Science.gov

Sample records for kinase inhibitor methyl

  1. Tyrosine kinase inhibitor, methyl 2,5-dihydromethylcinnimate, induces PML nuclear body formation and apoptosis in tumor cells

    SciTech Connect

    Komura, Naoyuki; Asakawa, Mayako; Umezawa, Kazuo . E-mail: umezawa@applc.keio.ac.jp; Segawa, Kaoru

    2007-08-01

    Promyelocytic leukemia (PML) nuclear bodies (PML-NBs) are the nuclear structure consisting of various proteins such as PML, SUMO-1, and p53. PML-NBs are implicated in the regulation of tumor suppression, antiviral responses, and apoptosis. In this study, we searched for bioactive metabolites that would promote the formation of PML-NBs in tumor cells. As a result, methyl 2,5-dihydromethylcinnimate (2,5-MeC), a tyrosine kinase inhibitor, enhanced expression and/or stability of PML proteins and induced PML-NB formation in p53 null H1299 cells established from non-small cell lung cancer (NSCLC) and wild-type p53-expressing U2OS cells derived from osteosarcoma. Furthermore, it enhanced apoptosis by exogenously expressed wild type p53 and the expression of p53-responsive genes, such as PUMA and p21, in H1299 cells. 2,5-MeC also activated endogenous p53 and induced apoptosis in U2OS cells. The results suggest that 2,5-MeC is likely to be a promising candidate drug for the clinical treatment of terminal cancer-expressing wild-type p53.

  2. Choline availability modulates human neuroblastoma cell proliferation and alters the methylation of the promoter region of the cyclin-dependent kinase inhibitor 3 gene.

    PubMed

    Niculescu, Mihai D; Yamamuro, Yutaka; Zeisel, Steven H

    2004-06-01

    Choline is an important methyl donor and a component of membrane phospholipids. In this study, we tested the hypothesis that choline availability can modulate cell proliferation and the methylation of genes that regulate cell cycling. In several other model systems, hypomethylation of cytosine bases that are followed by a guanosine (CpG) sites in the promoter region of a gene is associated with increased gene expression. We found that in choline-deficient IMR-32 neuroblastoma cells, the promoter of the cyclin-dependent kinase inhibitor 3 gene (CDKN3) was hypomethylated. This change was associated with increased expression of CDKN3 and increased levels of its gene product, kinase-associated phosphatase (KAP), which inhibits the G(1)/S transition of the cell cycle by dephosphorylating cyclin-dependent kinases. Choline deficiency also reduced global DNA methylation. The percentage of cells that accumulated bromodeoxyuridine (proportional to cell proliferation) was 1.8 times lower in the choline-deficient cells than in the control cells. Phosphorylated retinoblastoma (p110) levels were 3 times lower in the choline-deficient cells than in control cells. These findings suggest that the mechanism whereby choline deficiency inhibits cell proliferation involves hypomethylation of key genes regulating cell cycling. This may be a mechanism for our previously reported observation that stem cell proliferation in hippocampus neuroepithelium is decreased in choline-deficient rat and mouse fetuses. PMID:15147518

  3. Choline availability modulates human neuroblastoma cell proliferation and alters the methylation of the promoter region of the cyclin-dependent kinase inhibitor 3 gene

    PubMed Central

    Niculescu, Mihai D.; Yamamuro, Yutaka; Zeisel, Steven H.

    2006-01-01

    Choline is an important methyl donor and a component of membrane phospholipids. In this study, we tested the hypothesis that choline availability can modulate cell proliferation and the methylation of genes that regulate cell cycling. In several other model systems, hypomethylation of cytosine bases that are followed by a guanosine (CpG) sites in the promoter region of a gene is associated with increased gene expression. We found that in choline-deficient IMR-32 neuroblastoma cells, the promoter of the cyclin-dependent kinase inhibitor 3 gene (CDKN3) was hypomethylated. This change was associated with increased expression of CDKN3 and increased levels of its gene product, kinase-associated phosphatase (KAP), which inhibits the G1/S transition of the cell cycle by dephosphorylating cyclin-dependent kinases. Choline deficiency also reduced global DNA methylation. The percentage of cells that accumulated bromodeoxyuridine (proportional to cell proliferation) was 1.8 times lower in the choline-deficient cells than in the control cells. Phosphorylated retinoblastoma (p110) levels were 3 times lower in the choline-deficient cells than in control cells. These findings suggest that the mechanism whereby choline deficiency inhibits cell proliferation involves hypomethylation of key genes regulating cell cycling. This may be a mechanism for our previously reported observation that stem cell proliferation in hippocampus neuroepithelium is decreased in choline-deficient rat and mouse fetuses. PMID:15147518

  4. [Kinase inhibitors and their resistance].

    PubMed

    Togashi, Yosuke; Nishio, Kazuto

    2015-08-01

    Kinase cascades are involved in all stages of tumorigenesis through modulation of transformation and differentiation, cell-cycle progression, and motility. Advances in molecular targeted drug development allow the design and synthesis of inhibitors targeting cancer-associated signal transduction pathways. Potent selective inhibitors with low toxicity can benefit patients especially with several malignancies harboring an oncogenic driver addictive signal. This article evaluates information on solid tumor-related kinase signals and inhibitors, including receptor tyrosine kinase or serine/threonine kinase signals that lead to successful application in clinical settings. In addition, the resistant mechanisms to the inhibitors is summarized. PMID:26281685

  5. Targeting cancer with kinase inhibitors

    PubMed Central

    Gross, Stefan; Rahal, Rami; Stransky, Nicolas; Lengauer, Christoph; Hoeflich, Klaus P.

    2015-01-01

    Kinase inhibitors have played an increasingly prominent role in the treatment of cancer and other diseases. Currently, more than 25 oncology drugs that target kinases have been approved, and numerous additional therapeutics are in various stages of clinical evaluation. In this Review, we provide an in-depth analysis of activation mechanisms for kinases in cancer, highlight recent successes in drug discovery, and demonstrate the clinical impact of selective kinase inhibitors. We also describe the substantial progress that has been made in designing next-generation inhibitors to circumvent on-target resistance mechanisms, as well as ongoing strategies for combining kinase inhibitors in the clinic. Last, there are numerous prospects for the discovery of novel kinase targets, and we explore cancer immunotherapy as a new and promising research area for studying kinase biology. PMID:25932675

  6. Receptor Tyrosine Kinase and Tyrosine Kinase Inhibitors

    PubMed Central

    Mirshafiey, Abbas; Ghalamfarsa, Ghasem; Asghari, Babak

    2014-01-01

    Receptor tyrosine kinases (RTKs) are essential components of signal transduction pathways that mediate cell-to-cell communication and their function as relay points for signaling pathways. They have a key role in numerous processes that control cellular proliferation and differentiation, regulate cell growth and cellular metabolism, and promote cell survival and apoptosis. Recently, the role of RTKs including TCR, FLT-3, c-Kit, c-Fms, PDGFR, ephrin, neurotrophin receptor, and TAM receptor in autoimmune disorder, especially rheumatoid arthritis and multiple sclerosis has been suggested. In multiple sclerosis pathogenesis, RTKs and their tyrosine kinase enzymes are selective important targets for tyrosine kinase inhibitor (TKI) agents. TKIs, compete with the ATP binding site of the catalytic domain of several tyrosine kinases, and act as small molecules that have a favorable safety profile in disease treatment. Up to now, the efficacy of TKIs in numerous animal models of MS has been demonstrated, but application of these drugs in human diseases should be tested in future clinical trials. PMID:25337443

  7. Multi-kinase inhibitors, AURKs and cancer.

    PubMed

    Cicenas, Jonas; Cicenas, Erikas

    2016-05-01

    Inhibitors that impact function of kinases are valuable both for the biological research as well as therapy of kinase-associated diseases, such as different cancers. There are quite a number of inhibitors, which are quite specific for certain kinases and several of them are either already approved for the cancer therapy or are in clinical studies of various phases. However, that does not mean that each single kinase inhibitor is suitable for targeted therapy. Some of them are not effective others might be toxic or fail some other criteria for the use in vivo. On the other hand, even in case of successful therapy, many responders eventually develop resistance to the inhibitors. The limitations of various single kinase inhibitors can be fought using compounds which target multiple kinases. This tactics can increase effectiveness of the inhibitors by the synergistic effect or help to diminish the likelihood of drug resistance. To date, several families of kinases are quite popular targets of the inhibition in cancers, such as tyrosine kinases, cycle-dependent kinases, mitogen-activated protein kinases, phosphoinositide 3-kinases as well as their pathway "players" and aurora kinases. Aurora kinases play an important role in the control of the mitosis and are often altered in diverse human cancers. Here, we will describe the most interesting multi-kinase inhibitors which inhibit aurora kinases among other targets and their use in preclinical and clinical cancer studies. PMID:27038473

  8. Activity-based kinase profiling of approved tyrosine kinase inhibitors.

    PubMed

    Kitagawa, Daisuke; Yokota, Koichi; Gouda, Masaki; Narumi, Yugo; Ohmoto, Hiroshi; Nishiwaki, Eiji; Akita, Kensaku; Kirii, Yasuyuki

    2013-02-01

    The specificities of nine approved tyrosine kinase inhibitors (imatinib, dasatinib, nilotinib, gefitinib, erlotinib, lapatinib, sorafenib, sunitinib, and pazopanib) were determined by activity-based kinase profiling using a large panel of human recombinant active kinases. This panel consisted of 79 tyrosine kinases, 199 serine/threonine kinases, three lipid kinases, and 29 disease-relevant mutant kinases. Many potential targets of each inhibitor were identified by kinase profiling at the K(m) for ATP. In addition, profiling at a physiological ATP concentration (1 mm) was carried out, and the IC(50) values of the inhibitors against each kinase were compared with the estimated plasma-free concentration (calculated from published pharmacokinetic parameters of plasma C(trough) and C(max) values). This analysis revealed that the approved kinase inhibitors were well optimized for their target kinases. This profiling also implicates activity at particular off-target kinases in drug side effects. Thus, large-scale kinase profiling at both K(m) and physiological ATP concentrations could be useful in characterizing the targets and off-targets of kinase inhibitors. PMID:23279183

  9. Discovery of 8-Cyclopentyl-2-[4-(4-methyl-piperazin-1-yl)-phenylamino]-7-oxo-7,8-dihydro-pyrido[2,3-d]pyrimidine-6-carbonitrile (7x) as a Potent Inhibitor of Cyclin-Dependent Kinase 4 (CDK4) and AMPK-Related Kinase 5 (ARK5)

    PubMed Central

    2015-01-01

    The success of imatinib, a BCR-ABL inhibitor for the treatment of chronic myelogenous leukemia, has created a great impetus for the development of additional kinase inhibitors as therapeutic agents. However, the complexity of cancer has led to recent interest in polypharmacological approaches for developing multikinase inhibitors with low toxicity profiles. With this goal in mind, we analyzed more than 150 novel cyano pyridopyrimidine compounds and identified structure–activity relationship trends that can be exploited in the design of potent kinase inhibitors. One compound, 8-cyclopentyl-2-[4-(4-methyl-piperazin-1-yl)-phenylamino]-7-oxo-7,8-dihydro-pyrido[2,3-d]pyrimidine-6-carbonitrile (7x), was found to be the most active, inducing apoptosis of tumor cells at a concentration of approximately 30–100 nM. In vitro kinase profiling revealed that 7x is a multikinase inhibitor with potent inhibitory activity against the CDK4/CYCLIN D1 and ARK5 kinases. Here, we report the synthesis, structure–activity relationship, kinase inhibitory profile, in vitro cytotoxicity, and in vivo tumor regression studies by this lead compound. PMID:24417566

  10. Discovery of CX-6258. A Potent, Selective, and Orally Efficacious pan-Pim Kinases Inhibitor.

    PubMed

    Haddach, Mustapha; Michaux, Jerome; Schwaebe, Michael K; Pierre, Fabrice; O'Brien, Sean E; Borsan, Cosmin; Tran, Joe; Raffaele, Nicholas; Ravula, Suchitra; Drygin, Denis; Siddiqui-Jain, Adam; Darjania, Levan; Stansfield, Ryan; Proffitt, Chris; Macalino, Diwata; Streiner, Nicole; Bliesath, Joshua; Omori, May; Whitten, Jeffrey P; Anderes, Kenna; Rice, William G; Ryckman, David M

    2012-02-01

    Structure-activity relationship analysis in a series of 3-(5-((2-oxoindolin-3-ylidene)methyl)furan-2-yl)amides identified compound 13, a pan-Pim kinases inhibitor with excellent biochemical potency and kinase selectivity. Compound 13 exhibited in vitro synergy with chemotherapeutics and robust in vivo efficacy in two Pim kinases driven tumor models. PMID:24900437

  11. Ocular Toxicity of Tyrosine Kinase Inhibitors

    PubMed Central

    Davis, Mary Elizabeth

    2016-01-01

    Purpose/Objectives To review common tyrosine kinase inhibitors, as well as their ocular side effects and management. Data Sources A comprehensive literature search was conducted using cINahl®, Pubmed, and cochrane databases for articles published since 2004 with the following search terms: ocular toxicities, tyrosine kinase inhibitors, ophthalmology, adverse events, eye, and vision. Data Synthesis Tyrosine kinase inhibitors can cause significant eye toxicity. Conclusions Given the prevalence of new tyrosine kinase inhibitor therapies and the complexity of possible pathogenesis of ocular pathology, oncology nurses can appreciate the occurrence of ocular toxicities and the role of nursing in the management of these problems. Implications for Nursing Knowledge of the risk factors and etiology of ocular toxicity of targeted cancer therapies can guide nursing assessment, enhance patient education, and improve care management. Including a review of eye symptoms and vision issues in nursing assessment can enhance early detection and treatment of ocular toxicity. PMID:26906134

  12. Pharmacological inhibitors of cyclin-dependent kinases.

    PubMed

    Knockaert, Marie; Greengard, Paul; Meijer, Laurent

    2002-09-01

    Cyclin-dependent kinases (CDKs) regulate the cell division cycle, apoptosis, transcription and differentiation in addition to functions in the nervous system. Deregulation of CDKs in various diseases has stimulated an intensive search for selective pharmacological inhibitors of these kinases. More than 50 inhibitors have been identified, among which >20 have been co-crystallized with CDK2. These inhibitors all target the ATP-binding pocket of the catalytic site of the kinase. The actual selectivity of most known CDK inhibitors, and thus the underlying mechanism of their cellular effects, is poorly known. Pharmacological inhibitors of CDKs are currently being evaluated for therapeutic use against cancer, alopecia, neurodegenerative disorders (e.g. Alzheimer's disease, amyotrophic lateral sclerosis and stroke), cardiovascular disorders (e.g. atherosclerosis and restenosis), glomerulonephritis, viral infections (e.g. HCMV, HIV and HSV) and parasitic protozoa (Plasmodium sp. and Leishmania sp.). PMID:12237154

  13. Aurora Kinase Inhibitors: Current Status and Outlook

    PubMed Central

    Bavetsias, Vassilios; Linardopoulos, Spiros

    2015-01-01

    The Aurora kinase family comprises of cell cycle-regulated serine/threonine kinases important for mitosis. Their activity and protein expression are cell cycle regulated, peaking during mitosis to orchestrate important mitotic processes including centrosome maturation, chromosome alignment, chromosome segregation, and cytokinesis. In humans, the Aurora kinase family consists of three members; Aurora-A, Aurora-B, and Aurora-C, which each share a conserved C-terminal catalytic domain but differ in their sub-cellular localization, substrate specificity, and function during mitosis. In addition, Aurora-A and Aurora-B have been found to be overexpressed in a wide variety of human tumors. These observations led to a number of programs among academic and pharmaceutical organizations to discovering small molecule Aurora kinase inhibitors as anti-cancer drugs. This review will summarize the known Aurora kinase inhibitors currently in the clinic, and discuss the current and future directions. PMID:26734566

  14. 1-[N, O-bis-(5-isoquinolinesulphonyl)-N-methyl-L-tyrosyl]-4- phenylpiperazine (KN-62), an inhibitor of calcium-dependent camodulin protein kinase II, inhibits both insulin- and hypoxia-stimulated glucose transport in skeletal muscle.

    PubMed Central

    Brozinick, J T; Reynolds, T H; Dean, D; Cartee, G; Cushman, S W

    1999-01-01

    Previous studies have indicated a role for calmodulin in hypoxia-and insulin-stimulated glucose transport. However, since calmodulin interacts with multiple protein targets, it is unknown which of these targets is involved in the regulation of glucose transport. In the present study, we have used the calcium-dependent calmodulin protein kinase II (CAMKII) inhibitor 1-[N, O-bis-(5-isoquinolinesulphonyl) -N-methyl-L-tyrosyl]-4-phenylpiperazine (KN-62) to investigate the possible role of this enzyme in the regulation of glucose transport in isolated rat soleus and epitrochlearis muscles. KN-62 did not affect basal 2-deoxyglucose transport, but it did inhibit both insulin- and hypoxia-stimulated glucose transport activity by 46 and 40% respectively. 1-[N,O-Bis-(1, 5-isoquinolinesulphonyl)-N-methyl-l-tyrosyl]-4-phenylpiperazine (KN-04), a structural analogue of KN-62 that does not inhibit CAMKII, had no effect on hypoxia-or insulin-stimulated glucose transport. Accordingly, KN-62 decreased the stimulated cell-surface GLUT4 labelling by a similar extent as the inhibition of glucose transport (insulin, 49% and hypoxia, 54%). Additional experiments showed that KN-62 also inhibited insulin- and hypoxia-stimulated transport by 37 and 40% respectively in isolated rat epitrochlearis (a fast-twitch muscle), indicating that the effect of KN-62 was not limited to the slow-twitch fibres of the soleus. The inhibitory effect of KN-62 on hypoxia-stimulated glucose transport appears to be specific to CAMKII, since KN-62 did not inhibit hypoxia-stimulated 45Ca efflux from muscles pre-loaded with 45Ca, or hypoxia-stimulated glycogen breakdown. Additionally, KN-62 affected neither insulin-stimulated phosphoinositide 3-kinase nor Akt activity, suggesting that the effects of KN-62 are not due to non-specific effects of this inhibitor on these regions of the insulin-signalling cascade. The results of the present study suggest that CAMKII might have a distinct role in insulin- and hypoxia

  15. KIDFamMap: a database of kinase-inhibitor-disease family maps for kinase inhibitor selectivity and binding mechanisms.

    PubMed

    Chiu, Yi-Yuan; Lin, Chih-Ta; Huang, Jhang-Wei; Hsu, Kai-Cheng; Tseng, Jen-Hu; You, Syuan-Ren; Yang, Jinn-Moon

    2013-01-01

    Kinases play central roles in signaling pathways and are promising therapeutic targets for many diseases. Designing selective kinase inhibitors is an emergent and challenging task, because kinases share an evolutionary conserved ATP-binding site. KIDFamMap (http://gemdock.life.nctu.edu.tw/KIDFamMap/) is the first database to explore kinase-inhibitor families (KIFs) and kinase-inhibitor-disease (KID) relationships for kinase inhibitor selectivity and mechanisms. This database includes 1208 KIFs, 962 KIDs, 55 603 kinase-inhibitor interactions (KIIs), 35 788 kinase inhibitors, 399 human protein kinases, 339 diseases and 638 disease allelic variants. Here, a KIF can be defined as follows: (i) the kinases in the KIF with significant sequence similarity, (ii) the inhibitors in the KIF with significant topology similarity and (iii) the KIIs in the KIF with significant interaction similarity. The KIIs within a KIF are often conserved on some consensus KIDFamMap anchors, which represent conserved interactions between the kinase subsites and consensus moieties of their inhibitors. Our experimental results reveal that the members of a KIF often possess similar inhibition profiles. The KIDFamMap anchors can reflect kinase conformations types, kinase functions and kinase inhibitor selectivity. We believe that KIDFamMap provides biological insights into kinase inhibitor selectivity and binding mechanisms. PMID:23193279

  16. KIDFamMap: a database of kinase-inhibitor-disease family maps for kinase inhibitor selectivity and binding mechanisms

    PubMed Central

    Chiu, Yi-Yuan; Lin, Chih-Ta; Huang, Jhang-Wei; Hsu, Kai-Cheng; Tseng, Jen-Hu; You, Syuan-Ren; Yang, Jinn-Moon

    2013-01-01

    Kinases play central roles in signaling pathways and are promising therapeutic targets for many diseases. Designing selective kinase inhibitors is an emergent and challenging task, because kinases share an evolutionary conserved ATP-binding site. KIDFamMap (http://gemdock.life.nctu.edu.tw/KIDFamMap/) is the first database to explore kinase-inhibitor families (KIFs) and kinase-inhibitor-disease (KID) relationships for kinase inhibitor selectivity and mechanisms. This database includes 1208 KIFs, 962 KIDs, 55 603 kinase-inhibitor interactions (KIIs), 35 788 kinase inhibitors, 399 human protein kinases, 339 diseases and 638 disease allelic variants. Here, a KIF can be defined as follows: (i) the kinases in the KIF with significant sequence similarity, (ii) the inhibitors in the KIF with significant topology similarity and (iii) the KIIs in the KIF with significant interaction similarity. The KIIs within a KIF are often conserved on some consensus KIDFamMap anchors, which represent conserved interactions between the kinase subsites and consensus moieties of their inhibitors. Our experimental results reveal that the members of a KIF often possess similar inhibition profiles. The KIDFamMap anchors can reflect kinase conformations types, kinase functions and kinase inhibitor selectivity. We believe that KIDFamMap provides biological insights into kinase inhibitor selectivity and binding mechanisms. PMID:23193279

  17. High-Throughput Kinase Profiling: A More Efficient Approach towards the Discovery of New Kinase Inhibitors

    PubMed Central

    Miduturu, Chandrasekhar V.; Deng, Xianming; Kwiatkowski, Nicholas; Yang, Wannian; Brault, Laurent; Filippakopoulos, Panagis; Chung, Eunah; Yang, Qingkai; Schwaller, Juerg; Knapp, Stefan; King, Randall W.; Lee, Jiing-Dwan; Herrgard, Sanna; Zarrinkar, Patrick; Gray, Nathanael S.

    2011-01-01

    SUMMARY Selective protein kinase inhibitors have only been developed against a small number of kinase targets. Here we demonstrate that “high-throughput kinase profiling” is an efficient method for the discovery of lead compounds for established as well as unexplored kinase targets. We screened a library of 118 compounds constituting two distinct scaffolds (furan-thiazolidinediones and pyrimido-diazepines) against a panel of 353 kinases. A distinct kinase selectivity profile was observed for each scaffold. Selective inhibitors were identified with submicromolar cellular activity against PIM1, ERK5, ACK1, MPS1/PLK1–3 and Aurora A,B kinases. In addition, we identified potent inhibitors for so far unexplored kinases such as DRAK1, HIPK2 and DCAMKL1 that await further evaluation. This inhibitor-centric approach permits comprehensive assessment of a scaffold of interest and represents an efficient and general strategy for identifying new selective kinase inhibitors. PMID:21802008

  18. Janus kinase inhibitors for rheumatoid arthritis.

    PubMed

    Yamaoka, Kunihiro

    2016-06-01

    Treatment of autoimmune diseases, such as rheumatoid arthritis (RA), has advanced substantially over the past decade with the development of biologics targeting inflammatory cytokines. Recent progress in treating RA has been achieved with janus kinase (JAK) inhibitors (Jakinibs), an orally available disease-modifying anti-rheumatic drug targeting the intracellular kinase JAK and with similar efficacy to biologics. The first Jakinib approved for RA was tofacitinib, which exerted superiority to methotrexate and non-inferiority to tumor necrosis factor (TNF) inhibitors. In recent years, the Jakinib baricitinib has demonstrated superiority to both methotrexate and a TNF inhibitor, adalimumab. Given these promising findings, Jakinibs are expected to represent the next generation compounds for treating RA, and a number of Jakinibs are currently in clinical trials. Jakinibs can differ substantially in their selectivity against JAKs; tofacitinib and baricitinib target multiple JAKs, whereas the most recently developed Jakinibs target only a single JAK. The influence of Jakinib selectivity on efficacy and side effects is of great interest, requiring further careful observation. PMID:26994322

  19. Quinalizarin as a potent, selective and cell-permeable inhibitor of protein kinase CK2.

    PubMed

    Cozza, Giorgio; Mazzorana, Marco; Papinutto, Elena; Bain, Jenny; Elliott, Matthew; di Maira, Giovanni; Gianoncelli, Alessandra; Pagano, Mario A; Sarno, Stefania; Ruzzene, Maria; Battistutta, Roberto; Meggio, Flavio; Moro, Stefano; Zagotto, Giuseppe; Pinna, Lorenzo A

    2009-08-01

    Emodin (1,3,8-trihydroxy-6-methyl-anthraquinone) is a moderately potent and poorly selective inhibitor of protein kinase CK2, one of the most pleiotropic serine/threonine protein kinases, implicated in neoplasia and in other global diseases. By virtual screening of the MMS (Molecular Modeling Section) database, we have now identified quinalizarin (1,2,5,8-tetrahydroxyanthraquinone) as an inhibitor of CK2 that is more potent and selective than emodin. CK2 inhibition by quinalizarin is competitive with respect to ATP, with a Ki value of approx. 50 nM. Tested at 1 microM concentration on a panel of 75 protein kinases, quinalizarin drastically inhibits only CK2, with a promiscuity score (11.1), which is the lowest ever reported so far for a CK2 inhibitor. Especially remarkable is the ability of quinalizarin to discriminate between CK2 and a number of kinases, notably DYRK1a (dual-specificity tyrosine-phosphorylated and -regulated kinase), PIM (provirus integration site for Moloney murine leukaemia virus) 1, 2 and 3, HIPK2 (homeodomain-interacting protein kinase-2), MNK1 [MAPK (mitogen-activated protein kinase)-interacting kinase 1], ERK8 (extracellular-signal-regulated kinase 8) and PKD1 (protein kinase D 1), which conversely tend to be inhibited as drastically as CK2 by commercially available CK2 inhibitors. The determination of the crystal structure of a complex between quinalizarin and CK2alpha subunit highlights the relevance of polar interactions in stabilizing the binding, an unusual characteristic for a CK2 inhibitor, and disclose other structural features which may account for the narrow selectivity of this compound. Tested on Jurkat cells, quinalizarin proved able to inhibit endogenous CK2 and to induce apoptosis more efficiently than the commonly used CK2 inhibitors TBB (4,5,6,7-tetrabromo-1H-benzotriazole) and DMAT (2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole). PMID:19432557

  20. Structural investigation of protein kinase C inhibitors

    NASA Technical Reports Server (NTRS)

    Barak, D.; Shibata, M.; Rein, R.

    1991-01-01

    The phospholipid and Ca2+ dependent protein kinase (PKC) plays an essential role in a variety of cellular events. Inhibition of PKC was shown to arrest growth in tumor cell cultures making it a target for possible antitumor therapy. Calphostins are potent inhibitors of PKC with high affinity for the enzyme regulatory site. Structural characteristics of calphostins, which confer the inhibitory activity, are investigated by comparing their optimized structures with the existing models for PKC activation. The resulting model of inhibitory activity assumes interaction with two out of the three electrostatic interaction sites postulated for activators. The model shows two sites of hydrophobic interaction and enables the inhibitory activity of gossypol to be accounted for.

  1. Tyrosine kinase inhibitors and the thyroid.

    PubMed

    Sherman, Steven I

    2009-12-01

    Protein tyrosine kinase inhibitors (TKIs) have emerged as significant targets for novel cancer therapies. For patients with differentiated or medullary carcinomas unresponsive to conventional treatments, multiple novel therapies primarily targeting angiogenesis have entered clinical trials. Partial response rates up to 30% have been reported in single-agent studies, but prolonged disease stabilisation is more commonly seen. The most successful agents target the vascular endothelial growth factor receptors. Sorafenib and sunitinib have had promising preliminary results reported and are being used selectively for patients who do not qualify for clinical trials. Treatment for patients with metastatic or advanced thyroid carcinoma now emphasises clinical trial opportunities for novel agents with considerable promise. Adverse effects on thyroid function and thyroid hormone metabolism have also been seen with several TKIs, necessitating prospective thyroid function testing for all patients starting therapy. PMID:19942148

  2. Discovery of 4-(5-(Cyclopropylcarbamoyl)-2-methylphenylamino)-5-methyl-N-propylpyrrolo[1,2-f][1,2,4]triazine-6-carboxamide (BMS-582949), a Clinical p38[alpha] MAP Kinase Inhibitor for the Treatment of Inflammatory Diseases

    SciTech Connect

    Liu, Chunjian; Lin, James; Wrobleski, Stephen T.; Lin, Shuqun; Hynes, Jr., John; Wu, Hong; Dyckman, Alaric J.; Li, Tianle; Wityak, John; Gillooly, Kathleen M.; Pitt, Sidney; Shen, Ding Ren; Zhang, Rosemary F.; McIntyre, Kim W.; Salter-Cid, Luisa; Shuster, David J.; Zhang, Hongjian; Marathe, Punit H.; Doweyko, Arthur M.; Sack, John S.; Kiefer, Susan E.; Kish, Kevin F.; Newitt, John A.; McKinnon, Murray; Dodd, John H.; Barrish, Joel C.; Schieven, Gary L.; Leftheris, Katerina

    2013-11-20

    The discovery and characterization of 7k (BMS-582949), a highly selective p38{alpha} MAP kinase inhibitor that is currently in phase II clinical trials for the treatment of rheumatoid arthritis, is described. A key to the discovery was the rational substitution of N-cyclopropyl for N-methoxy in 1a, a previously reported clinical candidate p38{alpha} inhibitor. Unlike alkyl and other cycloalkyls, the sp{sup 2} character of the cyclopropyl group can confer improved H-bonding characteristics to the directly substituted amide NH. Inhibitor 7k is slightly less active than 1a in the p38{alpha} enzymatic assay but displays a superior pharmacokinetic profile and, as such, was more effective in both the acute murine model of inflammation and pseudoestablished rat AA model. The binding mode of 7k with p38{alpha} was confirmed by X-ray crystallographic analysis.

  3. Discovery of a Potent And Selective Aurora Kinase Inhibitor

    SciTech Connect

    Oslob, J.D.; Romanowski, M.J.; Allen, D.A.; Baskaran, S.; Bui, M.; Elling, R.A.; Flanagan, W.M.; Fung, A.D.; Hanan, E.J.; Harris, S.; Heumann, S.A.; Hoch, U.; Jacobs, J.W.; Lam, J.; Lawrence, C.E.; McDowell, R.S.; Nannini, M.A.; Shen, W.; Silverman, J.A.; Sopko, M.M.; Tangonan, B.T.

    2009-05-21

    This communication describes the discovery of a novel series of Aurora kinase inhibitors. Key SAR and critical binding elements are discussed. Some of the more advanced analogues potently inhibit cellular proliferation and induce phenotypes consistent with Aurora kinase inhibition. In particular, compound 21 (SNS-314) is a potent and selective Aurora kinase inhibitor that exhibits significant activity in pre-clinical in vivo tumor models.

  4. Virtual Target Screening: Validation Using Kinase Inhibitors

    PubMed Central

    Santiago, Daniel N.; Pevzner, Yuri; Durand, Ashley A.; Tran, MinhPhuong; Scheerer, Rachel R.; Daniel, Kenyon; Sung, Shen-Shu; Woodcock, H. Lee; Guida, Wayne C.; Brooks, Wesley H.

    2012-01-01

    Computational methods involving virtual screening could potentially be employed to discover new biomolecular targets for an individual molecule of interest (MOI). However, existing scoring functions may not accurately differentiate proteins to which the MOI binds from a larger set of macromolecules in a protein structural database. An MOI will most likely have varying degrees of predicted binding affinities to many protein targets. However, correctly interpreting a docking score as a hit for the MOI docked to any individual protein can be problematic. In our method, which we term “Virtual Target Screening (VTS)”, a set of small drug-like molecules are docked against each structure in the protein library to produce benchmark statistics. This calibration provides a reference for each protein so that hits can be identified for an MOI. VTS can then be used as tool for: drug repositioning (repurposing), specificity and toxicity testing, identifying potential metabolites, probing protein structures for allosteric sites, and testing focused libraries (collection of MOIs with similar chemotypes) for selectivity. To validate our VTS method, twenty kinase inhibitors were docked to a collection of calibrated protein structures. Here we report our results where VTS predicted protein kinases as hits in preference to other proteins in our database. Concurrently, a graphical interface for VTS was developed. PMID:22747098

  5. The selectivity of protein kinase inhibitors: a further update

    PubMed Central

    Bain, Jenny; Plater, Lorna; Elliott, Matt; Shpiro, Natalia; Hastie, C. James; Mclauchlan, Hilary; Klevernic, Iva; Arthur, J. Simon C.; Alessi, Dario R.; Cohen, Philip

    2007-01-01

    The specificities of 65 compounds reported to be relatively specific inhibitors of protein kinases have been profiled against a panel of 70–80 protein kinases. On the basis of this information, the effects of compounds that we have studied in cells and other data in the literature, we recommend the use of the following small-molecule inhibitors: SB 203580/SB202190 and BIRB 0796 to be used in parallel to assess the physiological roles of p38 MAPK (mitogen-activated protein kinase) isoforms, PI-103 and wortmannin to be used in parallel to inhibit phosphatidylinositol (phosphoinositide) 3-kinases, PP1 or PP2 to be used in parallel with Src-I1 (Src inhibitor-1) to inhibit Src family members; PD 184352 or PD 0325901 to inhibit MKK1 (MAPK kinase-1) or MKK1 plus MKK5, Akt-I-1/2 to inhibit the activation of PKB (protein kinase B/Akt), rapamycin to inhibit TORC1 [mTOR (mammalian target of rapamycin)–raptor (regulatory associated protein of mTOR) complex], CT 99021 to inhibit GSK3 (glycogen synthase kinase 3), BI-D1870 and SL0101 or FMK (fluoromethylketone) to be used in parallel to inhibit RSK (ribosomal S6 kinase), D4476 to inhibit CK1 (casein kinase 1), VX680 to inhibit Aurora kinases, and roscovitine as a pan-CDK (cyclin-dependent kinase) inhibitor. We have also identified harmine as a potent and specific inhibitor of DYRK1A (dual-specificity tyrosine-phosphorylated and -regulated kinase 1A) in vitro. The results have further emphasized the need for considerable caution in using small-molecule inhibitors of protein kinases to assess the physiological roles of these enzymes. Despite being used widely, many of the compounds that we analysed were too non-specific for useful conclusions to be made, other than to exclude the involvement of particular protein kinases in cellular processes. PMID:17850214

  6. Kinase inhibitor profiling reveals unexpected opportunities to inhibit disease-associated mutant kinases

    PubMed Central

    Duong-Ly, Krisna C.; Devarajan, Karthik; Liang, Shuguang; Horiuchi, Kurumi Y.; Wang, Yuren; Ma, Haiching; Peterson, Jeffrey R.

    2016-01-01

    Summary Small-molecule kinase inhibitors have typically been designed to inhibit wild-type kinases rather than the mutant forms that frequently arise in diseases such as cancer. Mutations can have serious clinical implications by increasing kinase catalytic activity or conferring therapeutic resistance. To identify opportunities to repurpose inhibitors against disease-associated mutant kinases, we conducted a large-scale functional screen of 183 known kinase inhibitors against 76 recombinant, mutant kinases. The results revealed lead compounds with activity against clinically important mutant kinases including ALK, LRRK2, RET, and EGFR as well as unexpected opportunities for repurposing FDA-approved kinase inhibitors as leads for additional indications. Furthermore, using T674I PDGFRα as an example, we show how single-dose screening data can provide predictive structure-activity data to guide subsequent inhibitor optimization. This study provides a resource for the development of inhibitors against numerous disease-associated mutant kinases and illustrates the potential of unbiased profiling as an approach to compound-centric inhibitor development. PMID:26776524

  7. In Vitro Characterization of Derrone as an Aurora Kinase Inhibitor.

    PubMed

    Hoang, Nhung Thi My; Phuong, Thuong Thien; Nguyen, Trang Thi Nhu; Tran, Yen Thi Hai; Nguyen, Anh Thi Ngoc; Nguyen, Thanh Lai; Bui, Khanh Thi Van

    2016-06-01

    Among mitotic kinases, Aurora kinases are the most widely studied, since their expression is restricted to mitosis. They play a key role in chromosome segregation and cell polyploidy. Aurora kinases are important therapeutic targets, and several research groups have directed their efforts toward the identification of kinase inhibitors. The aim of this study is to screen and characterize Aurora kinase inhibitors from natural substances extracted from plants that are used in the Vietnamese pharmacopoeia. We have characterized in vitro Derrone, extracted from Erythrina orientalis L. MURR, as a novel Aurora kinase inhibitor. This compound exhibited an ability to inhibit the phosphorylation of histone H3 at ser10 both in kinase assay and at the cellular level. The compound was more effective against Aurora kinase B, with a lower IC50 value as compared to Aurora A. Moreover, it impaired the mitotic spindle checkpoint and led to endoreduplication in cancer cells, a phenomenon caused by an Aurora B inhibitor. Interestingly, using the xCelligence system and real-time cell analysis (RTCA) software, we set up a comparison of cell proliferation profiles between cancer cells treated with Derrone and VX680-a well-known Aurora kinase inhibitor-and we found that these profiles exhibited considerable similarity in cell morphology, growth, and death. Additionally, Derrone significantly inhibited the formation and growth of MCF7 tumor spheroids. PMID:26983907

  8. Therapeutic drug monitoring and tyrosine kinase inhibitors

    PubMed Central

    Herviou, Pauline; Thivat, Emilie; Richard, Damien; Roche, Lucie; Dohou, Joyce; Pouget, Mélanie; Eschalier, Alain; Durando, Xavier; Authier, Nicolas

    2016-01-01

    The therapeutic activity of drugs can be optimized by establishing an individualized dosage, based on the measurement of the drug concentration in the serum, particularly if the drugs are characterized by an inter-individual variation in pharmacokinetics that results in an under- or overexposure to treatment. In recent years, several tyrosine kinase inhibitors (TKIs) have been developed to block intracellular signaling pathways in tumor cells. These oral drugs are candidates for therapeutic drug monitoring (TDM) due to their high inter-individual variability for therapeutic and toxic effects. Following a literature search on PubMed, studies on TKIs and their pharmacokinetic characteristics, plasma quantification and inter-individual variability was studied. TDM is commonly used in various medical fields, including cardiology and psychiatry, but is not often applied in oncology. Plasma concentration monitoring has been thoroughly studied for imatinib, in order to evaluate the usefulness of TDM. The measurement of plasma concentration can be performed by various analytical techniques, with liquid chromatography-mass spectrometry being the reference method. This method is currently used to monitor the efficacy and tolerability of imatinib treatments. Although TDM is already being used for imatinib, additional studies are required in order to improve this practice with the inclusion of other TKIs. PMID:27446421

  9. Protein kinase inhibitors against malignant lymphoma

    PubMed Central

    D’Cruz, Osmond J; Uckun, Fatih M

    2013-01-01

    Introduction Tyrosine kinases (TKs) are intimately involved in multiple signal transduction pathways regulating survival, activation, proliferation and differentiation of lymphoid cells. Deregulation or overexpression of specific oncogenic TKs is implicated in maintaining the malignant phenotype in B-lineage lymphoid malignancies. Several novel targeted TK inhibitors (TKIs) have recently emerged as active in the treatment of relapsed or refractory B-cell lymphomas that inhibit critical signaling pathways, promote apoptotic mechanisms or modulate the tumor microenvironment. Areas covered In this review, the authors summarize the clinical outcomes of newer TKIs in various B-cell lymphomas from published and ongoing clinical studies and abstracts from major cancer and hematology conferences. Expert opinion Multiple clinical trials have demonstrated that robust antitumor activity can be obtained with TKIs directed toward specific oncogenic TKs that are genetically deregulated in various subtypes of B-cell lymphomas. Clinical success of targeting TKIs is dependent upon on identifying reliable molecular and clinical markers associated with select cohorts of patients. Further understanding of the signaling pathways should stimulate the identification of novel molecular targets and expand the development of new therapeutic options and individualized therapies. PMID:23496343

  10. Kinases inhibitors in lung cancer: From benchside to bedside.

    PubMed

    Singh, Pankaj Kumar; Singh, Harpreet; Silakari, Om

    2016-08-01

    Lung cancer still remains one of the major causes of cancer related mortality around the globe. Various different molecular targets have been discovered till date for targeting lung cancer. But not every new molecular target has a successfully designed inhibitor; moreover conventional chemotherapeutics have their own limitations such as toxicity and lack of selectivity. Thus, kinases still remain the most effective molecular target in lung cancer therapy. Also, once-shunned kinase inhibitors have recently acquired renewed interest after the development and approval of irreversible kinase inhibitors (such as afatinib) that form covalent bonds with cysteine (or other nucleophilic residues) in the ATP-binding pocket of the kinases. Irreversible kinase inhibitors have a number of potential advantages over conventional reversible kinase inhibitors including prolonged pharmacodynamics, suitability for rational design, high potency etc. This review reveals the current knowledge of all the chemical scaffolds, approved and/or investigational, utilized as inhibitors in lung cancer. It also explains the rationale of designing these along with possible interactions with their targets, biological data and possible problems associated with these inhibitors. PMID:27393082

  11. A new “angle” on kinase inhibitor design: Prioritizing amphosteric activity above kinase inhibition

    PubMed Central

    Meyerowitz, Justin G; Weiss, William A; Gustafson, W Clay

    2015-01-01

    The MYCN oncoprotein has remained an elusive target for decades. We recently reported a new class of kinase inhibitors designed to disrupt the conformation of Aurora kinase A enough to block its kinase-independent interaction with MYCN, resulting in potent degradation of MYCN. These studies provide proof-of-principle for a new method of targeting enzyme activity-independent functions of kinases and other enzymes. PMID:27308435

  12. In silico design of protein kinase inhibitors: successes and failures.

    PubMed

    Dubinina, Galina G; Chupryna, Oleksandr O; Platonov, Maxim O; Borisko, Petro O; Ostrovska, Galina V; Tolmachov, Andriy O; Shtil, Alexander A

    2007-03-01

    Protein kinases are among the most exploited targets in modern drug discovery due to key roles these enzymes play in human diseases including cancer. The in silico approach, an important part of rational design of protein kinase inhibitors, is founded on vast information about 3D structures of these enzymes. This review summarizes general structural features of the kinase inhibitors and the studies applied toward a large scale chemical database for virtual screening. Analyzed are the ways of validating the modern docking tools and their combinations with different scoring functions. In particular, we discuss the kinase flexibility as a reason for failures of the docking procedure. Finally, evidence is provided for the main patterns of kinase-inhibitor interactions and creation of the hinge-region-directed 2D filters. PMID:17348826

  13. [Side effect management of tyrosine kinase inhibitors in urology : Hypertension].

    PubMed

    Sikic, D; Meidenbauer, N; Lieb, V; Keck, B

    2016-07-01

    Tyrosine kinase inhibitors like sunitinib, sorafenib, pazopanib or axintinib are regarded the standard of care in the systemic therapy of metastatic renal cell carcinoma. However, the many side effects associated with this therapy pose challenges for the treating physician and the patient. This review offers an overview of the classification and the treatment of hypertension, which is one of the major side effects induced by all tyrosine kinase inhibitors, in order to improve treatment efficacy and patient compliance. PMID:27146871

  14. The Potential Role of Aurora Kinase Inhibitors in Haematological Malignancies

    PubMed Central

    Farag, Sherif S.

    2011-01-01

    Summary Aurora kinases play an important role in the control of the cell cycle and have been implicated in tumourigenesis in a number of cancers. Among the haematological malignancies, overexpression of Aurora kinases has been reported in acute myeloid leukaemia, chronic myeloid leukaemia, acute lymphoblastic leukaemia, multiple myeloma, aggressive non-Hodgkin lymphoma and Hodgkin lymphoma. A large number of Aurora kinase inhibitors are currently in different stages of clinical development. In addition to varying in their selectivity for the different Aurora kinases, some also have activity directed at other cellular kinases involved in important molecular pathways in cancer cells. This review summarizes the biology of Aurora kinases and discusses why they may be good therapeutic targets in different haematological cancers. We describe preclinical data that has served as the rationale for investigating Aurora kinase inhibitors in different haematological malignancies, and summarize published results from early phase clinical trials. While the anti-tumour effects of Aurora kinase inhibitors appear promising, we highlight important issues for future clinical research and suggest that the optimal use of these inhibitors is likely to be in combination with cytotoxic agents already in use for the treatment of various haematological cancers. PMID:21980926

  15. Identification of methyl violet 2B as a novel blocker of focal adhesion kinase signaling pathway in cancer cells

    SciTech Connect

    Kim, Hwan; Kim, Nam Doo; Lee, Jiyeon; Han, Gyoonhee; Sim, Taebo

    2013-07-26

    Highlights: •FAK signaling cascade in cancer cells is profoundly inhibited by methyl violet 2B. •Methyl violet 2B identified by virtual screening is a novel allosteric FAK inhibitor. •Methyl violet 2B possesses extremely high kinase selectivity. •Methyl violet 2B suppresses strongly the proliferation of cancer cells. •Methyl violet 2B inhibits focal adhesion, invasion and migration of cancer cells. -- Abstract: The focal adhesion kinase (FAK) signaling cascade in cancer cells was profoundly inhibited by methyl violet 2B identified with the structure-based virtual screening. Methyl violet 2B was shown to be a non-competitive inhibitor of full-length FAK enzyme vs. ATP. It turned out that methyl violet 2B possesses extremely high kinase selectivity in biochemical kinase profiling using a large panel of kinases. Anti-proliferative activity measurement against several different cancer cells and Western blot analysis showed that this substance is capable of suppressing significantly the proliferation of cancer cells and is able to strongly block FAK/AKT/MAPK signaling pathways in a dose dependent manner at low nanomolar concentration. Especially, phosphorylation of Tyr925-FAK that is required for full activation of FAK was nearly completely suppressed even with 1 nM of methyl violet 2B in A375P cancer cells. To the best of our knowledge, it has never been reported that methyl violet possesses anti-cancer effects. Moreover, methyl violet 2B significantly inhibited FER kinase phosphorylation that activates FAK in cell. In addition, methyl violet 2B was found to induce cell apoptosis and to exhibit strong inhibitory effects on the focal adhesion, invasion, and migration of A375P cancer cells at low nanomolar concentrations. Taken together, these results show that methyl violet 2B is a novel, potent and selective blocker of FAK signaling cascade, which displays strong anti-proliferative activities against a variety of human cancer cells and suppresses adhesion

  16. VEGF receptor kinase inhibitors: phthalazines, anthranilamides and related structures.

    PubMed

    Dumas, Jacques; Dixon, Julie A

    2005-06-01

    Inhibition of vascular endothelial growth factor receptor (VEGFR) signalling, using either antibodies or small molecule inhibitors of the VEGFR kinase domain, has become a major area of research in oncology. The phthalazine PTK787/ZK222584, first published in the literature in 1998, is one of the most advanced VEGFR inhibitors in the clinic. This paper provides an update on the patenting activity related to the phthalazine class. In addition, newer kinase inhibitor pharmacophores derived from this class (e.g., anthranilamides) will be reviewed. PMID:20141503

  17. The Aurora kinase inhibitors in cancer research and therapy.

    PubMed

    Cicenas, Jonas

    2016-09-01

    Compounds that affect enzymatic function of kinases are valuable for the understanding of the complex biochemical processes in cells. Aurora kinases (AURKs) play a key role in the control of the mitosis. These kinases are frequently deregulated in different human cancers: overexpression, amplifications, translocations and deletions were reported in many cancer cell lines as well as patient tissues. These findings steered a rigorous hunt for small-molecule AURK inhibitors not only for research purposes as well as for therapeutic uses. In this review, we describe a number of AURK inhibitors and their use in cancer research and/or therapy. We hope to assist researchers and clinicians in deciding which inhibitor is most appropriate for their specific purpose. The review will also provide a broad overview of the clinical studies performed with some of these inhibitors (if such studies have been performed). PMID:26932147

  18. Trichomonas vaginalis thymidine kinase: purification, characterization and search for inhibitors.

    PubMed Central

    Strosselli, S; Spadari, S; Walker, R T; Basnak, I; Focher, F

    1998-01-01

    We report that a thymidine kinase (TK) activity is present in Trichomonas vaginalis and can be separated from the deoxyribonucleoside phosphotransferase. T. vaginalis TK, purified 11200-fold to apparent homogeneity, has a molecular mass of 31500 Da. It phosphorylates not only thymidine (Km 0.18 microM) but also deoxycytidine (Km 0.88 microM) and deoxyuridine (Km 0.14 microM). In contrast with T. vaginalis deoxyribonucleoside phosphotransferase, the TK activity is strongly inhibited by novel deoxyuridine analogues such as 5-methyl-4'-thio-2'-deoxyuridine (MTdU) (Ki 20 nM) and 5-iodo-4'-thio-2'-deoxyuridine (ITdU) (Ki 24 nM). MTdU and ITdU are phosphorylated by T. vaginalis TK in vitro. In vivo they inhibit [3H]thymidine incorporation in T. vaginalis cultured cells and T. vaginalis growth (IC50 7.5 and 24 microM respectively; minimal lethal dose 100 microM). Thus the TK inhibitors described here demonstrate the key role of T. vaginalis TK for protozoal growth and viability and indicate TK as a new target for the design of antitrichomonal drugs. PMID:9693096

  19. Mini-review: bmx kinase inhibitors for cancer therapy.

    PubMed

    Jarboe, John S; Dutta, Shilpa; Velu, Sadanandan E; Willey, Christopher D

    2013-09-01

    Kinase inhibitors are among the fastest growing class of anti-cancer therapies. One family of kinases that has recently gained attention as a target for treating malignant disorders is the Tec kinase family. Evidence has been published that one member of this family; the Bmx kinase, may play a role in the pathogenesis of glioblastoma, prostate, breast and lung cancer. Bmx has also shown potential as an anti-vascular therapy in combination with radiation or as a sensitizer to chemotherapeutic agents. Therefore, several companies such as Pharmacyclics, Avila Therapeutics, Merck and Co., Metaproteomics, IRM, and Moerae Matrix have developed compounds or peptides that function as Bmx kinase inhibitors. These companies have subsequently been issued patents for these inhibitors. Additionally, it has been shown that current clinical stage EGFR inhibitors can irreversibly inhibit Bmx, suggesting these compounds might be rapidly moved to clinical trials for other malignancies. This review will discuss current patents issued since 2009 that contain data specifically on inhibition of the Bmx kinase, and will also discuss the scientific literature that suggests their potential application as therapeutics in the treatment of the aforementioned malignancies. PMID:23198769

  20. Design, Synthesis and Inhibitory Activity of Photoswitchable RET Kinase Inhibitors

    NASA Astrophysics Data System (ADS)

    Ferreira, Rubén; Nilsson, Jesper R.; Solano, Carlos; Andréasson, Joakim; Grøtli, Morten

    2015-05-01

    REarranged during Transfection (RET) is a transmembrane receptor tyrosine kinase required for normal development and maintenance of neurons of the central and peripheral nervous systems. Deregulation of RET and hyperactivity of the RET kinase is intimately connected to several types of human cancers, most notably thyroid cancers, making it an attractive therapeutic target for small-molecule kinase inhibitors. Novel approaches, allowing external control of the activity of RET, would be key additions to the signal transduction toolbox. In this work, photoswitchable RET kinase inhibitors based on azo-functionalized pyrazolopyrimidines were developed, enabling photonic control of RET activity. The most promising compound displays excellent switching properties and stability with good inhibitory effect towards RET in cell-free as well as live-cell assays and a significant difference in inhibitory activity between its two photoisomeric forms. As the first reported photoswitchable small-molecule kinase inhibitor, we consider the herein presented effector to be a significant step forward in the development of tools for kinase signal transduction studies with spatiotemporal control over inhibitor concentration in situ.

  1. Design, Synthesis and Inhibitory Activity of Photoswitchable RET Kinase Inhibitors

    PubMed Central

    Ferreira, Rubén; Nilsson, Jesper R.; Solano, Carlos; Andréasson, Joakim; Grøtli, Morten

    2015-01-01

    REarranged during Transfection (RET) is a transmembrane receptor tyrosine kinase required for normal development and maintenance of neurons of the central and peripheral nervous systems. Deregulation of RET and hyperactivity of the RET kinase is intimately connected to several types of human cancers, most notably thyroid cancers, making it an attractive therapeutic target for small-molecule kinase inhibitors. Novel approaches, allowing external control of the activity of RET, would be key additions to the signal transduction toolbox. In this work, photoswitchable RET kinase inhibitors based on azo-functionalized pyrazolopyrimidines were developed, enabling photonic control of RET activity. The most promising compound displays excellent switching properties and stability with good inhibitory effect towards RET in cell-free as well as live-cell assays and a significant difference in inhibitory activity between its two photoisomeric forms. As the first reported photoswitchable small-molecule kinase inhibitor, we consider the herein presented effector to be a significant step forward in the development of tools for kinase signal transduction studies with spatiotemporal control over inhibitor concentration in situ. PMID:25944708

  2. Allosteric Small-Molecule Inhibitors of the AKT Kinase

    NASA Astrophysics Data System (ADS)

    Dalafave, D. S.

    This research addresses computational design of small druglike molecules for possible anticancer applications. AKT and SGK are kinases that control important cellular functions. They are highly homologous, having similar activators and targets. Cancers with increased SGK activity may develop resistance to AKT-specific inhibitors. Our goal was to design new molecules that would bind both AKT and SGK, thus preventing the development of drug resistance. Most kinase inhibitors target the kinase ATP-binding site. However, the high similarity in this site among kinases makes it difficult to target specifically. Furthermore, mutations in this site can cause resistance to ATP-competitive kinase inhibitors. We used existing AKT inhibitors as initial templates to design molecules that could potentially bind the allosteric sites of both AKT and SGK. Molecules with no implicit toxicities and optimal drug-like properties were used for docking studies. Binding energies of the stable complexes that the designed molecules formed with AKT and SGK were calculated. Possible applications of the designed putative inhibitors against cancers with overexpressed AKT/SGK is discussed.

  3. LRRK2 and ubiquitination: implications for kinase inhibitor therapy

    PubMed Central

    Melrose, Heather L.

    2015-01-01

    Pathogenic mutations and risk variants in LRRK2 (leucine-rich repeat kinase 2) represent the most common genetic cause of familial and sporadic PD (Parkinson's disease). LRRK2 protein is widely expressed throughout the brain and the periphery. Structurally, LRRK2 contains several functional domains, including a dual enzymatic core consisting of a kinase and GTPase domain. Disease-linked variants are found in both these enzymatic domains as well as in the COR [C-terminal of ROC (Ras of complex proteins)] and WD40 protein–protein binding domain. The kinase domain is widely believed to be linked to toxicity, and thus the thrust of pharmaceutical effort has focused on developing LRRK2 kinase inhibitors. However, recent data have suggested that inhibition of LRRK2 activity results in reduced LRRK2 levels and peripheral side effects, which are similar to those observed in homozygous LRRK2-knockout and LRRK2 kinase-dead rodent models. In a recent issue of the Biochemical Journal, a study led by Nichols reveals that dephosphorylation of LRRK2 cellular phosphorylation sites (Ser910/Ser935/Ser955/Ser973) triggers its ubiquitination and subsequent degradation and thus may account for the loss of function phenotypes observed in peripheral tissues in LRRK2-knockout/kinase-dead or inhibitor-treated rodents and primates. Albeit negative from a kinase inhibitor standpoint, the data open new avenues for LRRK2 biology and therapeutic approaches to counteract LRRK2 toxicity. PMID:26341487

  4. Recent advances in the development of sphingosine kinase inhibitors.

    PubMed

    Pitman, Melissa R; Costabile, Maurizio; Pitson, Stuart M

    2016-09-01

    Sphingosine kinase (SK) 1 and 2 are lipid kinases that catalyse the formation of sphingosine 1-phosphate (S1P), a potent signalling molecule with a wide array of cellular effects. SK1 and 2 have been shown to be up-regulated in tumours and their genetic ablation or inhibition has been shown to slow tumour growth as well as sensitise cancer cells to chemotherapeutics. The SKs have been extensively studied, with a plethora of inhibitors developed that target the sphingosine-binding pocket of the enzyme, some with nanomolar affinities. Recently, inhibitors targeting the ATP pocket of SK have also been described. Here we discuss the development of these new small molecule SK inhibitors, summarise the recent discovery of off-targets effects of many current SK inhibitors, and provide an overview of the usefulness of these inhibitors as in vitro tools and therapeutic agents. PMID:27297359

  5. Aminofurazans as potent inhibitors of AKT kinase

    SciTech Connect

    Rouse, Meagan B.; Seefeld, Mark A.; Leber, Jack D.; McNulty, Kenneth C.; Sun, Lihui; Miller, William H.; Zhang, ShuYun; Minthorn, Elisabeth A.; Concha, Nestor O.; Choudhry, Anthony E.; Schaber, Michael D.; Heerding, Dirk A.

    2009-06-24

    AKT inhibitors containing an imidazopyridine aminofurazan scaffold have been optimized. We have previously disclosed identification of the AKT inhibitor GSK690693, which has been evaluated in clinical trials in cancer patients. Herein we describe recent efforts focusing on investigating a distinct region of this scaffold that have afforded compounds (30 and 32) with comparable activity profiles to that of GSK690693.

  6. Fragment-based design of kinase inhibitors: a practical guide.

    PubMed

    Erickson, Jon A

    2015-01-01

    Fragment-based drug design has become an important strategy for drug design and development over the last decade. It has been used with particular success in the development of kinase inhibitors, which are one of the most widely explored classes of drug targets today. The application of fragment-based methods to discovering and optimizing kinase inhibitors can be a complicated and daunting task; however, a general process has emerged that has been highly fruitful. Here a practical outline of the fragment process used in kinase inhibitor design and development is laid out with specific examples. A guide to the overall process from initial discovery through fragment screening, including the difficulties in detection, to the computational methods available for use in optimization of the discovered fragments is reported. PMID:25709040

  7. Phospho-kinase profile of colorectal tumors guides in the selection of multi-kinase inhibitors

    PubMed Central

    Montero, Juan Carlos; Corrales-Sanchez, Verónica; Morales, Jorge Carlos; Núñez, Luz-Elena; Morís, Francisco; Pandiella, Atanasio; Ocaña, Alberto

    2015-01-01

    Protein kinases play a central role in the oncogenesis of colorectal tumors and are attractive druggable targets. Detection of activated kinases within a tumor could open avenues for drug selection and optimization of new kinase inhibitors. By using a phosphokinase arrays with human colorectal tumors we identified activated kinases, including the Epidermal Growth Factor Receptor (EGFR), components of the PI3K/mTOR pathway (AKT and S6), and STAT, among others. A pharmacological screening with kinase inhibitors against these proteins helped us to identify a new kinase inhibitor, termed EC-70124 that showed the highest anti-proliferative activity in cell lines. EC-70124 also inhibited cell migration and biochemical experiments demonstrated its effect targeting the PI3K/mTOR pathway. This drug also arrested cells at G2/M and induced apoptosis. Experiments in combination with standard chemotherapy used in the clinical setting indicated a synergistic effect. EC-70124 also reduced tumor growth in vivo and inhibited pS6 in the implanted tumors. In conclusion, by studying the kinase profile of colorectal tumors, we identified relevant activated pathways, and a new multi-kinase compound with significant antitumor properties. PMID:26418718

  8. Phospho-kinase profile of colorectal tumors guides in the selection of multi-kinase inhibitors.

    PubMed

    Serrano-Heras, Gemma; Cuenca-López, María Dolores; Montero, Juan Carlos; Corrales-Sanchez, Verónica; Morales, Jorge Carlos; Núñez, Luz-Elena; Morís, Francisco; Pandiella, Atanasio; Ocaña, Alberto

    2015-10-13

    Protein kinases play a central role in the oncogenesis of colorectal tumors and are attractive druggable targets. Detection of activated kinases within a tumor could open avenues for drug selection and optimization of new kinase inhibitors. By using a phosphokinase arrays with human colorectal tumors we identified activated kinases, including the Epidermal Growth Factor Receptor (EGFR), components of the PI3K/mTOR pathway (AKT and S6), and STAT, among others. A pharmacological screening with kinase inhibitors against these proteins helped us to identify a new kinase inhibitor, termed EC-70124 that showed the highest anti-proliferative activity in cell lines. EC-70124 also inhibited cell migration and biochemical experiments demonstrated its effect targeting the PI3K/mTOR pathway. This drug also arrested cells at G2/M and induced apoptosis. Experiments in combination with standard chemotherapy used in the clinical setting indicated a synergistic effect. EC-70124 also reduced tumor growth in vivo and inhibited pS6 in the implanted tumors. In conclusion, by studying the kinase profile of colorectal tumors, we identified relevant activated pathways, and a new multi-kinase compound with significant antitumor properties. PMID:26418718

  9. Seeding collaborations to advance kinase science with the GSK Published Kinase Inhibitor Set (PKIS).

    PubMed

    Drewry, David H; Willson, Timothy M; Zuercher, William J

    2014-01-01

    To catalyze research on historically untargeted protein kinases, we created the PKIS, an annotated set of 367 small molecule kinase inhibitors. The set has been widely distributed to academic collaborators as an open access tool. It has been used to identify chemical starting points for development of chemical probes for orphan kinases and to investigate kinase signaling in high content phenotypic assays. Access to the set comes with few restrictions other than the requirement that assay results be released into the public domain for the benefit of the entire research community. Examples from the efforts of several collaborators are summarized. PMID:24283969

  10. Redundant kinase activation and resistance of EGFR-tyrosine kinase inhibitors

    PubMed Central

    Luo, Min; Fu, Li-Wu

    2014-01-01

    Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have shown dramatic effects against that tumors harboring EGFR activating mutations in the EGFR intracytoplasmic tyrosine kinase domain and resulted in cell apoptosis. Unfortunately, a number of patients ultimately developed resistance by multiple mechanisms. Thus, elucidation of the mechanism of resistance to EGFR-TKIs can provide strategies for blocking or reversing the situation. Recent studies suggested that redundant kinase activation plays pivotal roles in escaping from the effects of EGFR-TKIs. Herein, we aimed to characterize several molecular events involved in the resistance to EGFR-TKIs mediated by redundant kinase activation. PMID:25520855

  11. Cyclin dependent kinase (CDK) inhibitors as anticancer drugs.

    PubMed

    Sánchez-Martínez, Concepción; Gelbert, Lawrence M; Lallena, María José; de Dios, Alfonso

    2015-09-01

    Sustained proliferative capacity is a hallmark of cancer. In mammalian cells proliferation is controlled by the cell cycle, where cyclin-dependent kinases (CDKs) regulate critical checkpoints. CDK4 and CDK6 are considered highly validated anticancer drug targets due to their essential role regulating cell cycle progression at the G1 restriction point. This review provides an overview of recent advances on cyclin dependent kinase inhibitors in general with special emphasis on CDK4 and CDK6 inhibitors and compounds under clinical evaluation. Chemical structures, structure activity relationships, and relevant preclinical properties will be described. PMID:26115571

  12. The azaindole framework in the design of kinase inhibitors.

    PubMed

    Mérour, Jean-Yves; Buron, Frédéric; Plé, Karen; Bonnet, Pascal; Routier, Sylvain

    2014-01-01

    This review article illustrates the growing use of azaindole derivatives as kinase inhibitors and their contribution to drug discovery and innovation. The different protein kinases which have served as targets and the known molecules which have emerged from medicinal chemistry and Fragment-Based Drug Discovery (FBDD) programs are presented. The various synthetic routes used to access these compounds and the chemical pathways leading to their synthesis are also discussed. An analysis of their mode of binding based on X-ray crystallography data gives structural insights for the design of more potent and selective inhibitors. PMID:25460315

  13. Adenosine kinase inhibitors attenuate opiate withdrawal via adenosine receptor activation.

    PubMed

    Kaplan, G B; Coyle, T S

    1998-11-27

    Previous studies have demonstrated a role for adenosine in mediating opiate effects. This study examines the effects of indirect activation of adenosine receptors, via treatment with adenosine kinase inhibitors, on the expression of opiate withdrawal in mice. Mice receive chronic morphine treatment via implantation of subcutaneous morphine pellets (75 mg) for 72 h. Mice then receive parenteral treatment with adenosine kinase inhibitors, either 5'-amino-5'-deoxyadenosine (2, 5, 20, 40 mg/kg, intraperitoneal or i.p.) or iodotubericidin (1, 2, 5 mg/kg, i.p.), followed by naloxone injection and opiate withdrawal signs are measured over 20 min. Both adenosine kinase inhibitors significantly reduce the following opiate withdrawal signs in a dose-dependent manner compared to vehicle: withdrawal jumps, teeth chattering, forepaw tremors, and forepaw treads. Additionally, 5'-amino-5'-deoxyadenosine significantly reduces withdrawal-induced diarrhea and weight loss. Effects of 5'-amino-5'-deoxyadenosine (40 mg/kg) on opiate withdrawal signs appear to be mediated via adenosine receptor activation as they are reversed by pretreatment by adenosine receptor antagonist caffeine (20 mg, i.p.) but not by selective phosphodiesterase inhibitor Ro 20-1724 (10 mg/kg, i.p.). Adenosine receptor activation via adenosine kinase inhibitor treatment attenuates opiate withdrawal and these agents may be generally useful in the treatment of drug withdrawal syndromes. PMID:9865523

  14. Novel cinnoline-based inhibitors of LRRK2 kinase activity.

    PubMed

    Garofalo, Albert W; Adler, Marc; Aubele, Danielle L; Bowers, Simeon; Franzini, Maurizio; Goldbach, Erich; Lorentzen, Colin; Neitz, R Jeffrey; Probst, Gary D; Quinn, Kevin P; Santiago, Pam; Sham, Hing L; Tam, Danny; Truong, Anh P; Ye, Xiaocong M; Ren, Zhao

    2013-01-01

    Leucine rich repeat kinase 2 (LRRK2) has been implicated in the pathogenesis of Parkinson's disease (PD). Inhibition of LRRK2 kinase activity is a therapeutic approach that may lead to new treatments for PD. Herein we report the discovery of a series of cinnoline-3-carboxamides that are potent against both wild-type and mutant LRRK2 kinase activity in biochemical assays. These compounds are also shown to be potent inhibitors in a cellular assay and to have good to excellent CNS penetration. PMID:23219325

  15. Polo-like kinase inhibitors in hematologic malignancies.

    PubMed

    Talati, Chetasi; Griffiths, Elizabeth A; Wetzler, Meir; Wang, Eunice S

    2016-02-01

    Polo-like kinases (Plk) are key regulators of the cell cycle and multiple aspects of mitosis. Two agents that inhibit the Plk signaling pathway have shown promising activity in patients with hematologic malignancies and are currently in phase III trials. Volasertib is a Plk inhibitor under evaluation combined with low-dose cytarabine in older patients with acute myeloid leukemia (AML) ineligible for intensive induction therapy. Rigosertib, a dual inhibitor of the Plk and phosphatidylinositol 3-kinase pathways, is under investigation in patients with myelodysplastic syndrome (MDS) who have failed azacitidine or decitabine treatment. The prognosis for patients with AML, who are ineligible for intensive induction therapy, and for those with MDS refractory/relapsed after a hypomethylating agent, remains poor. Novel approaches, such as Plk inhibitors, are urgently needed for these patients. Here, we provide a comprehensive overview of the current state of development of Plk inhibitors for the treatment of hematologic malignancies. PMID:26597019

  16. Old Tyrosine Kinase Inhibitors and Newcomers in Gastrointestinal Cancer Treatment.

    PubMed

    Erika, Giordani; Federica, Zoratto; Martina, Strudel; Anselmo, Papa; Luigi, Rossi; Marina, Minozzi; Davide, Caruso; Eleonora, Zaccarelli; Monica, Verrico; Silverio, Tomao

    2016-01-01

    Gastrointestinal cancer treatment is based more on molecular biology that has provided increasing knowledge about cancer pathogenesis on which targeted therapy is being developed. Precisely, targeted therapy is defined as a "type of treatment that uses drugs, such as monoclonal antibodies or tyrosine kinase inhibitors, to identify and attack specific cancer cells". Nowadays, the United States Food and Drug Administration has approved many targeted therapies for gastrointestinal cancer treatment, as many are in various phases of development as well. In a previous review we discussed the main monoclonal antibodies used and studied in gastrointestinal cancer. In addition to monoclonal antibodies, tyrosine kinase inhibitors represent another class of targeted therapy and following the approval of imatinib for gastrointestinal stromal tumours, other tyrosine kinase inhibitors have been approved for gastrointestinal cancers treatment such as sunitinib, regoragenib, sorafenib and erlotinib. Moving forward, the purpose of this review is to focus on the efficacy data of main tyrosine kinase inhibitors commonly used in the personalized treatment of each gastrointestinal tumour and to provide a comprehensive overview about experimental targeted therapies ongoing in this setting. PMID:26278713

  17. Selective Mycobacterium tuberculosis Shikimate Kinase Inhibitors as Potential Antibacterials

    PubMed Central

    Gordon, Sara; Simithy, Johayra; Goodwin, Douglas C; Calderón, Angela I

    2015-01-01

    Owing to the persistence of tuberculosis (TB) as well as the emergence of multidrug-resistant and extensively drug-resistant (XDR) forms of the disease, the development of new antitubercular drugs is crucial. Developing inhibitors of shikimate kinase (SK) in the shikimate pathway will provide a selective target for antitubercular agents. Many studies have used in silico technology to identify compounds that are anticipated to interact with and inhibit SK. To a much more limited extent, SK inhibition has been evaluated by in vitro methods with purified enzyme. Currently, there are no data on in vivo activity of Mycobacterium tuberculosis shikimate kinase (MtSK) inhibitors available in the literature. In this review, we present a summary of the progress of SK inhibitor discovery and evaluation with particular attention toward development of new antitubercular agents. PMID:25861218

  18. Selective Mycobacterium tuberculosis Shikimate Kinase Inhibitors as Potential Antibacterials.

    PubMed

    Gordon, Sara; Simithy, Johayra; Goodwin, Douglas C; Calderón, Angela I

    2015-01-01

    Owing to the persistence of tuberculosis (TB) as well as the emergence of multidrug-resistant and extensively drug-resistant (XDR) forms of the disease, the development of new antitubercular drugs is crucial. Developing inhibitors of shikimate kinase (SK) in the shikimate pathway will provide a selective target for antitubercular agents. Many studies have used in silico technology to identify compounds that are anticipated to interact with and inhibit SK. To a much more limited extent, SK inhibition has been evaluated by in vitro methods with purified enzyme. Currently, there are no data on in vivo activity of Mycobacterium tuberculosis shikimate kinase (MtSK) inhibitors available in the literature. In this review, we present a summary of the progress of SK inhibitor discovery and evaluation with particular attention toward development of new antitubercular agents. PMID:25861218

  19. Prolonged and tunable residence time using reversible covalent kinase inhibitors

    PubMed Central

    Bradshaw, J. Michael; McFarland, Jesse M.; Paavilainen, Ville O.; Bisconte, Angelina; Tam, Danny; Phan, Vernon T.; Romanov, Sergei; Finkle, David; Shu, Jin; Patel, Vaishali; Ton, Tony; Li, Xiaoyan; Loughhead, David G.; Nunn, Philip A.; Karr, Dane E.; Gerritsen, Mary E.; Funk, Jens Oliver; Owens, Timothy D.; Verner, Erik; Brameld, Ken A.; Hill, Ronald J.; Goldstein, David M.; Taunton, Jack

    2015-01-01

    Drugs with prolonged, on-target residence time often show superior efficacy, yet general strategies for optimizing drug-target residence time are lacking. Here, we demonstrate progress toward this elusive goal by targeting a noncatalytic cysteine in Bruton's tyrosine kinase (BTK) with reversible covalent inhibitors. Utilizing an inverted orientation of the cysteine-reactive cyanoacrylamide electrophile, we identified potent and selective BTK inhibitors that demonstrate biochemical residence times spanning from minutes to 7 days. An inverted cyanoacrylamide with prolonged residence time in vivo remained bound to BTK more than 18 hours after clearance from the circulation. The inverted cyanoacrylamide strategy was further utilized to discover fibroblast growth factor receptor (FGFR) kinase inhibitors with residence times of several days, demonstrating generalizability of the approach. Targeting noncatalytic cysteines with inverted cyanoacrylamides may serve as a broadly applicable platform that facilitates “residence time by design”, the ability to modulate and improve the duration of target engagement in vivo. PMID:26006010

  20. Design and synthesis of novel selective anaplastic lymphoma kinase inhibitors.

    PubMed

    Michellys, Pierre-Yves; Chen, Bei; Jiang, Tao; Jin, Yunho; Lu, Wenshuo; Marsilje, Thomas H; Pei, Wei; Uno, Tetsuo; Zhu, Xuefeng; Wu, Baogen; Nguyen, Truc Ngoc; Bursulaya, Badry; Lee, Christian; Li, Nanxin; Kim, Sungjoon; Tuntland, Tove; Liu, Bo; Sun, Frank; Steffy, Auzon; Hood, Tami

    2016-02-01

    Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase belonging to the insulin receptor superfamily. Expression of ALK in normal human tissues is only found in a subset of neural cells, however it is involved in the genesis of several cancers through genetic aberrations involving translocation of the kinase domain with multiple fusion partners (e.g., NPM-ALK in anaplastic large cell lymphoma ALCL or EML4-ALK in non-small cell lung cancer) or activating mutations in the full-length receptor resulting in ligand-independent constitutive activation (e.g., neuroblastoma). Here we are reporting the discovery of novel and selective anaplastic lymphoma kinase inhibitors from specific modifications of the 2,4-diaminopyridine core present in TAE684 and LDK378. Synthesis, structure activity relationships (SAR), absorption, distribution, metabolism, and excretion (ADME) profile, and in vivo efficacy in a mouse xenograft model of anaplastic large cell lymphoma are described. PMID:26750252

  1. Clinical experience with aurora kinase inhibitors: a review.

    PubMed

    Boss, David S; Beijnen, Jos H; Schellens, Jan H M

    2009-08-01

    The aurora kinase family of serine/threonine kinases comprises three members, designated auroras A, B, and C. Auroras A and B are essential components of the mitotic pathway, ensuring proper chromosome assembly, formation of the mitotic spindle, and cytokinesis. The role of aurora C is less clear. Overexpression of aurora A and B has been observed in several tumor types, and has been linked with a poor prognosis of cancer patients. Several small molecules targeting aurora kinases A and B or both have been evaluated preclinically and in early phase I trials. In this review we aim to summarize the most recent advances in the development of aurora kinase inhibitors, with a focus on the clinical data. PMID:19684075

  2. Predictive Models for Fast and Effective Profiling of Kinase Inhibitors.

    PubMed

    Bora, Alina; Avram, Sorin; Ciucanu, Ionel; Raica, Marius; Avram, Stefana

    2016-05-23

    In this study we developed two-dimensional pharmacophore-based random forest models for the effective profiling of kinase inhibitors. One hundred seven prediction models were developed to address distinct kinases spanning over all kinase groups. Rigorous external validation demonstrates excellent virtual screening and classification potential of the predictors and, more importantly, the capacity to prioritize novel chemical scaffolds in large chemical libraries. The models built upon more diverse and more potent compounds tend to exert the highest predictive power. The analysis of ColBioS-FlavRC (Collection of Bioselective Flavonoids and Related Compounds) highlighted several potentially promiscuous derivatives with undesirable selectivity against kinases. The prediction models can be downloaded from www.chembioinf.ro . PMID:27064988

  3. Bosutinib: a novel second-generation tyrosine kinase inhibitor.

    PubMed

    Isfort, Susanne; Keller-v Amsberg, Gunhild; Schafhausen, Philippe; Koschmieder, Steffen; Brümmendorf, Tim H

    2014-01-01

    Bosutinib (SKI-606) is a 4-anilino-3-quinoline carbonitrile, which acts as a dual inhibitor of Src and ABL kinases. In addition, the BCR-ABL fusion gene product, a constitutively activated tyrosine kinase which is crucial for the development of chronic myeloid leukemia (CML), is highly sensitive to bosutinib. Interestingly, distinctly lower concentrations of bosutinib are required to ablate BCR-ABL phosphorylation when compared to the first-generation tyrosine kinase inhibitor imatinib (IM). Bosutinib is a potent inhibitor of CML cell proliferation in vitro and has demonstrated promising activity in CML patients resistant or intolerant to IM as well as in newly diagnosed patients with chronic phase CML (CML-CP). Remarkably, bosutinib has been found to be capable of overcoming the majority of IM-resistant BCR-ABL mutations. Bosutinib has the potency to induce deep and fast responses in second- and third-/fourth-line treatment, and as a consequence, the drug has recently been licensed for patients previously treated with one or more tyrosine kinase inhibitor(s) and for whom imatinib, nilotinib, and dasatinib are not considered appropriate treatment options. Due to its potency and differing toxicity profile, it promises to be a good therapeutic option for a defined cohort of patients. The most common side effects are gastrointestinal with most of the patients suffering from nausea, vomiting, or diarrhea. For the most part, these gastrointestinal symptoms occur early after treatment initiation, are manageable, and often self-limiting. Continuous monitoring of liver enzymes upon treatment initiation is necessary during bosutinib treatment. In addition to CML treatment, bosutinib has shown some efficacy in selected patients suffering from advanced-stage solid tumors. In conclusion, bosutinib is a promising novel small molecule inhibitor approved now for targeted therapy of CML and in clinical development for other malignancies. PMID:24756786

  4. Indolinones as promising scaffold as kinase inhibitors: a review.

    PubMed

    Prakash, C R; Raja, S

    2012-02-01

    Kinases are probably the most important signaling enzymes, which represent about 20% of the druggable genome. Currently, more than 150 kinases are known. So, kinase inhibition therapy has become a very important area of drug research since most of our diseases are related to intra or intercellular signaling by kinases. Indole alkaloids are extensively studied for their biological activities in several pharmaceutical areas, including, for example, antitumor. Among this chemical family, indolinone displays very promising antitumor properties by inhibiting various kinase families. These small molecules have a low molecular weight and most of them bind to protein kinases competing with ATP for the ATP-binding site. This review focuses on the indolinone based drugs approved for the treatment of cancer, drugs under clinical trial and then chemical diversity of various synthetic analogues of indolinone and their metabolites as various kinase inhibitors. This review also focused on structural activity relationship (SAR), mechanisms of action and biological targets through which indolinone and its derivatives display their antitumor activity. PMID:22372601

  5. Inhibitors of glycogen synthase 3 kinase

    DOEpatents

    Schultz, Peter; Ring, David B.; Harrison, Stephen D.; Bray, Andrew M.

    2006-05-30

    Compounds of formula 1: ##STR00001## wherein R.sub.1 is alkyl, cycloalkyl, aryl, aralkyl, heteroaryl, or heteroaralkyl, substituted with 0 3 substituents selected from lower alkyl, halo, hydroxy, lower alkoxy, amino, lower alkyl-amino, and nitro; R.sub.2 is hydroxy, amino, or lower alkoxy; R.sub.3 is H, lower alkyl, lower acyl, lower alkoxy-acyl, or amino-acyl; R.sub.4 is H or lower alkyl; and pharmaceutically acceptable salts and esters thereof; are effective inhibitors of GSK3.

  6. Inhibitors of glycogen synthase 3 kinase

    DOEpatents

    Schultz, Peter; Ring, David B.; Harrison, Stephen D.; Bray, Andrew M.

    2000-01-01

    Compounds of formula 1: ##STR1## wherein R.sub.1 is alkyl, cycloalkyl, aryl, aralkyl, heteroaryl, or heteroaralkyl, substituted with 0-3 substituents selected from lower alkyl, halo, hydroxy, lower alkoxy, amino, lower alkyl-amino, and nitro; R.sub.2 is hydroxy, amino, or lower alkoxy; R.sub.3 is H, lower alkyl, lower acyl, lower alkoxy-acyl, or amnino-acyl; R.sub.4 is H or lower alkyl; and pharmaceutically acceptable salts and esters thereof; are effective inhibitors of GSK3.

  7. Combinations of Kinase Inhibitors Protecting Myoblasts against Hypoxia

    PubMed Central

    Kang, Yunyi; Tierney, Matthew; Ong, Edison; Zhang, Linda; Piermarocchi, Carlo; Sacco, Alessandra; Paternostro, Giovanni

    2015-01-01

    Cell-based therapies to treat skeletal muscle disease are limited by the poor survival of donor myoblasts, due in part to acute hypoxic stress. After confirming that the microenvironment of transplanted myoblasts is hypoxic, we screened a kinase inhibitor library in vitro and identified five kinase inhibitors that protected myoblasts from cell death or growth arrest in hypoxic conditions. A systematic, combinatorial study of these compounds further improved myoblast viability, showing both synergistic and additive effects. Pathway and target analysis revealed CDK5, CDK2, CDC2, WEE1, and GSK3β as the main target kinases. In particular, CDK5 was the center of the target kinase network. Using our recently developed statistical method based on elastic net regression we computationally validated the key role of CDK5 in cell protection against hypoxia. This method provided a list of potential kinase targets with a quantitative measure of their optimal amount of relative inhibition. A modified version of the method was also able to predict the effect of combinations using single-drug response data. This work is the first step towards a broadly applicable system-level strategy for the pharmacology of hypoxic damage. PMID:26042811

  8. Quercetin: a pleiotropic kinase inhibitor against cancer.

    PubMed

    Russo, Gian Luigi; Russo, Maria; Spagnuolo, Carmela; Tedesco, Idolo; Bilotto, Stefania; Iannitti, Roberta; Palumbo, Rosanna

    2014-01-01

    Increased consumption of fruits and vegetables can represent an easy strategy to significantly reduce the incidence of cancer. From this observation, derived mostly from epidemiological data, the new field of chemoprevention has emerged in the primary and secondary prevention of cancer. Chemoprevention is defined as the use of natural or synthetic compounds able to stop, reverse, or delay the process of tumorigenesis in its early stages. A large number of phytochemicals are potentially capable of simultaneously inhibiting and modulating several key factors regulating cell proliferation in cancer cells. Quercetin is a flavonoid possessing potential chemopreventive properties. It is a functionally pleiotropic molecule, possessing multiple intracellular targets, affecting different cell signaling processes usually altered in cancer cells, with limited toxicity on normal cells. Simultaneously targeting multiple pathways may help to kill malignant cells and slow down the onset of drug resistance. Among the different substrates triggered by quercetin, we have reviewed the ability of the molecule to inhibit protein kinases involved in deregulated cell growth in cancer cells. PMID:24114481

  9. Comprehensive kinase profile of pacritinib, a nonmyelosuppressive Janus kinase 2 inhibitor

    PubMed Central

    Singer, Jack W; Al-Fayoumi, Suliman; Ma, Haiching; Komrokji, Rami S; Mesa, Ruben; Verstovsek, Srdan

    2016-01-01

    Pacritinib, potent inhibitor of Janus kinase 2 (JAK2), JAK2V617F, and fms-like receptor tyrosine kinase 3, is in Phase III development in myelofibrosis. Among type 1 inhibitors, pacritinib shows a lack of myelosuppression at doses that both inhibit JAK2/signal transducer and activator of transcription 3 pathway and demonstrate clinical efficacy. To elucidate these mechanisms and identify other disease targets, a kinome analysis screened 439 recombinant kinases at 100 nM pacritinib concentration. For kinases with >50% inhibition, pacritinib was titrated from 1 to 100 nM. JAK2, JAK2V617F, FLT3, colony-stimulating factor 1 receptor, and interleukin-1 receptor-associated kinase 1 achieved half-maximal inhibitory concentrations <50 nM. Pacritinib did not inhibit JAK1 (82% control at 100 nM). Lack of myelosuppression may stem from inhibiting JAK2 without affecting JAK1 and reducing hematopoietic inhibitory cytokines by suppressing interleukin-1 receptor-associated kinase 1 or colony-stimulating factor 1 receptor. The pacritinib kinome suggests therapeutic utility in acute myeloid leukemia, myelodysplastic syndrome, chronic myelomonocytic leukemia, solid tumors, and inflammatory conditions. PMID:27574472

  10. Comprehensive kinase profile of pacritinib, a nonmyelosuppressive Janus kinase 2 inhibitor.

    PubMed

    Singer, Jack W; Al-Fayoumi, Suliman; Ma, Haiching; Komrokji, Rami S; Mesa, Ruben; Verstovsek, Srdan

    2016-01-01

    Pacritinib, potent inhibitor of Janus kinase 2 (JAK2), JAK2V617F, and fms-like receptor tyrosine kinase 3, is in Phase III development in myelofibrosis. Among type 1 inhibitors, pacritinib shows a lack of myelosuppression at doses that both inhibit JAK2/signal transducer and activator of transcription 3 pathway and demonstrate clinical efficacy. To elucidate these mechanisms and identify other disease targets, a kinome analysis screened 439 recombinant kinases at 100 nM pacritinib concentration. For kinases with >50% inhibition, pacritinib was titrated from 1 to 100 nM. JAK2, JAK2V617F, FLT3, colony-stimulating factor 1 receptor, and interleukin-1 receptor-associated kinase 1 achieved half-maximal inhibitory concentrations <50 nM. Pacritinib did not inhibit JAK1 (82% control at 100 nM). Lack of myelosuppression may stem from inhibiting JAK2 without affecting JAK1 and reducing hematopoietic inhibitory cytokines by suppressing interleukin-1 receptor-associated kinase 1 or colony-stimulating factor 1 receptor. The pacritinib kinome suggests therapeutic utility in acute myeloid leukemia, myelodysplastic syndrome, chronic myelomonocytic leukemia, solid tumors, and inflammatory conditions. PMID:27574472

  11. Rho-associated kinase inhibitors: a novel glaucoma therapy.

    PubMed

    Inoue, Toshihiro; Tanihara, Hidenobu

    2013-11-01

    The rho-associated kinase (ROCK) signaling pathway is activated via secreted bioactive molecules or via integrin activation after extracellular matrix binding. These lead to polymerization of actin stress fibers and formation of focal adhesions. Accumulating evidence suggests that actin cytoskeleton-modulating signals are involved in aqueous outflow regulation. Aqueous humor contains various biologically active factors, some of which are elevated in glaucomatous eyes. These factors affect aqueous outflow, in part, through ROCK signaling modulation. Various drugs acting on the cytoskeleton have also been shown to increase aqueous outflow by acting directly on outflow tissue. In vivo animal studies have shown that the trabecular meshwork (TM) actin cytoskeleton in glaucomatous eyes is more disorganized and more randomly oriented than in non-glaucomatous control eyes. In a previous study, we introduced ROCK inhibitors as a potential glaucoma therapy by showing that a selective ROCK inhibitor significantly lowered rabbit IOP. Rho-associated kinase inhibitors directly affect the TM and Schlemm's canal (SC), differing from the target sight of other glaucoma drugs. The TM is affected earlier and more strongly than ciliary muscle cells by ROCK inhibitors, largely because of pharmacological affinity differences stemming from regulatory mechanisms. Additionally, ROCK inhibitors disrupt tight junctions, result in F-actin depolymerization, and modulate intracellular calcium level, effectively increasing SC-cell monolayer permeability. Perfusion of an enucleated eye with a ROCK inhibitor resulted in wider empty spaces in the juxtacanalicular (JCT) area and more giant vacuoles in the endothelial cells of SC, while the endothelial lining of SC was intact. Interestingly, ROCK inhibitors also increase retinal blood flow by relaxing vascular smooth muscle cells, directly protecting neurons against various stresses, while promoting wound healing. These additional effects may help

  12. The STAT5 inhibitor pimozide decreases survival of chronic myelogenous leukemia cells resistant to kinase inhibitors

    PubMed Central

    Nelson, Erik A.; Walker, Sarah R.; Weisberg, Ellen; Bar-Natan, Michal; Barrett, Rosemary; Gashin, Laurie B.; Terrell, Shariya; Klitgaard, Josephine L.; Santo, Loredana; Addorio, Martha R.; Ebert, Benjamin L.; Griffin, James D.

    2011-01-01

    The transcription factor STAT5 is an essential mediator of the pathogenesis of chronic myelogenous leukemia (CML). In CML, the BCR/ABL fusion kinase causes the constitutive activation of STAT5, thereby driving the expression of genes promoting survival. BCR/ABL kinase inhibitors have become the mainstay of therapy for CML, although CML cells can develop resistance through mutations in BCR/ABL. To overcome this problem, we used a cell-based screen to identify drugs that inhibit STAT-dependent gene expression. Using this approach, we identified the psychotropic drug pimozide as a STAT5 inhibitor. Pimozide decreases STAT5 tyrosine phosphorylation, although it does not inhibit BCR/ABL or other tyrosine kinases. Furthermore, pimozide decreases the expression of STAT5 target genes and induces cell cycle arrest and apoptosis in CML cell lines. Pimozide also selectively inhibits colony formation of CD34+ bone marrow cells from CML patients. Importantly, pimozide induces similar effects in the presence of the T315I BCR/ABL mutation that renders the kinase resistant to presently available inhibitors. Simultaneously inhibiting STAT5 with pimozide and the kinase inhibitors imatinib or nilotinib shows enhanced effects in inhibiting STAT5 phosphorylation and in inducing apoptosis. Thus, targeting STAT5 may be an effective strategy for the treatment of CML and other myeloproliferative diseases. PMID:21233313

  13. Targeting Angiogenesis in Colorectal Cancer: Tyrosine Kinase Inhibitors.

    PubMed

    Kircher, Sheetal Mehta; Nimeiri, Halla S; Benson, Al B

    2016-01-01

    Colorectal cancer is commonly diagnosed throughout the world, and treatment options have greatly expanded over the last 2 decades. Targeting angiogenesis has been a major focus of study in a variety of malignancy types. Targeting angiogenesis has been achieved by several mechanisms in colorectal cancer, including use of antiangiogenic small molecule tyrosine kinase inhibitors (TKIs). There have been many attempts and failures to prove efficacy of TKIs in the treatment of colorectal cancer including sorafenib, sunitinib, vatalanib, and tivozanib. Regorafenib was the first TKI to demonstrate efficacy and is an orally active inhibitor of angiogenic (including the vascular endothelial growth factor receptors 1, 2, and 3), stromal, and oncogenic receptor tyrosine kinases. There are ongoing investigations of both regorafenib and ninetanib; however, there remains a critical need to better understand novel combinations with TKIs that could prove more efficacious than available options. PMID:27341596

  14. Endocrine side effects of broad-acting kinase inhibitors

    PubMed Central

    Lodish, Maya B.; Stratakis, Constantine A.

    2011-01-01

    Targeted therapy in oncology consists of drugs that specifically interfere with abnormal signaling pathways that are dysregulated in cancer cells. Tyrosine kinase inhibitors (TKIs) take advantage of unique oncogenes that are activated in certain types of cancer, and also target common mechanisms of growth, invasion, metastasis, and angiogenesis. However, many kinase inhibitors for cancer therapy are somewhat nonselective, and most have additional mechanisms of action at the cellular level which are not completely understood. The use of these agents has increased our knowledge of important side effects, of which the practicing clinician must be aware. Recently proposed endocrine-related side effects of these agents include alterations in thyroid function, bone metabolism, linear growth, gonadal function, fetal development, and glucose metabolism, and adrenal function. This review summarizes the most recent data on the endocrine side effects of TKIs. PMID:20603395

  15. Tyrosine Kinase Inhibitors and Diabetes: A Novel Treatment Paradigm?

    PubMed

    Fountas, Athanasios; Diamantopoulos, Leonidas-Nikolaos; Tsatsoulis, Agathocles

    2015-11-01

    Deregulation of protein tyrosine kinase (PTK) activity is implicated in various proliferative conditions. Multi-target tyrosine kinase inhibitors (TKIs) are increasingly used for the treatment of different malignancies. Recently, several clinical cases of the reversal of both type 1 and 2 diabetes mellitus (T1DM, T2DM) during TKI administration have been reported. Experimental in vivo and in vitro studies have elucidated some of the mechanisms behind this effect. For example, inhibition of Abelson tyrosine kinase (c-Abl) results in β cell survival and enhanced insulin secretion, while platelet-derived growth factor receptor (PDGFR) and epidermal growth factor receptor (EGFR) inhibition leads to improvement in insulin sensitivity. In addition, inhibition of vascular endothelial growth factor receptor 2 (VEGFR2) reduces the degree of islet cell inflammation (insulitis). Therefore, targeting several PTKs may provide a novel approach for correcting the pathophysiologic disturbances of diabetes. PMID:26492832

  16. Novel Bruton’s tyrosine kinase inhibitors currently in development

    PubMed Central

    D’Cruz, Osmond J; Uckun, Fatih M

    2013-01-01

    Bruton’s tyrosine kinase (Btk) is intimately involved in multiple signal-transduction pathways regulating survival, activation, proliferation, and differentiation of B-lineage lymphoid cells. Btk is overexpressed and constitutively active in several B-lineage lymphoid malignancies. Btk has emerged as a new antiapoptotic molecular target for treatment of B-lineage leukemias and lymphomas. Preclinical and early clinical results indicate that Btk inhibitors may be useful in the treatment of leukemias and lymphomas. PMID:23493945

  17. Phosphatidylinositol 3-kinase inhibitors block differentiation of skeletal muscle cells.

    PubMed

    Kaliman, P; Viñals, F; Testar, X; Palacín, M; Zorzano, A

    1996-08-01

    Skeletal muscle differentiation involves myoblast alignment, elongation, and fusion into multinucleate myotubes, together with the induction of regulatory and structural muscle-specific genes. Here we show that two phosphatidylinositol 3-kinase inhibitors, LY294002 and wortmannin, blocked an essential step in the differentiation of two skeletal muscle cell models. Both inhibitors abolished the capacity of L6E9 myoblasts to form myotubes, without affecting myoblast proliferation, elongation, or alignment. Myogenic events like the induction of myogenin and of glucose carrier GLUT4 were also blocked and myoblasts could not exit the cell cycle, as measured by the lack of mRNA induction of p21 cyclin-dependent kinase inhibitor. Overexpresssion of MyoD in 10T1/2 cells was not sufficient to bypass the myogenic differentiation blockade by LY294002. Upon serum withdrawal, 10T1/2-MyoD cells formed myotubes and showed increased levels of myogenin and p21. In contrast, LY294002-treated cells exhibited none of these myogenic characteristics and maintained high levels of Id, a negative regulator of myogenesis. These data indicate that whereas phosphatidylinositol 3-kinase is not indispensable for cell proliferation or in the initial events of myoblast differentiation, i.e. elongation and alignment, it appears to be essential for terminal differentiation of muscle cells. PMID:8702591

  18. Identification of quinones as novel PIM1 kinase inhibitors.

    PubMed

    Schroeder, Richard L; Goyal, Navneet; Bratton, Melyssa; Townley, Ian; Pham, Nancy A; Tram, Phan; Stone, Treasure; Geathers, Jasmine; Nguyen, Kathy; Sridhar, Jayalakshmi

    2016-07-01

    PIM1 is a proto-oncogene encoding the serine/threonine PIM1 kinase. PIM1 kinase plays important roles in regulating aspects of cell cycle progression, apoptosis resistance, and has been implicated in the development of such malignancies as prostate cancer and acute myeloid leukemia among others. Knockout of PIM1 kinase in mice has been shown to be non-lethal without any obvious phenotypic changes, making it an attractive therapeutic target. Our investigation of anthraquinones as kinase inhibitors revealed a series of quinone analogs showing high selectivity for inhibition of the PIM kinases. Molecular modeling studies were used to identify key interactions and binding poses of these compounds within the PIM1 binding pocket. Compounds 1, 4, 7 and 9 inhibited the growth of DU-145 prostate cancer cell lines with a potency of 8.21μM, 4.06μM, 3.21μM and 2.02μM. PMID:27173800

  19. Characterization of irreversible kinase inhibitors by directly detecting covalent bond formation: a tool for dissecting kinase drug resistance.

    PubMed

    Klüter, Sabine; Simard, Jeffrey R; Rode, Haridas B; Grütter, Christian; Pawar, Vijaykumar; Raaijmakers, Hans C A; Barf, Tjeerd A; Rabiller, Matthias; van Otterlo, Willem A L; Rauh, Daniel

    2010-12-10

    Targeting protein kinases in cancer therapy with irreversible small-molecule inhibitors is moving to the forefront of kinase-inhibitor research and is thought to be an effective means of overcoming mutation-associated drug resistance in epidermal growth factor receptor kinase (EGFR). We generated a detection technique that allows direct measurements of covalent bond formation without relying on kinase activity, thereby allowing the straightforward investigation of the influence of steric clashes on covalent inhibitors in different resistant kinase mutants. The obtained results are discussed together with structural biology and biochemical studies of catalytic activity in both wild-type and gatekeeper mutated kinase variants to draw conclusions about the impact of steric hindrance and increased catalytic activity in drug-resistant kinase variants. PMID:21080395

  20. Antitumoral activity of allosteric inhibitors of protein kinase CK2

    PubMed Central

    Sautel, Céline F.; Teillet, Florence; Barette, Caroline; Lafanechere, Laurence; Receveur-Brechot, Veronique; Cochet, Claude

    2011-01-01

    Introduction Due to its physiological role into promoting cell survival and its dysregulation in most cancer cells, protein kinase CK2 is a relevant physiopathological target for development of chemical inhibitors. We report the discovery of azonaphthalene derivatives, as a new family of highly specific CK2 inhibitors. First, we demonstrated that CK2 inhibition (IC50= 0.4 μM) was highly specific, reversible and non ATP-competitive. Small Angle X-ray Scattering experiments showed that this inhibition was due to large conformational change of CK2α upon binding of these inhibitors. We showed that several compounds of the family were cell-potent CK2 inhibitors promoting cell cycle arrest of human glioblastoma U373 cells. Finally, in vitro and in vivo assays showed that these compounds could decrease U373 cell tumor mass by 83% emphasizing their efficacy against these apoptosis-resistant tumors. In contrast, Azonaphthalene derivatives inactive on CK2 activity showed no effect in colony formation and tumor regression assays. These findings illustrate the emergence of nonclassical CK2 inhibitors and provide exciting opportunities for the development of novel allosteric CK2 inhibitors. Background CK2 is an emerging therapeutic target and ATP-competitive inhibitors have been identified. CK2 is endowed with specific structural features providing alternative strategies for inhibition. Results Azonaphthalene compounds are allosteric CK2 inhibitors showing antitumor activity. Conclusion CK2 may be targeted allosterically. Significance These inhibitors provide a foundation for a new paradigm for specific CK2 inhibition. PMID:22184283

  1. Pharmacological cyclin dependent kinase inhibitors: Implications for colorectal cancer

    PubMed Central

    Balakrishnan, Archana; Vyas, Arpita; Deshpande, Kaivalya; Vyas, Dinesh

    2016-01-01

    Colorectal cancer accounts for a significant proportion of cancer deaths worldwide. The need to develop more chemotherapeutic agents to combat this disease is critical. Cyclin dependent kinases (CDKs), along with its binding partner cyclins, serve to control the growth of cells through the cell cycle. A new class of drugs, termed CDK inhibitors, has been studied in preclinical and now clinical trials. These inhibitors are believed to act as an anti-cancer drug by blocking CDKs to block the uncontrolled cellular proliferation that is hallmark of cancers like colorectal cancer. CDK article provides overview of the emerging drug class of CDK inhibitors and provides a list of ones that are currently in clinical trials. PMID:26900281

  2. Analysis of pulmonary vasodilator responses to the Rho-kinase inhibitor fasudil in the anesthetized rat.

    PubMed

    Badejo, Adeleke M; Dhaliwal, Jasdeep S; Casey, David B; Gallen, Thomas B; Greco, Anthony J; Kadowitz, Philip J

    2008-11-01

    The small GTP-binding protein Rho and its downstream effector, Rho-kinase, are important regulators of vasoconstrictor tone. Rho-kinase is upregulated in experimental models of pulmonary hypertension, and Rho-kinase inhibitors decrease pulmonary arterial pressure in rodents with monocrotaline and chronic hypoxia-induced pulmonary hypertension. However, less is known about responses to fasudil when pulmonary vascular resistance is elevated on an acute basis by vasoconstrictor agents and ventilatory hypoxia. In the present study, intravenous injections of fasudil reversed pulmonary hypertensive responses to intravenous infusion of the thromboxane receptor agonist, U-46619 and ventilation with a 10% O(2) gas mixture and inhibited pulmonary vasoconstrictor responses to intravenous injections of angiotensin II, BAY K 8644, and U-46619 without prior exposure to agonists, which can upregulate Rho-kinase activity. The calcium channel blocker isradipine and fasudil had similar effects and in small doses had additive effects in blunting vasoconstrictor responses, suggesting parallel and series mechanisms in the lung. When pulmonary vascular resistance was increased with U-46619, fasudil produced similar decreases in pulmonary and systemic arterial pressure, whereas isradipine produced greater decreases in systemic arterial pressure. The hypoxic pressor response was enhanced by 5-10 mg/kg iv nitro-L-arginine methyl ester (L-NAME), and fasudil or isradipine reversed the pulmonary hypertensive response to hypoxia in control and in L-NAME-treated animals, suggesting that the response is mediated by Rho-kinase and L-type Ca(2+) channels. These results suggest that Rho-kinase is constitutively active in regulating baseline tone and vasoconstrictor responses in the lung under physiological conditions and that Rho-kinase inhibition attenuates pulmonary vasoconstrictor responses to agents that act by different mechanisms without prior exposure to the agonist. PMID:18689606

  3. Design and synthesis of constrained analogs of LCRF-0004 as potent RON tyrosine kinase inhibitors.

    PubMed

    Raeppel, Stéphane L; Therrien, Eric; Raeppel, Franck

    2015-09-01

    New fused bicyclic lactam head groups as rigidified analogs of thieno[3,2-b]pyridine-based kinase inhibitor LCRF-0004 were designed and synthesized. Depending on the functionalities and the size of these bicyclic head groups, potent inhibitors of RON tyrosine kinase with various level of selectivity against c-Met tyrosine kinase were obtained. PMID:26112445

  4. ROS1 Kinase Inhibitors for Molecular-Targeted Therapies.

    PubMed

    Al-Sanea, M M; Abdelazem, A Z; Park, B S; Yoo, K H; Sim, T; Kwon, Y J; Lee, S H

    2016-01-01

    ROS1 is a pivotal transmembrane receptor protein tyrosine kinase which regulates several cellular processes like apoptosis, survival, differentiation, proliferation, cell migration, and transformation. There is increasing evidence supporting that ROS1 plays an important role in different malignancies including glioblastoma, colorectal cancer, gastric adenocarcinoma, inflammatory myofibroblastic tumor, ovarian cancer, angiosarcoma, and non small cell lung cancer; thus, ROS1 has become a potential drug discovery target. ROS1 shares about 49% sequence homology with ALK primary structure; therefore, wide range of ALK kinase inhibitors have shown in vitro inhibitory activity against ROS1 kinase. After Crizotinib approval by FDA for the management of ALK-rearranged lung cancer, ROS1-positive tumors have been focused. Although significant advancements have been achieved in understanding ROS1 function and its signaling pathways plus recent discovery of small molecules modulating ROS1 protein, a vital need of medicinal chemistry efforts is still required to produce selective and potent ROS1 inhibitors as an important therapeutic strategy for different human malignancies. This review focuses on the current knowledge about different scaffolds targeting ROS1 rearrangements, methods to synthesis, and some biological data about the most potent compounds that have delivered various scaffold structures. PMID:26438251

  5. Discovery of a Highly Selective STK16 Kinase Inhibitor.

    PubMed

    Liu, Feiyang; Wang, Jinhua; Yang, Xingxing; Li, Binhua; Wu, Hong; Qi, Shuang; Chen, Cheng; Liu, Xiaochuan; Yu, Kailin; Wang, Wenchao; Zhao, Zheng; Wang, Aoli; Chen, Yongfei; Wang, Li; Gray, Nathanael S; Liu, Jing; Zhang, Xin; Liu, Qingsong

    2016-06-17

    STK16, a serine/threonine protein kinase, is ubiquitously expressed and is conserved among all eukaryotes. STK16 has been implicated to function in a variety of cellular processes such as VEGF and cargo secretion, but the pathways through which these effects are mediated remain to be elucidated. Through screening of our focused library of kinase inhibitors, we discovered a highly selective ATP competitive inhibitor, STK16-IN-1, which exhibits potent inhibitory activity against STK16 kinase (IC50: 0.295 μM) with excellent selectivity across the kinome as assessed using the KinomeScan profiling assay (S score (1) = 0.0). In MCF-7 cells, treatment with STK16-IN-1 results in a reduction in cell number and accumulation of binucleated cells, which can be recapitulated by RNAi knockdown of STK16. Co-treatment of STK16-IN-1 with chemotherapeutics such as cisplatin, doxorubicin, colchicine, and paclitaxel results in a slight potentiation of the antiproliferative effects of the chemotherapeutics. STK16-IN-1 provides a useful tool compound for further elucidating the biological functions of STK16. PMID:27082499

  6. Some implications of receptor kinase signaling pathway for development of multitargeted kinase inhibitors.

    PubMed

    Mitrasinovic, Petar M

    2013-03-01

    Epidermal growth factor receptors (EGFRs) belong to the ErbB family of receptor tyrosine kinases (TKs). Based on the role of EGFR signaling pathway in malignant progression of various types of tumors, a growing interest in the use of EGFR-TK inhibitors as probes for molecular imaging of EGFR-overexpressing tumors via positron emission tomography (PET) and single photon emission computed tomography (SPECT) is being notable. On one side, such noninvasive and repetitive monitoring of the activity of EGFR at the kinase level is intended to provide a direct measure of EGFR occupancy and inhibition by EGFR-targeting drugs. On the other side, all oncologic imaging tracers are molecularly targeted radiopharmaceuticals, which are strongly dependent on the tumor biochemistry including increased metabolism, hyperproliferation, angiogenesis, hypoxia, apoptosis, and specific tumor biomarkers (tumor specific antigens and tumor-specific receptors). The present article is an attempt to reconcile these two vital standpoints influencing the choice of appropriate radiolabeled agents for PET and SPECT imaging aimed to support the development of a new generation of multi-targeted kinase inhibitors in the time ahead, because the routine accomplishment of drug selectivity for particular protein kinases is a substantial challenge. PMID:23278847

  7. Growth inhibition by tyrosine kinase inhibitors in mesothelioma cell lines.

    PubMed

    Nutt, Joyce E; O'Toole, Kieran; Gonzalez, David; Lunec, John

    2009-06-01

    Clinical outcome following chemotherapy for malignant pleural mesothelioma is poor and improvements are needed. This preclinical study investigates the effect of five tyrosine kinase inhibitors (PTK787, ZD6474, ZD1839, SU6668 and SU11248) on the growth of three mesothelioma cell lines (NCI H226, NCI H28 and MSTO 211H), the presence of growth factor receptors and inhibition of their downstream signalling pathways. GI50 values were determined: ZD6474 and SU11248, mainly VEGFR2 inhibitors, gave the lowest GI50 across all cell lines (3.5-6.9 microM) whereas ZD1839 gave a GI50 in this range only in H28 cells. All cell lines were positive for EGFR, but only H226 cells were positive for VEGFR2 by Western blotting. ZD6474 and ZD1839 inhibited EGF-induced phosphorylation of EGFR, AKT and ERK, whereas VEGF-induced phosphorylation of VEGFR2 was completely inhibited with 0.1 microM SU11248. VEGFR2 was detected in tumour samples by immunohistochemistry. VEGFR2 tyrosine kinase inhibitors warrant further investigation in mesothelioma. PMID:19318229

  8. Receptor tyrosine kinase inhibitors: Are they real tumor killers?

    PubMed

    Gaumann, Andreas K A; Kiefer, Friedemann; Alfer, Joachim; Lang, Sven A; Geissler, Edward K; Breier, Georg

    2016-02-01

    Inhibiting tumor growth by targeting the tumor vasculature was first proposed by Judah Folkman almost 40 years ago. Since then, different approaches and numerous drugs and agents have been developed to achieve this goal, either with the aim of inhibiting tumor neoangiogenesis or normalizing the tumor vasculature. Among the most promising therapeutic targets are receptor tyrosine kinases (RTKs), some of which are predominantly expressed on tumor endothelial cells, although they are sometimes also present on tumor cells. The majority of RTK inhibitors investigated over the past two decades competes with ATP at the active site of the kinase and therefore block the phosphorylation of intracellular targets. Some of these drugs have been approved for therapy, whereas others are still in clinical trials. Here, we discuss the scientific basis, current status, problems and future prospects of RTK inhibition in anti-tumor therapy. PMID:25716346

  9. Tailoring Tyrosine Kinase Inhibitors to Fit the Lung Cancer Genome

    PubMed Central

    Looyenga, Brendan D; Cherni, Irene; MacKeigan, Jeffrey P; Weiss, Glen J

    2011-01-01

    Tyrosine kinase inhibitors (TKIs) have been in use as cancer therapeutics for nearly a decade, and their utility in targeting specific malignancies with defined genetic lesions has proven to be remarkably effective. Recent efforts to characterize the spectrum of genetic lesions found in non-small cell lung carcinoma (NSCLC) have provided important insights into the molecular basis of this disease and have also revealed a wide array of tyrosine kinases that might be effectively targeted for rationally designed therapies. The findings of these studies, however, also provide a cautionary tale about the limitations of single-agent therapies, which fail to account for the genetic heterogeneity and pathway redundancy that characterize advanced NSCLC. Emergence of drug resistance mechanisms to specific TKIs, such as gefitinib and erlotinib, suggests that more sophisticated chemotherapeutic paradigms that target multiple pathways at the same time will be required to effectively treat this disease. PMID:21461169

  10. A road map to evaluate the proteome-wide selectivity of covalent kinase inhibitors.

    PubMed

    Lanning, Bryan R; Whitby, Landon R; Dix, Melissa M; Douhan, John; Gilbert, Adam M; Hett, Erik C; Johnson, Theodore O; Joslyn, Chris; Kath, John C; Niessen, Sherry; Roberts, Lee R; Schnute, Mark E; Wang, Chu; Hulce, Jonathan J; Wei, Baoxian; Whiteley, Laurence O; Hayward, Matthew M; Cravatt, Benjamin F

    2014-09-01

    Kinases are principal components of signal transduction pathways and the focus of intense basic and drug discovery research. Irreversible inhibitors that covalently modify non-catalytic cysteines in kinase active sites have emerged as valuable probes and approved drugs. Many protein classes, however, have functional cysteines, and therefore understanding the proteome-wide selectivity of covalent kinase inhibitors is imperative. Here, we accomplish this objective using activity-based protein profiling coupled with quantitative MS to globally map the targets, both specific and nonspecific, of covalent kinase inhibitors in human cells. Many of the specific off-targets represent nonkinase proteins that, notably, have conserved active site cysteines. We define windows of selectivity for covalent kinase inhibitors and show that, when these windows are exceeded, rampant proteome-wide reactivity and kinase target-independent cell death conjointly occur. Our findings, taken together, provide an experimental road map to illuminate opportunities and surmount challenges for the development of covalent kinase inhibitors. PMID:25038787

  11. Inhibitors that stabilize a closed RAF kinase domain conformation induce dimerization

    PubMed Central

    Lavoie, Hugo; Thevakumaran, Neroshan; Gavory, Gwenaëlle; Li, John; Padeganeh, Abbas; Guiral, Sébastien; Duchaine, Jean; Mao, Daniel Y. L.; Bouvier, Michel; Sicheri, Frank; Therrien, Marc

    2016-01-01

    RAF kinases play a prominent role in cancer. Their mode of activation is complex, but critically requires dimerization of their kinase domains. Unexpectedly, several ATP-competitive RAF inhibitors were recently found to promote dimerization and transactivation of RAF kinases in a RAS-dependent manner and as a result undesirably stimulate RAS/ERK-mediated cell growth. The mechanism by which these inhibitors induce RAF kinase domain dimerization remains unclear. Here we describe BRET-based biosensors for the extended RAF family enabling the detection of RAF dimerization in living cells. Notably, we demonstrate the utility of these tools for profiling kinase inhibitors that selectively modulate RAF dimerization as well as for probing structural determinants of RAF dimerization in vivo. Our findings, which appear generalizable to other kinase families allosterically regulated by kinase domain dimerization, suggest a model whereby ATP-competitive inhibitors mediate RAF dimerization by stabilizing a rigid closed conformation of the kinase domain. PMID:23685672

  12. Design, synthesis and structure-activity relationships of novel biarylamine-based Met kinase inhibitors

    SciTech Connect

    Williams, David K; Chen, Xiao-Tao; Tarby, Christine; Kaltenbach, Robert; Cai, Zhen-Wei; Tokarski, John S; An, Yongmi; Sack, John S; Wautlet, Barri; Gullo-Brown, Johnni; Henley, Benjamin J; Jeyaseelan, Robert; Kellar, Kristen; Manne, Veeraswamy; Trainor, George L; Lombardo, Louis J; Fargnoli, Joseph; Borzilleri, Robert M

    2010-09-03

    Biarylamine-based inhibitors of Met kinase have been identified. Lead compounds demonstrate nanomolar potency in Met kinase biochemical assays and significant activity in the Met-driven GTL-16 human gastric carcinoma cell line. X-ray crystallography revealed that these compounds adopt a bioactive conformation, in the kinase domain, consistent with that previously seen with 2-pyridone-based Met kinase inhibitors. Compound 9b demonstrated potent in vivo antitumor activity in the GTL-16 human tumor xenograft model.

  13. Discovery of (S)-1-(1-(4-Chloro-3-fluorophenyl)-2-hydroxyethyl)-4-(2-((1-methyl-1H-pyrazol-5-yl)amino)pyrimidin-4-yl)pyridin-2(1H)-one (GDC-0994), an Extracellular Signal-Regulated Kinase 1/2 (ERK1/2) Inhibitor in Early Clinical Development.

    PubMed

    Blake, James F; Burkard, Michael; Chan, Jocelyn; Chen, Huifen; Chou, Kang-Jye; Diaz, Dolores; Dudley, Danette A; Gaudino, John J; Gould, Stephen E; Grina, Jonas; Hunsaker, Thomas; Liu, Lichuan; Martinson, Matthew; Moreno, David; Mueller, Lars; Orr, Christine; Pacheco, Patricia; Qin, Ann; Rasor, Kevin; Ren, Li; Robarge, Kirk; Shahidi-Latham, Sheerin; Stults, Jeffrey; Sullivan, Francis; Wang, Weiru; Yin, Jianping; Zhou, Aihe; Belvin, Marcia; Merchant, Mark; Moffat, John; Schwarz, Jacob B

    2016-06-23

    The extracellular signal-regulated kinases ERK1/2 represent an essential node within the RAS/RAF/MEK/ERK signaling cascade that is commonly activated by oncogenic mutations in BRAF or RAS or by upstream oncogenic signaling. While targeting upstream nodes with RAF and MEK inhibitors has proven effective clinically, resistance frequently develops through reactivation of the pathway. Simultaneous targeting of multiple nodes in the pathway, such as MEK and ERK, offers the prospect of enhanced efficacy as well as reduced potential for acquired resistance. Described herein is the discovery and characterization of GDC-0994 (22), an orally bioavailable small molecule inhibitor selective for ERK kinase activity. PMID:27227380

  14. Glycogen synthase kinase-3 inhibitors: Rescuers of cognitive impairments

    PubMed Central

    King, Margaret K.; Pardo, Marta; Cheng, Yuyan; Downey, Kimberlee; Jope, Richard S.; Beurel, Eléonore

    2013-01-01

    Impairment of cognitive processes is a devastating outcome of many diseases, injuries, and drugs affecting the central nervous system (CNS). Most often, very little can be done by available therapeutic interventions to improve cognitive functions. Here we review evidence that inhibition of glycogen synthase kinase-3 (GSK3) ameliorates cognitive deficits in a wide variety of animal models of CNS diseases, including Alzheimer's disease, Fragile X syndrome, Down syndrome, Parkinson's disease, spinocerebellar ataxia type 1, traumatic brain injury, and others. GSK3 inhibitors also improve cognition following impairments caused by therapeutic interventions, such as cranial irradiation for brain tumors. These findings demonstrate that GSK3 inhibitors are able to ameliorate cognitive impairments caused by a diverse array of diseases, injury, and treatments. The improvements in impaired cognition instilled by administration of GSK3 inhibitors appear to involve a variety of different mechanisms, such as supporting long-term potentiation and diminishing long-term depression, promotion of neurogenesis, reduction of inflammation, and increasing a number of neuroprotective mechanisms. The potential for GSK3 inhibitors to repair cognitive deficits associated with many conditions warrants further investigation of their potential for therapeutic interventions, particularly considering the current dearth of treatments available to reduce loss of cognitive functions. PMID:23916593

  15. Toward the rational design of protein kinase casein kinase-2 inhibitors.

    PubMed

    Sarno, Stefania; Moro, Stefano; Meggio, Flavio; Zagotto, Giuseppe; Dal Ben, Diego; Ghisellini, Paola; Battistutta, Roberto; Zanotti, Giuseppe; Pinna, Lorenzo A

    2002-01-01

    Casein kinase-2 (CK2) probably is the most pleiotropic member of the protein kinase family, with more than 200 substrates known to date. Unlike the great majority of protein kinases, which are tightly regulated enzymes, CK2 is endowed with high constitutive activity, a feature that is suspected to underlie its oncogenic potential and possible implication in viral infections. This makes CK2 an attractive target for anti-neoplastic and antiviral drugs. Here, we present an overview of our present knowledge about CK2 inhibitors, with special reference to the information drawn from two recently solved crystal structures of CK2alpha in complex with emodin and with 4,5,6,7-tetrabromo-2-azabenzimidazole (TBB), this latter being the most specific CK2 inhibitor known to date. A comparison with a series of anthraquinone and xanthenone derivatives highlights the crucial relevance of the hydroxyl group at position 3 for inhibition by emodin, and discloses the possibility of increasing the inhibitory potency by placing an electron withdrawing group at position 5. We also present mutational data corroborating the relevance of two hydrophobic residues unique to CK2, Val66 and Ile174, for the interactions with emodin and TBB, but not with the flavonoid inhibitors quercetin and fisetin. In particular, the CK2alpha mutant V66A displays 27- and 11-fold higher IC(50) values with emodin and TBB, respectively, as compared with the wild-type, while the IC(50) value with quercetin is unchanged. The data presented pave the road toward the rational design of more potent and selective inhibitors of CK2 and the generation of CK2 mutants refractory to inhibition, useful to probe the implication of CK2 in specific cellular functions. PMID:12191608

  16. Development of covalent inhibitors that can overcome resistance to first-generation FGFR kinase inhibitors.

    PubMed

    Tan, Li; Wang, Jun; Tanizaki, Junko; Huang, Zhifeng; Aref, Amir R; Rusan, Maria; Zhu, Su-Jie; Zhang, Yiyun; Ercan, Dalia; Liao, Rachel G; Capelletti, Marzia; Zhou, Wenjun; Hur, Wooyoung; Kim, NamDoo; Sim, Taebo; Gaudet, Suzanne; Barbie, David A; Yeh, Jing-Ruey Joanna; Yun, Cai-Hong; Hammerman, Peter S; Mohammadi, Moosa; Jänne, Pasi A; Gray, Nathanael S

    2014-11-11

    The human FGF receptors (FGFRs) play critical roles in various human cancers, and several FGFR inhibitors are currently under clinical investigation. Resistance usually results from selection for mutant kinases that are impervious to the action of the drug or from up-regulation of compensatory signaling pathways. Preclinical studies have demonstrated that resistance to FGFR inhibitors can be acquired through mutations in the FGFR gatekeeper residue, as clinically observed for FGFR4 in embryonal rhabdomyosarcoma and neuroendocrine breast carcinomas. Here we report on the use of a structure-based drug design to develop two selective, next-generation covalent FGFR inhibitors, the FGFR irreversible inhibitors 2 (FIIN-2) and 3 (FIIN-3). To our knowledge, FIIN-2 and FIIN-3 are the first inhibitors that can potently inhibit the proliferation of cells dependent upon the gatekeeper mutants of FGFR1 or FGFR2, which confer resistance to first-generation clinical FGFR inhibitors such as NVP-BGJ398 and AZD4547. Because of the conformational flexibility of the reactive acrylamide substituent, FIIN-3 has the unprecedented ability to inhibit both the EGF receptor (EGFR) and FGFR covalently by targeting two distinct cysteine residues. We report the cocrystal structure of FGFR4 with FIIN-2, which unexpectedly exhibits a "DFG-out" covalent binding mode. The structural basis for dual FGFR and EGFR targeting by FIIN3 also is illustrated by crystal structures of FIIN-3 bound with FGFR4 V550L and EGFR L858R. These results have important implications for the design of covalent FGFR inhibitors that can overcome clinical resistance and provide the first example, to our knowledge, of a kinase inhibitor that covalently targets cysteines located in different positions within the ATP-binding pocket. PMID:25349422

  17. Development of covalent inhibitors that can overcome resistance to first-generation FGFR kinase inhibitors

    PubMed Central

    Tan, Li; Wang, Jun; Tanizaki, Junko; Huang, Zhifeng; Aref, Amir R.; Rusan, Maria; Zhu, Su-Jie; Zhang, Yiyun; Ercan, Dalia; Liao, Rachel G.; Capelletti, Marzia; Zhou, Wenjun; Hur, Wooyoung; Kim, NamDoo; Sim, Taebo; Gaudet, Suzanne; Barbie, David A.; Yeh, Jing-Ruey Joanna; Yun, Cai-Hong; Hammerman, Peter S.; Mohammadi, Moosa; Jänne, Pasi A.; Gray, Nathanael S.

    2014-01-01

    The human FGF receptors (FGFRs) play critical roles in various human cancers, and several FGFR inhibitors are currently under clinical investigation. Resistance usually results from selection for mutant kinases that are impervious to the action of the drug or from up-regulation of compensatory signaling pathways. Preclinical studies have demonstrated that resistance to FGFR inhibitors can be acquired through mutations in the FGFR gatekeeper residue, as clinically observed for FGFR4 in embryonal rhabdomyosarcoma and neuroendocrine breast carcinomas. Here we report on the use of a structure-based drug design to develop two selective, next-generation covalent FGFR inhibitors, the FGFR irreversible inhibitors 2 (FIIN-2) and 3 (FIIN-3). To our knowledge, FIIN-2 and FIIN-3 are the first inhibitors that can potently inhibit the proliferation of cells dependent upon the gatekeeper mutants of FGFR1 or FGFR2, which confer resistance to first-generation clinical FGFR inhibitors such as NVP-BGJ398 and AZD4547. Because of the conformational flexibility of the reactive acrylamide substituent, FIIN-3 has the unprecedented ability to inhibit both the EGF receptor (EGFR) and FGFR covalently by targeting two distinct cysteine residues. We report the cocrystal structure of FGFR4 with FIIN-2, which unexpectedly exhibits a “DFG-out” covalent binding mode. The structural basis for dual FGFR and EGFR targeting by FIIN3 also is illustrated by crystal structures of FIIN-3 bound with FGFR4 V550L and EGFR L858R. These results have important implications for the design of covalent FGFR inhibitors that can overcome clinical resistance and provide the first example, to our knowledge, of a kinase inhibitor that covalently targets cysteines located in different positions within the ATP-binding pocket. PMID:25349422

  18. Combined effects of EGFR tyrosine kinase inhibitors and vATPase inhibitors in NSCLC cells

    SciTech Connect

    Jin, Hyeon-Ok; Hong, Sung-Eun; Kim, Chang Soon; Park, Jin-Ah; Kim, Jin-Hee; Kim, Ji-Young; Kim, Bora; Chang, Yoon Hwan; Hong, Seok-Il; Hong, Young Jun; Park, In-Chul; Lee, Jin Kyung

    2015-08-15

    Despite excellent initial clinical responses of non-small cell lung cancer (NSCLC) patients to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), many patients eventually develop resistance. According to a recent report, vacuolar H + ATPase (vATPase) is overexpressed and is associated with chemotherapy drug resistance in NSCLC. We investigated the combined effects of EGFR TKIs and vATPase inhibitors and their underlying mechanisms in the regulation of NSCLC cell death. We found that combined treatment with EGFR TKIs (erlotinib, gefitinib, or lapatinib) and vATPase inhibitors (bafilomycin A1 or concanamycin A) enhanced synergistic cell death compared to treatments with each drug alone. Treatment with bafilomycin A1 or concanamycin A led to the induction of Bnip3 expression in an Hif-1α dependent manner. Knock-down of Hif-1α or Bnip3 by siRNA further enhanced cell death induced by bafilomycin A1, suggesting that Hif-1α/Bnip3 induction promoted resistance to cell death induced by the vATPase inhibitors. EGFR TKIs suppressed Hif-1α and Bnip3 expression induced by the vATPase inhibitors, suggesting that they enhanced the sensitivity of the cells to these inhibitors by decreasing Hif-1α/Bnip3 expression. Taken together, we conclude that EGFR TKIs enhance the sensitivity of NSCLC cells to vATPase inhibitors by decreasing Hif-1α/Bnip3 expression. We suggest that combined treatment with EGFR TKIs and vATPase inhibitors is potentially effective for the treatment of NSCLC. - Highlights: • Co-treatment with EGFR TKIs and vATPase inhibitors induces synergistic cell death • EGFR TKIs enhance cell sensitivity to vATPase inhibitors via Hif-1α downregulation • Co-treatment of these inhibitors is potentially effective for the treatment of NSCLC.

  19. Neuroprotective profile of novel SRC kinase inhibitors in rodent models of cerebral ischemia.

    PubMed

    Liang, Shi; Pong, Kevin; Gonzales, Cathleen; Chen, Yi; Ling, Huai-Ping; Mark, Robert J; Boschelli, Frank; Boschelli, Diane H; Ye, Fei; Barrios Sosa, Ana Carolina; Mansour, Tarek S; Frost, Philip; Wood, Andrew; Pangalos, Menelas N; Zaleska, Margaret M

    2009-12-01

    Src kinase signaling has been implicated in multiple mechanisms of ischemic injury, including vascular endothelial growth factor (VEGF)-mediated vascular permeability that leads to vasogenic edema, a major clinical complication in stroke and brain trauma. Here we report the effects of two novel Src kinase inhibitors, 4-[(2,4-dichloro-5-methoxyphenyl)amino]-6-methoxy-7-[3-(4-methyl-1-piperazinyl)propoxy]-3-quinolinecarbonitrile (SKI-606) and 4-[(2,4-dichloro-5-methoxyphenyl)amino]-6-methoxy-7-[4-(4-methypiperazin-1-yl)but-1-ynyl]-3-quinolinecarbonitrile (SKS-927), on ischemia-induced brain infarction and short- and long-term neurological deficits. Two well established transient [transient middle cerebral artery occlusion (tMCAO)] and permanent [permanent middle cerebral artery occlusion (pMCAO)] focal ischemia models in the rat were used with drug treatments initiated up to 6 h after onset of stroke to mimic the clinical scenario. Brain penetration of Src inhibitors, their effect on blood-brain barrier integrity and VEGF signaling in human endothelial cells were also evaluated. Our results demonstrate that both agents potently block VEGF-mediated signaling in human endothelial cells, penetrate rat brain upon systemic administration, and inhibit postischemic Src activation and vascular leakage. Treatment with SKI-606 or SKS-927 (at the doses of 3-30 mg/kg i.v.) resulted in a dose-dependent reduction in infarct volume and robust protection from neurological impairments even when the therapy was initiated up to 4- to 6-h after tMCAO. Src blockade after pMCAO resulted in accelerated improvement in recovery from motor, sensory, and reflex deficits during a long-term (3 weeks) testing period poststroke. These data demonstrate that the novel Src kinase inhibitors provide effective treatment against ischemic conditions within a clinically relevant therapeutic window and may constitute a viable therapy for acute stroke. PMID:19741150

  20. Tyrosine kinase inhibitors: New class of antimalarials on the horizon?

    PubMed

    Pathak, Vrushali; Colah, Roshan; Ghosh, Kanjaksha

    2015-08-01

    Development of the antimalarial drug resistant strains has currently become a major public health challenge. There is an urgent need to develop new antimalarial drugs. Tyrosine kinase inhibitors (TKIs) are receiving increasing attention as anticancer therapy. It has revolutionarised the management of CML to say the least. TKIs are also increasingly being implicated in complicated but vital life cycle of malaria parasite. Hence we tested two commonly used but different classes of TKIs (imatinib and sorafenib) in-vitro for their antimalarial activity and possible synergistic activity with existing antimalarial drug. Antimalarial activity was tested with the help of modified WHO microtest technique in-vitro for five different Plasmodium falciparum laboratory strains (3D7, Dd2, 7G8, MRC2, PKL9). Imatinib and sorafenib showed a promising antimalarial activity with all the strains. These compounds caused dose dependent inhibition of parasite maturation. The isobologram analysis of the interactions of these TKIs with standard antimalarial drug, artesunate revealed distinct patterns of synergism, additivity and antagonism at different ratios. Imatinib showed worthwhile synergism with artesunate indicating imatinib and other tyrosine kinase inhibitors may have significant antimalarial activity and can be used in combination therapy. PMID:26142327

  1. Crystal structure of inhibitor of ;#954;B kinase [beta

    SciTech Connect

    Xu, Guozhou; Lo, Yu-Chih; Li, Qiubai; Napolitano, Gennaro; Wu, Xuefeng; Jiang, Xuliang; Dreano, Michel; Karin, Michael; Wu, Hao

    2011-07-26

    Inhibitor of {kappa}B (I{kappa}B) kinase (IKK) phosphorylates I{kappa}B proteins, leading to their degradation and the liberation of nuclear factor {kappa}B for gene transcription. Here we report the crystal structure of IKK{beta} in complex with an inhibitor, at a resolution of 3.6 {angstrom}. The structure reveals a trimodular architecture comprising the kinase domain, a ubiquitin-like domain (ULD) and an elongated, {alpha}-helical scaffold/dimerization domain (SDD). Unexpectedly, the predicted leucine zipper and helix-loop-helix motifs do not form these structures but are part of the SDD. The ULD and SDD mediate a critical interaction with I{kappa}B{alpha} that restricts substrate specificity, and the ULD is also required for catalytic activity. The SDD mediates IKK{beta} dimerization, but dimerization per se is not important for maintaining IKK{beta} activity and instead is required for IKK{beta} activation. Other IKK family members, IKK{alpha}, TBK1 and IKK-i, may have a similar trimodular architecture and function.

  2. Identification of Novel Small Molecule Inhibitors of Oncogenic RET Kinase

    PubMed Central

    Moccia, Marialuisa; Liu, Qingsong; Guida, Teresa; Federico, Giorgia; Brescia, Annalisa; Zhao, Zheng; Choi, Hwan Geun; Deng, Xianming; Tan, Li; Wang, Jinhua; Billaud, Marc; Gray, Nathanael S.

    2015-01-01

    Oncogenic mutation of the RET receptor tyrosine kinase is observed in several human malignancies. Here, we describe three novel type II RET tyrosine kinase inhibitors (TKI), ALW-II-41-27, XMD15-44 and HG-6-63-01, that inhibit the cellular activity of oncogenic RET mutants at two digit nanomolar concentration. These three compounds shared a 3-trifluoromethyl-4-methylpiperazinephenyl pharmacophore that stabilizes the ‘DFG-out’ inactive conformation of RET activation loop. They blocked RET-mediated signaling and proliferation with an IC50 in the nM range in fibroblasts transformed by the RET/C634R and RET/M918T oncogenes. They also inhibited autophosphorylation of several additional oncogenic RET-derived point mutants and chimeric oncogenes. At a concentration of 10 nM, ALW-II-41-27, XMD15-44 and HG-6-63-01 inhibited RET kinase and signaling in human thyroid cancer cell lines carrying oncogenic RET alleles; they also inhibited proliferation of cancer, but not non-tumoral Nthy-ori-3-1, thyroid cells, with an IC50 in the nM range. The three compounds were capable of inhibiting the ‘gatekeeper’ V804M mutant which confers substantial resistance to established RET inhibitors. In conclusion, we have identified a type II TKI scaffold, shared by ALW-II-41-27, XMD15-44 and HG-6-63-01, that may be used as novel lead for the development of novel agents for the treatment of cancers harboring oncogenic activation of RET. PMID:26046350

  3. An evaluation of indirubin analogues as phosphorylase kinase inhibitors.

    PubMed

    Begum, Jaida; Skamnaki, Vassiliki T; Moffatt, Colin; Bischler, Nicolas; Sarrou, Josephine; Skaltsounis, Alexios-Leandros; Leonidas, Demetres D; Oikonomakos, Nikos G; Hayes, Joseph M

    2015-09-01

    Phosphorylase kinase (PhK) has been linked with a number of conditions such as glycogen storage diseases, psoriasis, type 2 diabetes and more recently, cancer (Camus et al., 2012 [6]). However, with few reported structural studies on PhK inhibitors, this hinders a structure based drug design approach. In this study, the inhibitory potential of 38 indirubin analogues have been investigated. 11 of these ligands had IC50 values in the range 0.170-0.360μM, with indirubin-3'-acetoxime (1c) the most potent. 7-Bromoindirubin-3'-oxime (13b), an antitumor compound which induces caspase-independent cell-death (Ribas et al., 2006 [20]) is revealed as a specific inhibitor of PhK (IC50=1.8μM). Binding assay experiments performed using both PhK-holo and PhK-γtrnc confirmed the inhibitory effects to arise from binding at the kinase domain (γ subunit). High level computations using QM/MM-PBSA binding free energy calculations were in good agreement with experimental binding data, as determined using statistical analysis, and support binding at the ATP-binding site. The value of a QM description for the binding of halogenated ligands exhibiting σ-hole effects is highlighted. A new statistical metric, the 'sum of the modified logarithm of ranks' (SMLR), has been defined which measures performance of a model for both the "early recognition" (ranking earlier/higher) of active compounds and their relative ordering by potency. Through a detailed structure activity relationship analysis considering other kinases (CDK2, CDK5 and GSK-3α/β), 6'(Z) and 7(L) indirubin substitutions have been identified to achieve selective PhK inhibition. The key PhK binding site residues involved can also be targeted using other ligand scaffolds in future work. PMID:26364215

  4. Identification of Aminoimidazole and Aminothiazole Derivatives as Src Family Kinase Inhibitors.

    PubMed

    Francini, Cinzia Maria; Fallacara, Anna Lucia; Artusi, Roberto; Mennuni, Laura; Calgani, Alessia; Angelucci, Adriano; Schenone, Silvia; Botta, Maurizio

    2015-12-01

    Src family kinases (SFKs) are a family of non-receptor tyrosine kinases (TKs) implicated in the regulation of many cellular processes. The aberrant activity of these TKs has been associated with the growth and progression of cancer. In particular, c-Src is overexpressed or hyperactivated in a variety of solid tumors and is most likely a strong promoting factor for the development of metastasis. Herein, the synthesis of new 4-aminoimidazole and 2-aminothiazole derivatives and their in vitro biological evaluation are described for their potential use as SFK inhibitors. Initially, 2-aminothiazole analogues of dasatinib and 4-aminoimidazole derivatives were synthesized and tested against the SFKs Src, Fyn, Lyn, and Yes. Five hits were identified as the most promising compounds, with Ki values in the range of 90-480 nm. A combination of molecular docking, homology modeling, and molecular dynamics were then used to investigate the possible binding mode of such compounds within the ATP binding site of the SFKs. Finally, the antiproliferative activities of the best candidates were evaluated against SH-SY5Y and K562 cell lines. Compound 3 b [2-(4-{2-methyl-6-[(5-phenylthiazol-2-yl)amino]pyrimidin-4-yl}piperazin-1-yl)ethanol] was found to be the most active inhibitor. PMID:26514807

  5. HPLC-DAD protein kinase inhibitor analysis in human serum.

    PubMed

    Dziadosz, Marek; Lessig, Rüdiger; Bartels, Heidemarie

    2012-04-15

    We here describe an HPLC-DAD method to analyse different protein kinase inhibitors. Potential applications of this method are pharmacokinetic studies and therapeutic drug monitoring. Optimised chromatography conditions resulted in a very good separation of seven inhibitors (vatalanib, bosutinib, canertinib, tandutinib, pazopanib, dasatinib - internal standard and erlotinib). The good sensitivity makes this method competitive with LC/MS/MS. The separation was performed with a Lichrospher 100-5 RP8, 250 mm × 4 mm column maintained at 30 ± 1 °C, and with a mobile phase of 0.05 M H(3)PO(4)/KH(2)PO(4) (pH=2.3)-acetonitrile (7:3, v/v) at a flow rate of 0.7 mL/min. A simple and fast sample preparation sequence with liquid-liquid extraction led to good recoveries (73-90%) of all analytes. The recovery hardly reached 50% only for pazopanib. This method can also be used for targeted protein kinase inhibitor quantification. A perfect linearity in the validated range (20-10,000 ng/mL) and an LOQ of 20 ng/mL were achieved. The relative standard deviations and accuracies of all examined drug concentrations gave values much lower than 15% both for between- and within-batch calculations. All analysed PKIs were stable for 6 months in a 1mg/mL dimethyl sulfoxide stock solution. Vatalanib, bosutinib and erlotinib were also stable in human serum in the whole examined concentration range. PMID:22425385

  6. Protein kinase inhibitors in the treatment of inflammatory and autoimmune diseases

    PubMed Central

    Patterson, H; Nibbs, R; McInnes, I; Siebert, S

    2014-01-01

    Protein kinases mediate protein phosphorylation, which is a fundamental component of cell signalling, with crucial roles in most signal transduction cascades: from controlling cell growth and proliferation to the initiation and regulation of immunological responses. Aberrant kinase activity is implicated in an increasing number of diseases, with more than 400 human diseases now linked either directly or indirectly to protein kinases. Protein kinases are therefore regarded as highly important drug targets, and are the subject of intensive research activity. The success of small molecule kinase inhibitors in the treatment of cancer, coupled with a greater understanding of inflammatory signalling cascades, has led to kinase inhibitors taking centre stage in the pursuit for new anti-inflammatory agents for the treatment of immune-mediated diseases. Herein we discuss the main classes of kinase inhibitors; namely Janus kinase (JAK), mitogen-activated protein kinase (MAPK) and spleen tyrosine kinase (Syk) inhibitors. We provide a mechanistic insight into how these inhibitors interfere with kinase signalling pathways and discuss the clinical successes and failures in the implementation of kinase-directed therapeutics in the context of inflammatory and autoimmune disorders. PMID:24313320

  7. Small-molecule inhibitors of IκB kinase (IKK) and IKK-related kinases.

    PubMed

    Llona-Minguez, Sabin; Baiget, Jessica; Mackay, Simon P

    2013-07-01

    The transcription factors NF-κB and IFN control important signaling cascades and mediate the expression of a number of important pro-inflammatory cytokines, adhesion molecules, growth factors and anti-apoptotic survival proteins. IκB kinase (IKK) and IKK-related kinases (IKKε and TBK1) are key regulators of these biological pathways and, as such, modulators of these enzymes may be useful in the treatment of inflammatory diseases and cancer. We have reviewed the most recent IKK patent literature (2008-2012), added publications of interest overlooked in previous patent reviews and identified all the players involved in small-molecule inhibitors of the IKKs. This will provide the reader with a decisive summary of the IKK arena, a field that has reached maturity over a decade of research. PMID:24237125

  8. A selective sphingosine kinase 1 inhibitor integrates multiple molecular therapeutic targets in human leukemia

    PubMed Central

    Paugh, Steven W.; Paugh, Barbara S.; Rahmani, Mohamed; Kapitonov, Dmitri; Almenara, Jorge A.; Kordula, Tomasz; Milstien, Sheldon; Adams, Jeffrey K.; Zipkin, Robert E.; Grant, Steven

    2008-01-01

    The potent bioactive sphingolipid mediator, sphingosine-1-phosphate (S1P), is produced by 2 sphingosine kinase isoenzymes, SphK1 and SphK2. Expression of SphK1 is up-regulated in cancers, including leukemia, and associated with cancer progression. A screen of sphingosine analogs identified (2R,3S,4E)-N-methyl-5-(4′-pentylphenyl)-2-aminopent-4-ene-1,3-diol, designated SK1-I (BML-258), as a potent, water-soluble, isoenzyme-specific inhibitor of SphK1. In contrast to pan-SphK inhibitors, SK1-I did not inhibit SphK2, PKC, or numerous other protein kinases. SK1-I decreased growth and survival of human leukemia U937 and Jurkat cells, and enhanced apoptosis and cleavage of Bcl-2. Lethality of SK1-I was reversed by caspase inhibitors and by expression of Bcl-2. SK1-I not only decreased S1P levels but concomitantly increased levels of its proapoptotic precursor ceramide. Conversely, S1P protected against SK1-I–induced apoptosis. SK1-I also induced multiple perturbations in activation of signaling and survival-related proteins, including diminished phosphorylation of ERK1/2 and Akt. Expression of constitutively active Akt protected against SK1-I–induced apoptosis. Notably, SK1-I potently induced apoptosis in leukemic blasts isolated from patients with acute myelogenous leukemia but was relatively sparing of normal peripheral blood mononuclear leukocytes. Moreover, SK1-I markedly reduced growth of AML xenograft tumors. Our results suggest that specific inhibitors of SphK1 warrant attention as potential additions to the therapeutic armamentarium in leukemia. PMID:18511810

  9. Cheminfomatic-based Drug Discovery of Human Tyrosine Kinase Inhibitors.

    PubMed

    Reid, Terry-Elinor; Fortunak, Joseph M; Wutoh, Anthony; Simon Wang, Xiang

    2016-01-01

    Receptor Tyrosine Kinases (RTKs) are essential components for regulating cell-cell signaling and communication events in cell growth, proliferation, differentiation, survival and metabolism. Deregulation of RTKs and their associated signaling pathways can lead to a wide variety of human diseases such as immunodeficiency, diabetes, arterosclerosis, psoriasis and cancer. Thus RTKs have become one of the most important drug targets families in recent decade. Pharmaceutical companies have dedicated their research efforts towards the discovery of small-molecule inhibitors of RTKs, many of which had been approved by the U.S. Food and Drug Administration (US FDA) or are currently in clinical trials. The great successes in the development of small-molecule inhibitors of RTKs are largely attributed to the use of modern cheminformatic approaches to identifying lead scaffolds. Those include the quantitative structure-activity relationship (QSAR) modeling, as well as the structure-, and ligand-based pharmacophore modeling techniques in this case. Herein we inspected the literature thoroughly in an effort to conduct a comparative analysis of major findings regarding the essential structure-activity relationships (SARs)/pharmacophore features of known active RTK inhibitors, most of which were collected from cheminformatic modeling approaches. PMID:26369823

  10. Bruton's tyrosine kinase inhibitors in chronic lymphocytic leukemia and lymphoma.

    PubMed

    Varma, Gaurav; Johnson, Tyler P; Advani, Ranjana H

    2016-07-01

    The development of Bruton's tyrosine kinase (BTK) inhibitors and their introduction into clinical practice represent a major advance in the treatment of chronic lymphocytic leukemia (CLL) and other B-cell lymphomas. Although ibrutinib is the only BTK inhibitor that has been approved by the US Food and Drug Administration, several others are under investigation. Ibrutinib is currently approved for use in relapsed/refractory CLL, CLL with 17p deletion (del[17p]), relapsed or refractory mantle cell lymphoma, and Waldenström macroglobulinemia. Although it is clear that ibrutinib has altered treatment paradigms and outcomes in these diseases, several questions remain regarding (1) its role in frontline vs salvage therapy; (2) its use as a single agent vs in combination with biologic agents, other small molecules, or traditional chemoimmunotherapy; (3) the optimal duration of treatment; and (4) the treatment of patients who cannot tolerate or have disease resistant to ibrutinib. Because sparse clinical data are available on other BTK inhibitors, it is unclear at present whether their clinical efficacy and toxicity will differ from those of ibrutinib. PMID:27379948

  11. Identification of “Preferred” Human Kinase Inhibitors for Sleeping Sickness Lead Discovery. Are Some Kinases Better than Others for Inhibitor Repurposing?

    PubMed Central

    2016-01-01

    A kinase-targeting cell-based high-throughput screen (HTS) against Trypanosoma brucei was recently reported, and this screening set included the Published Kinase Inhibitor Set (PKIS). From the PKIS was identified 53 compounds with pEC50 ≥ 6. Utilizing the published data available for the PKIS, a statistical analysis of these active antiparasitic compounds was performed, allowing identification of a set of human kinases having inhibitors that show a high likelihood for blocking T. brucei cellular proliferation in vitro. This observation was confirmed by testing other established inhibitors of these human kinases and by mining past screening campaigns at GlaxoSmithKline. Overall, although the parasite targets of action are not known, inhibitors of this set of human kinases displayed an enhanced hit rate relative to a random kinase-targeting HTS campaign, suggesting that repurposing efforts should focus primarily on inhibitors of these specific human kinases. We therefore term this statistical analysis-driven approach “preferred lead repurposing”. PMID:26998514

  12. The Next Wave of EGFR Tyrosine Kinase Inhibitors Enter the Clinic.

    PubMed

    Politi, Katerina; Ayeni, Deborah; Lynch, Thomas

    2015-06-01

    The T790M mutation in EGFR accounts for approximately half of all lung cancer cases with acquired resistance to the current clinical EGFR tyrosine kinase inhibitors. In tyrosine kinase inhibitor-resistant lung tumors, rociletinib and AZD9291 are highly active when T790M is present and modestly active when T790M is absent. PMID:26058074

  13. Mechanisms of resistance to EGFR tyrosine kinase inhibitors

    PubMed Central

    Huang, Lihua; Fu, Liwu

    2015-01-01

    Since the discovery that non-small cell lung cancer (NSCLC) is driven by epidermal growth factor receptor (EGFR) mutations, the EGFR tyrosine kinase inhibitors (EGFR-TKIs, e.g., gefitinib and elrotinib) have been effectively used for clinical treatment. However, patients eventually develop drug resistance. Resistance to EGFR-TKIs is inevitable due to various mechanisms, such as the secondary mutation (T790M), activation of alternative pathways (c-Met, HGF, AXL), aberrance of the downstream pathways (K-RAS mutations, loss of PTEN), impairment of the EGFR-TKIs-mediated apoptosis pathway (BCL2-like 11/BIM deletion polymorphism), histologic transformation, ATP binding cassette (ABC) transporter effusion, etc. Here we review and summarize the known resistant mechanisms to EGFR-TKIs and provide potential targets for development of new therapeutic strategies. PMID:26579470

  14. Combined effects of EGFR tyrosine kinase inhibitors and vATPase inhibitors in NSCLC cells.

    PubMed

    Jin, Hyeon-Ok; Hong, Sung-Eun; Kim, Chang Soon; Park, Jin-Ah; Kim, Jin-Hee; Kim, Ji-Young; Kim, Bora; Chang, Yoon Hwan; Hong, Seok-Il; Hong, Young Jun; Park, In-Chul; Lee, Jin Kyung

    2015-08-15

    Despite excellent initial clinical responses of non-small cell lung cancer (NSCLC) patients to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), many patients eventually develop resistance. According to a recent report, vacuolar H+ ATPase (vATPase) is overexpressed and is associated with chemotherapy drug resistance in NSCLC. We investigated the combined effects of EGFR TKIs and vATPase inhibitors and their underlying mechanisms in the regulation of NSCLC cell death. We found that combined treatment with EGFR TKIs (erlotinib, gefitinib, or lapatinib) and vATPase inhibitors (bafilomycin A1 or concanamycin A) enhanced synergistic cell death compared to treatments with each drug alone. Treatment with bafilomycin A1 or concanamycin A led to the induction of Bnip3 expression in an Hif-1α dependent manner. Knock-down of Hif-1α or Bnip3 by siRNA further enhanced cell death induced by bafilomycin A1, suggesting that Hif-1α/Bnip3 induction promoted resistance to cell death induced by the vATPase inhibitors. EGFR TKIs suppressed Hif-1α and Bnip3 expression induced by the vATPase inhibitors, suggesting that they enhanced the sensitivity of the cells to these inhibitors by decreasing Hif-1α/Bnip3 expression. Taken together, we conclude that EGFR TKIs enhance the sensitivity of NSCLC cells to vATPase inhibitors by decreasing Hif-1α/Bnip3 expression. We suggest that combined treatment with EGFR TKIs and vATPase inhibitors is potentially effective for the treatment of NSCLC. PMID:25981168

  15. Discovery of a Selective Aurora A Kinase Inhibitor by Virtual Screening.

    PubMed

    Kilchmann, Falco; Marcaida, Maria J; Kotak, Sachin; Schick, Thomas; Boss, Silvan D; Awale, Mahendra; Gönczy, Pierre; Reymond, Jean-Louis

    2016-08-11

    Here we report the discovery of a selective inhibitor of Aurora A, a key regulator of cell division and potential anticancer target. We used the atom category extended ligand overlap score (xLOS), a 3D ligand-based virtual screening method recently developed in our group, to select 437 shape and pharmacophore analogs of reference kinase inhibitors. Biochemical screening uncovered two inhibitor series with scaffolds unprecedented among kinase inhibitors. One of them was successfully optimized by structure-based design to a potent Aurora A inhibitor (IC50 = 2 nM) with very high kinome selectivity for Aurora kinases. This inhibitor locks Aurora A in an inactive conformation and disrupts binding to its activator protein TPX2, which impairs Aurora A localization at the mitotic spindle and induces cell division defects. This phenotype can be rescued by inhibitor-resistant Aurora A mutants. The inhibitor furthermore does not induce Aurora B specific effects in cells. PMID:27391133

  16. Small Molecule Substrate Phosphorylation Site Inhibitors of Protein Kinases: Approaches and Challenges

    PubMed Central

    2015-01-01

    Protein kinases are important mediators of cellular communication and attractive drug targets for many diseases. Although success has been achieved with developing ATP-competitive kinase inhibitors, the disadvantages of ATP-competitive inhibitors have led to increased interest in targeting sites outside of the ATP binding pocket. Kinase inhibitors with substrate-competitive, ATP-noncompetitive binding modes are promising due to the possibility of increased selectivity and better agreement between biochemical and in vitro potency. However, the difficulty of identifying these types of inhibitors has resulted in significantly fewer small molecule substrate phosphorylation site inhibitors being reported compared to ATP-competitive inhibitors. This review surveys reported substrate phosphorylation site inhibitors and methods that can be applied to the discovery of such inhibitors, including a discussion of the challenges inherent to these screening methods. PMID:25494294

  17. Bumped kinase inhibitor prohibits egression in Babesia bovis.

    PubMed

    Pedroni, Monica J; Vidadala, Rama Subba Rao; Choi, Ryan; Keyloun, Katelyn R; Reid, Molly C; Murphy, Ryan C; Barrett, Lynn K; Van Voorhis, Wesley C; Maly, Dustin J; Ojo, Kayode K; Lau, Audrey O T

    2016-01-15

    Babesiosis is a global zoonotic disease acquired by the bite of a Babesia-infected Ixodes tick or through blood transfusion with clinical relevance affecting humans and animals. In this study, we evaluated a series of small molecule compounds that have previously been shown to target specific apicomplexan enzymes in Plasmodium, Toxoplasma and Cryptosporidium. The compounds, bumped kinase inhibitors (BKIs), have strong therapeutic potential targeting apicomplexa-specific calcium dependent protein kinases (CDPKs). We investigated if BKIs also show inhibitory activities against piroplasms such as Babesia. Using a subset of BKIs that have promising inhibitory activities to Plasmodium and Toxoplasma, we determined that their actions ranged from 100% and no inhibition against Babesia bovis blood stages. One specific BKI, RM-1-152, showed complete inhibition against B. bovis within 48h and was the only BKI that showed noticeable phenotypic changes to the parasites. Focusing our study on this BKI, we further demonstrated that RM-1-152 has Babesia-static activity and involves the prohibition of merozoite egress while replication and re-invasion of host cells are unaffected. The distinct, abnormal phenotype induced by RM-1-152 suggests that this BKI can be used to investigate less studied cellular processes such as egression in piroplasm. PMID:26790733

  18. Aurora Kinases and Potential Medical Applications of Aurora Kinase Inhibitors: A Review

    PubMed Central

    Gavriilidis, Paschalis; Giakoustidis, Alexandros; Giakoustidis, Dimitrios

    2015-01-01

    Aurora kinases (AKs) represent a novel group of serine/threonine kinases. They were originally described in 1995 by David Glover in the course of studies of mutant alleles characterized with unusual spindle pole configuration in Drosophila melanogaster. Thus far, three AKs A, B, and C have been discovered in human healthy and neoplastic cells. Each one locates in different subcellular locations and they are all nuclear proteins. AKs are playing an essential role in mitotic events such as monitoring of the mitotic checkpoint, creation of bipolar mitotic spindle and alignment of centrosomes on it, also regulating centrosome separation, bio-orientation of chromosomes and cytokinesis. Any inactivation of them can have catastrophic consequences on mitotic events of spindle formation, alignment of centrosomes and cytokinesis, resulting in apoptosis. Overexpression of AKs has been detected in diverse solid and hematological cancers and has been linked with a dismal prognosis. After discovery and identification of the first aurora kinase inhibitor (AKI) ZM447439 as a potential drug for targeted therapy in cancer treatment, approximately 30 AKIs have been introduced in cancer treatment. PMID:26345296

  19. A mitogen-activated protein kinase kinase inhibitor induced compound skin toxicity with oedema in metastatic malignant melanoma.

    PubMed

    Thomas, C L; Mortimer, P S; Larkin, J M; Basu, T N; Gore, M E; Fearfield, L

    2016-04-01

    We report three cases of skin toxicity associated with oral mitogen-activated protein kinase kinase (MEK) inhibitor treatment for metastatic malignant melanoma (MM). All three patients developed oedema, and a single patient experienced eyelash trichomegaly. This is the first known report of eyelash trichomegaly secondary to MEK inhibitor use. We also discuss possible mechanisms for MEK inhibitor-associated oedema development. This series supports the role of the dermatologist in the screening and management of patients in the rapidly developing oncology setting, as new targeted agents can give rise to marked skin toxicity. PMID:26411345

  20. Can kinomics and proteomics bridge the gap between pediatric cancers and newly designed kinase inhibitors?

    PubMed

    van der Sligte, Naomi E; Kampen, Kim R; de Bont, Eveline S J M

    2015-10-01

    The introduction of kinase inhibitors in cancer medicine has transformed chronic myeloid leukemia from a fatal disease into a leukemia subtype with a favorable prognosis by interfering with the constitutively active kinase BCR-ABL. This success story has resulted in the development of multiple kinase inhibitors. We are currently facing significant limitations in implementing these kinase inhibitors into the clinic for the treatment of pediatric malignancies. As many hallmarks of cancer are known to be regulated by intracellular protein signaling networks, we suggest focusing on these networks to improve the implementation of kinase inhibitors. This viewpoint will provide a short overview of currently used strategies for the implementation of kinase inhibitors as well as reasons why kinase inhibitors have unfortunately not yet been widely used for the treatment of pediatric cancers. We argue that by using a future personalized medicine strategy combining kinomics, proteomics, and drug screen approaches, the gap between pediatric cancers and the use of kinase inhibitors may be bridged. PMID:26321002

  1. Comparative analysis of the human and zebrafish kinomes: focus on the development of kinase inhibitors

    PubMed Central

    Wlodarchak, Nathan; Tariq, Rehan; Striker, Rob

    2016-01-01

    Targeting kinases with semi-selective kinase inhibitors is one of the most successful drug development strategies of the 21st century. Zebrafish have become an increasingly useful model for pharmaceutical development. Water-soluble compounds can be screened for zebrafish phenotypes in a high throughput format against a living vertebrate, and cell-signaling events can be imaged in transparent living fish. Despite zebrafish being a more relevant model than more distantly related systems such as the well-annotated kinome of yeast and drosophila, there is no comparative analysis of the human and zebrafish kinome. Furthermore most approved kinase inhibitors, often called ‘DFG in’ ATP competitive inhibitors, act on conserved active site residues in the kinase. Since the active site residues can be identified by examining the primary sequence, primary sequence identity can be a rough guide as to whether a particular inhibitor will have activity against another kinase. There is a need to evaluate the utility of zebrafish as a drug development model for active site inhibitors of kinases. Here we offer a systematic comparison of the catalytic domains of classical human kinases with the catalytic domains of all annotated zebrafish kinases. We found a high degree of identity between the catalytic domains of most human kinases and their zebrafish homologs, and we ranked 504 human kinase catalytic domains by order of similarity. We found only 23 human kinases with no easily recognizable homologous zebrafish catalytic domain. On the other hand we found 78 zebrafish kinase catalytic domains with no close human counterpart. These ‘additional kinase active sites’ could represent potential mediators of zebrafish toxicity that may not be relevant to human kinase inhibitors. We used two clinically approved human kinase inhibitors, one targeting a highly homologous target and one targeting a lesser homologous target, and we compared the known human kinase target structures with

  2. A chemoproteomic method for identifying cellular targets of covalent kinase inhibitors

    PubMed Central

    Chen, Ying-Chu; Zhang, Chao

    2016-01-01

    Protein kinases are attractive drug targets for numerous human diseases including cancers, diabetes and neurodegeneration. A number of kinase inhibitors that covalently target a cysteine residue in their target kinases have recently entered use in the cancer clinic. Despite the advantages of covalent kinases inhibitors, their inherent reactivity can lead to non-specific binding to other cellular proteins and cause off- target effects in cells. It is thus essential to determine the identity of these off targets in order to fully account for the phenotype and to improve the selectivity and efficacy of covalent inhibitors. Herein we present a detailed protocol for a chemoproteomic method to enrich and identify cellular targets of covalent kinase inhibitors. PMID:27551330

  3. Protein kinase small molecule inhibitors for rheumatoid arthritis: Medicinal chemistry/clinical perspectives

    PubMed Central

    Malemud, Charles J; Blumenthal, David E

    2014-01-01

    Medicinal chemistry strategies have contributed to the development, experimental study of and clinical trials assessment of the first type of protein kinase small molecule inhibitor to target the Janus kinase/Signal Transducers and Activators of Transcription (JAK/STAT) signaling pathway. The orally administered small molecule inhibitor, tofacitinib, is the first drug to target the JAK/STAT pathway for entry into the armamentarium of the medical therapy of rheumatoid arthritis. The introduction of tofacitinib into general rheumatologic practice coupled with increasing understanding that additional cellular signal transduction pathways including the mitogen-activated protein kinase and phosphatidylinositide-3-kinase/Akt/mammalian target of rapamycin pathways as well as spleen tyrosine kinase also contribute to immune-mediated inflammatory in rheumatoid arthritis makes it likely that further development of orally administered protein kinase small molecule inhibitors for rheumatoid arthritis will occur in the near future. PMID:25232525

  4. Benzothiophene inhibitors of MK2. Part 2: Improvements in kinase selectivity and cell potency

    SciTech Connect

    Anderson, David R.; Meyers, Marvin J.; Kurumbail, Ravi G.; Caspers, Nicole; Poda, Gennadiy I.; Long, Scott A.; Pierce, Betsy S.; Mahoney, Matthew W.; Mourey, Robert J.; Parikh, Mihir D.; Pfizer

    2010-10-01

    Optimization of kinase selectivity for a set of benzothiophene MK2 inhibitors provided analogs with potencies of less than 500 nM in a cell based assay. The selectivity of the inhibitors can be rationalized by examination of X-ray crystal structures of inhibitors bound to MK2.

  5. Novel mutant-selective EGFR kinase inhibitors against EGFR T790M

    SciTech Connect

    Zhou, Wenjun; Ercan, Dalia; Chen, Liang; Yun, Cai-Hong; Li, Danan; Capelletti, Marzia; Cortot, Alexis B.; Chirieac, Lucian; Iacob, Roxana E.; Padera, Robert; Engen, John R.; Wong, Kwok-Kin; Eck, Michael J.; Gray, Nathanael S.; Jänne, Pasi A.

    2010-01-12

    The clinical efficacy of epidermal growth factor receptor (EGFR) kinase inhibitors in EGFR-mutant non-small-cell lung cancer (NSCLC) is limited by the development of drug-resistance mutations, including the gatekeeper T790M mutation. Strategies targeting EGFR T790M with irreversible inhibitors have had limited success and are associated with toxicity due to concurrent inhibition of wild-type EGFR. All current EGFR inhibitors possess a structurally related quinazoline-based core scaffold and were identified as ATP-competitive inhibitors of wild-type EGFR. Here we identify a covalent pyrimidine EGFR inhibitor by screening an irreversible kinase inhibitor library specifically against EGFR T790M. These agents are 30- to 100-fold more potent against EGFR T790M, and up to 100-fold less potent against wild-type EGFR, than quinazoline-based EGFR inhibitors in vitro. They are also effective in murine models of lung cancer driven by EGFR T790M. Co-crystallization studies reveal a structural basis for the increased potency and mutant selectivity of these agents. These mutant-selective irreversible EGFR kinase inhibitors may be clinically more effective and better tolerated than quinazoline-based inhibitors. Our findings demonstrate that functional pharmacological screens against clinically important mutant kinases represent a powerful strategy to identify new classes of mutant-selective kinase inhibitors.

  6. Combined HSP90 and kinase inhibitor therapy: Insights from The Cancer Genome Atlas.

    PubMed

    Schwartz, Harvey; Scroggins, Brad; Zuehlke, Abbey; Kijima, Toshiki; Beebe, Kristin; Mishra, Alok; Neckers, Len; Prince, Thomas

    2015-09-01

    The merging of knowledge from genomics, cellular signal transduction and molecular evolution is producing new paradigms of cancer analysis. Protein kinases have long been understood to initiate and promote malignant cell growth and targeting kinases to fight cancer has been a major strategy within the pharmaceutical industry for over two decades. Despite the initial success of kinase inhibitors (KIs), the ability of cancer to evolve resistance and reprogram oncogenic signaling networks has reduced the efficacy of kinase targeting. The molecular chaperone HSP90 physically supports global kinase function while also acting as an evolutionary capacitor. The Cancer Genome Atlas (TCGA) has compiled a trove of data indicating that a large percentage of tumors overexpress or possess mutant kinases that depend on the HSP90 molecular chaperone complex. Moreover, the overexpression or mutation of parallel activators of kinase activity (PAKA) increases the number of components that promote malignancy and indirectly associate with HSP90. Therefore, targeting HSP90 is predicted to complement kinase inhibitors by inhibiting oncogenic reprogramming and cancer evolution. Based on this hypothesis, consideration should be given by both the research and clinical communities towards combining kinase inhibitors and HSP90 inhibitors (H90Ins) in combating cancer. The purpose of this perspective is to reflect on the current understanding of HSP90 and kinase biology as well as promote the exploration of potential synergistic molecular therapy combinations through the utilization of The Cancer Genome Atlas. PMID:26070366

  7. Kinase Pathway Dependence in Primary Human Leukemias Determined by Rapid Inhibitor Screening

    PubMed Central

    Tyner, Jeffrey W.; Yang, Wayne F.; Bankhead, Armand; Fan, Guang; Fletcher, Luke B.; Bryant, Jade; Glover, Jason M.; Chang, Bill H.; Spurgeon, Stephen E.; Fleming, William H.; Kovacsovics, Tibor; Gotlib, Jason R.; Oh, Stephen T.; Deininger, Michael W.; Zwaan, C. Michel; Den Boer, Monique L.; van den Heuvel-Eibrink, Marry M.; O’Hare, Thomas; Druker, Brian J.; Loriaux, Marc M.

    2012-01-01

    Kinases are dysregulated in most cancer but the frequency of specific kinase mutations is low, indicating a complex etiology in kinase dysregulation. Here we report a strategy to rapidly identify functionally important kinase targets, irrespective of the etiology of kinase pathway dysregulation, ultimately enabling a correlation of patient genetic profiles to clinically effective kinase inhibitors. Our methodology assessed the sensitivity of primary leukemia patient samples to a panel of 66 small-molecule kinase inhibitors over 3 days. Screening of 151 leukemia patient samples revealed a wide diversity of drug sensitivities, with 70% of the clinical specimens exhibiting hypersensitivity to one or more drugs. From this data set, we developed an algorithm to predict kinase pathway dependence based on analysis of inhibitor sensitivity patterns. Applying this algorithm correctly identified pathway dependence in proof-of-principle specimens with known oncogenes, including a rare FLT3 mutation outside regions covered by standard molecular diagnostic tests. Interrogation of all 151 patient specimens with this algorithm identified a diversity of gene targets and signaling pathways that could aid prioritization of deep sequencing data sets, permitting a cumulative analysis to understand kinase pathway dependence within leukemia subsets. In a proof-of-principle case, we showed that in vitro drug sensitivity could predict both a clinical response and the development of drug resistance. Taken together, our results suggested that drug target scores derived from a comprehensive kinase inhibitor panel could predict pathway dependence in cancer cells while simultaneously identifying potential therapeutic options. PMID:23087056

  8. Discovery of Bivalent Kinase Inhibitors via Enzyme-Templated Fragment Elaboration

    PubMed Central

    2015-01-01

    We have employed novel fragment-based screening methodology to discover bivalent kinase inhibitors with improved selectivity. Starting from a low molecular weight promiscuous kinase inhibitor, we appended a thiol for subsequent reaction with a library of acrylamide electrophiles. Enzyme-templated screening was performed to identify acrylamides that assemble into bivalent inhibitors of c-Src kinase. Upon identification of acrylamide fragments that improve the binding affinity of our lead thiol, we characterized the resulting bivalent inhibitors and identified a series of kinase inhibitors with improved potency and selectivity compared to the thiol-containing precursor. Provided that protein can be prepared free of endogenous reactive cysteines, our methodology is general and could be applied to nearly any enzyme of interest. PMID:26286460

  9. Inhibition of Growth by Combined Treatment with Inhibitors of Lactate Dehydrogenase and either Phenformin or Inhibitors of 6-Phosphofructo-2-kinase/Fructose-2,6-bisphosphatase 3.

    PubMed

    Lea, Michael A; Guzman, Yolanda; Desbordes, Charles

    2016-04-01

    Enhanced glycolysis in cancer cells presents a target for chemotherapy. Previous studies have indicated that proliferation of cancer cells can be inhibited by treatment with phenformin and with an inhibitor of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB) namely 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO). In the present work, the action of two inhibitors that are effective at lower concentrations than 3PO, namely 1-(3-pyridinyl)-3-(2-quinolinyl)-2-propen-1-one (PQP) and 1-(4-pyridinyl)-3-(2-quinolinyl)-2-propen-1-one (PFK15) were investigated. The inhibitors of lactate dehydrogenase (LDHA) studied in order of half-maximal inhibitory concentrations were methyl 1-hydroxy-6-phenyl-4-(trifluoromethyl)-1H-indole-2-carboxylate (NHI-2) < isosafrole < oxamate. In colonic and bladder cancer cells, additive growth inhibitory effects were seen with the LDHA inhibitors, of which NHI-2 was effective at the lowest concentrations. Growth inhibition was generally greater with PFK15 than with PQP. The increased acidification of the culture medium and glucose uptake caused by phenformin was blocked by combined treatment with PFKFB3 or LDHA inhibitors. The results suggest that combined treatment with phenformin and inhibitors of glycolysis can cause additive inhibition of cell proliferation and may mitigate lactic acidosis caused by phenformin when used as a single agent. PMID:27069123

  10. Protein kinase inhibitors in plants of the myrtaceae, proteaceae, and leguminosae.

    PubMed

    Larkin, M; Brazier, J; Ternai, B; Polya, G M

    1993-12-01

    Methanolic extracts of leaves, flowers, stems, bark, and other parts of representative plants of the Myrtaceae, specifically of the EUCALYPTUS, MELALEUCA, THRYPTOMENA, CALLISTOMEN, ACMENA, AND ANGOPHORA genera, variously contain high levels of inhibitors of plant Ca (2+)-dependent protein kinase (CDPK) and of Ca (2+)-calmodulin-dependent myosin light chain kinase (MLCK). In terms of the protein kinase inhibition unit (PKIU), defined as the amount in the standard protein kinase assays causing 50% inhibition of protein kinase activity, these inhibitor levels ranged from the non-detectable to 179,000 PKIU (gram fresh weight) (-1) [(g FW) (-1)] and there was no consistent pattern of inhibitor distribution. A variety of other plants tested had low or non-detectable levels of CDPK and MLCK inhibitors. Plants of the EUCALYPTUS, MELALEUCA, ANGOPHORA, and GREVILLEA genera contained inhibitors of the catalytic subunit of the cyclic AMP-dependent protein kinase (cAK), inhibitor levels ranging from 20,000 to 9,600,000 PKIU (g FW) (-1). In general, cAK inhibitor levels found in the Myrtaceae were mostly much higher than levels of CDPK and MLCK inhibitors and reversed phase HPLC of such plant extracts revealed a multiplicity of components associated with cAK inhibitory activity. These IN VITRO screening procedures enable rapid detection and quantitation of levels of bioactive plant defence compounds with medicinal potential. PMID:17230363

  11. Discovery, Biological Evaluation and Structure-Activity Relationship of Amidine-Based Sphingosine Kinase Inhibitors

    PubMed Central

    Mathews, Thomas P.; Kennedy, Andrew J.; Kharel, Yugesh; Kennedy, Perry C.; Nicoara, Oana; Sunkara, Manjula; Morris, Andrew J.; Wamhoff, Brian R.; Lynch, Kevin R.; Macdonald, Timothy L.

    2010-01-01

    Sphingosine 1-phosphate (S1P), a potent phospholipid growth and trophic factor, is synthesized in vivo by two sphingosine kinases. Thus these kinases have been proposed as important drug targets for treatment of hyper-proliferative diseases and inflammation. We report here a new class of amidine-based sphingosine analogs that are competitive inhibitors of sphingosine kinases exhibiting varying degrees of enzyme selectivity. These inhibitors display KI values in the submicromolar range for both sphingosine kinases and, in cultured vascular smooth muscle cells, decrease S1P levels and initiate growth arrest. PMID:20205392

  12. Protein kinase c inhibitor attenuates cyanide toxicity in vivo

    SciTech Connect

    Maduh, E.U.; Nealley, E.W.; Song, H.; Wang, P.C.; Baskin, S.I.

    1995-12-31

    We have examined the effect of pretreatment with a potent protein kinase C (PKC) inhibitor, l-(5-isoquinoline sulfonyl)-2-methylpiperazine (H-7), against metabolic alterations induced by sodium cyanide (NaCN), 4.2 mg/kg, in brain of anesthetized male micropigs (6-10 kg). Brain high energy phosphates were analyzed using a 3/P nuclear magnetic resonance (NMR) spectroscopic surface coil in a 4.7 Tesla horizontal bore magnet. H-7, I mg/kg, was given intravenously (i.v.) 30 min before NaCN challenge (H-7 + CN). Prior to NaCN, H-7, or H-7 + CN administration, baseline 31P resonance spectra of 1-min duration were acquired for 5-10 min, and continued for an additional 60 min following i.v. NaCN injection, each animal serving as its own control. Peaks were identified as phosphomonoester (PME), inorganic phosphate (Pi), phosphodiester (PDE), phosphocreatine (PCr) and adenosine triphosphate (ATP), based on their respective chemical shifts. Without H-7 pretreatment, NaCN effects were marked by a rising Pi and a declining PCr peak 2 min after injection, with only 2/5 of the animals surviving the 60 min experiment. Through a pretreatment period of 30 min, H-7 did not affect baseline cell energy profile as reflected by the 31P-NMR spectra, but in its presence, those changes (i.e. diminishing PCr and rising Pi peaks) elicited by NaCN were markedly blunted; 4/5 of the animals in this group survived the NaCN challenge. It is proposed that H-7, a pharmacologic inhibitor of PKC, may be useful in CN antagonism, underscoring the role of PKC in cyanide intoxication.

  13. Structure of Human G Protein-Coupled Receptor Kinase 2 in Complex with the Kinase Inhibitor Balanol

    SciTech Connect

    Tesmer, John J.G.; Tesmer, Valerie M.; Lodowski, David T.; Steinhagen, Henning; Huber, Jochen

    2010-07-19

    G protein-coupled receptor kinase 2 (GRK2) is a pharmaceutical target for the treatment of cardiovascular diseases such as congestive heart failure, myocardial infarction, and hypertension. To better understand how nanomolar inhibition and selectivity for GRK2 might be achieved, we have determined crystal structures of human GRK2 in complex with G{beta}{gamma} in the presence and absence of the AGC kinase inhibitor balanol. The selectivity of balanol among human GRKs is assessed.

  14. Checkpoint kinase inhibitors: SAR and radioprotective properties of a series of 2-arylbenzimidazoles.

    PubMed

    Arienti, Kristen L; Brunmark, Anders; Axe, Frank U; McClure, Kelly; Lee, Alice; Blevitt, Jon; Neff, Danielle K; Huang, Liming; Crawford, Shelby; Pandit, Chennagiri R; Karlsson, Lars; Breitenbucher, J Guy

    2005-03-24

    The discovery of a series of novel, potent, and highly selective inhibitors of the DNA damage control kinase chk2 is disclosed. Here we report the first SAR study around inhibitors of this kinase. High-throughput screening of purified human chk2 led to the identification of a novel series of 2-arylbenzimidazole inhibitors of the kinase. Optimization was facilitated using homology models of chk2 and docking of inhibitors, leading to the highly potent 2-arylbenzimidazole 2h (IC(50) 15 nM). Compound 2h is an ATP-competitive inhibitor of chk2 that dose dependently protects human CD4(+) and CD8(+) T-cells from apoptosis due to ionizing radiation. This work suggests that a selective small molecule inhibitor of chk2 could be a useful adjuvant to radiotherapy, increasing the therapeutic window of such treatment. PMID:15771432

  15. A roadmap to evaluate the proteome-wide selectivity of covalent kinase inhibitors

    PubMed Central

    Dix, Melissa M.; Douhan, John; Gilbert, Adam M.; Hett, Erik C.; Johnson, Theodore O.; Joslyn, Chris; Kath, John C.; Niessen, Sherry; Roberts, Lee R.; Schnute, Mark E.; Wang, Chu; Hulce, Jonathan J.; Wei, Baoxian; Whiteley, Laurence O.; Hayward, Matthew M.; Cravatt, Benjamin F.

    2014-01-01

    Kinases are principal components of signal transduction pathways and the focus of intense basic and drug discovery research. Irreversible inhibitors that covalently modify non-catalytic cysteines in kinase active-sites have emerged as valuable probes and approved drugs. Many protein classes, however, possess functional cysteines and therefore understanding the proteome-wide selectivity of covalent kinase inhibitors is imperative. Here, we accomplish this objective using activity-based protein profiling coupled with quantitative mass spectrometry to globally map the targets, both specific and non-specific, of covalent kinase inhibitors in human cells. Many of the specific off-targets represent non-kinase proteins that, interestingly, possess conserved, active-site cysteines. We define windows of selectivity for covalent kinase inhibitors and show that, when these windows are exceeded, rampant proteome-wide reactivity and kinase target-independent cell death conjointly occur. Our findings, taken together, provide an experimental roadmap to illuminate opportunities and surmount challenges for the development of covalent kinase inhibitors. PMID:25038787

  16. Pim kinases modulate resistance to FLT3 tyrosine kinase inhibitors in FLT3-ITD acute myeloid leukemia

    PubMed Central

    Green, Alexa S.; Maciel, Thiago T.; Hospital, Marie-Anne; Yin, Chae; Mazed, Fetta; Townsend, Elizabeth C.; Pilorge, Sylvain; Lambert, Mireille; Paubelle, Etienne; Jacquel, Arnaud; Zylbersztejn, Florence; Decroocq, Justine; Poulain, Laury; Sujobert, Pierre; Jacque, Nathalie; Adam, Kevin; So, Jason C. C.; Kosmider, Olivier; Auberger, Patrick; Hermine, Olivier; Weinstock, David M.; Lacombe, Catherine; Mayeux, Patrick; Vanasse, Gary J.; Leung, Anskar Y.; Moura, Ivan C.; Bouscary, Didier; Tamburini, Jerome

    2015-01-01

    ABSTRACT Fms-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) is frequently detected in acute myeloid leukemia (AML) patients and is associated with a dismal long-term prognosis. FLT3 tyrosine kinase inhibitors provide short-term disease control, but relapse invariably occurs within months. Pim protein kinases are oncogenic FLT3-ITD targets expressed in AML cells. We show that increased Pim kinase expression is found in relapse samples from AML patients treated with FLT3 inhibitors. Ectopic Pim-2 expression induces resistance to FLT3 inhibition in both FLT3-ITD–induced myeloproliferative neoplasm and AML models in mice. Strikingly, we found that Pim kinases govern FLT3-ITD signaling and that their pharmacological or genetic inhibition restores cell sensitivity to FLT3 inhibitors. Finally, dual inhibition of FLT3 and Pim kinases eradicates FLT3-ITD+ cells including primary AML cells. Concomitant Pim and FLT3 inhibition represents a promising new avenue for AML therapy. PMID:26601252

  17. Have adjuvant tyrosine kinase inhibitors lost their shine?

    PubMed Central

    Sabari, Joshua K.

    2016-01-01

    Despite broad advances in molecularly targeted therapies, lung cancer remains the leading cause of cancer related mortality in the United States. Epidermal growth factor receptor (EGFR) mutations occur in approximately 17% of advanced non-small cell lung cancer (NSCLC) in the US population. The remarkable efficacy of small-molecule EGFR tyrosine kinase inhibitors (TKIs) in this unique subset of patients has revolutionized the therapeutic approach to lung cancer. The success of these agents in the metastatic setting leads to the logical question of what role these drugs may have in the adjuvant setting for patients with earlier stage disease. RADIANT, an international randomized, double-blind, placebo controlled phase III study in patients with completely resected stage IB to IIIA NSLC whose tumors expressed EGFR by IHC and EGFR amplification by FISH, attempted to answer the question of whether erlotinib would improve disease free survival and overall survival in the adjuvant setting. While RADIANT does not conclude for or against adjuvant use of EGFR-TKIs, all data points towards benefit in a selected population. As clinicians, we must continue to enroll to potentially practice changing therapeutic neoadjuvant and adjuvant chemotherapy studies internationally. PMID:27568486

  18. Have adjuvant tyrosine kinase inhibitors lost their shine?

    PubMed

    Sabari, Joshua K; Chaft, Jamie E

    2016-08-01

    Despite broad advances in molecularly targeted therapies, lung cancer remains the leading cause of cancer related mortality in the United States. Epidermal growth factor receptor (EGFR) mutations occur in approximately 17% of advanced non-small cell lung cancer (NSCLC) in the US population. The remarkable efficacy of small-molecule EGFR tyrosine kinase inhibitors (TKIs) in this unique subset of patients has revolutionized the therapeutic approach to lung cancer. The success of these agents in the metastatic setting leads to the logical question of what role these drugs may have in the adjuvant setting for patients with earlier stage disease. RADIANT, an international randomized, double-blind, placebo controlled phase III study in patients with completely resected stage IB to IIIA NSLC whose tumors expressed EGFR by IHC and EGFR amplification by FISH, attempted to answer the question of whether erlotinib would improve disease free survival and overall survival in the adjuvant setting. While RADIANT does not conclude for or against adjuvant use of EGFR-TKIs, all data points towards benefit in a selected population. As clinicians, we must continue to enroll to potentially practice changing therapeutic neoadjuvant and adjuvant chemotherapy studies internationally. PMID:27568486

  19. Identification of inhibitors of checkpoint kinase 1 through template screening.

    PubMed

    Matthews, Thomas P; Klair, Suki; Burns, Samantha; Boxall, Kathy; Cherry, Michael; Fisher, Martin; Westwood, Isaac M; Walton, Michael I; McHardy, Tatiana; Cheung, Kwai-Ming J; Van Montfort, Rob; Williams, David; Aherne, G Wynne; Garrett, Michelle D; Reader, John; Collins, Ian

    2009-08-13

    Checkpoint kinase 1 (CHK1) is an oncology target of significant current interest. Inhibition of CHK1 abrogates DNA damage-induced cell cycle checkpoints and sensitizes p53 deficient cancer cells to genotoxic therapies. Using template screening, a fragment-based approach to small molecule hit generation, we have identified multiple CHK1 inhibitor scaffolds suitable for further optimization. The sequential combination of in silico low molecular weight template selection, a high concentration biochemical assay and hit validation through protein-ligand X-ray crystallography provided 13 template hits from an initial in silico screening library of ca. 15000 compounds. The use of appropriate counter-screening to rule out nonspecific aggregation by test compounds was essential for optimum performance of the high concentration bioassay. One low molecular weight, weakly active purine template hit was progressed by iterative structure-based design to give submicromolar pyrazolopyridines with good ligand efficiency and appropriate CHK1-mediated cellular activity in HT29 colon cancer cells. PMID:19572549

  20. Discovery of Clinical Candidate CEP-37440, a Selective Inhibitor of Focal Adhesion Kinase (FAK) and Anaplastic Lymphoma Kinase (ALK).

    PubMed

    Ott, Gregory R; Cheng, Mangeng; Learn, Keith S; Wagner, Jason; Gingrich, Diane E; Lisko, Joseph G; Curry, Matthew; Mesaros, Eugen F; Ghose, Arup K; Quail, Matthew R; Wan, Weihua; Lu, Lihui; Dobrzanski, Pawel; Albom, Mark S; Angeles, Thelma S; Wells-Knecht, Kevin; Huang, Zeqi; Aimone, Lisa D; Bruckheimer, Elizabeth; Anderson, Nathan; Friedman, Jay; Fernandez, Sandra V; Ator, Mark A; Ruggeri, Bruce A; Dorsey, Bruce D

    2016-08-25

    Analogues structurally related to anaplastic lymphoma kinase (ALK) inhibitor 1 were optimized for metabolic stability. The results from this endeavor not only led to improved metabolic stability, pharmacokinetic parameters, and in vitro activity against clinically derived resistance mutations but also led to the incorporation of activity for focal adhesion kinase (FAK). FAK activation, via amplification and/or overexpression, is characteristic of multiple invasive solid tumors and metastasis. The discovery of the clinical stage, dual FAK/ALK inhibitor 27b, including details surrounding SAR, in vitro/in vivo pharmacology, and pharmacokinetics, is reported herein. PMID:27527804

  1. Discovery of 7-aryl-substituted (1,5-naphthyridin-4-yl)ureas as aurora kinase inhibitors.

    PubMed

    Defaux, Julien; Antoine, Maud; Le Borgne, Marc; Schuster, Tilmann; Seipelt, Irene; Aicher, Babette; Teifel, Michael; Günther, Eckhard; Gerlach, Matthias; Marchand, Pascal

    2014-01-01

    As part of our research projects to identify new chemical entities of biological interest, we developed a synthetic approach and the biological evaluation of (7-aryl-1,5-naphthyridin-4-yl)ureas as a novel class of Aurora kinase inhibitors for the treatment of malignant diseases based on pathological cell proliferation. 1,5-Naphthyridine derivatives showed excellent inhibitory activities toward Aurora kinases A and B, and the most active compound, 1-cyclopropyl-3-[7-(1-methyl-1H-pyrazol-4-yl)-1,5-naphthyridin-4-yl]urea (49), displayed IC₅₀ values of 13 and 107 nM against Aurora kinases A and B, respectively. In addition, the selectivity toward a panel of seven cancer-related protein kinases was highlighted. In vitro ADME properties were also determined in order to rationalize the difficulties in correlating antiproliferative activity with Aurora kinase inhibition. Finally, the good safety profile of these compounds imparts promising potential for their further development as anticancer agents. PMID:24273104

  2. Differential inhibitor sensitivity between human kinases VRK1 and VRK2.

    PubMed

    Vázquez-Cedeira, Marta; Barcia-Sanjurjo, Iria; Sanz-García, Marta; Barcia, Ramiro; Lazo, Pedro A

    2011-01-01

    Human vaccinia-related kinases (VRK1 and VRK2) are atypical active Ser-Thr kinases implicated in control of cell cycle entry, apoptosis and autophagy, and affect signalling by mitogen activated protein kinases (MAPK). The specific structural differences in VRK catalytic sites make them suitable candidates for development of specific inhibitors. In this work we have determined the sensitivity of VRK1 and VRK2 to kinase inhibitors, currently used in biological assays or in preclinical studies, in order to discriminate between the two proteins as well as with respect to the vaccinia virus B1R kinase. Both VRK proteins and vaccinia B1R are poorly inhibited by inhibitors of different types targeting Src, MEK1, B-Raf, JNK, p38, CK1, ATM, CHK1/2 and DNA-PK, and most of them have no effect even at 100 µM. Despite their low sensitivity, some of these inhibitors in the low micromolar range are able to discriminate between VRK1, VRK2 and B1R. VRK1 is more sensitive to staurosporine, RO-31-8220 and TDZD8. VRK2 is more sensitive to roscovitine, RO 31-8220, Cdk1 inhibitor, AZD7762, and IC261. Vaccinia virus B1R is more sensitive to staurosporine, KU55933, and RO 31-8220, but not to IC261. Thus, the three kinases present a different pattern of sensitivity to kinase inhibitors. This differential response to known inhibitors can provide a structural framework for VRK1 or VRK2 specific inhibitors with low or no cross-inhibition. The development of highly specific VRK1 inhibitors might be of potential clinical use in those cancers where these kinases identify a clinical subtype with a poorer prognosis, as is the case of VRK1 in breast cancer. PMID:21829721

  3. The DNA methylation inhibitor 5-azacytidine decreases melanin synthesis by inhibiting CREB phosphorylation.

    PubMed

    Shin, Jun Seob; Jeong, Hyo-Soon; Kim, Myo-Kyoung; Yun, Hye-Young; Baek, Kwang Jin; Kwon, Nyoun Soo; Kim, Dong-Seok

    2015-10-01

    Here we examined the effects of a DNA methylation inhibitor, 5-azacytidine, on melanogenesis in Mel-Ab cells. We found that 5-azacytidine decreased the melanin content and tyrosinase activity in these cells in a dose-dependent manner; importantly, 5-azacytidine was not cytotoxic at the concentrations used in these experiments. On the other hand, 5-azacytidine did not affect tyrosinase activity in a cell-free system, indicating that 5-azacytidine is not a direct tyrosinase inhibitor. Instead, 5-azacytidine decreased the protein levels of microphthalmia-associated transcription factor (MITF) and tyrosinase. Thus, we investigated the effects of 5-azacytidine on signal transduction pathways related to melanogenesis. However, 5-azacytidine did not have any effect on either Akt or glycogen synthase kinase 3β (GSK3β) phosphorylation. The phosphorylation of cAMP response element-binding protein (CREB) is well known to regulate MITF expression, thereby also regulating tyrosinase expression. We found that 5-azacytidine decreased the phosphorylation of CREB. Therefore, we propose that 5-azacytidine may decrease melanin synthesis by downregulating MITF and tyrosinase via CREB inactivation. PMID:26601420

  4. The human protein kinase HIPK2 phosphorylates and downregulates the methyl-binding transcription factor ZBTB4.

    PubMed

    Yamada, D; Pérez-Torrado, R; Filion, G; Caly, M; Jammart, B; Devignot, V; Sasai, N; Ravassard, P; Mallet, J; Sastre-Garau, X; Schmitz, M L; Defossez, P-A

    2009-07-01

    HIPK2 is a eukaryotic Serine-Threonine kinase that controls cellular proliferation and survival in response to exogenous signals. Here, we show that the human transcription factor ZBTB4 is a new target of HIPK2. The two proteins interact in vitro, colocalize and associate in vivo, and HIPK2 phosphorylates several conserved residues of ZBTB4. Overexpressing HIPK2 causes the degradation of ZBTB4, whereas overexpressing a kinase-deficient mutant of HIPK2 has no effect. The chemical activation of HIPK2 also decreases the amount of ZBTB4 in cells. Conversely, the inhibition of HIPK2 by drugs or by RNA interference causes a large increase in ZBTB4 levels. This negative regulation of ZBTB4 by HIPK2 occurs under normal conditions of cell growth. In addition, the degradation is increased by DNA damage. These findings have two consequences. First, we have recently shown that ZBTB4 inhibits the transcription of p21. Therefore, the activation of p21 by HIPK2 is two-pronged: stimulation of the activator p53, and simultaneous repression of the inhibitor ZBTB4. Second, ZBTB4 is also known to bind methylated DNA and repress methylated sequences. Consequently, our findings raise the possibility that HIPK2 might influence the epigenetic regulation of gene expression at loci that remain to be identified. PMID:19448668

  5. Chromatin structure is required to block transcription of the methylated herpes simplex virus thymidine kinase gene

    SciTech Connect

    Buschhausen, G.; Wittig, B.; Graessmann, M.; Graessmann, A.

    1987-03-01

    Inhibition of herpes simplex virus (HSV) thymidine kinase (TK) gene transcription (pHSV-106, pML-BPV-TK4) by DNA methylation is an indirect effect, which occurs with a latency period of approx. 8 hr microinjection of the DNA into TK/sup -/ rat 2 and mouse LTK/sup -/ cells. The authors have strong evidence that chromatin formation is critical for the transition of the injected DNA from methylation insensitivity to methylation sensitivity. Chromatin was reconstituted in vitro by using methylated and mock-methylated HSV TK DNA and purified chicken histone octamers. After microinjection, the methylated chromatin was always biologically inactive, as tested by autoradiography of the cells after incubation with (/sup 3/H)thymidine and by RNA dot blot analysis. However, in transformed cell lines, reactivation of the methylated chromatic occurred after treatment with 5-azacytidine. Furthermore, integration of the TK chromatin into the host genome is not required to block expression of the methylated TK gene. Mouse cells that contained the pML-BPV-TK4 chromatin permanently in an episomal state also did not support TK gene expression as long as the TK DNA remained methylated.

  6. Benzobisthiazoles Represent a Novel Scaffold for Kinase Inhibitors of CLK Family Members

    PubMed Central

    2015-01-01

    Protein kinases are essential regulators of most cellular processes and are involved in the etiology and progression of multiple diseases. The cdc2-like kinases (CLKs) have been linked to various neurodegenerative disorders, metabolic regulation, and virus infection, and the kinases have been recognized as potential drug targets. Here, we have developed a screening workflow for the identification of potent CLK2 inhibitors and identified compounds with a novel chemical scaffold structure, the benzobisthiazoles, that has not been previously reported for kinase inhibitors. We propose models for binding of these compounds to CLK family proteins and key residues in CLK2 that are important for the compound interactions and the kinase activity. We identified structural elements within the benzobisthiazole that determine CLK2 and CLK3 inhibition, thus providing a rationale for selectivity assays. In summary, our results will inform structure-based design of CLK family inhibitors based on the novel benzobisthiazole scaffold. PMID:26701387

  7. A unified approach to the important protein kinase inhibitor balanol and a proposed analogue

    PubMed Central

    Saha, Tapan; Maitra, Ratnava

    2013-01-01

    Summary A common approach to the important protein kinase inhibitor (−)-balanol and an azepine-ring-modified balanol derivative has been developed using an efficient fragment coupling protocol which proceeded in good overall yield. PMID:24454570

  8. A Novel, Broad-Spectrum Inhibitor of Enterovirus Replication That Targets Host Cell Factor Phosphatidylinositol 4-Kinase IIIβ

    PubMed Central

    van der Schaar, Hilde M.; Leyssen, Pieter; Thibaut, Hendrik J.; de Palma, Armando; van der Linden, Lonneke; Lanke, Kjerstin H. W.; Lacroix, Céline; Verbeken, Erik; Conrath, Katja; MacLeod, Angus M.; Mitchell, Dale R.; Palmer, Nicholas J.; van de Poël, Hervé; Andrews, Martin

    2013-01-01

    Despite their high clinical and socioeconomic impacts, there is currently no approved antiviral therapy for the prophylaxis or treatment of enterovirus infections. Here we report on a novel inhibitor of enterovirus replication, compound 1, 2-fluoro-4-(2-methyl-8-(3-(methylsulfonyl)benzylamino)imidazo[1,2-a]pyrazin-3-yl)phenol. This compound exhibited a broad spectrum of antiviral activity, as it inhibited all tested species of enteroviruses and rhinoviruses, with 50% effective concentrations ranging between 4 and 71 nM. After a lengthy resistance selection process, coxsackievirus mutants resistant to compound 1 were isolated that carried substitutions in their 3A protein. Remarkably, the same substitutions were recently shown to provide resistance to inhibitors of phosphatidylinositol 4-kinase IIIβ (PI4KIIIβ), a lipid kinase that is essential for enterovirus replication, suggesting that compound 1 may also target this host factor. Accordingly, compound 1 directly inhibited PI4KIIIβ in an in vitro kinase activity assay. Furthermore, the compound strongly reduced the PI 4-phosphate levels of the Golgi complex in cells. Rescue of coxsackievirus replication in the presence of compound 1 by a mutant PI4KIIIβ carrying a substitution in its ATP-binding pocket revealed that the compound directly binds the kinase at this site. Finally, we determined that an analogue of compound 1, 3-(3-fluoro-4-methoxyphenyl)-2-methyl-N-(pyridin-4-ylmethyl)imidazo[1,2-a]pyrazin-8-amine, is well tolerated in mice and has a dose-dependent protective activity in a coxsackievirus serotype B4-induced pancreatitis model. PMID:23896472

  9. Identification of 4-(2-(4-Amino-1,2,5-oxadiazol-3-yl)-1-ethyl-7-{[(3S)-3-piperidinylmethyl]oxy}-1H-imidazo[4,5-c]pyridin-4-yl)-2-methyl-3-butyn-2-ol (GSK690693), a Novel Inhibitor of AKT Kinase

    SciTech Connect

    Heerding, Dirk A.; Rhodes, Nelson; Leber, Jack D.; Clark, Tammy J.; Keenan, Richard M.; Lafrance, Louis V.; Li, Mei; Safonov, Igor G.; Takata, Dennis T.; Venslavsky, Joseph W.; Yamashita, Dennis S.; Choudhry, Anthony E.; Copeland, Robert A.; Lai, Zhihong; Schaber, Michael D.; Tummino, Peter J.; Strum, Susan L.; Wood, Edgar R.; Duckett, Derek R.; Eberwein, Derek; Knick, Victoria B.; Lansing, Timothy J.; McConnell, Randy T.; Zhang, ShuYun; Minthorn, Elisabeth A.; Concha, Nestor O.; Warren, Gregory L.; Kumar, Rakesh

    2009-07-22

    Overexpression of AKT has an antiapoptotic effect in many cell types, and expression of dominant negative AKT blocks the ability of a variety of growth factors to promote survival. Therefore, inhibitors of AKT kinase activity might be useful as monotherapy for the treatment of tumors with activated AKT. Herein, we describe our lead optimization studies culminating in the discovery of compound 3g (GSK690693). Compound 3g is a novel ATP competitive, pan-AKT kinase inhibitor with IC{sub 50} values of 2, 13, and 9 nM against AKT1, 2, and 3, respectively. An X-ray cocrystal structure was solved with 3g and the kinase domain of AKT2, confirming that 3g bound in the ATP binding pocket. Compound 3g potently inhibits intracellular AKT activity as measured by the inhibition of the phosphorylation levels of GSK3{beta}. Intraperitoneal administration of 3g in immunocompromised mice results in the inhibition of GSK3{beta} phosphorylation and tumor growth in human breast carcinoma (BT474) xenografts.

  10. General Ser/Thr Kinases Pharmacophore Approach for Selective Kinase Inhibitors Search as Exemplified by Design of Potent and Selective Aurora A Inhibitors.

    PubMed

    Vasilevich, Natalya I; Aksenova, Elena A; Kazyulkin, Denis N; Afanasyev, Ilya I

    2016-07-01

    A general pharmachophore model for various types of Ser/Thr kinases was developed. Search for the molecules fitting to this pharmacophore among ASINEX proprietary library revealed a number of compounds, which were tested and appeared to possess some activity against several Ser/Thr kinases such as Aurora A, Aurora B and Haspin. The possibility of performing the fine-tuning of the general Ser/Thr pharmacophore to desired types of kinase to get active and selective inhibitors was exemplified by Aurora A kinase. As a result, several hits in 3-5 nm range of activity against Aurora A kinase with rather good selectivity and ADME properties were obtained. PMID:26825399

  11. An inhibitor of Janus kinase 2 prevents polycythemia in mice.

    PubMed

    Mathur, Anjili; Mo, Jan-Rung; Kraus, Manfred; O'Hare, Erin; Sinclair, Peter; Young, Jonathan; Zhao, Shuxia; Wang, Yuxun; Kopinja, Johnny; Qu, Xianlu; Reilly, John; Walker, Deborah; Xu, Lin; Aleksandrowicz, Daniel; Marshall, Gary; Scott, Martin L; Kohl, Nancy E; Bachman, Eric

    2009-08-15

    Polycythemia vera (PV) is a myeloproliferative disorder characterized by increased red cell mass and splenomegaly in the absence of secondary causes [Tefferi A., Spivak J.L., Polycythemia vera: scientific advances and current practice. Semin Hematol 2005;42(4):206-20.]. Recently, several laboratories have discovered that the vast majority of patients with PV carry a single, activating mutation (V617F) in the pseudokinase domain of Janus kinase 2 (Jak2) [Zhao R, Xing S, Li Z, Fu X, Li Q, Krantz SB, et al., Identification of an acquired JAK2 mutation in polycythemia vera. J Biol Chem 2005;280(24):22788-92; James C, Ugo V, Le Couédic JP, Staerk J, Delhommeau F, Lacout C, et al., A unique clonal JAK2 mutation leading to constitutive signalling causes polycythemia vera. Nature 2005;434(7037):1144-8; Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR, et al., A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 2005;352(17):1779-90; Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ, et al., Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005;7(4):387-97.]. This discovery has spurred interest in developing therapies for PV via inhibition of Jak2. We induced polycythemia in mice by administering high dose recombinant erythropoietin (Epo) and determined that administration recapitulates almost all of the major and minor diagnostic features of human PV. We then tested a selective, small molecule inhibitor of Jak2 (Jak2i) and showed that this treatment prevents polycythemia. This prevention of polycythemia was accompanied by lower hematocrits, reduced spleen sizes and reductions in Stat5 phosphorylation (pStat5). Surprisingly, Epo rapidly (<1h) induces mobilization of activated erythroid precursors into the blood, thus allowing drug-response relationships to guide discovery. We conclude that inhibition of Jak2

  12. Discovery of orally active pyrrolopyridine- and aminopyridine-based Met kinase inhibitors

    SciTech Connect

    Cai, Zhen-Wei; Wei, Donna; Schroeder, Gretchen M.; Cornelius, Lyndon A.M.; Kim, Kyoung; Chen, Xiao-Tao; Schmidt, Robert J.; Williams, David K.; Tokarski, John S.; An, Yongmi; Sack, John S.; Manne, Veeraswamy; Kamath, Amrita; Zhang, Yueping; Marathe, Punit; Hunt, John T.; Lombardo, Louis J.; Fargnoli, Joseph; Borzilleri, Robert M.

    2008-09-10

    A series of acylurea analogs derived from pyrrolopyridine and aminopyridine scaffolds were identified as potent inhibitors of Met kinase activity. The SAR at various positions of the two kinase scaffolds was investigated. These studies led to the discovery of compounds 3b and 20b, which demonstrated favorable pharmacokinetic properties in mice and significant antitumor activity in a human gastric carcinoma xenograft model.

  13. Novel Anthraquinone-based Derivatives as Potent Inhibitors for Receptor Tyrosine Kinases

    PubMed Central

    Stasevych, M.; Zvarych, V.; Lunin, V.; Halenova, T.; Savchuk, O.; Dudchak, O.; Vovk, M.; Novikov, V.

    2015-01-01

    The influence of new derivatives of 9,10-anthraquinone with benzoylthiourea, thiazole, triazole and amino acid fragments on the activity of membrane-associated tyrosine kinases was investigated. Inhibitors of protein tyrosine kinase activity of the membrane fraction, as promising agents to search for new potential anticancer agents among the studied compounds, were discovered. PMID:26798182

  14. MAP KINASE ERK 1/2 INHIBITORS INDUCE DYSMORPHOLOGY IN MOUSE WHOLE EMBRYO CULTURE

    EPA Science Inventory

    ROSEN, M.B. and E. S. HUNTER. Reproductive Toxicology Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, North Carolina. MAP kinase Erk1/2 inhibitors induce dysmorphology in mouse whole embryo culture.

    MAP Kinase signal transduction is associated with a variety ...

  15. Hypothermia-induced hyperphosphorylation: a new model to study tau kinase inhibitors

    PubMed Central

    Bretteville, Alexis; Marcouiller, François; Julien, Carl; El Khoury, Noura B.; Petry, Franck R.; Poitras, Isabelle; Mouginot, Didier; Lévesque, Georges; Hébert, Sébastien S.; Planel, Emmanuel

    2012-01-01

    Tau hyperphosphorylation is one hallmark of Alzheimer's disease (AD) pathology. Pharmaceutical companies have thus developed kinase inhibitors aiming to reduce tau hyperphosphorylation. One obstacle in screening for tau kinase inhibitors is the low phosphorylation levels of AD-related phospho-epitopes in normal adult mice and cultured cells. We have shown that hypothermia induces tau hyperphosphorylation in vitro and in vivo. Here, we hypothesized that hypothermia could be used to assess tau kinase inhibitors efficacy. Hypothermia applied to models of biological gradual complexity such as neuronal-like cells, ex vivo brain slices and adult non-transgenic mice leads to tau hyperphosphorylation at multiple AD-related phospho-epitopes. We show that Glycogen Synthase Kinase-3 inhibitors LiCl and AR-A014418, as well as roscovitine, a cyclin-dependent kinase 5 inhibitor, decrease hypothermia-induced tau hyperphosphorylation, leading to different tau phosphorylation profiles. Therefore, we propose hypothermia-induced hyperphosphorylation as a reliable, fast, convenient and inexpensive tool to screen for tau kinase inhibitors. PMID:22761989

  16. Discovery of Novel 3-Quinoline Carboxamides as Potent, Selective, and Orally Bioavailable Inhibitors of Ataxia Telangiectasia Mutated (ATM) Kinase.

    PubMed

    Degorce, Sébastien L; Barlaam, Bernard; Cadogan, Elaine; Dishington, Allan; Ducray, Richard; Glossop, Steven C; Hassall, Lorraine A; Lach, Franck; Lau, Alan; McGuire, Thomas M; Nowak, Thorsten; Ouvry, Gilles; Pike, Kurt G; Thomason, Andrew G

    2016-07-14

    A novel series of 3-quinoline carboxamides has been discovered and optimized as selective inhibitors of the ataxia telangiectasia mutated (ATM) kinase. From a modestly potent HTS hit (4), we identified molecules such as 6-[6-(methoxymethyl)-3-pyridinyl]-4-{[(1R)-1-(tetrahydro-2H-pyran-4-yl)ethyl]amino}-3-quinolinecarboxamide (72) and 7-fluoro-6-[6-(methoxymethyl)pyridin-3-yl]-4-{[(1S)-1-(1-methyl-1H-pyrazol-3-yl)ethyl]amino}quinoline-3-carboxamide (74) as potent and highly selective ATM inhibitors with overall ADME properties suitable for oral administration. 72 and 74 constitute excellent oral tools to probe ATM inhibition in vivo. Efficacy in combination with the DSB-inducing agent irinotecan was observed in a disease relevant model. PMID:27259031

  17. Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors

    PubMed Central

    Wilson, Timothy R.; Fridlyand, Jane; Yan, Yibing; Penuel, Elicia; Burton, Luciana; Chan, Emily; Peng, Jing; Lin, Eva; Wang, Yulei; Sosman, Jeff; Ribas, Antoni; Li, Jiang; Moffat, John; Sutherlin, Daniel P.; Koeppen, Hartmut; Merchant, Mark; Neve, Richard; Settleman, Jeff

    2013-01-01

    Mutationally activated kinases define a clinically validated class of targets for cancer drug therapy1. However, the efficacy of kinase inhibitors in patients whose tumours harbour such alleles is invariably limited by innate or acquired drug resistance2,3. The identification of resistance mechanisms has revealed a recurrent theme—the engagement of survival signals redundant to those transduced by the targeted kinase4. Cancer cells typically express multiple receptor tyrosine kinases (RTKs) that mediate signals that converge on common critical downstream cell-survival effectors—most notably, phosphatidylinositol-3-OH kinase (PI(3)K) and mitogen-activated protein kinase (MAPK)5. Consequently, an increase in RTK-ligand levels, through autocrine tumour-cell production, paracrine contribution from tumour stroma6 or systemic production, could confer resistance to inhibitors of an oncogenic kinase with a similar signalling output. Here, using a panel of kinase-‘addicted’ human cancer cell lines, we found that most cells can be rescued from drug sensitivity by simply exposing them to one or more RTK ligands. Among the findings with clinical implications was the observation that hepatocyte growth factor (HGF) confers resistance to the BRAF inhibitor PLX4032 (vemurafenib) in BRAF-mutant melanoma cells. These observations highlight the extensive redundancy of RTK-transduced signalling in cancer cells and the potentially broad role of widely expressed RTK ligands in innate and acquired resistance to drugs targeting oncogenic kinases. PMID:22763448

  18. Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors.

    PubMed

    Wilson, Timothy R; Fridlyand, Jane; Yan, Yibing; Penuel, Elicia; Burton, Luciana; Chan, Emily; Peng, Jing; Lin, Eva; Wang, Yulei; Sosman, Jeff; Ribas, Antoni; Li, Jiang; Moffat, John; Sutherlin, Daniel P; Koeppen, Hartmut; Merchant, Mark; Neve, Richard; Settleman, Jeff

    2012-07-26

    Mutationally activated kinases define a clinically validated class of targets for cancer drug therapy. However, the efficacy of kinase inhibitors in patients whose tumours harbour such alleles is invariably limited by innate or acquired drug resistance. The identification of resistance mechanisms has revealed a recurrent theme—the engagement of survival signals redundant to those transduced by the targeted kinase. Cancer cells typically express multiple receptor tyrosine kinases (RTKs) that mediate signals that converge on common critical downstream cell-survival effectors—most notably, phosphatidylinositol-3-OH kinase (PI(3)K) and mitogen-activated protein kinase (MAPK). Consequently, an increase in RTK-ligand levels, through autocrine tumour-cell production, paracrine contribution from tumour stroma or systemic production, could confer resistance to inhibitors of an oncogenic kinase with a similar signalling output. Here, using a panel of kinase-'addicted' human cancer cell lines, we found that most cells can be rescued from drug sensitivity by simply exposing them to one or more RTK ligands. Among the findings with clinical implications was the observation that hepatocyte growth factor (HGF) confers resistance to the BRAF inhibitor PLX4032 (vemurafenib) in BRAF-mutant melanoma cells. These observations highlight the extensive redundancy of RTK-transduced signalling in cancer cells and the potentially broad role of widely expressed RTK ligands in innate and acquired resistance to drugs targeting oncogenic kinases. PMID:22763448

  19. A review of a novel, Bruton's tyrosine kinase inhibitor, ibrutinib.

    PubMed

    Lee, Chung-Shien; Rattu, Mohammad A; Kim, Sara S

    2016-02-01

    Ibrutinib, a Bruton's kinase inhibitor, was granted an accelerated approval by the US Food and Drug Administration in November, 2013, for the treatment of relapsed or refractory mantle cell lymphoma and subsequently for the treatment of relapsed refractory chronic lymphocytic leukemia in February, 2014. In the pivotal phase 2 study of 111 patients with relapsed or refractory mantle cell lymphoma, the overall response rate in patients who received ibrutinib 560 mg daily was 68%. The median progression-free survival was 13.9 months, and the overall survival was 58% at 18 months. In a recently published phase 3 trial (RESONATE) that compared ibrutinib and ofatumumab for the treatment of relapsed and refractory chronic lymphocytic leukemia or small lymphocytic lymphoma, ibrutinib at the daily dosage of 420 mg demonstrated a significantly higher overall response rate (43% in ibrutinib vs. 4% in ofatumumab) and a significantly improved overall survival at 12 months (90% ibrutinib vs. 81% ofatumumab). Similar clinical benefits were shown regardless of del (17 p). Ibrutinib was well tolerated, and dose-limiting toxicity was not observed. Ibrutinib has shown durable remission, improved progression-free survival and overall survival, and favorable safety profile in indolent B-cell lymphoid malignancies. Ibrutinib, as a monotherapy, is an effective treatment modality as a salvage therapy for treatment of mantle cell lymphoma and chronic lymphocytic leukemia / small lymphocytic lymphoma, particularly in older patients (age ≥70 years) who are not a candidate for intensive chemotherapy and/or those with del (17 p). In patients with chronic lymphocytic leukemia and del (17 p), the current practice guideline recommends ibrutinib as an upfront treatment option. Current on-going trials will further define its role as upfront therapy and/or as a combination therapy in indolent B-cell lymphoid malignancies. PMID:25425007

  20. Virtual screening of selective multitarget kinase inhibitors by combinatorial support vector machines.

    PubMed

    Ma, X H; Wang, R; Tan, C Y; Jiang, Y Y; Lu, T; Rao, H B; Li, X Y; Go, M L; Low, B C; Chen, Y Z

    2010-10-01

    Multitarget agents have been increasingly explored for enhancing efficacy and reducing countertarget activities and toxicities. Efficient virtual screening (VS) tools for searching selective multitarget agents are desired. Combinatorial support vector machines (C-SVM) were tested as VS tools for searching dual-inhibitors of 11 combinations of 9 anticancer kinase targets (EGFR, VEGFR, PDGFR, Src, FGFR, Lck, CDK1, CDK2, GSK3). C-SVM trained on 233-1,316 non-dual-inhibitors correctly identified 26.8%-57.3% (majority >36%) of the 56-230 intra-kinase-group dual-inhibitors (equivalent to the 50-70% yields of two independent individual target VS tools), and 12.2% of the 41 inter-kinase-group dual-inhibitors. C-SVM were fairly selective in misidentifying as dual-inhibitors 3.7%-48.1% (majority <20%) of the 233-1,316 non-dual-inhibitors of the same kinase pairs and 0.98%-4.77% of the 3,971-5,180 inhibitors of other kinases. C-SVM produced low false-hit rates in misidentifying as dual-inhibitors 1,746-4,817 (0.013%-0.036%) of the 13.56 M PubChem compounds, 12-175 (0.007%-0.104%) of the 168 K MDDR compounds, and 0-84 (0.0%-2.9%) of the 19,495-38,483 MDDR compounds similar to the known dual-inhibitors. C-SVM was compared to other VS methods Surflex-Dock, DOCK Blaster, kNN and PNN against the same sets of kinase inhibitors and the full set or subset of the 1.02 M Zinc clean-leads data set. C-SVM produced comparable dual-inhibitor yields, slightly better false-hit rates for kinase inhibitors, and significantly lower false-hit rates for the Zinc clean-leads data set. Combinatorial SVM showed promising potential for searching selective multitarget agents against intra-kinase-group kinases without explicit knowledge of multitarget agents. PMID:20712327

  1. Discovery of 3-(2,6-dichloro-3,5-dimethoxy-phenyl)-1-{6-[4-(4-ethyl-piperazin-1-yl)-phenylamino]-pyrimidin-4-yl}-1-methyl-urea (NVP-BGJ398), a potent and selective inhibitor of the fibroblast growth factor receptor family of receptor tyrosine kinase.

    PubMed

    Guagnano, Vito; Furet, Pascal; Spanka, Carsten; Bordas, Vincent; Le Douget, Mickaël; Stamm, Christelle; Brueggen, Josef; Jensen, Michael R; Schnell, Christian; Schmid, Herbert; Wartmann, Markus; Berghausen, Joerg; Drueckes, Peter; Zimmerlin, Alfred; Bussiere, Dirksen; Murray, Jeremy; Graus Porta, Diana

    2011-10-27

    A novel series of N-aryl-N'-pyrimidin-4-yl ureas has been optimized to afford potent and selective inhibitors of the fibroblast growth factor receptor tyrosine kinases 1, 2, and 3 by rationally designing the substitution pattern of the aryl ring. On the basis of its in vitro profile, compound 1h (NVP-BGJ398) was selected for in vivo evaluation and showed significant antitumor activity in RT112 bladder cancer xenografts models overexpressing wild-type FGFR3. These results support the potential therapeutic use of 1h as a new anticancer agent. PMID:21936542

  2. A Dual Non-ATP Analogue Inhibitor of Aurora Kinases A and B, Derived from Resorcinol with a Mixed Mode of Inhibition.

    PubMed

    Karthigeyan, Dhanasekaran; Surabhi, Sudhevan; Mizar, Pushpak; Soumik, Siddhanta; Banerjee, Amrita; Sinha, Sarmistha Halder; Dasgupta, Dipak; Narayana, Chandrabhas; Kundu, Tapas K

    2016-06-01

    Aurora kinases are the most commonly targeted mitotic kinases in the intervention of cancer progression. Here, we report a resorcinol derivative, 5-methyl-4-(2-thiazolylazo) resorcinol (PTK66), a dual inhibitor of Aurora A and Aurora B kinases. PTK66 is a surface binding non-ATP analogue inhibitor that shows a mixed pattern of inhibition against both of Aurora A and B kinases. The in vitro IC50 is approximately 47 and 40 μm for Aurora A and Aurora B kinases, respectively. In cellular systems, PTK66 exhibits a substantially low cytotoxicity at micromolar concentrations but it can induce aneuploidy under similar dosages as a consequence of Aurora kinase inhibition. This result was corroborated by a drop in the histone H3 (S10) phosphorylation level detected via Western blot analysis using three different cell types. Altogether, our findings indicate that the ligand containing resorcinol backbone is one of the novel scaffolds targeting the Aurora family of kinases, which could be a target for antineoplastic drug development. PMID:26808391

  3. Design, Synthesis, and Structure-Activity Relationships of Pyridine-Based Rho Kinase (ROCK) Inhibitors.

    PubMed

    Green, Jeremy; Cao, Jingrong; Bandarage, Upul K; Gao, Huai; Court, John; Marhefka, Craig; Jacobs, Marc; Taslimi, Paul; Newsome, David; Nakayama, Tomoko; Shah, Sundeep; Rodems, Steve

    2015-06-25

    The Rho kinases (ROCK1 and ROCK2) are highly homologous serine/threonine kinases that act on substrates associated with cellular motility, morphology, and contraction and are of therapeutic interest in diseases associated with cellular migration and contraction, such as hypertension, glaucoma, and erectile dysfunction. Beginning with compound 4, an inhibitor of ROCK1 identified through high-throughput screening, systematic exploration of SAR, and application of structure-based design, led to potent and selective ROCK inhibitors. Compound 37 represents significant improvements in inhibition potency, kinase selectivity, and CYP inhibition and possesses pharmacokinetics suitable for in vivo experimentation. PMID:26039570

  4. Bivalent Inhibitors of c-Src Tyrosine Kinase That Bind a Regulatory Domain.

    PubMed

    Johnson, Taylor K; Soellner, Matthew B

    2016-07-20

    We have developed a general methodology to produce bivalent kinase inhibitors for c-Src that interact with the SH2 and ATP binding pockets. Our approach led to a highly selective bivalent inhibitor of c-Src. We demonstrate impressive selectivity for c-Src over homologous kinases. Exploration of the unexpected high level of selectivity yielded insight into the inherent flexibility of homologous kinases. Finally, we demonstrate that our methodology is modular and both the ATP-competitive fragment and conjugation chemistry can be swapped. PMID:27266260

  5. Exploiting the repertoire of CK2 inhibitors to target DYRK and PIM kinases.

    PubMed

    Cozza, Giorgio; Sarno, Stefania; Ruzzene, Maria; Girardi, Cristina; Orzeszko, Andrzej; Kazimierczuk, Zygmunt; Zagotto, Giuseppe; Bonaiuto, Emanuela; Di Paolo, Maria Luisa; Pinna, Lorenzo A

    2013-07-01

    Advantage has been taken of the relative promiscuity of commonly used inhibitors of protein kinase CK2 to develop compounds that can be exploited for the selective inhibition of druggable kinases other than CK2 itself. Here we summarize data obtained by altering the scaffold of CK2 inhibitors to give rise to novel selective inhibitors of DYRK1A and to a powerful cell permeable dual inhibitor of PIM1 and CK2. In the former case one of the new compounds, C624 (naphto [1,2-b]benzofuran-5,9-diol) displays a potency comparable to that of the first-in-class DYRK1A inhibitor, harmine, lacking however the drawback of drastically inhibiting monoamine oxidase-A (MAO-A) as harmine does. On the other hand the promiscuous CK2 inhibitor 4,5,6,7-tetrabromo-1H-benzimidazole (TBI,TBBz) has been derivatized with a sugar moiety to generate a 1-(β-D-2'-deoxyribofuranosyl)-4,5,6,7-tetrabromo-1H-benzimidazole (TDB) compound which inhibits PIM1 and CK2 with comparably high efficacy (IC50 values<100nM) and remarkable selectivity. TDB, unlike other dual PIM1/CK2 inhibitors described in the literature is readily cell permeable and displays a cytotoxic effect on cancer cells consistent with concomitant inhibition of both its onco-kinase targets. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012). PMID:23360763

  6. Ruxolitinib: An Oral Janus Kinase 1 and Janus Kinase 2 Inhibitor in the Management of Myelofibrosis

    PubMed Central

    Verstovsek, Srdan

    2016-01-01

    Myelofibrosis (MF), polycythemia vera (PV), and essential thrombocythemia (ET) are referred to as the classic Philadelphia chromosome (BCR-ABL1)-negative myeloproliferative neoplasms. Although each has distinct pathologic features, all 3 display alterations in Janus kinase (JAK) signal transduction activator of transcription signaling. Myelofibrosis is the most serious of the 3, associated with shortened survival (median survival, 5–7 years); bone marrow failure with anemia; progressive splenomegaly; and chronic, burdensome symptoms, including fatigue, night sweats, itching, abdominal discomfort, loss of appetite/early satiety, unintentional weight loss, and bone, chest, and abdominal pain. Treatments for MF have been mainly palliative, with the exception of allogeneic stem cell transplantation, which, although potentially curative, is feasible only in a small subpopulation of patients. In November 2011, ruxolitinib, an inhibitor of JAK1 and JAK2, was approved by the US Food and Drug Administration for the treatment of intermediate- or high-risk MF, including primary MF, post-PV MF, and post-ET MF. In clinical trials, ruxolitinib was shown to reduce spleen volume and improve MF-related symptoms and quality-of-life measures. Evidence also suggests that ruxolitinib therapy has a survival advantage over placebo and best available therapy. Thrombocytopenia and anemia were the most common adverse events with treatment. Ongoing trials are assessing the efficacy and safety of ruxolitinib therapy in patients with PV and ET. PMID:23391678

  7. Investigation of potential glycogen synthase kinase 3 inhibitors using pharmacophore mapping and virtual screening.

    PubMed

    Dessalew, Nigus; Bharatam, Prasad V

    2006-09-01

    Glycogen synthase kinase-3 is a serine/threonine kinase that has attracted significant drug discovery attention in recent years. To investigate the identification of new potential glycogen synthase kinase-3 inhibitors, a pharmacophore mapping study was carried out using a set of 21 structurally diverse glycogen synthase kinase-3 inhibitors. A hypothesis containing four features: two hydrophobic, one hydrogen bond donor and another hydrogen bond acceptor was found to be the best from the 10 common feature hypotheses produced by HipHop module of Catalyst. The best hypothesis has a high cost of 156.592 and higher best fit values were obtained for the 21 inhibitors using this best hypothesis than the other HipHop hypotheses. The best hypothesis was then used to screen electronically the NCI2000 database. The hits obtained were docked into glycogen synthase kinase-3beta active site. A total of five novel potential leads were proposed after: (i) visual examination of how well they dock into the glycogen synthase kinase-3beta-binding site, (ii) comparative analysis of their FlexX, G-Score, PMF-Score, ChemScore and D-Scores values, (iii) comparison of their best fit value with the known inhibitors and (iv) examination of the how the hits retain interactions with the important amino acid residues of glycogen synthase kinase-3beta-binding site. PMID:17062013

  8. Structural basis for induced-fit binding of Rho-kinase to the inhibitor Y-27632.

    PubMed

    Yamaguchi, Hiroto; Miwa, Yukiko; Kasa, Miyuki; Kitano, Ken; Amano, Mutsuki; Kaibuchi, Kozo; Hakoshima, Toshio

    2006-09-01

    Rho-kinase is a main player in the regulation of cytoskeletal events and a promising drug target in the treatment of both vascular and neurological disorders. Here we report the crystal structure of the Rho-kinase catalytic domain in complex with the specific inhibitor Y-27632. Comparison with the structure of PKA bound to this inhibitor revealed a potential induced-fit binding mode that can be accommodated by the phosphate binding loop. This binding mode resembles to that observed in the Rho-kinase-fasudil complex. A structural database search indicated that a pocket underneath the phosphate-binding loop is present that favors binding to a small aromatic ring. Introduction of such a ring group might spawn a new modification scheme of pre-existing protein kinase inhibitors for improved binding capability. PMID:16891330

  9. A novel anticancer diarylurea derivative HL-40 as a multi-kinases inhibitor with good pharmacokinetics in Wistar rats.

    PubMed

    Lu, Yu-Yin; Zhao, Cui-Rong; Wang, Rui-Qi; Li, Wen-Bao; Qu, Xian-Jun

    2015-02-01

    HL-40, N-(4-(1-(4-chlorine indazole)) phenyl)-N-(4-chloro-3-three fluorine methyl phenyl) urea, is a novel diarylurea derivative. In this study, we investigated the kinases activities and binding constants, pharmacokinetics of HL-40, and then evaluated its anticancer efficacy by both in vitro and in vivo methods. Enzyme activities assays in vitro were employed to identify eight candidate kinase targets. The competition binding assays against eight candidate kinases suggested that HL-40 showed strong affinity to c-Kit, PDGFRβ and FLT3. The pharmacokinetic studies in Wistar rats showed that HL-40 could maintain high compound concentration and long residence time in the blood circulation. HL-40 possessed strong inhibition activities against 12 human cancer cells. Meanwhile, HL-40 effectively delayed the growth of cancer xenografts without significant toxicity to mice. Based on these in vitro and in vivo results, we suggested that HL-40 might be developed as a potential multi-kinases inhibitor for cancer treatment. PMID:25661367

  10. The lack of target specificity of small molecule anticancer kinase inhibitors is correlated with their ability to damage myocytes in vitro

    SciTech Connect

    Hasinoff, Brian B. Patel, Daywin

    2010-12-01

    Many new targeted small molecule anticancer kinase inhibitors are actively being developed. However, the clinical use of some kinase inhibitors has been shown to result in cardiotoxicity. In most cases the mechanisms by which they exert their cardiotoxicity are not well understood. We have used large scale profiling data on 8 FDA-approved tyrosine kinase inhibitors and 10 other kinase inhibitors to a panel of 317 kinases in order to correlate binding constants and kinase inhibitor binding selectivity scores with kinase inhibitor-induced damage to neonatal rat cardiac myocytes. The 18 kinase inhibitors that were the subject of this study were: canertinib, dasatinib, dovitinib, erlotinib, flavopiridol, gefitinib, imatinib, lapatinib, midostaurin, motesanib, pazopanib, sorafenib, staurosporine, sunitinib, tandutinib, tozasertib, vandetanib and vatalanib. The combined tyrosine kinase and serine-threonine kinase selectivity scores were highly correlated with the myocyte-damaging effects of the kinase inhibitors. This result suggests that myocyte damage was due to a lack of target selectivity to binding of both tyrosine kinases and serine-threonine kinases, and was not due to binding to either group specifically. Finally, the strength of kinase inhibitor binding for 290 kinases was examined for correlations with myocyte damage. Kinase inhibitor binding was significantly correlated with myocyte damage for 12 kinases. Thus, myocyte damage may be multifactorial in nature with the inhibition of a number of kinases involved in producing kinase inhibitor-induced myocyte damage.

  11. The lack of target specificity of small molecule anticancer kinase inhibitors is correlated with their ability to damage myocytes in vitro.

    PubMed

    Hasinoff, Brian B; Patel, Daywin

    2010-12-01

    Many new targeted small molecule anticancer kinase inhibitors are actively being developed. However, the clinical use of some kinase inhibitors has been shown to result in cardiotoxicity. In most cases the mechanisms by which they exert their cardiotoxicity are not well understood. We have used large scale profiling data on 8 FDA-approved tyrosine kinase inhibitors and 10 other kinase inhibitors to a panel of 317 kinases in order to correlate binding constants and kinase inhibitor binding selectivity scores with kinase inhibitor-induced damage to neonatal rat cardiac myocytes. The 18 kinase inhibitors that were the subject of this study were: canertinib, dasatinib, dovitinib, erlotinib, flavopiridol, gefitinib, imatinib, lapatinib, midostaurin, motesanib, pazopanib, sorafenib, staurosporine, sunitinib, tandutinib, tozasertib, vandetanib and vatalanib. The combined tyrosine kinase and serine-threonine kinase selectivity scores were highly correlated with the myocyte-damaging effects of the kinase inhibitors. This result suggests that myocyte damage was due to a lack of target selectivity to binding of both tyrosine kinases and serine-threonine kinases, and was not due to binding to either group specifically. Finally, the strength of kinase inhibitor binding for 290 kinases was examined for correlations with myocyte damage. Kinase inhibitor binding was significantly correlated with myocyte damage for 12 kinases. Thus, myocyte damage may be multifactorial in nature with the inhibition of a number of kinases involved in producing kinase inhibitor-induced myocyte damage. PMID:20832415

  12. Targeting the RAS pathway by mitogen-activated protein kinase inhibitors.

    PubMed

    Kiessling, Michael K; Rogler, Gerhard

    2015-01-01

    Targeting of oncogenic driver mutations with small-molecule inhibitors resulted in powerful treatment options for cancer patients in recent years. The RAS (rat sarcoma) pathway is among the most frequently mutated pathways in human cancer. Whereas targeting mutant Kirsten RAS (KRAS) remains difficult, mutant B rapidly accelerated fibrosarcoma (BRAF) kinase is an established drug target in cancer. Now data show that neuroblastoma RAS (NRAS) and even Harvey RAS (HRAS) mutations could be predictive markers for treatment with mitogen-activated protein kinase (MEK) inhibitors. This review discusses recent preclinical and clinical studies of MEK inhibitors in BRAF and RAS mutant cancer. PMID:26691679

  13. Electrochemical screening of the indole/quinolone derivatives as potential protein kinase CK2 inhibitors.

    PubMed

    Martić, Sanela; Tackenburg, Stefanie; Bilokin, Yaroslav; Golub, Andriy; Bdzhola, Volodymyr; Yarmoluk, Sergiy; Kraatz, Heinz-Bernhard

    2012-02-15

    An electrochemical method based on the bioorganometallic Fc-ATP cosubstrate for kinase-catalyzed phosphorylation reactions was used for monitoring casein kinase 2 (CK2) phosphorylations in the absence and presence of five indole/quinolone-based potential inhibitors. Fc-phosphorylation of immobilized peptide RRRDDDSDDD on Au surfaces resulted in a current density at approximately 460 ± 10 mV. An electrochemical redox signal was significantly decreased in the presence of inhibitors. In addition, the electrochemical signal was concentration dependent with respect to the potential inhibitors 1 to 5, which proved to be viable CK2 drug targets with estimated IC₅₀ values in the nanomolar range. PMID:22178909

  14. Effect of kinase inhibitors on the therapeutic properties of monoclonal antibodies.

    PubMed

    Duong, Minh Ngoc; Matera, Eva-Laure; Mathé, Doriane; Evesque, Anne; Valsesia-Wittmann, Sandrine; Clémenceau, Béatrice; Dumontet, Charles

    2015-01-01

    Targeted therapies of malignancies currently consist of therapeutic monoclonal antibodies and small molecule kinase inhibitors. The combination of these novel agents raises the issue of potential antagonisms. We evaluated the potential effect of 4 kinase inhibitors, including the Bruton tyrosine kinase inhibitor ibrutinib, and 3 PI3K inhibitors idelalisib, NVP-BEZ235 and LY294002, on the effects of the 3 monoclonal antibodies, rituximab and obinutuzumab (directed against CD20) and trastuzumab (directed against HER2). We found that ibrutinib potently inhibits antibody-dependent cell-mediated cytotoxicity exerted by all antibodies, with a 50% inhibitory concentration of 0.2 microM for trastuzumab, 0.5 microM for rituximab and 2 microM for obinutuzumab, suggesting a lesser effect in combination with obinutuzumab than with rituximab. The 4 kinase inhibitors were found to inhibit phagocytosis by fresh human neutrophils, as well as antibody-dependent cellular phagocytosis induced by the 3 antibodies. Conversely co-administration of ibrutinib with rituximab, obinutuzumab or trastuzumab did not demonstrate any inhibitory effect of ibrutinib in vivo in murine xenograft models. In conclusion, some kinase inhibitors, in particular, ibrutinib, are likely to exert inhibitory effects on innate immune cells. However, these effects do not compromise the antitumor activity of monoclonal antibodies in vivo in the models that were evaluated. PMID:25523586

  15. Purine inhibitors of protein kinases, G proteins and polymerases

    DOEpatents

    Gray, Nathanael S.; Schultz, Peter; Kim, Sung-Hou; Meijer, Laurent

    2001-07-03

    The present invention relates to purine analogs that inhibit, inter alia, protein kinases, G-proteins and polymerases. In addition, the present invention relates to methods of using such purine analogs to inhibit protein kinases, G-proteins, polymerases and other cellular processes and to treat cellular proliferative diseases.

  16. Discovery of mammalian target of rapamycin (mTOR) kinase inhibitor CC-223.

    PubMed

    Mortensen, Deborah S; Perrin-Ninkovic, Sophie M; Shevlin, Graziella; Zhao, Jingjing; Packard, Garrick; Bahmanyar, Sogole; Correa, Matthew; Elsner, Jan; Harris, Roy; Lee, Branden G S; Papa, Patrick; Parnes, Jason S; Riggs, Jennifer R; Sapienza, John; Tehrani, Lida; Whitefield, Brandon; Apuy, Julius; Bisonette, René R; Gamez, James C; Hickman, Matt; Khambatta, Godrej; Leisten, Jim; Peng, Sophie X; Richardson, Samantha J; Cathers, Brian E; Canan, Stacie S; Moghaddam, Mehran F; Raymon, Heather K; Worland, Peter; Narla, Rama Krishna; Fultz, Kimberly E; Sankar, Sabita

    2015-07-01

    We report here the synthesis and structure-activity relationship (SAR) of a novel series of mammalian target of rapamycin (mTOR) kinase inhibitors. A series of 4,6- or 1,7-disubstituted-3,4-dihydropyrazino[2,3-b]pyrazine-2(1H)-ones were optimized for in vivo efficacy. These efforts resulted in the identification of compounds with excellent mTOR kinase inhibitory potency, with exquisite kinase selectivity over the related lipid kinase PI3K. The improved PK properties of this series allowed for exploration of in vivo efficacy and ultimately the selection of CC-223 for clinical development. PMID:26083478

  17. Differential Sensitivity of Glioma- versus Lung Cancer-specific EGFR mutations to EGFR Kinase Inhibitors

    PubMed Central

    Vivanco, Igor; Robins, H. Ian; Rohle, Daniel; Campos, Carl; Grommes, Christian; Nghiemphu, Phioanh Leia; Kubek, Sara; Oldrini, Barbara; Chheda, Milan G.; Yannuzzi, Nicolas; Tao, Hui; Zhu, Shaojun; Iwanami, Akio; Kuga, Daisuke; Dang, Julie; Pedraza, Alicia; Brennan, Cameron W.; Heguy, Adriana; Liau, Linda M.; Lieberman, Frank; Yung, W.K. Alfred; Gilbert, Mark R.; Reardon, David A.; Drappatz, Jan; Wen, Patrick Y.; Lamborn, Kathleen R.; Chang, Susan M.; Prados, Michael D.; Fine, Howard A.; Horvath, Steve; Wu, Nian; Lassman, Andrew B.; DeAngelis, Lisa M.; Yong, William H.; Kuhn, John G.; Mischel, Paul S.; Mehta, Minesh P.; Cloughesy, Timothy F.; Mellinghoff, Ingo K.

    2012-01-01

    Activation of the epidermal growth factor receptor (EGFR) in glioblastoma (GBM) occurs through mutations or deletions in the extracellular (EC) domain. Unlike lung cancers with EGFR kinase domain (KD) mutations, GBMs respond poorly to the EGFR inhibitor erlotinib. Using RNAi, we show that GBM cells carrying EGFR EC mutations display EGFR addiction. In contrast to KD mutants found in lung cancer, glioma-specific EGFR EC mutants are poorly inhibited by EGFR inhibitors that target the active kinase conformation (e.g., erlotinib). Inhibitors which bind to the inactive EGFR conformation, on the other hand, potently inhibit EGFR EC mutants and induce cell death in EGFR mutant GBM cells. Our results provide first evidence for single kinase addiction in GBM, and suggest that the disappointing clinical activity of first-generation EGFR inhibitors in GBM versus lung cancer may be attributed to the different conformational requirements of mutant EGFR in these two cancer types. PMID:22588883

  18. Pharmacophore modeling studies of type I and type II kinase inhibitors of Tie2.

    PubMed

    Xie, Qing-Qing; Xie, Huan-Zhang; Ren, Ji-Xia; Li, Lin-Li; Yang, Sheng-Yong

    2009-02-01

    In this study, chemical feature based pharmacophore models of type I and type II kinase inhibitors of Tie2 have been developed with the aid of HipHop and HypoRefine modules within Catalyst program package. The best HipHop pharmacophore model Hypo1_I for type I kinase inhibitors contains one hydrogen-bond acceptor, one hydrogen-bond donor, one general hydrophobic, one hydrophobic aromatic, and one ring aromatic feature. And the best HypoRefine model Hypo1_II for type II kinase inhibitors, which was characterized by the best correlation coefficient (0.976032) and the lowest RMSD (0.74204), consists of two hydrogen-bond donors, one hydrophobic aromatic, and two general hydrophobic features, as well as two excluded volumes. These pharmacophore models have been validated by using either or both test set and cross validation methods, which shows that both the Hypo1_I and Hypo1_II have a good predictive ability. The space arrangements of the pharmacophore features in Hypo1_II are consistent with the locations of the three portions making up a typical type II kinase inhibitor, namely, the portion occupying the ATP binding region (ATP-binding-region portion, AP), that occupying the hydrophobic region (hydrophobic-region portion, HP), and that linking AP and HP (bridge portion, BP). Our study also reveals that the ATP-binding-region portion of the type II kinase inhibitors plays an important role to the bioactivity of the type II kinase inhibitors. Structural modifications on this portion should be helpful to further improve the inhibitory potency of type II kinase inhibitors. PMID:19138543

  19. Global Effects of Kinase Inhibitors on Signaling Networks Revealed by Quantitative Phosphoproteomics*

    PubMed Central

    Pan, Cuiping; Olsen, Jesper V.; Daub, Henrik; Mann, Matthias

    2009-01-01

    Aberrant signaling causes many diseases, and manipulating signaling pathways with kinase inhibitors has emerged as a promising area of drug research. Most kinase inhibitors target the conserved ATP-binding pocket; therefore specificity is a major concern. Proteomics has previously been used to identify the direct targets of kinase inhibitors upon affinity purification from cellular extracts. Here we introduce a complementary approach to evaluate the effects of kinase inhibitors on the entire cell signaling network. We used triple labeling SILAC (stable isotope labeling by amino acids in cell culture) to compare cellular phosphorylation levels for control, epidermal growth factor stimulus, and growth factor combined with kinase inhibitors. Of thousands of phosphopeptides, less than 10% had a response pattern indicative of targets of U0126 and SB202190, two widely used MAPK inhibitors. Interestingly, 83% of the growth factor-induced phosphorylation events were affected by either or both inhibitors, showing quantitatively that early signaling processes are predominantly transmitted through the MAPK cascades. In contrast to MAPK inhibitors, dasatinib, a clinical drug directed against BCR-ABL, which is the cause of chronic myelogenous leukemia, affected nearly 1,000 phosphopeptides. In addition to the proximal effects on ABL and its immediate targets, dasatinib broadly affected the downstream MAPK pathways. Pathway mapping of regulated sites implicated a variety of cellular functions, such as chromosome remodeling, RNA splicing, and cytoskeletal organization, some of which have been described in the literature before. Our assay is streamlined and generic and could become a useful tool in kinase drug development. PMID:19651622

  20. Crystal structure of a human cyclin-dependent kinase 6 complexwith a flavonol inhibitor, Fisetin

    SciTech Connect

    Lu, Heshu; Chang, Debbie J.; Baratte, Blandine; Meijer, Laurent; Schulze-Gahmen, Ursula

    2005-01-10

    Cyclin-dependent kinases (CDKs) play a central role in cell cycle control, apoptosis, transcription and neuronal functions. They are important targets for the design of drugs with anti-mitotic and/or anti-neurodegenerative effects. CDK4 and CDK6 form a subfamily among the CDKs in mammalian cells, as defined by sequence similarities. Compared to CDK2 and CDK5, structural information on CDK4 and CDK6 is sparse. We describe here the crystal structure of human CDK6 in complex with a viral cyclin and a flavonol inhibitor, fisetin. Fisetin binds to the active form of CDK6, forming hydrogen bonds with the side chains of residues in the binding pocket that undergo large conformational changes during CDK activation by cyclin binding. The 4-keto group and the 3-hydroxyl group of fisetin are hydrogen bonded with the backbone in the hinge region between the N-terminal and C-terminal kinase domain, as has been observed for many CDK inhibitors. However, CDK2 and HCK kinase in complex with other flavone inhibitors such as quercetin and flavopiridol showed a different binding mode with the inhibitor rotated by about 180. The structural information of the CDK6-fisetin complex is correlated with the binding affinities of different flavone inhibitors for CDK6. This complex structure is the first description of an inhibitor complex with a kinase from the CDK4/6 subfamily and can provide a basis for selecting and designing inhibitor compounds with higher affinity and specificity.

  1. Ability of the Met Kinase Inhibitor Crizotinib and New Generation EGFR Inhibitors to Overcome Resistance to EGFR Inhibitors

    PubMed Central

    Nanjo, Shigeki; Yamada, Tadaaki; Nishihara, Hiroshi; Takeuchi, Shinji; Sano, Takako; Nakagawa, Takayuki; Ishikawa, Daisuke; Zhao, Lu; Ebi, Hiromichi; Yasumoto, Kazuo; Matsumoto, Kunio; Yano, Seiji

    2013-01-01

    Purpose Although EGF receptor tyrosine kinase inhibitors (EGFR-TKI) have shown dramatic effects against EGFR mutant lung cancer, patients ultimately develop resistance by multiple mechanisms. We therefore assessed the ability of combined treatment with the Met inhibitor crizotinib and new generation EGFR-TKIs to overcome resistance to first-generation EGFR-TKIs. Experimental Design Lung cancer cell lines made resistant to EGFR-TKIs by the gatekeeper EGFR-T790M mutation, Met amplification, and HGF overexpression and mice with tumors induced by these cells were treated with crizotinib and a new generation EGFR-TKI. Results The new generation EGFR-TKI inhibited the growth of lung cancer cells containing the gatekeeper EGFR-T790M mutation, but did not inhibit the growth of cells with Met amplification or HGF overexpression. In contrast, combined therapy with crizotinib plus afatinib or WZ4002 was effective against all three types of cells, inhibiting EGFR and Met phosphorylation and their downstream molecules. Crizotinib combined with afatinib or WZ4002 potently inhibited the growth of mouse tumors induced by these lung cancer cell lines. However, the combination of high dose crizotinib and afatinib, but not WZ4002, triggered severe adverse events. Conclusions Our results suggest that the dual blockade of mutant EGFR and Met by crizotinib and a new generation EGFR-TKI may be promising for overcoming resistance to reversible EGFR-TKIs but careful assessment is warranted clinically. PMID:24386407

  2. A rapid assay for assessment of sphingosine kinase inhibitors and substrates

    PubMed Central

    Kharel, Yugesh; Mathews, Thomas P.; Kennedy, Andrew J.; Houck, Joseph D.; Macdonald, Timohy L.; Lynch, Kevin R.

    2011-01-01

    Sphingosine kinases catalyze the transfer of phosphate from ATP to sphingosine to generate sphingosine 1-phosphate, an important bioactive lipid molecule that mediates a diverse range of cell signaling processes. The conventional assay of sphingosine kinase enzymatic activity uses [γ-32P]ATP and sphingosine as substrates with the radiolabeled S1P product recovered by organic extraction, displayed by thin-layer chromatography and quantified by liquid scintillation counting. While this assay is sensitive and accurate, it is slow and labor intensive and thus precludes the simultaneous screening of more than a few inhibitor compounds. Herein we describe a 96 well assay for sphingosine kinases that is rapid and reproducible. Our method, which takes advantage of the limited solubility of S1P, detects radioactive S1P adhering to the plate by scintillation proximity counting. Our procedure obviates extraction into organic solvents, post-reaction transfers and chromatography. Further, our assay enables assessment of both inhibitors and substrates, and can detect endogenous sphingosine kinase activity in cell and tissue extracts. The sphingosine kinase kinetic parameter, Km, and the Ki values of inhibitors determined with our assay and the conventional assay were indistinguishable. These results document that our assay is well suited for the screening of chemical libraries of sphingosine kinase inhibitors. PMID:21216217

  3. The Importance of Being Me: Magic Methyls, Methyltransferase Inhibitors, and the Discovery of Tazemetostat.

    PubMed

    Kuntz, Kevin W; Campbell, John E; Keilhack, Heike; Pollock, Roy M; Knutson, Sarah K; Porter-Scott, Margaret; Richon, Victoria M; Sneeringer, Chris J; Wigle, Tim J; Allain, Christina J; Majer, Christina R; Moyer, Mikel P; Copeland, Robert A; Chesworth, Richard

    2016-02-25

    Posttranslational methylation of histones plays a critical role in gene regulation. Misregulation of histone methylation can lead to oncogenic transformation. Enhancer of Zeste homologue 2 (EZH2) methylates histone 3 at lysine 27 (H3K27) and abnormal methylation of this site is found in many cancers. Tazemetostat, an EHZ2 inhibitor in clinical development, has shown activity in both preclinical models of cancer as well as in patients with lymphoma or INI1-deficient solid tumors. Herein we report the structure-activity relationships from identification of an initial hit in a high-throughput screen through selection of tazemetostat for clinical development. The importance of several methyl groups to the potency of the inhibitors is highlighted as well as the importance of balancing pharmacokinetic properties with potency. PMID:26769278

  4. Molecular Mechanism of Selectivity among G Protein-Coupled Receptor Kinase 2 Inhibitors

    SciTech Connect

    Thal, David M.; Yeow, Raymond Y.; Schoenau, Christian; Huber, Jochen; Tesmer, John J.G.

    2012-07-11

    G protein-coupled receptors (GPCRs) are key regulators of cell physiology and control processes ranging from glucose homeostasis to contractility of the heart. A major mechanism for the desensitization of activated GPCRs is their phosphorylation by GPCR kinases (GRKs). Overexpression of GRK2 is strongly linked to heart failure, and GRK2 has long been considered a pharmaceutical target for the treatment of cardiovascular disease. Several lead compounds developed by Takeda Pharmaceuticals show high selectivity for GRK2 and therapeutic potential for the treatment of heart failure. To understand how these drugs achieve their selectivity, we determined crystal structures of the bovine GRK2-G{beta}{gamma} complex in the presence of two of these inhibitors. Comparison with the apoGRK2-G{beta}{gamma} structure demonstrates that the compounds bind in the kinase active site in a manner similar to that of the AGC kinase inhibitor balanol. Both balanol and the Takeda compounds induce a slight closure of the kinase domain, the degree of which correlates with the potencies of the inhibitors. Based on our crystal structures and homology modeling, we identified five amino acids surrounding the inhibitor binding site that we hypothesized could contribute to inhibitor selectivity. However, our results indicate that these residues are not major determinants of selectivity among GRK subfamilies. Rather, selectivity is achieved by the stabilization of a unique inactive conformation of the GRK2 kinase domain.

  5. Repurposing Kinase Inhibitors as Antiviral Agents to Control Influenza A Virus Replication.

    PubMed

    Perwitasari, Olivia; Yan, Xiuzhen; O'Donnell, Jason; Johnson, Scott; Tripp, Ralph A

    2015-12-01

    Influenza A virus (IAV) infection causes seasonal epidemics of contagious respiratory illness that causes substantial morbidity and some mortality. Regular vaccination is the principal strategy for controlling influenza virus, although vaccine efficacy is variable. IAV antiviral drugs are available; however, substantial drug resistance has developed to two of the four currently FDA-approved antiviral drugs. Thus, new therapeutic approaches are being sought to reduce the burden of influenza-related disease. A high-throughput screen using a human kinase inhibitor library was performed targeting an emerging IAV strain (H7N9) in A549 cells. The inhibitor library contained 273 structurally diverse, active cell permeable kinase inhibitors with known bioactivity and safety profiles, many of which are at advanced stages of clinical development. The current study shows that treatment of human A549 cells with kinase inhibitors dinaciclib, flavopiridol, or PIK-75 exhibits potent antiviral activity against H7N9 IAV as well as other IAV strains. Thus, targeting host kinases can provide a broad-spectrum therapeutic approach against IAV. These findings provide a path forward for repurposing existing kinase inhibitors safely as potential antivirals, particularly those that can be tested in vivo and ultimately for clinical use. PMID:26192013

  6. Design of substrate-based BCR-ABL kinase inhibitors using the cyclotide scaffold

    PubMed Central

    Huang, Yen-Hua; Henriques, Sónia T.; Wang, Conan K.; Thorstholm, Louise; Daly, Norelle L.; Kaas, Quentin; Craik, David J.

    2015-01-01

    The constitutively active tyrosine kinase BCR-ABL is the underlying cause of chronic myeloid leukemia (CML). Current CML treatments rely on the long-term use of tyrosine kinase inhibitors (TKIs), which target the ATP binding site of BCR-ABL. Over the course of treatment, 20–30% of CML patients develop TKI resistance, which is commonly attributed to point mutations in the drug-binding region. We design a new class of peptide inhibitors that target the substrate-binding site of BCR-ABL by grafting sequences derived from abltide, the optimal substrate of Abl kinase, onto a cell-penetrating cyclotide MCoTI-II. Three grafted cyclotides show significant Abl kinase inhibition in vitro in the low micromolar range using a novel kinase inhibition assay. Our work also demonstrates that a reengineered MCoTI-II with abltide sequences grafted in both loop 1 and 6 inhibits the activity of [T315I]Abl in vitro, a mutant Abl kinase harboring the “gatekeeper” mutation which is notorious for being multidrug resistant. Results from serum stability and cell internalization studies confirm that the MCoTI-II scaffold provides enzymatic stability and cell-penetrating properties to the lead molecules. Taken together, our study highlights that reengineered cyclotides incorporating abltide-derived sequences are promising substrate-competitive inhibitors for Abl kinase and the T315I mutant. PMID:26264857

  7. Targeting Cyclin-Dependent Kinases in Human Cancers: From Small Molecules to Peptide Inhibitors

    PubMed Central

    Peyressatre, Marion; Prével, Camille; Pellerano, Morgan; Morris, May C.

    2015-01-01

    Cyclin-dependent kinases (CDK/Cyclins) form a family of heterodimeric kinases that play central roles in regulation of cell cycle progression, transcription and other major biological processes including neuronal differentiation and metabolism. Constitutive or deregulated hyperactivity of these kinases due to amplification, overexpression or mutation of cyclins or CDK, contributes to proliferation of cancer cells, and aberrant activity of these kinases has been reported in a wide variety of human cancers. These kinases therefore constitute biomarkers of proliferation and attractive pharmacological targets for development of anticancer therapeutics. The structural features of several of these kinases have been elucidated and their molecular mechanisms of regulation characterized in depth, providing clues for development of drugs and inhibitors to disrupt their function. However, like most other kinases, they constitute a challenging class of therapeutic targets due to their highly conserved structural features and ATP-binding pocket. Notwithstanding, several classes of inhibitors have been discovered from natural sources, and small molecule derivatives have been synthesized through rational, structure-guided approaches or identified in high throughput screens. The larger part of these inhibitors target ATP pockets, but a growing number of peptides targeting protein/protein interfaces are being proposed, and a small number of compounds targeting allosteric sites have been reported. PMID:25625291

  8. Purine inhibitors of protein kinases, G proteins and polymerases

    DOEpatents

    Gray, Nathanael S.; Schultz, Peter; Kim, Sung-Hou; Meijer, Laurent

    2004-10-12

    The present invention relates to 2-N-substituted 6-(4-methoxybenzylamino)-9-isopropylpurines that inhibit, inter alia, protein kinases, G-proteins and polymerases. In addition, the present invention relates to methods of using such 2-N-substituted 6-(4-methoxybenzylamino)-9-isopropylpurines to inhibit protein kinases, G-proteins, polymerases and other cellular processes and to treat cellular proliferative diseases.

  9. Cardiovascular effects of a novel potent and highly selective azaindole-based inhibitor of Rho-kinase

    PubMed Central

    Kast, R; Schirok, H; Figueroa-Pérez, S; Mittendorf, J; Gnoth, M J; Apeler, H; Lenz, J; Franz, J K; Knorr, A; Hütter, J; Lobell, M; Zimmermann, K; Münter, K; Augstein, K H; Ehmke, H; Stasch, J P

    2007-01-01

    Background and purpose: Rho-kinase (ROCK) has been implicated in the pathophysiology of altered vasoregulation leading to hypertension. Here we describe the pharmacological characterization of a potent, highly selective and orally active ROCK inhibitor, the derivative of a class of azaindoles, azaindole 1(6-chloro-N 4-{3,5-difluoro-4-[(3-methyl-1H-pyrrolo[2,3-b]pyridin-4-yl)oxy]-phenyl}pyrimidine-2,4-diamine). Experimental approach: Pharmacological characterization of azaindole 1was performed with human recombinant ROCK in vitro. Vasodilator activity was determined using isolated vessels in vitro and different animal models in vivo. Key results: This compound inhibited the ROCK-1 and ROCK-2 isoenzymes with IC50 s of 0.6 and 1.1 nM in an ATP-competitive manner. Although ATP-competitive, azaindole 1was inactive against 89 kinases (IC50>10 μM) and showed only weak activity against an additional 21 different kinases (IC50=1 - 10 μM). Only the kinases TRK und FLT3 were inhibited by azaindole 1in the sub-micromolar range, albeit with IC50 values of 252 and 303 nM, respectively. In vivo, azaindole 1lowered blood pressure dose-dependently after i.v. administration in anaesthetized normotensive rats. In conscious normotensive and spontaneously hypertensive rats azaindole 1induced a dose-dependent decrease in blood pressure after oral administration without inducing a significant reflex increase in heart rate. In anaesthetized dogs, azaindole 1induced vasodilatation with a moderately elevated heart rate. Conclusions and implications: Azaindole 1is representative of a new class of selective and potent ROCK inhibitors and is a valuable tool for the elucidation of the role of ROCK in the cardiovascular system. PMID:17934515

  10. BIM expression in treatment naïve cancers predicts responsiveness to kinase inhibitors

    PubMed Central

    Faber, Anthony; Corcoran, Ryan B.; Ebi, Hiromichi; Sequist, Lecia V.; Waltman, Belinda A.; Chung, Euiheon; Incio, Joao; Digumarthy, Subba R.; Pollack, Sarah F.; Song, Youngchul; Muzikansky, Alona; Lifshits, Eugene; Roberge, Sylvie; Coffman, Erik J.; Benes, Cyril; Gómez, Henry; Baselga, Jose; Arteaga, Carlos L.; Rivera, Miguel N.; Dias-Santagata, Dora; Jain, Rakesh K.; Engelman, Jeffrey A.

    2011-01-01

    Cancers with specific genetic mutations are susceptible to selective kinase inhibitors. However, there is wide spectrum of benefit among cancers harboring the same sensitizing genetic mutations. Herein, we measured apoptotic rates among cell lines sharing the same driver oncogene following treatment with the corresponding kinase inhibitor. There was a wide range of kinase inhibitor-induced apoptosis despite comparable inhibition of the target and associated downstream signaling pathways. Surprisingly, pre-treatment RNA levels of the BH3-only pro-apoptotic BIM strongly predicted the capacity of EGFR, HER2, and PI3K inhibitors to induce apoptosis in EGFR mutant, HER2 amplified, and PIK3CA mutant cancers, respectively, but BIM levels did not predict responsiveness to standard chemotherapies. Furthermore, BIM RNA levels in EGFR mutant lung cancer specimens predicted response and duration of clinical benefit from EGFR inhibitors. These findings suggest assessment of BIM levels in treatment naïve tumor biopsies may indicate the degree of benefit from single-agent kinase inhibitors in multiple oncogene-addiction paradigms. PMID:22145099

  11. Antitumor activity of a small-molecule inhibitor of the histone kinase Haspin

    PubMed Central

    Huertas, D; Soler, M; Moreto, J; Villanueva, A; Martinez, A; Vidal, A; Charlton, M; Moffat, D; Patel, S; McDermott, J; Owen, J; Brotherton, D; Krige, D; Cuthill, S; Esteller, M

    2012-01-01

    The approval of histone deacetylase inhibitors for treatment of lymphoma subtypes has positioned histone modifications as potential targets for the development of new classes of anticancer drugs. Histones also undergo phosphorylation events, and Haspin is a protein kinase the only known target of which is phosphorylation of histone H3 at Thr3 residue (H3T3ph), which is necessary for mitosis progression. Mitotic kinases can be blocked by small drugs and several clinical trials are underway with these agents. As occurs with Aurora kinase inhibitors, Haspin might be an optimal candidate for the pharmacological development of these compounds. A high-throughput screening for Haspin inhibitors identified the CHR-6494 compound as being one promising such agent. We demonstrate that CHR-6494 reduces H3T3ph levels in a dose-dependent manner and causes a mitotic catastrophe characterized by metaphase misalignment, spindle abnormalities and centrosome amplification. From the cellular standpoint, the identified small-molecule Haspin inhibitor causes arrest in G2/M and subsequently apoptosis. Importantly, ex vivo assays also demonstrate its anti-angiogenetic features; in vivo, it shows antitumor potential in xenografted nude mice without any observed toxicity. Thus, CHR-6494 is a first-in-class Haspin inhibitor with a wide spectrum of anticancer effects that merits further preclinical research as a new member of the family of mitotic kinase inhibitors. PMID:21804608

  12. Active Site Inhibitors Protect Protein Kinase C from Dephosphorylation and Stabilize Its Mature Form*

    PubMed Central

    Gould, Christine M.; Antal, Corina E.; Reyes, Gloria; Kunkel, Maya T.; Adams, Ryan A.; Ziyar, Ahdad; Riveros, Tania; Newton, Alexandra C.

    2011-01-01

    Conformational changes acutely control protein kinase C (PKC). We have previously shown that the autoinhibitory pseudosubstrate must be removed from the active site in order for 1) PKC to be phosphorylated by its upstream kinase phosphoinositide-dependent kinase 1 (PDK-1), 2) the mature enzyme to bind and phosphorylate substrates, and 3) the mature enzyme to be dephosphorylated by phosphatases. Here we show an additional level of conformational control; binding of active site inhibitors locks PKC in a conformation in which the priming phosphorylation sites are resistant to dephosphorylation. Using homogeneously pure PKC, we show that the active site inhibitor Gö 6983 prevents the dephosphorylation by pure protein phosphatase 1 (PP1) or the hydrophobic motif phosphatase, pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP). Consistent with results using pure proteins, treatment of cells with the competitive inhibitors Gö 6983 or bisindolylmaleimide I, but not the uncompetitive inhibitor bisindolylmaleimide IV, prevents the dephosphorylation and down-regulation of PKC induced by phorbol esters. Pulse-chase analyses reveal that active site inhibitors do not affect the net rate of priming phosphorylations of PKC; rather, they inhibit the dephosphorylation triggered by phorbol esters. These data provide a molecular explanation for the recent studies showing that active site inhibitors stabilize the phosphorylation state of protein kinases B/Akt and C. PMID:21715334

  13. Structural insight into selectivity and resistance profiles of ROS1 tyrosine kinase inhibitors

    PubMed Central

    Davare, Monika A.; Vellore, Nadeem A.; Wagner, Jacob P.; Eide, Christopher A.; Goodman, James R.; Drilon, Alexander; Deininger, Michael W.; O’Hare, Thomas; Druker, Brian J.

    2015-01-01

    Oncogenic ROS1 fusion proteins are molecular drivers in multiple malignancies, including a subset of non-small cell lung cancer (NSCLC). The phylogenetic proximity of the ROS1 and anaplastic lymphoma kinase (ALK) catalytic domains led to the clinical repurposing of the Food and Drug Administration (FDA)-approved ALK inhibitor crizotinib as a ROS1 inhibitor. Despite the antitumor activity of crizotinib observed in both ROS1- and ALK-rearranged NSCLC patients, resistance due to acquisition of ROS1 or ALK kinase domain mutations has been observed clinically, spurring the development of second-generation inhibitors. Here, we profile the sensitivity and selectivity of seven ROS1 and/or ALK inhibitors at various levels of clinical development. In contrast to crizotinib’s dual ROS1/ALK activity, cabozantinib (XL-184) and its structural analog foretinib (XL-880) demonstrate a striking selectivity for ROS1 over ALK. Molecular dynamics simulation studies reveal structural features that distinguish the ROS1 and ALK kinase domains and contribute to differences in binding site and kinase selectivity of the inhibitors tested. Cell-based resistance profiling studies demonstrate that the ROS1-selective inhibitors retain efficacy against the recently reported CD74-ROS1G2032R mutant whereas the dual ROS1/ALK inhibitors are ineffective. Taken together, inhibitor profiling and stringent characterization of the structure–function differences between the ROS1 and ALK kinase domains will facilitate future rational drug design for ROS1- and ALK-driven NSCLC and other malignancies. PMID:26372962

  14. Prediction of kinase inhibitor response using activity profiling, in vitro screening, and elastic net regression

    PubMed Central

    2014-01-01

    Background Many kinase inhibitors have been approved as cancer therapies. Recently, libraries of kinase inhibitors have been extensively profiled, thus providing a map of the strength of action of each compound on a large number of its targets. These profiled libraries define drug-kinase networks that can predict the effectiveness of untested drugs and elucidate the roles of specific kinases in different cellular systems. Predictions of drug effectiveness based on a comprehensive network model of cellular signalling are difficult, due to our partial knowledge of the complex biological processes downstream of the targeted kinases. Results We have developed the Kinase Inhibitors Elastic Net (KIEN) method, which integrates information contained in drug-kinase networks with in vitro screening. The method uses the in vitro cell response of single drugs and drug pair combinations as a training set to build linear and nonlinear regression models. Besides predicting the effectiveness of untested drugs, the KIEN method identifies sets of kinases that are statistically associated to drug sensitivity in a given cell line. We compared different versions of the method, which is based on a regression technique known as elastic net. Data from two-drug combinations led to predictive models, and we found that predictivity can be improved by applying logarithmic transformation to the data. The method was applied to the A549 lung cancer cell line, and we identified specific kinases known to have an important role in this type of cancer (TGFBR2, EGFR, PHKG1 and CDK4). A pathway enrichment analysis of the set of kinases identified by the method showed that axon guidance, activation of Rac, and semaphorin interactions pathways are associated to a selective response to therapeutic intervention in this cell line. Conclusions We have proposed an integrated experimental and computational methodology, called KIEN, that identifies the role of specific kinases in the drug response of a given

  15. Recent advances in the development of Aurora kinases inhibitors in hematological malignancies

    PubMed Central

    Choudary, Iqra; Barr, Paul M.; Friedberg, Jonathan

    2015-01-01

    Over the last two decades, since the discovery of Drosophila mutants in 1995, much effort has been made to understand Aurora kinase biology. Three mammalian subtypes have been identified thus far which include the Aurora A, B and C kinases. These regulatory proteins specifically work at the cytoskeleton and chromosomal structures between the kinetochores and have vital functions in the early phases of the mitotic cell cycle. Today, there are multiple phase I and phase II clinical trials as well as numerous preclinical studies taking place looking at Aurora kinase inhibitors in both hematologic and solid malignancies. This review focuses on the preclinical and clinical development of Aurora kinase inhibitors in hematological malignancy and discusses their therapeutic potential. PMID:26622997

  16. An isoform-selective, small-molecule inhibitor targets the autoregulatory mechanism of p21-activated kinase

    PubMed Central

    Deacon, Sean W.; Beeser, Alexander; Fukui, Jami A.; Rennefahrt, Ulrike E. E.; Myers, Cynthia; Chernoff, Jonathan; Peterson, Jeffrey R.

    2015-01-01

    SUMMARY Autoregulatory domains found within kinases may provide more unique targets for chemical inhibitors than the conserved ATP-binding pocket targeted by most inhibitors. The kinase Pak1 contains an autoinhibitory domain that suppresses the catalytic activity of its kinase domain. Pak1 activators relieve this autoinhibition and initiate conformational rearrangements and autophosphorylation events leading to kinase activation. We developed a screen for allosteric inhibitors targeting Pak1 activation and identified the inhibitor IPA-3. Remarkably, pre-activated Pak1 is resistant to IPA-3. IPA-3 also inhibits activation of related Pak isoforms regulated by autoinhibition, but not more distantly related Paks, nor >200 other kinases tested. Pak1 inhibition by IPA-3 in live cells supports a critical role for Pak in PDGF-stimulated Erk activation. These studies illustrate a novel strategy for kinase inhibition and introduce a highly selective, cell-permeable chemical inhibitor of Pak. PMID:18420139

  17. Method for distinguishing normal and transformed cells using G1 kinase inhibitors

    DOEpatents

    Crissman, Harry A.; Gadbois, Donna M.; Tobey, Robert A.; Bradbury, E. Morton

    1993-01-01

    A G.sub.1 phase kinase inhibitor is applied in a low concentration to a population of normal and transformed mammalian cells. The concentration of G.sub.1 phase kinase inhibitor is selected to reversibly arrest normal mammalian cells in the G.sub.1 cell cycle without arresting growth of transformed cells. The transformed cells may then be selectively identified and/or cloned for research or diagnostic purposes. The transformed cells may also be selectively killed by therapeutic agents that do not affect normal cells in the G.sub.1 phase, suggesting that such G.sub.1 phase kinase inhibitors may form an effective adjuvant for use with chemotherapeutic agents in cancer therapy for optimizing the killing dose of chemotherapeutic agents while minimizing undesirable side effects on normal cells.

  18. Method for distinguishing normal and transformed cells using G1 kinase inhibitors

    SciTech Connect

    Crissman, H.A.; Gadbois, D.M.; Tobey, R.A.; Bradbury, E.M.

    1991-12-31

    A G{sub 1} phase kinase inhibitor is applied in a low concentration to a population of normal and transformed mammalian cells. The concentration of G{sub 1} phase kinase inhibitor is selected to reversibly arrest normal mammalian cells in the G{sub 1} cell cycle without arresting growth of transformed cells. The transformed cells may then be selectively identified and/or cloned for research or diagnostic purposes. The transformed cells may also be selectively killed by therapeutic agents that do not affect normal cells in the G{sub 1} phase, suggesting that such G{sub 1} phase kinase inhibitors may form an effective adjuvant for use with chemotherapeutic agents in cancer therapy for optimizing the killing dose of chemotherapeutic agents while minimizing undesirable side effects on normal cells.

  19. Benzofuran Small Molecules as Potential Inhibitors of Human Protein Kinases. A Review.

    PubMed

    Kwiecień, Halina; Goszczyńska, Agata; Rokosz, Paulina

    2016-01-01

    Kinases are known to regulate the majority of human cellular processes such as communication, division, metabolism, survival and apoptosis therefore they can be promising targets in cancer diseases, viral infection and in other disorders. Small molecules acting as selective human protein kinase inhibitors are very attractive pharmacological targets. This review presents a number of examples of biologically active natural and synthetic benzo[b]furans and their derivatives, such as benzo[b]furan-2- and 3-ones, benzo[b]furan-2- and 3-carboxylic acids, as well as benzo[c]furans as potential inhibitors of various human protein kinases. The pathways of function and implication of the inhibitors in cancer and other diseases are discussed. PMID:26648467

  20. Method for distinguishing normal and transformed cells using G1 kinase inhibitors

    DOEpatents

    Crissman, H.A.; Gadbois, D.M.; Tobey, R.A.; Bradbury, E.M.

    1993-02-09

    A G[sub 1] phase kinase inhibitor is applied in a low concentration to a population of normal and transformed mammalian cells. The concentration of G[sub 1] phase kinase inhibitor is selected to reversibly arrest normal mammalian cells in the G[sub 1] cell cycle without arresting growth of transformed cells. The transformed cells may then be selectively identified and/or cloned for research or diagnostic purposes. The transformed cells may also be selectively killed by therapeutic agents that do not affect normal cells in the G[sub 1] phase, suggesting that such G[sub 1] phase kinase inhibitors may form an effective adjuvant for use with chemotherapeutic agents in cancer therapy for optimizing the killing dose of chemotherapeutic agents while minimizing undesirable side effects on normal cells.

  1. Cyclin-dependent kinases inhibitors as potential anticancer, antineurodegenerative, antiviral and antiparasitic agents.

    PubMed

    Meijer, Laurent

    2000-04-01

    Cyclin-dependent kinases (CDKs) play a key role in the cell division cycle, in neuronal functions, in transcription and in apoptosis. Intensive screening with these kinases as targets has lead to the identification of highly selective and potent small - molecule inhibitors. Co-crystallization with CDK2 shows that these flat heterocyclic hydrophobic compounds bind through two or three hydrogen bonds with the side chains of two amino acids located in the ATP-binding pocket of the kinase. These inhibitors are anti-proliferative; they arrest cells in G1 and in G2/M phase. Furthermore they facilitate or even trigger apoptosis in proliferating cells while they protect neuronal cells and thymocytes from apoptosis. The potential use of these inhibitors is being extensively evaluated for cancer chemotherapy and also in other therapeutic areas: neurology (Alzheimer's disease), cardiovascular (restenosis, angiogenesis), nephrology (glomerulonephritis), parasitology (Plasmodium, Trypanosoma, Toxoplasma, etc.) and virology (cytomegalovirus, HIV, herpes virus). Copyright 2000 Harcourt Publishers Ltd. PMID:11498372

  2. A Covalent Cysteine-Targeting Kinase Inhibitor of Ire1 Permits Allosteric Control of Endoribonuclease Activity.

    PubMed

    Waller, Daniel D; Jansen, Gregor; Golizeh, Makan; Martel-Lorion, Chloe; Dejgaard, Kurt; Shiao, Tze Chieh; Mancuso, John; Tsantrizos, Youla S; Roy, René; Sebag, Michael; Sleno, Lekha; Thomas, David Y

    2016-05-01

    The unfolded protein response (UPR) initiated by the transmembrane kinase/ribonuclease Ire1 has been implicated in a variety of diseases. Ire1, with its unique position in the UPR, is an ideal target for the development of therapies; however, the identification of specific kinase inhibitors is challenging. Recently, the development of covalent inhibitors has gained great momentum because of the irreversible deactivation of the target. We identified and determined the mechanism of action of the Ire1-inhibitory compound UPRM8. MS analysis revealed that UPRM8 inhibition occurs by covalent adduct formation at a conserved cysteine at the regulatory DFG+2 position in the Ire1 kinase activation loop. Mutational analysis of the target cysteine residue identified both UPRM8-resistant and catalytically inactive Ire1 mutants. We describe a novel covalent inhibition mechanism of UPRM8, which can serve as a lead for the rational design and optimization of inhibitors of human Ire1. PMID:26792008

  3. Synthesis and biological evaluation of 4-quinazolinones as Rho kinase inhibitors.

    PubMed

    Fang, Xingang; Chen, Yen Ting; Sessions, E Hampton; Chowdhury, Sarwat; Vojkovsky, Tomas; Yin, Yan; Pocas, Jennifer R; Grant, Wayne; Schröter, Thomas; Lin, Li; Ruiz, Claudia; Cameron, Michael D; LoGrasso, Philip; Bannister, Thomas D; Feng, Yangbo

    2011-03-15

    Rho kinase (ROCK) is an attractive therapeutic target for various diseases including glaucoma, hypertension, and spinal cord injury. Herein, we report the development of a series of ROCK-II inhibitors based on 4-quinazolinone and quinazoline scaffolds. SAR studies at three positions of the quinazoline core led to the identification of analogs with high potency against ROCK-II and good selectivity over protein kinase A (PKA). PMID:21349713

  4. Slow Inhibition and Conformation Selective Properties of Extracellular Signal-Regulated Kinase 1 and 2 Inhibitors

    PubMed Central

    Rudolph, Johannes; Xiao, Yao; Pardi, Arthur; Ahn, Natalie G.

    2016-01-01

    The mitogen-activated protein (MAP) kinase pathway is a target for anticancer therapy, validated using inhibitors of B-Raf and MAP kinase kinase (MKK) 1 and 2. Clinical outcomes show a high frequency of acquired resistance in patient tumors, involving upregulation of activity of the MAP kinase, extracellular signal-regulated kinase (ERK) 1 and 2. Thus, inhibitors for ERK1/2 are potentially important for targeted therapeutics against cancer. The structures and potencies of different ERK inhibitors have been published, but their kinetic mechanisms have not been characterized. Here we perform enzyme kinetic studies on six representative ERK inhibitors, with potencies varying from 100 pM to 20 μM. Compounds with significant biological activity (IC50 < 100 nM) that inhibit in the subnanomolar range (Vertex-11e and SCH772984) display slow-onset inhibition and represent the first inhibitors of ERK2 known to demonstrate slow dissociation rate constants (values of 0.2 and 1.1 h−1, respectively). Furthermore, we demonstrate using kinetic competition assays that Vertex-11e binds with differing affinities to ERK2 in its inactive, unphosphorylated and active, phosphorylated forms. Finally, two-dimensional heteronuclear multiple-quantum correlation nuclear magnetic resonance experiments reveal that distinct conformational states are formed in complexes of Vertex-11e with inactive and active ERK2. Importantly, two conformers interconvert in equilibrium in the active ERK2 apoenzyme, but Vertex-11e strongly shifts the equilibrium completely to one conformer. Thus, a high-affinity, slow dissociation inhibitor stabilizes different enzyme conformations depending on the activity state of ERK2 and reveals properties of conformational selection toward the active kinase. PMID:25350931

  5. Chemical Proteomics Reveals Ferrochelatase as a Common Off-target of Kinase Inhibitors.

    PubMed

    Klaeger, Susan; Gohlke, Bjoern; Perrin, Jessica; Gupta, Vipul; Heinzlmeir, Stephanie; Helm, Dominic; Qiao, Huichao; Bergamini, Giovanna; Handa, Hiroshi; Savitski, Mikhail M; Bantscheff, Marcus; Médard, Guillaume; Preissner, Robert; Kuster, Bernhard

    2016-05-20

    Many protein kinases are valid drug targets in oncology because they are key components of signal transduction pathways. The number of clinical kinase inhibitors is on the rise, but these molecules often exhibit polypharmacology, potentially eliciting desired and toxic effects. Therefore, a comprehensive assessment of a compound's target space is desirable for a better understanding of its biological effects. The enzyme ferrochelatase (FECH) catalyzes the conversion of protoporphyrin IX into heme and was recently found to be an off-target of the BRAF inhibitor Vemurafenib, likely explaining the phototoxicity associated with this drug in melanoma patients. This raises the question of whether FECH binding is a more general feature of kinase inhibitors. To address this, we applied a chemical proteomics approach using kinobeads to evaluate 226 clinical kinase inhibitors for their ability to bind FECH. Surprisingly, low or submicromolar FECH binding was detected for 29 of all compounds tested and isothermal dose response measurements confirmed target engagement in cells. We also show that Vemurafenib, Linsitinib, Neratinib, and MK-2461 reduce heme levels in K562 cells, verifying that drug binding leads to a loss of FECH activity. Further biochemical and docking experiments identified the protoporphyrin pocket in FECH as one major drug binding site. Since the genetic loss of FECH activity leads to photosensitivity in humans, our data strongly suggest that FECH inhibition by kinase inhibitors is the molecular mechanism triggering photosensitivity in patients. We therefore suggest that a FECH assay should generally be part of the preclinical molecular toxicology package for the development of kinase inhibitors. PMID:26863403

  6. Targeting kinases with anilinopyrimidines: discovery of N-phenyl-N’-[4-(pyrimidin-4-ylamino)phenyl]urea derivatives as selective inhibitors of class III receptor tyrosine kinase subfamily

    PubMed Central

    Gandin, Valentina; Ferrarese, Alessandro; Dalla Via, Martina; Marzano, Cristina; Chilin, Adriana; Marzaro, Giovanni

    2015-01-01

    Kinase inhibitors are attractive drugs/drug candidates for the treatment of cancer. The most recent literature has highlighted the importance of multi target kinase inhibitors, although a correct balance between specificity and non-specificity is required. In this view, the discovery of multi-tyrosine kinase inhibitors with subfamily selectivity is a challenging goal. Herein we present the synthesis and the preliminary kinase profiling of a set of novel 4-anilinopyrimidines. Among the synthesized compounds, the N-phenyl-N’-[4-(pyrimidin-4-ylamino)phenyl]urea derivatives selectively targeted some members of class III receptor tyrosine kinase family. Starting from the structure of hit compound 19 we synthesized a further compound with an improved affinity toward the class III receptor tyrosine kinase members and endowed with a promising antitumor activity both in vitro and in vivo in a murine solid tumor model. Molecular modeling simulations were used in order to rationalize the behavior of the title compounds. PMID:26568452

  7. Selective Phosphorylation Inhibitor of Delta Protein Kinase C-Pyruvate Dehydrogenase Kinase Protein-Protein Interactions: Application for Myocardial Injury in Vivo.

    PubMed

    Qvit, Nir; Disatnik, Marie-Hélène; Sho, Eiketsu; Mochly-Rosen, Daria

    2016-06-22

    Protein kinases regulate numerous cellular processes, including cell growth, metabolism, and cell death. Because the primary sequence and the three-dimensional structure of many kinases are highly similar, the development of selective inhibitors for only one kinase is challenging. Furthermore, many protein kinases are pleiotropic, mediating diverse and sometimes even opposing functions by phosphorylating multiple protein substrates. Here, we set out to develop an inhibitor of a selective protein kinase phosphorylation of only one of its substrates. Focusing on the pleiotropic delta protein kinase C (δPKC), we used a rational approach to identify a distal docking site on δPKC for its substrate, pyruvate dehydrogenase kinase (PDK). We reasoned that an inhibitor of PDK's docking should selectively inhibit the phosphorylation of only PDK without affecting phosphorylation of the other δPKC substrates. Our approach identified a selective inhibitor of PDK docking to δPKC with an in vitro Kd of ∼50 nM and reducing cardiac injury IC50 of ∼5 nM. This inhibitor, which did not affect the phosphorylation of other δPKC substrates even at 1 μM, demonstrated that PDK phosphorylation alone is critical for δPKC-mediated injury by heart attack. The approach we describe is likely applicable for the identification of other substrate-specific kinase inhibitors. PMID:27218445

  8. A computational workflow for the design of irreversible inhibitors of protein kinases.

    PubMed

    Del Rio, Alberto; Sgobba, Miriam; Parenti, Marco Daniele; Degliesposti, Gianluca; Forestiero, Rosetta; Percivalle, Claudia; Conte, Pier Franco; Freccero, Mauro; Rastelli, Giulio

    2010-03-01

    Design of irreversible inhibitors is an emerging and relatively less explored strategy for the design of protein kinase inhibitors. In this paper, we present a computational workflow that was specifically conceived to assist such design. The workflow takes the form of a multi-step procedure that includes: the creation of a database of already known reversible inhibitors of protein kinases, the selection of the most promising scaffolds that bind one or more desired kinase templates, the modification of the scaffolds by introduction of chemically reactive groups (suitable cysteine traps) and the final evaluation of the reversible and irreversible protein-ligand complexes with molecular dynamics simulations and binding free energy predictions. Most of these steps were automated. In order to prove that this is viable, the workflow was tested on a database of known inhibitors of ERK2, a protein kinase possessing a cysteine in the ATP site. The modeled ERK2-ligand complexes and the values of the estimated binding free energies of the putative ligands provide useful indicators of their aptitude to bind reversibly and irreversibly to the protein kinase. Moreover, the computational data are used to rank the ligands according to their computed binding free energies and their ability to bind specific protein residues in the reversible and irreversible complexes, thereby providing a useful decision-making tool for each step of the design. In this work we present the overall procedure and the first proof of concept results. PMID:20306284

  9. De novo design of VEGFR-2 tyrosine kinase inhibitors based on a linked-fragment approach.

    PubMed

    Liu, Yi-Zhou; Wang, Xiao-Li; Wang, Xin-Ying; Yu, Ri-Lei; Liu, Dong-Qing; Kang, Cong-Min

    2016-09-01

    Vascular endothelial growth factor receptor-2 (VEGFR-2) tyrosine kinase inhibitors have been demonstrated to possess substantial antitumor activity. VEGFR-2 tyrosine kinase inhibitors are crucial for development of antitumor drugs. Based on the crystal structure of VEGFR-2 tyrosine kinase, a linked-fragment strategy was employed to design novel VEGFR-2 tyrosine kinase inhibitors, and 1000 compounds were generated in this process. Absorption, distribution, metabolism, excretion and toxicity (ADMET) were used to screen the 1000 compounds, and 59 compounds were acceptable. Scaffold hopping was then used for further screening, and only four compounds were obtained in this way. Then, the binding energy of the four molecules to VEGFR-2 tyrosine kinase was calculated using molecular docking, and their values were found to be lower than that of Sorafenib. Finally, molecular dynamics simulations were performed on the complex of the compound with the lowest binding energy with VEGFR-2 tyrosine kinase, and the binding model was analyzed. At the end, four chemical entities with novel structures were obtained, and were suggested for experimental testing in future studies. PMID:27558799

  10. Structural Bioinformatics-Based Prediction of Exceptional Selectivity of p38 MAP Kinase Inhibitor PH-797804

    SciTech Connect

    Xing, Li; Shieh, Huey S.; Selness, Shaun R.; Devraj, Rajesh V.; Walker, John K.; Devadas, Balekudru; Hope, Heidi R.; Compton, Robert P.; Schindler, John F.; Hirsch, Jeffrey L.; Benson, Alan G.; Kurumbail, Ravi G.; Stegeman, Roderick A.; Williams, Jennifer M.; Broadus, Richard M.; Walden, Zara; Monahan, Joseph B.; Pfizer

    2009-07-24

    PH-797804 is a diarylpyridinone inhibitor of p38{alpha} mitogen-activated protein (MAP) kinase derived from a racemic mixture as the more potent atropisomer (aS), first proposed by molecular modeling and subsequently confirmed by experiments. On the basis of structural comparison with a different biaryl pyrazole template and supported by dozens of high-resolution crystal structures of p38{alpha} inhibitor complexes, PH-797804 is predicted to possess a high level of specificity across the broad human kinase genome. We used a structural bioinformatics approach to identify two selectivity elements encoded by the TXXXG sequence motif on the p38{alpha} kinase hinge: (i) Thr106 that serves as the gatekeeper to the buried hydrophobic pocket occupied by 2,4-difluorophenyl of PH-797804 and (ii) the bidentate hydrogen bonds formed by the pyridinone moiety with the kinase hinge requiring an induced 180{sup o} rotation of the Met109-Gly110 peptide bond. The peptide flip occurs in p38{alpha} kinase due to the critical glycine residue marked by its conformational flexibility. Kinome-wide sequence mining revealed rare presentation of the selectivity motif. Corroboratively, PH-797804 exhibited exceptionally high specificity against MAP kinases and the related kinases. No cross-reactivity was observed in large panels of kinase screens (selectivity ratio of >500-fold). In cellular assays, PH-797804 demonstrated superior potency and selectivity consistent with the biochemical measurements. PH-797804 has met safety criteria in human phase I studies and is under clinical development for several inflammatory conditions. Understanding the rationale for selectivity at the molecular level helps elucidate the biological function and design of specific p38{alpha} kinase inhibitors.

  11. Structure-Based Design of Type II Inhibitors Applied to Maternal Embryonic Leucine Zipper Kinase.

    PubMed

    Johnson, Christopher N; Adelinet, Christophe; Berdini, Valerio; Beke, Lijs; Bonnet, Pascal; Brehmer, Dirk; Calo, Frederick; Coyle, Joseph E; Day, Phillip J; Frederickson, Martyn; Freyne, Eddy J E; Gilissen, Ron A H J; Hamlett, Christopher C F; Howard, Steven; Meerpoel, Lieven; Mevellec, Laurence; McMenamin, Rachel; Pasquier, Elisabeth; Patel, Sahil; Rees, David C; Linders, Joannes T M

    2015-01-01

    A novel Type II kinase inhibitor chemotype has been identified for maternal embryonic leucine zipper kinase (MELK) using structure-based ligand design. The strategy involved structural characterization of an induced DFG-out pocket by protein-ligand X-ray crystallography and incorporation of a slender linkage capable of bypassing a large gate-keeper residue, thus enabling design of molecules accessing both hinge and induced pocket regions. Optimization of an initial hit led to the identification of a low-nanomolar, cell-penetrant Type II inhibitor suitable for use as a chemical probe for MELK. PMID:25589926

  12. Structure-Based Design of Type II Inhibitors Applied to Maternal Embryonic Leucine Zipper Kinase

    PubMed Central

    2014-01-01

    A novel Type II kinase inhibitor chemotype has been identified for maternal embryonic leucine zipper kinase (MELK) using structure-based ligand design. The strategy involved structural characterization of an induced DFG-out pocket by protein–ligand X-ray crystallography and incorporation of a slender linkage capable of bypassing a large gate-keeper residue, thus enabling design of molecules accessing both hinge and induced pocket regions. Optimization of an initial hit led to the identification of a low-nanomolar, cell-penetrant Type II inhibitor suitable for use as a chemical probe for MELK. PMID:25589926

  13. Targeting the TGF-β receptor with kinase inhibitors for scleroderma therapy.

    PubMed

    Cong, Lin; Xia, Zhi-Kuan; Yang, Rong-Ya

    2014-09-01

    Scleroderma (systemic sclerosis) is a connective tissue disease that affects various organ systems; the treatment of scleroderma is still difficult and remains a challenge to the clinician. Recently, kinase inhibitors have shown great potential against fibrotic diseases and, specifically, the transforming growth factor-β receptor (TGF-βR) was found as a new and promising target for scleroderma therapy. In the current study, we propose that the large pool of existing kinase inhibitors could be exploited for inhibiting the TGF-βR to suppress scleroderma. In this respect, we developed a modeling protocol to systematically profile the inhibitory activities of 169 commercially available kinase inhibitors against the TGF-βR, from which five promising candidates were selected and tested using a standard kinase assay protocol. Consequently, two molecular entities, namely the PKB inhibitor MK-2206 and the mTOR C1/C2 inhibitor AZD8055, showed high potency when bound to the TGF-βR, with IC50 values of 97 and 86 nM, respectively, which are close to those of the recently developed TGF-βR selective inhibitors SB525334 and LY2157299 (IC50 = 14.3 and 56 nM, respectively). We also performed atomistic molecular dynamics simulations and post-molecular mechanics/Poisson-Boltzmann surface area analyses to dissect the structural basis and energetic properties of intermolecular interactions between the TGF-βR kinase domain and these potent compounds, highlighting intensive nonbonded networks across the tightly packed interface of non-cognate TGF-βR-inhibitor complexes. PMID:24917246

  14. Preclinical testing of selective Aurora kinase inhibitors on a medullary thyroid carcinoma-derived cell line.

    PubMed

    Tuccilli, Chiara; Baldini, Enke; Prinzi, Natalie; Morrone, Stefania; Sorrenti, Salvatore; Filippini, Angelo; Catania, Antonio; Alessandrini, Stefania; Rendina, Roberta; Coccaro, Carmela; D'Armiento, Massimino; Ulisse, Salvatore

    2016-05-01

    Deregulated expression of the Aurora kinases (Aurora-A, B, and C) is thought to be involved in cell malignant transformation and genomic instability in several cancer types. Over the last decade, a number of small-molecule inhibitors of Aurora kinases have been developed, which have proved to efficiently restrain malignant cell growth and tumorigenicity. Regarding medullary thyroid carcinoma (MTC), we previously showed the efficacy of a pan-Aurora kinase inhibitor (MK-0457) in impairing growth and survival of the MTC-derived cell line TT. In the present study, we sought to establish if one of the Aurora kinases might represent a preferential target for MTC therapy. The effects of selective inhibitors of Aurora-A (MLN8237) and Aurora-B (AZD1152) were analyzed on TT cell proliferation, apoptosis, cell cycle, and ploidy. The two inhibitors reduced TT cell proliferation in a time- and dose-dependent manner, with IC50 of 19.0 ± 2.4 nM for MLN8237 and 401.6 ± 44.1 nM for AZD1152. Immunofluorescence experiments confirmed that AZD1152 inhibited phosphorylation of histone H3 (Ser10) by Aurora-B, while it did not affect Aurora-A autophosphorylation. MLN8237 inhibited Aurora-A autophosphorylation as expected, but at concentrations required to achieve the maximum antiproliferative effects it also abolished H3 (Ser10) phosphorylation. Cytofluorimetry experiments showed that both inhibitors induced accumulation of cells in G2/M phase and increased the subG0/G1 fraction and polyploidy. Finally, both inhibitors triggered apoptosis. We demonstrated that inhibition of either Aurora-A or Aurora-B has antiproliferative effects on TT cells, and thus it would be worthwhile to further investigate the therapeutical potential of Aurora kinase inhibitors in MTC treatment. PMID:26215279

  15. Are Accurins the cure for Aurora kinase inhibitors?

    PubMed

    Bearss, David J

    2016-02-10

    A nanoparticle formulation of an Aurora B inhibitor increases antitumor efficacy and reduces toxicity, which may be a precedent for the use of this technology with other small molecules (Ashton et al., this issue). PMID:26865564

  16. Inhibitors of cellular kinases with broad-spectrum antiviral activity for hemorrhagic fever viruses.

    PubMed

    Mohr, Emma L; McMullan, Laura K; Lo, Michael K; Spengler, Jessica R; Bergeron, Éric; Albariño, César G; Shrivastava-Ranjan, Punya; Chiang, Cheng-Feng; Nichol, Stuart T; Spiropoulou, Christina F; Flint, Mike

    2015-08-01

    Host cell kinases are important for the replication of a number of hemorrhagic fever viruses. We tested a panel of kinase inhibitors for their ability to block the replication of multiple hemorrhagic fever viruses. OSU-03012 inhibited the replication of Lassa, Ebola, Marburg and Nipah viruses, whereas BIBX 1382 dihydrochloride inhibited Lassa, Ebola and Marburg viruses. BIBX 1382 blocked both Lassa and Ebola virus glycoprotein-dependent cell entry. These compounds may be used as tools to understand conserved virus-host interactions, and implicate host cell kinases that may be targets for broad spectrum therapeutic intervention. PMID:25986249

  17. Selective inhibitors of Cyclin-G associated kinase (GAK) as anti-HCV agents

    PubMed Central

    Kovackova, Sona; Chang, Lei; Bekerman, Elena; Neveu, Gregory; Barouch-Bentov, Rina; Chaikuad, Apirat; Heroven, Christina; Šála, Michal; De Jonghe, Steven; Knapp, Stefan; Einav, Shirit; Herdewijn, Piet

    2015-01-01

    Cyclin-G associated kinase (GAK) emerged as a promising drug target for the treatment of viral infections. However, no potent and selective GAK inhibitors have been reported in the literature to date. This paper describes the discovery of isothiazolo[5,4-b]pyridines as selective GAK inhibitors, with the most potent congeners displaying low nanomolar binding affinity for GAK. Co-crystallization experiments revealed that these compounds behaved as classic type I ATP-competitive kinase inhibitors. In addition, we have demonstrated that these compounds exhibit a potent activity against hepatitis C virus (HCV) by inhibiting two temporally distinct steps in the HCV lifecycle (i.e. viral entry and assembly). Hence, these GAK inhibitors represent chemical probes to study GAK function in different disease areas where GAK has been implicated (including viral infection, cancer and Parkinson's disease). PMID:25822739

  18. Tyrosine Kinase Inhibitors and Vascular Toxicity: Impetus for a Classification System?

    PubMed

    Herrmann, Joerg

    2016-06-01

    The introduction of molecularly targeted therapies with tyrosine kinase inhibitors has revolutionized cancer therapy and has contributed to a steady decline in cancer-related mortality since the late 1990s. However, not only cardiac but also vascular toxicity has been reported for these agents, some as expected on-target effects (e.g., VEGF receptor inhibitors) and others as unanticipated events (e.g., BCR-Abl inhibitors). A sound understanding of these cardiovascular toxic effects is critical to advance mechanistic insight into vascular disease and clinical care. From a conceptual standpoint, there might be value in defining type I (permanent) and type II (transient) vascular toxicity. This review will focus on the tyrosine kinase inhibitors in current clinical use and their associated vascular side effects. PMID:27099141

  19. Methods Of Using Chemical Libraries To Search For New Kinase Inhibitors

    DOEpatents

    Gray, Nathanael S. , Schultz, Peter , Wodicka, Lisa , Meijer, Laurent , Lockhart, David J.

    2003-06-03

    The generation of selective inhibitors for specific protein kinases would provide new tools for analyzing signal transduction pathways and possibly new therapeutic agents. We have invented an approach to the development of selective protein kinase inhibitors based on the unexpected binding mode of 2,6,9-trisubstituted purines to the ATP binding site of human CDK2. The most potent inhibitor, purvalanol B (IC.sub.50 =6 nM), binds with a 30-fold greater affinity than the known CDK2 inhibitor, flavopiridol. The cellular effects of this class of compounds were examined and compared to those of flavopiridol by monitoring changes in mRNA expression levels for all genes in treated cells of Saccharomyces cerevisiae using high-density oligonucleotide probe arrays.

  20. mTOR kinase inhibitors synergize with histone deacetylase inhibitors to kill B-cell acute lymphoblastic leukemia cells.

    PubMed

    Beagle, Brandon R; Nguyen, Duc M; Mallya, Sharmila; Tang, Sarah S; Lu, Mengrou; Zeng, Zhihong; Konopleva, Marina; Vo, Thanh-Trang; Fruman, David A

    2015-02-10

    High activity of the mechanistic target of rapamycin (mTOR) is associated with poor prognosis in pre-B-cell acute lymphoblastic leukemia (B-ALL), suggesting that inhibiting mTOR might be clinically useful. However, emerging data indicate that mTOR inhibitors are most effective when combined with other target agents. One strategy is to combine with histone deacetylase (HDAC) inhibitors, since B-ALL is often characterized by epigenetic changes that silence the expression of pro-apoptotic factors. Here we tested combinations of mTOR and pan-HDAC inhibitors on B-ALL cells, including both Philadelphia chromosome-positive (Ph+) and non-Ph cell lines. We found that mTOR kinase inhibitors (TOR-KIs) synergize with HDAC inhibitors to cause apoptosis in B-ALL cells and the effect is greater when compared to rapamycin plus HDAC inhibitors. The combination of TOR-KIs with the clinically approved HDAC inhibitor vorinostat increased apoptosis in primary pediatric B-ALL cells in vitro. Mechanistically, TOR-KI and HDAC inhibitor combinations increased expression of pro-death genes, including targets of the Forkhead Box O (FOXO) transcription factors, and increased sensitivity to apoptotic triggers at the mitochondria. These findings suggest that targeting epigenetic factors can unmask the cytotoxic potential of TOR-KIs towards B-ALL cells. PMID:25576920

  1. Antispasmodic and myorelaxant effects of the flavoring agent methyl cinnamate in gut: potential inhibition of tyrosine kinase.

    PubMed

    Lima, Francisco J B; Cosker, François; Brito, Teresinha S; Ribeiro-Filho, Hélder V; Silva, Camila M S; Aragão, Karoline S; Lahlou, Saad; Souza, Marcellus H L P; Santos, Armênio A; Magalhães, Pedro J C

    2014-10-01

    Methyl cinnamate (MC) is a safe flavoring agent useful to food industry. Although chemically analog to tyrosine kinase inhibitors, there is little information regarding its biological actions. Here, we aimed at assessing the MC effects on gastrointestinal contractility and the putative involvement of tyrosine kinase in the mediation of these effects. Isometric contractions were recorded in rat isolated strips from stomach, duodenum and colon segments. In gastric strips, MC (3-3000 µM) showed antispasmodic effects against carbachol-induced contractions, which remained unchanged by either l-NAME or tetraethylammonium pretreatment and occurred with potency similar to that obtained against contractions evoked by potassium or U-46619. In colon strips, MC was four times more potent than in gastric ones. MC and the positive control genistein inhibited phasic contractions induced by acetylcholine in Ca2+-free medium, an effect fully prevented by sodium orthovanadate. Both MC and genistein decreased the spontaneous contractions of duodenal strips and shortened the time necessary for gastric fundic tissues to reach 50% of maximal relaxation. In freshly isolated colon myocytes, MC decreased the basal levels of cytoplasmic Ca2+, but not the potassium-elicited cytoplasmic Ca2+ elevation. Colon strips obtained from rats subjected to intracolonic acetic acid instillation showed reduced contractility to potassium, which was partially recovered in MC-treated rats. Inhibitory effect of nifedipine against cholinergic contractions, blunted in acetic acid-induced colitis, was also recovered in MC-treated rats. In conclusion, MC inhibited the gastrointestinal contractility with a probable involvement of tyrosine kinase pathways. In vivo, it was effective to prevent the deleterious effects of colitis resulting from acetic acid injury. PMID:25046838

  2. The Src-family tyrosine kinase inhibitor PP1 interferes with the activation of ribosomal protein S6 kinases.

    PubMed Central

    Shah, O Jameel; Kimball, Scot R; Jefferson, Leonard S

    2002-01-01

    Considerable biochemical and pharmacological evidence suggests that the activation of ribosomal protein S6 kinases (S6Ks) by activated receptor tyrosine kinases involves multiple co-ordinated input signals. However, the identities of many of these inputs remain poorly described, and their precise involvement in S6K activation has been the subject of great investigative effort. In the present study, we have shown that 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP1), a selective inhibitor of the Src family of non-receptor tyrosine kinases, interferes with the activation of 70 and 85 kDa S6K gene products (p70S6K1 and p85S6K1) by insulin, insulin-like growth factor 1, sodium orthovanadate and activated alleles of phosphoinositide 3-kinase and H-Ras. PP1 also impedes the activation of AKT/protein kinase B and the extracellular signal-regulated protein kinases 1 and 2 by these various stimuli. Insulin-like growth factor 1 was observed to induce a sustained increase in c-Src autophosphorylation as revealed using anti-phospho-Y416 antisera, but this effect was absent from the cells treated with PP1. To conclude, an activated allele of p70S6K1 is compared with the wild-type allele, resistant to inhibition by PP1 when co-expressed with phosphoinositide-dependent kinase 1 (PDK1), suggesting that PP1 affects p70S6K1 via a PDK1-independent pathway. Thus activation of Src may supply a necessary signal for the activation of p70S6K1 and possibly other S6Ks. PMID:12014987

  3. Structural differences between wild type and double mutant EGFR modulated by third-generation kinase inhibitors

    PubMed Central

    Lowder, Melissa A.; Doerner, Amy E.; Schepartz, Alanna

    2015-01-01

    Mutations in the EGFR kinase domain are implicated in non-small cell lung cancer. Of particular interest is the drug-resistant double mutant (L858R/T790M, DM EGFR), which is not inhibited selectively by any approved kinase inhibitor. Here we apply bipartite tetracysteine display to demonstrate that DM and WT EGFR differ in structure outside the kinase domain. The structural difference is located within the cytoplasmic juxtamembrane segment (JM) that links the kinase domain with the extracellular and transmembrane regions and is essential for EGFR activation. We show further that third-generation DM EGFR-selective TKIs alter JM structure via allostery to restore the conformation found when WT EGFR is activated by the growth factors EGF and HB-EGF. This work suggests that the oncogenic activity of DM EGFR may extend beyond kinase activity per se to include kinase-independent activities. As JM structure may provide a biomarker for these kinase-independent functions, these insights could guide the development of allosteric, DM-selective inhibitors. PMID:25973741

  4. Discovery of 2-((3-Amino-4-methylphenyl)amino)-N-(2-methyl-5-(3-(trifluoromethyl)benzamido)phenyl)-4-(methylamino)pyrimidine-5-carboxamide (CHMFL-ABL-053) as a Potent, Selective, and Orally Available BCR-ABL/SRC/p38 Kinase Inhibitor for Chronic Myeloid Leukemia.

    PubMed

    Liang, Xiaofei; Liu, Xiaochuan; Wang, Beilei; Zou, Fengming; Wang, Aoli; Qi, Shuang; Chen, Cheng; Zhao, Zheng; Wang, Wenchao; Qi, Ziping; Lv, Fengchao; Hu, Zhenquan; Wang, Li; Zhang, Shanchun; Liu, Qingsong; Liu, Jing

    2016-03-10

    Starting from a dihydropyrimidopyrimidine core scaffold based compound 27 (GNF-7), we discovered a highly potent (ABL1: IC50 of 70 nM) and selective (S score (1) = 0.02) BCR-ABL inhibitor 18a (CHMFL-ABL-053). Compound 18a did not exhibit apparent inhibitory activity against c-KIT kinase, which is the common target of currently clinically used BCR-ABL inhibitors. Through significant suppression of the BCR-ABL autophosphorylation (EC50 about 100 nM) and downstream mediators such as STAT5, Crkl, and ERK's phosphorylation, 18a inhibited the proliferation of CML cell lines K562 (GI50 = 14 nM), KU812 (GI50 = 25 nM), and MEG-01 (GI50 = 16 nM). A pharmacokinetic study revealed that 18a had over 4 h of half-life and 24% bioavailability in rats. A 50 mg/kg/day dosage treatment could almost completely suppress tumor progression in the K562 cells inoculated xenograft mouse model. As a potential useful drug candidate for CML, 18a is under extensive preclinical safety evaluation now. PMID:26789553

  5. Development of Specific, Irreversible Inhibitors for a Receptor Tyrosine Kinase EphB3.

    PubMed

    Kung, Alvin; Chen, Ying-Chu; Schimpl, Marianne; Ni, Feng; Zhu, Jianfa; Turner, Maurice; Molina, Henrik; Overman, Ross; Zhang, Chao

    2016-08-24

    Erythropoietin-producing human hepatocellular carcinoma (Eph) receptor tyrosine kinases (RTKs) regulate a variety of dynamic cellular events, including cell protrusion, migration, proliferation, and cell-fate determination. Small-molecule inhibitors of Eph kinases are valuable tools for dissecting the physiological and pathological roles of Eph. However, there is a lack of small-molecule inhibitors that are selective for individual Eph isoforms due to the high homology within the family. Herein, we report the development of the first potent and specific inhibitors of a single Eph isoform, EphB3. Through structural bioinformatic analysis, we identified a cysteine in the hinge region of the EphB3 kinase domain, a feature that is not shared with any other human kinases. We synthesized and characterized a series of electrophilic quinazolines to target this unique, reactive feature in EphB3. Some of the electrophilic quinazolines selectively and potently inhibited EphB3 both in vitro and in cells. Cocrystal structures of EphB3 in complex with two quinazolines confirmed the covalent linkage between the protein and the inhibitors. A "clickable" version of an optimized inhibitor was created and employed to verify specific target engagement in the whole proteome and to probe the extent and kinetics of target engagement of existing EphB3 inhibitors. Furthermore, we demonstrate that the autophosphorylation of EphB3 within the juxtamembrane region occurs in trans using a specific inhibitor. These exquisitely specific inhibitors will facilitate the dissection of EphB3's role in various biological processes and disease contribution. PMID:27478969

  6. A Pentacyclic Aurora Kinase Inhibitor (AKI-001) With High in Vivo Potency And Oral Bioavailability

    SciTech Connect

    Rawson, T.E.; Ruth, M.; Blackwood, E.; Burdick, D.; Corson, L.; Dotson, J.; Drummond, J.; Fields, C.; Georges, G.J.; Goller, B.; Halladay, J.; Hunsaker, T.; Kleinheinz, T.; Krell, H.-W.; Li, J.; Liang, J.; Limberg, A.; McNutt, A.; Moffat, J.; Phillips, G.; Ran, Y.

    2009-05-21

    Aurora kinase inhibitors have attracted a great deal of interest as a new class of antimitotic agents. We report a novel class of Aurora inhibitors based on a pentacyclic scaffold. A prototype pentacyclic inhibitor 32 (AKI-001) derived from two early lead structures improves upon the best properties of each parent and compares favorably to a previously reported Aurora inhibitor, 39 (VX-680). The inhibitor exhibits low nanomolar potency against both Aurora A and Aurora B enzymes, excellent cellular potency (IC{sub 50} < 100 nM), and good oral bioavailability. Phenotypic cellular assays show that both Aurora A and Aurora B are inhibited at inhibitor concentrations sufficient to block proliferation. Importantly, the cellular activity translates to potent inhibition of tumor growth in vivo. An oral dose of 5 mg/kg QD is well tolerated and results in near stasis (92% TGI) in an HCT116 mouse xenograft model.

  7. Cellular impedance assays for predictive preclinical drug screening of kinase inhibitor cardiovascular toxicity.

    PubMed

    Lamore, Sarah D; Kamendi, Harriet W; Scott, Clay W; Dragan, Yvonne P; Peters, Matthew F

    2013-10-01

    Cardiovascular (CV) toxicity is a leading contributor to drug attrition. Implementing earlier testing has successfully reduced human Ether-à-go-go-Related Gene-related arrhythmias. How- ever, analogous assays targeting functional CV effects remain elusive. Demand to address this gap is particularly acute for kinase inhibitors (KIs) that suffer frequent CV toxicity. The drug class also presents some particularly challenging requirements for assessing functional CV toxicity. Specifically, an assay must sense a downstream response that integrates diverse kinase signaling pathways. In addition, sufficient throughput is essential for handling inherent KI nonselectivity. A new opportunity has emerged with cellular impedance technology, which detects spontaneous beating cardiomyocytes. Impedance assays sense morphology changes downstream of cardiomyocyte contraction. To evaluate cardiomyocyte impedance assays for KI screening, we investigated two distinct KI classes where CV toxicity was discovered late and target risks remain unresolved. Microtubule-associated protein/microtubule affinity regulating kinase (MARK) inhibitors decrease blood pressure in dogs, whereas checkpoint kinase (Chk) inhibitors (AZD7762, SCH900776) exhibit dose-limiting CV toxicities in clinical trials. These in vivo effects manifested in vitro as cardiomyocyte beat cessation. MARK effects were deemed mechanism associated because beat inhibition potencies correlated with kinase inhibition, and gene knockdown and microtubule-targeting agents suppressed beating. MARK inhibitor impedance and kinase potencies aligned with rat blood pressure effects. Chk inhibitor effects were judged off-target because Chk and beat inhibition potencies did not correlate and knockdowns did not alter beating. Taken together, the data demonstrate that cardiomyocyte impedance assays can address three unmet needs-detecting KI functional cardiotoxicity in vitro, determining mechanism of action, and supporting safety structure

  8. Structural Mechanism of the Pan-BCR-ABL Inhibitor Ponatinib (AP24534): Lessons for Overcoming Kinase Inhibitor Resistance

    SciTech Connect

    Zhou, Tianjun; Commodore, Lois; Huang, Wei-Sheng; Wang, Yihan; Thomas, Mathew; Keats, Jeff; Xu, Qihong; Rivera, Victor M.; Shakespeare, William C.; Clackson, Tim; Dalgarno, David C.; Zhu, Xiaotian

    2012-01-20

    The BCR-ABL inhibitor imatinib has revolutionized the treatment of chronic myeloid leukemia. However, drug resistance caused by kinase domain mutations has necessitated the development of new mutation-resistant inhibitors, most recently against the T315I gatekeeper residue mutation. Ponatinib (AP24534) inhibits both native and mutant BCR-ABL, including T315I, acting as a pan-BCR-ABL inhibitor. Here, we undertook a combined crystallographic and structure-activity relationship analysis on ponatinib to understand this unique profile. While the ethynyl linker is a key inhibitor functionality that interacts with the gatekeeper, virtually all other components of ponatinib play an essential role in its T315I inhibitory activity. The extensive network of optimized molecular contacts found in the DFG-out binding mode leads to high potency and renders binding less susceptible to disruption by single point mutations. The inhibitory mechanism exemplified by ponatinib may have broad relevance to designing inhibitors against other kinases with mutated gatekeeper residues.

  9. Discovery and Characterization of a Biologically Active Non-ATP-Competitive p38 MAP Kinase Inhibitor.

    PubMed

    Wilson, Brice A P; Alam, Muhammad S; Guszczynski, Tad; Jakob, Michal; Shenoy, Shilpa R; Mitchell, Carter A; Goncharova, Ekaterina I; Evans, Jason R; Wipf, Peter; Liu, Gang; Ashwell, Jonathan D; O'Keefe, Barry R

    2016-03-01

    Mitogen-activated protein kinase (MAPK) p38 is part of a broad and ubiquitously expressed family of MAPKs whose activity is responsible for mediating an intracellular response to extracellular stimuli through a phosphorylation cascade. p38 is central to this signaling node and is activated by upstream kinases while being responsible for activating downstream kinases and transcription factors via phosphorylation. Dysregulated p38 activity is associated with numerous autoimmune disorders and has been implicated in the progression of several types of cancer. A number of p38 inhibitors have been tested in clinical trials, with none receiving regulatory approval. One characteristic shared by all of the compounds that failed clinical trials is that they are all adenosine triphosphate (ATP)-competitive p38 inhibitors. Seeing this lack of mechanistic diversity as an opportunity, we screened ~32,000 substances in search of novel p38 inhibitors. Among the inhibitors discovered is a compound that is both non-ATP competitive and biologically active in cell-based models for p38 activity. This is the first reported discovery of a non-ATP-competitive p38 inhibitor that is active in cells and, as such, may enable new pharmacophore designs for both therapeutic and basic research to better understand and exploit non-ATP-competitive inhibitors of p38 activity. PMID:26538432

  10. LIM kinase inhibitors disrupt mitotic microtubule organization and impair tumor cell proliferation

    PubMed Central

    Mardilovich, Katerina; Baugh, Mark; Crighton, Diane; Kowalczyk, Dominika; Gabrielsen, Mads; Munro, June; Croft, Daniel R.; Lourenco, Filipe; James, Daniel; Kalna, Gabriella; McGarry, Lynn; Rath, Oliver; Shanks, Emma; Garnett, Mathew J.; McDermott, Ultan; Brookfield, Joanna; Charles, Mark; Hammonds, Tim; Olson, Michael F.

    2015-01-01

    The actin and microtubule cytoskeletons are critically important for cancer cell proliferation, and drugs that target microtubules are widely-used cancer therapies. However, their utility is compromised by toxicities due to dose and exposure. To overcome these issues, we characterized how inhibition of the actin and microtubule cytoskeleton regulatory LIM kinases could be used in drug combinations to increase efficacy. A previously-described LIMK inhibitor (LIMKi) induced dose-dependent microtubule alterations that resulted in significant mitotic defects, and increased the cytotoxic potency of microtubule polymerization inhibitors. By combining LIMKi with 366 compounds from the GSK Published Kinase Inhibitor Set, effective combinations were identified with kinase inhibitors including EGFR, p38 and Raf. These findings encouraged a drug discovery effort that led to development of CRT0105446 and CRT0105950, which potently block LIMK1 and LIMK2 activity in vitro, and inhibit cofilin phosphorylation and increase αTubulin acetylation in cells. CRT0105446 and CRT0105950 were screened against 656 cancer cell lines, and rhabdomyosarcoma, neuroblastoma and kidney cancer cells were identified as significantly sensitive to both LIMK inhibitors. These large-scale screens have identified effective LIMK inhibitor drug combinations and sensitive cancer types. In addition, the LIMK inhibitory compounds CRT0105446 and CRT0105950 will enable further development of LIMK-targeted cancer therapy. PMID:26540348

  11. Protein-Protein Interaction for the De Novo Design of Cyclin-Dependent Kinase Peptide Inhibitors.

    PubMed

    Arumugasamy, Karthiga; Tripathi, Sunil Kumar; Singh, Poonam; Singh, Sanjeev Kumar

    2016-01-01

    The homology of the inhibitor binding site regions on the surface of cyclin-dependent kinases (CDKs) makes actual CDK inhibitors unable to bind specifically to their molecular targets. Most of them are ATP competitive inhibitors with low specificity that also affect the phosphorylation mechanisms of other nontarget kinases giving rise to harmful side effects. So, the search of specific and potent inhibitors able to bind to the desired CDK target is still a pending issue. Structure based drug design minimized the erroneous binding and increased the affinity of the inhibitor interaction. In the case of CDKs their activation and regulation mechanisms mainly depend on protein-protein interactions (PPIs). The design of drugs targeting these PPIs makes feasible and promising towards the discovery of new and specific CDK inhibitors. Development of peptide inhibitors for a target protein is an emerging approach in computer aided drug designing. This chapter describes in detail methodology for use of the VitAL-Viterbi algorithm for de novo peptide design of CDK2 inhibitors. PMID:26231708

  12. Identification of ponatinib and other known kinase inhibitors with potent MEKK2 inhibitory activity.

    PubMed

    Ahmad, Syed; Johnson, Gary L; Scott, John E

    2015-08-01

    The kinase MEKK2 (MAP3K2) may play an important role in tumor growth and metastasis for several cancer types. Thus, targeting MEKK2 may represent a novel strategy for developing more effective therapies for cancer. In order to identify small molecules with MEKK2 inhibitory activity, we screened a collection of known kinase inhibitors using a high throughput MEKK2 intrinsic ATPase enzyme assay and confirmed activity of the most potent hits with this primary assay. We also confirmed activities of these known kinase inhibitors with an MEKK2 transphosphorylation slot blot assay using MKK6 as a substrate. We observed a good correlation in potencies between the two orthogonal MEKK2 kinase activity assay formats for this set of inhibitors. We report that ponatinib, AT9283, AZD7762, JNJ-7706621, PP121 and hesperadin had potent MEKK2 enzyme inhibitory activities ranging from 4.7 to 60 nM IC50. Ponatinib is an FDA-approved drug that potently inhibited MEKK2 enzyme activity with IC50 values of 10-16 nM. AT9283 is currently in clinical trials and produced MEKK2 IC50 values of 4.7-18 nM. This set of known kinase inhibitors represents some of the most potent in vitro MEKK2 inhibitors reported to date and may be useful as research tools. Although these compounds are not selective for MEKK2, the structures of these compounds give insight into pharmacophores that potently inhibit MEKK2 and could be used as initial leads to design highly selective inhibitors of MEKK2. PMID:26056008

  13. Pharmacophore modeling study based on known spleen tyrosine kinase inhibitors together with virtual screening for identifying novel inhibitors.

    PubMed

    Xie, Huan-Zhang; Li, Lin-Li; Ren, Ji-Xia; Zou, Jun; Yang, Li; Wei, Yu-Quan; Yang, Sheng-Yong

    2009-04-01

    In this investigation, chemical features based 3D pharmacophore models were developed based on the known inhibitors of Spleen tyrosine kinase (Syk) with the aid of hiphop and hyporefine modules within catalyst. The best quantitative pharmacophore model, Hypo1, was used as a 3D structural query for retrieving potential inhibitors from chemical databases including Specs, NCI, MayBridge, and Chinese Nature Product Database (CNPD). The hit compounds were subsequently subjected to filtering by Lipinski's rule of five and docking studies to refine the retrieved hits. Finally 30 compounds were selected from the top ranked hit compounds and conducted an in vitro kinase inhibitory assay. Six compounds showed a good inhibitory potency against Syk, which have been selected for further investigation. PMID:19254842

  14. The N-terminal SH4 region of the Src family kinase Fyn is modified by methylation and heterogeneous fatty acylation: role in membrane targeting, cell adhesion, and spreading.

    PubMed

    Liang, Xiquan; Lu, Yun; Wilkes, Meredith; Neubert, Thomas A; Resh, Marilyn D

    2004-02-27

    The N-terminal SH4 domain of Src family kinases is responsible for promoting membrane binding and plasma membrane targeting. Most Src family kinases contain an N-terminal Met-Gly-Cys consensus sequence that undergoes dual acylation with myristate and palmitate after removal of methionine. Previous studies of Src family kinase fatty acylation have relied on radiolabeling of cells with radioactive fatty acids. Although this method is useful for verifying that a given fatty acid is attached to a protein, it does not reveal whether other fatty acids or other modifying groups are attached to the protein. Here we use matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry to identify fatty acylated species of the Src family kinase Fyn. Our results reveal that Fyn is efficiently myristoylated and that some of the myristoylated proteins are also heterogeneously S-acylated with palmitate, palmitoleate, stearate, or oleate. Furthermore, we show for the first time that Fyn is trimethylated at lysine residues 7 and/or 9 within its N-terminal region. Both myristoylation and palmitoylation were required for methylation of Fyn. However, a general methylation inhibitor had no inhibitory effect on myristoylation and palmitoylation of Fyn, suggesting that methylation occurs after myristoylation and palmitoylation. Lysine mutants of Fyn that could not be methylated failed to promote cell adhesion and spreading, suggesting that methylation is important for Fyn function. PMID:14660555

  15. Optimisation of a 5-[3-phenyl-(2-cyclic-ether)-methyl-ether]-4-aminopyrrolopyrimidine series of IGF-1R inhibitors.

    PubMed

    Fairhurst, Robin A; Marsilje, Thomas H; Stutz, Stefan; Boos, Andreas; Niklaus, Michel; Chen, Bei; Jiang, Songchun; Lu, Wenshuo; Furet, Pascal; McCarthy, Clive; Stauffer, Frédéric; Guagnano, Vito; Vaupel, Andrea; Michellys, Pierre-Yves; Schnell, Christian; Jeay, Sébastien

    2016-04-15

    Taking the pyrrolopyrimidine derived IGF-1R inhibitor NVP-AEW541 as the starting point, the benzyl ether back-pocket binding moiety was replaced with a series of 2-cyclic ether methyl ethers leading to the identification of novel achiral [2.2.1]-bicyclic ether methyl ether containing analogues with improved IGF-1R activities and kinase selectivities. Further exploration of the series, including a fluorine scan of the 5-phenyl substituent, and optimisation of the sugar-pocket binding moiety identified compound 33 containing (S)-2-tetrahydrofuran methyl ether 6-fluorophenyl ether back-pocket, and cis-N-Ac-Pip sugar-pocket binding groups. Compound 33 showed improved selectivity and pharmacokinetics compared to NVP-AEW541, and produced comparable in vivo efficacy to linsitinib in inhibiting the growth of an IGF-1R dependent tumour xenograft model in the mouse. PMID:26951753

  16. The cardiotoxicity and myocyte damage caused by small molecule anticancer tyrosine kinase inhibitors is correlated with lack of target specificity

    SciTech Connect

    Hasinoff, Brian B.

    2010-04-15

    The use of the new anticancer tyrosine kinase inhibitors (TKI) has revolutionized the treatment of certain cancers. However, the use of some of these results in cardiotoxicity. Large-scale profiling data recently made available for the binding of 7 of the 9 FDA-approved tyrosine kinase inhibitors to a panel of 317 kinases has allowed us to correlate kinase inhibitor binding selectivity scores with TKI-induced damage to neonatal rat cardiac myocytes. The tyrosine kinase selectivity scores, but not the serine-threonine kinase scores, were highly correlated with the myocyte damaging effects of the TKIs. Additionally, we showed that damage to myocytes gave a good rank order correlation with clinical cardiotoxicity. Finally, strength of TKI binding to colony-stimulating factor 1 receptor (CSF1R) was highly correlated with myocyte damage, thus possibly implicating this kinase in contributing to TKI-induced cardiotoxicity.

  17. Discovery and Characterization of Non-ATP Site Inhibitors of the Mitogen Activated Protein (MAP) Kinases

    SciTech Connect

    Comess, Kenneth M.; Sun, Chaohong; Abad-Zapatero, Cele; Goedken, Eric R.; Gum, Rebecca J.; Borhani, David W.; Argiriadi, Maria; Groebe, Duncan R.; Jia, Yong; Clampit, Jill E.; Haasch, Deanna L.; Smith, Harriet T.; Wang, Sanyi; Song, Danying; Coen, Michael L.; Cloutier, Timothy E.; Tang, Hua; Cheng, Xueheng; Quinn, Christopher; Liu, Bo; Xin, Zhili; Liu, Gang; Fry, Elizabeth H.; Stoll, Vincent; Ng, Teresa I.; Banach, David; Marcotte, Doug; Burns, David J.; Calderwood, David J.; Hajduk, Philip J.

    2012-03-02

    Inhibition of protein kinases has validated therapeutic utility for cancer, with at least seven kinase inhibitor drugs on the market. Protein kinase inhibition also has significant potential for a variety of other diseases, including diabetes, pain, cognition, and chronic inflammatory and immunologic diseases. However, as the vast majority of current approaches to kinase inhibition target the highly conserved ATP-binding site, the use of kinase inhibitors in treating nononcology diseases may require great selectivity for the target kinase. As protein kinases are signal transducers that are involved in binding to a variety of other proteins, targeting alternative, less conserved sites on the protein may provide an avenue for greater selectivity. Here we report an affinity-based, high-throughput screening technique that allows nonbiased interrogation of small molecule libraries for binding to all exposed sites on a protein surface. This approach was used to screen both the c-Jun N-terminal protein kinase Jnk-1 (involved in insulin signaling) and p38{alpha} (involved in the formation of TNF{alpha} and other cytokines). In addition to canonical ATP-site ligands, compounds were identified that bind to novel allosteric sites. The nature, biological relevance, and mode of binding of these ligands were extensively characterized using two-dimensional {sup 1}H/{sup 13}C NMR spectroscopy, protein X-ray crystallography, surface plasmon resonance, and direct enzymatic activity and activation cascade assays. Jnk-1 and p38{alpha} both belong to the MAP kinase family, and the allosteric ligands for both targets bind similarly on a ledge of the protein surface exposed by the MAP insertion present in the CMGC family of protein kinases and distant from the active site. Medicinal chemistry studies resulted in an improved Jnk-1 ligand able to increase adiponectin secretion in human adipocytes and increase insulin-induced protein kinase PKB phosphorylation in human hepatocytes, in

  18. Tyrosine Kinase Inhibitors Induce Down-Regulation of c-Kit by Targeting the ATP Pocket

    PubMed Central

    Descarpentries, Clotilde; Frisan, Emilie; Adam, Kevin; Verdier, Frederique; Floquet, Célia; Dubreuil, Patrice; Lacombe, Catherine; Fontenay, Michaela; Mayeux, Patrick; Kosmider, Olivier

    2013-01-01

    The stem cell factor receptor (SCF) c-Kit plays a pivotal role in regulating cell proliferation and survival in many cell types. In particular, c-Kit is required for early amplification of erythroid progenitors, while it must disappear from cell surface for the cell entering the final steps of maturation in an erythropoietin-dependent manner. We initially observed that imatinib (IM), an inhibitor targeting the tyrosine kinase activity of c-Kit concomitantly down-regulated the expression of c-Kit and accelerated the Epo-driven differentiation of erythroblasts in the absence of SCF. We investigated the mechanism by which IM or related masitinib (MA) induce c-Kit down-regulation in the human UT-7/Epo cell line. We found that the down-regulation of c-Kit in the presence of IM or MA was inhibited by a pre-incubation with methyl-β-cyclodextrin suggesting that c-Kit was internalized in the absence of ligand. By contrast to SCF, the internalization induced by TKI was independent of the E3 ubiquitin ligase c-Cbl. Furthermore, c-Kit was degraded through lysosomal, but not proteasomal pathway. In pulse-chase experiments, IM did not modulate c-Kit synthesis or maturation. Analysis of phosphotyrosine peptides in UT-7/Epo cells treated or not with IM show that IM did not modify overall tyrosine phosphorylation in these cells. Furthermore, we showed that a T670I mutation preventing the full access of IM to the ATP binding pocket, did not allow the internalization process in the presence of IM. Altogether these data show that TKI-induced internalization of c-Kit is linked to a modification of the integrity of ATP binding pocket. PMID:23637779

  19. Changes of epidermal cell morphology and keratin expression induced by inhibitors of protein kinase C.

    PubMed

    Hegemann, L; Wevers, A; Bonnekoh, B; Mahrle, G

    1992-03-01

    Several lines of evidence show protein kinase C as being involved in various regulatory processes in keratinocyte biology, e.g. proliferation and differentiation. In the present study, we investigated the effects of three different inhibitors of protein kinase C, staurosporine, CP 46'665-1, and tiflucarbine, on cell morphology and keratin expression in a non-tumorigenic human keratinocyte cell line (HaCaT cells). Staurosporine, being the most potent inhibitor of protein kinase C activity in vitro, and CP 46'665-1 induced morphological transformation to a fibroblast-like cell shape. In contrast, no changes in cell morphology were observed after exposure to tiflucarbine. The investigation of keratin expression in HaCaT cells grown in the presence of the different compounds revealed the following changes: After 72 h of cultivation, keratins 8 and 18 were still expressed in treated cells, whereas expression of keratin 13 was decreased as compared to control cells. Immunoblotting to detect vimentin demonstrated its absence in treated and control cells. Since tiflucarbine is known as a dual protein kinase C/calmodulin inhibitor whereas staurosporine and CP 46'665-1 do not antagonize calmodulin function, it might be possible that not only protein kinase C but also calmodulin is involved in the process leading to the morphological changes. PMID:1376142

  20. FMS-like tyrosine kinase 3 (FLT3) inhibitors: Molecular docking and experimental studies.

    PubMed

    Mashkani, Baratali; Tanipour, Mohammad Hossein; Saadatmandzadeh, Mohammad; Ashman, Leonie K; Griffith, Renate

    2016-04-01

    Activating mutations in FMS-like tyrosine kinase 3 (FLT3) occur in 25% of acute lymphoid and 30% of acute myeloid leukaemia cases. Therefore, FLT3 is a potential therapeutic target for small molecule kinase inhibitors. In this study, protein-ligand interactions between FLT3 and kinase inhibitors (CEP701, PKC412, sunitinib, imatinib and dasatinib) were obtained through homology modelling and molecular docking. A cellular system for experimental testing of the inhibitors was also established by expressing wildtype and internal tandem duplication mutant FLT3 (FLT3-WT and FLT3-ITD) in FDC-P1 cells. Imatinib and dasatinib could not be docked into any of the FLT3 models, consistent with their lack of activity in the experimental assays. CEP701, PKC412 and sunitinib interacted with the ATP-binding pocket of FLT3, forming H-bonds with Cys694 and Glu692. Based on the EC50 values in the cell proliferation assay, CEP701 was the most potent inhibitor; sunitinib and PKC412 were ranked second and third, respectively. Sunitinib was the most selective inhibitor, followed by PKC421 and CEP701. The potency of sunitinib and to a lesser extent CEP701 in inhibition of FLT3 autophosphorylation was lower than the cell proliferation inhibition, indicating that inhibition of FLT3 downstream proteins may contribute to the cellular effects. It was shown in this study that the docking procedure was able to differentiate FLT3 inhibitors from ineffective compounds. Additionally, interaction with the phosphate binding region in the ATP-binding pocket increased potency at the cost of selectivity. These findings can be applied in designing highly effective and selective inhibitors for FLT3 and other related kinases. PMID:26896780

  1. Molecular Pathways: Molecular Basis for Sensitivity and Resistance to JAK Kinase Inhibitors

    PubMed Central

    Meyer, Sara C.; Levine, Ross L.

    2014-01-01

    Janus kinases (JAK) are the mediators of a variety of cytokine signals via their cognate receptors that result in activation of intracellular signaling pathways. Alterations in JAK1, JAK2, JAK3 and TYK2 signaling contribute to different disease states, and dysregulated JAK-STAT signaling is associated with hematological malignancies, autoimmune disorders and immune-deficient conditions. Genetic alterations of JAK2 occur in the majority of patients with myeloproliferative neoplasms (MPN) and occur in a subset of patients with acute leukemias. JAK-mediated signaling critically relies on STAT transcription factors, and on activation of the MAPK and PI3K/Akt signaling axes. Hyperactive JAK at the apex of these potent oncogenic signaling pathways therefore represents an important target for small molecule kinase inhibitors in different disease states. The JAK1/2 inhibitor ruxolitinib and the JAK3 inhibitor tofacitinib were recently approved for the treatment of myelofibrosis and rheumatoid arthritis, respectively and additional ATP-competitive JAK inhibitors are in clinical development. Although these agents show clinical activity, the ability of these JAK inhibitors to induce clinical/molecular remissions in hematological malignancies appears limited and resistance upon chronic drug exposure is seen. Alternative modes of targeting JAK2 such as allosteric kinase inhibition or HSP-90 inhibition are under evaluation as is the use of histone deacetylase inhibitors. Combination therapy approaches integrating inhibition of STAT, PI3K/Akt and MAPK pathways with JAK kinase inhibitors might be critical to overcome malignancies characterized by dysregulated JAK signaling. PMID:24583800

  2. Rapid evolution of 6-phenylpurine inhibitors of protein kinase B through structure-based design.

    PubMed

    Donald, Alastair; McHardy, Tatiana; Rowlands, Martin G; Hunter, Lisa-Jane K; Davies, Thomas G; Berdini, Valerio; Boyle, Robert G; Aherne, G Wynne; Garrett, Michelle D; Collins, Ian

    2007-05-17

    6-phenylpurines were identified as novel, ATP-competitive inhibitors of protein kinase B (PKB/Akt) from a fragment-based screen and were rapidly progressed to potent compounds using iterative protein-ligand crystallography with a PKA-PKB chimeric protein. An elaborated lead compound showed cell growth inhibition and effects on cellular signaling pathways characteristic of PKB inhibition. PMID:17451235

  3. Design of Targeted Inhibitors of Polo-like Kinase 1 (Plk1)

    NASA Astrophysics Data System (ADS)

    Dalafave, D. S.

    2011-03-01

    Computational design of small molecule inhibitors of Polo-like Kinase 1 (Plk1) is presented. Plk1, which regulates cell cycle, is often overexpressed in cancers. Its downregulation was shown to inhibit cancer progression. Most inhibitors of kinases' interact with the highly conserved ATP binding site. This makes the development of Plk1-specific inhibitors challenging, since different kinases have similar ATP sites. However, Plk1 also contains the polo-box domain (PBD), which is absent from other kinases. In this study, the PBD site was used as a target for designed Plk1 inhibitors. Common structural features of experimentally known Plk1 ligands were first identified. The information was used to design putative small molecules that specifically bonded Plk1. Druglikeness and possible toxicities of the designed molecules were determined. Molecules with no implied toxicities and optimal druglikeness were used for docking studies. The docking studies identified several molecules that made stable complexes with the Plk1 PBD site. Possible utilization of the designed molecules in drugs against cancers with overexpressed Plk1 is discussed.

  4. Inhibitors of Glycogen Synthase Kinase 3 with Exquisite Kinome-Wide Selectivity and Their Functional Effects.

    PubMed

    Wagner, Florence F; Bishop, Joshua A; Gale, Jennifer P; Shi, Xi; Walk, Michelle; Ketterman, Joshua; Patnaik, Debasis; Barker, Doug; Walpita, Deepika; Campbell, Arthur J; Nguyen, Shannon; Lewis, Michael; Ross, Linda; Weïwer, Michel; An, W Frank; Germain, Andrew R; Nag, Partha P; Metkar, Shailesh; Kaya, Taner; Dandapani, Sivaraman; Olson, David E; Barbe, Anne-Laure; Lazzaro, Fanny; Sacher, Joshua R; Cheah, Jaime H; Fei, David; Perez, Jose; Munoz, Benito; Palmer, Michelle; Stegmaier, Kimberly; Schreiber, Stuart L; Scolnick, Edward; Zhang, Yan-Ling; Haggarty, Stephen J; Holson, Edward B; Pan, Jen Q

    2016-07-15

    The mood stabilizer lithium, the first-line treatment for bipolar disorder, is hypothesized to exert its effects through direct inhibition of glycogen synthase kinase 3 (GSK3) and indirectly by increasing GSK3's inhibitory serine phosphorylation. GSK3 comprises two highly similar paralogs, GSK3α and GSK3β, which are key regulatory kinases in the canonical Wnt pathway. GSK3 stands as a nodal target within this pathway and is an attractive therapeutic target for multiple indications. Despite being an active field of research for the past 20 years, many GSK3 inhibitors demonstrate either poor to moderate selectivity versus the broader human kinome or physicochemical properties unsuitable for use in in vitro systems or in vivo models. A nonconventional analysis of data from a GSK3β inhibitor high-throughput screening campaign, which excluded known GSK3 inhibitor chemotypes, led to the discovery of a novel pyrazolo-tetrahydroquinolinone scaffold with unparalleled kinome-wide selectivity for the GSK3 kinases. Taking advantage of an uncommon tridentate interaction with the hinge region of GSK3, we developed highly selective and potent GSK3 inhibitors, BRD1652 and BRD0209, which demonstrated in vivo efficacy in a dopaminergic signaling paradigm modeling mood-related disorders. These new chemical probes open the way for exclusive analyses of the function of GSK3 kinases in multiple signaling pathways involved in many prevalent disorders. PMID:27128528

  5. HALOACETIC ACIDS AND KINASE INHIBITORS PERTURB MOUSE NEURAL CREST CELLS IN VITRO

    EPA Science Inventory

    HUNTER, E.S.1, J. SMITH2, J. ANDREWS1. 1 Reproductive Toxicology Division, NHEERL, US EPA, Research Triangle Park and 2 Department of Cell and Developmental Biology, UNC-CH, Chapel Hill, North Carolina. Haloacetic acids and kinase inhibitors perturb mouse neural crest cells in vi...

  6. COMPARATIVE PATHOGENESIS OF HALOACETIC ACID AND PROTEIN KINASE INHIBITOR EMBRYOTOXICITY IN MOUSE WHOLE EMBRYO CULTURE

    EPA Science Inventory

    Comparative pathogenesis of haloacetic acid and protein kinase inhibitor embryotoxicity in mouse whole embryo culture.

    Ward KW, Rogers EH, Hunter ES 3rd.

    Curriculum in Toxicology, University of North Carolina at Chapel Hill, 27599-7270, USA.

    Haloacetic acids ...

  7. Structure-based design of isoquinoline-5-sulfonamide inhibitors of protein kinase B.

    PubMed

    Collins, Ian; Caldwell, John; Fonseca, Tatiana; Donald, Alastair; Bavetsias, Vassilios; Hunter, Lisa-Jane K; Garrett, Michelle D; Rowlands, Martin G; Aherne, G Wynne; Davies, Thomas G; Berdini, Valerio; Woodhead, Steven J; Davis, Deborah; Seavers, Lisa C A; Wyatt, Paul G; Workman, Paul; McDonald, Edward

    2006-02-15

    Structure-based drug design of novel isoquinoline-5-sulfonamide inhibitors of PKB as potential antitumour agents was investigated. Constrained pyrrolidine analogues that mimicked the bound conformation of linear prototypes were identified and investigated by co-crystal structure determinations with the related protein PKA. Detailed variation in the binding modes between inhibitors with similar overall conformations was observed. Potent PKB inhibitors from this series inhibited GSK3beta phosphorylation in cellular assays, consistent with inhibition of PKB kinase activity in cells. PMID:16249095

  8. A High-Throughput Screen Reveals New Small-Molecule Activators and Inhibitors of Pantothenate Kinases

    PubMed Central

    2016-01-01

    Pantothenate kinase (PanK) is a regulatory enzyme that controls coenzyme A (CoA) biosynthesis. The association of PanK with neurodegeneration and diabetes suggests that chemical modifiers of PanK activity may be useful therapeutics. We performed a high throughput screen of >520000 compounds from the St. Jude compound library and identified new potent PanK inhibitors and activators with chemically tractable scaffolds. The HTS identified PanK inhibitors exemplified by the detailed characterization of a tricyclic compound (7) and a preliminary SAR. Biophysical studies reveal that the PanK inhibitor acts by binding to the ATP–enzyme complex. PMID:25569308

  9. Novel morpholin-3-one fused quinazoline derivatives as EGFR tyrosine kinase inhibitors.

    PubMed

    Qin, Xuemei; Lv, Yongjuan; Liu, Peng; Li, Zhipeng; Hu, Liming; Zeng, Chengchu; Yang, Leifu

    2016-03-15

    A series of novel morpholin-3-one-fused quinazoline derivatives were designed, synthesized and evaluated as EGFR tyrosine kinase inhibitors. Nineteen compounds showed significant inhibitory activities against EGFR(wt) kinase (IC50<1 μM). Compound a8 demonstrated the most potent inhibitory activity toward EGFR(wt) (IC50=53.1 nM). Compound a7 and a8 showed excellent inhibitory activities against mutant EGFR(T790M/L858R) and strong antiproliferative activity against H358 and A549 cell lines. Finally, molecular docking studies were performed to predict the possible binding mode of the target compounds. It is believed that this work would be very useful for designing a new series of tyrosine kinase inhibitors targeting EGFR. PMID:26879314

  10. Risk of Infectious Complications in Hemato-Oncological Patients Treated with Kinase Inhibitors

    PubMed Central

    Reinwald, Mark; Boch, Tobias; Hofmann, Wolf-Karsten; Buchheidt, Dieter

    2015-01-01

    Infectious complications are a major cause of morbidity and mortality in patients with hemato-oncological diseases. Although disease-related immunosuppression represents one factor, aggressive treatment regimens, such as chemotherapy, stem cell transplantation, or antibody treatment, account for a large proportion of infectious side effects. With the advent of targeted therapies affecting specific kinases in malignant diseases, the outcome of patients has further improved. Nonetheless, dependent on the specific pathway targeted or off-target activity of the kinase inhibitor, therapy-associated infectious complications may occur. We review the most common and approved kinase inhibitors targeting a variety of hemato-oncological malignancies for their immunosuppressive potential and evaluate their risk of infectious side effects based on preclinical evidence and clinical data in order to raise awareness of the potential risks involved. PMID:27127405

  11. Phosphoproteomics data classify hematological cancer cell lines according to tumor type and sensitivity to kinase inhibitors

    PubMed Central

    2013-01-01

    Background Tumor classification based on their predicted responses to kinase inhibitors is a major goal for advancing targeted personalized therapies. Here, we used a phosphoproteomic approach to investigate biological heterogeneity across hematological cancer cell lines including acute myeloid leukemia, lymphoma, and multiple myeloma. Results Mass spectrometry was used to quantify 2,000 phosphorylation sites across three acute myeloid leukemia, three lymphoma, and three multiple myeloma cell lines in six biological replicates. The intensities of the phosphorylation sites grouped these cancer cell lines according to their tumor type. In addition, a phosphoproteomic analysis of seven acute myeloid leukemia cell lines revealed a battery of phosphorylation sites whose combined intensities correlated with the growth-inhibitory responses to three kinase inhibitors with remarkable correlation coefficients and fold changes (> 100 between the most resistant and sensitive cells). Modeling based on regression analysis indicated that a subset of phosphorylation sites could be used to predict response to the tested drugs. Quantitative analysis of phosphorylation motifs indicated that resistant and sensitive cells differed in their patterns of kinase activities, but, interestingly, phosphorylations correlating with responses were not on members of the pathway being targeted; instead, these mainly were on parallel kinase pathways. Conclusion This study reveals that the information on kinase activation encoded in phosphoproteomics data correlates remarkably well with the phenotypic responses of cancer cells to compounds that target kinase signaling and could be useful for the identification of novel markers of resistance or sensitivity to drugs that target the signaling network. PMID:23628362

  12. A Cell-Based Assay for Measuring Endogenous BcrAbl Kinase Activity and Inhibitor Resistance.

    PubMed

    Ouellette, Steven B; Noel, Brett M; Parker, Laurie L

    2016-01-01

    Kinase enzymes are an important class of drug targets, particularly in cancer. Cell-based kinase assays are needed to understand how potential kinase inhibitors act on their targets in a physiologically relevant context. Current cell-based kinase assays rely on antibody-based detection of endogenous substrates, inaccurate disease models, or indirect measurements of drug action. Here we expand on previous work from our lab to introduce a 96-well plate compatible approach for measuring cell-based kinase activity in disease-relevant human chronic myeloid leukemia cell lines using an exogenously added, multi-functional peptide substrate. Our cellular models natively express the BcrAbl oncogene and are either sensitive or have acquired resistance to well-characterized BcrAbl tyrosine kinase inhibitors. This approach measures IC50 values comparable to established methods of assessing drug potency, and its robustness indicates that it can be employed in drug discovery applications. This medium-throughput assay could bridge the gap between single target focused, high-throughput in vitro assays and lower-throughput cell-based follow-up experiments. PMID:27598410

  13. Anti-proliferative effects of protein kinase C inhibitors in human keratinocytes.

    PubMed

    Hegemann, L; Bonnekoh, B; van Rooijen, L A; Mahrle, G

    1992-07-01

    Various lines of evidence indicate that protein kinase C, a key enzyme in transmembraneous signal transduction, is involved in the regulation of keratinocyte proliferation. In the present study we have investigated the effects of various structurally unrelated protein kinase C inhibitors on the proliferation of HaCa T cells, a non-tumorigenic human keratinocyte cell line. All protein kinase C inhibitors dose-dependently inhibited cell proliferation as assessed by the incorporation of radioactively labelled thymidine and amino acids as well as the increase in total protein content in keratinocytes. The potencies of the drugs to inhibit cell proliferation were strongly correlated to their inhibitory potency on purified protein kinase C, displaying a correlation coefficient of 0.97. Methotrexate, an anti-proliferative drug, was found not to inhibit protein kinase C. Therefore, our data provide evidence that protein kinase C is crucially involved in the regulation of keratinocyte proliferation but is not the only target of anti-proliferative drug action. PMID:1390454

  14. AZD7762, a novel checkpoint kinase inhibitor, drives checkpoint abrogation and potentiates DNA-targeted therapies.

    PubMed

    Zabludoff, Sonya D; Deng, Chun; Grondine, Michael R; Sheehy, Adam M; Ashwell, Susan; Caleb, Benjamin L; Green, Stephen; Haye, Heather R; Horn, Candice L; Janetka, James W; Liu, Dongfang; Mouchet, Elizabeth; Ready, Shannon; Rosenthal, Judith L; Queva, Christophe; Schwartz, Gary K; Taylor, Karen J; Tse, Archie N; Walker, Graeme E; White, Anne M

    2008-09-01

    Insights from cell cycle research have led to the hypothesis that tumors may be selectively sensitized to DNA-damaging agents resulting in improved antitumor activity and a wider therapeutic margin. The theory relies on the observation that the majority of tumors are deficient in the G1-DNA damage checkpoint pathway resulting in reliance on S and G2 checkpoints for DNA repair and cell survival. The S and G2 checkpoints are regulated by checkpoint kinase 1, a serine/threonine kinase that is activated in response to DNA damage; thus, inhibition of checkpoint kinase 1 signaling impairs DNA repair and increases tumor cell death. Normal tissues, however, have a functioning G1 checkpoint signaling pathway allowing for DNA repair and cell survival. Here, we describe the preclinical profile of AZD7762, a potent ATP-competitive checkpoint kinase inhibitor in clinical trials. AZD7762 has been profiled extensively in vitro and in vivo in combination with DNA-damaging agents and has been shown to potentiate response in several different settings where inhibition of checkpoint kinase results in the abrogation of DNA damage-induced cell cycle arrest. Dose-dependent potentiation of antitumor activity, when AZD7762 is administered in combination with DNA-damaging agents, has been observed in multiple xenograft models with several DNA-damaging agents, further supporting the potential of checkpoint kinase inhibitors to enhance the efficacy of both conventional chemotherapy and radiotherapy and increase patient response rates in a variety of settings. PMID:18790776

  15. Protein kinase C-δ inhibitor, Rottlerin inhibits growth and survival of mycobacteria exclusively through Shikimate kinase.

    PubMed

    Pandey, Sapna; Chatterjee, Aditi; Jaiswal, Swati; Kumar, Sanjay; Ramachandran, Ravishankar; Srivastava, Kishore K

    2016-09-16

    The molecular bases of disease provide exceptional prospect to translate research findings into new drugs. Nevertheless, to develop new and novel chemical entities takes huge amount of time and efforts, mainly due to the stringent processes. Therefore, drug repurposing is one of such strategies which is being used in recent times to identify new pharmacophores. The essential first step in discovery of the specific inhibitor with low toxicity is the identification and elucidation of pathways exclusive to target pathogen. One such target is the shikimate pathway, which is essential for algae, higher plants, bacteria and fungi. Since, this enzyme system is absent in higher eukaryotes and in mammals, the enzymes involved in the pathway provide an attractive target for the development of potentially selective and non toxic antimicrobial agents. Since, so far there is no specific inhibitor which is able to restrain mycobacterial shikimate pathway; we expanded the use of a known kinase inhibitor; Rottlerin, in order to predict the prototype in discovering the specific molecules against this enzyme. For the first time we have shown that Rottlerin inhibits extracellular mycobacteria by affecting Shikimate Kinase (SK) and this effect is further enhanced during the intracellular infection due to the added effect of PKC- δ down-regulation. The molecular docking of Rottlerin with both the mycobacterial SKs, corroborated the inhibition data, and revealed that the effects of SK, in slow and in fast grower mycobacteria are due to the changes in affinity of binding with the drug. PMID:27498028

  16. Computational study of Gleevec and G6G reveals molecular determinants of kinase inhibitor selectivity

    SciTech Connect

    Lin, Yen -Lin; Meng, Yilin; Huang, Lei; Roux, Benoît

    2014-10-22

    Gleevec is a potent inhibitor of Abl tyrosine kinase but not of the highly homologous c-Src kinase. Because the ligand binds to an inactive form of the protein in which an Asp-Phe-Gly structural motif along the activation loop adopts a so-called DFG-out conformation, it was suggested that binding specificity was controlled by a “conformational selection” mechanism. In this context, the binding affinity displayed by the kinase inhibitor G6G poses an intriguing challenge. Although it possesses a chemical core very similar to that of Gleevec, G6G is a potent inhibitor of both Abl and c-Src kinases. Both inhibitors bind to the DFG-out conformation of the kinases, which seems to be in contradiction with the conformational selection mechanism. To address this issue and display the hidden thermodynamic contributions affecting the binding selectivity, molecular dynamics free energy simulations with explicit solvent molecules were carried out. Relative to Gleevec, G6G forms highly favorable van der Waals dispersive interactions upon binding to the kinases via its triazine functional group, which is considerably larger than the corresponding pyridine moiety in Gleevec. Upon binding of G6G to c-Src, these interactions offset the unfavorable free energy cost of the DFG-out conformation. When binding to Abl, however, G6G experiences an unfavorable free energy penalty due to steric clashes with the phosphate-binding loop, yielding an overall binding affinity that is similar to that of Gleevec. Such steric clashes are absent when G6G binds to c-Src, due to the extended conformation of the phosphate-binding loop.

  17. Computational study of Gleevec and G6G reveals molecular determinants of kinase inhibitor selectivity

    DOE PAGESBeta

    Lin, Yen -Lin; Meng, Yilin; Huang, Lei; Roux, Benoît

    2014-10-22

    Gleevec is a potent inhibitor of Abl tyrosine kinase but not of the highly homologous c-Src kinase. Because the ligand binds to an inactive form of the protein in which an Asp-Phe-Gly structural motif along the activation loop adopts a so-called DFG-out conformation, it was suggested that binding specificity was controlled by a “conformational selection” mechanism. In this context, the binding affinity displayed by the kinase inhibitor G6G poses an intriguing challenge. Although it possesses a chemical core very similar to that of Gleevec, G6G is a potent inhibitor of both Abl and c-Src kinases. Both inhibitors bind to themore » DFG-out conformation of the kinases, which seems to be in contradiction with the conformational selection mechanism. To address this issue and display the hidden thermodynamic contributions affecting the binding selectivity, molecular dynamics free energy simulations with explicit solvent molecules were carried out. Relative to Gleevec, G6G forms highly favorable van der Waals dispersive interactions upon binding to the kinases via its triazine functional group, which is considerably larger than the corresponding pyridine moiety in Gleevec. Upon binding of G6G to c-Src, these interactions offset the unfavorable free energy cost of the DFG-out conformation. When binding to Abl, however, G6G experiences an unfavorable free energy penalty due to steric clashes with the phosphate-binding loop, yielding an overall binding affinity that is similar to that of Gleevec. Such steric clashes are absent when G6G binds to c-Src, due to the extended conformation of the phosphate-binding loop.« less

  18. Discovery of a Selective Inhibitor of Oncogenic B-Raf Kinase With Potent Antimelanoma Activity

    SciTech Connect

    Tsai, J.; Lee, J.T.; Wang, W.; Zhang, J.; Cho, H.; Mamo, S.; Bremer, R.; Gillette, S.; Kong, J.; Haass, N.K.; Sproesser, K.; Li, L.; Smalley, K.S.M.; Fong, D.; Zhu, Y.-L.; Marimuthu, A.; Nguyen, H.; Lam, B.; Liu, J.; Cheung, I.; Rice, J.

    2009-05-26

    BRAF{sup V600E} is the most frequent oncogenic protein kinase mutation known. Furthermore, inhibitors targeting 'active' protein kinases have demonstrated significant utility in the therapeutic repertoire against cancer. Therefore, we pursued the development of specific kinase inhibitors targeting B-Raf, and the V600E allele in particular. By using a structure-guided discovery approach, a potent and selective inhibitor of active B-Raf has been discovered. PLX4720, a 7-azaindole derivative that inhibits B-Raf{sup V600E} with an IC{sub 50} of 13 nM, defines a class of kinase inhibitor with marked selectivity in both biochemical and cellular assays. PLX4720 preferentially inhibits the active B-Raf{sup V600E} kinase compared with a broad spectrum of other kinases, and potent cytotoxic effects are also exclusive to cells bearing the V600E allele. Consistent with the high degree of selectivity, ERK phosphorylation is potently inhibited by PLX4720 in B-Raf{sup V600E}-bearing tumor cell lines but not in cells lacking oncogenic B-Raf. In melanoma models, PLX4720 induces cell cycle arrest and apoptosis exclusively in B-Raf{sup V600E}-positive cells. In B-Raf{sup V600E}-dependent tumor xenograft models, orally dosed PLX4720 causes significant tumor growth delays, including tumor regressions, without evidence of toxicity. The work described here represents the entire discovery process, from initial identification through structural and biological studies in animal models to a promising therapeutic for testing in cancer patients bearing B-Raf{sup V600E}-driven tumors.

  19. Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity

    PubMed Central

    Tsai, James; Lee, John T.; Wang, Weiru; Zhang, Jiazhong; Cho, Hanna; Mamo, Shumeye; Bremer, Ryan; Gillette, Sam; Kong, Jun; Haass, Nikolas K.; Sproesser, Katrin; Li, Ling; Smalley, Keiran S. M.; Fong, Daniel; Zhu, Yong-Liang; Marimuthu, Adhirai; Nguyen, Hoa; Lam, Billy; Liu, Jennifer; Cheung, Ivana; Rice, Julie; Suzuki, Yoshihisa; Luu, Catherine; Settachatgul, Calvin; Shellooe, Rafe; Cantwell, John; Kim, Sung-Hou; Schlessinger, Joseph; Zhang, Kam Y. J.; West, Brian L.; Powell, Ben; Habets, Gaston; Zhang, Chao; Ibrahim, Prabha N.; Hirth, Peter; Artis, Dean R.; Herlyn, Meenhard; Bollag, Gideon

    2008-01-01

    BRAFV600E is the most frequent oncogenic protein kinase mutation known. Furthermore, inhibitors targeting “active” protein kinases have demonstrated significant utility in the therapeutic repertoire against cancer. Therefore, we pursued the development of specific kinase inhibitors targeting B-Raf, and the V600E allele in particular. By using a structure-guided discovery approach, a potent and selective inhibitor of active B-Raf has been discovered. PLX4720, a 7-azaindole derivative that inhibits B-RafV600E with an IC50 of 13 nM, defines a class of kinase inhibitor with marked selectivity in both biochemical and cellular assays. PLX4720 preferentially inhibits the active B-RafV600E kinase compared with a broad spectrum of other kinases, and potent cytotoxic effects are also exclusive to cells bearing the V600E allele. Consistent with the high degree of selectivity, ERK phosphorylation is potently inhibited by PLX4720 in B-RafV600E-bearing tumor cell lines but not in cells lacking oncogenic B-Raf. In melanoma models, PLX4720 induces cell cycle arrest and apoptosis exclusively in B-RafV600E-positive cells. In B-RafV600E-dependent tumor xenograft models, orally dosed PLX4720 causes significant tumor growth delays, including tumor regressions, without evidence of toxicity. The work described here represents the entire discovery process, from initial identification through structural and biological studies in animal models to a promising therapeutic for testing in cancer patients bearing B-RafV600E-driven tumors. PMID:18287029

  20. A Novel Triazolopyridine-Based Spleen Tyrosine Kinase Inhibitor That Arrests Joint Inflammation

    PubMed Central

    Ferguson, Gregory D.; Delgado, Mercedes; Plantevin-Krenitsky, Veronique; Jensen-Pergakes, Kristen; Bates, R. J.; Torres, Sanaa; Celeridad, Maria; Brown, Heather; Burnett, Kelven; Nadolny, Lisa; Tehrani, Lida; Packard, Garrick; Pagarigan, Barbra; Haelewyn, Jason; Nguyen, Trish; Xu, Li; Tang, Yang; Hickman, Matthew; Baculi, Frans; Pierce, Steven; Miyazawa, Keiji; Jackson, Pilgrim; Chamberlain, Philip; LeBrun, Laurie; Xie, Weilin; Bennett, Brydon; Blease, Kate

    2016-01-01

    Autoantibodies and the immunoreceptors to which they bind can contribute to the pathogenesis of autoimmune diseases such as rheumatoid arthritis (RA). Spleen Tyrosine Kinase (Syk) is a non-receptor tyrosine kinase with a central role in immunoreceptor (FcR) signaling and immune cell functionality. Syk kinase inhibitors have activity in antibody-dependent immune cell activation assays, in preclinical models of arthritis, and have progressed into clinical trials for RA and other autoimmune diseases. Here we describe the characterization of a novel triazolopyridine-based Syk kinase inhibitor, CC-509. This compound is a potent inhibitor of purified Syk enzyme, FcR-dependent and FcR-independent signaling in primary immune cells, and basophil activation in human whole blood. CC-509 is moderately selective across the kinome and against other non-kinase enzymes or receptors. Importantly, CC-509 was optimized away from and has modest activity against cellular KDR and Jak2, kinases that when inhibited in a preclinical and clinical setting may promote hypertension and neutropenia, respectively. In addition, CC-509 is orally bioavailable and displays dose-dependent efficacy in two rodent models of immune-inflammatory disease. In passive cutaneous anaphylaxis (PCA), CC-509 significantly inhibited skin edema. Moreover, CC-509 significantly reduced paw swelling and the tissue levels of pro-inflammatory cytokines RANTES and MIP-1α in the collagen-induced arthritis (CIA) model. In summary, CC-509 is a potent, moderately selective, and efficacious inhibitor of Syk that has a differentiated profile when compared to other Syk compounds that have progressed into the clinic for RA. PMID:26756335

  1. Effects of BP-14, a novel cyclin-dependent kinase inhibitor, on anaplastic thyroid cancer cells.

    PubMed

    Allegri, Lorenzo; Baldan, Federica; Mio, Catia; Puppin, Cinzia; Russo, Diego; Kryštof, Vladimir; Damante, Giuseppe

    2016-04-01

    Anaplastic thyroid carcinoma (ATC) is an extremely aggressive human malignancy characterized by a marked degree of invasiveness, absense of features of thyroid differentiation and resistance to current medical treatment. It is well known that ATCs are characterized by deregulation of genes related to cell cycle regulation, i.e., cyclin-dependent kinases (CDKs) and endogenous cyclin-dependent kinase inhibitors (CDKIs). Therefore, in the present study, the effect of a novel exogenous cyclin-dependent kinase inhibitor, BP-14, was investigated in three human ATC cell lines. The ATC-derived cell lines FRO, SW1736 and 8505C were treated with BP-14 alone or in combination with the mTOR inhibitor everolimus. In all ATC cell lines, treatment with BP-14 decreased cell viability and, in two of them, BP-14 modified expression of genes involved in epithelial-mesenchymal transition. Thus, our data indicate that BP-14 is a potential new compound effective against ATC. Combined treatment with BP-14 and the mTOR inhibitor everolimus had a strong synergistic effect on cell viability in all three cell lines, suggesting that the combined used of CDK and mTOR inhibitors may be a useful strategy for ATC treatment. PMID:26884249

  2. An Aminopyridazine Inhibitor of Death Associated Protein Kinase Attenuates Hypoxia-Ischemia Induced Brain Damage

    SciTech Connect

    Velentza, A.V.; Wainwright, M.S.; Zasadzki, M.; Mirzoeva, S.; Haiech, J.; Focia, P.J.; Egli, M.; Watterson, D.M.

    2010-03-08

    Death associated protein kinase (DAPK) is a calcium and calmodulin regulated enzyme that functions early in eukaryotic programmed cell death, or apoptosis. To validate DAPK as a potential drug discovery target for acute brain injury, the first small molecule DAPK inhibitor was synthesized and tested in vivo. A single injection of the aminopyridazine-based inhibitor administered 6 h after injury attenuated brain tissue or neuronal biomarker loss measured, respectively, 1 week and 3 days later. Because aminopyridazine is a privileged structure in neuropharmacology, we determined the high-resolution crystal structure of a binary complex between the kinase domain and a molecular fragment of the DAPK inhibitor. The co-crystal structure describes a structural basis for interaction and provides a firm foundation for structure-assisted design of lead compounds with appropriate molecular properties for future drug development.

  3. 3-Phosphoinositide-Dependent protein Kinase-1 (PDK1) inhibitors: A review from patent literature

    PubMed Central

    Barile, Elisa; De, Surya K.; Pellecchia, Maurizio

    2016-01-01

    PDK1 (3-Phosphoinositide-dependent kinase 1) is a key member of the AGC protein kinase family. It plays an important role in a variety of cellular functions, leading to the activation of the PI3K signaling pathway, an event often associated with the onset and progression of several human cancers. Numerous recent observations suggest that PDK1 inhibitors may provide novel opportunities for the development of effective classes of therapeutics. On these premises, recent years have witnessed an increased effort by medicinal chemists to develop novel scaffolds to derive potent and selective PDK1 inhibitors. The intent of this review is to update the reader on the recent patent literature covering applications published between June 2008 and September 2011 that report on PDK1 inhibitors. PMID:24236780

  4. New corrosion inhibitor acrylamide methyl ether for mild steel in 1 M HCl

    NASA Astrophysics Data System (ADS)

    Ma, Xinyu; Jiang, Xiaohui; Xia, Shuwei; Shan, Mingli; Li, Xia; Yu, Liangmin; Tang, Qunwei

    2016-05-01

    Pursuit of good inhibition performance has been a persistent objective for advanced inhibitor industry. Here we demonstrate the experimental realization of a new corrosion inhibitor acrylamide methyl ether (AAME) from N-Methylol acrylamide (N-MAM) for mild steel in 1 M HCl. The resultant adsorption films have inhibition efficiency as high as 96.2%. Moreover, a theoretical investigation is also launched to demonstrate the potential mechanism behind the promising corrosion behaviors. This work represents a significant step forward, as it demonstrates how to make scalable AAME inhibitors as well as to enhance inhibition performances for high-efficiency and cost-effective corrosion inhibition platforms.

  5. Protein tyrosine kinase regulates α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor trafficking induced by acute hypoxia in cultured brainstem neurons.

    PubMed

    Wang, H; Yu, L C; Li, Y C

    2016-01-01

    This study was performed to investigate the modulation effect of protein tyrosine kinase on postsynaptic a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor trafficking induced by acute hypoxia in cultured brainstem neurons. The cultured neurons were exposed to 1% O2 and the expression of AMPA receptor subunit GluR2 on the cell surface was significantly increased, while total GluR2 was not markedly changed. Furthermore, the hypoxia-induced increase in GluR2 expression on the cell surface was partially blocked by the protein tyrosine kinase membrane-permeable inhibitor genistein. In contrast, both the protein tyrosine kinase agonist nerve growth factor and protein tyrosine phosphatase inhibitor vanadate promoted the hypoxia-induced increase of GluR2 expression on cell surface. Moreover, GluR2 could be phosphorylated by tyrosine under normoxia and hypoxia conditions in vitro on brainstem neurons, and tyrosine phosphorylation of GluR2 was significantly stronger under hypoxia conditions. Our results indicate that acute hypoxia induces the AMPA receptor subunit GluR2 to rapidly migrate to the cell membrane to modify the strength of the synapse. This study indicates that tyrosine phosphorylation of the receptor is an important pathway regulating the rapid migration of GluR2 in the postsynaptic domain induced by hypoxia. PMID:27525851

  6. Transcription and translation are primary targets of Pim kinase inhibitor SGI-1776 in mantle cell lymphoma

    PubMed Central

    Yang, Qingshan; Chen, Lisa S.; Neelapu, Sattva S.; Miranda, Roberto N.; Medeiros, L. Jeffrey

    2012-01-01

    Proviral integration site for Moloney murine leukemia virus (Pim) kinases are serine/threonine/tyrosine kinases and oncoproteins that promote tumor progression. Three isoforms of Pim kinases have been identified and are known to phosphorylate numerous substrates, with regulatory functions in transcription, translation, cell cycle, and survival pathways. These kinases are involved in production, proliferation, and survival of normal B cells and are overexpressed in B-cell malignancies such as mantle cell lymphoma (MCL). SGI-1776 is a small mol-ecule and Pim kinase inhibitor with selectivity for Pim-1. We hypothesize that Pim kinase function can be inhibited by SGI-1776 in MCL and that inhibition of phosphorylation of downstream substrates will disrupt transcriptional, translational, and cell cycle processes and promote cell death. SGI-1776 treatment in 4 MCL cell lines resulted in apoptosis induction. Phosphorylation of transcription (c-Myc) and translation targets (4E-BP1), tested in Jeko-1 and Mino, was declined. Consistent with these data, Mcl-1 and cyclin D1 protein levels were decreased. Importantly, similar to cell line data, MCL primary cells but not normal cells showed similar inhibition of substrate phosphorylation and cytotoxicity from SGI-1776 treatment. Genetic knockdown of Pim-1/Pim-2 affected similar proteins in MCL cell lines. Collectively these data demonstrate Pim kinases as therapeutic targets in MCL. PMID:22955922

  7. Targeting histone methylation for cancer therapy: enzymes, inhibitors, biological activity and perspectives.

    PubMed

    Song, Yongcheng; Wu, Fangrui; Wu, Jingyu

    2016-01-01

    Post-translational methylation of histone lysine or arginine residues plays important roles in gene regulation and other physiological processes. Aberrant histone methylation caused by a gene mutation, translocation, or overexpression can often lead to initiation of a disease such as cancer. Small molecule inhibitors of such histone modifying enzymes that correct the abnormal methylation could be used as novel therapeutics for these diseases, or as chemical probes for investigation of epigenetics. Discovery and development of histone methylation modulators are in an early stage and undergo a rapid expansion in the past few years. A number of highly potent and selective compounds have been reported, together with extensive preclinical studies of their biological activity. Several compounds have been in clinical trials for safety, pharmacokinetics, and efficacy, targeting several types of cancer. This review summarizes the biochemistry, structures, and biology of cancer-relevant histone methylation modifying enzymes, small molecule inhibitors and their preclinical and clinical antitumor activities. Perspectives for targeting histone methylation for cancer therapy are also discussed. PMID:27316347

  8. Kinase Inhibitors that Increase the Sensitivity of Methicillin Resistant Staphylococcus aureus to β-Lactam Antibiotics

    PubMed Central

    Vornhagen, Jay; Burnside, Kellie; Whidbey, Christopher; Berry, Jessica; Qin, Xuan; Rajagopal, Lakshmi

    2015-01-01

    Staphylococcus aureus are Gram-positive bacteria that are the leading cause of recurrent infections in humans that include pneumonia, bacteremia, osteomyelitis, arthritis, endocarditis, and toxic shock syndrome. The emergence of methicillin resistant S. aureus strains (MRSA) has imposed a significant concern in sustained measures of treatment against these infections. Recently, MRSA strains deficient in expression of a serine/threonine kinase (Stk1 or PknB) were described to exhibit increased sensitivity to β-lactam antibiotics. In this study, we screened a library consisting of 280 drug-like, low-molecular-weight compounds with the ability to inhibit protein kinases for those that increased the sensitivity of wild-type MRSA to β-lactams and then evaluated their toxicity in mice. We report the identification of four kinase inhibitors, the sulfonamides ST085384, ST085404, ST085405, and ST085399 that increased sensitivity of WT MRSA to sub-lethal concentrations of β-lactams. Furthermore, these inhibitors lacked alerting structures commonly associated with toxic effects, and toxicity was not observed with ST085384 or ST085405 in vivo in a murine model. These results suggest that kinase inhibitors may be useful in therapeutic strategies against MRSA infections. PMID:26506394

  9. ACTIVATION OF PERK KINASE IN NEURAL CELLS BY PROTEASOME INHIBITOR TREATMENT

    PubMed Central

    Zhang, Le; Ebenezer, Philip J; Dasuri, Kalavathi; Bruce-Keller, Annadora J.; Fernandez-Kim, Sun Ok; Liu, Ying; Keller, Jeffrey N.

    2010-01-01

    Inhibition of the proteasome proteolytic pathway occurs as the result of normal aging, as well as in a variety of neurodegenerative conditions, and is believed to promote cellular toxicity in each of these conditions through diverse mechanisms. In the present study we examined whether proteasome inhibition alters the protein kinase (PKR)-like ER kinase (PERK). Our studies demonstrate that proteasome inhibitors induce the transient activation of PERK in both primary rat neurons as well as the N2a neural cell line. Experiments with siRNA to PERK demonstrated that the modulation of PERK was not significant involved in regulating toxicity, ubiquitinated protein levels, or ribosome perturbations in response to proteasome inhibitor treatment. Surprisingly, PERK was observed to be involved in the upregulation of p38 kinase following proteasome inhibitor treatment. Taken together, these data demonstrate the ability of proteasome inhibition to activate PERK and demonstrate evidence for novel cross talk between PERK and the activation of p38 kinase in neural cells following proteasome inhibition. Taken together, these data have implications for understanding the basis by which proteasome inhibition alters neural homeostasis, and the basis by which cell signaling cascades are regulated by proteasome inhibition. PMID:19860852

  10. Kinase Inhibitors that Increase the Sensitivity of Methicillin Resistant Staphylococcus aureus to β-Lactam Antibiotics.

    PubMed

    Vornhagen, Jay; Burnside, Kellie; Whidbey, Christopher; Berry, Jessica; Qin, Xuan; Rajagopal, Lakshmi

    2015-01-01

    Staphylococcus aureus are Gram-positive bacteria that are the leading cause of recurrent infections in humans that include pneumonia, bacteremia, osteomyelitis, arthritis, endocarditis, and toxic shock syndrome. The emergence of methicillin resistant S. aureus strains (MRSA) has imposed a significant concern in sustained measures of treatment against these infections. Recently, MRSA strains deficient in expression of a serine/threonine kinase (Stk1 or PknB) were described to exhibit increased sensitivity to β-lactam antibiotics. In this study, we screened a library consisting of 280 drug-like, low-molecular-weight compounds with the ability to inhibit protein kinases for those that increased the sensitivity of wild-type MRSA to β-lactams and then evaluated their toxicity in mice. We report the identification of four kinase inhibitors, the sulfonamides ST085384, ST085404, ST085405, and ST085399 that increased sensitivity of WT MRSA to sub-lethal concentrations of β-lactams. Furthermore, these inhibitors lacked alerting structures commonly associated with toxic effects, and toxicity was not observed with ST085384 or ST085405 in vivo in a murine model. These results suggest that kinase inhibitors may be useful in therapeutic strategies against MRSA infections. PMID:26506394

  11. Characterization of interactions and pharmacophore development for DFG-out inhibitors to RET tyrosine kinase.

    PubMed

    Gao, Chunxia; Grøtli, Morten; Eriksson, Leif A

    2015-07-01

    RET (rearranged during transfection) tyrosine kinase is a promising target for several human cancers. Abt-348, Birb-796, Motesanib and Sorafenib are DFG-out multi-kinase inhibitors that have been reported to inhibit RET activity with good IC50 values. Although the DFG-out conformation has attracted great interest in the design of type II inhibitors, the structural requirements for binding to the RET DFG-out conformation remains unclear. Herein, the DFG-out conformation of RET was determined by homology modelling, the four inhibitors were docked, and the binding modes investigated by molecular dynamics simulation. Binding free energies were calculated using the molecular mechanics/Poisson-Bolzmann surface area (MM/PBSA) method. The trends in predicted binding free affinities correlated well with experimental data and were used to explain the activity difference of the studied inhibitors. Per-residue energy decomposition analyses provided further information on specific interaction properties. Finally, we also conducted a detailed e-pharmacophore modelling of the different RET-inhibitor complexes, explaining the common and specific pharmacophore features of the different complexes. The results reported herein will be useful in future rational design of novel DFG-out RET inhibitors. PMID:26044359

  12. Naturally Occurring Mutations in the MPS1 Gene Predispose Cells to Kinase Inhibitor Drug Resistance.

    PubMed

    Gurden, Mark D; Westwood, Isaac M; Faisal, Amir; Naud, Sébastien; Cheung, Kwai-Ming J; McAndrew, Craig; Wood, Amy; Schmitt, Jessica; Boxall, Kathy; Mak, Grace; Workman, Paul; Burke, Rosemary; Hoelder, Swen; Blagg, Julian; Van Montfort, Rob L M; Linardopoulos, Spiros

    2015-08-15

    Acquired resistance to therapy is perhaps the greatest challenge to effective clinical management of cancer. With several inhibitors of the mitotic checkpoint kinase MPS1 in preclinical development, we sought to investigate how resistance against these inhibitors may arise so that mitigation or bypass strategies could be addressed as early as possible. Toward this end, we modeled acquired resistance to the MPS1 inhibitors AZ3146, NMS-P715, and CCT251455, identifying five point mutations in the kinase domain of MPS1 that confer resistance against multiple inhibitors. Structural studies showed how the MPS1 mutants conferred resistance by causing steric hindrance to inhibitor binding. Notably, we show that these mutations occur in nontreated cancer cell lines and primary tumor specimens, and that they also preexist in normal lymphoblast and breast tissues. In a parallel piece of work, we also show that the EGFR p.T790M mutation, the most common mutation conferring resistance to the EGFR inhibitor gefitinib, also preexists in cancer cells and normal tissue. Our results therefore suggest that mutations conferring resistance to targeted therapy occur naturally in normal and malignant cells and these mutations do not arise as a result of the increased mutagenic plasticity of cancer cells. PMID:26202014

  13. Crystal structures of HIV-1 nonnucleoside reverse transcriptase inhibitors: N-benzyl-4-methyl-benzimidazoles

    NASA Astrophysics Data System (ADS)

    Ziółkowska, Natasza E.; Michejda, Christopher J.; Bujacz, Grzegorz D.

    2009-07-01

    HIV-1 nonnucleoside reverse transcriptase inhibitors are potentially specific and effective drugs in AIDS therapy. The presence of two aromatic systems with an angled orientation in the molecule of the inhibitor is crucial for interactions with HIV-1 RT. The inhibitor drives like a wedge into the cluster of aromatic residues of RT HIV-1 and restrains the enzyme in a conformation that blocks the chemical step of nucleotide incorporation. Structural studies provide useful information for designing new, more active inhibitors. The crystal structures of four NNRTIs are presented here. The investigated compounds are derivatives of N-benzyl-4-methyl-benzimidazole with various aliphatic and aromatic substituents at carbon 2 positions and a 2,6-dihalogeno-substituted N-benzyl moiety. Structural data reported here show that the conformation of the investigated compounds is relatively rigid. Such feature is important for the nonnucleoside inhibitor binding to HIV-1 reverse transcriptase.

  14. Identification and Structure-Function Analysis of Subfamily Selective G Protein-Coupled Receptor Kinase Inhibitors

    SciTech Connect

    Homan, Kristoff T.; Larimore, Kelly M.; Elkins, Jonathan M.; Szklarz, Marta; Knapp, Stefan; Tesmer, John J.G.

    2015-02-13

    Selective inhibitors of individual subfamilies of G protein-coupled receptor kinases (GRKs) would serve as useful chemical probes as well as leads for therapeutic applications ranging from heart failure to Parkinson’s disease. To identify such inhibitors, differential scanning fluorimetry was used to screen a collection of known protein kinase inhibitors that could increase the melting points of the two most ubiquitously expressed GRKs: GRK2 and GRK5. Enzymatic assays on 14 of the most stabilizing hits revealed that three exhibit nanomolar potency of inhibition for individual GRKs, some of which exhibiting orders of magnitude selectivity. Most of the identified compounds can be clustered into two chemical classes: indazole/dihydropyrimidine-containing compounds that are selective for GRK2 and pyrrolopyrimidine-containing compounds that potently inhibit GRK1 and GRK5 but with more modest selectivity. The two most potent inhibitors representing each class, GSK180736A and GSK2163632A, were cocrystallized with GRK2 and GRK1, and their atomic structures were determined to 2.6 and 1.85 Å spacings, respectively. GSK180736A, developed as a Rho-associated, coiled-coil-containing protein kinase inhibitor, binds to GRK2 in a manner analogous to that of paroxetine, whereas GSK2163632A, developed as an insulin-like growth factor 1 receptor inhibitor, occupies a novel region of the GRK active site cleft that could likely be exploited to achieve more selectivity. However, neither compound inhibits GRKs more potently than their initial targets. This data provides the foundation for future efforts to rationally design even more potent and selective GRK inhibitors.

  15. Identification and structure-function analysis of subfamily selective G protein-coupled receptor kinase inhibitors.

    PubMed

    Homan, Kristoff T; Larimore, Kelly M; Elkins, Jonathan M; Szklarz, Marta; Knapp, Stefan; Tesmer, John J G

    2015-01-16

    Selective inhibitors of individual subfamilies of G protein-coupled receptor kinases (GRKs) would serve as useful chemical probes as well as leads for therapeutic applications ranging from heart failure to Parkinson's disease. To identify such inhibitors, differential scanning fluorimetry was used to screen a collection of known protein kinase inhibitors that could increase the melting points of the two most ubiquitously expressed GRKs: GRK2 and GRK5. Enzymatic assays on 14 of the most stabilizing hits revealed that three exhibit nanomolar potency of inhibition for individual GRKs, some of which exhibiting orders of magnitude selectivity. Most of the identified compounds can be clustered into two chemical classes: indazole/dihydropyrimidine-containing compounds that are selective for GRK2 and pyrrolopyrimidine-containing compounds that potently inhibit GRK1 and GRK5 but with more modest selectivity. The two most potent inhibitors representing each class, GSK180736A and GSK2163632A, were cocrystallized with GRK2 and GRK1, and their atomic structures were determined to 2.6 and 1.85 Å spacings, respectively. GSK180736A, developed as a Rho-associated, coiled-coil-containing protein kinase inhibitor, binds to GRK2 in a manner analogous to that of paroxetine, whereas GSK2163632A, developed as an insulin-like growth factor 1 receptor inhibitor, occupies a novel region of the GRK active site cleft that could likely be exploited to achieve more selectivity. However, neither compound inhibits GRKs more potently than their initial targets. This data provides the foundation for future efforts to rationally design even more potent and selective GRK inhibitors. PMID:25238254

  16. Efficacy of ponatinib against ABL tyrosine kinase inhibitor-resistant leukemia cells

    SciTech Connect

    Okabe, Seiichi Tauchi, Tetsuzo; Tanaka, Yuko; Ohyashiki, Kazuma

    2013-06-07

    Highlights: •Efficacy of ponatinib against ABL tyrosine kinase inhibitor-resistant leukemia cells okabe et al. •Imatinib or nilotinib resistance was involved Src family kinase. •The BCR-ABL point mutation (E334V) was highly resistant to imatinib or nilotinib. •Ponatinib was a powerful strategy against imatinib or nilotinib resistant Ph-positive cells. -- Abstract: Because a substantial number of patients with chronic myeloid leukemia acquire resistance to ABL tyrosine kinase inhibitors (TKIs), their management remains a challenge. Ponatinib, also known as AP24534, is an oral multi-targeted TKI. Ponatinib is currently being investigated in a pivotal phase 2 clinical trial. In the present study, we analyzed the molecular and functional consequences of ponatinib against imatinib- or nilotinib-resistant (R) K562 and Ba/F3 cells. The proliferation of imatinib- or nilotinib-resistant K562 cells did not decrease after treatment with imatinib or nilotinib. Src family kinase Lyn was activated. Point mutation Ba/F3 cells (E334 V) were also highly resistant to imatinib and nilotinib. Treatment with ponatinib for 72 h inhibited the growth of imatinib- and nilotinib-resistant cells. The phosphorylation of BCR-ABL, Lyn, and Crk-L was reduced. This study demonstrates that ponatinib has an anti-leukemia effect by reducing ABL and Lyn kinase activity and this information may be of therapeutic relevance.

  17. Discovery of Pyrrolopyridine−Pyridone Based Inhibitors of Met Kinase: Synthesis, X-ray Crystallographic Analysis, and Biological Activities

    SciTech Connect

    Kim, Kyoung Soon; Zhang, Liping; Schmidt, Robert; Cai, Zhen-Wei; Wei, Donna; Williams, David K.; Lombardo, Louis J.; Trainor, George L.; Xie, Dianlin; Zhang, Yaquan; An, Yongmi; Sack, John S.; Tokarski, John S.; Darienzo, Celia; Kamath, Amrita; Marathe, Punit; Zhang, Yueping; Lippy, Jonathan; Jeyaseelan, Sr., Robert; Wautlet, Barri; Henley, Benjamin; Gullo-Brown, Johnni; Manne, Veeraswamy; Hunt, John T.; Fargnoli, Joseph; Borzilleri, Robert M.

    2008-10-02

    Conformationally constrained 2-pyridone analogue 2 is a potent Met kinase inhibitor with an IC50 value of 1.8 nM. Further SAR of the 2-pyridone based inhibitors of Met kinase led to potent 4-pyridone and pyridine N-oxide inhibitors such as 3 and 4. The X-ray crystallographic data of the inhibitor 2 bound to the ATP binding site of Met kinase protein provided insight into the binding modes of these inhibitors, and the SAR of this series of analogues was rationalized. Many of these analogues showed potent antiproliferative activities against the Met dependent GTL-16 gastric carcinoma cell line. Compound 2 also inhibited Flt-3 and VEGFR-2 kinases with IC{sub 50} values of 4 and 27 nM, respectively. It possesses a favorable pharmacokinetic profile in mice and demonstrates significant in vivo antitumor activity in the GTL-16 human gastric carcinoma xenograft model.

  18. The discovery of 2-substituted phenol quinazolines as potent RET kinase inhibitors with improved KDR selectivity.

    PubMed

    Newton, Rebecca; Bowler, Katherine A; Burns, Emily M; Chapman, Philip J; Fairweather, Emma E; Fritzl, Samantha J R; Goldberg, Kristin M; Hamilton, Niall M; Holt, Sarah V; Hopkins, Gemma V; Jones, Stuart D; Jordan, Allan M; Lyons, Amanda J; Nikki March, H; McDonald, Neil Q; Maguire, Laura A; Mould, Daniel P; Purkiss, Andrew G; Small, Helen F; Stowell, Alexandra I J; Thomson, Graeme J; Waddell, Ian D; Waszkowycz, Bohdan; Watson, Amanda J; Ogilvie, Donald J

    2016-04-13

    Deregulation of the receptor tyrosine kinase RET has been implicated in medullary thyroid cancer, a small percentage of lung adenocarcinomas, endocrine-resistant breast cancer and pancreatic cancer. There are several clinically approved multi-kinase inhibitors that target RET as a secondary pharmacology but additional activities, most notably inhibition of KDR, lead to dose-limiting toxicities. There is, therefore, a clinical need for more specific RET kinase inhibitors. Herein we report our efforts towards identifying a potent and selective RET inhibitor using vandetanib 1 as the starting point for structure-based drug design. Phenolic anilinoquinazolines exemplified by 6 showed improved affinities towards RET but, unsurprisingly, suffered from high metabolic clearance. Efforts to mitigate the metabolic liability of the phenol led to the discovery that a flanking substituent not only improved the hepatocyte stability, but could also impart a significant gain in selectivity. This culminated in the identification of 36; a potent RET inhibitor with much improved selectivity against KDR. PMID:26874741

  19. QSAR and molecular docking studies on oxindole derivatives as VEGFR-2 tyrosine kinase inhibitors.

    PubMed

    Kang, Cong-Min; Liu, Dong-Qing; Zhao, Xu-Hao; Dai, Ying-Jie; Cheng, Jia-Gao; Lv, Ying-Tao

    2016-01-01

    The three-dimensional quantitative structure-activity relationships (3D-QSAR) were established for 30 oxindole derivatives as vascular endothelial growth factor receptor-2 (VEGFR-2) tyrosine kinase inhibitors by using comparative molecular field analysis (CoMFA) and comparative similarity indices analysis comparative molecular similarity indices analysis (CoMSIA) techniques. With the CoMFA model, the cross-validated value (q(2)) was 0.777, the non-cross-validated value (R(2)) was 0.987, and the external cross-validated value ([Formula: see text]) was 0.72. And with the CoMSIA model, the corresponding q(2), R(2) and [Formula: see text] values were 0.710, 0.988 and 0.78, respectively. Docking studies were employed to bind the inhibitors into the active site to determine the probable binding conformation. The binding mode obtained by molecular docking was in good agreement with the 3D-QSAR results. Based on the QSAR models and the docking binding mode, a set of new VEGFR-2 tyrosine kinase inhibitors were designed, which showed excellent predicting inhibiting potencies. The result revealed that both QSAR models have good predictive capability to guide the design and structural modification of homologic compounds. It is also helpful for further research and development of new VEGFR-2 tyrosine kinase inhibitors. PMID:26416217

  20. A class of selective antibacterials derived from a protein kinase inhibitor pharmacophore

    PubMed Central

    Miller, J. Richard; Dunham, Steve; Mochalkin, Igor; Banotai, Craig; Bowman, Matthew; Buist, Susan; Dunkle, Bill; Hanna, Debra; Harwood, H. James; Huband, Michael D.; Karnovsky, Alla; Kuhn, Michael; Limberakis, Chris; Liu, Jia Y.; Mehrens, Shawn; Mueller, W. Thomas; Narasimhan, Lakshmi; Ogden, Adam; Ohren, Jeff; Prasad, J. V. N. Vara; Shelly, John A.; Skerlos, Laura; Sulavik, Mark; Thomas, V. Hayden; VanderRoest, Steve; Wang, LiAnn; Wang, Zhigang; Whitton, Amy; Zhu, Tong; Stover, C. Kendall

    2009-01-01

    As the need for novel antibiotic classes to combat bacterial drug resistance increases, the paucity of leads resulting from target-based antibacterial screening of pharmaceutical compound libraries is of major concern. One explanation for this lack of success is that antibacterial screening efforts have not leveraged the eukaryotic bias resulting from more extensive chemistry efforts targeting eukaryotic gene families such as G protein-coupled receptors and protein kinases. Consistent with a focus on antibacterial target space resembling these eukaryotic targets, we used whole-cell screening to identify a series of antibacterial pyridopyrimidines derived from a protein kinase inhibitor pharmacophore. In bacteria, the pyridopyrimidines target the ATP-binding site of biotin carboxylase (BC), which catalyzes the first enzymatic step of fatty acid biosynthesis. These inhibitors are effective in vitro and in vivo against fastidious Gram-negative pathogens including Haemophilus influenzae. Although the BC active site has architectural similarity to those of eukaryotic protein kinases, inhibitor binding to the BC ATP-binding site is distinct from the protein kinase-binding mode, such that the inhibitors are selective for bacterial BC. In summary, we have discovered a promising class of potent antibacterials with a previously undescribed mechanism of action. In consideration of the eukaryotic bias of pharmaceutical libraries, our findings also suggest that pursuit of a novel inhibitor leads for antibacterial targets with active-site structural similarity to known human targets will likely be more fruitful than the traditional focus on unique bacterial target space, particularly when structure-based and computational methodologies are applied to ensure bacterial selectivity. PMID:19164768

  1. Design, validation and efficacy of bisubstrate inhibitors specifically affecting ecto-CK2 kinase activity.

    PubMed

    Cozza, Giorgio; Zanin, Sofia; Sarno, Stefania; Costa, Elena; Girardi, Cristina; Ribaudo, Giovanni; Salvi, Mauro; Zagotto, Giuseppe; Ruzzene, Maria; Pinna, Lorenzo A

    2015-11-01

    By derivatizing the purely competitive CK2 inhibitor N1-(4,5,6,7-tetrabromo-1H-benzimidazol-2-yl)-propane-1,3-diamine (K137) at its 3-amino position with a peptidic fragment composed of three or four glutamic or aspartic acid residues, a new family of bisubstrate inhibitors has been generated whose ability to simultaneously interact with both the ATP and the phosphoacceptor substrate-binding sites has been probed by running mixed competition kinetics and by mutational mapping of the kinase residues implicated in substrate recognition. The most effective bisubstrate inhibitor, K137-E4, interacts with three functional regions of the kinase: the hydrophobic pocket close to the ATP-binding site, the basic residues of the p+1 loop that recognizes the acidic determinant at position n+1 and the basic residues of α-helixC that recognize the acidic determinant at position n+3. Compared with the parent inhibitor (K137), K137-E4 is severalfold more potent (IC50 25 compared with 130 nM) and more selective, failing to inhibit any other kinase as drastically as CK2 out of 140 enzymes, whereas 35 kinases are inhibited more potently than CK2 by K137. K137-E4 is unable to penetrate the cell and to inhibit endogenous CK2, its pro-apoptotic efficacy being negligible compared with cell-permeant inhibitors; however, it readily inhibits ecto-CK2 on the outer cell surface, reducing the phosphorylation of several external phosphoproteins. Inhibition of ecto-CK2 by K137-E4 is accompanied by a slower migration of cancer cells as judged by wound healing assays. On the basis of the cellular responses to K137-E4, we conclude that ecto-CK2 is implicated in cell motility, whereas its contribution to the pro-survival role of CK2 is negligible. PMID:26349539

  2. A class of selective antibacterials derived from a protein kinase inhibitor pharmacophore

    SciTech Connect

    Miller, J. Richard; Dunham, Steve; Mochalkin, Igor; Banotai, Craig; Bowman, Matthew; Buist, Susan; Dunkle, Bill; Hanna, Debra; Harwood, H. James; Huband, Michael D.; Karnovsky, Alla; Kuhn, Michael; Limberakis, Chris; Liu, Jia Y.; Mehrens, Shawn; Mueller, W. Thomas; Narasimhan, Lakshmi; Ogden, Adam; Ohren, Jeff; Prasad, J.V.N. Vara; Shelly, John A.; Skerlos, Laura; Sulavik, Mark; Thomas, V. Hayden; VanderRoest, Steve; Wang, LiAnn; Wang, Zhigang; Whitton, Amy; Zhu, Tong; Stover, C. Kendall

    2009-06-25

    As the need for novel antibiotic classes to combat bacterial drug resistance increases, the paucity of leads resulting from target-based antibacterial screening of pharmaceutical compound libraries is of major concern. One explanation for this lack of success is that antibacterial screening efforts have not leveraged the eukaryotic bias resulting from more extensive chemistry efforts targeting eukaryotic gene families such as G protein-coupled receptors and protein kinases. Consistent with a focus on antibacterial target space resembling these eukaryotic targets, we used whole-cell screening to identify a series of antibacterial pyridopyrimidines derived from a protein kinase inhibitor pharmacophore. In bacteria, the pyridopyrimidines target the ATP-binding site of biotin carboxylase (BC), which catalyzes the first enzymatic step of fatty acid biosynthesis. These inhibitors are effective in vitro and in vivo against fastidious Gram-negative pathogens including Haemophilus influenzae. Although the BC active site has architectural similarity to those of eukaryotic protein kinases, inhibitor binding to the BC ATP-binding site is distinct from the protein kinase-binding mode, such that the inhibitors are selective for bacterial BC. In summary, we have discovered a promising class of potent antibacterials with a previously undescribed mechanism of action. In consideration of the eukaryotic bias of pharmaceutical libraries, our findings also suggest that pursuit of a novel inhibitor leads for antibacterial targets with active-site structural similarity to known human targets will likely be more fruitful than the traditional focus on unique bacterial target space, particularly when structure-based and computational methodologies are applied to ensure bacterial selectivity.

  3. Using ovality to predict nonmutagenic, orally efficacious pyridazine amides as cell specific spleen tyrosine kinase inhibitors.

    PubMed

    Lucas, Matthew C; Bhagirath, Niala; Chiao, Eric; Goldstein, David M; Hermann, Johannes C; Hsu, Pei-Yuan; Kirchner, Stephan; Kennedy-Smith, Joshua J; Kuglstatter, Andreas; Lukacs, Christine; Menke, John; Niu, Linghao; Padilla, Fernando; Peng, Ying; Polonchuk, Liudmila; Railkar, Aruna; Slade, Michelle; Soth, Michael; Xu, Daigen; Yadava, Preeti; Yee, Calvin; Zhou, Mingyan; Liao, Cheng

    2014-03-27

    Inhibition of spleen tyrosine kinase has attracted much attention as a mechanism for the treatment of cancers and autoimmune diseases such as asthma, rheumatoid arthritis, and systemic lupus erythematous. We report the structure-guided optimization of pyridazine amide spleen tyrosine kinase inhibitors. Early representatives of this scaffold were highly potent and selective but mutagenic in an Ames assay. An approach that led to the successful identification of nonmutagenic examples, as well as further optimization to compounds with reduced cardiovascular liabilities is described. Select pharmacokinetic and in vivo efficacy data are presented. PMID:24520947

  4. Identification and Validation of Inhibitor-Responsive Kinase Substrates using a New Paradigm to Measure Kinase-Specific Protein Phosphorylation Index

    PubMed Central

    Li, Xiang; Rao, Varsha; Jin, Jin; Guan, Bin; Anderes, Kenna L.; Bieberich, Charles J.

    2012-01-01

    Regulation of all cellular processes requires dynamic regulation of protein phosphorylation. We have developed an unbiased system to globally quantify the phosphorylation index for substrates of a specific kinase by independently quantifying phosphorylated and total substrate molecules in a reverse in-gel kinase assay. Non-phosphorylated substrate molecules are first quantified in the presence and absence of a specific stimulus. Total substrate molecules are then measured after complete chemical de-phosphorylation, and a ratio of phosphorylated to total substrate is derived. To demonstrate the utility of this approach, we profiled and quantified changes in phosphorylation index for Protein Kinase CK2 substrates that respond to a small-molecule inhibitor. A broad range of inhibitor-induced changes in phosphorylation was observed in cultured cells. Differences among substrates in the kinetics of phosphorylation change were also revealed. Comparison of CK2 inhibitor-induced changes in phosphorylation in cultured cells and in mouse peripheral blood lymphocytes in vivo revealed distinct kinetic and depth-of-response profiles. This technology provides a new approach to facilitate functional analyses of kinase-specific phosphorylation events. This strategy can be used to dissect the role of phosphorylation in cellular events, to facilitate kinase inhibitor target validation studies, and to inform in vivo analyses of kinase inhibitor drug efficacy. PMID:22663298

  5. Bruton's tyrosine kinase inhibitors for the treatment of rheumatoid arthritis.

    PubMed

    Whang, Jennifer A; Chang, Betty Y

    2014-08-01

    The function and role of Bruton's tyrosine kinase (BTK) in human B cell development was demonstrated by its association with X-linked agammaglobulinemia (XLA) manifested by a substantial reduction in immunoglobulins and B cells. BTK has a crucial role in pre-B cell receptor (BCR) and BCR signaling during normal B cell development and activation. Aberrant BCR signaling is associated with autoimmune diseases, such as rheumatoid arthritis (RA). In addition, BTK is also expressed in myeloid cell populations, including monocytes, macrophages, neutrophils and mast cells. These innate cells infiltrate the synovial cavity and produce inflammatory cytokines, aggravating arthritic symptoms. In myeloid cell populations, BTK functions downstream of the Fcγ receptors (FcγR) and Fcɛ receptors (FcɛR). In the absence of BTK, FcR-mediated functions, such as cytokine production, are impaired. In addition, Xid mice, which have a mutation in BTK, have decreased susceptibility to developing collagen-induced arthritis (CIA). Given that BTK is involved in multiple signaling pathways downstream of the BCR and FcR, it is an attractive therapeutic target for RA. PMID:24721226

  6. Role of tyrosine-kinase inhibitors in myeloproliferative neoplasms: comparative lessons learned.

    PubMed

    Pinilla-Ibarz, Javier; Sweet, Kendra L; Corrales-Yepez, Gabriela M; Komrokji, Rami S

    2016-01-01

    An important pathogenetic distinction in the classification of myeloproliferative neoplasms (MPNs) is the presence or absence of the BCR-ABL fusion gene, which encodes a unique oncogenic tyrosine kinase. The BCR-ABL fusion, caused by the formation of the Philadelphia chromosome (Ph) through translocation, constitutes the disease-initiating event in chronic myeloid leukemia. The development of successive BCR-ABL-targeted tyrosine-kinase inhibitors has led to greatly improved outcomes in patients with chronic myeloid leukemia, including high rates of complete hematologic, cytogenetic, and molecular responses. Such levels of treatment success have long been elusive for patients with Ph-negative MPNs, because of the difficulties in identifying specific driver proteins suitable as drug targets. However, in recent years an improved understanding of the complex pathobiology of classic Ph-negative MPNs, characterized by variable, overlapping multimutation profiles, has prompted the development of better and more broadly targeted (to pathway rather than protein) treatment options, particularly JAK inhibitors. In classic Ph-negative MPNs, overactivation of JAK-dependent signaling pathways is a central pathogenic mechanism, and mutually exclusive mutations in JAK2, MPL, and CALR linked to aberrant JAK activation are now recognized as key drivers of disease progression in myelofibrosis (MF). In clinical trials, the JAK1/JAK2 inhibitor ruxolitinib - the first therapy approved for MF worldwide - improved disease-related splenomegaly and symptoms independent of JAK2 (V617F) mutational status, and prolonged survival compared with placebo or standard therapy in patients with advanced MF. In separate trials, ruxolitinib also provided comprehensive hematologic control in patients with another Ph-negative MPN - polycythemia vera. However, complete cytogenetic or molecular responses with JAK inhibitors alone are normally not observed, underscoring the need for novel combination

  7. A Coiled-Coil Enabled Split-Luciferase Three-Hybrid System: Applied Toward Profiling Inhibitors of Protein Kinases

    PubMed Central

    Jester, Benjamin W.; Cox, Kurt J.; Gaj, Alicia; Shomin, Carolyn D.; Porter, Jason R.; Ghosh, Indraneel

    2010-01-01

    The 518 protein kinases encoded in the human genome are exquisitely regulated and their aberrant function(s) are often associated with human disease. Thus, in order to advance therapeutics and to probe signal transduction cascades there is considerable interest in the development of inhibitors that can selectively target protein kinases. However, identifying specific compounds against such a large array of protein kinases is difficult to routinely achieve utilizing traditional activity assays, where purified protein kinases are necessary. Toward a simple, rapid, and practical method for identifying specific inhibitors, we describe the development and application of a split-protein methodology utilizing a coiled-coil assisted three-hybrid system. In this approach, a protein kinase of interest is attached to the C-terminal fragment of split-firefly luciferase and the coiled-coil Fos, which is specific for the coiled-coil Jun, is attached to the N-terminal fragment. Upon addition of Jun conjugated to a pan-kinase inhibitor such as staurosporine, a three-hybrid complex is established with concomitant reassembly of the split-luciferase enzyme. An inhibitor can be potentially identified by the commensurate loss in split-luciferase activity by displacement of the modified staurosporine. We demonstrate that this new three-hybrid approach is potentially general by testing protein kinases from the different kinase families. To interrogate whether this method allows for screening inhibitors, we tested six different protein kinases against a library of 80 known protein kinase inhibitors. Finally, we demonstrate that this three-hybrid system can potentially provide a rapid method for structure/function analysis as well as aid in the identification of allosteric inhibitors. PMID:20669947

  8. Analysis of responses to the Rho-kinase inhibitor Y-27632 in the pulmonary and systemic vascular bed of the rat.

    PubMed

    Casey, David B; Badejo, Adeleke M; Dhaliwal, Jasdeep S; Sikora, James L; Fokin, Alex; Golwala, Neel H; Greco, Anthony J; Murthy, Subramanyam N; Nossaman, Bobby D; Hyman, Albert L; Kadowitz, Philip J

    2010-07-01

    Responses to the Rho kinase inhibitor Y-27632 were investigated in the anesthetized rat. Under baseline conditions intravenous injections of Y-27632 decreased pulmonary and systemic arterial pressures and increased cardiac output. The decreases in pulmonary arterial pressures were enhanced when baseline tone was increased with U-46619, and under elevated tone conditions Y-27632 produced similar percent decreases in pulmonary and systemic arterial pressures. Injections of Y-27632 prevented and reversed the hypoxic pulmonary vasoconstrictor response. The increase in pulmonary arterial pressure in response to ventilation with a 10% O(2)-90% N(2) gas mixture was not well maintained during the period of hypoxic exposure. Treatment with the nitric oxide (NO) synthase (NOS) inhibitor nitro-l-arginine methyl ester (l-NAME) increased pulmonary arterial pressure and prevented the decline or fade in the hypoxic pulmonary vasoconstrictor response. The hypoxic pulmonary vasoconstrictor response was reversed by Y-27632 in control and in l-NAME-treated animals. The Rho kinase inhibitor attenuated increases in pulmonary arterial pressures in response to intravenous injections of serotonin, angiotensin II, and Bay K 8644. Y-27632, sodium nitrite, and BAY 41-8543, a guanylate cyclase stimulator, decreased pulmonary and systemic arterial pressures and vascular resistances in monocrotaline-treated rats. These data suggest that Rho kinase is involved in the regulation of baseline tone and in the mediation of pulmonary vasoconstrictor responses. The present data suggest that the hypoxic pulmonary vasoconstrictor response is modulated by the release of NO that mediates the nonsustained component of the response in the anesthetized rat. These data suggest that Rho kinase and NOS play important roles in the regulation of vasoconstrictor tone in physiological and pathophysiological states and that monocrotaline-induced pulmonary hypertension can be reversed by agents that inhibit Rho kinase

  9. Analysis of responses to the Rho-kinase inhibitor Y-27632 in the pulmonary and systemic vascular bed of the rat

    PubMed Central

    Casey, David B.; Badejo, Adeleke M.; Dhaliwal, Jasdeep S.; Sikora, James L.; Fokin, Alex; Golwala, Neel H.; Greco, Anthony J.; Murthy, Subramanyam N.; Nossaman, Bobby D.; Hyman, Albert L.

    2010-01-01

    Responses to the Rho kinase inhibitor Y-27632 were investigated in the anesthetized rat. Under baseline conditions intravenous injections of Y-27632 decreased pulmonary and systemic arterial pressures and increased cardiac output. The decreases in pulmonary arterial pressures were enhanced when baseline tone was increased with U-46619, and under elevated tone conditions Y-27632 produced similar percent decreases in pulmonary and systemic arterial pressures. Injections of Y-27632 prevented and reversed the hypoxic pulmonary vasoconstrictor response. The increase in pulmonary arterial pressure in response to ventilation with a 10% O2-90% N2 gas mixture was not well maintained during the period of hypoxic exposure. Treatment with the nitric oxide (NO) synthase (NOS) inhibitor nitro-l-arginine methyl ester (l-NAME) increased pulmonary arterial pressure and prevented the decline or fade in the hypoxic pulmonary vasoconstrictor response. The hypoxic pulmonary vasoconstrictor response was reversed by Y-27632 in control and in l-NAME-treated animals. The Rho kinase inhibitor attenuated increases in pulmonary arterial pressures in response to intravenous injections of serotonin, angiotensin II, and Bay K 8644. Y-27632, sodium nitrite, and BAY 41-8543, a guanylate cyclase stimulator, decreased pulmonary and systemic arterial pressures and vascular resistances in monocrotaline-treated rats. These data suggest that Rho kinase is involved in the regulation of baseline tone and in the mediation of pulmonary vasoconstrictor responses. The present data suggest that the hypoxic pulmonary vasoconstrictor response is modulated by the release of NO that mediates the nonsustained component of the response in the anesthetized rat. These data suggest that Rho kinase and NOS play important roles in the regulation of vasoconstrictor tone in physiological and pathophysiological states and that monocrotaline-induced pulmonary hypertension can be reversed by agents that inhibit Rho kinase

  10. Inflammatory Signaling by NOD-RIPK2 Is Inhibited by Clinically Relevant Type II Kinase Inhibitors

    PubMed Central

    Canning, Peter; Ruan, Qui; Schwerd, Tobias; Hrdinka, Matous; Maki, Jenny L.; Saleh, Danish; Suebsuwong, Chalada; Ray, Soumya; Brennan, Paul E.; Cuny, Gregory D.; Uhlig, Holm H.; Gyrd-Hansen, Mads; Degterev, Alexei; Bullock, Alex N.

    2015-01-01

    Summary RIPK2 mediates pro-inflammatory signaling from the bacterial sensors NOD1 and NOD2, and is an emerging therapeutic target in autoimmune and inflammatory diseases. We observed that cellular RIPK2 can be potently inhibited by type II inhibitors that displace the kinase activation segment, whereas ATP-competitive type I inhibition was only poorly effective. The most potent RIPK2 inhibitors were the US Food and Drug Administration-approved drugs ponatinib and regorafenib. Their mechanism of action was independent of NOD2 interaction and involved loss of downstream kinase activation as evidenced by lack of RIPK2 autophosphorylation. Notably, these molecules also blocked RIPK2 ubiquitination and, consequently, inflammatory nuclear factor κB signaling. In monocytes, the inhibitors selectively blocked NOD-dependent tumor necrosis factor production without affecting lipopolysaccharide-dependent pathways. We also determined the first crystal structure of RIPK2 bound to ponatinib, and identified an allosteric site for inhibitor development. These results highlight the potential for type II inhibitors to treat indications of RIPK2 activation as well as inflammation-associated cancers. PMID:26320862

  11. Mixed lineage kinases activate MEK independently of RAF to mediate resistance to RAF inhibitors

    PubMed Central

    Marusiak, Anna A.; Edwards, Zoe C.; Hugo, Willy; Trotter, Eleanor W.; Girotti, Maria R.; Stephenson, Natalie L.; Kong, Xiangju; Gartside, Michael G.; Fawdar, Shameem; Hudson, Andrew; Breitwieser, Wolfgang; Hayward, Nicholas K.; Marais, Richard; Lo, Roger S.; Brognard, John

    2014-01-01

    RAF inhibitor therapy yields significant reductions in tumour burden in the majority of V600E-positive melanoma patients; however, resistance occurs within 2–18 months. Here we demonstrate that the mixed lineage kinases (MLK1–4) are MEK kinases that reactivate the MEK/ERK pathway in the presence of RAF inhibitors. Expression of MLK1–4 mediates resistance to RAF inhibitors and promotes survival in V600E-positive melanoma cell lines. Furthermore, we observe upregulation of the MLKs in 9 of 21 melanoma patients with acquired drug resistance. Consistent with this observation, MLKs promote resistance to RAF inhibitors in mouse models and contribute to acquired resistance in a cell line model. Lastly, we observe that a majority of MLK1 mutations identified in patients are gain-of-function mutations. In summary, our data demonstrate a role for MLKs as direct activators of the MEK/ERK pathway with implications for melanomagenesis and resistance to RAF inhibitors. PMID:24849047

  12. Inflammatory Signaling by NOD-RIPK2 Is Inhibited by Clinically Relevant Type II Kinase Inhibitors.

    PubMed

    Canning, Peter; Ruan, Qui; Schwerd, Tobias; Hrdinka, Matous; Maki, Jenny L; Saleh, Danish; Suebsuwong, Chalada; Ray, Soumya; Brennan, Paul E; Cuny, Gregory D; Uhlig, Holm H; Gyrd-Hansen, Mads; Degterev, Alexei; Bullock, Alex N

    2015-09-17

    RIPK2 mediates pro-inflammatory signaling from the bacterial sensors NOD1 and NOD2, and is an emerging therapeutic target in autoimmune and inflammatory diseases. We observed that cellular RIPK2 can be potently inhibited by type II inhibitors that displace the kinase activation segment, whereas ATP-competitive type I inhibition was only poorly effective. The most potent RIPK2 inhibitors were the US Food and Drug Administration-approved drugs ponatinib and regorafenib. Their mechanism of action was independent of NOD2 interaction and involved loss of downstream kinase activation as evidenced by lack of RIPK2 autophosphorylation. Notably, these molecules also blocked RIPK2 ubiquitination and, consequently, inflammatory nuclear factor κB signaling. In monocytes, the inhibitors selectively blocked NOD-dependent tumor necrosis factor production without affecting lipopolysaccharide-dependent pathways. We also determined the first crystal structure of RIPK2 bound to ponatinib, and identified an allosteric site for inhibitor development. These results highlight the potential for type II inhibitors to treat indications of RIPK2 activation as well as inflammation-associated cancers. PMID:26320862

  13. Crystal Structure of Checkpoint Kinase 2 in Complex with Nsc 109555, a Potent and Selective Inhibitor

    SciTech Connect

    Lountos, George T.; Tropea, Joseph E.; Zhang, Di; Jobson, Andrew G.; Pommier, Yves; Shoemaker, Robert H.; Waugh, David S.

    2009-03-05

    Checkpoint kinase 2 (Chk2), a ser/thr kinase involved in the ATM-Chk2 checkpoint pathway, is activated by genomic instability and DNA damage and results in either arrest of the cell cycle to allow DNA repair to occur or apoptosis if the DNA damage is severe. Drugs that specifically target Chk2 could be beneficial when administered in combination with current DNA-damaging agents used in cancer therapy. Recently, a novel inhibitor of Chk2, NSC 109555, was identified that exhibited high potency (IC{sub 50} = 240 nM) and selectivity. This compound represents a new chemotype and lead for the development of novel Chk2 inhibitors that could be used as therapeutic agents for the treatment of cancer. To facilitate the discovery of new analogs of NSC 109555 with even greater potency and selectivity, we have solved the crystal structure of this inhibitor in complex with the catalytic domain of Chk2. The structure confirms that the compound is an ATP-competitive inhibitor, as the electron density clearly reveals that it occupies the ATP-binding pocket. However, the mode of inhibition differs from that of the previously studied structure of Chk2 in complex with debromohymenialdisine, a compound that inhibits both Chk1 and Chk2. A unique hydrophobic pocket in Chk2, located very close to the bound inhibitor, presents an opportunity for the rational design of compounds with higher binding affinity and greater selectivity.

  14. Potent, selective and orally bioavailable leucine-rich repeat kinase 2 (LRRK2) inhibitors.

    PubMed

    Greshock, Thomas J; Sanders, John M; Drolet, Robert E; Rajapakse, Hemaka A; Chang, Ronald K; Kim, Boyoung; Rada, Vanessa L; Tiscia, Heather E; Su, Hua; Lai, Ming-Tain; Sur, Sylvie M; Sanchez, Rosa I; Bilodeau, Mark T; Renger, John J; Kern, Jonathan T; McCauley, John A

    2016-06-01

    Familial Parkinson's disease cases have recently been associated with the leucine rich repeat kinase 2 (LRRK2) gene. It has been hypothesized that inhibition of the LRRK2 protein may have the potential to alter disease pathogenesis. A dihydrobenzothiophene series of potent, selective, orally bioavailable LRRK2 inhibitors were identified from a high-throughput screen of the internal Merck sample collection. Initial SAR studies around the core established the series as a tractable small molecule lead series of LRRK2 inhibitors for potential treatment of Parkinson's disease. It was also found that incorporation of a lactam into the core drastically improved the CNS and DMPK properties of these small molecules. PMID:27106707

  15. Epidermal growth factor receptor tyrosine kinase inhibitors for non-small cell lung cancer

    PubMed Central

    Asami, Kazuhiro; Atagi, Shinji

    2014-01-01

    First-generation epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), including gefitinib and erlotinib, have proven to be highly effective agents for advanced non-small cell lung cancer (NSCLC) in patients harboring an activating EGFR mutation such as the exon 19 deletion mutation and L858R. Although those reversible small molecular targeted agents provide a significant response and survival benefit, all responders eventually acquire resistance. Second-generation EGFR-targeting agents, such as irreversible EGFR/HER2 tyrosine kinase inhibitors and pan-HER TKIs, may improve survival further and be useful for patients who acquired resistance to first-generation EGFR-TKIs. This review discusses novel therapeutic strategies for EGFR-mutated advanced NSCLC using first- and second-generation EGFR-TKIs. PMID:25302168

  16. A Caged Ret Kinase Inhibitor and its Effect on Motoneuron Development in Zebrafish Embryos

    PubMed Central

    Bliman, David; Nilsson, Jesper R.; Kettunen, Petronella; Andréasson, Joakim; Grøtli, Morten

    2015-01-01

    Proto-oncogene tyrosine-protein kinase receptor RET is implicated in the development and maintenance of neurons of the central and peripheral nervous systems. Attaching activity-compromising photocleavable groups (caging) to inhibitors could allow for external spatiotemporally controlled inhibition using light, potentially providing novel information on how these kinase receptors are involved in cellular processes. Here, caged RET inhibitors were obtained from 3-substituted pyrazolopyrimidine-based compounds by attaching photolabile groups to the exocyclic amino function. The most promising compound displayed excellent inhibitory effect in cell-free, as well as live-cell assays upon decaging. Furthermore, inhibition could be efficiently activated with light in vivo in zebrafish embryos and was shown to effect motoneuron development. PMID:26300345

  17. Treating inflammation with the Janus kinase inhibitor CP-690,550.

    PubMed

    Vijayakrishnan, Lalitha; Venkataramanan, R; Gulati, Palak

    2011-01-01

    Commonly used immunosuppressants possess several significant dose-limiting toxicities, prompting the search for agents whose mechanisms of action are limited to immune cells. Inhibition of Janus Kinase 3 (JAK3), a hematopoetic cell-restricted tyrosine kinase, represents an attractive target for immunosuppression owing to its limited distribution in tissue and specific role in lymphoid homeostasis. CP-690,550, a JAK3 inhibitor undergoing clinical trials for the treatment of transplant rejection and autoimmune disorders, has shown efficacy similar to comparator immunosuppressants. However, its inhibition of the more ubiquitous JAK family members, JAK1 and JAK2, is a probable cause of drug-related adverse events (e.g. overt immunosuppression, anemia). Here, we argue that CP-690,550 represents only a starting point in the search for a safer small molecule immunosuppressant, and that an isozyme-selective JAK3 inhibitor identified by rational drug design might be substantially safer. PMID:21144599

  18. N,N-Dimethylsphingosine is a potent competitive inhibitor of sphingosine kinase but not of protein kinase C: modulation of cellular levels of sphingosine 1-phosphate and ceramide.

    PubMed

    Edsall, L C; Van Brocklyn, J R; Cuvillier, O; Kleuser, B; Spiegel, S

    1998-09-15

    Sphingosine 1-phosphate (SPP), a lipid second messenger formed by the action of sphingosine kinase, has been implicated in regulating diverse biological processes, including growth, survival, and differentiation. N,N-Dimethylsphingosine (DMS) inhibits sphingosine kinase and has been used to investigate the biological roles of SPP; however, little is known of the mechanism of inhibition of sphingosine kinase by DMS. In addition, DMS has been shown to inhibit protein kinase C in vitro. Here we report that DMS is a competitive inhibitor of sphingosine kinase from U937 monoblastic leukemia cells, Swiss 3T3 fibroblasts, and PC12 pheochromocytoma cells. DMS decreases basal levels of SPP and prevents increases in SPP in response to physiological stimuli known to activate sphingosine kinase. DMS also effectively increases cellular levels of ceramide in a variety of cell types, and resetting of the ceramide/SPP rheostat may account for the pro-apoptotic effects of DMS. Moreover, DMS, at concentrations which effectively inhibit sphingosine kinase, has no effect on protein kinase C activity or its membrane translocation. Thus, DMS acts as a specific competitive inhibitor of sphingosine kinase in diverse cell types and is a useful tool to elucidate the role of SPP as an intracellular second messenger. PMID:9737868

  19. Effect of various protein kinase inhibitors on the induction of milk protein gene expression by prolactin.

    PubMed

    Bayat-Sarmadi, M; Houdebine, L M

    1993-03-01

    Prolactin has many known functions and one of them is to induce the expression of milk protein gene expression in the mammary gland. Specific membrane receptors have been recently characterized but the transduction mechanism involved in the transfer of the prolactin signal to milk protein genes remains unknown. In the present work, it is shown that several protein kinase inhibitors block prolactin action on milk protein genes. Primary rabbit mammary cells were cultured for several days on floating collagen gel in a serum-free medium. Prolactin and the inhibitors of protein kinase were then added to the culture medium. After 1 day, the concentration of alpha s1-casein in the culture medium was measured using a specific radioimmunoassay. The concentration of several mRNAs in cell extracts was also evaluated using Northern blot analysis. alpha s1-Casein secretion and alpha s1-casein mRNA accumulation were induced by prolactin. This induction was blocked by staurosporine, sphingosine, quercetin, genistein and to some extent by o-hydroxyphenyl acetate, but not by H7, polymyxin B, benzylsuccinate and lavendustin A. The concentration of the mRNA coding for transferrin, which is abundantly secreted in rabbit milk independently of prolactin action, was only moderately altered by the inhibitors. The concentration of two house-keeping mRNAs, beta-actin and glyceraldehyde 3-phosphate dehydrogenase, was lowered only by genistein after 1 day but not after 4 h of culture. These data show for the first time that a Ser/Thre kinase, which is not kinase C, and possibly a tyrosine kinase is involved in the transduction of the prolactin message from the receptor to the milk protein genes. PMID:8472863

  20. Discovery of Isonicotinamides as Highly Selective, Brain Penetrable, and Orally Active Glycogen Synthase Kinase-3 Inhibitors.

    PubMed

    Luo, Guanglin; Chen, Ling; Burton, Catherine R; Xiao, Hong; Sivaprakasam, Prasanna; Krause, Carol M; Cao, Yang; Liu, Nengyin; Lippy, Jonathan; Clarke, Wendy J; Snow, Kimberly; Raybon, Joseph; Arora, Vinod; Pokross, Matt; Kish, Kevin; Lewis, Hal A; Langley, David R; Macor, John E; Dubowchik, Gene M

    2016-02-11

    GSK-3 is a serine/threonine kinase that has numerous substrates. Many of these proteins are involved in the regulation of diverse cellular functions, including metabolism, differentiation, proliferation, and apoptosis. Inhibition of GSK-3 may be useful in treating a number of diseases including Alzheimer's disease (AD), type II diabetes, mood disorders, and some cancers, but the approach poses significant challenges. Here, we present a class of isonicotinamides that are potent, highly kinase-selective GSK-3 inhibitors, the members of which demonstrated oral activity in a triple-transgenic mouse model of AD. The remarkably high kinase selectivity and straightforward synthesis of these compounds bode well for their further exploration as tool compounds and therapeutics. PMID:26751161

  1. Anilinoquinazoline inhibitors of the RET kinase domain-Elaboration of the 7-position.

    PubMed

    Jordan, Allan M; Begum, Habiba; Fairweather, Emma; Fritzl, Samantha; Goldberg, Kristin; Hopkins, Gemma V; Hamilton, Niall M; Lyons, Amanda J; March, H Nikki; Newton, Rebecca; Small, Helen F; Vishwanath, Swamy; Waddell, Ian D; Waszkowycz, Bohdan; Watson, Amanda J; Ogilvie, Donald J

    2016-06-01

    We have previously reported a series of anilinoquinazoline derivatives as potent and selective biochemical inhibitors of the RET kinase domain. However, these derivatives displayed diminished cellular potency. Herein we describe further optimisation of the series through modification of their physicochemical properties, delivering improvements in cell potency. However, whilst cellular selectivity against key targets could be maintained, combining cell potency and acceptable pharmacokinetics proved challenging. PMID:27086121

  2. Optimization of microtubule affinity regulating kinase (MARK) inhibitors with improved physical properties.

    PubMed

    Sloman, David L; Noucti, Njamkou; Altman, Michael D; Chen, Dapeng; Mislak, Andrea C; Szewczak, Alexander; Hayashi, Mansuo; Warren, Lee; Dellovade, Tammy; Wu, Zhenhua; Marcus, Jacob; Walker, Deborah; Su, Hua-Poo; Edavettal, Suzanne C; Munshi, Sanjeev; Hutton, Michael; Nuthall, Hugh; Stanton, Matthew G

    2016-09-01

    Inhibition of microtubule affinity regulating kinase (MARK) represents a potentially attractive means of arresting neurofibrillary tangle pathology in Alzheimer's disease. This manuscript outlines efforts to optimize a pyrazolopyrimidine series of MARK inhibitors by focusing on improvements in potency, physical properties and attributes amenable to CNS penetration. A unique cylcyclohexyldiamine scaffold was identified that led to remarkable improvements in potency, opening up opportunities to reduce MW, Pgp efflux and improve pharmacokinetic properties while also conferring improved solubility. PMID:27491711

  3. Tyrosine kinase inhibitor-associated syndrome of inappropriate secretion of anti-diuretic hormone.

    PubMed

    Hill, Jordan; Shields, Jenna; Passero, Vida

    2016-10-01

    Hyponatremia is a common complication among cancer patients. Certain antineoplastic agents have been associated with syndrome of inappropriate secretion of anti-diuretic hormone-induced hyponatremia. The most common agents associated with secretion of anti-diuretic hormone are vinca alkaloids, platinum compounds, and alkylating agents. We report a case of secretion of anti-diuretic hormone associated with tyrosine kinase inhibitors. PMID:26089312

  4. In Vitro High Throughput Screening, What Next? Lessons from the Screening for Aurora Kinase Inhibitors

    PubMed Central

    Hoang, Thi-My-Nhung; Vu, Hong-Lien; Le, Ly-Thuy-Tram; Nguyen, Chi-Hung; Molla, Annie

    2014-01-01

    Based on in vitro assays, we performed a High Throughput Screening (HTS) to identify kinase inhibitors among 10,000 small chemical compounds. In this didactic paper, we describe step-by-step the approach to validate the hits as well as the major pitfalls encountered in the development of active molecules. We propose a decision tree that could be adapted to most in vitro HTS. PMID:24833340

  5. In Vitro Interactions between Target of Rapamycin Kinase Inhibitor and Antifungal Agents against Aspergillus Species.

    PubMed

    Gao, Lujuan; Ding, Xiaozhen; Liu, Zhun; Wu, Qingzhi; Zeng, Tongxiang; Sun, Yi

    2016-06-01

    In vitro interactions of INK128, a target of rapamycin (TOR) kinase inhibitor, and antifungals, including itraconazole, voriconazole, posaconazole, amphotericin B, and caspofungin, against Aspergillus spp. were assessed with the broth microdilution checkerboard technique. Our results suggested synergistic effects between INK128 and all azoles tested, against multiple Aspergillus fumigatus and Aspergillus flavus isolates. However, no synergistic effects were observed when INK128 was combined with amphotericin B or caspofungin. No antagonism was observed for any combination. PMID:26976874

  6. Fragment-based discovery of type I inhibitors of maternal embryonic leucine zipper kinase.

    PubMed

    Johnson, Christopher N; Berdini, Valerio; Beke, Lijs; Bonnet, Pascal; Brehmer, Dirk; Coyle, Joseph E; Day, Phillip J; Frederickson, Martyn; Freyne, Eddy J E; Gilissen, Ron A H J; Hamlett, Christopher C F; Howard, Steven; Meerpoel, Lieven; McMenamin, Rachel; Patel, Sahil; Rees, David C; Sharff, Andrew; Sommen, François; Wu, Tongfei; Linders, Joannes T M

    2015-01-01

    Fragment-based drug design was successfully applied to maternal embryonic leucine zipper kinase (MELK). A low affinity (160 μM) fragment hit was identified, which bound to the hinge region with an atypical binding mode, and this was optimized using structure-based design into a low-nanomolar and cell-penetrant inhibitor, with a good selectivity profile, suitable for use as a chemical probe for elucidation of MELK biology. PMID:25589925

  7. Fragment-Based Discovery of Type I Inhibitors of Maternal Embryonic Leucine Zipper Kinase

    PubMed Central

    2014-01-01

    Fragment-based drug design was successfully applied to maternal embryonic leucine zipper kinase (MELK). A low affinity (160 μM) fragment hit was identified, which bound to the hinge region with an atypical binding mode, and this was optimized using structure-based design into a low-nanomolar and cell-penetrant inhibitor, with a good selectivity profile, suitable for use as a chemical probe for elucidation of MELK biology. PMID:25589925

  8. The discovery of novel vascular endothelial growth factor receptor tyrosine kinases inhibitors: pharmacophore modeling, virtual screening and docking studies.

    PubMed

    Yu, Hui; Wang, Zhanli; Zhang, Liangren; Zhang, Jufeng; Huang, Qian

    2007-03-01

    We have applied pharmacophore generation, database searching and docking methodologies to discover new structures for the design of vascular endothelial growth factor receptors, the tyrosine kinase insert domain-containing receptor kinase inhibitors. The chemical function based pharmacophore models were built for kinase insert domain-containing receptor kinase inhibitors from a set of 10 known inhibitors using the algorithm HipHop, which is implemented in the CATALYST software. The highest scoring HipHop model consists of four features: one hydrophobic, one hydrogen bond acceptor, one hydrogen bond donor and one ring aromatic function. Using the algorithm CatShape within CATALYST, the bound conformation of 4-amino-furo [2, 3-d] pyrimidine binding to kinase insert domain-containing receptor kinase was used to generate a shape query. A merged shape and hypothesis query that is in an appropriate alignment was then built. The combined shape and hypothesis model was used as a query to search Maybridge database for other potential lead compounds. A total of 39 compounds were retrieved as hits. The hits obtained were docked into kinase insert domain-containing receptor kinase active site. One novel potential lead was proposed based on CATALYST fit value, LigandFit docking scores, and examination of how the hit retain key interactions known to be required for kinase binding. This compound inhibited vascular endothelial growth factor stimulated kinase insert domain-containing receptor phosphorylation in human umbilical vein endothelial cells. PMID:17441906

  9. Combination of the ABL kinase inhibitor imatinib with the Janus kinase 2 inhibitor TG101348 for targeting residual BCR-ABL-positive cells

    PubMed Central

    2014-01-01

    Background The ABL kinase inhibitor imatinib is highly effective in treating most, but not all, patients with chronic myeloid leukemia (CML). This is because residual CML cells are generally present in the bone marrow microenvironment and are refractory to imatinib. Hematopoietic cytokine receptor signaling is mediated by Janus kinases (JAKs) and their downstream transcription factor, signal transducer and activator of transcription (STAT). TG101348 (SAR302503) is an oral inhibitor of JAK2. Methods We investigated the efficacy of imatinib and TG101348 using the break point cluster region-c-Abelson (BCR-ABL)-positive cell line and primary CML samples wherein leukemia cells were protected by a feeder cell line (HS-5). Results Imatinib treatment resulted in partial inhibition of cell growth in HS-5-conditioned medium. Furthermore, combined treatment with imatinib and TG101348 abrogated the protective effects of HS-5-conditioned medium on K562 cells. Phosphorylation of Crk-L, a BCR-ABL substrate, decreased considerably, while apoptosis increased. In addition, the combined treatment of CD34-positive primary samples resulted in considerably increased cytotoxicity, decreased Crk-L phosphorylation, and increased apoptosis. We also investigated TG101348 activity against feeder cells and observed that STAT5 phosphorylation, granulocyte macrophage colony-stimulating factor, and interleukin 6 levels decreased, indicating reduced cytokine production in HS-5 cells treated with TG101348. Conclusions These results showed that JAK inhibitors may enhance the cytotoxic effect of imatinib against residual CML cells and that a combined approach may be a powerful strategy against the stroma-associated drug resistance of Philadelphia chromosome-positive cells. PMID:24775308

  10. Linking phenotype to kinase: identification of a novel benzoxaborole hinge-binding motif for kinase inhibition and development of high-potency rho kinase inhibitors.

    PubMed

    Akama, Tsutomu; Dong, Chen; Virtucio, Charlotte; Sullivan, David; Zhou, Yasheen; Zhang, Yong-Kang; Rock, Fernando; Freund, Yvonne; Liu, Liang; Bu, Wei; Wu, Anne; Fan, Xiao-Qing; Jarnagin, Kurt

    2013-12-01

    Benzoxaboroles are a novel class of drug-like compounds that have been rich sources of novel inhibitors for various enzymes and of new drugs. While examining benzoxaborole activity in phenotypic screens, our attention was attracted by the (aminomethylphenoxy)benzoxaborole family, which potently inhibited Toll-like receptor-stimulated cytokine secretion from leukocytes. After considering their structure-activity relationships and the central role of kinases in leukocyte biology, we performed a kinome-wide screen to investigate the members of the (aminomethylphenoxy)benzoxaborole family. This technique identified Rho-activated kinase (ROCK) as a target. We showed competitive behavior, with respect to ATP, and then determined the ROCK2-drug cocrystal structure. The drug occupies the ATP site in which the oxaborole moiety provides hydrogen bond donors and acceptors to the hinge, and the aminomethyl group interacts with the magnesium/ATP-interacting aspartic acid common to protein kinases. The series exhibits excellent selectivity against most of the kinome, with greater than 15-fold selectivity against the next best member of the AGC protein kinase subfamily. Medicinal chemistry efforts with structure-based design resulted in a compound with a Ki of 170 nM. Cellular studies revealed strong enzyme inhibition rank correlation with suppression of intracellular phosphorylation of a ROCK substrate. The biochemical potencies of these compounds also translated to functional activity, causing smooth muscle relaxation in rat aorta and guinea pig trachea. The series exhibited oral availability and one member reduced rat blood pressure, consistent with ROCK's role in smooth muscle contraction. Thus, the benzoxaborole moiety represents a novel hinge-binding kinase scaffold that may have potential for therapeutic use. PMID:24049062

  11. Identification of novel inhibitors of BCR-ABL tyrosine kinase via virtual screening.

    PubMed

    Peng, Hui; Huang, Niu; Qi, Jing; Xie, Ping; Xu, Chen; Wang, Jianxiang; Yang, Chunzheng

    2003-11-01

    Inhibition of BCR-ABL tyrosine kinase activity has shown to be essential for the treatment of chronic myelogenous leukemia (CML). However, drug resistance has quickly arisen in recent clinical trials for STI571 (Gleevec), which is the first approved drug of CML by inhibiting ABL tyrosine kinase. It is desirable to develop new types of ABL tyrosine kinase inhibitors that may overcome this drug resistance problem. Here we present the discovery of novel inhibitors targeted at the catalytic domain of ABL tyrosine kinase by using three-dimensional database searching techniques. From a database containing 200,000 commercially available compounds, the top 1000 compounds with the best DOCK energy score were selected and subjected to structural diversity and drug likeness analysis, 15 compounds were submitted for biological assay. Eight out of the 15 showed inhibitory activity against K562 cells with IC(50) value ranging from 10 to 200 microM. Two promising compounds showed inhibition in further ABL tyrosine phosphorylation assay. It is anticipated that those two compounds can serve as lead compounds for further drug design and optimization. PMID:14552760

  12. Optimization of a Novel Series of Ataxia-Telangiectasia Mutated Kinase Inhibitors as Potential Radiosensitizing Agents.

    PubMed

    Min, Jaeki; Guo, Kexiao; Suryadevara, Praveen K; Zhu, Fangyi; Holbrook, Gloria; Chen, Yizhe; Feau, Clementine; Young, Brandon M; Lemoff, Andrew; Connelly, Michele C; Kastan, Michael B; Guy, R Kiplin

    2016-01-28

    We previously reported a novel inhibitor of the ataxia-telangiectasia mutated (ATM) kinase, which is a target for novel radiosensitizing drugs. While our initial lead, compound 4, was relatively potent and nontoxic, it exhibited poor stability to oxidative metabolism and relatively poor selectivity against other kinases. The current study focused on balancing potency and selectivity with metabolic stability through structural modification to the metabolized site on the quinazoline core. We performed extensive structure-activity and structure-property relationship studies on this quinazoline ATM kinase inhibitor in order to identify structural variants with enhanced selectivity and metabolic stability. We show that, while the C-7-methoxy group is essential for potency, replacing the C-6-methoxy group considerably improves metabolic stability without affecting potency. Promising analogues 20, 27g, and 27n were selected based on in vitro pharmacology and evaluated in murine pharmacokinetic and tolerability studies. Compound 27g possessed significantly improve pharmacokinetics relative to that of 4. Compound 27g was also significantly more selective against other kinases than 4. Therefore, 27g is a good candidate for further development as a potential radiosensitizer. PMID:26632965

  13. Discovery of Novel Fibroblast Growth Factor Receptor 1 Kinase Inhibitors by Structure-Based Virtual Screening

    SciTech Connect

    Ravindranathan, K.; Mandiyan, V; Ekkati, A; Bae, J; Schlessinger, J; Jorgensen, W

    2010-01-01

    Fibroblast growth factors (FGFs) play important roles in embryonic development, angiogenesis, wound healing, and cell proliferation and differentiation. In search of inhibitors of FGFR1 kinase, 2.2 million compounds were docked into the ATP binding site of the protein. A co-crystal structure, which shows two alternative conformations for the nucleotide binding loop, is reported. Docking was performed on both conformations and, ultimately, 23 diverse compounds were purchased and assayed. Following hit validation, two compounds 10 and 16, a benzylidene derivative of pseudothiohydantoin and a thienopyrimidinone derivative, respectively, were discovered that inhibit FGFR1 kinase with IC{sub 50} values of 23 and 50 {micro}M. Initial optimization of 16 led to the more unsaturated 40, which has significantly enhanced potency, 1.9 {micro}M. The core structures represent new structural motifs for FGFR1 kinase inhibitors. The study also illustrates complexities associated with the choice of protein structures for docking, possible use of multiple kinase structures to seek selectivity, and hit identification.

  14. Beyond trastuzumab: small molecule tyrosine kinase inhibitors in HER-2-positive breast cancer.

    PubMed

    Roy, Vivek; Perez, Edith A

    2009-11-01

    HER-2 is a transmembrane, tyrosine kinase (TK) receptor whose overexpression is associated with adverse prognosis in breast cancer. The biological effects of HER-2 are mediated by kinase activity causing phosphorylation of tyrosine residues in the cytoplasmic domain of the receptor molecule, leading to activation of downstream growth-promoting pathways. Antibody-mediated inhibition by trastuzumab as well as TK inhibition are clinically effective anti-HER-2 strategies. Kinase inhibitors offer some potential therapeutic advantages over antibody-based therapies. Being small molecules, TK inhibitors (TKIs) have oral bioavailability and ability to cross the blood-brain barrier. Because of their different mode of action, TKIs may be able to overcome some of the mechanisms of trastuzumab resistance. Preclinical, and limited clinical data also suggest that TKIs and trastuzumab have synergistic activity. Lapatinib is the only TKI available for clinical use at present, but several molecules with anti-HER-2 activity have been identified and are undergoing evaluation. These differ in the spectrum of kinases that they inhibit, potency of HER-2 inhibition, pharmacokinetic properties, and toxicity profiles, and are at various stages of clinical development. In this article we summarize selected HER-2 TKIs approved for clinical use or in development for which clinical data are available. PMID:19887469

  15. Phosphoinositide 3-kinase gamma (PI3Kgamma) inhibitors for the treatment of inflammation and autoimmune disease.

    PubMed

    Venable, Jennifer D; Ameriks, Michael K; Blevitt, Jonathan M; Thurmond, Robin L; Fung-Leung, Wai-Ping

    2010-01-01

    Phosphoinositide 3-kinase gamma (PI3Kgamma) is a lipid kinase in leukocytes that generates phosphatidylinositol 3,4,5-trisphosphate to recruit and activate downstream signaling molecules. Distinct from other members in the PI3K family, PI3Kgamma is activated by G-protein coupled-receptors responding to chemotactic ligands. PI3Kgamma plays an important role in migration of both myeloid and lymphoid cells. It is also required for other leukocyte functions such as neutrophil oxidative burst, T cell proliferation and mast degranulation. Mice with PI3Kgamma inactivated by genetic or pharmacological approaches are protected from disease development in a number of inflammation and autoimmune disease models. The function of PI3Kgamma depends on its kinase activity and therefore it has been suggested by many reports that small molecules inhibiting its kinase activity could be promising for the treatment of inflammation and autoimmune diseases. Over the last five years, a number of pharmaceutical companies have reported a wide variety of PI3Kgamma inhibitors, of which several x-ray crystal structures with PI3Kgamma have been elucidated. The structural characteristics and selectivity profiles of these inhibitors, in particular thiazolidinones and 2-aminoheterocycles, and those disclosed in related patent applications are summarized in this review. PMID:20017720

  16. Role of Tyrosine Kinase Inhibitors in Indolent and Other Mature B-Cell Neoplasms

    PubMed Central

    Kutsch, Nadine; Marks, Reinhard; Ratei, Richard; Held, Thomas K; Schmidt-Hieber, Martin

    2015-01-01

    Targeting tyrosine kinases represents a highly specific treatment approach for different malignancies. This also includes non-Hodgkin lymphoma since it is well known that these enzymes are frequently involved in the lymphomagenesis. Hereby, tyrosine kinases might either be dysregulated intrinsically or be activated within signal transduction pathways leading to tumor survival and growth. Among others, Bruton’s tyrosine kinase (Btk) is of particular interest as a potential therapeutic target. Btk is stimulated by B-cell receptor signaling and activates different transcription factors such as nuclear factor κB. The Btk inhibitor ibrutinib has been approved for the treatment of chronic lymphocytic leukemia and mantle-cell lymphoma recently. Numerous clinical trials evaluating this agent in different combinations (eg, with rituximab or classical chemotherapeutic agents) as a treatment option for aggressive and indolent lymphoma are under way. Here, we summarize the role of tyrosine kinase inhibitors in the treatment of indolent and other non-Hodgkin lymphomas (eg, mantle-cell lymphoma). PMID:26327780

  17. Radiosensitization of Human Leukemic HL-60 Cells by ATR Kinase Inhibitor (VE-821): Phosphoproteomic Analysis

    PubMed Central

    Šalovská, Barbora; Fabrik, Ivo; Ďurišová, Kamila; Link, Marek; Vávrová, Jiřina; Řezáčová, Martina; Tichý, Aleš

    2014-01-01

    DNA damaging agents such as ionizing radiation or chemotherapy are frequently used in oncology. DNA damage response (DDR)—triggered by radiation-induced double strand breaks—is orchestrated mainly by three Phosphatidylinositol 3-kinase-related kinases (PIKKs): Ataxia teleangiectasia mutated (ATM), DNA-dependent protein kinase (DNA-PK) and ATM and Rad3-related kinase (ATR). Their activation promotes cell-cycle arrest and facilitates DNA damage repair, resulting in radioresistance. Recently developed specific ATR inhibitor, VE-821 (3-amino-6-(4-(methylsulfonyl)phenyl)-N-phenylpyrazine-2-carboxamide), has been reported to have a significant radio- and chemo-sensitizing effect delimited to cancer cells (largely p53-deficient) without affecting normal cells. In this study, we employed SILAC-based quantitative phosphoproteomics to describe the mechanism of the radiosensitizing effect of VE-821 in human promyelocytic leukemic cells HL-60 (p53-negative). Hydrophilic interaction liquid chromatography (HILIC)-prefractionation with TiO2-enrichment and nano-liquid chromatography—tandem mass spectrometry (LC-MS/MS) analysis revealed 9834 phosphorylation sites. Proteins with differentially up-/down-regulated phosphorylation were mostly localized in the nucleus and were involved in cellular processes such as DDR, all phases of the cell cycle, and cell division. Moreover, sequence motif analysis revealed significant changes in the activities of kinases involved in these processes. Taken together, our data indicates that ATR kinase has multiple roles in response to DNA damage throughout the cell cycle and that its inhibitor VE-821 is a potent radiosensitizing agent for p53-negative HL-60 cells. PMID:25003641

  18. Aurora kinase inhibitor nanoparticles target tumors with favorable therapeutic index in vivo.

    PubMed

    Ashton, Susan; Song, Young Ho; Nolan, Jim; Cadogan, Elaine; Murray, Jim; Odedra, Rajesh; Foster, John; Hall, Peter A; Low, Susan; Taylor, Paula; Ellston, Rebecca; Polanska, Urszula M; Wilson, Joanne; Howes, Colin; Smith, Aaron; Goodwin, Richard J A; Swales, John G; Strittmatter, Nicole; Takáts, Zoltán; Nilsson, Anna; Andren, Per; Trueman, Dawn; Walker, Mike; Reimer, Corinne L; Troiano, Greg; Parsons, Donald; De Witt, David; Ashford, Marianne; Hrkach, Jeff; Zale, Stephen; Jewsbury, Philip J; Barry, Simon T

    2016-02-10

    Efforts to apply nanotechnology in cancer have focused almost exclusively on the delivery of cytotoxic drugs to improve therapeutic index. There has been little consideration of molecularly targeted agents, in particular kinase inhibitors, which can also present considerable therapeutic index limitations. We describe the development of Accurin polymeric nanoparticles that encapsulate the clinical candidate AZD2811, an Aurora B kinase inhibitor, using an ion pairing approach. Accurins increase biodistribution to tumor sites and provide extended release of encapsulated drug payloads. AZD2811 nanoparticles containing pharmaceutically acceptable organic acids as ion pairing agents displayed continuous drug release for more than 1 week in vitro and a corresponding extended pharmacodynamic reduction of tumor phosphorylated histone H3 levels in vivo for up to 96 hours after a single administration. A specific AZD2811 nanoparticle formulation profile showed accumulation and retention in tumors with minimal impact on bone marrow pathology, and resulted in lower toxicity and increased efficacy in multiple tumor models at half the dose intensity of AZD1152, a water-soluble prodrug of AZD2811. These studies demonstrate that AZD2811 can be formulated in nanoparticles using ion pairing agents to give improved efficacy and tolerability in preclinical models with less frequent dosing. Accurins specifically, and nanotechnology in general, can increase the therapeutic index of molecularly targeted agents, including kinase inhibitors targeting cell cycle and oncogenic signal transduction pathways, which have to date proved toxic in humans. PMID:26865565

  19. Epidermal growth factor receptor variant III mutations in lung tumorigenesis and sensitivity to tyrosine kinase inhibitors.

    PubMed

    Ji, Hongbin; Zhao, Xiaojun; Yuza, Yuki; Shimamura, Takeshi; Li, Danan; Protopopov, Alexei; Jung, Boonim L; McNamara, Kate; Xia, Huili; Glatt, Karen A; Thomas, Roman K; Sasaki, Hidefumi; Horner, James W; Eck, Michael; Mitchell, Albert; Sun, Yangping; Al-Hashem, Ruqayyah; Bronson, Roderick T; Rabindran, Sridhar K; Discafani, Carolyn M; Maher, Elizabeth; Shapiro, Geoffrey I; Meyerson, Matthew; Wong, Kwok-Kin

    2006-05-16

    The tyrosine kinase inhibitors gefitinib (Iressa) and erlotinib (Tarceva) have shown anti-tumor activity in the treatment of non-small cell lung cancer (NSCLC). Dramatic and durable responses have occurred in NSCLC tumors with mutations in the tyrosine kinase domain of the epidermal growth factor receptor (EGFR). In contrast, these inhibitors have shown limited efficacy in glioblastoma, where a distinct EGFR mutation, the variant III (vIII) in-frame deletion of exons 2-7, is commonly found. In this study, we determined that EGFRvIII mutation was present in 5% (3/56) of analyzed human lung squamous cell carcinoma (SCC) but was not present in human lung adenocarcinoma (0/123). We analyzed the role of the EGFRvIII mutation in lung tumorigenesis and its response to tyrosine kinase inhibition. Tissue-specific expression of EGFRvIII in the murine lung led to the development of NSCLC. Most importantly, these lung tumors depend on EGFRvIII expression for maintenance. Treatment with an irreversible EGFR inhibitor, HKI-272, dramatically reduced the size of these EGFRvIII-driven murine tumors in 1 week. Similarly, Ba/F3 cells transformed with the EGFRvIII mutant were relatively resistant to gefitinib and erlotinib in vitro but proved sensitive to HKI-272. These findings suggest a therapeutic strategy for cancers harboring the EGFRvIII mutation. PMID:16672372

  20. Novel Kinase Inhibitors Targeting the PH Domain of AKT for Preventing and Treating Cancer | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute's Medical Oncology Branch is seeking statements of capability or interest from parties interested in licensing and co-development collaborative research to further develop, evaluate, or commercialize novel kinase inhibitors targeting the PH domain of AKT.

  1. Kinase inhibitor screening identifies CDK4 as a potential therapeutic target for melanoma

    PubMed Central

    MAHGOUB, T.; EUSTACE, A.J.; COLLINS, D.M.; WALSH, N.; O'DONOVAN, N.; CROWN, J.

    2015-01-01

    Despite recent advances in targeted therapies and immunotherapies metastatic melanoma remains only rarely curable. The objective of the present study was to identify novel therapeutic targets for metastatic melanoma. A library of 160 well-characterised and potent protein kinase inhibitors was screened in the BRAF mutant cell line Sk-Mel-28, and the NRAS mutant Sk-Mel-2, using proliferation assays. Of the 160 inhibitors tested, 20 achieved >50% growth inhibition in both cell lines. Six of the 20 were cyclin dependent kinase (CDK) inhibitors, including two CDK4 inhibitors. Fascaplysin, a synthetic CDK4 inhibitor, was further tested in 8 melanoma cell lines. The concentration of fascaplysin required to inhibit growth by 50% (IC50 value) ranged from 0.03 to 0.22 μM. Fascaplysin also inhibited clonogenic growth and induced apoptosis. Sensitivity to PD0332991, a therapeutic CDK4/6 inhibitor was also evaluated in the melanoma cell lines. PD0332991 IC50 values ranged from 0.13 to 2.29 μM. Similar to fascaplysin, PD0332991 inhibited clonogenic growth of melanoma cells and induced apoptosis. Higher levels of CDK4 protein correlated with lower sensitivity to PD0332991 in the cell lines. Combined treatment with PD0332991 and the BRAF inhibitor PLX4032, showed additive anti-proliferative effects in the BRAF mutant cell line Malme-3M. In summary, targeting CDK4 inhibits growth and induces apoptosis in melanoma cells in vitro, suggesting that CDK4 may be a rational therapeutic target for metastatic melanoma. PMID:26201960

  2. Effect of Narrow Spectrum Versus Selective Kinase Inhibitors on the Intestinal Proinflammatory Immune Response in Ulcerative Colitis

    PubMed Central

    Biancheri, Paolo; Foster, Martyn R.; Fyfe, Matthew C. T.; MacDonald, Thomas T.; Sirohi, Sameer; Solanke, Yemisi; Wood, Eleanor; Rowley, Adele; Webber, Steve

    2016-01-01

    Background: Kinases are key mediators of inflammation, highlighting the potential of kinase inhibitors as treatments for inflammatory disorders. Selective kinase inhibitors, however, have proved disappointing, particularly in the treatment of rheumatoid arthritis and inflammatory bowel disease. Consequently, to improve efficacy, attention has turned to multikinase inhibition. Methods: The activity of a narrow spectrum kinase inhibitor, TOP1210, has been compared with selective kinase inhibitors (BIRB-796, dasatinib and BAY-61-3606) in a range of kinase assays, inflammatory cell assays, and in inflamed biopsies from patients with ulcerative colitis (UC). Effects on recombinant P38α, Src, and Syk kinase activities were assessed using Z-lyte assays (Invitrogen, Paisley, United Kingdom). Anti-inflammatory effects were assessed by measurement of proinflammatory cytokine release from peripheral blood mononuclear cells, primary macrophages, HT29 cells, inflamed colonic UC biopsies, and myofibroblasts isolated from inflamed colonic UC mucosa. Results: TOP1210 potently inhibits P38α, Src, and Syk kinase activities. Similarly, TOP1210 demonstrates potent inhibitory activity against proinflammatory cytokine release in each of the cellular assays and the inflamed colonic UC biopsies and myofibroblasts isolated from inflamed colonic UC mucosa. Generally, the selective kinase inhibitors showed limited and weaker activity in the cellular assays compared with the broad inhibitory profile of TOP1210. However, combination of the selective inhibitors led to improved efficacy and potency in both cellular and UC biopsy assays. Conclusions: Targeted, multikinase inhibition with TOP1210 leads to a broad efficacy profile in both the innate and adaptive immune responses, with significant advantages over existing selective kinase approaches, and potentially offers a much improved therapeutic benefit in inflammatory bowel disease. PMID:27104822

  3. Structure-Activity Relationship Studies of Mitogen Activated Protein Kinase Interacting Kinase (MNK) 1 and 2 and BCR-ABL1 Inhibitors Targeting Chronic Myeloid Leukemic Cells.

    PubMed

    Cherian, Joseph; Nacro, Kassoum; Poh, Zhi Ying; Guo, Samantha; Jeyaraj, Duraiswamy A; Wong, Yun Xuan; Ho, Melvyn; Yang, Hai Yan; Joy, Joma Kanikadu; Kwek, Zekui Perlyn; Liu, Boping; Wee, John Liang Kuan; Ong, Esther H Q; Choong, Meng Ling; Poulsen, Anders; Lee, May Ann; Pendharkar, Vishal; Ding, Li Jun; Manoharan, Vithya; Chew, Yun Shan; Sangthongpitag, Kanda; Lim, Sharon; Ong, S Tiong; Hill, Jeffrey; Keller, Thomas H

    2016-04-14

    Clinically used BCR-ABL1 inhibitors for the treatment of chronic myeloid leukemia do not eliminate leukemic stem cells (LSC). It has been shown that MNK1 and 2 inhibitors prevent phosphorylation of eIF4E and eliminate the self-renewal capacity of LSCs. Herein, we describe the identification of novel dual MNK1 and 2 and BCR-ABL1 inhibitors, starting from the known kinase inhibitor 2. Initial structure-activity relationship studies resulted in compound 27 with loss of BCR-ABL1 inhibition. Further modification led to orally bioavailable dual MNK1 and 2 and BCR-ABL1 inhibitors 53 and 54, which are efficacious in a mouse xenograft model and also reduce the level of phosphorylated eukaryotic translation initiation factor 4E in the tumor tissues. Kinase selectivity of these compounds is also presented. PMID:27011159

  4. Identification of ellagic acid as potent inhibitor of protein kinase CK2: a successful example of a virtual screening application.

    PubMed

    Cozza, Giorgio; Bonvini, Paolo; Zorzi, Elisa; Poletto, Giorgia; Pagano, Mario A; Sarno, Stefania; Donella-Deana, Arianna; Zagotto, Giuseppe; Rosolen, Angelo; Pinna, Lorenzo A; Meggio, Flavio; Moro, Stefano

    2006-04-20

    Casein kinase 2 (CK2) is a ubiquitous, essential, and highly pleiotropic protein kinase whose abnormally high constitutive activity is suspected to underlie its pathogenic potential in neoplasia and other diseases. Using a virtual screening approach, we have identified the ellagic acid, a naturally occurring tannic acid derivative, as a novel potent CK2 inhibitor. At present, ellagic acid represents the most potent known CK2 inhibitor (K(i) = 20 nM). PMID:16610779

  5. HDAC inhibitors induce global changes in histone lysine and arginine methylation and alter expression of lysine demethylases.

    PubMed

    Lillico, Ryan; Sobral, Marina Gomez; Stesco, Nicholas; Lakowski, Ted M

    2016-02-01

    Histone deacetylase (HDAC) inhibitors are cancer treatments that inhibit the removal of the epigenetic modification acetyllysine on histones, resulting in altered gene expression. Such changes in expression may influence other histone epigenetic modifications. We describe a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to quantify lysine acetylation and methylation and arginine methylation on histones extracted from cultured cells treated with HDAC inhibitors. The HDAC inhibitors vorinostat, mocetinostat and entinostat induced 400-600% hyperacetylation in HEK 293 and K562 cells. All HDAC inhibitors decreased histone methylarginines in HEK 293 cells but entinostat produced dose dependent reductions in asymmetric dimethylarginine, not observed in K562 cells. Vorinostat produced increases in histone lysine methylation and decreased expression of some lysine demethylases (KDM), measured by quantitative PCR. Entinostat had variable effects on lysine methylation and decreased expression of some KDM while increasing expression of others. Mocetinostat produced dose dependent increases in histone lysine methylation by LC-MS/MS. This was corroborated with a multiplex colorimetric assay showing increases in histone H3 lysine 4, 9, 27, 36 and 79 methylation. Increases in lysine methylation were correlated with dose dependent decreases in the expression of seven KDM. Mocetinostat functions as an HDAC inhibitor and a de facto KDM inhibitor. PMID:26721445

  6. Modulation of human basophil histamine release by protein kinase C inhibitors differs with secretagogue and with inhibitor.

    PubMed

    Bergstrand, H; Lundquist, B; Karabelas, K; Michelsen, P

    1992-03-01

    To assess possible involvement of protein kinase C (PKC) in human basophil degranulation, the present work compared effects of various purported PKC inhibitors on leukocyte histamine release triggered by different stimuli. The effects recorded varied with the inhibitor and the secretagogue used; moreover, with a given secretagogue, different inhibitors often displayed different activities. Thus, histamine release triggered by the PKC activator 4 beta-phorbol 12-myristate 13-acetate was blocked by K252a, staurosporine and the purported specific PKC inhibitor Ro 31-7549, and reduced by calphostin C, H-7, TMB-8 and W-7 but not affected by polymyxin B; it was augmented by 2.1 microM palmitoyl carnitine. The leukocyte response induced by another putative activator of PKC, 1,2-isopropylidene-3-decanoyl-sn-glycerol, was also enhanced by 2.1 microM palmitoyl carnitine, slightly increased by staurosporine, TMB-8 and W-7 but not affected by calphostin C, H-7, K252a or Ro 31-7549, whereas the hyperosmolar mannitol-induced response was reduced by H-7, calphostin C, TMB-8 and W-7 and slightly augmented by staurosporine. Anti-IgE-induced histamine release was blocked by staurosporine and K252a and reduced by calphostin C, sphingosine, TMB-8 and W-7 but not affected by H-7, polymyxin B or retinal. It was enhanced by Ro 31-7549. In contrast, leukocyte histamine release induced by calcium ionophore A23187 or by ionomycin was blocked by retinal, TMB-8 and W-7 and reduced by calphostin C and palmitoyl carnitine but enhanced by H-7, staurosporine and polymyxin B; K252a and Ro 31-7549 did not affect such responses. Formyl-methionyl-leucyl-phenylalanine-triggered histamine release was barely affected by any agent used. Thus, the specific PKC inhibitor Ro 31-7549 selectively blocked 4 beta-phorbol 12-myristate 13-acetate-triggered leukocyte histamine release. These results imply that examined secretagogues trigger human leukocyte histamine release through partly separate pathways

  7. Crystal structure of the FLT3 kinase domain bound to the inhibitor quizartinib (AC220)

    SciTech Connect

    Zorn, Julie A.; Wang, Qi; Fujimura, Eric; Barros, Tiago; Kuriyan, John; Boggon, Titus J.

    2015-04-02

    More than 30% of acute myeloid leukemia (AML) patients possess activating mutations in the receptor tyrosine kinase FMS-like tyrosine kinase 3 or FLT3. A small-molecule inhibitor of FLT3 (known as quizartinib or AC220) that is currently in clinical trials appears promising for the treatment of AML. Here, we report the co-crystal structure of the kinase domain of FLT3 in complex with quizartinib. FLT3 with quizartinib bound adopts an “Abl-like” inactive conformation with the activation loop stabilized in the “DFG-out” orientation and folded back onto the kinase domain. This conformation is similar to that observed for the uncomplexed intracellular domain of FLT3 as well as for related receptor tyrosine kinases, except for a localized induced fit in the activation loop. The co-crystal structure reveals the interactions between quizartinib and the active site of FLT3 that are key for achieving its high potency against both wild-type FLT3 as well as a FLT3 variant observed in many AML patients. This co-complex further provides a structural rationale for quizartinib-resistance mutations.

  8. Crystal structure of the FLT3 kinase domain bound to the inhibitor quizartinib (AC220)

    DOE PAGESBeta

    Zorn, Julie A.; Wang, Qi; Fujimura, Eric; Barros, Tiago; Kuriyan, John; Boggon, Titus J.

    2015-04-02

    More than 30% of acute myeloid leukemia (AML) patients possess activating mutations in the receptor tyrosine kinase FMS-like tyrosine kinase 3 or FLT3. A small-molecule inhibitor of FLT3 (known as quizartinib or AC220) that is currently in clinical trials appears promising for the treatment of AML. Here, we report the co-crystal structure of the kinase domain of FLT3 in complex with quizartinib. FLT3 with quizartinib bound adopts an “Abl-like” inactive conformation with the activation loop stabilized in the “DFG-out” orientation and folded back onto the kinase domain. This conformation is similar to that observed for the uncomplexed intracellular domain ofmore » FLT3 as well as for related receptor tyrosine kinases, except for a localized induced fit in the activation loop. The co-crystal structure reveals the interactions between quizartinib and the active site of FLT3 that are key for achieving its high potency against both wild-type FLT3 as well as a FLT3 variant observed in many AML patients. This co-complex further provides a structural rationale for quizartinib-resistance mutations.« less

  9. Inhibition of dihydroceramide desaturase activity by the sphingosine kinase inhibitor SKI II[S

    PubMed Central

    Cingolani, Francesca; Casasampere, Mireia; Sanllehí, Pol; Casas, Josefina; Bujons, Jordi; Fabrias, Gemma

    2014-01-01

    Sphingosine kinase inhibitor (SKI) II has been reported as a dual inhibitor of sphingosine kinases (SKs) 1 and 2 and has been extensively used to prove the involvement of SKs and sphingosine-1-phosphate (S1P) in cellular processes. Dihydroceramide desaturase (Des1), the last enzyme in the de novo synthesis of ceramide (Cer), regulates the balance between dihydroceramides (dhCers) and Cers. Both SKs and Des1 have interest as therapeutic targets. Here we show that SKI II is a noncompetitive inhibitor (Ki = 0.3 μM) of Des1 activity with effect also in intact cells without modifying Des1 protein levels. Molecular modeling studies support that the SKI II-induced decrease in Des1 activity could result from inhibition of NADH-cytochrome b5 reductase. SKI II, but not the SK1-specific inhibitor PF-543, provoked a remarkable accumulation of dhCers and their metabolites, while both SKI II and PF-543 reduced S1P to almost undetectable levels. SKI II, but not PF543, reduced cell proliferation with accumulation of cells in the G0/G1 phase. SKI II, but not PF543, induced autophagy. These overall findings should be taken into account when using SKI II as a pharmacological tool, as some of the effects attributed to decreased S1P may actually be caused by augmented dhCers and/or their metabolites. PMID:24875537

  10. A Novel Glycogen Synthase Kinase-3 Inhibitor Optimized for Acute Myeloid Leukemia Differentiation Activity.

    PubMed

    Hu, Sophia; Ueda, Masumi; Stetson, Lindsay; Ignatz-Hoover, James; Moreton, Stephen; Chakrabarti, Amit; Xia, Zhiqiang; Karan, Goutam; de Lima, Marcos; Agrawal, Mukesh K; Wald, David N

    2016-07-01

    Standard therapies used for the treatment of acute myeloid leukemia (AML) are cytotoxic agents that target rapidly proliferating cells. Unfortunately, this therapeutic approach has limited efficacy and significant toxicity and the majority of AML patients still die of their disease. In contrast to the poor prognosis of most AML patients, most individuals with a rare subtype of AML, acute promyelocytic leukemia, can be cured by differentiation therapy using regimens containing all-trans retinoic acid. GSK3 has been previously identified as a therapeutic target in AML where its inhibition can lead to the differentiation and growth arrest of leukemic cells. Unfortunately, existing GSK3 inhibitors lead to suboptimal differentiation activity making them less useful as clinical AML differentiation agents. Here, we describe the discovery of a novel GSK3 inhibitor, GS87. GS87 was discovered in efforts to optimize GSK3 inhibition for AML differentiation activity. Despite GS87's dramatic ability to induce AML differentiation, kinase profiling reveals its high specificity in targeting GSK3 as compared with other kinases. GS87 demonstrates high efficacy in a mouse AML model system and unlike current AML therapeutics, exhibits little effect on normal bone marrow cells. GS87 induces potent differentiation by more effectively activating GSK3-dependent signaling components including MAPK signaling as compared with other GSK3 inhibitors. GS87 is a novel GSK3 inhibitor with therapeutic potential as a differentiation agent for non-promyelocytic AML. Mol Cancer Ther; 15(7); 1485-94. ©2016 AACR. PMID:27196775

  11. JAK2 inhibition sensitizes resistant EGFR-mutant lung adenocarcinoma to tyrosine kinase inhibitors

    PubMed Central

    Gao, Sizhi P.; Chang, Qing; Mao, Ninghui; Daly, Laura A.; Vogel, Robert; Chan, Tyler; Liu, Shu Hui; Bournazou, Eirini; Schori, Erez; Zhang, Haiying; Brewer, Monica Red; Pao, William; Morris, Luc; Ladanyi, Marc; Arcila, Maria; Manova-Todorova, Katia; de Stanchina, Elisa; Norton, Larry; Levine, Ross L.; Altan-Bonnet, Gregoire; Solit, David; Zinda, Michael; Huszar, Dennis; Lyden, David; Bromberg, Jacqueline F.

    2016-01-01

    Lung adenocarcinomas with mutant epidermal growth factor receptor (EGFR) respond to EGFR-targeted tyrosine kinase inhibitors (TKIs), but resistance invariably occurs. We found that the Janus kinase (JAK)/signal transduction and activator of transcription 3 (STAT3) signaling pathway was aberrantly increased in TKI-resistant EGFR-mutant non–small cell lung cancer (NSCLC) cells. JAK2 inhibition restored sensitivity to the EGFR inhibitor erlotinib in TKI-resistant cell lines and xenograft models of EGFR-mutant TKI-resistant lung cancer. JAK2 inhibition uncoupled EGFR from its negative regulator, suppressor of cytokine signaling 5 (SOCS5), consequently increasing EGFR abundance and restoring the tumor cells’ dependence on EGFR signaling. Furthermore, JAK2 inhibition led to heterodimerization of mutant and wild-type EGFR subunits, the activity of which was then blocked by TKIs. Our results reveal a mechanism whereby JAK2 inhibition overcomes acquired resistance to EGFR inhibitors and support the use of combination therapy with JAK and EGFR inhibitors for the treatment of EGFR-dependent NSCLC. PMID:27025877

  12. Synthesis and Biological Evaluation of Analogues of AKT (Protein Kinase B) Inhibitor-IV

    PubMed Central

    Sun, Qi; Wu, Runzhi; Cai, Sutang; Lin, Yuan; Sellers, Llewlyn; Sakamoto, Kaori; He, Biao; Peterson, Blake R.

    2011-01-01

    Inhibitors of the PI3-kinase/AKT (protein kinase B) pathway are under investigation as anticancer and antiviral agents. The benzimidazole derivative AKT inhibitor-IV (ChemBridge 5233705) affects this pathway and exhibits potent anticancer and antiviral activity. To probe its biological activity, we synthesized AKT inhibitor-IV and 21 analogues using a novel six-step route based on ZrCl4-catalyzed cyclization of 1,2-arylenediamines with α,β-unsaturated aldehydes. We examined effects on viability of HeLa carcinoma cells, viability of normal human cells (NHBE), replication of recombinant parainfluenza virus 5 (PIV5) in HeLa cells, and replication of the intracellular bacterium Mycobacterium fortuitum in HeLa cells. Replacement of the benzimidazole N-ethyl substitutent of AKT inhibitor-IV with N-hexyl and N-dodecyl groups enhanced antiviral activity and cytotoxicity against the cancer cell line, but these compounds showed substantially lower toxicity (from 6-fold to >20-fold) against NHBE cells, and no effect on M. fortuitum, suggesting inhibition of one or more host protein(s) required for proliferation of cancer cells and PIV5. The key structural elements identified here may facilitate identification of targets of this highly biologically active scaffold. PMID:21319800

  13. Small-Molecule Inhibitors of the Receptor Tyrosine Kinases: Promising Tools for Targeted Cancer Therapies

    PubMed Central

    Hojjat-Farsangi, Mohammad

    2014-01-01

    Chemotherapeutic and cytotoxic drugs are widely used in the treatment of cancer. In spite of the improvements in the life quality of patients, their effectiveness is compromised by several disadvantages. This represents a demand for developing new effective strategies with focusing on tumor cells and minimum side effects. Targeted cancer therapies and personalized medicine have been defined as a new type of emerging treatments. Small molecule inhibitors (SMIs) are among the most effective drugs for targeted cancer therapy. The growing number of approved SMIs of receptor tyrosine kinases (RTKs) i.e., tyrosine kinase inhibitors (TKIs) in the clinical oncology imply the increasing attention and application of these therapeutic tools. Most of the current approved RTK–TKIs in preclinical and clinical settings are multi-targeted inhibitors with several side effects. Only a few specific/selective RTK–TKIs have been developed for the treatment of cancer patients. Specific/selective RTK–TKIs have shown less deleterious effects compared to multi-targeted inhibitors. This review intends to highlight the importance of specific/selective TKIs for future development with less side effects and more manageable agents. This article provides an overview of: (1) the characteristics and function of RTKs and TKIs; (2) the recent advances in the improvement of specific/selective RTK–TKIs in preclinical or clinical settings; and (3) emerging RTKs for targeted cancer therapies by TKIs. PMID:25110867

  14. JAK2 inhibition sensitizes resistant EGFR-mutant lung adenocarcinoma to tyrosine kinase inhibitors.

    PubMed

    Gao, Sizhi P; Chang, Qing; Mao, Ninghui; Daly, Laura A; Vogel, Robert; Chan, Tyler; Liu, Shu Hui; Bournazou, Eirini; Schori, Erez; Zhang, Haiying; Red Brewer, Monica; Pao, William; Morris, Luc; Ladanyi, Marc; Arcila, Maria; Manova-Todorova, Katia; de Stanchina, Elisa; Norton, Larry; Levine, Ross L; Altan-Bonnet, Gregoire; Solit, David; Zinda, Michael; Huszar, Dennis; Lyden, David; Bromberg, Jacqueline F

    2016-01-01

    Lung adenocarcinomas with mutant epidermal growth factor receptor (EGFR) respond to EGFR-targeted tyrosine kinase inhibitors (TKIs), but resistance invariably occurs. We found that the Janus kinase (JAK)/signal transduction and activator of transcription 3 (STAT3) signaling pathway was aberrantly increased in TKI-resistant EGFR-mutant non-small cell lung cancer (NSCLC) cells. JAK2 inhibition restored sensitivity to the EGFR inhibitor erlotinib in TKI-resistant cell lines and xenograft models of EGFR-mutant TKI-resistant lung cancer. JAK2 inhibition uncoupled EGFR from its negative regulator, suppressor of cytokine signaling 5 (SOCS5), consequently increasing EGFR abundance and restoring the tumor cells' dependence on EGFR signaling. Furthermore, JAK2 inhibition led to heterodimerization of mutant and wild-type EGFR subunits, the activity of which was then blocked by TKIs. Our results reveal a mechanism whereby JAK2 inhibition overcomes acquired resistance to EGFR inhibitors and support the use of combination therapy with JAK and EGFR inhibitors for the treatment of EGFR-dependent NSCLC. PMID:27025877

  15. Large-Scale Computational Screening Identifies First in Class Multitarget Inhibitor of EGFR Kinase and BRD4

    PubMed Central

    Allen, Bryce K.; Mehta, Saurabh; Ember, Stewart W. J.; Schonbrunn, Ernst; Ayad, Nagi; Schürer, Stephan C.

    2015-01-01

    Inhibition of cancer-promoting kinases is an established therapeutic strategy for the treatment of many cancers, although resistance to kinase inhibitors is common. One way to overcome resistance is to target orthogonal cancer-promoting pathways. Bromo and Extra-Terminal (BET) domain proteins, which belong to the family of epigenetic readers, have recently emerged as promising therapeutic targets in multiple cancers. The development of multitarget drugs that inhibit kinase and BET proteins therefore may be a promising strategy to overcome tumor resistance and prolong therapeutic efficacy in the clinic. We developed a general computational screening approach to identify novel dual kinase/bromodomain inhibitors from millions of commercially available small molecules. Our method integrated machine learning using big datasets of kinase inhibitors and structure-based drug design. Here we describe the computational methodology, including validation and characterization of our models and their application and integration into a scalable virtual screening pipeline. We screened over 6 million commercially available compounds and selected 24 for testing in BRD4 and EGFR biochemical assays. We identified several novel BRD4 inhibitors, among them a first in class dual EGFR-BRD4 inhibitor. Our studies suggest that this computational screening approach may be broadly applicable for identifying dual kinase/BET inhibitors with potential for treating various cancers. PMID:26596901

  16. Upstream mitogen-activated protein kinase (MAPK) pathway inhibition: MEK inhibitor followed by a BRAF inhibitor in advanced melanoma patients.

    PubMed

    Goldinger, Simone M; Zimmer, Lisa; Schulz, Carsten; Ugurel, Selma; Hoeller, Christoph; Kaehler, Katharina C; Schadendorf, Dirk; Hassel, Jessica C; Becker, Juergen; Hauschild, Axel; Dummer, Reinhard

    2014-01-01

    BRAF-mutant melanoma can be successfully treated by BRAF kinase inhibitors (BRAFi) and MEK kinase inhibitors (MEKi). However, the administration of BRAFi followed by MEKi did not generate promising response rate (RR). The purpose of this investigation was to evaluate the time to progression (TTP) with a mitogen-activated protein kinase (MAPK) pathway upstream inhibition strategy in BRAF mutated melanoma patients. BRAF mutation positive metastatic melanoma patients were identified within the Dermatology Cooperative Oncology Group (DeCOG) network and were treated first with a MEKi and upon progression with a selective BRAFi. A total of 23 melanoma patients (six females, 17 males, aged 47-80 years) were retrospectively analysed for TTP. The total median TTP was 8.9 months. The median TTP for MEKi was 4.8 (1.2-23.2) and subsequent for BRAFi 4.5 (1.2-15.7) months, respectively. A higher RR for MEKi (39%, nine partial responses and 0 complete responses) than previously reported was observed. Our analysis suggests that the reversed inhibition of the MAPK pathway is feasible in BRAF mutated melanoma. The median TTP (8.9 months) is close to the promising BRAF- and MEKi combination therapy (median progression-free survival (PFS) 9.4 months). The total treatment duration of the MAPK inhibition when a MEKi is administered first is similar compared to the reversed sequence, but TTP shifts in favour to the MEKi. This approach is feasible with reasonable tolerability. This clinical investigation encourages further studies in prospective clinical trials to define the optimal treatment schedule for the MAPK pathway inhibition and should be accompanied by molecular monitoring using repeated biopsies. PMID:24183461

  17. Discovery of pyrrolo[1,2-b]pyridazine-3-carboxamides as Janus kinase (JAK) inhibitors.

    PubMed

    Duan, James J-W; Lu, Zhonghui; Jiang, Bin; Yang, Bingwei V; Doweyko, Lidia M; Nirschl, David S; Haque, Lauren E; Lin, Shuqun; Brown, Gregory; Hynes, John; Tokarski, John S; Sack, John S; Khan, Javed; Lippy, Jonathan S; Zhang, Rosemary F; Pitt, Sidney; Shen, Guoxiang; Pitts, William J; Carter, Percy H; Barrish, Joel C; Nadler, Steven G; Salter-Cid, Luisa M; McKinnon, Murray; Fura, Aberra; Schieven, Gary L; Wrobleski, Stephen T

    2014-12-15

    A new class of Janus kinase (JAK) inhibitors was discovered using a rationally designed pyrrolo[1,2-b]pyridazine-3-carboxamide scaffold. Preliminary studies identified (R)-(2,2-dimethylcyclopentyl)amine as a preferred C4 substituent on the pyrrolopyridazine core (3b). Incorporation of amino group to 3-position of the cyclopentane ring resulted in a series of JAK3 inhibitors (4g-4j) that potently inhibited IFNγ production in an IL2-induced whole blood assay and displayed high functional selectivity for JAK3-JAK1 pathway relative to JAK2. Further modifications led to the discovery of an orally bioavailable (2-fluoro-2-methylcyclopentyl)amino analogue 5g which is a nanomolar inhibitor of both JAK3 and TYK2, functionally selective for the JAK3-JAK1 pathway versus JAK2, and active in a human whole blood assay. PMID:25453808

  18. Discovery of selective phosphatidylinositol 3-kinase inhibitors to treat hematological malignancies.

    PubMed

    Zhu, Jingyu; Hou, Tingjun; Mao, Xinliang

    2015-08-01

    The phosphatidylinositol 3-kinase (PI3K) signaling pathway is associated with chemoresistance and poor prognosis of many cancers, including hematological malignancies (HM), such as leukemia, lymphomas, and multiple myeloma (MM). Targeting PI3K is emerging as a promising strategy in the treatment of these blood cancers. Recent approval of idelalisib, a specific inhibitor of PI3Kδ, for the treatment of several types of HM, is likely to attract more interest in search for novel PI3K inhibitors. Here, we discuss classic and cutting-edge techniques and strategies to identify PI3K inhibitors for the treatment of HM. Each technique has its own strengths and limitations, and their combined application will accelerate the drug discovery process with fewer associated costs. PMID:25857437

  19. Design of inhibitors of thymidylate kinase from Variola virus as new selective drugs against smallpox.

    PubMed

    Guimarães, Ana P; de Souza, Felipe R; Oliveira, Aline A; Gonçalves, Arlan S; de Alencastro, Ricardo B; Ramalho, Teodorico C; França, Tanos C C

    2015-02-16

    Recently we constructed a homology model of the enzyme thymidylate kinase from Variola virus (VarTMPK) and proposed it as a new target to the drug design against smallpox. In the present work, we used the antivirals cidofovir and acyclovir as reference compounds to choose eleven compounds as leads to the drug design of inhibitors for VarTMPK. Docking and molecular dynamics (MD) studies of the interactions of these compounds inside VarTMPK and human TMPK (HssTMPK) suggest that they compete for the binding region of the substrate and were used to propose the structures of ten new inhibitors for VarTMPK. Further docking and MD simulations of these compounds, inside VarTMPK and HssTMPK, suggest that nine among ten are potential selective inhibitors of VarTMPK. PMID:25458183

  20. Evaluation of Improved Glycogen Synthase Kinase-3α Inhibitors in Models of Acute Myeloid Leukemia

    PubMed Central

    Neumann, Theresa; Benajiba, Lina; Göring, Stefan; Stegmaier, Kimberly; Schmidt, Boris

    2016-01-01

    The challenge for Glycogen Synthase Kinase-3 (GSK-3) inhibitor design lies in achieving high selectivity for one isoform over the other. The therapy of certain diseases, such as acute myeloid leukemia (AML) may require α-isoform specific targeting. The scorpion shaped GSK-3 inhibitors developed by our group achieved the highest GSK-3α selectivity reported so far, but suffered from insufficient aqueous solubility. This work presents the solubility-driven optimization of our isoform-selective inhibitors using a scorpion shaped lead. Among 15 novel compounds, compound 27 showed high activity against GSK-3α/β with the highest GSK-3α selectivity reported to date. Compound 27 was profiled for bioavailability and toxicity in a zebrafish embryo phenotype assay. Selective GSK-3α targeting in AML cell lines was achieved with compound 27, resulting in a strong differentiation phenotype and colony formation impairment, confirming the potential of GSK-3α inhibition in AML therapy. PMID:26496242

  1. Discovery and mechanistic study of a class of protein arginine methylation inhibitors.

    PubMed

    Feng, You; Li, Mingyong; Wang, Binghe; Zheng, Yujun George

    2010-08-26

    Protein arginine methylation regulates multiple biological processes such as chromatin remodeling and RNA splicing. Malfunction of protein arginine methyltransferases (PRMTs) is correlated with many human diseases. Thus, small molecule inhibitors of protein arginine methylation are of great potential for therapeutic development. Herein, we report a type of compound that blocks PRMT1-mediated arginine methylation at micromolar potency through a unique mechanism. Most of the discovered compounds bear naphthalene and sulfonate groups and are structurally different from typical PRMT substrates, for example, histone H4 and glycine- and arginine-rich sequences. To elucidate the molecular basis of inhibition, we conducted a variety of kinetic and biophysical assays. The combined data reveal that this type of naphthyl-sulfo (NS) molecule directly targets the substrates but not PRMTs for the observed inhibition. We also found that suramin effectively inhibited PRMT1 activity. These findings about novel PRMT inhibitors and their unique inhibition mechanism provide a new way for chemical regulation of protein arginine methylation. PMID:20666457

  2. Kinase Domain Point Mutations in Ph+ Acute Lymphoblastic Leukemia (ALL) Emerge Following Therapy with BCR-ABL Kinase Inhibitors

    PubMed Central

    Jones, Dan; Thomas, Deborah; Yin, C. Cameron; O'Brien, Susan; Cortes, Jorge E.; Jabbour, Elias; Breeden, Megan; Giles, Francis J.; Zhao, Weiqiang; Kantarjian, Hagop M.

    2008-01-01

    Background BCR-ABL kinase domain (KD) mutations are detected in approximately 45% of imatinib-resistant CML. Patterns of KD mutations in Philadelphia chromosome (Ph)+ acute lymphoblastic leukemia (ALL) are less well-studied. Methods We assessed KD mutations in relapsed Ph+ ALL following treatments that included one or more kinase inhibitors (n = 24) or no prior KI therapy (n = 12). Results ABL KD mutations were detected by direct sequencing in 15 of 17 (88%) relapsed Ph+ ALL with prior imatinib (n = 16) or dasatinib (n = 1) treatment, and in 6 of 7 (86%) resistant/relapsed tumors treated with 2 or more KIs, compared with 0 of 12 relapsed Ph+ ALL never treated with KI. A restricted set of mutations was seen, mostly Y253H and T315I, detected on average 13 months following KI initiation, and mutations were not detected in the initial tumor samples prior to KI therapy in 12 patients assessed. Using a more sensitive pyrosequencing method, we did not detect mutations at codons 315 and 253 in the diagnostic samples from these 12 patients or in 30 Ph+ ALL patients who never relapsed. Conclusions ABL KD mutations, especially at codons 315 and 253, emerge upon relapse in the vast majority of patients with Ph+ ALL receiving maintenance KI therapy. Ongoing KI exposure may thus alter the patterns of relapse and favor outgrowth of clones with KI-resistant mutations. PMID:18615627

  3. Structural Requirements and Docking Analysis of Amidine-Based Sphingosine Kinase 1 Inhibitors Containing Oxadiazoles.

    PubMed

    Houck, Joseph D; Dawson, Thomas K; Kennedy, Andrew J; Kharel, Yugesh; Naimon, Niels D; Field, Saundra D; Lynch, Kevin R; Macdonald, Timothy L

    2016-05-12

    Sphingosine 1-phosphate (S1P) is a potent growth-signaling lipid that has been implicated in cancer progression, inflammation, sickle cell disease, and fibrosis. Two sphingosine kinases (SphK1 and 2) are the source of S1P; thus, inhibitors of the SphKs have potential as targeted cancer therapies and will help to clarify the roles of S1P and the SphKs in other hyperproliferative diseases. Recently, we reported a series of amidine-based inhibitors with high selectivity for SphK1 and potency in the nanomolar range. However, these inhibitors display a short half-life. With the goal of increasing metabolic stability and maintaining efficacy, we designed an analogous series of molecules containing oxadiazole moieties. Generation of a library of molecules resulted in the identification of the most selective inhibitor of SphK1 reported to date (705-fold selectivity over SphK2), and we found that potency and selectivity vary significantly depending on the particular oxadiazole isomer employed. The best inhibitors were subjected to in silico molecular dynamics docking analysis, which revealed key insights into the binding of amidine-based inhibitors by SphK1. Herein, the design, synthesis, biological evaluation, and docking analysis of these molecules are described. PMID:27190598

  4. South (S)- and North (N)-Methanocarba-7-Deazaadenosine Analogues as Inhibitors of Human Adenosine Kinase.

    PubMed

    Toti, Kiran S; Osborne, Danielle; Ciancetta, Antonella; Boison, Detlev; Jacobson, Kenneth A

    2016-07-28

    Adenosine kinase (AdK) inhibitors raise endogenous adenosine levels, particularly in disease states, and have potential for treatment of seizures, neurodegeneration, and inflammation. On the basis of the South (S) ribose conformation and molecular dynamics (MD) analysis of nucleoside inhibitors bound in AdK X-ray crystallographic structures, (S)- and North (N)-methanocarba (bicyclo[3.1.0]hexane) derivatives of known inhibitors were prepared and compared as human (h) AdK inhibitors. 5'-Hydroxy (34, MRS4202 (S); 55, MRS4380 (N)) and 5'-deoxy 38a (MRS4203 (S)) analogues, containing 7- and N(6)-NH phenyl groups in 7-deazaadenine, robustly inhibited AdK activity (IC50 ∼ 100 nM), while the 5'-hydroxy derivative 30 lacking the phenyl substituents was weak. Docking in the hAdK X-ray structure and MD simulation suggested a mode of binding similar to 5'-deoxy-5-iodotubercidin and other known inhibitors. Thus, a structure-based design approach for further potency enhancement is possible. The potent AdK inhibitors in this study are ready to be further tested in animal models of epilepsy. PMID:27410258

  5. Identifying GSK-3β kinase inhibitors of Alzheimer's disease: Virtual screening, enzyme, and cell assays.

    PubMed

    Lin, Chih-Hsin; Hsieh, Yu-Shao; Wu, Yih-Ru; Hsu, Chia-Jen; Chen, Hsuan-Chiang; Huang, Wun-Han; Chang, Kuo-Hsuan; Hsieh-Li, Hsiu Mei; Su, Ming-Tsan; Sun, Ying-Chieh; Lee, Guan-Chiun; Lee-Chen, Guey-Jen

    2016-06-30

    Glycogen synthase kinase 3β (GSK-3β) is widely known as a critical target protein for treating Alzheimer's disease (AD). We utilized virtual screening to search databases for compounds with the potential to be used in drugs targeting GSK-3β kinase, and kinase as well as cell assays to investigate top-scored, selected compounds. Virtual screening of >1.1 million compounds in the ZINC and in-house databases was conducted using an optimized computational protocol in the docking program GOLD. Of the top-ranked compounds, 16 underwent a luminescent kinase assay and a cell assay using HEK293 cells expressing DsRed-tagged ΔK280 in the repeat domain of tau (tauRD). The compounds VB-003 (a potent GSK-3β inhibitor) and VB-008 (AM404, an anandamide transport inhibitor), with determined IC50 values of 0.25 and 5.4μM, respectively, were identified as reducing tau aggregation. Both compounds increased expression of phospho-GSK-3β (Ser9) and reduced endogenous tau phosphorylation at the sites of Ser202, Thr231, and Ser396. In the ∆K280 tauRD-DsRed SH-SY5Y cells, VB-008, but not VB-003, enhanced HSPB1 and GRP78 expression, increased ∆K280 tauRD-DsRed solubility, and promoted neurite outgrowth. Thus VB-008 performed best to the end of the present study. The identified compound VB-008 may guide the identification and synthesis of potential inhibitors analogous to this compound. PMID:27094783

  6. Pyridylthiazole-based ureas as inhibitors of Rho associated protein kinases (ROCK1 and 2).

    PubMed

    Pireddu, Roberta; Forinash, Kara D; Sun, Nan N; Martin, Mathew P; Sung, Shen-Shu; Alexander, Brian; Zhu, Jin-Yi; Guida, Wayne C; Schönbrunn, Ernst; Sebti, Saïd M; Lawrence, Nicholas J

    2012-06-01

    Potent ROCK inhibitors of a new class of 1-benzyl-3-(4-pyridylthiazol-2-yl)ureas have been identified. Remarkable differences in activity were observed for ureas bearing a benzylic stereogenic center. Derivatives with hydroxy, methoxy and amino groups at the meta position of the phenyl ring give rise to the most potent inhibitors (low nM). Substitutions at the para position result in substantial loss of potency. Changes at the benzylic position are tolerated resulting in significant potency in the case of methyl and methylenehydroxy groups. X-Ray crystallography was used to establish the binding mode of this class of inhibitors and provides an explanation for the observed differences of the enantiomer series. Potent inhibition of ROCK in human lung cancer cells was shown by suppression of the levels of phosphorylation of the ROCK substrate MYPT-1. PMID:23275831

  7. Role of N-methyl-D-aspartate receptors in the neuroprotective activation of extracellular signal-regulated kinase 1/2 by cisplatin.

    PubMed

    Gozdz, Agata; Habas, Agata; Jaworski, Jacek; Zielinska, Magdalena; Albrecht, Jan; Chlystun, Marcin; Jalili, Ahmad; Hetman, Michal

    2003-10-31

    Neurons are exposed to damaging stimuli that can trigger cell death and subsequently cause serious neurological disorders. Therefore, it is important to define defense mechanisms that can be activated in response to damage to reduce neuronal loss. Here we report that cisplatin (CPDD), a neurotoxic anticancer drug that damages DNA, triggered apoptosis and activated the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway in cultured rat cortical neurons. Inhibition of ERK1/2 activation using either pharmacological inhibitors or a dominant-negative mutant of the ERK1/2 activator, mitogen-activated protein kinase kinase 1, increased the toxicity of CPDD. Interestingly, N-methyl-d-aspartate (NMDA) receptor (NMDAR) antagonists reduced the ERK1/2 activation and exacerbated apoptosis in CPDD-treated neurons. Pre-treatment with CPDD increased ERK1/2 activation triggered by exogenous NMDA, suggesting that CPDD augmented NMDAR responsiveness. CPDD-enhanced response of NMDAR and CPDD-mediated ERK1/2 activation were both decreased by inhibition of poly(ADP-ribose) polymerase (PARP). Interestingly, PARP activation did not produce ATP depletion, suggesting involvement of a non-energetic mechanism in NMDAR regulation by PARP. Finally, CPDD toxicity was reduced by brain-derived neurotrophic factor, and this protection required ERK1/2. In summary, our data identify a novel compensatory circuit in central nervous system neurons that couples the DNA injury, through PARP and NMDAR, to the defensive ERK1/2 activation. PMID:12930843

  8. Antitumor effects of immunotoxins are enhanced by lowering HCK or treatment with SRC kinase inhibitors.

    PubMed

    Liu, Xiu-Fen; Xiang, Laiman; FitzGerald, David J; Pastan, Ira

    2014-01-01

    Recombinant immunotoxins (RIT) are agents being developed for cancer treatment. They are composed of an Fv that binds to a cancer cell, fused to a 38-kDa fragment of Pseudomonas exotoxin A. SS1P is a RIT that targets mesothelin, a protein expressed on mesothelioma as well as pancreatic, ovarian, lung, and other cancers. Because the protein tyrosine kinase family regulates a variety of cellular processes and pathways, we hypothesized that tyrosine kinases might regulate susceptibility to immunotoxin killing. To investigate their role, we used siRNAs to lower the level of expression of the 88 known tyrosine kinases. We identified five tyrosine kinases, INSR, HCK, SRC, PDGFRβ, and BMX that enhance the activity of SS1P when their level of expression is lowered by siRNAs. We further investigated the Src family member HCK in this study. Knocking down of SRC slightly increased SS1P killing in A431/H9 cells, but knocking down HCK substantially enhanced killing by SS1P. We investigated the mechanism of enhancement and found that HCK knockdown enhanced SS1P cleavage by furin and lowered levels of Mcl-1 and raised Bax. We then found that Src inhibitors mimic the stimulatory effect of HCK knockdown; both SU6656 and SKI-606 (bosutinib) enhanced immunotoxin killing of mesothelin-expressing cells by SS1P and CD22-expressing cells by HA22 (moxetumomab pasudotox). SU6656 also enhanced the antitumor effects of SS1P and HA22 in mouse xenograft tumor models. Our data suggest that the combination of immunotoxin with tyrosine kinase inhibitors may be an effective way to treat some cancers. PMID:24145282

  9. Resistance to the tyrosine kinase inhibitor axitinib is associated with increased glucose metabolism in pancreatic adenocarcinoma.

    PubMed

    Hudson, C D; Hagemann, T; Mather, S J; Avril, N

    2014-01-01

    Alterations in energy (glucose) metabolism are key events in the development and progression of cancer. In pancreatic adenocarcinoma (PDAC) cells, we investigated changes in glucose metabolism induced by resistance to the receptor tyrosine kinase inhibitor (RTKI) axitinib. Here, we show that human cell lines and mouse PDAC cell lines obtained from the spontaneous pancreatic cancer mouse model (Kras(G12D)Pdx1-cre) were sensitive to axitinib. The anti-proliferative effect was due to a G2/M block resulting in loss of 70-75% cell viability in the most sensitive PDAC cell line. However, a surviving sub-population showed a 2- to 3-fold increase in [C-14]deoxyglucose ([C-14]DG) uptake. This was sustained in axitinib-resistant cell lines, which were derived from parental PDAC. In addition to the axitinib-induced increase in [C-14]DG uptake, we observed a translocation of glucose transporter-1 (Glut-1) transporters from cytosolic pools to the cell surface membrane and a 2-fold increase in glycolysis rates measured by the extracellular acidification rate (ECAR). We demonstrated an axitinib-induced increase in phosphorylated Protein Kinase B (pAkt) and by blocking pAkt with a phosphatidylinositol-3 kinase (PI3K) inhibitor we reversed the Glut-1 translocation and restored sensitivity to axitinib treatment. Combination treatment with both axitinib and Akt inhibitor in parental pancreatic cell line resulted in a decrease in cell viability beyond that conferred by single therapy alone. Our study shows that PDAC resistance to axitinib results in increased glucose metabolism mediated by activated Akt. Combining axitinib and an Akt inhibitor may improve treatment in PDAC. PMID:24722285

  10. A Cell Biologist’s Field Guide to Aurora Kinase Inhibitors

    PubMed Central

    de Groot, Christian O.; Hsia, Judy E.; Anzola, John V.; Motamedi, Amir; Yoon, Michelle; Wong, Yao Liang; Jenkins, David; Lee, Hyun J.; Martinez, Mallory B.; Davis, Robert L.; Gahman, Timothy C.; Desai, Arshad; Shiau, Andrew K.

    2015-01-01

    Aurora kinases are essential for cell division and are frequently misregulated in human cancers. Based on their potential as cancer therapeutics, a plethora of small molecule Aurora kinase inhibitors have been developed, with a subset having been adopted as tools in cell biology. Here, we fill a gap in the characterization of Aurora kinase inhibitors by using biochemical and cell-based assays to systematically profile a panel of 10 commercially available compounds with reported selectivity for Aurora A (MLN8054, MLN8237, MK-5108, MK-8745, Genentech Aurora Inhibitor 1), Aurora B (Hesperadin, ZM447439, AZD1152-HQPA, GSK1070916), or Aurora A/B (VX-680). We quantify the in vitro effect of each inhibitor on the activity of Aurora A alone, as well as Aurora A and Aurora B bound to fragments of their activators, TPX2 and INCENP, respectively. We also report kinome profiling results for a subset of these compounds to highlight potential off-target effects. In a cellular context, we demonstrate that immunofluorescence-based detection of LATS2 and histone H3 phospho-epitopes provides a facile and reliable means to assess potency and specificity of Aurora A versus Aurora B inhibition, and that G2 duration measured in a live imaging assay is a specific readout of Aurora A activity. Our analysis also highlights variation between HeLa, U2OS, and hTERT-RPE1 cells that impacts selective Aurora A inhibition. For Aurora B, all four tested compounds exhibit excellent selectivity and do not significantly inhibit Aurora A at effective doses. For Aurora A, MK-5108 and MK-8745 are significantly more selective than the commonly used inhibitors MLN8054 and MLN8237. A crystal structure of an Aurora A/MK-5108 complex that we determined suggests the chemical basis for this higher specificity. Taken together, our quantitative biochemical and cell-based analyses indicate that AZD1152-HQPA and MK-8745 are the best current tools for selectively inhibiting Aurora B and Aurora A, respectively

  11. The cyclin-dependent kinase inhibitor butyrolactone is a potent inhibitor of p21 (WAF1/CIP1 expression).

    PubMed

    Sax, Joanna K; Dash, Bipin C; Hong, Rui; Dicker, David T; El-Deiry, Wafik S

    2002-01-01

    Butyrolactone I (BL) is a competitive inhibitor of ATP for binding and activation of cyclin-dependent kinases and is a potent inhibitor of cell cycle progression. Treatment of H460 human lung and SW480 human colon cancer cells with doses of BL that exceed the Ki for CDK inhibition but which are much lower than doses required to inhibit MAPK, PKA, PKC, or EGFR lead to a rapid significant reduction of endogenous p21 protein expression. BL-dependent inhibition of p21 expression appears to be p53-independent. BL-dependent p21 degradation was blocked by lactacystin, consistent with the hypothesis that there is accelerated p21 proteasomal degradation in the presence of BL. BL also inhibited the p53-dependent increase of p21 protein expression in cells exposed to the DNA damag-ing agent etoposide, and favored a greater G2/M arrest as compared to the non-BL exposed cells. BL accelerated the degradation of exogenously expressed p21 that was not observed with a C-terminal truncated form of p21. Degradation of exogenous p21 led to a shift to G2 accumulation in the cells exposed to BL. We conclude that BL has effects on the cell cycle beyond its role as a CDK inhibitor and can be used as a novel tool to study the mechanism of p21 degradation and the consequences towards p21- dependent checkpoints. PMID:12429914

  12. Synthesis and biological evaluation of analogues of the kinase inhibitor nilotinib as Abl and Kit inhibitors

    PubMed Central

    Duveau, Damien Y.; Hu, Xin; Walsh, Martin J.; Shukla, Suneet; Skoumbourdis, Amanda P.; Boxer, Matthew B.; Ambudkar, Suresh V.; Shen, Min; Thomas, Craig J.

    2013-01-01

    The importance of the trifluoromethyl group in the polypharmacological profile of nilotinib was investigated. Molecular editing of nilotinib led to the design, synthesis and biological evaluation of analogues where the trifluoromethyl group was replaced by a proton, fluorine and a methyl group. While these analogues were less active than nilotinib toward Abl, their activity toward Kit was comparable, with the monofluorinated analogue being the most active. Docking of nilotinib and of analogues 2a–c to the binding pocket of Abl and of Kit showed that the lack of shape complementarity in Kit is compensated by the stabilizing effect from its juxtamembrane region. PMID:23273517

  13. Discovery, Synthesis and Characterization of an Orally Bioavailable, Brain Penetrant Inhibitor of Mixed Lineage Kinase 3

    PubMed Central

    Goodfellow, Val S.; Loweth, Colin J.; Ravula, Satheesh B.; Wiemann, Torsten; Nguyen, Thong; Xu, Yang; Todd, Daniel E.; Sheppard, David; Pollack, Scott; Polesskaya, Oksana; Marker, Daniel F.; Dewhurst, Stephen; Gelbard, Harris A.

    2014-01-01

    Inhibition of mixed lineage kinase 3 (MLK3) is a potential strategy for treatment of Parkinson’s Disease and HIV-1 Associated Neurocognitive Disorders (HAND), requiring an inhibitor that can achieve significant brain concentration levels. We report here URMC-099 (1) an orally bioavailable (F = 41%), potent (IC50 = 14 nM) MLK3 inhibitor with excellent brain exposure in mouse PK models and minimal interference with key human CYP450 enzymes or hERG channels. The compound inhibits LPS-induced TNFα release in microglial cells, HIV-1 Tat-induced release of cytokines in human monocytes, and up-regulation of phospho-JNK in Tat-injected brains of mice. Compound 1 likely functions in HAND preclinical models by inhibiting multiple kinase pathways, including MLK3 and LRRK2 (IC50 = 11 nM). We compare the kinase specificity and BBB penetration of 1 with CEP-1347 (2). Compound 1 is well tolerated, with excellent in vivo activity in HAND models, and is under investigation for further development. PMID:24044867

  14. Development of highly potent and selective diaminothiazole inhibitors of cyclin-dependent kinases

    PubMed Central

    Schonbrunn, Ernst; Betzi, Stephane; Alam, Riazul; Martin, Mathew P.; Becker, Andreas; Han, Huijong; Francis, Rawle; Chakrasali, Ramappa; Jakkaraj, Sudhakar; Kazi, Aslamuzzaman; Sebti, Said M.; Cubitt, Christopher L.; Gebhard, Anthony W.; Hazlehurst, Lori A.; Tash, Joseph S.; Georg, Gunda I.

    2013-01-01

    Cyclin-dependent kinases (CDKs) are serine/threonine protein kinases that act as key regulatory elements in cell cycle progression. We describe the development of highly potent diaminothiazole inhibitors of CDK2 (IC50 = 0.0009 – 0.0015 µM) from a single hit compound with weak inhibitory activity (IC50 = 15 µM), discovered by high-throughput screening. Structure-based design was performed using 35 co-crystal structures of CDK2 liganded with distinct analogues of the parent compound. The profiling of compound 51 against a panel of 339 kinases revealed high selectivity for CDKs, with preference for CDK2 and CDK5 over CDK9, CDK1, CDK4 and CDK6. Compound 51 inhibited the proliferation of 13 out of 15 cancer cell lines with IC50 values between 0.27 and 6.9 µM, which correlated with the complete suppression of retinoblastoma phosphorylation and the onset of apoptosis. Combined, the results demonstrate the potential of this new inhibitors series for further development into CDK-specific chemical probes or therapeutics. PMID:23600925

  15. Identification of p38α MAP kinase inhibitors by pharmacophore based virtual screening.

    PubMed

    Gangwal, Rahul P; Das, Nihar R; Thanki, Kaushik; Damre, Mangesh V; Dhoke, Gaurao V; Sharma, Shyam S; Jain, Sanyog; Sangamwar, Abhay T

    2014-04-01

    The p38α mitogen-activated protein (MAP) kinase plays a vital role in treating many inflammatory diseases. In the present study, a combined ligand and structure based pharmacophore model was developed to identify potential DFG-in selective p38 MAP kinase inhibitors. Conformations of co-crystallised inhibitors were used in the development and validation of ligand and structure based pharmacophore modeling approached. The validated pharmacophore was utilized in database screening to identify potential hits. After Lipinski's rule of five filter and molecular docking analysis, nineteen hits were purchased and selected for in vitro analysis. The virtual hits exhibited promising activity against tumor necrosis factor-α (TNF-α) with 23-98% inhibition at 10μM concentration. Out of these seven compounds has shown potent inhibitory activity against p38 MAP kinase with IC50 values ranging from 12.97 to 223.5nM. In addition, the toxicity study against HepG2 cells was also carried out to confirm the safety profile of identified virtual hits. PMID:24473068

  16. The Relative Expression of Mig6 and EGFR Is Associated with Resistance to EGFR Kinase Inhibitors

    PubMed Central

    Chang, Xiaofei; Izumchenko, Eugene; Solis, Luisa M.; Kim, Myoung Sook; Chatterjee, Aditi; Ling, Shizhang; Monitto, Constance L.; Harari, Paul M.; Hidalgo, Manuel; Goodman, Steve N.; Wistuba, Ignacio I.; Bedi, Atul; Sidransky, David

    2013-01-01

    The sensitivity of only a few tumors to anti-epidermal growth factor receptor EGFR tyrosine kinase inhibitors (TKIs) can be explained by the presence of EGFR tyrosine kinase (TK) domain mutations. In addition, such mutations were rarely found in tumor types other than lung, such as pancreatic and head and neck cancer. In this study we sought to elucidate mechanisms of resistance to EGFR-targeted therapies in tumors that do not harbor TK sensitizing mutations in order to identify markers capable of guiding the decision to incorporate these drugs into chemotherapeutic regimens. Here we show that EGFR activity was markedly decreased during the evolution of resistance to the EGFR tyrosine kinase inhibitor (TKI) erlotinib, with a concomitant increase of mitogen-inducible gene 6 (Mig6), a negative regulator of EGFR through the upregulation of the PI3K-AKT pathway. EGFR activity, which was more accurately predicted by the ratio of Mig6/EGFR, highly correlated with erlotinib sensitivity in panels of cancer cell lines of different tissue origins. Blinded testing and analysis in a prospectively followed cohort of lung cancer patients treated with gefitinib alone demonstrated higher response rates and a marked increased in progression free survival for patients with a low Mig6/EGFR ratio (approximately 100 days, P = 0.01). PMID:23935914

  17. The discovery and the structural basis of an imidazo[4,5-b]pyridine-based p21-activated kinase 4 inhibitor.

    PubMed

    Park, Jeung Kuk; Kim, Sunmin; Han, Yu Jin; Kim, Seong Hwan; Kang, Nam Sook; Lee, Hyuk; Park, SangYoun

    2016-06-01

    p21-Activated kinases (PAKs) which belong to the family of ste20 serine/threonine protein kinases regulate cytoskeletal reorganization, cell motility, cell proliferation, and oncogenic transformation which are all related to the cellular functions during cancer induction and metastasis. The fact that PAK mutations are detected in multiple tumor tissues makes PAKs a novel therapeutic drug target. In this study, an imidazo[4,5-b]pyridine-based PAK4 inhibitor, KY-04045 (6-Bromo-2-(3-isopropyl-1-methyl-1H-pyrazol-4-yl)-1H-imidazo[4,5-b]pyridine), was discovered using a virtual site-directed fragment-based drug design and was validated using an inhibition assay. Although PAK4 affinity to KY-04045 seems much weaker than that of the reported PAK4 inhibitors, the location of KY-04045 is clearly defined in the structure of PAK4 co-crystallized with KY-04045. The crystal structure illustrates that the pyrazole and imidazopyridine rings of KY-04045 are sufficient for mediating PAK4 hinge loop interaction. Hence, we believe that KY-04045 can be exploited as a basic building block in designing novel imidazo[4,5-b]pyridine-based PAK4 inhibitors. PMID:27117431

  18. 1,4,5,6-tetrahydropyrrolo[3,4-c]pyrazoles: identification of a potent Aurora kinase inhibitor with a favorable antitumor kinase inhibition profile.

    PubMed

    Fancelli, Daniele; Moll, Jürgen; Varasi, Mario; Bravo, Rodrigo; Artico, Roberta; Berta, Daniela; Bindi, Simona; Cameron, Alexander; Candiani, Ilaria; Cappella, Paolo; Carpinelli, Patrizia; Croci, Walter; Forte, Barbara; Giorgini, Maria Laura; Klapwijk, Jan; Marsiglio, Aurelio; Pesenti, Enrico; Rocchetti, Maurizio; Roletto, Fulvia; Severino, Dino; Soncini, Chiara; Storici, Paola; Tonani, Roberto; Zugnoni, Paola; Vianello, Paola

    2006-11-30

    The optimization of a series of 5-phenylacetyl 1,4,5,6-tetrahydropyrrolo[3,4-c]pyrazole derivatives toward the inhibition of Aurora kinases led to the identification of compound 9d. This is a potent inhibitor of Aurora kinases that also shows low nanomolar potency against additional anticancer kinase targets. Based on its high antiproliferative activity on different cancer cell lines, favorable chemico-physical and pharmacokinetic properties, and high efficacy in in vivo tumor models, compound 9d was ultimately selected for further development. PMID:17125279

  19. Determination of human serum alpha1-acid glycoprotein and albumin binding of various marketed and preclinical kinase inhibitors.

    PubMed

    Zsila, Ferenc; Fitos, Ilona; Bencze, Gyula; Kéri, György; Orfi, László

    2009-01-01

    There are about 380 protein kinase inhibitors in drug development as of today and 15 drugs have been marketed already for the treatment of cancer. This time 139 validated kinase targets are in the focus of drug research of pharmaceutical companies and big efforts are made for the development of new, druglike kinase inhibitors. Plasma protein binding is an important factor of the ADME profiling of a drug compound. Human serum albumin (HSA) and alpha(1)-acid glycoprotein (AAG) are the most relevant drug carriers in blood plasma. Since previous literature data indicated that AAG is the principal plasma binding component of some kinase inhibitors the present work focuses on the comprehensive evaluation of AAG binding of a series of marketed and experimental kinase inhibitors by using circular dichroism (CD) spectroscopy approach. HSA binding was also evaluated by affinity chromatography. Protein binding interactions of twenty-six kinase inhibitors are characterized. The contribution of AAG and HSA binding data to the pharmacokinetic profiles of the investigated therapeutic agents is discussed. Structural, biological and drug binding properties of AAG as well as the applicability of the CD method in studying drug-protein binding interactions are also briefly reviewed. PMID:19519376

  20. Erkitinib, a novel EGFR tyrosine kinase inhibitor screened using a ProteoChip system from a phytochemical library

    SciTech Connect

    Kim, Eung-Yoon; Choi, Young-Jin; Park, Chan-Won; Kang, In-Cheol

    2009-11-20

    Receptor tyrosine kinases (PTKs) play key roles in the pathogenesis of numerous human diseases, including cancer. Therefore PTK inhibitors are currently under intensive investigation as potential drug candidates. Herein, we report on a ProteoChip-based screening of an epidermal growth factor receptor (EGFR) tyrosine kinase (TK) inhibitor, Erkitinibs, from phytochemical libraries. PLC-{gamma}-1 was used as a substrate immobilized on a ProteoChip and incubated with an EGFR kinase to phosphorylate tyrosine residues of the substrate, followed by a fluorescence detection of the substrate recognized by a phospho-specific monoclonal antibody. Erkitinibs inhibited HeLa cell proliferation in a dose-dependent manner. In conclusion, these data suggest that Erkitinibs can be a specific inhibitor of an EGFR kinase and can be further developed as a potent anti-tumor agent.

  1. Small molecule kinase inhibitor LRRK2-IN-1 demonstrates potent activity against colorectal and pancreatic cancer through inhibition of doublecortin-like kinase 1

    PubMed Central

    2014-01-01

    Background Doublecortin-like kinase 1 (DCLK1) is emerging as a tumor specific stem cell marker in colorectal and pancreatic cancer. Previous in vitro and in vivo studies have demonstrated the therapeutic effects of inhibiting DCLK1 with small interfering RNA (siRNA) as well as genetically targeting the DCLK1+ cell for deletion. However, the effects of inhibiting DCLK1 kinase activity have not been studied directly. Therefore, we assessed the effects of inhibiting DCLK1 kinase activity using the novel small molecule kinase inhibitor, LRRK2-IN-1, which demonstrates significant affinity for DCLK1. Results Here we report that LRRK2-IN-1 demonstrates potent anti-cancer activity including inhibition of cancer cell proliferation, migration, and invasion as well as induction of apoptosis and cell cycle arrest. Additionally we found that it regulates stemness, epithelial-mesenchymal transition, and oncogenic targets on the molecular level. Moreover, we show that LRRK2-IN-1 suppresses DCLK1 kinase activity and downstream DCLK1 effector c-MYC, and demonstrate that DCLK1 kinase activity is a significant factor in resistance to LRRK2-IN-1. Conclusions Given DCLK1’s tumor stem cell marker status, a strong understanding of its biological role and interactions in gastrointestinal tumors may lead to discoveries that improve patient outcomes. The results of this study suggest that small molecule inhibitors of DCLK1 kinase should be further investigated as they may hold promise as anti-tumor stem cell drugs. PMID:24885928

  2. QSAR based docking studies of marine algal anticancer compounds as inhibitors of protein kinase B (PKBβ).

    PubMed

    Davis, G Dicky John; Vasanthi, A Hannah Rachel

    2015-08-30

    Marine algae are prolific source of bioactive secondary metabolites and are found to be active against different cancer cell lines. QSAR studies will explicate the significance of a particular class of descriptor in eliciting anticancer activity against a cancer type. Marine algal compounds showing anticancer activity against six different cancer cell lines namely MCF-7, A431, HeLa, HT-29, P388 and A549 taken from Seaweed metabolite database were subjected to comprehensive QSAR modeling studies. A hybrid-GA (genetic algorithm) optimization technique for descriptor space reduction and multiple linear regression analysis (MLR) approach was used as fitness functions. Cell lines HeLa and MCF-7 showed good statistical quality (R(2)∼0.75, Q(2)∼0.65) followed by A431, HT29 and P388 cell lines with reasonable statistical values (R(2)∼0.70, Q(2)∼0.60). The models developed were interpretable, with good statistical and predictive significance. Molecular descriptor analyses revealed that Baumann's alignment-independent topological descriptors had a major role in variation of activity along with other descriptors. Incidentally, earlier QSAR analysis on a variety of chemically diverse PKBα inhibitors revealed Baumann's alignment-independent topological descriptors that differentiated the molecules binding to Protein kinase B (PKBα) kinase or PH domain, hence a docking study of two crystal structures of PKBβ was performed for identification of novel ATP-competitive inhibitors of PKBβ. Five compounds had a good docking score and Callophycin A showed better ligand efficiency than other PKBβ inhibitors. Furthermore in silico pharmacokinetic and toxicity studies also showed that Callophycin A had a high drug score (0.85) compared to the other inhibitors. These results encourages discovering novel inhibitors for cancer therapeutic targets by screening metabolites from marine algae. PMID:25936945

  3. De Novo Design of Protein Kinase Inhibitors by in Silico Identification of Hinge Region-Binding Fragments

    PubMed Central

    2013-01-01

    Protein kinases constitute an attractive family of enzyme targets with high relevance to cell and disease biology. Small molecule inhibitors are powerful tools to dissect and elucidate the function of kinases in chemical biology research and to serve as potential starting points for drug discovery. However, the discovery and development of novel inhibitors remains challenging. Here, we describe a structure-based de novo design approach that generates novel, hinge-binding fragments that are synthetically feasible and can be elaborated to small molecule libraries. Starting from commercially available compounds, core fragments were extracted, filtered for pharmacophoric properties compatible with hinge-region binding, and docked into a panel of protein kinases. Fragments with a high consensus score were subsequently short-listed for synthesis. Application of this strategy led to a number of core fragments with no previously reported activity against kinases. Small libraries around the core fragments were synthesized, and representative compounds were tested against a large panel of protein kinases and subjected to co-crystallization experiments. Each of the tested compounds was active against at least one kinase, but not all kinases in the panel were inhibited. A number of compounds showed high ligand efficiencies for therapeutically relevant kinases; among them were MAPKAP-K3, SRPK1, SGK1, TAK1, and GCK for which only few inhibitors are reported in the literature. PMID:23534475

  4. High Throughput Screening of a Library Based on Kinase Inhibitor Scaffolds Against Mycobacterium Tuberculosis H37Rv

    PubMed Central

    Reynolds, Robert C.; Ananthan, Subramaniam; Faaleolea, Ellen; Hobrath, Judith V.; Kwong, Cecil D.; Maddox, Clinton; Rasmussen, Lynn; Sosa, Melinda I.; Thammasuvimol, Elizabeth; White, E. Lucile; Zhang, Wei; Secrist, John A.

    2011-01-01

    Summary Kinase targets are being pursued in a variety of diseases beyond cancer, including immune and metabolic as well as viral, parasitic, fungal and bacterial. In particular, there is a relatively recent interest in kinase and ATP-binding targets in Mycobacterium tuberculosis in order to identify inhibitors and potential drugs for essential proteins that are not targeted by current drug regimens. Herein, we report the high throughput screening results for a targeted library of approximately 26,000 compounds that was designed based on current kinase inhibitor scaffolds and known kinase binding sites. The phenotypic data presented herein may form the basis for selecting scaffolds/compounds for further enzymatic screens against specific kinase or other ATP-binding targets in Mycobacterium tuberculosis based on the apparent activity against the whole bacteria in vitro. PMID:21708485

  5. Molecular docking and NMR binding studies to identify novel inhibitors of human phosphomevalonate kinase

    SciTech Connect

    Boonsri, Pornthip; Neumann, Terrence S.; Olson, Andrew L.; Cai, Sheng; Herdendorf, Timothy J.; Miziorko, Henry M.; Hannongbua, Supa; Sem, Daniel S.

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Natural and synthetic inhibitors of human phosphomevalonate kinase identified. Black-Right-Pointing-Pointer Virtual screening yielded a hit rate of 15%, with inhibitor K{sub d}'s of 10-60 {mu}M. Black-Right-Pointing-Pointer NMR studies indicate significant protein conformational changes upon binding. -- Abstract: Phosphomevalonate kinase (PMK) phosphorylates mevalonate-5-phosphate (M5P) in the mevalonate pathway, which is the sole source of isoprenoids and steroids in humans. We have identified new PMK inhibitors with virtual screening, using autodock. Promising hits were verified and their affinity measured using NMR-based {sup 1}H-{sup 15}N heteronuclear single quantum coherence (HSQC) chemical shift perturbation and fluorescence titrations. Chemical shift changes were monitored, plotted, and fitted to obtain dissociation constants (K{sub d}). Tight binding compounds with K{sub d}'s ranging from 6-60 {mu}M were identified. These compounds tended to have significant polarity and negative charge, similar to the natural substrates (M5P and ATP). HSQC cross peak changes suggest that binding induces a global conformational change, such as domain closure. Compounds identified in this study serve as chemical genetic probes of human PMK, to explore pharmacology of the mevalonate pathway, as well as starting points for further drug development.

  6. Bis-Aryl Urea Derivatives as Potent and Selective LIM Kinase (Limk) Inhibitors

    PubMed Central

    Yin, Yan; Zheng, Ke; Eid, Nibal; Howard, Shannon; Jeong, Ji-Hak; Yi, Fei; Guo, Jia; Park, Chul M; Bibian, Mathieu; Wu, Weilin; Hernandez, Pamela; Park, HaJeung; Wu, Yuntao; Luo, Jun-Li; LoGrasso, Philip V.; Feng, Yangbo

    2015-01-01

    The discovery/optimization of bis-aryl ureas as Limk inhibitors to obtain high potency and selectivity, and appropriate pharmacokinetic properties through systematic SAR studies is reported. Docking studies supported the observed SAR. Optimized Limk inhibitors had high biochemical potency (IC50 < 25 nM), excellent selectivity against ROCK and JNK kinases (> 400-fold), potent inhibition of cofilin phosphorylation in A7r5,PC-3, and CEM-SS T cells (IC50 < 1 μM), and good in vitro and in vivo pharmacokinetic properties. In the profiling against a panel of 61 kinases, compound 18b at 1 μM inhibited only Limk1 and STK16 with ≥ 80% inhibition. Compounds 18b and 18f were highly efficient in inhibiting cell-invasion/migration in PC-3 cells. In addition, compound 18w was demonstrated to be effective on reducing intraocular pressure (IOP) on rat eyes. Taken together, these data demonstrated that we had developed a novel class of bis-aryl urea derived potent and selective Limk inhibitors. PMID:25621531

  7. Structural Determinants of CX-4945 Derivatives as Protein Kinase CK2 Inhibitors: A Computational Study

    PubMed Central

    Liu, Hongbo; Wang, Xia; Wang, Jian; Wang, Jinghui; Li, Yan; Yang, Ling; Li, Guohui

    2011-01-01

    Protein kinase CK2, also known as casein kinase-2, is involved in a broad range of physiological events including cell growth, proliferation and suppression of apoptosis which are related to human cancers. A series of compounds were identified as CK2 inhibitors and their inhibitory activities varied depending on their structures. In order to explore the structure-activity correlation of CX-4945 derivatives as inhibitors of CK2, in the present study, a set of ligand- and receptor-based 3D-QSAR models were developed employing Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Index Analysis (CoMSIA). The optimum CoMFA (Rcv2 = 0.618, Rpred2 = 0.892) and CoMSIA (Rcv2 = 0.681, Rpred2 = 0.843) models exhibited reasonable statistical characteristics for CX-4945 derivatives. The results indicated that electrostatic effects contributed the most to both CoMFA and CoMSIA models. The combination of docking analysis and molecular dynamics (MD) simulation showed that Leu45, Lys68, Glu81, Val116, Asp175 and Trp176 of CK2 which formed several direct or water-bridged H-bonds with CX-4945 are crucial for CX-4945 derivatives recognition to CK2. These results can offer useful theoretical references for designing more potent CK2 inhibitors. PMID:22072932

  8. Mutations in G protein beta subunits promote transformation and kinase inhibitor resistance

    PubMed Central

    Yoda, Akinori; Adelmant, Guillaume; Tamburini, Jerome; Chapuy, Bjoern; Shindoh, Nobuaki; Yoda, Yuka; Weigert, Oliver; Kopp, Nadja; Wu, Shuo-Chieh; Kim, Sunhee S.; Liu, Huiyun; Tivey, Trevor; Christie, Amanda L.; Elpek, Kutlu G.; Card, Joseph; Gritsman, Kira; Gotlib, Jason; Deininger, Michael W.; Makishima, Hideki; Turley, Shannon J.; Javidi-Sharifi, Nathalie; Maciejewski, Jaroslaw P.; Jaiswal, Siddhartha; Ebert, Benjamin L.; Rodig, Scott J.; Tyner, Jeffrey W.; Marto, Jarrod A.; Weinstock, David M.; Lane, Andrew A.

    2014-01-01

    Activating mutations of G protein alpha subunits (Gα) occur in 4–5% of all human cancers1 but oncogenic alterations in beta subunits (Gβ) have not been defined. Here we demonstrate that recurrent mutations in the Gβ proteins GNB1 and GNB2 confer cytokine-independent growth and activate canonical G protein signaling. Multiple mutations in GNB1 affect the protein interface that binds Gα subunits as well as downstream effectors, and disrupt Gα-Gβγ interactions. Different mutations in Gβ proteins clustered to some extent based on lineage; for example, all eleven GNB1 K57 mutations were in myeloid neoplasms while 7 of 8 GNB1 I80 mutations were in B cell neoplasms. Expression of patient-derived GNB1 alleles in Cdkn2a-deficient bone marrow followed by transplantation resulted in either myeloid or B cell malignancies. In vivo treatment with the dual PI3K/mTOR inhibitor BEZ235 suppressed GNB1-induced signaling and markedly increased survival. In several human tumors, GNB1 mutations co-occurred with oncogenic kinase alterations, including BCR/ABL, JAK2 V617F and BRAF V600K. Co-expression of patient-derived GNB1 alleles with these mutant kinases resulted in inhibitor resistance in each context. Thus, GNB1 and GNB2 mutations confer transformed and resistance phenotypes across a range of human tumors and may be targetable with inhibitors of G protein signaling. PMID:25485910

  9. cGMP-Dependent Protein Kinase Inhibitors in Health and Disease

    PubMed Central

    Wolfertstetter, Stefanie; Huettner, Johannes P.; Schlossmann, Jens

    2013-01-01

    cGMP-dependent protein kinases (PKG) exhibit diverse physiological functions in the mammalian system e.g., in vascular and gastrointestinal smooth muscles, in platelets, in kidney, in bone growth, nociception and in the central nervous system. Furthermore, PKG were found in insects and in the malaria parasite Plasmodium falciparum. Two different genes of PKG exist: a) the PKG-I gene that is expressed as cytosolic PKG-Iα or PKG-Iβ isoform, and b) the PKG-II gene, which expresses the membrane associated PKG-II protein. The enzyme kinetics, the localization and the substrates of these PKG enzymes differ utilizing different physiological functions. Various inhibitors of PKG were developed directed against diverse functional regions of the kinase. These inhibitors of PKG have been used to analyse the specific functions of these enzymes. The review article will summarize these different inhibitors regarding their specificity and their present applications in vitro and in vivo. Furthermore, it will be discussed that the distinct inhibition of the PKG enzymes could be used as a valuable pharmacological target e.g., in the treatment of cardiovascular diseases, diarrhea, cancer or malaria. PMID:24275951

  10. Checkpoint kinase inhibitor synergizes with DNA-damaging agents in G1 checkpoint-defective neuroblastoma.

    PubMed

    Xu, Hong; Cheung, Irene Y; Wei, Xiao X; Tran, Hoa; Gao, Xiaoni; Cheung, Nai-Kong V

    2011-10-15

    Checkpoint kinase inhibitors can enhance the cancer killing action of DNA-damaging chemotherapeutic agents by disrupting the S/G(2) cell cycle checkpoints. The in vitro and in vivo effects of the Chk1/2 inhibitor AZD7762 when combined with these agents were examined using neuroblastoma cell lines with known p53/MDM2/p14(ARF) genomic status. Four of four p53 mutant lines and three of five MDM2/p14(ARF) abnormal lines were defective in G(1) checkpoint, correlating with failure to induce endogenous p21 after treatment with DNA-damaging agents. In cytotoxicity assays, these G(1) checkpoint-defective lines were more resistant to DNA-damaging agents when compared to G(1) checkpoint intact lines, yet becoming more sensitive when AZD7762 was added. Moreover, AZD7762 abrogated DNA damage-induced S/G(2) checkpoint arrest both in vitro and in vivo. In xenograft models, a significant delay in tumor growth accompanied by histological evidence of increased apoptosis was observed, when AZD7762 was added to the DNA-damaging drug gemcitabine. These results suggest a therapeutic potential of combination therapy using checkpoint kinase inhibitor and chemotherapy to reverse or prevent drug resistance in treating neuroblastomas with defective G(1) checkpoints. PMID:21154747

  11. Selective Sparing of Human Tregs by Pharmacologic Inhibitors of the Phosphatidylinositol 3-Kinase and MEK Pathways

    PubMed Central

    Zwang, N. A.; Zhang, R.; Germana, S.; Fan, M. Y.; Hastings, W. D.; Cao, A.; Turka, L. A.

    2016-01-01

    Phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase/extracellular signal-regulated (MEK) signaling are central to the survival and proliferation of many cell types. Multiple lines of investigation in murine models have shown that control of the PI3K pathway is particularly important for regulatory T cell (Treg) stability and function. PI3K and MEK inhibitors are being introduced into the clinic, and we hypothesized that pharmacologic inhibition of PI3K, and possibly MEK, in mixed cultures of human mononuclear cells would preferentially affect CD4+ and CD8+ lymphocytes compared with Tregs. We tested this hypothesis using four readouts: proliferation, activation, functional suppression, and signaling. Results showed that Tregs were less susceptible to inhibition by both δ and α isoform–specific PI3K inhibitors and by an MEK inhibitor compared with their conventional CD4+ and CD8+ counterparts. These studies suggest less functional reliance on PI3K and MEK signaling in Tregs compared with conventional CD4+ and CD8+ lymphocytes. Therefore, the PI3K and MEK pathways are attractive pharmacologic targets for transplantation and treatment of autoimmunity. PMID:27017850

  12. Pyridopyrimidinone Derivatives as Potent and Selective c-Jun N-Terminal Kinase (JNK) Inhibitors

    PubMed Central

    2015-01-01

    A novel series of 2-aminopyridopyrimidinone based JNK (c-jun N-terminal kinase) inhibitors were discovered and developed. Structure–activity relationships (SARs) were systematically developed utilizing biochemical and cell based assays and in vitro and in vivo drug metabolism and pharmacokinetic (DMPK) studies. Through the optimization of lead compound 1, several potent and selective JNK inhibitors with high oral bioavailability were developed. Inhibitor 13 was a potent JNK3 inhibitor (IC50 = 15 nM), had high selectivity against p38 (IC50 > 10 μM), had high potency in functional cell based assays, and had high stability in human liver microsome (t1/2 = 76 min), a clean CYP-450 inhibition profile, and excellent oral bioavailability (%F = 87). Moreover, cocrystal structures of compounds 13 and 22 in JNK3 were solved at 2.0 Å. These structures elucidated the binding mode (Type-I binding) and can pave the way for further inhibitor design of this pyridopyrimidinone scaffold for JNK inhibition. PMID:25893042

  13. The immune-microenvironment confers resistance to MAP kinase pathway inhibitors through macrophage-derived TNFα

    PubMed Central

    O’Brien, Kate; Brunton, Holly; Ferguson, Jennifer; Young, Helen; Dhomen, Nathalie; Flaherty, Keith T.; Frederick, Dennie T.; Cooper, Zachary A.; Wargo, Jennifer A.; Marais, Richard; Wellbrock, Claudia

    2014-01-01

    Recently the rationale for combining targeted therapy with immunotherapy has come to light, but our understanding of the immune response during MAPK pathway inhibitor treatment is limited. We discovered that the immune-microenvironment can act as source of resistance to MAPK pathway-targeted therapy, and moreover during treatment this source becomes reinforced. In particular, we identified macrophage-derived TNFα as a crucial melanoma-growth factor that provides resistance to MAPK pathway inhibitors through the lineage-transcription factor MITF. Most strikingly, in BRAF mutant melanomas of patients and BRafV600E-melanoma allografts MAPK pathway inhibitors increased the number of tumor-associated macrophages, and TNFα and MITF expression. Inhibiting TNFα-signaling with IκB-kinase inhibitors profoundly enhanced the efficacy of MAPK pathway inhibitors by targeting not only the melanoma cells, but also the microenvironment. In summary, we identify the immune-microenvironment as a novel source of resistance and reveal a new strategy to improve the efficacy of targeted therapy in melanoma. PMID:25256614

  14. A specific pharmacophore model of Aurora B kinase inhibitors and virtual screening studies based on it.

    PubMed

    Wang, Hui-Yuan; Li, Lin-Li; Cao, Zhi-Xing; Luo, Shi-Dong; Wei, Yu-Quan; Yang, Sheng-Yong

    2009-01-01

    In this study, 3D-pharmacophore models of Aurora B kinase inhibitors have been developed by using HipHop and HypoGen modules in Catalyst software package. The best pharmacophore model, Hypo1, which has the highest correlation coefficient (0.9911), consists of one hydrogen-bond acceptor, one hydrogen-bond donor, one hydrophobic aliphatic moiety and one ring aromatic feature. Hypo1 was validated by test set and cross-validation methods. And the specificity of Hypo1 to Aurora B inhibitors was examined with the use of selective inhibitors against Aurora B and its paralogue Aurora A. The results clearly indicate that Hypo1 can differentiate selective inhibitors of Aurora B from those of Aurora A, and the ring aromatic feature likely plays some important roles for the specificity of Hypo1. Then Hypo1 was used as a 3D query to screen several databases including Specs, NCI, Maybridge and Chinese Nature Product Database (CNPD) for identifying new inhibitors of Aurora B. The hit compounds were subsequently subjected to filtering by Lipinski's rule of five and docking studies to refine the retrieved hits, and some compounds selected from the top ranked hits have been suggested for further experimental assay studies. PMID:19152640

  15. Inhibitors of SRC kinases impair antitumor activity of anti-CD20 monoclonal antibodies

    PubMed Central

    Winiarska, Magdalena; Bojarczuk, Kamil; Pyrzynska, Beata; Bil, Jacek; Siernicka, Marta; Dwojak, Michal; Bobrowicz, Malgorzata; Miazek, Nina; Zapala, Piotr; Zagozdzon, Agnieszka; Krol, Magdalena; Syta, Aleksandra; Podszywalow-Bartnicka, Paulina; Pilch, Zofia; Dabrowska-Iwanicka, Anna; Juszczynski, Przemyslaw; Efremov, Dimitar G; Slabicki, Mikolaj; Zenz, Thorsten; Roy, Aude Le; Olive, Daniel; Rygiel, Tomasz P; Leusen, Jeanette HW; Golab, Jakub

    2014-01-01

    Clinical trials with SRC family kinases (SFKs) inhibitors used alone or in a combination with anti-CD20 monoclonal antibodies (mAbs) are currently underway in the treatment of B-cell tumors. However, molecular interactions between these therapeutics have not been studied so far. A transcriptional profiling of tumor cells incubated with SFKs inhibitors revealed strong downregulation of MS4A1 gene encoding CD20 antigen. In a panel of primary and established B-cell tumors we observed that SFKs inhibitors strongly affect CD20 expression at the transcriptional level, leading to inhibition of anti-CD20 mAbs binding and increased resistance of tumor cells to complement-dependent cytotoxicity. Activation of the AKT signaling pathway significantly protected cells from dasatinib-triggered CD20 downregulation. Additionally, SFKs inhibitors suppressed antibody-dependent cell-mediated cytotoxicity by direct inhibition of natural killer cells. Abrogation of antitumor activity of rituximab was also observed in vivo in a mouse model. Noteworthy, the effects of SFKs inhibitors on NK cell function are largely reversible. The results of our studies indicate that development of optimal combinations of novel treatment modalities with anti-CD20 mAbs should be preceded by detailed preclinical evaluation of their effects on target cells. PMID:25517315

  16. Molecular dynamics of protein kinase-inhibitor complexes: a valid structural information.

    PubMed

    Caballero, Julio; Alzate-Morales, Jans H

    2012-01-01

    Protein kinases (PKs) are key components of protein phosphorylation based signaling networks in eukaryotic cells. They have been identified as being implicated in many diseases. High-resolution X-ray crystallographic data exist for many PKs and, in many cases, these structures are co-complexed with inhibitors. Although this valuable information confirms the precise structure of PKs and their complexes, it ignores the dynamic movements of the structures which are relevant to explain the affinities and selectivity of the ligands, to characterize the thermodynamics of the solvated complexes, and to derive predictive models. Atomistic molecular dynamics (MD) simulations present a convenient way to study PK-inhibitor complexes and have been increasingly used in recent years in structure-based drug design. MD is a very useful computational method and a great counterpart for experimentalists, which helps them to derive important additional molecular information. That enables them to follow and understand structure and dynamics of protein-ligand systems with extreme molecular detail on scales where motion of individual atoms can be tracked. MD can be used to sample dynamic molecular processes, and can be complemented with more advanced computational methods (e.g., free energy calculations, structure-activity relationship analysis). This review focuses on the most commonly applications to study PK-inhibitor complexes using MD simulations. Our aim is that researchers working in the design of PK inhibitors be aware of the benefits of this powerful tool in the design of potent and selective PK inhibitors. PMID:22571663

  17. Topical delivery of a Rho-kinase inhibitor to the cornea via mucoadhesive film.

    PubMed

    Chan, Wendy; Akhbanbetova, Alina; Quantock, Andrew J; Heard, Charles M

    2016-08-25

    The application of inhibitors of the Rho kinase pathway (ROCK inhibitors) to the surface of the eye in the form of eyedrops has beneficial effects which aid the recovery of diseased or injured endothelial cells that line the inner surface of the cornea. The aim of this study was to test the plausibility of delivering a selective ROCK inhibitor, Y-27632, to the cornea using a thin polymeric film. Mucoadhesive polymeric thin films were prepared incorporating Y-27632 and diffusional release into PBS was determined. Topical ocular delivery from the applied film was investigated using freshly excised porcine eyes and eyedrops of equivalent concentration acted as comparators; after 24h the formulations were removed and the corneas extracted. Drug-loaded thin polymeric films, with high clarity and pliability were produced. ROCK inhibitor Y-27632 was weakly retained within the film, with release attaining equilibrium after 1h. This in turn facilitated its rapid ocular delivery, and an approximately three-fold greater penetration of Y-27632 into cryoprobe-treated corneas was observed from the thin film (p<0.01) compared to eyedrops. These findings support the further development of ROCK inhibitor delivery to the cornea via release from thin mucoadhesive films to treat vision loss cause by corneal endothelial dysfunction. PMID:27196964

  18. A systematic analysis of the resistance and sensitivity of HER2YVMA receptor tyrosine kinase mutant to tyrosine kinase inhibitors in HER2-positive lung cancer.

    PubMed

    Shen, Xiaokun; Chen, Beibei; Ma, Zhaosheng; Xie, Bojian; Cao, Xinguang; Yang, Tiejun; Zhao, Yuzhou; Qin, Jianjun; Li, Jicheng; Cao, Feilin; Chen, Xiaobing

    2016-01-01

    Human epidermal growth factor receptor 2 (HER2) has become a well-established target for the treatment of HER2-positive lung cancer. However, a frequently observed in-frame mutation that inserts amino acid quadruplex Tyr776-Val777-Met778-Ala779 at G776 (G776(YVMA)) in HER2 kinase domain can cause drug resistance and sensitivity, largely limiting the application of reversible tyrosine kinase inhibitors in lung cancer therapy. A systematic investigation of the intermolecular interactions between the HER2(YVMA) mutant and clinical small-molecule inhibitors would help to establish a complete picture of drug response to HER2 G776(YVMA) insertion in lung cancer, and to design new tyrosine kinase inhibitors with high potency and selectivity to target the lung cancer-related HER2(YVMA) mutant. Here, we combined homology modeling, ligand grafting, structure minimization, molecular simulation and binding affinity analysis to profile a number of tyrosine kinase inhibitors against the G776(YVMA) insertion in HER2. It is found that the insertion is far away from HER2 active pocket and thus cannot contact inhibitor ligand directly. However, the insertion is expected to induce marked allosteric effect on some regions around the pocket, including A-loop and hinges connecting between the N- and C-lobes of HER2 kinase domain, which may exert indirect influence to inhibitor binding. Most investigated inhibitors exhibit weak binding strength to both wild-type and mutant HER2, which can be attributed to steric hindrance that impairs ligand compatibility with HER2 active pocket. However, the cognate inhibitor lapatinib and the non-cognate inhibitor bosutinib were predicted to have low affinity for wild-type HER2 but high affinity for HER2(YVMA) mutant, which was confirmed by subsequent kinase assay experiments; the inhibitory potencies of bosutinib against wild-type and mutant HER2 were determined to be IC(50) > 1000 and =27 nM, respectively, suggesting that the bosutinib might be

  19. Kinase inhibitor-responsive genotypes in EGFR mutated lung adenocarcinomas: moving past common point mutations or indels into uncommon kinase domain duplications and rearrangements

    PubMed Central

    2016-01-01

    The most frequent epidermal growth factor receptor (EGFR) mutations found by traditional or comprehensive molecular profiling of lung adenocarcinomas include indels of exon 19 (the exon 19 deletion delE746_A750 being the most common) and the exon 21 L858R point mutation. The current approval labels for first line palliative gefitinib 250 mg/day, erlotinib 150 mg/day and afatinib 40 mg/day for advanced lung cancers require the presence of the aforementioned classical/sensitizing EGFR mutations. Other gefitinib, erlotinib and afatinib sensitizing mutations include exon 18 indels, G719X, exon 19 insertions, A763_Y764insFQEA, S768I and L861Q; for which off-label EGFR kinase inhibitor use is generally agreed upon by thoracic oncologists. The main biological mechanism of resistance to approved first line EGFR inhibitors is the selection/acquisition of EGFR-T790M that in itself can be inhibited by osimertinib 80 mg/day, a 3rd generation EGFR inhibitor that is bypassed by EGFR-C797X mutations. Another class of de novo inhibitor insensitive mutation includes EGFR exon 20 insertions. More recently, the dichotomy of only point mutations or indels explaining aberrant kinase activation of EGFR plus inhibitor response has been shattered by the discovery of uncommon (<0.5% of all EGFR mutations) genomic events involving exon 18–25 kinase domain duplications (KDD) and rearrangements (EGFR-RAD51 or EGFR-PURB). The latter lead to oncogene addiction, enhanced sensitivity to kinase inhibitors in vitro and clinical responses to approved EGFR inhibitors. The enhanced landscape of EGFR inhibitor-responsive genotypes highlights that comprehensive molecular profiling may be necessary to maximize the identification of all cases that can benefit from precision oncology. PMID:27413714

  20. Kinase inhibitor-responsive genotypes in EGFR mutated lung adenocarcinomas: moving past common point mutations or indels into uncommon kinase domain duplications and rearrangements.

    PubMed

    Costa, Daniel B

    2016-06-01

    The most frequent epidermal growth factor receptor (EGFR) mutations found by traditional or comprehensive molecular profiling of lung adenocarcinomas include indels of exon 19 (the exon 19 deletion delE746_A750 being the most common) and the exon 21 L858R point mutation. The current approval labels for first line palliative gefitinib 250 mg/day, erlotinib 150 mg/day and afatinib 40 mg/day for advanced lung cancers require the presence of the aforementioned classical/sensitizing EGFR mutations. Other gefitinib, erlotinib and afatinib sensitizing mutations include exon 18 indels, G719X, exon 19 insertions, A763_Y764insFQEA, S768I and L861Q; for which off-label EGFR kinase inhibitor use is generally agreed upon by thoracic oncologists. The main biological mechanism of resistance to approved first line EGFR inhibitors is the selection/acquisition of EGFR-T790M that in itself can be inhibited by osimertinib 80 mg/day, a 3(rd) generation EGFR inhibitor that is bypassed by EGFR-C797X mutations. Another class of de novo inhibitor insensitive mutation includes EGFR exon 20 insertions. More recently, the dichotomy of only point mutations or indels explaining aberrant kinase activation of EGFR plus inhibitor response has been shattered by the discovery of uncommon (<0.5% of all EGFR mutations) genomic events involving exon 18-25 kinase domain duplications (KDD) and rearrangements (EGFR-RAD51 or EGFR-PURB). The latter lead to oncogene addiction, enhanced sensitivity to kinase inhibitors in vitro and clinical responses to approved EGFR inhibitors. The enhanced landscape of EGFR inhibitor-responsive genotypes highlights that comprehensive molecular profiling may be necessary to maximize the identification of all cases that can benefit from precision oncology. PMID:27413714

  1. Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells.

    PubMed

    Zakikhani, Mahvash; Dowling, Ryan; Fantus, I George; Sonenberg, Nahum; Pollak, Michael

    2006-11-01

    Recent population studies provide clues that the use of metformin may be associated with reduced incidence and improved prognosis of certain cancers. This drug is widely used in the treatment of type 2 diabetes, where it is often referred to as an "insulin sensitizer" because it not only lowers blood glucose but also reduces the hyperinsulinemia associated with insulin resistance. As insulin and insulin-like growth factors stimulate proliferation of many normal and transformed cell types, agents that facilitate signaling through these receptors would be expected to enhance proliferation. We show here that metformin acts as a growth inhibitor rather than an insulin sensitizer for epithelial cells. Breast cancer cells can be protected against metformin-induced growth inhibition by small interfering RNA against AMP kinase. This shows that AMP kinase pathway activation by metformin, recently shown to be necessary for metformin inhibition of gluconeogenesis in hepatocytes, is also involved in metformin-induced growth inhibition of epithelial cells. The growth inhibition was associated with decreased mammalian target of rapamycin and S6 kinase activation and a general decrease in mRNA translation. These results provide evidence for a mechanism that may contribute to the antineoplastic effects of metformin suggested by recent population studies and justify further work to explore potential roles for activators of AMP kinase in cancer prevention and treatment. PMID:17062558

  2. Computer-aided identification of EGFR tyrosine kinase inhibitors using ginsenosides from Panax ginseng.

    PubMed

    Sathishkumar, Natarajan; Karpagam, Veerappan; Sathiyamoorthy, Subramaniyam; Woo, Min Jin; Kim, Yeon-Ju; Yang, Deok-Chun

    2013-07-01

    Natural products have served as structural resources in the history of drug discovery for cancer therapy. Among these natural products, Korean Panax ginseng serves as a potential anti-cancer medicinal plant. To determine the anti-cancer activities of Korean P. ginseng active compounds, we performed pharmacophore-based virtual screening and molecular docking studies on EGFR (epidermal growth factor receptor) tyrosine kinase domain. The EGFR family tyrosine kinase receptor is a cell surface receptor that regulates diverse biological processes including cell proliferation, differentiation, survival, and apoptosis. Over expression of EGFR tyrosine kinase domain associated with the development and progression of numerous human cancers. In our study, we developed the best pharmacophore model (Hypo1) using a diverse training set and validated by Fischer's randomization, a test set, and a decoy set. The best validated model was employed in the virtual screening of P. ginseng compound database. Further, chosen molecules were evaluated by applying ADMET screening and molecular docking studies. Finally, 14 compounds were obtained based on binding affinity scores and interactions with protein active site residues. These final lead compounds from P. ginseng can be used in the designing of new EGFR tyrosine kinase inhibitors. PMID:23668355

  3. Aurora kinase inhibitors reveal mechanisms of HURP in nucleation of centrosomal and kinetochore microtubules

    PubMed Central

    Wu, Jiun-Ming; Chen, Chiung-Tong; Coumar, Mohane Selvaraj; Lin, Wen-Hsin; Chen, Zi-Jie; Hsu, John T.-A.; Peng, Yi-Hui; Shiao, Hui-Yi; Lin, Wen-Hsing; Chu, Chang-Ying; Wu, Jian-Sung; Lin, Chih-Tsung; Chen, Ching-Ping; Hsueh, Ching-Cheng; Chang, Kai-Yen; Kao, Li-Pin; Huang, Chi-Ying F.; Chao, Yu-Sheng; Wu, Su-Ying; Hsieh, Hsing-Pang; Chi, Ya-Hui

    2013-01-01

    The overexpression of Aurora kinases in multiple tumors makes these kinases appealing targets for the development of anticancer therapies. This study identified two small molecules with a furanopyrimidine core, IBPR001 and IBPR002, that target Aurora kinases and induce a DFG conformation change at the ATP site of Aurora A. Our results demonstrate the high potency of the IBPR compounds in reducing tumorigenesis in a colorectal cancer xenograft model in athymic nude mice. Human hepatoma up-regulated protein (HURP) is a substrate of Aurora kinase A, which plays a crucial role in the stabilization of kinetochore fibers. This study used the IBPR compounds as well as MLN8237, a proven Aurora A inhibitor, as chemical probes to investigate the molecular role of HURP in mitotic spindle formation. These compounds effectively eliminated HURP phosphorylation, thereby revealing the coexistence and continuous cycling of HURP between unphosphorylated and phosphorylated forms that are associated, respectively, with microtubules emanating from centrosomes and kinetochores. Furthermore, these compounds demonstrate a spatial hierarchical preference for HURP in the attachment of microtubules extending from the mother to the daughter centrosome. The finding of inequality in the centrosomal microtubules revealed by these small molecules provides a versatile tool for the discovery of new cell-division molecules for the development of antitumor drugs. PMID:23610398

  4. Role of tyrosine-kinase inhibitors in myeloproliferative neoplasms: comparative lessons learned

    PubMed Central

    Pinilla-Ibarz, Javier; Sweet, Kendra L; Corrales-Yepez, Gabriela M; Komrokji, Rami S

    2016-01-01

    An important pathogenetic distinction in the classification of myeloproliferative neoplasms (MPNs) is the presence or absence of the BCR–ABL fusion gene, which encodes a unique oncogenic tyrosine kinase. The BCR–ABL fusion, caused by the formation of the Philadelphia chromosome (Ph) through translocation, constitutes the disease-initiating event in chronic myeloid leukemia. The development of successive BCR–ABL-targeted tyrosine-kinase inhibitors has led to greatly improved outcomes in patients with chronic myeloid leukemia, including high rates of complete hematologic, cytogenetic, and molecular responses. Such levels of treatment success have long been elusive for patients with Ph-negative MPNs, because of the difficulties in identifying specific driver proteins suitable as drug targets. However, in recent years an improved understanding of the complex pathobiology of classic Ph-negative MPNs, characterized by variable, overlapping multimutation profiles, has prompted the development of better and more broadly targeted (to pathway rather than protein) treatment options, particularly JAK inhibitors. In classic Ph-negative MPNs, overactivation of JAK-dependent signaling pathways is a central pathogenic mechanism, and mutually exclusive mutations in JAK2, MPL, and CALR linked to aberrant JAK activation are now recognized as key drivers of disease progression in myelofibrosis (MF). In clinical trials, the JAK1/JAK2 inhibitor ruxolitinib – the first therapy approved for MF worldwide – improved disease-related splenomegaly and symptoms independent of JAK2V617F mutational status, and prolonged survival compared with placebo or standard therapy in patients with advanced MF. In separate trials, ruxolitinib also provided comprehensive hematologic control in patients with another Ph-negative MPN – polycythemia vera. However, complete cytogenetic or molecular responses with JAK inhibitors alone are normally not observed, underscoring the need for novel

  5. Discovery and Optimization of Quinazolinone-pyrrolopyrrolones as Potent and Orally Bioavailable Pan-Pim Kinase Inhibitors.

    PubMed

    Pettus, Liping H; Andrews, Kristin L; Booker, Shon K; Chen, Jie; Cee, Victor J; Chavez, Frank; Chen, Yuping; Eastwood, Heather; Guerrero, Nadia; Herberich, Bradley; Hickman, Dean; Lanman, Brian A; Laszlo, Jimmy; Lee, Matthew R; Lipford, J Russell; Mattson, Bethany; Mohr, Christopher; Nguyen, Yen; Norman, Mark H; Powers, David; Reed, Anthony B; Rex, Karen; Sastri, Christine; Tamayo, Nuria; Wang, Paul; Winston, Jeffrey T; Wu, Bin; Wu, Tian; Wurz, Ryan P; Xu, Yang; Zhou, Yihong; Tasker, Andrew S; Wang, Hui-Ling

    2016-07-14

    The high expression of proviral insertion site of Moloney murine leukemia virus kinases (Pim-1, -2, and -3) in cancers, particularly the hematopoietic malignancies, is believed to play a role in promoting cell survival and proliferation while suppressing apoptosis. The three isoforms of Pim protein appear largely redundant in their oncogenic functions. Thus, a pan-Pim kinase inhibitor is highly desirable. However, cell active pan-Pim inhibitors have proven difficult to develop because Pim-2 has a low Km for ATP and therefore requires a very potent inhibitor to effectively block the kinase activity at cellular ATP concentrations. Herein, we report a series of quinazolinone-pyrrolopyrrolones as potent and selective pan-Pim inhibitors. In particular, compound 17 is orally efficacious in a mouse xenograft model (KMS-12 BM) of multiple myeloma, with 93% tumor growth inhibition at 50 mg/kg QD upon oral dosing. PMID:27285051

  6. Inhibitor of apoptosis signal-regulating kinase 1 protects against acetaminophen-induced liver injury

    SciTech Connect

    Xie, Yuchao; Ramachandran, Anup; Breckenridge, David G.; Liles, John T.; Lebofsky, Margitta; Farhood, Anwar; Jaeschke, Hartmut

    2015-07-01

    Metabolic activation and oxidant stress are key events in the pathophysiology of acetaminophen (APAP) hepatotoxicity. The initial mitochondrial oxidative stress triggered by protein adduct formation is amplified by c-jun-N-terminal kinase (JNK), resulting in mitochondrial dysfunction and ultimately cell necrosis. Apoptosis signal-regulating kinase 1 (ASK1) is considered the link between oxidant stress and JNK activation. The objective of the current study was to assess the efficacy and mechanism of action of the small-molecule ASK1 inhibitor GS-459679 in a murine model of APAP hepatotoxicity. APAP (300 mg/kg) caused extensive glutathione depletion, JNK activation and translocation to the mitochondria, oxidant stress and liver injury as indicated by plasma ALT activities and area of necrosis over a 24 h observation period. Pretreatment with 30 mg/kg of GS-459679 almost completely prevented JNK activation, oxidant stress and injury without affecting the metabolic activation of APAP. To evaluate the therapeutic potential of GS-459679, mice were treated with APAP and then with the inhibitor. Given 1.5 h after APAP, GS-459679 was still protective, which was paralleled by reduced JNK activation and p-JNK translocation to mitochondria. However, GS-459679 treatment was not more effective than N-acetylcysteine, and the combination of GS-459679 and N-acetylcysteine exhibited similar efficacy as N-acetylcysteine monotherapy, suggesting that GS-459769 and N-acetylcysteine affect the same pathway. Importantly, inhibition of ASK1 did not impair liver regeneration as indicated by PCNA staining. In conclusion, the ASK1 inhibitor GS-459679 protected against APAP toxicity by attenuating JNK activation and oxidant stress in mice and may have therapeutic potential for APAP overdose patients. - Highlights: • Two ASK1 inhibitors protected against acetaminophen-induced liver injury. • The ASK1 inhibitors protect when used as pre- or post-treatment. • Protection by ASK1 inhibitor is

  7. Substituted quinazolinones as kinase inhibitors endowed with anti-fibrotic properties.

    PubMed

    Marzaro, Giovanni; Castagliuolo, Ignazio; Schirato, Giulia; Palu', Giorgio; Dalla Via, Martina; Chilin, Adriana; Brun, Paola

    2016-06-10

    Some new 3-substituted quinazolinones were synthesized and evaluated as inhibitors of kinases involved in fibrogenic process. The compounds were tested against a panel of both tyrosine and serine-threonine kinases. The profile of selectivity of some representative compounds was investigated through molecular docking studies. The most interesting compounds were also evaluated in vitro as potential agents for the treatment of fibrotic diseases. Quinazolinone derivatives reduced proliferation and expression of genes involved in the fibrogenic process in hepatic stellate cells (HSCs) and intestinal subepithelial myofibroblasts (ISEMFs). Furthermore some compounds downregulated phosphorylation of p38MAPK. Our findings provide evidences that 3-substituted quinazolinones target multiple essential pathways of the fibrogenic process. PMID:27035798

  8. [Possibilities for inhibiting tumor-induced angiogenesis: results with multi-target tyrosine kinase inhibitors].

    PubMed

    Török, Szilvia; Döme, Balázs

    2012-03-01

    Functional blood vasculature is essential for tumor progression. The main signalization pathways that play a key role in the survival and growth of tumor vessels originate from the VEGF-, PDGF- and FGF tyrosine kinase receptors. In the past decade, significant results have been published on receptor tyrosine kinase inhibitors (RTKIs). In this paper, the mechanisms of action and the results so far available of experimental and clinical studies on multi-target antiangiogenic TKIs are discussed. On the one hand, notable achievements have been made recently and these drugs are already used in clinical practice in some patient populations. On the other hand, the optimal combination and dosage of these drugs, selection of the apropriate biomarker and better understanding of the conflicting role of PDGFR and FGFR signaling in angiogenesis remain future challenges. PMID:22403757

  9. How tyrosine kinase inhibitors impair metabolism and endocrine system function: a systematic updated review.

    PubMed

    Breccia, Massimo; Molica, Matteo; Alimena, Giuliana

    2014-12-01

    Tyrosine kinase inhibitors (TKIs) advent has deeply changed the outcome of chronic myeloid leukemia (CML) patients, with improved rates of response and overall survival. However, for this success some patients paid the price of a number of peculiar side effects, the so-called off-target side effects, specific for each one TKI. These effects are due to non-selective inhibition of other tyrosine kinase receptors, such as PDGFR, c-KIT, Src, VEGF. Consequences of this inhibition, some metabolic changes during the treatment with TKIs are reported. Aim of present review is to report metabolic changes and potential mechanisms involved in the pathogenesis related to imatinib, second (nilotinib and dasatinib) and third generation (bosutinib and ponatinib) TKIs. PMID:25449685

  10. Rho-Associated Kinase Inhibitors Promote Microglial Uptake Via the ERK Signaling Pathway.

    PubMed

    Fu, Peicai; Tang, Ronghua; Yu, Zhiyuan; Li, Caihong; Chen, Xue; Xie, Minjie; Wang, Wei; Luo, Xiang

    2016-02-01

    Microglia are immunocompetent cells in the central nervous system that take up tissue debris and pathogens. Rho-associated kinase (ROCK) has been identified as an important regulator of uptake, proliferation, secretion, and differentiation in a number of cell types. Although ROCK plays critical roles in the microglial secretion of inflammatory factors, migration, and morphology, its effects on microglial uptake activity have not been well characterized. In the present study, we found that treatment of BV2 microglia and primary microglia with the ROCK inhibitors Y27632 and fasudil increased uptake activity and was associated with morphological changes. Furthermore, western blots showed that this increase in uptake activity was mediated through the extracellular-signal-regulated kinase (ERK) signaling cascade, indicating the importance of ROCK in regulating microglial uptake activity. PMID:26779919

  11. Structural features underlying the selectivity of the kinase inhibitors NBC and dNBC: role of a nitro group that discriminates between CK2 and DYRK1A.

    PubMed

    Sarno, Stefania; Mazzorana, Marco; Traynor, Ryan; Ruzzene, Maria; Cozza, Giorgio; Pagano, Mario A; Meggio, Flavio; Zagotto, Giuseppe; Battistutta, Roberto; Pinna, Lorenzo A

    2012-02-01

    8-hydroxy-4-methyl-9-nitrobenzo(g)chromen-2-one (NBC) has been found to be a fairly potent ATP site-directed inhibitor of protein kinase CK2 (Ki = 0.22 μM). Here, we show that NBC also inhibits PIM kinases, especially PIM1 and PIM3, the latter as potently as CK2. Upon removal of the nitro group, to give 8-hydroxy-4-methyl-benzo(g)chromen-2-one (here referred to as "denitro NBC", dNBC), the inhibitory power toward CK2 is almost entirely lost (IC(50) > 30 μM) whereas that toward PIM1 and PIM3 is maintained; in addition, dNBC is a potent inhibitor of a number of other kinases that are weakly inhibited or unaffected by NBC, with special reference to DYRK1A whose IC(50) values with NBC and dNBC are 15 and 0.60 μM, respectively. Therefore, the observation that NBC, unlike dNBC, is a potent inducer of apoptosis is consistent with the notion that this effect is mediated by inhibition of endogenous CK2. The structural features underlying NBC selectivity have been revealed by inspecting its 3D structure in complex with the catalytic subunit of Z. mays CK2. The crucial role of the nitro group is exerted both through a direct electrostatic interaction with the side chain of Lys68 and, indirectly, by enhancing the acidic dissociation constant of the adjacent hydroxyl group which interacts with a conserved water molecule in the deepest part of the cavity. By contrast, the very same nitro group is deleterious for the binding to the active site of DYRK1A, as disclosed by molecular docking. This provides the rationale for preferential inhibition of DYRK1A by dNBC. PMID:21720886

  12. Optimizing small molecule inhibitors of calcium-dependent protein kinase 1 to prevent infection by Toxoplasma gondii

    PubMed Central

    Lourido, Sebastian; Zhang, Chao; Lopez, Michael; Tang, Keliang; Barks, Jennifer; Wang, Qiuling; Wildman, Scott A.; Shokat, Kevan M.; Sibley, L. David

    2013-01-01

    Toxoplasma gondii is sensitive to bulky pyrazolo [3,4-d] pyrimidine (PP) inhibitors due to the presence of a Gly gatekeeper in the essential calcium dependent protein kinase 1 (CDPK1). Here we synthesized a number of new derivatives of 3-methyl-benzyl-PP (3-MB-PP, or 1). The potency of PP analogs in inhibiting CDPK1 enzyme activity in vitro (low nM IC50 values) and blocking parasite growth in host cell monolayers in vitro (low μM EC50 values) were highly correlated and occurred in a CDPK1-specific manner. Chemical modification of the PP scaffold to increase half-life in the presence of microsomes in vitro led to identification of compounds with enhanced stability while retaining activity. Several of these more potent compounds were able to prevent lethal infection with T. gondii in the mouse model. Collectively the strategies outlined here provide a route for development of more effective compounds for treatment of toxoplasmosis, and perhaps related parasitic diseases. PMID:23470217

  13. Polynucleotide kinase as a potential target for enhancing cytotoxicity by ionizing radiation and topoisomerase I inhibitors

    PubMed Central

    Bernstein, N. K.; Karimi-Busheri, F.; Rasouli-Nia, A.; Mani, R.; Dianov, G.; Glover, J. N. M.; Weinfeld, M.

    2010-01-01

    The cytotoxicity of many antineoplastic agents is due to their capacity to damage DNA and there is evidence indicating that DNA repair contributes to the cellular resistance to such agents. DNA strand breaks constitute a significant proportion of the lesions generated by a broad range of genotoxic agents, either directly, or during the course of DNA repair. Strand breaks that are caused by many agents including ionizing radiation, topoisomerase I inhibitors, and DNA repair glycosylases such as NEIL1 and NEIL2, often contain 5’-hydroxyl and/or 3’-phosphate termini. These ends must be converted to 5’-phosphate and 3’-hydroxyl termini in order to allow DNA polymerases and ligases to catalyze repair synthesis and strand rejoining. A key enzyme involved in this end-processing is polynucleotide kinase (PNK), which possesses two enzyme activities, a DNA 5’-kinase activity and a 3’-phosphatase activity. PNK participates in the single-strand break repair pathway and the non-homologous end joining pathway for double-strand break repair. RNAi-mediated down-regulation of PNK renders cells more sensitive to ionizing radiation and camptothecin, a topoisomerase I inhibitor. Structural analysis of PNK revealed the protein is composed of three domains, the kinase domain at the C-terminus, the phosphatase domain in the centre and a forkhead associated (FHA) domain at the N-terminus. The FHA domain plays a critical role in the binding of PNK to other DNA repair proteins. Thus each PNK domain may be a suitable target for small molecule inhibition to effectively reduce resistance to ionizing radiation and topoisomerase I inhibitors. PMID:18473721

  14. EML4-ALK fusion gene and efficacy of an ALK kinase inhibitor in lung cancer

    PubMed Central

    Koivunen, Jussi P.; Mermel, Craig; Zejnullahu, Kreshnik; Murphy, Carly; Lifshits, Eugene; Holmes, Alison J.; Choi, Hwan Geun; Kim, Jhingook; Chiang, Derek; Thomas, Roman; Lee, Jinseon; Richards, William G.; Sugarbaker, David J.; Ducko, Christopher; Lindeman, Neal; Marcoux, J. Paul; Engelman, Jeffrey A.; Gray, Nathanael S.; Lee, Charles; Meyerson, Matthew; Jänne, Pasi A.

    2011-01-01

    Purpose The EML4-ALK fusion gene has been detected in ~7% of Japanese non-small cell lung cancers (NSCLC). We determined the frequency of EML4-ALK in Caucasian NSCLCs and in NSCLC cell lines. We also determined whether TAE684, a specific ALK kinase inhibitor, would inhibit the growth of EML4-ALK containing cell lines in vitro and in vivo. Experimental Design We screened 305 primary NSCLCs (both US (n=138) and Korean (n=167) patients) and 83 NSCLC cell lines using RT-PCR and by exon array analyses. We evaluated the efficacy of TAE684 against NSCLC cell lines in vitro and in vivo. Results We detected 4 different variants, including two novel variants, of EML4-ALK using RT-PCR in 8/305 tumors (3%) and in 3/83 (3.6%) NSCLC cell lines. All EML4-ALK containing tumors and cell lines were adenocarcinomas. EML4-ALK was detected more frequently in NSCLC patients who were never or light (< 10 pack years) cigarette smokers compared to current/former smokers (6% vs. 1%; p=0.049). TAE684 inhibited the growth of 1 of 3 (H3122) EML4-ALK containing cell lines in vitro and in vivo, inhibited Akt phosphorylation and caused apoptosis. In another EML4-ALK cell line, DFCI032, TAE684 was ineffective due to co-activation of EGFR and ERBB2. The combination of TAE684 and CL-387,785 (EGFR/ERBB2 kinase inhibitor), inhibited growth and Akt phosphorylation and led to apoptosis in the DFCI032 cell line. Conclusions EML4-ALK is found in the minority of NSCLCs. ALK kinase inhibitors alone or in combination may nevertheless be clinically effective treatments for NSCLC patients whose tumors contain EML4-ALK. PMID:18594010

  15. Switch control pocket inhibitors of p38-MAP kinase. Durable type II inhibitors that do not require binding into the canonical ATP hinge region

    SciTech Connect

    Ahn, Yu Mi; Clare, Michael; Ensinger, Carol L.; Hood, Molly M.; Lord, John W.; Lu, Wei-Ping; Miller, David F.; Patt, William C.; Smith, Bryan D.; Vogeti, Lakshminarayana; Kaufman, Michael D.; Petillo, Peter A.; Wise, Scott C.; Abendroth, Jan; Chun, Lawrence; Clark, Robin; Feese, Michael; Kim, Hidong; Stewart, Lance; Flynn, Daniel L.

    2012-01-20

    Switch control pocket inhibitors of p38-alpha kinase are described. Durable type II inhibitors were designed which bind to arginines (Arg67 or Arg70) that function as key residues for mediating phospho-threonine 180 dependant conformational fluxing of p38-alpha from an inactive type II state to an active type I state. Binding to Arg70 in particular led to potent inhibitors, exemplified by DP-802, which also exhibited high kinase selectivity. Binding to Arg70 obviated the requirement for binding into the ATP Hinge region. X-ray crystallography revealed that DP-802 and analogs induce an enhanced type II conformation upon binding to either the unphosphorylated or the doubly phosphorylated form of p38-alpha kinase.

  16. Synthesis of novel, peptidic kinase inhibitors with cytostatic/cytotoxic activity.

    PubMed

    Szymanski, Wiktor; Zwolinska, Magdalena; Klossowski, Szymon; Młynarczuk-Biały, Izabela; Biały, Lukasz; Issat, Tadeusz; Malejczyk, Jacek; Ostaszewski, Ryszard

    2014-03-01

    The utility of a novel, chemoenzymatic procedure for the stereocontrolled synthesis of small peptides is presented in the preparation and structure optimisation of dipeptides with cytostatic/cytotoxic activity. The method uses Passerini multicomponent reaction for the preparation of racemic scaffold which is then enantioselectively hydrolysed by hydrolytic enzymes. Products of these transformations are further functionalised towards title compounds. Both activity and selectivity towards tumor cells is optimised. Final compound is shown to be an inhibitor of the protein kinase signaling pathway. PMID:24507826

  17. Recognizing Endocrinopathies Associated With Tyrosine Kinase Inhibitor Therapy in Children With Chronic Myelogenous Leukemia.

    PubMed

    Samis, Jill; Lee, Paul; Zimmerman, Donald; Arceci, Robert J; Suttorp, Meinolf; Hijiya, Nobuko

    2016-08-01

    Side effects of tyrosine kinase inhibitor (TKI) treatment vary in children and adults with chronic myelogenous leukemia (CML). As children have a much longer life expectancy than adults, TKI therapy may continue for decades and with long-term consequences that differ from adults. Children may develop endocrinopathies related to "off-target" effects of TKIs, such as delayed growth, changes in bone metabolism, thyroid abnormalities, and effects on puberty and fertility. These endocrinopathies present additional challenges for pediatric patients with CML. This review critically evaluates the literature on long-term endocrine side effects of TKIs in the pediatric CML population and provides suggested recommendations. PMID:27100618

  18. Dermatofibrosarcoma protuberans: is mohs surgery truly superior? And the success of tyrosine kinase inhibitors.

    PubMed

    Kallini, Joseph R; Khachemoune, Amor

    2014-12-01

    Dermatofibrosarcoma protuberans is a rare, slow growing tumor. This growth occurs most frequently in males from ages 20 to 50. The most common area on which DFSP originates is the trunk. DFSP presents clinically as a pink nodule or as a firm, flesh-colored to brown, indurated and exophytic plaque. Pathology shows atypical spindle cells of fibroblast origin surrounding a core of collagen. The definitive treatment of DFSP is surgical excision. Imatinib is a tyrosine kinase inhibitor that has been approved for use in DFSP refractory to surgery. PMID:25607791

  19. Synthesis and biological evaluation of clitocine analogues as adenosine kinase inhibitors.

    PubMed

    Lee, C H; Daanen, J F; Jiang, M; Yu, H; Kohlhaas, K L; Alexander, K; Jarvis, M F; Kowaluk, E L; Bhagwat, S S

    2001-09-17

    Adenosine kinase (AK) is the primary enzyme responsible for adenosine metabolism. Inhibition of AK effectively increases extracellular adenosine concentrations and represents an alternative approach to enhance the beneficial actions of adenosine as compared to direct-acting receptor agonists. Clitocine (3), isolated from the mushroom Clitocybe inversa, has been found to be a weak inhibitor of AK. We have prepared a number of analogues of clitocine in order to improve its potency and demonstrated that 5'-deoxy-5'-amino-clitocine (7) improved AK inhibitory potency by 50-fold. PMID:11549437

  20. Patient adherence to tyrosine kinase inhibitor therapy in chronic myeloid leukemia.

    PubMed

    Jabbour, Elias J; Kantarjian, Hagop; Eliasson, Lina; Cornelison, A Megan; Marin, David

    2012-07-01

    Dramatically improved survival associated with tyrosine kinase inhibitor (TKI) therapy has transformed the disease model for chronic myeloid leukemia (CML) to one of long-term management, but treatment success is challenged with poor medication adherence. Many risk factors associated with poor adherence can be ameliorated by close monitoring, dose modification, and supportive care. Controlling risk factors for poor adherence in combination with patient education that includes direct communication between the health care team and the patient are essential components for maximizing the benefits of TKI therapy. PMID:22473898

  1. Exploration of 3-methylisoquinoline-4-carbonitriles as protein kinase A inhibitors of Plasmodium falciparum.

    PubMed

    Buskes, Melissa J; Harvey, Katherine L; Prinz, Boris; Crabb, Brendan S; Gilson, Paul R; Wilson, David J D; Abbott, Belinda M

    2016-06-01

    A series of isoquinolines have been evaluated in a homology model of Plasmodium falciparum Protein Kinase A (PfPKA) using molecular dynamics. Synthesis of these compounds was then undertaken to investigate their structure-activity relationships. One compound was found to inhibit parasite growth in an in vitro assay and provides a lead to further develop 3-methylisoquinoline-4-carbonitriles as antimalarial compounds. Development of a potent and selective PfPKA inhibitor would provide a useful tool to shed further insight into the mechanisms enabling malaria parasites to establish infection. PMID:27112453

  2. Management of tyrosine kinase inhibitor resistance in lung cancer with EGFR mutation

    PubMed Central

    Becker, Kevin; Xu, Yiqing

    2014-01-01

    The identification of driver mutations and drugs that inhibit their activity has been a major therapeutic advance for patients with advanced lung adenocarcinoma. Unfortunately, the success of these drugs is limited by the universal development of resistance. Treatment failure can result from inadequate drug exposure or selection of resistant malignant clones. Clinically distinct mechanisms of disease progression have been identified and can inform treatment decisions. Investigations into the biochemical mechanisms of tyrosine kinase inhibitor resistance may provide additional therapeutic targets by which the efficacy of targeted therapy can be improved. PMID:25302160

  3. High-Throughput Screening of Tyrosine Kinase Inhibitor Resistant Genes in CML.

    PubMed

    Ma, Leyuan; Roderick, Justine; Kelliher, Michelle A; Green, Michael R

    2016-01-01

    Genome-wide RNA interference (RNAi) screening in mammalian cells has proven to be a powerful tool for identifying new genes and molecular pathways relevant to many cellular processes and diseases. For example, screening for genes that, when inactivated, lead to resistance to cancer therapeutic drugs can reveal new mechanisms for how resistance develops and identify potential targetable strategies to overcome drug resistance. Here, we describe a detailed procedure for performing a high-throughput RNAi screen using a genome-wide human short hairpin RNA (shRNA) library for identifying tyrosine kinase inhibitor (TKI)-resistance genes in a human CML cell line model. PMID:27581147

  4. Discovery of Novel Benzimidazoles as Potent Inhibitors of TIE-2 and VEGFR-2 Tyrosine Kinase Receptors

    SciTech Connect

    Hasegawa, Masaichi; Nishigaki, Naohiko; Washio, Yoshiaki; Kano, Kazuya; Harris, Philip A.; Sato, Hideyuki; Mori, Ichiro; West, Rob I.; Shibahara, Megumi; Toyoda, Hiroko; Wang, Liping; Nolte, Robert T.; Veal, James M.; Cheung, Mui

    2008-09-12

    We herein disclose a novel chemical series of benzimidazole-ureas as inhibitors of VEGFR-2 and TIE-2 kinase receptors, both of which are implicated in angiogenesis. Structure-activity relationship (SAR) studies elucidated a critical role for the N1 nitrogen of both the benzimidazole (segment E) and urea (segment B) moieties. The SAR results were also supported by the X-ray crystallographic elucidation of the role of the N1 nitrogen and the urea moiety when the benzimidazole-urea compounds were bound to the VEGFR-2 enzyme. The left side phenyl ring (segment A) occupies the backpocket where a 3-hydrophobic substituent was favored for TIE-2 activity.

  5. Single cell imaging of Bruton's Tyrosine Kinase using an irreversible inhibitor

    NASA Astrophysics Data System (ADS)

    Turetsky, Anna; Kim, Eunha; Kohler, Rainer H.; Miller, Miles A.; Weissleder, Ralph

    2014-04-01

    A number of Bruton's tyrosine kinase (BTK) inhibitors are currently in development, yet it has been difficult to visualize BTK expression and pharmacological inhibition in vivo in real time. We synthesized a fluorescent, irreversible BTK binder based on the drug Ibrutinib and characterized its behavior in cells and in vivo. We show a 200 nM affinity of the imaging agent, high selectivity, and irreversible binding to its target following initial washout, resulting in surprisingly high target-to-background ratios. In vivo, the imaging agent rapidly distributed to BTK expressing tumor cells, but also to BTK-positive tumor-associated host cells.

  6. In vitro anti-myeloma activity of the Aurora kinase inhibitor VE-465.

    PubMed

    Negri, Joseph M; McMillin, Douglas W; Delmore, Jake; Mitsiades, Nicholas; Hayden, Patrick; Klippel, Steffen; Hideshima, Teru; Chauhan, Dharminder; Munshi, Nikhil C; Buser, Carolyn A; Pollard, John; Richardson, Paul G; Anderson, Kenneth C; Mitsiades, Constantine S

    2009-12-01

    This study characterized the preclinical anti-myeloma activity of VE465, a low molecular weight pan-Aurora kinase inhibitor. After 96-h drug exposure, several multiple myeloma (MM) cell lines were more sensitive to VE465 compared to non-malignant cells. The anti-MM activity of VE465 was maintained in the presence of interleukin-6 and, interestingly, enhanced by co-culture with stromal cells. However, primary MM cells were less responsive than cell lines. Combinations with dexamethasone (Dex), doxorubicin (Doxo) and bortezomib showed no antagonism. Our study highlights the potential role of the tumour microenvironment in modulating the activity of this drug class. PMID:19751238

  7. Darapladib, a Lipoprotein-Associated Phospholipase A2 Inhibitor, Reduces Rho Kinase Activity in Atherosclerosis

    PubMed Central

    Xu, Dong-Ling; Liu, Xiao-Bo; Bi, Shao-jie; Zhao, Tong; Sui, Shu-Jian; Ji, Xiao-Ping

    2016-01-01

    Purpose Increased lipoprotein-associated phospholipase A2 (Lp-PLA2) activity and Rho kinase activity may be associated with atherosclerosis. The principal aim of this study was to examine whether darapladib (a selective Lp-PLA2 inhibitor) could reduce the elevated Lp-PLA2 and Rho kinase activity in atherosclerosis. Materials and Methods Studies were performed in male Sprague-Dawley rats. The atherosclerosis rats were prepared by feeding them with a high-cholesterol diet for 10 weeks. Low-dose darapladib (25 mg·kg-1·d-1) and high-dose darapladib (50 mg·kg-1·d-1) interventions were then administered over the course of 2 weeks. Results The serum levels of triglycerides, total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), high-sensitivity C-reactive protein (hs-CRP), and Lp-PLA2, significantly increased in atherosclerosis model groups, as did Rho kinase activity and cardiomyocyte apoptosis (p<0.05 vs. sham group), whereas nitric oxide (NO) production was reduced. Levels of TC, LDL-C, CRP, Lp-PLA2, and Rho kinase activity were respectively reduced in darapladib groups, whereas NO production was enhanced. When compared to the low-dose darapladib group, the reduction of the levels of TC, LDL-C, CRP, and Lp-PLA2 was more prominent in the high-dose darapladib group (p<0.05), and the increase of NO production was more prominent (p<0.05). Cardiomyocyte apoptosis of the high-dose darapladib group was also significantly reduced compared to the low-dose darapladib group (p<0.05). However, there was no significant difference in Rho kinase activity between the low-dose darapladib group and the high-dose darapladib group (p>0.05). Conclusion Darapladib, a Lp-PLA2 inhibitor, leads to cardiovascular protection that might be mediated by its inhibition of both Rho kinase and Lp-PLA2 in atherosclerosis. PMID:26847282

  8. Structure-Based Design of an Organoruthenium Phosphatidyl-inositol-3-Kinase Inhibitor Reveals a Switch Governing Lipid Kinase Potency and Selectivity

    SciTech Connect

    Xie,P.; Williams, D.; Atilla-Gokcumen, G.; Milk, L.; Xiao, M.; Smalley, K.; Herlyn, M.; Meggers, E.; Marmorstein, R.

    2008-01-01

    Mutations that constitutively activate the phosphatidyl-inositol-3-kinase (PI3K) signaling pathway, including alterations in PI3K, PTEN, and AKT, are found in a variety of human cancers, implicating the PI3K lipid kinase as an attractive target for the development of therapeutic agents to treat cancer and other related diseases. In this study, we report on the combination of a novel organometallic kinase inhibitor scaffold with structure-based design to develop a PI3K inhibitor, called E5E2, with an IC50 potency in the mid-low-nanomolar range and selectivity against a panel of protein kinases. We also show that E5E2 inhibits phospho-AKT in human melanoma cells and leads to growth inhibition. Consistent with a role for the PI3K pathway in tumor cell invasion, E5E2 treatment also inhibits the migration of melanoma cells in a 3D spheroid assay. The structure of the PI3K?/E5E2 complex reveals the molecular features that give rise to this potency and selectivity toward lipid kinases with implications for the design of a subsequent generation of PI3K-isoform-specific organometallic inhibitors.

  9. Structure–Activity Relationships and Molecular Modeling of Sphingosine Kinase Inhibitors

    PubMed Central

    2013-01-01

    The design, synthesis, and evaluation of the potency of new isoform-selective inhibitors of sphingosine kinases 1 and 2 (SK1 and SK2), the enzyme that catalyzes the phosphorylation of d-erythro-sphingosine to produce the key signaling lipid, sphingosine 1-phosphate, are described. Recently, we reported that 1-(4-octylphenethyl)piperidin-4-ol (RB-005) is a selective inhibitor of SK1. Here we report the synthesis of 43 new analogues of RB-005, in which the lipophilic tail, polar headgroup, and linker region were modified to extend the structure–activity relationship profile for this lead compound, which we explain using modeling studies with the recently published crystal structure of SK1. We provide a basis for the key residues targeted by our profiled series and provide further evidence for the ability to discriminate between the two isoforms using pharmacological intervention. PMID:24164513

  10. Fragment-Based and Structure-Guided Discovery and Optimization of Rho Kinase Inhibitors

    SciTech Connect

    Li, Rongshi; Martin, Mathew P.; Liu, Yan; Wang, Binglin; Patel, Ronil A.; Zhu, Jin-Yi; Sun, Nan; Pireddu, Roberta; Lawrence, Nicholas J.; Li, Jiannong; Haura, Eric B.; Sung, Shen-Shu; Guida, Wayne C.; Schonbrunn, Ernst; Sebti, Said M.

    2012-05-14

    Using high concentration biochemical assays and fragment-based screening assisted by structure-guided design, we discovered a novel class of Rho-kinase inhibitors. Compound 18 was equipotent for ROCK1 (IC{sub 50} = 650 nM) and ROCK2 (IC{sub 50} = 670 nM), whereas compound 24 was more selective for ROCK2 (IC{sub 50} = 100 nM) over ROCK1 (IC{sub 50} = 1690 nM). The crystal structure of the compound 18-ROCK1 complex revealed that 18 is a type 1 inhibitor that binds the hinge region in the ATP binding site. Compounds 18 and 24 inhibited potently the phosphorylation of the ROCK substrate MLC2 in intact human breast cancer cells.

  11. Molecular Shape Analysis-Guided Virtual Screening Platform for Adenosine Kinase Inhibitors

    PubMed Central

    Bhutoria, Savita; Das, Ballari; Ghoshal, Nanda

    2016-01-01

    We propose a new application of molecular shape descriptors in hierarchical selection during virtual screening (VS). Here, a structure-based pharmacophore and docking-guided VS protocol have been evolved to identify inhibitors against adenosine kinase (AK). The knowledge gained on the shape requirements has been extrapolated in classifying active and inactive molecules against this target. This classification enabled us to pick the appropriate ligand conformation in the binding site. We have suggested a set of hierarchical filters for VS, from a simple molecular shape analysis (MSA) descriptor-based recursive models to docking scores. This approach permits a systematic study to understand the importance of spatial requirements and limitations for inhibitors against AK. Finally, the guidelines on how to select compounds for AK to achieve success have been highlighted. The utility of this approach has been suggested by giving an example of database screening for plausible active compounds. PMID:27478367

  12. Clinical development of phosphatidylinositol 3-kinase inhibitors for non-Hodgkin lymphoma

    PubMed Central

    2013-01-01

    Phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway is extensively explored in cancers. It functions as an important regulator of cell growth, survival and metabolism. Activation of this pathway also predicts poor prognosis in numerous human malignancies. Drugs targeting this signaling pathway have been developed and have shown preliminary clinical activity. Accumulating evidence has highlighted the important role of PI3K in non-Hodgkin lymphoma (NHL), especially in the disease initiation and progression. Therapeutic functions of PI3K inhibitors in NHL have been demonstrated both in vivo and in vitro. This review will summarize recent advances in the activation of PI3K signaling in different types of NHL and the applications of PI3K inhibitors in NHL treatment. PMID:24252186

  13. p38 mitogen-activated protein kinase inhibitor reduces neurocan production in cultured spinal cord astrocytes.

    PubMed

    Yamaoka, Gotaro; Morino, Tadao; Morizane, Kei; Horiuchi, Hideki; Miura, Hiromasa; Ogata, Tadanori

    2012-06-20

    Chondroitin sulfate proteoglycans are formed in scar tissue after a spinal cord injury and inhibit axon regrowth. The production of neurocan, one of these chondroitin sulfate proteoglycans, in cultured spinal cord astrocytes increased after the addition of epidermal growth factor (EGF) in a dose-dependent manner (2-200 ng/ml). In astrocytes stimulated by 20 ng/ml of EGF, neurocan production was inhibited after the addition of the p38 mitogen-activated protein kinase (MAPK) inhibitor (SB203580: 3-10 μM) in a dose-dependent manner. These results suggest that the activation of p38 MAPK is one of the mechanisms of neurocan production in EGF-stimulated astrocytes. The p38 MAPK inhibitor may reduce neurocan production and accelerate axonal regrowth after a spinal cord injury. PMID:22525836

  14. Novel ribofuranosylnucleoside lead compounds for potent and selective inhibitors of mitochondrial thymidine kinase-2.

    PubMed Central

    Balzarini, J; Zhu, C; De Clercq , E; Pérez-Pérez, M J; Chamorro, C; Camarasa, M J; Karlsson, A

    2000-01-01

    The ribonucleoside analogues (E)-5-(2-bromovinyl)uridine (5-BV-Urd) and 3'-spiro-(4'-amino-1',2'-oxathiole-2',2'-dioxide)-5-methyluridine (3'-AOD-5-MeUrd) emerged as potent and selective competitive inhibitors of mitochondrial thymidine kinase (TK)-2 with respect to thymidine (K(i)/K(m) values of 9.0 and 1.2 respectively). Cytosolic TK-1 did not show measurable affinity for these compounds. [(32)P]Phosphate transfer studies from [gamma-(32)P]ATP to 5-BV-Urd and 3'-AOD-5-MeUrd revealed extremely poor substrate activity but potent inhibitory potential of the compounds. It was concluded that the ribonucleosides 5-BV-Urd and 3'-AOD-5-MeUrd represent two new lead compounds for potent and selective inhibitors of mitochondrial TK-2. PMID:10998359

  15. Optogenetically controlled RAF to characterize BRAF and CRAF protein kinase inhibitors

    PubMed Central

    Chatelle, Claire V.; Hövermann, Désirée; Müller, Anne; Wagner, Hanna J.; Weber, Wilfried; Radziwill, Gerald

    2016-01-01

    Here, we applied optoRAF, an optogenetic tool for light-controlled clustering and activation of RAF proteins that mimics the natural occurring RAS-mediated dimerization. This versatile tool allows studying the effect on BRAF and CRAF homodimer- as well as heterodimer-induced RAF signaling. Vemurafenib and dabrafenib are two clinically approved inhibitors for BRAF that efficiently suppress the kinase activity of oncogenic BRAF (V600E). However in wild-type BRAF expressing cells, BRAF inhibitors can exert paradoxical activation of wild-type CRAF. Using optoRAF, vemurafenib was identified as paradoxical activator of BRAF and CRAF homo- and heterodimers. Dabrafenib enhanced activity of light-stimulated CRAF at low dose and inhibited CRAF signaling at high dose. Moreover, dabrafenib increased the protein level of CRAF proteins but not of BRAF proteins. Increased CRAF levels correlate with elevated RAF signaling in a dabrafenib-dependent manner, independent of light activation. PMID:27025703

  16. Definition of the binding mode of phosphoinositide 3-kinase α-selective inhibitor A-66S through molecular dynamics simulation.

    PubMed

    Bian, Xiaoli; Dong, Wangqing; Zhao, Yang; Sun, Rui; Kong, Wanjun; Li, Yiping

    2014-04-01

    Activation of the phosphatidylinositol 3-kinase α (PI3Kα) is commonly observed in human cancer and is critical for tumor progression, which has made PI3Kα an attractive target for anticancer drug discovery. To systematically investigate the binding mode of A-66S, a new selective PI3Kα inhibitor for PI3Kα, molecular docking, molecular dynamics simulation and ensuing energetic analysis were performed. The binding free energy between PI3Kα and A-66S is -11.27 kcal•mol⁻¹ using MMPBSA method, while -14.67 kcal•mol⁻¹ using MMGBSA method, which is beneficial for the binding, and the van der Waals/hydrophobic and electrostatic interactions are critical for the binding. The conserved hydrophobic adenine region of PI3Kα made up of Met772, Pro778, Ile800, Tyr836, Ile848, Val850, Val851, Met922, Phe930 and Ile932 accommodates the flat 2-tert-butyl-4'-methyl-4,5'-bithiazol moiety of A-66S, and the NH of Val851 forms a hydrogen with the nitrogen atom embedded in the aminothiazole ring of A-66S. The (S)-pyrrolidine carboxamide urea moiety especially extends toward the region of the binding site wall (Ser854-Gln859) defined by the C-terminal lobe, and has three hydrogen-bond arms with the backbone of Ser854 and the side chain of Gln859. Notably the interaction between the non-conserved residue Gln859 and A-66S is responsible for the selectivity profile of A-66S. The binding mode of A-66S for PI3Kα presented in this study should aid in the design of a new highly selective PI3Kα inhibitor. PMID:24633771

  17. Deregulated Expression of SRC, LYN and CKB Kinases by DNA Methylation and Its Potential Role in Gastric Cancer Invasiveness and Metastasis.

    PubMed

    Mello, Adriano Azevedo; Leal, Mariana Ferreira; Rey, Juan Antonio; Pinto, Giovanny Rebouças; Lamarão, Leticia Martins; Montenegro, Raquel Carvalho; Alves, Ana Paula Negreiros Nunes; Assumpção, Paulo Pimentel; Borges, Barbara do Nascimento; Smith, Marília Cardoso; Burbano, Rommel Rodriguez

    2015-01-01

    Kinases are downstream modulators and effectors of several cellular signaling cascades and play key roles in the development of neoplastic disease. In this study, we aimed to evaluate SRC, LYN and CKB protein and mRNA expression, as well as their promoter methylation, in gastric cancer. We found elevated expression of SRC and LYN kinase mRNA and protein but decreased levels of CKB kinase, alterations that may have a role in the invasiveness and metastasis of gastric tumors. Expression of the three studied kinases was also associated with MYC oncogene expression, a possible biomarker for gastric cancer. To understand the mechanisms that regulate the expression of these genes, we evaluated the DNA promoter methylation of the three kinases. We found that reduced SRC and LYN methylation and increased CKB methylation was associated with gastric cancer. The reduced SRC and LYN methylation was associated with increased levels of mRNA and protein expression, suggesting that DNA methylation is involved in regulating the expression of these kinases. Conversely, reduced CKB methylation was observed in samples with reduced mRNA and protein expression, suggesting CKB expression was found to be only partly regulated by DNA methylation. Additionally, we found that alterations in the DNA methylation pattern of the three studied kinases were also associated with the gastric cancer onset, advanced gastric cancer, deeper tumor invasion and the presence of metastasis. Therefore, SRC, LYN and CKB expression or DNA methylation could be useful markers for predicting tumor progression and targeting in anti-cancer strategies. PMID:26460485

  18. Deregulated Expression of SRC, LYN and CKB Kinases by DNA Methylation and Its Potential Role in Gastric Cancer Invasiveness and Metastasis

    PubMed Central

    Rey, Juan Antonio; Pinto, Giovanny Rebouças; Lamarão, Leticia Martins; Montenegro, Raquel Carvalho; Alves, Ana Paula Negreiros Nunes; Assumpção, Paulo Pimentel; Borges, Barbara do Nascimento; Smith, Marília Cardoso; Burbano, Rommel Rodriguez

    2015-01-01

    Kinases are downstream modulators and effectors of several cellular signaling cascades and play key roles in the development of neoplastic disease. In this study, we aimed to evaluate SRC, LYN and CKB protein and mRNA expression, as well as their promoter methylation, in gastric cancer. We found elevated expression of SRC and LYN kinase mRNA and protein but decreased levels of CKB kinase, alterations that may have a role in the invasiveness and metastasis of gastric tumors. Expression of the three studied kinases was also associated with MYC oncogene expression, a possible biomarker for gastric cancer. To understand the mechanisms that regulate the expression of these genes, we evaluated the DNA promoter methylation of the three kinases. We found that reduced SRC and LYN methylation and increased CKB methylation was associated with gastric cancer. The reduced SRC and LYN methylation was associated with increased levels of mRNA and protein expression, suggesting that DNA methylation is involved in regulating the expression of these kinases. Conversely, reduced CKB methylation was observed in samples with reduced mRNA and protein expression, suggesting CKB expression was found to be only partly regulated by DNA methylation. Additionally, we found that alterations in the DNA methylation pattern of the three studied kinases were also associated with the gastric cancer onset, advanced gastric cancer, deeper tumor invasion and the presence of metastasis. Therefore, SRC, LYN and CKB expression or DNA methylation could be useful markers for predicting tumor progression and targeting in anti-cancer strategies. PMID:26460485

  19. Screening of antitubercular compound library identifies novel shikimate kinase inhibitors of Mycobacterium tuberculosis.

    PubMed

    Rajput, Vikrant S; Mehra, Rukmankesh; Kumar, Sanjay; Nargotra, Amit; Singh, Parvinder Pal; Khan, Inshad Ali

    2016-06-01

    Shikimate kinase of Mycobacterium tuberculosis is involved in the biosynthesis of aromatic amino acids through shikimate pathway. The enzyme is essential for the survival of M. tuberculosis and is absent from mammals, thus providing an excellent opportunity for identifying new chemical entities to combat tuberculosis with a novel mechanism of action. In this study, an antitubercular library of 1000 compounds was screened against M. tuberculosis shikimate kinase (MtSK). This effort led to the identification of 20 inhibitors, among which five promising leads exhibited half maximal inhibitory concentration (IC50) values below 10 μM. The most potent inhibitor ("5631296") showed an IC50 value of 5.10 μM ± 0.6. The leads were further evaluated for the activity against multidrug-resistant (MDR)-TB, Gram-positive and Gram-negative bacterial strains, mode of action, docking simulations, and combinatorial study with three frontline anti-TB drugs. Compound "5491210" displayed a nearly synergistic activity with rifampicin, isoniazid, and ethambutol while compound "5631296" was synergistic with rifampicin. In vitro cytotoxicity against HepG2 cell line was evaluated and barring one compound; all were found to be non-toxic (SI > 10). In order to rule out mitochondrial toxicity, the promising inhibitors were also evaluated for cell cytotoxicity using galactose medium where compounds "5631296" and "5122752" appeared non-toxic. Upon comprehensive analysis, compound "5631296" was found to be the most promising MtSK inhibitor that was safe, synergistic with rifampicin, and bactericidal against M. tuberculosis. PMID:26887318

  20. The endogenous inhibitor of protein kinase-C in the rat ovary is a protein phosphatase.

    PubMed

    Eyster, K M; Waller, M S; Miller, T L; Miller, C J; Johnson, M J; Persing, J S

    1993-09-01

    Calcium- and lipid-dependent protein kinase (PKC) activity in the ovary of the pseudopregnant rat is masked by an endogenous inhibitor of PKC. These studies were undertaken to examine the mechanism of action of the endogenous inhibitor of PKC in the rat ovary. The addition of the phosphatase inhibitors calyculin-A (0.09 nM), microcystin-LR (6.4 nM), and okadaic acid (10 nM) resulted in the loss of PKC inhibitory activity and an increase in basal PKC activity in rat ovarian cytosol. In phosphatase assays, significant dephosphorylation of histone-III-S or myelin basic protein that had been phosphorylated by PKC occurred within 4 min after the addition of ovarian cytosol from the pseudopregnant rat. This dephosphorylation was prevented from the pseudopregnant rat. This dephosphorylation was prevented by the addition of calyculin-A (0.73 nM) and was removed by fractionation of ovarian cytosol on diethylaminoethyl cellulose. No inhibition of PKC activity was observed when the PKC-specific peptides AcMBP-(4-14) and [Ser25]PKC-(19-31) were used as the substrate for phosphorylation. In addition, rat ovarian cytosol did not exhibit phosphatase activity when the peptide AcMBP-(4-14) was used as the substrate. Addition of ovarian cytosol resulted in dephosphorylation of phosphorylase-alpha phosphorylated by phosphorylase kinase, but not dephosphorylation of histone-II-A or histone-VIII-S phosphorylated by PKA. The data suggest that the endogenous inhibitor of PKC in the rat ovary is a protein phosphatase. PMID:7689949

  1. Benzothiophene carboxylate derivatives as novel allosteric inhibitors of branched-chain α-ketoacid dehydrogenase kinase.

    PubMed

    Tso, Shih-Chia; Gui, Wen-Jun; Wu, Cheng-Yang; Chuang, Jacinta L; Qi, Xiangbing; Skvora, Kristen J; Dork, Kenneth; Wallace, Amy L; Morlock, Lorraine K; Lee, Brendan H; Hutson, Susan M; Strom, Stephen C; Williams, Noelle S; Tambar, Uttam K; Wynn, R Max; Chuang, David T

    2014-07-25

    The mitochondrial branched-chain α-ketoacid dehydrogenase complex (BCKDC) is negatively regulated by reversible phosphorylation.BCKDC kinase (BDK) inhibitors that augment BCKDC flux have been shown to reduce branched-chain amino acid (BCAA) concentrations in vivo. In the present study, we employed high-throughput screens to identify compound 3,6- dichlorobenzo[b]thiophene-2-carboxylic acid (BT2) as a novel BDK inhibitor (IC(50) = 3.19 μM). BT2 binds to the same site in BDK as other known allosteric BDK inhibitors, including (S)-α-cholorophenylproprionate ((S)-CPP). BT2 binding to BDK triggers helix movements in the N-terminal domain, resulting in the dissociation of BDK from the BCKDC accompanied by accelerated degradation of the released kinase in vivo. BT2 shows excellent pharmacokinetics (terminal T(1⁄2) = 730 min) and metabolic stability (no degradation in 240 min), which are significantly better than those of (S)-CPP. BT2, its analog 3-chloro-6-fluorobenzo[ b]thiophene-2-carboxylic acid (BT2F), and a prodrug of BT2 (i.e. N-(4-acetamido-1,2,5-oxadiazol-3-yl)-3,6-dichlorobenzo[ b]thiophene-2-carboxamide (BT3)) significantly increase residual BCKDC activity in cultured cells and primary hepatocytes from patients and a mouse model of maple syrup urine disease. Administration of BT2 at 20 mg/kg/day to wild-type mice for 1 week leads to nearly complete dephosphorylation and maximal activation of BCKDC in heart, muscle, kidneys, and liver with reduction in plasma BCAA concentrations. The availability of benzothiophene carboxylate derivatives as stable BDK inhibitors may prove useful for the treatment of metabolic disease caused by elevated BCAA concentrations. PMID:24895126

  2. A pivotal role of phosphatidylinositol 3-kinase in delaying of methyl jasmonate-induced leaf senescence.

    PubMed

    Liu, Jian; Zhou, Jun; Xing, Da

    2016-06-01

    Phosphatidylinositol 3-kinase (PI3K) and its product PI3P are involved in plant development and stress responses. Our recent report has suggested that down-regulation of PI3K activity accelerated leaf senescence induced by methyl jasmonate (MeJA) and suppressed the activation of vacuolar H(+)-ATPase (V-ATPase). In vitro and in vivo experiment revealed that PI3K interact with VHA-B2. The inhibition of V-ATPase activity suppressed the vacuolar acidification and enhanced the stomatal opening, thereby accelerating MeJA-induced leaf senescence. It was shown that there is close relationship between PI3K and V-ATPase. However, the factor which initiates the PI3K-V-ATPase pathway needs further improvement, and the domain of VHA-B that binds to PI3K is still not clear enough. By using the Arabidopsis and MeJA as the research model, studies have been performed to investigate the upstream regulation of PI3K and downstream function of PI3K-V-ATPase pathway in the plant senescence. PMID:26906642

  3. A selective ATP-competitive sphingosine kinase inhibitor demonstrates anti-cancer properties

    PubMed Central

    Pitman, Melissa R.; Powell, Jason A.; Coolen, Carl; Moretti, Paul A.B.; Zebol, Julia R.; Pham, Duyen H.; Finnie, John W.; Don, Anthony S.; Ebert, Lisa M.; Bonder, Claudine S.; Gliddon, Briony L.; Pitson, Stuart M.

    2015-01-01

    The dynamic balance of cellular sphingolipids, the sphingolipid rheostat, is an important determinant of cell fate, and is commonly deregulated in cancer. Sphingosine 1-phosphate is a signaling molecule with anti-apoptotic, pro-proliferative and pro-angiogenic effects, while conversely, ceramide and sphingosine are pro-apoptotic. The sphingosine kinases (SKs) are key regulators of this sphingolipid rheostat, and are attractive targets for anti-cancer therapy. Here we report a first-in-class ATP-binding site-directed small molecule SK inhibitor, MP-A08, discovered using an approach of structural homology modelling of the ATP-binding site of SK1 and in silico docking with small molecule libraries. MP-A08 is a highly selective ATP competitive SK inhibitor that targets both SK1 and SK2. MP-A08 blocks pro-proliferative signalling pathways, induces mitochondrial-associated apoptosis in a SK-dependent manner, and reduces the growth of human lung adenocarcinoma tumours in a mouse xenograft model by both inducing tumour cell apoptosis and inhibiting tumour angiogenesis. Thus, this selective ATP competitive SK inhibitor provides a promising candidate for potential development as an anti-cancer therapy, and also, due to its different mode of inhibition to other known SK inhibitors, both validates the SKs as targets for anti-cancer therapy, and represents an important experimental tool to study these enzymes. PMID:25788259

  4. A protein kinaseinhibitor attenuates multidrug resistance of neuroblastoma cells

    PubMed Central

    Svensson, Karin; Larsson, Christer

    2003-01-01

    Background The acquisition of drug resistance is a major reason for poor outcome of neuroblastoma. Protein kinase C (PKC) has been suggested to influence drug resistance in cancer cells. The aim of this study was to elucidate whether inhibition of PKCβ isoforms influences drug-resistance of neuroblastoma cells. Methods The effect of the PKCβ inhibitor LY379196 on the growth-suppressing effects of different chemotherapeutics on neuroblastoma cells was analyzed with MTT assays. The effect of LY379196 on the accumulation of [3H]vincristine was also investigated Results The PKCβ inhibitor LY379196 suppressed the growth of three neuroblastoma cell lines. LY379196 also augmented the growth-suppressive effect of doxorubicin, etoposide, paclitaxel, and vincristine, but not of carboplatin. The effect was most marked for vincristine and for the cell-line (SK-N-BE(2)) that was least sensitive to vincristine. No effect was observed on the non-resistant IMR-32 cells. Two other PKC inhibitors, Gö6976 and GF109203X, also enhanced the vincristine effect. The PKC inhibitors caused an increased accumulation of [3H]vincristine in SK-N-BE(2) cells. Conclusions This indicates that inhibition of PKCβ could attenuate multidrug resistance in neuroblastoma cells by augmenting the levels of natural product anticancer drugs in resistant cells. PMID:12697075

  5. Design and Structural Characterization of Potent and Selective Inhibitors of Phosphatidylinositol 4 Kinase IIIβ.

    PubMed

    Rutaganira, Florentine U; Fowler, Melissa L; McPhail, Jacob A; Gelman, Michael A; Nguyen, Khanh; Xiong, Anming; Dornan, Gillian L; Tavshanjian, Brandon; Glenn, Jeffrey S; Shokat, Kevan M; Burke, John E

    2016-03-10

    Type III phosphatidylinositol 4-kinase (PI4KIIIβ) is an essential enzyme in mediating membrane trafficking and is implicated in a variety of pathogenic processes. It is a key host factor mediating replication of RNA viruses. The design of potent and specific inhibitors of this enzyme will be essential to define its cellular roles and may lead to novel antiviral therapeutics. We previously reported the PI4K inhibitor PIK93, and this compound has defined key functions of PI4KIIIβ. However, this compound showed high cross reactivity with class I and III PI3Ks. Using structure-based drug design, we have designed novel potent and selective (>1000-fold over class I and class III PI3Ks) PI4KIIIβ inhibitors. These compounds showed antiviral activity against hepatitis C virus. The co-crystal structure of PI4KIIIβ bound to one of the most potent compounds reveals the molecular basis of specificity. This work will be vital in the design of novel PI4KIIIβ inhibitors, which may play significant roles as antiviral therapeutics. PMID:26885694

  6. Protection from impulse noise-induced hearing loss with novel Src-protein tyrosine kinase inhibitors

    PubMed Central

    Bielefeld, Eric C.; Hangauer, David; Henderson, Donald

    2011-01-01

    Apoptosis is a significant mechanism of cochlear hair cell loss from noise. Molecules that inhibit apoptotic intracellular signaling reduce cochlear damage and hearing loss from noise. The current study is an extension of a previous study of the protective value of Src-protein tyrosine kinase inhibitors against noise (Harris et al., 2005). The current study tested three Src-inhibitors: the indole-based KX1-141, the biaryl-based KX2-329, and the ATP-competitive KX2-328. Each of the three drugs was delivered into the chinchillas’ cochleae by allowing the solutions to diffuse across the round window membrane thirty minutes prior to exposure to impulse noise. Hearing thresholds were measured using auditory evoked responses from electrodes in the inferior colliculi. Ears treated with KX2-329 showed significantly lower threshold shifts and outer hair cell losses than the control group. The cochleae treated with KX1-141 and KX2-328 did not show statistically significant protection from the impulse noise. The finding of protection with KX2-329 demonstrates that a biaryl-based Src inhibitor has protective capacity against noise-induced hearing loss that is as good as that demonstrated by KX1-004, a Src inhibitor drug that has been studied extensively as an otoprotectant against noise, and suggests that KX2-329 could be useful for protection against noise. PMID:21840347

  7. Novel Small Molecule Inhibitors of Choline Kinase Identified by Fragment-Based Drug Discovery.

    PubMed

    Zech, Stephan G; Kohlmann, Anna; Zhou, Tianjun; Li, Feng; Squillace, Rachel M; Parillon, Lois E; Greenfield, Matthew T; Miller, David P; Qi, Jiwei; Thomas, R Mathew; Wang, Yihan; Xu, Yongjin; Miret, Juan J; Shakespeare, William C; Zhu, Xiaotian; Dalgarno, David C

    2016-01-28

    Choline kinase α (ChoKα) is an enzyme involved in the synthesis of phospholipids and thereby plays key roles in regulation of cell proliferation, oncogenic transformation, and human carcinogenesis. Since several inhibitors of ChoKα display antiproliferative activity in both cellular and animal models, this novel oncogene has recently gained interest as a promising small molecule target for cancer therapy. Here we summarize our efforts to further validate ChoKα as an oncogenic target and explore the activity of novel small molecule inhibitors of ChoKα. Starting from weakly binding fragments, we describe a structure based lead discovery approach, which resulted in novel highly potent inhibitors of ChoKα. In cancer cell lines, our lead compounds exhibit a dose-dependent decrease of phosphocholine, inhibition of cell growth, and induction of apoptosis at low micromolar concentrations. The druglike lead series presented here is optimizable for improvements in cellular potency, drug target residence time, and pharmacokinetic parameters. These inhibitors may be utilized not only to further validate ChoKα as antioncogenic target but also as novel chemical matter that may lead to antitumor agents that specifically interfere with cancer cell metabolism. PMID:26700752

  8. Effects of Isoform-selective Phosphatidylinositol 3-Kinase Inhibitors on Osteoclasts

    PubMed Central

    Shugg, Ryan P. P.; Thomson, Ashley; Tanabe, Natsuko; Kashishian, Adam; Steiner, Bart H.; Puri, Kamal D.; Pereverzev, Alexey; Lannutti, Brian J.; Jirik, Frank R.; Dixon, S. Jeffrey; Sims, Stephen M.

    2013-01-01

    Phosphatidylinositol 3-kinases (PI3K) participate in numerous signaling pathways, and control distinct biological functions. Studies using pan-PI3K inhibitors suggest roles for PI3K in osteoclasts, but little is known about specific PI3K isoforms in these cells. Our objective was to determine effects of isoform-selective PI3K inhibitors on osteoclasts. The following inhibitors were investigated (targets in parentheses): wortmannin and LY294002 (pan-p110), PIK75 (α), GDC0941 (α, δ), TGX221 (β), AS252424 (γ), and IC87114 (δ). In addition, we characterized a new potent and selective PI3Kδ inhibitor, GS-9820, and explored roles of PI3K isoforms in regulating osteoclast function. Osteoclasts were isolated from long bones of neonatal rats and rabbits. Wortmannin, LY294002, GDC0941, IC87114, and GS-9820 induced a dramatic retraction of osteoclasts within 15–20 min to 65–75% of the initial area. In contrast, there was no significant retraction in response to vehicle, PIK75, TGX221, or AS252424. Moreover, wortmannin and GS-9820, but not PIK75 or TGX221, disrupted actin belts. We examined effects of PI3K inhibitors on osteoclast survival. Whereas PIK75, TGX221, and GS-9820 had no significant effect on basal survival, all blocked RANKL-stimulated survival. When studied on resorbable substrates, osteoclastic resorption was suppressed by wortmannin and inhibitors of PI3Kβ and PI3Kδ, but not other isoforms. These data are consistent with a critical role for PI3Kδ in regulating osteoclast cytoskeleton and resorptive activity. In contrast, multiple PI3K isoforms contribute to the control of osteoclast survival. Thus, the PI3Kδ isoform, which is predominantly expressed in cells of hematopoietic origin, is an attractive target for anti-resorptive therapeutics. PMID:24133210

  9. VX-509 (decernotinib) is a potent and selective janus kinase 3 inhibitor that attenuates inflammation in animal models of autoimmune disease.

    PubMed

    Mahajan, Sudipta; Hogan, James K; Shlyakhter, Dina; Oh, Luke; Salituro, Francesco G; Farmer, Luc; Hoock, Thomas C

    2015-05-01

    Cytokines, growth factors, and other chemical messengers rely on a class of intracellular nonreceptor tyrosine kinases known as Janus kinases (JAKs) to rapidly transduce intracellular signals. A number of these cytokines are critical for lymphocyte development and mediating immune responses. JAK3 is of particular interest due to its importance in immune function and its expression, which is largely confined to lymphocytes, thus limiting the potential impact of JAK3 inhibition on nonimmune physiology. The aim of this study was to evaluate the potency and selectivity of the investigational JAK3 inhibitor VX-509 (decernotinib) [(R)-2-((2-(1H-pyrrolo[2,3-b]pyridin-3-yl)pyrimidin-4-yl)amino)-2-methyl-N-(2,2,2-trifluoroethyl)butanamide] against JAK3 kinase activity and inhibition of JAK3-mediated signaling in vitro and JAK3-dependent physiologic processes in vivo. These results demonstrate that VX-509 potently inhibits JAK3 in enzyme assays (Ki = 2.5 nM + 0.7 nM) and cellular assays dependent on JAK3 activity (IC50 range, 50-170 nM), with limited or no measurable potency against other JAK isotypes or non-JAK kinases. VX-509 also showed activity in two animal models of aberrant immune function. VX-509 treatment resulted in dose-dependent reduction in ankle swelling and paw weight and improved paw histopathology scores in the rat collagen-induced arthritis model. In a mouse model of oxazolone-induced delayed-type hypersensitivity, VX-509 reduced the T cell-mediated inflammatory response in skin. These findings demonstrate that VX-509 is a selective and potent inhibitor of JAK3 in vitro and modulates proinflammatory response in models of immune-mediated diseases, such as collagen-induced arthritis and delayed-type hypersensitivity. The data support evaluation of VX-509 for treatment of patients with autoimmune and inflammatory diseases such as rheumatoid arthritis. PMID:25762693

  10. Tripolin A, a Novel Small-Molecule Inhibitor of Aurora A Kinase, Reveals New Regulation of HURP's Distribution on Microtubules

    PubMed Central

    Kesisova, Iliana A.; Nakos, Konstantinos C.; Tsolou, Avgi; Angelis, Dimitrios; Lewis, Joe; Chatzaki, Aikaterini; Agianian, Bogos; Giannis, Athanassios; Koffa, Maria D.

    2013-01-01

    Mitotic regulators exhibiting gain of function in tumor cells are considered useful cancer therapeutic targets for the development of small-molecule inhibitors. The human Aurora kinases are a family of such targets. In this study, from a panel of 105 potential small-molecule inhibitors, two compounds Tripolin A and Tripolin B, inhibited Aurora A kinase activity in vitro. In human cells however, only Tripolin A acted as an Aurora A inhibitor. We combined in vitro, in vivo single cell and in silico studies to demonstrate the biological action of Tripolin A, a non-ATP competitive inhibitor. Tripolin A reduced the localization of pAurora A on spindle microtubules (MTs), affected centrosome integrity, spindle formation and length, as well as MT dynamics in interphase, consistent with Aurora A inhibition by RNAi or other specific inhibitors, such as MLN8054 or MLN8237. Interestingly, Tripolin A affected the gradient distribution towards the chromosomes, but not the MT binding of HURP (Hepatoma Up-Regulated Protein), a MT-associated protein (MAP) and substrate of the Aurora A kinase. Therefore Tripolin A reveals a new way of regulating mitotic MT stabilizers through Aurora A phosphorylation. Tripolin A is predicted to bind Aurora A similarly but not identical to MLN8054, therefore it could be used to dissect pathways orchestrated by Aurora kinases as well as a scaffold for further inhibitor development. PMID:23516487

  11. Protein-kinase inhibitors: A new treatment pathway for autoimmune and inflammatory diseases?

    PubMed

    Hernández-Flórez, Diana; Valor, Lara

    2016-01-01

    Although advances in biological medicine have seen significant progress in the treatment of autoimmune and inflammatory disease, many patients do not experience a satisfactory response. Hence, there are two challenges facing the medical research community. The first is to continue development in the field of existing biological therapies, such as monoclonal antibodies. The second is to open new frontiers of research and explore treatment alternatives for non-responders to other therapies. Attention has increasingly turned to the therapeutic potential of small molecule weight kinase inhibitors (SMKIs), currently used extensively in oncology and haematology. Initial research into the therapeutic value of SMKIs for autoimmune and inflammatory diseases has been encouraging. SMKIs are taken orally, which reduces cost for the health provider, and could increase compliance for the patient. This is why research is now focusing increasingly on SMKIs as a new generation line of treatment in these diseases. Tofacitinib, an inhibitor of Janus-kinase, is currently the only drug approved for the treatment of rheumatoid arthritis by FDA. However, much more needs to be done to understand the intracellular signalling pathways and how these might affect disease progression before solid conclusions can be drawn. PMID:26283525

  12. Mitochondrial-Targeting MET Kinase Inhibitor Kills Erlotinib-Resistant Lung Cancer Cells.

    PubMed

    Yang, Tianming; Ng, Wai Har; Chen, Huan; Chomchopbun, Kamon; Huynh, The Hung; Go, Mei Lin; Kon, Oi Lian

    2016-08-11

    Lung cancer cells harboring activating EGFR mutations acquire resistance to EGFR tyrosine kinase inhibitors (TKIs) by activating several bypass mechanisms, including MET amplification and overexpression. We show that a significant proportion of activated MET protein in EGFR TKI-resistant HCC827 lung cancer cells resides within the mitochondria. Targeting the total complement of MET in the plasma membrane and mitochondria should render these cells more susceptible to cell death and hence provide a means of circumventing drug resistance. Herein, the mitochondrial targeting triphenylphosphonium (TPP) moiety was introduced to the selective MET kinase inhibitor PHA665752. The resulting TPP analogue rapidly localized to the mitochondria of MET-overexpressing erlotinib-resistant HCC827 cells, partially suppressed the phosphorylation (Y1234/Y1235) of MET in the mitochondrial inner membrane and was as cytotoxic and apoptogenic as the parent compound. These findings provide support for the targeting of mitochondrial MET with a TPP-TKI conjugate as a means of restoring responsiveness to chemotherapy. PMID:27563407

  13. Role of glycogen synthase kinase-3β inhibitor AZD1080 in ovarian cancer

    PubMed Central

    Chen, Shuo; Sun, Kai-Xuan; Feng, Miao-Xiao; Sang, Xiu-Bo; Liu, Bo-Liang; Zhao, Yang

    2016-01-01

    Background Glycogen synthase kinase-3β (GSK-3β) is a multifunctional serine/threonine kinase that plays an important role in cancer tumorigenesis and progression. We investigated the role of the GSK-3β inhibitor AZD1080 in ovarian cancer cell lines. Methods A2780 and OVCAR3 ovarian cancer cell lines were exposed to AZD1080, after which cell proliferation, cell cycle, invasion, and migration assays were performed. Phalloidin staining was used to observe lamellipodia formation. Reverse transcription polymerase chain reaction and Western blot were used to assess the respective mRNA and protein expression levels of GSK-3β, CDK2, CDK1, cyclin D1, matrix metalloproteinase-9 (MMP9), and Bcl-xL. Results AZD1080 exposure suppressed ovarian cancer cell proliferation, invasion, migration, and lamellipodia formation, and induced G1 arrest, which was concentration dependent. AZD1080 also significantly downregulated GSK-3β, CDK2, CDK1, cyclin D1, MMP9, and Bcl-xL expression at both mRNA and protein levels. Conclusion Taken together, our results demonstrate that the GSK-3β inhibitor AZD1080 suppresses ovarian cancer development and therefore may indicate a new direction for ovarian cancer treatment. PMID:27051274

  14. Bosutinib: a dual SRC/ABL kinase inhibitor for the treatment of chronic myeloid leukemia.

    PubMed

    Keller, Gunhild; Schafhausen, Philippe; Brummendorf, Tim H

    2009-10-01

    The tyrosine kinase inhibitor imatinib mesylate (IM) set new standards in the treatment of chronic myeloid leukemia (CML). However, emergence of resistance to IM became a major therapeutic challenge. Bosutinib (SKI-606), a 7-alkoxy-3-quinolinecarbonitrile, functions as a dual inhibitor of SRC and ABL kinases, and preclinical studies demonstrated a high antiproliferative activity in human and murine CML cell lines. In ongoing Phase I/II clinical trials, bosutinib yielded promising results revealing high clinical efficacy, good tolerability and reduced toxicity in IM-resistant or -intolerant CML patients. In this article, we provide an overview on the mechanism of action, and the preclinical and currently available clinical data for bosutinib. Owing to its favorable toxicity profile and its high antileukemic activity, bosutinib is a promising novel treatment option for patients with CML. A recently initiated, randomized open-label Phase III clinical study will clarify its role in first-line therapy of Philadelphia chromosome-positive chronic-phase CML. PMID:21083014

  15. High-content screening identifies kinase inhibitors that overcome venetoclax resistance in activated CLL cells.

    PubMed

    Oppermann, Sina; Ylanko, Jarkko; Shi, Yonghong; Hariharan, Santosh; Oakes, Christopher C; Brauer, Patrick M; Zúñiga-Pflücker, Juan C; Leber, Brian; Spaner, David E; Andrews, David W

    2016-08-18

    Novel agents such as the Bcl-2 inhibitor venetoclax (ABT-199) are changing treatment paradigms for chronic lymphocytic leukemia (CLL) but important problems remain. Although some patients exhibit deep and durable responses to venetoclax as a single agent, other patients harbor subpopulations of resistant leukemia cells that mediate disease recurrence. One hypothesis for the origin of resistance to venetoclax is by kinase-mediated survival signals encountered in proliferation centers that may be unique for individual patients. An in vitro microenvironment model was developed with primary CLL cells that could be incorporated into an automated high-content microscopy-based screen of kinase inhibitors (KIs) to identify agents that may improve venetoclax therapy in a personalized manner. Marked interpatient variability was noted for which KIs were effective; nevertheless, sunitinib was identified as the most common clinically available KI effective in overcoming venetoclax resistance. Examination of the underlying mechanisms indicated that venetoclax resistance may be induced by microenvironmental signals that upregulate antiapoptotic Bcl-xl, Mcl-1, and A1, which can be counteracted more efficiently by sunitinib than by ibrutinib or idelalisib. Although patient-specific drug responses are common, for many patients, combination therapy with sunitinib may significantly improve the therapeutic efficacy of venetoclax. PMID:27297795

  16. The protein kinase 2 inhibitor tetrabromobenzotriazole protects against renal ischemia reperfusion injury

    PubMed Central

    Ka, Sun-O; Hwang, Hong Pil; Jang, Jong-Hwa; Hyuk Bang, In; Bae, Ui-Jin; Yu, Hee Chul; Cho, Baik Hwan; Park, Byung-Hyun

    2015-01-01

    Protein kinase 2 (CK2) activation was reported to enhance reactive oxygen species production and activate the nuclear factor κB (NF-κB) pathway. Because oxidative stress and inflammation are critical events for tissue destruction during ischemia reperfusion (I/R), we sought to determine whether CK2 was important in the renal response to I/R. Mice underwent 25 min of renal ischemia and were then reperfused. We confirmed an increased expression of CK2α during the reperfusion period, while expression of CK2β remained consistent. We administered tetrabromobenzotriazole (TBBt), a selective CK2α inhibitor before inducing I/R injury. Mice subjected to I/R injury showed typical patterns of acute kidney injury; blood urea nitrogen and serum creatinine levels, tubular necrosis and apoptosis, inflammatory cell infiltration and proinflammatory cytokine production, and oxidative stress were markedly increased when compared to sham mice. However, pretreatment with TBBt abolished these changes and improved renal function and architecture. Similar renoprotective effects of CK2α inhibition were observed for emodin. Renoprotective effects of CK2α inhibition were associated with suppression of NF-κB and mitogen activated protein kinase (MAPK) pathways. Taken together, these results suggest that CK2α mediates proapoptotic and proinflammatory signaling, thus the CK2α inhibitor may be used to prevent renal I/R injuries observed in clinical settings. PMID:26423352

  17. Role of Rho-kinase and its inhibitors in pulmonary hypertension.

    PubMed

    Duong-Quy, Sy; Bei, Yihua; Liu, Zhongmin; Dinh-Xuan, Anh Tuan

    2013-03-01

    Pulmonary hypertension (PH) is an incurable disease with a dreadful survival rate. The disease is characterized by sustained vasoconstriction, progressive vascular remodeling, and irreversible right heart dysfunction. While hypoxic pulmonary vasoconstriction (HPV) is known to be the main pathophysiological factor causing the rise in pulmonary arterial pressure, biological mechanisms leading to HPV and vascular remodeling are multiple and complex and, as yet, incompletely understood. It is thought that molecular interactions and cross talks are involved in the pathogenesis of PH, perturbing the physiological balance between substances controlling vascular tone, cell growth and apoptosis. This balance is achieved by subtle interactions between factors acting as both vasodilators and inhibitors of cell growth like nitric oxide, prostacyclin, vasoactive intestinal peptide and molecules with potent vasoconstrictor and cell growth activities like endothelin-1. Recent in vivo studies showed that the Rho GTPase/RhoA pathway and its downstream effectors, the Rho-kinases (ROCK-1 and ROCK-2), had an important role in PH, due to its lasting effects on vasoconstriction and pulmonary cell proliferation leading to vascular remodeling. Beneficial effects obtained in vivo with Rho-kinase inhibitors (e.g.Y-27632 and fasudil) in experimental PH will hopefully lead to future clinical trials with new compounds selectively targeting this pathway, which is now proven to be detrimental when over-activated in both experimental animals and human patients. PMID:23261521

  18. Transcriptional profiling of GBM invasion genes identifies effective inhibitors of the LIM kinase-Cofilin pathway

    PubMed Central

    Golbourn, Brian; Bertrand, Kelsey C.; Luck, Amanda; Sabha, Nesrin; Smith, Christian A.; Byron, Sara; Zadeh, Gelareh; Croul, Sidney; Berens, Michael; Rutka, James T.

    2014-01-01

    Malignant gliomas are highly proliferative and invasive neoplasms where total surgical resection is often impossible and effective local radiation therapy difficult. Consequently, there is a need to develop a greater understanding of the molecular events driving invasion and to identify novel treatment targets. Using microarray analysis comparing normal brain samples and mesenchymal glioblastoma multiforme (GBM), we identified over 140 significant genes involved in cell migration and invasion. The cofilin (CFL) pathway, which disassembles actin filaments, was highly up-regulated compared to normal brain. Up-regulation of LIM domain kinase 1 and 2 (LIMK1/2), that phosphorylates and inactivates cofilin, was confirmed in an additional independent data set comparing normal brain to GBM. We identified and utilized two small molecule inhibitors BMS-5 and Cucurbitacin I directed against the cofilin regulating kinases, LIMK1 and LIMK2, to target this pathway. Significant decreases in cell viability were observed in glioma cells treated with BMS-5 and Cucurbitacin I, while no cytotoxic effects were seen in normal astrocytes that lack LIMK. BMS-5 and Cucurbitacin I promoted increased adhesion in GBM cells, and decreased migration and invasion. Collectively, these data suggest that use of LIMK inhibitors may provide a novel way to target the invasive machinery in GBM. PMID:25237832

  19. Fragment-Based De Novo Design of Cyclin-Dependent Kinase 2 Inhibitors.

    PubMed

    Tripathi, Sunil Kumar; Singh, Poonam; Singh, Sanjeev Kumar

    2016-01-01

    Cyclin-dependent kinases (CDKs) are core components of the cell cycle machinery that govern the transition between phases during cell cycle progression. Abnormalities in CDKs activity and regulation are common features of cancer, making CDK family members attractive targets for the development of anticancer drugs. One of the main bottlenecks hampering the development of drugs for kinase is the difficulty to attain selectivity. A huge variety of small molecules have been reported as CDK inhibitors, as potential anticancer agents, but none of these has been approved for commercial use. Computer-based molecular design supports drug discovery by suggesting novel new chemotypes and compound modifications for lead candidate optimization. One of the methods known as de novo ligand design technique has emerged as a complementary approach to high-throughput screening. Several automated de novo software programs have been written, which automatically design novel structures to perfectly fit in known binding site. The de novo design supports drug discovery assignments by generating novel pharmaceutically active agents with desired properties in a cost as well as time efficient approach. This chapter describes procedure and an overview of computer-based molecular de novo design methods on a conceptual level with successful examples of CDKs inhibitors. PMID:26231707

  20. ABL tyrosine kinase inhibitor-induced pulmonary alveolar proteinosis in chronic myeloid leukemia.

    PubMed

    Yoshimura, Mariko; Kojima, Kensuke; Tomimasu, Rika; Fukushima, Noriyasu; Hayashi, Shinichiro; Sueoka, Eisaburo; Kimura, Shinya

    2014-12-01

    Pulmonary alveolar proteinosis (PAP) is a rare disease characterized by the accumulation of eosinophilic periodic acid Schiff-positive material in the intra-alveolar and bronchiolar spaces. Tyrosine kinase inhibitors, including imatinib, nilotinib, and dasatinib, have shown excellent efficacy in the treatment of chronic myeloid leukemia (CML). We report a case of acquired PAP in a patient with CML receiving tyrosine kinase inhibitors. A 67-year-old man with CML presented with progressive back pain 5 months after starting imatinib treatment. Acquired PAP was diagnosed based on physical, radiographic, and histopathological findings. The presence of granulocyte-macrophage colony-stimulating autoantibodies suggested that autoimmune mechanisms were involved in the pathogenesis. Interestingly, PAP developed in association with imatinib and dasatinib administration, but not with nilotinib treatment. The patient died of refractory leukemia in lymphoid blast crisis with a newly emerged T315I mutation. Although the incidence is very rare, imatinib and dasatinib associated with PAP development has been reported. Meanwhile, PAP in nilotinib-treated patients has not been reported. Our observation in one patient receiving multiple TKIs suggests that nilotinib may be safer than imatinib or dasatinib in avoiding the development or exacerbation of PAP. PMID:25212679

  1. Discovery of Subtype Selective Janus Kinase (JAK) Inhibitors by Structure-Based Virtual Screening.

    PubMed

    Bajusz, Dávid; Ferenczy, György G; Keserű, György M

    2016-01-25

    Janus kinase inhibitors represent a promising opportunity for the pharmaceutical intervention of various inflammatory and oncological indications. Subtype selective inhibition of these enzymes, however, is still a very challenging goal. In this study, a novel, customized virtual screening protocol was developed with the intention of providing an efficient tool for the discovery of subtype selective JAK2 inhibitors. The screening protocol involves protein ensemble-based docking calculations combined with an Interaction Fingerprint (IFP) based scoring scheme for estimating ligand affinities and selectivities, respectively. The methodology was validated in retrospective studies and was applied prospectively to screen a large database of commercially available compounds. Six compounds were identified and confirmed in vitro, with an indazole-based hit exhibiting promising selectivity for JAK2 vs JAK1. Having demonstrated that the described methodology is capable of identifying subtype selective chemical starting points with a favorable hit rate (11%), we believe that the presented screening concept can be useful for other kinase targets with challenging selectivity profiles. PMID:26682735

  2. An update on the pharmacokinetics and pharmacodynamics of alisertib, a selective Aurora kinase A inhibitor.

    PubMed

    Durlacher, Cameron T; Li, Zhi-Ling; Chen, Xiao-Wu; He, Zhi-Xu; Zhou, Shu-Feng

    2016-06-01

    Human Aurora kinases, including Aurora kinase A (AURKA), B (AURKB), and C (AURKC), play an essential role in mitotic events such as monitoring of the mitotic checkpoint, creation of bipolar mitotic spindle and alignment of centrosomes on it, also regulating centrosome separation, bio-orientation of chromosomes and cytokinesis. AURKA and AURKB are key regulators of mitosis and centrosome via polymerizing microfilaments and controlling chromatid segregation. In particular, AURKA plays critical roles in the regulation of mitotic entry, centrosome function, bipolar spindle assembly, and chromosome segregation. AURKA has been found to be overexpressed in various solid and haematological cancers and has been linked with poor prognosis. Its important role in cancer initiation, growth, and metastasis has brought the focus to search for potent and selective AURKA inhibitors for cancer treatment. MLN8237, also known as alisertib, is one selective AURKA inhibitor that has shown remarkable anticancer effects in preclinical studies. Alisertib exhibits favourable pharmacokinetic properties. Alisertib has generally showed good partial response rates of 4-52% and good safety profiles in Phase I and II trials when it is solely administered as well as combined with cytotoxic chemotherapeutic drugs. Recently, the multicentre, randomized Phase III study of alisertib in patients with relapsed or refractory peripheral T-cell lymphoma has been discontinued due to unsatisfactory efficacy. The low risk of side effects, accessibility, and effectiveness of alisertib makes it a new promising anticancer therapy and further mechanistic and clinical studies are warranted. PMID:26999067

  3. High-content screening identifies kinase inhibitors that overcome venetoclax resistance in activated CLL cells

    PubMed Central

    Oppermann, Sina; Ylanko, Jarkko; Shi, Yonghong; Hariharan, Santosh; Oakes, Christopher C.; Brauer, Patrick M.; Zúñiga-Pflücker, Juan C.; Leber, Brian; Spaner, David E.

    2016-01-01

    Novel agents such as the Bcl-2 inhibitor venetoclax (ABT-199) are changing treatment paradigms for chronic lymphocytic leukemia (CLL) but important problems remain. Although some patients exhibit deep and durable responses to venetoclax as a single agent, other patients harbor subpopulations of resistant leukemia cells that mediate disease recurrence. One hypothesis for the origin of resistance to venetoclax is by kinase-mediated survival signals encountered in proliferation centers that may be unique for individual patients. An in vitro microenvironment model was developed with primary CLL cells that could be incorporated into an automated high-content microscopy-based screen of kinase inhibitors (KIs) to identify agents that may improve venetoclax therapy in a personalized manner. Marked interpatient variability was noted for which KIs were effective; nevertheless, sunitinib was identified as the most common clinically available KI effective in overcoming venetoclax resistance. Examination of the underlying mechanisms indicated that venetoclax resistance may be induced by microenvironmental signals that upregulate antiapoptotic Bcl-xl, Mcl-1, and A1, which can be counteracted more efficiently by sunitinib than by ibrutinib or idelalisib. Although patient-specific drug responses are common, for many patients, combination therapy with sunitinib may significantly improve the therapeutic efficacy of venetoclax. PMID:27297795

  4. Potent and Selective CK2 Kinase Inhibitors with Effects on Wnt Pathway Signaling in Vivo.

    PubMed

    Dowling, James E; Alimzhanov, Marat; Bao, Larry; Chuaqui, Claudio; Denz, Christopher R; Jenkins, Emma; Larsen, Nicholas A; Lyne, Paul D; Pontz, Timothy; Ye, Qing; Holdgate, Geoff A; Snow, Lindsay; O'Connell, Nichole; Ferguson, Andrew D

    2016-03-10

    The Wnt pathway is an evolutionarily conserved and tightly regulated signaling network with important roles in embryonic development and adult tissue regeneration. Impaired Wnt pathway regulation, arising from mutations in Wnt signaling components, such as Axin, APC, and β-catenin, results in uncontrolled cell growth and triggers oncogenesis. To explore the reported link between CK2 kinase activity and Wnt pathway signaling, we sought to identify a potent, selective inhibitor of CK2 suitable for proof of concept studies in vivo. Starting from a pyrazolo[1,5-a]pyrimidine lead (2), we identified compound 7h, a potent CK2 inhibitor with picomolar affinity that is highly selectivity against other kinase family enzymes and inhibits Wnt pathway signaling (IC50 = 50 nM) in DLD-1 cells. In addition, compound 7h has physicochemical properties that are suitable for formulation as an intravenous solution, has demonstrated good pharmacokinetics in preclinical species, and exhibits a high level of activity as a monotherapy in HCT-116 and SW-620 xenografts. PMID:26985319

  5. Evaluation of methyl fluoride and dimethyl ether as inhibitors of aerobic methane oxidation

    USGS Publications Warehouse

    Oremland, R.S.; Culbertson, C.W.

    1992-01-01

    Methyl fluoride (MF) and dimethyl ether (DME) were effective inhibitors of aerobic methanotrophy in a variety of soils. MF and DME blocked consumption of CH4 as well as the oxidation of 14CH4 to 14CO2, but neither MF nor DME affected the oxidation of [14C]methanol or [14C]formate to 14CO2. Cooxidation of ethane and propane by methane-oxidizing soils was also inhibited by MF. Nitrification (ammonia oxidation) in soils was inhibited by both MF and DME. Production of N2O via nitrification was inhibited by MF; however, MF did not affect N2O production associated with denitrification. Methanogenesis was partially inhibited by MF but not by DME. Methane oxidation was ~100-fold more sensitive to MF than was methanogenesis, indicating that an optimum concentration could be employed to selectively block methanotrophy. MF inhibited methane oxidation by cell suspensions of Methylococcus capsulatus; however, DME was a much less effective inhibitor.

  6. Discovery of 1-methyl-1H-imidazole derivatives as potent Jak2 inhibitors.

    PubMed

    Su, Qibin; Ioannidis, Stephanos; Chuaqui, Claudio; Almeida, Lynsie; Alimzhanov, Marat; Bebernitz, Geraldine; Bell, Kirsten; Block, Michael; Howard, Tina; Huang, Shan; Huszar, Dennis; Read, Jon A; Rivard Costa, Caroline; Shi, Jie; Su, Mei; Ye, Minwei; Zinda, Michael

    2014-01-01

    Structure based design, synthesis, and biological evaluation of a novel series of 1-methyl-1H-imidazole, as potent Jak2 inhibitors to modulate the Jak/STAT pathway, are described. Using the C-ring fragment from our first clinical candidate AZD1480 (24), optimization of the series led to the discovery of compound 19a, a potent, orally bioavailable Jak2 inhibitor. Compound 19a displayed a high level of cellular activity in hematopoietic cell lines harboring the V617F mutation and in murine BaF3 TEL-Jak2 cells. Compound 19a demonstrated significant tumor growth inhibition in a UKE-1 xenograft model within a well-tolerated dose range. PMID:24359159

  7. Explorations of Substituted Urea Functionality for Discovery of New Activators of the Heme Regulated Inhibitor Kinase

    PubMed Central

    Chen, Ting; Takrouri, Khuloud; Hee-Hwang, Sung; Rana, Sandeep; Yefidoff-Freedman, Revital; Halperin, Jose; Natarajan, Amarnath; Morisseau, Christophe; Hammock, Bruce; Chorev, Michael; Aktas, Bertal H.

    2014-01-01

    Heme-regulated inhibitor kinase (HRI), an eukaryotic translation initiation factor 2 alpha (eIF2α) kinase, plays critical roles in cell proliferation, differentiation, and adaptation to cytoplasmic stress. HRI is also a critical modifier of hemoglobin disorders such as β-thalassemia. We previously identified N,N′-diarylureas as potent activators of HRI suitable for studying biology of this important kinase. To expand the repertoire of chemotypes that activate HRI we screened a ~1,900 member N,N′-disubstituted urea library in the surrogate eIF2α phosphorylation assay identifying N-aryl,N′-cyclohexylphenoxyurea as a promising scaffold. We validated hit compounds as a bona-fide HRI activators in secondary assays and explored contributions of substitutions on the N-aryl and N′-cyclohexylphenoxy groups to their activity by studying focused libraries of complementing analogs. We tested these N-aryl,N′-cyclohexylphenoxyureas in the surrogate eIF2α phosphorylation and cell proliferation assays, demonstrating significantly improved bioactivities and specificities. We consider these compounds to represent lead candidates for the development of potent and specific HRI activators. PMID:24261904

  8. A combination of tyrosine kinase inhibitors, crizotinib and dasatinib for the treatment of glioblastoma multiforme

    PubMed Central

    Nehoff, Hayley; Parayath, Neha N.; McConnell, Melanie J.; Taurin, Sebastien; Greish, Khaled

    2015-01-01

    Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor. Despite the advances in surgery, radiotherapy and chemotherapy, patient survival averages only 14.6 months. In most GBM tumors, tyrosine kinases show increased activity and/or expression and actively contribute to the development, recurrence and onset of treatment resistance; making their inhibition an appealing therapeutic strategy. We compared the cytotoxicity of 12 tyrosine kinase inhibitors in vitro. A combination of crizotinib and dasatinib emerged as the most cytotoxic across established and primary human GBM cell lines. The combination treatment induced apoptotic cell death and polyploidy. Furthermore, the combination treatment led to the altered expression and localization of several tyrosine kinase receptors such as Met and EGFR and downstream effectors as such as SRC. Furthermore, the combination treatment reduced the migration and invasion of GBM cells and prevented endothelial cell tube formation in vitro. Overall, our study demonstrated the broad specificity of a combination of crizotinib and dasatinib across multiple GBM cell lines. These findings provide insight into the development of alternative therapy for the treatment of GBM. PMID:26517812

  9. 4-Oxo-1,4-dihydroquinoline-3-carboxamide Derivatives as New Axl Kinase Inhibitors.

    PubMed

    Tan, Li; Zhang, Zhang; Gao, Donglin; Luo, Jinfeng; Tu, Zheng-Chao; Li, Zhengqiu; Peng, Lijie; Ren, Xiaomei; Ding, Ke

    2016-07-28

    Axl is a new potential target for anticancer drug discovery. A series of 4-oxo-1,4-dihydroquinoline-3-carboxamides were designed and synthesized as highly potent Axl kinase inhibitors. One of the most promising compounds, 9im, tightly bound with Axl protein and potently inhibited its kinase function with a Kd value of 2.7 nM and an IC50 value of 4.0 nM, respectively, while was obviously less potent against most of the 403 wild-type kinases evaluated at a relatively high concentration. The compound dose-dependently inhibited the TGF-β1-induced epithelial-mesenchymal transition (EMT) and suppressed the migration and invasion of MDA-MB-231 breast cancer cells. In addition, 9im also demonstrated reasonable pharmacokinetics properties in rats and exhibited in vivo therapeutic effect on hepatic metastasis in a xenograft model of highly metastatic 4T1 murine breast cancer cells. Compound 9im may serve as a lead compound for new anticancer drug discovery and a valuable research probe for further biological investigation on Axl. PMID:27379978

  10. Novel Aurora/vascular endothelial growth factor receptor dual kinase inhibitor as treatment for hepatocellular carcinoma.

    PubMed

    Nakao, Keisuke; Tanaka, Shinji; Miura, Tomoya; Sato, Kota; Matsumura, Satoshi; Aihara, Arihiro; Mitsunori, Yusuke; Ban, Daisuke; Ochiai, Takanori; Kudo, Atsushi; Arii, Shigeki; Tanabe, Minoru

    2015-08-01

    We previously identified Aurora B kinase as the only independent factor predictive of the aggressive recurrence of hepatocellular carcinoma (HCC). In this preclinical study, JNJ-28841072, a novel Aurora/vascular endothelial growth factor receptor dual kinase inhibitor, was evaluated for treatment of HCC. In vitro and in vivo effects of JNJ-28841072 were analyzed using human HCC cell cultures and xenograft models. An orthotopic liver xenograft model was used for the pharmacobiological effects on Aurora kinase and vascularization in hepatic tumors. JNJ-28841072 suppressed in vitro phosphorylation of histone H3 with induction of cell polyploidy and death in a dose-dependent manner (IC50  = 0.8-1.2 μM). In s.c. human HCC xenografts, remarkable inhibition of tumor growth was observed after JNJ-28841072 treatment (P = 0.0005). In orthotopic liver xenografts, the treatment with JNJ-28841072 significantly suppressed in vivo phosphorylation of histone H3 (P = 0.0008), vessel formation (P = 0.018), normoxic area (P = 0.0001), and hepatoma growth (P = 0.038). Our preclinical studies indicate that JNJ-28841072 is a promising novel therapeutic approach for the treatment of HCC. It might be worthy of evaluation in further studies. PMID:26011703

  11. A Receptor Tyrosine Kinase Inhibitor, Dovitinib (TKI-258), Enhances BMP-2-Induced Osteoblast Differentiation In Vitro.

    PubMed

    Lee, Yura; Bae, Kyoung Jun; Chon, Hae Jung; Kim, Seong Hwan; Kim, Soon Ae; Kim, Jiyeon

    2016-05-31

    Dovitinib (TKI258) is a small molecule multi-kinase inhibitor currently in clinical phase I/II/III development for the treatment of various types of cancers. This drug has a safe and effective pharmacokinetic/pharmacodynamic profile. Although dovitinib can bind several kinases at nanomolar concentrations, there are no reports relating to osteoporosis or osteoblast differentiation. Herein, we investigated the effect of dovitinib on human recombinant bone morphogenetic protein (BMP)-2-induced osteoblast differentiation in a cell culture model. Dovitinib enhanced the BMP-2-induced alkaline phosphatase (ALP) induction, which is a representative marker of osteoblast differentiation. Dovitinib also stimulated the translocation of phosphorylated Smad1/5/8 into the nucleus and phosphorylation of mitogen-activated protein kinases, including ERK1/2 and p38. In addition, the mRNA expression of BMP-4, BMP-7, ALP, and OCN increased with dovitinib treatment. Our results suggest that dovitinib has a potent stimulating effect on BMP-2-induced osteoblast differentiation and this existing drug has potential for repositioning in the treatment of bone-related disorders. PMID:27025387

  12. Small Molecule Inhibitors Targeting Tec Kinase Block Unconventional Secretion of Fibroblast Growth Factor 2.

    PubMed

    La Venuta, Giuseppe; Wegehingel, Sabine; Sehr, Peter; Müller, Hans-Michael; Dimou, Eleni; Steringer, Julia P; Grotwinkel, Mareike; Hentze, Nikolai; Mayer, Matthias P; Will, David W; Uhrig, Ulrike; Lewis, Joe D; Nickel, Walter

    2016-08-19

    Fibroblast growth factor 2 (FGF2) is a potent mitogen promoting both tumor cell survival and tumor-induced angiogenesis. It is secreted by an unconventional secretory mechanism that is based upon direct translocation across the plasma membrane. Key steps of this process are (i) phosphoinositide-dependent membrane recruitment, (ii) FGF2 oligomerization and membrane pore formation, and (iii) extracellular trapping mediated by membrane-proximal heparan sulfate proteoglycans. Efficient secretion of FGF2 is supported by Tec kinase that stimulates membrane pore formation based upon tyrosine phosphorylation of FGF2. Here, we report the biochemical characterization of the direct interaction between FGF2 and Tec kinase as well as the identification of small molecules that inhibit (i) the interaction of FGF2 with Tec, (ii) tyrosine phosphorylation of FGF2 mediated by Tec in vitro and in a cellular context, and (iii) unconventional secretion of FGF2 from cells. We further demonstrate the specificity of these inhibitors for FGF2 because tyrosine phosphorylation of a different substrate of Tec is unaffected in their presence. Building on previous evidence using RNA interference, the identified compounds corroborate the role of Tec kinase in unconventional secretion of FGF2. In addition, they are valuable lead compounds with great potential for drug development aiming at the inhibition of FGF2-dependent tumor growth and metastasis. PMID:27382052

  13. Explaining why Gleevec is a specific and potent inhibitor of Abl kinase

    PubMed Central

    Lin, Yen-Lin; Meng, Yilin; Jiang, Wei; Roux, Benoît

    2013-01-01

    Tyrosine kinases present attractive drug targets for specific types of cancers. Gleevec, a well-known therapeutic agent against chronic myelogenous leukemia, is an effective inhibitor of Abl tyrosine kinase. However, Gleevec fails to inhibit closely homologous tyrosine kinases, such as c-Src. Because many structural features of the binding site are conserved, the molecular determinants responsible for binding specificity are not immediately apparent. Some have attributed the difference in binding specificity of Gleevec to subtle variations in ligand–protein interactions (binding affinity control), whereas others have proposed that it is the conformation of the DFG motif, in which ligand binding is only accessible to Abl and not to c-Src (conformational selection control). To address this issue, the absolute binding free energy was computed using all-atom molecular dynamics simulations with explicit solvent. The results of the free energy simulations are in good agreement with experiments, thereby enabling a meaningful decomposition of the binding free energy to elucidate the factors controlling Gleevec’s binding specificity. The latter is shown to be controlled by a conformational selection mechanism and also by differences in key van der Waals interactions responsible for the stabilization of Gleevec in the binding pocket of Abl. PMID:23319661

  14. A Receptor Tyrosine Kinase Inhibitor, Dovitinib (TKI-258), Enhances BMP-2-Induced Osteoblast Differentiation In Vitro

    PubMed Central

    Lee, Yura; Bae, Kyoung Jun; Chon, Hae Jung; Kim, Seong Hwan; Kim, Soon Ae; Kim, Jiyeon

    2016-01-01

    Dovitinib (TKI258) is a small molecule multi-kinase inhibitor currently in clinical phase I/II/III development for the treatment of various types of cancers. This drug has a safe and effective pharmacokinetic/pharmacodynamic profile. Although dovitinib can bind several kinases at nanomolar concentrations, there are no reports relating to osteoporosis or osteoblast differentiation. Herein, we investigated the effect of dovitinib on human recombinant bone morphogenetic protein (BMP)-2-induced osteoblast differentiation in a cell culture model. Dovitinib enhanced the BMP-2-induced alkaline phosphatase (ALP) induction, which is a representative marker of osteoblast differentiation. Dovitinib also stimulated the translocation of phosphorylated Smad1/5/8 into the nucleus and phosphorylation of mitogen-activated protein kinases, including ERK1/2 and p38. In addition, the mRNA expression of BMP-4, BMP-7, ALP, and OCN increased with dovitinib treatment. Our results suggest that dovitinib has a potent stimulating effect on BMP-2-induced osteoblast differentiation and this existing drug has potential for repositioning in the treatment of bone-related disorders. PMID:27025387

  15. Management of Chronic Myeloid Leukemia Patients Resistant to Tyrosine Kinase Inhibitors Treatment

    PubMed Central

    Wieczorek, Agnieszka; Uharek, Lutz

    2015-01-01

    Chronic myeloid leukemia (CML) is a myeloproliferative disorder associated with a characteristic chromosomal translocation called the Philadelphia chromosome. This oncogene is generated by the fusion of breakpoint cluster region (BCR) and Abelson leukemia virus (ABL) genes and encodes a novel fusion gene translating into a protein with constitutive tyrosine kinase activity. The discovery and introduction of tyrosine kinase inhibitors (TKIs) irreversibly changed the landscape of CML treatment, leading to dramatic improvement in long-term survival rates. The majority of patients with CML in the chronic phase have a life expectancy comparable with that of healthy age-matched individuals. Although an enormous therapeutic improvement has been accomplished, there are still some unresolved issues in the treatment of patients with CML. One of the most important problems is based on the fact that TKIs can efficiently target proliferating mature cells but do not eradicate leukemic stem cells, allowing persistence of the malignant clone. Owing to the resistance mechanisms arising during the course of the disease, treatment with most of the approved BCR-ABL1 TKIs may become ineffective in a proportion of patients. This article highlights the different molecular mechanisms of acquired resistance being developed during treatment with TKIs as well as the pharmacological strategies to overcome it. Moreover, it gives an overview of novel drugs and therapies that are aiming in overcoming drug resistance, loss of response, and kinase domain mutations. PMID:26917943

  16. The Rho kinase inhibitor Y-27632 facilitates the differentiation of bone marrow mesenchymal stem cells.

    PubMed

    Liu, Xiao; Zhang, Zhengzheng; Yan, Xianliang; Liu, He; Zhang, Licai; Yao, Aiming; Guo, Chengcheng; Liu, Xiaoyun; Xu, Tie

    2014-12-01

    The selective in vitro expansion and differentiation of multipotent stem cells are critical steps in cell-based regenerative therapies, but technical challenges have limited cell yield and thus the success of these potential treatments. The Rho GTPases and downstream Rho kinases (Rho coiled-coil kinases or ROCKs) are central regulators of cytoskeletal dynamics during the cell cycle and thus help determine the balance between stem cells self-renewal, lineage commitment, and apoptosis. Here, we examined if suppression of ROCK signaling enhances the efficacy of bone marrow-derived mesenchymal stem cells (BMSCs) differentiation into neurons and neuroglial cells. BMSCs were cultured in epidermal growth factor (EGF, 10 µg/l) and basic fibroblastic growth factor (bFGF, 10 µg/l) in the presence or absence of the Rho kinase inhibitor Y-27632 (10 µM). The expression levels of neuron-specific enolase (NSE) and glial fibrillary acidic protein (GFAP) were detected by immunofluorescence and Western blotting. The average number of NSE-positive cells increased from 83.20 ± 8.677 (positive ratio 0.2140 ± 0.0119) to 109.20 ± 8.430 (positive ratio 0.3193 ± 0.0161) per visual field in the presence of Y-27632, while GFAP-positive cell number increased from 96.30 ± 8.486 (positive ratio 0.18 ± 0.0152) to 107.50 ± 8.683 (positive ratio 0.27 ± 0.0115) (P < 0.05 for both). Both NSE and GFAP protein expression levels were enhanced significantly by Y-27632 treatment (NSE: 0.74 ± 0.05 vs. 1.03 ± 0.06; GFAP: 0.64 ± 0.08 vs. 0.97 ± 0.05, both P < 0.01) as indicated by Western blots. The Rho kinase inhibitor Y-27632 concomitant with EGF and bFGF stimulation promotes BMSC differentiation into neural cells. Control of Rho kinase activity may enhance the efficiency of stem cell-based treatments for neurodegenerative diseases. PMID:25178638

  17. Benzimidazole-Based Quinazolines: In Vitro Evaluation, Quantitative Structure-Activity Relationship, and Molecular Modeling as Aurora Kinase Inhibitors.

    PubMed

    Sharma, Alka; Luxami, Vijay; Saxena, Sanjai; Paul, Kamaldeep

    2016-03-01

    A series of benzimidazole-based quinazoline derivatives with different substitutions of primary and secondary amines at the C2 position (1-12) were evaluated for their Aurora kinase inhibitory activities. All compounds except for 3 and 6 showed good activity against Aurora kinase inhibitors, with IC50 values in the range of 0.035-0.532 μM. The ligand efficiency (LE) of the compounds with Aurora A kinase was also determined. The structure-activity relationship and the quantitative structure-activity relationship revealed that the Aurora inhibitory activities of these derivatives primarily depend on the different substitutions of the amine present at the C2 position of the quinazoline core. Molecular docking studies in the active binding site also provided theoretical support for the experimental biological data acquired. The current study identifies a novel class of Aurora kinase inhibitors, which can further be used for the treatment of cancer. PMID:26773437

  18. Tyrosine kinase inhibitors (TKIs) in human and pet tumours with special reference to breast cancer: a comparative review.

    PubMed

    Ranieri, Girolamo; Pantaleo, Marianna; Piccinno, Mariagrazia; Roncetti, Maria; Mutinati, Maddalena; Marech, Ilaria; Patruno, Rosa; Rizzo, Annalisa; Sciorsci, Raffaele Luigi

    2013-11-01

    Tyrosine kinase receptors (TKRs) play a key role in tumour cell proliferation and survival since they are involved in endothelial cell activation leading to tumour neoangiogenesis. In particular, vascular endothelial growth factor receptors (VEGFRs), platelet-derived growth factor receptor (PDGFR), stem cell factor receptor (c-KitR), and colony-stimulating factor 1 (CSF-1) are overexpressed or constitutively activated in human and pet malignancies. A variety of small molecule inhibitors targeting specific tyrosine kinases (known as tyrosine kinase inhibitors or TKIs) have recently been approved, or are under investigation, for the treatment of human cancer. TKI application in animal cancer is however relatively recent. This review aims to illustrate the major aspects of tyrosine kinase dysfunctions, with special regard to human and animal cancer of the mammary gland, providing an update on the background of the anti-angiogenic and anti-neoplastic properties of TKIs in human and veterinary cancer. PMID:23768779

  19. Identification of critical chemical features for Aurora kinase-B inhibitors using Hip-Hop, virtual screening and molecular docking

    NASA Astrophysics Data System (ADS)

    Sakkiah, Sugunadevi; Thangapandian, Sundarapandian; John, Shalini; Lee, Keun Woo

    2011-01-01

    This study was performed to find the selective chemical features for Aurora kinase-B inhibitors using the potent methods like Hip-Hop, virtual screening, homology modeling, molecular dynamics and docking. The best hypothesis, Hypo1 was validated toward a wide range of test set containing the selective inhibitors of Aurora kinase-B. Homology modeling and molecular dynamics studies were carried out to perform the molecular docking studies. The best hypothesis Hypo1 was used as a 3D query to screen the chemical databases. The screened molecules from the databases were sorted based on ADME and drug like properties. The selective hit compounds were docked and the hydrogen bond interactions with the critical amino acids present in Aurora kinase-B were compared with the chemical features present in the Hypo1. Finally, we suggest that the chemical features present in the Hypo1 are vital for a molecule to inhibit the Aurora kinase-B activity.

  20. Fragment-Based Screening Maps Inhibitor Interactions in the ATP-Binding Site of Checkpoint Kinase 2

    PubMed Central

    Silva-Santisteban, M. Cris; Westwood, Isaac M.; Boxall, Kathy; Brown, Nathan; Peacock, Sam; McAndrew, Craig; Barrie, Elaine; Richards, Meirion; Mirza, Amin; Oliver, Antony W.; Burke, Rosemary; Hoelder, Swen; Jones, Keith; Aherne, G. Wynne; Blagg, Julian; Collins, Ian; Garrett, Michelle D.; van Montfort, Rob L. M.

    2013-01-01

    Checkpoint kinase 2 (CHK2) is an important serine/threonine kinase in the cellular response to DNA damage. A fragment-based screening campaign using a combination of a high-concentration AlphaScreen™ kinase assay and a biophysical thermal shift assay, followed by X-ray crystallography, identified a number of chemically different ligand-efficient CHK2 hinge-binding scaffolds that have not been exploited in known CHK2 inhibitors. In addition, it showed that the use of these orthogonal techniques allowed efficient discrimination between genuine hit matter and false positives from each individual assay technology. Furthermore, the CHK2 crystal structures with a quinoxaline-based fragment and its follow-up compound highlight a hydrophobic area above the hinge region not previously explored in rational CHK2 inhibitor design, but which might be exploited to enhance both potency and selectivity of CHK2 inhibitors. PMID:23776527

  1. Structure-Based Design of a Novel Series of Potent, Selective Inhibitors of the Class I Phosphatidylinositol 3-Kinases

    SciTech Connect

    Smith, Adrian L.; D’Angelo, Noel D.; Bo, Yunxin Y.; Booker, Shon K.; Cee, Victor J.; Herberich, Brad; Hong, Fang-Tsao; Jackson, Claire L.M.; Lanman, Brian A.; Liu, Longbin; Nishimura, Nobuko; Pettus, Liping H.; Reed, Anthony B.; Tadesse, Seifu; Tamayo, Nuria A.; Wurz, Ryan P.; Yang, Kevin; Andrews, Kristin L.; Whittington, Douglas A.; McCarter, John D.; Miguel, Tisha San; Zalameda, Leeanne; Jiang, Jian; Subramanian, Raju; Mullady, Erin L.; Caenepeel, Sean; Freeman, Daniel J.; Wang, Ling; Zhang, Nancy; Wu, Tian; Hughes, Paul E.; Norman, Mark H.

    2012-09-17

    A highly selective series of inhibitors of the class I phosphatidylinositol 3-kinases (PI3Ks) has been designed and synthesized. Starting from the dual PI3K/mTOR inhibitor 5, a structure-based approach was used to improve potency and selectivity, resulting in the identification of 54 as a potent inhibitor of the class I PI3Ks with excellent selectivity over mTOR, related phosphatidylinositol kinases, and a broad panel of protein kinases. Compound 54 demonstrated a robust PD-PK relationship inhibiting the PI3K/Akt pathway in vivo in a mouse model, and it potently inhibited tumor growth in a U-87 MG xenograft model with an activated PI3K/Akt pathway.

  2. [Difluro(phosphono)methyl]phenylalanine-containing peptide inhibitors of protein tyrosine phosphatases.

    PubMed Central

    Desmarais, S; Friesen, R W; Zamboni, R; Ramachandran, C

    1999-01-01

    Peptides containing the non-hydrolysable phosphotyrosine analogue 4-[difluro(phosphono)methyl]phenylalanine [Phe(CF2P)] were synthesized and tested as inhibitors of the protein tyrosine phosphatases (PTPs) PTP1B, CD45, PTPbeta, LAR and SHP-1. We have identified peptides containing two adjacent Phe(CF2P) residues as potent inhibitors of PTPs. The tripeptide having the sequence Glu-Phe(CF2P)-Phe(CF2P) is a potent and selective inhibitor of PTP1B. This peptide inhibits PTP1B with an IC50 of 40 nM, which is at least 100-fold lower than with other PTPs. A second tripeptide, Pro-Phe(CF2P)-Phe(CF2P), is most potent against PTPbeta, with an IC50 of 200 nM, and inhibits PTP1B with an IC50 of 300 nM. These data suggest that it is possible to develop selective, active-site-directed, reversible, potent inhibitors of PTPs. PMID:9882618

  3. Synthesis and SAR of 4-substituted-2-aminopyrimidines as novel c-Jun N-terminal kinase (JNK) inhibitors.

    PubMed

    Humphries, Paul S; Lafontaine, Jennifer A; Agree, Charles S; Alexander, David; Chen, Ping; Do, Quyen-Quyen T; Li, Lilian Y; Lunney, Elizabeth A; Rajapakse, Ranjan J; Siegel, Karen; Timofeevski, Sergei L; Wang, Tianlun; Wilhite, David M

    2009-04-15

    The development of a series of novel 4-substituted-2-aminopyrimidines as inhibitors of c-Jun N-terminal kinases is described. The synthesis, in vitro inhibitory values for JNK1, and the in vitro inhibitory value for a c-Jun cellular assay are discussed. Optimization of microsomal clearance led to the identification of 9c, whose kinase selectivity is reported. PMID:19327989

  4. Computational Study of the Structure, the Flexibility, and the Electronic Circular Dichroism of Staurosporine - a Powerful Protein Kinase Inhibitor

    NASA Astrophysics Data System (ADS)

    Karabencheva-Christova, Tatyana G.; Singh, Warispreet; Christov, Christo Z.

    2014-07-01

    Staurosporine (STU) is a microbial alkaloid which is an universal kinase inhibitor. In order to understand its mechanism of action it is important to explore its structure-properties relationships. In this paper we provide the results of a computational study of the structure, the chiroptical properties, the conformational flexibility of STU as well as the correlation between the electronic circular dichroism (ECD) spectra and the structure of its complex with anaplastic lymphoma kinase.

  5. NMR reveals the allosteric opening and closing of Abelson tyrosine kinase by ATP-site and myristoyl pocket inhibitors

    PubMed Central

    Skora, Lukasz; Mestan, Jürgen; Fabbro, Doriano; Jahnke, Wolfgang; Grzesiek, Stephan

    2013-01-01

    Successful treatment of chronic myelogenous leukemia is based on inhibitors binding to the ATP site of the deregulated breakpoint cluster region (Bcr)–Abelson tyrosine kinase (Abl) fusion protein. Recently, a new type of allosteric inhibitors targeting the Abl myristoyl pocket was shown in preclinical studies to overcome ATP-site inhibitor resistance arising in some patients. Using NMR and small-angle X-ray scattering, we have analyzed the solution conformations of apo Abelson tyrosine kinase (c-Abl) and c-Abl complexes with ATP-site and allosteric inhibitors. Binding of the ATP-site inhibitor imatinib leads to an unexpected open conformation of the multidomain SH3-SH2-kinase c-Abl core, whose relevance is confirmed by cellular assays on Bcr-Abl. The combination of imatinib with the allosteric inhibitor GNF-5 restores the closed, inactivated state. Our data provide detailed insights on the poorly understood combined effect of the two inhibitor types, which is able to overcome drug resistance. PMID:24191057

  6. The Raf Kinase Inhibitor Sorafenib Inhibits JAK-STAT Signal Transduction in Human Immune Cells.

    PubMed

    Martin del Campo, Sara E; Levine, Kala M; Mundy-Bosse, Bethany L; Grignol, Valerie P; Fairchild, Ene T; Campbell, Amanda R; Trikha, Prashant; Mace, Thomas A; Paul, Bonnie K; Jaime-Ramirez, Alena Cristina; Markowitz, Joseph; Kondadasula, Sri Vidya; Guenterberg, Kristan D; McClory, Susan; Karpa, Volodymyr I; Pan, Xueliang; Olencki, Thomas E; Monk, J Paul; Mortazavi, Amir; Tridandapani, Susheela; Lesinski, Gregory B; Byrd, John C; Caligiuri, Michael A; Shah, Manisha H; Carson, William E

    2015-09-01

    Sorafenib is an oral multikinase inhibitor that was originally developed as a Raf kinase inhibitor. We hypothesized that sorafenib would also have inhibitory effects on cytokine signaling pathways in immune cells. PBMCs from normal donors were treated with varying concentrations of sorafenib and stimulated with IFN-α or IL-2. Phosphorylation of STAT1 and STAT5 was measured by flow cytometry and confirmed by immunoblot analysis. Changes in IFN-α- and IL-2-stimulated gene expression were measured by quantitative PCR, and changes in cytokine production were evaluated by ELISA. Cryopreserved PBMCs were obtained from cancer patients before and after receiving 400 mg sorafenib twice daily. Patient PBMCs were thawed, stimulated with IL-2 or IFN-α, and evaluated for phosphorylation of STAT1 and STAT5. Pretreatment of PBMCs with 10 μM sorafenib decreased STAT1 and STAT5 phosphorylation after treatment with IFN-α or IL-2. This inhibitory effect was observed in PBMCs from healthy donors over a range of concentrations of sorafenib (5-20 μM), IL-2 (2-24 nM), and IFN-α (10(1)-10(6) U/ml). This effect was observed in immune cell subsets, including T cells, B cells, NK cells, regulatory T cells, and myeloid-derived suppressor cells. Pretreatment with sorafenib also inhibited PBMC expression of IFN-α- and IL-2-regulated genes and inhibited NK cell production of IFN-γ, RANTES, MIP1-α, and MIG in response to IFN-α stimulation. PBMCs from patients receiving sorafenib therapy showed decreased responsiveness to IL-2 and IFN-α treatment. Sorafenib is a Raf kinase inhibitor that could have off-target effects on cytokine-induced signal transduction in immune effector cells. PMID:26238487

  7. Inhibitor of Apoptosis Signal-Regulating Kinase 1 Protects Against Acetaminophen-induced Liver Injury

    PubMed Central

    Xie, Yuchao; Ramachandran, Anup; Breckenridge, David G.; Liles, John T.; Lebofsky, Margitta; Farhood, Anwar; Jaeschke, Hartmut

    2015-01-01

    Metabolic activation and oxidant stress are key events in the pathophysiology of acetaminophen (APAP) hepatotoxicity. The initial mitochondrial oxidative stress triggered by protein adduct formation is amplified by c-jun-N-terminal kinase (JNK), resulting in mitochondrial dysfunction and ultimately cell necrosis. Apoptosis signal-regulating kinase 1 (ASK1) is considered the link between oxidant stress and JNK activation. The objective of the current study was to assess the efficacy and mechanism of action of the small-molecule ASK1 inhibitor GS-459679 in a murine model of APAP hepatotoxicity. APAP (300 mg/kg) caused extensive glutathione depletion, JNK activation and translocation to the mitochondria, oxidant stress and liver injury as indicated by plasma ALT activities and area of necrosis over a 24h observation period. Pretreatment with 30 mg/kg of GS-459679 almost completely prevented JNK activation, oxidant stress and injury without affected the metabolic activation of APAP. To evaluate the therapeutic potential of GS-459679, mice were treated with APAP and then with the inhibitor. Given 1.5h after APAP, GS-459679 was still protective, which was paralleled by reduced JNK activation and p-JNK translocation to mitochondria. However, GS-459679 treatment was not more effective than N-acetylcysteine, and the combination of GS-459679 and N-acetylcysteine exhibited similar efficacy as N-acetylcysteine monotherapy, suggesting that GS-459769 and N-acetylcysteine affect the same pathway. Importantly, inhibition of ASK1 did not impair liver regeneration as indicated by PCNA staining. In conclusion, the ASK1 inhibitor GS-459679 protected against APAP toxicity by attenuating JNK activation and oxidant stress in mice and may have therapeutic potential for APAP overdose patients. PMID:25818599

  8. Inhibitor of apoptosis signal-regulating kinase 1 protects against acetaminophen-induced liver injury.

    PubMed

    Xie, Yuchao; Ramachandran, Anup; Breckenridge, David G; Liles, John T; Lebofsky, Margitta; Farhood, Anwar; Jaeschke, Hartmut

    2015-07-01

    Metabolic activation and oxidant stress are key events in the pathophysiology of acetaminophen (APAP) hepatotoxicity. The initial mitochondrial oxidative stress triggered by protein adduct formation is amplified by c-jun-N-terminal kinase (JNK), resulting in mitochondrial dysfunction and ultimately cell necrosis. Apoptosis signal-regulating kinase 1 (ASK1) is considered the link between oxidant stress and JNK activation. The objective of the current study was to assess the efficacy and mechanism of action of the small-molecule ASK1 inhibitor GS-459679 in a murine model of APAP hepatotoxicity. APAP (300 mg/kg) caused extensive glutathione depletion, JNK activation and translocation to the mitochondria, oxidant stress and liver injury as indicated by plasma ALT activities and area of necrosis over a 24h observation period. Pretreatment with 30 mg/kg of GS-459679 almost completely prevented JNK activation, oxidant stress and injury without affecting the metabolic activation of APAP. To evaluate the therapeutic potential of GS-459679, mice were treated with APAP and then with the inhibitor. Given 1.5h after APAP, GS-459679 was still protective, which was paralleled by reduced JNK activation and p-JNK translocation to mitochondria. However, GS-459679 treatment was not more effective than N-acetylcysteine, and the combination of GS-459679 and N-acetylcysteine exhibited similar efficacy as N-acetylcysteine monotherapy, suggesting that GS-459769 and N-acetylcysteine affect the same pathway. Importantly, inhibition of ASK1 did not impair liver regeneration as indicated by PCNA staining. In conclusion, the ASK1 inhibitor GS-459679 protected against APAP toxicity by attenuating JNK activation and oxidant stress in mice and may have therapeutic potential for APAP overdose patients. PMID:25818599

  9. Treatment of Experimental Candida Sepsis with a Janus Kinase Inhibitor Controls Inflammation and Prolongs Survival.

    PubMed

    Tsirigotis, P; Papanikolaou, N; Elefanti, A; Konstantinou, P; Gkirkas, K; Rontogianni, D; Siafakas, N; Karakitsos, P; Roilides, E; Dimitriadis, G; Zerva, L; Meletiadis, J

    2015-12-01

    Janus kinases (JAK) are intracellular tyrosine kinases that transduce cytokine-mediated signals to the nucleus, promoting gene expression. Cytokines play a major role in microbial sepsis, which is often associated with uncontrolled inflammation leading to death. JAK inhibitors have been used for the treatment of several autoimmune diseases by modulating immune response, but they have never been tested against microbial sepsis. Ruxolitinib is a small-molecule inhibitor of JAK1/2 proteins, which are involved in the downstream signaling pathway of the vast majority of proinflammatory and anti-inflammatory cytokines. We therefore studied the effect of ruxolitinib in a mouse model of sepsis due to Candida albicans. When ruxolitinib therapy (50 mg/kg [of body weight]/day) was started 1 day before infection, the median survival time was reduced by 3 days, the fungal loads in all organs were higher, the inflammation was significantly less, and serum tumor necrosis factor alpha (TNF-α) and interleukin 10 (IL-10) levels and IL-10/TNF-α ratios were higher than in controls. When ruxolitinib therapy (50 to 1.5 mg/kg/day) was started 1 day after infection, an inverted-U relationship was found, with 6.25 mg/kg/day prolonging median survival time by 6 days, resulting in similar fungal loads, less inflammation, and similar cytokine levels but higher IL-10/TNF-α ratios than the controls. The optimal dose of ruxolitinib controlled infection and prolonged survival with less inflammation than in control animals. Administration of JAK inhibitors may be a promising therapeutic adjunct that needs further investigation. PMID:26369979

  10. Suppression of VEGF-induced angiogenesis by the protein tyrosine kinase inhibitor, lavendustin A.

    PubMed Central

    Hu, D E; Fan, T P

    1995-01-01

    1. Vascular endothelial growth factor (VEGF) is a heparin-binding angiogenic factor which specifically acts on endothelial cells via distinct membrane-spanning tyrosine kinase receptors. Here we used the rat sponge implant model to test the hypothesis that the angiogenic activity of VEGF can be suppressed by protein tyrosine kinase (PTK) inhibitors. 2. Neovascular responses in subcutaneous sponge implants were determined by measurements of relative sponge blood flow by use of a 133Xe clearance technique, and confirmed by histological studies and morphometric analysis. 3. Daily local administration of 250 ng VEGF165 accelerated the rate of 133Xe clearance from the sponges and induced an intense neovascularisation. This VEGF165-induced angiogenesis was inhibited by daily co-administration of the selective PTK inhibitor, lavendustin A (10 micrograms), but not its negative control, lavendustin B (10 micrograms). Blood flow measurements and morphometric analysis of 8-day-old sponges showed that lavendustin A reduced the 133Xe clearance of VEGF165-treated sponges from 32.9 +/- 1.5% to 20.9 +/- 1.6% and the total fibrovascular growth area from 62.4 +/- 6.1% to 21.6 +/- 6.8% (n = 12, P < 0.05). 4. Co-injection of suramin (3 mg), an inhibitor of heparin-binding growth factors, also suppressed the VEGF165-elicited neovascular response. In contrast, neither lavendustin A nor suramin produced any effect on the basal sponge-induced angiogenesis. 5. When given alone, low doses of VEGF165 (25 ng) or basic fibroblast growth factor (bFGF; 10 ng) did not modify the basal sponge-induced neovascularisation.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 2 Figure 2 PMID:7533611

  11. Mutations in G protein β subunits promote transformation and kinase inhibitor resistance.

    PubMed

    Yoda, Akinori; Adelmant, Guillaume; Tamburini, Jerome; Chapuy, Bjoern; Shindoh, Nobuaki; Yoda, Yuka; Weigert, Oliver; Kopp, Nadja; Wu, Shuo-Chieh; Kim, Sunhee S; Liu, Huiyun; Tivey, Trevor; Christie, Amanda L; Elpek, Kutlu G; Card, Joseph; Gritsman, Kira; Gotlib, Jason; Deininger, Michael W; Makishima, Hideki; Turley, Shannon J; Javidi-Sharifi, Nathalie; Maciejewski, Jaroslaw P; Jaiswal, Siddhartha; Ebert, Benjamin L; Rodig, Scott J; Tyner, Jeffrey W; Marto, Jarrod A; Weinstock, David M; Lane, Andrew A

    2015-01-01

    Activating mutations in genes encoding G protein α (Gα) subunits occur in 4-5% of all human cancers, but oncogenic alterations in Gβ subunits have not been defined. Here we demonstrate that recurrent mutations in the Gβ proteins GNB1 and GNB2 confer cytokine-independent growth and activate canonical G protein signaling. Multiple mutations in GNB1 affect the protein interface that binds Gα subunits as well as downstream effectors and disrupt Gα interactions with the Gβγ dimer. Different mutations in Gβ proteins clustered partly on the basis of lineage; for example, all 11 GNB1 K57 mutations were in myeloid neoplasms, and seven of eight GNB1 I80 mutations were in B cell neoplasms. Expression of patient-derived GNB1 variants in Cdkn2a-deficient mouse bone marrow followed by transplantation resulted in either myeloid or B cell malignancies. In vivo treatment with the dual PI3K-mTOR inhibitor BEZ235 suppressed GNB1-induced signaling and markedly increased survival. In several human tumors, mutations in the gene encoding GNB1 co-occurred with oncogenic kinase alterations, including the BCR-ABL fusion protein, the V617F substitution in JAK2 and the V600K substitution in BRAF. Coexpression of patient-derived GNB1 variants with these mutant kinases resulted in inhibitor resistance in each context. Thus, GNB1 and GNB2 alterations confer transformed and resistance phenotypes across a range of human tumors and may be targetable with inhibitors of G protein signaling. PMID:25485910

  12. Assessment of Mycobacterium tuberculosis Pantothenate Kinase Vulnerability through Target Knockdown and Mechanistically Diverse Inhibitors

    PubMed Central

    Reddy, B. K. Kishore; Landge, Sudhir; Ravishankar, Sudha; Patil, Vikas; Shinde, Vikas; Tantry, Subramanyam; Kale, Manoj; Raichurkar, Anandkumar; Menasinakai, Sreenivasaiah; Mudugal, Naina Vinay; Ambady, Anisha; Ghosh, Anirban; Tunduguru, Ragadeepthi; Kaur, Parvinder; Singh, Ragini; Kumar, Naveen; Bharath, Sowmya; Sundaram, Aishwarya; Bhat, Jyothi; Sambandamurthy, Vasan K.; Björkelid, Christofer; Jones, T. Alwyn; Das, Kaveri; Bandodkar, Balachandra; Malolanarasimhan, Krishnan; Mukherjee, Kakoli

    2014-01-01

    Pantothenate kinase (PanK) catalyzes the phosphorylation of pantothenate, the first committed and rate-limiting step toward coenzyme A (CoA) biosynthesis. In our earlier reports, we had established that the type I isoform encoded by the coaA gene is an essential pantothenate kinase in Mycobacterium tuberculosis, and this vital information was then exploited to screen large libraries for identification of mechanistically different classes of PanK inhibitors. The present report summarizes the synthesis and expansion efforts to understand the structure-activity relationships leading to the optimization of enzyme inhibition along with antimycobacterial activity. Additionally, we report the progression of two distinct classes of inhibitors, the triazoles, which are ATP competitors, and the biaryl acetic acids, with a mixed mode of inhibition. Cocrystallization studies provided evidence of these inhibitors binding to the enzyme. This was further substantiated with the biaryl acids having MIC against the wild-type M. tuberculosis strain and the subsequent establishment of a target link with an upshift in MIC in a strain overexpressing PanK. On the other hand, the ATP competitors had cellular activity only in a M. tuberculosis knockdown strain with reduced PanK expression levels. Additionally, in vitro and in vivo survival kinetic studies performed with a M. tuberculosis PanK (MtPanK) knockdown strain indicated that the target levels have to be significantly reduced to bring in growth inhibition. The dual approaches employed here thus established the poor vulnerability of PanK in M. tuberculosis. PMID:24687493

  13. Structure-based discovery of the first allosteric inhibitors of cyclin-dependent kinase 2

    PubMed Central

    Rastelli, Giulio; Anighoro, Andrew; Chripkova, Martina; Carrassa, Laura; Broggini, Massimo

    2014-01-01

    Allosteric targeting of protein kinases via displacement of the structural αC helix with type III allosteric inhibitors is currently gaining a foothold in drug discovery. Recently, the first crystal structure of CDK2 with an open allosteric pocket adjacent to the αC helix has been described, prospecting new opportunities to design more selective inhibitors, but the structure has not yet been exploited for the structure-based design of type III allosteric inhibitors. In this work we report the results of a virtual screening campaign that resulted in the discovery of the first-in-class type III allosteric ligands of CDK2. Using a combination of docking and post-docking analyses made with our tool BEAR, 7 allosteric ligands (hit rate of 20%) with micromolar affinity for CDK2 were identified, some of them inhibiting the growth of breast cancer cell lines in the micromolar range. Competition experiments performed in the presence of the ATP-competitive inhibitor staurosporine confirmed that the 7 ligands are truly allosteric, in agreement with their design. Of these, compound 2 bound CDK2 with an EC50 value of 3 μM and inhibited the proliferation of MDA-MB231 and ZR-75–1 breast cancer cells with IC50 values of approximately 20 μM, while compound 4 had an EC50 value of 71 μM and IC50 values around 4 μM. Remarkably, the most potent compound 4 was able to selectively inhibit CDK2-mediated Retinoblastoma phosphorylation, confirming that its mechanism of action is fully compatible with a selective inhibition of CDK2 phosphorylation in cells. Finally, hit expansion through analog search of the most potent inhibitor 4 revealed an additional ligand 4g with similar in vitro potency on breast cancer cells. PMID:24911186

  14. Nucleoside transporter subtype expression: effects on potency of adenosine kinase inhibitors

    PubMed Central

    Sinclair, C J D; Powell, A E; Xiong, W; LaRivière, C G; Baldwin, S A; Cass, C E; Young, J D; Parkinson, F E

    2001-01-01

    Adenosine kinase (AK) inhibitors can enhance adenosine levels and potentiate adenosine receptor activation. As the AK inhibitors 5′ iodotubercidin (ITU) and 5-amino-5′-deoxyadenosine (NH2dAdo) are nucleoside analogues, we hypothesized that nucleoside transporter subtype expression can affect the potency of these inhibitors in intact cells.Three nucleoside transporter subtypes that mediate adenosine permeation of rat cells have been characterized and cloned: equilibrative transporters rENT1 and rENT2 and concentrative transporter rCNT2. We stably transfected rat C6 glioma cells, which express rENT2 nucleoside transporters, with rENT1 (rENT1-C6 cells) or rCNT2 (rCNT2-C6 cells) nucleoside transporters.We tested the effects of ITU and NH2dAdo on [3H]-adenosine uptake and conversion to [3H]-adenine nucleotides in the three cell types. NH2dAdo did not show any cell type selectivity. In contrast, ITU showed significant inhibition of [3H]-adenosine uptake and [3H]-adenine nucleotide formation at concentrations ⩽100 nM in rENT1-C6 cells, while concentrations ⩾3 μM were required for C6 or rCNT2-C6 cells.Nitrobenzylthioinosine (NBMPR; 100 nM), a selective inhibitor of rENT1, abolished the effects of nanomolar concentrations of ITU in rENT1-C6 cells.This study demonstrates that the effects of ITU, but not NH2dAdo, in whole cell assays are dependent upon nucleoside transporter subtype expression. Thus, cellular and tissue differences in expression of nucleoside transporter subtypes may affect the pharmacological actions of some AK inhibitors. PMID:11682452

  15. Thoughts on the current assessment of Polo-like kinase inhibitor drug discovery.

    PubMed

    Strebhardt, Klaus; Becker, Sven; Matthess, Yves

    2015-01-01

    The Polo-like kinase 1 (Plk1) plays a key role in regulating a broad spectrum of critical cell cycle events. Plk1 is a marker of cellular proliferation and has prognostic potential in different types of human tumors. In a series of preclinical studies, Plk1 has been validated as a cancer target. This prompted many pharmaceutical companies to develop small-molecule inhibitors targeting the classical ATP-binding site of Plk1 for anticancer drug development. Recently, FDA has granted a Breakthrough Therapy designation to the Plk inhibitor BI 6727 (volasertib), which provided a survival benefit for patients suffering from acute myeloid leukemia. Remarkably, a new generation of Plk1 inhibitors that target the second druggable domain of Plk1, the Polo-box domain, is currently being tested preclinically. Since various ATP-competitive compounds of Plk1 inhibit also the activities of Plk2 and Plk3, which act as tumor suppressors, the roles of closely related Plk-family members in cancer cells need to be considered carefully. In this article, the authors highlight recent insights into the biology of Plks in cancer cells and discuss the progress in the development of small-molecule Plk1 inhibitors. The authors believe that the greatest therapeutic benefit might come through leukemic cells that are in direct contact with the inhibitor in the blood stream. The identification of biomarkers and studies that document Plk activities in treated patients would also be beneficial to better understand the role of Plk inhibition in tumor development and anticancer therapy. PMID:25263688

  16. Rebound Effects Caused by Withdrawal of MET Kinase Inhibitor Are Quenched by a MET Therapeutic Antibody.

    PubMed

    Pupo, Emanuela; Ducano, Nadia; Lupo, Barbara; Vigna, Elisa; Avanzato, Daniele; Perera, Timothy; Trusolino, Livio; Lanzetti, Letizia; Comoglio, Paolo M

    2016-09-01

    MET oncogene amplification is emerging as a major mechanism of acquired resistance to EGFR-directed therapy in lung and colorectal cancers. Furthermore, MET amplification predicts responsiveness to MET inhibitors currently in clinical trials. Among the anti-MET drugs available, ATP-competitive small-molecule kinase inhibitors abrogate receptor autophosphorylation and downstream activation of ERK1/2 and AKT, resulting in cell-cycle arrest. However, this antiproliferative effect allows persistence of a pool of cancer cells that are quiescent but alive. Once the inhibition is removed, rebound activation of MET-driven cell proliferative pathways and tumor growth may occur, an adverse event observed frequently in clinical settings after drug discontinuation. Here we show that inhibitor withdrawal prompts receptor phosphorylation to levels higher than those displayed at steady-state and generates a rebound effect pushing quiescent cancer cells back into the cell cycle, both in vitro and in experimental tumor models in vivo Mechanistically, we found that inhibitor treatment blocks MET endocytosis, causing a local increase in the number of receptors at the plasma membrane. Upon inhibitor washout, the receptor is readily rephosphorylated. The initial phosphorylation is not only increased but also prolonged in duration due to downmodulation of a phosphatase-mediated MET-negative feedback loop, which accompanies receptor internalization. Notably, treatment with a MET therapeutic antibody that induces proteolytic cleavage of the receptor at the cell surface substantially prevents this rebound effect, providing a rationale to combine or alternate these mechanistically different types of MET-targeted therapy. Cancer Res; 76(17); 5019-29. ©2016 AACR. PMID:27364553

  17. Initiation of human astrovirus type 1 infection was blocked by inhibitors of phosphoinositide 3-kinase

    PubMed Central

    2013-01-01

    Background Upon initial contact with a virus, host cells activate a series of cellular signaling cascades that facilitate viral entry and viral propagation within the cell. Little is known about how the human astrovirus (HAstV) exploits signaling cascades to establish an infection in host cells. Recent studies showed that activation of extracellular signal-regulated kinase 1/2 (ERK1/2) is important for HAstV infection, though the involvement of other signaling cascades remains unclear. Methods A panel of kinase blockers was used to search for cellular signaling pathways important for HAstV1 infection. To determine their impact on the infectious process, we examined viral gene expression, RNA replication, and viral RNA and capsid protein release from host cells. Results Inhibitors of phosphoinositide 3-kinase (PI3K) activation interfered with the infection, independent of their effect on ERK 1/2 activation. Activation of the PI3K signaling cascade occurred at an early phase of the infection, judging from the timeframe of Akt phosphorylation. PI3K inhibition at early times, but not at later times, blocked viral gene expression. However, inhibiting the downstream targets of PI3K activation, Akt and Rac1, did not block infection. Inhibition of protein kinase A (PKA) activation was found to block a later phase of HAstV1 production. Conclusions Our results reveal a previously unknown, essential role of PI3K in the life cycle of HAstV1. PI3K participates in the early stage of infection, possibly during the viral entry process. Our results also reveal the role of PKA in viral production. PMID:23680019

  18. Phosphatidylinositol 3-Kinase Promotes Activation and Vacuolar Acidification and Delays Methyl Jasmonate-Induced Leaf Senescence.

    PubMed

    Liu, Jian; Ji, Yingbin; Zhou, Jun; Xing, Da

    2016-03-01

    PI3K and its product PI3P are both involved in plant development and stress responses. In this study, the down-regulation of PI3K activity accelerated leaf senescence induced by methyl jasmonate (MeJA) and suppressed the activation of vacuolar H(+)-ATPase (V-ATPase). Yeast two-hybrid analyses indicated that PI3K bound to the V-ATPase B subunit (VHA-B). Analysis of bimolecular fluorescence complementation in tobacco guard cells showed that PI3K interacted with VHA-B2 in the tonoplasts. Through the use of pharmacological and genetic tools, we found that PI3K and V-ATPase promoted vacuolar acidification and stomatal closure during leaf senescence. Vacuolar acidification was suppressed by the PIKfyve inhibitor in 35S:AtVPS34-YFP Arabidopsis during MeJA-induced leaf senescence, but the decrease was lower than that in YFP-labeled Arabidopsis. These results suggest that PI3K promotes V-ATPase activation and consequently induces vacuolar acidification and stomatal closure, thereby delaying MeJA-induced leaf senescence. PMID:26739232

  19. A high-content EMT screen identifies multiple receptor tyrosine kinase inhibitors with activity on TGFβ receptor.

    PubMed

    Lotz-Jenne, Carina; Lüthi, Urs; Ackerknecht, Sabine; Lehembre, François; Fink, Tobias; Stritt, Manuel; Wirth, Matthias; Pavan, Simona; Bill, Ruben; Regenass, Urs; Christofori, Gerhard; Meyer-Schaller, Nathalie

    2016-05-01

    An epithelial to mesenchymal transition (EMT) enables epithelial tumor cells to break out of the primary tumor mass and to metastasize. Understanding the molecular mechanisms driving EMT in more detail will provide important tools to interfere with the metastatic process. To identify pharmacological modulators and druggable targets of EMT, we have established a novel multi-parameter, high-content, microscopy-based assay and screened chemical compounds with activities against known targets. Out of 3423 compounds, we have identified 19 drugs that block transforming growth factor beta (TGFβ)-induced EMT in normal murine mammary gland epithelial cells (NMuMG). The active compounds include inhibitors against TGFβ receptors (TGFBR), Rho-associated protein kinases (ROCK), myosin II, SRC kinase and uridine analogues. Among the EMT-repressing compounds, we identified a group of inhibitors targeting multiple receptor tyrosine kinases, and biochemical profiling of these multi-kinase inhibitors reveals TGFBR as a thus far unknown target of their inhibitory spectrum. These findings demonstrate the feasibility of a multi-parameter, high-content microscopy screen to identify modulators and druggable targets of EMT. Moreover, the newly discovered "off-target" effects of several receptor tyrosine kinase inhibitors have important consequences for in vitro and in vivo studies and might beneficially contribute to the therapeutic effects observed in vivo. PMID:27036020