear zone may be there. The rate of seismicity within Indian Wells Valley had increased since 1980 including a magnitude 5.0 earthquake in 1982.

  17. Present-day crustal motion along the Longitudinal Valley Fault, eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Yu, Shui-Beih; Kuo, Long-Chen

    2001-04-01

    The NNE-striking Longitudinal Valley Fault (LVF) in eastern Taiwan is an extremely active high-angle thrust fault. It bounds the Coastal Range and the Longitudinal Valley, which is considered a collision boundary between the Philippine Sea and the Eurasian plates. Repeated GPS data in the Longitudinal Valley area from 1992 to 1999 are utilized to study the spatial variation of crustal motion along the LVF. With respect to Penghu in the Chinese continental margin, velocities for stations on the western side of the LVF (Longitudinal Valley and eastern Central Range) are 18-35 mm/yr in directions 283-311°, whereas those on the eastern side of the LVF, the Coastal Range, are 28-68 mm/yr in directions 303-324°. A major discontinuity of about 30 mm/yr on the rate of crustal motion across the Longitudinal Valley is attributed to the aseismic slip along the LVF as revealed by trilateration data previously. To the south of Fengping, the block motions of the Coastal Range are 31-40 mm/yr in 317-330° relative to the Central Range, while the near-fault motions are 13-33 mm/yr in 309-336°. Various partitions on the left-lateral strike-slip and convergent components along the LVF are found. In the southern Longitudinal Valley crustal motion is mainly accommodated on the LVF and the Luyeh Fault. In contrast, those in the central and northern Longitudinal Valley are partly taken up on the faults to the east of the LVF or result in the elastic deformation of the Coastal Range. The crustal motion in the northern Longitudinal Valley area is likely to be distributed in the several NE-striking thrusts in a horsetail pattern and obliquely cut the northern Coastal Range, with a small portion of fault-slips along the LVF. Data from dense-deployed GPS networks across the LVF can be employed to give better estimates of near-fault motions and delineate the surface traces of the LVF. Repeated GPS and leveling data from two stations on both ends of the Yuli Bridge that are 575 m apart

  18. Anomalously robust valley polarization and valley coherence in bilayer WS2

    PubMed Central

    Zhu, Bairen; Zeng, Hualing; Dai, Junfeng; Gong, Zhirui; Cui, Xiaodong

    2014-01-01

    We report the observation of anomalously robust valley polarization and valley coherence in bilayer WS2. The polarization of the photoluminescence from bilayer WS2 follows that of the excitation source with both circular and linear polarization, and remains even at room temperature. The near-unity circular polarization of the luminescence reveals the coupling of spin, layer, and valley degree of freedom in bilayer system, and the linearly polarized photoluminescence manifests quantum coherence between the two inequivalent band extrema in momentum space, namely, the valley quantum coherence in atomically thin bilayer WS2. This observation provides insight into quantum manipulation in atomically thin semiconductors. PMID:25071178

  19. 76 FR 22746 - Conecuh Valley Railway, LLC-Acquisition and Operation Exemption-Conecuh Valley Railroad Co., Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-22

    ... Surface Transportation Board Conecuh Valley Railway, LLC--Acquisition and Operation Exemption--Conecuh Valley Railroad Co., Inc. Conecuh Valley Railway, LLC (CVR), a noncarrier, has filed a verified notice of exemption under 49 CFR 1150.31 to acquire from Conecuh Valley Railroad Co., Inc. (COEH), and to...

  20. 27 CFR 9.82 - Potter Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... series (topographic). (c) Boundaries. The Potter Valley viticultural area is located in Mendocino County... 36 and southwest corner of quadrant 32 (a point where Mendocino and Lake Counties border on the T....

  1. 27 CFR 9.82 - Potter Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... series (topographic). (c) Boundaries. The Potter Valley viticultural area is located in Mendocino County... 36 and southwest corner of quadrant 32 (a point where Mendocino and Lake Counties border on the T....

  2. 27 CFR 9.82 - Potter Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... series (topographic). (c) Boundaries. The Potter Valley viticultural area is located in Mendocino County... 36 and southwest corner of quadrant 32 (a point where Mendocino and Lake Counties border on the T....

  3. 27 CFR 9.82 - Potter Valley.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... series (topographic). (c) Boundaries. The Potter Valley viticultural area is located in Mendocino County... 36 and southwest corner of quadrant 32 (a point where Mendocino and Lake Counties border on the T....

  4. VALMET-A valley air pollution model

    SciTech Connect

    Whiteman, C.D.; Allwine, K.J.

    1983-09-01

    Following a thorough analysis of meteorological data obtained from deep valleys of western Colorado, a modular air-pollution model has been developed to simulate the transport and diffusion of pollutants released from an elevated point source in a well-defined mountain valley during the nighttime and morning transition periods. This initial version of the model, named VALMET, operates on a valley cross section at an arbitrary distance down-valley from a continuous point source. The model has been constructed to include parameterizations of the major physical processes that act to disperse pollution during these time periods. The model has not been fully evaluated. Further testing, evaluations, and development of the model are needed. Priorities for further development and testing are provided.

  5. 27 CFR 9.26 - Guenoc Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... (c) Boundaries. The Guenoc Valley viticultural area is located within Lake County, California. The... viticultural area are four USGS maps. They are titled: (1) “Middletown Quadrangle, California-Lake Co.,”...

  6. 27 CFR 9.26 - Guenoc Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... (c) Boundaries. The Guenoc Valley viticultural area is located within Lake County, California. The... viticultural area are four USGS maps. They are titled: (1) “Middletown Quadrangle, California-Lake Co.,”...

  7. 27 CFR 9.26 - Guenoc Valley.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... (c) Boundaries. The Guenoc Valley viticultural area is located within Lake County, California. The... viticultural area are four USGS maps. They are titled: (1) “Middletown Quadrangle, California-Lake Co.,”...

  8. 27 CFR 9.26 - Guenoc Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... (c) Boundaries. The Guenoc Valley viticultural area is located within Lake County, California. The... viticultural area are four USGS maps. They are titled: (1) “Middletown Quadrangle, California-Lake Co.,”...

  9. 27 CFR 9.26 - Guenoc Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... (c) Boundaries. The Guenoc Valley viticultural area is located within Lake County, California. The... viticultural area are four USGS maps. They are titled: (1) “Middletown Quadrangle, California-Lake Co.,”...

  10. Airborne Dust Models in Valley Fever Research

    NASA Astrophysics Data System (ADS)

    Sprigg, W. A.; Galgiani, J. N.; Vujadinovic, M.; Pejanovic, G.; Vukovic, A. J.; Prasad, A. K.; Djurdjevic, V.; Nickovic, S.

    2011-12-01

    Dust storms (haboobs) struck Phoenix, Arizona, in 2011 on July 5th and again on July 18th. One potential consequence: an estimated 3,600 new cases of Valley Fever in Maricopa County from the first storm alone. The fungi, Coccidioides immitis, the cause of the respiratory infection, Valley Fever, lives in the dry desert soils of the American southwest and southward through Mexico, Central America and South America. The fungi become part of the dust storm and, a few weeks after inhalation, symptoms of Valley Fever may appear, including pneumonia-like illness, rashes, and severe fatigue. Some fatalities occur. Our airborne dust forecast system predicted the timing and extent of the storm, as it has done with other, often different, dust events. Atmosphere/land surface models can be part of public health services to reduce risk of Valley Fever and exacerbation of other respiratory and cardiovascular illness.

  11. Small Martian valleys - Pristine and degraded morphology

    NASA Technical Reports Server (NTRS)

    Baker, V. R.; Partridge, J. B.

    1986-01-01

    This study is concerned with a more detailed investigation of the small valley networks on Mars. The dual nature of many valley systems is pointed out, taking into account a relatively fresh-appearing network portion versus an apparent larger, less distinct network system. These separate network characteristics are referred to as pristine and degraded. The valley networks included in this study are all located in the equatorial zone of heavily cratered uplands, between latitudes 30 deg N and 40 deg S. Aspects of network morphology are examined, taking into account drainage density, network dissection ratio, and valley length parameters. Age relationships are also discussed, giving attention to crater age, counting problems, a conservative method, and a crater-fraction method.

  12. Goldstone Apple Valley Radio Telescope Project.

    ERIC Educational Resources Information Center

    Ibe, Mary; MacLaren, Dave

    2003-01-01

    Describes the Goldstone Apple Valley Radio Telescope (GAVRT) project as a way of teaching astronomy concepts to middle school students. The project provides students opportunities to work with professional scientists. (SOE)

  13. Valley and electric photocurrents in 2D silicon and graphene

    SciTech Connect

    Tarasenko, S. A.; Ivchenko, E. L.; Olbrich, P.; Ganichev, S. D.

    2013-12-04

    We show that the optical excitation of multi-valley systems leads to valley currents which depend on the light polarization. The net electric current, determined by the vector sum of single-valley contributions, vanishes for some peculiar distributions of carriers in the valley and momentum spaces forming a pure valley current. We report on the study of this phenomenon, both experimental and theoretical, for graphene and 2D electron channels on the silicon surface.

  14. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley.

    PubMed

    Scanlon, Bridget R; Faunt, Claudia C; Longuevergne, Laurent; Reedy, Robert C; Alley, William M; McGuire, Virginia L; McMahon, Peter B

    2012-06-12

    Aquifer overexploitation could significantly impact crop production in the United States because 60% of irrigation relies on groundwater. Groundwater depletion in the irrigated High Plains and California Central Valley accounts for ~50% of groundwater depletion in the United States since 1900. A newly developed High Plains recharge map shows that high recharge in the northern High Plains results in sustainable pumpage, whereas lower recharge in the central and southern High Plains has resulted in focused depletion of 330 km(3) of fossil groundwater, mostly recharged during the past 13,000 y. Depletion is highly localized with about a third of depletion occurring in 4% of the High Plains land area. Extrapolation of the current depletion rate suggests that 35% of the southern High Plains will be unable to support irrigation within the next 30 y. Reducing irrigation withdrawals could extend the lifespan of the aquifer but would not result in sustainable management of this fossil groundwater. The Central Valley is a more dynamic, engineered system, with north/south diversions of surface water since the 1950s contributing to ~7× higher recharge. However, these diversions are regulated because of impacts on endangered species. A newly developed Central Valley Hydrologic Model shows that groundwater depletion since the 1960s, totaling 80 km(3), occurs mostly in the south (Tulare Basin) and primarily during droughts. Increasing water storage through artificial recharge of excess surface water in aquifers by up to 3 km(3) shows promise for coping with droughts and improving sustainability of groundwater resources in the Central Valley. PMID:22645352

  15. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley

    PubMed Central

    Scanlon, Bridget R.; Faunt, Claudia C.; Longuevergne, Laurent; Reedy, Robert C.; Alley, William M.; McGuire, Virginia L.; McMahon, Peter B.

    2012-01-01

    Aquifer overexploitation could significantly impact crop production in the United States because 60% of irrigation relies on groundwater. Groundwater depletion in the irrigated High Plains and California Central Valley accounts for ∼50% of groundwater depletion in the United States since 1900. A newly developed High Plains recharge map shows that high recharge in the northern High Plains results in sustainable pumpage, whereas lower recharge in the central and southern High Plains has resulted in focused depletion of 330 km3 of fossil groundwater, mostly recharged during the past 13,000 y. Depletion is highly localized with about a third of depletion occurring in 4% of the High Plains land area. Extrapolation of the current depletion rate suggests that 35% of the southern High Plains will be unable to support irrigation within the next 30 y. Reducing irrigation withdrawals could extend the lifespan of the aquifer but would not result in sustainable management of this fossil groundwater. The Central Valley is a more dynamic, engineered system, with north/south diversions of surface water since the 1950s contributing to ∼7× higher recharge. However, these diversions are regulated because of impacts on endangered species. A newly developed Central Valley Hydrologic Model shows that groundwater depletion since the 1960s, totaling 80 km3, occurs mostly in the south (Tulare Basin) and primarily during droughts. Increasing water storage through artificial recharge of excess surface water in aquifers by up to 3 km3 shows promise for coping with droughts and improving sustainability of groundwater resources in the Central Valley. PMID:22645352

  16. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley

    USGS Publications Warehouse

    Scanlon, Bridget R.; Faunt, Claudia C.; Longuevergne, Laurent; Reedy, Robert C.; Alley, William M.; McGuire, Virginia L.; McMahon, Peter B.

    2012-01-01

    Aquifer overexploitation could significantly impact crop production in the United States because 60% of irrigation relies on groundwater. Groundwater depletion in the irrigated High Plains and California Central Valley accounts for ~50% of groundwater depletion in the United States since 1900. A newly developed High Plains recharge map shows that high recharge in the northern High Plains results in sustainable pumpage, whereas lower recharge in the central and southern High Plains has resulted in focused depletion of 330 km3 of fossil groundwater, mostly recharged during the past 13,000 y. Depletion is highly localized with about a third of depletion occurring in 4% of the High Plains land area. Extrapolation of the current depletion rate suggests that 35% of the southern High Plains will be unable to support irrigation within the next 30 y. Reducing irrigation withdrawals could extend the lifespan of the aquifer but would not result in sustainable management of this fossil groundwater. The Central Valley is a more dynamic, engineered system, with north/south diversions of surface water since the 1950s contributing to ~7× higher recharge. However, these diversions are regulated because of impacts on endangered species. A newly developed Central Valley Hydrologic Model shows that groundwater depletion since the 1960s, totaling 80 km3, occurs mostly in the south (Tulare Basin) and primarily during droughts. Increasing water storage through artificial recharge of excess surface water in aquifers by up to 3 km3 shows promise for coping with droughts and improving sustainability of groundwater resources in the Central Valley.

  17. Northern Terra Meridiani's 'Monument Valley'

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Northern Terra Meridiani, near the intersection of the martian equator and prime meridian, is a region of vast exposures of layered rock. A thermal image from the Phobos 2 orbiter in 1989 showed these materials to be anomalously cool during the daytime, an observation very suggestive of dense, hardened materials like rock. Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) images of this region show layered material exposed in cliffs, buttes, and mesas that in some ways resemble the rock outcrops of northern Arizona and southeastern Utah in North America (e.g., Monument Valley, Canyonlands, Zion National Park, Four Corners). MGS MOC Extended Mission operations have included several hundred opportunities for the spacecraft to be rolled off-nadir (i.e., at an angle other than 'straight down') to take pictures that repeat earlier MOC coverage. These repeat images, because they are taken from a different angle, can be combined with the original picture to produce a stereoscopic ('3-D') view. The image shown here is a composite of two pictures, the first taken October 23, 2000, the second acquired by pointing the spacecraft off-nadir on May 15, 2001. This view shows four buttes and a pinnacle (near left-center) composed of eroded, layered rock. The four buttes are each capped by the remains of a single layer of rock that is harder than the materials beneath it. It is the presence of this cap rock that has permitted these buttes to remain standing after surrounding materials were eroded away. Like the buttes of Monument Valley in the Navajo Nation on the Arizona/Utah border, these are believed to consist of sedimentary rocks, perhaps deposited in water or by wind, though some scientists have speculated that they could be made of thick accumulations of volcanic ash. The image covers an area approximately 3 km (1.9 mi) across and is illuminated by sunlight from the left. To see the image in 3-D, red (left-eye) and blue (right-eye) '3-D' glasses are required.

  18. Oil exploration in Pine Valley, Nevada

    SciTech Connect

    Scott, C.H.; Chamberlain, A.K.

    1989-03-01

    Three oil fields have already been established in Pine Valley, which is located in north-central Nevada along the late Mesozoic thrust trend. The potential exists for much more future exploration because of excellent reservoir potential, favorable hydrocarbon generating system, and trapping mechanisms. The Devonian is one of the main target reservoirs of Pine Valley. Pine Valley lies near the Devonian shelf edge, and carbonate facies from that period undergo abrupt changes in the Pine Valley region. The Guilmette/Devil's Gate apparently develops into a reefal system along the Uinta-Cortez arch in this area. Fore-reef and basinal facies are found at Cortez Mountain on the west side of Pine Valley. Mississippian sandstones and Tertiary tuffs are two other reservoirs which produce oil. At Blackburn field, upper plate rocks are overmature. Produced oil has been identified as Mississippian. Regional studies show Mississippian source rocks of Pine Valley to be slightly immature to mature oil in the lower plate. Gravity of the oil is approximately 26-30/degree/ API. Oil from the Tomara Ranch and North Willow Creek fields is most probably also from the Mississippian. Its API gravity is similar to the oil produced from Blackburn field. Blackburn field is a Tertiary trap probably generated by shear faulting. Tertiary traps throughout Nevada, including Blackburn, are generally small and hydrocarbon potential is limited. Larger traps associated with the late Mesozoic compressional event have much more potential and hold hundreds of millions of barrels of oil.

  19. THE TRANSPORT OF OXIDANT BEYON URBAN AREAS. DATA ANALYSES AND PREDICTIVE MODELS FOR THE SOUTHERN NEW ENGLAND STUDY, 1975

    EPA Science Inventory

    The objective of this study has been to use data collected during the 1975 Northeast Oxidant Study to determine the cause of high ozone concentrations in the Connecticut River Valley and to develop a method for predicting ozone levels that can be expected in southern New England ...

  20. ACCURACY OF PROJECT-WIDE WATER USES FROM A WATER BALANCE: A CASE STUDY FROM SOUTHERN CALIFORNIA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A detailed water balance was conducted on the Imperial Valley in southern California for the years 1987 to 1996. The area included all lands within the boundaries defined, including farms, towns, road, etc. This analysis included surface and subsurface inflows, rainfall, surface and subsurface outfl...

  1. Southern hemisphere observations

    NASA Astrophysics Data System (ADS)

    Orchiston, Wayne

    Because of insurmountable problems associated with absolute dating, the non-literate cultures of the Southern Hemisphere can contribute little to Applied Historical Astronomy, although Maori traditions document a possible supernova dating to the period 1000-1770 AD. In contrast, the abundant nineteenth century solar, planetary, cometary and stellar observational data provided by Southern Hemisphere professional and amateur observatories can serve as an invaluable mine of information for present-day astronomers seeking to incorporate historical data in their investigations.

  2. An evaluation of Skylab (EREP) remote sensing techniques applied to investigation of crustal structure. [Death Valley and Greenwater Valley (CA)

    NASA Technical Reports Server (NTRS)

    Bechtold, I. C. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. A study of Greenwater Valley indicates that the valley is bounded on the north and east by faults, on the south by a basement high, and on the west by the dip slope of the black mountains, movement of ground water from the valley is thus Movement of ground water from the valley is thus restricted, indicating the valley is a potential water reservoir.

  3. Fretted Terrain Valley in Coloe Fossae Region

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Figure 1 Click on image for larger version

    The image in figure 1 shows lineated valley fill in one of a series of enclosed, intersecting troughs known as Coloe (Choloe) Fossae. Lineated valley fill consists of rows of material in valley centers that are parallel to the valley walls. It is probably made of ice-rich material and boulders that are left behind when the ice-rich material sublimates. Very distinct rows can be seen near the south (bottom) wall of the valley. Lineated valley fill is thought to result from mass wasting (downslope movement) of ice-rich material from valley walls towards their centers. It is commonly found in valleys near the crustal dichotomy that separates the two hemispheres of Mars. The valley shown here joins four other valleys with lineated fill near the top left corner of this image. Their juncture is a topographic low, suggesting that the lineated valley fill from the different valleys may be flowing or creeping towards the low area (movement towards the upper left of the image). The valley walls appear smooth at first glance but are seen to be speckled with small craters several meters in diameter at HiRISE resolution (see contrast-enhanced subimage). This indicates that at least some of the wall material has been stable to mass wasting for some period of time. Also seen on the valley wall are elongated features shaped like teardrops. These are most likely slightly older craters that have been degraded due to potentially recent downhill creep. It is unknown whether the valley walls are shedding material today. The subimage is approximately 140 x 400 m (450 x 1280 ft).

    Image PSP_001372_2160 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on November 11, 2006. The complete image is centered at 35.5 degrees latitude, 56.8 degrees East longitude. The range to the target site was 290.3 km (181

  4. Types of river valleys as a criterion for estimation of the territory geodiversity

    NASA Astrophysics Data System (ADS)

    Opekunova, Marina; Vyrkin, Vladimir

    2015-04-01

    The Oka plateau occupies an intermediate position between large morphostructures of Southern Siberia. It is a unique object, where the features of relief development of the contiguous areas were reflected. The structure of the plateau also includes the Ilchir-Kitoi depression, located in the southeast, and the Oka depression, which lies in the north-west. The river network is characterized by deeply incised valleys, the relief of which bears traces of glacial activity, manifestations of Cenozoic volcanism, and active neotectonic movements. These factors also determine a wide variability in distribution of the types of river valleys: from the valleys with the hilly-moraine topography to the broad-floodplain sections of valleys with an instrativ floodplain-terrace complex and incised type of channel when the river crosses basalt fields. Thus, the antecedent Oka river valley of ancient formation was actively affected by volcanism and glaciation in Late Cenozoic. Lava flows enabled the formation of the incised and adapted types of channels within the south-western part of the Oka depression. Large areas of distribution of basalts on the left-bank part of the Oka river basin, occupying mainly the watershed positions, contributed to the formation of a certain type of longitudinal profiles of channels, characterized by a shallow form in the upper reaches (in the field of basalts development) and by a steep form in the middle and lower sections of the valleys. The distribution of fluvioglacial landforms and moraine ridges descending into the Oka valley along the tributaries (Sentsa, Gargan and others), and the presence of facies transitions from fluvioglacial and glacial to alluvial deposits determine the specific type of river valleys, developed under the conditions of the glacial relief formation. Due to the uplift of the Kropotkin range, the river erosion within the plateau is relatively slowed down in comparison with the surrounding mountains, which is reflected in the

  5. Environmental changes bridge evolutionary valleys

    PubMed Central

    Steinberg, Barrett; Ostermeier, Marc

    2016-01-01

    In the basic fitness landscape metaphor for molecular evolution, evolutionary pathways are presumed to follow uphill steps of increasing fitness. How evolution can cross fitness valleys is an open question. One possibility is that environmental changes alter the fitness landscape such that low-fitness sequences reside on a hill in alternate environments. We experimentally test this hypothesis on the antibiotic resistance gene TEM-15 β-lactamase by comparing four evolutionary strategies shaped by environmental changes. The strategy that included initial steps of selecting for low antibiotic resistance (negative selection) produced superior alleles compared with the other three strategies. We comprehensively examined possible evolutionary pathways leading to one such high-fitness allele and found that an initially deleterious mutation is key to the allele’s evolutionary history. This mutation is an initial gateway to an otherwise relatively inaccessible area of sequence space and participates in higher-order, positive epistasis with a number of neutral to slightly beneficial mutations. The ability of negative selection and environmental changes to provide access to novel fitness peaks has important implications for natural evolutionary mechanisms and applied directed evolution. PMID:26844293

  6. Environmental changes bridge evolutionary valleys.

    PubMed

    Steinberg, Barrett; Ostermeier, Marc

    2016-01-01

    In the basic fitness landscape metaphor for molecular evolution, evolutionary pathways are presumed to follow uphill steps of increasing fitness. How evolution can cross fitness valleys is an open question. One possibility is that environmental changes alter the fitness landscape such that low-fitness sequences reside on a hill in alternate environments. We experimentally test this hypothesis on the antibiotic resistance gene TEM-15 β-lactamase by comparing four evolutionary strategies shaped by environmental changes. The strategy that included initial steps of selecting for low antibiotic resistance (negative selection) produced superior alleles compared with the other three strategies. We comprehensively examined possible evolutionary pathways leading to one such high-fitness allele and found that an initially deleterious mutation is key to the allele's evolutionary history. This mutation is an initial gateway to an otherwise relatively inaccessible area of sequence space and participates in higher-order, positive epistasis with a number of neutral to slightly beneficial mutations. The ability of negative selection and environmental changes to provide access to novel fitness peaks has important implications for natural evolutionary mechanisms and applied directed evolution. PMID:26844293

  7. Lateral spread hazard mapping of the northern Salt Lake Valley, Utah, for a M7.0 scenario earthquake

    USGS Publications Warehouse

    Olsen, M.J.; Bartlett, S.F.; Solomon, B.J.

    2007-01-01

    This paper describes the methodology used to develop a lateral spread-displacement hazard map for northern Salt Lake Valley, Utah, using a scenario M7.0 earthquake occurring on the Salt Lake City segment of the Wasatch fault. The mapping effort is supported by a substantial amount of geotechnical, geologic, and topographic data compiled for the Salt Lake Valley, Utah. ArcGIS?? routines created for the mapping project then input this information to perform site-specific lateral spread analyses using methods developed by Bartlett and Youd (1992) and Youd et al. (2002) at individual borehole locations. The distributions of predicted lateral spread displacements from the boreholes located spatially within a geologic unit were subsequently used to map the hazard for that particular unit. The mapped displacement zones consist of low hazard (0-0.1 m), moderate hazard (0.1-0.3 m), high hazard (0.3-1.0 m), and very high hazard (> 1.0 m). As expected, the produced map shows the highest hazard in the alluvial deposits at the center of the valley and in sandy deposits close to the fault. This mapping effort is currently being applied to the southern part of the Salt Lake Valley, Utah, and probabilistic maps are being developed for the entire valley. ?? 2007, Earthquake Engineering Research Institute.

  8. Measurements of Refractory Black Carbon (rBC) Aerosols in the McMurdo Dry Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    Khan, A. L.; McMeeking, G. R.; Lyons, W. B.; Schwarz, J. P.; Welch, K. A.; McKnight, D. M.

    2015-12-01

    Measurements of light absorbing particles in the boundary layer of the high southern latitudes are scarce. During the 2013-2014 austral summer field season refractory black carbon (rBC) aerosols were quantified by a single particle soot photometer (SP2) in the McMurdo Dry Valleys, Antarctica. The dark rBC particles absorb more radiation thereby increasing atmospheric heating, as well as reducing surface albedo and enhancing hydrologic melt when deposited on highly reflective surfaces such as snow and ice. Quantifying both local and long-range atmospheric transport of rBC to this region of a remote continent mostly covered by ice and snow would be useful in understanding meltwater generation as climate changes. Although the Dry Valleys are the largest ice-free region of Antarctica, they contain many alpine glaciers, some of which are fed from the East Antarctic Ice Sheet (EAIS). Continuous rBC measurements were collected at Lake Hoare Camp in the Taylor Valley for two months, along with shorter periods at more remote locations within the Dry Valleys. Conditions at the Lake Hoare Camp were dominated by up-valley winds from McMurdo Sound, however, winds also brought air down-valley from the EAIS polar plateau. Here we investigated periods dominated by both up and down-valley winds to explore differences in rBC concentrations, size distributions, and scattering properties. The average background rBC mass concentration was 1ng/m3, though concentrations as high as 50 ng/m3 were observed at times, likely due to local sources.

  9. Late Miocene-Pleistocene Stability of upper Ferrar Glacier, Dry Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    Staiger, J. W.; Marchant, D. R.; Schaefer, J. M.; Johnson, J. V.; Oberholzer, P.

    2005-12-01

    Vernier Valley (78o S, 161o E) opens onto a peripheral lobe of upper Ferrar glacier in the Dry Valleys of southern Victoria Land, Antarctica. The areal distribution of Ferrar drifts, along with a relative and numerical chronology afforded by surface-weathering characteristics and 3He - 21Ne exposure-age data, are used to reconstruct the Late Miocene-to-Pleistocene history of upper Ferrar Glacier. Applying a modest erosion rate correction of 10 cm Ma-1, our results show that the glacial record provided by Ferrar (1, 2, 3, and 4) drifts in Vernier Valley extends back into late Miocene time. Cosmogenic ages for clasts on the modern, ice-cored Ferrar 1 moraine suggest that nuclide inheritance is negligible. The development of weathering pits and desert varnish on surface cobbles varies linearly with cosmogenic age. Ice-surface profiles reconstructed from the moraine distribution and exposure-ages of boulders atop the moraines indicate that the ice-surface elevation of upper Ferrar Glacier has lowered roughly 50 m throughout the Quaternary Period and roughly 125 m since late Miocene time. Conversely, during MIS 2, the ice-surface elevation of upper Ferrar Glacier was likely no higher than today and may have been below modern levels. The moraine now forming through ice sublimation and debris accumulation at the modern, cold-based Ferrar Glacier margin is texturally similar to older drifts up-valley. The slow recession of cold-based glacier ice (and without surface melting ablation zones) in lower Vernier Valley implies enduring cold-desert conditions, much like those of today, for at least the last ~6.5 Ma. Results from a 2-D glacier flow-band model also demonstrate that upper Ferrar Glacier lacked basal-melting zones even during the Pliocene optimum. The overall stability of this glacial system has implications for the response of ice in this sector of Antarctica to future polar warming.

  10. Structure of the San Fernando Valley region, California: implications for seismic hazard and tectonic history

    USGS Publications Warehouse

    Langenheim, V.E.; Wright, T.L.; Okaya, D.A.; Yeats, R.S.; Fuis, G.S.; Thygesen, K.; Thybo, H.

    2011-01-01

    Industry seismic reflection data, oil test well data, interpretation of gravity and magnetic data, and seismic refraction deep-crustal profiles provide new perspectives on the subsurface geology of San Fernando Valley, home of two of the most recent damaging earthquakes in southern California. Seismic reflection data provide depths to Miocene–Quaternary horizons; beneath the base of the Late Miocene Modelo Formation are largely nonreflective rocks of the Middle Miocene Topanga and older formations. Gravity and seismic reflection data reveal the North Leadwell fault zone, a set of down-to-the-north faults that does not offset the top of the Modelo Formation; the zone strikes northwest across the valley, and may be part of the Oak Ridge fault system to the west. In the southeast part of the valley, the fault zone bounds a concealed basement high that influenced deposition of the Late Miocene Tarzana fan and may have localized damage from the 1994 Northridge earthquake. Gravity and seismic refraction data indicate that the basin underlying San Fernando Valley is asymmetric, the north part of the basin (Sylmar subbasin) reaching depths of 5–8 km. Magnetic data suggest a major boundary at or near the Verdugo fault, which likely started as a Miocene transtensional fault, and show a change in the dip sense of the fault along strike. The northwest projection of the Verdugo fault separates the Sylmar subbasin from the main San Fernando Valley and coincides with the abrupt change in structural style from the Santa Susana fault to the Sierra Madre fault. The Simi Hills bound the basin on the west and, as defined by gravity data, the boundary is linear and strikes ~N45°E. That northeast-trending gravity gradient follows both the part of the 1971 San Fernando aftershock distribution called the Chatsworth trend and the aftershock trends of the 1994 Northridge earthquake. These data suggest that the 1971 San Fernando and 1994 Northridge earthquakes reactivated portions of

  11. Post-glacial rock avalanches in the Obersee Valley, Glarner Alps, Switzerland

    NASA Astrophysics Data System (ADS)

    Nagelisen, Jan; Moore, Jeffrey R.; Vockenhuber, Christoph; Ivy-Ochs, Susan

    2015-06-01

    The geological record of prehistoric rock avalanches provides invaluable data for assessing the hazard posed by these rare but destructive mass movements. Here we investigate two large rock avalanches in the Obersee valley of the Glarner Alps, Switzerland, providing detailed mapping of landslide and related Quaternary phenomena, revised volume estimates for each event, and surface exposure dating of rock avalanche deposits. The Rautispitz rock avalanche originated from the southern flank of the Obersee valley, releasing approximately 91 million m3 of limestone on steeply-dipping bedding planes. Debris had maximum horizontal travel distance of ~ 5000 m, a fahrboeschung angle (relating fall height to length) of 18°, and was responsible for the creation of Lake Obersee; deposits are more than 130 m thick in places. The Platten rock avalanche encompassed a source volume of 11 million m3 sliding from the northern flank of the Obersee valley on similar steeply-dipping limestone beds (bedrock forms a syncline under the valley). Debris had a maximum horizontal travel distance of 1600 m with a fahrboeschung angle of 21°, and is more than 80 m thick in places. Deposits of the Platten rock avalanche are superposed atop those from the Rautispitz event at the end of the Obersee valley where they dam Lake Haslensee. Runout for both events was simulated using the dynamic analysis code DAN3D; results showed excellent match to mapped deposit extents and thickness and helped confirm the hypothesized single-event failure scenarios. 36Cl cosmogenic nuclide surface exposure dating of 13 deposited boulders revealed a Younger Dryas age of 12.6 ± 1.0 ka for the Rautispitz rock avalanche and a mid-Holocene age of 6.1 ± 0.8 ka for the Platten rock avalanche. A seismological trigger is proposed for the former event due to potentially correlated turbidite deposits in nearby Lake Zurich.

  12. Drought, Land-Use Change, and Water Availability in California's Central Valley

    NASA Astrophysics Data System (ADS)

    Faunt, C. C.; Sneed, M.; Traum, J.

    2015-12-01

    The Central Valley is a broad alluvial-filled structural trough that covers about 52,000 square kilometers and is one of the most productive agricultural regions in the world. Because the valley is semi-arid and the availability of surface water varies substantially from year to year, season to season, and from north to south, agriculture developed a reliance on groundwater for irrigation. During recent drought periods (2007-09 and 2012-present), groundwater pumping has increased due to a combination of factors including drought and land-use changes. In response, groundwater levels have declined to levels approaching or below historical low levels. In the San Joaquin Valley, the southern two thirds of the Central Valley, the extensive groundwater pumpage has caused aquifer system compaction, resulting in land subsidence and permanent loss of groundwater storage capacity. The magnitude and rate of subsidence varies based on geologic materials, consolidation history, and historical water levels. Spatially-variable subsidence has changed the land-surface slope, causing operational, maintenance, and construction-design problems for surface-water infrastructure. It is important for water agencies to plan for the effects of continued water-level declines, storage losses, and/or land subsidence. To combat these effects, excess surface water, when available, is artificially recharged. As surface-water availability, land use, and artificial recharge continue to vary, long-term groundwater-level and land-subsidence monitoring and modelling are critical to understanding the dynamics of the aquifer system. Modeling tools, such as the Central Valley Hydrologic Model, can be used in the analysis and evaluation of management strategies to mitigate adverse impacts due to subsidence, while also optimizing water availability. These analyses will be critical for successful implementation of recent legislation aimed toward sustainable groundwater use.

  13. Hydrogeology of the Tully Trough in Southern Onondaga County and Northern Cortland County, New York

    USGS Publications Warehouse

    Kappel, William M.; Miller, Todd S.

    2003-01-01

    A trough valley near Tully, N.Y. was formed by the same glacial processes that formed the Finger Lake valleys to the west. Glacial ice eroded a preglacial bedrock divide along the northern rim of the Allegheny Plateau and deepened a preglacial valley to form a trough valley. Subsequent meltwater issuing from the ice transported and deposited large amounts of sediment which partly filled the trough. The Tully trough contains three distinct segments?the West Branch valley of the southward-flowing Tioughnioga River in the south, the Valley Heads Moraine near Tully, and the Tully valley of the northward-flowing Onondaga Creek in the north. The West Branch valley segment south of the moraine contains a two-aquifer system?a surficial unconfined sand and gravel aquifer and a confined basal sand and gravel aquifer that rests on bedrock, separated by a thick, fine-grained glaciolacustrine fine sand, silt, and clay unit. Water quality in the surficial aquifer is generally good, although it is typically hard. Water in the basal, confined aquifer is more mineralized and yields less water to wells than the surficial aquifer. The Valley Heads Moraine near Tully consists of layers of sand and gravel, fine sand, silt, clay, and till. The land surface contains many kettle-hole lakes, ponds, wetlands, and dry depressions. The moraine contains several aquifers, some of which are discontinuous. Water quality in the shallow aquifers is generally good, although hard. Water quality in the deep aquifer is generally good, although slightly mineralized by water discharging upward from shale. The Tully valley segment north of the moraine has a confined basal sand-and-gravel aquifer that is overlain by a thick layer of lacustrine silt and clay in the southern part of the valley and becomes interlayered with sand and some fine gravel in the northern part. Most homeowners obtain their water supply from streams or springs along the valley walls or from wells. Water from wells completed in coarse

  14. Integrated exploration workflow in the south Middle Magdalena Valley (Colombia)

    NASA Astrophysics Data System (ADS)

    Moretti, Isabelle; Charry, German Rodriguez; Morales, Marcela Mayorga; Mondragon, Juan Carlos

    2010-03-01

    The HC exploration is presently active in the southern part of the Middle Magdalena Valley but only moderate size discoveries have been made up to date. The majority of these discoveries are at shallow depth in the Tertiary section. The structures located in the Valley are faulted anticlines charged by lateral migration from the Cretaceous source rocks that are assumed to be present and mature eastward below the main thrusts and the Guaduas Syncline. Upper Cretaceous reservoirs have also been positively tested. To reduce the risks linked to the exploration of deeper structures below the western thrusts of the Eastern Cordillera, an integrated study was carried out. It includes the acquisition of new seismic data, the integration of all surface and subsurface data within a 3D-geomodel, a quality control of the structural model by restoration and a modeling of the petroleum system (presence and maturity of the Cretaceous source rocks, potential migration pathways). The various steps of this workflow will be presented as well as the main conclusions in term of source rock, deformation phases and timing of the thrust emplacement versus oil maturation and migration. Our data suggest (or confirm) The good potential of the Umir Fm as a source rock. The early (Paleogene) deformation of the Bituima Trigo fault area. The maturity gap within the Cretaceous source rock between the hangingwall and footwall of the Bituima fault that proves an initial offset of Cretaceous burial in the range of 4.5 km between the Upper Cretaceous series westward and the Lower Cretaceous ones eastward of this fault zone. The post Miocene weak reactivation as dextral strike slip of Cretaceous faults such as the San Juan de Rio Seco fault that corresponds to change in the Cretaceous thickness and therefore in the depth of the thrust decollement.

  15. 78 FR 30965 - AG Valley Railroad, LLC-Operation Exemption-Ag Valley Holdings, LLC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-23

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Surface Transportation Board AG Valley Railroad, LLC--Operation Exemption--Ag Valley Holdings, LLC AG... original and 10 copies of all pleadings, referring to Docket No. FD 35736, must be filed with the...

  16. Valley Hall Effect in Two-Dimensional Hexagonal Lattices

    NASA Astrophysics Data System (ADS)

    Yamamoto, Michihisa; Shimazaki, Yuya; Borzenets, Ivan V.; Tarucha, Seigo

    2015-12-01

    Valley is a quantum number defined for energetically degenerate but nonequivalent structures in energy bands of a crystalline material. Recent discoveries of two-dimensional (2D) layered materials have shed light on the potential use of this degree of freedom for information carriers because the valley can now be potentially manipulated in integrated 2D architectures. The valleys separated by a long distance in a momentum space are robust against external disturbance and the flow of the valley, the valley current, is nondissipative because it carries no net electronic current. Among the various 2D valley materials, graphene has by far the highest crystal quality, leading to an extremely long valley relaxation length in the bulk. In this review, we first describe the theoretical background of the valley Hall effect, which converts an electric field into a valley current. We then describe the first observation of the valley Hall effect in monolayer MoS2. Finally, we describe experiments on the generation and detection of the pure valley current in monolayer and bilayer graphene, achieved recently using the valley Hall effect and inverse valley Hall effect. While we show unambiguous evidence of a pure valley current flowing in graphene, we emphasize that the field of "valleytronics" is still in its infancy and that further theoretical and experimental investigations are necessary.

  17. Origin of the Valley Networks On Mars: A Hydrological Perspective

    NASA Technical Reports Server (NTRS)

    Gulick, Virginia C.

    2000-01-01

    The geomorphology of the Martian valley networks is examined from a hydrological perspective for their compatibility with an origin by rainfall, globally higher heat flow, and localized hydrothermal systems. Comparison of morphology and spatial distribution of valleys on geologic surfaces with terrestrial fluvial valleys suggests that most Martian valleys are probably not indicative of a rainfall origin, nor are they indicative of formation by an early global uniformly higher heat flow. In general, valleys are not uniformly distributed within geologic surface units as are terrestrial fluvial valleys. Valleys tend to form either as isolated systems or in clusters on a geologic surface unit leaving large expanses of the unit virtually untouched by erosion. With the exception of fluvial valleys on some volcanoes, most Martian valleys exhibit a sapping morphology and do not appear to have formed along with those that exhibit a runoff morphology. In contrast, terrestrial sapping valleys form from and along with runoff valleys. The isolated or clustered distribution of valleys suggests localized water sources were important in drainage development. Persistent ground-water outflow driven by localized, but vigorous hydrothermal circulation associated with magmatism, volcanism, impacts, or tectonism is, however, consistent with valley morphology and distribution. Snowfall from sublimating ice-covered lakes or seas may have provided an atmospheric water source for the formation of some valleys in regions where the surface is easily eroded and where localized geothermal/hydrothermal activity is sufficient to melt accumulated snowpacks.

  18. The coupling of synoptic and valley winds in the Tennessee Valley

    SciTech Connect

    Doran, J.C.; Whiteman, C.D.

    1992-09-01

    The interaction of winds in a valley with the winds above the valley is of interest for both practical and theoretical reasons. For example, the forecasting of conditions affecting air quality,, emergency preparedness, or aerial spraying of pesticides requires the ability to relate local valley circulations to ambient synoptic conditions. While empirically derived relationships may be useful, it is also desirable to develop an understanding of the mechanisms responsible for the observed behavior. In this paper we combine results from analyses of measurements and model-generated data to provide insight into factors affecting the climatology of the winds in the Tennessee Valley. We discuss four mechanisms that can determine the behavior of winds in a valley. The conditions can be illustrated in terms of the expected joint frequency distributions of the surface and geostrophic winds.

  19. A tomographic image of mantle structure beneath southern California

    NASA Technical Reports Server (NTRS)

    Humphreys, E.; Clayton, R. W.; Hager, B. H.

    1984-01-01

    The variations in seismic structure beneath southern California were determined by using a tomographic method of inversion on teleseismic P delays recorded with the Southern California Array. The inversion reveals two prominent features beneath the region. The first is a thin, vertical wedge directly beneath the Transverse Ranges that is 2-3 percent faster than the surrounding region. This feature deepens to the east, attaining a maximum depth of about 250 km beneath the San Bernardino Mountains. The second feature is a major zone of low velocity material that is 2-4 percent slow under the Salton Trough rift valley, extending to a depth of about 125 km. Two possible explanations for the spatial association of the Transverse Ranges with the velocity anomaly below are lithospheric subduction or small-scale sublithospheric convection in the region of the Big Bend of the San Andreas Fault. The low velocity anomaly beneath the Salton Trough is consistent with convective upwelling there.

  20. Volcano-Tectonic Evolution of the Central Death Valley Volcanic Field - Insights Derived from the Geologic Map of the Death Valley Junction 30' x 60' Quadrangle

    NASA Astrophysics Data System (ADS)

    Thompson, R. A.; Fridrich, C.; Chan, C. F.; Zellman, K. L.; Workman, J. B.

    2014-12-01

    The geologic map of the Death Valley Junction 30' x 60' quadrangle encompasses many geologic features recording the Cenozoic volcano-tectonic evolution of central Death Valley. Most notable is the central Death Valley rhombochasm. The rhombochasm is a 65x80-km rhombic pull-apart basin complex that occupies the releasing step-over between the northern Death Valley—Furnace Creek and southern Death Valley faults. Stewart (1983) documented this feature by palinspastically restoring offset thrust fault segments and isopachs, thereby closing the rhombochasm. The central Death Valley volcanic field records the coincident and related magmatism that occurred during the extension and strike-slip strain that formed the rhombochasm. In the multi-stage evolution of this tectonomagmatic feature, changes in volcanic and structural styles, rates, and loci were synchronized, both spatially and temporally. The volcanic field covers an area of 3600 km2, and consists of >700 km3 of lava flows, domes, and pyroclastic deposits. Cenozoic map units reflect four major eruptive stages: Stage 1 (11-9 Ma: rhyolite and andesite), Stage 2 (9-7.5 Ma: dacite>basalt>andesite), Stage 3 (7-5 Ma: dacite>basalt), and Stage 4 (4.5-0.7 Ma: basalt). The predominant loci of eruptive centers migrated northwestward during this volcanic evolution, coeval with northwestward migration of adjacent depocenters. Stage 1 and 2 volcanism is broadly correlative to the supradetachment stage of rhombochasm development. Related intrusions include exposed upper-plate hypabyssal and lower-plate plutonic bodies. Stage 3 and 4 volcanism occurred during two tectonic stages in which higher-angle faults cut across the detachment fault, forming basins that are nested within the original detachment-floored area of the rhombochasm. Time-transgressive changes from dominantly silicic and intermediate magmas in Stages 1 and 2 to dominantly mafic and lesser intermediate magmas in Stages 3 and 4 coincided with decreases in eruptive

  1. Thermal studies of Martian channels and valleys using Termoskan data

    NASA Astrophysics Data System (ADS)

    Betts, B. H.; Murray, B. C.

    1994-01-01

    The Termoskan instrument on board the Phobos '88 spacecraft acquired the highest spatial resolution thermal infrared emission data ever obtained for Mars. Included in the thermal images 2 km/pixel, midday observations of several major channel and valley systems including significant portions of Shalbatana, Ravi, Al-Qahira, and Ma'adim Valles, the channel connecting Valles Marineris with Hydraotes Chaos, and channel material in Eos Chasma. Termoskan also observed small portions of the southern beginnings of Simud, Tiu, and Ares Valles and some channel material in Gangis Chasma. Simultaneous broadband visible reflectance data were obtained for all but Ma'adim Vallis. We find that most of the channels and valleys have higher thermal inertias than their surroundings, consistent with previous thermal studies. We show for the first time that the thermal inertia boundaries closely match flat channel floor boundaries. Also, buttes within channels have inertias similiar to the plains surrounding the channels, suggesting the buttes are remnants of a contiguous plains surface. Lower bounds on typical channel thermal inertias range from 8.4 to 12.5 (10-3 cal cm-2 s-1/2/K) (352 to 523 in SI units of J m-2 s-1/2/K). Lower bounds on inertia differences with the surrounding heavily cratered plains range from 1.1 to 3.5 (46 to 147 SI). Atmospheric and geometric effects are not sufficient to cause the observed channel inertia enhancements. We favor nonaeolian explanations of the overall channel inertia enhancements based primarily upon the channel floors' thermal homogeneity and the strong correlation of thermal boundaries with floor boundaries. However, localized, dark regions within some channels are likely aeolian in nature as reported previously. Most channels with increased inertias have fretted morphologies such as flat floors with steep walls. Eastern Ravi and southern Ares Valles, the only major channel sections observed that have obvious catastrophic flood bedforms, do not

  2. Using Groundwater Temperatures and Heat Flow Patterns to Assess Groundwater Flow in Snake Valley, Nevada and Utah, USA

    NASA Astrophysics Data System (ADS)

    Masbruch, M. D.; Chapman, D. S.

    2009-12-01

    The Southern Nevada Water Authority’s (SNWA) proposal to develop groundwater resources in Snake Valley and adjacent basins in eastern Nevada has focused attention on understanding the links between basin-fill and carbonate aquifer systems, groundwater flow paths, and the movement of groundwater between basins. The SNWA development plans are contentious in part because (1) there are few perennial streams that flow into the basins and these surface-water resources are fully appropriated; (2) groundwater resources that sustain streams, springs, wetlands, and the local agricultural economy are also limited; and (3) because Snake Valley straddles the Utah-Nevada state line. We report groundwater temperatures and estimates of heat flow used to constrain estimates of groundwater flow into and through Snake Valley. Thermal logs have been collected from 24 monitoring wells in the Utah part of the valley. Natural, undisturbed geothermal gradients within the Basin and Range are generally 30 °C/km, which correspond to heat flow values of approximately 90 mW/m2. Geothermal gradients in the southern portion of Snake Valley are lower than typical Basin and Range geothermal gradients, with the majority ranging between 10 and 20 °C/km, corresponding to heat flow values of 30 to 60 mW/m2. In the northern portion of the basin, however, geothermal gradients are generally higher than typical Basin and Range geothermal gradients, with thermal logs of two wells indicating gradients of 39 °C/km and 51 °C/km, which correspond to heat flow values of approximately 117 and 153 mW/m2, respectively. These observations suggest heat is being redistributed by groundwater flow to discharge points in northern Snake Valley. This interpretation is also supported by spring temperatures in northern Snake Valley and at Fish Springs National Wildlife Refuge to the northeast that are higher than ambient (12 °C) surface temperature. These thermal data are being used together with water levels and

  3. Seismic responses of pipelines laid through alluvial valleys

    SciTech Connect

    Liang, J.W.; Jia, S.; Hou, Z.

    1995-12-31

    In this paper, dynamic characteristics of pipelines laid through alluvial valleys are analyzed. The scattering solution of SH-waves by a shallow circular alluvial valley is used to evaluate ground motion, and pipeline-soil interaction is considered. The results show that the alluvial valley has spectacular effects on dynamic behaviors of the pipelines, and for a narrow valley, damage will appear at two interfaces between the alluvial deposit and the riverbed, and for a wider valley, the damage will appear not only at two interfaces but also in the alluvial deposit, this depends on the valley width and the wavelength of incidence seismic waves.

  4. Magnetic barrier on strained graphene: A possible valley filter

    NASA Astrophysics Data System (ADS)

    Zhai, Feng; Zhao, Xiaofang; Chang, Kai; Xu, H. Q.

    2010-09-01

    We put forward a two-terminal valley filter based on a bulk graphene sheet under the modulations of both a local perpendicular magnetic field and a substrate strain. When only one of the two modulations is present, no valley polarization can be generated. A combination of the two modulations leads to a different (but not opposite) shifts of the K and K' valleys, which could be utilized to generate a valley-polarized current. The degree of the valley polarization can be tuned by the strain strength and the inclusion of a scalar potential. The valley polarization changes its polarity as the local magnetic field switches its direction.

  5. Active mantle flow and crustal dynamics in southern California

    NASA Astrophysics Data System (ADS)

    Fay, N.; Bennett, R.; Spinler, J.

    2007-12-01

    We present numerical modeling analysis of active upper mantle flow and its role in driving crustal deformation in southern California. The forces driving lithospheric deformation at tectonic plate boundaries can be thought of as the sum from two sources: (1) forces transmitted from the far-field by rigid tectonic plates, and (2) forces created locally at the plate boundary by heterogeneous density distribution. Here we quantify the latter by estimating the stresses acting on the base of the crust caused by density-driven flow of the upper mantle. Anomalous density structure is derived from shear wave velocity models (Yang & Forsyth, 2006) and is used to drive instantaneous incompressible viscous upper mantle flow relative to a fixed crust; this allows isolation of stresses acting on the crust. Comparison of results with the finite element codes Abaqus (commercial) and GALE (community- developed) is good. We find that horizontal tractions range from 0 to ~3 MPa and vertical tractions range between approximately -15 to 15 MPa (negative indicating downward, positive upward); Absolute magnitudes depend on the assumed velocity-density scaling relationship but the overall patterns of flow are more robust. Anomalous density beneath the Transverse Ranges, in particular beneath the San Bernardino Mountains and offshore beneath the Channel Islands, drives convergent horizontal tractions and negative vertical tractions on the base of the crust there. Anomalous buoyancy beneath the southern Walker Lane Belt and anomalous density beneath the southern Great Valley create a small convective cell (the Sierra Nevada "drip"), which promotes extension on the eastern edge of the Sierra Nevada block and subsidence of the Great Valley. Favorable comparison with contemporary crustal thickness, heat flow, and surface strain rate indicates that upper mantle flow plays a very important role in active crustal deformation in southern California and much of the non-ideal behavior of this

  6. Home range and density of three sympatric felids in the Southern Atlantic Forest, Brazil.

    PubMed

    Kasper, C B; Schneider, A; Oliveira, T G

    2016-02-01

    Home range and minimal population densities of Southern tiger cat (Leopardus guttulus), margay (Lepardus wiedii) and jaguarundi (Puma yagouaroundi) were estimated between 2005 and 2006 in Taquari Valley, near the southern edge of the Atlantic Rainforest in Brazil. Home range data were collected by conventional radio telemetry (VHF) locations in a highly fragmented landscape. The average home range size, calculated using 95% kernel density estimates, was 16.01 km2 for Southern tiger cat, 21.85 km2 for margay and 51.45 km2 for jaguarundi. Telemetry data were used to obtain minimal density estimates of 0.08 Southern tiger cats / km2, and 0.04 jaguarundi / km2. The density estimates arise from areas where ocelot (Leopardus pardalis) and other larger-bodied carnivores were locally extinct, and they suggest a specific type of mesopredator release known as the ocelot effect, which is likely enabling the increase in smaller felid populations in this area. PMID:26871745

  7. Do I have an alluvial valley floor

    SciTech Connect

    Beach, G.G.

    1980-12-01

    The Surface Mining Control and Reclamation Act of 1977 establishes specific restrictions for coal mining on or adjacent to alluvial valley floors. Alluvial valley floors are lands in the Western United States where water availability for flood irrigation or subirrigation provides enhanced agricultural productivity on stream-laid deposits located in valley bottoms. Alluvial valley floors may consist of developed land or undeveloped rangeland. Developed land, if of sufficient size to be important to a farming operation, cannot be mined whereas undeveloped rangeland can be mined provided certain performance standards are met. Developed land is important to farming when the percentage loss of production by removal of the alluvial valley floor from a farm(s) total production exceeds the equation P = 3 + 0.0014X, where P is the maximum percentage loss of productivity considered to be a negligible impact to a Wyoming farming operation and X is the number of animal units of total farm production above 100. A threshold level of 10 percent is placed on P, above which such a loss is considered to be a significant loss to any size farming operation.

  8. Glacial Events Spanning the Last Glacial Cycle in the Southern Alps, New Zealand

    NASA Astrophysics Data System (ADS)

    Thackray, G. D.; Rittenour, T. M.; Shulmeister, J.; Hyatt, O.

    2012-12-01

    The Rakaia, Rangitata, and Clutha River basins of the Southern Alps were major ice pathways for Southern Alps outlet glaciers during the last glaciation. While extensive CRN dating of moraine boulders has constrained the timing of a major ice advance to around the time of the Northern Hemisphere ice sheet maximum ("LGM"), extensive stratigraphic exposures permit extension of glacial records to important earlier phases of the last glaciation. Those exposures, present in most valleys, yield an extensive and detailed sedimentologic record and a closely linked luminescence chronology of glacial events spanning the entire last glacial cycle. Recently published work from the Rakaia drainage demonstrates multiple ice advances into the middle Rakaia Valley and uppermost Canterbury Plains during the last glacial cycle. Prominent ice advances there are documented largely in glacial-lacustrine and glacial-fluvial sediments, in a coarsening-upward, basin-filling sequence. Those ice advances occurred during MIS 5b (ca. 100-90 ka), MIS 5a/4 (ca. 80 ka), MIS 3 (ca. 48 ka and 40 ka), and MIS 2 (ca. 25-15 ka). In the central Rangitata valley, a spectacular kame terrace sequence superposes LGM and deglacial-phase sediments on extensive MIS 3 and possible MIS 4 sediments. At three distinct locations, provisional OSL ages indicate a prominent ice advance during MIS 3 (ca. 30-50 ka). Near surface sediments associated with kame terraces indicate enhanced fluvial activity around the LGM, and indicate that deglaciation was well under way by 13 ka. Further south in the Clutha valley, exposures at Lakes Wanaka and Hawea demonstrate ice advances during MIS 3 and MIS 2, largely associated with ice-proximal lacustrine deposition. Extensive outwash sequences 2-15 km downvalley reveal a detailed record of glacial-fluvial activity that appears to extend through the last glacial cycle. These valley records demonstrate that, in particular, MIS 3 featured extensive ice advances, with ice extent

  9. Detrital zircon provenance analysis of the Great Valley Group, California: Evolution of an arc-forearc system

    USGS Publications Warehouse

    DeGraaff-Surpless, K.; Graham, S.A.; Wooden, J.L.; McWilliams, M.O.

    2002-01-01

    The improved resolution of sediment provenance from detrital zircon analysis of Great Valley stratigraphy enables recognition of previously undocumented arc magmatism and the evolution of regional drainage systems within the Cretaceous arc-forearc system related to uplift, magmatism, and structure in the arc. Great Valley detrital zircon age data confirm previous studies that indicate that the locus of the sediment source in the southern Sierra Nevada arc migrated east with the active volcanic front and suggest rapid rates of uplift and unroofing of the southern arc. Sacramento Valley detrital zircon age data indicate a more complex history of drainage in the northern Klamath-Sierran arc than previously documented. Detrital zircon age distributions from the Cache Creek section of the Great Valley Group broaden through time from nearly unimodal age distributions to signatures with multiple age peaks. This transition to more broadly distributed detrital zircon age spectra likely results from a combination of (1) expanding subaerial drainage systems from highly localized to more broadly distributed catchments; (2) changing shelf and submarine-canyon morphology with rising sea level and/or basin subsidence; (3) increased degree of dissection of the Klamath-Sierran arc; and (4) potential drainage capture and redirection within the arc. Sacramento Valley detrital zircon age data also record a pulse of Late Jurassic to Early Cretaceous magmatism in the northwestern Sierra Nevada arc, an age of Cordilleran magmatism and deformation represented by limited exposure in the modern Sierra Nevada. These results offer significant new insights into the evolution of a well-studied arc-forearc system.

  10. Analysis of Mining-induced Valley Closure Movements

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Mitra, R.; Oh, J.; Hebblewhite, B.

    2016-05-01

    Valley closure movements have been observed for decades in Australia and overseas when underground mining occurred beneath or in close proximity to valleys and other forms of irregular topographies. Valley closure is defined as the inward movements of the valley sides towards the valley centreline. Due to the complexity of the local geology and the interplay between several geological, topographical and mining factors, the underlying mechanisms that actually cause this behaviour are not completely understood. A comprehensive programme of numerical modelling investigations has been carried out to further evaluate and quantify the influence of a number of these mining and geological factors and their inter-relationships. The factors investigated in this paper include longwall positional factors, horizontal stress, panel width, depth of cover and geological structures around the valley. It is found that mining in a series passing beneath the valley dramatically increases valley closure, and mining parallel to valley induces much more closure than other mining orientations. The redistribution of horizontal stress and influence of mining activity have also been recognised as important factors promoting valley closure, and the effect of geological structure around the valley is found to be relatively small. This paper provides further insight into both the valley closure mechanisms and how these mechanisms should be considered in valley closure prediction models.

  11. Preliminary Analytical Results for Ash and Burned Soils from the October 2007 Southern California Wildfires

    USGS Publications Warehouse

    Plumlee, Geoffrey S.; Martin, Deborah A.; Hoefen, Todd; Kokaly, Raymond F.; Hageman, Philip; Eckberg, Alison; Meeker, Gregory P.; Adams, Monique; Anthony, Michael; Lamothe, Paul J.

    2007-01-01

    Overview The U.S. Geological Survey (USGS) collected ash and burned soils from about 28 sites in southern California wildfire areas (Harris, Witch, Ammo, Santiago, Canyon and Grass Valley) from Nov. 2 through 9, 2007 (table 1). USGS researchers are applying a wide variety of analytical methods to these samples, with the goal of helping identify characteristics of the ash and soils from wildland and suburban burned areas that may be of concern for their potential to adversely affect water quality, human health, endangered species, and debris-flow or flooding hazards. These studies are part of the Southern California Multi-Hazards Demonstration Project, and preliminary findings are presented here.

  12. Triton's Southern Hemisphere

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This polar projection of Triton's southern hemisphere provides a view of the southern polar cap and bright equatorial fringe. The margin of the cap is scalloped and ranges in latitude from +10 degrees to -30 degrees. The bright fringe is closely associated with the cap's margin; from it, diffuse bright rays extend north-northeast for hundreds of kilometers. The bright fringe probably consists of very fresh nitrogen frost or snow, and the rays consist of bright-fringe materials that were redistributed by north-moving Coriolis-deflected winds.

  13. Formation of regolith-collapse sinkholes in southern Illinois: Interpretation and identification of associated buried cavities

    USGS Publications Warehouse

    Panno, S.V.; Wiebel, C.P.; Heigold, P.C.; Reed, P.C.

    1994-01-01

    Three regolith-collapse sinkholes formed near the Dongola Unit School and the Pentecostal Church in the southern Illinois village of Dongola (Union County) during the spring of 1993. The sinkholes appeared over a three-month period that coincided with development of a new municipal well. The new well was drilled through clay-rich, valley-fill sediment into karstified limestone bedrock. The piezometric surface of the limestone aquifer is above land surface, indicating the presence of an upward hydraulic gradient in the valley and that the valley fill is acting as a confining unit. Pumping during development of the well lowered the piezometric surface of the limestone aquifer to an elevation below the base of the valley fill. It is hypothesized that drainage of water from the sediments, the resulting loss of hydrostatic pressure and buoyant force in overlying sediments, increased intergranular pressure, and the initiation of groundwater flow toward the well resulted in rapid sediment transport, subsurface erosion, and collapse of the valley-fill sediment. The sinkholes follow an approximately east-west alignment, which is consistent with one of the two dominant alignments of passages of nearby joint-controlled caves. A constant electrode-separation resistivity survey of the school playground was conducted to locate areas that might contain incipient sinkholes. The survey revealed a positive resistivity anomaly trending N75E in the southern part of the study area. The anomaly is linear, between 5 and 10 m wide, and its trend either intersects or is immediately adjacent to the three sinkholes. The anomaly is interpreted to be a series of pumping-induced cavities in the valley-fill sediments that formed over a preexisting crevice in the karstified bedrock limestone. ?? 1994 Springer-Verlag.

  14. Subsurface Salts in Antarctic Dry Valley Soils

    NASA Technical Reports Server (NTRS)

    Englert, P.; Bishop, J. L.; Gibson, E. K.; Koeberl, C.

    2013-01-01

    The distribution of water-soluble ions, major and minor elements, and other parameters were examined to determine the extent and effects of chemical weathering on cold desert soils. Patterns at the study sites support theories of multiple salt forming processes, including marine aerosols and chemical weathering of mafic minerals. Periodic solar-mediated ionization of atmospheric nitrogen might also produce high nitrate concentrations found in older sediments. Chemical weathering, however, was the major contributor of salts in Antarctic Dry Valleys. The Antarctic Dry Valleys represent a unique analog for Mars, as they are extremely cold and dry desert environments. Similarities in the climate, surface geology, and chemical properties of the Dry Valleys to that of Mars imply the possible presence of these soil formation mechanisms on Mars, other planets and icy satellites.

  15. Valley depolarization in monolayer WSe2

    PubMed Central

    Yan, Tengfei; Qiao, Xiaofen; Tan, Pingheng; Zhang, Xinhui

    2015-01-01

    We have systematically examined the circular polarization of monolayer WSe2 at different temperature, excitation energy and exciton density. The valley depolarization in WSe2 is experimentally confirmed to be governed by the intervalley electron-hole exchange interaction. More importantly, a non-monotonic dependence of valley circular polarization on the excitation power density has been observed, providing the experimental evidence for the non-monotonic dependence of exciton intervalley scattering rate on the excited exciton density. The physical origination of our experimental observations has been proposed to be in analogy to the D′yakonov-Perel′ mechanism that is operative in conventional GaAs quantum well systems. Our experimental results are fundamentally important for well understanding the valley pseudospin relaxation in atomically thin transition metal dichalcogenides. PMID:26490157

  16. Castro Valley High School's Solar Panels

    NASA Astrophysics Data System (ADS)

    Lew, A.; Ham, S.; Shin, Y.; Yang, W.; Lam, J.

    2014-12-01

    Solar panels are photovoltaic cells that are designed to convert the sun's kinetic energy to generate usable energy in the form of electricity. Castro Valley High School has tried to offset the cost of electricity by installing solar panels, costing the district approximately 3.29 million dollars, but have been installed incorrectly and are not operating at peak efficency. By using trigonometry we deduced that Castro Valley High School's south facing solar panels were at an incline of 10o and that the east and west facing solar panels are at an incline of 5o. By taking the averages of the optimum angles for the months of September through May, roughly when school is in session, we found that the optimum angle for south facing solar panels should be roughly 46o. This shows that Castro Valley High School has not used it's budget to its full potential due to the fact that the solar panels were haphazardly installed.

  17. Valley depolarization in monolayer WSe2.

    PubMed

    Yan, Tengfei; Qiao, Xiaofen; Tan, Pingheng; Zhang, Xinhui

    2015-01-01

    We have systematically examined the circular polarization of monolayer WSe2 at different temperature, excitation energy and exciton density. The valley depolarization in WSe2 is experimentally confirmed to be governed by the intervalley electron-hole exchange interaction. More importantly, a non-monotonic dependence of valley circular polarization on the excitation power density has been observed, providing the experimental evidence for the non-monotonic dependence of exciton intervalley scattering rate on the excited exciton density. The physical origination of our experimental observations has been proposed to be in analogy to the D'yakonov-Perel' mechanism that is operative in conventional GaAs quantum well systems. Our experimental results are fundamentally important for well understanding the valley pseudospin relaxation in atomically thin transition metal dichalcogenides. PMID:26490157

  18. Irrigation channels of the Upper Rhone valley (Switzerland). Geomorphological analysis of a cultural heritage

    NASA Astrophysics Data System (ADS)

    Reynard, Emmanuel

    2016-04-01

    The Upper Rhone valley (Canton of Valais, Switzerland) is characterised by dry climatic conditions that explain the presence of an important network (about 800 km) of irrigation channels - called Bisses in the French-speaking part of the canton or Suonen in the German-speaking area - dating back to the Middle Ages. This network constitutes a cultural heritage and during the last 30 years these agricultural infrastructures have sparked a renewed interest for tourist and cultural reasons. Indeed, the paths along the channels are used as tourist trails and several abandoned channels have been renovated for tourist use. Based on an inventory of the Bisses/Suonen of Valais, the proposed communication has three aims: (1) to analyse the geomorphological context (morphometric analysis, structural geomorphology, main processes) of various types of channels and to show the impact of the geomorphological context on the building techniques; (2) to identify particularly active processes along the channels; (3) to classify the Bisses/Suonen according to their geomorphological value and to their geomorphological sensitivity, and to propose managing measures. Structural and climatic conditions influence the geomorphological context of the channels. In a structural point of view, irrigation channels are developed in three main contexts: (1) in the Aar Massif crystalline basement; (2) in the limestone and marl cover nappes of the Helvetic Alps; (3) in the metamorphic cover nappes of the Penninic domain. The Rhone River valley is boarded by two high mountain ranges: the Penninic Alps in the South and the Bernese Alps in the North. Because of rain shadow effects, the climate is relatively dry and, between Brig and Martigny, annual rainfall is not more than 600 mm at 500 m ASL and 800 mm at 1600 m ASL. Nevertheless, due to important vertical precipitation gradients annual rainfall totals are high at high altitudes. On the southern facing tributary valleys, the dry climatic conditions

  19. Hydrogeologic framework of the Wood River Valley aquifer system, south-central Idaho

    USGS Publications Warehouse

    Bartolino, James R.; Adkins, Candice B.

    2012-01-01

    The Wood River Valley contains most of the population of Blaine County and the cities of Sun Valley, Ketchum, Hailey, and Bellevue. This mountain valley is underlain by the alluvial Wood River Valley aquifer system, which consists primarily of a single unconfined aquifer that underlies the entire valley, an underlying confined aquifer that is present only in the southernmost valley, and the confining unit that separates them. The entire population of the area depends on groundwater for domestic supply, either from domestic or municipal-supply wells, and rapid population growth since the 1970s has caused concern about the long-term sustainability of the groundwater resource. As part of an ongoing U.S. Geological Survey effort to characterize the groundwater resources of the Wood River Valley, this report describes the hydrogeologic framework of the Wood River Valley aquifer system. Although most of the Wood River Valley aquifer system is composed of Quaternary-age sediments and basalts of the Wood River Valley and its tributaries, older igneous, sedimentary, or metamorphic rocks that underlie these Quaternary deposits also are used for water supply. It is unclear to what extent these rocks are hydraulically connected to the main part of Wood River Valley aquifer system and thus whether they constitute separate aquifers. Paleozoic sedimentary rocks in and near the study area that produce water to wells and springs are the Phi Kappa and Trail Creek Formations (Ordovician and Silurian), the Milligen Formation (Devonian), and the Sun Valley Group including the Wood River Formation (Pennsylvanian-Permian) and the Dollarhide Formation (Permian). These sedimentary rocks are intruded by granitic rocks of the Late Cretaceous Idaho batholith. Eocene Challis Volcanic Group rocks overlie all of the older rocks (except where removed by erosion). Miocene Idavada Volcanics are found in the southern part of the study area. Most of these rocks have been folded, faulted, and

  20. Scaling relations for large Martian valleys

    NASA Astrophysics Data System (ADS)

    Som, Sanjoy M.; Montgomery, David R.; Greenberg, Harvey M.

    2009-02-01

    The dendritic morphology of Martian valley networks, particularly in the Noachian highlands, has long been argued to imply a warmer, wetter early Martian climate, but the character and extent of this period remains controversial. We analyzed scaling relations for the 10 large valley systems incised in terrain of various ages, resolvable using the Mars Orbiter Laser Altimeter (MOLA) and the Thermal Emission Imaging System (THEMIS). Four of the valleys originate in point sources with negligible contributions from tributaries, three are very poorly dissected with a few large tributaries separated by long uninterrupted trunks, and three exhibit the dendritic, branching morphology typical of terrestrial channel networks. We generated width-area and slope-area relationships for each because these relations are identified as either theoretically predicted or robust terrestrial empiricisms for graded precipitation-fed, perennial channels. We also generated distance-area relationships (Hack's law) because they similarly represent robust characteristics of terrestrial channels (whether perennial or ephemeral). We find that the studied Martian valleys, even the dendritic ones, do not satisfy those empiricisms. On Mars, the width-area scaling exponent b of -0.7-4.7 contrasts with values of 0.3-0.6 typical of terrestrial channels; the slope-area scaling exponent $\\theta$ ranges from -25.6-5.5, whereas values of 0.3-0.5 are typical on Earth; the length-area, or Hack's exponent n ranges from 0.47 to 19.2, while values of 0.5-0.6 are found on Earth. None of the valleys analyzed satisfy all three relations typical of terrestrial perennial channels. As such, our analysis supports the hypotheses that ephemeral and/or immature channel morphologies provide the closest terrestrial analogs to the dendritic networks on Mars, and point source discharges provide terrestrial analogs best suited to describe the other large Martian valleys.

  1. Stably Stratified Flow in a Shallow Valley

    NASA Astrophysics Data System (ADS)

    Mahrt, L.

    2016-07-01

    Stratified nocturnal flow above and within a small valley of approximately 12-m depth and a few hundred metres width is examined as a case study, based on a network of 20 sonic anemometers and a central 20-m tower with eight levels of sonic anemometers. Several regimes of stratified flow over gentle topography are conceptually defined for organizing the data analysis and comparing with the existing literature. In our case study, a marginal cold pool forms within the shallow valley in the early evening but yields to larger ambient wind speeds after a few hours, corresponding to stratified terrain-following flow where the flow outside the valley descends to the valley floor. The terrain-following flow lasts about 10 h and then undergoes transition to an intermittent marginal cold pool towards the end of the night when the larger-scale flow collapses. During this 10-h period, the stratified terrain-following flow is characterized by a three-layer structure, consisting of a thin surface boundary layer of a few metres depth on the valley floor, a deeper boundary layer corresponding to the larger-scale flow, and an intermediate transition layer with significant wind-directional shear and possible advection of lee turbulence that is generated even for the gentle topography of our study. The flow in the valley is often modulated by oscillations with a typical period of 10 min. Cold events with smaller turbulent intensity and duration of tens of minutes move through the observational domain throughout the terrain-following period. One of these events is examined in detail.

  2. Modeling pollutant transport in the southern Appalachian Mountains

    SciTech Connect

    Mueller, S.F.; Song, A.; Norris, W.B.; Gupta, S.; McNider, R.T.

    1996-12-31

    Sensitive ecosystems of the southern Appalachian Mountains are being studied to determine levels of air pollutant impacts. One such effort is in the Great Smoky Mountains National Park (GSMNP) where several projects are underway. This paper describes the results of one research project aimed at quantifying the spatial and temporal distribution of park ozone and the role of various ozone precursor sources in regional ozone production. Airflow and air pollution transport in the vicinity of the Great Smoky Mountains are strongly influenced by complex topography that characterizes the region. The highest elevations in the mountains are on the order of 1,700 m greater than the floor of the Tennessee River Valley to the west. The valley floor slopes southwestward from north of the mountains towards Chattanooga. This mixture of mountain ridges and valleys is expected to strongly influence air circulation patterns on days when regional geostrophic winds are weak. These conditions frequently occur in the summer and often coincide with periods when levels of air pollutants, especially ozone, are high. The present study examines airflow patterns during specific periods when high ozone concentrations were observed within the GSMNP.

  3. Adaptive strategies to climate change in Southern Malawi

    NASA Astrophysics Data System (ADS)

    Chidanti-Malunga, J.

    Climate change poses a big challenge to rural livelihoods in the Shire Valley area of Southern Malawi, where communities have depended almost entirely on rain-fed agriculture for generations. The Shire Valley area comprises of low-altitude dambo areas and uplands which have been the main agricultural areas. Since early to mid 1980s, the uplands have experienced prolonged droughts and poor rainfall distribution, while the dambos have experienced recurrent seasonal floods. This study assessed some of the adaptive strategies exercised by small-scale rural farmers in response to climate change in the Shire Valley. The methodology used in collecting information includes group discussions, household surveys in the area, secondary data, and field observations. The results show that small-scale rural farmers exercise a number of adaptive strategies in response to climate change. These adaptive strategies include: increased use of water resources for small-scale irrigation or wetland farming, mostly using simple delivery techniques; increased management of residual moisture; and increased alternative sources of income such as fishing and crop diversity. It was also observed that government promoted the use of portable motorized pumps for small-scale irrigation in order to mitigate the effects of climate change. However, these external interventions were not fully adopted; instead the farmers preferred local interventions which mostly had indigenous elements.

  4. Solar energy innovation and Silicon Valley

    NASA Astrophysics Data System (ADS)

    Kammen, Daniel M.

    2015-03-01

    The growth of the U. S. and global solar energy industry depends on a strong relationship between science and engineering innovation, manufacturing, and cycles of policy design and advancement. The mixture of the academic and industrial engine of innovation that is Silicon Valley, and the strong suite of environmental policies for which California is a leader work together to both drive the solar energy industry, and keep Silicon Valley competitive as China, Europe and other area of solar energy strength continue to build their clean energy sectors.

  5. 1. SNAKE RIVER VALLEY IRRIGATION DISTRICT DAM, VIEW OF NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. SNAKE RIVER VALLEY IRRIGATION DISTRICT DAM, VIEW OF NORTH ELEVATION OF INTAKE ON EAST SIDE OF DAM - Snake River Valley Irrigation District, East Side of Snake River (River Mile 796), Shelley, Bingham County, ID

  6. 40. PLEASANT VALLEY RESERVOIR DAM LOOKING NORTHWEST Los Angeles ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. PLEASANT VALLEY RESERVOIR DAM LOOKING NORTHWEST - Los Angeles Aqueduct, From Lee Vining Intake (Mammoth Lakes) to Van Norman Reservoir Complex (San Fernando Valley), Los Angeles, Los Angeles County, CA

  7. 95. BOUQUET RESERVOIR LOOKING UP VALLEY TO RESERVOIR LOOKING EAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    95. BOUQUET RESERVOIR LOOKING UP VALLEY TO RESERVOIR LOOKING EAST - Los Angeles Aqueduct, From Lee Vining Intake (Mammoth Lakes) to Van Norman Reservoir Complex (San Fernando Valley), Los Angeles, Los Angeles County, CA

  8. VEGETATION CHARACTERIZATION OF THREE CONTRASTING RIPARIAN SITES, WILLAMETTE VALLEY, OR

    EPA Science Inventory

    Much of the native riparian vegetation of the Willamette Valley, Oregon, has been replaced with agricultural crops or invasive non-native plant species. Detailed information about current Willamette Valley riparian vegetation is generally lacking. Plant species composition data...

  9. "No. 190. Grand Valley Diversion Dam. Diversion gates, water flowing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    "No. 190. Grand Valley Diversion Dam. Diversion gates, water flowing into high line. June, 1917. R.B.D." - Grand Valley Diversion Dam, Half a mile north of intersection of I-70 & Colorado State Route 65, Cameo, Mesa County, CO

  10. Is It Flu, or Is It Valley Fever?

    MedlinePlus

    ... https://medlineplus.gov/news/fullstory_160138.html Is It Flu, or Is It Valley Fever? Potentially fatal infection is found in ... often-overlooked infection, and about 160 die from it, the society says. "Valley fever is underdiagnosed in ...

  11. 79. COVERED CONDUIT ACROSS ANTELOPE VALLEY WITH WIND FARM IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    79. COVERED CONDUIT ACROSS ANTELOPE VALLEY WITH WIND FARM IN DISTANCE - Los Angeles Aqueduct, From Lee Vining Intake (Mammoth Lakes) to Van Norman Reservoir Complex (San Fernando Valley), Los Angeles, Los Angeles County, CA

  12. Goldstone-Apple Valley Radio Telescope System Theory of Operation

    NASA Technical Reports Server (NTRS)

    Stephan, George R.

    1997-01-01

    The purpose of this learning module is to enable learners to describe how the Goldstone-Apple Valley Radio Telescope (GAVRT) system functions in support of Apple Valley Science and Technology Center's (AVSTC) client schools' radio astronomy activities.

  13. View of abandoned Yosemite Valley Railroad track grade and trestle ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of abandoned Yosemite Valley Railroad track grade and trestle remain. Seen from same camera location as HAER CA-150-39. Looking northwest - All Year Highway, Between Arch Rock & Yosemite Valley, El Portal, Mariposa County, CA

  14. 12. VIEW OF YAKIMA VALLEY TRANSPORTATION COMPANY AND UNION PACIFIC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. VIEW OF YAKIMA VALLEY TRANSPORTATION COMPANY AND UNION PACIFIC RAILROAD INTERCHANGE TRACKS AT YAKIMA, SHOWING SOUTH END OF OVERHEAD WIRING TERMINATION - Yakima Valley Transportation Company Interurban Railroad, Connecting towns of Yakima, Selah & Wiley City, Yakima, Yakima County, WA

  15. 10. VIEW OF YAKIMA VALLEY TRANSPORTATION COMPANY AND UNION PACIFIC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. VIEW OF YAKIMA VALLEY TRANSPORTATION COMPANY AND UNION PACIFIC RAILROAD INTERCHANGE TRACKS AT YAKIMA - Yakima Valley Transportation Company Interurban Railroad, Connecting towns of Yakima, Selah & Wiley City, Yakima, Yakima County, WA

  16. 11. VIEW OF YAKIMA VALLEY TRANSPORTATION COMPANY AND UNION PACIFIC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. VIEW OF YAKIMA VALLEY TRANSPORTATION COMPANY AND UNION PACIFIC RAILROAD INTERCHANGE TRACKS AT YAKIMA, SHOWING DETAIL OF OVERHEAD WIRING - Yakima Valley Transportation Company Interurban Railroad, Connecting towns of Yakima, Selah & Wiley City, Yakima, Yakima County, WA

  17. Regional Attenuation of Southern Nevada Using Multiphase Inversion

    NASA Astrophysics Data System (ADS)

    Pyle, M. L.; Walter, W. R.; Pasyanos, M.

    2014-12-01

    Seismic event amplitude estimation plays an important role in a range of endeavors including the discrimination between earthquakes and explosions and seismic hazard estimation. Reasonable amplitude estimation requires knowledge of the attenuation experienced by seismic waves as they travel through the earth. In this study, we investigate the attenuation structure in the region of Southern Nevada as part of the Source Physics Experiment (SPE). The SPE consists of a series of chemical explosions at the Nevada National Security Site (NNSS) designed to improve our understanding of explosion physics and enable better modeling of explosion sources. Phase I of the SPE is currently being conducted in the Climax Stock Granite and Phase II will move to a contrasting dry alluvium geology. Phase III is planned to be a direct earthquake-to-explosion comparison in Rock Valley at the southern end of NNSS. For the Rock Valley experiment, a chemical explosion would be placed at the hypocenter of a small shallow earthquake and recorded at a common set of receivers. A sequence of unusually shallow events along the Rock Valley Fault Zone in May of 1993 was recorded by a network of stations operated by the University of Nevada-Reno (UNR) and makes this novel experiment possible. As part of a feasibility study for this phase of the SPE, LLNL, UNR and NSTec are working to improve our understanding of the region and the propagation of energy from sources in the area to local and regional stations in the western U.S. Eight new seismic stations, including two borehole sensors, located at the original 1993 sites and additional sites, have been installed and ongoing seismicity along the fault is currently being recorded. Examination of the local attenuation structure is an important part of our site characterization. We wish to ensure that an explosion generated at a Rock Valley site will be large enough to be recorded at regional distances, and a well-constrained attenuation study will aid

  18. Land subsidence in the San Joaquin Valley, California, as of 1980

    USGS Publications Warehouse

    Ireland, R.L.; Poland, J.F.; Riley, F.S.

    1982-01-01

    Land subsidence due to ground-water overdraft in the San Joaquin Valley began in the mid-1920 's and continued at alarming rates until surface was imported through major canals and aqueducts in the 1950 's and late 1960's. In areas where surface water replaced withdrawal of ground-water, water levels in the confined system rose sharply and subsidence slowed. In the late 1960 's and early 1970 's water levels in wells recovered to levels of the 1940 's and 1950 's throughout most of the western and southern parts of the Valley, in response to the importation of surface water through the California aqueduct. During the 1976-77 drought data collected at water-level and extensometer sites showed the effect of heavy demand on the ground-water resevoir. With the ' water of compaction ' gone, artesian head declined 10 to 20 times as fast as during the first cycle of long-term drawdown that ended in the late 1960's. In the 1978-79 water levels recovered to or above the 1976 pre-drought levels. The report suggests continued monitoring of land subsidence in the San Joaquin Valley. (USGS)

  19. Channel Response to Low-Elevation Desert Fire: The King Valley Fire of 2005

    USGS Publications Warehouse

    Webb, Robert H.; Griffiths, Peter G.; Wallace, Cynthia S.A.; Boyer, Diane E.

    2007-01-01

    In late September to early October 2005, a fire swept north from the Yuma Proving Grounds and into the Kofa National Wildlife Refuge (NWR), traveling mainly along desert wash systems and low-relief alluvial fans. This fire burned 9,975 ha, moving through xeroriparian systems in washes as well as low-elevation desert ecosystems in King Valley, a major area of designated wilderness in the southern part of the Kofa NWR. Using satellite imagery, we determined that 9,255 ha of the Kofa NWR in King Valley burned. The fine-fuel loading for the fire was mostly a native forb (Plantago insularis), and the desert environment that was burned was mostly low-cover creosote bush (Larrea tridentata) scrub with scattered palo verde (Cercidium microphyllum). The wash environments had significant tree cover, including ironwood (Olneya tesota), blue palo verde (Cercidium floridum), desert willow (Chilopsis linearis), and/or smoke tree (Psorothamnus spinosa). This report presents monitoring data collected in June 2006 and January-February 2007 on the effects of this fire on channel morphology in King Valley.

  20. Ground-water resources of the Mattapoisett River Valley, Plymouth County, Massachusetts

    USGS Publications Warehouse

    Olimpio, J.C.; De Lima, Virginia

    1984-01-01

    Ground-water withdrawals by municipal wells in the Mettapoisett River valley, Massachusetts, are expected to triple in the next two decades. State and local concern about the long-term impacts of these withdrawals on ground-water levels and streamflow made it necessary to assess the ground-water resources of the valley and to develop a digital ground-water-flow model for management purposes. Ten pumping scenarios, which represent the present and proposed withdrawals from the aquifer, were simulated using reduced recharge conditions. Under conditions simulating 1965 average annual recharge, predicted water levels in the aquifer are as much as 9 feet lower than average annual levels. At the highest withdrawal rates, the predicted drawdown in four wells exceeds the estimated available drawdown. Under conditions representative of the 7-day 10-year low flow of the river, predicted water levels decline as much as 19 feet. Simulated withdrawals in six scenarios use all of the available ground-water discharge. If this drought condition should occur and streamflow is not supplemented by surface water, the model results indicate that the river in the southern half of the valley will stop flowing under most pumping plans. (USGS)

  1. The first australopithecine 2,500 kilometres west of the Rift Valley (Chad)

    PubMed

    Brunet, M; Beauvilain, A; Coppens, Y; Heintz, E; Moutaye, A H; Pilbeam, D

    1995-11-16

    The first sites with Pliocene and Pleistocene mammals west of the Rift Valley in Central Africa in northern Chad were reported in 1959 (ref. 1), and documented the presence of mixed savannah and woodland habitats. Further sites and a probable Homo erectus cranio-facial fragment were subsequently discovered. In 1993 a survey of Pliocene and Pleistocene formations in the Borkou-Ennedi-Tibesti Province of Chad (B.E.T.) led to the discovery of 17 new sites in the region of Bahr el Ghazal (classical Arabic for River of the Gazelles) near Koro Toro. One site, KT 12 (15 degrees 58'10"N, 18 degrees 52'46"E) yielded an australopithecine mandible associated with a fauna biochronologically estimated to be 3.0-3.5 Myr old. Australopithecine species described since 1925 are known from southern Africa and from sites spread along the eastern Rift Valley from Tanzania to Ethiopia (Fig. 1). This new find from Chad, which is most similar in morphology to Australopithecus afarensis, documents the presence of an early hominid a considerable distance, 2,500 km, west of the Rift Valley. PMID:7477344

  2. 'Pearl' Southern Highbush Blueberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Pearl’ is a new southern highbush blueberry (Vaccinium spp. hybrid) developed and released by the United States Department of Agriculture Agricultural Research Service. The new cultivar has several advantages for growers in the Southeastern U.S. over rabbiteye blueberry cultivars, the most widely ...

  3. "Pearl" southern highbush blueberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Pearl’ is a new southern highbush blueberry (Vaccinium spp. hybrid) developed and released by the United States Department of Agriculture-Agricultural Research Service. The new cultivar has several advantages for growers in the Southeastern U.S. over rabbiteye blueberry cultivars, the most widely ...

  4. Southern Sclerotium blight

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sclerotium rolfsii attacks a wide range of plants throughout the world. It is most severe in tropical and subtropical areas. Southern Sclerotium blight is of major concern in the eastern, southeastern, and southwestern United States and in Mexico. Although severe losses are reported annually in pe...

  5. Southern (In)hospitality

    ERIC Educational Resources Information Center

    Hamilton, Kendra

    2005-01-01

    This article presents the results of "The Status of Race Equity and Diversity in Public Higher Education in the South," an analysis of trends in admissions, enrollment and completion at public colleges and universities in the 19 Southern and border states that maintained segregated systems of higher education in 1954. While work on the project…

  6. Trouble at Texas Southern

    ERIC Educational Resources Information Center

    Asquith, Christina

    2006-01-01

    On the night of December 4, 2004, a Texas Southern University (TSU) student named Ashley Sloan was gunned down near campus, struck in the temple by a bullet after leaving a party with her friends. The murder prompted an outpouring of accusations concerning poor campus security. For many Houstonians, the shooting raised old fears of the…

  7. Object-based forest classification to facilitate landscape-scale conservation in the Mississippi Alluvial Valley

    USGS Publications Warehouse

    Mitchell, Michael; Wilson, R. Randy; Twedt, Daniel J.; Mini, Anne E.; James, J. Dale

    2016-01-01

    The Mississippi Alluvial Valley is a floodplain along the southern extent of the Mississippi River extending from southern Missouri to the Gulf of Mexico. This area once encompassed nearly 10 million ha of floodplain forests, most of which has been converted to agriculture over the past two centuries. Conservation programs in this region revolve around protection of existing forest and reforestation of converted lands. Therefore, an accurate and up to date classification of forest cover is essential for conservation planning, including efforts that prioritize areas for conservation activities. We used object-based image analysis with Random Forest classification to quickly and accurately classify forest cover. We used Landsat band, band ratio, and band index statistics to identify and define similar objects as our training sets instead of selecting individual training points. This provided a single rule-set that was used to classify each of the 11 Landsat 5 Thematic Mapper scenes that encompassed the Mississippi Alluvial Valley. We classified 3,307,910±85,344 ha (32% of this region) as forest. Our overall classification accuracy was 96.9% with Kappa statistic of 0.96. Because this method of forest classification is rapid and accurate, assessment of forest cover can be regularly updated and progress toward forest habitat goals identified in conservation plans can be periodically evaluated.

  8. Field-saturated hydraulic conductivity of unsaturated surficial deposits along the southern extent of the Illinoian glaciation, southern Illinois

    SciTech Connect

    McDonald, T.A.; Padgett, R.J.; Esling, S.P. . Dept. of Geology)

    1992-01-01

    In southern Illinois, glacially-derived surficial deposits control recharge and the migration of contaminants to regional groundwater resources. This study measured the field-saturated hydraulic conductivity of the diamicton and the overlying loess with a Guelph permeameter specially modified to take measurements to a depth of 5 m. Six field sites were chosen, along a transect trending about 50 kilometers southeast of the Mississippi Valley. Along this transect, the loess units thin dramatically, from 8 to 1 m and from 6 to 0.2 m for the Peoria and Roxana Silts, respectively, and the relative influence of the Ohio/Wabash Valleys source area increases. Twenty boreholes were drilled at each site at a spacing of 1.5 m forming a random grid pattern. Initial conductivity tests were conducted near the base of the loess in the B/C, or where possible C, horizon of the modern soil. Boreholes were then deepened and tests were conducted within the oxidized diamicton. The statistical relation between field-saturated hydraulic conductivity, particle size distribution, clay mineralogy, fracture distribution, and weathering zone was investigated. The main factors influencing spatial variability in field-saturated hydraulic conductivity are: (1) particle size distribution, (2) clay mineralogy, and (3) differences in soil development. Source area (Mississippi vs. Ohio/Wabash Valley systems) and distance from the source area control these physical factors.

  9. Structure of the active rift zone and margins of the northern Imperial Valley from Salton Seismic Imaging Project (SSIP) data

    NASA Astrophysics Data System (ADS)

    Livers, A.; Han, L.; Delph, J. R.; White-Gaynor, A. L.; Petit, R.; Hole, J. A.; Stock, J. M.; Fuis, G. S.

    2012-12-01

    First-arrival refraction data were used to create a seismic velocity model of the upper crust across the actively rifting northern Imperial Valley and its margins. The densely sampled seismic refraction data were acquired by the Salton Seismic Imaging Project (SSIP) , which is investigating rift processes in the northern-most rift segment of the Gulf of California extensional province and earthquake hazards at the southern end of the San Andreas Fault system. A 95-km long seismic line was acquired across the northern Imperial Valley, through the Salton Sea geothermal field, parallel to the five Salton Butte volcanoes and perpendicular to the Brawley Seismic Zone and major strike-slip faults. Nineteen explosive shots were recorded with 100 m seismometer spacing across the valley and with 300-500 m spacing into the adjacent ranges. First-arrival travel times were picked from shot gathers along this line and a seismic velocity model was produced using tomographic inversion. Sedimentary basement and seismic basement in the valley are interpreted to be sediment metamorphosed by the very high heat flow. The velocity model shows that this basement to the west of the Brawley Seismic Zone is at ~4-km depth. The basement shallows to ~2-km depth in the active geothermal field and Salton Buttes volcanic field which locally coincide with the Brawley Seismic Zone. At the eastern edge of the geothermal field, the basement drops off again to ~3.5-km depth. The eastern edge of the valley appears to be fault bounded by the along-strike extension of the Sand Hills Fault, an inactive strike-slip fault. The seismic velocities to the east of the fault correspond to metamorphic rock of the Chocolate Mountains, different from the metamorphosed basement in the valley. The western edge of the valley appears to be fault bounded by the active Superstition Hills Fault. To the west of the valley, >4-km deep valley basement extends to the active Superstition Hills Fault. Basement then shallows

  10. Evolution of an Intermontane Basin Along the Northern San Andreas System: Evidence from Basin Structure of Little Lake Valley (Willits), Northern California Inferred from Gravity and Geologic Data

    NASA Astrophysics Data System (ADS)

    Erickson, G.; Kelsey, H.; Langenheim, V.; Furlong, K.

    2007-12-01

    Associated with the northern strands of the San Andreas fault system in California is a series of small intermontane basins. While it is tempting to ascribe their formation to simple pull-apart tectonics along the dominantly strike-slip fault strands, direct evidence for basin genesis is lacking. In this study, a detailed gravity survey throughout the Little Lake Valley region (Willits, California) provides constraints on mechanisms of basin formation along this young segment of the San Andreas fault system. Interpretation of isostatic gravity anomaly data provides insight into fault geometry, basin structure, and thickness of Quaternary fill in Little Lake Valley, California. Although the active strike-slip Maacama fault zone diagonally trends through the southwest part of the valley, gravity and geologic interpretations indicate the valley conceals an earlier basin and faulting history. The isostatic gravity anomaly of the basin is negative (up to 13 mGals) and rhombic in shape. Modeling indicates two splays, less than a km apart, of an up-to-the-east East Valley fault; the basinward fault is buried by fill and the more easterly fault defines the eastern margin of the basin. Cumulative up-to-the-east vertical fault displacement along the East Valley fault increases southward up to 610 m in the southern portion of the valley. Gravity gradients also suggest approximately east-west trending faults bound the northern and southern sides of the valley and offset Quaternary fill. From gravity and geologic data combined, the basin floor dips approximately 7 degrees to the south in the north part of the valley and both the Quaternary sediment and basin floor dip approximately 13 degrees to the north in the south part of the valley, implying an approximately east-west axis of dip reversal of the basin floor at the northern stretch of East Hill Road (latitude 39.39 degrees N). Faults and basin fill structure are not consistent with any one simple structural model of basin

  11. Fatal systemic toxoplasmosis in Valley quail (Callipepla californica)

    PubMed Central

    Casagrande, Renata A.; Pena, Hilda F.J.; Cabral, Aline D.; Rolim, Veronica M.; de Oliveira, Luiz G.S.; Boabaid, Fabiana M.; Wouters, Angelica T.B.; Wouters, Flademir; Cruz, Cláudio E.F.; Driemeier, David

    2015-01-01

    An adult, captive raised male Valley quail (Callipepla californica) acquired by a southern Brazilian aviary suddenly showed severe apathy, dyspnea and diarrhea, and died 18 hours after the onset of illness. At necropsy, pale muscles and whitish areas in the heart, splenomegaly, hepatomegaly, and consolidated red lungs were observed. Histological findings were mainly mononuclear inflammation with necrosis of liver, heart, spleen, bone marrow and lung. There were large numbers of Toxoplasma gondii tachyzoitesorganisms in the liver, heart, spleen, bone marrow, lungs, trachea, kidneys, adrenal glands, testes, intestines, and pancreas. These organisms were seen free in the organs' stroma or within macrophages and stained positively with polyclonal antiserum to T. gondii. Genomic DNA was extracted from the tissues and PCR was used to target the B1 gene of T. gondii. The genotypic characterization by PCR-RFLP with 11 markers (SAG1, SAG2 and alt. SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, Apico and CS3) revealed the ToxoDB-PCR-RFLP #87 genotype, the same as previously identified in a backyard chicken (TgCkBr156) in Rio Grande do Sul, Brazil. PMID:26101744

  12. Geostatistical estimates of future recharge for the Death Valley region

    SciTech Connect

    Hevesi, J.A.; Flint, A.L.

    1998-12-01

    Spatially distributed estimates of regional ground water recharge rates under both current and potential future climates are needed to evaluate a potential geologic repository for high-level nuclear waste at Yucca Mountain, Nevada, which is located within the Death Valley ground-water region (DVGWR). Determining the spatial distribution of recharge is important for regional saturated-zone ground-water flow models. In the southern Nevada region, the Maxey-Eakin method has been used for estimating recharge based on average annual precipitation. Although this method does not directly account for a variety of location-specific factors which control recharge (such as bedrock permeability, soil cover, and net radiation), precipitation is the primary factor that controls in the region. Estimates of recharge obtained by using the Maxey-Eakin method are comparable to estimates of recharge obtained by using chloride balance studies. The authors consider the Maxey-Eakin approach as a relatively simple method of obtaining preliminary estimates of recharge on a regional scale.

  13. Fatal systemic toxoplasmosis in Valley quail (Callipepla californica).

    PubMed

    Casagrande, Renata A; Pena, Hilda F J; Cabral, Aline D; Rolim, Veronica M; de Oliveira, Luiz G S; Boabaid, Fabiana M; Wouters, Angelica T B; Wouters, Flademir; Cruz, Cláudio E F; Driemeier, David

    2015-08-01

    An adult, captive raised male Valley quail (Callipepla californica) acquired by a southern Brazilian aviary suddenly showed severe apathy, dyspnea and diarrhea, and died 18 hours after the onset of illness. At necropsy, pale muscles and whitish areas in the heart, splenomegaly, hepatomegaly, and consolidated red lungs were observed. Histological findings were mainly mononuclear inflammation with necrosis of liver, heart, spleen, bone marrow and lung. There were large numbers of Toxoplasma gondii tachyzoitesorganisms in the liver, heart, spleen, bone marrow, lungs, trachea, kidneys, adrenal glands, testes, intestines, and pancreas. These organisms were seen free in the organs' stroma or within macrophages and stained positively with polyclonal antiserum to T. gondii. Genomic DNA was extracted from the tissues and PCR was used to target the B1 gene of T. gondii. The genotypic characterization by PCR-RFLP with 11 markers (SAG1, SAG2 and alt. SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, Apico and CS3) revealed the ToxoDB-PCR-RFLP #87 genotype, the same as previously identified in a backyard chicken (TgCkBr156) in Rio Grande do Sul, Brazil. PMID:26101744

  14. Death Valley California as seen from STS-59

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This oblique handheld Hasselblad 70mm photo shows Death Valley, near California's border with Nevada. The valley -- the central feature of Death Valley National Monument -- extends north to south for some 140 miles (225 kilometers). Hemmed in to the east by the Amargosa Range and to the west by the Panamints, its width varies from 5 to 15 miles (8 to 24 kilometers).

  15. 36 CFR 7.26 - Death Valley National Monument.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Death Valley National Monument. 7.26 Section 7.26 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.26 Death Valley National Monument. (a) Mining. Mining in Death Valley...

  16. 27 CFR 9.119 - Middle Rio Grande Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Middle Rio Grande Valley... Middle Rio Grande Valley. (a) Name. The name of the viticultural area described in this section is “Middle Rio Grande Valley.” (b) Approved maps. The approved maps for determining the boundaries of...

  17. Morning Transition Tracer Experiments in a Deep Narrow Valley.

    NASA Astrophysics Data System (ADS)

    Whiteman, C. David

    1989-07-01

    Three sulfur hexafluoride atmospheric tracer experiments were conducted during the post-sunrise temperature inversion breakup period in the deep, narrow Brush Creek Valley of Colorado. Experiments were conducted under clear, undisturbed weather conditions.A continuous elevated tracer plume was produced along the axis of the valley before sunrise and the behavior of the plume during the inversion breakup period was detected down-valley from the release point using an array of radio-controlled sequential bag samplers, a vertical SF6 profiling system carried on a tethered balloon, two portable gas chromatographs operated on a sidewall of the valley, and a continuous real-time SF6 monitor operated from a research aircraft. Supporting meteorological data came primarily from tethered balloon profilers. The nocturnal elevated plume was carried and diffused in down-valley flows. After sunrise, convective boundary layers grew upward from the sunlit valley surfaces, fumigating the elevated plume onto the valley floor and sidewalls. Upslope flow developed in the growing convective boundary layers, carrying fumigated SF6 up the sidewalls and causing a compensating subsidence over the valley center. High post-sunrise SF6 concentrations were experienced on the northeast-facing sidewall of the northwest-southeast oriented valley as a result of cross-valley flow, which developed due to differential solar heating of the sidewalls. Reversal of the down-valley wind system brought air with lower SF6 concentrations into the lower valley.

  18. 36 CFR 7.26 - Death Valley National Monument.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Death Valley National... INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.26 Death Valley National Monument. (a) Mining. Mining in Death Valley National Monument is subject to the following regulations, which...

  19. 27 CFR 9.27 - Lime Kiln Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Lime Kiln Valley. 9.27... Kiln Valley. (a) Name. The name of the viticultural area described in this section is “Lime Kiln Valley.” (b) Approved Map. The appropriate map for determining the boundaries of the Lime Kiln...

  20. 27 CFR 9.27 - Lime Kiln Valley.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Lime Kiln Valley. 9.27... Kiln Valley. (a) Name. The name of the viticultural area described in this section is “Lime Kiln Valley.” (b) Approved Map. The appropriate map for determining the boundaries of the Lime Kiln...