Science.gov

Sample records for kinase inhibitor therapy

  1. The Aurora kinase inhibitors in cancer research and therapy.

    PubMed

    Cicenas, Jonas

    2016-09-01

    Compounds that affect enzymatic function of kinases are valuable for the understanding of the complex biochemical processes in cells. Aurora kinases (AURKs) play a key role in the control of the mitosis. These kinases are frequently deregulated in different human cancers: overexpression, amplifications, translocations and deletions were reported in many cancer cell lines as well as patient tissues. These findings steered a rigorous hunt for small-molecule AURK inhibitors not only for research purposes as well as for therapeutic uses. In this review, we describe a number of AURK inhibitors and their use in cancer research and/or therapy. We hope to assist researchers and clinicians in deciding which inhibitor is most appropriate for their specific purpose. The review will also provide a broad overview of the clinical studies performed with some of these inhibitors (if such studies have been performed). PMID:26932147

  2. Mini-review: bmx kinase inhibitors for cancer therapy.

    PubMed

    Jarboe, John S; Dutta, Shilpa; Velu, Sadanandan E; Willey, Christopher D

    2013-09-01

    Kinase inhibitors are among the fastest growing class of anti-cancer therapies. One family of kinases that has recently gained attention as a target for treating malignant disorders is the Tec kinase family. Evidence has been published that one member of this family; the Bmx kinase, may play a role in the pathogenesis of glioblastoma, prostate, breast and lung cancer. Bmx has also shown potential as an anti-vascular therapy in combination with radiation or as a sensitizer to chemotherapeutic agents. Therefore, several companies such as Pharmacyclics, Avila Therapeutics, Merck and Co., Metaproteomics, IRM, and Moerae Matrix have developed compounds or peptides that function as Bmx kinase inhibitors. These companies have subsequently been issued patents for these inhibitors. Additionally, it has been shown that current clinical stage EGFR inhibitors can irreversibly inhibit Bmx, suggesting these compounds might be rapidly moved to clinical trials for other malignancies. This review will discuss current patents issued since 2009 that contain data specifically on inhibition of the Bmx kinase, and will also discuss the scientific literature that suggests their potential application as therapeutics in the treatment of the aforementioned malignancies. PMID:23198769

  3. Rho-associated kinase inhibitors: a novel glaucoma therapy.

    PubMed

    Inoue, Toshihiro; Tanihara, Hidenobu

    2013-11-01

    The rho-associated kinase (ROCK) signaling pathway is activated via secreted bioactive molecules or via integrin activation after extracellular matrix binding. These lead to polymerization of actin stress fibers and formation of focal adhesions. Accumulating evidence suggests that actin cytoskeleton-modulating signals are involved in aqueous outflow regulation. Aqueous humor contains various biologically active factors, some of which are elevated in glaucomatous eyes. These factors affect aqueous outflow, in part, through ROCK signaling modulation. Various drugs acting on the cytoskeleton have also been shown to increase aqueous outflow by acting directly on outflow tissue. In vivo animal studies have shown that the trabecular meshwork (TM) actin cytoskeleton in glaucomatous eyes is more disorganized and more randomly oriented than in non-glaucomatous control eyes. In a previous study, we introduced ROCK inhibitors as a potential glaucoma therapy by showing that a selective ROCK inhibitor significantly lowered rabbit IOP. Rho-associated kinase inhibitors directly affect the TM and Schlemm's canal (SC), differing from the target sight of other glaucoma drugs. The TM is affected earlier and more strongly than ciliary muscle cells by ROCK inhibitors, largely because of pharmacological affinity differences stemming from regulatory mechanisms. Additionally, ROCK inhibitors disrupt tight junctions, result in F-actin depolymerization, and modulate intracellular calcium level, effectively increasing SC-cell monolayer permeability. Perfusion of an enucleated eye with a ROCK inhibitor resulted in wider empty spaces in the juxtacanalicular (JCT) area and more giant vacuoles in the endothelial cells of SC, while the endothelial lining of SC was intact. Interestingly, ROCK inhibitors also increase retinal blood flow by relaxing vascular smooth muscle cells, directly protecting neurons against various stresses, while promoting wound healing. These additional effects may help

  4. LRRK2 and ubiquitination: implications for kinase inhibitor therapy

    PubMed Central

    Melrose, Heather L.

    2015-01-01

    Pathogenic mutations and risk variants in LRRK2 (leucine-rich repeat kinase 2) represent the most common genetic cause of familial and sporadic PD (Parkinson's disease). LRRK2 protein is widely expressed throughout the brain and the periphery. Structurally, LRRK2 contains several functional domains, including a dual enzymatic core consisting of a kinase and GTPase domain. Disease-linked variants are found in both these enzymatic domains as well as in the COR [C-terminal of ROC (Ras of complex proteins)] and WD40 protein–protein binding domain. The kinase domain is widely believed to be linked to toxicity, and thus the thrust of pharmaceutical effort has focused on developing LRRK2 kinase inhibitors. However, recent data have suggested that inhibition of LRRK2 activity results in reduced LRRK2 levels and peripheral side effects, which are similar to those observed in homozygous LRRK2-knockout and LRRK2 kinase-dead rodent models. In a recent issue of the Biochemical Journal, a study led by Nichols reveals that dephosphorylation of LRRK2 cellular phosphorylation sites (Ser910/Ser935/Ser955/Ser973) triggers its ubiquitination and subsequent degradation and thus may account for the loss of function phenotypes observed in peripheral tissues in LRRK2-knockout/kinase-dead or inhibitor-treated rodents and primates. Albeit negative from a kinase inhibitor standpoint, the data open new avenues for LRRK2 biology and therapeutic approaches to counteract LRRK2 toxicity. PMID:26341487

  5. ROS1 Kinase Inhibitors for Molecular-Targeted Therapies.

    PubMed

    Al-Sanea, M M; Abdelazem, A Z; Park, B S; Yoo, K H; Sim, T; Kwon, Y J; Lee, S H

    2016-01-01

    ROS1 is a pivotal transmembrane receptor protein tyrosine kinase which regulates several cellular processes like apoptosis, survival, differentiation, proliferation, cell migration, and transformation. There is increasing evidence supporting that ROS1 plays an important role in different malignancies including glioblastoma, colorectal cancer, gastric adenocarcinoma, inflammatory myofibroblastic tumor, ovarian cancer, angiosarcoma, and non small cell lung cancer; thus, ROS1 has become a potential drug discovery target. ROS1 shares about 49% sequence homology with ALK primary structure; therefore, wide range of ALK kinase inhibitors have shown in vitro inhibitory activity against ROS1 kinase. After Crizotinib approval by FDA for the management of ALK-rearranged lung cancer, ROS1-positive tumors have been focused. Although significant advancements have been achieved in understanding ROS1 function and its signaling pathways plus recent discovery of small molecules modulating ROS1 protein, a vital need of medicinal chemistry efforts is still required to produce selective and potent ROS1 inhibitors as an important therapeutic strategy for different human malignancies. This review focuses on the current knowledge about different scaffolds targeting ROS1 rearrangements, methods to synthesis, and some biological data about the most potent compounds that have delivered various scaffold structures. PMID:26438251

  6. Combined HSP90 and kinase inhibitor therapy: Insights from The Cancer Genome Atlas.

    PubMed

    Schwartz, Harvey; Scroggins, Brad; Zuehlke, Abbey; Kijima, Toshiki; Beebe, Kristin; Mishra, Alok; Neckers, Len; Prince, Thomas

    2015-09-01

    The merging of knowledge from genomics, cellular signal transduction and molecular evolution is producing new paradigms of cancer analysis. Protein kinases have long been understood to initiate and promote malignant cell growth and targeting kinases to fight cancer has been a major strategy within the pharmaceutical industry for over two decades. Despite the initial success of kinase inhibitors (KIs), the ability of cancer to evolve resistance and reprogram oncogenic signaling networks has reduced the efficacy of kinase targeting. The molecular chaperone HSP90 physically supports global kinase function while also acting as an evolutionary capacitor. The Cancer Genome Atlas (TCGA) has compiled a trove of data indicating that a large percentage of tumors overexpress or possess mutant kinases that depend on the HSP90 molecular chaperone complex. Moreover, the overexpression or mutation of parallel activators of kinase activity (PAKA) increases the number of components that promote malignancy and indirectly associate with HSP90. Therefore, targeting HSP90 is predicted to complement kinase inhibitors by inhibiting oncogenic reprogramming and cancer evolution. Based on this hypothesis, consideration should be given by both the research and clinical communities towards combining kinase inhibitors and HSP90 inhibitors (H90Ins) in combating cancer. The purpose of this perspective is to reflect on the current understanding of HSP90 and kinase biology as well as promote the exploration of potential synergistic molecular therapy combinations through the utilization of The Cancer Genome Atlas. PMID:26070366

  7. Targeting the TGF-β receptor with kinase inhibitors for scleroderma therapy.

    PubMed

    Cong, Lin; Xia, Zhi-Kuan; Yang, Rong-Ya

    2014-09-01

    Scleroderma (systemic sclerosis) is a connective tissue disease that affects various organ systems; the treatment of scleroderma is still difficult and remains a challenge to the clinician. Recently, kinase inhibitors have shown great potential against fibrotic diseases and, specifically, the transforming growth factor-β receptor (TGF-βR) was found as a new and promising target for scleroderma therapy. In the current study, we propose that the large pool of existing kinase inhibitors could be exploited for inhibiting the TGF-βR to suppress scleroderma. In this respect, we developed a modeling protocol to systematically profile the inhibitory activities of 169 commercially available kinase inhibitors against the TGF-βR, from which five promising candidates were selected and tested using a standard kinase assay protocol. Consequently, two molecular entities, namely the PKB inhibitor MK-2206 and the mTOR C1/C2 inhibitor AZD8055, showed high potency when bound to the TGF-βR, with IC50 values of 97 and 86 nM, respectively, which are close to those of the recently developed TGF-βR selective inhibitors SB525334 and LY2157299 (IC50 = 14.3 and 56 nM, respectively). We also performed atomistic molecular dynamics simulations and post-molecular mechanics/Poisson-Boltzmann surface area analyses to dissect the structural basis and energetic properties of intermolecular interactions between the TGF-βR kinase domain and these potent compounds, highlighting intensive nonbonded networks across the tightly packed interface of non-cognate TGF-βR-inhibitor complexes. PMID:24917246

  8. Small-Molecule Inhibitors of the Receptor Tyrosine Kinases: Promising Tools for Targeted Cancer Therapies

    PubMed Central

    Hojjat-Farsangi, Mohammad

    2014-01-01

    Chemotherapeutic and cytotoxic drugs are widely used in the treatment of cancer. In spite of the improvements in the life quality of patients, their effectiveness is compromised by several disadvantages. This represents a demand for developing new effective strategies with focusing on tumor cells and minimum side effects. Targeted cancer therapies and personalized medicine have been defined as a new type of emerging treatments. Small molecule inhibitors (SMIs) are among the most effective drugs for targeted cancer therapy. The growing number of approved SMIs of receptor tyrosine kinases (RTKs) i.e., tyrosine kinase inhibitors (TKIs) in the clinical oncology imply the increasing attention and application of these therapeutic tools. Most of the current approved RTK–TKIs in preclinical and clinical settings are multi-targeted inhibitors with several side effects. Only a few specific/selective RTK–TKIs have been developed for the treatment of cancer patients. Specific/selective RTK–TKIs have shown less deleterious effects compared to multi-targeted inhibitors. This review intends to highlight the importance of specific/selective TKIs for future development with less side effects and more manageable agents. This article provides an overview of: (1) the characteristics and function of RTKs and TKIs; (2) the recent advances in the improvement of specific/selective RTK–TKIs in preclinical or clinical settings; and (3) emerging RTKs for targeted cancer therapies by TKIs. PMID:25110867

  9. Patient adherence to tyrosine kinase inhibitor therapy in chronic myeloid leukemia.

    PubMed

    Jabbour, Elias J; Kantarjian, Hagop; Eliasson, Lina; Cornelison, A Megan; Marin, David

    2012-07-01

    Dramatically improved survival associated with tyrosine kinase inhibitor (TKI) therapy has transformed the disease model for chronic myeloid leukemia (CML) to one of long-term management, but treatment success is challenged with poor medication adherence. Many risk factors associated with poor adherence can be ameliorated by close monitoring, dose modification, and supportive care. Controlling risk factors for poor adherence in combination with patient education that includes direct communication between the health care team and the patient are essential components for maximizing the benefits of TKI therapy. PMID:22473898

  10. Recognizing Endocrinopathies Associated With Tyrosine Kinase Inhibitor Therapy in Children With Chronic Myelogenous Leukemia.

    PubMed

    Samis, Jill; Lee, Paul; Zimmerman, Donald; Arceci, Robert J; Suttorp, Meinolf; Hijiya, Nobuko

    2016-08-01

    Side effects of tyrosine kinase inhibitor (TKI) treatment vary in children and adults with chronic myelogenous leukemia (CML). As children have a much longer life expectancy than adults, TKI therapy may continue for decades and with long-term consequences that differ from adults. Children may develop endocrinopathies related to "off-target" effects of TKIs, such as delayed growth, changes in bone metabolism, thyroid abnormalities, and effects on puberty and fertility. These endocrinopathies present additional challenges for pediatric patients with CML. This review critically evaluates the literature on long-term endocrine side effects of TKIs in the pediatric CML population and provides suggested recommendations. PMID:27100618

  11. Kinase Domain Point Mutations in Ph+ Acute Lymphoblastic Leukemia (ALL) Emerge Following Therapy with BCR-ABL Kinase Inhibitors

    PubMed Central

    Jones, Dan; Thomas, Deborah; Yin, C. Cameron; O'Brien, Susan; Cortes, Jorge E.; Jabbour, Elias; Breeden, Megan; Giles, Francis J.; Zhao, Weiqiang; Kantarjian, Hagop M.

    2008-01-01

    Background BCR-ABL kinase domain (KD) mutations are detected in approximately 45% of imatinib-resistant CML. Patterns of KD mutations in Philadelphia chromosome (Ph)+ acute lymphoblastic leukemia (ALL) are less well-studied. Methods We assessed KD mutations in relapsed Ph+ ALL following treatments that included one or more kinase inhibitors (n = 24) or no prior KI therapy (n = 12). Results ABL KD mutations were detected by direct sequencing in 15 of 17 (88%) relapsed Ph+ ALL with prior imatinib (n = 16) or dasatinib (n = 1) treatment, and in 6 of 7 (86%) resistant/relapsed tumors treated with 2 or more KIs, compared with 0 of 12 relapsed Ph+ ALL never treated with KI. A restricted set of mutations was seen, mostly Y253H and T315I, detected on average 13 months following KI initiation, and mutations were not detected in the initial tumor samples prior to KI therapy in 12 patients assessed. Using a more sensitive pyrosequencing method, we did not detect mutations at codons 315 and 253 in the diagnostic samples from these 12 patients or in 30 Ph+ ALL patients who never relapsed. Conclusions ABL KD mutations, especially at codons 315 and 253, emerge upon relapse in the vast majority of patients with Ph+ ALL receiving maintenance KI therapy. Ongoing KI exposure may thus alter the patterns of relapse and favor outgrowth of clones with KI-resistant mutations. PMID:18615627

  12. Rho kinase inhibitor enables cell-based therapy for corneal endothelial dysfunction

    PubMed Central

    Okumura, Naoki; Sakamoto, Yuji; Fujii, Keita; Kitano, Junji; Nakano, Shinichiro; Tsujimoto, Yuki; Nakamura, Shin-ichiro; Ueno, Morio; Hagiya, Michio; Hamuro, Junji; Matsuyama, Akifumi; Suzuki, Shingo; Shiina, Takashi; Kinoshita, Shigeru; Koizumi, Noriko

    2016-01-01

    The corneal endothelium maintains corneal transparency; consequently, its dysfunction causes severe vision loss. Tissue engineering-based therapy, as an alternative to conventional donor corneal transplantation, is anticipated to provide a less invasive and more effective therapeutic modality. We conducted a preclinical study for cell-based therapy in a primate model and demonstrated regeneration of the corneal endothelium following injection of cultured monkey corneal endothelial cells (MCECs) or human CECs (HCECs), in combination with a Rho kinase (ROCK) inhibitor, Y-27632, into the anterior chamber. We also evaluated the safety and efficacy of Good Manufacturing Practice (GMP)-grade HCECs, similar to those planned for use as transplant material for human patients in a clinical trial, and we showed that the corneal endothelium was regenerated without adverse effect. We also showed that CEC engraftment is impaired by limited substrate adhesion, which is due to actomyosin contraction induced by dissociation-induced activation of ROCK/MLC signaling. Inclusion of a ROCK inhibitor improves efficiency of engraftment of CECs and enables cell-based therapy for treating corneal endothelial dysfunction as a clinically relevant therapy. PMID:27189516

  13. Rho kinase inhibitor enables cell-based therapy for corneal endothelial dysfunction.

    PubMed

    Okumura, Naoki; Sakamoto, Yuji; Fujii, Keita; Kitano, Junji; Nakano, Shinichiro; Tsujimoto, Yuki; Nakamura, Shin-Ichiro; Ueno, Morio; Hagiya, Michio; Hamuro, Junji; Matsuyama, Akifumi; Suzuki, Shingo; Shiina, Takashi; Kinoshita, Shigeru; Koizumi, Noriko

    2016-01-01

    The corneal endothelium maintains corneal transparency; consequently, its dysfunction causes severe vision loss. Tissue engineering-based therapy, as an alternative to conventional donor corneal transplantation, is anticipated to provide a less invasive and more effective therapeutic modality. We conducted a preclinical study for cell-based therapy in a primate model and demonstrated regeneration of the corneal endothelium following injection of cultured monkey corneal endothelial cells (MCECs) or human CECs (HCECs), in combination with a Rho kinase (ROCK) inhibitor, Y-27632, into the anterior chamber. We also evaluated the safety and efficacy of Good Manufacturing Practice (GMP)-grade HCECs, similar to those planned for use as transplant material for human patients in a clinical trial, and we showed that the corneal endothelium was regenerated without adverse effect. We also showed that CEC engraftment is impaired by limited substrate adhesion, which is due to actomyosin contraction induced by dissociation-induced activation of ROCK/MLC signaling. Inclusion of a ROCK inhibitor improves efficiency of engraftment of CECs and enables cell-based therapy for treating corneal endothelial dysfunction as a clinically relevant therapy. PMID:27189516

  14. Multi-kinase inhibitors, AURKs and cancer.

    PubMed

    Cicenas, Jonas; Cicenas, Erikas

    2016-05-01

    Inhibitors that impact function of kinases are valuable both for the biological research as well as therapy of kinase-associated diseases, such as different cancers. There are quite a number of inhibitors, which are quite specific for certain kinases and several of them are either already approved for the cancer therapy or are in clinical studies of various phases. However, that does not mean that each single kinase inhibitor is suitable for targeted therapy. Some of them are not effective others might be toxic or fail some other criteria for the use in vivo. On the other hand, even in case of successful therapy, many responders eventually develop resistance to the inhibitors. The limitations of various single kinase inhibitors can be fought using compounds which target multiple kinases. This tactics can increase effectiveness of the inhibitors by the synergistic effect or help to diminish the likelihood of drug resistance. To date, several families of kinases are quite popular targets of the inhibition in cancers, such as tyrosine kinases, cycle-dependent kinases, mitogen-activated protein kinases, phosphoinositide 3-kinases as well as their pathway "players" and aurora kinases. Aurora kinases play an important role in the control of the mitosis and are often altered in diverse human cancers. Here, we will describe the most interesting multi-kinase inhibitors which inhibit aurora kinases among other targets and their use in preclinical and clinical cancer studies. PMID:27038473

  15. Cancer cell resistance to aurora kinase inhibitors: identification of novel targets for cancer therapy.

    PubMed

    Hrabakova, Rita; Kollareddy, Madhu; Tyleckova, Jirina; Halada, Petr; Hajduch, Marian; Gadher, Suresh Jivan; Kovarova, Hana

    2013-01-01

    Drug resistance is the major obstacle to successful cancer therapy. Our study focuses on resistance to Aurora kinase inhibitors tested as anti-cancer drugs in clinical trials. We have used 2D electrophoresis in the pH ranges of 4-7 and 6-11 followed by protein identification using MALDI-TOF/TOF to compare the protein composition of HCT116 colon cancer cells either sensitive to CYC116 and ZM447439 inhibitors or resistant toward these drugs. The analysis also included p53(+/+) and p53(-/-) phenotypes of HCT116 cells. Our findings demonstrate that platelet-activating factor acetylhydrolase and GTP-binding nuclear protein Ran contribute to the development of resistance to ZM447439 only where resistance is related to p53. On the other hand, serine hydroxymethyltransferase was found to promote the tumor growth in cells resistant to CYC116 without the influence of p53. Computer modeling of interaction networks highlighted a direct link of the p53-independent mechanism of resistance to CYC116 with autophagy. Importantly, serine hydroxymethyltransferase, serpin B5, and calretinin represent the target proteins that may help overcome resistance in combination therapies. In addition, serpin B5 and calretinin appear to be candidate biomarkers that may be accessible in patients for monitoring of cancer therapy with ease. PMID:23151231

  16. Tyrosine Kinase Inhibitors in Ph+ Chronic Myeloid Leukemia Therapy: a Review.

    PubMed

    Shah, Krupa; Parikh, Sonia; Rawal, Rakesh

    2016-01-01

    Chronic myeloid leukaemia (CML) is a clonal myeloproliferative hematopoietic stem cell disorder. Deregulated BCRABL fusion tyrosine kinase activity is the main cause of CML disease pathogenesis, making BCRABL an ideal target for inhibition. Current tyrosine kinase inhibitors (TKIs) designed to inhibit BCRABL oncoprotein activity, have completely transformed the prognosis of CML. Interruption of TKI treatment leads to minimal residual disease reside (MRD), thought to reside in TKIinsensitive leukaemia stem cells which remain a potential reservoir for disease relapse. This highlights the need to develop new therapeutic strategies for CML either as small molecule master TKIs or phytopharmaceuticals derived from nature to achieve chronic molecular remission. This review outlines the past, present and future therapeutic approaches for CML including coverage of relevant mechanisms, whether ABL dependent or independent, and epigenetic factors responsible for developing resistance against TKIs. Appearance of mutant clones along the course of therapy either preexisting or induced due to therapy is still a challenge for the clinician. A proposed invitro model of generating colony forming units from CML stem cells derived from diagnostic samples seems to be achievable in the era of high throughput technology which can take care of single cell genomic profiling. PMID:27509925

  17. Discovery and development of the Polo-like kinase inhibitor volasertib in cancer therapy

    PubMed Central

    Gjertsen, B T; Schöffski, P

    2015-01-01

    Owing to their integral involvement in cell cycle regulation, the Polo-like kinase (Plk) family, particularly Plk1, has emerged as an attractive therapeutic target in oncology. In recent years, several Plk1 inhibitors have been developed, with some agents showing encouraging results in early-phase clinical trials. This review focuses on volasertib (BI 6727; an investigational agent), a potent and selective Plk inhibitor. Volasertib has shown promising activity in various cancer cell lines and xenograft models of human cancer. Trials performed to date suggest that volasertib has clinical efficacy in a range of malignancies, with the most promising results seen in patients with acute myeloid leukemia (AML). Encouragingly, recent phase II data have demonstrated that volasertib combined with low-dose cytarabine (LDAC) was associated with higher response rates and improved event-free survival than LDAC alone in patients with previously untreated AML. Based on these observations, and its presumably manageable safety profile, volasertib is currently in phase III development as a potential treatment for patients with AML who are ineligible for intensive remission induction therapy. Given that many patients with AML are of an older age and frail, this constitutes an area of major unmet need. In this review, we discuss the biologic rationale for Plk1 inhibitors in cancer, the clinical development of volasertib to date in solid tumors and AML, and the future identification of biomarkers that might predict response to volasertib and help determine the role of this agent in the clinic. PMID:25027517

  18. Gold nanoparticles enhance the effect of tyrosine kinase inhibitors in acute myeloid leukemia therapy

    PubMed Central

    Petrushev, Bobe; Boca, Sanda; Simon, Timea; Berce, Cristian; Frinc, Ioana; Dima, Delia; Selicean, Sonia; Gafencu, Grigore-Aristide; Tanase, Alina; Zdrenghea, Mihnea; Florea, Adrian; Suarasan, Sorina; Dima, Liana; Stanciu, Raluca; Jurj, Ancuta; Buzoianu, Anca; Cucuianu, Andrei; Astilean, Simion; Irimie, Alexandru; Tomuleasa, Ciprian; Berindan-Neagoe, Ioana

    2016-01-01

    Background and aims Every year, in Europe, acute myeloid leukemia (AML) is diagnosed in thousands of adults. For most subtypes of AML, the backbone of treatment was introduced nearly 40 years ago as a combination of cytosine arabinoside with an anthracycline. This therapy is still the worldwide standard of care. Two-thirds of patients achieve complete remission, although most of them ultimately relapse. Since the FLT3 mutation is the most frequent, it serves as a key molecular target for tyrosine kinase inhibitors (TKIs) that inhibit FLT3 kinase. In this study, we report the conjugation of TKIs onto spherical gold nanoparticles. Materials and methods The internalization of TKI-nanocarriers was proved by the strongly scattered light from gold nanoparticles and was correlated with the results obtained by transmission electron microscopy and dark-field microscopy. The therapeutic effect of the newly designed drugs was investigated by several methods including cell counting assay as well as the MTT assay. Results We report the newly described bioconjugates to be superior when compared with the drug alone, with data confirmed by state-of-the-art analyses of internalization, cell biology, gene analysis for FLT3-IDT gene, and Western blotting to assess degradation of the FLT3 protein. Conclusion The effective transmembrane delivery and increased efficacy validate its use as a potential therapeutic. PMID:26929621

  19. Novel aspects of therapy with the dual Src and Abl kinase inhibitor bosutinib in chronic myeloid leukemia.

    PubMed

    Keller-V Amsberg, Gunhild; Brümmendorf, Tim H

    2012-09-01

    The dual Src/Abl kinase inhibitor bosutinib (SKI-606) targets the tyrosine kinase brc-abl, the key enzyme in the development of chronic myeloid leukemia (CML). In clinical trials, bosutinib yielded promising results with regard to efficacy, tolerability and toxicity in first-, second- and third-line therapy of CML patients. Remarkably, bosutinib is able to overcome most imatinib-resistant BCR-ABL1-1 mutations except V299L and T315I. Mostly, low-to-moderate grade gastrointestinal toxicitis are the most common treatment-emergent adverse events observed under bosutinib. Unlike other tyrosine kinase inhibitors approved for CML treatment to date, bosutinib shows only minimal inhibitory activity against c-KIT and the PDGF receptor. This may be causative for its favorable hematologic toxicity profile. In this review, the authors give an overview on the mechanism of action and currently available preclinical and clinical data for bosutinib in CML. PMID:23098112

  20. Second-Generation Tyrosine Kinase Inhibitors (Tki) as Salvage Therapy for Resistant or Intolerant Patients to Prior TKIs.

    PubMed

    Breccia, Massimo; Alimena, Giuliana

    2014-01-01

    With the advent of target therapies, imatinib became the mainstay for treatment of chronic myeloid leukemia. However, despite the brilliant results obtained with this drug, more than 30% of patients discontinue therapy in long-term due to several reasons, including failure and/or intolerance. Second-generation tyrosine kinase inhibitors (TKIs) are more potent drugs and have expanded inhibition against a broad spectrum of mutations resistant to imatinib. Both nilotinib and dasatinib have demonstrated in vitro and in vivo clinical activity against different types of mutations and various forms of resistance. However, patients with T315I mutation do not obtain an advantage from these drugs and a third generation inhibitor ponatinib, a pan-BCR drug, was tested with significant results. In this review, we report the results of second-and third-generation TKIs tested as second or third line therapy in patients resistant and/or intolerant to previous inhibitors. PMID:24455112

  1. Second-Generation Tyrosine Kinase Inhibitors (Tki) as Salvage Therapy for Resistant or Intolerant Patients to Prior TKIs

    PubMed Central

    Breccia, Massimo; Alimena, Giuliana

    2014-01-01

    With the advent of target therapies, imatinib became the mainstay for treatment of chronic myeloid leukemia. However, despite the brilliant results obtained with this drug, more than 30% of patients discontinue therapy in long-term due to several reasons, including failure and/or intolerance. Second-generation tyrosine kinase inhibitors (TKIs) are more potent drugs and have expanded inhibition against a broad spectrum of mutations resistant to imatinib. Both nilotinib and dasatinib have demonstrated in vitro and in vivo clinical activity against different types of mutations and various forms of resistance. However, patients with T315I mutation do not obtain an advantage from these drugs and a third generation inhibitor ponatinib, a pan-BCR drug, was tested with significant results. In this review, we report the results of second-and third-generation TKIs tested as second or third line therapy in patients resistant and/or intolerant to previous inhibitors. PMID:24455112

  2. AZD7762, a novel checkpoint kinase inhibitor, drives checkpoint abrogation and potentiates DNA-targeted therapies.

    PubMed

    Zabludoff, Sonya D; Deng, Chun; Grondine, Michael R; Sheehy, Adam M; Ashwell, Susan; Caleb, Benjamin L; Green, Stephen; Haye, Heather R; Horn, Candice L; Janetka, James W; Liu, Dongfang; Mouchet, Elizabeth; Ready, Shannon; Rosenthal, Judith L; Queva, Christophe; Schwartz, Gary K; Taylor, Karen J; Tse, Archie N; Walker, Graeme E; White, Anne M

    2008-09-01

    Insights from cell cycle research have led to the hypothesis that tumors may be selectively sensitized to DNA-damaging agents resulting in improved antitumor activity and a wider therapeutic margin. The theory relies on the observation that the majority of tumors are deficient in the G1-DNA damage checkpoint pathway resulting in reliance on S and G2 checkpoints for DNA repair and cell survival. The S and G2 checkpoints are regulated by checkpoint kinase 1, a serine/threonine kinase that is activated in response to DNA damage; thus, inhibition of checkpoint kinase 1 signaling impairs DNA repair and increases tumor cell death. Normal tissues, however, have a functioning G1 checkpoint signaling pathway allowing for DNA repair and cell survival. Here, we describe the preclinical profile of AZD7762, a potent ATP-competitive checkpoint kinase inhibitor in clinical trials. AZD7762 has been profiled extensively in vitro and in vivo in combination with DNA-damaging agents and has been shown to potentiate response in several different settings where inhibition of checkpoint kinase results in the abrogation of DNA damage-induced cell cycle arrest. Dose-dependent potentiation of antitumor activity, when AZD7762 is administered in combination with DNA-damaging agents, has been observed in multiple xenograft models with several DNA-damaging agents, further supporting the potential of checkpoint kinase inhibitors to enhance the efficacy of both conventional chemotherapy and radiotherapy and increase patient response rates in a variety of settings. PMID:18790776

  3. Multiple Roles of Cyclin-Dependent Kinase 4/6 Inhibitors in Cancer Therapy

    PubMed Central

    Roberts, Patrick J.; Bisi, John E.; Strum, Jay C.; Combest, Austin J.; Darr, David B.; Usary, Jerry E.; Zamboni, William C.; Wong, Kwok-Kin; Perou, Charles M.

    2012-01-01

    Background Cyclin-dependent kinases (CDKs) regulate cell proliferation and coordinate the cell cycle checkpoint response to DNA damage. Although inhibitors with varying selectivity to specific CDK family members have been developed, selective CDK4/6 inhibitors have emerged as the most attractive antineoplastic agents because of the importance of CDK4/6 activity in regulating cell proliferation and the toxic effects associated with inhibition of other CDKs (eg, CDK1 and CDK2). Methods FVB/N wild-type mice (n = 13) were used to evaluate carboplatin-induced myelosuppression in bone marrow by complete blood cell counts after treatment with the CDK4/6 inhibitor PD0332991. Genetically engineered murine models of retinoblastoma (Rb)-competent (MMTV-c-neu) and Rb-incompetent (C3-TAg) breast cancer (n = 16 MMTV-c-neu mice in the carboplatin plus vehicle control group, n = 17 MMTV-c-neu mice in the carboplatin plus PD0332991 group, n = 17 C3-TAg mice in the carboplatin plus vehicle control group, and n = 14 C3-TAg mice in the carboplatin plus PD0332991 group) were used to investigate the antitumor activity of PD0332991 alone or in combination with chemotherapy. All statistical tests were two-sided. Results Coadministration of PD0332991 with carboplatin compared with carboplatin alone in FVB/N wild-type mice increased hematocrit (51.2% vs 33.5%, difference = 17.7%, 95% confidence interval [CI] = −26.7% to −8.6%, P < .001), platelet counts (1321 vs 758.5 thousand cells per μL, difference = 562.5 thousand cells per μL, 95% CI = −902.8 to −222.6, P = .002), myeloid cells (granulocytes and monocytes; 3.1 vs 1.6 thousand cells per μL, difference = 1.5 thousand cells per μL, 95% CI = −2.23 to −0.67, P < .001), and lymphocytes (7.9 vs 5.4 thousand cells per μL, difference = 2.5 thousand cells per μL, 95% CI = −4.75 to −0.18, P = .02). Daily administration of PD0332991 exhibited antitumor activity in MMTV-c-neu mice as a single agent. However, the combination of

  4. Extracellular Signal-Regulated Kinases Modulate DNA Damage Response - A Contributing Factor to Using MEK Inhibitors in Cancer Therapy

    PubMed Central

    Wei, F; Yan, J; Tang, D

    2011-01-01

    The Raf-MEK-ERK pathway is commonly activated in human cancers, largely attributable to the extracellular signal-regulated kinases (ERKs) being a common downstream target of growth factor receptors, Ras, and Raf. Elevation of these up-stream signals occurs frequently in a variety of malignancies and ERK kinases play critical roles in promoting cell proliferation. Therefore, inhibition of MEK-mediated ERK activation is very appealing in cancer therapy. Consequently, numerous MEK inhibitors have been developed over the years. However, clinical trials have yet to produce overwhelming support for using MEK inhibitors in cancer therapy. Although complex reasons may have contributed to this outcome, an alternative possibility is that the MEK-ERK pathway may not solely provide proliferation signals to malignancies, the central scientific rationale in developing MEK inhibitors for cancer therapy. Recent developments may support this alternative possibility. Accumulating evidence now demonstrated that the MEK-ERK pathway contributes to the proper execution of cellular DNA damage response (DDR), a major pathway of tumor suppression. During DDR, the MEK-ERK pathway is commonly activated, which facilitates the proper activation of DDR checkpoints to prevent cell division. Inhibition of MEK-mediated ERK activation, therefore, compromises checkpoint activation. As a result, cells may continue to proliferate in the presence of DNA lesions, leading to the accumulation of mutations and thereby promoting tumorigenesis. Alternatively, reduction in checkpoint activation may prevent efficient repair of DNA damages, which may cause apoptosis or cell catastrophe, thereby enhancing chemotherapy’s efficacy. This review summarizes our current understanding of the participation of the ERK kinases in DDR. PMID:22087839

  5. EGFR tyrosine kinase inhibitors promote pro-caspase-8 dimerization that sensitizes cancer cells to DNA-damaging therapy.

    PubMed

    Li, Yun-Tian; Qian, Xiao-Jun; Yu, Yan; Li, Zhen-Hua; Wu, Rui-Yan; Ji, Jiao; Jiao, Lin; Li, Xuan; Kong, Peng-Fei; Chen, Wen-Dan; Feng, Gong-Kan; Deng, Rong; Zhu, Xiao-Feng

    2015-07-10

    The combination of time and order-dependent chemotherapeutic strategies has demonstrated enhanced efficacy in killing cancer cells while minimizing adverse effects. However, the precise mechanism remains elusive. Our results showed that pre-treatment of MCF-7 and MDA-MB-468 cells with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor erlotinib or lapatinib significantly enhanced the cytotoxic effects of DNA-damaging agents compared to coadministration of the EGFR inhibitor and DNA-damaging agent. Sequential application of erlotinib and doxorubicin increased activated caspase-8 by promoting pro-caspase-8 homodimerization and autocatalytical cleavage, whereas coadministration did not. We found that EGFR inhibitors promoted pro-caspase-8 homodimerization by inhibiting ERK pathway signaling, while doxorubicin promoted it. Our data highlight that ERK has the potential to inhibit the formation of pro-caspase-8 homodimers by phosphorylating pro-caspase-8 at S387. In conclusion, the pretreatment of EGFR tyrosine kinase inhibitors promote pro-caspase-8 dimerization that sensitizes cancer cells to DNA-damaging agents. Our findings provide rationale for novel strategies for the implementation of combined targeted and cytotoxic chemotherapy within a new framework of time and order-dependent therapy. PMID:26036637

  6. Activation of HER3 Interferes with Antitumor Effects of Axl Receptor Tyrosine Kinase Inhibitors: Suggestion of Combination Therapy1

    PubMed Central

    Torka, Robert; Pénzes, Kinga; Gusenbauer, Simone; Baumann, Christine; Szabadkai, István; Őrfi, Lászlȯ; Kéri, György; Ullrich, Axel

    2014-01-01

    The Axl receptor tyrosine kinase (RTK) has been established as a strong candidate for targeted therapy of cancer. However, the benefits of targeted therapies are limited due to acquired resistance and activation of alternative RTKs. Therefore, we asked if cancer cells are able to overcome targeted Axl therapies. Here, we demonstrate that inhibition of Axl by short interfering RNA or the tyrosine kinase inhibitor (TKI) BMS777607 induces the expression of human epidermal growth factor receptor 3 (HER3) and the neuregulin 1(NRG1)–dependent phosphorylation of HER3 in MDA-MB231 and Ovcar8 cells. Moreover, analysis of 20 Axl-expressing cancer cell lines of different tissue origin indicates a low basal phosphorylation of RAC-α serine/threonine-protein kinase (AKT) as a general requirement for HER3 activation on Axl inhibition. Consequently, phosphorylation of AKT arises as an independent biomarker for Axl treatment. Additionally, we introduce phosphorylation of HER3 as an independent pharmacodynamic biomarker for monitoring of anti-Axl therapy response. Inhibition of cell viability by BMS777607 could be rescued by NRG1-dependent activation of HER3, suggesting an escape mechanism by tumor microenvironment. The Axl-TKI MPCD84111 simultaneously blocked Axl and HER2/3 signaling and thereby prohibited HER3 feedback activation. Furthermore, dual inhibition of Axl and HER2/3 using BMS777607 and lapatinib led to a significant inhibition of cell viability in Axl-expressing MDA-MB231 and Ovcar8 cells. Therefore, we conclude that, in patient cohorts with expression of Axl and low basal activity of AKT, a combined inhibition of Axl and HER2/3 kinase would be beneficial to overcome acquired resistance to Axl-targeted therapies. PMID:24862757

  7. Ocular Toxicity of Tyrosine Kinase Inhibitors

    PubMed Central

    Davis, Mary Elizabeth

    2016-01-01

    Purpose/Objectives To review common tyrosine kinase inhibitors, as well as their ocular side effects and management. Data Sources A comprehensive literature search was conducted using cINahl®, Pubmed, and cochrane databases for articles published since 2004 with the following search terms: ocular toxicities, tyrosine kinase inhibitors, ophthalmology, adverse events, eye, and vision. Data Synthesis Tyrosine kinase inhibitors can cause significant eye toxicity. Conclusions Given the prevalence of new tyrosine kinase inhibitor therapies and the complexity of possible pathogenesis of ocular pathology, oncology nurses can appreciate the occurrence of ocular toxicities and the role of nursing in the management of these problems. Implications for Nursing Knowledge of the risk factors and etiology of ocular toxicity of targeted cancer therapies can guide nursing assessment, enhance patient education, and improve care management. Including a review of eye symptoms and vision issues in nursing assessment can enhance early detection and treatment of ocular toxicity. PMID:26906134

  8. [Kinase inhibitors and their resistance].

    PubMed

    Togashi, Yosuke; Nishio, Kazuto

    2015-08-01

    Kinase cascades are involved in all stages of tumorigenesis through modulation of transformation and differentiation, cell-cycle progression, and motility. Advances in molecular targeted drug development allow the design and synthesis of inhibitors targeting cancer-associated signal transduction pathways. Potent selective inhibitors with low toxicity can benefit patients especially with several malignancies harboring an oncogenic driver addictive signal. This article evaluates information on solid tumor-related kinase signals and inhibitors, including receptor tyrosine kinase or serine/threonine kinase signals that lead to successful application in clinical settings. In addition, the resistant mechanisms to the inhibitors is summarized. PMID:26281685

  9. Targeting cancer with kinase inhibitors

    PubMed Central

    Gross, Stefan; Rahal, Rami; Stransky, Nicolas; Lengauer, Christoph; Hoeflich, Klaus P.

    2015-01-01

    Kinase inhibitors have played an increasingly prominent role in the treatment of cancer and other diseases. Currently, more than 25 oncology drugs that target kinases have been approved, and numerous additional therapeutics are in various stages of clinical evaluation. In this Review, we provide an in-depth analysis of activation mechanisms for kinases in cancer, highlight recent successes in drug discovery, and demonstrate the clinical impact of selective kinase inhibitors. We also describe the substantial progress that has been made in designing next-generation inhibitors to circumvent on-target resistance mechanisms, as well as ongoing strategies for combining kinase inhibitors in the clinic. Last, there are numerous prospects for the discovery of novel kinase targets, and we explore cancer immunotherapy as a new and promising research area for studying kinase biology. PMID:25932675

  10. The mixed lineage kinase-3 inhibitor URMC-099 improves therapeutic outcomes for long-acting antiretroviral therapy.

    PubMed

    Zhang, Gang; Guo, Dongwei; Dash, Prasanta K; Araínga, Mariluz; Wiederin, Jayme L; Haverland, Nicole A; Knibbe-Hollinger, Jaclyn; Martinez-Skinner, Andrea; Ciborowski, Pawel; Goodfellow, Val S; Wysocki, Tadeusz A; Wysocki, Beata J; Poluektova, Larisa Y; Liu, Xin-Ming; McMillan, JoEllyn M; Gorantla, Santhi; Gelbard, Harris A; Gendelman, Howard E

    2016-01-01

    During studies to extend the half-life of crystalline nanoformulated antiretroviral therapy (nanoART) the mixed lineage kinase-3 inhibitor URMC-099, developed as an adjunctive neuroprotective agent was shown to facilitate antiviral responses. Long-acting ritonavir-boosted atazanavir (nanoATV/r) nanoformulations co-administered with URMC-099 reduced viral load and the numbers of HIV-1 infected CD4+ T-cells in lymphoid tissues more than either drug alone in infected humanized NOD/SCID/IL2Rγc-/- mice. The drug effects were associated with sustained ART depots. Proteomics analyses demonstrated that the antiretroviral responses were linked to affected phagolysosomal storage pathways leading to sequestration of nanoATV/r in Rab-associated recycling and late endosomes; sites associated with viral maturation. URMC-099 administered with nanoATV induced a dose-dependent reduction in HIV-1p24 and reverse transcriptase activity. This drug combination offers a unique chemical marriage for cell-based viral clearance. From the Clinical Editor: Although successful in combating HIV-1 infection, the next improvement in antiretroviral therapy (nanoART) would be to devise long acting therapy, such as intra-cellular depots. In this report, the authors described the use of nanoformulated antiretroviral therapy given together with the mixed lineage kinase-3 inhibitor URMC-099, and showed that this combination not only prolonged drug half-life, but also had better efficacy. The findings are hoped to be translated into the clinical setting in the future. PMID:26472049

  11. Philadelphia chromosome-positive leukemia stem cells in acute lymphoblastic leukemia and tyrosine kinase inhibitor therapy

    PubMed Central

    Thomas, Xavier

    2012-01-01

    Leukemia stem cells (LSCs), which constitute a minority of the tumor bulk, are functionally defined on the basis of their ability to transfer leukemia into an immunodeficient recipient animal. The presence of LSCs has been demonstrated in acute lymphoblastic leukemia (ALL), of which ALL with Philadelphia chromosome-positive (Ph+). The use of imatinib, a tyrosine kinase inhibitor (TKI), as part of front-line treatment and in combination with cytotoxic agents, has greatly improved the proportions of complete response and molecular remission and the overall outcome in adults with newly diagnosed Ph+ ALL. New challenges have emerged with respect to induction of resistance to imatinib via Abelson tyrosine kinase mutations. An important recent addition to the arsenal against Ph+ leukemias in general was the development of novel TKIs, such as nilotinib and dasatinib. However, in vitro experiments have suggested that TKIs have an antiproliferative but not an antiapoptotic or cytotoxic effect on the most primitive ALL stem cells. None of the TKIs in clinical use target the LSC. Second generation TKI dasatinib has been shown to have a more profound effect on the stem cell compartment but the drug was still unable to kill the most primitive LSCs. Allogeneic stem cell transplantation (SCT) remains the only curative treatment available for these patients. Several mechanisms were proposed to explain the resistance of LSCs to TKIs in addition to mutations. Hence, TKIs may be used as a bridge to SCT rather than monotherapy or combination with standard chemotherapy. Better understanding the biology of Ph+ ALL will open new avenues for effective management. In this review, we highlight recent findings relating to the question of LSCs in Ph+ ALL. PMID:22993661

  12. Early switch in tyrosine kinase inhibitor therapy for patients with chronic myeloid leukemia: An emerging clinical question.

    PubMed

    Sweet, Kendra; Pinilla-Ibarz, Javier

    2016-07-01

    Response to frontline BCR-ABL1-targeted tyrosine kinase inhibitor (TKI) therapy is associated with an improved prognosis for patients with chronic myeloid leukemia (CML). Accordingly, the National Comprehensive Cancer Network (NCCN) and European LeukemiaNet (ELN) recommend the use of specific response milestones (eg, BCR-ABL1≤10% on the International Scale at 3 months) to assess treatment success and inform follow-up care, including potentially switching to another TKI therapy. However, prior to any treatment change, the potential benefits and risks of each TKI and the goals of the patient must be considered. Here we review current NCCN and ELN response recommendations for patients with CML, highlight the impact of early responses on long-term prognosis, and discuss several reasons patients may consider a switch in TKI therapy. We also review completed and ongoing clinical studies involving a switch in frontline therapy for patients with CML, including those with a treatment-free remission phase. PMID:27262540

  13. Chronic Myeloid Leukemia in the Era of Tyrosine Kinase Inhibitors: An Evolving Paradigm of Molecularly Targeted Therapy.

    PubMed

    Ali, Mohamed A M

    2016-08-01

    Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm, characterized by the unrestrained expansion of pluripotent hematopoietic stem cells. CML was the first malignancy in which a unique chromosomal abnormality was identified and a pathophysiologic association was suggested. The hallmark of CML is a reciprocal chromosomal translocation between the long arms of chromosomes 9 and 22, t(9; 22)(q34; q11), creating a derivative 9q+ and a shortened 22q-. The latter, known as the Philadelphia (Ph) chromosome, harbors the breakpoint cluster region-abelson (BCR-ABL) fusion gene, encoding the constitutively active BCR-ABL tyrosine kinase that is necessary and sufficient for initiating CML. The successful implementation of tyrosine kinase inhibitors (TKIs) for the treatment of CML remains a flagship for molecularly targeted therapy in cancer. TKIs have changed the clinical course of CML; however, some patients nonetheless demonstrate primary or secondary resistance to such therapy and require an alternative therapeutic strategy. Therefore, the assessment of early response to treatment with TKIs has become an important tool in the clinical monitoring of CML patients. Although mutations in the BCR-ABL have proven to be the most prominent mechanism of resistance to TKIs, other mechanisms-either rendering the leukemic cells still dependent on BCR-ABL activity or supporting oncogenic properties of the leukemic cells independent of BCR-ABL signaling-have been identified. This article provides an overview of the current understanding of CML pathogenesis; recommendations for diagnostic tools, treatment strategies, and management guidelines; and highlights the BCR-ABL-dependent and -independent mechanisms that contribute to the development of resistance to TKIs. PMID:27220498

  14. Structure-based design, discovery and development of checkpoint kinase inhibitors as potential anti-cancer therapies

    PubMed Central

    Matthews, Thomas P; Jones, Alan M; Collins, Ian

    2014-01-01

    Introduction Checkpoint kinase inhibitors offer the promise of enhancing the effectiveness of widely prescribed cancer chemotherapies and radiotherapy by inhibiting the DNA damage response, as well as the potential for single agent efficacy. Areas covered This article surveys structural insights into the checkpoint kinases CHK1 and CHK2 that have been exploited to enhance the selectivity and potency of small molecule inhibitors. The use of mechanistic cellular assays to guide the optimisation of inhibitors is reviewed. The status of the current clinical candidates and emerging new clinical contexts for CHK1 and CHK2 inhibitors are discussed, including the prospects for single agent efficacy. Expert opinion Protein bound water molecules play key roles in structural features that can be targeted to gain high selectivity for either enzyme. The results of early phase clinical trials of checkpoint inhibitors have been mixed, but significant progress has been made in testing the combination of CHK1 inhibitors with genotoxic chemotherapy. Second generation CHK1 inhibitors are likely to benefit from increased selectivity and oral bioavailability. While the optimum therapeutic context for CHK2 inhibition remains unclear, the emergence of single agent preclinical efficacy for CHK1 inhibitors in specific tumour types exhibiting constitutive replication stress represents exciting progress in exploring the therapeutic potential of these agents. PMID:23594139

  15. Risk stratification of chromosomal abnormalities in chronic myelogenous leukemia in the era of tyrosine kinase inhibitor therapy.

    PubMed

    Wang, Wei; Cortes, Jorge E; Tang, Guilin; Khoury, Joseph D; Wang, Sa; Bueso-Ramos, Carlos E; DiGiuseppe, Joseph A; Chen, Zi; Kantarjian, Hagop M; Medeiros, L Jeffrey; Hu, Shimin

    2016-06-01

    Clonal cytogenetic evolution with additional chromosomal abnormalities (ACAs) in chronic myelogenous leukemia (CML) is generally associated with decreased response to tyrosine kinase inhibitor (TKI) therapy and adverse survival. Although ACAs are considered as a sign of disease progression and have been used as one of the criteria for accelerated phase, the differential prognostic impact of individual ACAs in CML is unknown, and a classification system to reflect such prognostic impact is lacking. In this study, we aimed to address these questions using a large cohort of CML patients treated in the era of TKIs. We focused on cases with single chromosomal changes at the time of ACA emergence and stratified the 6 most common ACAs into 2 groups: group 1 with a relatively good prognosis including trisomy 8, -Y, and an extra copy of Philadelphia chromosome; and group 2 with a relatively poor prognosis including i(17)(q10), -7/del7q, and 3q26.2 rearrangements. Patients in group 1 showed much better treatment response and survival than patients in group 2. When compared with cases with no ACAs, ACAs in group 2 conferred a worse survival irrelevant to the emergence phase and time. In contrast, ACAs in group 1 had no adverse impact on survival when they emerged from chronic phase or at the time of CML diagnosis. The concurrent presence of 2 or more ACAs conferred an inferior survival and can be categorized into the poor prognostic group. PMID:27006386

  16. Managing side effects of tyrosine kinase inhibitor therapy to optimize adherence in patients with chronic myeloid leukemia: the role of the midlevel practitioner.

    PubMed

    Cornelison, Megan; Jabbour, Elias J; Welch, Mary Alma

    2012-01-01

    In the last decade, the development of imatinib, a tyrosine kinase inhibitor, has brought about unprecedented change in the way newly diagnosed, chronic-phase chronic myeloid leukemia patients are treated. Two next-generation tyrosine kinase inhibitors, nilotinib and dasatinib, were initially indicated for imatinib-resistant or imatinib-intolerant chronic myeloid leukemia patients and recently received approval from the Food and Drug Administration for treatment of newly diagnosed, chronic-phase chronic myeloid leukemia patients. In comparison with the previous standards of care, benefits with these three tyrosine kinase inhibitors have included more rapid response rates, increased survival, and fewer side effects. The improved long-term outcomes have altered the approach to management of chronic myeloid leukemia from a progressive fatal disease with a poor prognosis to a chronic condition similar to diabetes or hypertension. Prolonged survival increases the need for patient education, support, monitoring, and assistance with adverse event management. Even low-grade side effects can adversely affect patients' quality of life and, therefore, require prompt attention to prevent long-term complications or suboptimal outcomes. New evidence has indicated that patient adherence to tyrosine kinase inhibitor therapy is essential to successful treatment. Midlevel practitioners can help to optimize outcomes by educating patients regarding the importance of adherence, performing regular monitoring, helping patients to understand their test results, and aggressively managing treatment-related side effects. PMID:22244674

  17. Receptor Tyrosine Kinase and Tyrosine Kinase Inhibitors

    PubMed Central

    Mirshafiey, Abbas; Ghalamfarsa, Ghasem; Asghari, Babak

    2014-01-01

    Receptor tyrosine kinases (RTKs) are essential components of signal transduction pathways that mediate cell-to-cell communication and their function as relay points for signaling pathways. They have a key role in numerous processes that control cellular proliferation and differentiation, regulate cell growth and cellular metabolism, and promote cell survival and apoptosis. Recently, the role of RTKs including TCR, FLT-3, c-Kit, c-Fms, PDGFR, ephrin, neurotrophin receptor, and TAM receptor in autoimmune disorder, especially rheumatoid arthritis and multiple sclerosis has been suggested. In multiple sclerosis pathogenesis, RTKs and their tyrosine kinase enzymes are selective important targets for tyrosine kinase inhibitor (TKI) agents. TKIs, compete with the ATP binding site of the catalytic domain of several tyrosine kinases, and act as small molecules that have a favorable safety profile in disease treatment. Up to now, the efficacy of TKIs in numerous animal models of MS has been demonstrated, but application of these drugs in human diseases should be tested in future clinical trials. PMID:25337443

  18. Structural characterization of inhibitor complexes with checkpoint kinase 2 (Chk2), a drug target for cancer therapy

    SciTech Connect

    Lountos, George T.; Jobson, Andrew G.; Tropea, Joseph E.; Self, Christopher R.; Zhang, Guangtao; Pommier, Yves; Shoemaker, Robert H.; Waugh, David S.

    2012-01-20

    Chk2 (checkpoint kinase 2) is a serine/threonine kinase that participates in a series of signaling networks responsible for maintaining genomic integrity and responding to DNA damage. The development of selective Chk2 inhibitors has recently attracted much interest as a means of sensitizing cancer cells to current DNA-damaging agents used in the treatment of cancer. Additionally, selective Chk2 inhibitors may reduce p53-mediated apoptosis in normal tissues, thereby helping to mitigate adverse side effects from chemotherapy and radiation. Thus far, relatively few selective inhibitors of Chk2 have been described and none have yet progressed into clinical trials. Here, we report crystal structures of the catalytic domain of Chk2 in complex with a novel series of potent and selective small molecule inhibitors. These compounds exhibit nanomolar potencies and are selective for Chk2 over Chk1. The structures reported here elucidate the binding modes of these inhibitors to Chk2 and provide information that can be exploited for the structure-assisted design of novel chemotherapeutics.

  19. Safety of a second-generation tyrosine kinase inhibitor and novel targeted therapy for the treatment of a patient with chronic myeloid leukemia and multiple myeloma.

    PubMed

    Katzel, Jed A; Lee-Ma, Annette; Vesole, David H

    2015-09-01

    The prevalence of chronic myeloid leukemia and multiple myeloma has increased in recent years partly because of an improved therapeutic armamentarium for both conditions. Likewise, understanding the complexity inherent in designing combination treatment strategies will become increasingly prescient in the coming years. We describe, to the best of our knowledge, the first reported patient to be treated with second-generation tyrosine kinase inhibitor therapy while on novel therapy for myeloma. The combination was well tolerated and effective for the treatment of chronic myeloid leukemia and concurrent myeloma. PMID:26111050

  20. [Side effect management of tyrosine kinase inhibitors in urology : Hypertension].

    PubMed

    Sikic, D; Meidenbauer, N; Lieb, V; Keck, B

    2016-07-01

    Tyrosine kinase inhibitors like sunitinib, sorafenib, pazopanib or axintinib are regarded the standard of care in the systemic therapy of metastatic renal cell carcinoma. However, the many side effects associated with this therapy pose challenges for the treating physician and the patient. This review offers an overview of the classification and the treatment of hypertension, which is one of the major side effects induced by all tyrosine kinase inhibitors, in order to improve treatment efficacy and patient compliance. PMID:27146871

  1. Neoadjuvant and adjuvant epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) therapy for lung cancer

    PubMed Central

    Zhai, Haoran; Zhong, Wenzhao; Yang, Xuening

    2015-01-01

    The Lung Adjuvant Cisplatin Evaluation (LACE) meta-analysis and the meta-analysis of individual participant data reported by non-small cell lung cancer (NSCLC) Meta-analysis Collaborative Group in neo-adjuvant setting validated respectively that adjuvant and neoadjuvant chemotherapy would significantly improve overall survival (OS) and recurrence-free survival for resectable NSCLC. However, chemotherapy has reached a therapeutic plateau. It has been confirmed that epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) targeting therapy provides a dramatic response to patients with advanced EGFR-mutation positive NSCLC. Researchers have paid more attention to exploring applications of TKIs to early resectable NSCLCs. Several studies on adjuvant TKI treatment concluded its safety and feasibility. But there existed certain limitations of these studies as inference factors to interpret data accurately: the BR19 study recruited patients among which almost 52% had stage IB and only 15 (3.0%, 15/503) had been confirmed with EGFR-mutant type; retrospective studies performed at Memorial Sloan Kettering Cancer Center (MSKCC) selected EGFR mutant-type NSCLC patients but couldn’t avoid inherent defects inside retrospective researches; the RADIANT study revised endpoints from targeting at EGFR immunohistochemistry (IHC)+ and/or fluorescence in situ hybridization (FISH)+ mutation to only EGFR IHC+ mutation, leading to selective bias; despite that the SELECT study validated efficacy of adjuvant TKI and second round of TKI after resistance occurred, a single-arm clinical trial is not that persuasive in the absence of comparison with chemotherapy. Taking all these limitations into account, CTONG1104 in China and IMPACT in Japan have been conducted and recruiting patients to offer higher level of evidences to explore efficacy of preoperative TKI therapy for early resectable EGFR mutation positive NSCLC patients (confirmed by pathological results of tumor tissue or

  2. Activity-based kinase profiling of approved tyrosine kinase inhibitors.

    PubMed

    Kitagawa, Daisuke; Yokota, Koichi; Gouda, Masaki; Narumi, Yugo; Ohmoto, Hiroshi; Nishiwaki, Eiji; Akita, Kensaku; Kirii, Yasuyuki

    2013-02-01

    The specificities of nine approved tyrosine kinase inhibitors (imatinib, dasatinib, nilotinib, gefitinib, erlotinib, lapatinib, sorafenib, sunitinib, and pazopanib) were determined by activity-based kinase profiling using a large panel of human recombinant active kinases. This panel consisted of 79 tyrosine kinases, 199 serine/threonine kinases, three lipid kinases, and 29 disease-relevant mutant kinases. Many potential targets of each inhibitor were identified by kinase profiling at the K(m) for ATP. In addition, profiling at a physiological ATP concentration (1 mm) was carried out, and the IC(50) values of the inhibitors against each kinase were compared with the estimated plasma-free concentration (calculated from published pharmacokinetic parameters of plasma C(trough) and C(max) values). This analysis revealed that the approved kinase inhibitors were well optimized for their target kinases. This profiling also implicates activity at particular off-target kinases in drug side effects. Thus, large-scale kinase profiling at both K(m) and physiological ATP concentrations could be useful in characterizing the targets and off-targets of kinase inhibitors. PMID:23279183

  3. Tyrosine kinase inhibitors and the thyroid.

    PubMed

    Sherman, Steven I

    2009-12-01

    Protein tyrosine kinase inhibitors (TKIs) have emerged as significant targets for novel cancer therapies. For patients with differentiated or medullary carcinomas unresponsive to conventional treatments, multiple novel therapies primarily targeting angiogenesis have entered clinical trials. Partial response rates up to 30% have been reported in single-agent studies, but prolonged disease stabilisation is more commonly seen. The most successful agents target the vascular endothelial growth factor receptors. Sorafenib and sunitinib have had promising preliminary results reported and are being used selectively for patients who do not qualify for clinical trials. Treatment for patients with metastatic or advanced thyroid carcinoma now emphasises clinical trial opportunities for novel agents with considerable promise. Adverse effects on thyroid function and thyroid hormone metabolism have also been seen with several TKIs, necessitating prospective thyroid function testing for all patients starting therapy. PMID:19942148

  4. The Evolving Role of Maintenance Therapy Using Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors (EGFR TKIs) in the Management of Advanced Non-Small-Cell Lung Cancer

    PubMed Central

    Huang, Chao H.; Powers, Benjamin C.

    2012-01-01

    The epidermal growth factor receptor (EGFR) plays an important role in the development of many cancers, including non-small cell lung cancer. Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) are a class of novel biologically-targeted agents widely used in the management of recurrent non-small cell lung cancer. Erlotinib, one of the EGFR TKIs, is currently FDA approved in second and third line therapy. However, recent studies showed that erlotinib is also effective as maintenance therapy after initial chemotherapy, improving disease free survival and possibly overall survival. Our current understanding of erlotinib’s mechanism of action, with the discovery that EGFR mutation confers higher response rate, has propelled this agent into the first line setting. Advances in molecular testing and clinical research of this agent and other agents in this class will eventually change the way we utilize EGFR TKIs in the near future. PMID:22550402

  5. The relationship between tyrosine kinase inhibitor therapy and overall survival in patients with non-small cell lung cancer carrying EGFR mutations

    PubMed Central

    Suzuki, Hidekazu; Hirashima, Tomonori; Okamoto, Norio; Yamadori, Tadahiro; Tamiya, Motohiro; Morishita, Naoko; Shiroyama, Takayuki; Otsuka, Tomoyuki; Kitai, Kanako; Kawase, Ichiro

    2013-01-01

    For patients with epidermal growth factor receptor (EGFR) mutation-positive lung cancer, the relationship between the dose or duration of treatment with tyrosine kinase inhibitor (TKI) and overall survival remains unclear. Here, we analyzed clinical data of 39 patients who were diagnosed with EGFR mutation-positive non-small cell lung cancer and treated with TKI, but subsequently died. Several parameters were measured in this study: overall survival; first, second, and overall TKI therapy durations; first TKI intensity (actual dose/normal dose); and TKI rate (overall TKI therapy duration/overall survival). The response rate to TKI therapy was 50%, and the median survival was 553 days. After TKI therapy failed, 38.5% patients were re-challenged with TKI. We observed a moderate relationship [r = 0.534, 95% confidential interval (CI) = 0.263 to 0.727, P < 0.001] between overall TKI therapy duration and overall survival. However, we found no relationship between overall survival and first TKI intensity (r = 0.073, 95% CI = -0.380 to 0.247, P = 0.657) or TKI rate (r = 0.0345, 95% CI = -0.284 to 0.346, P = 0.835). Non-small cell lung cancer patients with mutation-positive tumors remained on TKI therapy for, on average, 33% of the overall survival time. These findings suggest that patients with EGFR mutation-positive tumors should not stick to using TKIs. PMID:23237215

  6. Histone H3 phosphorylation in GBM: a new rational to guide the use of kinase inhibitors in anti-GBM therapy.

    PubMed

    Pacaud, Romain; Cheray, Mathilde; Nadaradjane, Arulraj; Vallette, François M; Cartron, Pierre-François

    2015-01-01

    Histones post-translational modifications (PTMs) are crucial components of diverse processes that modulate chromatin. Among the histones PTMs, the histones phosphorylation appears such crucial since it plays a significant role into DNA repair structure, transcription and chromatin compaction during cell division and apoptosis. However, little is known about the prognostic value of the histone phosphorylation in human cancer. This point could be considerate such as an important gap in anti-cancer therapy since the use of adequate kinase inhibitors could remedy to the aberrant histone phosphorylation associated with a poor prognosis factor. To remedy at this situation, we analyzed the phosphorylation level of histone H3 at the residues T3, T6, S10, S28, Y41 and T45 in a collection of 42 glioblastoma multiformes (GBM). Our data indicated that the high level of pH3T6, pH3S10 and pH3Y41 are signatures associated with a poor prognosis of overall survival (OS) of GBM treated with the "temozolomide and irradiation standard" treatment of GBM (named TMZ+Irad treatment). Our data also showed that these signatures are correlated with the high activity of kinases already described as writers of the pH3T6, pH3S10 and pH3Y41 i.e. the PKC, Aurora-B and JAK2, respectively. Finally, our analysis revealed that the use of Enzastaurin, AZD1152, and AZD1480 abrogated the high level of pH3T6, pH3S10 and pH3Y41 while increasing the sensitivity to the "temozolomide and irradiation"-induced cell death. To conclude, it appears that this work provides biomarkers for patient stratification for a therapy including kinase inhibitors. PMID:25553095

  7. Histone H3 Phosphorylation in GBM: a New Rational to Guide the Use of Kinase Inhibitors in anti-GBM Therapy

    PubMed Central

    Pacaud, Romain; Cheray, Mathilde; Nadaradjane, Arulraj; Vallette, François M.; Cartron, Pierre-François

    2015-01-01

    Histones post-translational modifications (PTMs) are crucial components of diverse processes that modulate chromatin. Among the histones PTMs, the histones phosphorylation appears such crucial since it plays a significant role into DNA repair structure, transcription and chromatin compaction during cell division and apoptosis. However, little is known about the prognostic value of the histone phosphorylation in human cancer. This point could be considerate such as an important gap in anti-cancer therapy since the use of adequate kinase inhibitors could remedy to the aberrant histone phosphorylation associated with a poor prognosis factor. To remedy at this situation, we analyzed the phosphorylation level of histone H3 at the residues T3, T6, S10, S28, Y41 and T45 in a collection of 42 glioblastoma multiformes (GBM). Our data indicated that the high level of pH3T6, pH3S10 and pH3Y41 are signatures associated with a poor prognosis of overall survival (OS) of GBM treated with the "temozolomide and irradiation standard" treatment of GBM (named TMZ+Irad treatment). Our data also showed that these signatures are correlated with the high activity of kinases already described as writers of the pH3T6, pH3S10 and pH3Y41 i.e. the PKC, Aurora-B and JAK2, respectively. Finally, our analysis revealed that the use of Enzastaurin, AZD1152, and AZD1480 abrogated the high level of pH3T6, pH3S10 and pH3Y41 while increasing the sensitivity to the “temozolomide and irradiation”-induced cell death. To conclude, it appears that this work provides biomarkers for patient stratification for a therapy including kinase inhibitors. PMID:25553095

  8. Kinases inhibitors in lung cancer: From benchside to bedside.

    PubMed

    Singh, Pankaj Kumar; Singh, Harpreet; Silakari, Om

    2016-08-01

    Lung cancer still remains one of the major causes of cancer related mortality around the globe. Various different molecular targets have been discovered till date for targeting lung cancer. But not every new molecular target has a successfully designed inhibitor; moreover conventional chemotherapeutics have their own limitations such as toxicity and lack of selectivity. Thus, kinases still remain the most effective molecular target in lung cancer therapy. Also, once-shunned kinase inhibitors have recently acquired renewed interest after the development and approval of irreversible kinase inhibitors (such as afatinib) that form covalent bonds with cysteine (or other nucleophilic residues) in the ATP-binding pocket of the kinases. Irreversible kinase inhibitors have a number of potential advantages over conventional reversible kinase inhibitors including prolonged pharmacodynamics, suitability for rational design, high potency etc. This review reveals the current knowledge of all the chemical scaffolds, approved and/or investigational, utilized as inhibitors in lung cancer. It also explains the rationale of designing these along with possible interactions with their targets, biological data and possible problems associated with these inhibitors. PMID:27393082

  9. The impact of additional cytogenetic abnormalities at diagnosis and during therapy with tyrosine kinase inhibitors in Chronic Myeloid Leukaemia

    PubMed Central

    Crisan, AM; Coriu, D; Arion, C; Colita, A; Jardan, C

    2015-01-01

    Background: Chronic Myeloid Leukemia’s (CML) treatment was optimized since the development of tyrosine kinase inhibitors (TKI) and an increased overall survival during TKI was noticed. During the TKI era, protocols for assessing response and resistance to treatment were developed. Additional chromosomal abnormalities (ACAs) are strongly associated with disease progression but their prognostic impact and influence on treatment response are yet to be defined. The aim of this study was to analyze the impact of ACAs on time to achieve complete cytogenetic response (CCyR), treatment and overall survival. Materials and methods: Since 2005 until 2013, the data from the Hematology and Bone Marrow Transplantation Department of Fundeni Clinical Institute was collected. In this observational retrospective single centre study, 28 CML patients with ACAs at diagnosis and during TKI treatment were included. Results: From ACAs at diagnosis group, the most frequent major route ACAs were trisomy 8, trisomy 19 and second Philadelphia (Ph) chromosome and the most frequent minor route ACAs were monosomies and structural abnormalities (inversions and translocations). From the ACAs during the TKI group, the most frequent major route cytogenetic abnormalities in Ph positive and negative cells were trisomy 8, trisomy 19 and second Ph chromosome and the most frequent minor route cytogenetic abnormalities in Ph positive and negative cells were marker chromosomes and structural abnormalities (inversions, translocations and dicentric chromosomes). Conclusions: In both groups, the time to CCyR was longer and long-term results were inferior in comparison with standard patients but the differences were not significant and in accordance to published data. The 12 months follow-up after the study’s end showed that 26 patients were alive and in long-term CCyR and 2 deaths were reported. Abbreviations: CML = Chronic Myeloid Leukemia, BCR-ABL1 = Break Cluster Region - Abelson gene, TKI = tyrosine

  10. Targeted molecular therapy of head and neck squamous cell carcinoma with the tyrosine kinase inhibitor vandetanib in a mouse model

    PubMed Central

    Sano, Daisuke; Fooshee, David R.; Zhao, Mei; Andrews, Genevieve A.; Frederick, Mitchell J.; Galer, Chad; Milas, Zvonimir L.; Morrow, Phuong Khanh H.; Myers, Jeffrey N.

    2010-01-01

    Background We investigated the effects of vandetanib, an inhibitor of vascular endothelial growth factor receptor 2 (VEGFR-2) and epidermal growth factor receptor (EGFR), alone and in combination with paclitaxel in an orthotopic mouse model of human head and neck squamous cell carcinoma (HNSCC). Methods The in vitro effects of vandetanib (ZACTIMA™) were assessed in two HNSCC cell lines on cell growth, apoptosis, and receptor and downstream signaling morecule expression and phosphorylation levels. We assessed in vivo effects of vandetanib and/or paclitaxel by measuring tumor cell apoptosis, endothelial cell apoptosis, microvessel density, tumor size, and animal survival. Results In vitro, vandetanib inhibited the phosphorylation of EGFR and its downstream targets in HNSCC cells and inhibited proliferation and induced apoptosis of HNSCC cells and extended survival and inhibited tumor growth in nude mice orthotopically injected with human HNSCC. Conclusion Vandetanib has the potential to be a novel molecular targeted therapy for HNSCC. PMID:20629091

  11. HS-133, a novel fluorescent phosphatidylinositol 3-kinase inhibitor as a potential imaging and anticancer agent for targeted therapy

    PubMed Central

    Lee, Hyunseung; Son, Mi Kwon; Yun, Sun-Mi; Ahn, Sung-Hoon; Lee, Kyeong-Ryoon; Lee, Soyoung; Kim, Donghee; Hong, Sungwoo; Hong, Soon-Sun

    2014-01-01

    As PI3K/Akt signaling is frequently deregulated in a wide variety of human tumors, PI3K inhibitors are an emerging class of drugs for cancer treatment. The monitoring of the drug behavior and distribution in the biological system can play an important role for targeted therapy and provide information regarding the response or resistance to available therapies. In this study, therefore, we have developed a family of xanthine derivatives, serving as a dual function exhibiting fluorescence, as well as inhibiting PI3K. Among them, HS-133 showed anti-proliferative effects and was monitored for its subcellular localization by a fluorescence microscopy. HS-133 suppressed the PI3K/Akt pathway and induced cell cycle arrest at the G0/G1 phase. The induction of apoptosis by HS-133 was confirmed by the increases of the cleaved PARP, caspase-3, and caspase-8. Furthermore, HS-133 decreased the protein expression of HIF-1α and VEGF, as well inhibited the tube formation and migration of the human umbilical vein endothelial cells. In vivo imaging also showed that tumors were visualized fluorescent with HS-133, and its oral administration significantly inhibited the growth of tumor in SkBr3 mouse xenograft models. Thus, we suggest that HS-133 may be used as a fluorescent anticancer agent against human breast cancer. PMID:25338206

  12. Old Tyrosine Kinase Inhibitors and Newcomers in Gastrointestinal Cancer Treatment.

    PubMed

    Erika, Giordani; Federica, Zoratto; Martina, Strudel; Anselmo, Papa; Luigi, Rossi; Marina, Minozzi; Davide, Caruso; Eleonora, Zaccarelli; Monica, Verrico; Silverio, Tomao

    2016-01-01

    Gastrointestinal cancer treatment is based more on molecular biology that has provided increasing knowledge about cancer pathogenesis on which targeted therapy is being developed. Precisely, targeted therapy is defined as a "type of treatment that uses drugs, such as monoclonal antibodies or tyrosine kinase inhibitors, to identify and attack specific cancer cells". Nowadays, the United States Food and Drug Administration has approved many targeted therapies for gastrointestinal cancer treatment, as many are in various phases of development as well. In a previous review we discussed the main monoclonal antibodies used and studied in gastrointestinal cancer. In addition to monoclonal antibodies, tyrosine kinase inhibitors represent another class of targeted therapy and following the approval of imatinib for gastrointestinal stromal tumours, other tyrosine kinase inhibitors have been approved for gastrointestinal cancers treatment such as sunitinib, regoragenib, sorafenib and erlotinib. Moving forward, the purpose of this review is to focus on the efficacy data of main tyrosine kinase inhibitors commonly used in the personalized treatment of each gastrointestinal tumour and to provide a comprehensive overview about experimental targeted therapies ongoing in this setting. PMID:26278713

  13. Structural investigation of protein kinase C inhibitors

    NASA Technical Reports Server (NTRS)

    Barak, D.; Shibata, M.; Rein, R.

    1991-01-01

    The phospholipid and Ca2+ dependent protein kinase (PKC) plays an essential role in a variety of cellular events. Inhibition of PKC was shown to arrest growth in tumor cell cultures making it a target for possible antitumor therapy. Calphostins are potent inhibitors of PKC with high affinity for the enzyme regulatory site. Structural characteristics of calphostins, which confer the inhibitory activity, are investigated by comparing their optimized structures with the existing models for PKC activation. The resulting model of inhibitory activity assumes interaction with two out of the three electrostatic interaction sites postulated for activators. The model shows two sites of hydrophobic interaction and enables the inhibitory activity of gossypol to be accounted for.

  14. Polo-like kinase inhibitors in hematologic malignancies.

    PubMed

    Talati, Chetasi; Griffiths, Elizabeth A; Wetzler, Meir; Wang, Eunice S

    2016-02-01

    Polo-like kinases (Plk) are key regulators of the cell cycle and multiple aspects of mitosis. Two agents that inhibit the Plk signaling pathway have shown promising activity in patients with hematologic malignancies and are currently in phase III trials. Volasertib is a Plk inhibitor under evaluation combined with low-dose cytarabine in older patients with acute myeloid leukemia (AML) ineligible for intensive induction therapy. Rigosertib, a dual inhibitor of the Plk and phosphatidylinositol 3-kinase pathways, is under investigation in patients with myelodysplastic syndrome (MDS) who have failed azacitidine or decitabine treatment. The prognosis for patients with AML, who are ineligible for intensive induction therapy, and for those with MDS refractory/relapsed after a hypomethylating agent, remains poor. Novel approaches, such as Plk inhibitors, are urgently needed for these patients. Here, we provide a comprehensive overview of the current state of development of Plk inhibitors for the treatment of hematologic malignancies. PMID:26597019

  15. Pharmacological inhibitors of cyclin-dependent kinases.

    PubMed

    Knockaert, Marie; Greengard, Paul; Meijer, Laurent

    2002-09-01

    Cyclin-dependent kinases (CDKs) regulate the cell division cycle, apoptosis, transcription and differentiation in addition to functions in the nervous system. Deregulation of CDKs in various diseases has stimulated an intensive search for selective pharmacological inhibitors of these kinases. More than 50 inhibitors have been identified, among which >20 have been co-crystallized with CDK2. These inhibitors all target the ATP-binding pocket of the catalytic site of the kinase. The actual selectivity of most known CDK inhibitors, and thus the underlying mechanism of their cellular effects, is poorly known. Pharmacological inhibitors of CDKs are currently being evaluated for therapeutic use against cancer, alopecia, neurodegenerative disorders (e.g. Alzheimer's disease, amyotrophic lateral sclerosis and stroke), cardiovascular disorders (e.g. atherosclerosis and restenosis), glomerulonephritis, viral infections (e.g. HCMV, HIV and HSV) and parasitic protozoa (Plasmodium sp. and Leishmania sp.). PMID:12237154

  16. Aurora Kinase Inhibitors: Current Status and Outlook

    PubMed Central

    Bavetsias, Vassilios; Linardopoulos, Spiros

    2015-01-01

    The Aurora kinase family comprises of cell cycle-regulated serine/threonine kinases important for mitosis. Their activity and protein expression are cell cycle regulated, peaking during mitosis to orchestrate important mitotic processes including centrosome maturation, chromosome alignment, chromosome segregation, and cytokinesis. In humans, the Aurora kinase family consists of three members; Aurora-A, Aurora-B, and Aurora-C, which each share a conserved C-terminal catalytic domain but differ in their sub-cellular localization, substrate specificity, and function during mitosis. In addition, Aurora-A and Aurora-B have been found to be overexpressed in a wide variety of human tumors. These observations led to a number of programs among academic and pharmaceutical organizations to discovering small molecule Aurora kinase inhibitors as anti-cancer drugs. This review will summarize the known Aurora kinase inhibitors currently in the clinic, and discuss the current and future directions. PMID:26734566

  17. Combined therapy with mutant-selective EGFR inhibitor and Met kinase inhibitor for overcoming erlotinib resistance in EGFR-mutant lung cancer.

    PubMed

    Nakagawa, Takayuki; Takeuchi, Shinji; Yamada, Tadaaki; Nanjo, Shigeki; Ishikawa, Daisuke; Sano, Takako; Kita, Kenji; Nakamura, Takahiro; Matsumoto, Kunio; Suda, Kenichi; Mitsudomi, Tetsuya; Sekido, Yoshitaka; Uenaka, Toshimitsu; Yano, Seiji

    2012-10-01

    Although the EGF receptor tyrosine kinase inhibitors (EGFR-TKI) erlotinib and gefitinib have shown dramatic effects against EGFR mutant lung cancer, patients become resistant by various mechanisms, including gatekeeper EGFR-T790M mutation, Met amplification, and HGF overexpression, thereafter relapsing. Thus, it is urgent to develop novel agents to overcome EGFR-TKI resistance. We have tested the effects of the mutant-selective EGFR-TKI WZ4002 and the mutant-selective Met-TKI E7050 on 3 EGFR mutant lung cancer cell lines resistant to erlotinib by different mechanisms: PC-9/HGF cells with an exon 19 deletion, H1975 with an L858R mutation, and HCC827ER with an exon 19 deletion, with acquired resistance to erlotinib because of HGF gene transfection, gatekeeper T790M mutation, and Met amplification, respectively. WZ4002 inhibited the growth of H1975 cells with a gatekeeper T790M mutation, but did not inhibit the growth of HCC827ER and PC-9/HGF cells. HGF triggered the resistance of H1975 cells to WZ4002, whereas E7050 sensitized HCC827ER, PC-9/HGF, and HGF-treated H1975 cells to WZ4002, inhibiting EGFR and Met phosphorylation and their downstream molecules. Combined treatment potently inhibited the growth of tumors induced in severe-combined immunodeficient mice by H1975, HCC827ER, and PC-9/HGF cells, without any marked adverse events. These therapeutic effects were associated with the inhibition of EGFR and Met phosphorylation in vivo. The combination of a mutant-selective EGFR-TKI and a Met-TKI was effective in suppressing the growth of erlotinib-resistant tumors caused by gatekeeper T790M mutation, Met amplification, and HGF overexpression. Further evaluations in clinical trials are warranted. PMID:22844075

  18. Do chronic myeloid leukemia patients with late "warning" responses benefit from "watch and wait" or switching therapy to a second generation tyrosine kinase inhibitor?

    PubMed

    García-Gutiérrez, Valentin; Puerta, Jose Manuel; Maestro, Begoña; Casado Montero, Luis Felipe; Muriel, Alfonso; Molina Hurtado, Jose Ramon; Perez-Encinas, Manuel; Moreno Romero, Maria Victoria; Suñol, Pere Barba; Sola Garcia, Ricardo; De Paz, Raquel; Ramirez Sanchez, Maria Jose; Osorio, Santiago; Mata Vazquez, Maria Isabel; Martinez López, Joaquin; Sastre, Jose Luis; Portero, Maria de Los Angles; Bautista, Guiomar; Duran Nieto, Maria Soledad; Giraldo, Pilar; Jimenez Jambrina, Margarita; Burgaleta, Carmen; Ruiz Aredondo, Joaquin; Peñarrubia, Maria Jesús; Requena, Maria José; Fernández Valle, María Del Carmen; Calle, Carmen; Paz Coll, Antonio; Hernández-Rivas, Jose Ángel; Franco Osorio, Rafael; Cano, Pilar; Tallón Pérez, David; Fernández de la Mata, Margarita; Garrido, Pilar López; Steegmann, Juan Luis

    2014-11-01

    In the latest recommendations for the management of chronic-phase chronic myeloid leukemia suboptimal responses have been reclassified as "warning responses." In contrast to previous recommendations current guidance advises close monitoring without changing therapy. We have identified 198 patients treated with first-line imatinib, with a warning response after 12 months of treatment (patients with a complete cytogenetic response but no major molecular response [MMR]). One hundred and forty-six patients remained on imatinib, while 52 patients changed treatment to a second generation tyrosine kinase inhibitor (2GTKI). Changing therapy did not correlate with an increase in overall survival or progression-free survival. Nevertheless, a significant improvement was observed in the probability of a MMR: 24% vs. 42% by 12 months and 43% vs. 64% by 24 months (P = 0.002); as well as the probability of achieving a deep molecular responses (MR(4.5) ): 1% vs. 17% and 7% vs. 23% by 12 and 24 months, respectively (P = <0.001) .The treatment change to 2GTKI remained safe; however, we have observed a 19% of treatment discontinuation due to side effects. We have observed an improvement of molecular responses after changing treatment to 2GTKI in patients with late suboptimal response treated with imatinib first line. However, these benefits were not correlated with an improvement of progression free survival or overall survival. PMID:25059397

  19. Retrospective Analysis of the Safety and Efficacy of High-dose Interleukin-2 After Prior Tyrosine Kinase Inhibitor Therapy in Patients With Advanced Renal Cell Carcinoma

    PubMed Central

    Wong, Michael K. K.; Agarwal, Neeraj; Redman, Bruce G.; Logan, Theodore; Gao, Dexiang; Flaig, Thomas W.; Lewis, Karl; Poust, Jamie; Monk, Paul; Jarkowski, Anthony; Sendilnathan, Arun; Bolden, Marcus; Kuzel, Timothy M.; Olencki, Thomas

    2014-01-01

    Although tyrosine kinase inhibitors (TKI) are the most common first-line therapy for metastatic renal cell carcinoma, high-dose interleukin-2 (HD-IL2) remains the only agent that provides durable complete responses. The optimal sequence of these agents remains uncertain. This retrospective multi-institutional study examined the safety and efficacy of HD-IL2 following TKI therapy. After IRB approval at 7 HD-IL2 centers, data relating to patient, disease, and treatment characteristics among 40 consecutive patients with metastatic renal cell carcinoma who were treated with HD-IL2 after at least 1 prior TKI therapy were retrospectively collected. The most common cardiac adverse events were grade 3 hypotension and vascular leak syndrome. Six patients (15%) experienced other grade ≥3 cardiac adverse events. There were 2 treatment-related deaths due to congestive heart failure, occurring in 1 patient with short TKI to HD-IL2 interval and another patient with an abnormal baseline cardiac stress test. Best responses included 2 CRs (5%, duration 40+ and 62+ mo), 3 PRs (8%, duration 6, 11, and 24 mo), 13 SD (32%, median duration 12 mo), 20 PD (50%), and 2 not evaluable patients. Median overall survival was 22 months. Administration of HD-IL2 could be safe and effective after TKI therapy; however, careful selection of patients is critical. We recommend baseline cardiac risk factor assessment, screening with both cardiac stress test and echocardiogram, and allowing a TKI to HD-IL2 interval of at least 2 months. PMID:25075565

  20. Retrospective analysis of the safety and efficacy of high-dose interleukin-2 after prior tyrosine kinase inhibitor therapy in patients with advanced renal cell carcinoma.

    PubMed

    Lam, Elaine T; Wong, Michael K K; Agarwal, Neeraj; Redman, Bruce G; Logan, Theodore; Gao, Dexiang; Flaig, Thomas W; Lewis, Karl; Poust, Jamie; Monk, Paul; Jarkowski, Anthony; Sendilnathan, Arun; Bolden, Marcus; Kuzel, Timothy M; Olencki, Thomas

    2014-09-01

    Although tyrosine kinase inhibitors (TKI) are the most common first-line therapy for metastatic renal cell carcinoma, high-dose interleukin-2 (HD-IL2) remains the only agent that provides durable complete responses. The optimal sequence of these agents remains uncertain. This retrospective multi-institutional study examined the safety and efficacy of HD-IL2 following TKI therapy. After IRB approval at 7 HD-IL2 centers, data relating to patient, disease, and treatment characteristics among 40 consecutive patients with metastatic renal cell carcinoma who were treated with HD-IL2 after at least 1 prior TKI therapy were retrospectively collected. The most common cardiac adverse events were grade 3 hypotension and vascular leak syndrome. Six patients (15%) experienced other grade ≥3 cardiac adverse events. There were 2 treatment-related deaths due to congestive heart failure, occurring in 1 patient with short TKI to HD-IL2 interval and another patient with an abnormal baseline cardiac stress test. Best responses included 2 CRs (5%, duration 40+ and 62+ mo), 3 PRs (8%, duration 6, 11, and 24 mo), 13 SD (32%, median duration 12 mo), 20 PD (50%), and 2 not evaluable patients. Median overall survival was 22 months. Administration of HD-IL2 could be safe and effective after TKI therapy; however, careful selection of patients is critical. We recommend baseline cardiac risk factor assessment, screening with both cardiac stress test and echocardiogram, and allowing a TKI to HD-IL2 interval of at least 2 months. PMID:25075565

  1. Phosphorylated Epidermal Growth Factor Receptor on Tumor-Associated Endothelial Cells Is a Primary Target for Therapy with Tyrosine Kinase Inhibitors1

    PubMed Central

    Kuwai, Toshio; Nakamura, Toru; Sasaki, Takamitsu; Kim, Sun-Jin; Fan, Dominic; Villares, Gabriel J; Zigler, Maya; Wang, Hua; Bar-Eli, Menashe; Kerbel, Robert S; Fidler, Isaiah J

    2008-01-01

    We determined whether phosphorylated epidermal growth factor receptor (EGFR) expressed on tumor-associated endothelial cells is a primary target for therapy with EGFR tyrosine kinase inhibitors (TKIs). Human colon cancer cells SW620CE2 (parental) that do not express EGFR or human epidermal growth factor receptor 2 (HER2) but express transforming growth factor α (TGF-α) were transduced with a lentivirus carrying nontargeting small hairpin RNA (shRNA) or TGF-α shRNA. The cell lines were implanted into the cecum of nude mice. Two weeks later, treatment began with saline, 4-[R]-phenethylamino-6-[hydroxyl] phenyl-7H-pyrrolo [2,3-d]-pyrimidine (PKI166), or irinotecan. Endothelial cells in parental and nontargeting shRNA tumors expressed phosphorylated EGFR. Therapy with PKI166 alone or with irinotecan produced apoptosis of these endothelial cells and necrosis of the EGFR-negative tumors. Endothelial cells in tumors that did not express TGF-α did not express EGFR, and these tumors were resistant to treatment with PKI166. The response of neoplasms to EGFR antagonists has been correlated with EGFR mutations, HER2 expression, Akt activation, and EGFR gene copy number. Our present data using colon cancer cells that do not express EGFR or HER2 suggest that the expression of TGF-α by tumor cells leading to the activation of EGFR in tumor-associated endothelial cells is a major determinant for the susceptibility of neoplasms to therapy by specific EGFR-TKI. PMID:18472966

  2. Phosphorylated epidermal growth factor receptor on tumor-associated endothelial cells is a primary target for therapy with tyrosine kinase inhibitors.

    PubMed

    Kuwai, Toshio; Nakamura, Toru; Sasaki, Takamitsu; Kim, Sun-Jin; Fan, Dominic; Villares, Gabriel J; Zigler, Maya; Wang, Hua; Bar-Eli, Menashe; Kerbel, Robert S; Fidler, Isaiah J

    2008-05-01

    We determined whether phosphorylated epidermal growth factor receptor (EGFR) expressed on tumor-associated endothelial cells is a primary target for therapy with EGFR tyrosine kinase inhibitors (TKIs). Human colon cancer cells SW620CE2 (parental) that do not express EGFR or human epidermal growth factor receptor 2 (HER2) but express transforming growth factor alpha (TGF-alpha) were transduced with a lentivirus carrying nontargeting small hairpin RNA (shRNA) or TGF-alpha shRNA. The cell lines were implanted into the cecum of nude mice. Two weeks later, treatment began with saline, 4-[R]-phenethylamino-6-[hydroxyl] phenyl-7H-pyrrolo [2,3-D]-pyrimidine (PKI166), or irinotecan. Endothelial cells in parental and nontargeting shRNA tumors expressed phosphorylated EGFR. Therapy with PKI166 alone or with irinotecan produced apoptosis of these endothelial cells and necrosis of the EGFR-negative tumors. Endothelial cells in tumors that did not express TGF-alpha did not express EGFR, and these tumors were resistant to treatment with PKI166. The response of neoplasms to EGFR antagonists has been correlated with EGFR mutations, HER2 expression, Akt activation, and EGFR gene copy number. Our present data using colon cancer cells that do not express EGFR or HER2 suggest that the expression of TGF-alpha by tumor cells leading to the activation of EGFR in tumor-associated endothelial cells is a major determinant for the susceptibility of neoplasms to therapy by specific EGFR-TKI. PMID:18472966

  3. Characterization of irreversible kinase inhibitors by directly detecting covalent bond formation: a tool for dissecting kinase drug resistance.

    PubMed

    Klüter, Sabine; Simard, Jeffrey R; Rode, Haridas B; Grütter, Christian; Pawar, Vijaykumar; Raaijmakers, Hans C A; Barf, Tjeerd A; Rabiller, Matthias; van Otterlo, Willem A L; Rauh, Daniel

    2010-12-10

    Targeting protein kinases in cancer therapy with irreversible small-molecule inhibitors is moving to the forefront of kinase-inhibitor research and is thought to be an effective means of overcoming mutation-associated drug resistance in epidermal growth factor receptor kinase (EGFR). We generated a detection technique that allows direct measurements of covalent bond formation without relying on kinase activity, thereby allowing the straightforward investigation of the influence of steric clashes on covalent inhibitors in different resistant kinase mutants. The obtained results are discussed together with structural biology and biochemical studies of catalytic activity in both wild-type and gatekeeper mutated kinase variants to draw conclusions about the impact of steric hindrance and increased catalytic activity in drug-resistant kinase variants. PMID:21080395

  4. Impact of Treatment End Point Definitions on Perceived Differences in Long-Term Outcome With Tyrosine Kinase Inhibitor Therapy in Chronic Myeloid Leukemia

    PubMed Central

    Kantarjian, Hagop; O'Brien, Susan; Jabbour, Elias; Shan, Jenny; Ravandi, Farhad; Kadia, Tapan; Faderl, Stefan; Garcia-Manero, Guillermo; Borthakur, Gautam; Cortes, Jorge

    2011-01-01

    Purpose Different definitions of progression-free survival (PFS) and event-free survival (EFS) may result in perceived differences in outcomes with tyrosine kinase inhibitor (TKI) therapies in chronic myelogenous leukemia (CML). Patients and Methods We analyzed the outcome of 435 patients with early chronic-phase, Philadelphia chromosome–positive CML treated with imatinib (n = 281), nilotinib (n = 78), and dasatinib (n = 76) using definitions of PFS and EFS used in the International Randomized Study of Interferon Versus STI571 (IRIS), Evaluating Nilotinib Efficacy and Safety in Clinical Trials–Newly Diagnosed Patients (ENEST-nd), Dasatinib Versus Imatinib Study in Treatment-Naïve CML Patients (DASISION), and MD Anderson Cancer Center (MDACC) trials. Definitions for EFS-IRIS, time without progression in ENEST-nd, PFS-DASISION, and EFS-MDACC were as previously reported. The EFS-MDACC considered an event any instance of toxicity or death from any cause on or off therapy (if not counted before death as progression/event). Results Of the 435 patients, 123 (28%) were taken off TKI therapy (resistance/loss of response, n = 33; blastic phase on TKI therapy, n = 6; intolerance/toxicity, n = 29; other causes, n = 55). Thirty-three patients (7.6%) have died; eight patients died on TKI therapy, two patients died within 60 days of being off TKIs, and 23 patients died after being off TKIs for more than 60 days. Of the 33 deaths, 19 deaths (eight deaths on TKI, two deaths within 60 days, and nine deaths off for resistance/relapse/transformation) would be counted as progression/events on the IRIS/ENEST-nd/DASISION studies, whereas 14 deaths would be censored at time off TKI. On the basis of the four definitions used by IRIS, ENEST-nd, DASISION, and MDACC trials, the corresponding 5-year PFS/EFS rates were 96%, 90%, 89%, and 81%. Conclusion Uniform definitions of PFS and EFS are needed to compare the long-term efficacy and potential use of different TKIs in CML. PMID:21747082

  5. Front-Line and Salvage Therapies With Tyrosine Kinase Inhibitors and Other Treatments in Chronic Myeloid Leukemia

    PubMed Central

    Cortes, Jorge; Hochhaus, Andreas; Hughes, Timothy; Kantarjian, Hagop

    2011-01-01

    Chronic myeloid leukemia (CML) has been a model disease in the development of targeted therapies. After nearly 40 years of the recognition of the chromosomal abnormality that defines CML, specific therapy was developed, initially with imatinib mesylate, which has transformed our treatment algorithms and has changed the natural history of the disease. Today, most patients have the expectation of a favorable outcome when treated with standard-dose imatinib. However, a significant proportion of patients do not achieve the optimal desirable outcome. Effective salvage therapy followed the recognition of some of the most common mechanisms of resistance. More recently, the focus has turned to new areas of research and medical need, such as improving the front-line therapy to minimize the risk of resistance, to fight the most resistant mutant forms of BCR-ABL, and to eliminate minimal residual disease with the goal of achieving total elimination of the disease and treatment discontinuation. In this review, we analyze the current status of therapy of CML, and we discuss some of the most relevant clinical questions that we face today. PMID:21220597

  6. Protein kinase inhibitors against malignant lymphoma

    PubMed Central

    D’Cruz, Osmond J; Uckun, Fatih M

    2013-01-01

    Introduction Tyrosine kinases (TKs) are intimately involved in multiple signal transduction pathways regulating survival, activation, proliferation and differentiation of lymphoid cells. Deregulation or overexpression of specific oncogenic TKs is implicated in maintaining the malignant phenotype in B-lineage lymphoid malignancies. Several novel targeted TK inhibitors (TKIs) have recently emerged as active in the treatment of relapsed or refractory B-cell lymphomas that inhibit critical signaling pathways, promote apoptotic mechanisms or modulate the tumor microenvironment. Areas covered In this review, the authors summarize the clinical outcomes of newer TKIs in various B-cell lymphomas from published and ongoing clinical studies and abstracts from major cancer and hematology conferences. Expert opinion Multiple clinical trials have demonstrated that robust antitumor activity can be obtained with TKIs directed toward specific oncogenic TKs that are genetically deregulated in various subtypes of B-cell lymphomas. Clinical success of targeting TKIs is dependent upon on identifying reliable molecular and clinical markers associated with select cohorts of patients. Further understanding of the signaling pathways should stimulate the identification of novel molecular targets and expand the development of new therapeutic options and individualized therapies. PMID:23496343

  7. Endocrine side effects of broad-acting kinase inhibitors

    PubMed Central

    Lodish, Maya B.; Stratakis, Constantine A.

    2011-01-01

    Targeted therapy in oncology consists of drugs that specifically interfere with abnormal signaling pathways that are dysregulated in cancer cells. Tyrosine kinase inhibitors (TKIs) take advantage of unique oncogenes that are activated in certain types of cancer, and also target common mechanisms of growth, invasion, metastasis, and angiogenesis. However, many kinase inhibitors for cancer therapy are somewhat nonselective, and most have additional mechanisms of action at the cellular level which are not completely understood. The use of these agents has increased our knowledge of important side effects, of which the practicing clinician must be aware. Recently proposed endocrine-related side effects of these agents include alterations in thyroid function, bone metabolism, linear growth, gonadal function, fetal development, and glucose metabolism, and adrenal function. This review summarizes the most recent data on the endocrine side effects of TKIs. PMID:20603395

  8. KIDFamMap: a database of kinase-inhibitor-disease family maps for kinase inhibitor selectivity and binding mechanisms.

    PubMed

    Chiu, Yi-Yuan; Lin, Chih-Ta; Huang, Jhang-Wei; Hsu, Kai-Cheng; Tseng, Jen-Hu; You, Syuan-Ren; Yang, Jinn-Moon

    2013-01-01

    Kinases play central roles in signaling pathways and are promising therapeutic targets for many diseases. Designing selective kinase inhibitors is an emergent and challenging task, because kinases share an evolutionary conserved ATP-binding site. KIDFamMap (http://gemdock.life.nctu.edu.tw/KIDFamMap/) is the first database to explore kinase-inhibitor families (KIFs) and kinase-inhibitor-disease (KID) relationships for kinase inhibitor selectivity and mechanisms. This database includes 1208 KIFs, 962 KIDs, 55 603 kinase-inhibitor interactions (KIIs), 35 788 kinase inhibitors, 399 human protein kinases, 339 diseases and 638 disease allelic variants. Here, a KIF can be defined as follows: (i) the kinases in the KIF with significant sequence similarity, (ii) the inhibitors in the KIF with significant topology similarity and (iii) the KIIs in the KIF with significant interaction similarity. The KIIs within a KIF are often conserved on some consensus KIDFamMap anchors, which represent conserved interactions between the kinase subsites and consensus moieties of their inhibitors. Our experimental results reveal that the members of a KIF often possess similar inhibition profiles. The KIDFamMap anchors can reflect kinase conformations types, kinase functions and kinase inhibitor selectivity. We believe that KIDFamMap provides biological insights into kinase inhibitor selectivity and binding mechanisms. PMID:23193279

  9. KIDFamMap: a database of kinase-inhibitor-disease family maps for kinase inhibitor selectivity and binding mechanisms

    PubMed Central

    Chiu, Yi-Yuan; Lin, Chih-Ta; Huang, Jhang-Wei; Hsu, Kai-Cheng; Tseng, Jen-Hu; You, Syuan-Ren; Yang, Jinn-Moon

    2013-01-01

    Kinases play central roles in signaling pathways and are promising therapeutic targets for many diseases. Designing selective kinase inhibitors is an emergent and challenging task, because kinases share an evolutionary conserved ATP-binding site. KIDFamMap (http://gemdock.life.nctu.edu.tw/KIDFamMap/) is the first database to explore kinase-inhibitor families (KIFs) and kinase-inhibitor-disease (KID) relationships for kinase inhibitor selectivity and mechanisms. This database includes 1208 KIFs, 962 KIDs, 55 603 kinase-inhibitor interactions (KIIs), 35 788 kinase inhibitors, 399 human protein kinases, 339 diseases and 638 disease allelic variants. Here, a KIF can be defined as follows: (i) the kinases in the KIF with significant sequence similarity, (ii) the inhibitors in the KIF with significant topology similarity and (iii) the KIIs in the KIF with significant interaction similarity. The KIIs within a KIF are often conserved on some consensus KIDFamMap anchors, which represent conserved interactions between the kinase subsites and consensus moieties of their inhibitors. Our experimental results reveal that the members of a KIF often possess similar inhibition profiles. The KIDFamMap anchors can reflect kinase conformations types, kinase functions and kinase inhibitor selectivity. We believe that KIDFamMap provides biological insights into kinase inhibitor selectivity and binding mechanisms. PMID:23193279

  10. Illuminating the Molecular Mechanisms of Tyrosine Kinase Inhibitor Resistance for the FGFR1 Gatekeeper Mutation: The Achilles’ Heel of Targeted Therapy

    PubMed Central

    Sohl, Christal D.; Ryan, Molly R.; Luo, BeiBei; Frey, Kathleen M.; Anderson, Karen S.

    2015-01-01

    Human fibroblast growth factor receptors (FGFRs) 1–4 are a family of receptor tyrosine kinases that can serve as drivers of tumorigenesis. In particular, FGFR1 gene amplification has been implicated in squamous cell lung and breast cancers. Tyrosine kinase inhibitors (TKIs) targeting FGFR1, including AZD4547 and E3810 (Lucitanib), are currently in early phase clinical trials. Unfortunately, drug resistance limits the long-term success of TKIs, with mutations at the “gatekeeper” residue leading to tumor progression. Here we show the first structural and kinetic characterization of the FGFR1 gatekeeper mutation, V561M FGFR1. The V561M mutation confers a 38-fold increase in autophosphorylation achieved at least in part by a network of interacting residues forming a hydrophobic spine to stabilize the active conformation. Moreover, kinetic assays established that the V561M mutation confers significant resistance to E3810, while retaining affinity for AZD4547. Structural analyses of these TKIs with wild type (WT) and gatekeeper mutant forms of FGFR1 offer clues to developing inhibitors that maintain potency against gatekeeper mutations. We show that AZD4547 affinity is preserved by V561M FGFR1 due to a flexible linker that allows multiple inhibitor binding modes. This is the first example of a TKI binding in distinct conformations to WT and gatekeeper mutant forms of FGFR, highlighting adaptable regions in both the inhibitor and binding pocket crucial for drug design. Exploiting inhibitor flexibility to overcome drug resistance has been a successful strategy for combatting diseases such as AIDS and may be an important approach for designing inhibitors effective against kinase gatekeeper mutations. PMID:25686244

  11. Profiling chronic myeloid leukemia patients reporting intentional and unintentional non-adherence to lifelong therapy with tyrosine kinase inhibitors.

    PubMed

    Efficace, Fabio; Rosti, Gianantonio; Cottone, Francesco; Breccia, Massimo; Castagnetti, Fausto; Iurlo, Alessandra; Mandelli, Franco; Baccarani, Michele

    2014-03-01

    The main objective of this study was to outline key characteristics, including health-related quality of life (HRQOL) and symptoms, in 175 chronic myeloid leukemia (CML) patients reporting intentional or unintentional reasons for not fully adhering to imatinib therapy. There was a significant higher proportion of males in the unintentional group (P = 0.037). Also, in this group patients were on average younger (P = 0.046). Patients reporting intentional reasons had generally a worse HRQOL profile and a higher symptom severity than those who reported unintentional reasons for non-adherence. This study suggests that patients with suboptimal adherence are not a homogenous group, thus generalized approaches to improve medication-taking behaviors are not recommended. PMID:23906625

  12. Application of Eukaryotic Elongation Factor-2 Kinase (eEF-2K) for Cancer Therapy: Expression, Purification, and High-Throughput Inhibitor Screening.

    PubMed

    Tavares, Clint D J; Devkota, Ashwini K; Dalby, Kevin N; Cho, Eun Jeong

    2016-01-01

    Protein kinases have emerged as an important class of therapeutic targets, as they are known to be involved in pathological pathways linked to numerous human disorders. Major efforts to discover kinase inhibitors in both academia and pharmaceutical companies have centered on the development of robust assays and cost-effective approaches to isolate them. Drug discovery procedures often start with hit identification for lead development, by screening a library of chemicals using an appropriate assay in a high-throughput manner. Considering limitations unique to each assay technique and screening capability, intelligent integration of various assay schemes and level of throughput, in addition to the choice of chemical libraries, is the key to success of this initial step. Here, we describe the purification of the protein kinase, eEF-2K, and the utilization of three biochemical assays in the course of identifying small molecules that block its enzymatic reaction. PMID:26501899

  13. Treatment of therapy-refractory B-lineage acute lymphoblastic leukemia with an apoptosis-inducing CD19-directed tyrosine kinase inhibitor.

    PubMed

    Uckun, F M; Messinger, Y; Chen, C L; O'Neill, K; Myers, D E; Goldman, F; Hurvitz, C; Casper, J T; Levine, A

    1999-12-01

    Seven children and eight adults with CD19+ B-lineage acute lymphoblastic leukemia, as well as one adult with chronic lymphocytic leukemia, were treated with the CD19 receptor-directed tyrosine kinase inhibitor B43-Genistein. All patients had failed previous chemotherapy regimens, and six patients had relapsed after bone marrow transplantation. B43-Genistein was administered as a 1-hour i.v. infusion at 0.1-0.32 mg/kg/day dose levels for 10 consecutive days or 3 consecutive days weekly for a total of nine doses. B43-Genistein was well tolerated by all patients with no life-threatening side effects. There were six episodes of grade 2-3 fever, two of which were clearly drug related, one episode each of grade 3 myalgia, grade 2 sinus tachycardia, and grade 2 vascular leak syndrome. There was one durable complete remission and two transient responses. Pharmacokinetic analyses in 12 patients revealed a plasma half-life of 20 +/- 5 h, mean residence time of 24 +/- 5 h, and a systemic clearance rate of 20 +/- 3 ml/h/kg. Moderate levels of human antimouse antibody (HAMA) ranging from 20-87 ng/ml were detected in the day 28 blood samples from three of nine cases examined. Treatment of these three HAMA-positive patients with a second course of B43-Genistein did not yield measurable immunoconjugate levels in the plasma, indicating that the administered B43-Genistein molecules were rapidly cleared from circulation due to the HAMA. On the basis of its acceptable toxicity profile and its ability to elicit objective responses at nontoxic dose levels, B43-Genistein may provide the basis for an effective treatment strategy for B-lineage acute lymphoblastic leukemia patients who have failed standard therapy. PMID:10632319

  14. Indolinones as promising scaffold as kinase inhibitors: a review.

    PubMed

    Prakash, C R; Raja, S

    2012-02-01

    Kinases are probably the most important signaling enzymes, which represent about 20% of the druggable genome. Currently, more than 150 kinases are known. So, kinase inhibition therapy has become a very important area of drug research since most of our diseases are related to intra or intercellular signaling by kinases. Indole alkaloids are extensively studied for their biological activities in several pharmaceutical areas, including, for example, antitumor. Among this chemical family, indolinone displays very promising antitumor properties by inhibiting various kinase families. These small molecules have a low molecular weight and most of them bind to protein kinases competing with ATP for the ATP-binding site. This review focuses on the indolinone based drugs approved for the treatment of cancer, drugs under clinical trial and then chemical diversity of various synthetic analogues of indolinone and their metabolites as various kinase inhibitors. This review also focused on structural activity relationship (SAR), mechanisms of action and biological targets through which indolinone and its derivatives display their antitumor activity. PMID:22372601

  15. The STAT5 inhibitor pimozide decreases survival of chronic myelogenous leukemia cells resistant to kinase inhibitors

    PubMed Central

    Nelson, Erik A.; Walker, Sarah R.; Weisberg, Ellen; Bar-Natan, Michal; Barrett, Rosemary; Gashin, Laurie B.; Terrell, Shariya; Klitgaard, Josephine L.; Santo, Loredana; Addorio, Martha R.; Ebert, Benjamin L.; Griffin, James D.

    2011-01-01

    The transcription factor STAT5 is an essential mediator of the pathogenesis of chronic myelogenous leukemia (CML). In CML, the BCR/ABL fusion kinase causes the constitutive activation of STAT5, thereby driving the expression of genes promoting survival. BCR/ABL kinase inhibitors have become the mainstay of therapy for CML, although CML cells can develop resistance through mutations in BCR/ABL. To overcome this problem, we used a cell-based screen to identify drugs that inhibit STAT-dependent gene expression. Using this approach, we identified the psychotropic drug pimozide as a STAT5 inhibitor. Pimozide decreases STAT5 tyrosine phosphorylation, although it does not inhibit BCR/ABL or other tyrosine kinases. Furthermore, pimozide decreases the expression of STAT5 target genes and induces cell cycle arrest and apoptosis in CML cell lines. Pimozide also selectively inhibits colony formation of CD34+ bone marrow cells from CML patients. Importantly, pimozide induces similar effects in the presence of the T315I BCR/ABL mutation that renders the kinase resistant to presently available inhibitors. Simultaneously inhibiting STAT5 with pimozide and the kinase inhibitors imatinib or nilotinib shows enhanced effects in inhibiting STAT5 phosphorylation and in inducing apoptosis. Thus, targeting STAT5 may be an effective strategy for the treatment of CML and other myeloproliferative diseases. PMID:21233313

  16. Bosutinib: a novel second-generation tyrosine kinase inhibitor.

    PubMed

    Isfort, Susanne; Keller-v Amsberg, Gunhild; Schafhausen, Philippe; Koschmieder, Steffen; Brümmendorf, Tim H

    2014-01-01

    Bosutinib (SKI-606) is a 4-anilino-3-quinoline carbonitrile, which acts as a dual inhibitor of Src and ABL kinases. In addition, the BCR-ABL fusion gene product, a constitutively activated tyrosine kinase which is crucial for the development of chronic myeloid leukemia (CML), is highly sensitive to bosutinib. Interestingly, distinctly lower concentrations of bosutinib are required to ablate BCR-ABL phosphorylation when compared to the first-generation tyrosine kinase inhibitor imatinib (IM). Bosutinib is a potent inhibitor of CML cell proliferation in vitro and has demonstrated promising activity in CML patients resistant or intolerant to IM as well as in newly diagnosed patients with chronic phase CML (CML-CP). Remarkably, bosutinib has been found to be capable of overcoming the majority of IM-resistant BCR-ABL mutations. Bosutinib has the potency to induce deep and fast responses in second- and third-/fourth-line treatment, and as a consequence, the drug has recently been licensed for patients previously treated with one or more tyrosine kinase inhibitor(s) and for whom imatinib, nilotinib, and dasatinib are not considered appropriate treatment options. Due to its potency and differing toxicity profile, it promises to be a good therapeutic option for a defined cohort of patients. The most common side effects are gastrointestinal with most of the patients suffering from nausea, vomiting, or diarrhea. For the most part, these gastrointestinal symptoms occur early after treatment initiation, are manageable, and often self-limiting. Continuous monitoring of liver enzymes upon treatment initiation is necessary during bosutinib treatment. In addition to CML treatment, bosutinib has shown some efficacy in selected patients suffering from advanced-stage solid tumors. In conclusion, bosutinib is a promising novel small molecule inhibitor approved now for targeted therapy of CML and in clinical development for other malignancies. PMID:24756786

  17. Combinations of Kinase Inhibitors Protecting Myoblasts against Hypoxia

    PubMed Central

    Kang, Yunyi; Tierney, Matthew; Ong, Edison; Zhang, Linda; Piermarocchi, Carlo; Sacco, Alessandra; Paternostro, Giovanni

    2015-01-01

    Cell-based therapies to treat skeletal muscle disease are limited by the poor survival of donor myoblasts, due in part to acute hypoxic stress. After confirming that the microenvironment of transplanted myoblasts is hypoxic, we screened a kinase inhibitor library in vitro and identified five kinase inhibitors that protected myoblasts from cell death or growth arrest in hypoxic conditions. A systematic, combinatorial study of these compounds further improved myoblast viability, showing both synergistic and additive effects. Pathway and target analysis revealed CDK5, CDK2, CDC2, WEE1, and GSK3β as the main target kinases. In particular, CDK5 was the center of the target kinase network. Using our recently developed statistical method based on elastic net regression we computationally validated the key role of CDK5 in cell protection against hypoxia. This method provided a list of potential kinase targets with a quantitative measure of their optimal amount of relative inhibition. A modified version of the method was also able to predict the effect of combinations using single-drug response data. This work is the first step towards a broadly applicable system-level strategy for the pharmacology of hypoxic damage. PMID:26042811

  18. Tailoring Tyrosine Kinase Inhibitors to Fit the Lung Cancer Genome

    PubMed Central

    Looyenga, Brendan D; Cherni, Irene; MacKeigan, Jeffrey P; Weiss, Glen J

    2011-01-01

    Tyrosine kinase inhibitors (TKIs) have been in use as cancer therapeutics for nearly a decade, and their utility in targeting specific malignancies with defined genetic lesions has proven to be remarkably effective. Recent efforts to characterize the spectrum of genetic lesions found in non-small cell lung carcinoma (NSCLC) have provided important insights into the molecular basis of this disease and have also revealed a wide array of tyrosine kinases that might be effectively targeted for rationally designed therapies. The findings of these studies, however, also provide a cautionary tale about the limitations of single-agent therapies, which fail to account for the genetic heterogeneity and pathway redundancy that characterize advanced NSCLC. Emergence of drug resistance mechanisms to specific TKIs, such as gefitinib and erlotinib, suggests that more sophisticated chemotherapeutic paradigms that target multiple pathways at the same time will be required to effectively treat this disease. PMID:21461169

  19. Receptor tyrosine kinase inhibitors: Are they real tumor killers?

    PubMed

    Gaumann, Andreas K A; Kiefer, Friedemann; Alfer, Joachim; Lang, Sven A; Geissler, Edward K; Breier, Georg

    2016-02-01

    Inhibiting tumor growth by targeting the tumor vasculature was first proposed by Judah Folkman almost 40 years ago. Since then, different approaches and numerous drugs and agents have been developed to achieve this goal, either with the aim of inhibiting tumor neoangiogenesis or normalizing the tumor vasculature. Among the most promising therapeutic targets are receptor tyrosine kinases (RTKs), some of which are predominantly expressed on tumor endothelial cells, although they are sometimes also present on tumor cells. The majority of RTK inhibitors investigated over the past two decades competes with ATP at the active site of the kinase and therefore block the phosphorylation of intracellular targets. Some of these drugs have been approved for therapy, whereas others are still in clinical trials. Here, we discuss the scientific basis, current status, problems and future prospects of RTK inhibition in anti-tumor therapy. PMID:25716346

  20. High-Throughput Kinase Profiling: A More Efficient Approach towards the Discovery of New Kinase Inhibitors

    PubMed Central

    Miduturu, Chandrasekhar V.; Deng, Xianming; Kwiatkowski, Nicholas; Yang, Wannian; Brault, Laurent; Filippakopoulos, Panagis; Chung, Eunah; Yang, Qingkai; Schwaller, Juerg; Knapp, Stefan; King, Randall W.; Lee, Jiing-Dwan; Herrgard, Sanna; Zarrinkar, Patrick; Gray, Nathanael S.

    2011-01-01

    SUMMARY Selective protein kinase inhibitors have only been developed against a small number of kinase targets. Here we demonstrate that “high-throughput kinase profiling” is an efficient method for the discovery of lead compounds for established as well as unexplored kinase targets. We screened a library of 118 compounds constituting two distinct scaffolds (furan-thiazolidinediones and pyrimido-diazepines) against a panel of 353 kinases. A distinct kinase selectivity profile was observed for each scaffold. Selective inhibitors were identified with submicromolar cellular activity against PIM1, ERK5, ACK1, MPS1/PLK1–3 and Aurora A,B kinases. In addition, we identified potent inhibitors for so far unexplored kinases such as DRAK1, HIPK2 and DCAMKL1 that await further evaluation. This inhibitor-centric approach permits comprehensive assessment of a scaffold of interest and represents an efficient and general strategy for identifying new selective kinase inhibitors. PMID:21802008

  1. Janus kinase inhibitors for rheumatoid arthritis.

    PubMed

    Yamaoka, Kunihiro

    2016-06-01

    Treatment of autoimmune diseases, such as rheumatoid arthritis (RA), has advanced substantially over the past decade with the development of biologics targeting inflammatory cytokines. Recent progress in treating RA has been achieved with janus kinase (JAK) inhibitors (Jakinibs), an orally available disease-modifying anti-rheumatic drug targeting the intracellular kinase JAK and with similar efficacy to biologics. The first Jakinib approved for RA was tofacitinib, which exerted superiority to methotrexate and non-inferiority to tumor necrosis factor (TNF) inhibitors. In recent years, the Jakinib baricitinib has demonstrated superiority to both methotrexate and a TNF inhibitor, adalimumab. Given these promising findings, Jakinibs are expected to represent the next generation compounds for treating RA, and a number of Jakinibs are currently in clinical trials. Jakinibs can differ substantially in their selectivity against JAKs; tofacitinib and baricitinib target multiple JAKs, whereas the most recently developed Jakinibs target only a single JAK. The influence of Jakinib selectivity on efficacy and side effects is of great interest, requiring further careful observation. PMID:26994322

  2. Protein kinase small molecule inhibitors for rheumatoid arthritis: Medicinal chemistry/clinical perspectives

    PubMed Central

    Malemud, Charles J; Blumenthal, David E

    2014-01-01

    Medicinal chemistry strategies have contributed to the development, experimental study of and clinical trials assessment of the first type of protein kinase small molecule inhibitor to target the Janus kinase/Signal Transducers and Activators of Transcription (JAK/STAT) signaling pathway. The orally administered small molecule inhibitor, tofacitinib, is the first drug to target the JAK/STAT pathway for entry into the armamentarium of the medical therapy of rheumatoid arthritis. The introduction of tofacitinib into general rheumatologic practice coupled with increasing understanding that additional cellular signal transduction pathways including the mitogen-activated protein kinase and phosphatidylinositide-3-kinase/Akt/mammalian target of rapamycin pathways as well as spleen tyrosine kinase also contribute to immune-mediated inflammatory in rheumatoid arthritis makes it likely that further development of orally administered protein kinase small molecule inhibitors for rheumatoid arthritis will occur in the near future. PMID:25232525

  3. Assessment of a selective inhibitor of herpes simplex virus thymidine kinase (L-653,180) as therapy for experimental recurrent genital herpes.

    PubMed Central

    Bourne, N; Bravo, F J; Ashton, W T; Meurer, L C; Tolman, R L; Karkas, J D; Stanberry, L R

    1992-01-01

    Herpes simplex virus (HSV)-coded thymidine kinase (TK) is important in efficient reactivation of latent infection. These studies were designed to investigate whether treatment of latently infected animals with a TK inhibitor altered the natural history of recurrent HSV disease. 9-([(Z)-2-(hydroxymethyl)cyclohexyl]methyl) guanine (L-653,180) is a potent and selective nonsubstrate inhibitor of HSV TK which can suppress or delay reactivation of HSV-1 from latently infected cells in vitro without affecting viral replication. In an initial study, six female Hartley guinea pigs were treated with L-653,180 in their diet (25 mg/30 g of food) and water (300 mg/liter) for 7 days. Blood, urine, kidney, liver, spinal cord, and cerebral cortex specimens were collected. L-653,180 was detected in all specimens at concentrations which, although low, were higher than the in vitro 50% inhibitory concentration of the drug against HSV TK. In the second study, 20 female Hartley guinea pigs were randomized into two groups following recovery from primary genital HSV-2 infection. One group received L-653,180 in diet and water for 4 weeks beginning 21 days postinoculation. Animals were examined daily for recurrent lesions for 10 weeks. Treated animals experienced fewer recurrences during the treatment period but the results were not significantly different from results with controls. During the first 2-week posttreatment period, L-653,180-treated animals had significantly fewer recurrences than control animals (P = 0.02). Over the entire 10-week observation period, treated animals experienced fewer recurrences (P = 0.06). These results suggest that inhibitors of viral TK may be useful in limiting reactivation of latent virus and thus recurrent infections. In these experiments, the amount of drug that could be administered to the animals was limited by its poor solubility. Further studies with more potent and soluble inhibitors of HSV TK appear to be warranted. PMID:1329638

  4. Tyrosine Kinase Inhibitors as a New Therapy for Ischemic Stroke and other Neurologic Diseases: Is there any Hope for a Better Outcome?

    PubMed Central

    Gągało, Iwona; Rusiecka, Izabela; Kocić, Ivan

    2015-01-01

    The relevance of tyrosine kinase inhibitors (TKIs) in the treatment of malignancies has been already defined. Aberrant activation of tyrosine kinase signaling pathways has been causally linked not only to cancers but also to other non-oncological diseases. This review concentrates on the novel plausible usage of this group of drugs in neurological disorders, such as ischemic brain stroke, subarachnoid hemorrhage, Alzheimer’s disease, multiple sclerosis. The drugs considered here are representatives of both receptor and non-receptor TKIs. Among them imatinib and masitinib have the broadest spectrum of therapeutic usage. Both drugs are effective in ischemic brain stroke and multiple sclerosis, but only imatinib produces a therapeutic effect in subarachnoid hemorrhage. Masitinib and dasatinib reduce the symptoms of Alzheimer’s disease. In the case of multiple sclerosis several TKIs are useful, including apart from imatinib and masitinib, also sunitinib, sorafenib, lestaurtinib. Furthermore, the possible molecular targets for the drugs are described in connection with the underlying pathophysiological mechanisms in the diseases in question. The most frequent target for the TKIs is PDGFR which plays a pivotal role particularly in ischemic brain stroke and subarachnoid hemorrhage. The collected data indicates that TKIs are very promising candidates for new therapeutic interventions in neurological diseases. PMID:26630962

  5. Tyrosine kinase inhibitors: New class of antimalarials on the horizon?

    PubMed

    Pathak, Vrushali; Colah, Roshan; Ghosh, Kanjaksha

    2015-08-01

    Development of the antimalarial drug resistant strains has currently become a major public health challenge. There is an urgent need to develop new antimalarial drugs. Tyrosine kinase inhibitors (TKIs) are receiving increasing attention as anticancer therapy. It has revolutionarised the management of CML to say the least. TKIs are also increasingly being implicated in complicated but vital life cycle of malaria parasite. Hence we tested two commonly used but different classes of TKIs (imatinib and sorafenib) in-vitro for their antimalarial activity and possible synergistic activity with existing antimalarial drug. Antimalarial activity was tested with the help of modified WHO microtest technique in-vitro for five different Plasmodium falciparum laboratory strains (3D7, Dd2, 7G8, MRC2, PKL9). Imatinib and sorafenib showed a promising antimalarial activity with all the strains. These compounds caused dose dependent inhibition of parasite maturation. The isobologram analysis of the interactions of these TKIs with standard antimalarial drug, artesunate revealed distinct patterns of synergism, additivity and antagonism at different ratios. Imatinib showed worthwhile synergism with artesunate indicating imatinib and other tyrosine kinase inhibitors may have significant antimalarial activity and can be used in combination therapy. PMID:26142327

  6. Risk of Hormone Escape in a Human Prostate Cancer Model Depends on Therapy Modalities and Can Be Reduced by Tyrosine Kinase Inhibitors

    PubMed Central

    Guyader, Charlotte; Céraline, Jocelyn; Gravier, Eléonore; Morin, Aurélie; Michel, Sandrine; Erdmann, Eva; de Pinieux, Gonzague; Cabon, Florence; Bergerat, Jean-Pierre; Poupon, Marie-France; Oudard, Stéphane

    2012-01-01

    Almost all prostate cancers respond to androgen deprivation treatment but many recur. We postulated that risk of hormone escape -frequency and delay- are influenced by hormone therapy modalities. More, hormone therapies induce crucial biological changes involving androgen receptors; some might be targets for escape prevention. We investigated the relationship between the androgen deprivation treatment and the risk of recurrence using nude mice bearing the high grade, hormone-dependent human prostate cancer xenograft PAC120. Tumor-bearing mice were treated by Luteinizing-Hormone Releasing Hormone (LHRH) antagonist alone, continuous or intermittent regimen, or combined with androgen receptor (AR) antagonists (bicalutamide or flutamide). Tumor growth was monitored. Biological changes were studied as for genomic alterations, AR mutations and protein expression in a large series of recurrent tumors according to hormone therapy modalities. Therapies targeting Her-2 or AKT were tested in combination with castration. All statistical tests were two-sided. Tumor growth was inhibited by continuous administration of the LH-RH antagonist degarelix (castration), but 40% of tumors recurred. Intermittent castration or complete blockade induced by degarelix and antiandrogens combination, inhibited tumor growth but increased the risk of recurrence (RR) as compared to continuous castration (RRintermittent: 14.5, RRcomplete blockade: 6.5 and 1.35). All recurrent tumors displayed new quantitative genetic alterations and AR mutations, whatever the treatment modalities. AR amplification was found after complete blockade. Increased expression of Her-2/neu with frequent ERK/AKT activation was detected in all variants. Combination of castration with a Her-2/neu inhibitor decreased recurrence risk (0.17) and combination with an mTOR inhibitor prevented it. Anti-hormone treatments influence risk of recurrence although tumor growth inhibition was initially similar. Recurrent tumors displayed

  7. Discovery of a Potent And Selective Aurora Kinase Inhibitor

    SciTech Connect

    Oslob, J.D.; Romanowski, M.J.; Allen, D.A.; Baskaran, S.; Bui, M.; Elling, R.A.; Flanagan, W.M.; Fung, A.D.; Hanan, E.J.; Harris, S.; Heumann, S.A.; Hoch, U.; Jacobs, J.W.; Lam, J.; Lawrence, C.E.; McDowell, R.S.; Nannini, M.A.; Shen, W.; Silverman, J.A.; Sopko, M.M.; Tangonan, B.T.

    2009-05-21

    This communication describes the discovery of a novel series of Aurora kinase inhibitors. Key SAR and critical binding elements are discussed. Some of the more advanced analogues potently inhibit cellular proliferation and induce phenotypes consistent with Aurora kinase inhibition. In particular, compound 21 (SNS-314) is a potent and selective Aurora kinase inhibitor that exhibits significant activity in pre-clinical in vivo tumor models.

  8. Virtual Target Screening: Validation Using Kinase Inhibitors

    PubMed Central

    Santiago, Daniel N.; Pevzner, Yuri; Durand, Ashley A.; Tran, MinhPhuong; Scheerer, Rachel R.; Daniel, Kenyon; Sung, Shen-Shu; Woodcock, H. Lee; Guida, Wayne C.; Brooks, Wesley H.

    2012-01-01

    Computational methods involving virtual screening could potentially be employed to discover new biomolecular targets for an individual molecule of interest (MOI). However, existing scoring functions may not accurately differentiate proteins to which the MOI binds from a larger set of macromolecules in a protein structural database. An MOI will most likely have varying degrees of predicted binding affinities to many protein targets. However, correctly interpreting a docking score as a hit for the MOI docked to any individual protein can be problematic. In our method, which we term “Virtual Target Screening (VTS)”, a set of small drug-like molecules are docked against each structure in the protein library to produce benchmark statistics. This calibration provides a reference for each protein so that hits can be identified for an MOI. VTS can then be used as tool for: drug repositioning (repurposing), specificity and toxicity testing, identifying potential metabolites, probing protein structures for allosteric sites, and testing focused libraries (collection of MOIs with similar chemotypes) for selectivity. To validate our VTS method, twenty kinase inhibitors were docked to a collection of calibrated protein structures. Here we report our results where VTS predicted protein kinases as hits in preference to other proteins in our database. Concurrently, a graphical interface for VTS was developed. PMID:22747098

  9. The selectivity of protein kinase inhibitors: a further update

    PubMed Central

    Bain, Jenny; Plater, Lorna; Elliott, Matt; Shpiro, Natalia; Hastie, C. James; Mclauchlan, Hilary; Klevernic, Iva; Arthur, J. Simon C.; Alessi, Dario R.; Cohen, Philip

    2007-01-01

    The specificities of 65 compounds reported to be relatively specific inhibitors of protein kinases have been profiled against a panel of 70–80 protein kinases. On the basis of this information, the effects of compounds that we have studied in cells and other data in the literature, we recommend the use of the following small-molecule inhibitors: SB 203580/SB202190 and BIRB 0796 to be used in parallel to assess the physiological roles of p38 MAPK (mitogen-activated protein kinase) isoforms, PI-103 and wortmannin to be used in parallel to inhibit phosphatidylinositol (phosphoinositide) 3-kinases, PP1 or PP2 to be used in parallel with Src-I1 (Src inhibitor-1) to inhibit Src family members; PD 184352 or PD 0325901 to inhibit MKK1 (MAPK kinase-1) or MKK1 plus MKK5, Akt-I-1/2 to inhibit the activation of PKB (protein kinase B/Akt), rapamycin to inhibit TORC1 [mTOR (mammalian target of rapamycin)–raptor (regulatory associated protein of mTOR) complex], CT 99021 to inhibit GSK3 (glycogen synthase kinase 3), BI-D1870 and SL0101 or FMK (fluoromethylketone) to be used in parallel to inhibit RSK (ribosomal S6 kinase), D4476 to inhibit CK1 (casein kinase 1), VX680 to inhibit Aurora kinases, and roscovitine as a pan-CDK (cyclin-dependent kinase) inhibitor. We have also identified harmine as a potent and specific inhibitor of DYRK1A (dual-specificity tyrosine-phosphorylated and -regulated kinase 1A) in vitro. The results have further emphasized the need for considerable caution in using small-molecule inhibitors of protein kinases to assess the physiological roles of these enzymes. Despite being used widely, many of the compounds that we analysed were too non-specific for useful conclusions to be made, other than to exclude the involvement of particular protein kinases in cellular processes. PMID:17850214

  10. mTOR inhibitors in cancer therapy

    PubMed Central

    Xie, Jianling; Wang, Xuemin; Proud, Christopher G.

    2016-01-01

    The mammalian target of rapamycin, mTOR, plays key roles in cell growth and proliferation, acting at the catalytic subunit of two protein kinase complexes: mTOR complexes 1 and 2 (mTORC1/2). mTORC1 signaling is switched on by several oncogenic signaling pathways and is accordingly hyperactive in the majority of cancers. Inhibiting mTORC1 signaling has therefore attracted great attention as an anti-cancer therapy. However, progress in using inhibitors of mTOR signaling as therapeutic agents in oncology has been limited by a number of factors, including the fact that the classic mTOR inhibitor, rapamycin, inhibits only some of the effects of mTOR; the existence of several feedback loops; and the crucial importance of mTOR in normal physiology.

  11. Kinase inhibitor profiling reveals unexpected opportunities to inhibit disease-associated mutant kinases

    PubMed Central

    Duong-Ly, Krisna C.; Devarajan, Karthik; Liang, Shuguang; Horiuchi, Kurumi Y.; Wang, Yuren; Ma, Haiching; Peterson, Jeffrey R.

    2016-01-01

    Summary Small-molecule kinase inhibitors have typically been designed to inhibit wild-type kinases rather than the mutant forms that frequently arise in diseases such as cancer. Mutations can have serious clinical implications by increasing kinase catalytic activity or conferring therapeutic resistance. To identify opportunities to repurpose inhibitors against disease-associated mutant kinases, we conducted a large-scale functional screen of 183 known kinase inhibitors against 76 recombinant, mutant kinases. The results revealed lead compounds with activity against clinically important mutant kinases including ALK, LRRK2, RET, and EGFR as well as unexpected opportunities for repurposing FDA-approved kinase inhibitors as leads for additional indications. Furthermore, using T674I PDGFRα as an example, we show how single-dose screening data can provide predictive structure-activity data to guide subsequent inhibitor optimization. This study provides a resource for the development of inhibitors against numerous disease-associated mutant kinases and illustrates the potential of unbiased profiling as an approach to compound-centric inhibitor development. PMID:26776524

  12. Preclinical activity of P276-00, a novel small-molecule cyclin-dependent kinase inhibitor in the therapy of multiple myeloma.

    PubMed

    Raje, N; Hideshima, T; Mukherjee, S; Raab, M; Vallet, S; Chhetri, S; Cirstea, D; Pozzi, S; Mitsiades, C; Rooney, M; Kiziltepe, T; Podar, K; Okawa, Y; Ikeda, H; Carrasco, R; Richardson, P G; Chauhan, D; Munshi, N C; Sharma, S; Parikh, H; Chabner, B; Scadden, D; Anderson, K C

    2009-05-01

    Cyclin D dysregulation and overexpression is noted in the majority of multiple myeloma (MM) patients, suggesting its critical role in MM pathogenesis. Here, we sought to identify the effects of targeting cyclin D in MM. We first confirmed cyclin D mRNA overexpression in 42 of 64 (65%) patient plasma cells. Silencing cyclin D1 resulted in >50% apoptotic cell death suggesting its validity as a potential therapeutic target. We next evaluated P276-00, a clinical-grade small-molecule cyclin-dependent kinase inhibitor as a way to target the cyclins. P276-00 resulted in dose-dependent cytotoxicity in MM cells. Cell-cycle analysis confirmed either growth arrest or caspase-dependent apoptosis; this was preceded by inhibition of Rb-1 phosphorylation with associated downregulation of a range of cyclins suggesting a regulatory role of P276-00 in cell-cycle progression through broad activity. Proliferative stimuli such as interleukin-6, insulin-like growth factor-1 and bone-marrow stromal cell adherence induced cyclins; P276-00 overcame these growth, survival and drug resistance signals. Because the cyclins are substrates of proteasome degradation, combination studies with bortezomib resulted in synergism. Finally, in vivo efficacy of P276-00 was confirmed in an MM xenograft model. These studies form the basis of an ongoing phase I study in the treatment of relapsed/refractory MM. PMID:19151776

  13. In Vitro Characterization of Derrone as an Aurora Kinase Inhibitor.

    PubMed

    Hoang, Nhung Thi My; Phuong, Thuong Thien; Nguyen, Trang Thi Nhu; Tran, Yen Thi Hai; Nguyen, Anh Thi Ngoc; Nguyen, Thanh Lai; Bui, Khanh Thi Van

    2016-06-01

    Among mitotic kinases, Aurora kinases are the most widely studied, since their expression is restricted to mitosis. They play a key role in chromosome segregation and cell polyploidy. Aurora kinases are important therapeutic targets, and several research groups have directed their efforts toward the identification of kinase inhibitors. The aim of this study is to screen and characterize Aurora kinase inhibitors from natural substances extracted from plants that are used in the Vietnamese pharmacopoeia. We have characterized in vitro Derrone, extracted from Erythrina orientalis L. MURR, as a novel Aurora kinase inhibitor. This compound exhibited an ability to inhibit the phosphorylation of histone H3 at ser10 both in kinase assay and at the cellular level. The compound was more effective against Aurora kinase B, with a lower IC50 value as compared to Aurora A. Moreover, it impaired the mitotic spindle checkpoint and led to endoreduplication in cancer cells, a phenomenon caused by an Aurora B inhibitor. Interestingly, using the xCelligence system and real-time cell analysis (RTCA) software, we set up a comparison of cell proliferation profiles between cancer cells treated with Derrone and VX680-a well-known Aurora kinase inhibitor-and we found that these profiles exhibited considerable similarity in cell morphology, growth, and death. Additionally, Derrone significantly inhibited the formation and growth of MCF7 tumor spheroids. PMID:26983907

  14. Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors

    PubMed Central

    Wilson, Timothy R.; Fridlyand, Jane; Yan, Yibing; Penuel, Elicia; Burton, Luciana; Chan, Emily; Peng, Jing; Lin, Eva; Wang, Yulei; Sosman, Jeff; Ribas, Antoni; Li, Jiang; Moffat, John; Sutherlin, Daniel P.; Koeppen, Hartmut; Merchant, Mark; Neve, Richard; Settleman, Jeff

    2013-01-01

    Mutationally activated kinases define a clinically validated class of targets for cancer drug therapy1. However, the efficacy of kinase inhibitors in patients whose tumours harbour such alleles is invariably limited by innate or acquired drug resistance2,3. The identification of resistance mechanisms has revealed a recurrent theme—the engagement of survival signals redundant to those transduced by the targeted kinase4. Cancer cells typically express multiple receptor tyrosine kinases (RTKs) that mediate signals that converge on common critical downstream cell-survival effectors—most notably, phosphatidylinositol-3-OH kinase (PI(3)K) and mitogen-activated protein kinase (MAPK)5. Consequently, an increase in RTK-ligand levels, through autocrine tumour-cell production, paracrine contribution from tumour stroma6 or systemic production, could confer resistance to inhibitors of an oncogenic kinase with a similar signalling output. Here, using a panel of kinase-‘addicted’ human cancer cell lines, we found that most cells can be rescued from drug sensitivity by simply exposing them to one or more RTK ligands. Among the findings with clinical implications was the observation that hepatocyte growth factor (HGF) confers resistance to the BRAF inhibitor PLX4032 (vemurafenib) in BRAF-mutant melanoma cells. These observations highlight the extensive redundancy of RTK-transduced signalling in cancer cells and the potentially broad role of widely expressed RTK ligands in innate and acquired resistance to drugs targeting oncogenic kinases. PMID:22763448

  15. Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors.

    PubMed

    Wilson, Timothy R; Fridlyand, Jane; Yan, Yibing; Penuel, Elicia; Burton, Luciana; Chan, Emily; Peng, Jing; Lin, Eva; Wang, Yulei; Sosman, Jeff; Ribas, Antoni; Li, Jiang; Moffat, John; Sutherlin, Daniel P; Koeppen, Hartmut; Merchant, Mark; Neve, Richard; Settleman, Jeff

    2012-07-26

    Mutationally activated kinases define a clinically validated class of targets for cancer drug therapy. However, the efficacy of kinase inhibitors in patients whose tumours harbour such alleles is invariably limited by innate or acquired drug resistance. The identification of resistance mechanisms has revealed a recurrent theme—the engagement of survival signals redundant to those transduced by the targeted kinase. Cancer cells typically express multiple receptor tyrosine kinases (RTKs) that mediate signals that converge on common critical downstream cell-survival effectors—most notably, phosphatidylinositol-3-OH kinase (PI(3)K) and mitogen-activated protein kinase (MAPK). Consequently, an increase in RTK-ligand levels, through autocrine tumour-cell production, paracrine contribution from tumour stroma or systemic production, could confer resistance to inhibitors of an oncogenic kinase with a similar signalling output. Here, using a panel of kinase-'addicted' human cancer cell lines, we found that most cells can be rescued from drug sensitivity by simply exposing them to one or more RTK ligands. Among the findings with clinical implications was the observation that hepatocyte growth factor (HGF) confers resistance to the BRAF inhibitor PLX4032 (vemurafenib) in BRAF-mutant melanoma cells. These observations highlight the extensive redundancy of RTK-transduced signalling in cancer cells and the potentially broad role of widely expressed RTK ligands in innate and acquired resistance to drugs targeting oncogenic kinases. PMID:22763448

  16. Pim kinases modulate resistance to FLT3 tyrosine kinase inhibitors in FLT3-ITD acute myeloid leukemia

    PubMed Central

    Green, Alexa S.; Maciel, Thiago T.; Hospital, Marie-Anne; Yin, Chae; Mazed, Fetta; Townsend, Elizabeth C.; Pilorge, Sylvain; Lambert, Mireille; Paubelle, Etienne; Jacquel, Arnaud; Zylbersztejn, Florence; Decroocq, Justine; Poulain, Laury; Sujobert, Pierre; Jacque, Nathalie; Adam, Kevin; So, Jason C. C.; Kosmider, Olivier; Auberger, Patrick; Hermine, Olivier; Weinstock, David M.; Lacombe, Catherine; Mayeux, Patrick; Vanasse, Gary J.; Leung, Anskar Y.; Moura, Ivan C.; Bouscary, Didier; Tamburini, Jerome

    2015-01-01

    ABSTRACT Fms-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) is frequently detected in acute myeloid leukemia (AML) patients and is associated with a dismal long-term prognosis. FLT3 tyrosine kinase inhibitors provide short-term disease control, but relapse invariably occurs within months. Pim protein kinases are oncogenic FLT3-ITD targets expressed in AML cells. We show that increased Pim kinase expression is found in relapse samples from AML patients treated with FLT3 inhibitors. Ectopic Pim-2 expression induces resistance to FLT3 inhibition in both FLT3-ITD–induced myeloproliferative neoplasm and AML models in mice. Strikingly, we found that Pim kinases govern FLT3-ITD signaling and that their pharmacological or genetic inhibition restores cell sensitivity to FLT3 inhibitors. Finally, dual inhibition of FLT3 and Pim kinases eradicates FLT3-ITD+ cells including primary AML cells. Concomitant Pim and FLT3 inhibition represents a promising new avenue for AML therapy. PMID:26601252

  17. Therapeutic drug monitoring and tyrosine kinase inhibitors

    PubMed Central

    Herviou, Pauline; Thivat, Emilie; Richard, Damien; Roche, Lucie; Dohou, Joyce; Pouget, Mélanie; Eschalier, Alain; Durando, Xavier; Authier, Nicolas

    2016-01-01

    The therapeutic activity of drugs can be optimized by establishing an individualized dosage, based on the measurement of the drug concentration in the serum, particularly if the drugs are characterized by an inter-individual variation in pharmacokinetics that results in an under- or overexposure to treatment. In recent years, several tyrosine kinase inhibitors (TKIs) have been developed to block intracellular signaling pathways in tumor cells. These oral drugs are candidates for therapeutic drug monitoring (TDM) due to their high inter-individual variability for therapeutic and toxic effects. Following a literature search on PubMed, studies on TKIs and their pharmacokinetic characteristics, plasma quantification and inter-individual variability was studied. TDM is commonly used in various medical fields, including cardiology and psychiatry, but is not often applied in oncology. Plasma concentration monitoring has been thoroughly studied for imatinib, in order to evaluate the usefulness of TDM. The measurement of plasma concentration can be performed by various analytical techniques, with liquid chromatography-mass spectrometry being the reference method. This method is currently used to monitor the efficacy and tolerability of imatinib treatments. Although TDM is already being used for imatinib, additional studies are required in order to improve this practice with the inclusion of other TKIs. PMID:27446421

  18. STAT inhibitors for cancer therapy

    PubMed Central

    2013-01-01

    Signal Transducer and Activator of Transcription (STAT) proteins are a family of cytoplasmic transcription factors consisting of 7 members, STAT1 to STAT6, including STAT5a and STAT5b. STAT proteins are thought to be ideal targets for anti-cancer therapy since cancer cells are more dependent on the STAT activity than their normal counterparts. Inhibitors targeting STAT3 and STAT5 have been developed. These included peptidomimetics, small molecule inhibitors and oligonucleotides. This review summarized advances in preclinical and clinical development of these compounds. PMID:24308725

  19. Effects of first- and second-generation tyrosine kinase inhibitor therapy on glucose and lipid metabolism in chronic myeloid leukemia patients: a real clinical problem?

    PubMed Central

    Iurlo, Alessandra; Orsi, Emanuela; Cattaneo, Daniele; Resi, Veronica; Bucelli, Cristina; Orofino, Nicola; Sciumè, Mariarita; Elena, Chiara; Grancini, Valeria; Consonni, Dario; Orlandi, Ester Maria; Cortelezzi, Agostino

    2015-01-01

    Background Tyrosine kinase inhibitors (TKIs) have dramatically changed the prognosis of patients with chronic myeloid leukemia (CML). They have a distinct toxicity profile that includes glycometabolic alterations: i.e. diabetes mellitus (DM), impaired fasting glucose (IFG), and the metabolic syndrome (MS). The aim of this study was to evaluate the prevalence of these alterations in a cohort of CML-chronic phase patients treated with imatinib, dasatinib or nilotinib. Methods The study involved 168 consecutive CML-chronic phase patients with no history of DM/IFG or MS. Anthropometric and metabolic parameters were assessed, and DM/IFG and MS were diagnosed based on the criteria of the American Diabetes Association and the National Cholesterol Education Program-Adult Treatment Panel III, respectively. Results The nilotinib group had significantly higher levels of fasting plasma glucose, insulin, C-peptide, insulin resistance, and total and LDL cholesterol than the imatinib and dasatinib groups. DM/IFG were identified in 25% of the imatinib- and dasatinib-treated patients, and 33% of those in the nilotinib cohort (p = 0.39 vs imatinib and p = 0.69 vs dasatinib). A diagnosis of MS was made in 42.4% of the imatinib-treated patients, 37.5% of the dasatinib-treated patients, and 36.1% of the nilotinib-treated patients (p = 0.46 vs imatinib and p = 0.34 vs dasatinib). Conclusions Treatment with nilotinib does not seem to induce DM/IFG or the MS to a significantly higher extent than imatinib or dasatinib, though it causes a worse glycometabolic profile. These findings suggest the need for a close monitoring of glucose and lipid metabolism and a multidisciplinary approach in patients treated with nilotinib. PMID:26376678

  20. EGFR protein expression using a specific intracellular domain antibody and PTEN and clinical outcomes in squamous cell lung cancer patients with EGFR-tyrosine kinase inhibitor therapy

    PubMed Central

    Chang, Hyun; Oh, Jisu; Zhang, Xianglan; Kim, Yu Jung; Lee, Jae Ho; Lee, Choon-Taek; Chung, Jin-haeng; Lee, Jong-Seok

    2016-01-01

    Purpose The aim of this research was to examine the molecular and clinical features that are related with EGFR-tyrosine kinase inhibitor (EGFR-TKI) efficacy in previously treated patients with squamous cell carcinoma of the lung (SCCL). Materials and methods This retrospective study included 67 SCCL patients with obtainable lung cancer tissue and records on EGFR-TKI treatment response and survival. EGFR protein expression in lung cancer tissue was measured by immunohistochemistry with a specific antibody that recognizes the intracellular domain (ID) of EGFR. PTEN expression in lung cancer tissue was also evaluated with immunohistochemistry. PI3KCA gene amplification was detected by quantitative real-time polymerase chain reaction, and FGFR1 amplification was assessed by fluorescent in situ hybridization. Results EGFR ID expression (hazard ratio [HR] 0.53, P=0.022) and Eastern Cooperative Oncology Group (ECOG) performance status (PS) (HR 0.43, P=0.022) were significantly related with progression-free survival following EGFR-TKIs treatment. PTEN expression (HR 0.52, P=0.025) was significantly related to overall survival. The group of EGFR-positive or PTEN-positive patients with ECOG PS of 0 or 1 had better clinical outcomes than patients who were EGFR-negative and PTEN-negative or who had poor ECOG PS with longer median progression-free survival (2.1 vs 1.0 months, P=0.05) and overall survival (6.2 vs 2.1 months, P=0.05). Conclusion EGFR expression using an ID-specific antibody and PTEN protein expression may be used to identify SCCL patients who might benefit from EGFR-TKI treatment. PMID:27578983

  1. Cumulative meta-analysis of epidermal growth factor receptor-tyrosine kinase inhibitors as first-line therapy in metastatic non-small-cell lung cancer.

    PubMed

    Normando, Sávia R C; Cruz, Felipe M; Del Giglio, Auro

    2015-10-01

    We carried out a meta-analysis to evaluate the benefit of epidermal growth factor-tyrosine kinase inhibitors (EGFR-TKI) over the standard first-line platinum-based chemotherapy for metastatic non-small-cell lung cancer (NSCLC). Studies that were considered eligible included controlled prospective randomized phase III studies in patients with NSCLC stages IIIB or IV. These patients received standard first-line platinum-based chemotherapy or EGFR-TKI; overall survival and progression-free survival (PFS) with adequate data were available to calculate and estimate the hazard ratio (HR) with a confidence interval (CI) of 95%. Eight studies were identified that compared EGFR-TKI versus standard first-line platinum-based chemotherapy to treat NSCLC in 2962 patients. Patients receiving EGFR-TKI showed significantly longer PFS [HR=0.266 (95% CI=0.20-0.35), P<0.0001]. No significant difference in overall survival [HR=0.946 (95% CI=0.35-2.53), P=0.912] was observed between the groups. The cumulative meta-analysis of the studies showed that, since 2011 (OPTIMAL study), the PFS benefit in the EGFR-TKI arm was statistically significantly longer. Toxicity values greater than or equal to 3 in the most prevalent EGFR-TKI group included skin rash, diarrhea, and increased aminotransferase. EGFR-TKI treatment significantly extends PFS, with acceptable toxicities than platinum-based chemotherapy. Thus, they should be considered as the first choice in the first-line treatment for patients with NSCLC and with the EGFR mutation. PMID:26237501

  2. A new “angle” on kinase inhibitor design: Prioritizing amphosteric activity above kinase inhibition

    PubMed Central

    Meyerowitz, Justin G; Weiss, William A; Gustafson, W Clay

    2015-01-01

    The MYCN oncoprotein has remained an elusive target for decades. We recently reported a new class of kinase inhibitors designed to disrupt the conformation of Aurora kinase A enough to block its kinase-independent interaction with MYCN, resulting in potent degradation of MYCN. These studies provide proof-of-principle for a new method of targeting enzyme activity-independent functions of kinases and other enzymes. PMID:27308435

  3. In silico design of protein kinase inhibitors: successes and failures.

    PubMed

    Dubinina, Galina G; Chupryna, Oleksandr O; Platonov, Maxim O; Borisko, Petro O; Ostrovska, Galina V; Tolmachov, Andriy O; Shtil, Alexander A

    2007-03-01

    Protein kinases are among the most exploited targets in modern drug discovery due to key roles these enzymes play in human diseases including cancer. The in silico approach, an important part of rational design of protein kinase inhibitors, is founded on vast information about 3D structures of these enzymes. This review summarizes general structural features of the kinase inhibitors and the studies applied toward a large scale chemical database for virtual screening. Analyzed are the ways of validating the modern docking tools and their combinations with different scoring functions. In particular, we discuss the kinase flexibility as a reason for failures of the docking procedure. Finally, evidence is provided for the main patterns of kinase-inhibitor interactions and creation of the hinge-region-directed 2D filters. PMID:17348826

  4. Bruton's tyrosine kinase inhibitors in chronic lymphocytic leukemia and lymphoma.

    PubMed

    Varma, Gaurav; Johnson, Tyler P; Advani, Ranjana H

    2016-07-01

    The development of Bruton's tyrosine kinase (BTK) inhibitors and their introduction into clinical practice represent a major advance in the treatment of chronic lymphocytic leukemia (CLL) and other B-cell lymphomas. Although ibrutinib is the only BTK inhibitor that has been approved by the US Food and Drug Administration, several others are under investigation. Ibrutinib is currently approved for use in relapsed/refractory CLL, CLL with 17p deletion (del[17p]), relapsed or refractory mantle cell lymphoma, and Waldenström macroglobulinemia. Although it is clear that ibrutinib has altered treatment paradigms and outcomes in these diseases, several questions remain regarding (1) its role in frontline vs salvage therapy; (2) its use as a single agent vs in combination with biologic agents, other small molecules, or traditional chemoimmunotherapy; (3) the optimal duration of treatment; and (4) the treatment of patients who cannot tolerate or have disease resistant to ibrutinib. Because sparse clinical data are available on other BTK inhibitors, it is unclear at present whether their clinical efficacy and toxicity will differ from those of ibrutinib. PMID:27379948

  5. Tyrosine Kinase Inhibitors and Vascular Toxicity: Impetus for a Classification System?

    PubMed

    Herrmann, Joerg

    2016-06-01

    The introduction of molecularly targeted therapies with tyrosine kinase inhibitors has revolutionized cancer therapy and has contributed to a steady decline in cancer-related mortality since the late 1990s. However, not only cardiac but also vascular toxicity has been reported for these agents, some as expected on-target effects (e.g., VEGF receptor inhibitors) and others as unanticipated events (e.g., BCR-Abl inhibitors). A sound understanding of these cardiovascular toxic effects is critical to advance mechanistic insight into vascular disease and clinical care. From a conceptual standpoint, there might be value in defining type I (permanent) and type II (transient) vascular toxicity. This review will focus on the tyrosine kinase inhibitors in current clinical use and their associated vascular side effects. PMID:27099141

  6. The Potential Role of Aurora Kinase Inhibitors in Haematological Malignancies

    PubMed Central

    Farag, Sherif S.

    2011-01-01

    Summary Aurora kinases play an important role in the control of the cell cycle and have been implicated in tumourigenesis in a number of cancers. Among the haematological malignancies, overexpression of Aurora kinases has been reported in acute myeloid leukaemia, chronic myeloid leukaemia, acute lymphoblastic leukaemia, multiple myeloma, aggressive non-Hodgkin lymphoma and Hodgkin lymphoma. A large number of Aurora kinase inhibitors are currently in different stages of clinical development. In addition to varying in their selectivity for the different Aurora kinases, some also have activity directed at other cellular kinases involved in important molecular pathways in cancer cells. This review summarizes the biology of Aurora kinases and discusses why they may be good therapeutic targets in different haematological cancers. We describe preclinical data that has served as the rationale for investigating Aurora kinase inhibitors in different haematological malignancies, and summarize published results from early phase clinical trials. While the anti-tumour effects of Aurora kinase inhibitors appear promising, we highlight important issues for future clinical research and suggest that the optimal use of these inhibitors is likely to be in combination with cytotoxic agents already in use for the treatment of various haematological cancers. PMID:21980926

  7. Effect of kinase inhibitors on the therapeutic properties of monoclonal antibodies.

    PubMed

    Duong, Minh Ngoc; Matera, Eva-Laure; Mathé, Doriane; Evesque, Anne; Valsesia-Wittmann, Sandrine; Clémenceau, Béatrice; Dumontet, Charles

    2015-01-01

    Targeted therapies of malignancies currently consist of therapeutic monoclonal antibodies and small molecule kinase inhibitors. The combination of these novel agents raises the issue of potential antagonisms. We evaluated the potential effect of 4 kinase inhibitors, including the Bruton tyrosine kinase inhibitor ibrutinib, and 3 PI3K inhibitors idelalisib, NVP-BEZ235 and LY294002, on the effects of the 3 monoclonal antibodies, rituximab and obinutuzumab (directed against CD20) and trastuzumab (directed against HER2). We found that ibrutinib potently inhibits antibody-dependent cell-mediated cytotoxicity exerted by all antibodies, with a 50% inhibitory concentration of 0.2 microM for trastuzumab, 0.5 microM for rituximab and 2 microM for obinutuzumab, suggesting a lesser effect in combination with obinutuzumab than with rituximab. The 4 kinase inhibitors were found to inhibit phagocytosis by fresh human neutrophils, as well as antibody-dependent cellular phagocytosis induced by the 3 antibodies. Conversely co-administration of ibrutinib with rituximab, obinutuzumab or trastuzumab did not demonstrate any inhibitory effect of ibrutinib in vivo in murine xenograft models. In conclusion, some kinase inhibitors, in particular, ibrutinib, are likely to exert inhibitory effects on innate immune cells. However, these effects do not compromise the antitumor activity of monoclonal antibodies in vivo in the models that were evaluated. PMID:25523586

  8. Glycogen Synthase Kinase-3 (GSK-3)-Targeted Therapy and Imaging.

    PubMed

    Pandey, Mukesh K; DeGrado, Timothy R

    2016-01-01

    Glycogen synthase kinase-3 (GSK-3) is associated with various key biological processes, including glucose regulation, apoptosis, protein synthesis, cell signaling, cellular transport, gene transcription, proliferation, and intracellular communication. Accordingly, GSK-3 has been implicated in a wide variety of diseases and specifically targeted for both therapeutic and imaging applications by a large number of academic laboratories and pharmaceutical companies. Here, we review the structure, function, expression levels, and ligand-binding properties of GSK-3 and its connection to various diseases. A selected list of highly potent GSK-3 inhibitors, with IC50 <20 nM for adenosine triphosphate (ATP)-competitive inhibitors and IC50 <5 μM for non-ATP-competitive inhibitors, were analyzed for structure activity relationships. Furthermore, ubiquitous expression of GSK-3 and its possible impact on therapy and imaging are also highlighted. Finally, a rational perspective and possible route to selective and effective GSK-3 inhibitors is discussed. PMID:26941849

  9. Glycogen Synthase Kinase-3 (GSK-3)-Targeted Therapy and Imaging

    PubMed Central

    Pandey, Mukesh K.; DeGrado, Timothy R.

    2016-01-01

    Glycogen synthase kinase-3 (GSK-3) is associated with various key biological processes, including glucose regulation, apoptosis, protein synthesis, cell signaling, cellular transport, gene transcription, proliferation, and intracellular communication. Accordingly, GSK-3 has been implicated in a wide variety of diseases and specifically targeted for both therapeutic and imaging applications by a large number of academic laboratories and pharmaceutical companies. Here, we review the structure, function, expression levels, and ligand-binding properties of GSK-3 and its connection to various diseases. A selected list of highly potent GSK-3 inhibitors, with IC50 <20 nM for adenosine triphosphate (ATP)-competitive inhibitors and IC50 <5 μM for non-ATP-competitive inhibitors, were analyzed for structure activity relationships. Furthermore, ubiquitous expression of GSK-3 and its possible impact on therapy and imaging are also highlighted. Finally, a rational perspective and possible route to selective and effective GSK-3 inhibitors is discussed. PMID:26941849

  10. Aurora Kinases and Potential Medical Applications of Aurora Kinase Inhibitors: A Review

    PubMed Central

    Gavriilidis, Paschalis; Giakoustidis, Alexandros; Giakoustidis, Dimitrios

    2015-01-01

    Aurora kinases (AKs) represent a novel group of serine/threonine kinases. They were originally described in 1995 by David Glover in the course of studies of mutant alleles characterized with unusual spindle pole configuration in Drosophila melanogaster. Thus far, three AKs A, B, and C have been discovered in human healthy and neoplastic cells. Each one locates in different subcellular locations and they are all nuclear proteins. AKs are playing an essential role in mitotic events such as monitoring of the mitotic checkpoint, creation of bipolar mitotic spindle and alignment of centrosomes on it, also regulating centrosome separation, bio-orientation of chromosomes and cytokinesis. Any inactivation of them can have catastrophic consequences on mitotic events of spindle formation, alignment of centrosomes and cytokinesis, resulting in apoptosis. Overexpression of AKs has been detected in diverse solid and hematological cancers and has been linked with a dismal prognosis. After discovery and identification of the first aurora kinase inhibitor (AKI) ZM447439 as a potential drug for targeted therapy in cancer treatment, approximately 30 AKIs have been introduced in cancer treatment. PMID:26345296

  11. VEGF receptor kinase inhibitors: phthalazines, anthranilamides and related structures.

    PubMed

    Dumas, Jacques; Dixon, Julie A

    2005-06-01

    Inhibition of vascular endothelial growth factor receptor (VEGFR) signalling, using either antibodies or small molecule inhibitors of the VEGFR kinase domain, has become a major area of research in oncology. The phthalazine PTK787/ZK222584, first published in the literature in 1998, is one of the most advanced VEGFR inhibitors in the clinic. This paper provides an update on the patenting activity related to the phthalazine class. In addition, newer kinase inhibitor pharmacophores derived from this class (e.g., anthranilamides) will be reviewed. PMID:20141503

  12. Method for distinguishing normal and transformed cells using G1 kinase inhibitors

    SciTech Connect

    Crissman, H.A.; Gadbois, D.M.; Tobey, R.A.; Bradbury, E.M.

    1991-12-31

    A G{sub 1} phase kinase inhibitor is applied in a low concentration to a population of normal and transformed mammalian cells. The concentration of G{sub 1} phase kinase inhibitor is selected to reversibly arrest normal mammalian cells in the G{sub 1} cell cycle without arresting growth of transformed cells. The transformed cells may then be selectively identified and/or cloned for research or diagnostic purposes. The transformed cells may also be selectively killed by therapeutic agents that do not affect normal cells in the G{sub 1} phase, suggesting that such G{sub 1} phase kinase inhibitors may form an effective adjuvant for use with chemotherapeutic agents in cancer therapy for optimizing the killing dose of chemotherapeutic agents while minimizing undesirable side effects on normal cells.

  13. Method for distinguishing normal and transformed cells using G1 kinase inhibitors

    DOEpatents

    Crissman, Harry A.; Gadbois, Donna M.; Tobey, Robert A.; Bradbury, E. Morton

    1993-01-01

    A G.sub.1 phase kinase inhibitor is applied in a low concentration to a population of normal and transformed mammalian cells. The concentration of G.sub.1 phase kinase inhibitor is selected to reversibly arrest normal mammalian cells in the G.sub.1 cell cycle without arresting growth of transformed cells. The transformed cells may then be selectively identified and/or cloned for research or diagnostic purposes. The transformed cells may also be selectively killed by therapeutic agents that do not affect normal cells in the G.sub.1 phase, suggesting that such G.sub.1 phase kinase inhibitors may form an effective adjuvant for use with chemotherapeutic agents in cancer therapy for optimizing the killing dose of chemotherapeutic agents while minimizing undesirable side effects on normal cells.

  14. Method for distinguishing normal and transformed cells using G1 kinase inhibitors

    DOEpatents

    Crissman, H.A.; Gadbois, D.M.; Tobey, R.A.; Bradbury, E.M.

    1993-02-09

    A G[sub 1] phase kinase inhibitor is applied in a low concentration to a population of normal and transformed mammalian cells. The concentration of G[sub 1] phase kinase inhibitor is selected to reversibly arrest normal mammalian cells in the G[sub 1] cell cycle without arresting growth of transformed cells. The transformed cells may then be selectively identified and/or cloned for research or diagnostic purposes. The transformed cells may also be selectively killed by therapeutic agents that do not affect normal cells in the G[sub 1] phase, suggesting that such G[sub 1] phase kinase inhibitors may form an effective adjuvant for use with chemotherapeutic agents in cancer therapy for optimizing the killing dose of chemotherapeutic agents while minimizing undesirable side effects on normal cells.

  15. A Covalent Cysteine-Targeting Kinase Inhibitor of Ire1 Permits Allosteric Control of Endoribonuclease Activity.

    PubMed

    Waller, Daniel D; Jansen, Gregor; Golizeh, Makan; Martel-Lorion, Chloe; Dejgaard, Kurt; Shiao, Tze Chieh; Mancuso, John; Tsantrizos, Youla S; Roy, René; Sebag, Michael; Sleno, Lekha; Thomas, David Y

    2016-05-01

    The unfolded protein response (UPR) initiated by the transmembrane kinase/ribonuclease Ire1 has been implicated in a variety of diseases. Ire1, with its unique position in the UPR, is an ideal target for the development of therapies; however, the identification of specific kinase inhibitors is challenging. Recently, the development of covalent inhibitors has gained great momentum because of the irreversible deactivation of the target. We identified and determined the mechanism of action of the Ire1-inhibitory compound UPRM8. MS analysis revealed that UPRM8 inhibition occurs by covalent adduct formation at a conserved cysteine at the regulatory DFG+2 position in the Ire1 kinase activation loop. Mutational analysis of the target cysteine residue identified both UPRM8-resistant and catalytically inactive Ire1 mutants. We describe a novel covalent inhibition mechanism of UPRM8, which can serve as a lead for the rational design and optimization of inhibitors of human Ire1. PMID:26792008

  16. Risk of Infectious Complications in Hemato-Oncological Patients Treated with Kinase Inhibitors

    PubMed Central

    Reinwald, Mark; Boch, Tobias; Hofmann, Wolf-Karsten; Buchheidt, Dieter

    2015-01-01

    Infectious complications are a major cause of morbidity and mortality in patients with hemato-oncological diseases. Although disease-related immunosuppression represents one factor, aggressive treatment regimens, such as chemotherapy, stem cell transplantation, or antibody treatment, account for a large proportion of infectious side effects. With the advent of targeted therapies affecting specific kinases in malignant diseases, the outcome of patients has further improved. Nonetheless, dependent on the specific pathway targeted or off-target activity of the kinase inhibitor, therapy-associated infectious complications may occur. We review the most common and approved kinase inhibitors targeting a variety of hemato-oncological malignancies for their immunosuppressive potential and evaluate their risk of infectious side effects based on preclinical evidence and clinical data in order to raise awareness of the potential risks involved. PMID:27127405

  17. [Proteasome inhibitors in cancer therapy].

    PubMed

    Romaniuk, Wioletta; Ołdziej, Agnieszka Ewa; Zińczuk, Justyna; Kłoczko, Janusz

    2015-01-01

    Proteasomes are multisubunit enzyme complexes. They contain three enzymatic active sites which are termed chymotrypsin-like, trypsin-like, and caspase-like. The elementary function of the proteasomes is degradation of damaged proteins. Proteasome inhibition leads to accumulation of damaged protein, which leads to caspase activation and cell death. This relationship is used in cancer therapy. Bortezomib is the first proteasome inhibitor approved by the US Food and Drug Administration for the treatment of relapsed/refractory multiple myeloma. Carfilzomib belongs to the second generation of drugs, which was approved by the US FDA in 2012. Currently in the study phase there are four new inhibitors: ixazomib (MLN9780/MLN2238), delanzomib (CEP-18770), oprozomib (ONX0912/PR-047) and marizomib (NPI-0052). PMID:27259216

  18. Design, Synthesis and Inhibitory Activity of Photoswitchable RET Kinase Inhibitors

    PubMed Central

    Ferreira, Rubén; Nilsson, Jesper R.; Solano, Carlos; Andréasson, Joakim; Grøtli, Morten

    2015-01-01

    REarranged during Transfection (RET) is a transmembrane receptor tyrosine kinase required for normal development and maintenance of neurons of the central and peripheral nervous systems. Deregulation of RET and hyperactivity of the RET kinase is intimately connected to several types of human cancers, most notably thyroid cancers, making it an attractive therapeutic target for small-molecule kinase inhibitors. Novel approaches, allowing external control of the activity of RET, would be key additions to the signal transduction toolbox. In this work, photoswitchable RET kinase inhibitors based on azo-functionalized pyrazolopyrimidines were developed, enabling photonic control of RET activity. The most promising compound displays excellent switching properties and stability with good inhibitory effect towards RET in cell-free as well as live-cell assays and a significant difference in inhibitory activity between its two photoisomeric forms. As the first reported photoswitchable small-molecule kinase inhibitor, we consider the herein presented effector to be a significant step forward in the development of tools for kinase signal transduction studies with spatiotemporal control over inhibitor concentration in situ. PMID:25944708

  19. Design, Synthesis and Inhibitory Activity of Photoswitchable RET Kinase Inhibitors

    NASA Astrophysics Data System (ADS)

    Ferreira, Rubén; Nilsson, Jesper R.; Solano, Carlos; Andréasson, Joakim; Grøtli, Morten

    2015-05-01

    REarranged during Transfection (RET) is a transmembrane receptor tyrosine kinase required for normal development and maintenance of neurons of the central and peripheral nervous systems. Deregulation of RET and hyperactivity of the RET kinase is intimately connected to several types of human cancers, most notably thyroid cancers, making it an attractive therapeutic target for small-molecule kinase inhibitors. Novel approaches, allowing external control of the activity of RET, would be key additions to the signal transduction toolbox. In this work, photoswitchable RET kinase inhibitors based on azo-functionalized pyrazolopyrimidines were developed, enabling photonic control of RET activity. The most promising compound displays excellent switching properties and stability with good inhibitory effect towards RET in cell-free as well as live-cell assays and a significant difference in inhibitory activity between its two photoisomeric forms. As the first reported photoswitchable small-molecule kinase inhibitor, we consider the herein presented effector to be a significant step forward in the development of tools for kinase signal transduction studies with spatiotemporal control over inhibitor concentration in situ.

  20. LIM kinase inhibitors disrupt mitotic microtubule organization and impair tumor cell proliferation

    PubMed Central

    Mardilovich, Katerina; Baugh, Mark; Crighton, Diane; Kowalczyk, Dominika; Gabrielsen, Mads; Munro, June; Croft, Daniel R.; Lourenco, Filipe; James, Daniel; Kalna, Gabriella; McGarry, Lynn; Rath, Oliver; Shanks, Emma; Garnett, Mathew J.; McDermott, Ultan; Brookfield, Joanna; Charles, Mark; Hammonds, Tim; Olson, Michael F.

    2015-01-01

    The actin and microtubule cytoskeletons are critically important for cancer cell proliferation, and drugs that target microtubules are widely-used cancer therapies. However, their utility is compromised by toxicities due to dose and exposure. To overcome these issues, we characterized how inhibition of the actin and microtubule cytoskeleton regulatory LIM kinases could be used in drug combinations to increase efficacy. A previously-described LIMK inhibitor (LIMKi) induced dose-dependent microtubule alterations that resulted in significant mitotic defects, and increased the cytotoxic potency of microtubule polymerization inhibitors. By combining LIMKi with 366 compounds from the GSK Published Kinase Inhibitor Set, effective combinations were identified with kinase inhibitors including EGFR, p38 and Raf. These findings encouraged a drug discovery effort that led to development of CRT0105446 and CRT0105950, which potently block LIMK1 and LIMK2 activity in vitro, and inhibit cofilin phosphorylation and increase αTubulin acetylation in cells. CRT0105446 and CRT0105950 were screened against 656 cancer cell lines, and rhabdomyosarcoma, neuroblastoma and kidney cancer cells were identified as significantly sensitive to both LIMK inhibitors. These large-scale screens have identified effective LIMK inhibitor drug combinations and sensitive cancer types. In addition, the LIMK inhibitory compounds CRT0105446 and CRT0105950 will enable further development of LIMK-targeted cancer therapy. PMID:26540348

  1. Allosteric Small-Molecule Inhibitors of the AKT Kinase

    NASA Astrophysics Data System (ADS)

    Dalafave, D. S.

    This research addresses computational design of small druglike molecules for possible anticancer applications. AKT and SGK are kinases that control important cellular functions. They are highly homologous, having similar activators and targets. Cancers with increased SGK activity may develop resistance to AKT-specific inhibitors. Our goal was to design new molecules that would bind both AKT and SGK, thus preventing the development of drug resistance. Most kinase inhibitors target the kinase ATP-binding site. However, the high similarity in this site among kinases makes it difficult to target specifically. Furthermore, mutations in this site can cause resistance to ATP-competitive kinase inhibitors. We used existing AKT inhibitors as initial templates to design molecules that could potentially bind the allosteric sites of both AKT and SGK. Molecules with no implicit toxicities and optimal drug-like properties were used for docking studies. Binding energies of the stable complexes that the designed molecules formed with AKT and SGK were calculated. Possible applications of the designed putative inhibitors against cancers with overexpressed AKT/SGK is discussed.

  2. Recent advances in the development of sphingosine kinase inhibitors.

    PubMed

    Pitman, Melissa R; Costabile, Maurizio; Pitson, Stuart M

    2016-09-01

    Sphingosine kinase (SK) 1 and 2 are lipid kinases that catalyse the formation of sphingosine 1-phosphate (S1P), a potent signalling molecule with a wide array of cellular effects. SK1 and 2 have been shown to be up-regulated in tumours and their genetic ablation or inhibition has been shown to slow tumour growth as well as sensitise cancer cells to chemotherapeutics. The SKs have been extensively studied, with a plethora of inhibitors developed that target the sphingosine-binding pocket of the enzyme, some with nanomolar affinities. Recently, inhibitors targeting the ATP pocket of SK have also been described. Here we discuss the development of these new small molecule SK inhibitors, summarise the recent discovery of off-targets effects of many current SK inhibitors, and provide an overview of the usefulness of these inhibitors as in vitro tools and therapeutic agents. PMID:27297359

  3. Ruxolitinib: An Oral Janus Kinase 1 and Janus Kinase 2 Inhibitor in the Management of Myelofibrosis

    PubMed Central

    Verstovsek, Srdan

    2016-01-01

    Myelofibrosis (MF), polycythemia vera (PV), and essential thrombocythemia (ET) are referred to as the classic Philadelphia chromosome (BCR-ABL1)-negative myeloproliferative neoplasms. Although each has distinct pathologic features, all 3 display alterations in Janus kinase (JAK) signal transduction activator of transcription signaling. Myelofibrosis is the most serious of the 3, associated with shortened survival (median survival, 5–7 years); bone marrow failure with anemia; progressive splenomegaly; and chronic, burdensome symptoms, including fatigue, night sweats, itching, abdominal discomfort, loss of appetite/early satiety, unintentional weight loss, and bone, chest, and abdominal pain. Treatments for MF have been mainly palliative, with the exception of allogeneic stem cell transplantation, which, although potentially curative, is feasible only in a small subpopulation of patients. In November 2011, ruxolitinib, an inhibitor of JAK1 and JAK2, was approved by the US Food and Drug Administration for the treatment of intermediate- or high-risk MF, including primary MF, post-PV MF, and post-ET MF. In clinical trials, ruxolitinib was shown to reduce spleen volume and improve MF-related symptoms and quality-of-life measures. Evidence also suggests that ruxolitinib therapy has a survival advantage over placebo and best available therapy. Thrombocytopenia and anemia were the most common adverse events with treatment. Ongoing trials are assessing the efficacy and safety of ruxolitinib therapy in patients with PV and ET. PMID:23391678

  4. Aminofurazans as potent inhibitors of AKT kinase

    SciTech Connect

    Rouse, Meagan B.; Seefeld, Mark A.; Leber, Jack D.; McNulty, Kenneth C.; Sun, Lihui; Miller, William H.; Zhang, ShuYun; Minthorn, Elisabeth A.; Concha, Nestor O.; Choudhry, Anthony E.; Schaber, Michael D.; Heerding, Dirk A.

    2009-06-24

    AKT inhibitors containing an imidazopyridine aminofurazan scaffold have been optimized. We have previously disclosed identification of the AKT inhibitor GSK690693, which has been evaluated in clinical trials in cancer patients. Herein we describe recent efforts focusing on investigating a distinct region of this scaffold that have afforded compounds (30 and 32) with comparable activity profiles to that of GSK690693.

  5. Fragment-based design of kinase inhibitors: a practical guide.

    PubMed

    Erickson, Jon A

    2015-01-01

    Fragment-based drug design has become an important strategy for drug design and development over the last decade. It has been used with particular success in the development of kinase inhibitors, which are one of the most widely explored classes of drug targets today. The application of fragment-based methods to discovering and optimizing kinase inhibitors can be a complicated and daunting task; however, a general process has emerged that has been highly fruitful. Here a practical outline of the fragment process used in kinase inhibitor design and development is laid out with specific examples. A guide to the overall process from initial discovery through fragment screening, including the difficulties in detection, to the computational methods available for use in optimization of the discovered fragments is reported. PMID:25709040

  6. Tyrosine kinase inhibitor sunitinib therapy is effective in the treatment of bone metastasis from cancer of unknown primary: Identification of clinical and immunohistochemical biomarkers predicting survival.

    PubMed

    Ma, Yifei; Zhou, Wang; He, Shaohui; Xu, Wei; Xiao, Jianru

    2016-09-15

    Bone metastasis from cancer of unknown primary (BMCUP) brings poor survival prognosis and its management remains controversial. Sunitinib (SUTENT) proved effective in many sorts of solid tumors but has never been applied for patients with occult primary cancers, and there is no study to identify sensitive or resistant biomarkers for sunitinib therapy in CUP patients. An analysis was carried out to investigate the efficacy of sunitinib by multivariate survival analysis of 286 patients with BMCUP. We further carried out multivariate analysis to identify histological and clinical biomarkers that could predict sensitivity or resistance for sunitinib therapy. Of the 286 patients included from January 2011 to March 2016, sunitinib therapy proved effective to prolong survival in patients with BMCUP. Sensitive and resistant biomarkers were identified in histological specimen of patients receiving sunitinib therapy. Clinical factors were also identified that predict poor survival prognosis for sunitinib therapy. Sunitinib therapy proved effective to prolong survival in patients with BMCUP. Sensitive markers for sunitinib therapy include KDR positivity and early-developed treatment-induced hypertension. Resistance factors for sunitinib include VEGF positivity, CAIX positivity and squamous cell carcinoma pathology type. Prolonged symptom time and severe weight loss before therapy seemed to be associated with poor survival prognosis for sunitinib therapy. PMID:27164264

  7. Phospho-kinase profile of colorectal tumors guides in the selection of multi-kinase inhibitors

    PubMed Central

    Montero, Juan Carlos; Corrales-Sanchez, Verónica; Morales, Jorge Carlos; Núñez, Luz-Elena; Morís, Francisco; Pandiella, Atanasio; Ocaña, Alberto

    2015-01-01

    Protein kinases play a central role in the oncogenesis of colorectal tumors and are attractive druggable targets. Detection of activated kinases within a tumor could open avenues for drug selection and optimization of new kinase inhibitors. By using a phosphokinase arrays with human colorectal tumors we identified activated kinases, including the Epidermal Growth Factor Receptor (EGFR), components of the PI3K/mTOR pathway (AKT and S6), and STAT, among others. A pharmacological screening with kinase inhibitors against these proteins helped us to identify a new kinase inhibitor, termed EC-70124 that showed the highest anti-proliferative activity in cell lines. EC-70124 also inhibited cell migration and biochemical experiments demonstrated its effect targeting the PI3K/mTOR pathway. This drug also arrested cells at G2/M and induced apoptosis. Experiments in combination with standard chemotherapy used in the clinical setting indicated a synergistic effect. EC-70124 also reduced tumor growth in vivo and inhibited pS6 in the implanted tumors. In conclusion, by studying the kinase profile of colorectal tumors, we identified relevant activated pathways, and a new multi-kinase compound with significant antitumor properties. PMID:26418718

  8. Phospho-kinase profile of colorectal tumors guides in the selection of multi-kinase inhibitors.

    PubMed

    Serrano-Heras, Gemma; Cuenca-López, María Dolores; Montero, Juan Carlos; Corrales-Sanchez, Verónica; Morales, Jorge Carlos; Núñez, Luz-Elena; Morís, Francisco; Pandiella, Atanasio; Ocaña, Alberto

    2015-10-13

    Protein kinases play a central role in the oncogenesis of colorectal tumors and are attractive druggable targets. Detection of activated kinases within a tumor could open avenues for drug selection and optimization of new kinase inhibitors. By using a phosphokinase arrays with human colorectal tumors we identified activated kinases, including the Epidermal Growth Factor Receptor (EGFR), components of the PI3K/mTOR pathway (AKT and S6), and STAT, among others. A pharmacological screening with kinase inhibitors against these proteins helped us to identify a new kinase inhibitor, termed EC-70124 that showed the highest anti-proliferative activity in cell lines. EC-70124 also inhibited cell migration and biochemical experiments demonstrated its effect targeting the PI3K/mTOR pathway. This drug also arrested cells at G2/M and induced apoptosis. Experiments in combination with standard chemotherapy used in the clinical setting indicated a synergistic effect. EC-70124 also reduced tumor growth in vivo and inhibited pS6 in the implanted tumors. In conclusion, by studying the kinase profile of colorectal tumors, we identified relevant activated pathways, and a new multi-kinase compound with significant antitumor properties. PMID:26418718

  9. Seeding collaborations to advance kinase science with the GSK Published Kinase Inhibitor Set (PKIS).

    PubMed

    Drewry, David H; Willson, Timothy M; Zuercher, William J

    2014-01-01

    To catalyze research on historically untargeted protein kinases, we created the PKIS, an annotated set of 367 small molecule kinase inhibitors. The set has been widely distributed to academic collaborators as an open access tool. It has been used to identify chemical starting points for development of chemical probes for orphan kinases and to investigate kinase signaling in high content phenotypic assays. Access to the set comes with few restrictions other than the requirement that assay results be released into the public domain for the benefit of the entire research community. Examples from the efforts of several collaborators are summarized. PMID:24283969

  10. Redundant kinase activation and resistance of EGFR-tyrosine kinase inhibitors

    PubMed Central

    Luo, Min; Fu, Li-Wu

    2014-01-01

    Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have shown dramatic effects against that tumors harboring EGFR activating mutations in the EGFR intracytoplasmic tyrosine kinase domain and resulted in cell apoptosis. Unfortunately, a number of patients ultimately developed resistance by multiple mechanisms. Thus, elucidation of the mechanism of resistance to EGFR-TKIs can provide strategies for blocking or reversing the situation. Recent studies suggested that redundant kinase activation plays pivotal roles in escaping from the effects of EGFR-TKIs. Herein, we aimed to characterize several molecular events involved in the resistance to EGFR-TKIs mediated by redundant kinase activation. PMID:25520855

  11. Cyclin dependent kinase (CDK) inhibitors as anticancer drugs.

    PubMed

    Sánchez-Martínez, Concepción; Gelbert, Lawrence M; Lallena, María José; de Dios, Alfonso

    2015-09-01

    Sustained proliferative capacity is a hallmark of cancer. In mammalian cells proliferation is controlled by the cell cycle, where cyclin-dependent kinases (CDKs) regulate critical checkpoints. CDK4 and CDK6 are considered highly validated anticancer drug targets due to their essential role regulating cell cycle progression at the G1 restriction point. This review provides an overview of recent advances on cyclin dependent kinase inhibitors in general with special emphasis on CDK4 and CDK6 inhibitors and compounds under clinical evaluation. Chemical structures, structure activity relationships, and relevant preclinical properties will be described. PMID:26115571

  12. The azaindole framework in the design of kinase inhibitors.

    PubMed

    Mérour, Jean-Yves; Buron, Frédéric; Plé, Karen; Bonnet, Pascal; Routier, Sylvain

    2014-01-01

    This review article illustrates the growing use of azaindole derivatives as kinase inhibitors and their contribution to drug discovery and innovation. The different protein kinases which have served as targets and the known molecules which have emerged from medicinal chemistry and Fragment-Based Drug Discovery (FBDD) programs are presented. The various synthetic routes used to access these compounds and the chemical pathways leading to their synthesis are also discussed. An analysis of their mode of binding based on X-ray crystallography data gives structural insights for the design of more potent and selective inhibitors. PMID:25460315

  13. Adenosine kinase inhibitors attenuate opiate withdrawal via adenosine receptor activation.

    PubMed

    Kaplan, G B; Coyle, T S

    1998-11-27

    Previous studies have demonstrated a role for adenosine in mediating opiate effects. This study examines the effects of indirect activation of adenosine receptors, via treatment with adenosine kinase inhibitors, on the expression of opiate withdrawal in mice. Mice receive chronic morphine treatment via implantation of subcutaneous morphine pellets (75 mg) for 72 h. Mice then receive parenteral treatment with adenosine kinase inhibitors, either 5'-amino-5'-deoxyadenosine (2, 5, 20, 40 mg/kg, intraperitoneal or i.p.) or iodotubericidin (1, 2, 5 mg/kg, i.p.), followed by naloxone injection and opiate withdrawal signs are measured over 20 min. Both adenosine kinase inhibitors significantly reduce the following opiate withdrawal signs in a dose-dependent manner compared to vehicle: withdrawal jumps, teeth chattering, forepaw tremors, and forepaw treads. Additionally, 5'-amino-5'-deoxyadenosine significantly reduces withdrawal-induced diarrhea and weight loss. Effects of 5'-amino-5'-deoxyadenosine (40 mg/kg) on opiate withdrawal signs appear to be mediated via adenosine receptor activation as they are reversed by pretreatment by adenosine receptor antagonist caffeine (20 mg, i.p.) but not by selective phosphodiesterase inhibitor Ro 20-1724 (10 mg/kg, i.p.). Adenosine receptor activation via adenosine kinase inhibitor treatment attenuates opiate withdrawal and these agents may be generally useful in the treatment of drug withdrawal syndromes. PMID:9865523

  14. Novel cinnoline-based inhibitors of LRRK2 kinase activity.

    PubMed

    Garofalo, Albert W; Adler, Marc; Aubele, Danielle L; Bowers, Simeon; Franzini, Maurizio; Goldbach, Erich; Lorentzen, Colin; Neitz, R Jeffrey; Probst, Gary D; Quinn, Kevin P; Santiago, Pam; Sham, Hing L; Tam, Danny; Truong, Anh P; Ye, Xiaocong M; Ren, Zhao

    2013-01-01

    Leucine rich repeat kinase 2 (LRRK2) has been implicated in the pathogenesis of Parkinson's disease (PD). Inhibition of LRRK2 kinase activity is a therapeutic approach that may lead to new treatments for PD. Herein we report the discovery of a series of cinnoline-3-carboxamides that are potent against both wild-type and mutant LRRK2 kinase activity in biochemical assays. These compounds are also shown to be potent inhibitors in a cellular assay and to have good to excellent CNS penetration. PMID:23219325

  15. Slow Inhibition and Conformation Selective Properties of Extracellular Signal-Regulated Kinase 1 and 2 Inhibitors

    PubMed Central

    Rudolph, Johannes; Xiao, Yao; Pardi, Arthur; Ahn, Natalie G.

    2016-01-01

    The mitogen-activated protein (MAP) kinase pathway is a target for anticancer therapy, validated using inhibitors of B-Raf and MAP kinase kinase (MKK) 1 and 2. Clinical outcomes show a high frequency of acquired resistance in patient tumors, involving upregulation of activity of the MAP kinase, extracellular signal-regulated kinase (ERK) 1 and 2. Thus, inhibitors for ERK1/2 are potentially important for targeted therapeutics against cancer. The structures and potencies of different ERK inhibitors have been published, but their kinetic mechanisms have not been characterized. Here we perform enzyme kinetic studies on six representative ERK inhibitors, with potencies varying from 100 pM to 20 μM. Compounds with significant biological activity (IC50 < 100 nM) that inhibit in the subnanomolar range (Vertex-11e and SCH772984) display slow-onset inhibition and represent the first inhibitors of ERK2 known to demonstrate slow dissociation rate constants (values of 0.2 and 1.1 h−1, respectively). Furthermore, we demonstrate using kinetic competition assays that Vertex-11e binds with differing affinities to ERK2 in its inactive, unphosphorylated and active, phosphorylated forms. Finally, two-dimensional heteronuclear multiple-quantum correlation nuclear magnetic resonance experiments reveal that distinct conformational states are formed in complexes of Vertex-11e with inactive and active ERK2. Importantly, two conformers interconvert in equilibrium in the active ERK2 apoenzyme, but Vertex-11e strongly shifts the equilibrium completely to one conformer. Thus, a high-affinity, slow dissociation inhibitor stabilizes different enzyme conformations depending on the activity state of ERK2 and reveals properties of conformational selection toward the active kinase. PMID:25350931

  16. Prediction of kinase inhibitor response using activity profiling, in vitro screening, and elastic net regression

    PubMed Central

    2014-01-01

    Background Many kinase inhibitors have been approved as cancer therapies. Recently, libraries of kinase inhibitors have been extensively profiled, thus providing a map of the strength of action of each compound on a large number of its targets. These profiled libraries define drug-kinase networks that can predict the effectiveness of untested drugs and elucidate the roles of specific kinases in different cellular systems. Predictions of drug effectiveness based on a comprehensive network model of cellular signalling are difficult, due to our partial knowledge of the complex biological processes downstream of the targeted kinases. Results We have developed the Kinase Inhibitors Elastic Net (KIEN) method, which integrates information contained in drug-kinase networks with in vitro screening. The method uses the in vitro cell response of single drugs and drug pair combinations as a training set to build linear and nonlinear regression models. Besides predicting the effectiveness of untested drugs, the KIEN method identifies sets of kinases that are statistically associated to drug sensitivity in a given cell line. We compared different versions of the method, which is based on a regression technique known as elastic net. Data from two-drug combinations led to predictive models, and we found that predictivity can be improved by applying logarithmic transformation to the data. The method was applied to the A549 lung cancer cell line, and we identified specific kinases known to have an important role in this type of cancer (TGFBR2, EGFR, PHKG1 and CDK4). A pathway enrichment analysis of the set of kinases identified by the method showed that axon guidance, activation of Rac, and semaphorin interactions pathways are associated to a selective response to therapeutic intervention in this cell line. Conclusions We have proposed an integrated experimental and computational methodology, called KIEN, that identifies the role of specific kinases in the drug response of a given

  17. CDK8 kinase--An emerging target in targeted cancer therapy.

    PubMed

    Rzymski, Tomasz; Mikula, Michał; Wiklik, Katarzyna; Brzózka, Krzysztof

    2015-10-01

    Cyclin-dependent kinase (CDK) inhibitors have been developed as potential anticancer therapeutics and several nonselective compounds are currently in advanced clinical trials. This review is focused on the key biological roles of CDK8 kinase, which provide a proof-of-principle for continued efforts toward effective cancer treatment, targeting activity of this CDK family member. Among currently identified kinase inhibitors, several displayed significant selectivity for CDK8 and notably the effectiveness in targeting cancer specific gene expression programs. Structural features of CDK8 and available ligands were discussed from a perspective of the rational drug design process. Current state of the art confirms that further development of CDK8 inhibitors will translate into targeted therapies in oncology. This article is part of a Special Issue entitled:Inhibitors of Protein Kinases. PMID:26006748

  18. Factors Influencing the Central Nervous System Distribution of a Novel Phosphoinositide 3-Kinase/Mammalian Target of Rapamycin Inhibitor GSK2126458: Implications for Overcoming Resistance with Combination Therapy for Melanoma Brain Metastases.

    PubMed

    Vaidhyanathan, Shruthi; Wilken-Resman, Brynna; Ma, Daniel J; Parrish, Karen E; Mittapalli, Rajendar K; Carlson, Brett L; Sarkaria, Jann N; Elmquist, William F

    2016-02-01

    Small molecule inhibitors targeting the mitogen-activated protein kinase pathway (Braf/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase) have had success in extending survival for patients with metastatic melanoma. Unfortunately, resistance may occur via cross-activation of alternate signaling pathways. One approach to overcome resistance is to simultaneously target the phosphoinositide 3-kinase/mammalian target of rapamycin signaling pathway. Recent reports have shown that GSK2126458 [2,4-difluoro-N-(2-methoxy-5-(4-(pyridazin-4-yl)quinolin-6-yl)pyridin-3-yl) benzenesulfonamide], a dual phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor, can overcome acquired resistance to Braf and mitogen-activated protein kinase kinase inhibitors in vitro. These resistance mechanisms may be especially important in melanoma brain metastases because of limited drug delivery across the blood-brain barrier. The purpose of this study was to investigate factors that influence the brain distribution of GSK2126458 and to examine the efficacy of GSK2126458 in a novel patient-derived melanoma xenograft (PDX) model. Both in vitro and in vivo studies indicate that GSK2126458 is a substrate for P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp), two dominant active efflux transporters in the blood-brain barrier. The steady-state brain distribution of GSK2126458 was 8-fold higher in the P-gp/Bcrp knockout mice compared with the wild type. We also observed that when simultaneously infused to steady state, GSK212658, dabrafenib, and trametinib, a rational combination to overcome mitogen-activated protein kinase inhibitor resistance, all had limited brain distribution. Coadministration of elacridar, a P-gp/Bcrp inhibitor, increased the brain distribution of GSK2126458 by approximately 7-fold in wild-type mice. In the PDX model, GSK2126458 showed efficacy in flank tumors but was ineffective in intracranial melanoma. These results show that

  19. A review of a novel, Bruton's tyrosine kinase inhibitor, ibrutinib.

    PubMed

    Lee, Chung-Shien; Rattu, Mohammad A; Kim, Sara S

    2016-02-01

    Ibrutinib, a Bruton's kinase inhibitor, was granted an accelerated approval by the US Food and Drug Administration in November, 2013, for the treatment of relapsed or refractory mantle cell lymphoma and subsequently for the treatment of relapsed refractory chronic lymphocytic leukemia in February, 2014. In the pivotal phase 2 study of 111 patients with relapsed or refractory mantle cell lymphoma, the overall response rate in patients who received ibrutinib 560 mg daily was 68%. The median progression-free survival was 13.9 months, and the overall survival was 58% at 18 months. In a recently published phase 3 trial (RESONATE) that compared ibrutinib and ofatumumab for the treatment of relapsed and refractory chronic lymphocytic leukemia or small lymphocytic lymphoma, ibrutinib at the daily dosage of 420 mg demonstrated a significantly higher overall response rate (43% in ibrutinib vs. 4% in ofatumumab) and a significantly improved overall survival at 12 months (90% ibrutinib vs. 81% ofatumumab). Similar clinical benefits were shown regardless of del (17 p). Ibrutinib was well tolerated, and dose-limiting toxicity was not observed. Ibrutinib has shown durable remission, improved progression-free survival and overall survival, and favorable safety profile in indolent B-cell lymphoid malignancies. Ibrutinib, as a monotherapy, is an effective treatment modality as a salvage therapy for treatment of mantle cell lymphoma and chronic lymphocytic leukemia / small lymphocytic lymphoma, particularly in older patients (age ≥70 years) who are not a candidate for intensive chemotherapy and/or those with del (17 p). In patients with chronic lymphocytic leukemia and del (17 p), the current practice guideline recommends ibrutinib as an upfront treatment option. Current on-going trials will further define its role as upfront therapy and/or as a combination therapy in indolent B-cell lymphoid malignancies. PMID:25425007

  20. Preclinical testing of selective Aurora kinase inhibitors on a medullary thyroid carcinoma-derived cell line.

    PubMed

    Tuccilli, Chiara; Baldini, Enke; Prinzi, Natalie; Morrone, Stefania; Sorrenti, Salvatore; Filippini, Angelo; Catania, Antonio; Alessandrini, Stefania; Rendina, Roberta; Coccaro, Carmela; D'Armiento, Massimino; Ulisse, Salvatore

    2016-05-01

    Deregulated expression of the Aurora kinases (Aurora-A, B, and C) is thought to be involved in cell malignant transformation and genomic instability in several cancer types. Over the last decade, a number of small-molecule inhibitors of Aurora kinases have been developed, which have proved to efficiently restrain malignant cell growth and tumorigenicity. Regarding medullary thyroid carcinoma (MTC), we previously showed the efficacy of a pan-Aurora kinase inhibitor (MK-0457) in impairing growth and survival of the MTC-derived cell line TT. In the present study, we sought to establish if one of the Aurora kinases might represent a preferential target for MTC therapy. The effects of selective inhibitors of Aurora-A (MLN8237) and Aurora-B (AZD1152) were analyzed on TT cell proliferation, apoptosis, cell cycle, and ploidy. The two inhibitors reduced TT cell proliferation in a time- and dose-dependent manner, with IC50 of 19.0 ± 2.4 nM for MLN8237 and 401.6 ± 44.1 nM for AZD1152. Immunofluorescence experiments confirmed that AZD1152 inhibited phosphorylation of histone H3 (Ser10) by Aurora-B, while it did not affect Aurora-A autophosphorylation. MLN8237 inhibited Aurora-A autophosphorylation as expected, but at concentrations required to achieve the maximum antiproliferative effects it also abolished H3 (Ser10) phosphorylation. Cytofluorimetry experiments showed that both inhibitors induced accumulation of cells in G2/M phase and increased the subG0/G1 fraction and polyploidy. Finally, both inhibitors triggered apoptosis. We demonstrated that inhibition of either Aurora-A or Aurora-B has antiproliferative effects on TT cells, and thus it would be worthwhile to further investigate the therapeutical potential of Aurora kinase inhibitors in MTC treatment. PMID:26215279

  1. Epidermal growth factor receptor‐tyrosine kinase inhibitor therapy is especially beneficial to patients with exon 19 deletion compared with exon 21 L858R mutation in non‐small‐cell lung cancer: Systematic review and meta analysis

    PubMed Central

    Liu, Yinghui; Ren, Zuen; Wang, Jinghui

    2016-01-01

    Abstract Background The correlation between epidermal growth factor receptor‐tyrosine kinase inhibitors (EGFR‐TKIs) and EGFR sensitive mutation subtypes in advanced or metastatic non‐small cell lung cancer (NSCLC) remains uncertain. We performed this meta‐analysis to determine different clinical outcomes between patients with exon 19 deletion accepting EGFR‐TKI therapy compared with those with exon 21 L858R mutation. Methods PubMed and Web of Science were analyzed for eligible trials. Raw data were extracted to give pooled estimates of the effect of EGFR‐TKI therapy on objective response rate (ORR), one‐year progression‐free survival (PFS), and two‐year overall survival (OS). Results We identified 13 eligible trials involving 912 patients. Prospective meta‐analysis demonstrated that the ORR of the 19 deletion group was significantly higher than the 21 L858R mutation group (odds ratio [OR] 1.98, 95% confidence interval [CI] 1.18–3.33; P = 0.01), but no statistical significance between the one‐year PFS rate of the 19 deletion and 21 L858R groups (OR 1.44, 95% CI 0.96–2.18; P = 0.08) was found. However, retrospective meta‐analysis demonstrated that a significantly higher one‐year PFS rate was associated with the 19 deletion group (OR 1.73, 95% CI 1.17–2.56; P = 0.006). The two‐year survival rate of the 19 deletion group was significantly higher than the 21 L858R group (OR 5.27, 95 % CI 1.76–15.71; P = 0.003). Conclusions In advanced NSCLC patients, an exon 19 deleton may provide superior ORR, PFS, and OS after EGFR‐TKI treatment compared with an exon 21 L858R mutation. PMID:27385982

  2. Identification of inhibitors of checkpoint kinase 1 through template screening.

    PubMed

    Matthews, Thomas P; Klair, Suki; Burns, Samantha; Boxall, Kathy; Cherry, Michael; Fisher, Martin; Westwood, Isaac M; Walton, Michael I; McHardy, Tatiana; Cheung, Kwai-Ming J; Van Montfort, Rob; Williams, David; Aherne, G Wynne; Garrett, Michelle D; Reader, John; Collins, Ian

    2009-08-13

    Checkpoint kinase 1 (CHK1) is an oncology target of significant current interest. Inhibition of CHK1 abrogates DNA damage-induced cell cycle checkpoints and sensitizes p53 deficient cancer cells to genotoxic therapies. Using template screening, a fragment-based approach to small molecule hit generation, we have identified multiple CHK1 inhibitor scaffolds suitable for further optimization. The sequential combination of in silico low molecular weight template selection, a high concentration biochemical assay and hit validation through protein-ligand X-ray crystallography provided 13 template hits from an initial in silico screening library of ca. 15000 compounds. The use of appropriate counter-screening to rule out nonspecific aggregation by test compounds was essential for optimum performance of the high concentration bioassay. One low molecular weight, weakly active purine template hit was progressed by iterative structure-based design to give submicromolar pyrazolopyridines with good ligand efficiency and appropriate CHK1-mediated cellular activity in HT29 colon cancer cells. PMID:19572549

  3. Have adjuvant tyrosine kinase inhibitors lost their shine?

    PubMed Central

    Sabari, Joshua K.

    2016-01-01

    Despite broad advances in molecularly targeted therapies, lung cancer remains the leading cause of cancer related mortality in the United States. Epidermal growth factor receptor (EGFR) mutations occur in approximately 17% of advanced non-small cell lung cancer (NSCLC) in the US population. The remarkable efficacy of small-molecule EGFR tyrosine kinase inhibitors (TKIs) in this unique subset of patients has revolutionized the therapeutic approach to lung cancer. The success of these agents in the metastatic setting leads to the logical question of what role these drugs may have in the adjuvant setting for patients with earlier stage disease. RADIANT, an international randomized, double-blind, placebo controlled phase III study in patients with completely resected stage IB to IIIA NSLC whose tumors expressed EGFR by IHC and EGFR amplification by FISH, attempted to answer the question of whether erlotinib would improve disease free survival and overall survival in the adjuvant setting. While RADIANT does not conclude for or against adjuvant use of EGFR-TKIs, all data points towards benefit in a selected population. As clinicians, we must continue to enroll to potentially practice changing therapeutic neoadjuvant and adjuvant chemotherapy studies internationally. PMID:27568486

  4. Have adjuvant tyrosine kinase inhibitors lost their shine?

    PubMed

    Sabari, Joshua K; Chaft, Jamie E

    2016-08-01

    Despite broad advances in molecularly targeted therapies, lung cancer remains the leading cause of cancer related mortality in the United States. Epidermal growth factor receptor (EGFR) mutations occur in approximately 17% of advanced non-small cell lung cancer (NSCLC) in the US population. The remarkable efficacy of small-molecule EGFR tyrosine kinase inhibitors (TKIs) in this unique subset of patients has revolutionized the therapeutic approach to lung cancer. The success of these agents in the metastatic setting leads to the logical question of what role these drugs may have in the adjuvant setting for patients with earlier stage disease. RADIANT, an international randomized, double-blind, placebo controlled phase III study in patients with completely resected stage IB to IIIA NSLC whose tumors expressed EGFR by IHC and EGFR amplification by FISH, attempted to answer the question of whether erlotinib would improve disease free survival and overall survival in the adjuvant setting. While RADIANT does not conclude for or against adjuvant use of EGFR-TKIs, all data points towards benefit in a selected population. As clinicians, we must continue to enroll to potentially practice changing therapeutic neoadjuvant and adjuvant chemotherapy studies internationally. PMID:27568486

  5. Naturally Occurring Mutations in the MPS1 Gene Predispose Cells to Kinase Inhibitor Drug Resistance.

    PubMed

    Gurden, Mark D; Westwood, Isaac M; Faisal, Amir; Naud, Sébastien; Cheung, Kwai-Ming J; McAndrew, Craig; Wood, Amy; Schmitt, Jessica; Boxall, Kathy; Mak, Grace; Workman, Paul; Burke, Rosemary; Hoelder, Swen; Blagg, Julian; Van Montfort, Rob L M; Linardopoulos, Spiros

    2015-08-15

    Acquired resistance to therapy is perhaps the greatest challenge to effective clinical management of cancer. With several inhibitors of the mitotic checkpoint kinase MPS1 in preclinical development, we sought to investigate how resistance against these inhibitors may arise so that mitigation or bypass strategies could be addressed as early as possible. Toward this end, we modeled acquired resistance to the MPS1 inhibitors AZ3146, NMS-P715, and CCT251455, identifying five point mutations in the kinase domain of MPS1 that confer resistance against multiple inhibitors. Structural studies showed how the MPS1 mutants conferred resistance by causing steric hindrance to inhibitor binding. Notably, we show that these mutations occur in nontreated cancer cell lines and primary tumor specimens, and that they also preexist in normal lymphoblast and breast tissues. In a parallel piece of work, we also show that the EGFR p.T790M mutation, the most common mutation conferring resistance to the EGFR inhibitor gefitinib, also preexists in cancer cells and normal tissue. Our results therefore suggest that mutations conferring resistance to targeted therapy occur naturally in normal and malignant cells and these mutations do not arise as a result of the increased mutagenic plasticity of cancer cells. PMID:26202014

  6. Identification of ponatinib and other known kinase inhibitors with potent MEKK2 inhibitory activity.

    PubMed

    Ahmad, Syed; Johnson, Gary L; Scott, John E

    2015-08-01

    The kinase MEKK2 (MAP3K2) may play an important role in tumor growth and metastasis for several cancer types. Thus, targeting MEKK2 may represent a novel strategy for developing more effective therapies for cancer. In order to identify small molecules with MEKK2 inhibitory activity, we screened a collection of known kinase inhibitors using a high throughput MEKK2 intrinsic ATPase enzyme assay and confirmed activity of the most potent hits with this primary assay. We also confirmed activities of these known kinase inhibitors with an MEKK2 transphosphorylation slot blot assay using MKK6 as a substrate. We observed a good correlation in potencies between the two orthogonal MEKK2 kinase activity assay formats for this set of inhibitors. We report that ponatinib, AT9283, AZD7762, JNJ-7706621, PP121 and hesperadin had potent MEKK2 enzyme inhibitory activities ranging from 4.7 to 60 nM IC50. Ponatinib is an FDA-approved drug that potently inhibited MEKK2 enzyme activity with IC50 values of 10-16 nM. AT9283 is currently in clinical trials and produced MEKK2 IC50 values of 4.7-18 nM. This set of known kinase inhibitors represents some of the most potent in vitro MEKK2 inhibitors reported to date and may be useful as research tools. Although these compounds are not selective for MEKK2, the structures of these compounds give insight into pharmacophores that potently inhibit MEKK2 and could be used as initial leads to design highly selective inhibitors of MEKK2. PMID:26056008

  7. Selective Mycobacterium tuberculosis Shikimate Kinase Inhibitors as Potential Antibacterials.

    PubMed

    Gordon, Sara; Simithy, Johayra; Goodwin, Douglas C; Calderón, Angela I

    2015-01-01

    Owing to the persistence of tuberculosis (TB) as well as the emergence of multidrug-resistant and extensively drug-resistant (XDR) forms of the disease, the development of new antitubercular drugs is crucial. Developing inhibitors of shikimate kinase (SK) in the shikimate pathway will provide a selective target for antitubercular agents. Many studies have used in silico technology to identify compounds that are anticipated to interact with and inhibit SK. To a much more limited extent, SK inhibition has been evaluated by in vitro methods with purified enzyme. Currently, there are no data on in vivo activity of Mycobacterium tuberculosis shikimate kinase (MtSK) inhibitors available in the literature. In this review, we present a summary of the progress of SK inhibitor discovery and evaluation with particular attention toward development of new antitubercular agents. PMID:25861218

  8. Prolonged and tunable residence time using reversible covalent kinase inhibitors

    PubMed Central

    Bradshaw, J. Michael; McFarland, Jesse M.; Paavilainen, Ville O.; Bisconte, Angelina; Tam, Danny; Phan, Vernon T.; Romanov, Sergei; Finkle, David; Shu, Jin; Patel, Vaishali; Ton, Tony; Li, Xiaoyan; Loughhead, David G.; Nunn, Philip A.; Karr, Dane E.; Gerritsen, Mary E.; Funk, Jens Oliver; Owens, Timothy D.; Verner, Erik; Brameld, Ken A.; Hill, Ronald J.; Goldstein, David M.; Taunton, Jack

    2015-01-01

    Drugs with prolonged, on-target residence time often show superior efficacy, yet general strategies for optimizing drug-target residence time are lacking. Here, we demonstrate progress toward this elusive goal by targeting a noncatalytic cysteine in Bruton's tyrosine kinase (BTK) with reversible covalent inhibitors. Utilizing an inverted orientation of the cysteine-reactive cyanoacrylamide electrophile, we identified potent and selective BTK inhibitors that demonstrate biochemical residence times spanning from minutes to 7 days. An inverted cyanoacrylamide with prolonged residence time in vivo remained bound to BTK more than 18 hours after clearance from the circulation. The inverted cyanoacrylamide strategy was further utilized to discover fibroblast growth factor receptor (FGFR) kinase inhibitors with residence times of several days, demonstrating generalizability of the approach. Targeting noncatalytic cysteines with inverted cyanoacrylamides may serve as a broadly applicable platform that facilitates “residence time by design”, the ability to modulate and improve the duration of target engagement in vivo. PMID:26006010

  9. Selective Mycobacterium tuberculosis Shikimate Kinase Inhibitors as Potential Antibacterials

    PubMed Central

    Gordon, Sara; Simithy, Johayra; Goodwin, Douglas C; Calderón, Angela I

    2015-01-01

    Owing to the persistence of tuberculosis (TB) as well as the emergence of multidrug-resistant and extensively drug-resistant (XDR) forms of the disease, the development of new antitubercular drugs is crucial. Developing inhibitors of shikimate kinase (SK) in the shikimate pathway will provide a selective target for antitubercular agents. Many studies have used in silico technology to identify compounds that are anticipated to interact with and inhibit SK. To a much more limited extent, SK inhibition has been evaluated by in vitro methods with purified enzyme. Currently, there are no data on in vivo activity of Mycobacterium tuberculosis shikimate kinase (MtSK) inhibitors available in the literature. In this review, we present a summary of the progress of SK inhibitor discovery and evaluation with particular attention toward development of new antitubercular agents. PMID:25861218

  10. Predictive Models for Fast and Effective Profiling of Kinase Inhibitors.

    PubMed

    Bora, Alina; Avram, Sorin; Ciucanu, Ionel; Raica, Marius; Avram, Stefana

    2016-05-23

    In this study we developed two-dimensional pharmacophore-based random forest models for the effective profiling of kinase inhibitors. One hundred seven prediction models were developed to address distinct kinases spanning over all kinase groups. Rigorous external validation demonstrates excellent virtual screening and classification potential of the predictors and, more importantly, the capacity to prioritize novel chemical scaffolds in large chemical libraries. The models built upon more diverse and more potent compounds tend to exert the highest predictive power. The analysis of ColBioS-FlavRC (Collection of Bioselective Flavonoids and Related Compounds) highlighted several potentially promiscuous derivatives with undesirable selectivity against kinases. The prediction models can be downloaded from www.chembioinf.ro . PMID:27064988

  11. Design and synthesis of novel selective anaplastic lymphoma kinase inhibitors.

    PubMed

    Michellys, Pierre-Yves; Chen, Bei; Jiang, Tao; Jin, Yunho; Lu, Wenshuo; Marsilje, Thomas H; Pei, Wei; Uno, Tetsuo; Zhu, Xuefeng; Wu, Baogen; Nguyen, Truc Ngoc; Bursulaya, Badry; Lee, Christian; Li, Nanxin; Kim, Sungjoon; Tuntland, Tove; Liu, Bo; Sun, Frank; Steffy, Auzon; Hood, Tami

    2016-02-01

    Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase belonging to the insulin receptor superfamily. Expression of ALK in normal human tissues is only found in a subset of neural cells, however it is involved in the genesis of several cancers through genetic aberrations involving translocation of the kinase domain with multiple fusion partners (e.g., NPM-ALK in anaplastic large cell lymphoma ALCL or EML4-ALK in non-small cell lung cancer) or activating mutations in the full-length receptor resulting in ligand-independent constitutive activation (e.g., neuroblastoma). Here we are reporting the discovery of novel and selective anaplastic lymphoma kinase inhibitors from specific modifications of the 2,4-diaminopyridine core present in TAE684 and LDK378. Synthesis, structure activity relationships (SAR), absorption, distribution, metabolism, and excretion (ADME) profile, and in vivo efficacy in a mouse xenograft model of anaplastic large cell lymphoma are described. PMID:26750252

  12. Clinical experience with aurora kinase inhibitors: a review.

    PubMed

    Boss, David S; Beijnen, Jos H; Schellens, Jan H M

    2009-08-01

    The aurora kinase family of serine/threonine kinases comprises three members, designated auroras A, B, and C. Auroras A and B are essential components of the mitotic pathway, ensuring proper chromosome assembly, formation of the mitotic spindle, and cytokinesis. The role of aurora C is less clear. Overexpression of aurora A and B has been observed in several tumor types, and has been linked with a poor prognosis of cancer patients. Several small molecules targeting aurora kinases A and B or both have been evaluated preclinically and in early phase I trials. In this review we aim to summarize the most recent advances in the development of aurora kinase inhibitors, with a focus on the clinical data. PMID:19684075

  13. Phosphoproteomics data classify hematological cancer cell lines according to tumor type and sensitivity to kinase inhibitors

    PubMed Central

    2013-01-01

    Background Tumor classification based on their predicted responses to kinase inhibitors is a major goal for advancing targeted personalized therapies. Here, we used a phosphoproteomic approach to investigate biological heterogeneity across hematological cancer cell lines including acute myeloid leukemia, lymphoma, and multiple myeloma. Results Mass spectrometry was used to quantify 2,000 phosphorylation sites across three acute myeloid leukemia, three lymphoma, and three multiple myeloma cell lines in six biological replicates. The intensities of the phosphorylation sites grouped these cancer cell lines according to their tumor type. In addition, a phosphoproteomic analysis of seven acute myeloid leukemia cell lines revealed a battery of phosphorylation sites whose combined intensities correlated with the growth-inhibitory responses to three kinase inhibitors with remarkable correlation coefficients and fold changes (> 100 between the most resistant and sensitive cells). Modeling based on regression analysis indicated that a subset of phosphorylation sites could be used to predict response to the tested drugs. Quantitative analysis of phosphorylation motifs indicated that resistant and sensitive cells differed in their patterns of kinase activities, but, interestingly, phosphorylations correlating with responses were not on members of the pathway being targeted; instead, these mainly were on parallel kinase pathways. Conclusion This study reveals that the information on kinase activation encoded in phosphoproteomics data correlates remarkably well with the phenotypic responses of cancer cells to compounds that target kinase signaling and could be useful for the identification of novel markers of resistance or sensitivity to drugs that target the signaling network. PMID:23628362

  14. Role of tyrosine-kinase inhibitors in myeloproliferative neoplasms: comparative lessons learned.

    PubMed

    Pinilla-Ibarz, Javier; Sweet, Kendra L; Corrales-Yepez, Gabriela M; Komrokji, Rami S

    2016-01-01

    An important pathogenetic distinction in the classification of myeloproliferative neoplasms (MPNs) is the presence or absence of the BCR-ABL fusion gene, which encodes a unique oncogenic tyrosine kinase. The BCR-ABL fusion, caused by the formation of the Philadelphia chromosome (Ph) through translocation, constitutes the disease-initiating event in chronic myeloid leukemia. The development of successive BCR-ABL-targeted tyrosine-kinase inhibitors has led to greatly improved outcomes in patients with chronic myeloid leukemia, including high rates of complete hematologic, cytogenetic, and molecular responses. Such levels of treatment success have long been elusive for patients with Ph-negative MPNs, because of the difficulties in identifying specific driver proteins suitable as drug targets. However, in recent years an improved understanding of the complex pathobiology of classic Ph-negative MPNs, characterized by variable, overlapping multimutation profiles, has prompted the development of better and more broadly targeted (to pathway rather than protein) treatment options, particularly JAK inhibitors. In classic Ph-negative MPNs, overactivation of JAK-dependent signaling pathways is a central pathogenic mechanism, and mutually exclusive mutations in JAK2, MPL, and CALR linked to aberrant JAK activation are now recognized as key drivers of disease progression in myelofibrosis (MF). In clinical trials, the JAK1/JAK2 inhibitor ruxolitinib - the first therapy approved for MF worldwide - improved disease-related splenomegaly and symptoms independent of JAK2 (V617F) mutational status, and prolonged survival compared with placebo or standard therapy in patients with advanced MF. In separate trials, ruxolitinib also provided comprehensive hematologic control in patients with another Ph-negative MPN - polycythemia vera. However, complete cytogenetic or molecular responses with JAK inhibitors alone are normally not observed, underscoring the need for novel combination

  15. Molecular Pathways: Molecular Basis for Sensitivity and Resistance to JAK Kinase Inhibitors

    PubMed Central

    Meyer, Sara C.; Levine, Ross L.

    2014-01-01

    Janus kinases (JAK) are the mediators of a variety of cytokine signals via their cognate receptors that result in activation of intracellular signaling pathways. Alterations in JAK1, JAK2, JAK3 and TYK2 signaling contribute to different disease states, and dysregulated JAK-STAT signaling is associated with hematological malignancies, autoimmune disorders and immune-deficient conditions. Genetic alterations of JAK2 occur in the majority of patients with myeloproliferative neoplasms (MPN) and occur in a subset of patients with acute leukemias. JAK-mediated signaling critically relies on STAT transcription factors, and on activation of the MAPK and PI3K/Akt signaling axes. Hyperactive JAK at the apex of these potent oncogenic signaling pathways therefore represents an important target for small molecule kinase inhibitors in different disease states. The JAK1/2 inhibitor ruxolitinib and the JAK3 inhibitor tofacitinib were recently approved for the treatment of myelofibrosis and rheumatoid arthritis, respectively and additional ATP-competitive JAK inhibitors are in clinical development. Although these agents show clinical activity, the ability of these JAK inhibitors to induce clinical/molecular remissions in hematological malignancies appears limited and resistance upon chronic drug exposure is seen. Alternative modes of targeting JAK2 such as allosteric kinase inhibition or HSP-90 inhibition are under evaluation as is the use of histone deacetylase inhibitors. Combination therapy approaches integrating inhibition of STAT, PI3K/Akt and MAPK pathways with JAK kinase inhibitors might be critical to overcome malignancies characterized by dysregulated JAK signaling. PMID:24583800

  16. Inhibitors of glycogen synthase 3 kinase

    DOEpatents

    Schultz, Peter; Ring, David B.; Harrison, Stephen D.; Bray, Andrew M.

    2000-01-01

    Compounds of formula 1: ##STR1## wherein R.sub.1 is alkyl, cycloalkyl, aryl, aralkyl, heteroaryl, or heteroaralkyl, substituted with 0-3 substituents selected from lower alkyl, halo, hydroxy, lower alkoxy, amino, lower alkyl-amino, and nitro; R.sub.2 is hydroxy, amino, or lower alkoxy; R.sub.3 is H, lower alkyl, lower acyl, lower alkoxy-acyl, or amnino-acyl; R.sub.4 is H or lower alkyl; and pharmaceutically acceptable salts and esters thereof; are effective inhibitors of GSK3.

  17. Inhibitors of glycogen synthase 3 kinase

    DOEpatents

    Schultz, Peter; Ring, David B.; Harrison, Stephen D.; Bray, Andrew M.

    2006-05-30

    Compounds of formula 1: ##STR00001## wherein R.sub.1 is alkyl, cycloalkyl, aryl, aralkyl, heteroaryl, or heteroaralkyl, substituted with 0 3 substituents selected from lower alkyl, halo, hydroxy, lower alkoxy, amino, lower alkyl-amino, and nitro; R.sub.2 is hydroxy, amino, or lower alkoxy; R.sub.3 is H, lower alkyl, lower acyl, lower alkoxy-acyl, or amino-acyl; R.sub.4 is H or lower alkyl; and pharmaceutically acceptable salts and esters thereof; are effective inhibitors of GSK3.

  18. Evaluation of Improved Glycogen Synthase Kinase-3α Inhibitors in Models of Acute Myeloid Leukemia

    PubMed Central

    Neumann, Theresa; Benajiba, Lina; Göring, Stefan; Stegmaier, Kimberly; Schmidt, Boris

    2016-01-01

    The challenge for Glycogen Synthase Kinase-3 (GSK-3) inhibitor design lies in achieving high selectivity for one isoform over the other. The therapy of certain diseases, such as acute myeloid leukemia (AML) may require α-isoform specific targeting. The scorpion shaped GSK-3 inhibitors developed by our group achieved the highest GSK-3α selectivity reported so far, but suffered from insufficient aqueous solubility. This work presents the solubility-driven optimization of our isoform-selective inhibitors using a scorpion shaped lead. Among 15 novel compounds, compound 27 showed high activity against GSK-3α/β with the highest GSK-3α selectivity reported to date. Compound 27 was profiled for bioavailability and toxicity in a zebrafish embryo phenotype assay. Selective GSK-3α targeting in AML cell lines was achieved with compound 27, resulting in a strong differentiation phenotype and colony formation impairment, confirming the potential of GSK-3α inhibition in AML therapy. PMID:26496242

  19. Quercetin: a pleiotropic kinase inhibitor against cancer.

    PubMed

    Russo, Gian Luigi; Russo, Maria; Spagnuolo, Carmela; Tedesco, Idolo; Bilotto, Stefania; Iannitti, Roberta; Palumbo, Rosanna

    2014-01-01

    Increased consumption of fruits and vegetables can represent an easy strategy to significantly reduce the incidence of cancer. From this observation, derived mostly from epidemiological data, the new field of chemoprevention has emerged in the primary and secondary prevention of cancer. Chemoprevention is defined as the use of natural or synthetic compounds able to stop, reverse, or delay the process of tumorigenesis in its early stages. A large number of phytochemicals are potentially capable of simultaneously inhibiting and modulating several key factors regulating cell proliferation in cancer cells. Quercetin is a flavonoid possessing potential chemopreventive properties. It is a functionally pleiotropic molecule, possessing multiple intracellular targets, affecting different cell signaling processes usually altered in cancer cells, with limited toxicity on normal cells. Simultaneously targeting multiple pathways may help to kill malignant cells and slow down the onset of drug resistance. Among the different substrates triggered by quercetin, we have reviewed the ability of the molecule to inhibit protein kinases involved in deregulated cell growth in cancer cells. PMID:24114481

  20. Ability of the Met Kinase Inhibitor Crizotinib and New Generation EGFR Inhibitors to Overcome Resistance to EGFR Inhibitors

    PubMed Central

    Nanjo, Shigeki; Yamada, Tadaaki; Nishihara, Hiroshi; Takeuchi, Shinji; Sano, Takako; Nakagawa, Takayuki; Ishikawa, Daisuke; Zhao, Lu; Ebi, Hiromichi; Yasumoto, Kazuo; Matsumoto, Kunio; Yano, Seiji

    2013-01-01

    Purpose Although EGF receptor tyrosine kinase inhibitors (EGFR-TKI) have shown dramatic effects against EGFR mutant lung cancer, patients ultimately develop resistance by multiple mechanisms. We therefore assessed the ability of combined treatment with the Met inhibitor crizotinib and new generation EGFR-TKIs to overcome resistance to first-generation EGFR-TKIs. Experimental Design Lung cancer cell lines made resistant to EGFR-TKIs by the gatekeeper EGFR-T790M mutation, Met amplification, and HGF overexpression and mice with tumors induced by these cells were treated with crizotinib and a new generation EGFR-TKI. Results The new generation EGFR-TKI inhibited the growth of lung cancer cells containing the gatekeeper EGFR-T790M mutation, but did not inhibit the growth of cells with Met amplification or HGF overexpression. In contrast, combined therapy with crizotinib plus afatinib or WZ4002 was effective against all three types of cells, inhibiting EGFR and Met phosphorylation and their downstream molecules. Crizotinib combined with afatinib or WZ4002 potently inhibited the growth of mouse tumors induced by these lung cancer cell lines. However, the combination of high dose crizotinib and afatinib, but not WZ4002, triggered severe adverse events. Conclusions Our results suggest that the dual blockade of mutant EGFR and Met by crizotinib and a new generation EGFR-TKI may be promising for overcoming resistance to reversible EGFR-TKIs but careful assessment is warranted clinically. PMID:24386407

  1. Comprehensive kinase profile of pacritinib, a nonmyelosuppressive Janus kinase 2 inhibitor

    PubMed Central

    Singer, Jack W; Al-Fayoumi, Suliman; Ma, Haiching; Komrokji, Rami S; Mesa, Ruben; Verstovsek, Srdan

    2016-01-01

    Pacritinib, potent inhibitor of Janus kinase 2 (JAK2), JAK2V617F, and fms-like receptor tyrosine kinase 3, is in Phase III development in myelofibrosis. Among type 1 inhibitors, pacritinib shows a lack of myelosuppression at doses that both inhibit JAK2/signal transducer and activator of transcription 3 pathway and demonstrate clinical efficacy. To elucidate these mechanisms and identify other disease targets, a kinome analysis screened 439 recombinant kinases at 100 nM pacritinib concentration. For kinases with >50% inhibition, pacritinib was titrated from 1 to 100 nM. JAK2, JAK2V617F, FLT3, colony-stimulating factor 1 receptor, and interleukin-1 receptor-associated kinase 1 achieved half-maximal inhibitory concentrations <50 nM. Pacritinib did not inhibit JAK1 (82% control at 100 nM). Lack of myelosuppression may stem from inhibiting JAK2 without affecting JAK1 and reducing hematopoietic inhibitory cytokines by suppressing interleukin-1 receptor-associated kinase 1 or colony-stimulating factor 1 receptor. The pacritinib kinome suggests therapeutic utility in acute myeloid leukemia, myelodysplastic syndrome, chronic myelomonocytic leukemia, solid tumors, and inflammatory conditions. PMID:27574472

  2. Comprehensive kinase profile of pacritinib, a nonmyelosuppressive Janus kinase 2 inhibitor.

    PubMed

    Singer, Jack W; Al-Fayoumi, Suliman; Ma, Haiching; Komrokji, Rami S; Mesa, Ruben; Verstovsek, Srdan

    2016-01-01

    Pacritinib, potent inhibitor of Janus kinase 2 (JAK2), JAK2V617F, and fms-like receptor tyrosine kinase 3, is in Phase III development in myelofibrosis. Among type 1 inhibitors, pacritinib shows a lack of myelosuppression at doses that both inhibit JAK2/signal transducer and activator of transcription 3 pathway and demonstrate clinical efficacy. To elucidate these mechanisms and identify other disease targets, a kinome analysis screened 439 recombinant kinases at 100 nM pacritinib concentration. For kinases with >50% inhibition, pacritinib was titrated from 1 to 100 nM. JAK2, JAK2V617F, FLT3, colony-stimulating factor 1 receptor, and interleukin-1 receptor-associated kinase 1 achieved half-maximal inhibitory concentrations <50 nM. Pacritinib did not inhibit JAK1 (82% control at 100 nM). Lack of myelosuppression may stem from inhibiting JAK2 without affecting JAK1 and reducing hematopoietic inhibitory cytokines by suppressing interleukin-1 receptor-associated kinase 1 or colony-stimulating factor 1 receptor. The pacritinib kinome suggests therapeutic utility in acute myeloid leukemia, myelodysplastic syndrome, chronic myelomonocytic leukemia, solid tumors, and inflammatory conditions. PMID:27574472

  3. Tyrosine Kinase Inhibitors for the Elderly

    PubMed Central

    Hohenforst-Schmidt, Wolfgang; Zarogoulidis, Paul; Steinheimer, Michael; Benhassen, Naim; Tsiouda, Theodora; Baka, Sofia; Yarmus, Lonny; Stratakos, Grigoris; Organtzis, John; Pataka, Athanasia; Tsakiridis, Kosmas; Karapantzos, Ilias; Karapantzou, Chrysanthi; Darwiche, Kaid; Zissimopoulos, Athanasios; Pitsiou, Georgia; Zarogoulidis, Konstantinos; Man, Yan-Gao; Rittger, Harald

    2016-01-01

    Until few years ago non-specific cytotoxic agents were considered the tip of the arrow as first line treatment for lung cancer. However; age > 75 was considered a major drawback for this kind of therapy. Few exceptions were made by doctors based on the performance status of the patient. The side effects of these agents are still severe for several patients. In the recent years further investigation of the cancer genome has led to targeted therapies. There have been numerous publications regarding novel agents such as; erlotinib, gefitinib and afatinib. In specific populations these agents have demonstrated higher efficiency and this observation is explained by the overexpression of the EGFR pathway in these populations. We suggest that TKIs should administered in the elderly, and with the word elderly we propose the age of 75. The treating medical doctor has to evaluate the performance status of a patient and decide the best treatment in several cases indifferent of the age. TKIs in most studies presented safety and efficiency and of course dose modification should be made when necessary. Comorbidities should be considered in any case especially in this group of patients and the treating physician should act accordingly. PMID:27076850

  4. Targeting Angiogenesis in Colorectal Cancer: Tyrosine Kinase Inhibitors.

    PubMed

    Kircher, Sheetal Mehta; Nimeiri, Halla S; Benson, Al B

    2016-01-01

    Colorectal cancer is commonly diagnosed throughout the world, and treatment options have greatly expanded over the last 2 decades. Targeting angiogenesis has been a major focus of study in a variety of malignancy types. Targeting angiogenesis has been achieved by several mechanisms in colorectal cancer, including use of antiangiogenic small molecule tyrosine kinase inhibitors (TKIs). There have been many attempts and failures to prove efficacy of TKIs in the treatment of colorectal cancer including sorafenib, sunitinib, vatalanib, and tivozanib. Regorafenib was the first TKI to demonstrate efficacy and is an orally active inhibitor of angiogenic (including the vascular endothelial growth factor receptors 1, 2, and 3), stromal, and oncogenic receptor tyrosine kinases. There are ongoing investigations of both regorafenib and ninetanib; however, there remains a critical need to better understand novel combinations with TKIs that could prove more efficacious than available options. PMID:27341596

  5. An inhibitor of Janus kinase 2 prevents polycythemia in mice.

    PubMed

    Mathur, Anjili; Mo, Jan-Rung; Kraus, Manfred; O'Hare, Erin; Sinclair, Peter; Young, Jonathan; Zhao, Shuxia; Wang, Yuxun; Kopinja, Johnny; Qu, Xianlu; Reilly, John; Walker, Deborah; Xu, Lin; Aleksandrowicz, Daniel; Marshall, Gary; Scott, Martin L; Kohl, Nancy E; Bachman, Eric

    2009-08-15

    Polycythemia vera (PV) is a myeloproliferative disorder characterized by increased red cell mass and splenomegaly in the absence of secondary causes [Tefferi A., Spivak J.L., Polycythemia vera: scientific advances and current practice. Semin Hematol 2005;42(4):206-20.]. Recently, several laboratories have discovered that the vast majority of patients with PV carry a single, activating mutation (V617F) in the pseudokinase domain of Janus kinase 2 (Jak2) [Zhao R, Xing S, Li Z, Fu X, Li Q, Krantz SB, et al., Identification of an acquired JAK2 mutation in polycythemia vera. J Biol Chem 2005;280(24):22788-92; James C, Ugo V, Le Couédic JP, Staerk J, Delhommeau F, Lacout C, et al., A unique clonal JAK2 mutation leading to constitutive signalling causes polycythemia vera. Nature 2005;434(7037):1144-8; Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR, et al., A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 2005;352(17):1779-90; Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ, et al., Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005;7(4):387-97.]. This discovery has spurred interest in developing therapies for PV via inhibition of Jak2. We induced polycythemia in mice by administering high dose recombinant erythropoietin (Epo) and determined that administration recapitulates almost all of the major and minor diagnostic features of human PV. We then tested a selective, small molecule inhibitor of Jak2 (Jak2i) and showed that this treatment prevents polycythemia. This prevention of polycythemia was accompanied by lower hematocrits, reduced spleen sizes and reductions in Stat5 phosphorylation (pStat5). Surprisingly, Epo rapidly (<1h) induces mobilization of activated erythroid precursors into the blood, thus allowing drug-response relationships to guide discovery. We conclude that inhibition of Jak2

  6. Tyrosine Kinase Inhibitors and Diabetes: A Novel Treatment Paradigm?

    PubMed

    Fountas, Athanasios; Diamantopoulos, Leonidas-Nikolaos; Tsatsoulis, Agathocles

    2015-11-01

    Deregulation of protein tyrosine kinase (PTK) activity is implicated in various proliferative conditions. Multi-target tyrosine kinase inhibitors (TKIs) are increasingly used for the treatment of different malignancies. Recently, several clinical cases of the reversal of both type 1 and 2 diabetes mellitus (T1DM, T2DM) during TKI administration have been reported. Experimental in vivo and in vitro studies have elucidated some of the mechanisms behind this effect. For example, inhibition of Abelson tyrosine kinase (c-Abl) results in β cell survival and enhanced insulin secretion, while platelet-derived growth factor receptor (PDGFR) and epidermal growth factor receptor (EGFR) inhibition leads to improvement in insulin sensitivity. In addition, inhibition of vascular endothelial growth factor receptor 2 (VEGFR2) reduces the degree of islet cell inflammation (insulitis). Therefore, targeting several PTKs may provide a novel approach for correcting the pathophysiologic disturbances of diabetes. PMID:26492832

  7. Novel Bruton’s tyrosine kinase inhibitors currently in development

    PubMed Central

    D’Cruz, Osmond J; Uckun, Fatih M

    2013-01-01

    Bruton’s tyrosine kinase (Btk) is intimately involved in multiple signal-transduction pathways regulating survival, activation, proliferation, and differentiation of B-lineage lymphoid cells. Btk is overexpressed and constitutively active in several B-lineage lymphoid malignancies. Btk has emerged as a new antiapoptotic molecular target for treatment of B-lineage leukemias and lymphomas. Preclinical and early clinical results indicate that Btk inhibitors may be useful in the treatment of leukemias and lymphomas. PMID:23493945

  8. Phosphatidylinositol 3-kinase inhibitors block differentiation of skeletal muscle cells.

    PubMed

    Kaliman, P; Viñals, F; Testar, X; Palacín, M; Zorzano, A

    1996-08-01

    Skeletal muscle differentiation involves myoblast alignment, elongation, and fusion into multinucleate myotubes, together with the induction of regulatory and structural muscle-specific genes. Here we show that two phosphatidylinositol 3-kinase inhibitors, LY294002 and wortmannin, blocked an essential step in the differentiation of two skeletal muscle cell models. Both inhibitors abolished the capacity of L6E9 myoblasts to form myotubes, without affecting myoblast proliferation, elongation, or alignment. Myogenic events like the induction of myogenin and of glucose carrier GLUT4 were also blocked and myoblasts could not exit the cell cycle, as measured by the lack of mRNA induction of p21 cyclin-dependent kinase inhibitor. Overexpresssion of MyoD in 10T1/2 cells was not sufficient to bypass the myogenic differentiation blockade by LY294002. Upon serum withdrawal, 10T1/2-MyoD cells formed myotubes and showed increased levels of myogenin and p21. In contrast, LY294002-treated cells exhibited none of these myogenic characteristics and maintained high levels of Id, a negative regulator of myogenesis. These data indicate that whereas phosphatidylinositol 3-kinase is not indispensable for cell proliferation or in the initial events of myoblast differentiation, i.e. elongation and alignment, it appears to be essential for terminal differentiation of muscle cells. PMID:8702591

  9. Marine-derived angiogenesis inhibitors for cancer therapy.

    PubMed

    Wang, Ying-Qing; Miao, Ze-Hong

    2013-03-01

    Angiogenesis inhibitors have been successfully used for cancer therapy in the clinic. Many marine-derived natural products and their analogues have been reported to show antiangiogenic activities. Compared with the drugs in the clinic, these agents display interesting characteristics, including diverse sources, unique chemical structures, special modes of action, and distinct activity and toxicity profiles. This review will first provide an overview of the current marine-derived angiogenesis inhibitors based on their primary targets and/or mechanisms of action. Then, the marine-derived antiangiogenic protein kinase inhibitors will be focused on. And finally, the clinical trials of the marine-derived antiangiogenic agents will be discussed, with special emphasis on their application potentials, problems and possible coping strategies in their future development as anticancer drugs. PMID:23502698

  10. Marine-Derived Angiogenesis Inhibitors for Cancer Therapy

    PubMed Central

    Wang, Ying-Qing; Miao, Ze-Hong

    2013-01-01

    Angiogenesis inhibitors have been successfully used for cancer therapy in the clinic. Many marine-derived natural products and their analogues have been reported to show antiangiogenic activities. Compared with the drugs in the clinic, these agents display interesting characteristics, including diverse sources, unique chemical structures, special modes of action, and distinct activity and toxicity profiles. This review will first provide an overview of the current marine-derived angiogenesis inhibitors based on their primary targets and/or mechanisms of action. Then, the marine-derived antiangiogenic protein kinase inhibitors will be focused on. And finally, the clinical trials of the marine-derived antiangiogenic agents will be discussed, with special emphasis on their application potentials, problems and possible coping strategies in their future development as anticancer drugs. PMID:23502698

  11. Identification of quinones as novel PIM1 kinase inhibitors.

    PubMed

    Schroeder, Richard L; Goyal, Navneet; Bratton, Melyssa; Townley, Ian; Pham, Nancy A; Tram, Phan; Stone, Treasure; Geathers, Jasmine; Nguyen, Kathy; Sridhar, Jayalakshmi

    2016-07-01

    PIM1 is a proto-oncogene encoding the serine/threonine PIM1 kinase. PIM1 kinase plays important roles in regulating aspects of cell cycle progression, apoptosis resistance, and has been implicated in the development of such malignancies as prostate cancer and acute myeloid leukemia among others. Knockout of PIM1 kinase in mice has been shown to be non-lethal without any obvious phenotypic changes, making it an attractive therapeutic target. Our investigation of anthraquinones as kinase inhibitors revealed a series of quinone analogs showing high selectivity for inhibition of the PIM kinases. Molecular modeling studies were used to identify key interactions and binding poses of these compounds within the PIM1 binding pocket. Compounds 1, 4, 7 and 9 inhibited the growth of DU-145 prostate cancer cell lines with a potency of 8.21μM, 4.06μM, 3.21μM and 2.02μM. PMID:27173800

  12. A Novel Glycogen Synthase Kinase-3 Inhibitor Optimized for Acute Myeloid Leukemia Differentiation Activity.

    PubMed

    Hu, Sophia; Ueda, Masumi; Stetson, Lindsay; Ignatz-Hoover, James; Moreton, Stephen; Chakrabarti, Amit; Xia, Zhiqiang; Karan, Goutam; de Lima, Marcos; Agrawal, Mukesh K; Wald, David N

    2016-07-01

    Standard therapies used for the treatment of acute myeloid leukemia (AML) are cytotoxic agents that target rapidly proliferating cells. Unfortunately, this therapeutic approach has limited efficacy and significant toxicity and the majority of AML patients still die of their disease. In contrast to the poor prognosis of most AML patients, most individuals with a rare subtype of AML, acute promyelocytic leukemia, can be cured by differentiation therapy using regimens containing all-trans retinoic acid. GSK3 has been previously identified as a therapeutic target in AML where its inhibition can lead to the differentiation and growth arrest of leukemic cells. Unfortunately, existing GSK3 inhibitors lead to suboptimal differentiation activity making them less useful as clinical AML differentiation agents. Here, we describe the discovery of a novel GSK3 inhibitor, GS87. GS87 was discovered in efforts to optimize GSK3 inhibition for AML differentiation activity. Despite GS87's dramatic ability to induce AML differentiation, kinase profiling reveals its high specificity in targeting GSK3 as compared with other kinases. GS87 demonstrates high efficacy in a mouse AML model system and unlike current AML therapeutics, exhibits little effect on normal bone marrow cells. GS87 induces potent differentiation by more effectively activating GSK3-dependent signaling components including MAPK signaling as compared with other GSK3 inhibitors. GS87 is a novel GSK3 inhibitor with therapeutic potential as a differentiation agent for non-promyelocytic AML. Mol Cancer Ther; 15(7); 1485-94. ©2016 AACR. PMID:27196775

  13. Antitumoral activity of allosteric inhibitors of protein kinase CK2

    PubMed Central

    Sautel, Céline F.; Teillet, Florence; Barette, Caroline; Lafanechere, Laurence; Receveur-Brechot, Veronique; Cochet, Claude

    2011-01-01

    Introduction Due to its physiological role into promoting cell survival and its dysregulation in most cancer cells, protein kinase CK2 is a relevant physiopathological target for development of chemical inhibitors. We report the discovery of azonaphthalene derivatives, as a new family of highly specific CK2 inhibitors. First, we demonstrated that CK2 inhibition (IC50= 0.4 μM) was highly specific, reversible and non ATP-competitive. Small Angle X-ray Scattering experiments showed that this inhibition was due to large conformational change of CK2α upon binding of these inhibitors. We showed that several compounds of the family were cell-potent CK2 inhibitors promoting cell cycle arrest of human glioblastoma U373 cells. Finally, in vitro and in vivo assays showed that these compounds could decrease U373 cell tumor mass by 83% emphasizing their efficacy against these apoptosis-resistant tumors. In contrast, Azonaphthalene derivatives inactive on CK2 activity showed no effect in colony formation and tumor regression assays. These findings illustrate the emergence of nonclassical CK2 inhibitors and provide exciting opportunities for the development of novel allosteric CK2 inhibitors. Background CK2 is an emerging therapeutic target and ATP-competitive inhibitors have been identified. CK2 is endowed with specific structural features providing alternative strategies for inhibition. Results Azonaphthalene compounds are allosteric CK2 inhibitors showing antitumor activity. Conclusion CK2 may be targeted allosterically. Significance These inhibitors provide a foundation for a new paradigm for specific CK2 inhibition. PMID:22184283

  14. Pharmacological cyclin dependent kinase inhibitors: Implications for colorectal cancer

    PubMed Central

    Balakrishnan, Archana; Vyas, Arpita; Deshpande, Kaivalya; Vyas, Dinesh

    2016-01-01

    Colorectal cancer accounts for a significant proportion of cancer deaths worldwide. The need to develop more chemotherapeutic agents to combat this disease is critical. Cyclin dependent kinases (CDKs), along with its binding partner cyclins, serve to control the growth of cells through the cell cycle. A new class of drugs, termed CDK inhibitors, has been studied in preclinical and now clinical trials. These inhibitors are believed to act as an anti-cancer drug by blocking CDKs to block the uncontrolled cellular proliferation that is hallmark of cancers like colorectal cancer. CDK article provides overview of the emerging drug class of CDK inhibitors and provides a list of ones that are currently in clinical trials. PMID:26900281

  15. [Cancer therapy by PARP inhibitors].

    PubMed

    Seimiya, Hiroyuki

    2015-08-01

    Poly(ADP-ribose) polymerases(PARP) synthesize the ADP-ribose polymers onto proteins and play a role in DNA repair. PARP inhibitors block the repair of single-strand breaks, which in turn gives rise to double-strand breaks during DNA replication. Thus, PARP inhibitors elicit synthetic lethality in cancer with BRCA1/2 loss-of-function mutations that hamper homologous recombination repair of double-strand breaks. Olaparib, the first-in-class PARP inhibitor, was approved for treatment of BRCA-mutated ovarian cancer in Europe and the United States in 2014. Other PARP inhibitors under clinical trials include rucaparib, niraparib, veliparib, and the "PARP-trapping" BMN-673. BRCA1/2 sequencing is an FDA-approved companion diagnostics, which predicts the cancer vulnerability to PARP inhibition. Together, synthetic lethal PARP inhibition is a novel promising strategy for cancer intervention even in cases without prominent driver oncogenes. PMID:26281686

  16. The immune-microenvironment confers resistance to MAP kinase pathway inhibitors through macrophage-derived TNFα

    PubMed Central

    O’Brien, Kate; Brunton, Holly; Ferguson, Jennifer; Young, Helen; Dhomen, Nathalie; Flaherty, Keith T.; Frederick, Dennie T.; Cooper, Zachary A.; Wargo, Jennifer A.; Marais, Richard; Wellbrock, Claudia

    2014-01-01

    Recently the rationale for combining targeted therapy with immunotherapy has come to light, but our understanding of the immune response during MAPK pathway inhibitor treatment is limited. We discovered that the immune-microenvironment can act as source of resistance to MAPK pathway-targeted therapy, and moreover during treatment this source becomes reinforced. In particular, we identified macrophage-derived TNFα as a crucial melanoma-growth factor that provides resistance to MAPK pathway inhibitors through the lineage-transcription factor MITF. Most strikingly, in BRAF mutant melanomas of patients and BRafV600E-melanoma allografts MAPK pathway inhibitors increased the number of tumor-associated macrophages, and TNFα and MITF expression. Inhibiting TNFα-signaling with IκB-kinase inhibitors profoundly enhanced the efficacy of MAPK pathway inhibitors by targeting not only the melanoma cells, but also the microenvironment. In summary, we identify the immune-microenvironment as a novel source of resistance and reveal a new strategy to improve the efficacy of targeted therapy in melanoma. PMID:25256614

  17. Compensatory pathways in oncogenic kinase signaling and resistance to targeted therapies: six degrees of separation.

    PubMed

    Trusolino, Livio; Bertotti, Andrea

    2012-10-01

    The efficacy of targeted therapies against mutationally activated kinases is typically limited by the engagement of growth-promoting cues that compensate for inhibition of the targeted kinase. Initial studies have highlighted the contribution of genomic alterations, functional characteristics, and signaling feedback loops--all intrinsic to cancer cells--in sustaining such substitute activities. New evidence now indicates that the relative expression of growth factor ligands produced by the tumor microenvironment can relay redundant survival pathways, which may broadly impair responsiveness to kinase inhibitors. PMID:23071031

  18. Design and synthesis of constrained analogs of LCRF-0004 as potent RON tyrosine kinase inhibitors.

    PubMed

    Raeppel, Stéphane L; Therrien, Eric; Raeppel, Franck

    2015-09-01

    New fused bicyclic lactam head groups as rigidified analogs of thieno[3,2-b]pyridine-based kinase inhibitor LCRF-0004 were designed and synthesized. Depending on the functionalities and the size of these bicyclic head groups, potent inhibitors of RON tyrosine kinase with various level of selectivity against c-Met tyrosine kinase were obtained. PMID:26112445

  19. Crystal Structure of Checkpoint Kinase 2 in Complex with Nsc 109555, a Potent and Selective Inhibitor

    SciTech Connect

    Lountos, George T.; Tropea, Joseph E.; Zhang, Di; Jobson, Andrew G.; Pommier, Yves; Shoemaker, Robert H.; Waugh, David S.

    2009-03-05

    Checkpoint kinase 2 (Chk2), a ser/thr kinase involved in the ATM-Chk2 checkpoint pathway, is activated by genomic instability and DNA damage and results in either arrest of the cell cycle to allow DNA repair to occur or apoptosis if the DNA damage is severe. Drugs that specifically target Chk2 could be beneficial when administered in combination with current DNA-damaging agents used in cancer therapy. Recently, a novel inhibitor of Chk2, NSC 109555, was identified that exhibited high potency (IC{sub 50} = 240 nM) and selectivity. This compound represents a new chemotype and lead for the development of novel Chk2 inhibitors that could be used as therapeutic agents for the treatment of cancer. To facilitate the discovery of new analogs of NSC 109555 with even greater potency and selectivity, we have solved the crystal structure of this inhibitor in complex with the catalytic domain of Chk2. The structure confirms that the compound is an ATP-competitive inhibitor, as the electron density clearly reveals that it occupies the ATP-binding pocket. However, the mode of inhibition differs from that of the previously studied structure of Chk2 in complex with debromohymenialdisine, a compound that inhibits both Chk1 and Chk2. A unique hydrophobic pocket in Chk2, located very close to the bound inhibitor, presents an opportunity for the rational design of compounds with higher binding affinity and greater selectivity.

  20. Mixed lineage kinases activate MEK independently of RAF to mediate resistance to RAF inhibitors

    PubMed Central

    Marusiak, Anna A.; Edwards, Zoe C.; Hugo, Willy; Trotter, Eleanor W.; Girotti, Maria R.; Stephenson, Natalie L.; Kong, Xiangju; Gartside, Michael G.; Fawdar, Shameem; Hudson, Andrew; Breitwieser, Wolfgang; Hayward, Nicholas K.; Marais, Richard; Lo, Roger S.; Brognard, John

    2014-01-01

    RAF inhibitor therapy yields significant reductions in tumour burden in the majority of V600E-positive melanoma patients; however, resistance occurs within 2–18 months. Here we demonstrate that the mixed lineage kinases (MLK1–4) are MEK kinases that reactivate the MEK/ERK pathway in the presence of RAF inhibitors. Expression of MLK1–4 mediates resistance to RAF inhibitors and promotes survival in V600E-positive melanoma cell lines. Furthermore, we observe upregulation of the MLKs in 9 of 21 melanoma patients with acquired drug resistance. Consistent with this observation, MLKs promote resistance to RAF inhibitors in mouse models and contribute to acquired resistance in a cell line model. Lastly, we observe that a majority of MLK1 mutations identified in patients are gain-of-function mutations. In summary, our data demonstrate a role for MLKs as direct activators of the MEK/ERK pathway with implications for melanomagenesis and resistance to RAF inhibitors. PMID:24849047

  1. Treatment patterns, overall survival, healthcare resource use and costs in elderly Medicare beneficiaries with chronic myeloid leukemia using second-generation tyrosine kinase inhibitors as second-line therapy.

    PubMed

    Smith, B Douglas; Liu, Jun; Latremouille-Viau, Dominick; Guerin, Annie; Fernandez, Daniel; Chen, Lei

    2016-05-01

    Objective Though the median age at diagnosis is 64 years, few studies focus on elderly (≥65 years) patients with chronic myeloid leukemia (CML). This study examines healthcare outcomes among elderly Medicare beneficiaries with CML who started nilotinib or dasatinib after imatinib. Research design and methods Patients were identified in the Medicare Research Identifiable Files (2006-2012) and had continuous Medicare Parts A, B, and D coverage. Main outcome measures Treatment patterns, overall survival (OS), monthly healthcare resource utilization and medical costs were measured from the second-line tyrosine kinase inhibitor (TKI) initiation (index date) to end of Medicare coverage. Results Despite similar adherence, dasatinib patients (N = 379) were more likely to start on the recommended dose (74% vs. 53%; p < 0.001), and to have dose reductions (21% vs. 11%, adjusted hazard ratio [HR] = 1.94; p = 0.002) or dose increases (9% vs. 7%; adjusted HR = 1.81; p = 0.048) than nilotinib patients (N = 280). Fewer nilotinib patients discontinued (59% vs. 67%; adjusted HR = 0.80; p = 0.026) or switched to another TKI (21% vs. 29%; adjusted HR = 0.72; p = 0.044) than dasatinib patients. Nilotinib patients had longer median OS (>4.9 years vs. 4.0 years; p = 0.032) and 37% lower mortality risk than dasatinib patients (adjusted HR = 0.63; p = 0.008). Nilotinib patients had 23% fewer inpatient admissions, 30% fewer emergency room visits, 13% fewer outpatient visits (all p < 0.05), and lower monthly medical costs (by $513, p = 0.024) than dasatinib patients. Limitations Lack of clinical assessment (disease phase and response to first-line therapy) and retrospective nature of study (unobservable potential confounding factors, non-randomized treatment choice). Conclusions In the current study of elderly CML patients, initiation of second-line TKIs frequently occurs at doses lower than the recommended starting doses and

  2. Discovery of a Highly Selective STK16 Kinase Inhibitor.

    PubMed

    Liu, Feiyang; Wang, Jinhua; Yang, Xingxing; Li, Binhua; Wu, Hong; Qi, Shuang; Chen, Cheng; Liu, Xiaochuan; Yu, Kailin; Wang, Wenchao; Zhao, Zheng; Wang, Aoli; Chen, Yongfei; Wang, Li; Gray, Nathanael S; Liu, Jing; Zhang, Xin; Liu, Qingsong

    2016-06-17

    STK16, a serine/threonine protein kinase, is ubiquitously expressed and is conserved among all eukaryotes. STK16 has been implicated to function in a variety of cellular processes such as VEGF and cargo secretion, but the pathways through which these effects are mediated remain to be elucidated. Through screening of our focused library of kinase inhibitors, we discovered a highly selective ATP competitive inhibitor, STK16-IN-1, which exhibits potent inhibitory activity against STK16 kinase (IC50: 0.295 μM) with excellent selectivity across the kinome as assessed using the KinomeScan profiling assay (S score (1) = 0.0). In MCF-7 cells, treatment with STK16-IN-1 results in a reduction in cell number and accumulation of binucleated cells, which can be recapitulated by RNAi knockdown of STK16. Co-treatment of STK16-IN-1 with chemotherapeutics such as cisplatin, doxorubicin, colchicine, and paclitaxel results in a slight potentiation of the antiproliferative effects of the chemotherapeutics. STK16-IN-1 provides a useful tool compound for further elucidating the biological functions of STK16. PMID:27082499

  3. Dasatinib suppression of medulloblastoma survival and migration is markedly enhanced by combining treatment with the aurora kinase inhibitor AT9283

    PubMed Central

    Petersen, William; Liu, Jingbo; Yuan, Liangping; Zhang, Hongying; Schneiderjan, Matthew; Cho, Yoon-Jae; MacDonald, Tobey J.

    2014-01-01

    Medulloblastoma (MB) expresses Src kinase, while aurora kinase A overexpression correlates with poor survival. We thus investigated novel combination treatment with dasatinib and AT9283, inhibitors of Src and aurora kinase, respectively, on MB growth in vitro and in vivo. Treatment with each drug significantly reduced cell viability and combined treatment markedly potentiated this response. AT9283 induced p53 expression, autophagy, and G2/M cell-cycle arrest, while combined treatment induced S phase arrest. Dasatinib treatment caused tumor regression in vivo. Activated Src was detected in 44% MB analyzed. We conclude that further evaluation of this combination therapy for MB is highly warranted. PMID:25107642

  4. [Side effect management of tyrosine kinase inhibitors in urology : Fatigue and hypothyroidism].

    PubMed

    Sikic, D; Lüdecke, G; Lieb, V; Keck, B

    2016-05-01

    Not only has the use of tyrosine kinase inhibitors (TKI) for the treatment of metastatic renal cell carcinomas (mRCC) changed the therapeutic options for this disease significantly, but with the occurrence of typical side effects this therapy also poses a challenge for the treating physician. Fatigue und hypothyroidism are two common side effects of TKI therapy that can often appear simultaneously. By reducing the patients' quality of life these side effects often lead to a discontinuation of therapy. With this review we want to give the treating physician an overview of the classification and the specific treatment of TKI-induced fatigue and hypothyroidism in order to maximize patients' compliance and the therapeutic efficacy of TKI therapy. PMID:27119958

  5. PIM serine/threonine kinases in the pathogenesis and therapy of hematologic malignancies and solid cancers

    PubMed Central

    Brault, Laurent; Gasser, Christelle; Bracher, Franz; Huber, Kilian; Knapp, Stefan; Schwaller, Jürg

    2010-01-01

    The identification as cooperating targets of Proviral Integrations of Moloney virus in murine lymphomas suggested early on that PIM serine/threonine kinases play an important role in cancer biology. Whereas elevated levels of PIM1 and PIM2 were mostly found in hematologic malignancies and prostate cancer, increased PIM3 expression was observed in different solid tumors. PIM kinases are constitutively active and their activity supports in vitro and in vivo tumor cell growth and survival through modification of an increasing number of common as well as isoform-specific substrates including several cell cycle regulators and apoptosis mediators. PIM1 but not PIM2 seems also to mediate homing and migration of normal and malignant hematopoietic cells by regulating chemokine receptor surface expression. Knockdown experiments by RNA interference or dominant-negative acting mutants suggested that PIM kinases are important for maintenance of a transformed phenotype and therefore potential therapeutic targets. Determination of the protein structure facilitated identification of an increasing number of potent small molecule PIM kinase inhibitors with in vitro and in vivo anticancer activity. Ongoing efforts aim to identify isoform-specific PIM inhibitors that would not only help to dissect the kinase function but hopefully also provide targeted therapeutics. Here, we summarize the current knowledge about the role of PIM serine/threonine kinases for the pathogenesis and therapy of hematologic malignancies and solid cancers, and we highlight structural principles and recent progress on small molecule PIM kinase inhibitors that are on their way into first clinical trials. PMID:20145274

  6. Some implications of receptor kinase signaling pathway for development of multitargeted kinase inhibitors.

    PubMed

    Mitrasinovic, Petar M

    2013-03-01

    Epidermal growth factor receptors (EGFRs) belong to the ErbB family of receptor tyrosine kinases (TKs). Based on the role of EGFR signaling pathway in malignant progression of various types of tumors, a growing interest in the use of EGFR-TK inhibitors as probes for molecular imaging of EGFR-overexpressing tumors via positron emission tomography (PET) and single photon emission computed tomography (SPECT) is being notable. On one side, such noninvasive and repetitive monitoring of the activity of EGFR at the kinase level is intended to provide a direct measure of EGFR occupancy and inhibition by EGFR-targeting drugs. On the other side, all oncologic imaging tracers are molecularly targeted radiopharmaceuticals, which are strongly dependent on the tumor biochemistry including increased metabolism, hyperproliferation, angiogenesis, hypoxia, apoptosis, and specific tumor biomarkers (tumor specific antigens and tumor-specific receptors). The present article is an attempt to reconcile these two vital standpoints influencing the choice of appropriate radiolabeled agents for PET and SPECT imaging aimed to support the development of a new generation of multi-targeted kinase inhibitors in the time ahead, because the routine accomplishment of drug selectivity for particular protein kinases is a substantial challenge. PMID:23278847

  7. Growth inhibition by tyrosine kinase inhibitors in mesothelioma cell lines.

    PubMed

    Nutt, Joyce E; O'Toole, Kieran; Gonzalez, David; Lunec, John

    2009-06-01

    Clinical outcome following chemotherapy for malignant pleural mesothelioma is poor and improvements are needed. This preclinical study investigates the effect of five tyrosine kinase inhibitors (PTK787, ZD6474, ZD1839, SU6668 and SU11248) on the growth of three mesothelioma cell lines (NCI H226, NCI H28 and MSTO 211H), the presence of growth factor receptors and inhibition of their downstream signalling pathways. GI50 values were determined: ZD6474 and SU11248, mainly VEGFR2 inhibitors, gave the lowest GI50 across all cell lines (3.5-6.9 microM) whereas ZD1839 gave a GI50 in this range only in H28 cells. All cell lines were positive for EGFR, but only H226 cells were positive for VEGFR2 by Western blotting. ZD6474 and ZD1839 inhibited EGF-induced phosphorylation of EGFR, AKT and ERK, whereas VEGF-induced phosphorylation of VEGFR2 was completely inhibited with 0.1 microM SU11248. VEGFR2 was detected in tumour samples by immunohistochemistry. VEGFR2 tyrosine kinase inhibitors warrant further investigation in mesothelioma. PMID:19318229

  8. Beyond trastuzumab: small molecule tyrosine kinase inhibitors in HER-2-positive breast cancer.

    PubMed

    Roy, Vivek; Perez, Edith A

    2009-11-01

    HER-2 is a transmembrane, tyrosine kinase (TK) receptor whose overexpression is associated with adverse prognosis in breast cancer. The biological effects of HER-2 are mediated by kinase activity causing phosphorylation of tyrosine residues in the cytoplasmic domain of the receptor molecule, leading to activation of downstream growth-promoting pathways. Antibody-mediated inhibition by trastuzumab as well as TK inhibition are clinically effective anti-HER-2 strategies. Kinase inhibitors offer some potential therapeutic advantages over antibody-based therapies. Being small molecules, TK inhibitors (TKIs) have oral bioavailability and ability to cross the blood-brain barrier. Because of their different mode of action, TKIs may be able to overcome some of the mechanisms of trastuzumab resistance. Preclinical, and limited clinical data also suggest that TKIs and trastuzumab have synergistic activity. Lapatinib is the only TKI available for clinical use at present, but several molecules with anti-HER-2 activity have been identified and are undergoing evaluation. These differ in the spectrum of kinases that they inhibit, potency of HER-2 inhibition, pharmacokinetic properties, and toxicity profiles, and are at various stages of clinical development. In this article we summarize selected HER-2 TKIs approved for clinical use or in development for which clinical data are available. PMID:19887469

  9. Pathophysiology of cardiotoxicity from target therapy and angiogenesis inhibitors.

    PubMed

    Maurea, Nicola; Coppola, Carmela; Piscopo, Giovanna; Galletta, Francesca; Riccio, Gennaro; Esposito, Emanuela; De Lorenzo, Claudia; De Laurentiis, Michelino; Spallarossa, Paolo; Mercuro, Giuseppe

    2016-05-01

    The progress in cancer therapy and the increase in number of long-term survivors reveal the issue of cardiovascular side-effects of anticancer drugs. Cardiotoxicity has become a significant problem, and the risks of adverse cardiac events induced by systemic drugs need to be seriously considered. Potential cardiovascular toxicities linked to anticancer agents include arrhythmias, myocardial ischemia and infarction, hypertension, thromboembolism, left ventricular dysfunction, and heart failure. It has been shown that several anticancer drugs seriously affect the cardiovascular system, such as ErbB2 inhibitors, vascular endothelial growth factor (VEGF) inhibitors, multitargeted kinase inhibitors, Abelson murine leukemia viral oncogene homolog inhibitors, and others. Each of these agents has a different mechanism through which it affects the cardiovascular system. ErbB2 inhibitors block the ErbB4/ErbB2 heterodimerization pathway triggered by Neuregulin-1, which is essential for cardiomyocyte survival. VEGF signaling is crucial for vascular growth, but it also has a major impact on myocardial function, and the VEGF pathway is also essential for maintenance of cardiovascular homeostasis. Drugs that inhibit the VEGF signaling pathway lead to a net reduction in capillary density and loss of contractile function. Here, we review the mechanisms and pathophysiology of the most significant cardiotoxic effects of ErbB2 inhibitors and antiangiogenic drugs. Moreover, we highlight the role of cardioncology in recognizing these toxicities, developing strategies to prevent or minimize cardiovascular toxicity, and reducing long-term cardiotoxic effects. PMID:27183521

  10. A road map to evaluate the proteome-wide selectivity of covalent kinase inhibitors.

    PubMed

    Lanning, Bryan R; Whitby, Landon R; Dix, Melissa M; Douhan, John; Gilbert, Adam M; Hett, Erik C; Johnson, Theodore O; Joslyn, Chris; Kath, John C; Niessen, Sherry; Roberts, Lee R; Schnute, Mark E; Wang, Chu; Hulce, Jonathan J; Wei, Baoxian; Whiteley, Laurence O; Hayward, Matthew M; Cravatt, Benjamin F

    2014-09-01

    Kinases are principal components of signal transduction pathways and the focus of intense basic and drug discovery research. Irreversible inhibitors that covalently modify non-catalytic cysteines in kinase active sites have emerged as valuable probes and approved drugs. Many protein classes, however, have functional cysteines, and therefore understanding the proteome-wide selectivity of covalent kinase inhibitors is imperative. Here, we accomplish this objective using activity-based protein profiling coupled with quantitative MS to globally map the targets, both specific and nonspecific, of covalent kinase inhibitors in human cells. Many of the specific off-targets represent nonkinase proteins that, notably, have conserved active site cysteines. We define windows of selectivity for covalent kinase inhibitors and show that, when these windows are exceeded, rampant proteome-wide reactivity and kinase target-independent cell death conjointly occur. Our findings, taken together, provide an experimental road map to illuminate opportunities and surmount challenges for the development of covalent kinase inhibitors. PMID:25038787

  11. Inhibitors that stabilize a closed RAF kinase domain conformation induce dimerization

    PubMed Central

    Lavoie, Hugo; Thevakumaran, Neroshan; Gavory, Gwenaëlle; Li, John; Padeganeh, Abbas; Guiral, Sébastien; Duchaine, Jean; Mao, Daniel Y. L.; Bouvier, Michel; Sicheri, Frank; Therrien, Marc

    2016-01-01

    RAF kinases play a prominent role in cancer. Their mode of activation is complex, but critically requires dimerization of their kinase domains. Unexpectedly, several ATP-competitive RAF inhibitors were recently found to promote dimerization and transactivation of RAF kinases in a RAS-dependent manner and as a result undesirably stimulate RAS/ERK-mediated cell growth. The mechanism by which these inhibitors induce RAF kinase domain dimerization remains unclear. Here we describe BRET-based biosensors for the extended RAF family enabling the detection of RAF dimerization in living cells. Notably, we demonstrate the utility of these tools for profiling kinase inhibitors that selectively modulate RAF dimerization as well as for probing structural determinants of RAF dimerization in vivo. Our findings, which appear generalizable to other kinase families allosterically regulated by kinase domain dimerization, suggest a model whereby ATP-competitive inhibitors mediate RAF dimerization by stabilizing a rigid closed conformation of the kinase domain. PMID:23685672

  12. A selective ATP-competitive sphingosine kinase inhibitor demonstrates anti-cancer properties

    PubMed Central

    Pitman, Melissa R.; Powell, Jason A.; Coolen, Carl; Moretti, Paul A.B.; Zebol, Julia R.; Pham, Duyen H.; Finnie, John W.; Don, Anthony S.; Ebert, Lisa M.; Bonder, Claudine S.; Gliddon, Briony L.; Pitson, Stuart M.

    2015-01-01

    The dynamic balance of cellular sphingolipids, the sphingolipid rheostat, is an important determinant of cell fate, and is commonly deregulated in cancer. Sphingosine 1-phosphate is a signaling molecule with anti-apoptotic, pro-proliferative and pro-angiogenic effects, while conversely, ceramide and sphingosine are pro-apoptotic. The sphingosine kinases (SKs) are key regulators of this sphingolipid rheostat, and are attractive targets for anti-cancer therapy. Here we report a first-in-class ATP-binding site-directed small molecule SK inhibitor, MP-A08, discovered using an approach of structural homology modelling of the ATP-binding site of SK1 and in silico docking with small molecule libraries. MP-A08 is a highly selective ATP competitive SK inhibitor that targets both SK1 and SK2. MP-A08 blocks pro-proliferative signalling pathways, induces mitochondrial-associated apoptosis in a SK-dependent manner, and reduces the growth of human lung adenocarcinoma tumours in a mouse xenograft model by both inducing tumour cell apoptosis and inhibiting tumour angiogenesis. Thus, this selective ATP competitive SK inhibitor provides a promising candidate for potential development as an anti-cancer therapy, and also, due to its different mode of inhibition to other known SK inhibitors, both validates the SKs as targets for anti-cancer therapy, and represents an important experimental tool to study these enzymes. PMID:25788259

  13. Design, synthesis and structure-activity relationships of novel biarylamine-based Met kinase inhibitors

    SciTech Connect

    Williams, David K; Chen, Xiao-Tao; Tarby, Christine; Kaltenbach, Robert; Cai, Zhen-Wei; Tokarski, John S; An, Yongmi; Sack, John S; Wautlet, Barri; Gullo-Brown, Johnni; Henley, Benjamin J; Jeyaseelan, Robert; Kellar, Kristen; Manne, Veeraswamy; Trainor, George L; Lombardo, Louis J; Fargnoli, Joseph; Borzilleri, Robert M

    2010-09-03

    Biarylamine-based inhibitors of Met kinase have been identified. Lead compounds demonstrate nanomolar potency in Met kinase biochemical assays and significant activity in the Met-driven GTL-16 human gastric carcinoma cell line. X-ray crystallography revealed that these compounds adopt a bioactive conformation, in the kinase domain, consistent with that previously seen with 2-pyridone-based Met kinase inhibitors. Compound 9b demonstrated potent in vivo antitumor activity in the GTL-16 human tumor xenograft model.

  14. Kinase inhibitor screening identifies CDK4 as a potential therapeutic target for melanoma

    PubMed Central

    MAHGOUB, T.; EUSTACE, A.J.; COLLINS, D.M.; WALSH, N.; O'DONOVAN, N.; CROWN, J.

    2015-01-01

    Despite recent advances in targeted therapies and immunotherapies metastatic melanoma remains only rarely curable. The objective of the present study was to identify novel therapeutic targets for metastatic melanoma. A library of 160 well-characterised and potent protein kinase inhibitors was screened in the BRAF mutant cell line Sk-Mel-28, and the NRAS mutant Sk-Mel-2, using proliferation assays. Of the 160 inhibitors tested, 20 achieved >50% growth inhibition in both cell lines. Six of the 20 were cyclin dependent kinase (CDK) inhibitors, including two CDK4 inhibitors. Fascaplysin, a synthetic CDK4 inhibitor, was further tested in 8 melanoma cell lines. The concentration of fascaplysin required to inhibit growth by 50% (IC50 value) ranged from 0.03 to 0.22 μM. Fascaplysin also inhibited clonogenic growth and induced apoptosis. Sensitivity to PD0332991, a therapeutic CDK4/6 inhibitor was also evaluated in the melanoma cell lines. PD0332991 IC50 values ranged from 0.13 to 2.29 μM. Similar to fascaplysin, PD0332991 inhibited clonogenic growth of melanoma cells and induced apoptosis. Higher levels of CDK4 protein correlated with lower sensitivity to PD0332991 in the cell lines. Combined treatment with PD0332991 and the BRAF inhibitor PLX4032, showed additive anti-proliferative effects in the BRAF mutant cell line Malme-3M. In summary, targeting CDK4 inhibits growth and induces apoptosis in melanoma cells in vitro, suggesting that CDK4 may be a rational therapeutic target for metastatic melanoma. PMID:26201960

  15. JAK2 inhibition sensitizes resistant EGFR-mutant lung adenocarcinoma to tyrosine kinase inhibitors

    PubMed Central

    Gao, Sizhi P.; Chang, Qing; Mao, Ninghui; Daly, Laura A.; Vogel, Robert; Chan, Tyler; Liu, Shu Hui; Bournazou, Eirini; Schori, Erez; Zhang, Haiying; Brewer, Monica Red; Pao, William; Morris, Luc; Ladanyi, Marc; Arcila, Maria; Manova-Todorova, Katia; de Stanchina, Elisa; Norton, Larry; Levine, Ross L.; Altan-Bonnet, Gregoire; Solit, David; Zinda, Michael; Huszar, Dennis; Lyden, David; Bromberg, Jacqueline F.

    2016-01-01

    Lung adenocarcinomas with mutant epidermal growth factor receptor (EGFR) respond to EGFR-targeted tyrosine kinase inhibitors (TKIs), but resistance invariably occurs. We found that the Janus kinase (JAK)/signal transduction and activator of transcription 3 (STAT3) signaling pathway was aberrantly increased in TKI-resistant EGFR-mutant non–small cell lung cancer (NSCLC) cells. JAK2 inhibition restored sensitivity to the EGFR inhibitor erlotinib in TKI-resistant cell lines and xenograft models of EGFR-mutant TKI-resistant lung cancer. JAK2 inhibition uncoupled EGFR from its negative regulator, suppressor of cytokine signaling 5 (SOCS5), consequently increasing EGFR abundance and restoring the tumor cells’ dependence on EGFR signaling. Furthermore, JAK2 inhibition led to heterodimerization of mutant and wild-type EGFR subunits, the activity of which was then blocked by TKIs. Our results reveal a mechanism whereby JAK2 inhibition overcomes acquired resistance to EGFR inhibitors and support the use of combination therapy with JAK and EGFR inhibitors for the treatment of EGFR-dependent NSCLC. PMID:27025877

  16. JAK2 inhibition sensitizes resistant EGFR-mutant lung adenocarcinoma to tyrosine kinase inhibitors.

    PubMed

    Gao, Sizhi P; Chang, Qing; Mao, Ninghui; Daly, Laura A; Vogel, Robert; Chan, Tyler; Liu, Shu Hui; Bournazou, Eirini; Schori, Erez; Zhang, Haiying; Red Brewer, Monica; Pao, William; Morris, Luc; Ladanyi, Marc; Arcila, Maria; Manova-Todorova, Katia; de Stanchina, Elisa; Norton, Larry; Levine, Ross L; Altan-Bonnet, Gregoire; Solit, David; Zinda, Michael; Huszar, Dennis; Lyden, David; Bromberg, Jacqueline F

    2016-01-01

    Lung adenocarcinomas with mutant epidermal growth factor receptor (EGFR) respond to EGFR-targeted tyrosine kinase inhibitors (TKIs), but resistance invariably occurs. We found that the Janus kinase (JAK)/signal transduction and activator of transcription 3 (STAT3) signaling pathway was aberrantly increased in TKI-resistant EGFR-mutant non-small cell lung cancer (NSCLC) cells. JAK2 inhibition restored sensitivity to the EGFR inhibitor erlotinib in TKI-resistant cell lines and xenograft models of EGFR-mutant TKI-resistant lung cancer. JAK2 inhibition uncoupled EGFR from its negative regulator, suppressor of cytokine signaling 5 (SOCS5), consequently increasing EGFR abundance and restoring the tumor cells' dependence on EGFR signaling. Furthermore, JAK2 inhibition led to heterodimerization of mutant and wild-type EGFR subunits, the activity of which was then blocked by TKIs. Our results reveal a mechanism whereby JAK2 inhibition overcomes acquired resistance to EGFR inhibitors and support the use of combination therapy with JAK and EGFR inhibitors for the treatment of EGFR-dependent NSCLC. PMID:27025877

  17. Management of tyrosine kinase inhibitor resistance in lung cancer with EGFR mutation

    PubMed Central

    Becker, Kevin; Xu, Yiqing

    2014-01-01

    The identification of driver mutations and drugs that inhibit their activity has been a major therapeutic advance for patients with advanced lung adenocarcinoma. Unfortunately, the success of these drugs is limited by the universal development of resistance. Treatment failure can result from inadequate drug exposure or selection of resistant malignant clones. Clinically distinct mechanisms of disease progression have been identified and can inform treatment decisions. Investigations into the biochemical mechanisms of tyrosine kinase inhibitor resistance may provide additional therapeutic targets by which the efficacy of targeted therapy can be improved. PMID:25302160

  18. Glycogen synthase kinase-3 inhibitors: Rescuers of cognitive impairments

    PubMed Central

    King, Margaret K.; Pardo, Marta; Cheng, Yuyan; Downey, Kimberlee; Jope, Richard S.; Beurel, Eléonore

    2013-01-01

    Impairment of cognitive processes is a devastating outcome of many diseases, injuries, and drugs affecting the central nervous system (CNS). Most often, very little can be done by available therapeutic interventions to improve cognitive functions. Here we review evidence that inhibition of glycogen synthase kinase-3 (GSK3) ameliorates cognitive deficits in a wide variety of animal models of CNS diseases, including Alzheimer's disease, Fragile X syndrome, Down syndrome, Parkinson's disease, spinocerebellar ataxia type 1, traumatic brain injury, and others. GSK3 inhibitors also improve cognition following impairments caused by therapeutic interventions, such as cranial irradiation for brain tumors. These findings demonstrate that GSK3 inhibitors are able to ameliorate cognitive impairments caused by a diverse array of diseases, injury, and treatments. The improvements in impaired cognition instilled by administration of GSK3 inhibitors appear to involve a variety of different mechanisms, such as supporting long-term potentiation and diminishing long-term depression, promotion of neurogenesis, reduction of inflammation, and increasing a number of neuroprotective mechanisms. The potential for GSK3 inhibitors to repair cognitive deficits associated with many conditions warrants further investigation of their potential for therapeutic interventions, particularly considering the current dearth of treatments available to reduce loss of cognitive functions. PMID:23916593

  19. Toward the rational design of protein kinase casein kinase-2 inhibitors.

    PubMed

    Sarno, Stefania; Moro, Stefano; Meggio, Flavio; Zagotto, Giuseppe; Dal Ben, Diego; Ghisellini, Paola; Battistutta, Roberto; Zanotti, Giuseppe; Pinna, Lorenzo A

    2002-01-01

    Casein kinase-2 (CK2) probably is the most pleiotropic member of the protein kinase family, with more than 200 substrates known to date. Unlike the great majority of protein kinases, which are tightly regulated enzymes, CK2 is endowed with high constitutive activity, a feature that is suspected to underlie its oncogenic potential and possible implication in viral infections. This makes CK2 an attractive target for anti-neoplastic and antiviral drugs. Here, we present an overview of our present knowledge about CK2 inhibitors, with special reference to the information drawn from two recently solved crystal structures of CK2alpha in complex with emodin and with 4,5,6,7-tetrabromo-2-azabenzimidazole (TBB), this latter being the most specific CK2 inhibitor known to date. A comparison with a series of anthraquinone and xanthenone derivatives highlights the crucial relevance of the hydroxyl group at position 3 for inhibition by emodin, and discloses the possibility of increasing the inhibitory potency by placing an electron withdrawing group at position 5. We also present mutational data corroborating the relevance of two hydrophobic residues unique to CK2, Val66 and Ile174, for the interactions with emodin and TBB, but not with the flavonoid inhibitors quercetin and fisetin. In particular, the CK2alpha mutant V66A displays 27- and 11-fold higher IC(50) values with emodin and TBB, respectively, as compared with the wild-type, while the IC(50) value with quercetin is unchanged. The data presented pave the road toward the rational design of more potent and selective inhibitors of CK2 and the generation of CK2 mutants refractory to inhibition, useful to probe the implication of CK2 in specific cellular functions. PMID:12191608

  20. Development of covalent inhibitors that can overcome resistance to first-generation FGFR kinase inhibitors.

    PubMed

    Tan, Li; Wang, Jun; Tanizaki, Junko; Huang, Zhifeng; Aref, Amir R; Rusan, Maria; Zhu, Su-Jie; Zhang, Yiyun; Ercan, Dalia; Liao, Rachel G; Capelletti, Marzia; Zhou, Wenjun; Hur, Wooyoung; Kim, NamDoo; Sim, Taebo; Gaudet, Suzanne; Barbie, David A; Yeh, Jing-Ruey Joanna; Yun, Cai-Hong; Hammerman, Peter S; Mohammadi, Moosa; Jänne, Pasi A; Gray, Nathanael S

    2014-11-11

    The human FGF receptors (FGFRs) play critical roles in various human cancers, and several FGFR inhibitors are currently under clinical investigation. Resistance usually results from selection for mutant kinases that are impervious to the action of the drug or from up-regulation of compensatory signaling pathways. Preclinical studies have demonstrated that resistance to FGFR inhibitors can be acquired through mutations in the FGFR gatekeeper residue, as clinically observed for FGFR4 in embryonal rhabdomyosarcoma and neuroendocrine breast carcinomas. Here we report on the use of a structure-based drug design to develop two selective, next-generation covalent FGFR inhibitors, the FGFR irreversible inhibitors 2 (FIIN-2) and 3 (FIIN-3). To our knowledge, FIIN-2 and FIIN-3 are the first inhibitors that can potently inhibit the proliferation of cells dependent upon the gatekeeper mutants of FGFR1 or FGFR2, which confer resistance to first-generation clinical FGFR inhibitors such as NVP-BGJ398 and AZD4547. Because of the conformational flexibility of the reactive acrylamide substituent, FIIN-3 has the unprecedented ability to inhibit both the EGF receptor (EGFR) and FGFR covalently by targeting two distinct cysteine residues. We report the cocrystal structure of FGFR4 with FIIN-2, which unexpectedly exhibits a "DFG-out" covalent binding mode. The structural basis for dual FGFR and EGFR targeting by FIIN3 also is illustrated by crystal structures of FIIN-3 bound with FGFR4 V550L and EGFR L858R. These results have important implications for the design of covalent FGFR inhibitors that can overcome clinical resistance and provide the first example, to our knowledge, of a kinase inhibitor that covalently targets cysteines located in different positions within the ATP-binding pocket. PMID:25349422

  1. Development of covalent inhibitors that can overcome resistance to first-generation FGFR kinase inhibitors

    PubMed Central

    Tan, Li; Wang, Jun; Tanizaki, Junko; Huang, Zhifeng; Aref, Amir R.; Rusan, Maria; Zhu, Su-Jie; Zhang, Yiyun; Ercan, Dalia; Liao, Rachel G.; Capelletti, Marzia; Zhou, Wenjun; Hur, Wooyoung; Kim, NamDoo; Sim, Taebo; Gaudet, Suzanne; Barbie, David A.; Yeh, Jing-Ruey Joanna; Yun, Cai-Hong; Hammerman, Peter S.; Mohammadi, Moosa; Jänne, Pasi A.; Gray, Nathanael S.

    2014-01-01

    The human FGF receptors (FGFRs) play critical roles in various human cancers, and several FGFR inhibitors are currently under clinical investigation. Resistance usually results from selection for mutant kinases that are impervious to the action of the drug or from up-regulation of compensatory signaling pathways. Preclinical studies have demonstrated that resistance to FGFR inhibitors can be acquired through mutations in the FGFR gatekeeper residue, as clinically observed for FGFR4 in embryonal rhabdomyosarcoma and neuroendocrine breast carcinomas. Here we report on the use of a structure-based drug design to develop two selective, next-generation covalent FGFR inhibitors, the FGFR irreversible inhibitors 2 (FIIN-2) and 3 (FIIN-3). To our knowledge, FIIN-2 and FIIN-3 are the first inhibitors that can potently inhibit the proliferation of cells dependent upon the gatekeeper mutants of FGFR1 or FGFR2, which confer resistance to first-generation clinical FGFR inhibitors such as NVP-BGJ398 and AZD4547. Because of the conformational flexibility of the reactive acrylamide substituent, FIIN-3 has the unprecedented ability to inhibit both the EGF receptor (EGFR) and FGFR covalently by targeting two distinct cysteine residues. We report the cocrystal structure of FGFR4 with FIIN-2, which unexpectedly exhibits a “DFG-out” covalent binding mode. The structural basis for dual FGFR and EGFR targeting by FIIN3 also is illustrated by crystal structures of FIIN-3 bound with FGFR4 V550L and EGFR L858R. These results have important implications for the design of covalent FGFR inhibitors that can overcome clinical resistance and provide the first example, to our knowledge, of a kinase inhibitor that covalently targets cysteines located in different positions within the ATP-binding pocket. PMID:25349422

  2. Combined effects of EGFR tyrosine kinase inhibitors and vATPase inhibitors in NSCLC cells

    SciTech Connect

    Jin, Hyeon-Ok; Hong, Sung-Eun; Kim, Chang Soon; Park, Jin-Ah; Kim, Jin-Hee; Kim, Ji-Young; Kim, Bora; Chang, Yoon Hwan; Hong, Seok-Il; Hong, Young Jun; Park, In-Chul; Lee, Jin Kyung

    2015-08-15

    Despite excellent initial clinical responses of non-small cell lung cancer (NSCLC) patients to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), many patients eventually develop resistance. According to a recent report, vacuolar H + ATPase (vATPase) is overexpressed and is associated with chemotherapy drug resistance in NSCLC. We investigated the combined effects of EGFR TKIs and vATPase inhibitors and their underlying mechanisms in the regulation of NSCLC cell death. We found that combined treatment with EGFR TKIs (erlotinib, gefitinib, or lapatinib) and vATPase inhibitors (bafilomycin A1 or concanamycin A) enhanced synergistic cell death compared to treatments with each drug alone. Treatment with bafilomycin A1 or concanamycin A led to the induction of Bnip3 expression in an Hif-1α dependent manner. Knock-down of Hif-1α or Bnip3 by siRNA further enhanced cell death induced by bafilomycin A1, suggesting that Hif-1α/Bnip3 induction promoted resistance to cell death induced by the vATPase inhibitors. EGFR TKIs suppressed Hif-1α and Bnip3 expression induced by the vATPase inhibitors, suggesting that they enhanced the sensitivity of the cells to these inhibitors by decreasing Hif-1α/Bnip3 expression. Taken together, we conclude that EGFR TKIs enhance the sensitivity of NSCLC cells to vATPase inhibitors by decreasing Hif-1α/Bnip3 expression. We suggest that combined treatment with EGFR TKIs and vATPase inhibitors is potentially effective for the treatment of NSCLC. - Highlights: • Co-treatment with EGFR TKIs and vATPase inhibitors induces synergistic cell death • EGFR TKIs enhance cell sensitivity to vATPase inhibitors via Hif-1α downregulation • Co-treatment of these inhibitors is potentially effective for the treatment of NSCLC.

  3. Structural Requirements and Docking Analysis of Amidine-Based Sphingosine Kinase 1 Inhibitors Containing Oxadiazoles.

    PubMed

    Houck, Joseph D; Dawson, Thomas K; Kennedy, Andrew J; Kharel, Yugesh; Naimon, Niels D; Field, Saundra D; Lynch, Kevin R; Macdonald, Timothy L

    2016-05-12

    Sphingosine 1-phosphate (S1P) is a potent growth-signaling lipid that has been implicated in cancer progression, inflammation, sickle cell disease, and fibrosis. Two sphingosine kinases (SphK1 and 2) are the source of S1P; thus, inhibitors of the SphKs have potential as targeted cancer therapies and will help to clarify the roles of S1P and the SphKs in other hyperproliferative diseases. Recently, we reported a series of amidine-based inhibitors with high selectivity for SphK1 and potency in the nanomolar range. However, these inhibitors display a short half-life. With the goal of increasing metabolic stability and maintaining efficacy, we designed an analogous series of molecules containing oxadiazole moieties. Generation of a library of molecules resulted in the identification of the most selective inhibitor of SphK1 reported to date (705-fold selectivity over SphK2), and we found that potency and selectivity vary significantly depending on the particular oxadiazole isomer employed. The best inhibitors were subjected to in silico molecular dynamics docking analysis, which revealed key insights into the binding of amidine-based inhibitors by SphK1. Herein, the design, synthesis, biological evaluation, and docking analysis of these molecules are described. PMID:27190598

  4. A systematic analysis of the resistance and sensitivity of HER2YVMA receptor tyrosine kinase mutant to tyrosine kinase inhibitors in HER2-positive lung cancer.

    PubMed

    Shen, Xiaokun; Chen, Beibei; Ma, Zhaosheng; Xie, Bojian; Cao, Xinguang; Yang, Tiejun; Zhao, Yuzhou; Qin, Jianjun; Li, Jicheng; Cao, Feilin; Chen, Xiaobing

    2016-01-01

    Human epidermal growth factor receptor 2 (HER2) has become a well-established target for the treatment of HER2-positive lung cancer. However, a frequently observed in-frame mutation that inserts amino acid quadruplex Tyr776-Val777-Met778-Ala779 at G776 (G776(YVMA)) in HER2 kinase domain can cause drug resistance and sensitivity, largely limiting the application of reversible tyrosine kinase inhibitors in lung cancer therapy. A systematic investigation of the intermolecular interactions between the HER2(YVMA) mutant and clinical small-molecule inhibitors would help to establish a complete picture of drug response to HER2 G776(YVMA) insertion in lung cancer, and to design new tyrosine kinase inhibitors with high potency and selectivity to target the lung cancer-related HER2(YVMA) mutant. Here, we combined homology modeling, ligand grafting, structure minimization, molecular simulation and binding affinity analysis to profile a number of tyrosine kinase inhibitors against the G776(YVMA) insertion in HER2. It is found that the insertion is far away from HER2 active pocket and thus cannot contact inhibitor ligand directly. However, the insertion is expected to induce marked allosteric effect on some regions around the pocket, including A-loop and hinges connecting between the N- and C-lobes of HER2 kinase domain, which may exert indirect influence to inhibitor binding. Most investigated inhibitors exhibit weak binding strength to both wild-type and mutant HER2, which can be attributed to steric hindrance that impairs ligand compatibility with HER2 active pocket. However, the cognate inhibitor lapatinib and the non-cognate inhibitor bosutinib were predicted to have low affinity for wild-type HER2 but high affinity for HER2(YVMA) mutant, which was confirmed by subsequent kinase assay experiments; the inhibitory potencies of bosutinib against wild-type and mutant HER2 were determined to be IC(50) > 1000 and =27 nM, respectively, suggesting that the bosutinib might be

  5. Crystal structure of inhibitor of ;#954;B kinase [beta

    SciTech Connect

    Xu, Guozhou; Lo, Yu-Chih; Li, Qiubai; Napolitano, Gennaro; Wu, Xuefeng; Jiang, Xuliang; Dreano, Michel; Karin, Michael; Wu, Hao

    2011-07-26

    Inhibitor of {kappa}B (I{kappa}B) kinase (IKK) phosphorylates I{kappa}B proteins, leading to their degradation and the liberation of nuclear factor {kappa}B for gene transcription. Here we report the crystal structure of IKK{beta} in complex with an inhibitor, at a resolution of 3.6 {angstrom}. The structure reveals a trimodular architecture comprising the kinase domain, a ubiquitin-like domain (ULD) and an elongated, {alpha}-helical scaffold/dimerization domain (SDD). Unexpectedly, the predicted leucine zipper and helix-loop-helix motifs do not form these structures but are part of the SDD. The ULD and SDD mediate a critical interaction with I{kappa}B{alpha} that restricts substrate specificity, and the ULD is also required for catalytic activity. The SDD mediates IKK{beta} dimerization, but dimerization per se is not important for maintaining IKK{beta} activity and instead is required for IKK{beta} activation. Other IKK family members, IKK{alpha}, TBK1 and IKK-i, may have a similar trimodular architecture and function.

  6. Role of tyrosine-kinase inhibitors in myeloproliferative neoplasms: comparative lessons learned

    PubMed Central

    Pinilla-Ibarz, Javier; Sweet, Kendra L; Corrales-Yepez, Gabriela M; Komrokji, Rami S

    2016-01-01

    An important pathogenetic distinction in the classification of myeloproliferative neoplasms (MPNs) is the presence or absence of the BCR–ABL fusion gene, which encodes a unique oncogenic tyrosine kinase. The BCR–ABL fusion, caused by the formation of the Philadelphia chromosome (Ph) through translocation, constitutes the disease-initiating event in chronic myeloid leukemia. The development of successive BCR–ABL-targeted tyrosine-kinase inhibitors has led to greatly improved outcomes in patients with chronic myeloid leukemia, including high rates of complete hematologic, cytogenetic, and molecular responses. Such levels of treatment success have long been elusive for patients with Ph-negative MPNs, because of the difficulties in identifying specific driver proteins suitable as drug targets. However, in recent years an improved understanding of the complex pathobiology of classic Ph-negative MPNs, characterized by variable, overlapping multimutation profiles, has prompted the development of better and more broadly targeted (to pathway rather than protein) treatment options, particularly JAK inhibitors. In classic Ph-negative MPNs, overactivation of JAK-dependent signaling pathways is a central pathogenic mechanism, and mutually exclusive mutations in JAK2, MPL, and CALR linked to aberrant JAK activation are now recognized as key drivers of disease progression in myelofibrosis (MF). In clinical trials, the JAK1/JAK2 inhibitor ruxolitinib – the first therapy approved for MF worldwide – improved disease-related splenomegaly and symptoms independent of JAK2V617F mutational status, and prolonged survival compared with placebo or standard therapy in patients with advanced MF. In separate trials, ruxolitinib also provided comprehensive hematologic control in patients with another Ph-negative MPN – polycythemia vera. However, complete cytogenetic or molecular responses with JAK inhibitors alone are normally not observed, underscoring the need for novel

  7. Kinase-dead ATM protein is highly oncogenic and can be preferentially targeted by Topo-isomerase I inhibitors

    PubMed Central

    Yamamoto, Kenta; Wang, Jiguang; Sprinzen, Lisa; Xu, Jun; Haddock, Christopher J; Li, Chen; Lee, Brian J; Loredan, Denis G; Jiang, Wenxia; Vindigni, Alessandro; Wang, Dong; Rabadan, Raul; Zha, Shan

    2016-01-01

    Missense mutations in ATM kinase, a master regulator of DNA damage responses, are found in many cancers, but their impact on ATM function and implications for cancer therapy are largely unknown. Here we report that 72% of cancer-associated ATM mutations are missense mutations that are enriched around the kinase domain. Expression of kinase-dead ATM (AtmKD/-) is more oncogenic than loss of ATM (Atm-/-) in mouse models, leading to earlier and more frequent lymphomas with Pten deletions. Kinase-dead ATM protein (Atm-KD), but not loss of ATM (Atm-null), prevents replication-dependent removal of Topo-isomerase I-DNA adducts at the step of strand cleavage, leading to severe genomic instability and hypersensitivity to Topo-isomerase I inhibitors. Correspondingly, Topo-isomerase I inhibitors effectively and preferentially eliminate AtmKD/-, but not Atm-proficientor Atm-/- leukemia in animal models. These findings identify ATM kinase-domain missense mutations as a potent oncogenic event and a biomarker for Topo-isomerase I inhibitor based therapy. DOI: http://dx.doi.org/10.7554/eLife.14709.001 PMID:27304073

  8. Identification of Novel Small Molecule Inhibitors of Oncogenic RET Kinase

    PubMed Central

    Moccia, Marialuisa; Liu, Qingsong; Guida, Teresa; Federico, Giorgia; Brescia, Annalisa; Zhao, Zheng; Choi, Hwan Geun; Deng, Xianming; Tan, Li; Wang, Jinhua; Billaud, Marc; Gray, Nathanael S.

    2015-01-01

    Oncogenic mutation of the RET receptor tyrosine kinase is observed in several human malignancies. Here, we describe three novel type II RET tyrosine kinase inhibitors (TKI), ALW-II-41-27, XMD15-44 and HG-6-63-01, that inhibit the cellular activity of oncogenic RET mutants at two digit nanomolar concentration. These three compounds shared a 3-trifluoromethyl-4-methylpiperazinephenyl pharmacophore that stabilizes the ‘DFG-out’ inactive conformation of RET activation loop. They blocked RET-mediated signaling and proliferation with an IC50 in the nM range in fibroblasts transformed by the RET/C634R and RET/M918T oncogenes. They also inhibited autophosphorylation of several additional oncogenic RET-derived point mutants and chimeric oncogenes. At a concentration of 10 nM, ALW-II-41-27, XMD15-44 and HG-6-63-01 inhibited RET kinase and signaling in human thyroid cancer cell lines carrying oncogenic RET alleles; they also inhibited proliferation of cancer, but not non-tumoral Nthy-ori-3-1, thyroid cells, with an IC50 in the nM range. The three compounds were capable of inhibiting the ‘gatekeeper’ V804M mutant which confers substantial resistance to established RET inhibitors. In conclusion, we have identified a type II TKI scaffold, shared by ALW-II-41-27, XMD15-44 and HG-6-63-01, that may be used as novel lead for the development of novel agents for the treatment of cancers harboring oncogenic activation of RET. PMID:26046350

  9. An evaluation of indirubin analogues as phosphorylase kinase inhibitors.

    PubMed

    Begum, Jaida; Skamnaki, Vassiliki T; Moffatt, Colin; Bischler, Nicolas; Sarrou, Josephine; Skaltsounis, Alexios-Leandros; Leonidas, Demetres D; Oikonomakos, Nikos G; Hayes, Joseph M

    2015-09-01

    Phosphorylase kinase (PhK) has been linked with a number of conditions such as glycogen storage diseases, psoriasis, type 2 diabetes and more recently, cancer (Camus et al., 2012 [6]). However, with few reported structural studies on PhK inhibitors, this hinders a structure based drug design approach. In this study, the inhibitory potential of 38 indirubin analogues have been investigated. 11 of these ligands had IC50 values in the range 0.170-0.360μM, with indirubin-3'-acetoxime (1c) the most potent. 7-Bromoindirubin-3'-oxime (13b), an antitumor compound which induces caspase-independent cell-death (Ribas et al., 2006 [20]) is revealed as a specific inhibitor of PhK (IC50=1.8μM). Binding assay experiments performed using both PhK-holo and PhK-γtrnc confirmed the inhibitory effects to arise from binding at the kinase domain (γ subunit). High level computations using QM/MM-PBSA binding free energy calculations were in good agreement with experimental binding data, as determined using statistical analysis, and support binding at the ATP-binding site. The value of a QM description for the binding of halogenated ligands exhibiting σ-hole effects is highlighted. A new statistical metric, the 'sum of the modified logarithm of ranks' (SMLR), has been defined which measures performance of a model for both the "early recognition" (ranking earlier/higher) of active compounds and their relative ordering by potency. Through a detailed structure activity relationship analysis considering other kinases (CDK2, CDK5 and GSK-3α/β), 6'(Z) and 7(L) indirubin substitutions have been identified to achieve selective PhK inhibition. The key PhK binding site residues involved can also be targeted using other ligand scaffolds in future work. PMID:26364215

  10. HPLC-DAD protein kinase inhibitor analysis in human serum.

    PubMed

    Dziadosz, Marek; Lessig, Rüdiger; Bartels, Heidemarie

    2012-04-15

    We here describe an HPLC-DAD method to analyse different protein kinase inhibitors. Potential applications of this method are pharmacokinetic studies and therapeutic drug monitoring. Optimised chromatography conditions resulted in a very good separation of seven inhibitors (vatalanib, bosutinib, canertinib, tandutinib, pazopanib, dasatinib - internal standard and erlotinib). The good sensitivity makes this method competitive with LC/MS/MS. The separation was performed with a Lichrospher 100-5 RP8, 250 mm × 4 mm column maintained at 30 ± 1 °C, and with a mobile phase of 0.05 M H(3)PO(4)/KH(2)PO(4) (pH=2.3)-acetonitrile (7:3, v/v) at a flow rate of 0.7 mL/min. A simple and fast sample preparation sequence with liquid-liquid extraction led to good recoveries (73-90%) of all analytes. The recovery hardly reached 50% only for pazopanib. This method can also be used for targeted protein kinase inhibitor quantification. A perfect linearity in the validated range (20-10,000 ng/mL) and an LOQ of 20 ng/mL were achieved. The relative standard deviations and accuracies of all examined drug concentrations gave values much lower than 15% both for between- and within-batch calculations. All analysed PKIs were stable for 6 months in a 1mg/mL dimethyl sulfoxide stock solution. Vatalanib, bosutinib and erlotinib were also stable in human serum in the whole examined concentration range. PMID:22425385

  11. Protein kinase inhibitors in the treatment of inflammatory and autoimmune diseases

    PubMed Central

    Patterson, H; Nibbs, R; McInnes, I; Siebert, S

    2014-01-01

    Protein kinases mediate protein phosphorylation, which is a fundamental component of cell signalling, with crucial roles in most signal transduction cascades: from controlling cell growth and proliferation to the initiation and regulation of immunological responses. Aberrant kinase activity is implicated in an increasing number of diseases, with more than 400 human diseases now linked either directly or indirectly to protein kinases. Protein kinases are therefore regarded as highly important drug targets, and are the subject of intensive research activity. The success of small molecule kinase inhibitors in the treatment of cancer, coupled with a greater understanding of inflammatory signalling cascades, has led to kinase inhibitors taking centre stage in the pursuit for new anti-inflammatory agents for the treatment of immune-mediated diseases. Herein we discuss the main classes of kinase inhibitors; namely Janus kinase (JAK), mitogen-activated protein kinase (MAPK) and spleen tyrosine kinase (Syk) inhibitors. We provide a mechanistic insight into how these inhibitors interfere with kinase signalling pathways and discuss the clinical successes and failures in the implementation of kinase-directed therapeutics in the context of inflammatory and autoimmune disorders. PMID:24313320

  12. Small-molecule inhibitors of IκB kinase (IKK) and IKK-related kinases.

    PubMed

    Llona-Minguez, Sabin; Baiget, Jessica; Mackay, Simon P

    2013-07-01

    The transcription factors NF-κB and IFN control important signaling cascades and mediate the expression of a number of important pro-inflammatory cytokines, adhesion molecules, growth factors and anti-apoptotic survival proteins. IκB kinase (IKK) and IKK-related kinases (IKKε and TBK1) are key regulators of these biological pathways and, as such, modulators of these enzymes may be useful in the treatment of inflammatory diseases and cancer. We have reviewed the most recent IKK patent literature (2008-2012), added publications of interest overlooked in previous patent reviews and identified all the players involved in small-molecule inhibitors of the IKKs. This will provide the reader with a decisive summary of the IKK arena, a field that has reached maturity over a decade of research. PMID:24237125

  13. Neuroprotective profile of novel SRC kinase inhibitors in rodent models of cerebral ischemia.

    PubMed

    Liang, Shi; Pong, Kevin; Gonzales, Cathleen; Chen, Yi; Ling, Huai-Ping; Mark, Robert J; Boschelli, Frank; Boschelli, Diane H; Ye, Fei; Barrios Sosa, Ana Carolina; Mansour, Tarek S; Frost, Philip; Wood, Andrew; Pangalos, Menelas N; Zaleska, Margaret M

    2009-12-01

    Src kinase signaling has been implicated in multiple mechanisms of ischemic injury, including vascular endothelial growth factor (VEGF)-mediated vascular permeability that leads to vasogenic edema, a major clinical complication in stroke and brain trauma. Here we report the effects of two novel Src kinase inhibitors, 4-[(2,4-dichloro-5-methoxyphenyl)amino]-6-methoxy-7-[3-(4-methyl-1-piperazinyl)propoxy]-3-quinolinecarbonitrile (SKI-606) and 4-[(2,4-dichloro-5-methoxyphenyl)amino]-6-methoxy-7-[4-(4-methypiperazin-1-yl)but-1-ynyl]-3-quinolinecarbonitrile (SKS-927), on ischemia-induced brain infarction and short- and long-term neurological deficits. Two well established transient [transient middle cerebral artery occlusion (tMCAO)] and permanent [permanent middle cerebral artery occlusion (pMCAO)] focal ischemia models in the rat were used with drug treatments initiated up to 6 h after onset of stroke to mimic the clinical scenario. Brain penetration of Src inhibitors, their effect on blood-brain barrier integrity and VEGF signaling in human endothelial cells were also evaluated. Our results demonstrate that both agents potently block VEGF-mediated signaling in human endothelial cells, penetrate rat brain upon systemic administration, and inhibit postischemic Src activation and vascular leakage. Treatment with SKI-606 or SKS-927 (at the doses of 3-30 mg/kg i.v.) resulted in a dose-dependent reduction in infarct volume and robust protection from neurological impairments even when the therapy was initiated up to 4- to 6-h after tMCAO. Src blockade after pMCAO resulted in accelerated improvement in recovery from motor, sensory, and reflex deficits during a long-term (3 weeks) testing period poststroke. These data demonstrate that the novel Src kinase inhibitors provide effective treatment against ischemic conditions within a clinically relevant therapeutic window and may constitute a viable therapy for acute stroke. PMID:19741150

  14. The Relative Expression of Mig6 and EGFR Is Associated with Resistance to EGFR Kinase Inhibitors

    PubMed Central

    Chang, Xiaofei; Izumchenko, Eugene; Solis, Luisa M.; Kim, Myoung Sook; Chatterjee, Aditi; Ling, Shizhang; Monitto, Constance L.; Harari, Paul M.; Hidalgo, Manuel; Goodman, Steve N.; Wistuba, Ignacio I.; Bedi, Atul; Sidransky, David

    2013-01-01

    The sensitivity of only a few tumors to anti-epidermal growth factor receptor EGFR tyrosine kinase inhibitors (TKIs) can be explained by the presence of EGFR tyrosine kinase (TK) domain mutations. In addition, such mutations were rarely found in tumor types other than lung, such as pancreatic and head and neck cancer. In this study we sought to elucidate mechanisms of resistance to EGFR-targeted therapies in tumors that do not harbor TK sensitizing mutations in order to identify markers capable of guiding the decision to incorporate these drugs into chemotherapeutic regimens. Here we show that EGFR activity was markedly decreased during the evolution of resistance to the EGFR tyrosine kinase inhibitor (TKI) erlotinib, with a concomitant increase of mitogen-inducible gene 6 (Mig6), a negative regulator of EGFR through the upregulation of the PI3K-AKT pathway. EGFR activity, which was more accurately predicted by the ratio of Mig6/EGFR, highly correlated with erlotinib sensitivity in panels of cancer cell lines of different tissue origins. Blinded testing and analysis in a prospectively followed cohort of lung cancer patients treated with gefitinib alone demonstrated higher response rates and a marked increased in progression free survival for patients with a low Mig6/EGFR ratio (approximately 100 days, P = 0.01). PMID:23935914

  15. Evolving Therapies and FAK Inhibitors for the Treatment of Cancer

    PubMed Central

    Dunn, Kelli Bullard; Heffler, Melissa; Golubovskaya, Vita

    2012-01-01

    Despite advances in medical and surgical therapy, cancer kills more than half a million people in the United States annually, and the majority of these patients succumb to metastatic disease. The traditional approach to treating systemic disease has been the use of cytotoxic chemotherapy. However, chemotherapy is rarely curative and toxicity is often dose limiting. In addition, the effects of chemotherapy are nonspecific, targeting both malignant and normal tissues. As a result, recent efforts increasingly have focused on developing agents that target specific molecules in tumor cells in order to both improve efficacy and limit toxicity. This review summarizes the history and current use of targeted molecular therapy for cancer, with a special emphasis on recently developed inhibitors of Focal Adhesion Kinase (FAK). PMID:21291406

  16. Cheminfomatic-based Drug Discovery of Human Tyrosine Kinase Inhibitors.

    PubMed

    Reid, Terry-Elinor; Fortunak, Joseph M; Wutoh, Anthony; Simon Wang, Xiang

    2016-01-01

    Receptor Tyrosine Kinases (RTKs) are essential components for regulating cell-cell signaling and communication events in cell growth, proliferation, differentiation, survival and metabolism. Deregulation of RTKs and their associated signaling pathways can lead to a wide variety of human diseases such as immunodeficiency, diabetes, arterosclerosis, psoriasis and cancer. Thus RTKs have become one of the most important drug targets families in recent decade. Pharmaceutical companies have dedicated their research efforts towards the discovery of small-molecule inhibitors of RTKs, many of which had been approved by the U.S. Food and Drug Administration (US FDA) or are currently in clinical trials. The great successes in the development of small-molecule inhibitors of RTKs are largely attributed to the use of modern cheminformatic approaches to identifying lead scaffolds. Those include the quantitative structure-activity relationship (QSAR) modeling, as well as the structure-, and ligand-based pharmacophore modeling techniques in this case. Herein we inspected the literature thoroughly in an effort to conduct a comparative analysis of major findings regarding the essential structure-activity relationships (SARs)/pharmacophore features of known active RTK inhibitors, most of which were collected from cheminformatic modeling approaches. PMID:26369823

  17. Resistance to the tyrosine kinase inhibitor axitinib is associated with increased glucose metabolism in pancreatic adenocarcinoma.

    PubMed

    Hudson, C D; Hagemann, T; Mather, S J; Avril, N

    2014-01-01

    Alterations in energy (glucose) metabolism are key events in the development and progression of cancer. In pancreatic adenocarcinoma (PDAC) cells, we investigated changes in glucose metabolism induced by resistance to the receptor tyrosine kinase inhibitor (RTKI) axitinib. Here, we show that human cell lines and mouse PDAC cell lines obtained from the spontaneous pancreatic cancer mouse model (Kras(G12D)Pdx1-cre) were sensitive to axitinib. The anti-proliferative effect was due to a G2/M block resulting in loss of 70-75% cell viability in the most sensitive PDAC cell line. However, a surviving sub-population showed a 2- to 3-fold increase in [C-14]deoxyglucose ([C-14]DG) uptake. This was sustained in axitinib-resistant cell lines, which were derived from parental PDAC. In addition to the axitinib-induced increase in [C-14]DG uptake, we observed a translocation of glucose transporter-1 (Glut-1) transporters from cytosolic pools to the cell surface membrane and a 2-fold increase in glycolysis rates measured by the extracellular acidification rate (ECAR). We demonstrated an axitinib-induced increase in phosphorylated Protein Kinase B (pAkt) and by blocking pAkt with a phosphatidylinositol-3 kinase (PI3K) inhibitor we reversed the Glut-1 translocation and restored sensitivity to axitinib treatment. Combination treatment with both axitinib and Akt inhibitor in parental pancreatic cell line resulted in a decrease in cell viability beyond that conferred by single therapy alone. Our study shows that PDAC resistance to axitinib results in increased glucose metabolism mediated by activated Akt. Combining axitinib and an Akt inhibitor may improve treatment in PDAC. PMID:24722285

  18. Identification of “Preferred” Human Kinase Inhibitors for Sleeping Sickness Lead Discovery. Are Some Kinases Better than Others for Inhibitor Repurposing?

    PubMed Central

    2016-01-01

    A kinase-targeting cell-based high-throughput screen (HTS) against Trypanosoma brucei was recently reported, and this screening set included the Published Kinase Inhibitor Set (PKIS). From the PKIS was identified 53 compounds with pEC50 ≥ 6. Utilizing the published data available for the PKIS, a statistical analysis of these active antiparasitic compounds was performed, allowing identification of a set of human kinases having inhibitors that show a high likelihood for blocking T. brucei cellular proliferation in vitro. This observation was confirmed by testing other established inhibitors of these human kinases and by mining past screening campaigns at GlaxoSmithKline. Overall, although the parasite targets of action are not known, inhibitors of this set of human kinases displayed an enhanced hit rate relative to a random kinase-targeting HTS campaign, suggesting that repurposing efforts should focus primarily on inhibitors of these specific human kinases. We therefore term this statistical analysis-driven approach “preferred lead repurposing”. PMID:26998514

  19. Checkpoint kinase inhibitor synergizes with DNA-damaging agents in G1 checkpoint-defective neuroblastoma.

    PubMed

    Xu, Hong; Cheung, Irene Y; Wei, Xiao X; Tran, Hoa; Gao, Xiaoni; Cheung, Nai-Kong V

    2011-10-15

    Checkpoint kinase inhibitors can enhance the cancer killing action of DNA-damaging chemotherapeutic agents by disrupting the S/G(2) cell cycle checkpoints. The in vitro and in vivo effects of the Chk1/2 inhibitor AZD7762 when combined with these agents were examined using neuroblastoma cell lines with known p53/MDM2/p14(ARF) genomic status. Four of four p53 mutant lines and three of five MDM2/p14(ARF) abnormal lines were defective in G(1) checkpoint, correlating with failure to induce endogenous p21 after treatment with DNA-damaging agents. In cytotoxicity assays, these G(1) checkpoint-defective lines were more resistant to DNA-damaging agents when compared to G(1) checkpoint intact lines, yet becoming more sensitive when AZD7762 was added. Moreover, AZD7762 abrogated DNA damage-induced S/G(2) checkpoint arrest both in vitro and in vivo. In xenograft models, a significant delay in tumor growth accompanied by histological evidence of increased apoptosis was observed, when AZD7762 was added to the DNA-damaging drug gemcitabine. These results suggest a therapeutic potential of combination therapy using checkpoint kinase inhibitor and chemotherapy to reverse or prevent drug resistance in treating neuroblastomas with defective G(1) checkpoints. PMID:21154747

  20. Protein-kinase inhibitors: A new treatment pathway for autoimmune and inflammatory diseases?

    PubMed

    Hernández-Flórez, Diana; Valor, Lara

    2016-01-01

    Although advances in biological medicine have seen significant progress in the treatment of autoimmune and inflammatory disease, many patients do not experience a satisfactory response. Hence, there are two challenges facing the medical research community. The first is to continue development in the field of existing biological therapies, such as monoclonal antibodies. The second is to open new frontiers of research and explore treatment alternatives for non-responders to other therapies. Attention has increasingly turned to the therapeutic potential of small molecule weight kinase inhibitors (SMKIs), currently used extensively in oncology and haematology. Initial research into the therapeutic value of SMKIs for autoimmune and inflammatory diseases has been encouraging. SMKIs are taken orally, which reduces cost for the health provider, and could increase compliance for the patient. This is why research is now focusing increasingly on SMKIs as a new generation line of treatment in these diseases. Tofacitinib, an inhibitor of Janus-kinase, is currently the only drug approved for the treatment of rheumatoid arthritis by FDA. However, much more needs to be done to understand the intracellular signalling pathways and how these might affect disease progression before solid conclusions can be drawn. PMID:26283525

  1. High-content screening identifies kinase inhibitors that overcome venetoclax resistance in activated CLL cells.

    PubMed

    Oppermann, Sina; Ylanko, Jarkko; Shi, Yonghong; Hariharan, Santosh; Oakes, Christopher C; Brauer, Patrick M; Zúñiga-Pflücker, Juan C; Leber, Brian; Spaner, David E; Andrews, David W

    2016-08-18

    Novel agents such as the Bcl-2 inhibitor venetoclax (ABT-199) are changing treatment paradigms for chronic lymphocytic leukemia (CLL) but important problems remain. Although some patients exhibit deep and durable responses to venetoclax as a single agent, other patients harbor subpopulations of resistant leukemia cells that mediate disease recurrence. One hypothesis for the origin of resistance to venetoclax is by kinase-mediated survival signals encountered in proliferation centers that may be unique for individual patients. An in vitro microenvironment model was developed with primary CLL cells that could be incorporated into an automated high-content microscopy-based screen of kinase inhibitors (KIs) to identify agents that may improve venetoclax therapy in a personalized manner. Marked interpatient variability was noted for which KIs were effective; nevertheless, sunitinib was identified as the most common clinically available KI effective in overcoming venetoclax resistance. Examination of the underlying mechanisms indicated that venetoclax resistance may be induced by microenvironmental signals that upregulate antiapoptotic Bcl-xl, Mcl-1, and A1, which can be counteracted more efficiently by sunitinib than by ibrutinib or idelalisib. Although patient-specific drug responses are common, for many patients, combination therapy with sunitinib may significantly improve the therapeutic efficacy of venetoclax. PMID:27297795

  2. High-content screening identifies kinase inhibitors that overcome venetoclax resistance in activated CLL cells

    PubMed Central

    Oppermann, Sina; Ylanko, Jarkko; Shi, Yonghong; Hariharan, Santosh; Oakes, Christopher C.; Brauer, Patrick M.; Zúñiga-Pflücker, Juan C.; Leber, Brian; Spaner, David E.

    2016-01-01

    Novel agents such as the Bcl-2 inhibitor venetoclax (ABT-199) are changing treatment paradigms for chronic lymphocytic leukemia (CLL) but important problems remain. Although some patients exhibit deep and durable responses to venetoclax as a single agent, other patients harbor subpopulations of resistant leukemia cells that mediate disease recurrence. One hypothesis for the origin of resistance to venetoclax is by kinase-mediated survival signals encountered in proliferation centers that may be unique for individual patients. An in vitro microenvironment model was developed with primary CLL cells that could be incorporated into an automated high-content microscopy-based screen of kinase inhibitors (KIs) to identify agents that may improve venetoclax therapy in a personalized manner. Marked interpatient variability was noted for which KIs were effective; nevertheless, sunitinib was identified as the most common clinically available KI effective in overcoming venetoclax resistance. Examination of the underlying mechanisms indicated that venetoclax resistance may be induced by microenvironmental signals that upregulate antiapoptotic Bcl-xl, Mcl-1, and A1, which can be counteracted more efficiently by sunitinib than by ibrutinib or idelalisib. Although patient-specific drug responses are common, for many patients, combination therapy with sunitinib may significantly improve the therapeutic efficacy of venetoclax. PMID:27297795

  3. The Next Wave of EGFR Tyrosine Kinase Inhibitors Enter the Clinic.

    PubMed

    Politi, Katerina; Ayeni, Deborah; Lynch, Thomas

    2015-06-01

    The T790M mutation in EGFR accounts for approximately half of all lung cancer cases with acquired resistance to the current clinical EGFR tyrosine kinase inhibitors. In tyrosine kinase inhibitor-resistant lung tumors, rociletinib and AZD9291 are highly active when T790M is present and modestly active when T790M is absent. PMID:26058074

  4. Aurora kinase inhibitors reveal mechanisms of HURP in nucleation of centrosomal and kinetochore microtubules

    PubMed Central

    Wu, Jiun-Ming; Chen, Chiung-Tong; Coumar, Mohane Selvaraj; Lin, Wen-Hsin; Chen, Zi-Jie; Hsu, John T.-A.; Peng, Yi-Hui; Shiao, Hui-Yi; Lin, Wen-Hsing; Chu, Chang-Ying; Wu, Jian-Sung; Lin, Chih-Tsung; Chen, Ching-Ping; Hsueh, Ching-Cheng; Chang, Kai-Yen; Kao, Li-Pin; Huang, Chi-Ying F.; Chao, Yu-Sheng; Wu, Su-Ying; Hsieh, Hsing-Pang; Chi, Ya-Hui

    2013-01-01

    The overexpression of Aurora kinases in multiple tumors makes these kinases appealing targets for the development of anticancer therapies. This study identified two small molecules with a furanopyrimidine core, IBPR001 and IBPR002, that target Aurora kinases and induce a DFG conformation change at the ATP site of Aurora A. Our results demonstrate the high potency of the IBPR compounds in reducing tumorigenesis in a colorectal cancer xenograft model in athymic nude mice. Human hepatoma up-regulated protein (HURP) is a substrate of Aurora kinase A, which plays a crucial role in the stabilization of kinetochore fibers. This study used the IBPR compounds as well as MLN8237, a proven Aurora A inhibitor, as chemical probes to investigate the molecular role of HURP in mitotic spindle formation. These compounds effectively eliminated HURP phosphorylation, thereby revealing the coexistence and continuous cycling of HURP between unphosphorylated and phosphorylated forms that are associated, respectively, with microtubules emanating from centrosomes and kinetochores. Furthermore, these compounds demonstrate a spatial hierarchical preference for HURP in the attachment of microtubules extending from the mother to the daughter centrosome. The finding of inequality in the centrosomal microtubules revealed by these small molecules provides a versatile tool for the discovery of new cell-division molecules for the development of antitumor drugs. PMID:23610398

  5. Computer-aided identification of EGFR tyrosine kinase inhibitors using ginsenosides from Panax ginseng.

    PubMed

    Sathishkumar, Natarajan; Karpagam, Veerappan; Sathiyamoorthy, Subramaniyam; Woo, Min Jin; Kim, Yeon-Ju; Yang, Deok-Chun

    2013-07-01

    Natural products have served as structural resources in the history of drug discovery for cancer therapy. Among these natural products, Korean Panax ginseng serves as a potential anti-cancer medicinal plant. To determine the anti-cancer activities of Korean P. ginseng active compounds, we performed pharmacophore-based virtual screening and molecular docking studies on EGFR (epidermal growth factor receptor) tyrosine kinase domain. The EGFR family tyrosine kinase receptor is a cell surface receptor that regulates diverse biological processes including cell proliferation, differentiation, survival, and apoptosis. Over expression of EGFR tyrosine kinase domain associated with the development and progression of numerous human cancers. In our study, we developed the best pharmacophore model (Hypo1) using a diverse training set and validated by Fischer's randomization, a test set, and a decoy set. The best validated model was employed in the virtual screening of P. ginseng compound database. Further, chosen molecules were evaluated by applying ADMET screening and molecular docking studies. Finally, 14 compounds were obtained based on binding affinity scores and interactions with protein active site residues. These final lead compounds from P. ginseng can be used in the designing of new EGFR tyrosine kinase inhibitors. PMID:23668355

  6. MEK inhibitors and their potential in the treatment of advanced melanoma: the advantages of combination therapy

    PubMed Central

    Tran, Khiem A; Cheng, Michelle Y; Mitra, Anupam; Ogawa, Hiromi; Shi, Vivian Y; Olney, Laura P; Kloxin, April M; Maverakis, Emanual

    2016-01-01

    The treatment of melanoma has improved markedly over the last several years with the advent of more targeted therapies. Unfortunately, complex compensation mechanisms, such as those of the mitogen-activated protein kinase (MAPK) pathway, have limited the clinical benefit of these treatments. Recently, a better understanding of melanoma resistance mechanisms has given way to intelligently designed multidrug regimes. Herein, we review the extensive pathways of BRAF inhibitor (vemurafenib and dabrafenib) resistance. We also review the advantages of dual therapy, including the addition of an MEK inhibitor (cobimetinib or trametinib), which has proven to increase progression-free survival when compared to BRAF inhibitor monotherapy. Finally, this review touches on future treatment strategies that are being developed for advanced melanoma, including the possibility of triple therapy with immune checkpoint inhibitors and the work on optimizing sequential therapy. PMID:26730180

  7. Discovery of CX-6258. A Potent, Selective, and Orally Efficacious pan-Pim Kinases Inhibitor.

    PubMed

    Haddach, Mustapha; Michaux, Jerome; Schwaebe, Michael K; Pierre, Fabrice; O'Brien, Sean E; Borsan, Cosmin; Tran, Joe; Raffaele, Nicholas; Ravula, Suchitra; Drygin, Denis; Siddiqui-Jain, Adam; Darjania, Levan; Stansfield, Ryan; Proffitt, Chris; Macalino, Diwata; Streiner, Nicole; Bliesath, Joshua; Omori, May; Whitten, Jeffrey P; Anderes, Kenna; Rice, William G; Ryckman, David M

    2012-02-01

    Structure-activity relationship analysis in a series of 3-(5-((2-oxoindolin-3-ylidene)methyl)furan-2-yl)amides identified compound 13, a pan-Pim kinases inhibitor with excellent biochemical potency and kinase selectivity. Compound 13 exhibited in vitro synergy with chemotherapeutics and robust in vivo efficacy in two Pim kinases driven tumor models. PMID:24900437

  8. Mechanisms of resistance to EGFR tyrosine kinase inhibitors

    PubMed Central

    Huang, Lihua; Fu, Liwu

    2015-01-01

    Since the discovery that non-small cell lung cancer (NSCLC) is driven by epidermal growth factor receptor (EGFR) mutations, the EGFR tyrosine kinase inhibitors (EGFR-TKIs, e.g., gefitinib and elrotinib) have been effectively used for clinical treatment. However, patients eventually develop drug resistance. Resistance to EGFR-TKIs is inevitable due to various mechanisms, such as the secondary mutation (T790M), activation of alternative pathways (c-Met, HGF, AXL), aberrance of the downstream pathways (K-RAS mutations, loss of PTEN), impairment of the EGFR-TKIs-mediated apoptosis pathway (BCL2-like 11/BIM deletion polymorphism), histologic transformation, ATP binding cassette (ABC) transporter effusion, etc. Here we review and summarize the known resistant mechanisms to EGFR-TKIs and provide potential targets for development of new therapeutic strategies. PMID:26579470

  9. Upstream mitogen-activated protein kinase (MAPK) pathway inhibition: MEK inhibitor followed by a BRAF inhibitor in advanced melanoma patients.

    PubMed

    Goldinger, Simone M; Zimmer, Lisa; Schulz, Carsten; Ugurel, Selma; Hoeller, Christoph; Kaehler, Katharina C; Schadendorf, Dirk; Hassel, Jessica C; Becker, Juergen; Hauschild, Axel; Dummer, Reinhard

    2014-01-01

    BRAF-mutant melanoma can be successfully treated by BRAF kinase inhibitors (BRAFi) and MEK kinase inhibitors (MEKi). However, the administration of BRAFi followed by MEKi did not generate promising response rate (RR). The purpose of this investigation was to evaluate the time to progression (TTP) with a mitogen-activated protein kinase (MAPK) pathway upstream inhibition strategy in BRAF mutated melanoma patients. BRAF mutation positive metastatic melanoma patients were identified within the Dermatology Cooperative Oncology Group (DeCOG) network and were treated first with a MEKi and upon progression with a selective BRAFi. A total of 23 melanoma patients (six females, 17 males, aged 47-80 years) were retrospectively analysed for TTP. The total median TTP was 8.9 months. The median TTP for MEKi was 4.8 (1.2-23.2) and subsequent for BRAFi 4.5 (1.2-15.7) months, respectively. A higher RR for MEKi (39%, nine partial responses and 0 complete responses) than previously reported was observed. Our analysis suggests that the reversed inhibition of the MAPK pathway is feasible in BRAF mutated melanoma. The median TTP (8.9 months) is close to the promising BRAF- and MEKi combination therapy (median progression-free survival (PFS) 9.4 months). The total treatment duration of the MAPK inhibition when a MEKi is administered first is similar compared to the reversed sequence, but TTP shifts in favour to the MEKi. This approach is feasible with reasonable tolerability. This clinical investigation encourages further studies in prospective clinical trials to define the optimal treatment schedule for the MAPK pathway inhibition and should be accompanied by molecular monitoring using repeated biopsies. PMID:24183461

  10. Combined effects of EGFR tyrosine kinase inhibitors and vATPase inhibitors in NSCLC cells.

    PubMed

    Jin, Hyeon-Ok; Hong, Sung-Eun; Kim, Chang Soon; Park, Jin-Ah; Kim, Jin-Hee; Kim, Ji-Young; Kim, Bora; Chang, Yoon Hwan; Hong, Seok-Il; Hong, Young Jun; Park, In-Chul; Lee, Jin Kyung

    2015-08-15

    Despite excellent initial clinical responses of non-small cell lung cancer (NSCLC) patients to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), many patients eventually develop resistance. According to a recent report, vacuolar H+ ATPase (vATPase) is overexpressed and is associated with chemotherapy drug resistance in NSCLC. We investigated the combined effects of EGFR TKIs and vATPase inhibitors and their underlying mechanisms in the regulation of NSCLC cell death. We found that combined treatment with EGFR TKIs (erlotinib, gefitinib, or lapatinib) and vATPase inhibitors (bafilomycin A1 or concanamycin A) enhanced synergistic cell death compared to treatments with each drug alone. Treatment with bafilomycin A1 or concanamycin A led to the induction of Bnip3 expression in an Hif-1α dependent manner. Knock-down of Hif-1α or Bnip3 by siRNA further enhanced cell death induced by bafilomycin A1, suggesting that Hif-1α/Bnip3 induction promoted resistance to cell death induced by the vATPase inhibitors. EGFR TKIs suppressed Hif-1α and Bnip3 expression induced by the vATPase inhibitors, suggesting that they enhanced the sensitivity of the cells to these inhibitors by decreasing Hif-1α/Bnip3 expression. Taken together, we conclude that EGFR TKIs enhance the sensitivity of NSCLC cells to vATPase inhibitors by decreasing Hif-1α/Bnip3 expression. We suggest that combined treatment with EGFR TKIs and vATPase inhibitors is potentially effective for the treatment of NSCLC. PMID:25981168

  11. Receptor tyrosine kinase (c-Kit) inhibitors: a potential therapeutic target in cancer cells.

    PubMed

    Abbaspour Babaei, Maryam; Kamalidehghan, Behnam; Saleem, Mohammad; Huri, Hasniza Zaman; Ahmadipour, Fatemeh

    2016-01-01

    c-Kit, a receptor tyrosine kinase, is involved in intracellular signaling, and the mutated form of c-Kit plays a crucial role in occurrence of some cancers. The function of c-Kit has led to the concept that inhibiting c-Kit kinase activity can be a target for cancer therapy. The promising results of inhibition of c-Kit for treatment of cancers have been observed in some cancers such as gastrointestinal stromal tumor, acute myeloid leukemia, melanoma, and other tumors, and these results have encouraged attempts toward improvement of using c-Kit as a capable target for cancer therapy. This paper presents the findings of previous studies regarding c-Kit as a receptor tyrosine kinase and an oncogene, as well as its gene targets and signaling pathways in normal and cancer cells. The c-Kit gene location, protein structure, and the role of c-Kit in normal cell have been discussed. Comprehending the molecular mechanism underlying c-Kit-mediated tumorogenesis is consequently essential and may lead to the identification of future novel drug targets. The potential mechanisms by which c-Kit induces cellular transformation have been described. This study aims to elucidate the function of c-Kit for future cancer therapy. In addition, it has c-Kit inhibitor drug properties and their functions have been listed in tables and demonstrated in schematic pictures. This review also has collected previous studies that targeted c-Kit as a novel strategy for cancer therapy. This paper further emphasizes the advantages of this approach, as well as the limitations that must be addressed in the future. Finally, although c-Kit is an attractive target for cancer therapy, based on the outcomes of treatment of patients with c-Kit inhibitors, it is unlikely that Kit inhibitors alone can lead to cure. It seems that c-Kit mutations alone are not sufficient for tumorogenesis, but do play a crucial role in cancer occurrence. PMID:27536065

  12. Receptor tyrosine kinase (c-Kit) inhibitors: a potential therapeutic target in cancer cells

    PubMed Central

    Abbaspour Babaei, Maryam; Kamalidehghan, Behnam; Saleem, Mohammad; Huri, Hasniza Zaman; Ahmadipour, Fatemeh

    2016-01-01

    c-Kit, a receptor tyrosine kinase, is involved in intracellular signaling, and the mutated form of c-Kit plays a crucial role in occurrence of some cancers. The function of c-Kit has led to the concept that inhibiting c-Kit kinase activity can be a target for cancer therapy. The promising results of inhibition of c-Kit for treatment of cancers have been observed in some cancers such as gastrointestinal stromal tumor, acute myeloid leukemia, melanoma, and other tumors, and these results have encouraged attempts toward improvement of using c-Kit as a capable target for cancer therapy. This paper presents the findings of previous studies regarding c-Kit as a receptor tyrosine kinase and an oncogene, as well as its gene targets and signaling pathways in normal and cancer cells. The c-Kit gene location, protein structure, and the role of c-Kit in normal cell have been discussed. Comprehending the molecular mechanism underlying c-Kit-mediated tumorogenesis is consequently essential and may lead to the identification of future novel drug targets. The potential mechanisms by which c-Kit induces cellular transformation have been described. This study aims to elucidate the function of c-Kit for future cancer therapy. In addition, it has c-Kit inhibitor drug properties and their functions have been listed in tables and demonstrated in schematic pictures. This review also has collected previous studies that targeted c-Kit as a novel strategy for cancer therapy. This paper further emphasizes the advantages of this approach, as well as the limitations that must be addressed in the future. Finally, although c-Kit is an attractive target for cancer therapy, based on the outcomes of treatment of patients with c-Kit inhibitors, it is unlikely that Kit inhibitors alone can lead to cure. It seems that c-Kit mutations alone are not sufficient for tumorogenesis, but do play a crucial role in cancer occurrence. PMID:27536065

  13. Discovery of a Selective Aurora A Kinase Inhibitor by Virtual Screening.

    PubMed

    Kilchmann, Falco; Marcaida, Maria J; Kotak, Sachin; Schick, Thomas; Boss, Silvan D; Awale, Mahendra; Gönczy, Pierre; Reymond, Jean-Louis

    2016-08-11

    Here we report the discovery of a selective inhibitor of Aurora A, a key regulator of cell division and potential anticancer target. We used the atom category extended ligand overlap score (xLOS), a 3D ligand-based virtual screening method recently developed in our group, to select 437 shape and pharmacophore analogs of reference kinase inhibitors. Biochemical screening uncovered two inhibitor series with scaffolds unprecedented among kinase inhibitors. One of them was successfully optimized by structure-based design to a potent Aurora A inhibitor (IC50 = 2 nM) with very high kinome selectivity for Aurora kinases. This inhibitor locks Aurora A in an inactive conformation and disrupts binding to its activator protein TPX2, which impairs Aurora A localization at the mitotic spindle and induces cell division defects. This phenotype can be rescued by inhibitor-resistant Aurora A mutants. The inhibitor furthermore does not induce Aurora B specific effects in cells. PMID:27391133

  14. Small Molecule Substrate Phosphorylation Site Inhibitors of Protein Kinases: Approaches and Challenges

    PubMed Central

    2015-01-01

    Protein kinases are important mediators of cellular communication and attractive drug targets for many diseases. Although success has been achieved with developing ATP-competitive kinase inhibitors, the disadvantages of ATP-competitive inhibitors have led to increased interest in targeting sites outside of the ATP binding pocket. Kinase inhibitors with substrate-competitive, ATP-noncompetitive binding modes are promising due to the possibility of increased selectivity and better agreement between biochemical and in vitro potency. However, the difficulty of identifying these types of inhibitors has resulted in significantly fewer small molecule substrate phosphorylation site inhibitors being reported compared to ATP-competitive inhibitors. This review surveys reported substrate phosphorylation site inhibitors and methods that can be applied to the discovery of such inhibitors, including a discussion of the challenges inherent to these screening methods. PMID:25494294

  15. Bumped kinase inhibitor prohibits egression in Babesia bovis.

    PubMed

    Pedroni, Monica J; Vidadala, Rama Subba Rao; Choi, Ryan; Keyloun, Katelyn R; Reid, Molly C; Murphy, Ryan C; Barrett, Lynn K; Van Voorhis, Wesley C; Maly, Dustin J; Ojo, Kayode K; Lau, Audrey O T

    2016-01-15

    Babesiosis is a global zoonotic disease acquired by the bite of a Babesia-infected Ixodes tick or through blood transfusion with clinical relevance affecting humans and animals. In this study, we evaluated a series of small molecule compounds that have previously been shown to target specific apicomplexan enzymes in Plasmodium, Toxoplasma and Cryptosporidium. The compounds, bumped kinase inhibitors (BKIs), have strong therapeutic potential targeting apicomplexa-specific calcium dependent protein kinases (CDPKs). We investigated if BKIs also show inhibitory activities against piroplasms such as Babesia. Using a subset of BKIs that have promising inhibitory activities to Plasmodium and Toxoplasma, we determined that their actions ranged from 100% and no inhibition against Babesia bovis blood stages. One specific BKI, RM-1-152, showed complete inhibition against B. bovis within 48h and was the only BKI that showed noticeable phenotypic changes to the parasites. Focusing our study on this BKI, we further demonstrated that RM-1-152 has Babesia-static activity and involves the prohibition of merozoite egress while replication and re-invasion of host cells are unaffected. The distinct, abnormal phenotype induced by RM-1-152 suggests that this BKI can be used to investigate less studied cellular processes such as egression in piroplasm. PMID:26790733

  16. A mitogen-activated protein kinase kinase inhibitor induced compound skin toxicity with oedema in metastatic malignant melanoma.

    PubMed

    Thomas, C L; Mortimer, P S; Larkin, J M; Basu, T N; Gore, M E; Fearfield, L

    2016-04-01

    We report three cases of skin toxicity associated with oral mitogen-activated protein kinase kinase (MEK) inhibitor treatment for metastatic malignant melanoma (MM). All three patients developed oedema, and a single patient experienced eyelash trichomegaly. This is the first known report of eyelash trichomegaly secondary to MEK inhibitor use. We also discuss possible mechanisms for MEK inhibitor-associated oedema development. This series supports the role of the dermatologist in the screening and management of patients in the rapidly developing oncology setting, as new targeted agents can give rise to marked skin toxicity. PMID:26411345

  17. Can kinomics and proteomics bridge the gap between pediatric cancers and newly designed kinase inhibitors?

    PubMed

    van der Sligte, Naomi E; Kampen, Kim R; de Bont, Eveline S J M

    2015-10-01

    The introduction of kinase inhibitors in cancer medicine has transformed chronic myeloid leukemia from a fatal disease into a leukemia subtype with a favorable prognosis by interfering with the constitutively active kinase BCR-ABL. This success story has resulted in the development of multiple kinase inhibitors. We are currently facing significant limitations in implementing these kinase inhibitors into the clinic for the treatment of pediatric malignancies. As many hallmarks of cancer are known to be regulated by intracellular protein signaling networks, we suggest focusing on these networks to improve the implementation of kinase inhibitors. This viewpoint will provide a short overview of currently used strategies for the implementation of kinase inhibitors as well as reasons why kinase inhibitors have unfortunately not yet been widely used for the treatment of pediatric cancers. We argue that by using a future personalized medicine strategy combining kinomics, proteomics, and drug screen approaches, the gap between pediatric cancers and the use of kinase inhibitors may be bridged. PMID:26321002

  18. Efficacy of levocarnitine for tyrosine kinase inhibitor-induced painful muscle cramps in patients with chronic myelogenous leukemia.

    PubMed

    Yamada, Michiko; Kuroda, Hiroyuki; Shimoyama, Saori; Ito, Ryo; Sugama, Yusuke; Sato, Ken; Yamauchi, Natsumi; Horiguchi, Hiroto; Nakamura, Hajime; Hamaguchi, Kota; Abe, Tomoyuki; Fujii, Shigeyuki; Maeda, Masahiro; Kato, Junji

    2016-04-01

    Muscle cramps are side effects commonly associated with tyrosine kinase inhibitor (TKI) treatment. Patients suffering from muscle cramps are treated with various medications such as calcium, magnesium and vitamin supplements, but these therapies are often ineffective. We report two patients with chronic myelogenous leukemia who developed muscle cramps caused by TKI. These patients were treated successfully with levocarnitine. Both of our cases revealed the beneficial effects of levocarnitine treatment on TKI-induced muscle cramps. PMID:27169456

  19. Comparative analysis of the human and zebrafish kinomes: focus on the development of kinase inhibitors

    PubMed Central

    Wlodarchak, Nathan; Tariq, Rehan; Striker, Rob

    2016-01-01

    Targeting kinases with semi-selective kinase inhibitors is one of the most successful drug development strategies of the 21st century. Zebrafish have become an increasingly useful model for pharmaceutical development. Water-soluble compounds can be screened for zebrafish phenotypes in a high throughput format against a living vertebrate, and cell-signaling events can be imaged in transparent living fish. Despite zebrafish being a more relevant model than more distantly related systems such as the well-annotated kinome of yeast and drosophila, there is no comparative analysis of the human and zebrafish kinome. Furthermore most approved kinase inhibitors, often called ‘DFG in’ ATP competitive inhibitors, act on conserved active site residues in the kinase. Since the active site residues can be identified by examining the primary sequence, primary sequence identity can be a rough guide as to whether a particular inhibitor will have activity against another kinase. There is a need to evaluate the utility of zebrafish as a drug development model for active site inhibitors of kinases. Here we offer a systematic comparison of the catalytic domains of classical human kinases with the catalytic domains of all annotated zebrafish kinases. We found a high degree of identity between the catalytic domains of most human kinases and their zebrafish homologs, and we ranked 504 human kinase catalytic domains by order of similarity. We found only 23 human kinases with no easily recognizable homologous zebrafish catalytic domain. On the other hand we found 78 zebrafish kinase catalytic domains with no close human counterpart. These ‘additional kinase active sites’ could represent potential mediators of zebrafish toxicity that may not be relevant to human kinase inhibitors. We used two clinically approved human kinase inhibitors, one targeting a highly homologous target and one targeting a lesser homologous target, and we compared the known human kinase target structures with

  20. Novel Small Molecule Inhibitors of Choline Kinase Identified by Fragment-Based Drug Discovery.

    PubMed

    Zech, Stephan G; Kohlmann, Anna; Zhou, Tianjun; Li, Feng; Squillace, Rachel M; Parillon, Lois E; Greenfield, Matthew T; Miller, David P; Qi, Jiwei; Thomas, R Mathew; Wang, Yihan; Xu, Yongjin; Miret, Juan J; Shakespeare, William C; Zhu, Xiaotian; Dalgarno, David C

    2016-01-28

    Choline kinase α (ChoKα) is an enzyme involved in the synthesis of phospholipids and thereby plays key roles in regulation of cell proliferation, oncogenic transformation, and human carcinogenesis. Since several inhibitors of ChoKα display antiproliferative activity in both cellular and animal models, this novel oncogene has recently gained interest as a promising small molecule target for cancer therapy. Here we summarize our efforts to further validate ChoKα as an oncogenic target and explore the activity of novel small molecule inhibitors of ChoKα. Starting from weakly binding fragments, we describe a structure based lead discovery approach, which resulted in novel highly potent inhibitors of ChoKα. In cancer cell lines, our lead compounds exhibit a dose-dependent decrease of phosphocholine, inhibition of cell growth, and induction of apoptosis at low micromolar concentrations. The druglike lead series presented here is optimizable for improvements in cellular potency, drug target residence time, and pharmacokinetic parameters. These inhibitors may be utilized not only to further validate ChoKα as antioncogenic target but also as novel chemical matter that may lead to antitumor agents that specifically interfere with cancer cell metabolism. PMID:26700752

  1. Treatment of Experimental Candida Sepsis with a Janus Kinase Inhibitor Controls Inflammation and Prolongs Survival.

    PubMed

    Tsirigotis, P; Papanikolaou, N; Elefanti, A; Konstantinou, P; Gkirkas, K; Rontogianni, D; Siafakas, N; Karakitsos, P; Roilides, E; Dimitriadis, G; Zerva, L; Meletiadis, J

    2015-12-01

    Janus kinases (JAK) are intracellular tyrosine kinases that transduce cytokine-mediated signals to the nucleus, promoting gene expression. Cytokines play a major role in microbial sepsis, which is often associated with uncontrolled inflammation leading to death. JAK inhibitors have been used for the treatment of several autoimmune diseases by modulating immune response, but they have never been tested against microbial sepsis. Ruxolitinib is a small-molecule inhibitor of JAK1/2 proteins, which are involved in the downstream signaling pathway of the vast majority of proinflammatory and anti-inflammatory cytokines. We therefore studied the effect of ruxolitinib in a mouse model of sepsis due to Candida albicans. When ruxolitinib therapy (50 mg/kg [of body weight]/day) was started 1 day before infection, the median survival time was reduced by 3 days, the fungal loads in all organs were higher, the inflammation was significantly less, and serum tumor necrosis factor alpha (TNF-α) and interleukin 10 (IL-10) levels and IL-10/TNF-α ratios were higher than in controls. When ruxolitinib therapy (50 to 1.5 mg/kg/day) was started 1 day after infection, an inverted-U relationship was found, with 6.25 mg/kg/day prolonging median survival time by 6 days, resulting in similar fungal loads, less inflammation, and similar cytokine levels but higher IL-10/TNF-α ratios than the controls. The optimal dose of ruxolitinib controlled infection and prolonged survival with less inflammation than in control animals. Administration of JAK inhibitors may be a promising therapeutic adjunct that needs further investigation. PMID:26369979

  2. A chemoproteomic method for identifying cellular targets of covalent kinase inhibitors

    PubMed Central

    Chen, Ying-Chu; Zhang, Chao

    2016-01-01

    Protein kinases are attractive drug targets for numerous human diseases including cancers, diabetes and neurodegeneration. A number of kinase inhibitors that covalently target a cysteine residue in their target kinases have recently entered use in the cancer clinic. Despite the advantages of covalent kinases inhibitors, their inherent reactivity can lead to non-specific binding to other cellular proteins and cause off- target effects in cells. It is thus essential to determine the identity of these off targets in order to fully account for the phenotype and to improve the selectivity and efficacy of covalent inhibitors. Herein we present a detailed protocol for a chemoproteomic method to enrich and identify cellular targets of covalent kinase inhibitors. PMID:27551330

  3. Thoughts on the current assessment of Polo-like kinase inhibitor drug discovery.

    PubMed

    Strebhardt, Klaus; Becker, Sven; Matthess, Yves

    2015-01-01

    The Polo-like kinase 1 (Plk1) plays a key role in regulating a broad spectrum of critical cell cycle events. Plk1 is a marker of cellular proliferation and has prognostic potential in different types of human tumors. In a series of preclinical studies, Plk1 has been validated as a cancer target. This prompted many pharmaceutical companies to develop small-molecule inhibitors targeting the classical ATP-binding site of Plk1 for anticancer drug development. Recently, FDA has granted a Breakthrough Therapy designation to the Plk inhibitor BI 6727 (volasertib), which provided a survival benefit for patients suffering from acute myeloid leukemia. Remarkably, a new generation of Plk1 inhibitors that target the second druggable domain of Plk1, the Polo-box domain, is currently being tested preclinically. Since various ATP-competitive compounds of Plk1 inhibit also the activities of Plk2 and Plk3, which act as tumor suppressors, the roles of closely related Plk-family members in cancer cells need to be considered carefully. In this article, the authors highlight recent insights into the biology of Plks in cancer cells and discuss the progress in the development of small-molecule Plk1 inhibitors. The authors believe that the greatest therapeutic benefit might come through leukemic cells that are in direct contact with the inhibitor in the blood stream. The identification of biomarkers and studies that document Plk activities in treated patients would also be beneficial to better understand the role of Plk inhibition in tumor development and anticancer therapy. PMID:25263688

  4. Rebound Effects Caused by Withdrawal of MET Kinase Inhibitor Are Quenched by a MET Therapeutic Antibody.

    PubMed

    Pupo, Emanuela; Ducano, Nadia; Lupo, Barbara; Vigna, Elisa; Avanzato, Daniele; Perera, Timothy; Trusolino, Livio; Lanzetti, Letizia; Comoglio, Paolo M

    2016-09-01

    MET oncogene amplification is emerging as a major mechanism of acquired resistance to EGFR-directed therapy in lung and colorectal cancers. Furthermore, MET amplification predicts responsiveness to MET inhibitors currently in clinical trials. Among the anti-MET drugs available, ATP-competitive small-molecule kinase inhibitors abrogate receptor autophosphorylation and downstream activation of ERK1/2 and AKT, resulting in cell-cycle arrest. However, this antiproliferative effect allows persistence of a pool of cancer cells that are quiescent but alive. Once the inhibition is removed, rebound activation of MET-driven cell proliferative pathways and tumor growth may occur, an adverse event observed frequently in clinical settings after drug discontinuation. Here we show that inhibitor withdrawal prompts receptor phosphorylation to levels higher than those displayed at steady-state and generates a rebound effect pushing quiescent cancer cells back into the cell cycle, both in vitro and in experimental tumor models in vivo Mechanistically, we found that inhibitor treatment blocks MET endocytosis, causing a local increase in the number of receptors at the plasma membrane. Upon inhibitor washout, the receptor is readily rephosphorylated. The initial phosphorylation is not only increased but also prolonged in duration due to downmodulation of a phosphatase-mediated MET-negative feedback loop, which accompanies receptor internalization. Notably, treatment with a MET therapeutic antibody that induces proteolytic cleavage of the receptor at the cell surface substantially prevents this rebound effect, providing a rationale to combine or alternate these mechanistically different types of MET-targeted therapy. Cancer Res; 76(17); 5019-29. ©2016 AACR. PMID:27364553

  5. Benzothiophene inhibitors of MK2. Part 2: Improvements in kinase selectivity and cell potency

    SciTech Connect

    Anderson, David R.; Meyers, Marvin J.; Kurumbail, Ravi G.; Caspers, Nicole; Poda, Gennadiy I.; Long, Scott A.; Pierce, Betsy S.; Mahoney, Matthew W.; Mourey, Robert J.; Parikh, Mihir D.; Pfizer

    2010-10-01

    Optimization of kinase selectivity for a set of benzothiophene MK2 inhibitors provided analogs with potencies of less than 500 nM in a cell based assay. The selectivity of the inhibitors can be rationalized by examination of X-ray crystal structures of inhibitors bound to MK2.

  6. Novel mutant-selective EGFR kinase inhibitors against EGFR T790M

    SciTech Connect

    Zhou, Wenjun; Ercan, Dalia; Chen, Liang; Yun, Cai-Hong; Li, Danan; Capelletti, Marzia; Cortot, Alexis B.; Chirieac, Lucian; Iacob, Roxana E.; Padera, Robert; Engen, John R.; Wong, Kwok-Kin; Eck, Michael J.; Gray, Nathanael S.; Jänne, Pasi A.

    2010-01-12

    The clinical efficacy of epidermal growth factor receptor (EGFR) kinase inhibitors in EGFR-mutant non-small-cell lung cancer (NSCLC) is limited by the development of drug-resistance mutations, including the gatekeeper T790M mutation. Strategies targeting EGFR T790M with irreversible inhibitors have had limited success and are associated with toxicity due to concurrent inhibition of wild-type EGFR. All current EGFR inhibitors possess a structurally related quinazoline-based core scaffold and were identified as ATP-competitive inhibitors of wild-type EGFR. Here we identify a covalent pyrimidine EGFR inhibitor by screening an irreversible kinase inhibitor library specifically against EGFR T790M. These agents are 30- to 100-fold more potent against EGFR T790M, and up to 100-fold less potent against wild-type EGFR, than quinazoline-based EGFR inhibitors in vitro. They are also effective in murine models of lung cancer driven by EGFR T790M. Co-crystallization studies reveal a structural basis for the increased potency and mutant selectivity of these agents. These mutant-selective irreversible EGFR kinase inhibitors may be clinically more effective and better tolerated than quinazoline-based inhibitors. Our findings demonstrate that functional pharmacological screens against clinically important mutant kinases represent a powerful strategy to identify new classes of mutant-selective kinase inhibitors.

  7. Kinase Pathway Dependence in Primary Human Leukemias Determined by Rapid Inhibitor Screening

    PubMed Central

    Tyner, Jeffrey W.; Yang, Wayne F.; Bankhead, Armand; Fan, Guang; Fletcher, Luke B.; Bryant, Jade; Glover, Jason M.; Chang, Bill H.; Spurgeon, Stephen E.; Fleming, William H.; Kovacsovics, Tibor; Gotlib, Jason R.; Oh, Stephen T.; Deininger, Michael W.; Zwaan, C. Michel; Den Boer, Monique L.; van den Heuvel-Eibrink, Marry M.; O’Hare, Thomas; Druker, Brian J.; Loriaux, Marc M.

    2012-01-01

    Kinases are dysregulated in most cancer but the frequency of specific kinase mutations is low, indicating a complex etiology in kinase dysregulation. Here we report a strategy to rapidly identify functionally important kinase targets, irrespective of the etiology of kinase pathway dysregulation, ultimately enabling a correlation of patient genetic profiles to clinically effective kinase inhibitors. Our methodology assessed the sensitivity of primary leukemia patient samples to a panel of 66 small-molecule kinase inhibitors over 3 days. Screening of 151 leukemia patient samples revealed a wide diversity of drug sensitivities, with 70% of the clinical specimens exhibiting hypersensitivity to one or more drugs. From this data set, we developed an algorithm to predict kinase pathway dependence based on analysis of inhibitor sensitivity patterns. Applying this algorithm correctly identified pathway dependence in proof-of-principle specimens with known oncogenes, including a rare FLT3 mutation outside regions covered by standard molecular diagnostic tests. Interrogation of all 151 patient specimens with this algorithm identified a diversity of gene targets and signaling pathways that could aid prioritization of deep sequencing data sets, permitting a cumulative analysis to understand kinase pathway dependence within leukemia subsets. In a proof-of-principle case, we showed that in vitro drug sensitivity could predict both a clinical response and the development of drug resistance. Taken together, our results suggested that drug target scores derived from a comprehensive kinase inhibitor panel could predict pathway dependence in cancer cells while simultaneously identifying potential therapeutic options. PMID:23087056

  8. Discovery of Bivalent Kinase Inhibitors via Enzyme-Templated Fragment Elaboration

    PubMed Central

    2015-01-01

    We have employed novel fragment-based screening methodology to discover bivalent kinase inhibitors with improved selectivity. Starting from a low molecular weight promiscuous kinase inhibitor, we appended a thiol for subsequent reaction with a library of acrylamide electrophiles. Enzyme-templated screening was performed to identify acrylamides that assemble into bivalent inhibitors of c-Src kinase. Upon identification of acrylamide fragments that improve the binding affinity of our lead thiol, we characterized the resulting bivalent inhibitors and identified a series of kinase inhibitors with improved potency and selectivity compared to the thiol-containing precursor. Provided that protein can be prepared free of endogenous reactive cysteines, our methodology is general and could be applied to nearly any enzyme of interest. PMID:26286460

  9. Transcriptional profiling of GBM invasion genes identifies effective inhibitors of the LIM kinase-Cofilin pathway

    PubMed Central

    Golbourn, Brian; Bertrand, Kelsey C.; Luck, Amanda; Sabha, Nesrin; Smith, Christian A.; Byron, Sara; Zadeh, Gelareh; Croul, Sidney; Berens, Michael; Rutka, James T.

    2014-01-01

    Malignant gliomas are highly proliferative and invasive neoplasms where total surgical resection is often impossible and effective local radiation therapy difficult. Consequently, there is a need to develop a greater understanding of the molecular events driving invasion and to identify novel treatment targets. Using microarray analysis comparing normal brain samples and mesenchymal glioblastoma multiforme (GBM), we identified over 140 significant genes involved in cell migration and invasion. The cofilin (CFL) pathway, which disassembles actin filaments, was highly up-regulated compared to normal brain. Up-regulation of LIM domain kinase 1 and 2 (LIMK1/2), that phosphorylates and inactivates cofilin, was confirmed in an additional independent data set comparing normal brain to GBM. We identified and utilized two small molecule inhibitors BMS-5 and Cucurbitacin I directed against the cofilin regulating kinases, LIMK1 and LIMK2, to target this pathway. Significant decreases in cell viability were observed in glioma cells treated with BMS-5 and Cucurbitacin I, while no cytotoxic effects were seen in normal astrocytes that lack LIMK. BMS-5 and Cucurbitacin I promoted increased adhesion in GBM cells, and decreased migration and invasion. Collectively, these data suggest that use of LIMK inhibitors may provide a novel way to target the invasive machinery in GBM. PMID:25237832

  10. Bosutinib: a dual SRC/ABL kinase inhibitor for the treatment of chronic myeloid leukemia.

    PubMed

    Keller, Gunhild; Schafhausen, Philippe; Brummendorf, Tim H

    2009-10-01

    The tyrosine kinase inhibitor imatinib mesylate (IM) set new standards in the treatment of chronic myeloid leukemia (CML). However, emergence of resistance to IM became a major therapeutic challenge. Bosutinib (SKI-606), a 7-alkoxy-3-quinolinecarbonitrile, functions as a dual inhibitor of SRC and ABL kinases, and preclinical studies demonstrated a high antiproliferative activity in human and murine CML cell lines. In ongoing Phase I/II clinical trials, bosutinib yielded promising results revealing high clinical efficacy, good tolerability and reduced toxicity in IM-resistant or -intolerant CML patients. In this article, we provide an overview on the mechanism of action, and the preclinical and currently available clinical data for bosutinib. Owing to its favorable toxicity profile and its high antileukemic activity, bosutinib is a promising novel treatment option for patients with CML. A recently initiated, randomized open-label Phase III clinical study will clarify its role in first-line therapy of Philadelphia chromosome-positive chronic-phase CML. PMID:21083014