Sample records for kinase-1 ask-1 rescues

  1. PaASK1, a mitogen-activated protein kinase kinase kinase that controls cell degeneration and cell differentiation in Podospora anserina.

    PubMed Central

    Kicka, Sébastien; Silar, Philippe

    2004-01-01

    MAPKKK are kinases involved in cell signaling. In fungi, these kinases are known to regulate development, pathogenicity, and the sensing of external conditions. We show here that Podospora anserina strains mutated in PaASK1, a MAPKKK of the MEK family, are impaired in the development of crippled growth, a cell degeneration process caused by C, a nonconventional infectious element. They also display defects in mycelium pigmentation, differentiation of aerial hyphae, and making of fruiting bodies, three hallmarks of cell differentiation during stationary phase in P. anserina. Overexpression of PaASK1 results in exacerbation of crippled growth. PaASK1 is a large protein of 1832 amino acids with several domains, including a region rich in proline and a 60-amino-acid-long polyglutamine stretch. Deletion analysis reveals that the polyglutamine stretch is dispensable for PaASK1 activity, whereas the region that contains the prolines is essential but insufficient to promote full activity. We discuss a model based on the hysteresis of a signal transduction cascade to account for the role of PaASK1 in both cell degeneration and stationary-phase cell differentiation. PMID:15082544

  2. PaASK1, a mitogen-activated protein kinase kinase kinase that controls cell degeneration and cell differentiation in Podospora anserina.

    PubMed

    Kicka, Sébastien; Silar, Philippe

    2004-03-01

    MAPKKK are kinases involved in cell signaling. In fungi, these kinases are known to regulate development, pathogenicity, and the sensing of external conditions. We show here that Podospora anserina strains mutated in PaASK1, a MAPKKK of the MEK family, are impaired in the development of crippled growth, a cell degeneration process caused by C, a nonconventional infectious element. They also display defects in mycelium pigmentation, differentiation of aerial hyphae, and making of fruiting bodies, three hallmarks of cell differentiation during stationary phase in P. anserina. Overexpression of PaASK1 results in exacerbation of crippled growth. PaASK1 is a large protein of 1832 amino acids with several domains, including a region rich in proline and a 60-amino-acid-long polyglutamine stretch. Deletion analysis reveals that the polyglutamine stretch is dispensable for PaASK1 activity, whereas the region that contains the prolines is essential but insufficient to promote full activity. We discuss a model based on the hysteresis of a signal transduction cascade to account for the role of PaASK1 in both cell degeneration and stationary-phase cell differentiation.

  3. AIP1 recruits phosphatase PP2A to ASK1 in tumor necrosis factor-induced ASK1-JNK activation.

    PubMed

    Min, Wang; Lin, Yan; Tang, Shibo; Yu, Luyang; Zhang, Haifeng; Wan, Ting; Luhn, Tricia; Fu, Haian; Chen, Hong

    2008-04-11

    Previously we have shown that AIP1 (apoptosis signal-regulating kinase [ASK]1-interacting protein 1), a novel member of the Ras-GAP protein family, facilitates dephosphorylation of ASK1 at pSer967 and subsequently 14-3-3 release from ASK1, leading to enhanced ASK1-JNK signaling. However, the phosphatase(s) responsible for ASK1 dephosphorylation at pSer967 has not been identified. In the present study, we identified protein phosphatase (PP)2A as a potential phosphatase in vascular endothelial cells (ECs). Tumor necrosis factor (TNF)-induced dephosphorylation of ASK1 pSer967 in ECs was blocked by PP2A inhibitor okadaic acid. Overexpression of PP2A catalytic subunit induced dephosphorylation of ASK1 pSer967 and activation of c-Jun N-terminal kinase (JNK). In contrast, a catalytic inactive form of PP2A or PP2A small interfering RNA blunted TNF-induced dephosphorylation of ASK1 pSer967 and activation of JNK without effects on NF-kappaB activation. Whereas AIP1, via its C2 domain, binds to ASK1, PP2A binds to the GAP domain of AIP1. Endogenous AIP1-PP2A complex can be detected in the resting state, and TNF induces a complex formation of AIP1-PP2A with ASK1. Furthermore, TNF-induced association of PP2A with ASK1 was diminished in AIP1-knockdown ECs, suggesting a critical role of AIP1 in recruiting PP2A to ASK1. TNF-signaling molecules TRAF2 and RIP1, known to be in complex with AIP1 and activate AIP1 by phosphorylating AIP1 at Ser604, are critical for TNF-induced ASK1 dephosphorylation. Finally, PP2A and AIP1 cooperatively induce activation of ASK1-JNK signaling and EC apoptosis, as demonstrated by both overexpression and small interfering RNA knockdown approaches. Taken together, our data support a critical role of PP2A-AIP1 complex in TNF-induced activation of ASK1-JNK apoptotic signaling.

  4. SCO2 induces p53-mediated apoptosis by Thr845 phosphorylation of ASK-1 and dissociation of the ASK-1-Trx complex.

    PubMed

    Madan, Esha; Gogna, Rajan; Kuppusamy, Periannan; Bhatt, Madan; Mahdi, Abbas Ali; Pati, Uttam

    2013-04-01

    p53 prevents cancer via cell cycle arrest, apoptosis, and the maintenance of genome stability. p53 also regulates energy-generating metabolic pathways such as oxidative phosphorylation (OXPHOS) and glycolysis via transcriptional regulation of SCO2 and TIGAR. SCO2, a cytochrome c oxidase assembly factor, is a metallochaperone which is involved in the biogenesis of cytochrome c oxidase subunit II. Here we have shown that SCO2 functions as an apoptotic protein in tumor xenografts, thus providing an alternative pathway for p53-mediated apoptosis. SCO2 increases the generation of reactive oxygen species (ROS) and induces dissociation of the protein complex between apoptosis signal-regulating kinase 1 (ASK-1) (mitogen-activated protein kinase kinase kinase [MAPKKK]) and its cellular inhibitor, the redox-active protein thioredoxin (Trx). Furthermore, SCO2 induces phosphorylation of ASK-1 at the Thr(845) residue, resulting in the activation of the ASK-1 kinase pathway. The phosphorylation of ASK-1 induces the activation of mitogen-activated protein kinase kinases 4 and 7 (MAP2K4/7) and MAP2K3/6, which switches the c-Jun N-terminal protein kinase (JNK)/p38-dependent apoptotic cascades in cancer cells. Exogenous addition of the SCO2 gene to hypoxic cancer cells and hypoxic tumors induces apoptosis and causes significant regression of tumor xenografts. We have thus discovered a novel apoptotic function of SCO2, which activates the ASK-1 kinase pathway in switching "on" an alternate mode of p53-mediated apoptosis. We propose that SCO2 might possess a novel tumor suppressor function via the ROS-ASK-1 kinase pathway and thus could be an important candidate for anticancer gene therapy.

  5. Zebrafish WNK Lysine Deficient Protein Kinase 1 (wnk1) Affects Angiogenesis Associated with VEGF Signaling

    PubMed Central

    Chen, Wen-Chuan; Kou, Fong-Ji; Lu, Jeng-Wei; Wang, Horng-Dar; Huang, Chou-Long; Yuh, Chiou-Hwa

    2014-01-01

    The WNK1 (WNK lysine deficient protein kinase 1) protein is a serine/threonine protein kinase with emerging roles in cancer. WNK1 causes hypertension and hyperkalemia when overexpressed and cardiovascular defects when ablated in mice. In this study, the role of Wnk1 in angiogenesis was explored using the zebrafish model. There are two zebrafish wnk1 isoforms, wnk1a and wnk1b, and both contain all the functional domains found in the human WNK1 protein. Both isoforms are expressed in the embryo at the initiation of angiogenesis and in the posterior cardinal vein (PCV), similar to fms-related tyrosine kinase 4 (flt4). Using morpholino antisense oligonucleotides against wnk1a and wnk1b, we observed that wnk1 morphants have defects in angiogenesis in the head and trunk, similar to flk1/vegfr2 morphants. Furthermore, both wnk1a and wnk1b mRNA can partially rescue the defects in vascular formation caused by flk1/vegfr2 knockdown. Mutation of the kinase domain or the Akt/PI3K phosphorylation site within wnk1 destroys this rescue capability. The rescue experiments provide evidence that wnk1 is a downstream target for Vegfr2 (vascular endothelial growth factor receptor-2) and Akt/PI3K signaling and thereby affects angiogenesis in zebrafish embryos. Furthermore, we found that knockdown of vascular endothelial growth factor receptor-2 (flk1/vegfr2) or vascular endothelial growth factor receptor-3 (flt4/vegfr3) results in a decrease in wnk1a expression, as assessed by in situ hybridization and q-RT-PCR analysis. Thus, the Vegf/Vegfr signaling pathway controls angiogenesis in zebrafish via Akt kinase-mediated phosphorylation and activation of Wnk1 as well as transcriptional regulation of wnk1 expression. PMID:25171174

  6. ASK1-dependent recruitment and activation of macrophages induce hair growth in skin wounds

    PubMed Central

    Osaka, Nao; Takahashi, Takumi; Murakami, Shiori; Matsuzawa, Atsushi; Noguchi, Takuya; Fujiwara, Takeshi; Aburatani, Hiroyuki; Moriyama, Keiji; Takeda, Kohsuke; Ichijo, Hidenori

    2007-01-01

    Apoptosis signal-regulating kinase 1 (ASK1) is a member of the mitogen-activated protein 3-kinase family that activates both c-Jun NH2-terminal kinase and p38 pathways in response to inflammatory cytokines and physicochemical stress. We report that ASK1 deficiency in mice results in dramatic retardation of wounding-induced hair regrowth in skin. Oligonucleotide microarray analysis revealed that expression of several chemotactic and activating factors for macrophages, as well as several macrophage-specific marker genes, was reduced in the skin wound area of ASK1-deficient mice. Intracutaneous transplantation of cytokine-activated bone marrow-derived macrophages strongly induced hair growth in both wild-type and ASK1-deficient mice. These findings indicate that ASK1 is required for wounding-induced infiltration and activation of macrophages, which play central roles in inflammation-dependent hair regrowth in skin. PMID:17389227

  7. Coordinate Activation of Redox-Dependent ASK1/TGF-β Signaling by a Multiprotein Complex (MPK38, ASK1, SMADs, ZPR9, and TRX) Improves Glucose and Lipid Metabolism in Mice.

    PubMed

    Seong, Hyun-A; Manoharan, Ravi; Ha, Hyunjung

    2016-03-10

    To explore the molecular connections between redox-dependent apoptosis signal-regulating kinase 1 (ASK1) and transforming growth factor-β (TGF-β) signaling pathways and to examine the physiological processes in which coordinated regulation of these two signaling pathways plays a critical role. We provide evidence that the ASK1 and TGF-β signaling pathways are interconnected by a multiprotein complex harboring murine protein serine-threonine kinase 38 (MPK38), ASK1, Sma- and Mad-related proteins (SMADs), zinc-finger-like protein 9 (ZPR9), and thioredoxin (TRX) and demonstrate that the activation of either ASK1 or TGF-β activity is sufficient to activate both the redox-dependent ASK1 and TGF-β signaling pathways. Physiologically, the restoration of the downregulated activation levels of ASK1 and TGF-β signaling in genetically and diet-induced obese mice by adenoviral delivery of SMAD3 or ZPR9 results in the amelioration of adiposity, hyperglycemia, hyperlipidemia, and impaired ketogenesis. Our data suggest that the multiprotein complex linking ASK1 and TGF-β signaling pathways may be a potential target for redox-mediated metabolic complications.

  8. Targeted deletion of apoptosis signal-regulating kinase 1 attenuates left ventricular remodeling

    PubMed Central

    Yamaguchi, Osamu; Higuchi, Yoshiharu; Hirotani, Shinichi; Kashiwase, Kazunori; Nakayama, Hiroyuki; Hikoso, Shungo; Takeda, Toshihiro; Watanabe, Tetsuya; Asahi, Michio; Taniike, Masayuki; Matsumura, Yasushi; Tsujimoto, Ikuko; Hongo, Kenichi; Kusakari, Yoichiro; Kurihara, Satoshi; Nishida, Kazuhiko; Ichijo, Hidenori; Hori, Masatsugu; Otsu, Kinya

    2003-01-01

    Left ventricular remodeling that occurs after myocardial infarction (MI) and pressure overload is generally accepted as a determinant of the clinical course of heart failure. The molecular mechanism of this process, however, remains to be elucidated. Apoptosis signal-regulating kinase 1 (ASK1) is a mitogen-activated protein kinase kinase kinase that plays an important role in stress-induced apoptosis. We used ASK1 knockout mice (ASK-/-) to test the hypothesis that ASK1 is involved in development of left ventricular remodeling. ASK-/- hearts showed no morphological or histological defects. Echocardiography and cardiac catheterization revealed normal global structure and function. Left ventricular structural and functional remodeling were determined 4 weeks after coronary artery ligation or thoracic transverse aortic constriction (TAC). ASK-/- had significantly smaller increases in left ventricular end-diastolic and end-systolic ventricular dimensions and smaller decreases in fractional shortening in both experimental models compared with WT mice. The number of terminal deoxynucleotidyl transferase biotin-dUDP nick end-labeling-positive myocytes after MI or TAC was decreased in ASK-/- compared with that in WT mice. Overexpression of a constitutively active mutant of ASK1 induced apoptosis in isolated rat neonatal cardiomyocytes, whereas neonatal ASK-/- cardiomyocytes were resistant to H2O2-induced apoptosis. An in vitro kinase assay showed increased ASK1 activity in heart after MI or TAC in WT mice. Thus, ASK1 plays an important role in regulating left ventricular remodeling by promoting apoptosis. PMID:14665690

  9. Crystal structures of ASK1-inhibtor complexes provide a platform for structure-based drug design

    PubMed Central

    Singh, Onkar; Shillings, Anthony; Craggs, Peter; Wall, Ian; Rowland, Paul; Skarzynski, Tadeusz; Hobbs, Clare I; Hardwick, Phil; Tanner, Rob; Blunt, Michelle; Witty, David R; Smith, Kathrine J

    2013-01-01

    ASK1, a member of the MAPK Kinase Kinase family of proteins has been shown to play a key role in cancer, neurodegeneration and cardiovascular diseases and is emerging as a possible drug target. Here we describe a ‘replacement-soaking’ method that has enabled the high-throughput X-ray structure determination of ASK1/ligand complexes. Comparison of the X-ray structures of five ASK1/ligand complexes from 3 different chemotypes illustrates that the ASK1 ATP binding site is able to accommodate a range of chemical diversity and different binding modes. The replacement-soaking system is also able to tolerate some protein flexibility. This crystal system provides a robust platform for ASK1/ligand structure determination and future structure based drug design. PMID:23776076

  10. ASK1 Inhibition Halts Disease Progression in Preclinical Models of Pulmonary Arterial Hypertension.

    PubMed

    Budas, Grant R; Boehm, Mario; Kojonazarov, Baktybek; Viswanathan, Gayathri; Tian, Xia; Veeroju, Swathi; Novoyatleva, Tatyana; Grimminger, Friedrich; Hinojosa-Kirschenbaum, Ford; Ghofrani, Hossein A; Weissmann, Norbert; Seeger, Werner; Liles, John T; Schermuly, Ralph T

    2018-02-01

    Progression of pulmonary arterial hypertension (PAH) is associated with pathological remodeling of the pulmonary vasculature and the right ventricle (RV). Oxidative stress drives the remodeling process through activation of MAPKs (mitogen-activated protein kinases), which stimulate apoptosis, inflammation, and fibrosis. We investigated whether pharmacological inhibition of the redox-sensitive apical MAPK, ASK1 (apoptosis signal-regulating kinase 1), can halt the progression of pulmonary vascular and RV remodeling. A selective, orally available ASK1 inhibitor, GS-444217, was administered to two preclinical rat models of PAH (monocrotaline and Sugen/hypoxia), a murine model of RV pressure overload induced by pulmonary artery banding, and cellular models. Oral administration of GS-444217 dose dependently reduced pulmonary arterial pressure and reduced RV hypertrophy in PAH models. The therapeutic efficacy of GS-444217 was associated with reduced ASK1 phosphorylation, reduced muscularization of the pulmonary arteries, and reduced fibrotic gene expression in the RV. Importantly, efficacy was observed when GS-444217 was administered to animals with established disease and also directly reduced cardiac fibrosis and improved cardiac function in a model of isolated RV pressure overload. In cellular models, GS-444217 reduced phosphorylation of p38 and JNK (c-Jun N-terminal kinase) induced by adenoviral overexpression of ASK1 in rat cardiomyocytes and reduced activation/migration of primary mouse cardiac fibroblasts and human pulmonary adventitial fibroblasts derived from patients with PAH. ASK1 inhibition reduced pathological remodeling of the pulmonary vasculature and the right ventricle and halted progression of pulmonary hypertension in rodent models. These preclinical data inform the first description of a causal role of ASK1 in PAH disease pathogenesis.

  11. MicroRNA-Mediated Down-Regulation of Apoptosis Signal-Regulating Kinase 1 (ASK1) Attenuates the Apoptosis of Human Mesenchymal Stem Cells (MSCs) Transplanted into Infarcted Heart.

    PubMed

    Lee, Chang Youn; Shin, Sunhye; Lee, Jiyun; Seo, Hyang-Hee; Lim, Kyu Hee; Kim, Hyemin; Choi, Jung-Won; Kim, Sang Woo; Lee, Seahyung; Lim, Soyeon; Hwang, Ki-Chul

    2016-10-20

    Stem cell therapy using adult stem cells, such as mesenchymal stem cells (MSCs) has produced some promising results in treating the damaged heart. However, the low survival rate of MSCs after transplantation is still one of the crucial factors that limit the therapeutic effect of stem cells. In the damaged heart, oxidative stress due to reactive oxygen species (ROS) production can cause the death of transplanted MSCs. Apoptosis signal-regulating kinase 1 (ASK1) has been implicated in the development of oxidative stress-related pathologic conditions. Thus, we hypothesized that down-regulation of ASK1 in human MSCs (hMSCs) might attenuate the post-transplantation death of MSCs. To test this hypothesis, we screened microRNAs (miRNAs) based on a miRNA-target prediction database and empirical data and investigated the anti-apoptotic effect of selected miRNAs on human adipose-derived stem cells (hASCs) and on rat myocardial infarction (MI) models. Our data indicated that miRNA-301a most significantly suppressed ASK1 expression in hASCs. Apoptosis-related genes were significantly down-regulated in miRNA-301a-enriched hASCs exposed to hypoxic conditions. Taken together, these data show that miRNA-mediated down-regulation of ASK1 protects MSCs during post-transplantation, leading to an increase in the efficacy of MSC-based cell therapy.

  12. Impaired tissue growth is mediated by checkpoint kinase 1 (CHK1) in the integrated stress response

    PubMed Central

    Malzer, Elke; Daly, Marie-Louise; Moloney, Aileen; Sendall, Timothy J.; Thomas, Sally E.; Ryder, Edward; Ryoo, Hyung Don; Crowther, Damian C.; Lomas, David A.; Marciniak, Stefan J.

    2010-01-01

    The integrated stress response (ISR) protects cells from numerous forms of stress and is involved in the growth of solid tumours; however, it is unclear how the ISR acts on cellular proliferation. We have developed a model of ISR signalling with which to study its effects on tissue growth. Overexpression of the ISR kinase PERK resulted in a striking atrophic eye phenotype in Drosophila melanogaster that could be rescued by co-expressing the eIF2α phosphatase GADD34. A genetic screen of 3000 transposon insertions identified grapes, the gene that encodes the Drosophila orthologue of checkpoint kinase 1 (CHK1). Knockdown of grapes by RNAi rescued eye development despite ongoing PERK activation. In mammalian cells, CHK1 was activated by agents that induce ER stress, which resulted in a G2 cell cycle delay. PERK was both necessary and sufficient for CHK1 activation. These findings indicate that non-genotoxic misfolded protein stress accesses DNA-damage-induced cell cycle checkpoints to couple the ISR to cell cycle arrest. PMID:20682638

  13. GIT1/βPIX signaling proteins and PAK1 kinase regulate microtubule nucleation.

    PubMed

    Černohorská, Markéta; Sulimenko, Vadym; Hájková, Zuzana; Sulimenko, Tetyana; Sládková, Vladimíra; Vinopal, Stanislav; Dráberová, Eduarda; Dráber, Pavel

    2016-06-01

    Microtubule nucleation from γ-tubulin complexes, located at the centrosome, is an essential step in the formation of the microtubule cytoskeleton. However, the signaling mechanisms that regulate microtubule nucleation in interphase cells are largely unknown. In this study, we report that γ-tubulin is in complexes containing G protein-coupled receptor kinase-interacting protein 1 (GIT1), p21-activated kinase interacting exchange factor (βPIX), and p21 protein (Cdc42/Rac)-activated kinase 1 (PAK1) in various cell lines. Immunofluorescence microscopy revealed association of GIT1, βPIX and activated PAK1 with centrosomes. Microtubule regrowth experiments showed that depletion of βPIX stimulated microtubule nucleation, while depletion of GIT1 or PAK1 resulted in decreased nucleation in the interphase cells. These data were confirmed for GIT1 and βPIX by phenotypic rescue experiments, and counting of new microtubules emanating from centrosomes during the microtubule regrowth. The importance of PAK1 for microtubule nucleation was corroborated by the inhibition of its kinase activity with IPA-3 inhibitor. GIT1 with PAK1 thus represent positive regulators, and βPIX is a negative regulator of microtubule nucleation from the interphase centrosomes. The regulatory roles of GIT1, βPIX and PAK1 in microtubule nucleation correlated with recruitment of γ-tubulin to the centrosome. Furthermore, in vitro kinase assays showed that GIT1 and βPIX, but not γ-tubulin, serve as substrates for PAK1. Finally, direct interaction of γ-tubulin with the C-terminal domain of βPIX and the N-terminal domain of GIT1, which targets this protein to the centrosome, was determined by pull-down experiments. We propose that GIT1/βPIX signaling proteins with PAK1 kinase represent a novel regulatory mechanism of microtubule nucleation in interphase cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Regulation of dynein-driven microtubule sliding by the axonemal protein kinase CK1 in Chlamydomonas flagella

    PubMed Central

    Gokhale, Avanti; Wirschell, Maureen

    2009-01-01

    Experimental analysis of isolated ciliary/flagellar axonemes has implicated the protein kinase casein kinase I (CK1) in regulation of dynein. To test this hypothesis, we developed a novel in vitro reconstitution approach using purified recombinant Chlamydomonas reinhardtii CK1, together with CK1-depleted axonemes from the paralyzed flagellar mutant pf17, which is defective in radial spokes and impaired in dynein-driven microtubule sliding. The CK1 inhibitors (DRB and CK1-7) and solubilization of CK1 restored microtubule sliding in pf17 axonemes, which is consistent with an inhibitory role for CK1. The phosphatase inhibitor microcystin-LR blocked rescue of microtubule sliding, indicating that the axonemal phosphatases, required for rescue, were retained in the CK1-depleted axonemes. Reconstitution of depleted axonemes with purified, recombinant CK1 restored inhibition of microtubule sliding in a DRB– and CK1-7–sensitive manner. In contrast, a purified “kinase-dead” CK1 failed to restore inhibition. These results firmly establish that an axonemal CK1 regulates dynein activity and flagellar motility. PMID:19752022

  15. Inhibition of apoptosis signal-regulating kinase 1 alters the wound epidermis and enhances auricular cartilage regeneration

    PubMed Central

    Zhang, Qian-Shi; Kurpad, Deepa S.; Mahoney, My G.; Steinbeck, Marla J.

    2017-01-01

    Why regeneration does not occur in mammals remains elusive. In lower vertebrates, epimorphic regeneration of the limb is directed by the wound epidermis, which controls blastema formation to promote regrowth of the appendage. Herein, we report that knockout (KO) or inhibition of Apoptosis Signal-regulated Kinase-1 (ASK1), also known as mitogen-activated protein kinase kinase kinase 5 (MAP3K5), after full thickness ear punch in mice prolongs keratinocyte activation within the wound epidermis and promotes regeneration of auricular cartilage. Histological analysis showed the ASK1 KO ears displayed enhanced protein markers associated with blastema formation, hole closure and regeneration of auricular cartilage. At seven days after punch, the wound epidermis morphology was markedly different in the KO, showing a thickened stratum corneum with rounded cell morphology and a reduction of both the granular cell layer and decreased expression of filament aggregating protein. In addition, cytokeratin 6 was expressed in the stratum spinosum and granulosum. Topical application of inhibitors of ASK1 (NQDI-1), the upstream ASK1 activator, calcium activated mitogen kinase 2 (KN93), or the downstream target, c-Jun N-terminal kinase (SP600125) also resulted in enhanced regeneration; whereas inhibition of the other downstream target, the p38 α/β isoforms, (SB203580) had no effect. The results of this investigation indicate ASK1 inhibition prolongs keratinocyte and blastemal cell activation leading to ear regeneration. PMID:29045420

  16. Inhibition of apoptosis signal-regulating kinase 1 alters the wound epidermis and enhances auricular cartilage regeneration.

    PubMed

    Zhang, Qian-Shi; Kurpad, Deepa S; Mahoney, My G; Steinbeck, Marla J; Freeman, Theresa A

    2017-01-01

    Why regeneration does not occur in mammals remains elusive. In lower vertebrates, epimorphic regeneration of the limb is directed by the wound epidermis, which controls blastema formation to promote regrowth of the appendage. Herein, we report that knockout (KO) or inhibition of Apoptosis Signal-regulated Kinase-1 (ASK1), also known as mitogen-activated protein kinase kinase kinase 5 (MAP3K5), after full thickness ear punch in mice prolongs keratinocyte activation within the wound epidermis and promotes regeneration of auricular cartilage. Histological analysis showed the ASK1 KO ears displayed enhanced protein markers associated with blastema formation, hole closure and regeneration of auricular cartilage. At seven days after punch, the wound epidermis morphology was markedly different in the KO, showing a thickened stratum corneum with rounded cell morphology and a reduction of both the granular cell layer and decreased expression of filament aggregating protein. In addition, cytokeratin 6 was expressed in the stratum spinosum and granulosum. Topical application of inhibitors of ASK1 (NQDI-1), the upstream ASK1 activator, calcium activated mitogen kinase 2 (KN93), or the downstream target, c-Jun N-terminal kinase (SP600125) also resulted in enhanced regeneration; whereas inhibition of the other downstream target, the p38 α/β isoforms, (SB203580) had no effect. The results of this investigation indicate ASK1 inhibition prolongs keratinocyte and blastemal cell activation leading to ear regeneration.

  17. Diarachidonoylphosphoethanolamine induces apoptosis of malignant pleural mesothelioma cells through a Trx/ASK1/p38 MAPK pathway.

    PubMed

    Tsuchiya, Ayako; Kaku, Yoshiko; Nakano, Takashi; Nishizaki, Tomoyuki

    2015-11-01

    1,2-Diarachidonoyl-sn-glycero-3-phosphoethanolamine (DAPE) induces both necrosis/necroptosis and apoptosis of NCI-H28 malignant pleural mesothelioma (MPM) cells. The present study was conducted to understand the mechanism for DAPE-induced apoptosis of NCI-H28 cells. DAPE induced caspase-independent apoptosis of NCI-H28 malignant pleural mesothelioma (MPM) cells, and the effect of DAPE was prevented by antioxidants or an inhibitor of NADPH oxidase (NOX). DAPE generated reactive oxygen species (ROS) and inhibited activity of thioredoxin (Trx) reductase (TrxR). DAPE decreased an association of apoptosis signal-regulating kinase 1 (ASK1) with thioredoxin (Trx), thereby releasing ASK1. DAPE activated p38 mitogen-activated protein kinase (MAPK), which was inhibited by an antioxidant or knocking-down ASK1. In addition, DAPE-induced NCI-H28 cell death was also prevented by knocking-down ASK1. Taken together, the results of the present study indicate that DAPE stimulates NOX-mediated ROS production and suppresses TrxR activity, resulting in the decrease of reduced Trx and the dissociation of ASK1 from a complex with Trx, allowing sequential activation of ASK1 and p38 MAPK, to induce apoptosis of NCI-H28 MPM cells. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  18. Adenosine 5'-monophosphate blocks acetaminophen toxicity by increasing ubiquitination-mediated ASK1 degradation.

    PubMed

    Yang, Xiao; Zhan, Yibei; Sun, Qi; Xu, Xi; Kong, Yi; Zhang, Jianfa

    2017-01-24

    Acetaminophen (APAP) overdose is the most frequent cause of drug-induced liver failure in the world. Hepatic c-jun NH2-terminal protein kinase (JNK) activation is thought to be a consequence of oxidative stress produced during APAP metabolism. Activation of JNK signals causes hepatocellular damage with necrotic and apoptotic cell death. Here we found that APAP caused a feedback increase in plasma adenosine 5'-monophsphate (5'-AMP). We demonstrated that co-administration of APAP and 5'-AMP significantly ameliorated APAP-induced hepatotoxicity in mice, without influences on APAP metabolism and its analgesic function. The mechanism of protection by 5'-AMP was through inhibiting APAP-induced activation of JNK, and attenuating downstream c-jun and c-fos gene expression. This was triggered by attenuating apoptosis signal-regulated kinase 1(ASK1) methylation and increasing ubiquitination-mediated ASK1 protein degradation. Our findings indicate that replacing the current APAP with a safe and functional APAP/5'-AMP formulation could prevent APAP-induced hepatotoxicity.

  19. PAS kinase is activated by direct SNF1-dependent phosphorylation and mediates inhibition of TORC1 through the phosphorylation and activation of Pbp1.

    PubMed

    DeMille, Desiree; Badal, Bryan D; Evans, J Brady; Mathis, Andrew D; Anderson, Joseph F; Grose, Julianne H

    2015-02-01

    We describe the interplay between three sensory protein kinases in yeast: AMP-regulated kinase (AMPK, or SNF1 in yeast), PAS kinase 1 (Psk1 in yeast), and the target of rapamycin complex 1 (TORC1). This signaling cascade occurs through the SNF1-dependent phosphorylation and activation of Psk1, which phosphorylates and activates poly(A)- binding protein binding protein 1 (Pbp1), which then inhibits TORC1 through sequestration at stress granules. The SNF1-dependent phosphorylation of Psk1 appears to be direct, in that Snf1 is necessary and sufficient for Psk1 activation by alternate carbon sources, is required for altered Psk1 protein mobility, is able to phosphorylate Psk1 in vitro, and binds Psk1 via its substrate-targeting subunit Gal83. Evidence for the direct phosphorylation and activation of Pbp1 by Psk1 is also provided by in vitro and in vivo kinase assays, including the reduction of Pbp1 localization at distinct cytoplasmic foci and subsequent rescue of TORC1 inhibition in PAS kinase-deficient yeast. In support of this signaling cascade, Snf1-deficient cells display increased TORC1 activity, whereas cells containing hyperactive Snf1 display a PAS kinase-dependent decrease in TORC1 activity. This interplay between yeast SNF1, Psk1, and TORC1 allows for proper glucose allocation during nutrient depletion, reducing cell growth and proliferation when energy is low. © 2015 DeMille et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  20. MDS1, a dosage suppressor of an mck1 mutant, encodes a putative yeast homolog of glycogen synthase kinase 3.

    PubMed Central

    Puziss, J W; Hardy, T A; Johnson, R B; Roach, P J; Hieter, P

    1994-01-01

    The yeast gene MCK1 encodes a serine/threonine protein kinase that is thought to function in regulating kinetochore activity and entry into meiosis. Disruption of MCK1 confers a cold-sensitive phenotype, a temperature-sensitive phenotype, and sensitivity to the microtubule-destabilizing drug benomyl and leads to loss of chromosomes during growth on benomyl. A dosage suppression selection was used to identify genes that, when present at high copy number, could suppress the cold-sensitive phenotype of mck1::HIS3 mutant cells. Several unique classes of clones were identified, and one of these, designated MDS1, has been characterized in some detail. Nucleotide sequence data reveal that MDS1 encodes a serine/threonine protein kinase that is highly homologous to the shaggy/zw3 kinase in Drosophila melanogaster and its functional homolog, glycogen synthase kinase 3, in rats. The presence of MDS1 in high copy number rescues both the cold-sensitive and the temperature-sensitive phenotypes, but not the benomyl-sensitive phenotype, associated with the disruption of MCK1. Analysis of strains harboring an mds1 null mutation demonstrates that MDS1 is not essential during normal vegetative growth but appears to be required for meiosis. Finally, in vitro experiments indicate that the proteins encoded by both MCK1 and MDS1 possess protein kinase activity with substrate specificity similar to that of mammalian glycogen synthase kinase 3. Images PMID:8264650

  1. Cardiac-specific disruption of the c-raf-1 gene induces cardiac dysfunction and apoptosis

    PubMed Central

    Yamaguchi, Osamu; Watanabe, Tetsuya; Nishida, Kazuhiko; Kashiwase, Kazunori; Higuchi, Yoshiharu; Takeda, Toshihiro; Hikoso, Shungo; Hirotani, Shinichi; Asahi, Michio; Taniike, Masayuki; Nakai, Atsuko; Tsujimoto, Ikuko; Matsumura, Yasushi; Miyazaki, Jun-ichi; Chien, Kenneth R.; Matsuzawa, Atsushi; Sadamitsu, Chiharu; Ichijo, Hidenori; Baccarini, Manuela; Hori, Masatsugu; Otsu, Kinya

    2004-01-01

    The Raf/MEK/extracellular signal–regulated kinase (ERK) signaling pathway regulates diverse cellular processes such as proliferation, differentiation, and apoptosis and is implicated as an important contributor to the pathogenesis of cardiac hypertrophy and heart failure. To examine the in vivo role of Raf-1 in the heart, we generated cardiac muscle–specific Raf-1–knockout (Raf CKO) mice with Cre-loxP–mediated recombination. The mice demonstrated left ventricular systolic dysfunction and heart dilatation without cardiac hypertrophy or lethality. The Raf CKO mice showed a significant increase in the number of apoptotic cardiomyocytes. The expression level and activation of MEK1/2 or ERK showed no difference, but the kinase activity of apoptosis signal–regulating kinase 1 (ASK1), JNK, or p38 increased significantly compared with that in controls. The ablation of ASK1 rescued heart dysfunction and dilatation as well as cardiac fibrosis. These results indicate that Raf-1 promotes cardiomyocyte survival through a MEK/ERK–independent mechanism. PMID:15467832

  2. Genetic variation in the TNF/TRAF2/ASK1/p38 kinase signaling pathway as markers for postoperative pulmonary complications in lung cancer patients.

    PubMed

    Hildebrandt, Michelle A T; Roth, Jack A; Vaporciyan, Ara A; Pu, Xia; Ye, Yuanqing; Correa, Arlene M; Kim, Jae Y; Swisher, Stephen G; Wu, Xifeng

    2015-07-13

    Post-operative pulmonary complications are the most common morbidity associated with lung resection in non-small cell lung cancer (NSCLC) patients. The TNF/TRAF2/ASK1/p38 kinase pathway is activated by stress stimuli and inflammatory signals. We hypothesized that genetic polymorphisms within this pathway may contribute to risk of complications. In this case-only study, we genotyped 173 germline genetic variants in a discovery population of 264 NSCLC patients who underwent a lobectomy followed by genotyping of the top variants in a replication population of 264 patients. Complications data was obtained from a prospective database at MD Anderson. MAP2K4:rs12452497 was significantly associated with a decreased risk in both phases, resulting in a 40% reduction in the pooled population (95% CI:0.43-0.83, P = 0.0018). In total, seven variants were significant for risk in the pooled analysis. Gene-based analysis supported the involvement of TRAF2, MAP2K4, and MAP3K5 as mediating complications risk and a highly significant trend was identified between the number of risk genotypes and complications risk (P = 1.63 × 10(-8)). An inverse relationship was observed between association with clinical outcomes and complications for two variants. These results implicate the TNF/TRAF2/ASK1/p38 kinase pathway in modulating risk of pulmonary complications following lobectomy and may be useful biomarkers to identify patients at high risk.

  3. Adenosine 5′-monophosphate blocks acetaminophen toxicity by increasing ubiquitination-mediated ASK1 degradation

    PubMed Central

    Sun, Qi; Xu, Xi; Kong, Yi; Zhang, Jianfa

    2017-01-01

    Acetaminophen (APAP) overdose is the most frequent cause of drug-induced liver failure in the world. Hepatic c-jun NH2-terminal protein kinase (JNK) activation is thought to be a consequence of oxidative stress produced during APAP metabolism. Activation of JNK signals causes hepatocellular damage with necrotic and apoptotic cell death. Here we found that APAP caused a feedback increase in plasma adenosine 5′-monophsphate (5′-AMP). We demonstrated that co-administration of APAP and 5′-AMP significantly ameliorated APAP-induced hepatotoxicity in mice, without influences on APAP metabolism and its analgesic function. The mechanism of protection by 5′-AMP was through inhibiting APAP-induced activation of JNK, and attenuating downstream c-jun and c-fos gene expression. This was triggered by attenuating apoptosis signal-regulated kinase 1(ASK1) methylation and increasing ubiquitination-mediated ASK1 protein degradation. Our findings indicate that replacing the current APAP with a safe and functional APAP/5′-AMP formulation could prevent APAP-induced hepatotoxicity. PMID:28031524

  4. Thioredoxin-2 Inhibits Mitochondrial ROS Generation and ASK1 Activity to Maintain Cardiac Function

    PubMed Central

    Huang, Qunhua; Zhou, Huanjiao Jenny; Zhang, Haifeng; Huang, Yan; Hinojosa-Kirschenbaum, Ford; Fan, Peidong; Yao, Lina; Belardinelli, Luiz; Tellides, George; Giordano, Frank J.; Budas, Grant R.; Min, Wang

    2015-01-01

    Background Thioredoxin 2 (Trx2) is a key mitochondrial protein which regulates cellular redox and survival by suppressing mitochondrial ROS generation and by inhibiting apoptosis stress kinase-1 (ASK1)-dependent apoptotic signaling. To date, the role of the mitochondrial Trx2 system in heart failure pathogenesis has not been investigated. Methods and Results Western blot and histological analysis revealed that Trx2 protein expression levels were reduced in hearts from patients with dilated cardiomyopathy (DCM), with a concomitant increase in increased ASK1 phosphorylation/activity. Cardiac-specific Trx2 knockout mice (Trx2-cKO). Trx2-cKO mice develop spontaneous DCM at 1 month of age with increased heart size, reduced ventricular wall thickness, and a progressive decline in left ventricular (LV) contractile function, resulting in mortality due to heart failure by ~4 months of age. The progressive decline in cardiac function observed in Trx2-cKO mice was accompanied by disruption of mitochondrial ultrastructure, mitochondrial membrane depolarization, increased mitochondrial ROS generation and reduced ATP production, correlating with increased ASK1 signaling and increased cardiomyocyte apoptosis. Chronic administration of a highly selective ASK1 inhibitor improved cardiac phenotype and reduced maladaptive LV remodeling with significant reductions in oxidative stress, apoptosis, fibrosis and cardiac failure. Cellular data from Trx2-deficient cardiomyocytes demonstrated that ASK1 inhibition reduced apoptosis and reduced mitochondrial ROS generation. Conclusions Our data support an essential role for mitochondrial Trx2 in preserving cardiac function by suppressing mitochondrial ROS production and ASK1-dependent apoptosis. Inhibition of ASK1 represents a promising therapeutic strategy for the treatment of dilated cardiomyopathy and heart failure. PMID:25628390

  5. Inhibitor of apoptosis signal-regulating kinase 1 protects against acetaminophen-induced liver injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Yuchao; Ramachandran, Anup; Breckenridge, David G.

    Metabolic activation and oxidant stress are key events in the pathophysiology of acetaminophen (APAP) hepatotoxicity. The initial mitochondrial oxidative stress triggered by protein adduct formation is amplified by c-jun-N-terminal kinase (JNK), resulting in mitochondrial dysfunction and ultimately cell necrosis. Apoptosis signal-regulating kinase 1 (ASK1) is considered the link between oxidant stress and JNK activation. The objective of the current study was to assess the efficacy and mechanism of action of the small-molecule ASK1 inhibitor GS-459679 in a murine model of APAP hepatotoxicity. APAP (300 mg/kg) caused extensive glutathione depletion, JNK activation and translocation to the mitochondria, oxidant stress and livermore » injury as indicated by plasma ALT activities and area of necrosis over a 24 h observation period. Pretreatment with 30 mg/kg of GS-459679 almost completely prevented JNK activation, oxidant stress and injury without affecting the metabolic activation of APAP. To evaluate the therapeutic potential of GS-459679, mice were treated with APAP and then with the inhibitor. Given 1.5 h after APAP, GS-459679 was still protective, which was paralleled by reduced JNK activation and p-JNK translocation to mitochondria. However, GS-459679 treatment was not more effective than N-acetylcysteine, and the combination of GS-459679 and N-acetylcysteine exhibited similar efficacy as N-acetylcysteine monotherapy, suggesting that GS-459769 and N-acetylcysteine affect the same pathway. Importantly, inhibition of ASK1 did not impair liver regeneration as indicated by PCNA staining. In conclusion, the ASK1 inhibitor GS-459679 protected against APAP toxicity by attenuating JNK activation and oxidant stress in mice and may have therapeutic potential for APAP overdose patients. - Highlights: • Two ASK1 inhibitors protected against acetaminophen-induced liver injury. • The ASK1 inhibitors protect when used as pre- or post-treatment. • Protection by ASK1

  6. Kinase Associated-1 Domains Drive MARK/PAR1 Kinases to Membrane Targets by Binding Acidic Phospholipids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moravcevic, Katarina; Mendrola, Jeannine M.; Schmitz, Karl R.

    Phospholipid-binding modules such as PH, C1, and C2 domains play crucial roles in location-dependent regulation of many protein kinases. Here, we identify the KA1 domain (kinase associated-1 domain), found at the C terminus of yeast septin-associated kinases (Kcc4p, Gin4p, and Hsl1p) and human MARK/PAR1 kinases, as a membrane association domain that binds acidic phospholipids. Membrane localization of isolated KA1 domains depends on phosphatidylserine. Using X-ray crystallography, we identified a structurally conserved binding site for anionic phospholipids in KA1 domains from Kcc4p and MARK1. Mutating this site impairs membrane association of both KA1 domains and intact proteins and reveals the importancemore » of phosphatidylserine for bud neck localization of yeast Kcc4p. Our data suggest that KA1 domains contribute to coincidence detection, allowing kinases to bind other regulators (such as septins) only at the membrane surface. These findings have important implications for understanding MARK/PAR1 kinases, which are implicated in Alzheimer's disease, cancer, and autism.« less

  7. Palmitoylation of LIM Kinase-1 ensures spine-specific actin polymerization and morphological plasticity

    PubMed Central

    George, Joju; Soares, Cary; Montersino, Audrey; Beique, Jean-Claude; Thomas, Gareth M

    2015-01-01

    Precise regulation of the dendritic spine actin cytoskeleton is critical for neurodevelopment and neuronal plasticity, but how neurons spatially control actin dynamics is not well defined. Here, we identify direct palmitoylation of the actin regulator LIM kinase-1 (LIMK1) as a novel mechanism to control spine-specific actin dynamics. A conserved palmitoyl-motif is necessary and sufficient to target LIMK1 to spines and to anchor LIMK1 in spines. ShRNA knockdown/rescue experiments reveal that LIMK1 palmitoylation is essential for normal spine actin polymerization, for spine-specific structural plasticity and for long-term spine stability. Palmitoylation is critical for LIMK1 function because this modification not only controls LIMK1 targeting, but is also essential for LIMK1 activation by its membrane-localized upstream activator PAK. These novel roles for palmitoylation in the spatial control of actin dynamics and kinase signaling provide new insights into structural plasticity mechanisms and strengthen links between dendritic spine impairments and neuropathological conditions. DOI: http://dx.doi.org/10.7554/eLife.06327.001 PMID:25884247

  8. Arabidopsis Receptor of Activated C Kinase1 Phosphorylation by WITH NO LYSINE8 KINASE

    DOE PAGES

    Urano, Daisuke; Czarnecki, Olaf; Wang, Xiaoping; ...

    2014-12-08

    Receptor of activated C kinase1 (RACK1) is a versatile scaffold protein that binds to numerous proteins to regulate diverse cellular pathways in mammals. In Arabidopsis (Arabidopsis thaliana), RACK1 has been shown to regulate plant hormone signaling, stress responses, and multiple processes of growth and development. However, little is known about the molecular mechanism underlying these regulations. In this paper, we show that an atypical serine (Ser)/threonine (Thr) protein kinase, WITH NO LYSINE8 (WNK8), phosphorylates RACK1. WNK8 physically interacted with and phosphorylated RACK1 proteins at two residues: Ser-122 and Thr-162. Genetic epistasis analysis of rack1 wnk8 double mutants indicated that RACK1more » acts downstream of WNK8 in the glucose responsiveness and flowering pathways. The phosphorylation-dead form, RACK1AS122A/T162A, but not the phosphomimetic form, RACK1AS122D/T162E, rescued the rack1a null mutant, implying that phosphorylation at Ser-122 and Thr-162 negatively regulates RACK1A function. The transcript of RACK1AS122D/T162E accumulated at similar levels as those of RACK1S122A/T162A. However, although the steady-state level of the RACK1AS122A/T162A protein was similar to wild-type RACK1A protein, the RACK1AS122D/T162E protein was nearly undetectable, suggesting that phosphorylation affects the stability of RACK1A proteins. In conclusion, these results suggest that RACK1 is phosphorylated by WNK8 and that phosphorylation negatively regulates RACK1 function by influencing its protein stability.« less

  9. S -Nitrosylation inhibits the kinase activity of tomato phosphoinositide-dependent kinase 1 (PDK1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jian-Zhong; Duan, Jicheng; Ni, Min

    It is well known that the reactive oxygen species, nitric oxide (NO), can trigger cell death in plants, but the underlying molecular mechanisms are not well understood. Here, we provide evidence that NO may trigger cell death in tomato (Solanum lycopersicon) through inhibiting the phosphoinositide-dependent kinase 1 (PDK1) kinase activity via S-nitrosylation. Biotin-switch assays and LC-MS/MS analyses demonstrated that SlPDK1 was a target of S-nitrosylation modification, which primarily occurred on the cysteine residue at position 128 (Cys128). Accordingly, the kinase activity of SlPDK1 was inhibited by S-nitrosoglutathione (GSNO) both in vitro and in vivo in a concentration-dependent manner, indicating thatmore » SlPDK1 activity is regulated by S-nitrosylation. The inhibition of SlPDK1 kinase activity by GSNO was reversible in the presence of a reducing agent but synergistically enhanced by hydrogen peroxide (H2O2). Mutation of Cys128 to serine completely abolished SlPDK1 kinase activity, suggesting that S-nitrosylation of Cys128 is responsible for the inhibition of the kinase activity of SlPDK1. In sum, our results established a potential link between NO-triggered cell death and inhibition of the kinase activity of tomato PDK1, a conserved negative regulator of cell death in yeasts, mammals and plants. Nitric oxide (NO) potentiates the induction of hypersensitive cell death in soybean cells by reactive oxygen species (ROS) (1). However, the molecular mechanism of the NO-induced cell death remains an enigma. One potential mechanism is that the activity of proteins that control cell death may be altered by a post-translational modification, S-nitrosylation. S-nitrosylation is the addition of the NO moiety to thiol groups, including cysteine (Cys) residues in proteins, to form S-nitrosothiols (SNOs). S-nitrosylation is an enzyme-independent post-translational and labile modification that can function as an on/off switch of protein activity (2- 4). Thousands of

  10. Protein kinase C and P2Y12 take center stage in thrombin-mediated activation of mammalian target of rapamycin complex 1 in human platelets.

    PubMed

    Moore, S F; Hunter, R W; Hers, I

    2014-05-01

    Rapamycin, an inhibitor of mammalian target of rapamycin complex-1 (mTORC1), reduces platelet spreading, thrombus stability, and clot retraction. Despite an important role of mTORC1 in platelet function, little is known about how it is regulated. The objective of this study was to determine the signaling pathways that regulate mTORC1 in human platelets. Mammalian target of rapamycin complex-1 activation was assessed by measuring the phosphorylation of its downstream substrate ribosomal S6 kinase 1 (p70S6K). Thrombin or the protein kinase C (PKC) activator phorbal 12-myristate 13-acetate stimulated activation of mTORC1 in a PKC-dependent, Akt-independent manner that correlated with phosphorylation of tuberin/tuberous sclerosis 2 (TSC2) (Ser939 and Thr1462). In contrast, insulin-like growth factor 1 (IGF-1)-stimulated TSC2 phosphorylation was completely dependent on phosphoinositide 3 kinase (PI3 kinase)/Akt but did not result in any detectable mTORC1 activation. Early (Ser939 and Thr1462) and late (Thr1462) TSC2 phosphorylation in response to thrombin were directly PKC dependent, whereas later TSC2 (Ser939) and p70S6K phosphorylation were largely dependent on paracrine signaling through P2Y(12). PKC-mediated adenosine diphosphate (ADP) secretion was essential for thrombin-stimulated mTORC1 activation, as (i) ADP rescued p70S6K phosphorylation in the presence of a PKC inhibitor and (ii) P2Y(12) antagonism prevented thrombin-mediated mTORC1 activation. Rescue of mTORC1 activation with exogenous ADP was completely dependent on the Src family kinases but independent of PI3 kinase/Akt. Interestingly, although inhibition of Src blocked the ADP rescue, it had little effect on thrombin-stimulated p70S6K phosphorylation under conditions where PKC was not inhibited. These results demonstrate that thrombin activates the mTORC1 pathway in human platelets through PKC-mediated ADP secretion and subsequent activation of P2Y(12), in a manner largely independent of the canonical PI3

  11. Protein kinase C and P2Y12 take center stage in thrombin-mediated activation of mammalian target of rapamycin complex 1 in human platelets

    PubMed Central

    Moore, S F; Hunter, R W; Hers, I

    2014-01-01

    Background Rapamycin, an inhibitor of mammalian target of rapamycin complex-1 (mTORC1), reduces platelet spreading, thrombus stability, and clot retraction. Despite an important role of mTORC1 in platelet function, little is known about how it is regulated. The objective of this study was to determine the signaling pathways that regulate mTORC1 in human platelets. Methods Mammalian target of rapamycin complex-1 activation was assessed by measuring the phosphorylation of its downstream substrate ribosomal S6 kinase 1 (p70S6K). Results Thrombin or the protein kinase C (PKC) activator phorbal 12-myristate 13-acetate stimulated activation of mTORC1 in a PKC-dependent, Akt-independent manner that correlated with phosphorylation of tuberin/tuberous sclerosis 2 (TSC2) (Ser939 and Thr1462). In contrast, insulin-like growth factor 1 (IGF-1)–stimulated TSC2 phosphorylation was completely dependent on phosphoinositide 3 kinase (PI3 kinase)/Akt but did not result in any detectable mTORC1 activation. Early (Ser939 and Thr1462) and late (Thr1462) TSC2 phosphorylation in response to thrombin were directly PKC dependent, whereas later TSC2 (Ser939) and p70S6K phosphorylation were largely dependent on paracrine signaling through P2Y12. PKC-mediated adenosine diphosphate (ADP) secretion was essential for thrombin-stimulated mTORC1 activation, as (i) ADP rescued p70S6K phosphorylation in the presence of a PKC inhibitor and (ii) P2Y12 antagonism prevented thrombin-mediated mTORC1 activation. Rescue of mTORC1 activation with exogenous ADP was completely dependent on the Src family kinases but independent of PI3 kinase/Akt. Interestingly, although inhibition of Src blocked the ADP rescue, it had little effect on thrombin-stimulated p70S6K phosphorylation under conditions where PKC was not inhibited. Conclusion These results demonstrate that thrombin activates the mTORC1 pathway in human platelets through PKC-mediated ADP secretion and subsequent activation of P2Y12, in a manner

  12. Protective function of pyridoxamine on retinal photoreceptor cells via activation of the p‑Erk1/2/Nrf2/Trx/ASK1 signalling pathway in diabetic mice.

    PubMed

    Ren, Xiang; Sun, Hong; Zhang, Chenghong; Li, Chen; Wang, Jinlei; Shen, Jie; Yu, Dong; Kong, Li

    2016-07-01

    The present study aimed to investigate the mechanisms that mediate the protective effects of pyridoxamine (PM) on light‑damaged retinal photoreceptor cells in diabetic mice. A high‑fat diet and streptozotocin were used to induce a mouse model of type II diabetes. During the experiment, mice were divided the mice into three types of group, as follows: Control groups (negative control and light‑damaged groups); experimental groups (diabetic and diabetic light‑damaged groups); and treatment groups (25, 50 and 100 mg/kg PM‑treated groups). Using hematoxylin‑eosin staining, the number of nuclear layer cells were counted. Western blotting and immunohistochemistry were performed to measure the levels of thioredoxin (Trx), phospho‑extracellular signal‑regulated kinase 1/2 (p‑Erk1/2), nuclear factor erythroid 2‑related factor 2 (Nrf2) and apoptosis signal‑regulating kinase 1 (ASK1). The photoreceptor cell count in the outer nuclear layer of the light‑damaged, diabetic control and diabetic light‑damaged groups were significantly reduced compared with the negative control group (P<0.001). The cell counts in the PM‑treated groups were significantly increased compared with the diabetic group (P<0.001). Compared with the negative control group, the light‑damaged, diabetic and diabetic light‑damaged groups exhibited significantly decreased Trx, p‑Erk1/2 and Nrf2 expression levels (P<0.001), and significantly increased ASK1 expression levels (P<0.001). However, in the PM‑treated groups, Trx, p‑Erk1/2 and Nrf2 expression levels were significantly increased (P<0.001), and ASK1 expression was significantly decreased (P<0.001). The results of the present study demonstrate that PM protects retinal photoreceptor cells against light damage in diabetic mice, and that its mechanism may be associated with the upregulation of Trx, p‑Erk1/2 and Nrf2 expression, and the downregulation of ASK1 expression.

  13. S -Nitrosylation inhibits the kinase activity of tomato phosphoinositide-dependent kinase 1 (PDK1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jian-Zhong; Duan, Jicheng; Ni, Min

    It is well known that the reactive oxygen species NO can trigger cell death in plants and other organisms, but the underlying molecular mechanisms are not well understood. Here we provide evidence that NO may trigger cell death in tomato (Solanum lycopersicum) by inhibiting the activity of phosphoinositide-dependent kinase 1 (SlPDK1), a conserved negative regulator of cell death in yeasts, mammals, and plants, via S-nitrosylation. Biotin-switch assays indicated that SlPDK1 is a target of S-nitrosylation. Moreover, the kinase activity of SlPDK1 was inhibited by S-nitrosoglutathione in a concentration-dependent manner, indicating that SlPDK1 activity is abrogated by S-nitrosylation. The S-nitrosoglutathione–induced inhibitionmore » was reversible in the presence of a reducing agent but additively enhanced by hydrogen peroxide (H 2O 2). Our LC-MS/MS analyses further indicated that SlPDK1 is primarily S-nitrosylated on a cysteine residue at position 128 (Cys 128), and substitution of Cys 128 with serine completely abolished SlPDK1 kinase activity, suggesting that S-nitrosylation of Cys 128 is responsible for SlPDK1 inhibition. In summary, our results establish a potential link between NO-triggered cell death and inhibition of the kinase activity of tomato PDK1.« less

  14. S -Nitrosylation inhibits the kinase activity of tomato phosphoinositide-dependent kinase 1 (PDK1)

    DOE PAGES

    Liu, Jian-Zhong; Duan, Jicheng; Ni, Min; ...

    2017-09-29

    It is well known that the reactive oxygen species NO can trigger cell death in plants and other organisms, but the underlying molecular mechanisms are not well understood. Here we provide evidence that NO may trigger cell death in tomato (Solanum lycopersicum) by inhibiting the activity of phosphoinositide-dependent kinase 1 (SlPDK1), a conserved negative regulator of cell death in yeasts, mammals, and plants, via S-nitrosylation. Biotin-switch assays indicated that SlPDK1 is a target of S-nitrosylation. Moreover, the kinase activity of SlPDK1 was inhibited by S-nitrosoglutathione in a concentration-dependent manner, indicating that SlPDK1 activity is abrogated by S-nitrosylation. The S-nitrosoglutathione–induced inhibitionmore » was reversible in the presence of a reducing agent but additively enhanced by hydrogen peroxide (H 2O 2). Our LC-MS/MS analyses further indicated that SlPDK1 is primarily S-nitrosylated on a cysteine residue at position 128 (Cys 128), and substitution of Cys 128 with serine completely abolished SlPDK1 kinase activity, suggesting that S-nitrosylation of Cys 128 is responsible for SlPDK1 inhibition. In summary, our results establish a potential link between NO-triggered cell death and inhibition of the kinase activity of tomato PDK1.« less

  15. The MPS1 family of protein kinases.

    PubMed

    Liu, Xuedong; Winey, Mark

    2012-01-01

    MPS1 protein kinases are found widely, but not ubiquitously, in eukaryotes. This family of potentially dual-specific protein kinases is among several that regulate a number of steps of mitosis. The most widely conserved MPS1 kinase functions involve activities at the kinetochore in both the chromosome attachment and the spindle checkpoint. MPS1 kinases also function at centrosomes. Beyond mitosis, MPS1 kinases have been implicated in development, cytokinesis, and several different signaling pathways. Family members are identified by virtue of a conserved C-terminal kinase domain, though the N-terminal domain is quite divergent. The kinase domain of the human enzyme has been crystallized, revealing an unusual ATP-binding pocket. The activity, level, and subcellular localization of Mps1 family members are tightly regulated during cell-cycle progression. The mitotic functions of Mps1 kinases and their overexpression in some tumors have prompted the identification of Mps1 inhibitors and their active development as anticancer drugs.

  16. The MPS1 Family of Protein Kinases

    PubMed Central

    Liu, Xuedong; Winey, Mark

    2014-01-01

    MPS1 protein kinases are found widely, but not ubiquitously, in eukaryotes. This family of potentially dual-specific protein kinases is among several that regulate a number of steps of mitosis. The most widely conserved MPS1 kinase functions involve activities at the kinetochore in both the chromosome attachment and the spindle checkpoint. MPS1 kinases also function at centrosomes. Beyond mitosis, MPS1 kinases have been implicated in development, cytokinesis, and several different signaling pathways. Family members are identified by virtue of a conserved C-terminal kinase domain, though the N-terminal domain is quite divergent. The kinase domain of the human enzyme has been crystallized, revealing an unusual ATP-binding pocket. The activity, level, and subcellular localization of Mps1 family members are tightly regulated during cell-cycle progression. The mitotic functions of Mps1 kinases and their overexpression in some tumors have prompted the identification of Mps1 inhibitors and their active development as anticancer drugs. PMID:22482908

  17. Nicotinamide phosphoribosyltransferase protects against ischemic stroke through SIRT1-dependent adenosine monophosphate-activated kinase pathway.

    PubMed

    Wang, Pei; Xu, Tian-Ying; Guan, Yun-Feng; Tian, Wei-Wei; Viollet, Benoit; Rui, Yao-Cheng; Zhai, Qi-Wei; Su, Ding-Feng; Miao, Chao-Yu

    2011-02-01

    Stroke is a leading cause of mortality and disability. Nicotinamide phosphoribosyltransferase (Nampt) is the rate-limiting enzyme in mammalian nicotinamide adenine dinucleotide (NAD)(+) biosynthesis and contributes to cell fate decisions. However, the role of Nampt in brain and stroke remains to be investigated. We used lentivirus-mediated Nampt overexpression and knockdown to manipulate Nampt expression and explore the effects of Nampt in neuronal survival on ischemic stress both in vivo and in vitro. We also used adenosine monophosphate (AMP)-activated kinase-α2 (AMPKα2) and silent mating type information regulation 2 homolog 1 (SIRT1) knockout mice to investigate the underlying mechanisms of Nampt neuroprotection. Nampt inhibition by a highly-specific Nampt inhibitor, FK866, aggravated brain infarction in experimentally cerebral ischemia rats, whereas Nampt overexpression in local brain and Nampt enzymatic product nicotinamide mononucleotide (NMN) reduced ischemia-induced cerebral injuries. Nampt overexpression and knockdown regulated neuron survival via the AMPK pathway. Neuroprotection of Nampt was abolished in AMPKα2(-/-) neurons. In neurons, Nampt positively modulated NAD(+) levels and thereby controlled SIRT1 activity. SIRT1 coprecipitated with serine/threonine kinase 11 (LKB1), an upstream kinase of AMPK, and promoted LKB1 deacetylation in neurons. Nampt-induced LKB1 deacetylation and AMPK activation disappeared in SIRT1(-/-) neurons. In contrast, Ca(2+) /calmodulin-dependent protein kinase kinase-β (CaMKK-β), another upstream kinase of AMPK, was not involved in the neuroprotection of Nampt. More important, Nampt overexpression-induced neuroprotection was abolished in SIRT1(+/-) and AMPKα2(-/-) mice. Our findings reveal that Nampt protects against ischemic stroke through rescuing neurons from death via the SIRT1-dependent AMPK pathway and indicate that Nampt is a new therapeutic target for stroke. Copyright © 2011 American Neurological Association.

  18. Serum- and Glucocorticoid-Inducible Kinase 1 Confers Protection in Cell-Based and in In Vivo Neurotoxin Models via the c-Jun N-Terminal Kinase Signaling Pathway

    PubMed Central

    Iqbal, Sarah; Howard, Shannon

    2015-01-01

    Serum glucocorticoid kinase 1 (SGK1) has been shown to be protective in models of Parkinson's disease, but the details by which it confers benefit is unknown. The current study was designed to investigate the details by which SGK1 confers neuroprotection. To do this we employed a cellular neurodegeneration model to investigate c-Jun N-terminal kinase (JNK) signaling and endoplasmic reticulum (ER) stress induced by 6-hydroxydopamine. SGK1-expressing adenovirus was created and used to overexpress SGK1 in SH-SY5Y cells, and dexamethasone was used to increase endogenous expression of SGK1. Oxidative stress, mitochondrial dysfunction, and cell death were monitored to test the protective effect of SGK1. To investigate the effect of SGK1 overexpression in vivo, SGK1-expressing adenovirus was injected into the striatum of mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, and protection of dopaminergic neurons was quantitatively assessed by tyrosine hydroxylase immunohistochemistry. SGK1 overexpression was found to decrease reactive oxygen species generation, alleviate mitochondrial dysfunction, and rescue cell death in vitro and in vivo by inactivating mitogen-activated protein kinase kinase 4 (MKK4), JNK, and glycogen synthase kinase 3β (GSK3β) and thereby decreasing ER and oxidative stress. These results suggest that therapeutic strategies for activation of SGK1 may have the potential to be neuroprotective by deactivating the JNK and GSK3β pathways. PMID:25825522

  19. Mechanisms of regulation of SNF1/AMPK/SnRK1 protein kinases.

    PubMed

    Crozet, Pierre; Margalha, Leonor; Confraria, Ana; Rodrigues, Américo; Martinho, Cláudia; Adamo, Mattia; Elias, Carlos A; Baena-González, Elena

    2014-01-01

    The SNF1 (sucrose non-fermenting 1)-related protein kinases 1 (SnRKs1) are the plant orthologs of the budding yeast SNF1 and mammalian AMPK (AMP-activated protein kinase). These evolutionarily conserved kinases are metabolic sensors that undergo activation in response to declining energy levels. Upon activation, SNF1/AMPK/SnRK1 kinases trigger a vast transcriptional and metabolic reprograming that restores energy homeostasis and promotes tolerance to adverse conditions, partly through an induction of catabolic processes and a general repression of anabolism. These kinases typically function as a heterotrimeric complex composed of two regulatory subunits, β and γ, and an α-catalytic subunit, which requires phosphorylation of a conserved activation loop residue for activity. Additionally, SNF1/AMPK/SnRK1 kinases are controlled by multiple mechanisms that have an impact on kinase activity, stability, and/or subcellular localization. Here we will review current knowledge on the regulation of SNF1/AMPK/SnRK1 by upstream components, post-translational modifications, various metabolites, hormones, and others, in an attempt to highlight both the commonalities of these essential eukaryotic kinases and the divergences that have evolved to cope with the particularities of each one of these systems.

  20. Mechanisms of regulation of SNF1/AMPK/SnRK1 protein kinases

    PubMed Central

    Crozet, Pierre; Margalha, Leonor; Confraria, Ana; Rodrigues, Américo; Martinho, Cláudia; Adamo, Mattia; Elias, Carlos A.; Baena-González, Elena

    2014-01-01

    The SNF1 (sucrose non-fermenting 1)-related protein kinases 1 (SnRKs1) are the plant orthologs of the budding yeast SNF1 and mammalian AMPK (AMP-activated protein kinase). These evolutionarily conserved kinases are metabolic sensors that undergo activation in response to declining energy levels. Upon activation, SNF1/AMPK/SnRK1 kinases trigger a vast transcriptional and metabolic reprograming that restores energy homeostasis and promotes tolerance to adverse conditions, partly through an induction of catabolic processes and a general repression of anabolism. These kinases typically function as a heterotrimeric complex composed of two regulatory subunits, β and γ, and an α-catalytic subunit, which requires phosphorylation of a conserved activation loop residue for activity. Additionally, SNF1/AMPK/SnRK1 kinases are controlled by multiple mechanisms that have an impact on kinase activity, stability, and/or subcellular localization. Here we will review current knowledge on the regulation of SNF1/AMPK/SnRK1 by upstream components, post-translational modifications, various metabolites, hormones, and others, in an attempt to highlight both the commonalities of these essential eukaryotic kinases and the divergences that have evolved to cope with the particularities of each one of these systems. PMID:24904600

  1. Monopolar spindle 1 (MPS1) kinase promotes production of closed MAD2 (C-MAD2) conformer and assembly of the mitotic checkpoint complex.

    PubMed

    Tipton, Aaron R; Ji, Wenbin; Sturt-Gillespie, Brianne; Bekier, Michael E; Wang, Kexi; Taylor, William R; Liu, Song-Tao

    2013-12-06

    MPS1 kinase is an essential component of the spindle assembly checkpoint (SAC), but its functioning mechanisms are not fully understood. We have shown recently that direct interaction between BUBR1 and MAD2 is critical for assembly and function of the human mitotic checkpoint complex (MCC), the SAC effector. Here we report that inhibition of MPS1 kinase activity by reversine disrupts BUBR1-MAD2 as well as CDC20-MAD2 interactions, causing premature activation of the anaphase-promoting complex/cyclosome. The effect of MPS1 inhibition is likely due to reduction of closed MAD2 (C-MAD2), as expressing a MAD2 mutant (MAD2(L13A)) that is locked in the C conformation rescued the checkpoint defects. In the presence of reversine, exogenous C-MAD2 does not localize to unattached kinetochores but is still incorporated into the MCC. Contrary to a previous report, we found that sustained MPS1 activity is required for maintaining both the MAD1·C-MAD2 complex and open MAD2 (O-MAD2) at unattached kinetochores to facilitate C-MAD2 production. Additionally, mitotic phosphorylation of BUBR1 is also affected by MPS1 inhibition but seems dispensable for MCC assembly. Our results support the notion that MPS1 kinase promotes C-MAD2 production and subsequent MCC assembly to activate the SAC.

  2. Persistence of the cell-cycle checkpoint kinase Wee1 in SadA- and SadB-deficient neurons disrupts neuronal polarity.

    PubMed

    Müller, Myriam; Lutter, Daniela; Püschel, Andreas W

    2010-01-15

    Wee1 is well characterized as a cell-cycle checkpoint kinase that regulates the entry into mitosis in dividing cells. Here we identify a novel function of Wee1 in postmitotic neurons during the establishment of distinct axonal and dendritic compartments, which is an essential step during neuronal development. Wee1 is expressed in unpolarized neurons but is downregulated after neurons have extended an axon. Suppression of Wee1 impairs the formation of minor neurites but does not interfere with axon formation. However, neuronal polarity is disrupted when neurons fail to downregulate Wee1. The kinases SadA and SadB (Sad kinases) phosphorylate Wee1 and are required to initiate its downregulation in polarized neurons. Wee1 expression persists in neurons that are deficient in SadA and SadB and disrupts neuronal polarity. Knockdown of Wee1 rescues the Sada(-/-);Sadb(-/-) mutant phenotype and restores normal polarity in these neurons. Our results demonstrate that the regulation of Wee1 by SadA and SadB kinases is essential for the differentiation of polarized neurons.

  3. Ascl1-induced neuronal differentiation of P19 cells requires expression of a specific inhibitor protein of cAMP-dependent protein kinase

    PubMed Central

    Huang, Holly S.; Turner, David L.; Thompson, Robert C.; Uhler, Michael D.

    2011-01-01

    cAMP-dependent protein kinase (PKA) plays a critical role in nervous system development by modulating sonic hedgehog and bone morphogenetic protein signaling. In the current studies, P19 embryonic carcinoma cells were neuronally differentiated by expression of the proneural basic helix-loop-helix transcription factor Ascl1. After expression of Ascl1, but prior to expression of neuronal markers such as microtubule associated protein 2 and neuronal β-tubulin, P19 cells demonstrated a large, transient increase in both mRNA and protein for the endogenous protein kinase inhibitor (PKI)β. PKIβ-targeted shRNA constructs both reduced the levels of PKIβ expression and blocked the neuronal differentiation of P19 cells. This inhibition of differentiation was rescued by transfection of a shRNA-resistant expression vector for the PKIβ protein, and this rescue required the PKA-specific inhibitory sequence of the PKIβprotein. PKIβ played a very specific role in the Ascl1-mediated differentiation process since other PKI isoforms were unable to rescue the deficit conferred by shRNA-mediated knockdown of PKIβ. Our results define a novel requirement for PKIβ and its inhibition of PKA during neuronal differentiation of P19 cells. PMID:21623794

  4. 4SC-202 activates ASK1-dependent mitochondrial apoptosis pathway to inhibit hepatocellular carcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Meili, E-mail: fumeilidrlinyi@tom.com; Wan, Fuqiang; Li, Zhengling

    The aim of the present study is to investigate the potential anti-hepatocellular carcinoma (HCC) cell activity by 4SC-202, a novel class I HDAC inhibitor (HDACi). The associated signaling mechanisms were also analyzed. We showed that 4SC-202 treatment induced potent cytotoxic and proliferation–inhibitory activities against established HCC cell lines (HepG2, HepB3, SMMC-7721) and patient-derived primary HCC cells. Further, adding 4SC-202 in HCC cells activated mitochondrial apoptosis pathway, which was evidenced by mitochondrial permeability transition pore (mPTP) opening, cytochrome C cytosol release and caspase-3/-9 activation. Inhibition of this apoptosis pathway, by caspase-3/-9 inhibitors, mPTP blockers, or by shRNA-mediated knockdown of cyclophilin-D (Cyp-D,more » a key component of mPTP), significantly attenuated 4SC-202-induced HCC cell death and apoptosis. Reversely, over-expression of Cyp-D enhanced 4SC-202's sensitivity in HCC cells. Further studies showed that 4SC-202 induced apoptosis signal-regulating kinase 1 (ASK1) activation, causing it translocation to mitochondria and physical association with Cyp-D. This mitochondrial ASK1-Cyp-D complexation appeared required for mediating 4SC-202-induced apoptosis activation. ASK1 stable knockdown by targeted-shRNAs largely inhibited 4SC-202-induced mPTP opening, cytochrome C release, and following HCC cell apoptotic death. Together, we suggest that 4SC-202 activates ASK1-dependent mitochondrial apoptosis pathway to potently inhibit human HCC cells. - Highlights: • 4SC-202 exerts potent anti-proliferative and cytotoxic activity against established/primary HCC cells. • SC-202-induced anti-HCC cell activity relies on caspase-dependent apoptosis activation. • 4SC-202 activates Cyp-D-dependent mitochondrial apoptosis pathway in HCC cells. • 4SC-202 activates ASK1 in HCC cells, causing it translocation to mitochondria. • Mitochondrial ASK1-Cyp-D complexation mediates 4SC-202's activity in HCC cells.« less

  5. Crystal structure of casein kinase-1, a phosphate-directed protein kinase.

    PubMed Central

    Xu, R M; Carmel, G; Sweet, R M; Kuret, J; Cheng, X

    1995-01-01

    The structure of a truncated variant of casein kinase-1 from Schizosaccharomyces pombe, has been determined in complex with MgATP at 2.0 A resolution. The model resembles the 'closed', ATP-bound conformations of the cyclin-dependent kinase 2 and the cAMP-dependent protein kinase, with clear differences in the structure of surface loops that impart unique features to casein kinase-1. The structure is of unphosphorylated, active conformation of casein kinase-1 and the peptide-binding site is fully accessible to substrate. Images PMID:7889932

  6. Checkpoint kinase 1-induced phosphorylation of O-linked β-N-acetylglucosamine transferase regulates the intermediate filament network during cytokinesis.

    PubMed

    Li, Zhe; Li, Xueyan; Nai, Shanshan; Geng, Qizhi; Liao, Ji; Xu, Xingzhi; Li, Jing

    2017-12-01

    Checkpoint kinase 1 (Chk1) is a kinase instrumental for orchestrating DNA replication, DNA damage checkpoints, the spindle assembly checkpoint, and cytokinesis. Despite Chk1's pivotal role in multiple cellular processes, many of its substrates remain elusive. Here, we identified O- linked β- N -acetylglucosamine ( O -GlcNAc)-transferase (OGT) as one of Chk1's substrates. We found that Chk1 interacts with and phosphorylates OGT at Ser-20, which not only stabilizes OGT, but also is required for cytokinesis. Phospho-specific antibodies of OGT-pSer-20 exhibited specific signals at the midbody of the cell, consistent with midbody localization of OGT as reported previously. Moreover, phospho-deficient OGT (S20A) cells attenuated cellular O -GlcNAcylation levels and also reduced phosphorylation of Ser-71 in the cytoskeletal protein vimentin, a modification critical for severing vimentin filament during cytokinesis. Consequently, elongated vimentin bridges were observed in cells depleted of OGT via an si OGT- based approach. Lastly, expression of plasmids resistant to si OGT efficiently rescued the vimentin bridge phenotype, but the OGT-S20A rescue plasmids did not. Our results suggest a Chk1-OGT-vimentin pathway that regulates the intermediate filament network during cytokinesis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Modulation of ASK1 expression during overexpression of Trx and HSP70 in stressed fish liver mitochondria.

    PubMed

    Padmini, Ekambaram; Vijaya Geetha, Bose

    2009-09-01

    Mitochondrial heat shock protein 70 (mtHSP70) is found to play a primary role in cellular defense against physiological stress like exposure to environmental contaminants and helpful in the maintenance of cellular homeostasis by promoting the cell survival. In the present investigation, the environmental-stress-induced increase in mtHSP70 levels along with the quantification of apoptosis signal regulating kinase 1 (ASK1) and thioredoxin (Trx) were measured in the liver mitochondria of grey mullets (Mugil cephalus) collected from the polluted Ennore estuary and the unpolluted Kovalam estuary for a period of 2 years. The results showed elevated lipid peroxide (LPO) and decreased total antioxidant capacity along with the decrease in mitochondrial viability percentage. Mitochondrial HSP70, ASK1, and Trx levels were increased under this stress condition. A 42% increase in LPO levels and 18% decrease in mitochondrial survivality were observed in the polluted-site fish liver mitochondria when compared to the results of unpolluted estuary. We also report that, under observed oxidative stress condition in Ennore fish samples, the ASK1 levels are only moderately elevated (13% increase). This may be due to mitochondrial-HSP70-induced adaptive tolerance signaling for the activation of Trx (22% increase) which suppresses the ASK1 expression thereby promoting the cell survival that leads to the maintenance of the cellular homeostasis.

  8. Discovery of Type II Inhibitors of TGFβ-Activated Kinase 1 (TAK1) and Mitogen-Activated Protein Kinase Kinase Kinase Kinase 2 (MAP4K2)

    PubMed Central

    2015-01-01

    We developed a pharmacophore model for type II inhibitors that was used to guide the construction of a library of kinase inhibitors. Kinome-wide selectivity profiling of the library resulted in the identification of a series of 4-substituted 1H-pyrrolo[2,3-b]pyridines that exhibited potent inhibitory activity against two mitogen-activated protein kinases (MAPKs), TAK1 (MAP3K7) and MAP4K2, as well as pharmacologically well interrogated kinases such as p38α (MAPK14) and ABL. Further investigation of the structure–activity relationship (SAR) resulted in the identification of potent dual TAK1 and MAP4K2 inhibitors such as 1 (NG25) and 2 as well as MAP4K2 selective inhibitors such as 16 and 17. Some of these inhibitors possess good pharmacokinetic properties that will enable their use in pharmacological studies in vivo. A 2.4 Å cocrystal structure of TAK1 in complex with 1 confirms that the activation loop of TAK1 assumes the DFG-out conformation characteristic of type II inhibitors. PMID:25075558

  9. Thymoquinone inhibits TNF-α-induced inflammation and cell adhesion in rheumatoid arthritis synovial fibroblasts by ASK1 regulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umar, Sadiq; Hedaya, Omar; Singh, Anil K.

    Tumor necrosis factor-α (TNF-α) is a pro-inflammatory cytokine produced by monocytes/macrophage that plays a pathological role in rheumatoid arthritis (RA). In this study, we investigate the effect of thymoquinone (TQ), a phytochemical found in Nigella sativa, in regulating TNF-α-induced RA synovial fibroblast (RA-FLS) activation. Treatment with TQ (1–5 μM) had no marked effect on the viability of human RA-FLS. Pre-treatment of TQ inhibited TNF-α-induced interleukin-6 (IL-6) and IL-8 production and ICAM-1, VCAM-1, and cadherin-11 (Cad-11) expression in RA-FLS (p < 0.01). Evaluation of the signaling events showed that TQ inhibited TNF-α-induced phospho-p38 and phospho-JNK expression, but had no inhibitory effectmore » on NF-κB pathway, in RA-FLS (p < 0.05; n = 4). Interestingly, we observed that selective down-regulation of TNF-α-induced phospho-p38 and phospho-JNK activation by TQ is elicited through inhibition of apoptosis-regulated signaling kinase 1 (ASK1). Furthermore, TNF-α selectively induced phosphorylation of ASK1 at Thr845 residue in RA-FLS, which was inhibited by TQ pretreatment in a dose dependent manner (p < 0.01). Pre-treatment of RA-FLS with ASK1 inhibitor (TC ASK10), blocked TNF-α induced expression of ICAM-1, VCAM-1, and Cad-11. Our results suggest that TNF-α-induced ASK1-p38/JNK pathway is an important mediator of cytokine synthesis and enhanced expression of adhesion molecule in RA-FLS and TQ, by selectively inhibiting this pathway, may have a potential therapeutic value in regulating tissue destruction observed in RA. - Highlights: • Evolving evidence suggests that ASK1 plays a central role in rheumatic arthritis (RA). • TNF-α activates ASK1, which regulate downstream signaling through JNK/p38 activation in RA-FLS. • ASK1 may be used as a potential therapeutic target in RA. • Thymoquinone was able to selectively inhibit TNF-α-induced phosphorylation of ASK1 in RA-FLS. • Thymoquinone might serve as a potential small

  10. ASK1 regulates the survival of neuroblastoma cells by interacting with TLX and stabilizing HIF-1α.

    PubMed

    Sobhan, Praveen K; Zhai, Qiwei; Green, Lydia C; Hansford, Loen M; Funa, Keiko

    2017-01-01

    Elevated expression of TLX (also called as NR2E1) in neuroblastoma (NB) correlates with unfavorable prognosis, and TLX is required for self-renewal of NB cells. Knockdown of TLX has been shown to reduce the NB sphere-forming ability. ASK1 (MAP3K5) and TLX expression are both enhanced in SP (side population) NB and patient-derived primary NB sphere cell lines, but the majority of non-SP NB lines express lower ASK1 expression. We found that ASK1 phosphorylated and stabilized TLX, which led induction of HIF-1α, and its downstream VEGF-A in an Akt dependent manner. In depleting ASK1 upon hypoxia, TLX decreased and the apoptosis ratio of NB cells was enhanced, while low-ASK1-expressing NB cell lines were refractory in TUNEL assay by using flow cytometry. Interestingly, primary NB spheres cell lines express only high levels of active pASK1Thr-838 but the established cell lines expressed inhibitory pASK1Ser-966, and both could be targeted by ASK1 depletion. We report a novel pro-survival role of ASK1 in the tumorigenic NB cell populations, which may be applied as a therapeutic target, inducing apoptosis specifically in cancer stem cells. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  11. TOR Complex 2-Regulated Protein Kinase Fpk1 Stimulates Endocytosis via Inhibition of Ark1/Prk1-Related Protein Kinase Akl1 in Saccharomyces cerevisiae.

    PubMed

    Roelants, Françoise M; Leskoske, Kristin L; Pedersen, Ross T A; Muir, Alexander; Liu, Jeffrey M-H; Finnigan, Gregory C; Thorner, Jeremy

    2017-04-01

    Depending on the stress, plasma membrane alterations activate or inhibit yeast target of rapamycin (TOR) complex 2, which, in turn, upregulates or downregulates the activity of its essential downstream effector, protein kinase Ypk1. Through phosphorylation of multiple substrates, Ypk1 controls many processes that restore homeostasis. One such substrate is protein kinase Fpk1, which is negatively regulated by Ypk1. Fpk1 phosphorylates and stimulates flippases that translocate aminoglycerophospholipids from the outer to the inner leaflet of the plasma membrane. Fpk1 has additional roles, but other substrates were uncharacterized. We show that Fpk1 phosphorylates and inhibits protein kinase Akl1, related to protein kinases Ark1 and Prk1, which modulate the dynamics of actin patch-mediated endocytosis. Akl1 has two Fpk1 phosphorylation sites (Ark1 and Prk1 have none) and is hypophosphorylated when Fpk1 is absent. Conversely, under conditions that inactivate TORC2-Ypk1 signaling, which alleviates Fpk1 inhibition, Akl1 is hyperphosphorylated. Monitoring phosphorylation of known Akl1 substrates (Sla1 and Ent2) confirmed that Akl1 is hyperactive when not phosphorylated by Fpk1. Fpk1-mediated negative regulation of Akl1 enhances endocytosis, because an Akl1 mutant immune to Fpk1 phosphorylation causes faster dissociation of Sla1 from actin patches, confers elevated resistance to doxorubicin (a toxic compound whose entry requires endocytosis), and impedes Lucifer yellow uptake (a marker of fluid phase endocytosis). Thus, TORC2-Ypk1, by regulating Fpk1-mediated phosphorylation of Akl1, adjusts the rate of endocytosis. Copyright © 2017 Roelants et al.

  12. Discovery of Type II Inhibitors of TGFβ-Activated Kinase 1 (TAK1) and Mitogen-Activated Protein Kinase Kinase Kinase Kinase 2 (MAP4K2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Li; Nomanbhoy, Tyzoon; Gurbani, Deepak

    Here, we developed a pharmacophore model for type II inhibitors that was used to guide the construction of a library of kinase inhibitors. Kinome-wide selectivity profiling of the library resulted in the identification of a series of 4-substituted 1H-pyrrolo[2,3-b]pyridines that exhibited potent inhibitory activity against two mitogen-activated protein kinases (MAPKs), TAK1 (MAP3K7) and MAP4K2, as well as pharmacologically well interrogated kinases such as p38α (MAPK14) and ABL. Further investigation of the structure–activity relationship (SAR) resulted in the identification of potent dual TAK1 and MAP4K2 inhibitors such as 1 (NG25) and 2 as well as MAP4K2 selective inhibitors such as 16more » and 17. Some of these inhibitors possess good pharmacokinetic properties that will enable their use in pharmacological studies in vivo. Lastly, a 2.4 Å cocrystal structure of TAK1 in complex with 1 confirms that the activation loop of TAK1 assumes the DFG-out conformation characteristic of type II inhibitors.« less

  13. Discovery of Type II Inhibitors of TGFβ-Activated Kinase 1 (TAK1) and Mitogen-Activated Protein Kinase Kinase Kinase Kinase 2 (MAP4K2)

    DOE PAGES

    Tan, Li; Nomanbhoy, Tyzoon; Gurbani, Deepak; ...

    2014-07-17

    Here, we developed a pharmacophore model for type II inhibitors that was used to guide the construction of a library of kinase inhibitors. Kinome-wide selectivity profiling of the library resulted in the identification of a series of 4-substituted 1H-pyrrolo[2,3-b]pyridines that exhibited potent inhibitory activity against two mitogen-activated protein kinases (MAPKs), TAK1 (MAP3K7) and MAP4K2, as well as pharmacologically well interrogated kinases such as p38α (MAPK14) and ABL. Further investigation of the structure–activity relationship (SAR) resulted in the identification of potent dual TAK1 and MAP4K2 inhibitors such as 1 (NG25) and 2 as well as MAP4K2 selective inhibitors such as 16more » and 17. Some of these inhibitors possess good pharmacokinetic properties that will enable their use in pharmacological studies in vivo. Lastly, a 2.4 Å cocrystal structure of TAK1 in complex with 1 confirms that the activation loop of TAK1 assumes the DFG-out conformation characteristic of type II inhibitors.« less

  14. SOS2-LIKE PROTEIN KINASE5, an SNF1-RELATED PROTEIN KINASE3-Type Protein Kinase, Is Important for Abscisic Acid Responses in Arabidopsis through Phosphorylation of ABSCISIC ACID-INSENSITIVE51[OPEN

    PubMed Central

    Zhou, Xiaona; Hao, Hongmei; Zhang, Yuguo; Bai, Yili; Zhu, Wenbo; Qin, Yunxia; Yuan, Feifei; Zhao, Feiyi; Wang, Mengyao; Hu, Jingjiang; Xu, Hong; Guo, Aiguang; Zhao, Huixian; Zhao, Yang; Cao, Cuiling; Yang, Yongqing; Schumaker, Karen S.; Guo, Yan; Xie, Chang Gen

    2015-01-01

    Abscisic acid (ABA) plays an essential role in seed germination. In this study, we demonstrate that one SNF1-RELATED PROTEIN KINASE3-type protein kinase, SOS2-LIKE PROTEIN KINASE5 (PKS5), is involved in ABA signal transduction via the phosphorylation of an interacting protein, ABSCISIC ACID-INSENSITIVE5 (ABI5). We found that pks5-3 and pks5-4, two previously identified PKS5 superactive kinase mutants with point mutations in the PKS5 FISL/NAF (a conserved peptide that is necessary for interaction with SOS3 or SOS3-LIKE CALCIUM BINDING PROTEINs) motif and the kinase domain, respectively, are hypersensitive to ABA during seed germination. PKS5 was found to interact with ABI5 in yeast (Saccharomyces cerevisiae), and this interaction was further confirmed in planta using bimolecular fluorescence complementation. Genetic studies revealed that ABI5 is epistatic to PKS5. PKS5 phosphorylates a serine (Ser) residue at position 42 in ABI5 and regulates ABA-responsive gene expression. This phosphorylation was induced by ABA in vivo and transactivated ABI5. Expression of ABI5, in which Ser-42 was mutated to alanine, could not fully rescue the ABA-insensitive phenotypes of the abi5-8 and pks5-4abi5-8 mutants. In contrast, mutating Ser-42 to aspartate rescued the ABA insensitivity of these mutants. These data demonstrate that PKS5-mediated phosphorylation of ABI5 at Ser-42 is critical for the ABA regulation of seed germination and gene expression in Arabidopsis (Arabidopsis thaliana). PMID:25858916

  15. Opposite Roles of RNase and Kinase Activities of Inositol-Requiring Enzyme 1 (IRE1) on HSV-1 Replication

    PubMed Central

    Su, Airong; Wang, Huanru; Li, Yanlei; Wang, Xiaohui; Chen, Deyan; Wu, Zhiwei

    2017-01-01

    In response to the endoplasmic reticulum (ER) stress induced by herpes simplex virus type 1 (HSV-1) infection, host cells activate the unfolded protein response (UPR) to reduce the protein-folding burden in the ER. The regulation of UPR upon HSV-1 infection is complex, and the downstream effectors can be detrimental to viral replication. Therefore, HSV-1 copes with the UPR to create a beneficial environment for its replication. UPR has three branches, including protein kinase RNA (PKR)-like ER kinase (PERK), inositol-requiring enzyme 1 (IRE1), and activated transcription factor 6 (ATF6). IRE1α is the most conserved branch of UPR which has both RNase and kinase activities. Previous studies have shown that IRE1α RNase activity was inactivated during HSV-1 infection. However, the effect of the two activities of IRE1α on HSV-1 replication remains unknown. Results in this study showed that IRE1α expression was up-regulated during HSV-1 infection. We found that in HEC-1-A cells, increasing RNase activity, or inhibiting kinase activity of IRE1α led to viral suppression, indicating that the kinase activity of IRE1α was beneficial, while the RNase activity was detrimental to viral replication. Further evidence showed that the kinase activity of IRE1α leads to the activation of the JNK (c-Jun N-terminal kinases) pathway, which enhances viral replication. Taken together, our evidence suggests that IRE1α is involved in HSV-1 replication, and its RNase and kinase activities play differential roles during viral infection. PMID:28832521

  16. ROCK1 and LIM kinase modulate retrovirus particle release and cell-cell transmission events.

    PubMed

    Wen, Xiaoyun; Ding, Lingmei; Wang, Jaang-Jiun; Qi, Mingli; Hammonds, Jason; Chu, Hin; Chen, Xuemin; Hunter, Eric; Spearman, Paul

    2014-06-01

    The assembly and release of retroviruses from the host cells require dynamic interactions between viral structural proteins and a variety of cellular factors. It has been long speculated that the actin cytoskeleton is involved in retrovirus production, and actin and actin-related proteins are enriched in HIV-1 virions. However, the specific role of actin in retrovirus assembly and release remains unknown. Here we identified LIM kinase 1 (LIMK1) as a cellular factor regulating HIV-1 and Mason-Pfizer monkey virus (M-PMV) particle release. Depletion of LIMK1 reduced not only particle output but also virus cell-cell transmission and was rescued by LIMK1 replenishment. Depletion of the upstream LIMK1 regulator ROCK1 inhibited particle release, as did a competitive peptide inhibitor of LIMK1 activity that prevented cofilin phosphorylation. Disruption of either ROCK1 or LIMK1 led to enhanced particle accumulation on the plasma membrane as revealed by total internal reflection fluorescence microscopy (TIRFM). Electron microscopy demonstrated a block to particle release, with clusters of fully mature particles on the surface of the cells. Our studies support a model in which ROCK1- and LIMK1-regulated phosphorylation of cofilin and subsequent local disruption of dynamic actin turnover play a role in retrovirus release from host cells and in cell-cell transmission events. Viruses often interact with the cellular cytoskeletal machinery in order to deliver their components to the site of assembly and budding. This study indicates that a key regulator of actin dynamics at the plasma membrane, LIM kinase, is important for the release of viral particles for HIV as well as for particle release by a distantly related retrovirus, Mason-Pfizer monkey virus. Moreover, disruption of LIM kinase greatly diminished the spread of HIV from cell to cell. These findings suggest that LIM kinase and its dynamic modulation of the actin cytoskeleton in the cell may be an important host factor for

  17. RNA Interference Screen to Identify Kinases That Suppress Rescue of ΔF508-CFTR.

    PubMed

    Trzcińska-Daneluti, Agata M; Chen, Anthony; Nguyen, Leo; Murchie, Ryan; Jiang, Chong; Moffat, Jason; Pelletier, Lawrence; Rotin, Daniela

    2015-06-01

    Cystic Fibrosis (CF) is an autosomal recessive disorder caused by mutations in the gene encoding the Cystic fibrosis transmembrane conductance regulator (CFTR). ΔF508-CFTR, the most common disease-causing CF mutant, exhibits folding and trafficking defects and is retained in the endoplasmic reticulum, where it is targeted for proteasomal degradation. To identify signaling pathways involved in ΔF508-CFTR rescue, we screened a library of endoribonuclease-prepared short interfering RNAs (esiRNAs) that target ∼750 different kinases and associated signaling proteins. We identified 20 novel suppressors of ΔF508-CFTR maturation, including the FGFR1. These were subsequently validated by measuring channel activity by the YFP halide-sensitive assay following shRNA-mediated knockdown, immunoblotting for the mature (band C) ΔF508-CFTR and measuring the amount of surface ΔF508-CFTR by ELISA. The role of FGFR signaling on ΔF508-CFTR trafficking was further elucidated by knocking down FGFRs and their downstream signaling proteins: Erk1/2, Akt, PLCγ-1, and FRS2. Interestingly, inhibition of FGFR1 with SU5402 administered to intestinal organoids (mini-guts) generated from the ileum of ΔF508-CFTR homozygous mice resulted in a robust ΔF508-CFTR rescue. Moreover, combination of SU5402 and VX-809 treatments in cells led to an additive enhancement of ΔF508-CFTR rescue, suggesting these compounds operate by different mechanisms. Chaperone array analysis on human bronchial epithelial cells harvested from ΔF508/ΔF508-CFTR transplant patients treated with SU5402 identified altered expression of several chaperones, an effect validated by their overexpression or knockdown experiments. We propose that FGFR signaling regulates specific chaperones that control ΔF508-CFTR maturation, and suggest that FGFRs may serve as important targets for therapeutic intervention for the treatment of CF. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. The tumor suppressor PTEN and the PDK1 kinase regulate formation of the columnar neural epithelium

    PubMed Central

    Grego-Bessa, Joaquim; Bloomekatz, Joshua; Castel, Pau; Omelchenko, Tatiana; Baselga, José; Anderson, Kathryn V

    2016-01-01

    Epithelial morphogenesis and stability are essential for normal development and organ homeostasis. The mouse neural plate is a cuboidal epithelium that remodels into a columnar pseudostratified epithelium over the course of 24 hr. Here we show that the transition to a columnar epithelium fails in mutant embryos that lack the tumor suppressor PTEN, although proliferation, patterning and apical-basal polarity markers are normal in the mutants. The Pten phenotype is mimicked by constitutive activation of PI3 kinase and is rescued by the removal of PDK1 (PDPK1), but does not depend on the downstream kinases AKT and mTORC1. High resolution imaging shows that PTEN is required for stabilization of planar cell packing in the neural plate and for the formation of stable apical-basal microtubule arrays. The data suggest that appropriate levels of membrane-associated PDPK1 are required for stabilization of apical junctions, which promotes cell elongation, during epithelial morphogenesis. DOI: http://dx.doi.org/10.7554/eLife.12034.001 PMID:26809587

  19. Akt3 kinase suppresses pinocytosis of low-density lipoprotein by macrophages via a novel WNK/SGK1/Cdc42 protein pathway

    PubMed Central

    Ding, Liang; Zhang, Lifang; Kim, Michael; Byzova, Tatiana; Podrez, Eugene

    2017-01-01

    Fluid-phase pinocytosis of LDL by macrophages is regarded as a novel promising target to reduce macrophage cholesterol accumulation in atherosclerotic lesions. The mechanisms of regulation of fluid-phase pinocytosis in macrophages and, specifically, the role of Akt kinases are poorly understood. We have found previously that increased lipoprotein uptake via the receptor-independent process in Akt3 kinase-deficient macrophages contributes to increased atherosclerosis in Akt3−/− mice. The mechanism by which Akt3 deficiency promotes lipoprotein uptake in macrophages is unknown. We now report that Akt3 constitutively suppresses macropinocytosis in macrophages through a novel WNK1/SGK1/Cdc42 pathway. Mechanistic studies have demonstrated that the lack of Akt3 expression in murine and human macrophages results in increased expression of with-no-lysine kinase 1 (WNK1), which, in turn, leads to increased activity of serum and glucocorticoid-inducible kinase 1 (SGK1). SGK1 promotes expression of the Rho family GTPase Cdc42, a positive regulator of actin assembly, cell polarization, and pinocytosis. Individual suppression of WNK1 expression, SGK1, or Cdc42 activity in Akt3-deficient macrophages rescued the phenotype. These results demonstrate that Akt3 is a specific negative regulator of macropinocytosis in macrophages. PMID:28389565

  20. Glutathione S-transferase class mu regulation of apoptosis signal-regulating kinase 1 protein during VCD-induced ovotoxicity in neonatal rat ovaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharya, Poulomi; Madden, Jill A.; Sen, Nivedita

    2013-02-15

    4-Vinylcyclohexene diepoxide (VCD) destroys ovarian primordial and small primary follicles via apoptosis. In mice, VCD exposure induces ovarian mRNA expression of glutathione S-transferase (GST) family members, including isoform mu (Gstm). Extra-ovarian GSTM negatively regulates pro-apoptotic apoptosis signal-regulating kinase 1 (ASK1) through protein complex formation, which dissociates during stress, thereby initiating ASK1-induced apoptosis. The present study investigated the ovarian response of Gstm mRNA and protein to VCD. Induction of Ask1 mRNA at VCD-induced follicle loss onset was determined. Ovarian GSTM:ASK1 protein complex formation was investigated and VCD exposure effects thereon evaluated. Phosphatidylinositol-3 kinase (PI3K) regulation of GSTM protein was also studied.more » Postnatal day (PND) 4 rat ovaries were cultured in control media ± 1) VCD (30 μM) for 2–8 days; 2) VCD (30 μM) for 2 days, followed by incubation in control media for 4 days (acute VCD exposure); or 3) LY294002 (20 μM) for 6 days. VCD exposure did not alter Gstm mRNA expression, however, GSTM protein increased (P < 0.05) after 6 days of both the acute and chronic treatments. Ask1 mRNA increased (0.33-fold; P < 0.05) relative to control after 6 days of VCD exposure. Ovarian GSTM:ASK1 protein complex formation was confirmed and, relative to control, the amount of GSTM bound to ASK1 increased 33% (P < 0.05) by chronic but with no effect of acute VCD exposure. PI3K inhibition increased (P < 0.05) GSTM protein by 40% and 71% on d4 and d6, respectively. These findings support involvement of GSTM in the ovarian response to VCD exposure, through regulation of pro-apoptotic ASK1. - Highlights: ► GSTM protein increases in response to ovarian VCD exposure. ► VCD increases Ask1 mRNA at the onset of follicle loss. ► Ovarian GSTM binds more ASK1 protein during VCD-induced ovotoxicity. ► PI3K regulates ovarian GSTM protein.« less

  1. Structural and mechanistic insights into Mps1 kinase activation.

    PubMed

    Wang, Wei; Yang, Yuting; Gao, Yuefeng; Xu, Quanbin; Wang, Feng; Zhu, Songcheng; Old, William; Resing, Katheryn; Ahn, Natalie; Lei, Ming; Liu, Xuedong

    2009-08-01

    Mps1 is one of the several essential kinases whose activation is required for robust mitotic spindle checkpoint signalling. The activity of Mps1 is tightly regulated and increases dramatically during mitosis or in response to spindle damage. To understand the molecular mechanism underlying Mps1 regulation, we determined the crystal structure of the kinase domain of Mps1. The 2.7-A-resolution crystal structure shows that the Mps1 kinase domain adopts a unique inactive conformation. Intramolecular interactions between the key Glu residue in the C helix of the N-terminal lobe and the backbone amides in the catalytic loop lock the kinase in the inactive conformation. Autophosphorylation appears to be a priming event for kinase activation. We identified Mps1 autophosphorylation sites in the activation and the P+1 loops. Whereas activation loop autophosphorylation enhances kinase activity, autophosphorylation at the P+1 loop (T686) is associated with the active kinase. Mutation of T686 autophosphorylation site impairs both autophosphorylation and transphosphorylation. Furthermore, we demonstrated that phosphorylation of T676 may be a priming event for phosphorylation at T686. Finally, we identified two critical lysine residues in the loop between helices EF and F that are essential for substrate recruitment and maintaining high levels of kinase activity. Our studies reveal critical biochemical mechanisms for Mps1 kinase regulation.

  2. Structural and mechanistic insights into Mps1 kinase activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei; Yang, Yuting; Gao, Yuefeng

    2010-11-05

    Mps1 is one of the several essential kinases whose activation is required for robust mitotic spindle checkpoint signalling. The activity of Mps1 is tightly regulated and increases dramatically during mitosis or in response to spindle damage. To understand the molecular mechanism underlying Mps1 regulation, we determined the crystal structure of the kinase domain of Mps1. The 2.7-{angstrom}-resolution crystal structure shows that the Mps1 kinase domain adopts a unique inactive conformation. Intramolecular interactions between the key Glu residue in the {alpha}C helix of the N-terminal lobe and the backbone amides in the catalytic loop lock the kinase in the inactive conformation.more » Autophosphorylation appears to be a priming event for kinase activation. We identified Mps1 autophosphorylation sites in the activation and the P+1 loops. Whereas activation loop autophosphorylation enhances kinase activity, autophosphorylation at the P+1 loop (T686) is associated with the active kinase. Mutation of T686 autophosphorylation site impairs both autophosphorylation and transphosphorylation. Furthermore, we demonstrated that phosphorylation of T676 may be a priming event for phosphorylation at T686. Finally, we identified two critical lysine residues in the loop between helices {alpha}EF and {alpha}F that are essential for substrate recruitment and maintaining high levels of kinase activity. Our studies reveal critical biochemical mechanisms for Mps1 kinase regulation.« less

  3. Morphogenesis checkpoint kinase Swe1 is the executor of lipolysis-dependent cell-cycle progression

    PubMed Central

    Chauhan, Neha; Visram, Myriam; Cristobal-Sarramian, Alvaro; Sarkleti, Florian

    2015-01-01

    Cell growth and division requires the precise duplication of cellular DNA content but also of membranes and organelles. Knowledge about the cell-cycle–dependent regulation of membrane and storage lipid homeostasis is only rudimentary. Previous work from our laboratory has shown that the breakdown of triacylglycerols (TGs) is regulated in a cell-cycle–dependent manner, by activation of the Tgl4 lipase by the major cyclin-dependent kinase Cdc28. The lipases Tgl3 and Tgl4 are required for efficient cell-cycle progression during the G1/S (Gap1/replication phase) transition, at the onset of bud formation, and their absence leads to a cell-cycle delay. We now show that defective lipolysis activates the Swe1 morphogenesis checkpoint kinase that halts cell-cycle progression by phosphorylation of Cdc28 at tyrosine residue 19. Saturated long-chain fatty acids and phytosphingosine supplementation rescue the cell-cycle delay in the Tgl3/Tgl4 lipase-deficient strain, suggesting that Swe1 activity responds to imbalanced sphingolipid metabolism, in the absence of TG degradation. We propose a model by which TG-derived sphingolipids are required to activate the protein phosphatase 2A (PP2ACdc55) to attenuate Swe1 phosphorylation and its inhibitory effect on Cdc28 at the G1/S transition of the cell cycle. PMID:25713391

  4. Morphogenesis checkpoint kinase Swe1 is the executor of lipolysis-dependent cell-cycle progression.

    PubMed

    Chauhan, Neha; Visram, Myriam; Cristobal-Sarramian, Alvaro; Sarkleti, Florian; Kohlwein, Sepp D

    2015-03-10

    Cell growth and division requires the precise duplication of cellular DNA content but also of membranes and organelles. Knowledge about the cell-cycle-dependent regulation of membrane and storage lipid homeostasis is only rudimentary. Previous work from our laboratory has shown that the breakdown of triacylglycerols (TGs) is regulated in a cell-cycle-dependent manner, by activation of the Tgl4 lipase by the major cyclin-dependent kinase Cdc28. The lipases Tgl3 and Tgl4 are required for efficient cell-cycle progression during the G1/S (Gap1/replication phase) transition, at the onset of bud formation, and their absence leads to a cell-cycle delay. We now show that defective lipolysis activates the Swe1 morphogenesis checkpoint kinase that halts cell-cycle progression by phosphorylation of Cdc28 at tyrosine residue 19. Saturated long-chain fatty acids and phytosphingosine supplementation rescue the cell-cycle delay in the Tgl3/Tgl4 lipase-deficient strain, suggesting that Swe1 activity responds to imbalanced sphingolipid metabolism, in the absence of TG degradation. We propose a model by which TG-derived sphingolipids are required to activate the protein phosphatase 2A (PP2A(Cdc55)) to attenuate Swe1 phosphorylation and its inhibitory effect on Cdc28 at the G1/S transition of the cell cycle.

  5. Structure of the intact ATM/Tel1 kinase

    NASA Astrophysics Data System (ADS)

    Wang, Xuejuan; Chu, Huanyu; Lv, Mengjuan; Zhang, Zhihui; Qiu, Shuwan; Liu, Haiyan; Shen, Xuetong; Wang, Weiwu; Cai, Gang

    2016-05-01

    The ataxia-telangiectasia mutated (ATM) protein is an apical kinase that orchestrates the multifaceted DNA-damage response. Normally, ATM kinase is in an inactive, homodimer form and is transformed into monomers upon activation. Besides a conserved kinase domain at the C terminus, ATM contains three other structural modules, referred to as FAT, FATC and N-terminal helical solenoid. Here we report the first cryo-EM structure of ATM kinase, which is an intact homodimeric ATM/Tel1 from Schizosaccharomyces pombe. We show that two monomers directly contact head-to-head through the FAT and kinase domains. The tandem N-terminal helical solenoid tightly packs against the FAT and kinase domains. The structure suggests that ATM/Tel1 dimer interface and the consecutive HEAT repeats inhibit the binding of kinase substrates and regulators by steric hindrance. Our study provides a structural framework for understanding the mechanisms of ATM/Tel1 regulation as well as the development of new therapeutic agents.

  6. Small molecule kinase inhibitor LRRK2-IN-1 demonstrates potent activity against colorectal and pancreatic cancer through inhibition of doublecortin-like kinase 1

    PubMed Central

    2014-01-01

    Background Doublecortin-like kinase 1 (DCLK1) is emerging as a tumor specific stem cell marker in colorectal and pancreatic cancer. Previous in vitro and in vivo studies have demonstrated the therapeutic effects of inhibiting DCLK1 with small interfering RNA (siRNA) as well as genetically targeting the DCLK1+ cell for deletion. However, the effects of inhibiting DCLK1 kinase activity have not been studied directly. Therefore, we assessed the effects of inhibiting DCLK1 kinase activity using the novel small molecule kinase inhibitor, LRRK2-IN-1, which demonstrates significant affinity for DCLK1. Results Here we report that LRRK2-IN-1 demonstrates potent anti-cancer activity including inhibition of cancer cell proliferation, migration, and invasion as well as induction of apoptosis and cell cycle arrest. Additionally we found that it regulates stemness, epithelial-mesenchymal transition, and oncogenic targets on the molecular level. Moreover, we show that LRRK2-IN-1 suppresses DCLK1 kinase activity and downstream DCLK1 effector c-MYC, and demonstrate that DCLK1 kinase activity is a significant factor in resistance to LRRK2-IN-1. Conclusions Given DCLK1’s tumor stem cell marker status, a strong understanding of its biological role and interactions in gastrointestinal tumors may lead to discoveries that improve patient outcomes. The results of this study suggest that small molecule inhibitors of DCLK1 kinase should be further investigated as they may hold promise as anti-tumor stem cell drugs. PMID:24885928

  7. Pak1 Kinase Maintains Apical Membrane Identity in Epithelia.

    PubMed

    Aguilar-Aragon, Mario; Elbediwy, Ahmed; Foglizzo, Valentina; Fletcher, Georgina C; Li, Vivian S W; Thompson, Barry J

    2018-02-13

    Epithelial cells are polarized along their apical-basal axis by the action of the small GTPase Cdc42, which is known to activate the aPKC kinase at the apical domain. However, loss of aPKC kinase activity was reported to have only mild effects on epithelial cell polarity. Here, we show that Cdc42 also activates a second kinase, Pak1, to specify apical domain identity in Drosophila and mammalian epithelia. aPKC and Pak1 phosphorylate an overlapping set of polarity substrates in kinase assays. Inactivating both aPKC kinase activity and the Pak1 kinase leads to a complete loss of epithelial polarity and morphology, with cells losing markers of apical polarization such as Crumbs, Par3/Bazooka, or ZO-1. This function of Pak1 downstream of Cdc42 is distinct from its role in regulating integrins or E-cadherin. Our results define a conserved dual-kinase mechanism for the control of apical membrane identity in epithelia. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Malaria Parasite-Infected Erythrocytes Secrete PfCK1, the Plasmodium Homologue of the Pleiotropic Protein Kinase Casein Kinase 1

    PubMed Central

    Dorin-Semblat, Dominique; Demarta-Gatsi, Claudia; Hamelin, Romain; Armand, Florence; Carvalho, Teresa Gil; Moniatte, Marc; Doerig, Christian

    2015-01-01

    Casein kinase 1 (CK1) is a pleiotropic protein kinase implicated in several fundamental processes of eukaryotic cell biology. Plasmodium falciparum encodes a single CK1 isoform, PfCK1, that is expressed at all stages of the parasite’s life cycle. We have previously shown that the pfck1 gene cannot be disrupted, but that the locus can be modified if no loss-of-function is incurred, suggesting an important role for this kinase in intra-erythrocytic asexual proliferation. Here, we report on the use of parasite lines expressing GFP- or His-tagged PfCK1 from the endogenous locus to investigate (i) the dynamics of PfCK1 localisation during the asexual cycle in red blood cells, and (ii) potential interactors of PfCK1, so as to gain insight into the involvement of the enzyme in specific cellular processes. Immunofluorescence analysis reveals a dynamic localisation of PfCK1, with evidence for a pool of the enzyme being directed to the membrane of the host erythrocyte in the early stages of infection, followed by a predominantly intra-parasite localisation in trophozoites and schizonts and association with micronemes in merozoites. Furthermore, we present strong evidence that a pool of enzymatically active PfCK1 is secreted into the culture supernatant, demonstrating that PfCK1 is an ectokinase. Our interactome experiments and ensuing kinase assays using recombinant PfCK1 to phosphorylate putative interactors in vitro suggest an involvement of PfCK1 in many cellular processes such as mRNA splicing, protein trafficking, ribosomal, and host cell invasion. PMID:26629826

  9. Mutant Cells That Do Not Respond to Interleukin-1 (IL-1) Reveal a Novel Role for IL-1 Receptor-Associated Kinase

    PubMed Central

    Li, Xiaoxia; Commane, Mairead; Burns, Carmel; Vithalani, Kalpa; Cao, Zhaodan; Stark, George R.

    1999-01-01

    Mutagenized human 293 cells containing an interleukin-1 (IL-1)-regulated herpes thymidine kinase gene, selected in IL-1 and gancyclovir, have yielded many independent clones that are unresponsive to IL-1. The four clones analyzed here carry recessive mutations and represent three complementation groups. Mutant A in complementation group I1 lacks IL-1 receptor-associated kinase (IRAK), while the mutants in the other two groups are defective in unknown components that function upstream of IRAK. Expression of exogenous IRAK in I1A cells (I1A-IRAK) restores their responsiveness to IL-1. Neither NFκB nor Jun kinase is activated in IL-1-treated I1A cells, but these responses are restored in I1A-IRAK cells, indicating that IRAK is required for both. To address the role of the kinase activity of IRAK in IL-1 signaling, its ATP binding site was mutated (K239A), completely abolishing kinase activity. In transfected I1A cells, IRAK-K239A was still phosphorylated upon IL-1 stimulation and, surprisingly, still complemented all the defects in the mutant cells. Therefore, IRAK must be phosphorylated by a different kinase, and phospho-IRAK must play a role in IL-1-mediated signaling that does not require its kinase activity. PMID:10373513

  10. The kinase activity of the Ser/Thr kinase BUB1 promotes TGF-β signaling.

    PubMed

    Nyati, Shyam; Schinske-Sebolt, Katrina; Pitchiaya, Sethuramasundaram; Chekhovskiy, Katerina; Chator, Areeb; Chaudhry, Nauman; Dosch, Joseph; Van Dort, Marcian E; Varambally, Sooryanarayana; Kumar-Sinha, Chandan; Nyati, Mukesh Kumar; Ray, Dipankar; Walter, Nils G; Yu, Hongtao; Ross, Brian Dale; Rehemtulla, Alnawaz

    2015-01-06

    Transforming growth factor-β (TGF-β) signaling regulates cell proliferation and differentiation, which contributes to development and disease. Upon binding TGF-β, the type I receptor (TGFBRI) binds TGFBRII, leading to the activation of the transcription factors SMAD2 and SMAD3. Using an RNA interference screen of the human kinome and a live-cell reporter for TGFBR activity, we identified the kinase BUB1 (budding uninhibited by benzimidazoles-1) as a key mediator of TGF-β signaling. BUB1 interacted with TGFBRI in the presence of TGF-β and promoted the heterodimerization of TGFBRI and TGFBRII. Additionally, BUB1 interacted with TGFBRII, suggesting the formation of a ternary complex. Knocking down BUB1 prevented the recruitment of SMAD3 to the receptor complex, the phosphorylation of SMAD2 and SMAD3 and their interaction with SMAD4, SMAD-dependent transcription, and TGF-β-mediated changes in cellular phenotype including epithelial-mesenchymal transition (EMT), migration, and invasion. Knockdown of BUB1 also impaired noncanonical TGF-β signaling mediated by the kinases AKT and p38 MAPK (mitogen-activated protein kinase). The ability of BUB1 to promote TGF-β signaling depended on the kinase activity of BUB1. A small-molecule inhibitor of the kinase activity of BUB1 (2OH-BNPP1) and a kinase-deficient mutant of BUB1 suppressed TGF-β signaling and formation of the ternary complex in various normal and cancer cell lines. 2OH-BNPP1 administration to mice bearing lung carcinoma xenografts reduced the amount of phosphorylated SMAD2 in tumor tissue. These findings indicated that BUB1 functions as a kinase in the TGF-β pathway in a role beyond its established function in cell cycle regulation and chromosome cohesion. Copyright © 2015, American Association for the Advancement of Science.

  11. Nell-1, a key Functional Mediator of Runx2, Partially Rescues Calvarial Defects in Runx2+/− Mice

    PubMed Central

    Zhang, Xinli; Ting, Kang; Bessette, Catherine M; Culiat, Cymbeline T; Sung, Sang Jin; Lee, Haofu; Chen, Feng; Shen, Jia; Wang, James J; Kuroda, Shun'ichi; Soo, Chia

    2011-01-01

    Mesenchymal stem cell commitment to an osteoprogenitor lineage requires the activity of Runx2, a molecule implicated in the etiopathology of multiple congenital craniofacial anomalies. Through promoter analyses, we have recently identified a new direct transcriptional target of Runx2, Nell-1, a craniosynostosis (CS)–associated molecule with potent osteogenic properties. This study investigated the mechanistic and functional relationship between Nell-1 and Runx2 in regulating osteoblast differentiation. The results showed that spatiotemporal distribution and expression levels of Nell-1 correlated closely with those of endogenous Runx2 during craniofacial development. Phenotypically, cross-mating Nell-1 overexpression transgenic (CMV-Nell-1) mice with Runx2 haploinsufficient (Runx2+/−) mice partially rescued the calvarial defects in the cleidocranial dysplasia (CCD)–like phenotype of Runx2+/− mice, whereas Nell-1 protein induced mineralization and bone formation in Runx2+/− but not Runx2−/− calvarial explants. Runx2-mediated osteoblastic gene expression and/or mineralization was severely reduced by Nell-1 siRNA oligos transfection into Runx2+/+ newborn mouse calvarial cells (NMCCs) or in N-ethyl-N-nitrosourea (ENU)–induced Nell-1−/− NMCCs. Meanwhile, Nell-1 overexpression partially rescued osteoblastic gene expression but not mineralization in Runx2 null (Runx2−/−) NMCCs. Mechanistically, irrespective of Runx2 genotype, Nell-1 signaling activates ERK1/2 and JNK1 mitogen-activated protein kinase (MAPK) pathways in NMCCs and enhances Runx2 phosphorylation and activity when Runx2 is present. Collectively, these data demonstrate that Nell-1 is a critical downstream Runx2 functional mediator insofar as Runx2-regulated Nell-1 promotes osteoblastic differentiation through, in part, activation of MAPK and enhanced phosphorylation of Runx2, and Runx2 activity is significantly reduced when Nell-1 is blocked or absent. © 2011 American Society for Bone

  12. Mitogen Activated Protein Kinase Phosphatase-1 (MKP-1) in Retinal Ischemic Preconditioning

    PubMed Central

    Dreixler, John C.; Bratton, Anthony; Du, Eugenie; Shaikh, Afzhal R.; Savoie, Brian; Michael, Alexander; Marcet, Marcus; Roth, Steven

    2011-01-01

    We previously described the phenomenon of retinal ischemic preconditioning (IPC) and we have shown the role of various signaling proteins in the protective pathways, including the mitogen-activated protein kinase p38. In this study we examined the role in IPC of mitogen-activated protein kinase phosphatase-1 (MKP-1), which inactivates p38. Ischemia was produced by elevation of intraocular pressure above systolic arterial blood pressure in adult Wistar rats. Preconditioning was produced by transient retinal ischemia for 5 min, 24 h prior to ischemia. Small interfering RNA (siRNA) to MKP-1 or a control non-silencing siRNA, was injected into the vitreous 6 h prior to IPC. Recovery was assessed by electroretinography (ERG) and histology. The a- and b-waves, and oscillatory potentials (OPs), measured before and 1 week after ischemia, were then normalized relative to pre-ischemic baseline, and corrected for diurnal variation in the normal non-ischemic eye. The P2, or post-photoreceptor component of the ERG (which reflects function of the rod bipolar cells in the inner retina), was derived using the Hood-Birch model. MKP-1 was localized in specific retinal cells using immunohistochemistry; levels of mitogen-activated protein kinases were measured using Western blotting. Injection of siRNA to MKP-1 significantly attenuated the protective effect of IPC as reflected by decreased recovery of the electroretinogram a- and b-waves and the P2 after ischemia. The injection of siRNA to MKP-1 reduced the number of cells in the retinal ganglion cell and outer nuclear layers after IPC and ischemia. Blockade of MKP-1 by siRNA also increased the activation of p38 at 24 h following IPC. MKP-1 siRNA did not alter the levels of phosphorylated jun N-terminal kinase (JNK) or extracellular signal-regulated kinase (ERK) after IPC. The results suggest the involvement of dual-specificity phosphatase MKP-1 in IPC and that MKP-1 is involved in IPC by regulating levels of activated MAPK p38. PMID

  13. Recent Progress on Liver Kinase B1 (LKB1): Expression, Regulation, Downstream Signaling and Cancer Suppressive Function

    PubMed Central

    Gan, Ren-You; Li, Hua-Bin

    2014-01-01

    Liver kinase B1 (LKB1), known as a serine/threonine kinase, has been identified as a critical cancer suppressor in many cancer cells. It is a master upstream kinase of 13 AMP-activated protein kinase (AMPK)-related protein kinases, and possesses versatile biological functions. LKB1 gene is mutated in many cancers, and its protein can form different protein complexes with different cellular localizations in various cell types. The expression of LKB1 can be regulated through epigenetic modification, transcriptional regulation and post-translational modification. LKB1 dowcnstream pathways mainly include AMPK, microtubule affinity regulating kinase (MARK), salt-inducible kinase (SIK), sucrose non-fermenting protein-related kinase (SNRK) and brain selective kinase (BRSK) signalings, etc. This review, therefore, mainly discusses recent studies about the expression, regulation, downstream signaling and cancer suppressive function of LKB1, which can be helpful for better understanding of this molecular and its significance in cancers. PMID:25244018

  14. Pim1 kinase regulates c-Kit gene translation.

    PubMed

    An, Ningfei; Cen, Bo; Cai, Houjian; Song, Jin H; Kraft, Andrew; Kang, Yubin

    2016-01-01

    Receptor tyrosine kinase, c-Kit (CD117) plays a pivotal role in the maintenance and expansion of hematopoietic stem/progenitor cells (HSPCs). Additionally, over-expression and/or mutational activation of c-Kit have been implicated in numerous malignant diseases including acute myeloid leukemia. However, the translational regulation of c-Kit expression remains largely unknown. We demonstrated that loss of Pim1 led to specific down-regulation of c-Kit expression in HSPCs of Pim1 -/- mice and Pim1 -/- 2 -/- 3 -/- triple knockout (TKO) mice, and resulted in attenuated ERK and STAT3 signaling in response to stimulation with stem cell factor. Transduction of c-Kit restored the defects in colony forming capacity seen in HSPCs from Pim1 -/- and TKO mice. Pharmacologic inhibition and genetic modification studies using human megakaryoblastic leukemia cells confirmed the regulation of c-Kit expression by Pim1 kinase: i.e., Pim1-specific shRNA knockdown down-regulated the expression of c-Kit whereas overexpression of Pim1 up-regulated the expression of c-Kit. Mechanistically, inhibition or knockout of Pim1 kinase did not affect the transcription of c-Kit gene. Pim1 kinase enhanced c-Kit 35 S methionine labeling and increased the incorporation of c-Kit mRNAs into the polysomes and monosomes, demonstrating that Pim1 kinase regulates c-Kit expression at the translational level. Our study provides the first evidence that Pim1 regulates c-Kit gene translation and has important implications in hematopoietic stem cell transplantation and cancer treatment.

  15. A Ser/Thr protein kinase phosphorylates MA-ACS1 (Musa acuminata 1-aminocyclopropane-1-carboxylic acid synthase 1) during banana fruit ripening.

    PubMed

    Choudhury, Swarup Roy; Roy, Sujit; Sengupta, Dibyendu N

    2012-08-01

    1-Aminocyclopropane-1-carboxylic acid synthase (ACS) catalyzes the rate-limiting step in ethylene biosynthesis during ripening. ACS isozymes are regulated both transcriptionally and post-translationally. However, in banana, an important climacteric fruit, little is known about post-translational regulation of ACS. Here, we report the post-translational modification of MA-ACS1 (Musa acuminata ACS1), a ripening inducible isozyme in the ACS family, which plays a key role in ethylene biosynthesis during banana fruit ripening. Immunoprecipitation analyses of phospholabeled protein extracts from banana fruit using affinity-purified anti-MA-ACS1 antibody have revealed phosphorylation of MA-ACS1, particularly in ripe fruit tissue. We have identified the induction of a 41-kDa protein kinase activity in pulp at the onset of ripening. The 41-kDa protein kinase has been identified as a putative protein kinase by MALDI-TOF/MS analysis. Biochemical analyses using partially purified protein kinase fraction from banana fruit have identified the protein kinase as a Ser/Thr family of protein kinase and its possible involvement in MA-ACS1 phosphorylation during ripening. In vitro phosphorylation analyses using synthetic peptides and site-directed mutagenized recombinant MA-ACS1 have revealed that serine 476 and 479 residues at the C-terminal region of MA-ACS1 are phosphorylated. Overall, this study provides important novel evidence for in vivo phosphorylation of MA-ACS1 at the molecular level as a possible mechanism of post-translational regulation of this key regulatory protein in ethylene signaling pathway in banana fruit during ripening.

  16. Calcium/Ask1/MKK7/JNK2/c-Src signalling cascade mediates disruption of intestinal epithelial tight junctions by dextran sulfate sodium.

    PubMed

    Samak, Geetha; Chaudhry, Kamaljit K; Gangwar, Ruchika; Narayanan, Damodaran; Jaggar, Jonathan H; Rao, RadhaKrishna

    2015-02-01

    Disruption of intestinal epithelial tight junctions is an important event in the pathogenesis of ulcerative colitis. Dextran sodium sulfate (DSS) induces colitis in mice with symptoms similar to ulcerative colitis. However, the mechanism of DSS-induced colitis is unknown. We investigated the mechanism of DSS-induced disruption of intestinal epithelial tight junctions and barrier dysfunction in Caco-2 cell monolayers in vitro and mouse colon in vivo. DSS treatment resulted in disruption of tight junctions, adherens junctions and actin cytoskeleton leading to barrier dysfunction in Caco-2 cell monolayers. DSS induced a rapid activation of c-Jun N-terminal kinase (JNK), and the inhibition or knockdown of JNK2 attenuated DSS-induced tight junction disruption and barrier dysfunction. In mice, DSS administration for 4 days caused redistribution of tight junction and adherens junction proteins from the epithelial junctions, which was blocked by JNK inhibitor. In Caco-2 cell monolayers, DSS increased intracellular Ca(2+) concentration, and depletion of intracellular Ca(2+) by 1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid tetrakis(acetoxymethyl ester) (BAPTA/AM) or thapsigargin attenuated DSS-induced JNK activation, tight junction disruption and barrier dysfunction. Knockdown of apoptosis signal-regulated kinase 1 (Ask1) or MKK7 blocked DSS-induced tight junction disruption and barrier dysfunction. DSS activated c-Src by a Ca2+ and JNK-dependent mechanism. Inhibition of Src kinase activity or knockdown of c-Src blocked DSS-induced tight junction disruption and barrier dysfunction. DSS increased tyrosine phosphorylation of occludin, zonula occludens-1 (ZO-1), E-cadherin and β-catenin. SP600125 abrogated DSS-induced tyrosine phosphorylation of junctional proteins. Recombinant JNK2 induced threonine phosphorylation and auto-phosphorylation of c-Src. The present study demonstrates that Ca(2+)/Ask1/MKK7/JNK2/cSrc signalling cascade mediates DSS-induced tight

  17. Identification and functional analysis of tomato BRI1 and BAK1 receptor kinase phosphorylation sites

    USDA-ARS?s Scientific Manuscript database

    Brassinosteroids (BRs) are essential plant hormones that are perceived at the cell surface by a membrane bound receptor kinase, BRASSINOSTEROID INSENSITIVE 1 (BRI1). BRI1 interacts with BRI1-ASSOCIATED RECEPTOR KINASE 1 (BAK1) to initiate a signal transduction pathway in which autophosphorylation an...

  18. Fission yeast Csk1 is a CAK-activating kinase (CAKAK).

    PubMed Central

    Hermand, D; Pihlak, A; Westerling, T; Damagnez, V; Vandenhaute, J; Cottarel, G; Mäkelä, T P

    1998-01-01

    Cell cycle progression is dependent on the sequential activity of cyclin-dependent kinases (CDKs). For full activity, CDKs require an activating phosphorylation of a conserved residue (corresponding to Thr160 in human CDK2) carried out by the CDK-activating kinase (CAK). Two distinct CAK kinases have been described: in budding yeast Saccharomyces cerevisiae, the Cak1/Civ1 kinase is responsible for CAK activity. In several other species including human, Xenopus, Drosophila and fission yeast Schizosaccharomyces pombe, CAK has been identified as a complex homologous to CDK7-cyclin H (Mcs6-Mcs2 in fission yeast). Here we identify the fission yeast Csk1 kinase as an in vivo activating kinase of the Mcs6-Mcs2 CAK defining Csk1 as a CAK-activating kinase (CAKAK). PMID:9857180

  19. The long and the short of SAD-1 kinase.

    PubMed

    Kim, Joanne S M; Hung, Wesley; Zhen, Mei

    2010-05-01

    The Ser/Thr SAD kinases are evolutionarily conserved, critical regulators of neural development. Exciting findings in recent years have significantly advanced our understanding of the mechanism through which SAD kinases regulate neural development. Mammalian SAD-A and SAD-B, activated by a master kinase LKB1, regulate microtubule dynamics and polarize neurons. In C. elegans, the sad-1 gene encodes two isoforms, namely the long and the short, which exhibit overlapping and yet distinct functions in neuronal polarity and synaptic organization. Surprisingly, our most recent findings in C. elegans revealed a SAD-1-independent LKB1 activity in neuronal polarity. We also found that the long SAD-1 isoform directly interacts with a STRADalpha pseudokinase, STRD-1, to regulate neuronal polarity and synaptic organization. We elaborate here a working model of SAD-1 in which the two isoforms dimer/oligomerize to form a functional complex, and STRD-1 clusters and localizes the SAD-1 complex to synapses. While the mechanistic difference between the vertebrate and invertebrate SAD kinases may be puzzling, a recent discovery of the functionally distinct SAD-B isoforms predicts that the difference likely arises from our incomplete understanding of the SAD kinase mechanism and may eventually be reconciled as the revelation continues.

  20. Autographa californica multiple nucleopolyhedrovirus PK-1 is essential for nucleocapsid assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Changyong, E-mail: cyliang@yzu.edu.cn; Li, Min; Dai, Xuejuan

    2013-09-01

    PK-1 (Ac10) is a baculovirus-encoded serine/threonine kinase and its function is unclear. Our results showed that a pk-1 knockout AcMNPV failed to produce infectious progeny, while the pk-1 repair virus could rescue this defect. qPCR analysis demonstrated that pk-1 deletion did not affect viral DNA replication. Analysis of the repaired recombinants with truncated pk-1 mutants demonstrated that the catalytic domain of protein kinases of PK-1 was essential to viral infectivity. Moreover, those PK-1 mutants that could rescue the infectious BV production defect exhibited kinase activity in vitro. Therefore, it is suggested that the kinase activity of PK-1 is essential inmore » regulating viral propagation. Electron microscopy revealed that pk-1 deletion affected the formation of normal nucleocapsids. Masses of electron-lucent tubular structures were present in cell transfected with pk-1 knockout bacmid. Therefore, PK-1 appears to phosphorylate some viral or cellular proteins that are essential for DNA packaging to regulate nucleocapsid assembly. - Highlights: • A pk-1 knockout AcMNPV failed to produce infectious progeny. • The pk-1 deletion did not affect viral DNA replication. • The catalytic domain of protein kinases (PKc) of PK-1 was essential to viral infectivity. • The kinase activity of PK-1 is essential in regulating viral propagation. • PK-1 appears to phosphorylate some viral proteins that are essential for DNA packaging to regulate nucleocapsid assembly.« less

  1. High-Content Surface and Total Expression siRNA Kinase Library Screen with VX-809 Treatment Reveals Kinase Targets that Enhance F508del-CFTR Rescue.

    PubMed

    Perkins, Lydia A; Fisher, Gregory W; Naganbabu, Matharishwan; Schmidt, Brigitte F; Mun, Frederick; Bruchez, Marcel P

    2018-03-05

    The most promising F508del-CFTR corrector, VX-809, has been unsuccessful as an effective, stand-alone treatment for CF patients, but the rescue effect in combination with other drugs may confer an acceptable level of therapeutic benefit. Targeting cellular factors that modify trafficking may act to enhance the cell surface density of F508-CFTR with VX-809 correction. Our goal is to identify druggable kinases that enhance F508del-CFTR rescue and stabilization at the cell surface beyond that achievable with the VX-809 corrector alone. To achieve this goal, we implemented a new high-throughput screening paradigm that quickly and quantitatively measures surface density and total protein in the same cells. This allowed for rapid screening for increased surface targeting and proteostatic regulation. The assay utilizes fluorogen-activating-protein (FAP) technology with cell excluded and cell permeant fluorogenic dyes in a quick, wash-free fluorescent plate reader format on live cells to first measure F508del-CFTR expressed on the surface and then the total amount of F508del-CFTR protein present. To screen for kinase targets, we used Dharmacon's ON-TARGET plus SMARTpool siRNA Kinase library (715 target kinases) with and without 10 μM VX-809 treatment in triplicate at 37 °C. We identified several targets that had a significant interaction with VX-809 treatment in enhancing surface density with siRNA knockdown. Select small-molecule inhibitors of the kinase targets demonstrated augmented surface expression with VX-809 treatment.

  2. Activation of apoptosis signal-regulating kinase 1 is a key factor in paraquat-induced cell death: modulation by the Nrf2/Trx axis.

    PubMed

    Niso-Santano, Mireia; González-Polo, Rosa A; Bravo-San Pedro, José M; Gómez-Sánchez, Rubén; Lastres-Becker, Isabel; Ortiz-Ortiz, Miguel A; Soler, Germán; Morán, José M; Cuadrado, Antonio; Fuentes, José M

    2010-05-15

    Although oxidative stress is fundamental to the etiopathology of Parkinson disease, the signaling molecules involved in transduction after oxidant exposure to cell death are ill-defined, thus making it difficult to identify molecular targets of therapeutic relevance. We have addressed this question in human dopaminergic neuroblastoma SH-SY5Y cells exposed to the parkinsonian toxin paraquat (PQ). This toxin elicited a dose-dependent increase in reactive oxygen species and cell death that correlated with activation of ASK1 and the stress kinases p38 and JNK. The relevance of these kinases in channeling PQ neurotoxicity was demonstrated with the use of interference RNA for ASK1 and two well-established pharmaceutical inhibitors for JNK and p38. The toxic effect of PQ was substantially attenuated by preincubation with vitamin E, blocking ASK1 pathways and preventing oxidative stress and cell death. In a search for a physiological pathway that might counterbalance PQ-induced ASK1 activation, we analyzed the role of the transcription factor Nrf2, master regulator of redox homeostasis, and its target thioredoxin (Trx), which binds and inhibits ASK1. Trx levels were undetectable in Nrf2-deficient mouse embryo fibroblasts (MEFs), whereas they were constitutively high in Keap1-deficient MEFs as well as in SH-SY5Y cells treated with sulforaphane (SFN). Consistent with these data, Nrf2-deficient MEFs were more sensitive and Keap1-deficient MEFs and SH-SY5Y cells incubated with SFN were more resistant to PQ-induced cell death. This study identifies ASK1/JNK and ASK1/p38 as two critical pathways involved in the activation of cell death under oxidative stress conditions and identifies the Nrf2/Trx axis as a new target to block these pathways and protect from oxidant exposure such as that found in Parkinson and other neurodegenerative diseases. Copyright 2010 Elsevier Inc. All rights reserved.

  3. Decoy Oligonucleotide Rescues IGF1R Expression from MicroRNA-223 Suppression

    PubMed Central

    Wang, Rong; He, Bao Mei; Qi, Bing; Xu, Chang Jun; Wu, Xing Zhong

    2013-01-01

    A mature miRNA generally suppresses hundreds of mRNA targets. To evaluate the selective effect of synthetic oligonucleotide decoys on hsa-miR-223 activity, reporters containing 3’ untranslated regions (UTR) of IGF1R, FOXO1, POLR3G, FOXO3, CDC27, FBXW7 and PAXIP1 mRNAs were constructed for the luciferase assay. The oligonucleotide decoys were designed and synthesized according to mature miR-223 sequence and its target mRNA sequence. Quantitative RT-PCR & western analysis were used to measure miR-223-targeted mRNA expression, Interestingly, apart from the antisense oligonucleotide, decoy nucleotides which were complementary to the 5’, central or 3’ region of mature miR-223 suppressed miR-223 targeting the 3’UTR of IGF1R, FOXO1, FOXO3, CDC27, POLR3G, and FBXW7 mRNAs and rescued the expression of these genes to varying degrees from miR-223 suppression at both mRNA and protein levels. All decoys had no effect on PAXIP1 which was not targeted by miR-223. The decoy 1 that was based on the sequence of IGF1R 3’UTR rescued the expression of IGF1R more significantly than other decoy nucleotides except the antisense decoy 4. Decoy 1 also rescued the expression of FOXO3 and POLR3G of which their 3’UTRs have similar binding sites for miR-223 with IGF1R 3’UTR. However decoy 1 failed to recover Sp1, CDC27 and FBXW7 expression. These data support that the sequence-specific decoy oligonucleotides might represent exogenous competing RNA which selectively inhibits microRNA targeting. PMID:24324762

  4. Decoy oligonucleotide rescues IGF1R expression from MicroRNA-223 suppression.

    PubMed

    Wu, Li Hui; Cai, Qian Qian; Dong, Yi Wei; Wang, Rong; He, Bao Mei; Qi, Bing; Xu, Chang Jun; Wu, Xing Zhong

    2013-01-01

    A mature miRNA generally suppresses hundreds of mRNA targets. To evaluate the selective effect of synthetic oligonucleotide decoys on hsa-miR-223 activity, reporters containing 3' untranslated regions (UTR) of IGF1R, FOXO1, POLR3G, FOXO3, CDC27, FBXW7 and PAXIP1 mRNAs were constructed for the luciferase assay. The oligonucleotide decoys were designed and synthesized according to mature miR-223 sequence and its target mRNA sequence. Quantitative RT-PCR & western analysis were used to measure miR-223-targeted mRNA expression, Interestingly, apart from the antisense oligonucleotide, decoy nucleotides which were complementary to the 5', central or 3' region of mature miR-223 suppressed miR-223 targeting the 3'UTR of IGF1R, FOXO1, FOXO3, CDC27, POLR3G, and FBXW7 mRNAs and rescued the expression of these genes to varying degrees from miR-223 suppression at both mRNA and protein levels. All decoys had no effect on PAXIP1 which was not targeted by miR-223. The decoy 1 that was based on the sequence of IGF1R 3'UTR rescued the expression of IGF1R more significantly than other decoy nucleotides except the antisense decoy 4. Decoy 1 also rescued the expression of FOXO3 and POLR3G of which their 3'UTRs have similar binding sites for miR-223 with IGF1R 3'UTR. However decoy 1 failed to recover Sp1, CDC27 and FBXW7 expression. These data support that the sequence-specific decoy oligonucleotides might represent exogenous competing RNA which selectively inhibits microRNA targeting.

  5. Regulation of Mih1/Cdc25 by protein phosphatase 2A and casein kinase 1

    PubMed Central

    Pal, Gayatri; Paraz, Maria T.Z.; Kellogg, Douglas R.

    2008-01-01

    The Cdc25 phosphatase promotes entry into mitosis by removing cyclin-dependent kinase 1 (Cdk1) inhibitory phosphorylation. Previous work suggested that Cdc25 is activated by Cdk1 in a positive feedback loop promoting entry into mitosis; however, it has remained unclear how the feedback loop is initiated. To learn more about the mechanisms that regulate entry into mitosis, we have characterized the function and regulation of Mih1, the budding yeast homologue of Cdc25. We found that Mih1 is hyperphosphorylated early in the cell cycle and is dephosphorylated as cells enter mitosis. Casein kinase 1 is responsible for most of the hyperphosphorylation of Mih1, whereas protein phosphatase 2A associated with Cdc55 dephosphorylates Mih1. Cdk1 appears to directly phosphorylate Mih1 and is required for initiation of Mih1 dephosphorylation as cells enter mitosis. Collectively, these observations suggest that Mih1 regulation is achieved by a balance of opposing kinase and phosphatase activities. Because casein kinase 1 is associated with sites of polar growth, it may regulate Mih1 as part of a signaling mechanism that links successful completion of growth-related events to cell cycle progression. PMID:18316413

  6. ASK1-dependent endothelial cell activation is critical in ovarian cancer growth and metastasis

    PubMed Central

    Yin, Mingzhu; Zhou, Huanjiao Jenny; Zhang, Jiqin; Lin, Caixia; Li, Hongmei; Li, Xia; Li, Yonghao; Zhang, Haifeng; Breckenridge, David G.; Ji, Weidong

    2017-01-01

    We have recently reported that tumor-associated macrophages (TAMs) promote early transcoelomic metastasis of ovarian cancer by facilitating TAM–ovarian cancer cell spheroid formation. ASK1 is known to be important for macrophage activation and inflammation-mediated tumorigenesis. In the present study, we show that ASK1 deficiency attenuates TAM-spheroid formation and ovarian cancer progression in an orthotopic ovarian cancer model. Interestingly, ASK1 in stroma, but not in TAMs, is critical for peritoneal tumor growth of ovarian cancer. Moreover, overexpression of an ASK1 inhibitory protein (suppressor of cytokine signaling-1; SOCS1) in vascular endothelium attenuates vascular permeability, TAM infiltration, and ovarian cancer growth. Mechanistically, we show that ASK1 mediates degradation of endothelial junction protein VE-cadherin via a lysosomal pathway to promote macrophage transmigration. Importantly, a pharmacological ASK1 inhibitor prevents tumor-induced vascular leakage, macrophage infiltration, and tumor growth in two mouse models. Since transcoelomic metastasis is also associated with many other cancers, such as pancreatic and colon cancers, our study provides ASK1 as a therapeutic target for the treatment of ovarian cancer and other transcoelomic metastasis cancers. PMID:28931753

  7. Arabidopsis Brassinosteroid-Insensitive dwarf12 Mutants Are Semidominant and Defective in a Glycogen Synthase Kinase 3β-Like Kinase1

    PubMed Central

    Choe, Sunghwa; Schmitz, Robert J.; Fujioka, Shozo; Takatsuto, Suguru; Lee, Mi-Ok; Yoshida, Shigeo; Feldmann, Kenneth A.; Tax, Frans E.

    2002-01-01

    Mutants defective in the biosynthesis or signaling of brassinosteroids (BRs), plant steroid hormones, display dwarfism. Loss-of-function mutants for the gene encoding the plasma membrane-located BR receptor BRI1 are resistant to exogenous application of BRs, and characterization of this protein has contributed significantly to the understanding of BR signaling. We have isolated two new BR-insensitive mutants (dwarf12-1D and dwf12-2D) after screening Arabidopsis ethyl methanesulfonate mutant populations. dwf12 mutants displayed the characteristic morphology of previously reported BR dwarfs including short stature, short round leaves, infertility, and abnormal de-etiolation. In addition, dwf12 mutants exhibited several unique phenotypes, including severe downward curling of the leaves. Genetic analysis indicates that the two mutations are semidominant in that heterozygous plants show a semidwarf phenotype whose height is intermediate between wild-type and homozygous mutant plants. Unlike BR biosynthetic mutants, dwf12 plants were not rescued by high doses of exogenously applied BRs. Like bri1 mutants, dwf12 plants accumulated castasterone and brassinolide, 43- and 15-fold higher, respectively, providing further evidence that DWF12 is a component of the BR signaling pathway that includes BRI1. Map-based cloning of the DWF12 gene revealed that DWF12 belongs to a member of the glycogen synthase kinase 3β family. Unlike human glycogen synthase kinase 3β, DWF12 lacks the conserved serine-9 residue in the auto-inhibitory N terminus. In addition, dwf12-1D and dwf12-2D encode changes in consecutive glutamate residues in a highly conserved TREE domain. Together with previous reports that both bin2 and ucu1 mutants contain mutations in this TREE domain, this provides evidence that the TREE domain is of critical importance for proper function of DWF12/BIN2/UCU1 in BR signal transduction pathways. PMID:12428015

  8. Elevating Integrin-linked Kinase Expression has Rescued Hippocampal Neurogenesis and Memory Deficits in an AD animal Model.

    PubMed

    Xu, Xu-Feng; Wang, You-Cui; Zong, Liang; Chen, Zhe-Yu; Li, Yan

    2018-05-19

    Alterations in adult neurogenesis have been regarded as a major cause of cognitive impairment in Alzheimer's disease (AD). The underlying mechanism of neurogenesis deficiency in AD remains unclear. In this study, we reported that Integrin-linked Kinase (ILK) protein levels and phosphorylation were significantly decreased in the hippocampus of APP/PS1 mice. Increased ILK expression of dentate gyrus (DG) rescued the hippocampus-dependent neurogenesis and memory deficits in APP/PS1 mice. Moreover, we demonstrated that the effect of ILK overexpression in the hippocampus was exerted via AKT-GSK3β pathway. Finally, we found that Fluoxetine, a selective serotonin reuptake inhibitor, could improve the impaired hippocampal neurogenesis and memory by enhancing ILK-AKT-GSK3β pathway activity in APP/PS1 mice. Thus, these findings demonstrated the effects of ILK on neurogenesis and memory recovery, suggesting that ILK is an important therapeutic target for AD prevention and treatment. Copyright © 2018. Published by Elsevier B.V.

  9. MiR-506 suppresses liver cancer angiogenesis through targeting sphingosine kinase 1 (SPHK1) mRNA.

    PubMed

    Lu, Zhanping; Zhang, Weiying; Gao, Shan; Jiang, Qiulei; Xiao, Zelin; Ye, Lihong; Zhang, Xiaodong

    MicroRNAs acting as oncogenes or tumor suppressor genes play crucial roles in human cancers. Sphingosine kinase 1 (SPHK1) and its metabolite sphingosine 1-phosphate (S1P) contribute to tumor angiogenesis. We have reported that the down-regulation of miR-506 targeting YAP mRNA results in the hepatocarcinogenesis. In the present study, we report a novel function of miR-506, which suppresses tumor angiogenesis through targeting SPHK1 mRNA in liver cancer. Bioinformatics analysis showed that miR-506 might target 3'-untranslated region (3'UTR) of SPHK1 mRNA. Then, we validated that by luciferase reporter gene assays. MiR-506 was able to reduce the expression of SPHK1 at the levels of mRNA and protein using reverse transcription-polymerase chain reaction and Western blot analysis in hepatoma HepG2 cells. Functionally, human umbilical vein endothelial cell (HUVEC) tube formation assays demonstrated that the forced miR-506 expression remarkably inhibited the production of S1P in the supernatant of hepatoma cells. The supernatant resulted in the inhibition of tumor angiogenesis. Interestingly, the supernatant with overexpression of SPHK1 could rescue the inhibition of angiogenesis of liver cancer mediated by miR-506. Anti-miR-506 increased the production of S1P in the supernatant of hepatoma cells, but the supernatant with silencing of SPHK1 abolished anti-miR-506-induced acceleration of tumor angiogenesis. Clinically, we observed that the levels of miR-506 were negatively related to those of SPHK1 mRNA in liver cancer tissues. Thus, we conclude that miR-506 depresses the angiogenesis of liver cancer through targeting 3'UTR of SPHK1 mRNA. Our finding provides new insights into the mechanism of tumor angiogenesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. White Sands Space Harbor Area 1, Crash/Rescue Standby Support GPS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    White Sands Space Harbor Area 1, Crash/Rescue Standby Support GPS Buildings, East side of Runway 17/35, approximately 2,650 feet north of intersection with Runway 23/05, White Sands, Dona Ana County, NM

  11. PLK1 (polo like kinase 1) inhibits MTOR complex 1 and promotes autophagy.

    PubMed

    Ruf, Stefanie; Heberle, Alexander Martin; Langelaar-Makkinje, Miriam; Gelino, Sara; Wilkinson, Deepti; Gerbeth, Carolin; Schwarz, Jennifer Jasmin; Holzwarth, Birgit; Warscheid, Bettina; Meisinger, Chris; van Vugt, Marcel A T M; Baumeister, Ralf; Hansen, Malene; Thedieck, Kathrin

    2017-03-04

    Mechanistic target of rapamycin complex 1 (MTORC1) and polo like kinase 1 (PLK1) are major drivers of cancer cell growth and proliferation, and inhibitors of both protein kinases are currently being investigated in clinical studies. To date, MTORC1's and PLK1's functions are mostly studied separately, and reports on their mutual crosstalk are scarce. Here, we identify PLK1 as a physical MTORC1 interactor in human cancer cells. PLK1 inhibition enhances MTORC1 activity under nutrient sufficiency and in starved cells, and PLK1 directly phosphorylates the MTORC1 component RPTOR/RAPTOR in vitro. PLK1 and MTORC1 reside together at lysosomes, the subcellular site where MTORC1 is active. Consistent with an inhibitory role of PLK1 toward MTORC1, PLK1 overexpression inhibits lysosomal association of the PLK1-MTORC1 complex, whereas PLK1 inhibition promotes lysosomal localization of MTOR. PLK1-MTORC1 binding is enhanced by amino acid starvation, a condition known to increase autophagy. MTORC1 inhibition is an important step in autophagy activation. Consistently, PLK1 inhibition mitigates autophagy in cancer cells both under nutrient starvation and sufficiency, and a role of PLK1 in autophagy is also observed in the invertebrate model organism Caenorhabditis elegans. In summary, PLK1 inhibits MTORC1 and thereby positively contributes to autophagy. Since autophagy is increasingly recognized to contribute to tumor cell survival and growth, we propose that cautious monitoring of MTORC1 and autophagy readouts in clinical trials with PLK1 inhibitors is needed to develop strategies for optimized (combinatorial) cancer therapies targeting MTORC1, PLK1, and autophagy.

  12. Ablation of the Proapoptotic Genes Chop or Ask1 Does Not Prevent or Delay Loss of Visual Function in a P23H Transgenic Mouse Model of Retinitis Pigmentosa

    PubMed Central

    Adekeye, Adeseye; Haeri, Mohammad; Solessio, Eduardo; Knox, Barry E.

    2014-01-01

    The P23H mutation in rhodopsin (RhoP23H) is a prevalent cause of autosomal dominant retinitis pigmentosa. We examined the role of the ER stress proteins, Chop and Ask1, in regulating the death of rod photoreceptors in a mouse line harboring the RhoP23H rhodopsin transgene (GHL+). We used knockout mice models to determine whether Chop and Ask1 regulate rod survival or retinal degeneration. Electrophysiological recordings showed similar retinal responses and sensitivities for GHL+, GHL+/Chop−/− and GHL+/Ask1−/− animals between 4–28 weeks, by which time all three mouse lines exhibited severe loss of retinal function. Histologically, ablation of Chop and Ask1 did not rescue photoreceptor loss in young animals. However, in older mice, a regional protective effect was observed in the central retina of GHL+/Chop−/− and GHL+/Ask1−/−, a region that was severely degenerated in GHL+ mice. Our results show that in the presence of the RhoP23H transgene, the rate of decline in retinal sensitivity is similar in Chop or Ask1 ablated and wild-type retinas, suggesting that these proteins do not play a major role during the acute phase of photoreceptor loss in GHL+ mice. Instead they may be involved in regulating secondary pathological responses such as inflammation that are upregulated during later stages of disease progression. PMID:24523853

  13. TRAF6 and Src kinase activity regulates Cot activation by IL-1.

    PubMed

    Rodríguez, Cristina; Pozo, Maite; Nieto, Elvira; Fernández, Margarita; Alemany, Susana

    2006-09-01

    Cot is one of the MAP kinase kinase kinases that regulates the ERK1/ERK2 pathway under physiological conditions. Cot is activated by LPS, by inducing its dissociation from the inactive p105 NFkappaB-Cot complex in macrophages. Here, we show that IL-1 promotes a 10-fold increase in endogenous Cot activity and that Cot is the only MAP kinase kinase kinase that activates ERK1/ERK2 in response to this cytokine. Moreover, in cells where the expression of Cot is blocked, IL-1 fails to induce an increase in IL-8 and MIP-1betamRNA levels. The activation of Cot-MKK1-ERK1/ERK2 signalling pathway by IL-1 is dependent on the activity of the transducer protein TRAF6. Most important, IL-1-induced ERK1/ERK2 activation is inhibited by PP1, a known inhibitor of Src tyrosine kinases, but this tyrosine kinase activity is not required for IL-1 to activate other MAP kinases such as p38 and JNK. This Src kinases inhibitor does not block the dissociation and subsequently degradation of Cot in response to IL-1, indicating that other events besides Cot dissociation are required to activate Cot. All these data highlight the specific requirements for activation of the Cot-MKK1-ERK1/ERK2 pathway and provide evidence that Cot controls the functions of IL-1 that are mediated by ERK1/ERK2.

  14. Akt1 binds focal adhesion kinase via the Akt1 kinase domain independently of the pleckstrin homology domain.

    PubMed

    Basson, M D; Zeng, B; Wang, S

    2015-10-01

    Akt1 and focal adhesion kinase (FAK) are protein kinases that play key roles in normal cell signaling. Individually, aberrant expression of these kinases has been linked to a variety of cancers. Together, Akt1/FAK interactions facilitate cancer metastasis by increasing cell adhesion under conditions of increased extracellular pressure. Pathological and iatrogenic sources of pressure arise from tumor growth against constraining stroma or direct perioperative manipulation. We previously reported that 15 mmHg increased extracellular pressure causes Akt1 to both directly interact with FAK and to phosphorylate and activate it. We investigated the nature of the Akt1/FAK binding by creating truncations of recombinant FAK, conjugated to glutathione S-transferase (GST), to pull down full-length Akt1. Western blots probing for Akt1 showed that FAK/Akt1 binding persisted in FAK truncations consisting of only amino acids 1-126, FAK(NT1), which contains the F1 subdomain of its band 4.1, ezrin, radixin, and moesin (FERM) domain. Using FAK(NT1) as bait, we then pulled down truncated versions of recombinant Akt1 conjugated to HA (human influenza hemagglutinin). Probes for GST-FAK(NT1) showed Akt1-FAK binding to occur in the absence of the both the Akt1 (N)-terminal pleckstrin homology (PH) domain and its adjacent hinge region. The Akt1 (C)-terminal regulatory domain was equally unnecessary for Akt1/FAK co-immunoprecipitation. Truncations involving the Akt1 catalytic domain showed that the domain by itself was enough to pull down FAK. Additionally, a fragment spanning from the PH domain to half way through the catalytic domain demonstrated increased FAK binding compared to full length Akt1. These results begin to delineate the Akt1/FAK interaction and can be used to manipulate their force-activated signal interactions. Furthermore, the finding that the N-terminal half of the Akt1 catalytic domain binds so strongly to FAK when cleaved from the rest of the protein may suggest a means

  15. The Dimeric Architecture of Checkpoint Kinases Mec1ATR and Tel1ATM Reveal a Common Structural Organization.

    PubMed

    Sawicka, Marta; Wanrooij, Paulina H; Darbari, Vidya C; Tannous, Elias; Hailemariam, Sarem; Bose, Daniel; Makarova, Alena V; Burgers, Peter M; Zhang, Xiaodong

    2016-06-24

    The phosphatidylinositol 3-kinase-related protein kinases are key regulators controlling a wide range of cellular events. The yeast Tel1 and Mec1·Ddc2 complex (ATM and ATR-ATRIP in humans) play pivotal roles in DNA replication, DNA damage signaling, and repair. Here, we present the first structural insight for dimers of Mec1·Ddc2 and Tel1 using single-particle electron microscopy. Both kinases reveal a head to head dimer with one major dimeric interface through the N-terminal HEAT (named after Huntingtin, elongation factor 3, protein phosphatase 2A, and yeast kinase TOR1) repeat. Their dimeric interface is significantly distinct from the interface of mTOR complex 1 dimer, which oligomerizes through two spatially separate interfaces. We also observe different structural organizations of kinase domains of Mec1 and Tel1. The kinase domains in the Mec1·Ddc2 dimer are located in close proximity to each other. However, in the Tel1 dimer they are fully separated, providing potential access of substrates to this kinase, even in its dimeric form. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. A crucial role for the phosphorylation of STRAP at Ser188 by MPK38 in STRAP-dependent cell death through ASK1, TGF-β, p53, and PI3K/PDK1 signaling pathways

    PubMed Central

    Seong, Hyun-A; Manoharan, Ravi; Ha, Hyunjung

    2014-01-01

    Serine-threonine kinase receptor-associated protein (STRAP) is a TGF-β receptor-interacting protein that participates in the regulation of cell proliferation and cell death in response to various stresses. Here, we demonstrate that STRAP phosphorylation plays an important role in determining the pro- or anti-apoptotic function of STRAP. Murine protein serine/threonine kinase 38 (MPK38) phosphorylates STRAP at Ser188 via direct interaction. Complex formation between STRAP and MPK38 is mediated by Cys152 and Cys270 of STRAP and Cys339 and Cys377 of MPK38, suggesting the redox dependency of this interaction. MPK38-mediated STRAP Ser188 phosphorylation contributes to the pro-apoptotic function of STRAP by modulating key steps in STRAP-dependent ASK1, TGF-β, p53, and PI3K/PDK1 signaling pathways. Moreover, knockdown of endogenous MPK38 using an inducible MPK38 shRNA system and in vivo activation of MPK38 by treatment of HEK293 and STRAP-null MEF cells with 1-chloro-2,4-dinitrobenzene (DNCB), a specific inhibitor of Trx reductase, provide evidence that STRAP Ser188 phosphorylation plays a key role in STRAP-dependent cell death. Adenoviral delivery of MPK38 in mice also demonstrates that STRAP Ser188 phosphorylation in the liver is tightly associated with cell death and proliferation through ASK1, TGF-β, p53, and PI3K/PDK1 pathways, resulting in apoptotic cell death. PMID:25485581

  17. A crucial role for the phosphorylation of STRAP at Ser(188) by MPK38 in STRAP-dependent cell death through ASK1, TGF-β, p53, and PI3K/PDK1 signaling pathways.

    PubMed

    Seong, Hyun-A; Manoharan, Ravi; Ha, Hyunjung

    2014-01-01

    Serine-threonine kinase receptor-associated protein (STRAP) is a TGF-β receptor-interacting protein that participates in the regulation of cell proliferation and cell death in response to various stresses. Here, we demonstrate that STRAP phosphorylation plays an important role in determining the pro- or anti-apoptotic function of STRAP. Murine protein serine/threonine kinase 38 (MPK38) phosphorylates STRAP at Ser(188) via direct interaction. Complex formation between STRAP and MPK38 is mediated by Cys(152) and Cys(270) of STRAP and Cys(339) and Cys(377) of MPK38, suggesting the redox dependency of this interaction. MPK38-mediated STRAP Ser(188) phosphorylation contributes to the pro-apoptotic function of STRAP by modulating key steps in STRAP-dependent ASK1, TGF-β, p53, and PI3K/PDK1 signaling pathways. Moreover, knockdown of endogenous MPK38 using an inducible MPK38 shRNA system and in vivo activation of MPK38 by treatment of HEK293 and STRAP-null MEF cells with 1-chloro-2,4-dinitrobenzene (DNCB), a specific inhibitor of Trx reductase, provide evidence that STRAP Ser(188) phosphorylation plays a key role in STRAP-dependent cell death. Adenoviral delivery of MPK38 in mice also demonstrates that STRAP Ser(188) phosphorylation in the liver is tightly associated with cell death and proliferation through ASK1, TGF-β, p53, and PI3K/PDK1 pathways, resulting in apoptotic cell death.

  18. Tubulin polymerization promoting protein 1 (Tppp1) phosphorylation by Rho-associated coiled-coil kinase (rock) and cyclin-dependent kinase 1 (Cdk1) inhibits microtubule dynamics to increase cell proliferation.

    PubMed

    Schofield, Alice V; Gamell, Cristina; Suryadinata, Randy; Sarcevic, Boris; Bernard, Ora

    2013-03-15

    Tubulin polymerization promoting protein 1 (Tppp1) regulates microtubule (MT) dynamics via promoting MT polymerization and inhibiting histone deacetylase 6 (Hdac6) activity to increase MT acetylation. Our results reveal that as a consequence, Tppp1 inhibits cell proliferation by delaying the G1/S-phase and the mitosis to G1-phase transitions. We show that phosphorylation of Tppp1 by Rho-associated coiled-coil kinase (Rock) prevents its Hdac6 inhibitory activity to enable cells to enter S-phase. Whereas, our analysis of the role of Tppp1 during mitosis revealed that inhibition of its MT polymerizing and Hdac6 regulatory activities were necessary for cells to re-enter the G1-phase. During this investigation, we also discovered that Tppp1 is a novel Cyclin B/Cdk1 (cyclin-dependent kinase) substrate and that Cdk phosphorylation of Tppp1 inhibits its MT polymerizing activity. Overall, our results show that dual Rock and Cdk phosphorylation of Tppp1 inhibits its regulation of the cell cycle to increase cell proliferation.

  19. Recent Advances of Colony-Stimulating Factor-1 Receptor (CSF-1R) Kinase and Its Inhibitors.

    PubMed

    El-Gamal, Mohammed I; Al-Ameen, Shahad K; Al-Koumi, Dania M; Hamad, Mawadda G; Jalal, Nouran A; Oh, Chang-Hyun

    2018-01-17

    Colony stimulation factor-1 receptor (CSF-1R), which is also known as FMS kinase, plays an important role in initiating inflammatory, cancer, and bone disorders when it is overstimulated by its ligand, CSF-1. Innate immunity, as well as macrophage differentiation and survival, are regulated by the stimulation of the CSF-1R. Another ligand, interlukin-34 (IL-34), was recently reported to activate the CSF-1R receptor in a different manner. The relationship between CSF-1R and microglia has been reviewed. Both CSF-1 antibodies and small molecule CSF-1R kinase inhibitors have now been tested in animal models and in humans. In this Perspective, we discuss the role of CSF-1 and IL-34 in producing cancer, bone disorders, and inflammation. We also review the newly discovered and improved small molecule kinase inhibitors and monoclonal antibodies that have shown potent activity toward CSF-1R, reported from 2012 until 2017.

  20. The serum and glucocorticoid-regulated protein kinases (SGK) stimulate bovine herpesvirus 1 and herpes simplex virus 1 productive infection.

    PubMed

    Kook, Insun; Jones, Clinton

    2016-08-15

    Serum and glucocorticoid-regulated protein kinases (SGK) are serine/threonine protein kinases that contain a catalytic domain resembling other protein kinases: AKT/protein kinase B, protein kinase A, and protein kinase C-Zeta for example. Unlike these constitutively expressed protein kinases, SGK1 RNA and protein levels are increased by growth factors and corticosteroids. Stress can directly stimulate SGK1 levels as well as stimulate bovine herpesvirus 1 (BoHV-1) and herpes simplex virus 1 (HSV-1) productive infection and reactivation from latency suggesting SGK1 can stimulate productive infection. For the first time, we provide evidence that a specific SGK inhibitor (GSK650394) significantly reduced BoHV-1 and HSV-1 replication in cultured cells. Proteins encoded by the three BoHV-1 immediate early genes (bICP0, bICP4, and bICP22) and two late proteins (VP16 and gE) were consistently reduced by GSK650394 during early stages of productive infection. In summary, these studies suggest SGK may stimulate viral replication following stressful stimuli. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Absence of Wip1 partially rescues Atm deficiency phenotypes in mice

    PubMed Central

    Darlington, Yolanda; Nguyen, Thuy-Ai; Moon, Sung-Hwan; Herron, Alan; Rao, Pulivarthi; Zhu, Chengming; Lu, Xiongbin; Donehower, Lawrence A.

    2011-01-01

    Wildtype p53-Induced Phosphatase 1 (WIP1) is a serine/threonine phosphatase that dephosphorylates proteins in the ataxia telangiectasia mutated (ATM)-initiated DNA damage response pathway. WIP1 may play a homeostatic role in ATM signaling by returning the cell to a normal pre-stress state following completion of DNA repair. To better understand the effects of WIP1 on ATM signaling, we crossed Atm-deficient mice to Wip1-deficient mice and characterized phenotypes of the double knockout progeny. We hypothesized that the absence of Wip1 might rescue Atm deficiency phenotypes. Atm null mice, like ATM-deficient humans with the inherited syndrome ataxia telangiectasia, exhibit radiation sensitivity, fertility defects, and are T-cell lymphoma prone. Most double knockout mice were largely protected from lymphoma development and had a greatly extended lifespan compared to Atm null mice. Double knockout mice had increased p53 and H2AX phosphorylation and p21 expression compared to their Atm null counterparts, indicating enhanced p53 and DNA damage responses. Additionally, double knockout splenocytes displayed reduced chromosomal instability compared to Atm null mice. Finally, doubly null mice were partially rescued from infertility defects observed in Atm null mice. These results indicate that inhibition of WIP1 may represent a useful strategy for cancer treatment in general and A-T patients in particular. PMID:21765465

  2. Novel receptor-like kinases in cacao contain PR-1 extracellular domains.

    PubMed

    Teixeira, Paulo José Pereira Lima; Costa, Gustavo Gilson Lacerda; Fiorin, Gabriel Lorencini; Pereira, Gonçalo Amarante Guimarães; Mondego, Jorge Maurício Costa

    2013-08-01

    Members of the pathogenesis-related protein 1 (PR-1) family are well-known markers of plant defence responses, forming part of the arsenal of the secreted proteins produced on pathogen recognition. Here, we report the identification of two cacao (Theobroma cacao L.) PR-1s that are fused to transmembrane regions and serine/threonine kinase domains, in a manner characteristic of receptor-like kinases (RLKs). These proteins (TcPR-1f and TcPR-1g) were named PR-1 receptor kinases (PR-1RKs). Phylogenetic analysis of RLKs and PR-1 proteins from cacao indicated that PR-1RKs originated from a fusion between sequences encoding PR-1 and the kinase domain of a LecRLK (Lectin Receptor-Like Kinase). Retrotransposition marks surround TcPR-1f, suggesting that retrotransposition was involved in the origin of PR-1RKs. Genes with a similar domain architecture to cacao PR-1RKs were found in rice (Oryza sativa), barrel medic (Medicago truncatula) and a nonphototrophic bacterium (Herpetosiphon aurantiacus). However, their kinase domains differed from those found in LecRLKs, indicating the occurrence of convergent evolution. TcPR-1g expression was up-regulated in the biotrophic stage of witches' broom disease, suggesting a role for PR-1RKs during cacao defence responses. We hypothesize that PR-1RKs transduce a defence signal by interacting with a PR-1 ligand. © 2013 BSPP AND JOHN WILEY & SONS LTD.

  3. Chloride sensing by WNK1 kinase involves inhibition of autophosphorylation

    PubMed Central

    Piala, Alexander T.; Moon, Thomas M.; Akella, Radha; He, Haixia; Cobb, Melanie H.; Goldsmith, Elizabeth J.

    2014-01-01

    WNK1 [with no lysine (K)] is a serine-threonine kinase associated with a form of familial hypertension. WNK1 is at the top of a kinase cascade leading to phosphorylation of several cotransporters, in particular those transporting sodium, potassium, and chloride (NKCC), sodium and chloride (NCC), and potassium and chloride (KCC). The responsiveness of NKCC, NCC, and KCC to changes in extracellular chloride parallels their phosphorylation state, provoking the proposal that these transporters are controlled by a chloride-sensitive protein kinase. Here, we found that chloride stabilizes the inactive conformation of WNK1, preventing kinase autophosphorylation and activation. Crystallographic studies of inactive WNK1 in the presence of chloride revealed that chloride binds directly to the catalytic site, providing a basis for the unique position of the catalytic lysine. Mutagenesis of the chloride binding site rendered the kinase less sensitive to inhibition of autophosphorylation by chloride, validating the binding site. Thus, these data suggest that WNK1 functions as a chloride sensor through direct binding of a regulatory chloride ion to the active site, which inhibits autophosphorylation. PMID:24803536

  4. Evolutionary divergence in the catalytic activity of the CAM-1, ROR1 and ROR2 kinase domains.

    PubMed

    Bainbridge, Travis W; DeAlmeida, Venita I; Izrael-Tomasevic, Anita; Chalouni, Cécile; Pan, Borlan; Goldsmith, Joshua; Schoen, Alia P; Quiñones, Gabriel A; Kelly, Ryan; Lill, Jennie R; Sandoval, Wendy; Costa, Mike; Polakis, Paul; Arnott, David; Rubinfeld, Bonnee; Ernst, James A

    2014-01-01

    Receptor tyrosine kinase-like orphan receptors (ROR) 1 and 2 are atypical members of the receptor tyrosine kinase (RTK) family and have been associated with several human diseases. The vertebrate RORs contain an ATP binding domain that deviates from the consensus amino acid sequence, although the impact of this deviation on catalytic activity is not known and the kinase function of these receptors remains controversial. Recently, ROR2 was shown to signal through a Wnt responsive, β-catenin independent pathway and suppress a canonical Wnt/β-catenin signal. In this work we demonstrate that both ROR1 and ROR2 kinase domains are catalytically deficient while CAM-1, the C. elegans homolog of ROR, has an active tyrosine kinase domain, suggesting a divergence in the signaling processes of the ROR family during evolution. In addition, we show that substitution of the non-consensus residues from ROR1 or ROR2 into CAM-1 and MuSK markedly reduce kinase activity, while restoration of the consensus residues in ROR does not restore robust kinase function. We further demonstrate that the membrane-bound extracellular domain alone of either ROR1 or ROR2 is sufficient for suppression of canonical Wnt3a signaling, and that this domain can also enhance Wnt5a suppression of Wnt3a signaling. Based on these data, we conclude that human ROR1 and ROR2 are RTK-like pseudokinases.

  5. SH2/SH3 adaptor proteins can link tyrosine kinases to a Ste20-related protein kinase, HPK1.

    PubMed

    Anafi, M; Kiefer, F; Gish, G D; Mbamalu, G; Iscove, N N; Pawson, T

    1997-10-31

    Ste20-related protein kinases have been implicated as regulating a range of cellular responses, including stress-activated protein kinase pathways and the control of cytoskeletal architecture. An important issue involves the identities of the upstream signals and regulators that might control the biological functions of mammalian Ste20-related protein kinases. HPK1 is a protein-serine/threonine kinase that possesses a Ste20-like kinase domain, and in transfected cells activates a protein kinase pathway leading to the stress-activated protein kinase SAPK/JNK. Here we have investigated candidate upstream regulators that might interact with HPK1. HPK1 possesses an N-terminal catalytic domain and an extended C-terminal tail with four proline-rich motifs. The SH3 domains of Grb2 bound in vitro to specific proline-rich motifs in the HPK1 tail and functioned synergistically to direct the stable binding of Grb2 to HPK1 in transfected Cos1 cells. Epidermal growth factor (EGF) stimulation did not affect the binding of Grb2 to HPK1 but induced recruitment of the Grb2.HPK1 complex to the autophosphorylated EGF receptor and to the Shc docking protein. Several activated receptor and cytoplasmic tyrosine kinases, including the EGF receptor, stimulated the tyrosine phosphorylation of the HPK1 serine/threonine kinase. These results suggest that HPK1, a mammalian Ste20-related protein-serine/threonine kinase, can potentially associate with protein-tyrosine kinases through interactions mediated by SH2/SH3 adaptors such as Grb2. Such interaction may provide a possible mechanism for cross-talk between distinct biochemical pathways following the activation of tyrosine kinases.

  6. Tank binding kinase 1 is a centrosome-associated kinase necessary for microtubule dynamics and mitosis

    PubMed Central

    Pillai, Smitha; Nguyen, Jonathan; Johnson, Joseph; Haura, Eric; Coppola, Domenico; Chellappan, Srikumar

    2015-01-01

    TANK Binding Kinase 1 (TBK1) is a non-canonical IκB kinase that contributes to KRAS-driven lung cancer. Here we report that TBK1 plays essential roles in mammalian cell division. Specifically, levels of active phospho-TBK1 increase during mitosis and localize to centrosomes, mitotic spindles and midbody, and selective inhibition or silencing of TBK1 triggers defects in spindle assembly and prevents mitotic progression. TBK1 binds to the centrosomal protein CEP170 and to the mitotic apparatus protein NuMA, and both CEP170 and NuMA are TBK1 substrates. Further, TBK1 is necessary for CEP170 centrosomal localization and binding to the microtubule depolymerase Kif2b, and for NuMA binding to dynein. Finally, selective disruption of the TBK1–CEP170 complex augments microtubule stability and triggers defects in mitosis, suggesting that TBK1 functions as a mitotic kinase necessary for microtubule dynamics and mitosis. PMID:26656453

  7. Molecular dynamics simulations reveal the conformational dynamics of Arabidopsis thaliana BRI1 and BAK1 receptor-like kinases.

    PubMed

    Moffett, Alexander S; Bender, Kyle W; Huber, Steven C; Shukla, Diwakar

    2017-07-28

    The structural motifs responsible for activation and regulation of eukaryotic protein kinases in animals have been studied extensively in recent years, and a coherent picture of their activation mechanisms has begun to emerge. In contrast, non-animal eukaryotic protein kinases are not as well understood from a structural perspective, representing a large knowledge gap. To this end, we investigated the conformational dynamics of two key Arabidopsis thaliana receptor-like kinases, brassinosteroid-insensitive 1 (BRI1) and BRI1-associated kinase 1 (BAK1), through extensive molecular dynamics simulations of their fully phosphorylated kinase domains. Molecular dynamics simulations calculate the motion of each atom in a protein based on classical approximations of interatomic forces, giving researchers insight into protein function at unparalleled spatial and temporal resolutions. We found that in an otherwise "active" BAK1 the αC helix is highly disordered, a hallmark of deactivation, whereas the BRI1 αC helix is moderately disordered and displays swinging behavior similar to numerous animal kinases. An analysis of all known sequences in the A. thaliana kinome found that αC helix disorder may be a common feature of plant kinases. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Chewing rescues stress-suppressed hippocampal long-term potentiation via activation of histamine H1 receptor.

    PubMed

    Ono, Yumie; Kataoka, Tsuyoshi; Miyake, Shinjiro; Sasaguri, Kenichi; Sato, Sadao; Onozuka, Minoru

    2009-08-01

    We have previously found in rats that chewing, an active behavioral strategy to cope with a stressful situation, rescues long-term potentiation (LTP) in the hippocampus through activating stress-suppressed N-methyl-D-aspartate (NMDA) receptor function. To further examine the mechanisms underlying this ameliorative effect of chewing, we studied the involvement of the histaminergic system, which has been shown to be activated by mastication, in the LTP of hippocampal slices of rats that were allowed to chew a wooden stick during exposure to immobilization stress. Chewing failed to rescue stress-suppressed LTP in the rats treated with histamine H1 receptor (H1R) antagonist pyrilamine (5 mg/kg, i.p.) before exposure to stress, although administration of pyrilamine did not affect LTP in naive rats and in stressed rats that did not chew. However, when pyrilamine was administrated immediately after exposure to stress, chewing rescued LTP whose magnitude was statistically comparable to that in the rats that chewed without drug treatment. These results suggest that chewing-induced histamine release in the hippocampus and the subsequent H1 receptor activation may be essential to rescue stress-suppressed synaptic plasticity.

  9. Sensitization of TRPA1 by Protein Kinase A

    PubMed Central

    Meents, Jannis E.; Fischer, Michael J. M.; McNaughton, Peter A.

    2017-01-01

    The TRPA1 ion channel is expressed in nociceptive (pain-sensitive) somatosensory neurons and is activated by a wide variety of chemical irritants, such as acrolein in smoke or isothiocyanates in mustard. Here, we investigate the enhancement of TRPA1 function caused by inflammatory mediators, which is thought to be important in lung conditions such as asthma and COPD. Protein kinase A is an important kinase acting downstream of inflammatory mediators to cause sensitization of TRPA1. By using site-directed mutagenesis, patch-clamp electrophysiology and calcium imaging we identify four amino acid residues, S86, S317, S428, and S972, as the principal targets of PKA-mediated phosphorylation and sensitization of TRPA1. PMID:28076424

  10. Two homolog wheat Glycogen Synthase Kinase 3/SHAGGY--like kinases are involved in brassinosteroid signaling.

    PubMed

    Bittner, Thomas; Nadler, Sabine; Schulze, Eija; Fischer-Iglesias, Christiane

    2015-10-13

    Glycogen Synthase Kinase 3/SHAGGY-like kinases (GSKs) are multifunctional non-receptor ser/thr kinases. Plant GSKs are involved in hormonal signaling networks and are required for growth, development, light as well as stress responses. So far, most studies have been carried out on Arabidopsis or on other eudicotyledon GSKs. Here, we evaluated the role of TaSK1 and TaSK2, two homolog wheat (Triticum aestivum) GSKs, in brassinosteroid signaling. We explored in addition the physiological effects of brassinosteroids on wheat growth and development. A bin2-1 like gain-of-function mutation has been inserted respectively in one of the homoeologous gene copies of TaSK1 (TaSK1-A.2-1) and in one of the homoeologous gene copies of TaSK2 (TaSK2-A.2-1). Arabidopsis plants were transformed with these mutated gene copies. Severe dwarf phenotypes were obtained closely resembling those of Arabidopsis bin2-1 lines and Arabidopsis BR-deficient or BR-signaling mutants. Expression of BR downstream genes, SAUR-AC1, CPD and BAS1 was deregulated in TaSK1.2-1 and TaSK2.2-1 transgenic lines. Severe dwarf lines were partially rescued by Bikinin beforehand shown to inhibit TaSK kinase activity. This rescue was accompanied with changes in BR downstream gene expression levels. Wheat embryos and seedlings were treated with compounds interfering with BR signaling or modifying BR levels to gain insight into the role of brassinosteroids in wheat development. Embryonic axis and scutellum differentiation were impaired, and seedling growth responses were affected when embryos were treated with Epibrassinolides, Propiconazole, and Bikinin. In view of our findings, TaSKs are proposed to be involved in BR signaling and to be orthologous of Arabidopsis Clade II GSK3/SHAGGY-like kinases. Observed effects of Epibrassinolide, Propiconazole and Bikinin treatments on wheat embryos and seedlings indicate a role for BR signaling in embryonic patterning and seedling growth.

  11. Deletion of the eIF2α Kinase GCN2 fails to rescue the memory decline associated with Alzheimer's disease.

    PubMed

    Devi, Latha; Ohno, Masuo

    2013-01-01

    Emerging evidence suggests that dysregulated translation through phosphorylation of eukaryotic initiation factor-2α (eIF2α) may contribute to Alzheimer's disease (AD) and related memory impairments. However, the underlying mechanisms remain unclear. Here, we crossed knockout mice for an eIF2α kinase (GCN2: general control nonderepressible-2 kinase) with 5XFAD transgenic mice, and investigated whether GCN2 deletion affects AD-like traits in this model. As observed in AD brains, 5XFAD mice recapitulated significant elevations in the β-secretase enzyme BACE1 and the CREB repressor ATF4 concomitant with a dramatic increase of eIF2α phosphorylation. Contrary to expectation, we found that GCN2(-/-) and GCN2(+/-) deficiencies aggravate rather than suppress hippocampal BACE1 and ATF4 elevations in 5XFAD mice, failing to rescue memory deficits as tested by the contextual fear conditioning. The facilitation of these deleterious events resulted in exacerbated β-amyloid accumulation, plaque pathology and CREB dysfunction in 5XFAD mice with GCN2 mutations. Notably, GCN2 deletion caused overactivation of the PKR-endoplasmic reticulum-related kinase (PERK)-dependent eIF2α phosphorylation pathway in 5XFAD mice in the absence of changes in the PKR pathway. Moreover, PERK activation in response to GCN2 deficiency was specific to 5XFAD mice, since phosphorylated PERK levels were equivalent between GCN2(-/-) and wild-type control mice. Our findings suggest that GCN2 may be an important eIF2α kinase under the physiological condition, whereas blocking the GCN2 pathway under exposure to significant β-amyloidosis rather aggravates eIF2α phosphorylation leading to BACE1 and ATF4 elevations in AD.

  12. Phenotypic regulation of the sphingosine 1-phosphate receptor miles apart by G protein-coupled receptor kinase 2.

    PubMed

    Burczyk, Martina; Burkhalter, Martin D; Blätte, Tamara; Matysik, Sabrina; Caron, Marc G; Barak, Lawrence S; Philipp, Melanie

    2015-01-27

    The evolutionarily conserved DRY motif at the end of the third helix of rhodopsin-like, class-A G protein-coupled receptors (GPCRs) is a major regulator of receptor stability, signaling activity, and β-arrestin-mediated internalization. Substitution of the DRY arginine with histidine in the human vasopressin receptor results in a loss-of-function phenotype associated with diabetes insipidus. The analogous R150H substitution of the DRY motif in zebrafish sphingosine-1 phosphate receptor 2 (S1p2) produces a mutation, miles apart m(93) (mil(m93)), that not only disrupts signaling but also impairs heart field migration. We hypothesized that constitutive S1p2 desensitization is the underlying cause of this strong zebrafish developmental defect. We observed in cell assays that the wild-type S1p2 receptor is at the cell surface whereas in distinct contrast the S1p2 R150H receptor is found in intracellular vesicles, blocking G protein but not arrestin signaling activity. Surface S1p2 R150H expression could be restored by inhibition of G protein-coupled receptor kinase 2 (GRK2). Moreover, we observed that β-arrestin 2 and GRK2 colocalize with S1p2 in developing zebrafish embryos and depletion of GRK2 in the S1p2 R150H miles apart zebrafish partially rescued cardia bifida. The ability of reduced GRK2 activity to reverse a developmental phenotype associated with constitutive desensitization supports efforts to genetically or pharmacologically target this kinase in diseases involving biased GPCR signaling.

  13. Phenotypic Regulation of the Sphingosine 1-Phosphate Receptor Miles Apart by G Protein-Coupled Receptor Kinase 2

    PubMed Central

    2016-01-01

    The evolutionarily conserved DRY motif at the end of the third helix of rhodopsin-like, class-A G protein-coupled receptors (GPCRs) is a major regulator of receptor stability, signaling activity, and β-arrestin-mediated internalization. Substitution of the DRY arginine with histidine in the human vasopressin receptor results in a loss-of-function phenotype associated with diabetes insipidus. The analogous R150H substitution of the DRY motif in zebrafish sphingosine-1 phosphate receptor 2 (S1p2) produces a mutation, miles apart m93 (milm93), that not only disrupts signaling but also impairs heart field migration. We hypothesized that constitutive S1p2 desensitization is the underlying cause of this strong zebrafish developmental defect. We observed in cell assays that the wild-type S1p2 receptor is at the cell surface whereas in distinct contrast the S1p2 R150H receptor is found in intracellular vesicles, blocking G protein but not arrestin signaling activity. Surface S1p2 R150H expression could be restored by inhibition of G protein-coupled receptor kinase 2 (GRK2). Moreover, we observed that β-arrestin 2 and GRK2 colocalize with S1p2 in developing zebrafish embryos and depletion of GRK2 in the S1p2 R150H miles apart zebrafish partially rescued cardia bifida. The ability of reduced GRK2 activity to reverse a developmental phenotype associated with constitutive desensitization supports efforts to genetically or pharmacologically target this kinase in diseases involving biased GPCR signaling. PMID:25555130

  14. Purification and characterization of the three Snf1-activating kinases of Saccharomyces cerevisiae.

    PubMed

    Elbing, Karin; McCartney, Rhonda R; Schmidt, Martin C

    2006-02-01

    Members of the Snf1/AMPK family of protein kinases are activated by distinct upstream kinases that phosphorylate a conserved threonine residue in the Snf1/AMPK activation loop. Recently, the identities of the Snf1- and AMPK-activating kinases have been determined. Here we describe the purification and characterization of the three Snf1-activating kinases of Saccharomyces cerevisiae. The identities of proteins associated with the Snf1-activating kinases were determined by peptide mass fingerprinting. These kinases, Sak1, Tos3 and Elm2 do not appear to require the presence of additional subunits for activity. Sak1 and Snf1 co-purify and co-elute in size exclusion chromatography, demonstrating that these two proteins form a stable complex. The Snf1-activating kinases phosphorylate the activation loop threonine of Snf1 in vitro with great specificity and are able to do so in the absence of beta and gamma subunits of the Snf1 heterotrimer. Finally, we showed that the Snf1 kinase domain isolated from bacteria as a GST fusion protein can be activated in vitro and shows substrate specificity in the absence of its beta and gamma subunits.

  15. Purification and characterization of the three Snf1-activating kinases of Saccharomyces cerevisiae

    PubMed Central

    2005-01-01

    Members of the Snf1/AMPK family of protein kinases are activated by distinct upstream kinases that phosphorylate a conserved threonine residue in the Snf1/AMPK activation loop. Recently, the identities of the Snf1- and AMPK-activating kinases have been determined. Here we describe the purification and characterization of the three Snf1-activating kinases of Saccharomyces cerevisiae. The identities of proteins associated with the Snf1-activating kinases were determined by peptide mass fingerprinting. These kinases, Sak1, Tos3 and Elm2 do not appear to require the presence of additional subunits for activity. Sak1 and Snf1 co-purify and co-elute in size exclusion chromatography, demonstrating that these two proteins form a stable complex. The Snf1-activating kinases phosphorylate the activation loop threonine of Snf1 in vitro with great specificity and are able to do so in the absence of β and γ subunits of the Snf1 heterotrimer. Finally, we showed that the Snf1 kinase domain isolated from bacteria as a GST fusion protein can be activated in vitro and shows substrate specificity in the absence of its β and γ subunits. PMID:16201971

  16. Polo-like kinase 1, a new therapeutic target in hepatocellular carcinoma

    PubMed Central

    Mok, Wei Chuen; Wasser, Shanthi; Tan, Theresa; Lim, Seng Gee

    2012-01-01

    AIM: To investigate the role of polo-like kinase 1 (PLK1) as a therapeutic target for hepatocellular carcinoma (HCC). METHODS: PLK1 gene expression was evaluated in HCC tissue and HCC cell lines. Gene knockdown with short-interfering RNA (siRNA) was used to study PLK1 gene and protein expression using real-time reverse transcription polymerase chain reaction (RT-PCR) and Western blotting, and cell proliferation using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2(4-sulfophenyl)-2H-tetrazolium (MTS) and bromodeoxyuridine (BrdU) assays. Apoptosis was evaluated using the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, and caspase-inhibition assay. Huh-7 cells were transplanted into nude mice and co-cultured with PLK1 siRNA or control siRNA, and tumor progression was compared with controls. RESULTS: RT-PCR showed that PLK1 was overexpressed 12-fold in tumor samples compared with controls, and also was overexpressed in Huh-7 cells. siRNA against PLK1 showed a reduction in PLK1 gene and protein expression of up to 96% in Huh-7 cells, and a reduction in cell proliferation by 68% and 92% in MTS and BrdU cell proliferation assays, respectively. There was a 3-fold increase in apoptosis events, and TUNEL staining and caspase-3 assays suggested that this was caspase-independent. The pan-caspase inhibitor Z-VAD-FMK was unable to rescue the apoptotic cells. Immnofluorescence co-localized endonuclease-G to fragmented chromosomes, implicating it in apoptosis. Huh-7 cells transplanted subcutaneously into nude mice showed tumor regression in siPLK1-treated mice, but not in controls. CONCLUSION: Knockdown of PLK1 overexpression in HCC was shown to be a potential therapeutic target, leading to apoptosis through the endonuclease-G pathway. PMID:22826617

  17. A role for FOXO1 in BCR–ABL1-independent tyrosine kinase inhibitor resistance in chronic myeloid leukemia

    PubMed Central

    Wagle, M; Eiring, A M; Wongchenko, M; Lu, S; Guan, Y; Wang, Y; Lackner, M; Amler, L; Hampton, G; Deininger, M W; O'Hare, T; Yan, Y

    2016-01-01

    Chronic myeloid leukemia (CML) patients who relapse on imatinib due to acquired ABL1 kinase domain mutations are successfully treated with second-generation ABL1-tyrosine kinase inhibitors (ABL-TKIs) such as dasatinib, nilotinib or ponatinib. However, ~40% of relapsed patients have uncharacterized BCR–ABL1 kinase-independent mechanisms of resistance. To identify these mechanisms of resistance and potential treatment options, we generated ABL-TKI-resistant K562 cells through prolonged sequential exposure to imatinib and dasatinib. Dual-resistant K562 cells lacked BCR–ABL1 kinase domain mutations, but acquired other genomic aberrations that were characterized by next-generation sequencing and copy number analyses. Proteomics showed that dual-resistant cells had elevated levels of FOXO1, phospho-ERK and BCL-2, and that dasatinib no longer inhibited substrates of the PI3K/AKT pathway. In contrast to parental cells, resistant cells were sensitive to growth inhibition and apoptosis induced by the class I PI3K inhibitor, GDC-0941 (pictilisib), which also induced FOXO1 nuclear translocation. FOXO1 was elevated in a subset of primary specimens from relapsed CML patients lacking BCR–ABL1 kinase domain mutations, and these samples were responsive to GDC-0941 treatment ex vivo. We conclude that elevated FOXO1 contributes to BCR–ABL1 kinase-independent resistance experienced by these CML patients and that PI3K inhibition coupled with BCR–ABL1 inhibition may represent a novel therapeutic approach. PMID:27044711

  18. A role for FOXO1 in BCR-ABL1-independent tyrosine kinase inhibitor resistance in chronic myeloid leukemia.

    PubMed

    Wagle, M; Eiring, A M; Wongchenko, M; Lu, S; Guan, Y; Wang, Y; Lackner, M; Amler, L; Hampton, G; Deininger, M W; O'Hare, T; Yan, Y

    2016-07-01

    Chronic myeloid leukemia (CML) patients who relapse on imatinib due to acquired ABL1 kinase domain mutations are successfully treated with second-generation ABL1-tyrosine kinase inhibitors (ABL-TKIs) such as dasatinib, nilotinib or ponatinib. However, ~40% of relapsed patients have uncharacterized BCR-ABL1 kinase-independent mechanisms of resistance. To identify these mechanisms of resistance and potential treatment options, we generated ABL-TKI-resistant K562 cells through prolonged sequential exposure to imatinib and dasatinib. Dual-resistant K562 cells lacked BCR-ABL1 kinase domain mutations, but acquired other genomic aberrations that were characterized by next-generation sequencing and copy number analyses. Proteomics showed that dual-resistant cells had elevated levels of FOXO1, phospho-ERK and BCL-2, and that dasatinib no longer inhibited substrates of the PI3K/AKT pathway. In contrast to parental cells, resistant cells were sensitive to growth inhibition and apoptosis induced by the class I PI3K inhibitor, GDC-0941 (pictilisib), which also induced FOXO1 nuclear translocation. FOXO1 was elevated in a subset of primary specimens from relapsed CML patients lacking BCR-ABL1 kinase domain mutations, and these samples were responsive to GDC-0941 treatment ex vivo. We conclude that elevated FOXO1 contributes to BCR-ABL1 kinase-independent resistance experienced by these CML patients and that PI3K inhibition coupled with BCR-ABL1 inhibition may represent a novel therapeutic approach.

  19. Subunits of the Snf1 kinase heterotrimer show interdependence for association and activity.

    PubMed

    Elbing, Karin; Rubenstein, Eric M; McCartney, Rhonda R; Schmidt, Martin C

    2006-09-08

    The Snf1 kinase and its mammalian orthologue, the AMP-activated protein kinase (AMPK), function as heterotrimers composed of a catalytic alpha-subunit and two non-catalytic subunits, beta and gamma. The beta-subunit is thought to hold the complex together and control subcellular localization whereas the gamma-subunit plays a regulatory role by binding to and blocking the function of an auto-inhibitory domain (AID) present in the alpha-subunit. In addition, catalytic activity requires phosphorylation by a distinct upstream kinase. In yeast, any one of three Snf1-activating kinases, Sak1, Tos3, or Elm1, can fulfill this role. We have previously shown that Sak1 is the only Snf1-activating kinase that forms a stable complex with Snf1. Here we show that the formation of the Sak1.Snf1 complex requires the beta- and gamma-subunits in vivo. However, formation of the Sak1.Snf1 complex is not necessary for glucose-regulated phosphorylation of the Snf1 activation loop. Snf1 kinase purified from cells lacking the beta-subunits do not contain any gamma-subunit, indicating that the Snf1 kinase does not form a stable alphagamma dimer in vivo. In vitro kinase assays using purified full-length and truncated Snf1 proteins demonstrate that the kinase domain, which lacks the AID, is significantly more active than the full-length Snf1 protein. Addition of purified beta- and gamma-subunits could stimulate the kinase activity of the full-length alpha-subunit but only when all three subunits were present, suggesting an interdependence of all three subunits for assembly of a functional complex.

  20. Myeloid cell leukemia 1 (MCL-1), an unexpected modulator of protein kinase signaling during invasion.

    PubMed

    Young, Adelaide Ij; Timpson, Paul; Gallego-Ortega, David; Ormandy, Christopher J; Oakes, Samantha R

    2017-12-21

    Myeloid cell leukemia-1 (MCL-1), closely related to B-cell lymphoma 2 (BCL-2), has a well-established role in cell survival and has emerged as an important target for cancer therapeutics. We have demonstrated that inhibiting MCL-1 is efficacious in suppressing tumour progression in pre-clinical models of breast cancer and revealed that in addition to its role in cell survival, MCL-1 modulated cellular invasion. Utilizing a MCL-1-specific genetic antagonist, we found two possible mechanisms; firstly MCL-1 directly binds to and alters the phosphorylation of the cytoskeletal remodeling protein, Cofilin, a protein important for cytoskeletal remodeling during invasion, and secondly MCL-1 modulates the levels SRC family kinases (SFKs) and their targets. These data provide evidence that MCL-1 activities are not limited to endpoints of extracellular and intracellular signaling culminating in cell survival as previously thought, but can directly modulate the output of SRC family kinases signaling during cellular invasion. Here we review the pleotropic roles of MCL-1 and discuss the implications of this newly discovered effect on protein kinase signaling for the development of cancer therapeutics.

  1. Molecular dynamics simulations reveal the conformational dynamics of Arabidopsis thaliana BRI1 and BAK1 receptor-like kinases

    USDA-ARS?s Scientific Manuscript database

    Initiation of the brassinosteroid (BR) signaling pathway in plants, which is critical for control of growth and development, occurs through the ligand-induced association of BR-insensitive 1 (BRI1) and BRI1-associated kinase 1 (BAK1), receptor-like kinases on the plasma membrane. While a great deal ...

  2. A Phosphoinositide 3-Kinase (PI3K)-serum- and glucocorticoid-inducible Kinase 1 (SGK1) Pathway Promotes Kv7.1 Channel Surface Expression by Inhibiting Nedd4-2 Protein*

    PubMed Central

    Andersen, Martin Nybo; Krzystanek, Katarzyna; Petersen, Frederic; Bomholtz, Sofia Hammami; Olesen, Søren-Peter; Abriel, Hugues; Jespersen, Thomas; Rasmussen, Hanne Borger

    2013-01-01

    Epithelial cell polarization involves several kinase signaling cascades that eventually divide the surface membrane into an apical and a basolateral part. One kinase, which is activated during the polarization process, is phosphoinositide 3-kinase (PI3K). In MDCK cells, the basolateral potassium channel Kv7.1 requires PI3K activity for surface-expression during the polarization process. Here, we demonstrate that Kv7.1 surface expression requires tonic PI3K activity as PI3K inhibition triggers endocytosis of these channels in polarized MDCK. Pharmacological inhibition of SGK1 gave similar results as PI3K inhibition, whereas overexpression of constitutively active SGK1 overruled it, suggesting that SGK1 is the primary downstream target of PI3K in this process. Furthermore, knockdown of the ubiquitin ligase Nedd4-2 overruled PI3K inhibition, whereas a Nedd4-2 interaction-deficient Kv7.1 mutant was resistant to both PI3K and SGK1 inhibition. Altogether, these data suggest that a PI3K-SGK1 pathway stabilizes Kv7.1 surface expression by inhibiting Nedd4-2-dependent endocytosis and thereby demonstrates that Nedd4-2 is a key regulator of Kv7.1 localization and turnover in epithelial cells. PMID:24214981

  3. A phosphoinositide 3-kinase (PI3K)-serum- and glucocorticoid-inducible kinase 1 (SGK1) pathway promotes Kv7.1 channel surface expression by inhibiting Nedd4-2 protein.

    PubMed

    Andersen, Martin Nybo; Krzystanek, Katarzyna; Petersen, Frederic; Bomholtz, Sofia Hammami; Olesen, Søren-Peter; Abriel, Hugues; Jespersen, Thomas; Rasmussen, Hanne Borger

    2013-12-27

    Epithelial cell polarization involves several kinase signaling cascades that eventually divide the surface membrane into an apical and a basolateral part. One kinase, which is activated during the polarization process, is phosphoinositide 3-kinase (PI3K). In MDCK cells, the basolateral potassium channel Kv7.1 requires PI3K activity for surface-expression during the polarization process. Here, we demonstrate that Kv7.1 surface expression requires tonic PI3K activity as PI3K inhibition triggers endocytosis of these channels in polarized MDCK. Pharmacological inhibition of SGK1 gave similar results as PI3K inhibition, whereas overexpression of constitutively active SGK1 overruled it, suggesting that SGK1 is the primary downstream target of PI3K in this process. Furthermore, knockdown of the ubiquitin ligase Nedd4-2 overruled PI3K inhibition, whereas a Nedd4-2 interaction-deficient Kv7.1 mutant was resistant to both PI3K and SGK1 inhibition. Altogether, these data suggest that a PI3K-SGK1 pathway stabilizes Kv7.1 surface expression by inhibiting Nedd4-2-dependent endocytosis and thereby demonstrates that Nedd4-2 is a key regulator of Kv7.1 localization and turnover in epithelial cells.

  4. Role of nongenomic activation of phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase/extracellular signal-regulated kinase kinase/extracellular signal-regulated kinase 1/2 pathways in 1,25D3-mediated apoptosis in squamous cell carcinoma cells.

    PubMed

    Ma, Yingyu; Yu, Wei-Dong; Kong, Rui-Xian; Trump, Donald L; Johnson, Candace S

    2006-08-15

    Vitamin D is a steroid hormone that regulates calcium homeostasis and bone metabolism. The active form of vitamin D [1 alpha,25-dihydroxyvitamin D(3) (1,25D3)] acts through both genomic and nongenomic pathways. 1,25D3 has antitumor effects in a variety of cancers, including colorectal, prostate, breast, ovarian, and skin cancers. 1,25D3 exerts growth-inhibitory effects in cancer cells through the induction of apoptosis, cell cycle arrest, and differentiation. The mechanisms regulating 1,25D3-induced apoptosis remain unclear. We investigated the role of nongenomic signaling in 1,25D3-mediated apoptosis in squamous cell carcinoma (SCC) cells. 1,25D3 induced rapid and sustained activation of phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) 1/2 pathways in SCC cells. These effects were nongenomic: they occurred rapidly and were not inhibited by cycloheximide or actinomycin D. To examine whether the nongenomic activation of Akt and ERK1/2 plays a role in 1,25D3-mediated apoptosis, the expression of Akt or ERK1/2 was reduced by small interfering RNA (siRNA). siRNA-Akt significantly enhanced 1,25D3-induced apoptosis as indicated by increased levels of Annexin V-positive cells and increased sub-G(1) population and DNA fragmentation. In contrast, siRNA-ERK1/2 had no effects on 1,25D3-induced apoptosis. In addition, siRNA-Akt transfection followed by 1,25D3 treatment induced apoptosis much sooner than 1,25D3 alone. siRNA-Akt and 1,25D3 induced caspase-10 activation, suppressed the expression of c-IAP1 and XIAP, and promoted 1,25D3-induced caspase-3 activation. These results support a link between 1,25D3-induced nongenomic signaling and apoptosis. 1,25D3 induces the activation of phosphatidylinositol 3-kinase/Akt, which suppresses 1,25D3-mediated apoptosis and prolongs the survival of SCC cells.

  5. Induced overexpression of protein kinase D1 stimulates mitogenic signaling in human pancreatic carcinoma PANC-1 cells.

    PubMed

    Kisfalvi, Krisztina; Hurd, Cliff; Guha, Sushovan; Rozengurt, Enrique

    2010-05-01

    Neurotensin (NT) stimulates protein kinase D1 (PKD1), extracellular signal regulated kinase (ERK), c-Jun N-terminal Kinase (JNK), and DNA synthesis in the human pancreatic adenocarcinoma cell line PANC-1. To determine the effect of PKD1 overexpression on these biological responses, we generated inducible stable PANC-1 clones that express wild-type (WT) or kinase-dead (K618N) forms of PKD1 in response to the ecdysone analog ponasterone-A (PonA). NT potently stimulated c-Jun Ser(63) phosphorylation in both wild type and clonal derivatives of PANC-1 cells. PonA-induced expression of WT, but not K618N PKD1, rapidly blocked NT-mediated c-Jun Ser(63) phosphorylation either at the level of or upstream of MKK4, a dual-specificity kinase that leads to JNK activation. This is the first demonstration that PKD1 suppresses NT-induced JNK/cJun activation in PANC-1 cells. In contrast, PKD1 overexpression markedly increased the duration of NT-induced ERK activation in these cells. The reciprocal influence of PKD1 signaling on pro-mitogenicERK and pro-apopotic JNK/c-Jun pathways prompted us to examine whether PKD1 overexpression promotes DNA synthesis and proliferation of PANC-1 cells. Our results show that PKD1 overexpression increased DNA synthesis and cell numbers of PANC-1 cells cultured in regular dishes or in polyhydroxyethylmethacrylate [Poly-(HEMA)]-coated dishes to eliminate cell adhesion (anchorage-independent growth). Furthermore, PKD1 overexpression markedly enhanced DNA synthesis induced by NT (1-10 nM). These results indicate that PKD1 mediates mitogenic signaling in PANC-1 and suggests that this enzyme could be a novel target for the development of therapeutic drugs that restrict the proliferation of these cells.

  6. Phosphorylation of Dgk1 Diacylglycerol Kinase by Casein Kinase II Regulates Phosphatidic Acid Production in Saccharomyces cerevisiae.

    PubMed

    Qiu, Yixuan; Hassaninasab, Azam; Han, Gil-Soo; Carman, George M

    2016-12-16

    In the yeast Saccharomyces cerevisiae, Dgk1 diacylglycerol (DAG) kinase catalyzes the CTP-dependent phosphorylation of DAG to form phosphatidic acid (PA). The enzyme in conjunction with Pah1 PA phosphatase controls the levels of PA and DAG for the synthesis of triacylglycerol and membrane phospholipids, the growth of the nuclear/endoplasmic reticulum membrane, and the formation of lipid droplets. Little is known about how DAG kinase activity is regulated by posttranslational modification. In this work, we examined the phosphorylation of Dgk1 DAG kinase by casein kinase II (CKII). When phosphate groups were globally reduced using nonspecific alkaline phosphatase, Triton X-100-solubilized membranes from DGK1-overexpressing cells showed a 7.7-fold reduction in DAG kinase activity; the reduced enzyme activity could be increased 5.5-fold by treatment with CKII. Dgk1(1-77) expressed heterologously in Escherichia coli was phosphorylated by CKII on a serine residue, and its phosphorylation was dependent on time as well as on the concentrations of CKII, ATP, and Dgk1(1-77). We used site-specific mutagenesis, coupled with phosphorylation analysis and phosphopeptide mapping, to identify Ser-45 and Ser-46 of Dgk1 as the CKII target sites, with Ser-46 being the major phosphorylation site. In vivo, the S46A and S45A/S46A mutations of Dgk1 abolished the stationary phase-dependent stimulation of DAG kinase activity. In addition, the phosphorylation-deficient mutations decreased Dgk1 function in PA production and in eliciting pah1Δ phenotypes, such as the expansion of the nuclear/endoplasmic reticulum membrane, reduced lipid droplet formation, and temperature sensitivity. This work demonstrates that the CKII-mediated phosphorylation of Dgk1 regulates its function in the production of PA. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Toxoplasma DJ-1 Regulates Organelle Secretion by a Direct Interaction with Calcium-Dependent Protein Kinase 1

    PubMed Central

    Child, Matthew A.; Garland, Megan; Foe, Ian; Madzelan, Peter; Treeck, Moritz; van der Linden, Wouter A.; Oresic Bender, Kristina; Weerapana, Eranthie; Wilson, Mark A.; Boothroyd, John C.; Reese, Michael L.

    2017-01-01

    ABSTRACT Human DJ-1 is a highly conserved and yet functionally enigmatic protein associated with a heritable form of Parkinson’s disease. It has been suggested to be a redox-dependent regulatory scaffold, binding to proteins to modulate their function. Here we present the X-ray crystal structure of the Toxoplasma orthologue Toxoplasma gondii DJ-1 (TgDJ-1) at 2.1-Å resolution and show that it directly associates with calcium-dependent protein kinase 1 (CDPK1). The TgDJ-1 structure identifies an orthologously conserved arginine dyad that acts as a phospho-gatekeeper motif to control complex formation. We determined that the binding of TgDJ-1 to CDPK1 is sensitive to oxidation and calcium, and that this interaction potentiates CDPK1 kinase activity. Finally, we show that genetic deletion of TgDJ-1 results in upregulation of CDPK1 expression and that disruption of the CDPK1/TgDJ-1 complex in vivo prevents normal exocytosis of parasite virulence-associated organelles called micronemes. Overall, our data suggest that TgDJ-1 functions as a noncanonical kinase-regulatory scaffold that integrates multiple intracellular signals to tune microneme exocytosis in T. gondii. PMID:28246362

  8. The Mysterious Rescue of adg1-1/tpt-2 – an Arabidopsis thaliana Double Mutant Impaired in Acclimation to High Light – by Exogenously Supplied Sugars

    PubMed Central

    Heinrichs, Luisa; Schmitz, Jessica; Flügge, Ulf-Ingo; Häusler, Rainer E.

    2012-01-01

    An Arabidopsis thaliana double mutant (adg1-1/tpt-2) defective in the day- and night-path of photoassimilate export from the chloroplast due to a knockout in the triose phosphate/phosphate translocator (TPT; tpt-2) and a lack of starch [mutation in ADP glucose pyrophosphorylase (AGPase); adg1-1] exhibits severe growth retardation, a decrease in the photosynthetic capacity, and a high chlorophyll fluorescence (HCF) phenotype under high light conditions. These phenotypes could be rescued when the plants were grown on sucrose (Suc) or glucose (Glc). Here we address the question whether Glc-sensing hexokinase1 (HXK1) defective in the Glc insensitive 2 (gin2-1) mutant is involved in the sugar-dependent rescue of adg1-1/tpt-2. Triple mutants defective in the TPT, AGPase, and HXK1 (adg1-1/tpt-2/gin2-1) were established as homozygous lines and grown together with Col-0 and Landsberg erecta (Ler) wild-type plants, gin2-1, the adg1-1/tpt-2 double mutant, and the adg1-1/tpt-2/gpt2-1 triple mutant [additionally defective in the glucose 6-phosphate/phosphate translocator 2 (GPT2)] on agar in the presence or absence of 50 mM of each Glc, Suc, or fructose (Fru). The growth phenotype of the double mutant and both triple mutants could be rescued to a similar extent only by Glc and Suc, but not by Fru. All three sugars were capable of rescuing the HCF and photosynthesis phenotype, irrespectively of the presence or absence of HXK1. Quantitative RT-PCR analyses of sugar-responsive genes revealed that plastidial HXK (pHXK) was up-regulated in adg1-1/tpt-2 plants grown on sugars, but showed no response in adg1-1/tpt-2/gin2-1. It appears likely that soluble sugars are directly taken up by the chloroplasts and enter further metabolism, which consumes ATP and NADPH from the photosynthetic light reaction and thereby rescues the photosynthesis phenotype of the double mutant. The implication of sugar turnover and probably signaling inside the chloroplasts for the concept of retrograde

  9. Caspase recruitment domain 6 protects against hepatic ischemia/reperfusion injury by suppressing ASK1.

    PubMed

    Qin, Juan-Juan; Mao, Wenzhe; Wang, Xiaozhan; Sun, Peng; Cheng, Daqing; Tian, Song; Zhu, Xue-Yong; Yang, Ling; Huang, Zan; Li, Hongliang

    2018-06-26

    The comprehensive interplay in sterile inflammation and liver cell death predominantly determines hepatic injury caused by ischemia/reperfusion (I/R) insult. Caspase recruitment domain family member 6 (CARD6) was initially shown to play important roles in NF-κB activation. In our preliminary studies, CARD6 downregulation was closely related to hepatic I/R injury in liver transplantation patients and mouse models. Thus, we hypothesized that CARD6 protects against hepatic I/R injury and investigated the underlying molecular mechanisms. A partial hepatic I/R operation was performed in hepatocyte-specific Card6 knockout mice (HKO), Card6 transgenic mice with CARD6 overexpression specifically in hepatocytes (HTG), and the corresponding control mice. Hepatic histology, serum aminotransferase, inflammatory cytokines/chemokines, cell death, and inflammatory signaling were examined to assess liver damage. The molecular mechanisms of CARD6 function were explored in vivo and in vitro. Card6-HTG mice alleviated liver injury compared with control mice as shown by decreased cell death, lower serum transaminase levels, and reduced inflammation and infiltration, whereas Card6-HKO mice had the opposite phenotype. Mechanistically, phosphorylation of ASK1 and its downstream effectors JNK and p38 were increased in the livers of Card6-HKO mice but repressed in those of Card6-HTG mice. Furthermore, ASK1 knockdown normalized the effect of CARD6 deficiency on the activation of NF-κB, JNK and p38, while ASK1 overexpression abrogated the suppressive effect of CARD6. Finally, CARD6 interacted with Ask1. Mutant CARD6 that lacked the ability to interact with ASK1 could not inhibit ASK1 and failed to protect against hepatic I/R injury. CARD6 is a novel protective factor of hepatic I/R injury that suppresses inflammation and liver cell death by inhibiting the ASK1 signaling pathway. CARD6 participate and play an important role during the process of liver blood flow restriction followed by

  10. Sphingosine kinase-1 mediates androgen-induced osteoblast cell growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Claire; Universite de Toulouse, UPS, IPBS, Toulouse F-31000; Lafosse, Jean-Michel

    Herein we report that the lipid kinase sphingosine kinase-1 (SphK1) is instrumental in mediating androgen-induced cell proliferation in osteoblasts. Dihydrotestosterone (DHT) triggered cell growth in steroid-deprived MC3T3 cells, which was associated with a rapid stimulation of SphK1 and activation of both Akt and ERK signaling pathways. This mechanism relied on functional androgen receptor/PI3K/Akt nongenotropic signaling as pharmacological antagonists could block SphK1 stimulation by DHT and its consequences. Finally, SphK1 inhibition not only abrogated DHT-induced ERK activation but also blocked cell proliferation, while ERK inhibition had no impact, suggesting that SphK1 was critical for DHT signaling yet independently of the ERK.

  11. STOREKEEPER RELATED1/G-Element Binding Protein (STKR1) Interacts with Protein Kinase SnRK1.

    PubMed

    Nietzsche, Madlen; Guerra, Tiziana; Alseekh, Saleh; Wiermer, Marcel; Sonnewald, Sophia; Fernie, Alisdair R; Börnke, Frederik

    2018-02-01

    Sucrose nonfermenting related kinase1 (SnRK1) is a conserved energy sensor kinase that regulates cellular adaptation to energy deficit in plants. Activation of SnRK1 leads to the down-regulation of ATP-consuming biosynthetic processes and the stimulation of energy-generating catabolic reactions by transcriptional reprogramming and posttranslational modifications. Although considerable progress has been made during the last years in understanding the SnRK1 signaling pathway, many of its components remain unidentified. Here, we show that the catalytic α-subunits KIN10 and KIN11 of the Arabidopsis ( Arabidopsis thaliana ) SnRK1 complex interact with the STOREKEEPER RELATED1/G-Element Binding Protein (STKR1) inside the plant cell nucleus. Overexpression of STKR1 in transgenic Arabidopsis plants led to reduced growth, a delay in flowering, and strongly attenuated senescence. Metabolite profiling revealed that the transgenic lines exhausted their carbohydrates during the dark period to a greater extent than the wild type and accumulated a range of amino acids. At the global transcriptome level, genes affected by STKR1 overexpression were broadly associated with systemic acquired resistance, and transgenic plants showed enhanced resistance toward a virulent strain of the biotrophic oomycete pathogen Hyaloperonospora arabidopsidis Noco2. We discuss a possible connection of STKR1 function, SnRK1 signaling, and plant immunity. © 2018 American Society of Plant Biologists. All Rights Reserved.

  12. Structure and substrate recruitment of the human spindle checkpoint kinase Bub1.

    PubMed

    Kang, Jungseog; Yang, Maojun; Li, Bing; Qi, Wei; Zhang, Chao; Shokat, Kevan M; Tomchick, Diana R; Machius, Mischa; Yu, Hongtao

    2008-11-07

    In mitosis, the spindle checkpoint detects a single unattached kinetochore, inhibits the anaphase-promoting complex or cyclosome (APC/C), and prevents premature sister chromatid separation. The checkpoint kinase Bub1 contributes to checkpoint sensitivity through phosphorylating the APC/C activator, Cdc20, and inhibiting APC/C catalytically. We report here the crystal structure of the kinase domain of Bub1, revealing the requirement of an N-terminal extension for its kinase activity. Though the activation segment of Bub1 is ordered and has structural features indicative of active kinases, the C-terminal portion of this segment sterically restricts substrate access to the active site. Bub1 uses docking motifs, so-called KEN boxes, outside its kinase domain to recruit Cdc20, one of two known KEN box receptors. The KEN boxes of Bub1 are required for the spindle checkpoint in human cells. Therefore, its unusual active-site conformation and mode of substrate recruitment suggest that Bub1 has an exquisitely tuned specificity for Cdc20.

  13. Mitogen-activated protein kinase kinase 1/extracellular signal-regulated kinase (MEK-1/ERK) inhibitors sensitize reduced glucocorticoid response mediated by TNFalpha in human epidermal keratinocytes (HaCaT).

    PubMed

    Onda, Kenji; Nagashima, Masahiro; Kawakubo, Yo; Inoue, Shota; Hirano, Toshihiko; Oka, Kitaro

    2006-12-08

    Glucocorticoids (GCs) are essential drugs administered topically or systematically for the treatment of autoimmune skin diseases such as pemphigus. However, a certain proportion of patients does not respond well to GCs. Although studies on the relationship between cytokines and GC insensitivity in local tissues have attracted attention recently, little is known about the underlying mechanism(s) for GC insensitivity in epidermal keratinocytes. Here, we report that tumor necrosis factor (TNF) alpha reduces GC-induced transactivation of endogenous genes as well as a reporter plasmid which contains GC responsive element (GRE) in human epidermal keratinocyte cells (HaCaT). The GC insensitivity by TNFalpha was not accompanied by changes in mRNA expressions of GR isoforms (alpha or beta). However, we observed that mitogen-activated protein kinase kinase-1/extracellular signal-regulated kinase (MEK-1/ERK) inhibitors (PD98059 and U0126) significantly sensitized the GC-induced transactivation of anti-inflammatory genes (glucocorticoid-induced leucine zipper (GILZ) and mitogen-activated protein kinase phosphatase (MKP)-1) and FK506 binding protein (FKBP) 51 gene in the presence of TNFalpha. Additionally, we observed that TNFalpha reduced prednisolone (PSL)-dependent nuclear translocation of GR, which was restored by pre-treatment of MEK-1 inhibitors. This is the first study demonstrating a role of the MEK-1/ERK cascade in TNFalpha-mediated GC insensitivity. Our data suggest that overexpression of TNFalpha leads to topical GC insensitivity by reducing GR nuclear translocation in keratinocytes, and our findings also suggest that inhibiting the MEK-1/ERK cascade may offer a therapeutic potential for increasing GC efficacy in epidermis where sufficient inflammatory suppression is required.

  14. Cytoplasmic p21(Cip1/WAF1) regulates neurite remodeling by inhibiting Rho-kinase activity.

    PubMed

    Tanaka, Hiroyuki; Yamashita, Toshihide; Asada, Minoru; Mizutani, Shuki; Yoshikawa, Hideki; Tohyama, Masaya

    2002-07-22

    p21(Cip1/WAF1) has cell cycle inhibitory activity by binding to and inhibiting both cyclin/Cdk kinases and proliferating cell nuclear antigen. Here we show that p21(Cip1/WAF1) is induced in the cytoplasm during the course of differentiation of chick retinal precursor cells and N1E-115 cells. Ectopic expression of p21(Cip1/WAF1) lacking the nuclear localization signal in N1E-115 cells and NIH3T3 cells affects the formation of actin structures, characteristic of inactivation of Rho. p21(Cip1/WAF1) forms a complex with Rho-kinase and inhibits its activity in vitro and in vivo. Neurite outgrowth and branching from the hippocampal neurons are promoted if p21(Cip1/WAF1) is expressed abundantly in the cytoplasm. These results suggest that cytoplasmic p21(Cip1/WAF1) may contribute to the developmental process of the newborn neurons that extend axons and dendrites into target regions.

  15. Age-related changes in mitochondrial antioxidant enzyme Trx2 and TXNIP-Trx2-ASK1 signal pathways in the auditory cortex of a mimetic aging rat model: changes to Trx2 in the auditory cortex.

    PubMed

    Sun, Hai-Ying; Hu, Yu-Juan; Zhao, Xue-Yan; Zhong, Yi; Zeng, Ling-Ling; Chen, Xu-Bo; Yuan, Jie; Wu, Jing; Sun, Yu; Kong, Wen; Kong, Wei-Jia

    2015-07-01

    Age-associated degeneration in the central auditory system, which is defined as central presbycusis, can impair sound localization and speech perception. Research has shown that oxidative stress plays a central role in the pathological process of central presbycusis. Thioredoxin 2 (Trx2), one member of thioredoxin family, plays a key role in regulating the homeostasis of cellular reactive oxygen species and anti-apoptosis. The purpose of this study was to explore the association between Trx2 and the phenotype of central presbycusis using a mimetic aging animal model induced by long-term exposure to d-galactose (d-Gal). We also explored changes in thioredoxin-interacting protein (TXNIP), apoptosis signal regulating kinase 1 (ASK1) and phosphorylated ASK1 (p-ASK1) expression, as well as the Trx2-TXNIP/Trx2-ASK1 binding complex in the auditory cortex of mimetic aging rats. Our results demonstrate that, compared with control groups, the levels of Trx2 and Trx2-ASK1 binding complex were significantly reduced, whereas TXNIP, ASK1 p-ASK1 expression, and Trx2-TXNIP binding complex were significantly increased in the auditory cortex of the mimetic aging groups. Our results indicated that changes in Trx2 and the TXNIP-Trx2-ASK1 signal pathway may participate in the pathogenesis of central presbycusis. © 2015 FEBS.

  16. Role of integrin-linked kinase in regulating phosphorylation of Akt and fibroblast survival in type I collagen matrices through a beta1 integrin viability signaling pathway.

    PubMed

    Nho, Richard Seonghun; Xia, Hong; Kahm, Judy; Kleidon, Jill; Diebold, Deanna; Henke, Craig A

    2005-07-15

    A beta1 integrin phosphatidylinositol 3-kinase/Akt pathway regulates fibroblast survival in collagen matrices. When fibroblasts attach to collagen, Akt becomes phosphorylated, providing a survival signal. In contrast, in response to mechanical forces generated during collagen contraction, Akt is dephosphorylated and fibroblasts undergo apoptosis. The kinase(s) responsible for regulating Akt phosphorylation in response to matrix-derived mechanical signals are unclear. Integrin-linked kinase (ILK) is associated with the beta1 integrin in the focal adhesion complex and as such is a candidate kinase that may regulate Akt phosphorylation and fibroblast viability. Nevertheless, there is no direct evidence that matrix-derived mechanical forces regulate cell viability by modulating ILK activity. Here, we show that ILK activity decreased in response to collagen matrix contraction, which correlated with Akt dephosphorylation and induction of fibroblast apoptosis. In contrast, enforced activation of beta1 integrin by activating antibody preserved ILK and Akt activity during collagen matrix contraction, and this is associated with protection from collagen contraction-induced apoptosis. Knock-down of ILK by small, interfering RNA (siRNA) attenuated Akt phosphorylation in response to ligation of beta1 integrin by collagen or activating antibody and enhanced fibroblast apoptosis in response to collagen contraction. Kinase dead ILK attenuated Akt phosphorylation and enhanced fibroblast apoptosis, whereas hyperactive and wild type ILK augmented Akt phosphorylation and protected fibroblasts from apoptosis. Constitutively active Akt preserved Akt activity and rescued ILK siRNA-treated fibroblasts from collagen contraction-induced apoptosis. These data establish that matrix-derived mechanical forces sensed by beta1 integrin are capable of modulating ILK activity which regulates fibroblast viability via an Akt-dependent mechanism.

  17. The ASK1 gene regulates B function gene expression in cooperation with UFO and LEAFY in Arabidopsis.

    PubMed

    Zhao, D; Yu, Q; Chen, M; Ma, H

    2001-07-01

    The Arabidopsis floral regulatory genes APETALA3 (AP3) and PISTILLATA (PI) are required for the B function according to the ABC model for floral organ identity. AP3 and PI expression are positively regulated by the LEAFY (LFY) and UNUSUAL FLORAL ORGANS (UFO) genes. UFO encodes an F-box protein, and we have shown previously that UFO genetically interacts with the ASK1 gene encoding a SKP1 homologue; both the F-box containing protein and SKP1 are subunits of ubiquitin ligases. We show here that the ask1-1 mutation can enhance the floral phenotypes of weak lfy and ap3 mutants; therefore, like UFO, ASK1 also interacts with LFY and AP3 genetically. Furthermore, our results from RNA in situ hybridizations indicate that ASK1 regulates early AP3 and PI expression. These results support the idea that UFO and ASK1 together positively regulate AP3 and PI expression. We propose that the UFO and ASK1 proteins are components of a ubiquitin ligase that mediates the proteolysis of a repressor of AP3 and PI expression. Our genetic studies also indicate that ASK1 and UFO play a role in regulating the number of floral organ primordia, and we discuss possible mechanisms for such a regulation.

  18. TRX-ASK1-JNK signaling regulation of cell density-dependent cytotoxicity in cigarette smoke-exposed human bronchial epithelial cells.

    PubMed

    Lee, Yong Chan; Chuang, Chun-Yu; Lee, Pak-Kei; Lee, Jin-Soo; Harper, Richart W; Buckpitt, Alan B; Wu, Reen; Oslund, Karen

    2008-05-01

    Cigarette smoke is a major environmental air pollutant that injures airway epithelium and incites subsequent diseases including chronic obstructive pulmonary disease. The lesion that smoke induces in airway epithelium is still incompletely understood. Using a LIVE/DEAD cytotoxicity assay, we observed that subconfluent cultures of bronchial epithelial cells derived from both human and monkey airway tissues and an immortalized normal human bronchial epithelial cell line (HBE1) were more susceptible to injury by cigarette smoke extract (CSE) and by direct cigarette smoke exposure than cells in confluent cultures. Scraping confluent cultures also caused an enhanced cell injury predominately in the leading edge of the scraped confluent cultures by CSE. Cellular ATP levels in both subconfluent and confluent cultures were drastically reduced after CSE exposure. In contrast, GSH levels were significantly reduced only in subconfluent cultures exposed to smoke and not in confluent cultures. Western blot analysis demonstrated ERK activation in both confluent and subconfluent cultures after CSE. However, activation of apoptosis signal-regulating kinase 1 (ASK1), JNK, and p38 were demonstrated only in subconfluent cultures and not in confluent cultures after CSE. Using short interfering RNA (siRNA) to JNK1 and JNK2 and a JNK inhibitor, we attenuated CSE-mediated cell death in subconfluent cultures but not with an inhibitor of the p38 pathway. Using the tetracycline (Tet)-on inducible approach, overexpression of thioredoxin (TRX) attenuated CSE-mediated cell death and JNK activation in subconfluent cultures. These results suggest that the TRX-ASK1-JNK pathway may play a critical role in mediating cell density-dependent CSE cytotoxicity.

  19. Innate immunity kinase TAK1 phosphorylates Rab1 on a hotspot for posttranslational modifications by host and pathogen.

    PubMed

    Levin, Rebecca S; Hertz, Nicholas T; Burlingame, Alma L; Shokat, Kevan M; Mukherjee, Shaeri

    2016-08-16

    TGF-β activated kinase 1 (TAK1) is a critical signaling hub responsible for translating antigen binding signals to immune receptors for the activation of the AP-1 and NF-κB master transcriptional programs. Despite its importance, known substrates of TAK1 are limited to kinases of the MAPK and IKK families and include no direct effectors of biochemical processes. Here, we identify over 200 substrates of TAK1 using a chemical genetic kinase strategy. We validate phosphorylation of the dynamic switch II region of GTPase Rab1, a mediator of endoplasmic reticulum to Golgi vesicular transport, at T75 to be regulated by TAK1 in vivo. TAK1 preferentially phosphorylates the inactive (GDP-bound) state of Rab1. Phosphorylation of Rab1 disrupts interaction with GDP dissociation inhibitor 1 (GDI1), but not guanine exchange factor (GEF) or GTPase-activating protein (GAP) enzymes, and is exclusive to membrane-localized Rab1, suggesting phosphorylation may stimulate Rab1 membrane association. Furthermore, we found phosphorylation of Rab1 at T75 to be essential for Rab1 function. Previous studies established that the pathogen Legionella pneumophila is capable of hijacking Rab1 function through posttranslational modifications of the switch II region. Here, we present evidence that Rab1 is regulated by the host in a similar fashion, and that the innate immunity kinase TAK1 and Legionella effectors compete to regulate Rab1 by switch II modifications during infection.

  20. Suppressor of cytokine signaling 1 interacts with oncogenic lymphocyte-specific protein tyrosine kinase.

    PubMed

    Venkitachalam, Srividya; Chueh, Fu-Yu; Leong, King-Fu; Pabich, Samantha; Yu, Chao-Lan

    2011-03-01

    Lymphocyte-specific protein tyrosine kinase (Lck) plays a key role in T cell signal transduction and is tightly regulated by phosphorylation and dephosphorylation. Lck can function as an oncoprotein when overexpressed or constantly activated by mutations. Our previous studies showed that Lck-induced cellular transformation could be suppressed by enforced expression of suppressor of cytokine signaling 1 (SOCS1), a SOCS family member involved in the negative feedback control of cytokine signaling. We observed attenuated Lck kinase activity in SOCS1-expressing cells, suggesting an important role of SOCS in regulating Lck functions. It remains largely unknown whether and how SOCS proteins interact with the oncogenic Lck kinase. Here, we report that among four SOCS family proteins, SOCS1, SOCS2, SOCS3 and CIS (cytokine-inducible SH2 domain containing protein), SOCS1 has the highest affinity in binding to the oncogenic Lck kinase. We identified the positive regulatory phosphotyrosine 394 residue in the kinase domain as the key interacting determinant in Lck. Additionally, the Lck kinase domain alone is sufficient to bind SOCS1. While the SH2 domain in SOCS1 is important in its association with the oncogenic Lck kinase, other functional domains may also contribute to overall binding affinity. These findings provide important mechanistic insights into the role of SOCS proteins as tumor suppressors in cells transformed by oncogenic protein tyrosine kinases.

  1. Suppressor of cytokine signaling 1 interacts with oncogenic lymphocyte-specific protein tyrosine kinase

    PubMed Central

    VENKITACHALAM, SRIVIDYA; CHUEH, FU-YU; LEONG, KING-FU; PABICH, SAMANTHA; YU, CHAO-LAN

    2011-01-01

    Lymphocyte-specific protein tyrosine kinase (Lck) plays a key role in T cell signal transduction and is tightly regulated by phosphorylation and dephosphorylation. Lck can function as an oncoprotein when overexpressed or constantly activated by mutations. Our previous studies showed that Lck-induced cellular transformation could be suppressed by enforced expression of suppressor of cytokine signaling 1 (SOCS1), a SOCS family member involved in the negative feedback control of cytokine signaling. We observed attenuated Lck kinase activity in SOCS1-expressing cells, suggesting an important role of SOCS in regulating Lck functions. It remains largely unknown whether and how SOCS proteins interact with the oncogenic Lck kinase. Here we report that, among four SOCS family proteins, SOCS1, SOCS2, SOCS3 and CIS (cytokine–inducible SH2 domain containing protein), SOCS1 has the highest affinity in binding to the oncogenic Lck kinase. We identify the positive regulatory phospho-tyrosine 394 residue in the kinase domain as the key interacting determinant in Lck. Additionally, the Lck kinase domain alone is sufficient to bind SOCS1. While the SH2 domain in SOCS1 is important in its association with the oncogenic Lck kinase, other functional domains may also contribute to overall binding affinity. These findings provide important mechanistic insights into the role of SOCS proteins as tumor suppressors in cells transformed by oncogenic protein tyrosine kinases. PMID:21234523

  2. Knockout-Rescue Embryonic Stem Cell-Derived Mouse Reveals Circadian-Period Control by Quality and Quantity of CRY1.

    PubMed

    Ode, Koji L; Ukai, Hideki; Susaki, Etsuo A; Narumi, Ryohei; Matsumoto, Katsuhiko; Hara, Junko; Koide, Naoshi; Abe, Takaya; Kanemaki, Masato T; Kiyonari, Hiroshi; Ueda, Hiroki R

    2017-01-05

    To conduct comprehensive characterization of molecular properties in organisms, we established an efficient method to produce knockout (KO)-rescue mice within a single generation. We applied this method to produce 20 strains of almost completely embryonic stem cell (ESC)-derived mice ("ES mice") rescued with wild-type and mutant Cry1 gene under a Cry1 -/- :Cry2 -/- background. A series of both phosphorylation-mimetic and non-phosphorylation-mimetic CRY1 mutants revealed that multisite phosphorylation of CRY1 can serve as a cumulative timer in the mammalian circadian clock. KO-rescue ES mice also revealed that CRY1-PER2 interaction confers a robust circadian rhythmicity in mice. Surprisingly, in contrast to theoretical predictions from canonical transcription/translation feedback loops, the residues surrounding the flexible P loop and C-lid domains of CRY1 determine circadian period without changing the degradation rate of CRY1. These results suggest that CRY1 determines circadian period through both its degradation-dependent and -independent pathways. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Proteomics and transcriptomics analyses of Arabidopsis floral buds uncover important functions of ARABIDOPSIS SKP1-LIKE1

    DOE PAGES

    Lu, Dihong; Ni, Weimin; Stanley, Bruce A.; ...

    2016-03-03

    The ARABIDOPSIS SKP1-LIKE1 (ASK1) protein functions as a subunit of SKP1-CUL1-F-box (SCF) E3 ubiquitin ligases. Previous genetic studies showed that ASK1 plays important roles in Arabidopsis flower development and male meiosis. However, the molecular impact of ASK1-containing SCF E3 ubiquitin ligases (ASK1-E3s) on the floral proteome and transcriptome is unknown. Here we identified proteins that are potentially regulated by ASK1-E3s by comparing floral bud proteomes of wild-type and the ask1 mutant plants. More than 200 proteins were detected in the ask1 mutant but not in wild-type and >300 were detected at higher levels in the ask1 mutant than in wild-type,more » but their RNA levels were not significantly different between wild-type and ask1 floral buds as shown by transcriptomics analysis, suggesting that they are likely regulated at the protein level by ASK1-E3s. Integrated analyses of floral proteomics and transcriptomics of ask1 and wild-type uncovered several potential aspects of ASK1-E3 functions, including regulation of transcription regulators, kinases, peptidases, and ribosomal proteins, with implications on possible mechanisms of ASK1-E3 functions in floral development. In conclusion, our results suggested that ASK1-E3s play important roles in Arabidopsis protein degradation during flower development. This study opens up new possibilities for further functional studies of these candidate E3 substrates.« less

  4. Proteomics and transcriptomics analyses of Arabidopsis floral buds uncover important functions of ARABIDOPSIS SKP1-LIKE1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Dihong; Ni, Weimin; Stanley, Bruce A.

    The ARABIDOPSIS SKP1-LIKE1 (ASK1) protein functions as a subunit of SKP1-CUL1-F-box (SCF) E3 ubiquitin ligases. Previous genetic studies showed that ASK1 plays important roles in Arabidopsis flower development and male meiosis. However, the molecular impact of ASK1-containing SCF E3 ubiquitin ligases (ASK1-E3s) on the floral proteome and transcriptome is unknown. Here we identified proteins that are potentially regulated by ASK1-E3s by comparing floral bud proteomes of wild-type and the ask1 mutant plants. More than 200 proteins were detected in the ask1 mutant but not in wild-type and >300 were detected at higher levels in the ask1 mutant than in wild-type,more » but their RNA levels were not significantly different between wild-type and ask1 floral buds as shown by transcriptomics analysis, suggesting that they are likely regulated at the protein level by ASK1-E3s. Integrated analyses of floral proteomics and transcriptomics of ask1 and wild-type uncovered several potential aspects of ASK1-E3 functions, including regulation of transcription regulators, kinases, peptidases, and ribosomal proteins, with implications on possible mechanisms of ASK1-E3 functions in floral development. In conclusion, our results suggested that ASK1-E3s play important roles in Arabidopsis protein degradation during flower development. This study opens up new possibilities for further functional studies of these candidate E3 substrates.« less

  5. Characterization of Spindle Checkpoint Kinase Mps1 Reveals Domain with Functional and Structural Similarities to Tetratricopeptide Repeat Motifs of Bub1 and BubR1 Checkpoint Kinases*

    PubMed Central

    Lee, Semin; Thebault, Philippe; Freschi, Luca; Beaufils, Sylvie; Blundell, Tom L.; Landry, Christian R.; Bolanos-Garcia, Victor M.; Elowe, Sabine

    2012-01-01

    Kinetochore targeting of the mitotic kinases Bub1, BubR1, and Mps1 has been implicated in efficient execution of their functions in the spindle checkpoint, the self-monitoring system of the eukaryotic cell cycle that ensures chromosome segregation occurs with high fidelity. In all three kinases, kinetochore docking is mediated by the N-terminal region of the protein. Deletions within this region result in checkpoint failure and chromosome segregation defects. Here, we use an interdisciplinary approach that includes biophysical, biochemical, cell biological, and bioinformatics methods to study the N-terminal region of human Mps1. We report the identification of a tandem repeat of the tetratricopeptide repeat (TPR) motif in the N-terminal kinetochore binding region of Mps1, with close homology to the tandem TPR motif of Bub1 and BubR1. Phylogenetic analysis indicates that TPR Mps1 was acquired after the split between deutorostomes and protostomes, as it is distinguishable in chordates and echinoderms. Overexpression of TPR Mps1 resulted in decreased efficiency of both chromosome alignment and mitotic arrest, likely through displacement of endogenous Mps1 from the kinetochore and decreased Mps1 catalytic activity. Taken together, our multidisciplinary strategy provides new insights into the evolution, structural organization, and function of Mps1 N-terminal region. PMID:22187426

  6. Characterization of spindle checkpoint kinase Mps1 reveals domain with functional and structural similarities to tetratricopeptide repeat motifs of Bub1 and BubR1 checkpoint kinases.

    PubMed

    Lee, Semin; Thebault, Philippe; Freschi, Luca; Beaufils, Sylvie; Blundell, Tom L; Landry, Christian R; Bolanos-Garcia, Victor M; Elowe, Sabine

    2012-02-17

    Kinetochore targeting of the mitotic kinases Bub1, BubR1, and Mps1 has been implicated in efficient execution of their functions in the spindle checkpoint, the self-monitoring system of the eukaryotic cell cycle that ensures chromosome segregation occurs with high fidelity. In all three kinases, kinetochore docking is mediated by the N-terminal region of the protein. Deletions within this region result in checkpoint failure and chromosome segregation defects. Here, we use an interdisciplinary approach that includes biophysical, biochemical, cell biological, and bioinformatics methods to study the N-terminal region of human Mps1. We report the identification of a tandem repeat of the tetratricopeptide repeat (TPR) motif in the N-terminal kinetochore binding region of Mps1, with close homology to the tandem TPR motif of Bub1 and BubR1. Phylogenetic analysis indicates that TPR Mps1 was acquired after the split between deutorostomes and protostomes, as it is distinguishable in chordates and echinoderms. Overexpression of TPR Mps1 resulted in decreased efficiency of both chromosome alignment and mitotic arrest, likely through displacement of endogenous Mps1 from the kinetochore and decreased Mps1 catalytic activity. Taken together, our multidisciplinary strategy provides new insights into the evolution, structural organization, and function of Mps1 N-terminal region.

  7. Mitogen-activated protein kinase kinase 1/extracellular signal-regulated kinase (MEK-1/ERK) inhibitors sensitize reduced glucocorticoid response mediated by TNF{alpha} in human epidermal keratinocytes (HaCaT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onda, Kenji; Nagashima, Masahiro; Kawakubo, Yo

    2006-12-08

    Glucocorticoids (GCs) are essential drugs administered topically or systematically for the treatment of autoimmune skin diseases such as pemphigus. However, a certain proportion of patients does not respond well to GCs. Although studies on the relationship between cytokines and GC insensitivity in local tissues have attracted attention recently, little is known about the underlying mechanism(s) for GC insensitivity in epidermal keratinocytes. Here, we report that tumor necrosis factor (TNF) {alpha} reduces GC-induced transactivation of endogenous genes as well as a reporter plasmid which contains GC responsive element (GRE) in human epidermal keratinocyte cells (HaCaT). The GC insensitivity by TNF{alpha} wasmore » not accompanied by changes in mRNA expressions of GR isoforms ({alpha} or {beta}). However, we observed that mitogen-activated protein kinase kinase-1/extracellular signal-regulated kinase (MEK-1/ERK) inhibitors (PD98059 and U0126) significantly sensitized the GC-induced transactivation of anti-inflammatory genes (glucocorticoid-induced leucine zipper (GILZ) and mitogen-activated protein kinase phosphatase (MKP)-1) and FK506 binding protein (FKBP) 51 gene in the presence of TNF{alpha}. Additionally, we observed that TNF{alpha} reduced prednisolone (PSL)-dependent nuclear translocation of GR, which was restored by pre-treatment of MEK-1 inhibitors. This is the first study demonstrating a role of the MEK-1/ERK cascade in TNF{alpha}-mediated GC insensitivity. Our data suggest that overexpression of TNF{alpha} leads to topical GC insensitivity by reducing GR nuclear translocation in keratinocytes, and our findings also suggest that inhibiting the MEK-1/ERK cascade may offer a therapeutic potential for increasing GC efficacy in epidermis where sufficient inflammatory suppression is required.« less

  8. SAMHD1 Phosphorylation Coordinates the Anti-HIV-1 Response by Diverse Interferons and Tyrosine Kinase Inhibition.

    PubMed

    Szaniawski, Matthew A; Spivak, Adam M; Cox, James E; Catrow, Jonathan L; Hanley, Timothy; Williams, Elizabeth S C P; Tremblay, Michel J; Bosque, Alberto; Planelles, Vicente

    2018-05-15

    Macrophages are susceptible to human immunodeficiency virus type 1 (HIV-1) infection despite abundant expression of antiviral proteins. Perhaps the most important antiviral protein is the restriction factor sterile alpha motif domain and histidine/aspartic acid domain-containing protein 1 (SAMHD1). We investigated the role of SAMHD1 and its phospho-dependent regulation in the context of HIV-1 infection in primary human monocyte-derived macrophages and the ability of various interferons (IFNs) and pharmacologic agents to modulate SAMHD1. Here we show that stimulation by type I, type II, and to a lesser degree, type III interferons share activation of SAMHD1 via dephosphorylation at threonine-592 as a consequence of signaling. Cyclin-dependent kinase 1 (CDK1), a known effector kinase for SAMHD1, was downregulated at the protein level by all IFN types tested. Pharmacologic inhibition or small interfering RNA (siRNA)-mediated knockdown of CDK1 phenocopied the effects of IFN on SAMHD1. A panel of FDA-approved tyrosine kinase inhibitors potently induced activation of SAMHD1 and subsequent HIV-1 inhibition. The viral restriction imposed via IFNs or dasatinib could be overcome through depletion of SAMHD1, indicating that their effects are exerted primarily through this pathway. Our results demonstrate that SAMHD1 activation, but not transcriptional upregulation or protein induction, is the predominant mechanism of HIV-1 restriction induced by type I, type II, and type III IFN signaling in macrophages. Furthermore, SAMHD1 activation presents a pharmacologically actionable target through which HIV-1 infection can be subverted. IMPORTANCE Our experimental results demonstrate that SAMHD1 dephosphorylation at threonine-592 represents a central mechanism of HIV-1 restriction that is common to the three known families of IFNs. While IFN types I and II were potent inhibitors of HIV-1, type III IFN showed modest to undetectable activity. Regulation of SAMHD1 by IFNs involved

  9. Structure-Based Design of Potent and Selective 3-Phosphoinositide-Dependent Kinase-1 (PDK1) Inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medina, Jesus R.; Becker, Christopher J.; Blackledge, Charles W.

    2014-10-02

    Phosphoinositide-dependent protein kinase-1(PDK1) is a master regulator of the AGC family of kinases and an integral component of the PI3K/AKT/mTOR pathway. As this pathway is among the most commonly deregulated across all cancers, a selective inhibitor of PDK1 might have utility as an anticancer agent. Herein we describe our lead optimization of compound 1 toward highly potent and selective PDK1 inhibitors via a structure-based design strategy. The most potent and selective inhibitors demonstrated submicromolar activity as measured by inhibition of phosphorylation of PDK1 substrates as well as antiproliferative activity against a subset of AML cell lines. In addition, reduction ofmore » phosphorylation of PDK1 substrates was demonstrated in vivo in mice bearing OCl-AML2 xenografts. These observations demonstrate the utility of these molecules as tools to further delineate the biology of PDK1 and the potential pharmacological uses of a PDK1 inhibitor.« less

  10. p21 Activated Kinase 5 Activates Raf-1 and Targets it to Mitochondria

    PubMed Central

    Wu, Xiaochong; Carr, Heather S.; Dan, Ippeita; Ruvolo, Peter P.; Frost, Jeffrey A.

    2008-01-01

    Raf-1 is an important effector of Ras mediated signaling and is a critical regulator of the ERK/MAPK pathway. Raf-1 activation is controlled in part by phosphorylation on multiple residues, including an obligate phosphorylation site at serine 338. Previously PAK1 and casein kinase II have been implicated as serine 338 kinases. To identify novel kinases that phosphorylate this site, we tested the ability of group II PAKs (PAKs 4-6) to control serine 338 phosphorylation. We observed that all group II PAKs were efficient serine 338 kinases, although only PAK1 and PAK5 significantly stimulated Raf-1 kinase activity. We also showed that PAK5 forms a tight complex with Raf-1 in the cell, but not A-Raf or B-Raf. Importantly, we also demonstrated that the association of Raf-1 with PAK5 targets a subpopulation of Raf-1 to mitochondria. These data indicate that PAK5 is a potent regulator of Raf-1 activity and may control Raf-1 dependent signaling at the mitochondria. PMID:18465753

  11. Cytoplasmic p21Cip1/WAF1 regulates neurite remodeling by inhibiting Rho-kinase activity

    PubMed Central

    Tanaka, Hiroyuki; Yamashita, Toshihide; Asada, Minoru; Mizutani, Shuki; Yoshikawa, Hideki; Tohyama, Masaya

    2002-01-01

    p21Cip1/WAF1 has cell cycle inhibitory activity by binding to and inhibiting both cyclin/Cdk kinases and proliferating cell nuclear antigen. Here we show that p21Cip1/WAF1 is induced in the cytoplasm during the course of differentiation of chick retinal precursor cells and N1E-115 cells. Ectopic expression of p21Cip1/WAF1 lacking the nuclear localization signal in N1E-115 cells and NIH3T3 cells affects the formation of actin structures, characteristic of inactivation of Rho. p21Cip1/WAF1 forms a complex with Rho-kinase and inhibits its activity in vitro and in vivo. Neurite outgrowth and branching from the hippocampal neurons are promoted if p21Cip1/WAF1 is expressed abundantly in the cytoplasm. These results suggest that cytoplasmic p21Cip1/WAF1 may contribute to the developmental process of the newborn neurons that extend axons and dendrites into target regions. PMID:12119358

  12. Tyrosine kinase fusion genes in pediatric BCR-ABL1-like acute lymphoblastic leukemia

    PubMed Central

    Boer, Judith M.; Steeghs, Elisabeth M.P.; Marchante, João R.M.; Boeree, Aurélie; Beaudoin, James J.; Berna Beverloo, H.; Kuiper, Roland P.; Escherich, Gabriele; van der Velden, Vincent H.J.; van der Schoot, C. Ellen; de Groot-Kruseman, Hester A.; Pieters, Rob; den Boer, Monique L.

    2017-01-01

    Approximately 15% of pediatric B cell precursor acute lymphoblastic leukemia (BCP-ALL) is characterized by gene expression similar to that of BCR-ABL1-positive disease and unfavorable prognosis. This BCR-ABL1-like subtype shows a high frequency of B-cell development gene aberrations and tyrosine kinase-activating lesions. To evaluate the clinical significance of tyrosine kinase gene fusions in children with BCP-ALL, we studied the frequency of recently identified tyrosine kinase fusions, associated genetic features, and prognosis in a representative Dutch/German cohort. We identified 14 tyrosine kinase fusions among 77 BCR-ABL1-like cases (18%) and none among 76 non-BCR-ABL1-like B-other cases. Novel exon fusions were identified for RCSD1-ABL2 and TERF2-JAK2. JAK2 mutation was mutually exclusive with tyrosine kinase fusions and only occurred in cases with high CRLF2 expression. The non/late response rate and levels of minimal residual disease in the fusion-positive BCR-ABL1-like group were higher than in the non-BCR-ABL1-like B-others (p<0.01), and also higher, albeit not statistically significant, compared with the fusion-negative BCR-ABL1-like group. The 8-year cumulative incidence of relapse in the fusion-positive BCR-ABL1-like group (35%) was comparable with that in the fusion-negative BCR-ABL1-like group (35%), and worse than in the non-BCR-ABL1-like B-other group (17%, p=0.07). IKZF1 deletions, predominantly other than the dominant-negative isoform and full deletion, co-occurred with tyrosine kinase fusions. This study shows that tyrosine kinase fusion-positive cases are a high-risk subtype of BCP-ALL, which warrants further studies with specific kinase inhibitors to improve outcome. PMID:27894077

  13. Grb-2–associated binder 1 (Gab1) regulates postnatal ischemic and VEGF-induced angiogenesis through the protein kinase A–endothelial NOS pathway

    PubMed Central

    Xiong, Yan; Huo, Yingqing; Han, Jingyan; Yang, Xiao; Zhang, Rongli; Zhu, De-Sheng; Klein-Heßling, Stefan; Zhang, Xiaoyu; Han, Xiaofan; Li, Yanli; Shen, Bin; He, Yulong; Shibuya, Masabumi; Feng, Gen-Sheng; Luo, Jincai

    2011-01-01

    The intracellular signaling mechanisms underlying postnatal angiogenesis are incompletely understood. Herein we show that Grb-2–associated binder 1 (Gab1) plays a critical role in ischemic and VEGF-induced angiogenesis. Endothelium-specific Gab1 KO (EGKO) mice displayed impaired angiogenesis in the ischemic hindlimb despite normal induction of VEGF expression. Matrigel plugs with VEGF implanted in EGKO mice induced fewer capillaries than those in control mice. The vessels and endothelial cells (ECs) derived from EGKO mice were defective in vascular sprouting and tube formation induced by VEGF. Biochemical analyses revealed a substantial reduction of endothelial NOS (eNOS) activation in Gab1-deficient vessels and ECs following VEGF stimulation. Interestingly, the phosphorylation of Akt, an enzyme known to promote VEGF-induced eNOS activation, was increased in Gab1-deficient vessels and ECs whereas protein kinase A (PKA) activity was significantly decreased. Introduction of an active form of PKA rescued VEGF-induced eNOS activation and tube formation in EGKO ECs. Reexpression of WT or mutant Gab1 molecules in EGKO ECs revealed requirement of Gab1/Shp2 association for the activation of PKA and eNOS. Taken together, these results identify Gab1 as a critical upstream signaling component in VEGF-induced eNOS activation and tube formation, which is dependent on PKA. Of note, this pathway is conserved in primary human ECs for VEGF-induced eNOS activation and tube formation, suggesting considerable potential in treatment of human ischemic diseases. PMID:21282639

  14. Synthesis and profiling of a 3-aminopyridin-2-one-based kinase targeted fragment library: Identification of 3-amino-5-(pyridin-4-yl)pyridin-2(1H)-one scaffold for monopolar spindle 1 (MPS1) and Aurora kinases inhibition.

    PubMed

    Fearon, Daren; Westwood, Isaac M; van Montfort, Rob L M; Bayliss, Richard; Jones, Keith; Bavetsias, Vassilios

    2018-07-15

    Screening a 3-aminopyridin-2-one based fragment library against a 26-kinase panel representative of the human kinome identified 3-amino-5-(1-methyl-1H-pyrazol-4-yl)pyridin-2(1H)-one (2) and 3-amino-5-(pyridin-4-yl)pyridin-2(1H)-one (3) as ligand efficient inhibitors of the mitotic kinase Monopolar Spindle 1 (MPS1) and the Aurora kinase family. These kinases are well recognised as attractive targets for therapeutic intervention for treating cancer. Elucidation of the binding mode of these fragments and their analogues has been carried out by X-ray crystallography. Structural studies have identified key interactions with a conserved lysine residue and have highlighted potential regions of MPS1 which could be targeted to improve activity and selectivity. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. A comprehensive protein-protein interactome for yeast PAS kinase 1 reveals direct inhibition of respiration through the phosphorylation of Cbf1.

    PubMed

    DeMille, Desiree; Bikman, Benjamin T; Mathis, Andrew D; Prince, John T; Mackay, Jordan T; Sowa, Steven W; Hall, Tacie D; Grose, Julianne H

    2014-07-15

    Per-Arnt-Sim (PAS) kinase is a sensory protein kinase required for glucose homeostasis in yeast, mice, and humans, yet little is known about the molecular mechanisms of its function. Using both yeast two-hybrid and copurification approaches, we identified the protein-protein interactome for yeast PAS kinase 1 (Psk1), revealing 93 novel putative protein binding partners. Several of the Psk1 binding partners expand the role of PAS kinase in glucose homeostasis, including new pathways involved in mitochondrial metabolism. In addition, the interactome suggests novel roles for PAS kinase in cell growth (gene/protein expression, replication/cell division, and protein modification and degradation), vacuole function, and stress tolerance. In vitro kinase studies using a subset of 25 of these binding partners identified Mot3, Zds1, Utr1, and Cbf1 as substrates. Further evidence is provided for the in vivo phosphorylation of Cbf1 at T211/T212 and for the subsequent inhibition of respiration. This respiratory role of PAS kinase is consistent with the reported hypermetabolism of PAS kinase-deficient mice, identifying a possible molecular mechanism and solidifying the evolutionary importance of PAS kinase in the regulation of glucose homeostasis. © 2014 DeMille et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  16. Caffeic Acid Cyclohexylamide Rescues Lethal Inflammation in Septic Mice through Inhibition of IκB Kinase in Innate Immune Process

    PubMed Central

    Choi, Jun Hyeon; Park, Sun Hong; Jung, Jae-Kyung; Cho, Won-Jea; Ahn, Byeongwoo; Yun, Cheong-Yong; Choi, Yong Pyo; Yeo, Jong Hun; Lee, Heesoon; Hong, Jin Tae; Han, Sang-Bae; Kim, Youngsoo

    2017-01-01

    Targeting myeloid differentiation protein 2 (MD-2) or Toll-like receptor 4 (TLR4) with small molecule inhibitor rescues the systemic inflammatory response syndrome (SIRS) in sepsis due to infection with Gram-negative bacteria but not other microbes. Herein, we provided IκB kinase β (IKKβ) in innate immune process as a molecular target of caffeic acid cyclohexylamide (CGA-JK3) in the treatment of polymicrobial TLR agonists-induced lethal inflammation. CGA-JK3 ameliorated E. coli lipopolysaccharide (LPS, MD-2/TLR4 agonist)-induced endotoxic shock, cecal ligation and puncture (CLP)-challenged septic shock or LPS plus D-galactosamine (GalN)-induced acute liver failure (ALF) in C57BL/6J mice. As a molecular basis, CGA-JK3 inhibited IKKβ-catalyzed kinase activity in a competitive mechanism with respect to ATP, displaced fluorescent ATP probe from the complex with IKKβ, and docked at the ATP-binding active site on the crystal structure of human IKKβ. Furthermore, CGA-JK3 inhibited IKKβ-catalyzed IκB phosphorylation, which is an axis leading to IκB degradation in the activating pathway of nuclear factor-κB (NF-κB), in macrophages stimulated with TLR (1/2, 2/6, 4, 5, 7, 9) agonists from Gram-positive/negative bacteria and viruses. CGA-JK3 consequently interrupted IKKβ-inducible NF-κB activation and NF-κB-regulated expression of TNF-α, IL-1α or HMGB-1 gene, thereby improving TLRs-associated redundant inflammatory responses in endotoxemia, polymicrobial sepsis and ALF. PMID:28145460

  17. Adenosine Kinase Modulates Root Gravitropism and Cap Morphogenesis in Arabidopsis1[W][OA

    PubMed Central

    Young, Li-Sen; Harrison, Benjamin R.; U.M., Narayana Murthy; Moffatt, Barbara A.; Gilroy, Simon; Masson, Patrick H.

    2006-01-01

    Adenosine kinase (ADK) is a key enzyme that regulates intra- and extracellular levels of adenosine, thereby modulating methyltransferase reactions, production of polyamines and secondary compounds, and cell signaling in animals. Unfortunately, little is known about ADK's contribution to the regulation of plant growth and development. Here, we show that ADK is a modulator of root cap morphogenesis and gravitropism. Upon gravistimulation, soluble ADK levels and activity increase in the root tip. Mutation in one of two Arabidopsis (Arabidopsis thaliana) ADK genes, ADK1, results in cap morphogenesis defects, along with alterations in root sensitivity to gravistimulation and slower kinetics of root gravitropic curvature. The kinetics defect can be partially rescued by adding spermine to the growth medium, whereas the defects in cap morphogenesis and gravitropic sensitivity cannot. The root morphogenesis and gravitropism defects of adk1-1 are accompanied by altered expression of the PIN3 auxin efflux facilitator in the cap and decreased expression of the auxin-responsive DR5-GUS reporter. Furthermore, PIN3 fails to relocalize to the bottom membrane of statocytes upon gravistimulation. Consequently, adk1-1 roots cannot develop a lateral auxin gradient across the cap, necessary for the curvature response. Interestingly, adk1-1 does not affect gravity-induced cytoplasmic alkalinization of the root statocytes, suggesting either that ADK1 functions between cytoplasmic alkalinization and PIN3 relocalization in a linear pathway or that the pH and PIN3-relocalization responses to gravistimulation belong to distinct branches of the pathway. Our data are consistent with a role for ADK and the S-adenosyl-l-methionine pathway in the control of root gravitropism and cap morphogenesis. PMID:16891550

  18. Rescue of Learning and Memory Deficits in the Human Nonsyndromic Intellectual Disability Cereblon Knock-Out Mouse Model by Targeting the AMP-Activated Protein Kinase-mTORC1 Translational Pathway.

    PubMed

    Bavley, Charlotte C; Rice, Richard C; Fischer, Delaney K; Fakira, Amanda K; Byrne, Maureen; Kosovsky, Maria; Rizzo, Bryant K; Del Prete, Dolores; Alaedini, Armin; Morón, Jose A; Higgins, Joseph J; D'Adamio, Luciano; Rajadhyaksha, Anjali M

    2018-03-14

    A homozygous nonsense mutation in the cereblon ( CRBN ) gene results in autosomal recessive, nonsyndromic intellectual disability that is devoid of other phenotypic features, suggesting a critical role of CRBN in mediating learning and memory. In this study, we demonstrate that adult male Crbn knock-out ( Crbn KO ) mice exhibit deficits in hippocampal-dependent learning and memory tasks that are recapitulated by focal knock-out of Crbn in the adult dorsal hippocampus, with no changes in social or repetitive behavior. Cellular studies identify deficits in long-term potentiation at Schaffer collateral CA1 synapses. We further show that Crbn is robustly expressed in the mouse hippocampus and Crbn KO mice exhibit hyperphosphorylated levels of AMPKα (Thr172). Examination of processes downstream of AMP-activated protein kinase (AMPK) finds that Crbn KO mice have a selective impairment in mediators of the mTORC1 translation initiation pathway in parallel with lower protein levels of postsynaptic density glutamatergic proteins and higher levels of excitatory presynaptic markers in the hippocampus with no change in markers of the unfolded protein response or autophagy pathways. Acute pharmacological inhibition of AMPK activity in adult Crbn KO mice rescues learning and memory deficits and normalizes hippocampal mTORC1 activity and postsynaptic glutamatergic proteins without altering excitatory presynaptic markers. Thus, this study identifies that loss of Crbn results in learning, memory, and synaptic defects as a consequence of exaggerated AMPK activity, inhibition of mTORC1 signaling, and decreased glutamatergic synaptic proteins. Thus, Crbn KO mice serve as an ideal model of intellectual disability to further explore molecular mechanisms of learning and memory. SIGNIFICANCE STATEMENT Intellectual disability (ID) is one of the most common neurodevelopmental disorders. The cereblon ( CRBN ) gene has been linked to autosomal recessive, nonsyndromic ID, characterized by an

  19. Small molecule inhibition of the autophagy kinase ULK1 and identification of ULK1 substrates

    PubMed Central

    Egan, Daniel F.; Chun, Matthew G.H.; Vamos, Mitchell; Zou, Haixia; Rong, Juan; Miller, Chad J.; Lou, Hua Jane; Raveendra-Panickar, Dhanya; Yang, Chih-Cheng; Sheffler, Douglas J.; Teriete, Peter; Asara, John M.; Turk, Benjamin E.; Cosford, Nicholas D. P.; Shaw, Reuben J.

    2015-01-01

    Summary Many tumors become addicted to autophagy for survival, suggesting inhibition of autophagy as a potential broadly-applicable cancer therapy. ULK1/Atg1 is the only serine/threonine kinase in the core autophagy pathway and thus represents an excellent drug target. Despite recent advances in the understanding of ULK1 activation by nutrient deprivation, how ULK1 promotes autophagy remains poorly understood. Here, we screened degenerate peptide libraries to deduce the optimal ULK1 substrate motif and discovered fifteen phosphorylation sites in core autophagy proteins that were verified as in vivo ULK1 targets. We utilized these ULK1 substrates to perform a cell-based screen to identify and characterize a potent ULK1 small molecule inhibitor. The compound SBI-0206965 is a highly selective ULK1 kinase inhibitor in vitro and suppressed ULK1-mediated phosphorylation events in cells, regulating autophagy and cell survival. SBI-0206965 greatly synergized with mTOR inhibitors to kill tumor cells, providing a strong rationale for their combined use in the clinic. PMID:26118643

  20. Phosphorylation of SAF-A/hnRNP-U Serine 59 by Polo-Like Kinase 1 Is Required for Mitosis

    PubMed Central

    Douglas, Pauline; Ye, Ruiqiong; Morrice, Nicholas; Britton, Sébastien; Trinkle-Mulcahy, Laura

    2015-01-01

    Scaffold attachment factor A (SAF-A), also called heterogenous nuclear ribonuclear protein U (hnRNP-U), is phosphorylated on serine 59 by the DNA-dependent protein kinase (DNA-PK) in response to DNA damage. Since SAF-A, DNA-PK catalytic subunit (DNA-PKcs), and protein phosphatase 6 (PP6), which interacts with DNA-PKcs, have all been shown to have roles in mitosis, we asked whether DNA-PKcs phosphorylates SAF-A in mitosis. We show that SAF-A is phosphorylated on serine 59 in mitosis, that phosphorylation requires polo-like kinase 1 (PLK1) rather than DNA-PKcs, that SAF-A interacts with PLK1 in nocodazole-treated cells, and that serine 59 is dephosphorylated by protein phosphatase 2A (PP2A) in mitosis. Moreover, cells expressing SAF-A in which serine 59 is mutated to alanine have multiple characteristics of aberrant mitoses, including misaligned chromosomes, lagging chromosomes, polylobed nuclei, and delayed passage through mitosis. Our findings identify serine 59 of SAF-A as a new target of both PLK1 and PP2A in mitosis and reveal that both phosphorylation and dephosphorylation of SAF-A serine 59 by PLK1 and PP2A, respectively, are required for accurate and timely exit from mitosis. PMID:25986610

  1. Polo-like kinase 1 (PLK1) and protein phosphatase 6 (PP6) regulate DNA-dependent protein kinase catalytic subunit (DNA-PKcs) phosphorylation in mitosis.

    PubMed

    Douglas, Pauline; Ye, Ruiqiong; Trinkle-Mulcahy, Laura; Neal, Jessica A; De Wever, Veerle; Morrice, Nick A; Meek, Katheryn; Lees-Miller, Susan P

    2014-06-25

    The protein kinase activity of the DNA-PKcs (DNA-dependent protein kinase catalytic subunit) and its autophosphorylation are critical for DBS (DNA double-strand break) repair via NHEJ (non-homologous end-joining). Recent studies have shown that depletion or inactivation of DNA-PKcs kinase activity also results in mitotic defects. DNA-PKcs is autophosphorylated on Ser2056, Thr2647 and Thr2609 in mitosis and phosphorylated DNA-PKcs localize to centrosomes, mitotic spindles and the midbody. DNA-PKcs also interacts with PP6 (protein phosphatase 6), and PP6 has been shown to dephosphorylate Aurora A kinase in mitosis. Here we report that DNA-PKcs is phosphorylated on Ser3205 and Thr3950 in mitosis. Phosphorylation of Thr3950 is DNA-PK-dependent, whereas phosphorylation of Ser3205 requires PLK1 (polo-like kinase 1). Moreover, PLK1 phosphorylates DNA-PKcs on Ser3205 in vitro and interacts with DNA-PKcs in mitosis. In addition, PP6 dephosphorylates DNA-PKcs at Ser3205 in mitosis and after IR (ionizing radiation). DNA-PKcs also phosphorylates Chk2 on Thr68 in mitosis and both phosphorylation of Chk2 and autophosphorylation of DNA-PKcs in mitosis occur in the apparent absence of Ku and DNA damage. Our findings provide mechanistic insight into the roles of DNA-PKcs and PP6 in mitosis and suggest that DNA-PKcs' role in mitosis may be mechanistically distinct from its well-established role in NHEJ.

  2. Polo-like kinase 1 (PLK1) and protein phosphatase 6 (PP6) regulate DNA-dependent protein kinase catalytic subunit (DNA-PKcs) phosphorylation in mitosis

    PubMed Central

    Douglas, Pauline; Ye, Ruiqiong; Trinkle-Mulcahy, Laura; Neal, Jessica A.; De Wever, Veerle; Morrice, Nick A.; Meek, Katheryn; Lees-Miller, Susan P.

    2014-01-01

    The protein kinase activity of the DNA-PKcs (DNA-dependent protein kinase catalytic subunit) and its autophosphorylation are critical for DBS (DNA double-strand break) repair via NHEJ (non-homologous end-joining). Recent studies have shown that depletion or inactivation of DNA-PKcs kinase activity also results in mitotic defects. DNA-PKcs is autophosphorylated on Ser2056, Thr2647 and Thr2609 in mitosis and phosphorylated DNA-PKcs localize to centrosomes, mitotic spindles and the midbody. DNA-PKcs also interacts with PP6 (protein phosphatase 6), and PP6 has been shown to dephosphorylate Aurora A kinase in mitosis. Here we report that DNA-PKcs is phosphorylated on Ser3205 and Thr3950 in mitosis. Phosphorylation of Thr3950 is DNA-PK-dependent, whereas phosphorylation of Ser3205 requires PLK1 (polo-like kinase 1). Moreover, PLK1 phosphorylates DNA-PKcs on Ser3205 in vitro and interacts with DNA-PKcs in mitosis. In addition, PP6 dephosphorylates DNA-PKcs at Ser3205 in mitosis and after IR (ionizing radiation). DNA-PKcs also phosphorylates Chk2 on Thr68 in mitosis and both phosphorylation of Chk2 and autophosphorylation of DNA-PKcs in mitosis occur in the apparent absence of Ku and DNA damage. Our findings provide mechanistic insight into the roles of DNA-PKcs and PP6 in mitosis and suggest that DNA-PKcs’ role in mitosis may be mechanistically distinct from its well-established role in NHEJ. PMID:24844881

  3. Live birth and normal 1-year follow-up of a baby born after transfer of cryopreserved embryos from rescue intracytoplasmic sperm injection of 1-day-old oocytes.

    PubMed

    Lombardi, Eduardo; Tiverón, Marisa; Inza, Roberto; Valcárcel, Alberto; Young, Edgardo; Bisioli, Claudio

    2003-09-01

    To report the birth and normal pediatric follow-up of the first baby born after transfer of embryos derived from cryopreserved rescue intracytoplasmic sperm injection (ICSI). Case report. Academic fertility unit. A 36-year-old woman with unexplained infertility. Reinsemination by ICSI ("rescue" ICSI) followed by cryopreservation at the pronuclear stage was performed after partial fertilization failure. Pregnancy, birth, and 1-year follow-up of the baby born after the transfer of the cryopreserved rescue ICSI embryos. Zygotes obtained after rescue ICSI were able to tolerate the process of cryopreservation and resulted in a viable pregnancy and delivery.

  4. CXCL4-induced monocyte survival, cytokine expression, and oxygen radical formation is regulated by sphingosine kinase 1.

    PubMed

    Kasper, Brigitte; Winoto-Morbach, Supandi; Mittelstädt, Jessica; Brandt, Ernst; Schütze, Stefan; Petersen, Frank

    2010-04-01

    Human monocytes respond to a variety of stimuli with a complex spectrum of activities ranging from acute defense mechanisms to cell differentiation or cytokine release. However, the individual intracellular signaling pathways related to these functions are not well understood. CXC chemokine ligand 4 (CXCL4) represents a broad activator of monocytes, which induces acute as well as delayed activities in these cells including cell differentiation, survival, or the release of ROS, and cytokines. Here, we report for the first time that CXCL4-treated monocytes significantly upregulate sphingosine kinase 1 (SphK1) mRNA and that CXCL4 induces SphK1 enzyme activity as well as its translocation to the cell membrane. Furthermore, we could show that pharmacological inhibition of SphK results in reversal of CXCL4-induced monocyte survival, cytokine expression, and release of oxygen radicals, which was confirmed by the use of SphK1-specific siRNA. CXCL4-mediated rescue from apoptosis, which is accompanied by inhibition of caspases, is controlled by SphK1 and its downstream element Erk. Taken together, these data assign SphK1 as a central regulator of acute and delayed monocyte activation and suggest SphK1 as a potential therapeutic target to suppress pro-inflammatory responses induced by CXCL4.

  5. Necrostatin-1 rescues mice from lethal irradiation.

    PubMed

    Huang, Zhentai; Epperly, Michael; Watkins, Simon C; Greenberger, Joel S; Kagan, Valerian E; Bayır, Hülya

    2016-04-01

    There is an emerging need in new medical products that can mitigate and/or treat the short- and long-term consequences of radiation exposure after a radiological or nuclear terroristic event. The direct effects of ionizing radiation are realized primarily via apoptotic death pathways in rapidly proliferating cells within the initial 1-2days after the exposure. However later in the course of the radiation disease necrotic cell death may ensue via direct and indirect pathways from increased generation of pro-inflammatory cytokines. Here we evaluated radiomitigative potential of necrostatin-1 after total body irradiation (TBI) and the contribution of necroptosis to cell death induced by radiation. Circulating TNFα levels were increased starting on d1 after TBI and associated with increased plasmalemma permeability in ileum of irradiated mice. Necrostatin-1 given iv. 48h after 9.5Gy TBI attenuated radiation-induced receptor interacting protein kinase 3 (RIPK3) serine phosphorylation in ileum and improved survival vs. vehicle. Utilizing apoptosis resistant cytochrome c(-/-) cells, we showed that radiation can induce necroptosis, which is attenuated by RNAi knock down of RIPK1 and RIPK3 or by treatment with necrostatin-1 or -1s whereas 1-methyl-L-tryptophan, an indoleamine-2,3-dioxygenase inhibitor, did not exhibit radiomitigative effect. This suggests that the beneficial effect of necrostatin-1 is likely through inhibition of RIPK1-mediated necroptotic pathway. Overall, our data indicate that necroptosis, a form of programmed necrosis, may play a significant role in cell death contributing to radiation disease and mortality. This study provides a proof of principle that necrostatin-1 and perhaps other RIPK1 inhibitors are promising therapeutic agents for radiomitigation after TBI. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Atg1 kinase regulates early and late steps during autophagy

    PubMed Central

    Kijanska, Monika; Peter, Matthias

    2013-01-01

    The notion that phosphorylation constitutes a major mechanism to induce autophagy was established 15 years ago when a conserved Atg1/ULK kinase family was identified as an essential component of the autophagy machinery. The key observation was that starved atg1Δ cells lack autophagosomes in the cytosol and fail to accumulate autophagic bodies in the vacuole. Although many studies have revealed important details of Atg1 activation and function, a cohesive model for how Atg1 regulates the autophagic machinery is lacking. Our recent findings identified conserved steps of temporal and spatial regulation of Atg1/ULK1 kinase at both the PAS and autophagosomal membranes, suggesting that Atg1 not only promotes autophagy induction, but may also facilitate late stages of autophagosome biogenesis. PMID:23108207

  7. Advanced missions safety. Volume 3: Appendices. Part 1: Space shuttle rescue capability

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The space shuttle rescue capability is analyzed as a part of the advanced mission safety study. The subjects discussed are: (1) mission evaluation, (2) shuttle configurations and performance, (3) performance of shuttle-launched tug system, (4) multiple pass grazing reentry from lunar orbit, (5) ground launched ascent and rendezvous time, (6) cost estimates, and (7) parallel-burn space shuttle configuration.

  8. Identification of Cyclin-dependent Kinase 1 Specific Phosphorylation Sites by an In Vitro Kinase Assay.

    PubMed

    Cui, Heying; Loftus, Kyle M; Noell, Crystal R; Solmaz, Sozanne R

    2018-05-03

    Cyclin-dependent kinase 1 (Cdk1) is a master controller for the cell cycle in all eukaryotes and phosphorylates an estimated 8 - 13% of the proteome; however, the number of identified targets for Cdk1, particularly in human cells is still low. The identification of Cdk1-specific phosphorylation sites is important, as they provide mechanistic insights into how Cdk1 controls the cell cycle. Cell cycle regulation is critical for faithful chromosome segregation, and defects in this complicated process lead to chromosomal aberrations and cancer. Here, we describe an in vitro kinase assay that is used to identify Cdk1-specific phosphorylation sites. In this assay, a purified protein is phosphorylated in vitro by commercially available human Cdk1/cyclin B. Successful phosphorylation is confirmed by SDS-PAGE, and phosphorylation sites are subsequently identified by mass spectrometry. We also describe purification protocols that yield highly pure and homogeneous protein preparations suitable for the kinase assay, and a binding assay for the functional verification of the identified phosphorylation sites, which probes the interaction between a classical nuclear localization signal (cNLS) and its nuclear transport receptor karyopherin α. To aid with experimental design, we review approaches for the prediction of Cdk1-specific phosphorylation sites from protein sequences. Together these protocols present a very powerful approach that yields Cdk1-specific phosphorylation sites and enables mechanistic studies into how Cdk1 controls the cell cycle. Since this method relies on purified proteins, it can be applied to any model organism and yields reliable results, especially when combined with cell functional studies.

  9. Light-induced conformational changes of LOV1 (light oxygen voltage-sensing domain 1) and LOV2 relative to the kinase domain and regulation of kinase activity in Chlamydomonas phototropin.

    PubMed

    Okajima, Koji; Aihara, Yusuke; Takayama, Yuki; Nakajima, Mihoko; Kashojiya, Sachiko; Hikima, Takaaki; Oroguchi, Tomotaka; Kobayashi, Amane; Sekiguchi, Yuki; Yamamoto, Masaki; Suzuki, Tomomi; Nagatani, Akira; Nakasako, Masayoshi; Tokutomi, Satoru

    2014-01-03

    Phototropin (phot), a blue light (BL) receptor in plants, has two photoreceptive domains named LOV1 and LOV2 as well as a Ser/Thr kinase domain (KD) and acts as a BL-regulated protein kinase. A LOV domain harbors a flavin mononucleotide that undergoes a cyclic photoreaction upon BL excitation via a signaling state in which the inhibition of the kinase activity by LOV2 is negated. To understand the molecular mechanism underlying the BL-dependent activation of the kinase, the photochemistry, kinase activity, and molecular structure were studied with the phot of Chlamydomonas reinhardtii. Full-length and LOV2-KD samples of C. reinhardtii phot showed cyclic photoreaction characteristics with the activation of LOV- and BL-dependent kinase. Truncation of LOV1 decreased the photosensitivity of the kinase activation, which was well explained by the fact that the signaling state lasted for a shorter period of time compared with that of the phot. Small angle x-ray scattering revealed monomeric forms of the proteins in solution and detected BL-dependent conformational changes, suggesting an extension of the global molecular shapes of both samples. Constructed molecular model of full-length phot based on the small angle x-ray scattering data proved the arrangement of LOV1, LOV2, and KD for the first time that showed a tandem arrangement both in the dark and under BL irradiation. The models suggest that LOV1 alters its position relative to LOV2-KD under BL irradiation. This finding demonstrates that LOV1 may interact with LOV2 and modify the photosensitivity of the kinase activation through alteration of the duration of the signaling state in LOV2.

  10. WASP-1, a canonical Wnt signaling potentiator, rescues hippocampal synaptic impairments induced by Aβ oligomers.

    PubMed

    Vargas, Jessica Y; Ahumada, Juan; Arrázola, Macarena S; Fuenzalida, Marco; Inestrosa, Nibaldo C

    2015-02-01

    Amyloid-β (Aβ) oligomers are a key factor in Alzheimer's disease (AD)-associated synaptic dysfunction. Aβ oligomers block the induction of hippocampal long-term potentiation (LTP) in rodents. The activation of Wnt signaling prevents Aβ oligomer-induced neurotoxic effects. The compound WASP-1 (Wnt-activating small molecule potentiator-1), has been described as a synergist of the ligand Wnt-3a, enhancing the activation of Wnt/β-catenin signaling. Herein, we report that WASP-1 administration successfully rescued Aβ-induced synaptic impairments both in vitro and in vivo. The activation of canonical Wnt/β-catenin signaling by WASP-1 increased synaptic transmission and rescued hippocampal LTP impairments induced by Aβ oligomers. Additionally, intra-hippocampal administration of WASP-1 to the double transgenic APPswe/PS1dE9 mouse model of AD prevented synaptic protein loss and reduced tau phosphorylation levels. Moreover, we found that WASP-1 blocked Aβ aggregation in vitro and reduced pathological tau phosphorylation in vivo. These results indicate that targeting canonical Wnt signaling with WASP-1 could have value for treating AD. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. 49 CFR Figure 1a to Subpart B of... - Example of Location of Rescue Access Windows-§ 238.114

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Example of Location of Rescue Access Windows-§ 238.114 1A Figure 1A to Subpart B of Part 238 Transportation Other Regulations Relating to... B of Part 238—Example of Location of Rescue Access Windows—§ 238.114 ER01FE08.002 [73 FR 6403, Feb...

  12. Cigarette smoke inhibits efferocytosis via deregulation of sphingosine kinase signaling: reversal with exogenous S1P and the S1P analogue FTY720.

    PubMed

    Tran, Hai B; Barnawi, Jameel; Ween, Miranda; Hamon, Rhys; Roscioli, Eugene; Hodge, Greg; Reynolds, Paul N; Pitson, Stuart M; Davies, Lorena T; Haberberger, Rainer; Hodge, Sandra

    2016-07-01

    Alveolar macrophages from chronic obstructive pulmonary disease patients and cigarette smokers are deficient in their ability to phagocytose apoptotic bronchial epithelial cells (efferocytosis). We hypothesized that the defect is mediated via inhibition of sphingosine kinases and/or their subcellular mislocalization in response to cigarette smoke and can be normalized with exogenous sphingosine-1-phosphate or FTY720 (fingolimod), a modulator of sphingosine-1-phosphate signaling, which has been shown to be clinically useful in multiple sclerosis. Measurement of sphingosine kinase 1/2 activities by [(32)P]-labeled sphingosine-1-phosphate revealed a 30% reduction of sphingosine kinase 1 (P < 0.05) and a nonsignificant decrease of sphingosine kinase 2 in THP-1 macrophages after 1 h cigarette smoke extract exposure. By confocal analysis macrophage sphingosine kinase 1 protein was normally localized to the plasma membrane and cytoplasm and sphingosine kinase 2 to the nucleus and cytoplasm but absent at the cell surface. Cigarette smoke extract exposure (24 h) led to a retraction of sphingosine kinase 1 from the plasma membrane and sphingosine kinase 1/2 clumping in the Golgi domain. Selective inhibition of sphingosine kinase 2 with 25 µM ABC294640 led to 36% inhibition of efferocytosis (P < 0.05); 10 µM sphingosine kinase inhibitor/5C (sphingosine kinase 1-selective inhibitor) induced a nonsignificant inhibition of efferocytosis, but its combination with ABC294640 led to 56% inhibition (P < 0.01 vs. control and < 0.05 vs. single inhibitors). Cigarette smoke-inhibited efferocytosis was significantly (P < 0.05) reversed to near-control levels in the presence of 10-100 nM exogenous sphingosine-1-phosphate or FTY720, and FTY720 reduced cigarette smoke-induced clumping of sphingosine kinase 1/2 in the Golgi domain. These data strongly support a role of sphingosine kinase 1/2 in efferocytosis and as novel therapeutic targets in chronic obstructive pulmonary disease.

  13. Oncogenic Receptor Tyrosine Kinases Directly Phosphorylate Focal Adhesion Kinase (FAK) as a Resistance Mechanism to FAK-kinase Inhibitors

    PubMed Central

    Marlowe, Timothy A.; Lenzo, Felicia L.; Figel, Sheila A.; Grapes, Abigail T.; Cance, William G.

    2016-01-01

    Focal adhesion kinase (FAK) is a major drug target in cancer and current inhibitors targeted to the ATP-binding pocket of the kinase domain have entered clinical trials. However, preliminary results have shown limited single-agent efficacy in patients. Despite these unfavorable data, the molecular mechanisms which drive intrinsic and acquired resistance to FAK-kinase inhibitors are largely unknown. We have demonstrated that receptor tyrosine kinases (RTKs) can directly bypass FAK-kinase inhibition in cancer cells through phosphorylation of FAK’s critical tyrosine 397 (Y397). We also showed that HER2 forms a direct protein-protein interaction with the FAK-FERM-F1 lobe, promoting direct phosphorylation of Y397. Additionally, FAK-kinase inhibition induced two forms of compensatory RTK reprogramming: 1) the rapid phosphorylation and activation of RTK signaling pathways in RTKHigh cells and 2) the long-term acquisition of RTKs novel to the parental cell line in RTKLow cells. Finally, HER2+ cancer cells displayed resistance to FAK-kinase inhibition in 3D–growth assays using a HER2 isogenic system and HER2+ cancer cell lines. Our data indicate a novel drug resistance mechanism to FAK-kinase inhibitors whereby HER2 and other RTKs can rescue and maintain FAK activation (pY397) even in the presence of FAK-kinase inhibition. These data may have important ramifications for existing clinical trials of FAK inhibitors and suggest that individual tumor stratification by RTK expression would be important to predict patient response to FAK-kinase inhibitors. PMID:27638858

  14. The ASK1 gene regulates development and interacts with the UFO gene to control floral organ identity in Arabidopsis.

    PubMed

    Zhao, D; Yang, M; Solava, J; Ma, H

    1999-09-01

    Normal flower development likely requires both specific and general regulators. We have isolated an Arabidopsis mutant ask1-1 (for -Arabidopsis skp1-like1-1), which exhibits defects in both vegetative and reproductive development. In the ask1-1mutant, rosette leaf growth is reduced, resulting in smaller than normal rosette leaves, and internodes in the floral stem are shorter than normal. Examination of cell sizes in these organs indicates that cell expansion is normal in the mutant, but cell number is reduced. In the mutant, the numbers of petals and stamens are reduced, and many flowers have one or more petals with a reduced size. In addition, all mutant flowers have short stamen filaments. Furthermore, petal/stamen chimeric organs are found in many flowers. These results indicate that the ASK1 gene affects the size of vegetative and floral organs. The ask1 floral phenotype resembles somewhat that of the Arabidopsis ufo mutants in that both genes affect whorls 2 and 3. We therefore tested for possible interactions between ASK1 and UFO by analyzing the phenotypes of ufo-2 ask1-1 double mutant plants. In these plants, vegetative development is similar to that of the ask1-1 single mutant, whereas the floral defects are more severe than those in either single mutant. Interior to the first whorl, the double mutant flowers have more sepals or sepal-like organs than are found in ufo-2, and less petals than ask1-1. Our results suggest that ASK1 interacts with UFO to control floral organ identity in whorls 2 and 3. This is very intriguing because ASK1 is very similar in sequence to the yeast SKP1 protein and UFO contains an F-box, a motif known to interact with SKP1 in yeast. Although the precise mechanism of ASK1 and UFO action is unknown, our results support the hypothesis that these two proteins physically interact in vivo. Copyright 1999 Wiley-Liss, Inc.

  15. Positive regulation of meiotic DNA double-strand break formation by activation of the DNA damage checkpoint kinase Mec1(ATR).

    PubMed

    Gray, Stephen; Allison, Rachal M; Garcia, Valerie; Goldman, Alastair S H; Neale, Matthew J

    2013-07-31

    During meiosis, formation and repair of programmed DNA double-strand breaks (DSBs) create genetic exchange between homologous chromosomes-a process that is critical for reductional meiotic chromosome segregation and the production of genetically diverse sexually reproducing populations. Meiotic DSB formation is a complex process, requiring numerous proteins, of which Spo11 is the evolutionarily conserved catalytic subunit. Precisely how Spo11 and its accessory proteins function or are regulated is unclear. Here, we use Saccharomyces cerevisiae to reveal that meiotic DSB formation is modulated by the Mec1(ATR) branch of the DNA damage signalling cascade, promoting DSB formation when Spo11-mediated catalysis is compromised. Activation of the positive feedback pathway correlates with the formation of single-stranded DNA (ssDNA) recombination intermediates and activation of the downstream kinase, Mek1. We show that the requirement for checkpoint activation can be rescued by prolonging meiotic prophase by deleting the NDT80 transcription factor, and that even transient prophase arrest caused by Ndt80 depletion is sufficient to restore meiotic spore viability in checkpoint mutants. Our observations are unexpected given recent reports that the complementary kinase pathway Tel1(ATM) acts to inhibit DSB formation. We propose that such antagonistic regulation of DSB formation by Mec1 and Tel1 creates a regulatory mechanism, where the absolute frequency of DSBs is maintained at a level optimal for genetic exchange and efficient chromosome segregation.

  16. An activating mutation of GNB1 is associated with resistance to tyrosine kinase inhibitors in ETV6-ABL1-positive leukemia

    PubMed Central

    Zimmermannova, O; Doktorova, E; Stuchly, J; Kanderova, V; Kuzilkova, D; Strnad, H; Starkova, J; Alberich-Jorda, M; Falkenburg, J H F; Trka, J; Petrak, J; Zuna, J; Zaliova, M

    2017-01-01

    Leukemias harboring the ETV6-ABL1 fusion represent a rare subset of hematological malignancies with unfavorable outcomes. The constitutively active chimeric Etv6-Abl1 tyrosine kinase can be specifically inhibited by tyrosine kinase inhibitors (TKIs). Although TKIs represent an important therapeutic tool, so far, the mechanism underlying the potential TKI resistance in ETV6-ABL1-positive malignancies has not been studied in detail. To address this issue, we established a TKI-resistant ETV6-ABL1-positive leukemic cell line through long-term exposure to imatinib. ETV6-ABL1-dependent mechanisms (including fusion gene/protein mutation, amplification, enhanced expression or phosphorylation) and increased TKI efflux were excluded as potential causes of resistance. We showed that TKI effectively inhibited the Etv6-Abl1 kinase activity in resistant cells, and using short hairpin RNA (shRNA)-mediated silencing, we confirmed that the resistant cells became independent from the ETV6-ABL1 oncogene. Through analysis of the genomic and proteomic profiles of resistant cells, we identified an acquired mutation in the GNB1 gene, K89M, as the most likely cause of the resistance. We showed that cells harboring mutated GNB1 were capable of restoring signaling through the phosphoinositide-3-kinase (PI3K)/Akt/mTOR and mitogen-activated protein kinase (MAPK) pathways, whose activation is inhibited by TKI. This alternative GNB1K89M-mediated pro-survival signaling rendered ETV6-ABL1-positive leukemic cells resistant to TKI therapy. The mechanism of TKI resistance is independent of the targeted chimeric kinase and thus is potentially relevant not only to ETV6-ABL1-positive leukemias but also to a wider spectrum of malignancies treated by kinase inhibitors. PMID:28650474

  17. A novel transmembrane Ser/Thr kinase complexes with protein phosphatase-1 and inhibitor-2.

    PubMed

    Wang, Hong; Brautigan, David L

    2002-12-20

    Protein kinases and protein phosphatases exert coordinated control over many essential cellular processes. Here, we describe the cloning and characterization of a novel human transmembrane protein KPI-2 (Kinase/Phosphatase/Inhibitor-2) that was identified by yeast two-hybrid using protein phosphatase inhibitor-2 (Inh2) as bait. KPI-2 mRNA was predominantly expressed in skeletal muscle. KPI-2 is a 1503-residue protein with two predicted transmembrane helices at the N terminus, a kinase domain, followed by a C-terminal domain. The transmembrane helices were sufficient for targeting proteins to the membrane. KPI-2 kinase domain has about 60% identity with its closest relative, a tyrosine kinase. However, it only exhibited serine/threonine kinase activity in autophosphorylation reactions or with added substrates. KPI-2 kinase domain phosphorylated protein phosphatase-1 (PP1C) at Thr(320), which attenuated PP1C activity. KPI-2 C-terminal domain directly associated with PP1C, and this required a VTF motif. Inh2 associated with KPI-2 C-terminal domain with and without PP1C. Thus, KPI-2 is a kinase with sites to associate with PP1C and Inh2 to form a regulatory complex that is localized to membranes.

  18. Partial rescue of defects in Cited2-deficient embryos by HIF-1alpha heterozygosity.

    PubMed

    Xu, Bing; Doughman, Yongqiu; Turakhia, Mona; Jiang, Weihong; Landsettle, Chad E; Agani, Faton H; Semenza, Gregg L; Watanabe, Michiko; Yang, Yu-Chung

    2007-01-01

    Hypoxia inducible factor-1 (HIF-1) initiates key cellular and tissue responses to physiological and pathological hypoxia. Evidence from in vitro and structural analyses supports a critical role for Cited2 in down-regulating HIF-1-mediated transcription by competing for binding with oxygen-sensitive HIF-1alpha to transcriptional co-activators CBP/p300. We previously detected elevated expression of HIF-1 target genes in Cited2(-/-) embryonic hearts, indicating that Cited2 inhibits HIF-1 transactivation in vivo. In this study, we show for the first time that highly hypoxic cardiac regions in mouse embryos corresponded to the sites of defects in Cited2(-/-) embryos and that defects of the outflow tract, interventricular septum, cardiac vasculature, and hyposplenia were largely rescued by HIF-1alpha haploinsufficiency. The hypoxia of the outflow tract and interventricular septum peaked at E13.5 and dissipated by E15.5 in wild-type hearts, but persisted in E15.5 Cited2(-/-) hearts. The persistent hypoxia and abnormal vasculature in the myocardium of interventricular septum in E15.5 Cited2(-/-) hearts were rescued with decreased HIF-1alpha gene dosage. Accordingly, mRNA levels of HIF-1-responsive genes were reduced in Cited2(-/-) embryonic hearts by HIF-1alpha heterozygosity. These findings suggest that a precise level of HIF-1 transcriptional activity critical for normal development is triggered by differential hypoxia and regulated through feedback inhibition by Cited2.

  19. The ANKK1 kinase gene and psychiatric disorders.

    PubMed

    Ponce, Guillermo; Pérez-González, Rocío; Aragüés, María; Palomo, Tomás; Rodríguez-Jiménez, Roberto; Jiménez-Arriero, Miguel Angel; Hoenicka, Janet

    2009-07-01

    The TaqIA single nucleotide polymorphism (SNP, rs1800497), which is located in the gene that codes for the putative kinase ANKK1 (ANKK1) near the termination codon of the D2 dopamine receptor gene (DRD2; chromosome 11q22-q23), is the most studied genetic variation in a broad range of psychiatric disorders and personality traits. A large number of individual genetic association studies have found that the TaqIA SNP is linked to alcoholism and antisocial traits. In addition, it has also been related to other conditions such as schizophrenia, eating disorders, and some behavioral childhood disorders. The TaqIA A1 allele is mainly associated with addictions, antisocial disorders, eating disorders, and attention-deficit/hyperactivity disorders, while the A2 allele occurs more frequently in schizophrenic and obsessive-compulsive patients. Current data show that the TaqIA polymorphism may be a marker of both DRD2 and ANKK1 genetic variants. ANKK1 would belong to a family of kinases involved in signal transduction. This raises the question of whether signaling players intervene in the pathophysiology of psychiatric disorders. Basic research on the ANKK1 protein and its putative interaction with the D2 dopamine receptor could shed light on this issue.

  20. LRSAM1 Depletion Affects Neuroblastoma SH-SY5Y Cell Growth and Morphology: The LRSAM1 c.2047-1G>A Loss-of-Function Variant Fails to Rescue The Phenotype.

    PubMed

    Minaidou, Anna; Nicolaou, Paschalis; Christodoulou, Kyproula

    2018-10-01

    Deleterious variants in LRSAM1, a RING finger ubiquitin ligase which is also known as TSG101-associated ligase (TAL), have recently been associated with Charcot-Marie-Tooth disease type 2P (CMT2P). The mechanism by which mutant LRSAM1 contributes to the development of neuropathy is currently unclear. The aim of this study was to induce LRSAM1 deficiency in a neuronal cell model, observe its effect on cell growth and morphology and attempt to rescue the phenotype with ancestral and mutant LRSAM1 transfections. In this experimental study, we investigated the effect of LRSAM1 downregulation on neuroblastoma SH-SY5Y cells by siRNA technology where cells were transfected with siRNA against LRSAM1. The effects on the expression levels of TSG101, the only currently known LRSAM1 interacting molecule, were also examined. An equal dosage of ancestral or mutant LRSAM1 construct was transfected in LRSAM1-downregulated cells to investigate its effect on the phenotype of the cells and whether cell proliferation and morphology could be rescued. A significant reduction in TSG101 levels was observed with the downregulation of LRSAM1. In addition, LRSAM1 knockdown significantly decreased the growth rate of SH-SY5Y cells which is caused by a decrease in cell proliferation. An effect on cell morphology was also observed. Furthermore, we overexpressed the ancestral and the c.2047-1G>A mutant LRSAM1 in knocked down cells. Ancestral LRSAM1 recovered cell proliferation and partly the morphology, however, the c.2047-1G>A mutant did not recover cell proliferation and further aggravated the observed changes in cell morphology. Our findings suggest that depletion of LRSAM1 affects neuroblastoma cells growth and morphology and that overexpression of the c.2047-1G>A mutant form, unlike the ancestral LRSAM1, fails to rescue the phenotype. Copyright© by Royan Institute. All rights reserved.

  1. LeCPK1, a Calcium-Dependent Protein Kinase from Tomato. Plasma Membrane Targeting and Biochemical Characterization1

    PubMed Central

    Rutschmann, Frank; Stalder, Urs; Piotrowski, Markus; Oecking, Claudia; Schaller, Andreas

    2002-01-01

    The cDNA of LeCPK1, a calcium-dependent protein kinase, was cloned from tomato (Lycopersicon esculentum Mill.). LeCPK1 was expressed in Escherichia coli and purified from bacterial extracts. The recombinant protein was shown to be a functional protein kinase using a synthetic peptide as the substrate (syntide-2, Km = 85 μm). Autophosphorylation of LeCPK1 was observed on threonine and serine residues, one of which was identified as serine-439. Kinase activity was shown to be Ca2+ dependent and required the C-terminal, calmodulin-like domain of LeCPK1. Two classes of high- and low-affinity Ca2+-binding sites were observed, exhibiting dissociation constants of 0.6 and 55 μm, respectively. LeCPK1 was found to phosphorylate the regulatory C-terminal domain of the plasma membrane H+-ATPase in vitro. A potential role in the regulation of proton pump activity is corroborated by the apparent colocalization of the plasma membrane H+-ATPase and LeCPK1 in vivo. Upon transient expression in suspension-cultured cells, a C-terminal fusion of LeCPK1 with the green fluorescent protein was targeted to the plasma membrane. Myristoylation of the LeCPK1 N terminus was found to be required for plasma membrane targeting. PMID:12011347

  2. Subcellular distribution of cyclin-dependent kinase-like 5 (CDKL5) is regulated through phosphorylation by dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A).

    PubMed

    Oi, Ami; Katayama, Syouichi; Hatano, Naoya; Sugiyama, Yasunori; Kameshita, Isamu; Sueyoshi, Noriyuki

    2017-01-08

    Cyclin-dependent kinase-like 5 (CDKL5) is a Ser/Thr protein kinase primarily expressed in the central nervous system and is known to cause X-linked neurodevelopmental disorders such as Rett syndrome. However, the mechanisms regulating CDKL5 have not yet been fully clarified. Therefore, in this study, we investigated the protein kinase that directly phosphorylates CDKL5, identifying it as dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A), an enzyme binding to and phosphorylating CDKL5. We showed that subcellular distribution of CDKL5 was regulated by its phosphorylation by DYRK1A. In mouse neuroblastoma Neuro2a cells, CDKL5 was localized in both the cytosol and nucleus, whereas DYRK1A showed a typical nuclear localization. When CDKL5 and DYRK1A were co-expressed, the cytosolic localization of CDKL5 was significantly increased. Results of site-directed mutagenesis revealed that the phosphorylation site was Ser-308, in the vicinity of the nuclear localization signal. A mutation mimicking the phosphorylated serine residue by aspartate substitution (S308D) changed CDKL5 localization to the cytosol, whereas the corresponding alanine-substituted analog, CDKL5(S308A), was primarily localized to the nucleus. Taken together, these results strongly suggested that DYRK1A bound to CDKL5 and phosphorylated it on Ser-308, thus interfering with its nuclear localization. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Structural assembly of the signaling competent ERK2–RSK1 heterodimeric protein kinase complex

    PubMed Central

    Alexa, Anita; Gógl, Gergő; Glatz, Gábor; Garai, Ágnes; Zeke, András; Varga, János; Dudás, Erika; Jeszenői, Norbert; Bodor, Andrea; Hetényi, Csaba; Reményi, Attila

    2015-01-01

    Mitogen-activated protein kinases (MAPKs) bind and activate their downstream kinase substrates, MAPK-activated protein kinases (MAPKAPKs). Notably, extracellular signal regulated kinase 2 (ERK2) phosphorylates ribosomal S6 kinase 1 (RSK1), which promotes cellular growth. Here, we determined the crystal structure of an RSK1 construct in complex with its activator kinase. The structure captures the kinase–kinase complex in a precatalytic state where the activation loop of the downstream kinase (RSK1) faces the enzyme's (ERK2) catalytic site. Molecular dynamics simulation was used to show how this heterodimer could shift into a signaling-competent state. This structural analysis combined with biochemical and cellular studies on MAPK→MAPKAPK signaling showed that the interaction between the MAPK binding linear motif (residing in a disordered kinase domain extension) and the ERK2 “docking” groove plays the major role in making an encounter complex. This interaction holds kinase domains proximal as they “readjust,” whereas generic kinase domain surface contacts bring them into a catalytically competent state. PMID:25730857

  4. Spm1, a stress-activated MAP kinase that regulates morphogenesis in S.pombe.

    PubMed Central

    Zaitsevskaya-Carter, T; Cooper, J A

    1997-01-01

    A gene encoding a novel MAP kinase family member, Spm1, was isolated from the fission yeast Schizosaccharomyces pombe. Overproduction of Spm1 inhibits proliferation. Disruption of the spm1+ gene interferes with cell separation and morphogenesis. Under conditions of nutrient limitation, hypertonic stress or elevated temperature, spm1 delta cells grow as short branched filaments in which the cell walls and septa are thickened, suggesting defects in polarized growth and cell wall remodeling. At high osmolarity, spm1 delta cells fail to form colonies. The Spm1 protein is tyrosine phosphorylated and activated in response to osmotic and heat stress, consistent with a role for Spm1 in adaptation to these conditions. Two other S.pombe MAP kinases are known, Spk1, required for sexual differentiation and sporulation, and Spc1/Sty1/Phh1, which is activated in hypertonic conditions. However, the distinctive features of the spm1 delta mutant phenotype and direct biochemical assays suggest that Spm1 does not lie on other known MAP kinase pathways. Our results demonstrate the existence of a new MAP kinase pathway that regulates cell wall remodeling and cytokinesis in response to environmental stresses. PMID:9135147

  5. Allosteric Inhibition of the nonMyristoylated c-Abl Tyrosine Kinase by Phosphopeptides Derived from Abi1/Hssh3bp1

    PubMed Central

    Xiong, Xiaoling; Cui, Ping; Hossain, Sajjad; Xu, Rong; Warner, Brian; Guo, Xinhua; An, Xiuli; Debnath, Asim K.; Cowburn, David; Kotula, Leszek

    2008-01-01

    Here we report c-Abl kinase inhibition mediated by a phosphotyrosine located in trans in the c-Abl substrate, Abi1. The mechanism, which is pertinent to the nonmyristoylated c-Abl kinase, involves high affinity concurrent binding of the phosphotyrosine pY213 to the Abl SH2 domain and binding of a proximal PXXP motif to the Abl SH3 domain. Abi1 regulation of c-Abl in vivo appears to play a critical role, as demonstrated by inhibition of pY412 phosphorylation of the nonmyristoylated Abl by coexpression of Abi1. Pervanadate-induced c-Abl kinase activity was also reduced upon expression of the wild type Abi1 but not by expression of the Y213 to F213 mutant Abi1 in LNCaP cells, which are naturally deficient in the regulatory pY213. Our findings suggest a novel mechanism by which Abl kinase is regulated in cells. PMID:18328268

  6. Hit-to-lead optimization and kinase selectivity of imidazo[1,2-a]quinoxalin-4-amine derived JNK1 inhibitors.

    PubMed

    Li, Bei; Cociorva, Oana M; Nomanbhoy, Tyzoon; Weissig, Helge; Li, Qiang; Nakamura, Kai; Liyanage, Marek; Zhang, Melissa C; Shih, Ann Y; Aban, Arwin; Hu, Yi; Cajica, Julia; Pham, Lan; Kozarich, John W; Shreder, Kevin R

    2013-09-15

    As the result of a rhJNK1 HTS, the imidazo[1,2-a]quinoxaline 1 was identified as a 1.6 μM rhJNK1 inhibitor. Optimization of this compound lead to AX13587 (rhJNK1 IC50=160 nM) which was co-crystallized with JNK1 to identify key molecular interactions. Kinase profiling against 125+ kinases revealed AX13587 was an inhibitor of JNK, MAST3, and MAST4 whereas its methylene homolog AX14373 (native JNK1 IC50=47 nM) was a highly specific JNK inhibitor. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Method for distinguishing normal and transformed cells using G1 kinase inhibitors

    DOEpatents

    Crissman, Harry A.; Gadbois, Donna M.; Tobey, Robert A.; Bradbury, E. Morton

    1993-01-01

    A G.sub.1 phase kinase inhibitor is applied in a low concentration to a population of normal and transformed mammalian cells. The concentration of G.sub.1 phase kinase inhibitor is selected to reversibly arrest normal mammalian cells in the G.sub.1 cell cycle without arresting growth of transformed cells. The transformed cells may then be selectively identified and/or cloned for research or diagnostic purposes. The transformed cells may also be selectively killed by therapeutic agents that do not affect normal cells in the G.sub.1 phase, suggesting that such G.sub.1 phase kinase inhibitors may form an effective adjuvant for use with chemotherapeutic agents in cancer therapy for optimizing the killing dose of chemotherapeutic agents while minimizing undesirable side effects on normal cells.

  8. Method for distinguishing normal and transformed cells using G1 kinase inhibitors

    DOEpatents

    Crissman, H.A.; Gadbois, D.M.; Tobey, R.A.; Bradbury, E.M.

    1993-02-09

    A G[sub 1] phase kinase inhibitor is applied in a low concentration to a population of normal and transformed mammalian cells. The concentration of G[sub 1] phase kinase inhibitor is selected to reversibly arrest normal mammalian cells in the G[sub 1] cell cycle without arresting growth of transformed cells. The transformed cells may then be selectively identified and/or cloned for research or diagnostic purposes. The transformed cells may also be selectively killed by therapeutic agents that do not affect normal cells in the G[sub 1] phase, suggesting that such G[sub 1] phase kinase inhibitors may form an effective adjuvant for use with chemotherapeutic agents in cancer therapy for optimizing the killing dose of chemotherapeutic agents while minimizing undesirable side effects on normal cells.

  9. Herpes Simplex Virus 1 Inhibits TANK-Binding Kinase 1 through Formation of the Us11-Hsp90 Complex.

    PubMed

    Liu, Xing; Main, David; Ma, Yijie; He, Bin

    2018-05-09

    The Us11 protein of herpes simplex virus 1 (HSV-1) is an accessory factor with multiple functions. In virus-infected cells, it inhibits double-stranded RNA dependent protein kinase PKR, 2',5'-oligoadenylate synthetase, RIG-I and MDA-5. However, its precise role is incompletely defined. By screening human cDNA library, we show that the Us11 protein targets heat shock protein 90 (Hsp90), which inactivates TANK binding kinase 1 (TBK1) and antiviral immunity. When ectopically expressed, HSV-1 Us11 precludes the access of TBK1 to Hsp90 and IFN promoter activation. Consistently, upon HSV infection the Us11 protein suppresses the expression of IFN-β, RANTES, and interferon stimulated genes. This is mirrored by a blockade in the phosphorylation of interferon regulatory factor 3. Mechanistically, the Us11 protein associates with endogenous Hsp90 to disrupt the Hsp90-TBK1 complex. Furthermore, Us11 induces destabilization of TBK1 through a proteasome dependent pathway. Accordingly, Us11 expression facilitates HSV growth. Conversely, TBK1 expression restricts viral replication. These results suggest that control of TBK1 by Us11 promotes HSV-1 infection. IMPORTANCE TANK binding kinase 1 plays a key role in antiviral immunity. Although multiple factors are thought to participate in this process, the picture is obscure in herpes simplex virus infection. We demonstrate that the Us11 protein of HSV-1 forms a complex with heat shock protein 90, which inactivates TANK binding kinase 1 and IFN induction. As a result, expression of the Us11 protein promotes HSV replication. These experimental data provide a new insight into the molecular network of virus-host interactions. Copyright © 2018 American Society for Microbiology.

  10. Mitogen- and Stress-Activated Kinase 1 (MSK1) Regulates Cigarette Smoke-Induced Histone Modifications on NF-κB-dependent Genes

    PubMed Central

    Sundar, Isaac K.; Chung, Sangwoon; Hwang, Jae-woong; Lapek, John D.; Bulger, Michael; Friedman, Alan E.; Yao, Hongwei; Davie, James R.; Rahman, Irfan

    2012-01-01

    Cigarette smoke (CS) causes sustained lung inflammation, which is an important event in the pathogenesis of chronic obstructive pulmonary disease (COPD). We have previously reported that IKKα (I kappaB kinase alpha) plays a key role in CS-induced pro-inflammatory gene transcription by chromatin modifications; however, the underlying role of downstream signaling kinase is not known. Mitogen- and stress-activated kinase 1 (MSK1) serves as a specific downstream NF-κB RelA/p65 kinase, mediating transcriptional activation of NF-κB-dependent pro-inflammatory genes. The role of MSK1 in nuclear signaling and chromatin modifications is not known, particularly in response to environmental stimuli. We hypothesized that MSK1 regulates chromatin modifications of pro-inflammatory gene promoters in response to CS. Here, we report that CS extract activates MSK1 in human lung epithelial (H292 and BEAS-2B) cell lines, human primary small airway epithelial cells (SAEC), and in mouse lung, resulting in phosphorylation of nuclear MSK1 (Thr581), phospho-acetylation of RelA/p65 at Ser276 and Lys310 respectively. This event was associated with phospho-acetylation of histone H3 (Ser10/Lys9) and acetylation of histone H4 (Lys12). MSK1 N- and C-terminal kinase-dead mutants, MSK1 siRNA-mediated knock-down in transiently transfected H292 cells, and MSK1 stable knock-down mouse embryonic fibroblasts significantly reduced CS extract-induced MSK1, NF-κB RelA/p65 activation, and posttranslational modifications of histones. CS extract/CS promotes the direct interaction of MSK1 with RelA/p65 and p300 in epithelial cells and in mouse lung. Furthermore, CS-mediated recruitment of MSK1 and its substrates to the promoters of NF-κB-dependent pro-inflammatory genes leads to transcriptional activation, as determined by chromatin immunoprecipitation. Thus, MSK1 is an important downstream kinase involved in CS-induced NF-κB activation and chromatin modifications, which have implications in pathogenesis

  11. Subcellular distribution of cyclin-dependent kinase-like 5 (CDKL5) is regulated through phosphorylation by dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oi, Ami; Katayama, Syouichi; Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, 525-8577

    Cyclin-dependent kinase-like 5 (CDKL5) is a Ser/Thr protein kinase primarily expressed in the central nervous system and is known to cause X-linked neurodevelopmental disorders such as Rett syndrome. However, the mechanisms regulating CDKL5 have not yet been fully clarified. Therefore, in this study, we investigated the protein kinase that directly phosphorylates CDKL5, identifying it as dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A), an enzyme binding to and phosphorylating CDKL5. We showed that subcellular distribution of CDKL5 was regulated by its phosphorylation by DYRK1A. In mouse neuroblastoma Neuro2a cells, CDKL5 was localized in both the cytosol and nucleus, whereas DYRK1A showed amore » typical nuclear localization. When CDKL5 and DYRK1A were co-expressed, the cytosolic localization of CDKL5 was significantly increased. Results of site-directed mutagenesis revealed that the phosphorylation site was Ser-308, in the vicinity of the nuclear localization signal. A mutation mimicking the phosphorylated serine residue by aspartate substitution (S308D) changed CDKL5 localization to the cytosol, whereas the corresponding alanine-substituted analog, CDKL5(S308A), was primarily localized to the nucleus. Taken together, these results strongly suggested that DYRK1A bound to CDKL5 and phosphorylated it on Ser-308, thus interfering with its nuclear localization. - Highlights: • We investigated the mechanism regulating subcellular localization of CDKL5. • DYRK1A was identified as an enzyme that bound to and phosphorylated CDKL5. • The phosphorylation site of CDKL5 was Ser-308, in the vicinity of the NLS. • When DYRK1A was co-expressed, the cytosolic CDKL5 was significantly increased. • In conclusion, DYRK1A regulates CDKL5 localization via phosphorylation on Ser-308.« less

  12. Phosphorylation of SAF-A/hnRNP-U Serine 59 by Polo-Like Kinase 1 Is Required for Mitosis.

    PubMed

    Douglas, Pauline; Ye, Ruiqiong; Morrice, Nicholas; Britton, Sébastien; Trinkle-Mulcahy, Laura; Lees-Miller, Susan P

    2015-08-01

    Scaffold attachment factor A (SAF-A), also called heterogenous nuclear ribonuclear protein U (hnRNP-U), is phosphorylated on serine 59 by the DNA-dependent protein kinase (DNA-PK) in response to DNA damage. Since SAF-A, DNA-PK catalytic subunit (DNA-PKcs), and protein phosphatase 6 (PP6), which interacts with DNA-PKcs, have all been shown to have roles in mitosis, we asked whether DNA-PKcs phosphorylates SAF-A in mitosis. We show that SAF-A is phosphorylated on serine 59 in mitosis, that phosphorylation requires polo-like kinase 1 (PLK1) rather than DNA-PKcs, that SAF-A interacts with PLK1 in nocodazole-treated cells, and that serine 59 is dephosphorylated by protein phosphatase 2A (PP2A) in mitosis. Moreover, cells expressing SAF-A in which serine 59 is mutated to alanine have multiple characteristics of aberrant mitoses, including misaligned chromosomes, lagging chromosomes, polylobed nuclei, and delayed passage through mitosis. Our findings identify serine 59 of SAF-A as a new target of both PLK1 and PP2A in mitosis and reveal that both phosphorylation and dephosphorylation of SAF-A serine 59 by PLK1 and PP2A, respectively, are required for accurate and timely exit from mitosis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Interaction of human biliverdin reductase with Akt/protein kinase B and phosphatidylinositol-dependent kinase 1 regulates glycogen synthase kinase 3 activity: a novel mechanism of Akt activation

    PubMed Central

    Miralem, Tihomir; Lerner-Marmarosh, Nicole; Gibbs, Peter E. M.; Jenkins, Jermaine L.; Heimiller, Chelsea; Maines, Mahin D.

    2016-01-01

    Biliverdin reductase A (BVR) and Akt isozymes have overlapping pleiotropic functions in the insulin/PI3K/MAPK pathway. Human BVR (hBVR) also reduces the hemeoxygenase activity product biliverdin to bilirubin and is directly activated by insulin receptor kinase (IRK). Akt isoenzymes (Akt1–3) are downstream of IRK and are activated by phosphatidylinositol-dependent kinase 1 (PDK1) phosphorylating T308 before S473 autophosphorylation. Akt (RxRxxSF) and PDK1 (RFxFPxFS) binding motifs are present in hBVR. Phosphorylation of glycogen synthase kinase 3 (GSK3) isoforms α/β by Akts inhibits their activity; nonphosphorylated GSK3β inhibits activation of various genes. We examined the role of hBVR in PDK1/Akt1/GSK3 signaling and Akt1 in hBVR phosphorylation. hBVR activates phosphorylation of Akt1 at S473 independent of hBVR’s kinase competency. hBVR and Akt1 coimmunoprecipitated, and in-cell Förster resonance energy transfer (FRET) and glutathione S-transferase pulldown analyses identified Akt1 pleckstrin homology domain as the interactive domain. hBVR activates phosphorylation of Akt1 at S473 independent of hBVR’s kinase competency. Site-directed mutagenesis, mass spectrometry, and kinetic analyses identified S230 in hBVR 225RNRYLSF sequence as the Akt1 target. Underlined amino acids are the essential residues of the signaling motifs. In cells, hBVR-activated Akt1 increased both GSK3α/β and forkhead box of the O class transcription class 3 (FoxO3) phosphorylation and inhibited total GSK3 activity; depletion of hBVR released inhibition and stimulated glucose uptake. Immunoprecipitation analysis showed that PDK1 and hBVR interact through hBVR’s PDK1 binding 161RFGFPAFS motif and formation of the PDK1/hBVR/Akt1 complex. sihBVR blocked complex formation. Findings identify hBVR as a previously unknown coactivator of Akt1 and as a key mediator of Akt1/GSK3 pathway, as well as define a key role for hBVR in Akt1 activation by PDK1.—Miralem, T., Lerner-Marmarosh, N

  14. Interaction of human biliverdin reductase with Akt/protein kinase B and phosphatidylinositol-dependent kinase 1 regulates glycogen synthase kinase 3 activity: a novel mechanism of Akt activation.

    PubMed

    Miralem, Tihomir; Lerner-Marmarosh, Nicole; Gibbs, Peter E M; Jenkins, Jermaine L; Heimiller, Chelsea; Maines, Mahin D

    2016-08-01

    Biliverdin reductase A (BVR) and Akt isozymes have overlapping pleiotropic functions in the insulin/PI3K/MAPK pathway. Human BVR (hBVR) also reduces the hemeoxygenase activity product biliverdin to bilirubin and is directly activated by insulin receptor kinase (IRK). Akt isoenzymes (Akt1-3) are downstream of IRK and are activated by phosphatidylinositol-dependent kinase 1 (PDK1) phosphorylating T(308) before S(473) autophosphorylation. Akt (RxRxxSF) and PDK1 (RFxFPxFS) binding motifs are present in hBVR. Phosphorylation of glycogen synthase kinase 3 (GSK3) isoforms α/β by Akts inhibits their activity; nonphosphorylated GSK3β inhibits activation of various genes. We examined the role of hBVR in PDK1/Akt1/GSK3 signaling and Akt1 in hBVR phosphorylation. hBVR activates phosphorylation of Akt1 at S(473) independent of hBVR's kinase competency. hBVR and Akt1 coimmunoprecipitated, and in-cell Förster resonance energy transfer (FRET) and glutathione S-transferase pulldown analyses identified Akt1 pleckstrin homology domain as the interactive domain. hBVR activates phosphorylation of Akt1 at S(473) independent of hBVR's kinase competency. Site-directed mutagenesis, mass spectrometry, and kinetic analyses identified S(230) in hBVR (225)RNRYLSF sequence as the Akt1 target. Underlined amino acids are the essential residues of the signaling motifs. In cells, hBVR-activated Akt1 increased both GSK3α/β and forkhead box of the O class transcription class 3 (FoxO3) phosphorylation and inhibited total GSK3 activity; depletion of hBVR released inhibition and stimulated glucose uptake. Immunoprecipitation analysis showed that PDK1 and hBVR interact through hBVR's PDK1 binding (161)RFGFPAFS motif and formation of the PDK1/hBVR/Akt1 complex. sihBVR blocked complex formation. Findings identify hBVR as a previously unknown coactivator of Akt1 and as a key mediator of Akt1/GSK3 pathway, as well as define a key role for hBVR in Akt1 activation by PDK1.-Miralem, T., Lerner

  15. Structural insight into selectivity and resistance profiles of ROS1 tyrosine kinase inhibitors

    PubMed Central

    Davare, Monika A.; Vellore, Nadeem A.; Wagner, Jacob P.; Eide, Christopher A.; Goodman, James R.; Drilon, Alexander; Deininger, Michael W.; O’Hare, Thomas; Druker, Brian J.

    2015-01-01

    Oncogenic ROS1 fusion proteins are molecular drivers in multiple malignancies, including a subset of non-small cell lung cancer (NSCLC). The phylogenetic proximity of the ROS1 and anaplastic lymphoma kinase (ALK) catalytic domains led to the clinical repurposing of the Food and Drug Administration (FDA)-approved ALK inhibitor crizotinib as a ROS1 inhibitor. Despite the antitumor activity of crizotinib observed in both ROS1- and ALK-rearranged NSCLC patients, resistance due to acquisition of ROS1 or ALK kinase domain mutations has been observed clinically, spurring the development of second-generation inhibitors. Here, we profile the sensitivity and selectivity of seven ROS1 and/or ALK inhibitors at various levels of clinical development. In contrast to crizotinib’s dual ROS1/ALK activity, cabozantinib (XL-184) and its structural analog foretinib (XL-880) demonstrate a striking selectivity for ROS1 over ALK. Molecular dynamics simulation studies reveal structural features that distinguish the ROS1 and ALK kinase domains and contribute to differences in binding site and kinase selectivity of the inhibitors tested. Cell-based resistance profiling studies demonstrate that the ROS1-selective inhibitors retain efficacy against the recently reported CD74-ROS1G2032R mutant whereas the dual ROS1/ALK inhibitors are ineffective. Taken together, inhibitor profiling and stringent characterization of the structure–function differences between the ROS1 and ALK kinase domains will facilitate future rational drug design for ROS1- and ALK-driven NSCLC and other malignancies. PMID:26372962

  16. Protein Phosphatase 2A (PP2A)-specific Ubiquitin Ligase MID1 Is a Sequence-dependent Regulator of Translation Efficiency Controlling 3-Phosphoinositide-dependent Protein Kinase-1 (PDPK-1)*

    PubMed Central

    Aranda-Orgillés, Beatriz; Rutschow, Désirée; Zeller, Raphael; Karagiannidis, Antonios I.; Köhler, Andrea; Chen, Changwei; Wilson, Timothy; Krause, Sven; Roepcke, Stefan; Lilley, David; Schneider, Rainer; Schweiger, Susann

    2011-01-01

    We have shown previously that the ubiquitin ligase MID1, mutations of which cause the midline malformation Opitz BBB/G syndrome (OS), serves as scaffold for a microtubule-associated protein complex that regulates protein phosphatase 2A (PP2A) activity in a ubiquitin-dependent manner. Here, we show that the MID1 protein complex associates with mRNAs via a purine-rich sequence motif called MIDAS (MID1 association sequence) and thereby increases stability and translational efficiency of these mRNAs. Strikingly, inclusion of multiple copies of the MIDAS motif into mammalian mRNAs increases production of the encoded proteins up to 20-fold. Mutated MID1, as found in OS patients, loses its influence on MIDAS-containing mRNAs, suggesting that the malformations in OS patients could be caused by failures in the regulation of cytoskeleton-bound protein translation. This is supported by the observation that the majority of mRNAs that carry MIDAS motifs is involved in developmental processes and/or energy homeostasis. Further analysis of one of the proteins encoded by a MIDAS-containing mRNA, namely PDPK-1 (3-phosphoinositide dependent protein kinase-1), which is an important regulator of mammalian target of rapamycin/PP2A signaling, showed that PDPK-1 protein synthesis is significantly reduced in cells from an OS patient compared with an age-matched control and can be rescued by functional MID1. Together, our data uncover a novel messenger ribonucleoprotein complex that regulates microtubule-associated protein translation. They suggest a novel mechanism underlying OS and point at an enormous potential of the MIDAS motif to increase the efficiency of biotechnological protein production in mammalian cells. PMID:21930711

  17. 1,2,6-Thiadiazinones as Novel Narrow Spectrum Calcium/Calmodulin-Dependent Protein Kinase Kinase 2 (CaMKK2) Inhibitors.

    PubMed

    Asquith, Christopher R M; Godoi, Paulo H; Couñago, Rafael M; Laitinen, Tuomo; Scott, John W; Langendorf, Christopher G; Oakhill, Jonathan S; Drewry, David H; Zuercher, William J; Koutentis, Panayiotis A; Willson, Timothy M; Kalogirou, Andreas S

    2018-05-19

    We demonstrate for the first time that 4 H -1,2,6-thiadiazin-4-one (TDZ) can function as a chemotype for the design of ATP-competitive kinase inhibitors. Using insights from a co-crystal structure of a 3,5-bis(arylamino)-4 H -1,2,6-thiadiazin-4-one bound to calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2), several analogues were identified with micromolar activity through targeted displacement of bound water molecules in the active site. Since the TDZ analogues showed reduced promiscuity compared to their 2,4-dianilinopyrimidine counter parts, they represent starting points for development of highly selective kinase inhibitors.

  18. LKB1 tumor suppressor and salt-inducible kinases negatively regulate human T-cell leukemia virus type 1 transcription

    PubMed Central

    2013-01-01

    Background Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia (ATL). Treatment options are limited and prophylactic agents are not available. We have previously demonstrated an essential role for CREB-regulating transcriptional coactivators (CRTCs) in HTLV-1 transcription. Results In this study we report on the negative regulatory role of LKB1 tumor suppressor and salt-inducible kinases (SIKs) in the activation of HTLV-1 long terminal repeats (LTR) by the oncoprotein Tax. Activation of LKB1 and SIKs effectively blunted Tax activity in a phosphorylation-dependent manner, whereas compromising these kinases, but not AMP-dependent protein kinases, augmented Tax function. Activated LKB1 and SIKs associated with Tax and suppressed Tax-induced LTR activation by counteracting CRTCs and CREB. Enforced expression of LKB1 or SIK1 in cells transfected with HTLV-1 molecular clone pX1MT repressed proviral transcription. On the contrary, depletion of LKB1 in pX1MT-transfected cells and in HTLV-1-transformed T cells boosted the expression of Tax. Treatment of HTLV-1 transformed cells with metformin led to LKB1/SIK1 activation, reduction in Tax expression, and inhibition of cell proliferation. Conclusions Our findings revealed a new function of LKB1 and SIKs as negative regulators of HTLV-1 transcription. Pharmaceutical activation of LKB1 and SIKs might be considered as a new strategy in anti-HTLV-1 and anti-ATL therapy. PMID:23577667

  19. Inhibition of Gsk3b Reduces Nfkb1 Signaling and Rescues Synaptic Activity to Improve the Rett Syndrome Phenotype in Mecp2-Knockout Mice.

    PubMed

    Jorge-Torres, Olga C; Szczesna, Karolina; Roa, Laura; Casal, Carme; Gonzalez-Somermeyer, Louisa; Soler, Marta; Velasco, Cecilia D; Martínez-San Segundo, Pablo; Petazzi, Paolo; Sáez, Mauricio A; Delgado-Morales, Raúl; Fourcade, Stephane; Pujol, Aurora; Huertas, Dori; Llobet, Artur; Guil, Sonia; Esteller, Manel

    2018-05-08

    Rett syndrome (RTT) is the second leading cause of mental impairment in girls and is currently untreatable. RTT is caused, in more than 95% of cases, by loss-of-function mutations in the methyl CpG-binding protein 2 gene (MeCP2). We propose here a molecular target involved in RTT: the glycogen synthase kinase-3b (Gsk3b) pathway. Gsk3b activity is deregulated in Mecp2-knockout (KO) mice models, and SB216763, a specific inhibitor, is able to alleviate the clinical symptoms with consequences at the molecular and cellular levels. In vivo, inhibition of Gsk3b prolongs the lifespan of Mecp2-KO mice and reduces motor deficits. At the molecular level, SB216763 rescues dendritic networks and spine density, while inducing changes in the properties of excitatory synapses. Gsk3b inhibition can also decrease the nuclear activity of the Nfkb1 pathway and neuroinflammation. Altogether, our findings indicate that Mecp2 deficiency in the RTT mouse model is partially rescued following treatment with SB216763. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Inhibiting Polo-like kinase 1 causes growth reduction and apoptosis in pediatric acute lymphoblastic leukemia cells

    PubMed Central

    Hartsink-Segers, Stefanie A.; Exalto, Carla; Allen, Matthew; Williamson, Daniel; Clifford, Steven C.; Horstmann, Martin; Caron, Huib N.; Pieters, Rob; Den Boer, Monique L.

    2013-01-01

    This study investigated Polo-like kinase 1, a mitotic regulator often over-expressed in solid tumors and adult hematopoietic malignancies, as a potential new target in the treatment of pediatric acute lymphoblastic leukemia. Polo-like kinase 1 protein and Thr210 phosphorylation levels were higher in pediatric acute lymphoblastic leukemia (n=172) than in normal bone marrow mononuclear cells (n=10) (P<0.0001). High Polo-like kinase 1 protein phosphorylation, but not expression, was associated with a lower probability of event-free survival (P=0.042) and was a borderline significant prognostic factor (P=0.065) in a multivariate analysis including age and initial white blood cell count. Polo-like kinase 1 was necessary for leukemic cell survival, since short hairpin-mediated Polo-like kinase 1 knockdown in acute lymphoblastic leukemia cell lines inhibited cell proliferation by G2/M cell cycle arrest and induced apoptosis through caspase-3 and poly (ADP-ribose) polymerase cleavage. Primary patient cells with a high Polo-like kinase 1 protein expression were sensitive to the Polo-like kinase 1-specific inhibitor NMS-P937 in vitro, whereas cells with a low expression and normal bone marrow cells were resistant. This sensitivity was likely not caused by Polo-like kinase 1 mutations, since only one new mutation (Ser335Arg) was found by 454-sequencing of 38 pediatric acute lymphoblastic leukemia cases. This mutation did not affect Polo-like kinase 1 expression or NMS-P937 sensitivity. Together, these results indicate a pivotal role for Polo-like kinase 1 in pediatric acute lymphoblastic leukemia and show potential for Polo-like kinase 1-inhibiting drugs as an addition to current treatment strategies for cases expressing high Polo-like kinase 1 levels. PMID:23753023

  1. Ribosomal protein S6 kinase 1 signaling regulates mammalian lifespan

    PubMed Central

    Selman, Colin; Tullet, Jennifer M.A.; Wieser, Daniela; Irvine, Elaine; Lingard, Steven J.; Choudhury, Agharul I.; Claret, Marc; Al-Qassab, Hind; Carmignac, Danielle; Ramadani, Faruk; Woods, Angela; Robinson, Iain C.A.; Schuster, Eugene; Batterham, Rachel L.; Kozma, Sara C.; Thomas, George; Carling, David; Okkenhaug, Klaus; Thornton, Janet M.; Partridge, Linda; Gems, David; Withers, Dominic J.

    2016-01-01

    Caloric restriction (CR) protects against aging and disease but the mechanisms by which this affects mammalian lifespan are unclear. We show in mice that deletion of the nutrient-responsive mTOR (mammalian target of rapamycin) signaling pathway component ribosomal S6 protein kinase 1 (S6K1) led to increased lifespan and resistance to age-related pathologies such as bone, immune and motor dysfunction and loss of insulin sensitivity. Deletion of S6K1 induced gene expression patterns similar to those seen in CR or with pharmacological activation of adenosine monophosphate (AMP)-activated protein kinase (AMPK), a conserved regulator of the metabolic response to CR. Our results demonstrate that S6K1 influences healthy mammalian lifespan, and suggest therapeutic manipulation of S6K1 and AMPK might mimic CR and provide broad protection against diseases of aging. PMID:19797661

  2. Chitin-induced and CHITIN ELICITOR RECEPTOR KINASE1 (CERK1) phosphorylation-dependent endocytosis of Arabidopsis thaliana LYSIN MOTIF-CONTAINING RECEPTOR-LIKE KINASE5 (LYK5).

    PubMed

    Erwig, Jan; Ghareeb, Hassan; Kopischke, Michaela; Hacke, Ronja; Matei, Alexandra; Petutschnig, Elena; Lipka, Volker

    2017-07-01

    To detect potential pathogens, plants perceive the fungal polysaccharide chitin through receptor complexes containing lysin motif receptor-like kinases (LysM-RLKs). To investigate the ligand-induced spatial dynamics of chitin receptor components, we studied the subcellular behaviour of two Arabidopsis thaliana LysM-RLKs involved in chitin signalling, CHITIN ELICITOR RECEPTOR KINASE1 (CERK1) and LYSIN MOTIF-CONTAINING RECEPTOR-LIKE KINASE5. We performed standard and quantitative confocal laser scanning microscopy on stably transformed A. thaliana plants expressing fluorescently tagged CERK1 and LYK5 from their native promoters. Microscopy approaches were complemented by biochemical analyses in plants and in vitro. Both CERK1 and LYK5 localized to the plasma membrane and showed constitutive endomembrane trafficking. After chitin treatment, however, CERK1 remained at the plasma membrane while LYK5 relocalized into mobile intracellular vesicles. Detailed analyses revealed that chitin perception transiently induced the internalization of LYK5 into late endocytic compartments. Plants that lacked CERK1 or expressed an enzymatically inactive CERK1 variant did not exhibit chitin-induced endocytosis of LYK5. CERK1 could phosphorylate LYK5 in vitro and chitin treatment induced CERK1-dependent phosphorylation of LYK5 in planta. Our results suggest that chitin-induced phosphorylation by CERK1 triggers LYK5 internalization. Thus, our work identifies phosphorylation as a key regulatory step in endocytosis of plant RLKs and also provides evidence for receptor complex dissociation after ligand perception. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  3. Protein kinase WNK3 regulates the neuronal splicing factor Fox-1.

    PubMed

    Lee, A-Young; Chen, Wei; Stippec, Steve; Self, Jon; Yang, Fan; Ding, Xiaojun; Chen, She; Juang, Yu-Chi; Cobb, Melanie H

    2012-10-16

    We report an action of the protein kinase WNK3 on the neuronal mRNA splicing factor Fox-1. Fox-1 splices mRNAs encoding proteins important in synaptic transmission and membrane excitation. WNK3, implicated in the control of neuronal excitability through actions on ion transport, binds Fox-1 and inhibits its splicing activity in a kinase activity-dependent manner. Phosphorylation of Fox-1 by WNK3 does not change its RNA binding capacity; instead, WNK3 increases the cytoplasmic localization of Fox-1, thereby suppressing Fox-1-dependent splicing. These findings demonstrate a role of WNK3 in RNA processing. Considering the implication of WNK3 and Fox-1 in disorders of neuronal development such as autism, WNK3 may offer a target for treatment of Fox-1-induced disease.

  4. Dendritic Spine Instability in a Mouse Model of CDKL5 Disorder Is Rescued by Insulin-like Growth Factor 1.

    PubMed

    Della Sala, Grazia; Putignano, Elena; Chelini, Gabriele; Melani, Riccardo; Calcagno, Eleonora; Michele Ratto, Gian; Amendola, Elena; Gross, Cornelius T; Giustetto, Maurizio; Pizzorusso, Tommaso

    2016-08-15

    CDKL5 (cyclin-dependent kinase-like 5) is mutated in many severe neurodevelopmental disorders, including atypical Rett syndrome. CDKL5 was shown to interact with synaptic proteins, but an in vivo analysis of the role of CDKL5 in dendritic spine dynamics and synaptic molecular organization is still lacking. In vivo two-photon microscopy of the somatosensory cortex of Cdkl5(-/y) mice was applied to monitor structural dynamics of dendritic spines. Synaptic function and plasticity were measured using electrophysiological recordings of excitatory postsynaptic currents and long-term potentiation in brain slices and assessing the expression of synaptic postsynaptic density protein 95 (PSD-95). Finally, we studied the impact of insulin-like growth factor 1 (IGF-1) treatment on CDKL5 null mice to restore the synaptic deficits. Adult mutant mice showed a significant reduction in spine density and PSD-95-positive synaptic puncta, a reduction of persistent spines, and impaired long-term potentiation. In juvenile mutants, short-term spine elimination, but not formation, was dramatically increased. Exogenous administration of IGF-1 rescued defective rpS6 phosphorylation, spine density, and PSD-95 expression. Endogenous cortical IGF-1 levels were unaffected by CDKL5 deletion. These data demonstrate that dendritic spine stabilization is strongly regulated by CDKL5. Moreover, our data suggest that IGF-1 treatment could be a promising candidate for clinical trials in CDKL5 patients. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  5. Cyclin-dependent kinase (CDK) phosphorylation destabilizes somatic Wee1 via multiple pathways

    PubMed Central

    Watanabe, Nobumoto; Arai, Harumi; Iwasaki, Jun-ichi; Shiina, Masaaki; Ogata, Kazuhiro; Hunter, Tony; Osada, Hiroyuki

    2005-01-01

    At the onset of M phase, the activity of somatic Wee1 (Wee1A), the inhibitory kinase for cyclin-dependent kinase (CDK), is down-regulated primarily through proteasome-dependent degradation after ubiquitination by the E3 ubiquitin ligase SCFβ-TrCP. The F-box protein β-TrCP (β-transducin repeat-containing protein), the substrate recognition component of the ubiquitin ligase, binds to its substrates through a conserved binding motif (phosphodegron) containing two phosphoserines, DpSGXXpS. Although Wee1A lacks this motif, phosphorylation of serines 53 and 123 (S53 and S123) of Wee1A by polo-like kinase 1 (Plk1) and CDK, respectively, are required for binding to β-TrCP. The sequence surrounding phosphorylated S53 (DpSAFQE) is similar to the conserved β-TrCP-binding motif; however, the role of S123 phosphorylation (EEGFGSSpSPVK) in β-TrCP binding was not elucidated. In the present study, we show that phosphorylation of S123 (pS123) by CDK promoted the binding of Wee1A to β-TrCP through three independent mechanisms. The pS123 not only directly interacted with basic residues in the WD40 repeat domain of β-TrCP but also primed phosphorylation by two independent protein kinases, Plk1 and CK2 (formerly casein kinase 2), to create two phosphodegrons on Wee1A. In the case of Plk1, S123 phosphorylation created a polo box domain-binding motif (SpSP) on Wee1A to accelerate phosphorylation of S53 by Plk1. CK2 could phosphorylate S121, but only if S123 was phosphorylated first, thereby generating the second β-TrCP-binding site (EEGFGpS121). Using a specific inhibitor of CK2, we showed that the phosphorylation-dependent degradation of Wee1A is important for the proper onset of mitosis. PMID:16085715

  6. Regulation of cardiac excitation and contraction by p21 activated kinase-1.

    PubMed

    Ke, Yunbo; Lei, Ming; Solaro, R John

    2008-01-01

    Cardiac excitation and contraction are regulated by a variety of signaling molecules. Central to the regulatory scheme are protein kinases and phosphatases that carry out reversible phosphorylation of different effectors. The process of beta-adrenergic stimulation mediated by cAMP dependent protein kinase (PKA) forms a well-known pathway considered as the most significant control mechanism in excitation and contraction as well as many other regulatory mechanisms in cardiac function. However, although dephosphorylation pathways are critical to these regulatory processes, signaling to phosphatases is relatively poorly understood. Emerging evidence indicates that regulation of phosphatases, which dampen the effect of beta-adrenergic stimulation, is also important. We review here functional studies of p21 activated kinase-1 (Pak1) and its potential role as an upstream signal for protein phosphatase PP2A in the heart. Pak1 is a serine/threonine protein kinase directly activated by the small GTPases Cdc42 and Rac1. Pak1 is highly expressed in different regions of the heart and modulates the activities of ion channels, sarcomeric proteins, and other phosphoproteins through up-regulation of PP2A activity. Coordination of Pak1 and PP2A activities is not only potentially involved in regulation of normal cardiac function, but is likely to be important in patho-physiological conditions.

  7. Biophysical and X-ray crystallographic analysis of Mps1 kinase inhibitor complexes.

    PubMed

    Chu, Matthew L H; Lang, Zhaolei; Chavas, Leonard M G; Neres, João; Fedorova, Olga S; Tabernero, Lydia; Cherry, Mike; Williams, David H; Douglas, Kenneth T; Eyers, Patrick A

    2010-03-02

    The dual-specificity protein kinase monopolar spindle 1 (Mps1) is a central component of the mitotic spindle assembly checkpoint (SAC), a sensing mechanism that prevents anaphase until all chromosomes are bioriented on the metaphase plate. Partial depletion of Mps1 protein levels sensitizes transformed, but not untransformed, human cells to therapeutic doses of the anticancer agent Taxol, making it an attractive novel therapeutic cancer target. We have previously determined the X-ray structure of the catalytic domain of human Mps1 in complex with the anthrapyrazolone kinase inhibitor SP600125. In order to validate distinct inhibitors that target this enzyme and improve our understanding of nucleotide binding site architecture, we now report a biophysical and structural evaluation of the Mps1 catalytic domain in the presence of ATP and the aspecific model kinase inhibitor staurosporine. Collective in silico, enzymatic, and fluorescent screens also identified several new lead quinazoline Mps1 inhibitors, including a low-affinity compound termed Compound 4 (Cpd 4), whose interaction with the Mps1 kinase domain was further characterized by X-ray crystallography. A novel biophysical analysis demonstrated that the intrinsic fluorescence of SP600125 changed markedly upon Mps1 binding, allowing spectrophotometric displacement analysis and determination of dissociation constants for ATP-competitive Mps1 inhibitors. By illuminating the structure of the Mps1 ATP-binding site our results provide novel biophysical insights into Mps1-ligand interactions that will be useful for the development of specific Mps1 inhibitors, including those employing a therapeutically validated quinazoline template.

  8. Cyclin B Proteolysis and the Cyclin-dependent Kinase Inhibitor rum1p Are Required for Pheromone-induced G1 Arrest in Fission Yeast

    PubMed Central

    Stern, Bodo; Nurse, Paul

    1998-01-01

    The blocking of G1 progression by fission yeast pheromones requires inhibition of the cyclin-dependent kinase cdc2p associated with the B-cyclins cdc13p and cig2p. We show that cyclosome-mediated degradation of cdc13p and cig2p is necessary for down-regulation of B-cyclin–associated cdc2p kinase activity and for phermone-induced G1 arrest. The cyclin-dependent kinase inhibitor rum1p is also required to maintain this G1 arrest; it binds both cdc13p and cig2p and is specifically required for cdc13p proteolysis. We propose that rum1p acts as an adaptor targeting cdc13p for degradation by the cyclosome. In contrast, the cig2p–cdc2p kinase can be down-regulated, and the cyclin cig2p can be proteolyzed independently of rum1p. We suggest that pheromone signaling inhibits the cig2p–cdc2p kinase, bringing about a transient G1 arrest. As a consequence, rum1p levels increase, thus inhibiting and inducing proteolysis of the cdc13p–cdc2p kinase; this is necessary to maintain G1 arrest. We have also shown that pheromone-induced transcription occurs only in G1 and is independent of rum1p. PMID:9614176

  9. Transforming growth factor β-activated kinase 1 negatively regulates interleukin-1α-induced stromal-derived factor-1 expression in vascular smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Bin; Li, Wei; Zheng, Qichang

    Stromal-derived Factor-1 (SDF-1) derived from vascular smooth muscle cells (VSMCs) contributes to vascular repair and remodeling in various vascular diseases. In this study, the mechanism underlying regulation of SDF-1 expression by interleukin-1α (IL-1α) was investigated in primary rat VSMCs. We found IL-1α promotes SDF-1 expression by up-regulating CCAAT-enhancer-binding protein β (C/EBPβ) in an IκB kinase β (IKKβ) signaling-dependent manner. Moreover, IL-1α-induced expression of C/EBPβ and SDF-1 was significantly potentiated by knockdown of transforming growth factor β-activated kinase 1 (TAK1), an upstream activator of IKKβ signaling. In addition, we also demonstrated that TAK1/p38 mitogen-activated protein kinase (p38 MAPK) signaling exerted negativemore » effect on IL-1α-induced expression of C/EBPβ and SDF-1 through counteracting ROS-dependent up-regulation of nuclear factor erythroid 2-related factor 2 (NRF2). In conclusion, TAK1 acts as an important regulator of IL-1α-induced SDF-1 expression in VSMCs, and modulating activity of TAK1 may serve as a potential strategy for modulating vascular repair and remodeling. - Highlights: • IL-1α induces IKKβ signaling-dependent SDF-1 expression by up-regulating C/EBPβ. • Activation of TAK1 by IL-1α negatively regulates C/EBPβ-dependent SDF-1 expression. • IL-1α-induced TAK1/p38 MAPK signaling counteracts ROS-dependent SDF-1 expression. • TAK1 counteracts IL-1α-induced SDF-1 expression by attenuating NRF2 up-regulation.« less

  10. Chronic innate immune activation of TBK1 suppresses mTORC1 activity and dysregulates cellular metabolism.

    PubMed

    Hasan, Maroof; Gonugunta, Vijay K; Dobbs, Nicole; Ali, Aktar; Palchik, Guillermo; Calvaruso, Maria A; DeBerardinis, Ralph J; Yan, Nan

    2017-01-24

    Three-prime repair exonuclease 1 knockout (Trex1 -/- ) mice suffer from systemic inflammation caused largely by chronic activation of the cyclic GMP-AMP synthase-stimulator of interferon genes-TANK-binding kinase-interferon regulatory factor 3 (cGAS-STING-TBK1-IRF3) signaling pathway. We showed previously that Trex1-deficient cells have reduced mammalian target of rapamycin complex 1 (mTORC1) activity, although the underlying mechanism is unclear. Here, we performed detailed metabolic analysis in Trex1 -/- mice and cells that revealed both cellular and systemic metabolic defects, including reduced mitochondrial respiration and increased glycolysis, energy expenditure, and fat metabolism. We also genetically separated the inflammatory and metabolic phenotypes by showing that Sting deficiency rescued both inflammatory and metabolic phenotypes, whereas Irf3 deficiency only rescued inflammation on the Trex1 -/- background, and many metabolic defects persist in Trex1 -/- Irf3 -/- cells and mice. We also showed that Leptin deficiency (ob/ob) increased lipogenesis and prolonged survival of Trex1 -/- mice without dampening inflammation. Mechanistically, we identified TBK1 as a key regulator of mTORC1 activity in Trex1 -/- cells. Together, our data demonstrate that chronic innate immune activation of TBK1 suppresses mTORC1 activity, leading to dysregulated cellular metabolism.

  11. Aurora Kinase B, a novel regulator of TERF1 binding and telomeric integrity

    PubMed Central

    Chan, Foong Lyn; Vinod, Benjamin; Novy, Karel; Schittenhelm, Ralf B.; Huang, Cheng; Udugama, Maheshi; Nunez-Iglesias, Juan; Lin, Jane I.; Hii, Linda; Chan, Julie; Pickett, Hilda A.; Daly, Roger J.

    2017-01-01

    Abstract AURKB (Aurora Kinase B) is a serine/threonine kinase better known for its role at the mitotic kinetochore during chromosome segregation. Here, we demonstrate that AURKB localizes to the telomeres in mouse embryonic stem cells, where it interacts with the essential telomere protein TERF1. Loss of AURKB function affects TERF1 telomere binding and results in aberrant telomere structure. In vitro kinase experiments successfully identified Serine 404 on TERF1 as a putative AURKB target site. Importantly, in vivo overexpression of S404-TERF1 mutants results in fragile telomere formation. These findings demonstrate that AURKB is an important regulator of telomere structural integrity. PMID:29040668

  12. Nicotine shifts the temporal activation of hippocampal protein kinase A and extracellular signal-regulated kinase 1/2 to enhance long-term, but not short-term, hippocampus-dependent memory.

    PubMed

    Gould, Thomas J; Wilkinson, Derek S; Yildirim, Emre; Poole, Rachel L F; Leach, Prescott T; Simmons, Steven J

    2014-03-01

    Acute nicotine enhances hippocampus-dependent learning through nicotine binding to β2-containing nicotinic acetylcholine receptors (nAChRs), but it is unclear if nicotine is targeting processes involved in short-term memory (STM) leading to a strong long-term memory (LTM) or directly targeting LTM. In addition, the molecular mechanisms involved in the effects of nicotine on learning are unknown. Previous research indicates that protein kinase A (PKA), extracellular signal-regulated kinase 1/2 (ERK1/2), and protein synthesis are crucial for LTM. Therefore, the present study examined the effects of nicotine on STM and LTM and the involvement of PKA, ERK1/2, and protein synthesis in the nicotine-induced enhancement of hippocampus-dependent contextual learning in C57BL/6J mice. The protein synthesis inhibitor anisomycin impaired contextual conditioning assessed at 4 h but not 2 h post-training, delineating time points for STM (2 h) and LTM (4 h and beyond). Nicotine enhanced contextual conditioning at 4, 8, and 24 h but not 2 h post-training, indicating nicotine specifically enhances LTM but not STM. Furthermore, nicotine did not rescue deficits in contextual conditioning produced by anisomycin, suggesting that the nicotine enhancement of contextual conditioning occurs through a protein synthesis-dependent mechanism. In addition, inhibition of dorsal hippocampal PKA activity blocked the effect of acute nicotine on learning, and nicotine shifted the timing of learning-related PKA and ERK1/2 activity in the dorsal and ventral hippocampus. Thus, the present results suggest that nicotine specifically enhances LTM through altering the timing of PKA and ERK1/2 signaling in the hippocampus, and suggests that the timing of PKA and ERK1/2 activity could contribute to the strength of memories. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Nicotine Shifts the Temporal Activation of Hippocampal Protein Kinase A and Extracellular Signal-Regulated Kinase 1/2 to Enhance Long-Term, but not Short-term, Hippocampus-Dependent Memory

    PubMed Central

    Gould, Thomas J.; Wilkinson, Derek S.; Yildirim, Emre; Poole, Rachel L. F.; Leach, Prescott T.; Simmons, Steven J.

    2014-01-01

    Acute nicotine enhances hippocampus-dependent learning through nicotine binding to β2-containing nicotinic acetylcholine receptors (nAChRs), but it is unclear if nicotine is targeting processes involved in short-term memory (STM) leading to a strong long-term memory (LTM) or directly targeting LTM. In addition, the molecular mechanisms involved in the effects of nicotine on learning are unknown. Previous research indicates that protein kinase A (PKA), extracellular regulated signaling kinase 1/2 (ERK1/2), and protein synthesis are crucial for LTM. Therefore, the present study examined the effects of nicotine on STM and LTM and the involvement of PKA, ERK1/2, and protein synthesis in the nicotine-induced enhancement of hippocampus-dependent contextual learning in C57BL/6J mice. The protein synthesis inhibitor anisomycin impaired contextual conditioning assessed at 4 hours but not 2 hours post-training, delineating time points for STM (2 hours) and LTM (4 hours and beyond). Nicotine enhanced contextual conditioning at 4, 8, and 24 hours but not 2 hours post-training, indicating nicotine specifically enhances LTM but not STM. Furthermore, nicotine did not rescue deficits in contextual conditioning produced by anisomycin, suggesting that the nicotine enhancement of contextual conditioning occurs through a protein synthesis-dependent mechanism. In addition, inhibition of dorsal hippocampal PKA activity blocked the effect of acute nicotine on learning and nicotine shifted the timing of learning-related PKA and ERK1/2 activity in the dorsal and ventral hippocampus. Thus, the present results suggest that nicotine specifically enhances LTM through altering the timing of PKA and ERK1/2 signaling in the hippocampus, and suggests that the timing of PKA and ERK1/2 activity could contribute to the strength of memories. PMID:24457151

  14. Functional Phenotypic Rescue of Caenorhabditis elegans Neuroligin-Deficient Mutants by the Human and Rat NLGN1 Genes

    PubMed Central

    Calahorro, Fernando; Ruiz-Rubio, Manuel

    2012-01-01

    Neuroligins are cell adhesion proteins that interact with neurexins at the synapse. This interaction may contribute to differentiation, plasticity and specificity of synapses. In humans, single mutations in neuroligin encoding genes lead to autism spectrum disorder and/or mental retardation. Caenorhabditis elegans mutants deficient in nlg-1, an orthologue of human neuroligin genes, have defects in different behaviors. Here we show that the expression of human NLGN1 or rat Nlgn1 cDNAs in C. elegans nlg-1 mutants rescues the fructose osmotic strength avoidance and gentle touch response phenotypes. Two specific point mutations in NLGN3 and NLGN4 genes, involved in autistic spectrum disorder, were further characterized in this experimental system. The R451C allele described in NLGN3, was analyzed with both human NLGN1 (R453C) and worm NLG-1 (R437C) proteins, and both were not functional in rescuing the osmotic avoidance behavior and the gentle touch response phenotype. The D396X allele described in NLGN4, which produces a truncated protein, was studied with human NLGN1 (D432X) and they did not rescue any of the behavioral phenotypes analyzed. In addition, RNAi feeding experiments measuring gentle touch response in wild type strain and worms expressing SID-1 in neurons (which increases the response to dsRNA), both fed with bacteria expressing dsRNA for nlg-1, provided evidence for a postsynaptic in vivo function of neuroligins both in muscle cells and neurons, equivalent to that proposed in mammals. This finding was further confirmed generating transgenic nlg-1 deficient mutants expressing NLG-1 under pan-neuronal (nrx-1) or pan-muscular (myo-3) specific promoters. All these results suggest that the nematode could be used as an in vivo model for studying particular synaptic mechanisms with proteins orthologues of humans involved in pervasive developmental disorders. PMID:22723984

  15. Functional phenotypic rescue of Caenorhabditis elegans neuroligin-deficient mutants by the human and rat NLGN1 genes.

    PubMed

    Calahorro, Fernando; Ruiz-Rubio, Manuel

    2012-01-01

    Neuroligins are cell adhesion proteins that interact with neurexins at the synapse. This interaction may contribute to differentiation, plasticity and specificity of synapses. In humans, single mutations in neuroligin encoding genes lead to autism spectrum disorder and/or mental retardation. Caenorhabditis elegans mutants deficient in nlg-1, an orthologue of human neuroligin genes, have defects in different behaviors. Here we show that the expression of human NLGN1 or rat Nlgn1 cDNAs in C. elegans nlg-1 mutants rescues the fructose osmotic strength avoidance and gentle touch response phenotypes. Two specific point mutations in NLGN3 and NLGN4 genes, involved in autistic spectrum disorder, were further characterized in this experimental system. The R451C allele described in NLGN3, was analyzed with both human NLGN1 (R453C) and worm NLG-1 (R437C) proteins, and both were not functional in rescuing the osmotic avoidance behavior and the gentle touch response phenotype. The D396X allele described in NLGN4, which produces a truncated protein, was studied with human NLGN1 (D432X) and they did not rescue any of the behavioral phenotypes analyzed. In addition, RNAi feeding experiments measuring gentle touch response in wild type strain and worms expressing SID-1 in neurons (which increases the response to dsRNA), both fed with bacteria expressing dsRNA for nlg-1, provided evidence for a postsynaptic in vivo function of neuroligins both in muscle cells and neurons, equivalent to that proposed in mammals. This finding was further confirmed generating transgenic nlg-1 deficient mutants expressing NLG-1 under pan-neuronal (nrx-1) or pan-muscular (myo-3) specific promoters. All these results suggest that the nematode could be used as an in vivo model for studying particular synaptic mechanisms with proteins orthologues of humans involved in pervasive developmental disorders.

  16. Phosphatidylinositol 3-kinase, Cdc42, and Rac1 act downstream of Ras in integrin-dependent neurite outgrowth in N1E-115 neuroblastoma cells.

    PubMed

    Sarner, S; Kozma, R; Ahmed, S; Lim, L

    2000-01-01

    Ras and Rho family GTPases have been ascribed important roles in signalling pathways determining cellular morphology and growth. Here we investigated the roles of the GTPases Ras, Cdc42, Rac1, and Rho and that of phosphatidylinositol 3-kinase (PI 3-kinase) in the pathway leading from serum starvation to neurite outgrowth in N1E-115 neuroblastoma cells. Serum-starved cells grown on a laminin matrix exhibited integrin-dependent neurite outgrowth. Expression of dominant negative mutants of Ras, PI 3-kinase, Cdc42, or Rac1 all blocked this neurite outgrowth, while constitutively activated mutants of Ras, PI 3-kinase, or Cdc42 were each sufficient to promote outgrowth even in the presence of serum. A Ras(H40C;G12V) double mutant which binds preferentially to PI 3-kinase also promoted neurite formation. Activated Ras(G12V)-induced outgrowth required PI 3-kinase activity, but activated PI 3-kinase-induced outgrowth did not require Ras activity. Although activated Rac1 by itself did not induce neurites, neurite outgrowth induced by activated Cdc42(G12V) was Rac1 dependent. Cdc42(G12V)-induced neurites appeared to lose their normal polarization, almost doubling the average number of neurites produced by a single cell. Outgrowth induced by activated Ras or PI 3-kinase required both Cdc42 and Rac1 activity, but Cdc42(G12V)-induced outgrowth did not need Ras or PI 3-kinase activity. Active Rho(G14V) reduced outgrowth promoted by Ras(G12V). Finally, expression of dominant negative Jun N-terminal kinase or extracellular signal-regulated kinase did not inhibit outgrowth, suggesting these pathways are not essential for this process. Our results suggest a hierarchy of signalling where Ras signals through PI 3-kinase to Cdc42 and Rac1 activation (and Rho inactivation), culminating in neurite outgrowth. Thus, in the absence of serum factors, Ras may initiate cell cycle arrest and terminal differentiation in N1E-115 neuroblastoma cells.

  17. Phosphatidylinositol 3-Kinase, Cdc42, and Rac1 Act Downstream of Ras in Integrin-Dependent Neurite Outgrowth in N1E-115 Neuroblastoma Cells

    PubMed Central

    Sarner, Shula; Kozma, Robert; Ahmed, Sohail; Lim, Louis

    2000-01-01

    Ras and Rho family GTPases have been ascribed important roles in signalling pathways determining cellular morphology and growth. Here we investigated the roles of the GTPases Ras, Cdc42, Rac1, and Rho and that of phosphatidylinositol 3-kinase (PI 3-kinase) in the pathway leading from serum starvation to neurite outgrowth in N1E-115 neuroblastoma cells. Serum-starved cells grown on a laminin matrix exhibited integrin-dependent neurite outgrowth. Expression of dominant negative mutants of Ras, PI 3-kinase, Cdc42, or Rac1 all blocked this neurite outgrowth, while constitutively activated mutants of Ras, PI 3-kinase, or Cdc42 were each sufficient to promote outgrowth even in the presence of serum. A RasH40C;G12V double mutant which binds preferentially to PI 3-kinase also promoted neurite formation. Activated RasG12V-induced outgrowth required PI 3-kinase activity, but activated PI 3-kinase-induced outgrowth did not require Ras activity. Although activated Rac1 by itself did not induce neurites, neurite outgrowth induced by activated Cdc42G12V was Rac1 dependent. Cdc42G12V-induced neurites appeared to lose their normal polarization, almost doubling the average number of neurites produced by a single cell. Outgrowth induced by activated Ras or PI 3-kinase required both Cdc42 and Rac1 activity, but Cdc42G12V-induced outgrowth did not need Ras or PI 3-kinase activity. Active RhoG14V reduced outgrowth promoted by RasG12V. Finally, expression of dominant negative Jun N-terminal kinase or extracellular signal-regulated kinase did not inhibit outgrowth, suggesting these pathways are not essential for this process. Our results suggest a hierarchy of signalling where Ras signals through PI 3-kinase to Cdc42 and Rac1 activation (and Rho inactivation), culminating in neurite outgrowth. Thus, in the absence of serum factors, Ras may initiate cell cycle arrest and terminal differentiation in N1E-115 neuroblastoma cells. PMID:10594018

  18. Long-term soluble Abeta1-40 activates CaM kinase II in organotypic hippocampal cultures.

    PubMed

    Tardito, Daniela; Gennarelli, Massimo; Musazzi, Laura; Gesuete, Raffaella; Chiarini, Stefania; Barbiero, Valentina Sara; Rydel, Russell E; Racagni, Giorgio; Popoli, Maurizio

    2007-09-01

    Recent findings suggested a role for soluble amyloid-beta (Abeta) peptides in Alzheimer's disease associated cognitive decline. We investigated the action of soluble, monomeric Abeta(1-40) on CaM kinase II, a kinase involved in neuroplasticity and cognition. We treated organotypic hippocampal cultures short-term (up to 4h) and long-term (5 days) with Abeta(1-40) (1nM-5microM). Abeta did not induce cell damage, apoptosis or synaptic loss. Short-term treatment down-regulated enzymatic activity of the kinase, by reducing its Thr(286) phosphorylation. In contrast, long-term treatment (1nM-microM) markedly and significantly up-regulated enzymatic activity, with peak stimulation at 10nM (three-fold). Up-regulation of activity was associated with increased expression of the alpha-isoform of CaM kinase II, increased phosphorylation at Thr(286) (activator residue) and decreased phosphorylation at Thr(305-306) (inhibitory residues). We investigated the effect of glutamate on CaM kinase II following exposure to 1 or 10nM Abeta(1-40). As previously reported, glutamate increased CaM kinase II activity. However, the glutamate effect was not altered by pretreatment of slices with Abeta. Short- and long-term Abeta treatment showed opposite effects on CaM kinase II, suggesting that long-term changes are an adaptation to the kinase early down-regulation. The marked effect of Abeta(1-40) on the kinase suggests that semi-physiological and slowly raising peptide concentrations may have a significant impact on synaptic plasticity in the absence of synaptic loss or neuronal cell death.

  19. Structural Basis for the Potent and Selective Inhibition of Casein Kinase 1 Epsilon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Alexander M.; Zhao, Huilin; Huang, Xin

    2012-10-29

    Casein kinase 1 epsilon (CK1ε) and its closest homologue CK1δ are key regulators of diverse cellular processes. We report two crystal structures of PF4800567, a potent and selective inhibitor of CK1ε, bound to the kinase domains of human CK1ε and CK1δ as well as one apo CK1ε crystal structure. These structures provide a molecular basis for the strong and specific inhibitor interactions with CK1ε and suggest clues for further development of CK1δ inhibitors.

  20. Proton Pump Inhibitors Decrease Soluble fms-Like Tyrosine Kinase-1 and Soluble Endoglin Secretion, Decrease Hypertension, and Rescue Endothelial Dysfunction.

    PubMed

    Onda, Kenji; Tong, Stephen; Beard, Sally; Binder, Natalie; Muto, Masanaga; Senadheera, Sevvandi N; Parry, Laura; Dilworth, Mark; Renshall, Lewis; Brownfoot, Fiona; Hastie, Roxanne; Tuohey, Laura; Palmer, Kirsten; Hirano, Toshihiko; Ikawa, Masahito; Kaitu'u-Lino, Tu'uhevaha; Hannan, Natalie J

    2017-03-01

    Preeclampsia is a severe complication of pregnancy. Antiangiogenic factors soluble fms-like tyrosine kinase-1 (sFlt-1) and soluble endoglin are secreted in excess from the placenta, causing hypertension, endothelial dysfunction, and multiorgan injury. Oxidative stress and vascular inflammation exacerbate the endothelial injury. A drug that can block these pathophysiological steps would be an attractive treatment option. Proton pump inhibitors (PPIs) are safe in pregnancy where they are prescribed for gastric reflux. We performed functional studies on primary human tissues and animal models to examine the effects of PPIs on sFlt-1 and soluble endoglin secretion, vessel dilatation, blood pressure, and endothelial dysfunction. PPIs decreased sFlt-1 and soluble endoglin secretion from trophoblast, placental explants from preeclamptic pregnancies, and endothelial cells. They also mitigated tumor necrosis factor-α-induced endothelial dysfunction: PPIs blocked endothelial vascular cell adhesion molecule-1 expression, leukocyte adhesion to endothelium, and disruption of endothelial tube formation. PPIs decreased endothelin-1 secretion and enhanced endothelial cell migration. Interestingly, the PPI esomeprazole vasodilated maternal blood vessels from normal pregnancies and cases of preterm preeclampsia, but its vasodilatory effects were lost when the vessels were denuded of their endothelium. Esomeprazole decreased blood pressure in a transgenic mouse model where human sFlt-1 was overexpressed in placenta. PPIs upregulated endogenous antioxidant defenses and decreased cytokine secretion from placental tissue and endothelial cells. We have found that PPIs decrease sFlt-1 and soluble endoglin secretion and endothelial dysfunction, dilate blood vessels, decrease blood pressure, and have antioxidant and anti-inflammatory properties. They have therapeutic potential for preeclampsia and other diseases where endothelial dysfunction is involved. © 2017 American Heart Association

  1. Serine/Threonine Kinase Unc-51-like Kinase-1 (Ulk1) Phosphorylates the Co-chaperone Cell Division Cycle Protein 37 (Cdc37) and Thereby Disrupts the Stability of Cdc37 Client Proteins.

    PubMed

    Li, Ran; Yuan, Fengjie; Fu, Wan; Zhang, Luyao; Zhang, Nan; Wang, Yanan; Ma, Ke; Li, Xue; Wang, Lina; Zhu, Wei-Guo; Zhao, Ying

    2017-02-17

    The serine/threonine kinase Unc-51-like kinase-1 (Ulk1) is thought to be essential for induction of autophagy, an intracellular bulk degradation process that is activated by various stresses. Although several proteins have been suggested as Ulk1 substrates during autophagic process, it still remains largely unknown about Ulk1's physiological substrates. Here, by performing in vitro and in vivo phosphorylation assay, we report that the co-chaperone cell division cycle protein 37 (Cdc37) is a Ulk1 substrate. Ulk1-mediated phosphorylation of Ser-339 in Cdc37 compromised the recruitment of client kinases to a complex comprising Cdc37 and heat shock protein 90 (Hsp90) but only modestly affected Cdc37 binding to Hsp90. Because the recruitment of protein kinase clients to the Hsp90 complex is essential for their stability and functions, Ser-339 phosphorylation of Cdc37 disrupts its ability as a co-chaperone to coordinate Hsp90. Hsp90 inhibitors are cancer chemotherapeutic agents by inducing depletion of clients, many of which are oncogenes. Upon treatment with an Hsp90 inhibitor in cancer cells, Ulk1 promoted the degradation of Hsp90-Cdc37 client kinases, resulting in increased cellular sensitivity to Hsp90 inhibitors. Thus, our study provides evidence for an anti-proliferative role of Ulk1 in response to Hsp90 inhibition in cancer cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Phosphorylation of KRAB-associated Protein 1 (KAP1) at Tyr-449, Tyr-458, and Tyr-517 by Nuclear Tyrosine Kinases Inhibits the Association of KAP1 and Heterochromatin Protein 1α (HP1α) with Heterochromatin*

    PubMed Central

    Kubota, Sho; Fukumoto, Yasunori; Aoyama, Kazumasa; Ishibashi, Kenichi; Yuki, Ryuzaburo; Morinaga, Takao; Honda, Takuya; Yamaguchi, Noritaka; Kuga, Takahisa; Tomonaga, Takeshi; Yamaguchi, Naoto

    2013-01-01

    Protein tyrosine phosphorylation regulates a wide range of cellular processes at the plasma membrane. Recently, we showed that nuclear tyrosine phosphorylation by Src family kinases (SFKs) induces chromatin structural changes. In this study, we identify KRAB-associated protein 1 (KAP1/TIF1β/TRIM28), a component of heterochromatin, as a nuclear tyrosine-phosphorylated protein. Tyrosine phosphorylation of KAP1 is induced by several tyrosine kinases, such as Src, Lyn, Abl, and Brk. Among SFKs, Src strongly induces tyrosine phosphorylation of KAP1. Nucleus-targeted Lyn potentiates tyrosine phosphorylation of KAP1 compared with intact Lyn, but neither intact Fyn nor nucleus-targeted Fyn phosphorylates KAP1. Substitution of the three tyrosine residues Tyr-449/Tyr-458/Tyr-517, located close to the HP1 binding-motif, into phenylalanine ablates tyrosine phosphorylation of KAP1. Immunostaining and chromatin fractionation show that Src and Lyn decrease the association of KAP1 with heterochromatin in a kinase activity-dependent manner. KAP1 knockdown impairs the association of HP1α with heterochromatin, because HP1α associates with KAP1 in heterochromatin. Intriguingly, tyrosine phosphorylation of KAP1 decreases the association of HP1α with heterochromatin, which is inhibited by replacement of endogenous KAP1 with its phenylalanine mutant (KAP1-Y449F/Y458F/Y517F, KAP1–3YF). In DNA damage, KAP1–3YF repressed transcription of p21. These results suggest that nucleus-localized tyrosine kinases, including SFKs, phosphorylate KAP1 at Tyr-449/Tyr-458/Tyr-517 and inhibit the association of KAP1 and HP1α with heterochromatin. PMID:23645696

  3. Phosphorylation of MAP65-1 by Arabidopsis Aurora Kinases Is Required for Efficient Cell Cycle Progression1[OPEN

    PubMed Central

    Weimer, Annika K.; Stoppin-Mellet, Virginie; Kosetsu, Ken; Cedeño, Cesyen; Jaquinod, Michel; Njo, Maria; De Milde, Liesbeth; Tompa, Peter; Inzé, Dirk; Beeckman, Tom; Vantard, Marylin

    2017-01-01

    Aurora kinases are key effectors of mitosis. Plant Auroras are functionally divided into two clades. The alpha Auroras (Aurora1 and Aurora2) associate with the spindle and the cell plate and are implicated in controlling formative divisions throughout plant development. The beta Aurora (Aurora3) localizes to centromeres and likely functions in chromosome separation. In contrast to the wealth of data available on the role of Aurora in other kingdoms, knowledge on their function in plants is merely emerging. This is exemplified by the fact that only histone H3 and the plant homolog of TPX2 have been identified as Aurora substrates in plants. Here we provide biochemical, genetic, and cell biological evidence that the microtubule-bundling protein MAP65-1—a member of the MAP65/Ase1/PRC1 protein family, implicated in central spindle formation and cytokinesis in animals, yeasts, and plants—is a genuine substrate of alpha Aurora kinases. MAP65-1 interacts with Aurora1 in vivo and is phosphorylated on two residues at its unfolded tail domain. Its overexpression and down-regulation antagonistically affect the alpha Aurora double mutant phenotypes. Phospho-mutant analysis shows that Aurora contributes to the microtubule bundling capacity of MAP65-1 in concert with other mitotic kinases. PMID:27879390

  4. Ethylene Rapidly Up-Regulates the Activities of Both Monomeric GTP-Binding Proteins and Protein Kinase(s) in Epicotyls of Pea1

    PubMed Central

    Moshkov, Igor E.; Novikova, Galina V.; Mur, Luis A.J.; Smith, Aileen R.; Hall, Michael A.

    2003-01-01

    It is demonstrated that, in etiolated pea (Pisum sativum) epicotyls, ethylene affects the activation of both monomeric GTP-binding proteins (monomeric G-proteins) and protein kinases. For monomeric G-proteins, the effect may be a rapid (2 min) and bimodal up-regulation, a transiently unimodal activation, or a transient down-regulation. Pretreatment with 1-methylcyclopropene abolishes the response to ethylene overall. Immunoprecipitation studies indicate that some of the monomeric G-proteins affected may be of the Rab class. Protein kinase activity is rapidly up-regulated by ethylene, the effect is inhibited by 1-methylcyclopropene, and the activation is bimodal. Immunoprecipitation indicates that the kinase(s) are of the MAP kinase ERK1 group. It is proposed that the data support the hypothesis that a transduction chain exists that is separate and antagonistic to that currently revealed by studies on Arabidopsis mutants. PMID:12692330

  5. Specificity and mechanism of protein kinase C activation by sn-1,2-diacylglycerols.

    PubMed Central

    Ganong, B R; Loomis, C R; Hannun, Y A; Bell, R M

    1986-01-01

    The specificity of protein kinase C activation by sn-1,2-diacylglycerols and analogues was investigated by using a Triton X-100 mixed micellar assay [Hannun, Y. A., Loomis, C. R. & Bell, R. M. (1985) J. Biol. Chem. 260, 10039-10043]. Analogues containing acyl or alkyl chains eight carbons in length were synthesized because sn-1,2-dioctanoylglycerol is an effective cell-permeant activator of protein kinase C. These analogues were tested as activators and antagonists of rat brain protein kinase C to determine the exact structural features important for activity. The analogues established that activation of protein kinase C by diacylglycerols is highly specific. Several analogues established that both carbonyl moieties of the oxygen esters are required for maximal activity and that the 3-hydroxyl moiety is also required. None of the analogues were antagonists. These data, combined with previous investigations, permitted formulation of a model of protein kinase C activation. A three-point attachment of sn-1,2-diacylglycerol to the surface-bound protein kinase C-phosphatidylserine-Ca2+ complex is envisioned to cause activation. Direct ligation of diacylglycerol to Ca2+ is proposed to be an essential step in the mechanism of activation of protein kinase C. Images PMID:3456578

  6. Plk1 and Mps1 Cooperatively Regulate the Spindle Assembly Checkpoint in Human Cells.

    PubMed

    von Schubert, Conrad; Cubizolles, Fabien; Bracher, Jasmine M; Sliedrecht, Tale; Kops, Geert J P L; Nigg, Erich A

    2015-07-07

    Equal mitotic chromosome segregation is critical for genome integrity and is monitored by the spindle assembly checkpoint (SAC). We have previously shown that the consensus phosphorylation motif of the essential SAC kinase Monopolar spindle 1 (Mps1) is very similar to that of Polo-like kinase 1 (Plk1). This prompted us to ask whether human Plk1 cooperates with Mps1 in SAC signaling. Here, we demonstrate that Plk1 promotes checkpoint signaling at kinetochores through the phosphorylation of at least two Mps1 substrates, including KNL-1 and Mps1 itself. As a result, Plk1 activity enhances Mps1 catalytic activity as well as the recruitment of the SAC components Mad1:C-Mad2 and Bub3:BubR1 to kinetochores. We conclude that Plk1 strengthens the robustness of SAC establishment at the onset of mitosis and supports SAC maintenance during prolonged mitotic arrest. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Tofacitinib and analogs as inhibitors of the histone kinase PRK1 (PKN1).

    PubMed

    Ostrovskyi, Dmytro; Rumpf, Tobias; Eib, Julia; Lumbroso, Alexandre; Slynko, Inna; Klaeger, Susan; Heinzlmeir, Stephanie; Forster, Michael; Gehringer, Matthias; Pfaffenrot, Ellen; Bauer, Silke Mona; Schmidtkunz, Karin; Wenzler, Sandra; Metzger, Eric; Kuster, Bernhard; Laufer, Stefan; Schüle, Roland; Sippl, Wolfgang; Breit, Bernhard; Jung, Manfred

    2016-09-01

    The histone kinase PRK1 has been identified as a potential target to combat prostate cancer but selective PRK1 inhibitors are lacking. The US FDA -approved JAK1-3 inhibitor tofacitinib also potently inhibits PRK1 in vitro. We show that tofacitinib also inhibits PRK1 in a cellular setting. Using tofacitinib as a starting point for structure-activity relationship studies, we identified a more potent and another more selective PRK1 inhibitor compared with tofacitinib. Furthermore, we found two potential PRK1/JAK3-selectivity hotspots. The identified inhibitors and the selectivity hotspots lay the basis for the development of selective PRK1 inhibitors. The identification of PRK1, but also of other cellular tofacitinib targets, has implications on its clinical use and on future development of tofacitinib-like JAK inhibitors. [Formula: see text].

  8. Minocycline attenuates both OGD-induced HMGB1 release and HMGB1-induced cell death in ischemic neuronal injury in PC12 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kikuchi, Kiyoshi; Department of Neurosurgery, Omuta City General Hospital, 2-19-1 Takarazaka, Omuta-City, Fukuoka 836-8567; Kawahara, Ko-ichi

    2009-07-24

    High mobility group box-1 (HMGB1), a non-histone DNA-binding protein, is massively released into the extracellular space from neuronal cells after ischemic insult and exacerbates brain tissue damage in rats. Minocycline is a semisynthetic second-generation tetracycline antibiotic which has recently been shown to be a promising neuroprotective agent. In this study, we found that minocycline inhibited HMGB1 release in oxygen-glucose deprivation (OGD)-treated PC12 cells and triggered the activation of p38mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases (ERK1/2). The ERK kinase (MEK)1/2 inhibitor U-0126 and p38MAPK inhibitor SB203580 blocked HMGB1 release in response to OGD. Furthermore, HMGB1 triggered cell death inmore » a dose-dependent fashion. Minocycline significantly rescued HMGB1-induced cell death in a dose-dependent manner. In light of recent observations as well as the good safety profile of minocycline in humans, we propose that minocycline might play a potent neuroprotective role through the inhibition of HMGB1-induced neuronal cell death in cerebral infarction.« less

  9. The effect of arrestin conformation on the recruitment of c-Raf1, MEK1, and ERK1/2 activation.

    PubMed

    Coffa, Sergio; Breitman, Maya; Hanson, Susan M; Callaway, Kari; Kook, Seunghyi; Dalby, Kevin N; Gurevich, Vsevolod V

    2011-01-01

    Arrestins are multifunctional signaling adaptors originally discovered as proteins that "arrest" G protein activation by G protein-coupled receptors (GPCRs). Recently GPCR complexes with arrestins have been proposed to activate G protein-independent signaling pathways. In particular, arrestin-dependent activation of extracellular signal-regulated kinase 1/2 (ERK1/2) has been demonstrated. Here we have performed in vitro binding assays with pure proteins to demonstrate for the first time that ERK2 directly binds free arrestin-2 and -3, as well as receptor-associated arrestins-1, -2, and -3. In addition, we showed that in COS-7 cells arrestin-2 and -3 association with β(2)-adrenergic receptor (β2AR) significantly enhanced ERK2 binding, but showed little effect on arrestin interactions with the upstream kinases c-Raf1 and MEK1. Arrestins exist in three conformational states: free, receptor-bound, and microtubule-associated. Using conformationally biased arrestin mutants we found that ERK2 preferentially binds two of these: the "constitutively inactive" arrestin-Δ7 mimicking microtubule-bound state and arrestin-3A, a mimic of the receptor-bound conformation. Both rescue arrestin-mediated ERK1/2/activation in arrestin-2/3 double knockout fibroblasts. We also found that arrestin-2-c-Raf1 interaction is enhanced by receptor binding, whereas arrestin-3-c-Raf1 interaction is not.

  10. The Effect of Arrestin Conformation on the Recruitment of c-Raf1, MEK1, and ERK1/2 Activation

    PubMed Central

    Coffa, Sergio; Breitman, Maya; Hanson, Susan M.; Callaway, Kari; Kook, Seunghyi; Dalby, Kevin N.; Gurevich, Vsevolod V.

    2011-01-01

    Arrestins are multifunctional signaling adaptors originally discovered as proteins that “arrest” G protein activation by G protein-coupled receptors (GPCRs). Recently GPCR complexes with arrestins have been proposed to activate G protein-independent signaling pathways. In particular, arrestin-dependent activation of extracellular signal-regulated kinase 1/2 (ERK1/2) has been demonstrated. Here we have performed in vitro binding assays with pure proteins to demonstrate for the first time that ERK2 directly binds free arrestin-2 and -3, as well as receptor-associated arrestins-1, -2, and -3. In addition, we showed that in COS-7 cells arrestin-2 and -3 association with β2-adrenergic receptor (β2AR) significantly enhanced ERK2 binding, but showed little effect on arrestin interactions with the upstream kinases c-Raf1 and MEK1. Arrestins exist in three conformational states: free, receptor-bound, and microtubule-associated. Using conformationally biased arrestin mutants we found that ERK2 preferentially binds two of these: the “constitutively inactive” arrestin-Δ7 mimicking microtubule-bound state and arrestin-3A, a mimic of the receptor-bound conformation. Both rescue arrestin-mediated ERK1/2/activation in arrestin-2/3 double knockout fibroblasts. We also found that arrestin-2-c-Raf1 interaction is enhanced by receptor binding, whereas arrestin-3-c-Raf1 interaction is not. PMID:22174878

  11. DLG5 connects cell polarity and Hippo signaling protein networks by linking PAR-1 with MST1/2

    PubMed Central

    Kwan, Julian; Sczaniecka, Anna; Heidary Arash, Emad; Nguyen, Liem; Chen, Chia-Chun; Ratkovic, Srdjana; Klezovitch, Olga; Attisano, Liliana; McNeill, Helen; Emili, Andrew; Vasioukhin, Valeri

    2016-01-01

    Disruption of apical–basal polarity is implicated in developmental disorders and cancer; however, the mechanisms connecting cell polarity proteins with intracellular signaling pathways are largely unknown. We determined previously that membrane-associated guanylate kinase (MAGUK) protein discs large homolog 5 (DLG5) functions in cell polarity and regulates cellular proliferation and differentiation via undefined mechanisms. We report here that DLG5 functions as an evolutionarily conserved scaffold and negative regulator of Hippo signaling, which controls organ size through the modulation of cell proliferation and differentiation. Affinity purification/mass spectrometry revealed a critical role of DLG5 in the formation of protein assemblies containing core Hippo kinases mammalian ste20 homologs 1/2 (MST1/2) and Par-1 polarity proteins microtubule affinity-regulating kinases 1/2/3 (MARK1/2/3). Consistent with this finding, Hippo signaling is markedly hyperactive in mammalian Dlg5−/− tissues and cells in vivo and ex vivo and in Drosophila upon dlg5 knockdown. Conditional deletion of Mst1/2 fully rescued the phenotypes of brain-specific Dlg5 knockout mice. Dlg5 also interacts genetically with Hippo effectors Yap1/Taz. Mechanistically, we show that DLG5 inhibits the association between MST1/2 and large tumor suppressor homologs 1/2 (LATS1/2), uses its scaffolding function to link MST1/2 with MARK3, and inhibits MST1/2 kinase activity. These data reveal a direct connection between cell polarity proteins and Hippo, which is essential for proper development of multicellular organisms. PMID:28087714

  12. Transcorneal electrical stimulation rescues axotomized retinal ganglion cells by activating endogenous retinal IGF-1 system.

    PubMed

    Morimoto, Takeshi; Miyoshi, Tomomitsu; Matsuda, Satoshi; Tano, Yasuo; Fujikado, Takashi; Fukuda, Yutaka

    2005-06-01

    To investigate the effect of transcorneal electrical stimulation (TES) on the survival of axotomized RGCs and the mechanism underlying the TES-induced neuroprotection in vivo. Adult male Wistar rats received TES after optic nerve (ON) transection. Seven days after the ON transection, the density of the surviving RGCs was determined, to evaluate the neuroprotective effect of TES. The levels of the mRNA and protein of insulin-like growth factor (IGF)-1 in the retina after TES were determined by RT-PCR and Northern and Western blot analyses. The localization of IGF-1 protein in the retina was examined by immunohistochemistry. TES after ON transection increased the survival of axotomized RGCs in vivo, and the degree of rescue depended on the strength of the electric charge. RT-PCR and Northern and Western blot analyses revealed a gradual upregulation of intrinsic IGF-1 in the retina after TES. Immunohistochemical analysis showed that IGF-1 immunoreactivity was localized initially in the endfeet of Muller cells and then diffused into the inner retina. TES can rescue the axotomized RGCs by increasing the level of IGF-1 production by Muller cells. These findings provide a new therapeutic approach to prevent or delay the degeneration of retinal neurons without the administration of exogenous neurotrophic factors.

  13. The isothiocyanate class of bioactive nutrients covalently inhibit the MEKK1 protein kinase

    PubMed Central

    Cross, Janet V; Foss, Frank W; Rady, Joshua M; Macdonald, Timothy L; Templeton, Dennis J

    2007-01-01

    Background Dietary isothiocyanates (ITCs) are electrophilic compounds that have diverse biological activities including induction of apoptosis and effects on cell cycle. They protect against experimental carcinogenesis in animals, an activity believed to result from the transcriptional induction of "Phase 2" enzymes. The molecular mechanism of action of ITCs is unknown. Since ITCs are electrophiles capable of reacting with sulfhydryl groups on amino acids, we hypothesized that ITCs induce their biological effects through covalent modification of proteins, leading to changes in cell regulatory events. We previously demonstrated that stress-signaling kinase pathways are inhibited by other electrophilic compounds such as menadione. We therefore tested the effects of nutritional ITCs on MEKK1, an upstream regulator of the SAPK/JNK signal transduction pathway. Methods The activity of MEKK1 expressed in cells was monitored using in vitro kinase assays to measure changes in catalytic activity. The activity of endogenous MEKK1, immunopurified from ITC treated and untreated LnCAP cells was also measured by in vitro kinase assay. A novel labeling and affinity reagent for detection of protein modification by ITCs was synthesized and used in competition assays to monitor direct modification of MEKK1 by ITC. Finally, immunoblots with phospho-specific antibodies were used to measure the activity of MAPK protein kinases. Results ITCs inhibited the MEKK1 protein kinase in a manner dependent on a specific cysteine residue in the ATP binding pocket. Inhibition of MEKK1 catalytic activity was due to direct, covalent and irreversible modification of the MEKK1 protein itself. In addition, ITCs inhibited the catalytic activity of endogenous MEKK1. This correlated with inhibition of the downstream target of MEKK1 activity, i.e. the SAPK/JNK kinase. This inhibition was specific to SAPK, as parallel MAPK pathways were unaffected. Conclusion These results demonstrate that MEKK1 is directly

  14. Mitochondrial control by DRP1 in brain tumor initiating cells.

    PubMed

    Xie, Qi; Wu, Qiulian; Horbinski, Craig M; Flavahan, William A; Yang, Kailin; Zhou, Wenchao; Dombrowski, Stephen M; Huang, Zhi; Fang, Xiaoguang; Shi, Yu; Ferguson, Ashley N; Kashatus, David F; Bao, Shideng; Rich, Jeremy N

    2015-04-01

    Brain tumor initiating cells (BTICs) co-opt the neuronal high affinity glucose transporter, GLUT3, to withstand metabolic stress. We investigated another mechanism critical to brain metabolism, mitochondrial morphology, in BTICs. BTIC mitochondria were fragmented relative to non-BTIC tumor cell mitochondria, suggesting that BTICs increase mitochondrial fission. The essential mediator of mitochondrial fission, dynamin-related protein 1 (DRP1), showed activating phosphorylation in BTICs and inhibitory phosphorylation in non-BTIC tumor cells. Targeting DRP1 using RNA interference or pharmacologic inhibition induced BTIC apoptosis and inhibited tumor growth. Downstream, DRP1 activity regulated the essential metabolic stress sensor, AMP-activated protein kinase (AMPK), and targeting AMPK rescued the effects of DRP1 disruption. Cyclin-dependent kinase 5 (CDK5) phosphorylated DRP1 to increase its activity in BTICs, whereas Ca(2+)-calmodulin-dependent protein kinase 2 (CAMK2) inhibited DRP1 in non-BTIC tumor cells, suggesting that tumor cell differentiation induces a regulatory switch in mitochondrial morphology. DRP1 activation correlated with poor prognosis in glioblastoma, suggesting that mitochondrial dynamics may represent a therapeutic target for BTICs.

  15. Mitochondrial Control by DRP1 in Brain Tumor Initiating Cells

    PubMed Central

    Xie, Qi; Wu, Qiulian; Horbinski, Craig M.; Flavahan, William A.; Yang, Kailin; Zhou, Wenchao; Dombrowski, Stephen M.; Huang, Zhi; Fang, Xiaoguang; Shi, Yu; Ferguson, Ashley N.; Kashatus, David F.; Bao, Shideng; Rich, Jeremy N.

    2015-01-01

    Brain tumor initiating cells (BTICs) coopt the neuronal high affinity GLUT3 glucose transporter to withstand metabolic stress. Here, we investigated another mechanism critical to brain metabolism, mitochondrial morphology. BTICs displayed mitochondrial fragmentation relative to non-BTICs, suggesting that BTICs have increased mitochondrial fission. The essential mediator of mitochondrial fission, dynamin-related protein 1 (DRP1), was activated in BTICs and inhibited in non-BTICs. Targeting DRP1 using RNA interference or pharmacologic inhibition induced BTIC apoptosis and inhibited tumor growth. Downstream, DRP1 activity regulated the essential metabolic stress sensor, AMP-activated protein kinase (AMPK), and AMPK targeting rescued the effects of DRP1 disruption. Cyclin-dependent kinase 5 (CDK5) phosphorylated DRP1 to increase its activity in BTICs, whereas Ca2+–calmodulin-dependent protein kinase 2 (CAMK2) inhibited DRP1 in non-BTICs, suggesting tumor cell differentiation induces a regulatory switch in mitochondrial morphology. DRP1 activation correlates with poor prognosis in glioblastoma, suggesting mitochondrial dynamics may represent a therapeutic target for BTICs. PMID:25730670

  16. Extracellular signal-regulated kinases 1 and 2 activation in endothelial cells exposed to cyclic strain

    NASA Technical Reports Server (NTRS)

    Ikeda, M.; Takei, T.; Mills, I.; Kito, H.; Sumpio, B. E.

    1999-01-01

    The aim of this study was to determine whether extracellular signal-regulated kinases 1/2 (ERK1/ERK2) are activated and might play a role in enhanced proliferation and morphological change induced by strain. Bovine aortic endothelial cells (BAEC) were subjected to an average of 6 or 10% strain at a rate of 60 cycles/min for up to 4 h. Cyclic strain caused strain- and time-dependent phosphorylation and activation of ERK1/ERK2. Peak phosphorylation and activation of ERK1/ERK2 induced by 10% strain were at 10 min. A specific ERK1/ERK2 kinase inhibitor, PD-98059, inhibited phosphorylation and activation of ERK1/ERK2 but did not inhibit the increased cell proliferation and cell alignment induced by strain. Treatment of BAEC with 2,5-di-tert-butyl-1, 4-benzohydroquinone, to deplete inositol trisphosphate-sensitive calcium storage, and gadolinium chloride, a Ca2+ channel blocker, did not inhibit the activation of ERK1/ERK2. Strain-induced ERK1/ERK2 activation was partly inhibited by the protein kinase C inhibitor calphostin C and completely inhibited by the tyrosine kinase inhibitor genistein. These data suggest that 1) ERK1/ERK2 are not critically involved in the strain-induced cell proliferation and orientation, 2) strain-dependent activation of ERK1/ERK2 is independent of intracellular and extracellular calcium mobilization, and 3) protein kinase C activation and tyrosine kinase regulate strain-induced activation of ERK1/ERK2.

  17. Akt Regulates TNFα Synthesis Downstream of RIP1 Kinase Activation during Necroptosis

    PubMed Central

    McNamara, Colleen R.; Ahuja, Ruchita; Osafo-Addo, Awo D.; Barrows, Douglas; Kettenbach, Arminja; Skidan, Igor; Teng, Xin; Cuny, Gregory D.; Gerber, Scott; Degterev, Alexei

    2013-01-01

    Necroptosis is a regulated form of necrotic cell death that has been implicated in the pathogenesis of various diseases including intestinal inflammation and systemic inflammatory response syndrome (SIRS). In this work, we investigated the signaling mechanisms controlled by the necroptosis mediator receptor interacting protein-1 (RIP1) kinase. We show that Akt kinase activity is critical for necroptosis in L929 cells and plays a key role in TNFα production. During necroptosis, Akt is activated in a RIP1 dependent fashion through its phosphorylation on Thr308. In L929 cells, this activation requires independent signaling inputs from both growth factors and RIP1. Akt controls necroptosis through downstream targeting of mammalian Target of Rapamycin complex 1 (mTORC1). Akt activity, mediated in part through mTORC1, links RIP1 to JNK activation and autocrine production of TNFα. In other cell types, such as mouse lung fibroblasts and macrophages, Akt exhibited control over necroptosis-associated TNFα production without contributing to cell death. Overall, our results provide new insights into the mechanism of necroptosis and the role of Akt kinase in both cell death and inflammatory regulation. PMID:23469174

  18. Activation of c-Raf-1 kinase signal transduction pathway in alpha(7) integrin-deficient mice.

    PubMed

    Saher, G; Hildt, E

    1999-09-24

    Integrin alpha(7)-deficient mice develop a novel form of muscular dystrophy. Here we report that deficiency of alpha(7) integrin causes an activation of the c-Raf-1/mitogen-activated protein (MAP) 2 kinase signal transduction pathway in muscle cells. The observed activation of c-Raf-1/MAP2 kinases is a specific effect, because the alpha(7) integrin deficiency does not cause unspecific stress as determined by measurement of the Hsp72/73 level and activity of the JNK2 kinase. Because an increased level of activated FAK was found in muscle of alpha(7) integrin-deficient mice, the activation of c-Raf-1 kinase is triggered most likely by an integrin-dependent pathway. In accordance with this, in the integrin alpha(7)-deficient mice, part of the integrin beta(1D) variant in muscle is replaced by the beta(1A) variant, which permits the FAK activation. A recent report describes that integrin activity can be down-modulated by the c-Raf-1/MAP2 kinase pathway. Specific activation of the c-Raf-1/MAP2 kinases by cell-permeable peptides in skeletal muscle of rabbits causes degeneration of muscle fibers. Therefore, we conclude that in alpha(7) integrin-deficient mice, the continuous activation of c-Raf-1 kinase causes a permanent reduction of integrin activity diminishing integrin-dependent cell-matrix interactions and thereby contributing to the development of the dystrophic phenotype.

  19. Polo boxes and Cut23 (Apc8) mediate an interaction between polo kinase and the anaphase-promoting complex for fission yeast mitosis

    PubMed Central

    May, Karen M.; Reynolds, Nicola; Cullen, C. Fiona; Yanagida, Mitsuhiro; Ohkura, Hiroyuki

    2002-01-01

    The fission yeast plo1 + gene encodes a polo-like kinase, a member of a conserved family of kinases which play multiple roles during the cell cycle. We show that Plo1 kinase physically interacts with the anaphase-promoting complex (APC)/cyclosome through the noncatalytic domain of Plo1 and the tetratricopeptide repeat domain of the subunit, Cut23. A new cut23 mutation, which specifically disrupts the interaction with Plo1, results in a metaphase arrest. This arrest can be rescued by high expression of Plo1 kinase. We suggest that this physical interaction is crucial for mitotic progression by targeting polo kinase activity toward the APC. PMID:11777938

  20. Synapses of Amphids Defective (SAD-A) Kinase Promotes Glucose-stimulated Insulin Secretion through Activation of p21-activated Kinase (PAK1) in Pancreatic β-Cells*

    PubMed Central

    Nie, Jia; Sun, Chao; Faruque, Omar; Ye, Guangming; Li, Jia; Liang, Qiangrong; Chang, Zhijie; Yang, Wannian; Han, Xiao; Shi, Yuguang

    2012-01-01

    The p21-activated kinase-1 (PAK1) is implicated in regulation of insulin exocytosis as an effector of Rho GTPases. PAK1 is activated by the onset of glucose-stimulated insulin secretion (GSIS) through phosphorylation of Thr-423, a major activation site by Cdc42 and Rac1. However, the kinase(s) that phosphorylates PAK1 at Thr-423 in islet β-cells remains elusive. The present studies identified SAD-A (synapses of amphids defective), a member of AMP-activated protein kinase-related kinases exclusively expressed in brain and pancreas, as a key regulator of GSIS through activation of PAK1. We show that SAD-A directly binds to PAK1 through its kinase domain. The interaction is mediated by the p21-binding domain (PBD) of PAK1 and requires both kinases in an active conformation. The binding leads to direct phosphorylation of PAK1 at Thr-423 by SAD-A, triggering the onset of GSIS from islet β-cells. Consequently, ablation of PAK1 kinase activity or depletion of PAK1 expression completely abolishes the potentiating effect of SAD-A on GSIS. Consistent with its role in regulating GSIS, overexpression of SAD-A in MIN6 islet β-cells significantly stimulated cytoskeletal remodeling, which is required for insulin exocytosis. Together, the present studies identified a critical role of SAD-A in the activation of PAK1 during the onset of insulin exocytosis. PMID:22669945

  1. Synapses of amphids defective (SAD-A) kinase promotes glucose-stimulated insulin secretion through activation of p21-activated kinase (PAK1) in pancreatic β-Cells.

    PubMed

    Nie, Jia; Sun, Chao; Faruque, Omar; Ye, Guangming; Li, Jia; Liang, Qiangrong; Chang, Zhijie; Yang, Wannian; Han, Xiao; Shi, Yuguang

    2012-07-27

    The p21-activated kinase-1 (PAK1) is implicated in regulation of insulin exocytosis as an effector of Rho GTPases. PAK1 is activated by the onset of glucose-stimulated insulin secretion (GSIS) through phosphorylation of Thr-423, a major activation site by Cdc42 and Rac1. However, the kinase(s) that phosphorylates PAK1 at Thr-423 in islet β-cells remains elusive. The present studies identified SAD-A (synapses of amphids defective), a member of AMP-activated protein kinase-related kinases exclusively expressed in brain and pancreas, as a key regulator of GSIS through activation of PAK1. We show that SAD-A directly binds to PAK1 through its kinase domain. The interaction is mediated by the p21-binding domain (PBD) of PAK1 and requires both kinases in an active conformation. The binding leads to direct phosphorylation of PAK1 at Thr-423 by SAD-A, triggering the onset of GSIS from islet β-cells. Consequently, ablation of PAK1 kinase activity or depletion of PAK1 expression completely abolishes the potentiating effect of SAD-A on GSIS. Consistent with its role in regulating GSIS, overexpression of SAD-A in MIN6 islet β-cells significantly stimulated cytoskeletal remodeling, which is required for insulin exocytosis. Together, the present studies identified a critical role of SAD-A in the activation of PAK1 during the onset of insulin exocytosis.

  2. The Hog1p kinase regulates Aft1p transcription factor to control iron accumulation.

    PubMed

    Martins, Telma S; Pereira, Clara; Canadell, David; Vilaça, Rita; Teixeira, Vítor; Moradas-Ferreira, Pedro; de Nadal, Eulàlia; Posas, Francesc; Costa, Vítor

    2018-01-01

    Iron acquisition systems have to be tightly regulated to assure a continuous supply of iron, since it is essential for survival, but simultaneously to prevent iron overload that is toxic to the cells. In budding yeast, the low‑iron sensing transcription factor Aft1p is a master regulator of the iron regulon. Our previous work revealed that bioactive sphingolipids modulate iron homeostasis as yeast cells lacking the sphingomyelinase Isc1p exhibit an upregulation of the iron regulon. In this study, we show that Isc1p impacts on iron accumulation and localization. Notably, Aft1p is activated in isc1Δ cells due to a decrease in its phosphorylation and an increase in its nuclear levels. Consistently, the expression of a phosphomimetic version of Aft1p-S210/S224 that favours its nuclear export abolished iron accumulation in isc1Δ cells. Notably, the Hog1p kinase, homologue of mammalian p38, interacts with and directly phosphorylates Aft1p at residues S210 and S224. However, Hog1p-Aft1p interaction decreases in isc1Δ cells, which likely contributes to Aft1p dephosphorylation and consequently to Aft1p activation and iron overload in isc1Δ cells. These results suggest that alterations in sphingolipid composition in isc1Δ cells may impact on iron homeostasis by disturbing the regulation of Aft1p by Hog1p. To our knowledge, Hog1p is the first kinase reported to directly regulate Aft1p, impacting on iron homeostasis. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Differential sensitivities of cellular XPA and PARP-1 to arsenite inhibition and zinc rescue.

    PubMed

    Ding, Xiaofeng; Zhou, Xixi; Cooper, Karen L; Huestis, Juliana; Hudson, Laurie G; Liu, Ke Jian

    2017-09-15

    Arsenite directly binds to the zinc finger domains of the DNA repair protein poly (ADP ribose) polymerase (PARP)-1, and inhibits PARP-1 activity in the base excision repair (BER) pathway. PARP inhibition by arsenite enhances ultraviolet radiation (UVR)-induced DNA damage in keratinocytes, and the increase in DNA damage is reduced by zinc supplementation. However, little is known about the effects of arsenite and zinc on the zinc finger nucleotide excision repair (NER) protein xeroderma pigmentosum group A (XPA). In this study, we investigated the difference in response to arsenite exposure between XPA and PARP-1, and the differential effectiveness of zinc supplementation in restoring protein DNA binding and DNA damage repair. Arsenite targeted both XPA and PARP-1 in human keratinocytes, resulting in zinc loss from each protein and a pronounced decrease in XPA and PARP-1 binding to chromatin as demonstrated by Chip-on-Western assays. Zinc effectively restored DNA binding of PARP-1 and XPA to chromatin when zinc concentrations were equal to those of arsenite. In contrast, zinc was more effective in rescuing arsenite-augmented direct UVR-induced DNA damage than oxidative DNA damage. Taken together, our findings indicate that arsenite interferes with PARP-1 and XPA binding to chromatin, and that zinc supplementation fully restores DNA binding activity to both proteins in the cellular context. Interestingly, rescue of arsenite-inhibited DNA damage repair by supplemental zinc was more sensitive for DNA damage repaired by the XPA-associated NER pathway than for the PARP-1-dependent BER pathway. This study expands our understanding of arsenite's role in DNA repair inhibition and co-carcinogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Inactivation of Mirk/Dyrk1b Kinase Targets Quiescent Pancreatic Cancer Cells *

    PubMed Central

    Ewton, Daina Z.; Hu, Jing; Vilenchik, Maria; Deng, Xiaobing; Luk, Kin-chun; Polonskaia, Ann; Hoffman, Ann F.; Zipf, Karen; Boylan, John F.; Friedman, Eileen A.

    2011-01-01

    A major problem in the treatment of cancer arises from quiescent cancer cells that are relatively insensitive to most chemotherapeutic drugs and radiation. Such residual cancer cells can cause tumor regrowth or recurrence when they re-enter the cell cycle. Earlier studies demonstrated that levels of the serine/theronine kinase Mirk/dyrk1B are elevated up to 10-fold in quiescent G0 tumor cells, that Mirk uses several mechanisms to block cell cycling, and that Mirk increases expression of antioxidant genes which lower ROS levels and increase quiescent cell viability. We now show that a novel small molecule Mirk kinase inhibitor blocked tumor cells from undergoing reversible arrest in a quiescent G0 state and enabled some cells to exit quiescence. The inhibitor increased cycling in Panc1, AsPc1 and SW620 cells that expressed Mirk, but not in HCT116 cells that did not. Mirk kinase inhibition elevated ROS levels and DNA damage detected by increased phosphorylation of the histone protein H2AX and by S phase checkpoints. The Mirk kinase inhibitor increased cleavage of the apoptotic proteins PARP and caspase 3, and increased tumor cell kill several-fold by gemcitabine and cisplatin. A phenocopy of these effects occurred following Mirk depletion, showing drug specificity. In prior studies Mirk knockout or depletion had no detectable effect on normal tissue, suggesting that the Mirk kinase inhibitor could have a selective effect on cancer cells expressing elevated levels of Mirk kinase. PMID:21878655

  5. The Set1/COMPASS histone H3 methyltransferase helps regulate mitosis with the CDK1 and NIMA mitotic kinases in Aspergillus nidulans.

    PubMed

    Govindaraghavan, Meera; Anglin, Sarah Lea; Osmani, Aysha H; Osmani, Stephen A

    2014-08-01

    Mitosis is promoted and regulated by reversible protein phosphorylation catalyzed by the essential NIMA and CDK1 kinases in the model filamentous fungus Aspergillus nidulans. Protein methylation mediated by the Set1/COMPASS methyltransferase complex has also been shown to regulate mitosis in budding yeast with the Aurora mitotic kinase. We uncover a genetic interaction between An-swd1, which encodes a subunit of the Set1 protein methyltransferase complex, with NIMA as partial inactivation of nimA is poorly tolerated in the absence of swd1. This genetic interaction is additionally seen without the Set1 methyltransferase catalytic subunit. Importantly partial inactivation of NIMT, a mitotic activator of the CDK1 kinase, also causes lethality in the absence of Set1 function, revealing a functional relationship between the Set1 complex and two pivotal mitotic kinases. The main target for Set1-mediated methylation is histone H3K4. Mutational analysis of histone H3 revealed that modifying the H3K4 target residue of Set1 methyltransferase activity phenocopied the lethality seen when either NIMA or CDK1 are partially functional. We probed the mechanistic basis of these genetic interactions and find that the Set1 complex performs functions with CDK1 for initiating mitosis and with NIMA during progression through mitosis. The studies uncover a joint requirement for the Set1 methyltransferase complex with the CDK1 and NIMA kinases for successful mitosis. The findings extend the roles of the Set1 complex to include the initiation of mitosis with CDK1 and mitotic progression with NIMA in addition to its previously identified interactions with Aurora and type 1 phosphatase in budding yeast. Copyright © 2014 by the Genetics Society of America.

  6. Rescue Manual. Module 8.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Instructional Materials Lab.

    This learner manual for rescuers covers the current techniques or practices required in the rescue service. The eighth of 10 modules contains 6 chapters: (1) trench rescue; (2) shoring and tunneling techniques; (3) farm accident rescue; (4) wilderness search and rescue; (5) aircraft rescue; and (6) helicopter information. Key points, an…

  7. Structure of the human protein kinase MPSK1 reveals an atypical activation loop architecture.

    PubMed

    Eswaran, Jeyanthy; Bernad, Antonio; Ligos, Jose M; Guinea, Barbara; Debreczeni, Judit E; Sobott, Frank; Parker, Sirlester A; Najmanovich, Rafael; Turk, Benjamin E; Knapp, Stefan

    2008-01-01

    The activation segment of protein kinases is structurally highly conserved and central to regulation of kinase activation. Here we report an atypical activation segment architecture in human MPSK1 comprising a beta sheet and a large alpha-helical insertion. Sequence comparisons suggested that similar activation segments exist in all members of the MPSK1 family and in MAST kinases. The consequence of this nonclassical activation segment on substrate recognition was studied using peptide library screens that revealed a preferred substrate sequence of X-X-P/V/I-phi-H/Y-T*-N/G-X-X-X (phi is an aliphatic residue). In addition, we identified the GTPase DRG1 as an MPSK1 interaction partner and specific substrate. The interaction domain in DRG1 was mapped to the N terminus, leading to recruitment and phosphorylation at Thr100 within the GTPase domain. The presented data reveal an atypical kinase structural motif and suggest a role of MPSK1 regulating DRG1, a GTPase involved in regulation of cellular growth.

  8. Deleting the DAG Kinase Dgk1 Augments Yeast Vacuole Fusion Through In-creased Ypt7 Activity and Altered Membrane Fluidity

    PubMed Central

    Miner, Gregory E.; Starr, Matthew L.; Hurst, Logan R.; Fratti, Rutilio A.

    2017-01-01

    Diacylglycerol (DAG) is a fusogenic lipid that can be produced through phospholipase C activity on phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], or through phosphatidic acid (PA) phosphatase activity. The fusion of Saccharomyces cerevisiae vacuoles requires DAG, PA and PI(4,5)P2, and the production of these lipids is thought to provide temporally specific stoichiometries that are critical for each stage of fusion. Furthermore, DAG and PA can be interconverted by the DAG kinase Dgk1 and the PA phosphatase Pah1. Previously we found that pah1Δ vacuoles were fragmented, blocked in SNARE priming and showed arrested endosomal maturation. In other pathways the effects of deleting PAH1 can be compensated for by additionally deleting DGK1, however deleting both genes did not rescue the pah1Δ vacuolar defects. Deleting DGK1 alone caused a marked increase in vacuole fusion that was attributed to elevated DAG levels. This was accompanied by a gain in resistance to the inhibitory effects of PA as well as inhibitors of Ypt7 activity. Together these data show that Dgk1 function can act as a negative regulator of vacuole fusion through the production of PA at the cost of depleting DAG and reducing Ypt7 activity. PMID:28276191

  9. Interleukin-1 beta induced synthesis of protein kinase C-delta and protein kinase C-epsilon in EL4 thymoma cells: possible involvement of phosphatidylinositol 3-kinase.

    PubMed

    Varley, C L; Royds, J A; Brown, B L; Dobson, P R

    2001-01-01

    We present evidence here that the proinflammatory cytokine, interleukin-1 beta (IL-1 beta) stimulates a significant increase in protein kinase C (PKC)-epsilon and PKC-delta protein levels and increases PKC-epsilon, but not PKC-delta, transcripts in EL4 thymoma cells. Incubation of EL4 cells with IL-1 beta induced protein synthesis of PKC-epsilon (6-fold increase) by 7 h and had a biphasic effect on PKC-delta levels with peaks at 4 h (2-fold increase) and 24 h (4-fold increase). At the level of mRNA, PKC-epsilon, but not PKC-delta levels, were induced after incubation of EL4 cells with IL-1 beta. The signalling mechanisms utilized by IL-1 beta to induce the synthesis of these PKC isoforms were investigated. Two phosphatidylinositol (PI) 3-kinase-specific inhibitors, wortmannin and LY294002, inhibited IL-1 beta-induced synthesis of PKC-epsilon. However, the PI 3-kinase inhibitors had little effect on the IL-1 beta-induced synthesis of PKC-delta in these cells. Our results indicate that IL-1 beta induced both PKC-delta and PKC-epsilon expression over different time periods. Furthermore, our evidence suggests that IL-1 beta induction of PKC-epsilon, but not PKC-delta, may occur via the PI 3-kinase pathway. Copyright 2001 S. Karger AG, Basel

  10. Regulation of AMP-activated protein kinase by LKB1 and CaMKK in adipocytes.

    PubMed

    Gormand, Amélie; Henriksson, Emma; Ström, Kristoffer; Jensen, Thomas Elbenhardt; Sakamoto, Kei; Göransson, Olga

    2011-05-01

    AMP-activated protein kinase (AMPK) is a serine/threonine kinase that regulates cellular and whole body energy homeostasis. In adipose tissue, activation of AMPK has been demonstrated in response to a variety of extracellular stimuli. However, the upstream kinase that activates AMPK in adipocytes remains elusive. Previous studies have identified LKB1 as a major AMPK kinase in muscle, liver, and other tissues. In certain cell types, Ca(2+) /calmodulin-dependent protein kinase kinase β (CaMKKβ) has been shown to activate AMPK in response to increases of intracellular Ca(2+) levels. Our aim was to investigate if LKB1 and/or CaMKK function as AMPK kinases in adipocytes. We used adipose tissue and isolated adipocytes from mice in which the expression of LKB1 was reduced to 10-20% of that of wild-type (LKB1 hypomorphic mice). We show that adipocytes from LKB1 hypomorphic mice display a 40% decrease in basal AMPK activity and a decrease of AMPK activity in the presence of the AMPK activator phenformin. We also demonstrate that stimulation of 3T3L1 adipocytes with intracellular [Ca(2+) ]-raising agents results in an activation of the AMPK pathway. The inhibition of CaMKK isoforms, particularly CaMKKβ, by the inhibitor STO-609 or by siRNAs, blocked Ca(2+) -, but not phenformin-, AICAR-, or forskolin-induced activation of AMPK, indicating that CaMKK activated AMPK in response to Ca(2+) . Collectively, we show that LKB1 is required to maintain normal AMPK-signaling in non-stimulated adipocytes and in the presence of phenformin. In addition, we demonstrate the existence of a Ca(2+) /CaMKK signaling pathway that can also regulate the activity of AMPK in adipocytes. Copyright © 2011 Wiley-Liss, Inc.

  11. ROCK1-directed basement membrane positioning coordinates epithelial tissue polarity.

    PubMed

    Daley, William P; Gervais, Elise M; Centanni, Samuel W; Gulfo, Kathryn M; Nelson, Deirdre A; Larsen, Melinda

    2012-01-01

    The basement membrane is crucial for epithelial tissue organization and function. However, the mechanisms by which basement membrane is restricted to the basal periphery of epithelial tissues and the basement membrane-mediated signals that regulate coordinated tissue organization are not well defined. Here, we report that Rho kinase (ROCK) controls coordinated tissue organization by restricting basement membrane to the epithelial basal periphery in developing mouse submandibular salivary glands, and that ROCK inhibition results in accumulation of ectopic basement membrane throughout the epithelial compartment. ROCK-regulated restriction of PAR-1b (MARK2) localization in the outer basal epithelial cell layer is required for basement membrane positioning at the tissue periphery. PAR-1b is specifically required for basement membrane deposition, as inhibition of PAR-1b kinase activity prevents basement membrane deposition and disrupts overall tissue organization, and suppression of PAR-1b together with ROCK inhibition prevents interior accumulations of basement membrane. Conversely, ectopic overexpression of wild-type PAR-1b results in ectopic interior basement membrane deposition. Significantly, culture of salivary epithelial cells on exogenous basement membrane rescues epithelial organization in the presence of ROCK1 or PAR-1b inhibition, and this basement membrane-mediated rescue requires functional integrin β1 to maintain epithelial cell-cell adhesions. Taken together, these studies indicate that ROCK1/PAR-1b-dependent regulation of basement membrane placement is required for the coordination of tissue polarity and the elaboration of tissue structure in the developing submandibular salivary gland.

  12. Novel small molecule inhibitors of 3-phosphoinositide-dependent kinase-1.

    PubMed

    Feldman, Richard I; Wu, James M; Polokoff, Mark A; Kochanny, Monica J; Dinter, Harald; Zhu, Daguang; Biroc, Sandra L; Alicke, Bruno; Bryant, Judi; Yuan, Shendong; Buckman, Brad O; Lentz, Dao; Ferrer, Mike; Whitlow, Marc; Adler, Marc; Finster, Silke; Chang, Zheng; Arnaiz, Damian O

    2005-05-20

    The phosphoinositide 3-kinase/3-phosphoinositide-dependent kinase 1 (PDK1)/Akt signaling pathway plays a key role in cancer cell growth, survival, and tumor angiogenesis and represents a promising target for anticancer drugs. Here, we describe three potent PDK1 inhibitors, BX-795, BX-912, and BX-320 (IC(50) = 11-30 nm) and their initial biological characterization. The inhibitors blocked PDK1/Akt signaling in tumor cells and inhibited the anchorage-dependent growth of a variety of tumor cell lines in culture or induced apoptosis. A number of cancer cell lines with elevated Akt activity were >30-fold more sensitive to growth inhibition by PDK1 inhibitors in soft agar than on tissue culture plastic, consistent with the cell survival function of the PDK1/Akt signaling pathway, which is particularly important for unattached cells. BX-320 inhibited the growth of LOX melanoma tumors in the lungs of nude mice after injection of tumor cells into the tail vein. The effect of BX-320 on cancer cell growth in vitro and in vivo indicates that PDK1 inhibitors may have clinical utility as anticancer agents.

  13. Inhibition of IGF-1 receptor kinase blocks the differentiation into cardiomyocyte-like cells of BMSCs induced by IGF-1.

    PubMed

    Gong, Haibin; Wang, Xiuli; Wang, Lei; Liu, Ying; Wang, Jie; Lv, Qian; Pang, Hui; Zhang, Qinglin; Wang, Zhenquan

    2017-07-01

    Bone marrow mesenchymal stem cells (BMSCs) have the potential to transdifferentiate into cardiomyocyte‑like cells (CLCs) if an appropriate cardiac environment is provided. Insulin‑like growth factor‑1 (IGF‑1) plays an important role in the cell migration, survival and differentiation of BMSCs. However, the effect of IGF‑1 on the cellular differentiation remains unclear. In the present study, BMSCs were isolated from rat femurs and tibias and the cells were purified at passage 6 (P6). IGF‑1 and IGF‑1 receptor (IGF‑1R) kinase inhibitor I‑OMe AG538 were added to detect if IGF‑1 could induce BMSCs to transdifferentiate into CLCs and if I‑OMe AG538 could inhibit IGF‑1‑mediated receptor activation and downstream signaling. Immunostaining demonstrated that all P6 BMSCs express CD29 and CD44 but not CD45. BMSCs induced by 15 ng/ml IGF‑1 revealed positivity for cardiac troponin‑T and cardiac troponin‑I. The optimal induction time was 14 days but the expression of these proteins were incompletely inhibited by 300 nmol/l I‑OMe AG538 and completely inhibited by 10 µmol/l I‑OMe AG538. Western blotting showed that the level of IGF‑1R autophosphorylation and the expression of cTnT and cTnI were higher when BMSCs were induced for 14 days. I‑OMe AG538 selectively inhibited IGF‑1‑mediated growth and signal transduction and the inhibitory effect of I‑OMe AG538 were not reverted in the presence of exogenous IGF‑1. In addition, when a time course analysis of the effects of I‑OMe AG538 on mitogen‑activated protein kinase kinase and phosphatidylinositol 3‑kinase signaling were done, we observed a transient inhibitory effect on Erk1/2 and Akt phosphorylation, in keeping with the inhibitory effects on cell growth. Taken together, these data indicate that I‑OMe AG538 could inhibit IGF-1-induced CLCs in BMSCs and this effect is time- and concentration-dependent.

  14. Discovery of N-(3-(5-((3-acrylamido-4-(morpholine-4-carbonyl)phenyl)amino)-1-methyl-6-oxo-1,6-dihydropyridin-3-yl)-2-methylphenyl)-4-(tert-butyl)benzamide (CHMFL-BTK-01) as a highly selective irreversible Bruton's tyrosine kinase (BTK) inhibitor.

    PubMed

    Liang, Qianmao; Chen, Yongfei; Yu, Kailin; Chen, Cheng; Zhang, Shouxiang; Wang, Aoli; Wang, Wei; Wu, Hong; Liu, Xiaochuan; Wang, Beilei; Wang, Li; Hu, Zhenquan; Wang, Wenchao; Ren, Tao; Zhang, Shanchun; Liu, Qingsong; Yun, Cai-Hong; Liu, Jing

    2017-05-05

    Currently there are several irreversible BTK inhibitors targeting Cys481 residue under preclinical or clinical development. However, most of these inhibitors also targeted other kinases such as BMX, JAK3, and EGFR that bear the highly similar active cysteine residues. Through a structure-based drug design approach, we discovered a highly potent (IC 50 : 7 nM) irreversible BTK inhibitor compound 9 (CHMFL-BTK-01), which displayed a high selectivity profile in KINOMEscan (S score (35) = 0.00) among 468 kinases/mutants at the concentration of 1 μM. Compound 9 completely abolished BMX, JAK3 and EGFR's activity. Both X-ray crystal structure and cysteine-serine mutation mediated rescue experiment confirmed 9's irreversible binding mode. 9 also potently inhibited BTK Y223 auto-phosphorylation (EC 50 : <30 nM), arrested cell cycle in G0/G1 phase and induced apoptosis in U2932 and Pfeiffer cells. We believe these features would make 9 a good pharmacological tool to study the BTK related pathology. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. IRS-1 activates phosphatidylinositol 3'-kinase by associating with src homology 2 domains of p85.

    PubMed Central

    Myers, M G; Backer, J M; Sun, X J; Shoelson, S; Hu, P; Schlessinger, J; Yoakim, M; Schaffhausen, B; White, M F

    1992-01-01

    IRS-1 is an insulin receptor substrate that undergoes tyrosine phosphorylation and associates with the phosphatidylinositol (PtdIns) 3'-kinase immediately after insulin stimulation. Recombinant IRS-1 protein was tyrosine phosphorylated by the insulin receptor in vitro and associated with the PtdIns 3'-kinase from lysates of quiescent 3T3 fibroblasts. Bacterial fusion proteins containing the src homology 2 domains (SH2 domains) of the 85-kDa subunit (p85) of the PtdIns 3'-kinase bound quantitatively to tyrosine phosphorylated, but not unphosphorylated, IRS-1, and this association was blocked by phosphotyrosine-containing synthetic peptides. Moreover, the phosphorylated peptides and the SH2 domains each inhibited binding of PtdIns 3'-kinase to IRS-1. Phosphorylated IRS-1 activated PtdIns 3'-kinase in anti-p85 immunoprecipitates in vitro, and this activation was blocked by SH2 domain fusion proteins. These data suggest that the interaction between PtdIns 3'-kinase and IRS-1 is mediated by tyrosine phosphorylated motifs on IRS-1 and the SH2 domains of p85, and IRS-1 activates PtdIns 3'-kinase by binding to the SH2 domains of p85. Thus, IRS-1 likely serves to transmit the insulin signal by binding and regulating intracellular enzymes containing SH2 domains. Images PMID:1332046

  16. Arabidopsis inositol phosphate kinases, IPK1 and ITPK1, constitute a metabolic pathway in maintaining phosphate homeostasis.

    PubMed

    Kuo, Hui-Fen; Hsu, Yu-Ying; Lin, Wei-Chi; Chen, Kai-Yu; Munnik, Teun; Brearley, Charles A; Chiou, Tzyy-Jen

    2018-05-19

    Emerging studies have implicated a close link between inositol phosphate (InsP) metabolism and cellular phosphate (P i ) homeostasis in eukaryotes; however, whether a common InsP species is deployed as an evolutionarily conserved metabolic messenger to mediate P i signaling remains unknown. Here, using genetics and InsP profiling combined with P i starvation response (PSR) analysis in Arabidopsis thaliana, we showed that the kinase activity of inositol pentakisphosphate 2-kinase (IPK1), an enzyme required for phytate (inositol hexakisphosphates; InsP 6 ) synthesis, is indispensable for maintaining P i homeostasis under P i -replete conditions, and inositol 1,3,4-trisphosphate 5/6-kinase 1 (ITPK1) plays an equivalent role. Although both ipk1-1 and itpk1 mutants exhibited decreased levels of InsP 6 and diphosphoinositol pentakisphosphate (PP-InsP 5 ; InsP 7 ), disruption of another ITPK family enzyme, ITPK4, which correspondingly caused depletion of InsP 6 and InsP 7 , did not display similar P i -related phenotypes, which precludes these InsP species as effectors. Notably, the level of D/L-Ins(3,4,5,6)P 4 was concurrently elevated in both ipk1-1 and itpk1 mutants, which showed a specific correlation to the misregulated P i phenotypes. However, the level of D/L-Ins(3,4,5,6)P 4 is not responsive to P i starvation that instead manifests a shoot-specific increase in InsP 7 level. This study demonstrates a more nuanced picture of the intersection of InsP metabolism and P i homeostasis and PSR than has previously been elaborated and additionally establishes intermediate steps to phytate biosynthesis in plant vegetative tissues. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. Group Task Force on Satellite Rescue and Repair

    NASA Astrophysics Data System (ADS)

    1992-09-01

    The Group Task Force was chartered by the Administrator of NASA to recommend 'a policy outlining the criteria, the design standards, and the pricing model to guide NASA in assessing the responsibilities for government and nongovernment Satellite Rescue and Repair Missions.' Criteria for accepting such missions, risks, and benefits to all sectors of our economy involved in satellite services, adequacy of planning and training, and the impact on NASA's primary mission were reviewed. The Group began by asking a more fundamental question; is satellite rescue and repair a logical element of NASA's mission? Factors considered were: (1) the probability of rescue or repair opportunities arising; (2) the economic justification for such attempts; (3) the benefits to NASA, both from such ad hoc learning experiences in space operations and the impact on the public perception of NASA; (4) the effect of such unanticipated missions on NASA's scheduled activities; (5) any potential effect on NASA's technical capability to work in space; and (6) any potential effect on U.S. economic competitiveness.

  18. Group Task Force on Satellite Rescue and Repair

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Group Task Force was chartered by the Administrator of NASA to recommend 'a policy outlining the criteria, the design standards, and the pricing model to guide NASA in assessing the responsibilities for government and nongovernment Satellite Rescue and Repair Missions.' Criteria for accepting such missions, risks, and benefits to all sectors of our economy involved in satellite services, adequacy of planning and training, and the impact on NASA's primary mission were reviewed. The Group began by asking a more fundamental question; is satellite rescue and repair a logical element of NASA's mission? Factors considered were: (1) the probability of rescue or repair opportunities arising; (2) the economic justification for such attempts; (3) the benefits to NASA, both from such ad hoc learning experiences in space operations and the impact on the public perception of NASA; (4) the effect of such unanticipated missions on NASA's scheduled activities; (5) any potential effect on NASA's technical capability to work in space; and (6) any potential effect on U.S. economic competitiveness.

  19. Direct Interactions with the Integrin β1 Cytoplasmic Tail Activate the Abl2/Arg Kinase*

    PubMed Central

    Simpson, Mark A.; Bradley, William D.; Harburger, David; Parsons, Maddy; Calderwood, David A.; Koleske, Anthony J.

    2015-01-01

    Integrins are heterodimeric α/β extracellular matrix adhesion receptors that couple physically to the actin cytoskeleton and regulate kinase signaling pathways to control cytoskeletal remodeling and adhesion complex formation and disassembly. β1 integrins signal through the Abl2/Arg (Abl-related gene) nonreceptor tyrosine kinase to control fibroblast cell motility, neuronal dendrite morphogenesis and stability, and cancer cell invasiveness, but the molecular mechanisms by which integrin β1 activates Arg are unknown. We report here that the Arg kinase domain interacts directly with a lysine-rich membrane-proximal segment in the integrin β1 cytoplasmic tail, that Arg phosphorylates the membrane-proximal Tyr-783 in the β1 tail, and that the Arg Src homology domain then engages this phosphorylated region in the tail. We show that these interactions mediate direct binding between integrin β1 and Arg in vitro and in cells and activate Arg kinase activity. These findings provide a model for understanding how β1-containing integrins interact with and activate Abl family kinases. PMID:25694433

  20. Synthesis of Pyridine and Spiropyridine Derivatives Derived from 2-aminoprop- 1-ene-1,1,3-tricarbonitrile Together with their c-Met Kinase and Antiproliferative Evaluations.

    PubMed

    Mohareb, Rafat M; Abouzied, Amr S; Abbas, Nermeen S

    2018-02-07

    Among a wide range of pyridines, 3-cyanopyridines acquired a special attention due to their wide range of pharmacological activities especially the therapeutic activities. Many pharmacological drugs containing the pyridine nucleus were known in the market. The aim of this work was to synthesize target molecules not only possess anti-tumor activities but also kinase inhibitors. To achieve this goal, our strategy was to synthesize a series of 3-cyanopyridine derivatives using 2-aminoprop-1-ene-1,1,3-tricarbonitrile (1) as the key starting material for many heterocyclization reactions. Muticoponent reactions were adopted using compound 1 to get different pyridine derivatives that were capable for different heterocyclization reactions. Antiproliferative evaluations and c-Met kinase, Pim-1 kinse inhibitions were perform where some compounds gave high activities. Compounds that showed high antiprolifeative activity were tested gor c-Met-independent and the results showed that compounds 5c, 5e, 5f, 7c, 7f and 16d were more active than foretinib. The Pim-1 kinase inhibition activity of some selected compounds showed that compounds 5e and 16c were high potent to inhibit Pim-1 activity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. DNA Unwinding Functions of Minute Virus of Mice NS1 Protein Are Modulated Specifically by the Lambda Isoform of Protein Kinase C

    PubMed Central

    Dettwiler, Sabine; Rommelaere, Jean; Nüesch, Jürg P. F.

    1999-01-01

    The parvovirus minute virus of mice NS1 protein is a multifunctional protein involved in a variety of processes during virus propagation, ranging from viral DNA replication to promoter regulation and cytotoxic action to the host cell. Since NS1 becomes phosphorylated during infection, it was proposed that the different tasks of this protein might be regulated in a coordinated manner by phosphorylation. Indeed, comparing biochemical functions of native NS1 with its dephosphorylated counterpart showed that site-specific nicking of the origin and the helicase and ATPase activities are remarkably reduced upon NS1 dephosphorylation while site-specific affinity of the protein to the origin became enhanced. As a consequence, the dephosphorylated polypeptide is deficient for initiation of DNA replication. By adding fractionated cell extracts to a kinase-free in vitro replication system, the combination of two protein components containing members of the protein kinase C (PKC) family was found to rescue the replication activity of the dephosphorylated NS1 protein upon addition of PKC cofactors. One of these components, termed HA-1, also stimulated NS1 helicase function in response to acidic lipids but not phorbol esters, indicating the involvement of atypical PKC isoforms in the modulation of this NS1 function (J. P. F. Nüesch, S. Dettwiler, R. Corbau, and J. Rommelaere, J. Virol. 72:9966–9977, 1998). The present study led to the identification of atypical PKCλ/ι as the active component of HA-1 responsible for the regulation of NS1 DNA unwinding and replicative functions. Moreover, a target PKCλ phosphorylation site was localized at S473 of NS1. By site-directed mutagenesis, we showed that this residue is essential for NS1 helicase activity but not promoter regulation, suggesting a possible modulation of NS1 functions by PKCλ phosphorylation at residue S473. PMID:10438831

  2. Mitogen-activated protein kinase Hog1 is activated in response to curcumin exposure in the budding yeast Saccharomyces cerevisiae.

    PubMed

    Azad, Gajendra Kumar; Singh, Vikash; Thakare, Mayur Jankiram; Baranwal, Shivani; Tomar, Raghuvir Singh

    2014-12-19

    Curcumin (CUR), an active polyphenol derived from the spice turmeric, has been traditionally used for centuries in ancient Indian medicine to treat a number of diseases. The physiological effects of CUR have been shown to be diverse; however, the target molecules and pathways that CUR affects have yet to be fully described. Here, we demonstrate for the first time that the budding yeast mitogen-activated protein kinase (MAPK) Hog1 is essential for the response to CUR. Moreover, CUR-induced Hog1 phosphorylation was rescued by supplementation of iron to the growth medium. Hog1 was rapidly phosphorylated upon CUR treatment, but unlike the response to hyperosmotic shock (0.8 M NaCl), it remains activated for an extended period of time. A detailed analysis of HOG pathway mutants revealed that Pbs2p, Ptc2p, and Ssk2p are required for optimal CUR-induced Hog1 phosphorylation. We also observed a Hog1 dependent transcriptional response to CUR treatment that involved the up-regulation of glycerol-3-phosphate dehydrogenase 1 (GPD1), a factor that is essential for the hyperosmotic stress response. Our present finding revealed the role of Hog1 MAPK in regulation of CUR-induced transcriptional response. We anticipate that our finding will enhance the understanding on the molecular mode of action of CUR on S. cerevisiae.

  3. Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Huang, Yafan; Li, Hui; Hutchison, Claire E.; Laskey, James; Kieber, Joseph J.

    2003-01-01

    CTR1 encodes a negative regulator of the ethylene response pathway in Arabidopsis thaliana. The C-terminal domain of CTR1 is similar to the Raf family of protein kinases, but its first two-thirds encodes a novel protein domain. We used a variety of approaches to investigate the function of these two CTR1 domains. Recombinant CTR1 protein was purified from a baculoviral expression system, and shown to possess intrinsic Ser/Thr protein kinase activity with enzymatic properties similar to Raf-1. Deletion of the N-terminal domain did not elevate the kinase activity of CTR1, indicating that, at least in vitro, this domain does not autoinhibit kinase function. Molecular analysis of loss-of-function ctr1 alleles indicated that several mutations disrupt the kinase catalytic domain, and in vitro studies confirmed that at least one of these eliminates kinase activity, which indicates that kinase activity is required for CTR1 function. One missense mutation, ctr1-8, was found to result from an amino acid substitution within a new conserved motif within the N-terminal domain. Ctr1-8 has no detectable effect on the kinase activity of CTR1 in vitro, but rather disrupts the interaction with the ethylene receptor ETR1. This mutation also disrupts the dominant negative effect that results from overexpression of the CTR1 amino-terminal domain in transgenic Arabidopsis. These results suggest that CTR1 interacts with ETR1 in vivo, and that this association is required to turn off the ethylene-signaling pathway.

  4. Activation of MTK1/MEKK4 by GADD45 through induced N-C dissociation and dimerization-mediated trans autophosphorylation of the MTK1 kinase domain.

    PubMed

    Miyake, Zenshi; Takekawa, Mutsuhiro; Ge, Qingyuan; Saito, Haruo

    2007-04-01

    The mitogen-activated protein kinase (MAPK) module, composed of a MAPK, a MAPK kinase (MAPKK), and a MAPKK kinase (MAPKKK), is a cellular signaling device that is conserved throughout the eukaryotic world. In mammalian cells, various extracellular stresses activate two major subfamilies of MAPKs, namely, the Jun N-terminal kinases and the p38/stress-activated MAPK (SAPK). MTK1 (also called MEKK4) is a stress-responsive MAPKKK that is bound to and activated by the stress-inducible GADD45 family of proteins (GADD45alpha/beta/gamma). Here, we dissected the molecular mechanism of MTK1 activation by GADD45 proteins. The MTK1 N terminus bound to its C-terminal segment, thereby inhibiting the C-terminal kinase domain. This N-C interaction was disrupted by the binding of GADD45 to the MTK1 N-terminal GADD45-binding site. GADD45 binding also induced MTK1 dimerization via a dimerization domain containing a coiled-coil motif, which is essential for the trans autophosphorylation of MTK1 at Thr-1493 in the kinase activation loop. An MTK1 alanine substitution mutant at Thr-1493 has a severely reduced activity. Thus, we conclude that GADD45 binding induces MTK1 N-C dissociation, dimerization, and autophosphorylation at Thr-1493, leading to the activation of the kinase catalytic domain. Constitutively active MTK1 mutants induced the same events, but in the absence of GADD45.

  5. CLAVATA1 Dominant-Negative Alleles Reveal Functional Overlap between Multiple Receptor Kinases That Regulate Meristem and Organ Development

    PubMed Central

    Diévart, Anne; Dalal, Monica; Tax, Frans E.; Lacey, Alexzandria D.; Huttly, Alison; Li, Jianming; Clark, Steven E.

    2003-01-01

    The CLAVATA1 (CLV1) receptor kinase controls stem cell number and differentiation at the Arabidopsis shoot and flower meristems. Other components of the CLV1 signaling pathway include the secreted putative ligand CLV3 and the receptor-like protein CLV2. We report evidence indicating that all intermediate and strong clv1 alleles are dominant negative and likely interfere with the activity of unknown receptor kinase(s) that have functional overlap with CLV1. clv1 dominant-negative alleles show major differences from dominant-negative alleles characterized to date in animal receptor kinase signaling systems, including the lack of a dominant-negative effect of kinase domain truncation and the ability of missense mutations in the extracellular domain to act in a dominant-negative manner. We analyzed chimeric receptor kinases by fusing CLV1 and BRASSINOSTEROID INSENSITIVE1 (BRI1) coding sequences and expressing these in clv1 null backgrounds. Constructs containing the CLV1 extracellular domain and the BRI1 kinase domain were strongly dominant negative in the regulation of meristem development. Furthermore, we show that CLV1 expressed within the pedicel can partially replace the function of the ERECTA receptor kinase. We propose the presence of multiple receptors that regulate meristem development in a functionally related manner whose interactions are driven by the extracellular domains and whose activation requires the kinase domain. PMID:12724544

  6. Lack of tau proteins rescues neuronal cell death and decreases amyloidogenic processing of APP in APP/PS1 mice.

    PubMed

    Leroy, Karelle; Ando, Kunie; Laporte, Vincent; Dedecker, Robert; Suain, Valérie; Authelet, Michèle; Héraud, Céline; Pierrot, Nathalie; Yilmaz, Zehra; Octave, Jean-Noël; Brion, Jean-Pierre

    2012-12-01

    Lack of tau expression has been reported to protect against excitotoxicity and to prevent memory deficits in mice expressing mutant amyloid precursor protein (APP) identified in familial Alzheimer disease. In APP mice, mutant presenilin 1 (PS1) enhances generation of Aβ42 and inhibits cell survival pathways. It is unknown whether the deficient phenotype induced by concomitant expression of mutant PS1 is rescued by absence of tau. In this study, we have analyzed the effect of tau deletion in mice expressing mutant APP and PS1. Although APP/PS1/tau(+/+) mice had a reduced survival, developed spatial memory deficits at 6 months and motor impairments at 12 months, these deficits were rescued in APP/PS1/tau(-/-) mice. Neuronal loss and synaptic loss in APP/PS1/tau(+/+) mice were rescued in the APP/PS1/tau(-/-) mice. The amyloid plaque burden was decreased by roughly 50% in the cortex and the spinal cord of the APP/PS1/tau(-/-) mice. The levels of soluble and insoluble Aβ40 and Aβ42, and the Aβ42/Aβ40 ratio were reduced in APP/PS1/tau(-/-) mice. Levels of phosphorylated APP, of β-C-terminal fragments (CTFs), and of β-secretase 1 (BACE1) were also reduced, suggesting that β-secretase cleavage of APP was reduced in APP/PS1/tau(-/-) mice. Our results indicate that tau deletion had a protective effect against amyloid induced toxicity even in the presence of mutant PS1 and reduced the production of Aβ. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  7. Protein Kinase C-Related Kinase (PKN/PRK). Potential Key-Role for PKN1 in Protection of Hypoxic Neurons.

    PubMed

    Thauerer, Bettina; Zur Nedden, Stephanie; Baier-Bitterlich, Gabriele

    2014-05-01

    Serine/threonine protein kinase C-related kinase (PKN/PRK) is a family of three isoenzymes (PKN1, PKN2, PKN3), which are widely distributed in eukaryotic organisms and share the same overall domain structure. The Nterminal region encompasses a conserved repeated domain, termed HR1a-c as well as a HR2/C2 domain. The serine/threonine kinase domain is found in the C-terminal region of the protein and shows high sequence homology to other members of the PKC superfamily. In neurons, PKN1 is the most abundant isoform and has been implicated in a variety of functions including cytoskeletal organization and neuronal differentiation and its deregulation may contribute to neuropathological processes such as amyotrophic lateral sclerosis and Alzheimer's disease. We have recently identified a candidate role of PKN1 in the regulation of neuroprotective processes during hypoxic stress. Our key findings were that: 1) the activity of PKN1 was significantly increased by hypoxia (1% O2) and neurotrophins (nerve growth factor and purine nucleosides); 2) Neuronal cells, deficient of PKN1 showed a decrease of cell viability and neurite formation along with a disturbance of the F-actinassociated cytoskeleton; 3) Purine nucleoside-mediated neuroprotection during hypoxia was severely hampered in PKN1 deficient neuronal cells, altogether suggesting a potentially critical role of PKN1 in neuroprotective processes. This review gives an up-to-date overview of the PKN family with a special focus on the neuroprotective role of PKN1 in hypoxia.

  8. The Akt1-eNOS axis illustrates the specificity of kinase-substrate relationships in vivo.

    PubMed

    Schleicher, Michael; Yu, Jun; Murata, Takahisa; Derakhshan, Berhad; Atochin, Dimitriy; Qian, Li; Kashiwagi, Satoshi; Di Lorenzo, Annarita; Harrison, Kenneth D; Huang, Paul L; Sessa, William C

    2009-08-04

    Akt1 is critical for many in vivo functions; however, the cell-specific substrates responsible remain to be defined. Here, we examine the importance of endothelial nitric oxide synthase (eNOS) as an Akt1 substrate by generating Akt1-deficient mice (Akt1(-/-) mice) carrying knock-in mutations (serine to aspartate or serine to alanine substitutions) of the critical Akt1 phosphorylation site on eNOS (serine 1176) that render the enzyme "constitutively active" or "less active." The eNOS mutations did not influence several phenotypes in Akt1(-/-) mice; however, the defective postnatal angiogenesis characteristic of Akt1(-/-) mice was rescued by crossing the Akt1(-/-) mice with mice carrying the constitutively active form of eNOS, but not by crossing with mice carrying the less active eNOS mutant. This genetic rescue resulted in the stabilization of hypoxia-inducible factor 1alpha (HIF-1alpha) and increased production of HIF-1alpha-responsive genes in vivo and in vitro. Thus, Akt1 regulates angiogenesis largely through phosphorylation of eNOS and NO-dependent signaling.

  9. Casein kinase 1 regulates sterol regulatory element-binding protein (SREBP) to control sterol homeostasis.

    PubMed

    Brookheart, Rita T; Lee, Chih-Yung S; Espenshade, Peter J

    2014-01-31

    Sterol homeostasis is tightly controlled by the sterol regulatory element-binding protein (SREBP) transcription factor that is highly conserved from fungi to mammals. In fission yeast, SREBP functions in an oxygen-sensing pathway to promote adaptation to decreased oxygen supply that limits oxygen-dependent sterol synthesis. Low oxygen stimulates proteolytic cleavage of the SREBP homolog Sre1, generating the active transcription factor Sre1N that drives expression of sterol biosynthetic enzymes. In addition, low oxygen increases the stability and DNA binding activity of Sre1N. To identify additional signals controlling Sre1 activity, we conducted a genetic overexpression screen. Here, we describe our isolation and characterization of the casein kinase 1 family member Hhp2 as a novel regulator of Sre1N. Deletion of Hhp2 increases Sre1N protein stability and ergosterol levels in the presence of oxygen. Hhp2-dependent Sre1N degradation by the proteasome requires Hhp2 kinase activity, and Hhp2 binds and phosphorylates Sre1N at specific residues. Our results describe a role for casein kinase 1 as a direct regulator of sterol homeostasis. Given the role of mammalian Hhp2 homologs, casein kinase 1δ and 1ε, in regulation of the circadian clock, these findings may provide a mechanism for coordinating circadian rhythm and lipid metabolism.

  10. The non-receptor tyrosine kinase Lyn controls neutrophil adhesion by recruiting the CrkL–C3G complex and activating Rap1 at the leading edge

    PubMed Central

    He, Yuan; Kapoor, Ashish; Cook, Sara; Liu, Shubai; Xiang, Yang; Rao, Christopher V.; Kenis, Paul J. A.; Wang, Fei

    2011-01-01

    Establishing new adhesions at the extended leading edges of motile cells is essential for stable polarity and persistent motility. Despite recent identification of signaling pathways that mediate polarity and chemotaxis in neutrophils, little is known about molecular mechanisms governing cell–extracellular-matrix (ECM) adhesion in these highly polarized and rapidly migrating cells. Here, we describe a signaling pathway in neutrophils that is essential for localized integrin activation, leading edge attachment and persistent migration during chemotaxis. This pathway depends upon Gi-protein-mediated activation and leading edge recruitment of Lyn, a non-receptor tyrosine kinase belonging to the Src kinase family. We identified the small GTPase Rap1 as a major downstream effector of Lyn to regulate neutrophil adhesion during chemotaxis. Depletion of Lyn in neutrophil-like HL-60 cells prevented chemoattractant-induced Rap1 activation at the leading edge of the cell, whereas ectopic expression of Rap1 largely rescued the defects induced by Lyn depletion. Furthermore, Lyn controls spatial activation of Rap1 by recruiting the CrkL–C3G protein complex to the leading edge. Together, these results provide novel mechanistic insights into the poorly understood signaling network that controls leading edge adhesion during chemotaxis of neutrophils, and possibly other amoeboid cells. PMID:21628423

  11. Increased choline kinase activity in 1,2-dimethylhydrazine-induced rat colon cancer.

    PubMed

    Nakagami, K; Uchida, T; Ohwada, S; Koibuchi, Y; Morishita, Y

    1999-11-01

    Cancer cells acquire particular characteristics that benefit their proliferation. We previously reported that human colon cancers examined had increased choline kinase activity and phosphocholine levels. The elevated phosphocholine levels were in part due to both activation of choline kinase and increased choline kinase alpha protein levels. In this report, we analyzed choline kinase, which catalyzes the phosphorylation of choline to produce phosphocholine, in rat 1,2-dimethylhydrazine (DMH)-induced colon cancer. This study is the first to demonstrate increased choline kinase alpha enzymatic activity, protein levels, and mRNA levels in DMH-induced colon cancer as well as human colon cancer, although phosphocholine was not increased in DMH-induced rat cancer. The increase in the mRNA level was partly due to an increase in the transcription of the choline kinase alpha gene. The increased choline kinase activity may be a specific characteristic acquired by cancer cells that benefits their proliferation.

  12. Caveolin-1 regulates shear stress-dependent activation of extracellular signal-regulated kinase

    NASA Technical Reports Server (NTRS)

    Park, H.; Go, Y. M.; Darji, R.; Choi, J. W.; Lisanti, M. P.; Maland, M. C.; Jo, H.

    2000-01-01

    Fluid shear stress activates a member of the mitogen-activated protein (MAP) kinase family, extracellular signal-regulated kinase (ERK), by mechanisms dependent on cholesterol in the plasma membrane in bovine aortic endothelial cells (BAEC). Caveolae are microdomains of the plasma membrane that are enriched with cholesterol, caveolin, and signaling molecules. We hypothesized that caveolin-1 regulates shear activation of ERK. Because caveolin-1 is not exposed to the outside, cells were minimally permeabilized by Triton X-100 (0.01%) to deliver a neutralizing, polyclonal caveolin-1 antibody (pCav-1) inside the cells. pCav-1 then bound to caveolin-1 and inhibited shear activation of ERK but not c-Jun NH(2)-terminal kinase. Epitope mapping studies showed that pCav-1 binds to caveolin-1 at two regions (residues 1-21 and 61-101). When the recombinant proteins containing the epitopes fused to glutathione-S-transferase (GST-Cav(1-21) or GST-Cav(61-101)) were preincubated with pCav-1, only GST-Cav(61-101) reversed the inhibitory effect of the antibody on shear activation of ERK. Other antibodies, including m2234, which binds to caveolin-1 residues 1-21, had no effect on shear activation of ERK. Caveolin-1 residues 61-101 contain the scaffolding and oligomerization domains, suggesting that binding of pCav-1 to these regions likely disrupts the clustering of caveolin-1 or its interaction with signaling molecules involved in the shear-sensitive ERK pathway. We suggest that caveolae-like domains play a critical role in the mechanosensing and/or mechanosignal transduction of the ERK pathway.

  13. Natural Loss of Mps1 Kinase in Nematodes Uncovers a Role for Polo-like Kinase 1 in Spindle Checkpoint Initiation.

    PubMed

    Espeut, Julien; Lara-Gonzalez, Pablo; Sassine, Mélanie; Shiau, Andrew K; Desai, Arshad; Abrieu, Ariane

    2015-07-07

    The spindle checkpoint safeguards against chromosome loss during cell division by preventing anaphase onset until all chromosomes are attached to spindle microtubules. Checkpoint signal is generated at kinetochores, the primary attachment site on chromosomes for spindle microtubules. Mps1 kinase initiates checkpoint signaling by phosphorylating the kinetochore-localized scaffold protein Knl1 to create phospho-docking sites for Bub1/Bub3. Mps1 is widely conserved but is surprisingly absent in many nematode species. Here, we show that PLK-1, which targets a substrate motif similar to that of Mps1, functionally substitutes for Mps1 in C. elegans by phosphorylating KNL-1 to direct BUB-1/BUB-3 kinetochore recruitment. This finding led us to re-examine checkpoint initiation in human cells, where we found that Plk1 co-inhibition significantly reduced Knl1 phosphorylation and Bub1 kinetochore recruitment relative to Mps1 inhibition alone. Thus, the finding that PLK-1 functionally substitutes for Mps1 in checkpoint initiation in C. elegans uncovered a role for Plk1 in species that have Mps1. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Rescue of fragile X syndrome phenotypes in Fmr1 KO mice by a BKCa channel opener molecule

    PubMed Central

    2014-01-01

    Background Fragile X Syndrome (FXS) is the most common form of inherited intellectual disability and is also associated with autism spectrum disorders. Previous studies implicated BKCa channels in the neuropathogenesis of FXS, but the main question was whether pharmacological BKCa stimulation would be able to rescue FXS neurobehavioral phenotypes. Methods and results We used a selective BKCa channel opener molecule (BMS-204352) to address this issue in Fmr1 KO mice, modeling the FXS pathophysiology. In vitro, acute BMS-204352 treatment (10 μM) restored the abnormal dendritic spine phenotype. In vivo, a single injection of BMS-204352 (2 mg/kg) rescued the hippocampal glutamate homeostasis and the behavioral phenotype. Indeed, disturbances in social recognition and interaction, non-social anxiety, and spatial memory were corrected by BMS-204352 in Fmr1 KO mice. Conclusion These results demonstrate that the BKCa channel is a new therapeutic target for FXS. We show that BMS-204352 rescues a broad spectrum of behavioral impairments (social, emotional and cognitive) in an animal model of FXS. This pharmacological molecule might open new ways for FXS therapy. PMID:25079250

  15. Regulation of Cardiac Stress Signaling by Protein Kinase D1

    PubMed Central

    Harrison, Brooke C.; Kim, Mi-Sung; van Rooij, Eva; Plato, Craig F.; Papst, Philip J.; Vega, Rick B.; McAnally, John A.; Richardson, James A.; Bassel-Duby, Rhonda; Olson, Eric N.; McKinsey, Timothy A.

    2006-01-01

    In response to pathological stresses such as hypertension or myocardial infarction, the heart undergoes a remodeling process that is associated with myocyte hypertrophy, myocyte death, and fibrosis. Histone deacetylase 5 (HDAC5) is a transcriptional repressor of cardiac remodeling that is subject to phosphorylation-dependent neutralization in response to stress signaling. Recent studies have suggested a role for protein kinase C (PKC) and its downstream effector, protein kinase D1 (PKD1), in the control of HDAC5 phosphorylation. While PKCs are well-documented regulators of cardiac signaling, the function of PKD1 in heart muscle remains unclear. Here, we demonstrate that PKD1 catalytic activity is stimulated in cardiac myocytes by diverse hypertrophic agonists that signal through G protein-coupled receptors (GPCRs) and Rho GTPases. PKD1 activation in cardiomyocytes occurs through PKC-dependent and -independent mechanisms. In vivo, cardiac PKD1 is activated in multiple rodent models of pathological cardiac remodeling. PKD1 activation correlates with phosphorylation-dependent nuclear export of HDAC5, and reduction of endogenous PKD1 expression with small interfering RNA suppresses HDAC5 shuttling and associated cardiomyocyte growth. Conversely, ectopic overexpression of constitutively active PKD1 in mouse heart leads to dilated cardiomyopathy. These findings support a role for PKD1 in the control of pathological remodeling of the heart via its ability to phosphorylate and neutralize HDAC5. PMID:16648482

  16. Crizotinib-Resistant ROS1 Mutations Reveal a Predictive Kinase Inhibitor Sensitivity Model for ROS1- and ALK-Rearranged Lung Cancers.

    PubMed

    Facchinetti, Francesco; Loriot, Yohann; Kuo, Mei-Shiue; Mahjoubi, Linda; Lacroix, Ludovic; Planchard, David; Besse, Benjamin; Farace, Françoise; Auger, Nathalie; Remon, Jordi; Scoazec, Jean-Yves; André, Fabrice; Soria, Jean-Charles; Friboulet, Luc

    2016-12-15

    The identification of molecular mechanisms conferring resistance to tyrosine kinase inhibitor (TKI) is a key step to improve therapeutic results for patients with oncogene addiction. Several alterations leading to EGFR and anaplastic lymphoma kinase (ALK) resistance to TKI therapy have been described in non-small cell lung cancer (NSCLC). Only two mutations in the ROS1 kinase domain responsible for crizotinib resistance have been described in patients thus far. A patient suffering from a metastatic NSCLC harboring an ezrin (EZR)-ROS1 fusion gene developed acquired resistance to the ALK/ROS1 inhibitor crizotinib. Molecular analysis (whole-exome sequencing, CGH) and functional studies were undertaken to elucidate the mechanism of resistance. Based on this case, we took advantage of the structural homology of ROS1 and ALK to build a predictive model for drug sensitivity regarding future ROS1 mutations. Sequencing revealed a dual mutation, S1986Y and S1986F, in the ROS1 kinase domain. Functional in vitro studies demonstrated that ROS1 harboring either the S1986Y or the S1986F mutation, while conferring resistance to crizotinib and ceritinib, was inhibited by lorlatinib (PF-06463922). The patient's clinical response confirmed the potency of lorlatinib against S1986Y/F mutations. The ROS1 S1986Y/F and ALK C1156Y mutations are homologous and displayed similar sensitivity patterns to ALK/ROS1 TKIs. We extended this analogy to build a model predicting TKI efficacy against potential ROS1 mutations. Clinical evidence, in vitro validation, and homology-based prediction provide guidance for treatment decision making for patients with ROS1-rearranged NSCLC who progressed on crizotinib. Clin Cancer Res; 22(24); 5983-91. ©2016 AACR. ©2016 American Association for Cancer Research.

  17. Degenerative phenotypes caused by the combined deficiency of murine HIP1 and HIP1r are rescued by human HIP1.

    PubMed

    Bradley, Sarah V; Hyun, Teresa S; Oravecz-Wilson, Katherine I; Li, Lina; Waldorff, Erik I; Ermilov, Alexander N; Goldstein, Steven A; Zhang, Claire X; Drubin, David G; Varela, Kate; Parlow, Al; Dlugosz, Andrzej A; Ross, Theodora S

    2007-06-01

    The members of the huntingtin-interacting protein-1 (HIP1) family, HIP1 and HIP1-related (HIP1r), are multi-domain proteins that interact with inositol lipids, clathrin and actin. HIP1 is over-expressed in a variety of cancers and both HIP1 and HIP1r prolong the half-life of multiple growth factor receptors. To better understand the physiological importance of the HIP1 family in vivo, we have analyzed a large cohort of double Hip1/Hip1r knockout (DKO) mice. All DKO mice were dwarfed, afflicted with severe vertebral defects and died in early adulthood. These phenotypes were not observed during early adulthood in the single Hip1 or Hip1r knockouts, indicating that HIP1 and HIP1r compensate for one another. Despite the ability of HIP1 and HIP1r to modulate growth factor receptor levels when over-expressed, studies herein using DKO fibroblasts indicate that the HIP1 family is not necessary for endocytosis but is necessary for the maintenance of diverse adult tissues in vivo. To test if human HIP1 can function similar to mouse HIP1, transgenic mice with 'ubiquitous' expression of the human HIP1 cDNA were generated and crossed with DKO mice. Strikingly, the compound human HIP1 transgenic DKO mice were completely free from dwarfism and spinal defects. This successful rescue demonstrates that the human HIP1 protein shares some interchangeable functions with both HIP1 and HIP1r in vivo. In addition, we conclude that the degenerative phenotypes seen in the DKO mice are due mainly to HIP1 and HIP1r protein deficiency rather than altered expression of neighboring genes or disrupted intronic elements.

  18. The AMP-activated protein kinase beta 1 subunit modulates erythrocyte integrity.

    PubMed

    Cambridge, Emma L; McIntyre, Zoe; Clare, Simon; Arends, Mark J; Goulding, David; Isherwood, Christopher; Caetano, Susana S; Reviriego, Carmen Ballesteros; Swiatkowska, Agnieszka; Kane, Leanne; Harcourt, Katherine; Adams, David J; White, Jacqueline K; Speak, Anneliese O

    2017-01-01

    Failure to maintain a normal in vivo erythrocyte half-life results in the development of hemolytic anemia. Half-life is affected by numerous factors, including energy balance, electrolyte gradients, reactive oxygen species, and membrane plasticity. The heterotrimeric AMP-activated protein kinase (AMPK) is an evolutionarily conserved serine/threonine kinase that acts as a critical regulator of cellular energy balance. Previous roles for the alpha 1 and gamma 1 subunits in the control of erythrocyte survival have been reported. In the work described here, we studied the role of the beta 1 subunit in erythrocytes and observed microcytic anemia with compensatory extramedullary hematopoiesis together with splenomegaly and increased osmotic resistance. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  19. Regulation of the yeast EKI1-encoded ethanolamine kinase by inositol and choline.

    PubMed

    Kersting, Michael C; Choi, Hyeon-Son; Carman, George M

    2004-08-20

    Regulation of the EKI1-encoded ethanolamine kinase by inositol and choline was examined in Saccharomyces cerevisiae. Transcription of the EKI1 gene was monitored by following the expression of beta-galactosidase activity driven by a P(EKI1)-lacZ reporter gene. The addition of inositol to the growth medium resulted in a dose-dependent decrease in EKI1 expression. Supplementation of choline to inositol-containing growth medium brought about a further decrease in expression, whereas choline supplementation alone had no effect. Analysis of EKI1 expression in ino2Delta, ino4Delta, and opi1Delta mutants indicated that the transcription factors Ino2p, Ino4p, and Opi1p played a role in this regulation. Moreover, mutational analysis showed that the UAS(INO) element in the EKI1 promoter was required for the inositol-mediated regulation. The regulation of EKI1 expression by inositol and choline was confirmed by corresponding changes in ethanolamine kinase mRNA, protein, and activity levels. The repression of ethanolamine kinase by inositol supplementation correlated with a decrease in the incorporation of ethanolamine into CDP-ethanolamine pathway intermediates and into phosphatidylethanolamine and phosphatidylcholine.

  20. Epigallocatechin activates haem oxygenase-1 expression via protein kinase Cδ and Nrf2

    PubMed Central

    Ogborne, Richard M.; Rushworth, Stuart A.; O’Connell, Maria A.

    2008-01-01

    The Nrf2/anti-oxidant response element (ARE) pathway plays an important role in regulating cellular anti-oxidants, including haem oxygenase-1 (HO-1). Various kinases have been implicated in the pathways leading to Nrf2 activation. Here, we investigated the effect of epigallocatechin (EGC) on ARE-mediated gene expression in human monocytic cells. EGC time and dose dependently increased HO-1 mRNA and protein expression but had minimal effect on expression of other ARE-regulated genes, including NAD(P)H:quinone oxidoreductase 1, glutathione cysteine ligase and ferritin. siRNA knock down of Nrf2 significantly inhibited EGC-induced HO-1 expression. Furthermore, inhibition of PKC by Ro-31-8220 dose dependently decreased EGC-induced HO-1 mRNA expression, whereas MAP kinase and phosphatidylinositol-3-kinase pathway inhibitors had no significant effect. EGC stimulated phosphorylation of PKCαβ and δ in THP-1 cells. PKCδ inhibition significantly decreased EGC-induced HO-1 mRNA expression, whereas PKCα- and β-specific inhibitors had no significant effect. These results demonstrate for the first time that EGC-induced HO-1 expression occurs via PKCδ and Nrf2. PMID:18586007

  1. ADP Regulates SNF1, the Saccharomyces cerevisiae Homolog of AMP-Activated Protein Kinase

    PubMed Central

    Mayer, Faith V.; Heath, Richard; Underwood, Elizabeth; Sanders, Matthew J.; Carmena, David; McCartney, Rhonda R.; Leiper, Fiona C.; Xiao, Bing; Jing, Chun; Walker, Philip A.; Haire, Lesley F.; Ogrodowicz, Roksana; Martin, Stephen R.; Schmidt, Martin C.; Gamblin, Steven J.; Carling, David

    2011-01-01

    Summary The SNF1 protein kinase complex plays an essential role in regulating gene expression in response to the level of extracellular glucose in budding yeast. SNF1 shares structural and functional similarities with mammalian AMP-activated protein kinase. Both kinases are activated by phosphorylation on a threonine residue within the activation loop segment of the catalytic subunit. Here we show that ADP is the long-sought metabolite that activates SNF1 in response to glucose limitation by protecting the enzyme against dephosphorylation by Glc7, its physiologically relevant protein phosphatase. We also show that the regulatory subunit of SNF1 has two ADP binding sites. The tighter site binds AMP, ADP, and ATP competitively with NADH, whereas the weaker site does not bind NADH, but is responsible for mediating the protective effect of ADP on dephosphorylation. Mutagenesis experiments suggest that the general mechanism by which ADP protects against dephosphorylation is strongly conserved between SNF1 and AMPK. PMID:22019086

  2. The Atg1-kinase complex tethers Atg9-vesicles to initiate autophagy

    NASA Astrophysics Data System (ADS)

    Rao, Yijian; Perna, Marco G.; Hofmann, Benjamin; Beier, Viola; Wollert, Thomas

    2016-01-01

    Autophagosomes are double-membrane vesicles that sequester cytoplasmic material for lysosomal degradation. Their biogenesis is initiated by recruitment of Atg9-vesicles to the phagophore assembly site. This process depends on the regulated activation of the Atg1-kinase complex. However, the underlying molecular mechanism remains unclear. Here we reconstitute this early step in autophagy from purified components in vitro. We find that on assembly from its cytoplasmic subcomplexes, the Atg1-kinase complex becomes activated, enabling it to recruit and tether Atg9-vesicles. The scaffolding protein Atg17 targets the Atg1-kinase complex to autophagic membranes by specifically recognizing the membrane protein Atg9. This interaction is inhibited by the two regulatory subunits Atg31 and Atg29. Engagement of the Atg1-Atg13 subcomplex restores the Atg9-binding and membrane-tethering activity of Atg17. Our data help to unravel the mechanism that controls Atg17-mediated tethering of Atg9-vesicles, providing the molecular basis to understand initiation of autophagosome-biogenesis.

  3. Loss of the Greatwall Kinase Weakens the Spindle Assembly Checkpoint.

    PubMed

    Diril, M Kasim; Bisteau, Xavier; Kitagawa, Mayumi; Caldez, Matias J; Wee, Sheena; Gunaratne, Jayantha; Lee, Sang Hyun; Kaldis, Philipp

    2016-09-01

    The Greatwall kinase/Mastl is an essential gene that indirectly inhibits the phosphatase activity toward mitotic Cdk1 substrates. Here we show that although Mastl knockout (MastlNULL) MEFs enter mitosis, they progress through mitosis without completing cytokinesis despite the presence of misaligned chromosomes, which causes chromosome segregation defects. Furthermore, we uncover the requirement of Mastl for robust spindle assembly checkpoint (SAC) maintenance since the duration of mitotic arrest caused by microtubule poisons in MastlNULL MEFs is shortened, which correlates with premature disappearance of the essential SAC protein Mad1 at the kinetochores. Notably, MastlNULL MEFs display reduced phosphorylation of a number of proteins in mitosis, which include the essential SAC kinase MPS1. We further demonstrate that Mastl is required for multi-site phosphorylation of MPS1 as well as robust MPS1 kinase activity in mitosis. In contrast, treatment of MastlNULL cells with the phosphatase inhibitor okadaic acid (OKA) rescues the defects in MPS1 kinase activity, mislocalization of phospho-MPS1 as well as Mad1 at the kinetochore, and premature SAC silencing. Moreover, using in vitro dephosphorylation assays, we demonstrate that Mastl promotes persistent MPS1 phosphorylation by inhibiting PP2A/B55-mediated MPS1 dephosphorylation rather than affecting Cdk1 kinase activity. Our findings establish a key regulatory function of the Greatwall kinase/Mastl->PP2A/B55 pathway in preventing premature SAC silencing.

  4. Loss of the Greatwall Kinase Weakens the Spindle Assembly Checkpoint

    PubMed Central

    Kitagawa, Mayumi; Caldez, Matias J.; Gunaratne, Jayantha; Lee, Sang Hyun

    2016-01-01

    The Greatwall kinase/Mastl is an essential gene that indirectly inhibits the phosphatase activity toward mitotic Cdk1 substrates. Here we show that although Mastl knockout (MastlNULL) MEFs enter mitosis, they progress through mitosis without completing cytokinesis despite the presence of misaligned chromosomes, which causes chromosome segregation defects. Furthermore, we uncover the requirement of Mastl for robust spindle assembly checkpoint (SAC) maintenance since the duration of mitotic arrest caused by microtubule poisons in MastlNULL MEFs is shortened, which correlates with premature disappearance of the essential SAC protein Mad1 at the kinetochores. Notably, MastlNULL MEFs display reduced phosphorylation of a number of proteins in mitosis, which include the essential SAC kinase MPS1. We further demonstrate that Mastl is required for multi-site phosphorylation of MPS1 as well as robust MPS1 kinase activity in mitosis. In contrast, treatment of MastlNULL cells with the phosphatase inhibitor okadaic acid (OKA) rescues the defects in MPS1 kinase activity, mislocalization of phospho-MPS1 as well as Mad1 at the kinetochore, and premature SAC silencing. Moreover, using in vitro dephosphorylation assays, we demonstrate that Mastl promotes persistent MPS1 phosphorylation by inhibiting PP2A/B55-mediated MPS1 dephosphorylation rather than affecting Cdk1 kinase activity. Our findings establish a key regulatory function of the Greatwall kinase/Mastl->PP2A/B55 pathway in preventing premature SAC silencing. PMID:27631493

  5. Phosphorylation of Arabidopsis MAP Kinase Phosphatase 1 (MKP1) Is Required for PAMP Responses and Resistance against Bacteria1[OPEN

    PubMed Central

    Jiang, Lingyan; Anderson, Jeffrey C.; Besteiro, Marina A. González

    2017-01-01

    Plants perceive potential pathogens via the recognition of pathogen-associated molecular patterns (PAMPs) by surface-localized pattern recognition receptors, which initiates a series of intracellular responses that ultimately limit bacterial growth. PAMP responses include changes in intracellular protein phosphorylation, including the activation of mitogen-activated protein kinase (MAPK) cascades. MAP kinase phosphatases (MKPs), such as Arabidopsis (Arabidopsis thaliana) MKP1, are important negative regulators of MAPKs and play a crucial role in controlling the intensity and duration of MAPK activation during innate immune signaling. As such, the mkp1 mutant lacking MKP1 displays enhanced PAMP responses and resistance against the virulent bacterium Pseudomonas syringae pv tomato DC3000. Previous in vitro studies showed that MKP1 can be phosphorylated and activated by MPK6, suggesting that phosphorylation may be an important mechanism for regulating MKP1. We found that MKP1 was phosphorylated during PAMP elicitation and that phosphorylation stabilized the protein, resulting in protein accumulation after elicitation. MKP1 also can be stabilized by the proteasome inhibitor MG132, suggesting that MKP1 is constitutively degraded through the proteasome in the resting state. In addition, we investigated the role of MKP1 posttranslational regulation in plant defense by testing whether phenotypes of the mkp1 Arabidopsis mutant could be complemented by expressing phosphorylation site mutations of MKP1. The phosphorylation of MKP1 was found to be required for some, but not all, of MKP1’s functions in PAMP responses and defense against bacteria. Together, our results provide insight into the roles of phosphorylation in the regulation of MKP1 during PAMP signaling and resistance to bacteria. PMID:29070514

  6. HSP-70 mitigates LPS/SKI-induced cell damage by increasing sphingosine kinase 1 (SK1).

    PubMed

    Ding, Xuan Z; Feng, Xiao R; Borschel, Richard H; Nikolich, Mikeljon P; Feng, Jie; Li, Yan S; Hoover, David L

    2010-06-01

    Heat shock proteins (HSPs) are potent protectors of cellular integrity against environmental stresses, including toxic microbial products. To investigate the mechanism of HSP-70 cell protection against bacterial lipopolysaccharide (LPS), we established a stable HSP-70 gene-transfected RAW 264.7 murine macrophage model of LPS-induced cell death. Bacterial LPS increases the activity of sphingosine kinase 1 (SK1), which catalyzes formation of sphingosine-1-phosphate (S1P). S1P functions as a critical signal for initiation and maintenance of diverse aspects of immune cell activation and function. When mouse macrophages were incubated with Escherichia coli LPS (1 microg/ml) and sphingosine kinase inhibitor (SKI, 5 microM), 90% of cells died. Neither LPS nor SKI alone at these doses damaged the cells. The LPS/SKI-induced cell death was partially reversed by overexpression of HSP-70 in gene-transfected macrophages. The specificity of HSP-70 in this reversal was demonstrated by transfection of HSP-70-specific siRNA. Down-regulation of HSP-70 expression after transfection of siRNA specific for HSP-70 was associated with increased LPS/SKI-induced cell damage. Overexpression of human or murine HSP-70 (HSPA1A and Hspa1a, respectively) increased both cellular SK1 mRNA and protein levels. Cellular heat shock also increased SK1 protein. These studies confirm the importance of SK1 as a protective moiety in LPS-induced cell injury and demonstrate that HSP-70-mediated protection from cells treated with LPS/SKI is accompanied by upregulating expression of SK1. HSP-70-mediated increases in SK1 and consequent increased levels of S1P may also play a role in protection of cells from other processes that lead to programmed cell death. Published by Elsevier Inc.

  7. Raf-1 kinase regulates smooth muscle contraction in the rat mesenteric arteries.

    PubMed

    Sathishkumar, Kunju; Yallampalli, Uma; Elkins, Rebekah; Yallampalli, Chandra

    2010-01-01

    We investigated the potential role of Raf-1 kinase in mesenteric arterial contraction. Inhibitors of Raf-1 kinase, GW5074, L779450 and ZM 336372 reversed phenylephrine (PE)-induced mesenteric vascular contraction. Studies in vivo in rats showed that GW5074 inhibited PE-induced increase in mean arterial pressure in adult female Sprague-Dawley rats. Isometric tension studies in mesenteric arteries of rats showed that GW5074 did not change the KCl-evoked contraction but significantly inhibited the contractions to PE, 5-HT, U46619, endothelin 1, angiotensin II and phorbol 12, 13-dibutyrate (PDBu). In mesenteric vascular smooth muscle cells (VSMCs), PE stimulated increase in Raf-1 phosphorylation which was inhibited by GW5074. Measurement of [Ca(2+)](i) with Fura-2 showed that GW5074-mediated inhibition of PE-induced contraction was not associated with decreases in [Ca(2+)](i). VSMCs treated with PE exhibited higher levels of the contractile proteins, p-MYPT1 and p-MLC(20), which was inhibited by GW5074. Similarly, PDBu induced increases in phosphorylation of Raf-1, MLC(20) and MYPT1 and this was inhibited by GW5074. However, GW5074 did not have any significant effect on PE/PDBu-induced MEK/ERK activation. The results indicate that Raf-1 kinase plays an important role in the regulation of vascular contractility through regulation of calcium sensitization.

  8. p21 Activated kinase 1: Nuclear activity and its role during DNA damage repair.

    PubMed

    Pérez-Yépez, Eloy Andrés; Saldívar-Cerón, Héctor Iván; Villamar-Cruz, Olga; Pérez-Plasencia, Carlos; Arias-Romero, Luis Enrique

    2018-05-01

    p21-activated kinase 1 (PAK1) is a serine/threonine kinase activated by the small GTPases Rac1 and Cdc42. It is located in the chromosome 11q13 and is amplified and/or overexpressed in several human cancer types including 25-30% of breast tumors. This enzyme plays a pivotal role in the control of a number of fundamental cellular processes by phosphorylating its downstream substrates. In addition to its role in the cytoplasm, it is well documented that PAK1 also plays crucial roles in the nucleus participating in mitotic events and gene expression through its association and/or phosphorylation of several transcription factors, transcriptional co-regulators and cell cycle-related proteins, including Aurora kinase A (AURKA), polo-like kinase 1 (PLK1), the forkhead transcription factor (FKHR), estrogen receptor α (ERα), and Snail. More recently, PAK signaling has emerged as a component of the DNA damage response (DDR) as PAK1 activity influences the cellular sensitivity to ionizing radiation and promotes the expression of several genes involved in the Fanconi Anemia/BRCA pathway. This review will focus on the nuclear functions of PAK1 and its role in the regulation of DNA damage repair. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Targeting Sphingosine Kinase-1 To Inhibit Melanoma

    PubMed Central

    Madhunapantula, SubbaRao V.; Hengst, Jeremy; Gowda, Raghavendra; Fox, Todd E.; Yun, Jong K; Robertson, Gavin P.

    2012-01-01

    SUMMARY Resistance to therapies develops rapidly for melanoma leading to more aggressive disease. Therefore, agents are needed that specifically inhibit proteins or pathways controlling the development of this disease, which can be combined, dependent on genes deregulated in a particular patient’s tumors. This study shows that elevated sphingosine-1-phosphate (S-1-P) levels resulting from increased activity of sphingosine kinase-1 (SPHK1) occur in advanced melanomas. Targeting SPHK1 using siRNA decreased anchorage dependent and independent growth as well as sensitized melanoma cells to apoptosis inducing agents. Pharmacological SPHK1 inhibitors SKI-I but not SKI-II decreased S-1-P content, elevated ceramide levels, caused a G2-M block and induced apoptotic cell death in melanomas. Targeting SPHK1 using siRNA or the pharmacological agent called SKI-I, decreased the levels of pAKT. Furthermore, SKI-I inhibited the expression of CYCLIN D1 protein and increased the activity of caspase-3/7, which in turn led to the degradation of PARP. In animals, SKI-I but not SKI-II retarded melanoma growth by 25-40%. Thus, targeting SPHK1 using siRNAs or SKI-I has therapeutic potential for melanoma treatment either alone or in combination with other targeted agents. PMID:22236408

  10. Pim-1 kinase expression during murine mammary development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gapter, Leslie A.; School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4234; Magnuson, Nancy S.

    2006-07-07

    Pim-1 kinase phosphorylates substrates whose activities are linked to proliferation, survival, differentiation, and apoptosis. Although pim-1 is induced by hormones and cytokines, the hormonal control and contribution of Pim-1 to mammary gland development have not been evaluated. We examined Pim-1 expression in mammary cell lines, investigated whether Pim-1 levels could be altered in breast epithelia by mammogenic hormones, and evaluated Pim-1 expression during mammary development. We found that Pim-1 was elevated in most mammary carcinoma cell lines and progesterone increased Pim-1 protein to some extent in non-tumorigenic mammary epithelia. Pim-1 expression in situ was consistent with the documented profile ofmore » progesterone activity in mouse mammary glands. Pim-1 nuclear localization correlated with cytoplasmic distribution for its substrate, p21{sup CIP/Waf1}, and we found that Pim-1 and p21 associate in vitro. Our results suggest that Pim-1 expression may be regulated by progesterone during mammary development and Pim-1 associates with p21 in mammary epithelial cells.« less

  11. Rescue Manual. Module 6.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Instructional Materials Lab.

    This learner manual for rescuers covers the current techniques or practices required in the rescue service. The sixth of 10 modules contains 4 chapters: (1) industrial rescue; (2) rescue from a confined space; (3) extrication from heavy equipment; and (4) rescue operations involving elevators. Key points, an introduction, and conclusion accompany…

  12. CD40 agonist converting CTL exhaustion via the activation of the mTORC1 pathway enhances PD-1 antagonist action in rescuing exhausted CTLs in chronic infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Aizhang; Wang, Rong; Department of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan

    Expansion of PD-1-expressing CD8{sup +} cytotoxic T lymphocytes (CTLs) and associated CTL exhaustion are chief issues for ineffective virus-elimination in chronic infectious diseases. PD-1 blockade using antagonistic anti-PD-L1 antibodies results in a moderate conversion of CTL exhaustion. We previously demonstrated that CD40L signaling of ovalbumin (OVA)-specific vaccine, OVA-Texo, converts CTL exhaustion via the activation of the mTORC1 pathway in OVA-expressing adenovirus (AdVova)-infected B6 mice showing CTL inflation and exhaustion. Here, we developed AdVova-infected B6 and transgenic CD11c-DTR (termed AdVova-B6 and AdVova-CD11c-DTR) mice with chronic infection, and assessed a potential effect of CD40 agonist on the conversion of CTL exhaustion andmore » on a potential enhancement of PD-1 antagonist action in rescuing exhausted CTLs in our chronic infection models. We demonstrate that a single dose of anti-CD40 alone can effectively convert CTL exhaustion by activating the mTORC1 pathway, leading to CTL proliferation, up-regulation of an effector-cytokine IFN-γ and the cytolytic effect in AdVova-B6 mice. Using anti-CD4 antibody and diphtheria toxin (DT) to deplete CD4{sup +} T-cells and dendritic cells (DCs), we discovered that the CD40 agonist-induced conversion in AdVova-B6 and AdVova-CD11c-DTR mice is dependent upon host CD4{sup +} T-cell and DC involvements. Moreover, CD40 agonist significantly enhances PD-1 antagonist effectiveness in rescuing exhausted CTLs in chronic infection. Taken together, our data demonstrate the importance of CD40 signaling in the conversion of CTL exhaustion and its ability to enhance PD-1 antagonist action in rescuing exhausted CTLs in chronic infection. Therefore, our findings may positively impact the design of new therapeutic strategies for chronic infectious diseases. - Highlights: • Anti-CD40 agonistic Ab can convert CTL exhaustion in chronically infected mice. • The conversion relies on the activation of the mTORC1

  13. Receptor for Activated C-Kinase 1 (PfRACK1) is required for Plasmodium falciparum intra-erythrocytic proliferation.

    PubMed

    Blomqvist, Karin; DiPetrillo, Christen; Streva, Vincent A; Pine, Stewart; Dvorin, Jeffrey D

    2017-01-01

    Emerging resistance to current anti-malarials necessitates a more detailed understanding of the biological processes of Plasmodium falciparum proliferation, thus allowing identification of new drug targets. The well-conserved protein Receptor for Activated C-Kinase 1 (RACK1) was originally identified in mammalian cells as an anchoring protein for protein kinase C (PKC) and has since been shown to be important for cell migration, cytokinesis, transcription, epigenetics, and protein translation. The P. falciparum ortholog, PfRACK1, is expressed in blood stages of the parasite and is diffusely localized in the parasite cytoplasm. Using a destabilizing domain to allow inducible knockdown of the endogenous protein level, we evaluated the requirement for PfRACK1 during blood-stage replication. Following destabilization, the parasites demonstrate a nearly complete growth arrest at the trophozoite stage. The essential nature of PfRACK1 suggests that the protein itself or the pathways regulated by the protein are potential targets for novel anti-malarial therapeutics. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Small-molecule kinase inhibitors provide insight into Mps1 cell cycle function.

    PubMed

    Kwiatkowski, Nicholas; Jelluma, Nannette; Filippakopoulos, Panagis; Soundararajan, Meera; Manak, Michael S; Kwon, Mijung; Choi, Hwan Geun; Sim, Taebo; Deveraux, Quinn L; Rottmann, Sabine; Pellman, David; Shah, Jagesh V; Kops, Geert J P L; Knapp, Stefan; Gray, Nathanael S

    2010-05-01

    Mps1, a dual-specificity kinase, is required for the proper functioning of the spindle assembly checkpoint and for the maintenance of chromosomal stability. As Mps1 function has been implicated in numerous phases of the cell cycle, the development of a potent, selective small-molecule inhibitor of Mps1 should facilitate dissection of Mps1-related biology. We describe the cellular effects and Mps1 cocrystal structures of new, selective small-molecule inhibitors of Mps1. Consistent with RNAi studies, chemical inhibition of Mps1 leads to defects in Mad1 and Mad2 establishment at unattached kinetochores, decreased Aurora B kinase activity, premature mitotic exit and gross aneuploidy, without any evidence of centrosome duplication defects. However, in U2OS cells having extra centrosomes (an abnormality found in some cancers), Mps1 inhibition increases the frequency of multipolar mitoses. Lastly, Mps1 inhibitor treatment resulted in a decrease in cancer cell viability.

  15. Novel Mps1 Kinase Inhibitors with Potent Antitumor Activity.

    PubMed

    Wengner, Antje M; Siemeister, Gerhard; Koppitz, Marcus; Schulze, Volker; Kosemund, Dirk; Klar, Ulrich; Stoeckigt, Detlef; Neuhaus, Roland; Lienau, Philip; Bader, Benjamin; Prechtl, Stefan; Raschke, Marian; Frisk, Anna-Lena; von Ahsen, Oliver; Michels, Martin; Kreft, Bertolt; von Nussbaum, Franz; Brands, Michael; Mumberg, Dominik; Ziegelbauer, Karl

    2016-04-01

    Monopolar spindle 1 (Mps1) has been shown to function as the key kinase that activates the spindle assembly checkpoint (SAC) to secure proper distribution of chromosomes to daughter cells. Here, we report the structure and functional characterization of two novel selective Mps1 inhibitors, BAY 1161909 and BAY 1217389, derived from structurally distinct chemical classes. BAY 1161909 and BAY 1217389 inhibited Mps1 kinase activity with IC50 values below 10 nmol/L while showing an excellent selectivity profile. In cellular mechanistic assays, both Mps1 inhibitors abrogated nocodazole-induced SAC activity and induced premature exit from mitosis ("mitotic breakthrough"), resulting in multinuclearity and tumor cell death. Both compounds efficiently inhibited tumor cell proliferation in vitro (IC50 nmol/L range). In vivo, BAY 1161909 and BAY 1217389 achieved moderate efficacy in monotherapy in tumor xenograft studies. However, in line with its unique mode of action, when combined with paclitaxel, low doses of Mps1 inhibitor reduced paclitaxel-induced mitotic arrest by the weakening of SAC activity. As a result, combination therapy strongly improved efficacy over paclitaxel or Mps1 inhibitor monotreatment at the respective MTDs in a broad range of xenograft models, including those showing acquired or intrinsic paclitaxel resistance. Both Mps1 inhibitors showed good tolerability without adding toxicity to paclitaxel monotherapy. These preclinical findings validate the innovative concept of SAC abrogation for cancer therapy and justify clinical proof-of-concept studies evaluating the Mps1 inhibitors BAY 1161909 and BAY 1217389 in combination with antimitotic cancer drugs to enhance their efficacy and potentially overcome resistance. Mol Cancer Ther; 15(4); 583-92. ©2016 AACR. ©2016 American Association for Cancer Research.

  16. Anti-apoptotic genes Bcl-2 and Bcl-xL overexpression can block iridovirus serine/threonine kinase-induced Bax/mitochondria-mediated cell death in GF-1 cells.

    PubMed

    Reshi, Latif; Wang, Hua-Ven; Hui, Cho-Fat; Su, Yu-Chin; Hong, Jiann-Ruey

    2017-02-01

    Although serine/threonine (ST) kinase is known to induce host cell death in GF-1 cells, it remains unclear how ST kinase induces mitochondrial function loss. In the present study, we addressed the issue of mitochondrial function loss by determining whether the Bcl-2 family members Bcl-2 and Bcl-xL can prevent ST kinase-induced cell death activity via interacting with the pro-apoptotic gene Bax. Grouper fin cells (GF-1) carrying EGFP-Bal-xL and EGFP-Bcl-2 fused genes were selected, established in cell culture, and used to examine the involvement of Bcl-2 and Bcl-xL overexpression in protection of GF-1 cells from the effects of the giant sea perch iridovirus (GSIV) ST kinase gene. Using the TUNEL assay, we found that EGFP-Bcl-2 and EGFP-Bcl-xL reduced GSIV ST kinase-induced apoptosis to 20% all at 24 h and 48 h post-transfection (pt). Also, Bcl-2 and Bcl-xL substantially reduced the percentage of cells with GSIV ST kinase-induced loss of mitochondrial membrane potential (Δψps) at 24 and 48 hpt, respectively, and this reduction correlated with a 30% and 50% enhancement of host cell viability at 24 and 48 hpt as compared with vector control. Moreover, analysis of the effect of Bcl-2 and Bcl-xL interaction with Bax targeted to mitochondria during ST kinase expression at 48 hpt found that Bcl-2 and Bcl-xL also interacted with Bax to block cytochrome c release. Finally, Bcl-2 and Bcl-xL overexpression caused blockage of ST kinase function at 48 hpt, which was correlated with preventing caspase-9 and -3 cleavage and activation, thereby blocking downstream death signaling events. Taken together, our results suggest that the ST kinase-induced Bax/mitochondria-mediated cell death pathway can be blocked by the interaction of Bcl-2 and Bcl-xL with Bax to inhibit cytochrome c release during MMP loss. This rescue activity also correlated with inhibition of caspase-9 and -3 activation, thereby enhancing cell viability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Structural and functional characterization of the protein kinase Mps1 in Arabidopsis thaliana.

    PubMed

    de Oliveira, Eduardo Alves Gamosa; Romeiro, Nelilma Correia; Ribeiro, Elane da Silva; Santa-Catarina, Claudete; Oliveira, Antônia Elenir Amâncio; Silveira, Vanildo; de Souza Filho, Gonçalo Apolinário; Venancio, Thiago Motta; Cruz, Marco Antônio Lopes

    2012-01-01

    In eukaryotes, protein kinases catalyze the transfer of a gamma-phosphate from ATP (or GTP) to specific amino acids in protein targets. In plants, protein kinases have been shown to participate in signaling cascades driving responses to environmental stimuli and developmental processes. Plant meristems are undifferentiated tissues that provide the major source of cells that will form organs throughout development. However, non-dividing specialized cells can also dedifferentiate and re-initiate cell division if exposed to appropriate conditions. Mps1 (Monopolar spindle) is a dual-specificity protein kinase that plays a critical role in monitoring the accuracy of chromosome segregation in the mitotic checkpoint mechanism. Although Mps1 functions have been clearly demonstrated in animals and fungi, its role in plants is so far unclear. Here, using structural and biochemical analyses here we show that Mps1 has highly similar homologs in many plant genomes across distinct lineages (e.g. AtMps1 in Arabidopsis thaliana). Several structural features (i.e. catalytic site, DFG motif and threonine triad) are clearly conserved in plant Mps1 kinases. Structural and sequence analysis also suggest that AtMps1 interact with other cell cycle proteins, such as Mad2 and MAPK1. By using a very specific Mps1 inhibitor (SP600125) we show that compromised AtMps1 activity hampers the development of A. thaliana seedlings in a dose-dependent manner, especially in secondary roots. Moreover, concomitant administration of the auxin IAA neutralizes the AtMps1 inhibition phenotype, allowing secondary root development. These observations let us to hypothesize that AtMps1 might be a downstream regulator of IAA signaling in the formation of secondary roots. Our results indicate that Mps1 might be a universal component of the Spindle Assembly Checkpoint machinery across very distant lineages of eukaryotes.

  18. Activation of MTK1/MEKK4 by GADD45 through Induced N-C Dissociation and Dimerization-Mediated trans Autophosphorylation of the MTK1 Kinase Domain▿ †

    PubMed Central

    Miyake, Zenshi; Takekawa, Mutsuhiro; Ge, Qingyuan; Saito, Haruo

    2007-01-01

    The mitogen-activated protein kinase (MAPK) module, composed of a MAPK, a MAPK kinase (MAPKK), and a MAPKK kinase (MAPKKK), is a cellular signaling device that is conserved throughout the eukaryotic world. In mammalian cells, various extracellular stresses activate two major subfamilies of MAPKs, namely, the Jun N-terminal kinases and the p38/stress-activated MAPK (SAPK). MTK1 (also called MEKK4) is a stress-responsive MAPKKK that is bound to and activated by the stress-inducible GADD45 family of proteins (GADD45α/β/γ). Here, we dissected the molecular mechanism of MTK1 activation by GADD45 proteins. The MTK1 N terminus bound to its C-terminal segment, thereby inhibiting the C-terminal kinase domain. This N-C interaction was disrupted by the binding of GADD45 to the MTK1 N-terminal GADD45-binding site. GADD45 binding also induced MTK1 dimerization via a dimerization domain containing a coiled-coil motif, which is essential for the trans autophosphorylation of MTK1 at Thr-1493 in the kinase activation loop. An MTK1 alanine substitution mutant at Thr-1493 has a severely reduced activity. Thus, we conclude that GADD45 binding induces MTK1 N-C dissociation, dimerization, and autophosphorylation at Thr-1493, leading to the activation of the kinase catalytic domain. Constitutively active MTK1 mutants induced the same events, but in the absence of GADD45. PMID:17242196

  19. STOREKEEPER RELATED1/G-Element Binding Protein (STKR1) Interacts with Protein Kinase SnRK11[OPEN

    PubMed Central

    Nietzsche, Madlen; Guerra, Tiziana; Fernie, Alisdair R.

    2018-01-01

    Sucrose nonfermenting related kinase1 (SnRK1) is a conserved energy sensor kinase that regulates cellular adaptation to energy deficit in plants. Activation of SnRK1 leads to the down-regulation of ATP-consuming biosynthetic processes and the stimulation of energy-generating catabolic reactions by transcriptional reprogramming and posttranslational modifications. Although considerable progress has been made during the last years in understanding the SnRK1 signaling pathway, many of its components remain unidentified. Here, we show that the catalytic α-subunits KIN10 and KIN11 of the Arabidopsis (Arabidopsis thaliana) SnRK1 complex interact with the STOREKEEPER RELATED1/G-Element Binding Protein (STKR1) inside the plant cell nucleus. Overexpression of STKR1 in transgenic Arabidopsis plants led to reduced growth, a delay in flowering, and strongly attenuated senescence. Metabolite profiling revealed that the transgenic lines exhausted their carbohydrates during the dark period to a greater extent than the wild type and accumulated a range of amino acids. At the global transcriptome level, genes affected by STKR1 overexpression were broadly associated with systemic acquired resistance, and transgenic plants showed enhanced resistance toward a virulent strain of the biotrophic oomycete pathogen Hyaloperonospora arabidopsidis Noco2. We discuss a possible connection of STKR1 function, SnRK1 signaling, and plant immunity. PMID:29192025

  20. Maintaining glycogen synthase kinase-3 activity is critical for mTOR kinase inhibitors to inhibit cancer cell growth

    PubMed Central

    Koo, Junghui; Yue, Ping; Gal, Anthony A.; Khuri, Fadlo R.; Sun, Shi-Yong

    2014-01-01

    mTOR kinase inhibitors which target both mTORC1 and mTORC2 are being evaluated in cancer clinical trials. Here we report that glycogen synthase kinase-3 (GSK3) is a critical determinant for the therapeutic response to this class of experimental drugs. Pharmacological inhibition of GSK3 antagonized their suppressive effects on the growth of cancer cells similarly to genetic attenuation of GSK3. Conversely, expression of a constitutively activated form of GSK3β sensitized cancer cells to mTOR inhibition. Consistent with these findings, higher basal levels of GSK3 activity in a panel of human lung cancer cell lines correlated with more efficacious responses. Mechanistic investigations showed that mTOR kinase inhibitors reduced cyclin D1 levels in a GSK3β-dependent manner, independent of their effects on suppressing mTORC1 signaling and cap binding. Notably, selective inhibition of mTORC2 triggered proteasome-mediated cyclin D1 degradation, suggesting that mTORC2 blockade is responsible for GSK3-dependent reduction of cyclin D1. Silencing expression of the ubiquitin E3 ligase FBX4 rescued this reduction, implicating FBX4 in mediating this effect of mTOR inhibition. Together, our findings define a novel mechanism by which mTORC2 promotes cell growth, with potential implications for understanding the clinical action of mTOR kinase inhibitors. PMID:24626091

  1. Maintaining glycogen synthase kinase-3 activity is critical for mTOR kinase inhibitors to inhibit cancer cell growth.

    PubMed

    Koo, Junghui; Yue, Ping; Gal, Anthony A; Khuri, Fadlo R; Sun, Shi-Yong

    2014-05-01

    mTOR kinase inhibitors that target both mTORC1 and mTORC2 are being evaluated in cancer clinical trials. Here, we report that glycogen synthase kinase-3 (GSK3) is a critical determinant for the therapeutic response to this class of experimental drugs. Pharmacologic inhibition of GSK3 antagonized their suppressive effects on the growth of cancer cells similarly to genetic attenuation of GSK3. Conversely, expression of a constitutively activated form of GSK3β sensitized cancer cells to mTOR inhibition. Consistent with these findings, higher basal levels of GSK3 activity in a panel of human lung cancer cell lines correlated with more efficacious responses. Mechanistic investigations showed that mTOR kinase inhibitors reduced cyclin D1 levels in a GSK3β-dependent manner, independent of their effects on suppressing mTORC1 signaling and cap binding. Notably, selective inhibition of mTORC2 triggered proteasome-mediated cyclin D1 degradation, suggesting that mTORC2 blockade is responsible for GSK3-dependent reduction of cyclin D1. Silencing expression of the ubiquitin E3 ligase FBX4 rescued this reduction, implicating FBX4 in mediating this effect of mTOR inhibition. Together, our findings define a novel mechanism by which mTORC2 promotes cell growth, with potential implications for understanding the clinical action of mTOR kinase inhibitors. ©2014 AACR.

  2. [Protein kinase A inhibitor H-89 blocks polyploidization of SP600125-induced CMK cells by regulating phosphorylation of ribosomal protein S6 kinase 1].

    PubMed

    Zhao, Song; Yang, Jingang; Li, Changling; Xing, Sining; Yu, Ying; Liu, Shuo; Pu, Feifei; Ma, Dongchu

    2016-10-01

    Objective To investigate the regulatory effect of post-translation modification of ribosomal protein S6 kinase 1 (S6K1) on the polyploidization of megakaryocytes. Methods SP600125, a c-Jun N-terminal kinase (JNK) inhibitor, and H-89, a cAMP-dependent protein kinase (PKA) inhibitor, were used to treat CMK cells separately or in combination. With propidium iodide (PI) to dye DNA in the treated cells, the relative DNA content was detected by flow cytometry, and then the DNA polyploidy was analyzed. The change of expression and phosphorylation of ribosomal protein S6 kinase 1 (S6K1), an important mammalian target of rapamycin (mTOR) downstream target molecule, was analyzed by Western blotting. Molecular docking study and kinase activity assay were performed to analyze the combination of H-89 with S6K1 and the effect of H-89 on the activity of S6K1 kinase. Results SP600125 induced CMK cell polyploidization in a time-dependent and dose-dependent manner. At the same time, it increased the phosphorylation of S6K1 at Thr421/Ser424 and decreased the phosphorylation of S6K1 at Thr389. H-89 not only blocked polyploidization, but also decreased the phosphorylation of S6K1 at Thr421/Ser424 and increased the phosphorylation of S6K1 at Thr389. Molecular docking and kinase activity assay showed that H-89 occupied the ATP binding sites of S6K1 and inhibited its activity. Noticeably, both H-89 and SP600125 inhibited the activity of PKA. Moreover, the two drugs further inhibited the activity of PKA when used together. Therefore, these data indicated that H-89 blocked the SP600125-induced polyploidization of CMK cells mainly by changing S6K1 phosphorylation state, rather than its inhibitory effect on PKA. Conclusion H-89 can block the polyploidization of SP600125-induced CMK cells by regulating S6K1 phosphorylation state.

  3. Oxidative and ER stress-dependent ASK1 activation in steatotic hepatocytes and Kupffer cells sensitizes mice fatty liver to ischemia/reperfusion injury.

    PubMed

    Imarisio, Chiara; Alchera, Elisa; Bangalore Revanna, Chandrashekar; Valente, Guido; Follenzi, Antonia; Trisolini, Elena; Boldorini, Renzo; Carini, Rita

    2017-11-01

    Steatosis intensifies hepatic ischemia/reperfusion (I/R) injury increasing hepatocyte damage and hepatic inflammation. This study evaluates if this process is associated to a differential response of steatotic hepatocytes (HP) and Kupffer cells (KC) to I/R injury and investigates the molecular mechanisms involved. Control or steatotic (treated with 50 μmol palmitic acid, PA) mouse HP or KC were exposed to hypoxia/reoxygenation (H/R). C57BL/6 mice fed 9 week with control or High Fat diet underwent to partial hepatic IR. PA increased H/R damage of HP and further activated the ASK1-JNK axis stimulated by ER stress during H/R. PA also induced the production of oxidant species (OS), and OS prevention nullified the capacity of PA to increase H/R damage and ASK1/JNK stimulation. ASK1 inhibition prevented JNK activation and entirely protected HP damage. In KC, PA directly activated ER stress, ASK1 and p38 MAPK and increased H/R damage. However, in contrast to HP, ASK1 inhibition further increased H/R damage by preventing p38 MAPK activation. In mice liver, steatosis induced the expression of activated ASK1 in only KC, whereas I/R exposure of steatotic liver activated ASK1 expression also in HP. "In vivo", ASK1 inhibition prevented ASK1, JNK and p38 MAPK activation and protected I/R damage and expression of inflammatory markers. Lipids-induced ASK1 stimulation differentially affects HP and KC by promoting cytotoxic or protective signals. ASK1 increases H/R damage of HP by stimulating JNK and protects KC activating p38MAPK. These data support the potentiality of the therapeutic employment of ASK1 inhibitors that can antagonize the damaging effects of I/R upon fatty liver surgery by the contextual reduction of HP death and of KC-mediated reactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. The Akt1-eNOS Axis Illustrates the Specificity of Kinase-Substrate Relationships in Vivo

    PubMed Central

    Schleicher, Michael; Yu, Jun; Murata, Takahisa; Derakhshan, Berhad; Atochin, Dimitriy; Qian, Li; Kashiwagi, Satoshi; Lorenzo, Annarita Di; Harrison, Kenneth D.; Huang, Paul L.; Sessa, William C.

    2016-01-01

    Akt1 is critical for many in vivo functions; however, the cell-specific substrates responsible remain to be defined. Here, we examine the importance of endothelial nitric oxide synthase (eNOS) as an Akt1 substrate by generating Akt1-deficient mice (Akt1−/− mice) carrying knock-in mutations (serine to aspartate or serine to alanine substitutions) of the critical Akt1 phosphorylation site on eNOS (serine 1176) that render the enzyme “constitutively active” or “less active.” The eNOS mutations did not influence several phenotypes in Akt1−/− mice; however, the defective postnatal angiogenesis characteristic of Akt1−/− mice was rescued by crossing the Akt1−/− mice with mice carrying the constitutively active form of eNOS, but not by crossing with mice carrying the less active eNOS mutant. This genetic rescue resulted in the stabilization of hypoxia-inducible factor 1α (HIF-1α) and increased production of HIF-1α–responsive genes in vivo and in vitro. Thus, Akt1 regulates angiogenesis largely through phosphorylation of eNOS and NO-dependent signaling. PMID:19654415

  5. Structure-function similarities between a plant receptor-like kinase and the human interleukin-1 receptor-associated kinase-4.

    PubMed

    Klaus-Heisen, Dörte; Nurisso, Alessandra; Pietraszewska-Bogiel, Anna; Mbengue, Malick; Camut, Sylvie; Timmers, Ton; Pichereaux, Carole; Rossignol, Michel; Gadella, Theodorus W J; Imberty, Anne; Lefebvre, Benoit; Cullimore, Julie V

    2011-04-01

    Phylogenetic analysis has previously shown that plant receptor-like kinases (RLKs) are monophyletic with respect to the kinase domain and share an evolutionary origin with the animal interleukin-1 receptor-associated kinase/Pelle-soluble kinases. The lysin motif domain-containing receptor-like kinase-3 (LYK3) of the legume Medicago truncatula shows 33% amino acid sequence identity with human IRAK-4 over the kinase domain. Using the structure of this animal kinase as a template, homology modeling revealed that the plant RLK contains structural features particular to this group of kinases, including the tyrosine gatekeeper and the N-terminal extension α-helix B. Functional analysis revealed the importance of these conserved features for kinase activity and suggests that kinase activity is essential for the biological role of LYK3 in the establishment of the root nodule nitrogen-fixing symbiosis with rhizobia bacteria. The kinase domain of LYK3 has dual serine/threonine and tyrosine specificity, and mass spectrometry analysis identified seven serine, eight threonine, and one tyrosine residue as autophosphorylation sites in vitro. Three activation loop serine/threonine residues are required for biological activity, and molecular dynamics simulations suggest that Thr-475 is the prototypical phosphorylated residue that interacts with the conserved arginine in the catalytic loop, whereas Ser-471 and Thr-472 may be secondary sites. A threonine in the juxtamembrane region and two threonines in the C-terminal lobe of the kinase domain are important for biological but not kinase activity. We present evidence that the structure-function similarities that we have identified between LYK3 and IRAK-4 may be more widely applicable to plant RLKs in general.

  6. Selective inhibition of Sarcocystis neurona calcium-dependent protein kinase 1 for equine protozoal myeloencephalitis therapy.

    PubMed

    Ojo, Kayode K; Dangoudoubiyam, Sriveny; Verma, Shiv K; Scheele, Suzanne; DeRocher, Amy E; Yeargan, Michelle; Choi, Ryan; Smith, Tess R; Rivas, Kasey L; Hulverson, Matthew A; Barrett, Lynn K; Fan, Erkang; Maly, Dustin J; Parsons, Marilyn; Dubey, Jitender P; Howe, Daniel K; Van Voorhis, Wesley C

    2016-12-01

    Sarcocystis neurona is the most frequent cause of equine protozoal myeloencephalitis, a debilitating neurological disease of horses that can be difficult to treat. We identified SnCDPK1, the S. neurona homologue of calcium-dependent protein kinase 1 (CDPK1), a validated drug target in Toxoplasma gondii. SnCDPK1 shares the glycine "gatekeeper" residue of the well-characterized T. gondii enzyme, which allows the latter to be targeted by bumped kinase inhibitors. This study presents detailed molecular and phenotypic evidence that SnCDPK1 can be targeted for rational drug development. Recombinant SnCDPK1 was tested against four bumped kinase inhibitors shown to potently inhibit both T. gondii (Tg) CDPK1 and T. gondii tachyzoite growth. SnCDPK1 was inhibited by low nanomolar concentrations of these BKIs and S. neurona growth was inhibited at 40-120nM concentrations. Thermal shift assays confirmed these bumped kinase inhibitors bind CDPK1 in S. neurona cell lysates. Treatment with bumped kinase inhibitors before or after invasion suggests that bumped kinase inhibitors interfere with S. neurona mammalian host cell invasion in the 0.5-2.5μM range but interfere with intracellular division at 2.5μM. In vivo proof-of-concept experiments were performed in a murine model of S. neurona infection. The experimental infected groups treated for 30days with compound BKI-1553 (n=10 mice) had no signs of disease, while the infected control group had severe signs and symptoms of infection. Elevated antibody responses were found in 100% of control infected animals, but only 20% of BKI-1553 treated infected animals. Parasites were found in brain tissues of 100% of the control infected animals, but only in 10% of the BKI-1553 treated animals. The bumped kinase inhibitors used in these assays have been chemically optimized for potency, selectivity and pharmacokinetic properties, and hence are good candidates for treatment of equine protozoal myeloencephalitis. Copyright © 2016

  7. Molecular Physiology of SPAK and OSR1: Two Ste20-Related Protein Kinases Regulating Ion Transport

    PubMed Central

    Gagnon, Kenneth B.; Delpire, Eric

    2015-01-01

    SPAK (Ste20-related proline alanine rich kinase) and OSR1 (oxidative stress responsive kinase) are members of the germinal center kinase VI sub-family of the mammalian Ste20 (Sterile20)-related protein kinase family. Although there are 30 enzymes in this protein kinase family, their conservation across the fungi, plant and animal kingdom confirms their evolutionary importance. Already, a large volume of work has accumulated on the tissue distribution, binding partners, signaling cascades, and physiological roles of mammalian SPAK and OSR1 in multiple organ systems. After reviewing this basic information, we will examine newer studies that demonstrate the pathophysiological consequences to SPAK and/or OSR1 disruption, discuss the development and analysis of genetically-engineered mouse models, and address the possible role these serine/threonine kinases might have in cancer proliferation and migration. PMID:23073627

  8. Rho Associated Coiled-Coil Kinase-1 Regulates Collagen-Induced Phosphatidylserine Exposure in Platelets

    PubMed Central

    Dasgupta, Swapan K.; Le, Anhquyen; Haudek, Sandra B.; Entman, Mark L.; Rumbaut, Rolando E.; Thiagarajan, Perumal

    2013-01-01

    Background The transbilayer movement of phosphatidylserine mediates the platelet procoagulant activity during collagen stimulation. The Rho-associated coiled-coil kinase (ROCK) inhibitor Y-27632 inhibits senescence induced but not activation induced phosphatidylserine exposure. To investigate further the specific mechanisms, we now utilized mice with genetic deletion of the ROCK1 isoform. Methods and Results ROCK1-deficient mouse platelets expose significantly more phosphatidylserine and generate more thrombin upon activation with collagen compared to wild-type platelets. There were no significant defects in platelet shape change, aggregation, or calcium response compared to wild-type platelets. Collagen-stimulated ROCK1-deficient platelets also displayed decreased phosphorylation levels of Lim Kinase-1 and cofilin-1. However, there was no reduction in phosphorylation levels of myosin phosphatase subunit-1 (MYPT1) or myosin light chain (MLC). In an in vivo light/dye-induced endothelial injury/thrombosis model, ROCK1-deficient mice presented a shorter occlusion time in cremasteric venules when compared to wild-type littermates (3.16 ± 1.33 min versus 6.6 ± 2.6 min; p = 0.01). Conclusions These studies define ROCK1 as a new regulator for collagen-induced phosphatidylserine exposure in platelets with functional consequences on thrombosis. This effect was downstream of calcium signaling and was mediated by Lim Kinase-1 / cofilin-1-induced cytoskeletal changes. PMID:24358370

  9. Role of ERK1/2 kinase in the expression of iNOS by NDMA in human neutrophils.

    PubMed

    Ratajczak-Wrona, Wioletta; Jablonska, Ewa; Garley, Marzena; Jablonski, Jakub; Radziwon, Piotr

    2013-01-01

    Potential role of ERK1/2 kinase in conjunction with p38 in the regulation of inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production, and superoxide anion generation by human neutrophils (PMNs) exposed to N-nitrosodimethylamine (NDMA) was determined. Increased synthesis of NO due to the involvement of iNOS in neutrophils exposed to NDMA was observed. In addition, intensified activation of ERK1/2 and p38 kinases was determined in these cells. Inhibition of kinase regulated by extracellular signals (ERK1/2) pathway, in contrast to p38 pathway, led to an increased production of NO and expression of iNOS in PMNs. Moreover, as a result of inhibition of ERK1/2 pathway, a decreased activation of p38 kinase was observed in neutrophils, while inhibition of p38 kinase did not affect activation of ERK1/2 pathway in these cells. An increased ability to release superoxide anion by the studied PMNs was observed, which decreased after ERK1/2 pathway inhibition. In conclusion, in human neutrophils, ERK1/2 kinase is not directly involved in the regulation of iNOS and NO production induced by NDMA; however, the kinase participates in superoxide anion production in these cells.

  10. Evolution of the herpes thymidine kinase: identification and comparison of the equine herpesvirus 1 thymidine kinase gene reveals similarity to a cell-encoded thymidylate kinase.

    PubMed Central

    Robertson, G R; Whalley, J M

    1988-01-01

    We have identified the equine herpesvirus 1 (EHV-1) thymidine kinase gene (TK) by DNA-mediated transformation and by DNA sequencing. Alignment of the amino acid sequence of the EHV-1 TK with the TKs from 3 other herpesviruses revealed regions of homology, some of which correspond to the previously identified substrate binding sites, while others have as yet, no assigned function. In particular, the strict conservation of an aspartate within the proposed nucleoside binding site suggests a role in ATP binding for this residue. Comparison of 5 herpes TKs with the thymidylate kinase of yeast revealed significant similarity which was strongest in those regions important to catalytic activity of the herpes TKs, and, therefore we propose that the herpes TK may be derived from a cellular thymidylate kinase. The implications for the evolution of enzyme activities within a pathway of nucleotide metabolism are discussed. PMID:2849761

  11. ALDH2 protects against high fat diet-induced obesity cardiomyopathy and defective autophagy: role of CaM kinase II, histone H3K9 methyltransferase SUV39H, Sirt1, and PGC-1α deacetylation.

    PubMed

    Wang, Shuyi; Wang, Cong; Turdi, Subat; Richmond, Kacy L; Zhang, Yingmei; Ren, Jun

    2018-06-01

    Uncorrected obesity contributes to cardiac remodeling and contractile dysfunction although the underlying mechanism remains poorly understood. Mitochondrial aldehyde dehydrogenase (ALDH2) is a mitochondrial enzyme with some promises in a number of cardiovascular diseases. This study was designed to evaluate the impact of ALDH2 on cardiac remodeling and contractile property in high fat diet-induced obesity. Wild-type (WT) and ALDH2 transgenic mice were fed low (10% calorie from fat) or high (45% calorie from fat) fat diet for 5 months prior to the assessment of cardiac geometry and function using echocardiography, IonOptix system, Lectin, and Masson Trichrome staining. Western blot analysis was employed to evaluate autophagy, CaM kinase II, PGC-1α, histone H3K9 methyltransferase SUV39H, and Sirt-1. Our data revealed that high fat diet intake promoted weight gain, cardiac remodeling (hypertrophy and interstitial fibrosis, p < 0.0001) and contractile dysfunction (reduced fractional shortening (p < 0.0001), cardiomyocyte function (p < 0.0001), and intracellular Ca 2+ handling (p = 0.0346)), mitochondrial injury (elevated O 2 - levels, suppressed PGC-1α, and enhanced PGC-1α acetylation, p < 0.0001), elevated SUV39H, suppressed Sirt1, autophagy and phosphorylation of AMPK and CaM kinase II, the effects of which were negated by ALDH2 (p ≤ 0.0162). In vitro incubation of the ALDH2 activator Alda-1 rescued against palmitic acid-induced changes in cardiomyocyte function, the effect of which was nullified by the Sirt-1 inhibitor nicotinamide and the CaM kinase II inhibitor KN-93 (p < 0.0001). The SUV39H inhibitor chaetocin mimicked Alda-1-induced protection again palmitic acid (p < 0.0001). Examination in overweight human revealed an inverse correlation between diastolic cardiac function and ALDH2 gene mutation (p < 0.05). Taken together, these data suggest that ALDH2 serves as an indispensable factor against cardiac anomalies in diet

  12. Differential Roles of the Glycogen-Binding Domains of β Subunits in Regulation of the Snf1 Kinase Complex▿

    PubMed Central

    Mangat, Simmanjeet; Chandrashekarappa, Dakshayini; McCartney, Rhonda R.; Elbing, Karin; Schmidt, Martin C.

    2010-01-01

    Members of the AMP-activated protein kinase family, including the Snf1 kinase of Saccharomyces cerevisiae, are activated under conditions of nutrient stress. AMP-activated protein kinases are heterotrimeric complexes composed of a catalytic α subunit and regulatory β and γ subunits. In this study, the role of the β subunits in the regulation of Snf1 activity was examined. Yeasts express three isoforms of the AMP-activated protein kinase consisting of Snf1 (α), Snf4 (γ), and one of three alternative β subunits, either Sip1, Sip2, or Gal83. The Gal83 isoform of the Snf1 complex is the most abundant and was analyzed in the greatest detail. All three β subunits contain a conserved domain referred to as the glycogen-binding domain. The deletion of this domain from Gal83 results in a deregulation of the Snf1 kinase, as judged by a constitutive activity independent of glucose availability. In contrast, the deletion of this homologous domain from the Sip1 and Sip2 subunits had little effect on Snf1 kinase regulation. Therefore, the different Snf1 kinase isoforms are regulated through distinct mechanisms, which may contribute to their specialized roles in different stress response pathways. In addition, the β subunits are subjected to phosphorylation. The responsible kinases were identified as being Snf1 and casein kinase II. The significance of the phosphorylation is unclear since the deletion of the region containing the phosphorylation sites in Gal83 had little effect on the regulation of Snf1 in response to glucose limitation. PMID:19897735

  13. Differential roles of the glycogen-binding domains of beta subunits in regulation of the Snf1 kinase complex.

    PubMed

    Mangat, Simmanjeet; Chandrashekarappa, Dakshayini; McCartney, Rhonda R; Elbing, Karin; Schmidt, Martin C

    2010-01-01

    Members of the AMP-activated protein kinase family, including the Snf1 kinase of Saccharomyces cerevisiae, are activated under conditions of nutrient stress. AMP-activated protein kinases are heterotrimeric complexes composed of a catalytic alpha subunit and regulatory beta and gamma subunits. In this study, the role of the beta subunits in the regulation of Snf1 activity was examined. Yeasts express three isoforms of the AMP-activated protein kinase consisting of Snf1 (alpha), Snf4 (gamma), and one of three alternative beta subunits, either Sip1, Sip2, or Gal83. The Gal83 isoform of the Snf1 complex is the most abundant and was analyzed in the greatest detail. All three beta subunits contain a conserved domain referred to as the glycogen-binding domain. The deletion of this domain from Gal83 results in a deregulation of the Snf1 kinase, as judged by a constitutive activity independent of glucose availability. In contrast, the deletion of this homologous domain from the Sip1 and Sip2 subunits had little effect on Snf1 kinase regulation. Therefore, the different Snf1 kinase isoforms are regulated through distinct mechanisms, which may contribute to their specialized roles in different stress response pathways. In addition, the beta subunits are subjected to phosphorylation. The responsible kinases were identified as being Snf1 and casein kinase II. The significance of the phosphorylation is unclear since the deletion of the region containing the phosphorylation sites in Gal83 had little effect on the regulation of Snf1 in response to glucose limitation.

  14. Target of Rapamycin Regulates Development and Ribosomal RNA Expression through Kinase Domain in Arabidopsis1[W][OA

    PubMed Central

    Ren, Maozhi; Qiu, Shuqing; Venglat, Prakash; Xiang, Daoquan; Feng, Li; Selvaraj, Gopalan; Datla, Raju

    2011-01-01

    Target of rapamycin (TOR) is a central regulator of cell growth, cell death, nutrition, starvation, hormone, and stress responses in diverse eukaryotes. However, very little is known about TOR signaling and the associated functional domains in plants. We have taken a genetic approach to dissect TOR functions in Arabidopsis (Arabidopsis thaliana) and report here that the kinase domain is essential for the role of TOR in embryogenesis and 45S rRNA expression. Twelve new T-DNA insertion mutants, spanning 14.2 kb of TOR-encoding genomic region, have been characterized. Nine of these share expression of defective kinase domain and embryo arrest at 16 to 32 cell stage. However, three T-DNA insertion lines affecting FATC domain displayed normal embryo development, indicating that FATC domain was dispensable in Arabidopsis. Genetic complementation showed that the TOR kinase domain alone in tor-10/tor-10 mutant background can rescue early embryo lethality and restore normal development. Overexpression of full-length TOR or kinase domain in Arabidopsis displayed developmental abnormalities in meristem, leaf, root, stem, flowering time, and senescence. We further show that TOR, especially the kinase domain, plays a role in ribosome biogenesis by activating 45S rRNA production. Of the six putative nuclear localization sequences in the kinase domain, nuclear localization sequence 6 was identified to confer TOR nuclear targeting in transient expression assays. Chromatin immunoprecipitation studies revealed that the HEAT repeat domain binds to 45S rRNA promoter and the 5′ external transcribed spacer elements motif. Together, these results show that TOR controls the embryogenesis, postembryonic development, and 45S rRNA production through its kinase domain in Arabidopsis. PMID:21266656

  15. Cathepsins limit macrophage necroptosis through cleavage of Rip1 kinase.

    PubMed

    McComb, Scott; Shutinoski, Bojan; Thurston, Susan; Cessford, Erin; Kumar, Kriti; Sad, Subash

    2014-06-15

    It has recently been shown that programmed necrosis, necroptosis, may play a key role in the development of inflammation. Deciphering the regulation of this pathway within immune cells may therefore have implications in pathology associated with inflammatory diseases. We show that treatment of macrophages with the pan caspase inhibitor (zVAD-FMK) results in both increased phosphorylation and decreased cleavage of receptor interacting protein kinase-1 (Rip1), leading to necroptosis that is dependent on autocrine TNF signaling. Stimulation of cells with TLR agonists such as LPS in the presence of zVAD-FMK also induced Rip1-phosphorylation via a TNFR-independent mechanism. Further examination of Rip1 expression under these stimulatory conditions revealed a regulatory cleavage of Rip1 in macrophages that is not apparently attributable to caspase-8. Instead, we provide novel evidence that cysteine family cathepsins, which are highly abundant in myeloid cells, can also cleave Rip1 kinase. Using small interfering RNA knockdown, specific cathepsin inhibitors, and cell-free cleavage assays, we demonstrate that cysteine cathepsins B and S can directly cleave Rip1. Finally, we demonstrate that only through combined inhibition of cathepsins and caspase-8 could a potent induction of macrophage necroptosis be achieved. These data reveal a novel mechanism of regulation of necroptosis by cathepsins within macrophage cells. Copyright © 2014 by The American Association of Immunologists, Inc.

  16. The Dictyostelium MAP kinase kinase DdMEK1 regulates chemotaxis and is essential for chemoattractant-mediated activation of guanylyl cyclase.

    PubMed Central

    Ma, H; Gamper, M; Parent, C; Firtel, R A

    1997-01-01

    We have identified a MAP kinase kinase (DdMEK1) that is required for proper aggregation in Dictyostelium. Null mutations produce extremely small aggregate sizes, resulting in the formation of slugs and terminal fruiting bodies that are significantly smaller than those of wild-type cells. Time-lapse video microscopy and in vitro assays indicate that the cells are able to produce cAMP waves that move through the aggregation domains. However, these cells are unable to undergo chemotaxis properly during aggregation in response to the chemoattractant cAMP or activate guanylyl cyclase, a known regulator of chemotaxis in Dictyostelium. The activation of guanylyl cyclase in response to osmotic stress is, however, normal. Expression of putative constitutively active forms of DdMEK1 in a ddmek1 null background is capable, at least partially, of complementing the small aggregate size defect and the ability to activate guanylyl cyclase. However, this does not result in constitutive activation of guanylyl cyclase, suggesting that DdMEK1 activity is necessary, but not sufficient, for cAMP activation of guanylyl cyclase. Analysis of a temperature-sensitive DdMEK1 mutant suggests that DdMEK1 activity is required throughout aggregation at the time of guanylyl cyclase activation, but is not essential for proper morphogenesis during the later multicellular stages. The activation of the MAP kinase ERK2, which is essential for chemoattractant activation of adenylyl cyclase, is not affected in ddmek1 null strains, indicating that DdMEK1 does not regulate ERK2 and suggesting that at least two independent MAP kinase cascades control aggregation in Dictyostelium. PMID:9250676

  17. Identification of Elf-1 and B61 as high affinity ligands for the receptor tyrosine kinase MDK1.

    PubMed

    Ciossek, T; Ullrich, A

    1997-01-09

    Mouse Developmental Kinase 1 (MDK1) is a receptor tyrosine kinase of the eck/eph subfamily expressed in a variety of tissues during early mouse embryogenesis. To obtain further insight into the function of MDK1, we determined identity and localisation of its physiological ligand(s). Staining whole embryos with fusion proteins between the extracellular domain of MDK1 and human secreted alkaline phosphatase revealed areas of high receptor binding in the caudal mesencephalon, the frontal neocortex and the limb buds. This staining was sensitive to treatment with phosphatidylinositol-specific phospholipase C. Using Scatchard analysis, high affinity binding of Elf-1 (1.7 x 10(-10) M) and B61 (2.2 x 10(-10) M) towards MDK1 could be demonstrated. However, the transmembrane ligand Lerk2 displayed no measurable affinity for MDK1. Elf-1 and B61 bind to the three full-length MDK1 isoforms with similar dissociation constants. Slightly lower affinities were observed for the two truncated receptors MDK1-Tl and MDK1-T2. The activation of MDK1 with Elf-1 or B61 leads to the rapid autophosphorylation of MDK1 as well as tyrosine phosphorylation of an unknown 62 kDa phosphoprotein in Rat1 cells. These findings implicate MDK1 in patterning processes during early mouse embryogenesis and suggest MDK1 involvement in early organogenesis and midbrain development.

  18. Effect of G Protein–Coupled Receptor Kinase 1 (Grk1) Overexpression on Rod Photoreceptor Cell Viability

    PubMed Central

    Whitcomb, Tiffany; Sakurai, Keisuke; Brown, Bruce M.; Young, Joyce E.; Sheflin, Lowell; Dlugos, Cynthia; Craft, Cheryl M.; Kefalov, Vladimir J.

    2010-01-01

    Purpose. Photoreceptor rhodopsin kinase (Rk, G protein–dependent receptor kinase 1 [Grk1]) phosphorylates light-activated opsins and channels them into an inactive complex with visual arrestins. Grk1 deficiency leads to human retinopathy and heightened susceptibility to light-induced photoreceptor cell death in the mouse. The goal of this study was to determine whether excess Grk1 activity is protective against photoreceptor cell death. Methods. Grk1-overexpressing transgenic mice (Grk1+) were generated by using a bacterial artificial chromosome (BAC) construct containing mouse Grk1, along with its flanking sequences. Quantitative reverse transcription-PCR, immunoblot analysis, immunostaining, and activity assays were combined with electrophysiology and morphometric analysis, to evaluate Grk1 overexpression and its effect on physiologic and morphologic retinal integrity. Morphometry and nucleosome release assays measured differences in resistance to photoreceptor cell loss between control and transgenic mice exposed to intense light. Results. Compared with control animals, the Grk1+ transgenic line had approximately a threefold increase in Grk1 transcript and immunoreactive protein. Phosphorylated opsin immunochemical staining and in vitro phosphorylation assays confirmed proportionately higher Grk1 enzyme activity. Grk1+ mice retained normal rod function, normal retinal appearance, and lacked evidence of spontaneous apoptosis when reared in cyclic light. In intense light, Grk1+ mice showed photoreceptor damage, and their susceptibility was more pronounced than that of control mice with prolonged exposure times. Conclusions. Enhancing visual pigment deactivation does not appear to protect against apoptosis; however, excess flow of opsin into the deactivation pathway may actually increase susceptibility to stress-induced cell death similar to some forms of retinal degeneration. PMID:19834036

  19. p21-activated kinase 1: PAK'ed with potential.

    PubMed

    Ong, Christy C; Jubb, Adrian M; Zhou, Wei; Haverty, Peter M; Harris, Adrian L; Belvin, Marcia; Friedman, Lori S; Koeppen, Hartmut; Hoeflich, Klaus P

    2011-06-01

    The p21-activated kinases (PAKs) are central players in growth factor signaling networks and morphogenetic processes that control proliferation, cell polarity, invasion and actin cytoskeleton organization. This raises the possibility that interfering with PAK activity may produce significant anti-tumor activity. In this perspective, we summarize recent data concerning the contribution of the PAK family member, PAK1, in growth factor signaling and tumorigenesis. We further discuss mechanisms by which inhibition of PAK1 can arrest tumor growth and promote cell apoptosis, and the types of cancers in which PAK1 inhibition may hold promise.

  20. EGFR-SGLT1 interaction does not respond to EGFR modulators, but inhibition of SGLT1 sensitizes prostate cancer cells to EGFR tyrosine kinase inhibitors.

    PubMed

    Ren, Jiangong; Bollu, Lakshmi R; Su, Fei; Gao, Guang; Xu, Lei; Huang, Wei-Chien; Hung, Mien-Chie; Weihua, Zhang

    2013-09-01

    Overexpression of epidermal growth factor receptor (EGFR) is associated with poor prognosis in malignant tumors. Sodium/glucose co-transporter 1 (SGLT1) is an active glucose transporter that is overexpressed in many cancers including prostate cancer. Previously, we found that EGFR interacts with and stabilizes SGLT1 in cancer cells. In this study, we determined the micro-domain of EGFR that is required for its interaction with SGLT1 and the effects of activation/inactivation of EGFR on EGFR-SGLT1 interaction, measured the expression of EGFR and SGLT1 in prostate cancer tissues, and tested the effect of inhibition of SGLT1 on the sensitivity of prostate cancer cells to EGFR tyrosine inhibitors. We found that the autophosphorylation region (978-1210 amino acids) of EGFR was required for its sufficient interaction with SGLT1 and that this interaction was independent of EGFR's tyrosine kinase activity. Most importantly, the EGFR-SGLT1 interaction does not respond to EGFR tyrosine kinase modulators (EGF and tyrosine kinase inhibitors). EGFR and SGLT1 co-localized in prostate cancer tissues, and inhibition of SGLT1 by a SGLT1 inhibitor (Phlorizin) sensitized prostate cancer cells to EGFR inhibitors (Gefitinib and Erlotinib). These data suggest that EGFR in cancer cells can exist as either a tyrosine kinase modulator responsive status or an irresponsive status. SGLT1 is a protein involved in EGFR's functions that are irresponsive to EGFR tyrosine kinase inhibitors and, therefore, the EGFR-SGLT1 interaction might be a novel target for prostate cancer therapy. © 2013 Wiley Periodicals, Inc. This article is a U.S. Government work and is in the public domain in the USA.

  1. Corticosteroids inhibit sphingosine 1-phosphate-induced interleukin-6 secretion from human airway smooth muscle via mitogen-activated protein kinase phosphatase 1-mediated repression of mitogen and stress-activated protein kinase 1.

    PubMed

    Che, Wenchi; Parmentier, Johannes; Seidel, Petra; Manetsch, Melanie; Ramsay, Emma E; Alkhouri, Hatem; Ge, Qi; Armour, Carol L; Ammit, Alaina J

    2014-02-01

    Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid that plays an important proinflammatory role in asthmatic airways. Corticosteroids are first-line antiinflammatories in asthma; however, their repressive effects on S1P-induced cytokine secretion have not been investigated. To address this, our in vitro study reveals the molecular mechanisms by which corticosteroids inhibit S1P-induced IL-6 expression in the pivotal immunomodulatory cell type, airway smooth muscle (ASM). We first uncover the cellular signaling pathways responsible: S1P activates a cyclic adenosine monophosphate/cAMP response-element-binding protein (CREB)/CRE-dependent pathway to induce IL-6 transcription, concomitant with stimulation of the mitogen-activated protein kinase (MAPK) superfamily and downstream mitogen and stress-activated protein kinase 1 (MSK1) and histone H3 phosphorylation. In this way, S1P stimulates parallel signaling pathways to induce IL-6 secretion via CRE-driven transcription of the IL-6 gene promoter in a relaxed chromatin environment achieved through histone H3 phosphorylation. Second, we investigated how corticosteroids mediate their repressive effects. The corticosteroid dexamethasone inhibits S1P-induced IL-6 protein secretion and mRNA expression, but CREB/CRE transrepression, inhibition of IL-6 mRNA stability, or subcellular relocation of MSK1 were not responsible for the repressive effects of dexamethasone. Rather, we show that dexamethasone rapidly induces up-regulation of the MAPK deactivator MAPK phosphatase 1 (MKP-1) and that MKP-1 blocks the MAPK-driven activation of MSK1 and phosphorylation of histone H3. This was confirmed by treatment with triptolide, an inhibitor of MKP-1 up-regulation, where repressive effects of corticosteroids were reversed. Our study reveals the molecular mechanism underlying the antiinflammatory capacity of corticosteroids to repress proinflammatory functions induced by the potent bioactive sphingolipid S1P in the lung.

  2. bFGF Regulates PI3-Kinase-Rac1-JNK Pathway and Promotes Fibroblast Migration in Wound Healing

    PubMed Central

    Kanazawa, Shigeyuki; Fujiwara, Toshihiro; Matsuzaki, Shinsuke; Shingaki, Kenta; Taniguchi, Manabu; Miyata, Shingo; Tohyama, Masaya; Sakai, Yasuo; Yano, Kenji; Hosokawa, Ko; Kubo, Tateki

    2010-01-01

    Fibroblast proliferation and migration play important roles in wound healing. bFGF is known to promote both fibroblast proliferation and migration during the process of wound healing. However, the signal transduction of bFGF-induced fibroblast migration is still unclear, because bFGF can affect both proliferation and migration. Herein, we investigated the effect of bFGF on fibroblast migration regardless of its effect on fibroblast proliferation. We noticed involvement of the small GTPases of the Rho family, PI3-kinase, and JNK. bFGF activated RhoA, Rac1, PI3-kinase, and JNK in cultured fibroblasts. Inhibition of RhoA did not block bFGF-induced fibroblast migration, whereas inhibition of Rac1, PI3-kinase, or JNK blocked the fibroblast migration significantly. PI3-kinase-inhibited cells down-regulated the activities of Rac1 and JNK, and Rac1-inhibited cells down-regulated JNK activity, suggesting that PI3-kinase is upstream of Rac1 and that JNK is downstream of Rac1. Thus, we concluded that PI3-kinase, Rac1, and JNK were essential for bFGF-induced fibroblast migration, which is a novel pathway of bFGF-induced cell migration. PMID:20808927

  3. Oncogenic Receptor Tyrosine Kinases Directly Phosphorylate Focal Adhesion Kinase (FAK) as a Resistance Mechanism to FAK-Kinase Inhibitors.

    PubMed

    Marlowe, Timothy A; Lenzo, Felicia L; Figel, Sheila A; Grapes, Abigail T; Cance, William G

    2016-12-01

    Focal adhesion kinase (FAK) is a major drug target in cancer and current inhibitors targeted to the ATP-binding pocket of the kinase domain have entered clinical trials. However, preliminary results have shown limited single-agent efficacy in patients. Despite these unfavorable data, the molecular mechanisms that drive intrinsic and acquired resistance to FAK-kinase inhibitors are largely unknown. We have demonstrated that receptor tyrosine kinases (RTK) can directly bypass FAK-kinase inhibition in cancer cells through phosphorylation of FAK's critical tyrosine 397 (Y397). We also showed that HER2 forms a direct protein-protein interaction with the FAK-FERM-F1 lobe, promoting direct phosphorylation of Y397. In addition, FAK-kinase inhibition induced two forms of compensatory RTK reprogramming: (i) the rapid phosphorylation and activation of RTK signaling pathways in RTK High cells and (ii) the long-term acquisition of RTKs novel to the parental cell line in RTK Low cells. Finally, HER2 +: cancer cells displayed resistance to FAK-kinase inhibition in 3D growth assays using a HER2 isogenic system and HER2 + cancer cell lines. Our data indicate a novel drug resistance mechanism to FAK-kinase inhibitors whereby HER2 and other RTKs can rescue and maintain FAK activation (pY397) even in the presence of FAK-kinase inhibition. These data may have important ramifications for existing clinical trials of FAK inhibitors and suggest that individual tumor stratification by RTK expression would be important to predict patient response to FAK-kinase inhibitors. Mol Cancer Ther; 15(12); 3028-39. ©2016 AACR. ©2016 American Association for Cancer Research.

  4. The insulin and IGF1 receptor kinase domains are functional dimers in the activated state

    NASA Astrophysics Data System (ADS)

    Cabail, M. Zulema; Li, Shiqing; Lemmon, Eric; Bowen, Mark E.; Hubbard, Stevan R.; Miller, W. Todd

    2015-03-01

    The insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R) are highly related receptor tyrosine kinases with a disulfide-linked homodimeric architecture. Ligand binding to the receptor ectodomain triggers tyrosine autophosphorylation of the cytoplasmic domains, which stimulates catalytic activity and creates recruitment sites for downstream signalling proteins. Whether the two phosphorylated tyrosine kinase domains within the receptor dimer function independently or cooperatively to phosphorylate protein substrates is not known. Here we provide crystallographic, biophysical and biochemical evidence demonstrating that the phosphorylated kinase domains of IR and IGF1R form a specific dimeric arrangement involving an exchange of the juxtamembrane region proximal to the kinase domain. In this dimer, the active position of α-helix C in the kinase N lobe is stabilized, which promotes downstream substrate phosphorylation. These studies afford a novel strategy for the design of small-molecule IR agonists as potential therapeutic agents for type 2 diabetes.

  5. SMALL GRAIN 1, which encodes a mitogen-activated protein kinase kinase 4, influences grain size in rice.

    PubMed

    Duan, Penggen; Rao, Yuchun; Zeng, Dali; Yang, Yaolong; Xu, Ran; Zhang, Baolan; Dong, Guojun; Qian, Qian; Li, Yunhai

    2014-02-01

    Although grain size is one of the most important components of grain yield, little information is known about the mechanisms that determine final grain size in crops. Here we characterize rice small grain1 (smg1) mutants, which exhibit small and light grains, dense and erect panicles and comparatively slightly shorter plants. The short grain and panicle phenotypes of smg1 mutants are caused by a defect in cell proliferation. The smg1 mutations were identified, using a map-based cloning approach, in mitogen-activated protein kinase kinase 4 (OsMKK4). Relatively higher expression of OsMKK4/SMG1 was detected in younger organs than in older ones, consistent with its role in cell proliferation. Green fluorescent protein (GFP)-OsMKK4/SMG1 fusion proteins appear to be distributed ubiquitously in plant cells. Further results revealed that OsMKK4 influenced brassinosteroid (BR) responses and the expression of BR-related genes. Thus, our findings have identified OsMKK4 as a factor for grain size, and suggest a possible link between the MAPK pathways and BRs in grain growth. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  6. Protein kinase activity of the glycolytic enzyme PGK1 regulates autophagy to promote tumorigenesis.

    PubMed

    Qian, Xu; Li, Xinjian; Lu, Zhimin

    2017-07-03

    Macroautophagy/autophagy is a cellular defense response to stress conditions and is crucial for cell homeostasis maintenance. However, the precise mechanism underlying autophagy initiation, especially in response to glutamine deprivation and hypoxia, is yet to be explored. We recently discovered that PGK1 (phosphoglycerate kinase 1), a glycolytic enzyme, functions as a protein kinase, phosphorylating BECN1/Beclin 1 to initiate autophagy. Under glutamine deprivation or hypoxia stimulation, PGK1 is acetylated at K388 by NAA10/ARD1 in an MTOR-inhibition-dependent manner, leading to the interaction between PGK1 and BECN1 and the subsequent phosphorylation of BECN1 at S30 by PGK1. This phosphorylation enhances ATG14-associated PIK3C3/VPS34-BECN1-PIK3R4/VPS15 complex activity, thereby increasing phosphatidylinositol-3-phosphate (PtdIns3P) generation in the initiation stage of autophagy. Furthermore, NAA10-dependent PGK1 acetylation and PGK1-dependent BECN1 phosphorylation are required for glutamine deprivation- and hypoxia-induced autophagy and brain tumor formation. Our work reveals the important dual roles of PGK1 as a glycolytic enzyme and a protein kinase in the mutual regulation of cell metabolism and autophagy in maintaining cell homeostasis.

  7. 49 CFR Figure 1b to Subpart B of... - Example of Location and Staggering of Emergency Window Exits and Location of Rescue Access...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Example of Location and Staggering of Emergency Window Exits and Location of Rescue Access Windows-§§ 238.113 and 238.114 1B Figure 1B to Subpart B of... of Emergency Window Exits and Location of Rescue Access Windows—§§ 238.113 and 238.114 ER01FE08.003...

  8. Aldosterone rapidly activates Src kinase in M-1 cells involving the mineralocorticoid receptor and HSP84.

    PubMed

    Braun, Sabine; Lösel, Ralf; Wehling, Martin; Boldyreff, Brigitte

    2004-07-16

    We investigated the effect of aldosterone on Src kinase. In the kidney cell line, M-1 aldosterone leads to a >2-fold transient activation of Src kinase seen as early as 2 min after aldosterone administration. Maximal Src kinase activation was measured at an aldosterone concentration of 1 nM. In parallel to activation, autophosphorylation at Tyr-416 of Src kinase increased. Src kinase activation was blocked by spironolactone. Aldosterone led to increased association of Src with HSP84. Furthermore, rapamycin blocked aldosterone-induced Src activation. We conclude that Src activation by aldosterone is mediated through the mineralocorticoid receptor and HSP84.

  9. MAP KINASE ERK 1/2 INHIBITORS INDUCE DYSMORPHOLOGY IN MOUSE WHOLE EMBRYO CULTURE

    EPA Science Inventory

    ROSEN, M.B. and E. S. HUNTER. Reproductive Toxicology Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, North Carolina. MAP kinase Erk1/2 inhibitors induce dysmorphology in mouse whole embryo culture.

    MAP Kinase signal transduction is associated with a variety ...

  10. Tel2 mediates activation and localization of ATM/Tel1 kinase to a double-strand break.

    PubMed

    Anderson, Carol M; Korkin, Dmitry; Smith, Dana L; Makovets, Svetlana; Seidel, Jeffrey J; Sali, Andrej; Blackburn, Elizabeth H

    2008-04-01

    The kinases ATM and ATR (Tel1 and Mec1 in the yeast Saccharomyces cerevisiae) control the response to DNA damage. We report that S. cerevisiae Tel2 acts at an early step of the TEL1/ATM pathway of DNA damage signaling. We show that Tel1 and Tel2 interact, and that even when Tel1 protein levels are high, this interaction is specifically required for Tel1 localization to a DNA break and its activation of downstream targets. Computational analysis revealed structural homology between Tel2 and Ddc2 (ATRIP in vertebrates), a partner of Mec1, suggesting a common structural principle used by partners of phoshoinositide 3-kinase-like kinases.

  11. PHYTOCHROME KINASE SUBSTRATE1 Regulates Root Phototropism and Gravitropism1[C][W][OA

    PubMed Central

    Boccalandro, Hernán E.; De Simone, Silvia N.; Bergmann-Honsberger, Ariane; Schepens, Isabelle; Fankhauser, Christian; Casal, Jorge J.

    2008-01-01

    Light promotes the expression of PHYTOCHROME KINASE SUBSTRATE1 (PKS1) in the root of Arabidopsis thaliana, but the function of PKS1 in this organ is unknown. Unilateral blue light induced a negative root phototropic response mediated by phototropin 1 in wild-type seedlings. This response was absent in pks1 mutants. In the wild type, unilateral blue light enhanced PKS1 expression in the subapical region of the root several hours before bending was detectable. The negative phototropism and the enhanced PKS1 expression in response to blue light required phytochrome A (phyA). In addition, the pks1 mutation enhanced the root gravitropic response when vertically oriented seedlings were placed horizontally. The negative regulation of gravitropism by PKS1 occurred even in dark-grown seedlings and did not require phyA. Blue light also failed to induce negative phototropism in pks1 under reduced gravitational stimulation, indicating that the effect of pks1 on phototropism is not simply the consequence of the counteracting effect of enhanced gravitropism. We propose a model where the background level of PKS1 reduces gravitropism. After a phyA-dependent increase in its expression, PKS1 positively affects root phototropism and both effects contribute to negative curvature in response to unilateral blue light. PMID:18024556

  12. Activity of LKB1 and AMPK-related kinases in skeletal muscle: effects of contraction, phenformin, and AICAR.

    PubMed

    Sakamoto, Kei; Göransson, Olga; Hardie, D Grahame; Alessi, Dario R

    2004-08-01

    Activation of AMP-activated protein kinase (AMPK) by exercise and metformin is beneficial for the treatment of type 2 diabetes. We recently found that, in cultured cells, the LKB1 tumor suppressor protein kinase activates AMPK in response to the metformin analog phenformin and the AMP mimetic drug 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR). We have also reported that LKB1 activates 11 other AMPK-related kinases. The activity of LKB1 or the AMPK-related kinases has not previously been studied in a tissue with physiological relevance to diabetes. In this study, we have investigated whether contraction, phenformin, and AICAR influence LKB1 and AMPK-related kinase activity in rat skeletal muscle. Contraction in situ, induced via sciatic nerve stimulation, significantly increased AMPKalpha2 activity and phosphorylation in multiple muscle fiber types without affecting LKB1 activity. Treatment of isolated skeletal muscle with phenformin or AICAR stimulated the phosphorylation and activation of AMPKalpha1 and AMPKalpha2 without altering LKB1 activity. Contraction, phenformin, or AICAR did not significantly increase activities or expression of the AMPK-related kinases QSK, QIK, MARK2/3, and MARK4 in skeletal muscle. The results of this study suggest that muscle contraction, phenformin, or AICAR activates AMPK by a mechanism that does not involve direct activation of LKB1. They also suggest that the effects of excercise, phenformin, and AICAR on metabolic processes in muscle may be mediated through activation of AMPK rather than activation of LKB1 or the AMPK-related kinases.

  13. Casein Kinase 2 Reverses Tail-Independent Inactivation of Kinesin-1

    NASA Astrophysics Data System (ADS)

    Xu, Jing

    2013-03-01

    Kinesin-1 is a plus-end microtubule-based motor, and defects in kinesin-based transport are linked to diseases including neurodegeneration. Kinesin can auto-inhibit via a head-tail interaction, but is believed to be active otherwise. Here we report a tail-independent inactivation of kinesin, reversible by the disease-relevant signalling protein, casein kinase 2 (CK2). The majority of initially active kinesin (native or tail-less) loses its ability to interact with microtubules in vitro, and CK2 reverses this inactivation (approximately fourfold) without altering kinesin's single motor properties. This activation pathway does not require motor phosphorylation, and is independent of head-tail auto-inhibition. In cultured mammalian cells, reducing CK2 expression, but not its kinase activity, decreases the force required to stall lipid droplet transport, consistent with a decreased number of active kinesin motors. Our results (Nat. Commun., 3:754, 2012) provide the first direct evidence of a protein kinase upregulating kinesin-based transport, and suggest a novel pathway for regulating the activity of cargo-bound kinesin. Work supported by NIGMS grants GM64624 to SPG, GM74830-06A1 to LH, GM76516 to LB, NS048501 to SJK, and AHA grant 825278F to JX.

  14. Protooncogene TCL1b functions as an Akt kinase co-activator that exhibits oncogenic potency in vivo

    PubMed Central

    Hashimoto, M; Suizu, F; Tokuyama, W; Noguchi, H; Hirata, N; Matsuda-Lennikov, M; Edamura, T; Masuzawa, M; Gotoh, N; Tanaka, S; Noguchi, M

    2013-01-01

    Protooncogene T-cell leukemia 1 (TCL1), which is implicated in human T-cell prolymphocytic leukemia (T-PLL), interacts with Akt and enhances its kinase activity, functioning as an Akt kinase co-activator. Two major isoforms of TCL1 Protooncogenes (TCL1 and TCL1b) are present adjacent to each other on human chromosome 14q.32. In human T-PLL, both TCL1 and TCL1b are activated by chromosomal translocation. Moreover, TCL1b-transgenic mice have never been created. Therefore, it remains unclear whether TCL1b itself, independent of TCL1, exhibits oncogenicity. In co-immunoprecipitation assays, both ectopic and endogenous TCL1b interacted with Akt. In in vitro Akt kinase assays, TCL1b enhanced Akt kinase activity in dose- and time-dependent manners. Bioinformatics approaches utilizing multiregression analysis, cluster analysis, KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway mapping, Venn diagrams and Gene Ontology (GO) demonstrated that TCL1b showed highly homologous gene-induction signatures similar to Myr-Akt or TCL1. TCL1b exhibited oncogenicity in in vitro colony-transformation assay. Further, two independent lines of β-actin promoter-driven TCL1b-transgenic mice developed angiosarcoma on the intestinal tract. Angiosarcoma is a rare form of cancer in humans with poor prognosis. Using immunohistochemistry, 11 out of 13 human angiosarcoma samples were positively stained with both anti-TCL1b and anti-phospho-Akt antibodies. Consistently, in various cancer tissues, 69 out of 146 samples were positively stained with anti-TCL1b, out of which 46 were positively stained with anti-phospho-Akt antibodies. Moreover, TCL1b structure-based inhibitor ‘TCL1b-Akt-in' inhibited Akt kinase activity in in vitro kinase assays and PDGF (platelet-derived growth factor)-induced Akt kinase activities—in turn, ‘TCL1b-Akt-in' inhibited cellular proliferation of sarcoma. The current study disclosed TCL1b bears oncogenicity and hence serves as a novel therapeutic target for human

  15. IRE1α links Nck1 deficiency to attenuated PTP1B expression in HepG2 cells.

    PubMed

    Li, Hui; Li, Bing; Larose, Louise

    2017-08-01

    PTP1B, a prototype of the non-receptor subfamily of the protein tyrosine phosphatase superfamily, plays a key role in regulating intracellular signaling from various receptor and non-receptor protein tyrosine kinases. Previously, we reported that silencing Nck1 in human hepatocellular carcinoma HepG2 cells enhances basal and growth factor-induced activation of the PI3K-Akt pathway through attenuating PTP1B expression. However, the underlying mechanism by which Nck1 depletion represses PTP1B expression remains unclear. In this study, we found that silencing Nck1 attenuates PTP1B expression in HepG2 cells through down-regulation of IRE1α. Indeed, we show that silencing Nck1 in HepG2 cells leads to decreased IRE1α expression and signaling. Accordingly, IRE1α depletion using siRNA in HepG2 cells enhances PI3K-dependent basal and growth factor-induced Akt activation, reproducing the effects of silencing Nck1 on activation of this pathway. In addition, depletion of IRE1α also leads to reduced PTP1B expression, which was rescued by ectopic expression of IRE1α in Nck1-depleted cells. Mechanistically, we found that silencing either Nck1 or IRE1α in HepG2 cells decreases PTP1B mRNA levels and stability. However, despite miR-122 levels, a miRNA targeting PTP1B 3' UTR and inducing PTP1B mRNA degradation in HepG2 cells, are increased in both Nck1- and IRE1α-depleted HepG2 cells, a miR-122 antagomir did not rescue PTP1B expression in these cells. Overall, this study highlights an important role for Nck1 in fine-tuning IRE1α expression and signaling that regulate PTP1B expression and subsequent activation of the PI3K-Akt pathway in HepG2 cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Bruton's tyrosine kinase regulates B cell antigen receptor-mediated JNK1 response through Rac1 and phospholipase C-gamma2 activation.

    PubMed

    Inabe, Kazunori; Miyawaki, Toshio; Longnecker, Richard; Matsukura, Hiroyoshi; Tsukada, Satoshi; Kurosaki, Tomohiro

    2002-03-13

    Bruton's tyrosine kinase (Btk) is essential for B cell development and B cell antigen receptor (BCR) function. Recent studies have shown that Btk plays an important role in BCR-mediated c-Jun NH(2)-terminal kinase (JNK) 1 activation; however, the mechanism by which Btk participates in the JNK1 response remains elusive. Here we show that the BCR-mediated Rac1 activation is significantly inhibited by loss of Btk, while this Rac1 activation is not affected by loss of phospholipase C-gamma2 (PLC-gamma2). Since PLC-gamma2 is also required for BCR-mediated JNK1 response, our results suggest that Btk regulates Rac1 pathway as well as PLC-gamma2 pathway, both of which contribute to the BCR-mediated JNK1 response.

  17. Interleukin-2-induced survival of natural killer (NK) cells involving phosphatidylinositol-3 kinase-dependent reduction of ceramide through acid sphingomyelinase, sphingomyelin synthase, and glucosylceramide synthase.

    PubMed

    Taguchi, Yoshimitsu; Kondo, Tadakazu; Watanabe, Mitsumasa; Miyaji, Michihiko; Umehara, Hisanori; Kozutsumi, Yasunori; Okazaki, Toshiro

    2004-11-15

    Interleukin 2 (IL-2) rescued human natural killer (NK) KHYG-1 cells from apoptosis along with a reduction of ceramide. Conversely, an increase of ceramide inhibited IL-2-rescued survival. IL-2 deprivation-induced activation of acid sphingomyelinase (SMase) and inhibition of glucosylceramide synthase (GCS) and sphingomyelin synthase (SMS) were normalized by IL-2 supplementation. A phosphatidyl inositol-3 (PI-3) kinase inhibitor, LY294002, inhibited IL-2-rescued survival, but a mitogen-activated protein kinase inhibitor, PD98059, and an inhibitor of Janus tyrosine kinase/signal transducer and activator of transcription pathway, AG490, did not. LY294002 inhibited IL-2-induced reduction of ceramide through activation of acid SMase and inhibition of GCS and SMS, suggesting the positive involvement of PI-3 kinase in ceramide reduction through enzymatic regulation. Indeed, a constitutively active PI-3 kinase enhanced growth rate and ceramide reduction through inhibition of acid SMase and activation of GCS and SMS. Further, LY294002 inhibited IL-2-induced changes of transcriptional level as well as mRNA and protein levels in acid SMase and GCS but did not affect the stability of the mRNAs. These results suggest that PI-3 kinase-dependent reduction of ceramide through regulation of acid SMase, GCS, and SMS plays a role in IL-2-rescued survival of NK cells.

  18. An ALS-Associated Mutant SOD1 Rapidly Suppresses KCNT1 (Slack) Na+-Activated K+ Channels in Aplysia Neurons.

    PubMed

    Zhang, Yalan; Ni, Weiming; Horwich, Arthur L; Kaczmarek, Leonard K

    2017-02-22

    Mutations that alter levels of Slack (KCNT1) Na + -activated K + current produce devastating effects on neuronal development and neuronal function. We now find that Slack currents are rapidly suppressed by oligomers of mutant human Cu/Zn superoxide dismutase 1 (SOD1), which are associated with motor neuron toxicity in an inherited form of amyotrophic lateral sclerosis (ALS). We recorded from bag cell neurons of Aplysia californica , a model system to study neuronal excitability. We found that injection of fluorescent wild-type SOD1 (wt SOD1YFP) or monomeric mutant G85R SOD1YFP had no effect on net ionic currents measured under voltage clamp. In contrast, outward potassium currents were significantly reduced by microinjection of mutant G85R SOD1YFP that had been preincubated at 37°C or of cross-linked dimers of G85R SOD1YFP. Reduction of potassium current was also seen with multimeric G85R SOD1YFP of ∼300 kDa or >300 kDa that had been cross-linked. In current clamp recordings, microinjection of cross-linked 300 kDa increased excitability by depolarizing the resting membrane potential, and decreasing the latency of action potentials triggered by depolarization. The effect of cross-linked 300 kDa on potassium current was reduced by removing Na + from the bath solution, or by knocking down levels of Slack using siRNA. It was also prevented by pharmacological inhibition of ASK1 (apoptosis signal-regulating kinase 1) or of c-Jun N-terminal kinase, but not by an inhibitor of p38 mitogen-activated protein kinase. These results suggest that soluble mutant SOD1 oligomers rapidly trigger a kinase pathway that regulates the activity of Na + -activated K + channels in neurons. SIGNIFICANCE STATEMENT Slack Na + -activated K + channels (KCNT1, K Na 1.1) regulate neuronal excitability but are also linked to cytoplasmic signaling pathways that control neuronal protein translation. Mutations that alter the amplitude of these currents have devastating effects on neuronal

  19. Microchip Immunoaffinity Electrophoresis of Antibody-Thymidine Kinase 1 Complex

    PubMed Central

    Pagaduan, Jayson V.; Ramsden, Madison; O’Neill, Kim; Woolley, Adam T.

    2015-01-01

    Thymidine kinase-1 (TK1) is an important cancer biomarker whose serum levels are elevated in early cancer development. We developed a microchip electrophoresis immunoaffinity assay to measure recombinant purified TK1 (pTK1) using an antibody that binds to human TK1. We fabricated poly(methyl methacrylate) microfluidic devices to test the feasibility of detecting antibody (Ab)-pTK1 immune complexes as a step towards TK1 analysis in clinical serum samples. We were able to separate immune complexes from unbound antibodies using 0.5X phosphate buffer saline (pH 7.4) containing 0.01% Tween-20, with 1% w/v methylcellulose that acts as a dynamic surface coating and sieving matrix. Separation of the antibody and Ab-pTK1 complex was observed within a 5 mm effective separation length. This method of detecting pTK1 is easy to perform, requires only a 10 μL sample volume, and takes just 1 minute for separation. PMID:25486911

  20. PINK1-dependent phosphorylation of PINK1 and Parkin is essential for mitochondrial quality control.

    PubMed

    Zhuang, Na; Li, Lin; Chen, She; Wang, Tao

    2016-12-01

    Mitochondrial dysfunction has been linked to the pathogenesis of a large number of inherited diseases in humans, including Parkinson's disease, the second most common neurodegenerative disorder. The Parkinson's disease genes pink1 and parkin, which encode a mitochondrially targeted protein kinase, and an E3 ubiquitin ligase, respectively, participate in a key mitochondrial quality-control pathway that eliminates damaged mitochondria. In the current study, we established an in vivo PINK1/Parkin-induced photoreceptor neuron degeneration model in Drosophila with the aim of dissecting the PINK1/Parkin pathway in detail. Using LC-MS/MS analysis, we identified Serine 346 as the sole autophosphorylation site of Drosophila PINK1 and found that substitution of Serine 346 to Alanine completely abolished the PINK1 autophosphorylation. Disruption of either PINK1 or Parkin phosphorylation impaired the PINK1/Parkin pathway, and the degeneration phenotype of photoreceptor neurons was obviously alleviated. Phosphorylation of PINK1 is not only required for the PINK1-mediated mitochondrial recruitment of Parkin but also induces its kinase activity toward Parkin. In contrast, phosphorylation of Parkin by PINK1 is dispensable for its translocation but required for its activation. Moreover, substitution with autophosphorylation-deficient PINK1 failed to rescue pink1 null mutant phenotypes. Taken together, our findings suggest that autophosphorylation of PINK1 is essential for the mitochondrial translocation of Parkin and for subsequent phosphorylation and activation of Parkin.

  1. PINK1-dependent phosphorylation of PINK1 and Parkin is essential for mitochondrial quality control

    PubMed Central

    Zhuang, Na; Li, Lin; Chen, She; Wang, Tao

    2016-01-01

    Mitochondrial dysfunction has been linked to the pathogenesis of a large number of inherited diseases in humans, including Parkinson's disease, the second most common neurodegenerative disorder. The Parkinson's disease genes pink1 and parkin, which encode a mitochondrially targeted protein kinase, and an E3 ubiquitin ligase, respectively, participate in a key mitochondrial quality-control pathway that eliminates damaged mitochondria. In the current study, we established an in vivo PINK1/Parkin-induced photoreceptor neuron degeneration model in Drosophila with the aim of dissecting the PINK1/Parkin pathway in detail. Using LC-MS/MS analysis, we identified Serine 346 as the sole autophosphorylation site of Drosophila PINK1 and found that substitution of Serine 346 to Alanine completely abolished the PINK1 autophosphorylation. Disruption of either PINK1 or Parkin phosphorylation impaired the PINK1/Parkin pathway, and the degeneration phenotype of photoreceptor neurons was obviously alleviated. Phosphorylation of PINK1 is not only required for the PINK1-mediated mitochondrial recruitment of Parkin but also induces its kinase activity toward Parkin. In contrast, phosphorylation of Parkin by PINK1 is dispensable for its translocation but required for its activation. Moreover, substitution with autophosphorylation-deficient PINK1 failed to rescue pink1 null mutant phenotypes. Taken together, our findings suggest that autophosphorylation of PINK1 is essential for the mitochondrial translocation of Parkin and for subsequent phosphorylation and activation of Parkin. PMID:27906179

  2. Simplified molecular input line entry system-based: QSAR modelling for MAP kinase-interacting protein kinase (MNK1).

    PubMed

    Begum, S; Achary, P Ganga Raju

    2015-01-01

    Quantitative structure-activity relationship (QSAR) models were built for the prediction of inhibition (pIC50, i.e. negative logarithm of the 50% effective concentration) of MAP kinase-interacting protein kinase (MNK1) by 43 potent inhibitors. The pIC50 values were modelled with five random splits, with the representations of the molecular structures by simplified molecular input line entry system (SMILES). QSAR model building was performed by the Monte Carlo optimisation using three methods: classic scheme; balance of correlations; and balance correlation with ideal slopes. The robustness of these models were checked by parameters as rm(2), r(*)m(2), [Formula: see text] and randomisation technique. The best QSAR model based on single optimal descriptors was applied to study in vitro structure-activity relationships of 6-(4-(2-(piperidin-1-yl) ethoxy) phenyl)-3-(pyridin-4-yl) pyrazolo [1,5-a] pyrimidine derivatives as a screening tool for the development of novel potent MNK1 inhibitors. The effects of alkyl group, -OH, -NO2, F, Cl, Br, I, etc. on the IC50 values towards the inhibition of MNK1 were also reported.

  3. Phosphorylation-induced changes in the energetic frustration in human Tank binding kinase 1.

    PubMed

    Husain, Shahrukh; Kumar, Vijay; Hassan, Md Imtaiyaz

    2018-07-14

    Tank binding kinase 1 (TBK-1) plays an important role in immunity, inflammation, autophagy, cell growth and proliferation. Nevertheless, a key molecular and structural detail of TBK-1 phosphorylation and activation has been largely unknown. Here we investigated the energy landscape of phosphorylated (active) and unphosphorylated (inactive) forms of human TBK-1 to characterize the interplay between phosphorylation and local frustration. By employing the algorithm equipped with energy function and implemented in Frustratometer web-server (http://www.frustratometer.tk), we quantify the role of frustration in the activation of TBK-1. Accordingly, the conformational changes were observed in phosphoregulated active and inactive TBK-1. Substantial changes in frustration, flexibility and interatomic motions were observed among different forms of TBK-1. Structurally rigid kinase domain constitutes a minimally frustrated hub in the core of the catalytic domain, and highly frustrated clusters mainly at the C-lobe might enable the conformational transitions during activation. Also, a large network of highly frustrated interactions is found in the SDD domain of TBK-1 involved in protein-protein interactions and dimerization. The contact maps of the activation loop and α-C helix of kinase domain showed significant changes upon phosphorylation. Cross correlation analysis indicate that both intra and inter subunit correlated motions increases with phosphorylation of TBK-1. Phosphorylation thus introduces subtle changes in long-range contacts that might lead to significant conformational change of TBK-1. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Functional characterization and modified rescue of novel AE1 mutation R730C associated with overhydrated cation leak stomatocytosis.

    PubMed

    Stewart, Andrew K; Kedar, Prabhakar S; Shmukler, Boris E; Vandorpe, David H; Hsu, Ann; Glader, Bertil; Rivera, Alicia; Brugnara, Carlo; Alper, Seth L

    2011-05-01

    We report the novel, heterozygous AE1 mutation R730C associated with dominant, overhydrated, cation leak stomatocytosis and well-compensated anemia. Parallel elevations of red blood cell cation leak and ouabain-sensitive Na(+) efflux (pump activity) were apparently unaccompanied by increased erythroid cation channel-like activity, and defined ouabain-insensitive Na(+) efflux pathways of nystatin-treated cells were reduced. Epitope-tagged AE1 R730C at the Xenopus laevis oocyte surface exhibited severely reduced Cl(-) transport insensitive to rescue by glycophorin A (GPA) coexpression or by methanethiosulfonate (MTS) treatment. AE1 mutant R730K preserved Cl(-) transport activity, but R730 substitution with I, E, or H inactivated Cl(-) transport. AE1 R730C expression substantially increased endogenous oocyte Na(+)-K(+)-ATPase-mediated (86)Rb(+) influx, but ouabain-insensitive flux was minimally increased and GPA-insensitive. The reduced AE1 R730C-mediated sulfate influx did not exhibit the wild-type pattern of stimulation by acidic extracellular pH (pH(o)) and, unexpectedly, was partially rescued by exposure to sodium 2-sulfonatoethyl methanethiosulfonate (MTSES) but not to 2-aminoethyl methanethiosulfonate hydrobromide (MTSEA) or 2-(trimethylammonium)ethyl methanethiosulfonate bromide (MTSET). AE1 R730E correspondingly exhibited acid pH(o)-stimulated sulfate uptake at rates exceeding those of wild-type AE1 and AE1 R730K, whereas mutants R730I and R730H were inactive and pH(o) insensitive. MTSES-treated oocytes expressing AE1 R730C and untreated oocytes expressing AE1 R730E also exhibited unprecedented stimulation of Cl(-) influx by acid pH(o). Thus recombinant cation-leak stomatocytosis mutant AE1 R730C exhibits severely reduced anion transport unaccompanied by increased Rb(+) and Li(+) influxes. Selective rescue of acid pH(o)-stimulated sulfate uptake and conferral of acid pH(o)-stimulated Cl(-) influx, by AE1 R730E and MTSES-treated R730C, define residue R730 as

  5. Hydrophobic Motif Phosphorylation Coordinates Activity and Polar Localization of the Neurospora crassa Nuclear Dbf2-Related Kinase COT1

    PubMed Central

    Maerz, Sabine; Dettmann, Anne

    2012-01-01

    Nuclear Dbf2p-related (NDR) kinases and associated proteins are recognized as a conserved network that regulates eukaryotic cell polarity. NDR kinases require association with MOB adaptor proteins and phosphorylation of two conserved residues in the activation segment and hydrophobic motif for activity and function. We demonstrate that the Neurospora crassa NDR kinase COT1 forms inactive dimers via a conserved N-terminal extension, which is also required for the interaction of the kinase with MOB2 to generate heterocomplexes with basal activity. Basal kinase activity also requires autophosphorylation of the COT1-MOB2 complex in the activation segment, while hydrophobic motif phosphorylation of COT1 by the germinal center kinase POD6 fully activates COT1 through induction of a conformational change. Hydrophobic motif phosphorylation is also required for plasma membrane association of the COT1-MOB2 complex. MOB2 further restricts the membrane-associated kinase complex to the hyphal apex to promote polar cell growth. These data support an integrated mechanism of NDR kinase regulation in vivo, in which kinase activation and cellular localization of COT1 are coordinated by dual phosphorylation and interaction with MOB2. PMID:22451488

  6. The Down syndrome-related protein kinase DYRK1A phosphorylates p27Kip1 and Cyclin D1 and induces cell cycle exit and neuronal differentiation

    PubMed Central

    Soppa, Ulf; Schumacher, Julian; Florencio Ortiz, Victoria; Pasqualon, Tobias; Tejedor, Francisco J; Becker, Walter

    2014-01-01

    A fundamental question in neurobiology is how the balance between proliferation and differentiation of neuronal precursors is maintained to ensure that the proper number of brain neurons is generated. Substantial evidence implicates DYRK1A (dual specificity tyrosine-phosphorylation-regulated kinase 1A) as a candidate gene responsible for altered neuronal development and brain abnormalities in Down syndrome. Recent findings support the hypothesis that DYRK1A is involved in cell cycle control. Nonetheless, how DYRK1A contributes to neuronal cell cycle regulation and thereby affects neurogenesis remains poorly understood. In the present study we have investigated the mechanisms by which DYRK1A affects cell cycle regulation and neuronal differentiation in a human cell model, mouse neurons, and mouse brain. Dependent on its kinase activity and correlated with the dosage of overexpression, DYRK1A blocked proliferation of SH-SY5Y neuroblastoma cells within 24 h and arrested the cells in G1 phase. Sustained overexpression of DYRK1A induced G0 cell cycle exit and neuronal differentiation. Furthermore, we provide evidence that DYRK1A modulated protein stability of cell cycle-regulatory proteins. DYRK1A reduced cellular Cyclin D1 levels by phosphorylation on Thr286, which is known to induce proteasomal degradation. In addition, DYRK1A phosphorylated p27Kip1 on Ser10, resulting in protein stabilization. Inhibition of DYRK1A kinase activity reduced p27Kip1 Ser10 phosphorylation in cultured hippocampal neurons and in embryonic mouse brain. In aggregate, these results suggest a novel mechanism by which overexpression of DYRK1A may promote premature neuronal differentiation and contribute to altered brain development in Down syndrome. PMID:24806449

  7. Protein Kinase D1 Signaling in Angiogenic Gene Expression and VEGF-Mediated Angiogenesis.

    PubMed

    Ren, Bin

    2016-01-01

    Protein kinase D 1 (PKD-1) is a signaling kinase important in fundamental cell functions including migration, proliferation, and differentiation. PKD-1 is also a key regulator of gene expression and angiogenesis that is essential for cardiovascular development and tumor progression. Further understanding molecular aspects of PKD-1 signaling in the regulation of angiogenesis may have translational implications in obesity, cardiovascular disease, and cancer. The author will summarize and provide the insights into molecular mechanisms by which PKD-1 regulates transcriptional expression of angiogenic genes, focusing on the transcriptional regulation of CD36 by PKD-1-FoxO1 signaling axis along with the potential implications of this axis in arterial differentiation and morphogenesis. He will also discuss a new concept of dynamic balance between proangiogenic and antiangiogenic signaling in determining angiogenic switch, and stress how PKD-1 signaling regulates VEGF signaling-mediated angiogenesis.

  8. Protein Kinase D1 Signaling in Angiogenic Gene Expression and VEGF-Mediated Angiogenesis

    PubMed Central

    Ren, Bin

    2016-01-01

    Protein kinase D 1 (PKD-1) is a signaling kinase important in fundamental cell functions including migration, proliferation, and differentiation. PKD-1 is also a key regulator of gene expression and angiogenesis that is essential for cardiovascular development and tumor progression. Further understanding molecular aspects of PKD-1 signaling in the regulation of angiogenesis may have translational implications in obesity, cardiovascular disease, and cancer. The author will summarize and provide the insights into molecular mechanisms by which PKD-1 regulates transcriptional expression of angiogenic genes, focusing on the transcriptional regulation of CD36 by PKD-1-FoxO1 signaling axis along with the potential implications of this axis in arterial differentiation and morphogenesis. He will also discuss a new concept of dynamic balance between proangiogenic and antiangiogenic signaling in determining angiogenic switch, and stress how PKD-1 signaling regulates VEGF signaling-mediated angiogenesis. PMID:27200349

  9. Phospholipase D1 modulates protein kinase C-epsilon in retinal pigment epithelium cells during inflammatory response.

    PubMed

    Tenconi, Paula E; Giusto, Norma M; Salvador, Gabriela A; Mateos, Melina V

    2016-12-01

    Inflammation is a key factor in the pathogenesis of several retinal diseases. In view of the essential role of the retinal pigment epithelium in visual function, elucidating the molecular mechanisms elicited by inflammation in this tissue could provide new insights for the treatment of retinal diseases. The aim of the present work was to study protein kinase C signaling and its modulation by phospholipases D in ARPE-19 cells exposed to lipopolysaccharide. This bacterial endotoxin induced protein kinase C-α/βII phosphorylation and protein kinase-ε translocation to the plasma membrane in ARPE-19 cells. Pre-incubation with selective phospholipase D inhibitors demonstrated that protein kinase C-α phosphorylation depends on phospholipase D1 and 2 while protein kinase C-ε activation depends only on phospholipase D1. The inhibition of α and β protein kinase C isoforms with Go 6976 did not modify the reduced mitochondrial function induced by lipopolysaccharide. On the contrary, the inhibition of protein kinase C-α, β and ε with Ro 31-8220 potentiated the decrease in mitochondrial function. Moreover, inhibition of protein kinase C-ε reduced Bcl-2 expression and Akt activation and increased Caspase-3 cleavage in cells treated or not with lipopolysaccharide. Our results demonstrate that through protein kinase C-ε regulation, phospholipase D1 protects retinal pigment epithelium cells from lipopolysaccharide-induced damage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Expression of LIM kinase 1 is associated with reversible G1/S phase arrest, chromosomal instability and prostate cancer.

    PubMed

    Davila, Monica; Jhala, Darshana; Ghosh, Debashis; Grizzle, William E; Chakrabarti, Ratna

    2007-06-08

    LIM kinase 1 (LIMK1), a LIM domain containing serine/threonine kinase, modulates actin dynamics through inactivation of the actin depolymerizing protein cofilin. Recent studies have indicated an important role of LIMK1 in growth and invasion of prostate and breast cancer cells; however, the molecular mechanism whereby LIMK1 induces tumor progression is unknown. In this study, we investigated the effects of ectopic expression of LIMK1 on cellular morphology, cell cycle progression and expression profile of LIMK1 in prostate tumors. Ectopic expression of LIMK1 in benign prostatic hyperplasia cells (BPH), which naturally express low levels of LIMK1, resulted in appearance of abnormal mitotic spindles, multiple centrosomes and smaller chromosomal masses. Furthermore, a transient G1/S phase arrest and delayed G2/M progression was observed in BPH cells expressing LIMK1. When treated with chemotherapeutic agent Taxol, no metaphase arrest was noted in these cells. We have also noted increased nuclear staining of LIMK1 in tumors with higher Gleason Scores and incidence of metastasis. Our results show that increased expression of LIMK1 results in chromosomal abnormalities, aberrant cell cycle progression and alteration of normal cellular response to microtubule stabilizing agent Taxol; and that LIMK1 expression may be associated with cancerous phenotype of the prostate.

  11. Mitogen activated protein kinase (MAPK) pathway regulates heme oxygenase-1 gene expression by hypoxia in vascular cells.

    PubMed

    Ryter, Stefan W; Xi, Sichuan; Hartsfield, Cynthia L; Choi, Augustine M K

    2002-08-01

    Hypoxia induces the stress protein heme oxygenase-1 (HO-1), which participates in cellular adaptation. The molecular pathways that regulate ho-1 gene expression under hypoxia may involve mitogen activated protein kinase (MAPK) signaling and reactive oxygen. Hypoxia (8 h) increased HO-1 mRNA in rat pulmonary aortic endothelial cells (PAEC), and also activated both extracellular signal-regulated kinase 1 (ERK1)/ERK2 and p38 MAPK pathways. The role of these kinases in hypoxia-induced ho-1 gene expression was examined using chemical inhibitors of these pathways. Surprisingly, SB203580, an inhibitor of p38 MAPK, and PD98059, an inhibitor of mitogen-activated protein kinase kinase (MEK1), strongly enhanced hypoxia-induced HO-1 mRNA expression in PAEC. UO126, a MEK1/2 inhibitor, enhanced HO-1 expression in PAEC under normoxia, but not hypoxia. Diphenylene iodonium, an inhibitor of NADPH oxidase, also induced the expression of HO-1 in PAEC under both normoxia and hypoxia. Similar results were observed in aortic vascular smooth muscle cells. Furthermore, hypoxia induced activator protein (AP-1) DNA-binding activity in PAEC. Pretreatment with SB203580 and PD98059 enhanced AP-1 binding activity under hypoxia in PAEC; UO126 stimulated AP-1 binding under normoxia, whereas diphenylene iodonium stimulated AP-1 binding under normoxia and hypoxia. These results suggest a relationship between MAPK and hypoxic regulation of ho-1 in vascular cells, involving AP-1.

  12. Thyroid hormone activates rat liver adenosine 5,-monophosphate-activated protein kinase: relation to CaMKKb, TAK1 and LKB1 expression and energy status.

    PubMed

    Vargas, R; Ortega, Y; Bozo, V; Andrade, M; Minuzzi, G; Cornejo, P; Fernandez, V; Videla, L A

    2013-01-01

    AMP-activated protein kinase (AMPK) is a sensor of energy status supporting cellular energy homeostasis that may represent the metabolic basis for 3,3,,5-triiodo-L-thyronine (T3) liver preconditioning. Functionally transient hyperthyroid state induced by T3 (single dose of 0.1 mg/kg) in fed rats led to upregulation of mRNA expression (RT-PCR) and protein phosphorylation (Western blot) of hepatic AMPK at 8 to 36 h after treatment. AMPK Thr 172 phosphorylation induced by T3 is associated with enhanced mRNA expression of the upstream kinases Ca2+ -calmodulin-dependent protein kinase kinase-beta (CaMKKbeta) and transforming growth-factor-beta-activated kinase-1 (TAK1), with increased protein levels of CaMKKbeta and higher TAK1 phosphorylation, without changes in those of the liver kinase B1 (LKB1) signaling pathway. Liver contents of AMP and ADP were augmented by 291 percent and 44 percent by T3 compared to control values (p less than 0.05), respectively, whereas those of ATP decreased by 64% (p less than 0.05), with no significant changes in the total content of adenine nucleotides (AMP + ADP + ATP) at 24 h after T3 administration. Consequently, hepatic ATP/ADP content ratios exhibited 64 percent diminution (p less than 0.05) and those of AMP/ATP increased by 425 percent (p less than 0.05) in T3-treated rats over controls. It is concluded that in vivoT3 administration triggers liver AMPK upregulation in association with significant enhancements in AMPK mRNA expression, AMPK phosphorylation coupled to CaMKKbeta and TAK1 activation, and in AMP/ATP ratios, which may promote enhanced AMPK activity to support T3-induced energy consuming processes such as those of liver preconditioning.

  13. Loss of plastoglobule kinases ABC1K1 and ABC1K3 causes conditional degreening, modified prenyl-lipids, and recruitment of the jasmonic acid pathway

    USDA-ARS?s Scientific Manuscript database

    Plastoglobules (PGs) are plastid lipid-protein particles. This study examines the function of PG-localized kinases ABC1K1 and ABC1K3 in Arabidopsis thaliana. Several lines of evidence suggested that ABC1K1 and ABC1K3 form a protein complex. Null mutants for both genes (abc1k1 and abc1k3) and the dou...

  14. PHYTOCHROME KINASE SUBSTRATE 1 is a phototropin 1 binding protein required for phototropism.

    PubMed

    Lariguet, Patricia; Schepens, Isabelle; Hodgson, Daniel; Pedmale, Ullas V; Trevisan, Martine; Kami, Chitose; de Carbonnel, Matthieu; Alonso, José M; Ecker, Joseph R; Liscum, Emmanuel; Fankhauser, Christian

    2006-06-27

    Phototropism, or plant growth in response to unidirectional light, is an adaptive response of crucial importance. Lateral differences in low fluence rates of blue light are detected by phototropin 1 (phot1) in Arabidopsis. Only NONPHOTOTROPIC HYPOCOTYL 3 (NPH3) and root phototropism 2, both belonging to the same family of proteins, have been previously identified as phototropin-interacting signal transducers involved in phototropism. PHYTOCHROME KINASE SUBSTRATE (PKS) 1 and PKS2 are two phytochrome signaling components belonging to a small gene family in Arabidopsis (PKS1-PKS4). The strong enhancement of PKS1 expression by blue light and its light induction in the elongation zone of the hypocotyl prompted us to study the function of this gene family during phototropism. Photobiological experiments show that the PKS proteins are critical for hypocotyl phototropism. Furthermore, PKS1 interacts with phot1 and NPH3 in vivo at the plasma membrane and in vitro, indicating that the PKS proteins may function directly with phot1 and NPH3 to mediate phototropism. The phytochromes are known to influence phototropism but the mechanism involved is still unclear. We show that PKS1 induction by a pulse of blue light is phytochrome A-dependent, suggesting that the PKS proteins may provide a molecular link between these two photoreceptor families.

  15. BACE1 inhibition by microdose lithium formulation NP03 rescues memory loss and early stage amyloid neuropathology.

    PubMed

    Wilson, E N; Do Carmo, S; Iulita, M F; Hall, H; Ducatenzeiler, A; Marks, A R; Allard, S; Jia, D T; Windheim, J; Cuello, A C

    2017-08-01

    Lithium is first-line therapy for bipolar affective disorder and has recently been shown to have protective effects in populations at risk for Alzheimer's disease (AD). However, the mechanism underlying this protection is poorly understood and consequently limits its possible therapeutic application in AD. Moreover, conventional lithium formulations have a narrow therapeutic window and are associated with a severe side effect profile. Here we evaluated a novel microdose formulation of lithium, coded NP03, in a well-characterized rat model of progressive AD-like amyloid pathology. This formulation allows microdose lithium delivery to the brain in the absence of negative side effects. We found that NP03 rescued key initiating components of AD pathology, including inactivating GSK-3β, reducing BACE1 expression and activity, and reducing amyloid levels. Notably, NP03 rescued memory loss, impaired CRTC1 promoter binding of synaptic plasticity genes and hippocampal neurogenesis. These results raise the possibility that NP03 be of therapeutic value in the early or preclinical stages of AD.

  16. Arrestin-3-dependent activation of c-Jun N-terminal kinases (JNKs)

    PubMed Central

    Kaoud, Tamer S.; Dalby, Kevin N.; Gurevich, Eugenia V.; Gurevich, Vsevolod V.

    2015-01-01

    Only one out of four arrestin subtypes expressed in mammals, arrestin-3, facilitates the activation of JNK family kinases. Here we describe two different paradigms that allow the elucidation of the mechanisms involved. One is based on reconstitution of signaling modules from purified proteins: arrestin-3, MKK4, MKK7, JNK1, JNK2, and JNK3. The main advantage of this method is that it can unambiguously establish which effects are direct, because only intended purified proteins are present in these assays. The key drawback is that the upstream-most kinases of these cascades, ASK1 or other MAPKKKs, are not available in purified form, limiting reconstitution to incomplete two-kinase modules. The other set of methods analyzes the effects of arrestin-3 on JNK activation in intact cells. In this case, signaling modules include ASK1 and/or other MAPKKKs. However, every cell expresses thousands of different proteins, and their possible effects on the readout cannot be excluded. However, the combination of in vitro reconstitution from purified proteins and cell-based assays enables comprehensive elucidation of the mechanisms of arrestin-3-dependent activation of JNK family kinases. PMID:25737158

  17. Combined use of the ASK and SHK-1 cell lines to enhance the detection of infectious salmon anemia virus

    USGS Publications Warehouse

    Rolland, J.B.; Bouchard, D.; Coll, J.; Winton, J.R.

    2005-01-01

    Infectious salmon anemia (ISA) is a severe disease primarily affecting commercially farmed Atlantic salmon (Salmo salar) in seawater. The disease has been reported in portions of Canada, the United Kingdom, the Faroe Islands, and the United States. Infectious salmon anemia virus (ISAV), the causative agent of ISA, has also been isolated from several asymptomatic marine and salmonid fish species. Diagnostic assays for the detection of ISAV include virus isolation in cell culture, a reverse transcriptase-PCR, an enzyme-linked immunosorbent assay, and an indirect fluorescent antibody test. Virus isolation is considered the gold standard, and 5 salmonid cell lines are known to support growth of ISAV. In this study, the relative performance of the salmon head kidney 1 (SHK-1), Atlantic salmon kidney (ASK), and CHSE-214 cell lines in detecting ISAV was evaluated using samples from both experimentally and naturally infected Atlantic salmon. Interlaboratory comparisons were conducted using a quality control-quality assurance ring test. Both the ASK and SHK-1 cell lines performed well in detecting ISAV, although the SHK-1 line was more variable in its sensitivity to infection and somewhat slower in the appearance of cytopathic effect. Relative to the SHK-1 and ASK lines, the CHSE-214 cell line performed poorly. Although the ASK line appeared to represent a good alternative to the more commonly used SHK-1 line, use of a single cell line for diagnostic assays may increase the potential for false-negative results. Thus, the SHK-1 and ASK cell lines can be used in combination to provide enhanced ability to detect ISAV.

  18. Interactions of phosphatidylinositol kinase, GTPase-activating protein (GAP), and GAP-associated proteins with the colony-stimulating factor 1 receptor.

    PubMed Central

    Reedijk, M; Liu, X Q; Pawson, T

    1990-01-01

    The interactions of the macrophage colony-stimulating factor 1 (CSF-1) receptor with potential targets were investigated after ligand stimulation either of mouse macrophages or of fibroblasts that ectopically express mouse CSF-1 receptors. In Rat-2 cells expressing the mouse CSF-1 receptor, full activation of the receptor and cellular transformation require exogenous CSF-1, whereas NIH 3T3 cells expressing mouse c-fms are transformed by autocrine stimulation. Activated CSF-1 receptors physically associate with a phosphatidylinositol (PI) 3'-kinase. A mutant CSF-1 receptor with a deletion of the kinase insert region was deficient in its ability to bind functional PI 3'-kinase and to induce PI 3'-kinase activity precipitable with antiphosphotyrosine antibodies. In fibroblasts, CSF-1 stimulation also induced the phosphorylation of the GTPase-activating protein (GAP)-associated protein p62 on tyrosine, although GAP itself was a relatively poor substrate. In contrast to PI 3'-kinase association, phosphorylation of p62 and GAP was not markedly affected by deletion of the kinase insert region. These results indicate that the kinase insert region selectively enhances the CSF-1-dependent association of the CSF-1 receptor with active PI 3'-kinase. The insert deletion mutant retains considerable transforming activity in NIH 3T3 cells (G. Taylor, M. Reedijk, V. Rothwell, L. Rohrschneider, and T. Pawson, EMBO J. 8:2029-2037, 1989). This mutant was more seriously impaired in Rat-2 cell transformation, although mutant-expressing Rat-2 cells still formed small colonies in soft agar in the presence of CSF-1. Therefore, phosphorylation of GAP and p62 through activation of the CSF-1 receptor does not result in full fibroblast transformation. The interaction between the CSF-1 receptor and PI 3'-kinase may contribute to c-fms fibroblast transformation and play a role in CSF-1-stimulated macrophages. Images PMID:2172781

  19. Polo-like Kinase 1 Regulates Vimentin Phosphorylation at Ser-56 and Contraction in Smooth Muscle*

    PubMed Central

    Li, Jia; Wang, Ruping; Gannon, Olivia J.; Rezey, Alyssa C.; Jiang, Sixin; Gerlach, Brennan D.; Liao, Guoning

    2016-01-01

    Polo-like kinase 1 (Plk1) is a serine/threonine-protein kinase that has been implicated in mitosis, cytokinesis, and smooth muscle cell proliferation. The role of Plk1 in smooth muscle contraction has not been investigated. Here, stimulation with acetylcholine induced Plk1 phosphorylation at Thr-210 (an indication of Plk1 activation) in smooth muscle. Contractile stimulation also activated Plk1 in live smooth muscle cells as evidenced by changes in fluorescence resonance energy transfer signal of a Plk1 sensor. Moreover, knockdown of Plk1 in smooth muscle attenuated force development. Smooth muscle conditional knock-out of Plk1 also diminished contraction of mouse tracheal rings. Plk1 knockdown inhibited acetylcholine-induced vimentin phosphorylation at Ser-56 without affecting myosin light chain phosphorylation. Expression of T210A Plk1 inhibited the agonist-induced vimentin phosphorylation at Ser-56 and contraction in smooth muscle. However, myosin light chain phosphorylation was not affected by T210A Plk1. Ste20-like kinase (SLK) is a serine/threonine-protein kinase that has been implicated in spindle orientation and microtubule organization during mitosis. In this study knockdown of SLK inhibited Plk1 phosphorylation at Thr-210 and activation. Finally, asthma is characterized by airway hyperresponsiveness, which largely stems from airway smooth muscle hyperreactivity. Here, smooth muscle conditional knock-out of Plk1 attenuated airway resistance and airway smooth muscle hyperreactivity in a murine model of asthma. Taken together, these findings suggest that Plk1 regulates smooth muscle contraction by modulating vimentin phosphorylation at Ser-56. Plk1 activation is regulated by SLK during contractile activation. Plk1 contributes to the pathogenesis of asthma. PMID:27662907

  20. Melatonin rescued interleukin 1β-impaired chondrogenesis of human mesenchymal stem cells.

    PubMed

    Gao, Bo; Gao, Wenjie; Wu, Zizhao; Zhou, Taifeng; Qiu, Xianjian; Wang, Xudong; Lian, Chengjie; Peng, Yan; Liang, Anjing; Qiu, Jincheng; Zhu, Yuanxin; Xu, Caixia; Li, Yibing; Su, Peiqiang; Huang, Dongsheng

    2018-06-14

    Osteoarthritis (OA) is a widespread arthritic disease and a primary cause of disability. Increasing evidence suggests that inflammation has a pivotal part in its pathogenesis. Interleukin-1β (IL-1β) is a primary mediator of local inflammatory processes in OA. Current therapies for OA mainly focus on the symptoms of the advanced stage of the disease. The possible utilization of bone marrow mesenchymal stem cells (BMSCs) to regenerate cartilage is an appealing method, but in the case of OA requires chondrogenesis to take place within an inflamed environment. Our previous study showed that melatonin (MLT) can promote chondrogenic differentiation of MSCs, but whether MLT can rescue IL-1β-impaired chondrogenesis in human BMSCs has not yet been established. MLT, which can have anti-inflammatory and prochondrogenic effects, has demonstrated potential in defeating IL-1β-induced inhibition of chondrogenesis and further study should be conducted. Human bone marrow-derived MSCs were separated and cultured based on our system that was already documented. A high-density micromass culture system was used for the chondrogenic differentiation of human BMSCs, which was also described previously. Human BMSCs were induced for chondrogenesis for 7, 14, and 21 days with the treatment of IL-1β and MLT. The cultured cartilage pellets were then evaluated by morphology, extracellular matrix accumulation, and chondrogenic, metabolic, and apoptotic marker expression. Furthermore, cell apoptosis was assessed by TUNEL assay. The phosphorylation level P65 and IκBα of the NF-κB pathway activity was explored on day 21 of chondrogenic differentiation of BMSCs. The current evaluation showed that MLT can save IL-1β-impaired chondrogenesis of human BMSCs in different aspects. Firstly, MLT can restore the chondrogenic pellet size, and rescue matrix synthesis and accumulation. Secondly, MLT can upregulate chondrogenic marker COL2A1 expression at both mRNA and protein levels, and also regulate

  1. Tyr721 regulates specific binding of the CSF-1 receptor kinase insert to PI 3'-kinase SH2 domains: a model for SH2-mediated receptor-target interactions.

    PubMed Central

    Reedijk, M; Liu, X; van der Geer, P; Letwin, K; Waterfield, M D; Hunter, T; Pawson, T

    1992-01-01

    Efficient binding of active phosphatidylinositol (PI) 3'-kinase to the autophosphorylated macrophage colony stimulating factor receptor (CSF-1R) requires the noncatalytic kinase insert (KI) region of the receptor. To test whether this region could function independently to bind PI 3'-kinase, the isolated CSF-1R KI was expressed in Escherichia coli, and was inducibly phosphorylated on tyrosine. The tyrosine phosphorylated form of the CSF-1R KI bound PI 3'-kinase in vitro, whereas the unphosphorylated form had no binding activity. The p85 alpha subunit of PI 3'-kinase contains two Src homology (SH)2 domains, which are implicated in the interactions of signalling proteins with activated receptors. Bacterially expressed p85 alpha SH2 domains complexed in vitro with the tyrosine phosphorylated CSF-1R KI. Binding of the CSF-1R KI to PI 3'-kinase activity, and to the p85 alpha SH2 domains, required phosphorylation of Tyr721 within the KI domain, but was independent of phosphorylation at Tyr697 and Tyr706. Tyr721 was also critical for the association of activated CSF-1R with PI 3'-kinase in mammalian cells. Complex formation between the CSF-1R and PI 3'-kinase can therefore be reconstructed in vitro in a specific interaction involving the phosphorylated receptor KI and the SH2 domains of p85 alpha. Images PMID:1314163

  2. CDK-dependent potentiation of MPS1 kinase activity is essential to the mitotic checkpoint.

    PubMed

    Morin, Violeta; Prieto, Susana; Melines, Sabrina; Hem, Sonia; Rossignol, Michel; Lorca, Thierry; Espeut, Julien; Morin, Nathalie; Abrieu, Ariane

    2012-02-21

    Accurate chromosome segregation relies upon a mitotic checkpoint that monitors kinetochore attachment toward opposite spindle poles before enabling chromosome disjunction [1]. The MPS1/TTK protein kinase is a core component of the mitotic checkpoint that lies upstream of MAD2 and BubR1 both at the kinetochore and in the cytoplasm [2, 3]. To gain insight into the mechanisms underlying the regulation of MPS1 kinase, we undertook the identification of Xenopus MPS1 phosphorylation sites by mass spectrometry. We mapped several phosphorylation sites onto MPS1 and we show that phosphorylation of S283 in the noncatalytic region of MPS1 is required for full kinase activity. This phosphorylation potentiates MPS1 catalytic efficiency without impairing its affinity for the substrates. By using Xenopus egg extracts depleted of endogenous MPS1 and reconstituted with single point mutants, we show that phosphorylation of S283 is essential to activate the mitotic checkpoint. This phosphorylation does not regulate the localization of MPS1 to the kinetochore but is required for the recruitment of MAD1/MAD2, demonstrating its role at the kinetochore. Constitutive phosphorylation of S283 lowers the number of kinetochores required to hold the checkpoint, which suggests that CDK-dependent phosphorylation of MPS1 is essential to sustain the mitotic checkpoint when few kinetochores remain unattached. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. A role for the Swe1 checkpoint kinase during filamentous growth of Saccharomyces cerevisiae.

    PubMed Central

    La Valle, R; Wittenberg, C

    2001-01-01

    In this study we show that inactivation of Hsl1 or Hsl7, negative regulators of the Swe1 kinase, enhances the invasive behavior of haploid and diploid cells. The enhancement of filamentous growth caused by inactivation of both genes is mediated via the Swe1 protein kinase. Whereas Swe1 contributes noticeably to the effectiveness of haploid invasive growth under all conditions tested, its contribution to pseudohyphal growth is limited to the morphological response under standard assay conditions. However, Swe1 is essential for pseudohyphal differentiation under a number of nonstandard assay conditions including altered temperature and increased nitrogen. Swe1 is also required for pseudohyphal growth in the absence of Tec1 and for the induction of filamentation by butanol, a related phenomenon. Although inactivation of Hsl1 is sufficient to suppress the defect in filamentous growth caused by inactivation of Tec1 or Flo8, it is insufficient to promote filamentous growth in the absence of both factors. Moreover, inactivation of Hsl1 will not bypass the requirement for nitrogen starvation or growth on solid medium for pseudohyphal differentiation. We conclude that the Swe1 kinase modulates filamentous development under a broad spectrum of conditions and that its role is partially redundant with the Tec1 and Flo8 transcription factors. PMID:11404321

  4. Probing the catalytic functions of Bub1 kinase using the small molecule inhibitors BAY-320 and BAY-524

    PubMed Central

    Baron, Anna P; von Schubert, Conrad; Cubizolles, Fabien; Siemeister, Gerhard; Hitchcock, Marion; Mengel, Anne; Schröder, Jens; Fernández-Montalván, Amaury; von Nussbaum, Franz; Mumberg, Dominik; Nigg, Erich A

    2016-01-01

    The kinase Bub1 functions in the spindle assembly checkpoint (SAC) and in chromosome congression, but the role of its catalytic activity remains controversial. Here, we use two novel Bub1 inhibitors, BAY-320 and BAY-524, to demonstrate potent Bub1 kinase inhibition both in vitro and in intact cells. Then, we compared the cellular phenotypes of Bub1 kinase inhibition in HeLa and RPE1 cells with those of protein depletion, indicative of catalytic or scaffolding functions, respectively. Bub1 inhibition affected chromosome association of Shugoshin and the chromosomal passenger complex (CPC), without abolishing global Aurora B function. Consequently, inhibition of Bub1 kinase impaired chromosome arm resolution but exerted only minor effects on mitotic progression or SAC function. Importantly, BAY-320 and BAY-524 treatment sensitized cells to low doses of Paclitaxel, impairing both chromosome segregation and cell proliferation. These findings are relevant to our understanding of Bub1 kinase function and the prospects of targeting Bub1 for therapeutic applications. DOI: http://dx.doi.org/10.7554/eLife.12187.001 PMID:26885717

  5. Indazole-based potent and cell-active Mps1 kinase inhibitors: rational design from pan-kinase inhibitor anthrapyrazolone (SP600125).

    PubMed

    Kusakabe, Ken-ichi; Ide, Nobuyuki; Daigo, Yataro; Tachibana, Yuki; Itoh, Takeshi; Yamamoto, Takahiko; Hashizume, Hiroshi; Hato, Yoshio; Higashino, Kenichi; Okano, Yousuke; Sato, Yuji; Inoue, Makiko; Iguchi, Motofumi; Kanazawa, Takayuki; Ishioka, Yukichi; Dohi, Keiji; Kido, Yasuto; Sakamoto, Shingo; Yasuo, Kazuya; Maeda, Masahiro; Higaki, Masayo; Ueda, Kazuo; Yoshizawa, Hidenori; Baba, Yoshiyasu; Shiota, Takeshi; Murai, Hitoshi; Nakamura, Yusuke

    2013-06-13

    Monopolar spindle 1 (Mps1) is essential for centrosome duplication, the spindle assembly check point, and the maintenance of chromosomal instability. Mps1 is highly expressed in cancer cells, and its expression levels correlate with the histological grades of cancers. Thus, selective Mps1 inhibitors offer an attractive opportunity for the development of novel cancer therapies. To design novel Mps1 inhibitors, we utilized the pan-kinase inhibitor anthrapyrazolone (4, SP600125) and its crystal structure bound to JNK1. Our design efforts led to the identification of indazole-based lead 6 with an Mps1 IC50 value of 498 nM. Optimization of the 3- and 6-positions on the indazole core of 6 resulted in 23c with improved Mps1 activity (IC50 = 3.06 nM). Finally, application of structure-based design using the X-ray structure of 23d bound to Mps1 culminated in the discovery of 32a and 32b with improved potency for cellular Mps1 and A549 lung cancer cells. Moreover, 32a and 32b exhibited reasonable selectivities over 120 and 166 kinases, respectively.

  6. Cancer Osaka thyroid (Cot) phosphorylates Polo-like kinase (PLK1) at Ser137 but not at Thr210.

    PubMed

    Wu, Binhui; Jiang, Ping; Mu, Yuguang; Wilmouth, Rupert C

    2009-12-01

    Cancer Osaka thyroid (Cot) is a proto-oncogenic kinase which belongs to the MAP3K family. A peptide-based substrate screening assay revealed that Cot has the ability to phosphorylate Polo-like kinase 1 (Plk1) at Ser137. Kinase assays with intact Plk1 and peptides surrounding Ser137 and Thr210 indicated further that Cot phosphorylates Ser137 but not Thr210. Additional support came from 3D peptide structure prediction and Cot-Plk1 interaction modeling. In vivo experiments demonstrated that wild type Cot, but not a kinase-dead mutant, has the ability to phosphorylate Ser137. Knockdown of Cot in Hela showed a reduction in the level of phosphorylation of Ser137. These results imply for the first time that Cot might be an upstream kinase of Plk1 and suggest a new mechanism for the regulation of the cellular function of Plk1.

  7. Role of Deleted in Breast Cancer 1 (DBC1) Protein in SIRT1 Deacetylase Activation Induced by Protein Kinase A and AMP-activated Protein Kinase*

    PubMed Central

    Nin, Veronica; Escande, Carlos; Chini, Claudia C.; Giri, Shailendra; Camacho-Pereira, Juliana; Matalonga, Jonathan; Lou, Zhenkun; Chini, Eduardo N.

    2012-01-01

    The NAD+-dependent deacetylase SIRT1 is a key regulator of several aspects of metabolism and aging. SIRT1 activation is beneficial for several human diseases, including metabolic syndrome, diabetes, obesity, liver steatosis, and Alzheimer disease. We have recently shown that the protein deleted in breast cancer 1 (DBC1) is a key regulator of SIRT1 activity in vivo. Furthermore, SIRT1 and DBC1 form a dynamic complex that is regulated by the energetic state of the organism. Understanding how the interaction between SIRT1 and DBC1 is regulated is therefore essential to design strategies aimed to activate SIRT1. Here, we investigated which pathways can lead to the dissociation of SIRT1 and DBC1 and consequently to SIRT1 activation. We observed that PKA activation leads to a fast and transient activation of SIRT1 that is DBC1-dependent. In fact, an increase in cAMP/PKA activity resulted in the dissociation of SIRT1 and DBC1 in an AMP-activated protein kinase (AMPK)-dependent manner. Pharmacological AMPK activation led to SIRT1 activation by a DBC1-dependent mechanism. Indeed, we found that AMPK activators promote SIRT1-DBC1 dissociation in cells, resulting in an increase in SIRT1 activity. In addition, we observed that the SIRT1 activation promoted by PKA and AMPK occurs without changes in the intracellular levels of NAD+. We propose that PKA and AMPK can acutely activate SIRT1 by inducing dissociation of SIRT1 from its endogenous inhibitor DBC1. Our experiments provide new insight on the in vivo mechanism of SIRT1 regulation and a new avenue for the development of pharmacological SIRT1 activators targeted at the dissociation of the SIRT1-DBC1 complex. PMID:22553202

  8. Role of deleted in breast cancer 1 (DBC1) protein in SIRT1 deacetylase activation induced by protein kinase A and AMP-activated protein kinase.

    PubMed

    Nin, Veronica; Escande, Carlos; Chini, Claudia C; Giri, Shailendra; Camacho-Pereira, Juliana; Matalonga, Jonathan; Lou, Zhenkun; Chini, Eduardo N

    2012-07-06

    The NAD(+)-dependent deacetylase SIRT1 is a key regulator of several aspects of metabolism and aging. SIRT1 activation is beneficial for several human diseases, including metabolic syndrome, diabetes, obesity, liver steatosis, and Alzheimer disease. We have recently shown that the protein deleted in breast cancer 1 (DBC1) is a key regulator of SIRT1 activity in vivo. Furthermore, SIRT1 and DBC1 form a dynamic complex that is regulated by the energetic state of the organism. Understanding how the interaction between SIRT1 and DBC1 is regulated is therefore essential to design strategies aimed to activate SIRT1. Here, we investigated which pathways can lead to the dissociation of SIRT1 and DBC1 and consequently to SIRT1 activation. We observed that PKA activation leads to a fast and transient activation of SIRT1 that is DBC1-dependent. In fact, an increase in cAMP/PKA activity resulted in the dissociation of SIRT1 and DBC1 in an AMP-activated protein kinase (AMPK)-dependent manner. Pharmacological AMPK activation led to SIRT1 activation by a DBC1-dependent mechanism. Indeed, we found that AMPK activators promote SIRT1-DBC1 dissociation in cells, resulting in an increase in SIRT1 activity. In addition, we observed that the SIRT1 activation promoted by PKA and AMPK occurs without changes in the intracellular levels of NAD(+). We propose that PKA and AMPK can acutely activate SIRT1 by inducing dissociation of SIRT1 from its endogenous inhibitor DBC1. Our experiments provide new insight on the in vivo mechanism of SIRT1 regulation and a new avenue for the development of pharmacological SIRT1 activators targeted at the dissociation of the SIRT1-DBC1 complex.

  9. Angiotensin II initiates tyrosine kinase Pyk2-dependent signalings leading to activation of Rac1-mediated c-Jun NH2-terminal kinase.

    PubMed

    Murasawa, S; Matsubara, H; Mori, Y; Masaki, H; Tsutsumi, Y; Shibasaki, Y; Kitabayashi, I; Tanaka, Y; Fujiyama, S; Koyama, Y; Fujiyama, A; Iba, S; Iwasaka, T

    2000-09-01

    Ca(2+)-sensitive tyrosine kinase Pyk2 was shown to be involved in angiotensin (Ang) II-mediated activation of extracellular signal-regulated kinase (ERK) via transactivation of epidermal growth factor receptor (EGF-R). In this study, we tested the involvement of Pyk2 and EGF-R in Ang II-induced activation of JNK and c-Jun in cardiac fibroblasts. Ang II markedly stimulated JNK activities, which were abolished by genistein and intracellular Ca(2+) chelators but partially by protein kinase C depletion. Inhibition of EGF-R did not affect Pyk2 and JNK activation by Ang II. Stable transfection with a dominant negative (DN) mutant for Pyk2 (PKM) completely blocked JNK activation by Ang II. DN mutants of Rac1 (DN-Rac1) and MEK kinase (DN-MEKK1) also abolished it, whereas those of Cdc42, RhoA, and Ha-Ras had no effect. Induction of c-Jun gene transcription by Ang II was abolished in PKM, DN-Rac1, and DN-MEKK1, in which Ang II-induced binding of ATF2/c-Jun heterodimer to the activator protein-1 sequence at -190 played a key role. These results suggest that 1) in cardiac fibroblasts activation of JNK and c-Jun by Ang II is initiated by Pyk2-dependent signalings but not by downstream signals of EGF-R or Ras, 2) Rac1 but not Cdc42 is required for JNK activation by Ang II upstream of MEKK1, and 3) ATF-2/c-Jun binding to the activator protein-1 sequence at -190 plays a key role for induction of c-Jun gene by Ang II.

  10. Walleye dermal sarcoma virus Orf B functions through receptor for activated C kinase (RACK1) and protein kinase C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniels, Candelaria C.; Rovnak, Joel; Quackenbush, Sandra L.

    2008-06-05

    Walleye dermal sarcoma virus is a complex retrovirus that is associated with walleye dermal sarcomas that are seasonal in nature. Fall developing tumors contain low levels of spliced accessory gene transcripts A and B, suggesting a role for the encoded proteins, Orf A and Orf B, in oncogenesis. In explanted tumor cells the 35 kDa Orf B accessory protein is localized to the cell periphery in structures similar to focal adhesions and along actin stress fibers. Similar localization was observed in mammalian cells. The cellular protein, receptor for activated C kinase 1 (RACK1), bound Orf B in yeast two-hybrid assaysmore » and in cell culture. Sequence analysis of walleye RACK1 demonstrated high conservation to other known RACK1 sequences. RACK1 binds to activated protein kinase C (PKC). Orf B associates with PKC{alpha}, which is constitutively activated and localized at the membrane. Activated PKC promoted cell survival, proliferation, and increased cell viability in Orf B-expressing cells.« less

  11. Rescue Manual. Module 4.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Instructional Materials Lab.

    This learner manual for rescuers covers the current techniques or practices required in the rescue service. The fourth of 10 modules contains 8 chapters: (1) construction and characteristics of rescue rope; (2) knots, bends, and hitches; (3) critical angles; (4) raising systems; (5) rigging; (6) using the brake-bar rack for rope rescue; (7) rope…

  12. Stimulation of mTORC1 with L-leucine Rescues Defects Associated with Roberts Syndrome

    PubMed Central

    Xu, Baoshan; Lee, Kenneth K.; Zhang, Lily; Gerton, Jennifer L.

    2013-01-01

    Roberts syndrome (RBS) is a human disease characterized by defects in limb and craniofacial development and growth and mental retardation. RBS is caused by mutations in ESCO2, a gene which encodes an acetyltransferase for the cohesin complex. While the essential role of the cohesin complex in chromosome segregation has been well characterized, it plays additional roles in DNA damage repair, chromosome condensation, and gene expression. The developmental phenotypes of Roberts syndrome and other cohesinopathies suggest that gene expression is impaired during embryogenesis. It was previously reported that ribosomal RNA production and protein translation were impaired in immortalized RBS cells. It was speculated that cohesin binding at the rDNA was important for nucleolar form and function. We have explored the hypothesis that reduced ribosome function contributes to RBS in zebrafish models and human cells. Two key pathways that sense cellular stress are the p53 and mTOR pathways. We report that mTOR signaling is inhibited in human RBS cells based on the reduced phosphorylation of the downstream effectors S6K1, S6 and 4EBP1, and this correlates with p53 activation. Nucleoli, the sites of ribosome production, are highly fragmented in RBS cells. We tested the effect of inhibiting p53 or stimulating mTOR in RBS cells. The rescue provided by mTOR activation was more significant, with activation rescuing both cell division and cell death. To study this cohesinopathy in a whole animal model we used ESCO2-mutant and morphant zebrafish embryos, which have developmental defects mimicking RBS. Consistent with RBS patient cells, the ESCO2 mutant embryos show p53 activation and inhibition of the TOR pathway. Stimulation of the TOR pathway with L-leucine rescued many developmental defects of ESCO2-mutant embryos. Our data support the idea that RBS can be attributed in part to defects in ribosome biogenesis, and stimulation of the TOR pathway has therapeutic potential. PMID:24098154

  13. Stimulation of mTORC1 with L-leucine rescues defects associated with Roberts syndrome.

    PubMed

    Xu, Baoshan; Lee, Kenneth K; Zhang, Lily; Gerton, Jennifer L

    2013-01-01

    Roberts syndrome (RBS) is a human disease characterized by defects in limb and craniofacial development and growth and mental retardation. RBS is caused by mutations in ESCO2, a gene which encodes an acetyltransferase for the cohesin complex. While the essential role of the cohesin complex in chromosome segregation has been well characterized, it plays additional roles in DNA damage repair, chromosome condensation, and gene expression. The developmental phenotypes of Roberts syndrome and other cohesinopathies suggest that gene expression is impaired during embryogenesis. It was previously reported that ribosomal RNA production and protein translation were impaired in immortalized RBS cells. It was speculated that cohesin binding at the rDNA was important for nucleolar form and function. We have explored the hypothesis that reduced ribosome function contributes to RBS in zebrafish models and human cells. Two key pathways that sense cellular stress are the p53 and mTOR pathways. We report that mTOR signaling is inhibited in human RBS cells based on the reduced phosphorylation of the downstream effectors S6K1, S6 and 4EBP1, and this correlates with p53 activation. Nucleoli, the sites of ribosome production, are highly fragmented in RBS cells. We tested the effect of inhibiting p53 or stimulating mTOR in RBS cells. The rescue provided by mTOR activation was more significant, with activation rescuing both cell division and cell death. To study this cohesinopathy in a whole animal model we used ESCO2-mutant and morphant zebrafish embryos, which have developmental defects mimicking RBS. Consistent with RBS patient cells, the ESCO2 mutant embryos show p53 activation and inhibition of the TOR pathway. Stimulation of the TOR pathway with L-leucine rescued many developmental defects of ESCO2-mutant embryos. Our data support the idea that RBS can be attributed in part to defects in ribosome biogenesis, and stimulation of the TOR pathway has therapeutic potential.

  14. Inhibition of IRAK-4 activity for rescuing endotoxin LPS-induced septic mortality in mice by lonicerae flos extract

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Sun Hong; Roh, Eunmiri; Kim, Hyun Soo

    Highlights: •Lonicerae flos extract (HS-23) is a clinical candidate, Phase I for sepsis treatment. •Here, HS-23 or its major constituents rescued LPS-induced septic mortality in mice. •As a mechanism, they directly inhibited IRAK-4-catalyzed kinase activity. •Thus, they suppressed LPS-induced expression of NF-κB/AP-1-target inflammatory genes. -- Abstract: Lonicerae flos extract (HS-23) is a clinical candidate currently undergoing Phase I trial in lipopolysaccharide (LPS)-injected healthy human volunteers, but its molecular basis remains to be defined. Here, we investigated protective effects of HS-23 or its major constituents on Escherichia coli LPS-induced septic mortality in mice. Intravenous treatment with HS-23 rescued LPS-intoxicated C57BL/6J micemore » under septic conditions, and decreased the levels of cytokines such as tumor necrosis factor α (TNF-α), interleukin (IL)-1β and high-mobility group box-1 (HMGB-1) in the blood. Chlorogenic acid (CGA) and its isomers were assigned as major constituents of HS-23 in the protection against endotoxemia. As a molecular mechanism, HS-23 or CGA isomers inhibited endotoxin LPS-induced autophosphorylation of the IL-1 receptor-associated kinase 4 (IRAK-4) in mouse peritoneal macrophages as well as the kinase activity of IRAK-4 in cell-free reactions. HS-23 consequently suppressed downstream pathways critical for LPS-induced activation of nuclear factor (NF)-κB or activating protein 1 (AP-1) in the peritoneal macrophages. HS-23 also inhibited various toll-like receptor agonists-induced nitric oxide (NO) production, and down-regulated LPS-induced expression of NF-κB/AP-1-target inflammatory genes in the cells. Taken together, HS-23 or CGA isomers exhibited anti-inflammatory therapy against LPS-induced septic mortality in mice, at least in part, mediated through the inhibition of IRAK-4.« less

  15. Transmembrane adaptor protein PAG1 is a novel tumor suppressor in neuroblastoma

    PubMed Central

    Agarwal, Saurabh; Ghosh, Rajib; Chen, Zaowen; Lakoma, Anna; Gunaratne, Preethi H.; Kim, Eugene S.; Shohet, Jason M.

    2016-01-01

    (NB) is the most common extracranial pediatric solid tumor with high mortality rates. The tyrosine kinase c-Src has been known to play an important role in differentiation of NB cells, but the mechanism of c-Src regulation has not been defined. Here, we characterize PAG1 (Cbp, Csk binding protein), a central inhibitor of c-Src and other Src family kinases, as a novel tumor suppressor in NB. Clinical cohort analysis demonstrate that low expression of PAG1 is a significant prognostic factor for high stage disease, increased relapse, and worse overall survival for children with NB. PAG1 knockdown in NB cells promotes proliferation and anchorage-independent colony formation with increased activation of AKT and ERK downstream of c-Src, while PAG1 overexpression significantly rescues these effects. In vivo, PAG1 overexpression significantly inhibits NB tumorigenicity in an orthotopic xenograft model. Our results establish PAG1 as a potent tumor suppressor in NB by inhibiting c-Src and downstream effector pathways. Thus, reactivation of PAG1 and inhibition of c-Src kinase activity represents an important novel therapeutic approach for high-risk NB. PMID:26993602

  16. RUNX1 regulates phosphoinositide 3-kinase/AKT pathway: role in chemotherapy sensitivity in acute megakaryocytic leukemia.

    PubMed

    Edwards, Holly; Xie, Chengzhi; LaFiura, Katherine M; Dombkowski, Alan A; Buck, Steven A; Boerner, Julie L; Taub, Jeffrey W; Matherly, Larry H; Ge, Yubin

    2009-09-24

    RUNX1 (AML1) encodes the core binding factor alpha subunit of a heterodimeric transcription factor complex which plays critical roles in normal hematopoiesis. Translocations or down-regulation of RUNX1 have been linked to favorable clinical outcomes in acute leukemias, suggesting that RUNX1 may also play critical roles in chemotherapy responses in acute leukemias; however, the molecular mechanisms remain unclear. The median level of RUNX1b transcripts in Down syndrome (DS) children with acute megakaryocytic leukemia (AMkL) were 4.4-fold (P < .001) lower than that in non-DS AMkL cases. Short hairpin RNA knockdown of RUNX1 in a non-DS AMkL cell line, Meg-01, resulted in significantly increased sensitivity to cytosine arabinoside, accompanied by significantly decreased expression of PIK3CD, which encodes the delta catalytic subunit of the survival kinase, phosphoinositide 3 (PI3)-kinase. Transcriptional regulation of PIK3CD by RUNX1 was further confirmed by chromatin immunoprecipitation and promoter reporter gene assays. Further, a PI3-kinase inhibitor, LY294002, and cytosine arabinoside synergized in antileukemia effects on Meg-01 and primary pediatric AMkL cells. Our results suggest that RUNX1 may play a critical role in chemotherapy response in AMkL by regulating the PI3-kinase/Akt pathway. Thus, the treatment of AMkL may be improved by integrating PI3-kinase or Akt inhibitors into the chemotherapy of this disease.

  17. Akt1/protein kinase B enhances transcriptional reprogramming of fibroblasts to functional cardiomyocytes

    PubMed Central

    Zhou, Huanyu; Dickson, Matthew E.; Kim, Min Soo; Bassel-Duby, Rhonda; Olson, Eric N.

    2015-01-01

    Conversion of fibroblasts to functional cardiomyocytes represents a potential approach for restoring cardiac function after myocardial injury, but the technique thus far has been slow and inefficient. To improve the efficiency of reprogramming fibroblasts to cardiac-like myocytes (iCMs) by cardiac transcription factors [Gata4, Hand2, Mef2c, and Tbx5 (GHMT)], we screened 192 protein kinases and discovered that Akt/protein kinase B dramatically accelerates and amplifies this process in three different types of fibroblasts (mouse embryo, adult cardiac, and tail tip). Approximately 50% of reprogrammed mouse embryo fibroblasts displayed spontaneous beating after 3 wk of induction by Akt plus GHMT. Furthermore, addition of Akt1 to GHMT evoked a more mature cardiac phenotype for iCMs, as seen by enhanced polynucleation, cellular hypertrophy, gene expression, and metabolic reprogramming. Insulin-like growth factor 1 (IGF1) and phosphoinositol 3-kinase (PI3K) acted upstream of Akt whereas the mitochondrial target of rapamycin complex 1 (mTORC1) and forkhead box o3 (Foxo3a) acted downstream of Akt to influence fibroblast-to-cardiomyocyte reprogramming. These findings provide insights into the molecular basis of cardiac reprogramming and represent an important step toward further application of this technique. PMID:26354121

  18. [Medical rescue of China National Earthquake Disaster Emergency Search and Rescue Team in Lushan earthquake].

    PubMed

    Liu, Ya-hua; Yang, Hui-ning; Liu, Hui-liang; Wang, Fan; Hu, Li-bin; Zheng, Jing-chen

    2013-05-01

    To summarize and analyze the medical mission of China National Earthquake Disaster Emergency Search and Rescue Team (CNESAR) in Lushan earthquake, to promote the medical rescue effectiveness incorporated with search and rescue. Retrospective analysis of medical work data by CNESAR from April 21th, 2013 to April 27th during Lushan earthquake rescue, including the medical staff dispatch and the wounded case been treated. The reasonable medical corps was composed by 22 members, including 2 administrators, 11 doctors [covering emergency medicine, orthopedics (joints and limbs, spinal), obstetrics and gynecology, gastroenterology, cardiology, ophthalmology, anesthesiology, medical rescue, health epidemic prevention, clinical laboratory of 11 specialties], 1 ultrasound technician, 5 nurses, 1 pharmacist, 1 medical instrument engineer and 1 office worker for propaganda. There were two members having psychological consultants qualifications. The medical work were carried out in seven aspects, including medical care assurance for the CNESAR members, first aid cooperation with search and rescue on site, clinical work in refugees' camp, medical round service for scattered village people, evacuation for the wounded, mental intervention, and the sanitary and anti-epidemic work. The medical work covered 24 small towns, and medical staff established 3 medical clinics at Taiping Town, Shuangshi Town of Lushan County and Baoxing County. Medical rescue, mental intervention for the old and kids, and sanitary and anti-epidemic were performed at the above sites. The medical corps had successful evacuated 2 severe wounded patients and treated the wounded over thousands. Most of the wounded were soft tissue injuries, external injury, respiratory tract infections, diarrhea, and heat stroke. Compared with the rescue action in 2008 Wenchuan earthquake, the aggregation and departure of rescue team in Lushan earthquake, the traffic control order in disaster area, the self-aid and buddy aid

  19. Meikin-associated polo-like kinase specifies Bub1 distribution in meiosis I.

    PubMed

    Miyazaki, Seira; Kim, Jihye; Yamagishi, Yuya; Ishiguro, Tadashi; Okada, Yuki; Tanno, Yuji; Sakuno, Takeshi; Watanabe, Yoshinori

    2017-06-01

    In meiosis I, sister chromatids are captured by microtubules emanating from the same pole (mono-orientation), and centromeric cohesion is protected throughout anaphase. Shugoshin, which is localized to centromeres depending on the phosphorylation of histone H2A by Bub1 kinase, plays a central role in protecting meiotic cohesin Rec8 from separase cleavage. Another key meiotic kinetochore factor, meikin, may regulate cohesion protection, although the underlying molecular mechanisms remain elusive. Here, we show that fission yeast Moa1 (meikin), which associates stably with CENP-C during meiosis I, recruits Plo1 (polo-like kinase) to the kinetochores and phosphorylates Spc7 (KNL1) to accumulate Bub1. Consequently, in contrast to the transient kinetochore localization of mitotic Bub1, meiotic Bub1 persists at kinetochores until anaphase I. The meiotic Bub1 pool ensures robust Sgo1 (shugoshin) localization and cohesion protection at centromeres by cooperating with heterochromatin protein Swi6, which binds and stabilizes Sgo1. Furthermore, molecular genetic analyses show a hierarchical regulation of centromeric cohesion protection by meikin and shugoshin that is important for establishing meiosis-specific chromosome segregation. We provide evidence that the meiosis-specific Bub1 regulation is conserved in mouse. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  20. Kinase Activities of RIPK1 and RIPK3 Can Direct IFN-β Synthesis Induced by Lipopolysaccharide.

    PubMed

    Saleh, Danish; Najjar, Malek; Zelic, Matija; Shah, Saumil; Nogusa, Shoko; Polykratis, Apostolos; Paczosa, Michelle K; Gough, Peter J; Bertin, John; Whalen, Michael; Fitzgerald, Katherine A; Slavov, Nikolai; Pasparakis, Manolis; Balachandran, Siddharth; Kelliher, Michelle; Mecsas, Joan; Degterev, Alexei

    2017-06-01

    The innate immune response is a central element of the initial defense against bacterial and viral pathogens. Macrophages are key innate immune cells that upon encountering pathogen-associated molecular patterns respond by producing cytokines, including IFN-β. In this study, we identify a novel role for RIPK1 and RIPK3, a pair of homologous serine/threonine kinases previously implicated in the regulation of necroptosis and pathologic tissue injury, in directing IFN-β production in macrophages. Using genetic and pharmacologic tools, we show that catalytic activity of RIPK1 directs IFN-β synthesis induced by LPS in mice. Additionally, we report that RIPK1 kinase-dependent IFN-β production may be elicited in an analogous fashion using LPS in bone marrow-derived macrophages upon inhibition of caspases. Notably, this regulation requires kinase activities of both RIPK1 and RIPK3, but not the necroptosis effector protein, MLKL. Mechanistically, we provide evidence that necrosome-like RIPK1 and RIPK3 aggregates facilitate canonical TRIF-dependent IFN-β production downstream of the LPS receptor TLR4. Intriguingly, we also show that RIPK1 and RIPK3 kinase-dependent synthesis of IFN-β is markedly induced by avirulent strains of Gram-negative bacteria, Yersinia and Klebsiella , and less so by their wild-type counterparts. Overall, these observations identify unexpected roles for RIPK1 and RIPK3 kinases in the production of IFN-β during the host inflammatory responses to bacterial infection and suggest that the axis in which these kinases operate may represent a target for bacterial virulence factors. Copyright © 2017 by The American Association of Immunologists, Inc.

  1. Subcellular localization of the Snf1 kinase is regulated by specific β subunits and a novel glucose signaling mechanism

    PubMed Central

    Vincent, Olivier; Townley, Robert; Kuchin, Sergei; Carlson, Marian

    2001-01-01

    The Snf1/AMP-activated protein kinase family has broad roles in transcriptional, metabolic, and developmental regulation in response to stress. In Saccharomyces cerevisiae, Snf1 is required for the response to glucose limitation. Snf1 kinase complexes contain the α (catalytic) subunit Snf1, one of the three related β subunits Gal83, Sip1, or Sip2, and the γ subunit Snf4. We present evidence that the β subunits regulate the subcellular localization of the Snf1 kinase. Green fluorescent protein fusions to Gal83, Sip1, and Sip2 show different patterns of localization to the nucleus, vacuole, and/or cytoplasm. We show that Gal83 directs Snf1 to the nucleus in a glucose-regulated manner. We further identify a novel signaling pathway that controls this nuclear localization in response to glucose phosphorylation. This pathway is distinct from the glucose signaling pathway that inhibits Snf1 kinase activity and responds not only to glucose but also to galactose and sucrose. Such independent regulation of the localization and the activity of the Snf1 kinase, combined with the distinct localization of kinases containing different β subunits, affords versatility in regulating physiological responses. PMID:11331606

  2. Oxido-reductive regulation of vascular remodeling by receptor tyrosine kinase ROS1

    PubMed Central

    Ali, Ziad A.; de Jesus Perez, Vinicio; Yuan, Ke; Orcholski, Mark; Pan, Stephen; Qi, Wei; Chopra, Gaurav; Adams, Christopher; Kojima, Yoko; Leeper, Nicholas J.; Qu, Xiumei; Zaleta-Rivera, Kathia; Kato, Kimihiko; Yamada, Yoshiji; Oguri, Mitsutoshi; Kuchinsky, Allan; Hazen, Stanley L.; Jukema, J. Wouter; Ganesh, Santhi K.; Nabel, Elizabeth G.; Channon, Keith; Leon, Martin B.; Charest, Alain; Quertermous, Thomas; Ashley, Euan A.

    2014-01-01

    Angioplasty and stenting is the primary treatment for flow-limiting atherosclerosis; however, this strategy is limited by pathological vascular remodeling. Using a systems approach, we identified a role for the network hub gene glutathione peroxidase-1 (GPX1) in pathological remodeling following human blood vessel stenting. Constitutive deletion of Gpx1 in atherosclerotic mice recapitulated this phenotype of increased vascular smooth muscle cell (VSMC) proliferation and plaque formation. In an independent patient cohort, gene variant pair analysis identified an interaction of GPX1 with the orphan protooncogene receptor tyrosine kinase ROS1. A meta-analysis of the only genome-wide association studies of human neointima-induced in-stent stenosis confirmed the association of the ROS1 variant with pathological remodeling. Decreased GPX1 expression in atherosclerotic mice led to reductive stress via a time-dependent increase in glutathione, corresponding to phosphorylation of the ROS1 kinase activation site Y2274. Loss of GPX1 function was associated with both oxidative and reductive stress, the latter driving ROS1 activity via s-glutathiolation of critical residues of the ROS1 tyrosine phosphatase SHP-2. ROS1 inhibition with crizotinib and deglutathiolation of SHP-2 abolished GPX1-mediated increases in VSMC proliferation while leaving endothelialization intact. Our results indicate that GPX1-dependent alterations in oxido-reductive stress promote ROS1 activation and mediate vascular remodeling. PMID:25401476

  3. FES-related tyrosine kinase activates the insulin-like growth factor-1 receptor at sites of cell adhesion.

    PubMed

    Stanicka, Joanna; Rieger, Leonie; O'Shea, Sandra; Cox, Orla; Coleman, Michael; O'Flanagan, Ciara; Addario, Barbara; McCabe, Nuala; Kennedy, Richard; O'Connor, Rosemary

    2018-06-01

    IGF-1 receptor (IGF-1R) and integrin cooperative signaling promotes cancer cell survival, proliferation, and motility, but whether this influences cancer progression and therapy responses is largely unknown. Here we investigated the non-receptor tyrosine adhesion kinase FES-related (FER), following its identification as a potential mediator of sensitivity to IGF-1R kinase inhibition in a functional siRNA screen. We found that FER and the IGF-1R co-locate in cells and can be co-immunoprecipitated. Ectopic FER expression strongly enhanced IGF-1R expression and phosphorylation on tyrosines 950 and 1131. FER phosphorylated these sites in an IGF-1R kinase-independent manner and also enhanced IGF-1-mediated phosphorylation of SHC, and activation of either AKT or MAPK-signaling pathways in different cells. The IGF-1R, β1 Integrin, FER, and its substrate cortactin were all observed to co-locate in cell adhesion complexes, the disruption of which reduced IGF-1R expression and activity. High FER expression correlates with phosphorylation of SHC in breast cancer cell lines and with a poor prognosis in patient cohorts. FER and SHC phosphorylation and IGF-1R expression could be suppressed with a known anaplastic lymphoma kinase inhibitor (AP26113) that shows high specificity for FER kinase. Overall, we conclude that FER enhances IGF-1R expression, phosphorylation, and signaling to promote cooperative growth and adhesion signaling that may facilitate cancer progression.

  4. Molecular pathways: targeting p21-activated kinase 1 signaling in cancer--opportunities, challenges, and limitations.

    PubMed

    Eswaran, Jeyanthy; Li, Da-Qiang; Shah, Anil; Kumar, Rakesh

    2012-07-15

    The evolution of cancer cells involves deregulation of highly regulated fundamental pathways that are central to normal cellular architecture and functions. p21-activated kinase 1 (PAK1) was initially identified as a downstream effector of the GTPases Rac and Cdc42. Subsequent studies uncovered a variety of new functions for this kinase in growth factor and steroid receptor signaling, cytoskeleton remodeling, cell survival, oncogenic transformation, and gene transcription, largely through systematic discovery of its direct, physiologically relevant substrates. PAK1 is widely upregulated in several human cancers, such as hormone-dependent cancer, and is intimately linked to tumor progression and therapeutic resistance. These exciting developments combined with the kinase-independent role of PAK1-centered phenotypic signaling in cancer cells elevated PAK1 as an attractive drug target. Structural and biochemical studies revealed the precise mechanism of PAK1 activation, offering the possibility to develop PAK1-targeted cancer therapeutic approaches. In addition, emerging reports suggest the potential of PAK1 and its specific phosphorylated substrates as cancer prognostic markers. Here, we summarize recent findings about the PAK1 molecular pathways in human cancer and discuss the current status of PAK1-targeted anticancer therapies.

  5. Macrophage Liver Kinase B1 Inhibits Foam Cell Formation and Atherosclerosis.

    PubMed

    Liu, Zhaoyu; Zhu, Huaiping; Dai, Xiaoyan; Wang, Cheng; Ding, Ye; Song, Ping; Zou, Ming-Hui

    2017-10-13

    LKB1 (liver kinase B1) is a serine/threonine kinase and tumor suppressor, which regulates the homeostasis of hematopoietic cells and immune responses. Macrophages transform into foam cells upon taking-in lipids. No role for LKB1 in foam cell formation has previously been reported. We sought to establish the role of LKB1 in atherosclerotic foam cell formation. LKB1 expression was examined in human carotid atherosclerotic plaques and in western diet-fed atherosclerosis-prone Ldlr -/- and ApoE -/- mice. LKB1 expression was markedly reduced in human plaques when compared with nonatherosclerotic vessels. Consistently, time-dependent reduction of LKB1 levels occurred in atherosclerotic lesions in western diet-fed Ldlr -/- and ApoE -/- mice. Exposure of macrophages to oxidized low-density lipoprotein downregulated LKB1 in vitro. Furthermore, LKB1 deficiency in macrophages significantly increased the expression of SRA (scavenger receptor A), modified low-density lipoprotein uptake and foam cell formation, all of which were abolished by blocking SRA. Further, we found LKB1 phosphorylates SRA resulting in its lysosome degradation. To further investigate the role of macrophage LKB1 in vivo, ApoE -/- LKB1 fl/fl LysM cre and ApoE -/- LKB1 fl/fl mice were fed with western diet for 16 weeks. Compared with ApoE -/- LKB1 fl/fl wild-type control, ApoE -/- LKB1 fl/fl LysM cre mice developed more atherosclerotic lesions in whole aorta and aortic root area, with markedly increased SRA expression in aortic root lesions. We conclude that macrophage LKB1 reduction caused by oxidized low-density lipoprotein promotes foam cell formation and the progression of atherosclerosis. © 2017 American Heart Association, Inc.

  6. The Receptor Tyrosine Kinase EphA2 Is a Direct Target Gene of Hypermethylated in Cancer 1 (HIC1)*

    PubMed Central

    Foveau, Bénédicte; Boulay, Gaylor; Pinte, Sébastien; Van Rechem, Capucine; Rood, Brian R.; Leprince, Dominique

    2012-01-01

    The tumor suppressor gene hypermethylated in cancer 1 (HIC1), which encodes a transcriptional repressor, is epigenetically silenced in many human tumors. Here, we show that ectopic expression of HIC1 in the highly malignant MDA-MB-231 breast cancer cell line severely impairs cell proliferation, migration, and invasion in vitro. In parallel, infection of breast cancer cell lines with a retrovirus expressing HIC1 also induces decreased mRNA and protein expression of the tyrosine kinase receptor EphA2. Moreover, chromatin immunoprecipitation (ChIP) and sequential ChIP experiments demonstrate that endogenous HIC1 proteins are bound, together with the MTA1 corepressor, to the EphA2 promoter in WI38 cells. Taken together, our results identify EphA2 as a new direct target gene of HIC1. Finally, we observe that inactivation of endogenous HIC1 through RNA interference in normal breast epithelial cells results in the up-regulation of EphA2 and is correlated with increased cellular migration. To conclude, our results involve the tumor suppressor HIC1 in the transcriptional regulation of the tyrosine kinase receptor EphA2, whose ligand ephrin-A1 is also a HIC1 target gene. Thus, loss of the regulation of this Eph pathway through HIC1 epigenetic silencing could be an important mechanism in the pathogenesis of epithelial cancers. PMID:22184117

  7. Serum and Glucocorticoid Regulated Kinase 1 in Sodium Homeostasis

    PubMed Central

    Lou, Yiyun; Zhang, Fan; Luo, Yuqin; Wang, Liya; Huang, Shisi; Jin, Fan

    2016-01-01

    The ubiquitously expressed serum and glucocorticoid regulated kinase 1 (SGK1) is tightly regulated by osmotic and hormonal signals, including glucocorticoids and mineralocorticoids. Recently, SGK1 has been implicated as a signal hub for the regulation of sodium transport. SGK1 modulates the activities of multiple ion channels and carriers, such as epithelial sodium channel (ENaC), voltage-gated sodium channel (Nav1.5), sodium hydrogen exchangers 1 and 3 (NHE1 and NHE3), sodium-chloride symporter (NCC), and sodium-potassium-chloride cotransporter 2 (NKCC2); as well as the sodium-potassium adenosine triphosphatase (Na+/K+-ATPase) and type A natriuretic peptide receptor (NPR-A). Accordingly, SGK1 is implicated in the physiology and pathophysiology of Na+ homeostasis. Here, we focus particularly on recent findings of SGK1’s involvement in Na+ transport in renal sodium reabsorption, hormone-stimulated salt appetite and fluid balance and discuss the abnormal SGK1-mediated Na+ reabsorption in hypertension, heart disease, edema with diabetes, and embryo implantation failure. PMID:27517916

  8. The First Pentacyclic Triterpenoid Gypsogenin Derivative Exhibiting Anti-ABL1 Kinase and Anti-chronic Myelogenous Leukemia Activities.

    PubMed

    Ciftci, Halil Ibrahim; Ozturk, Safiye Emirdag; Ali, Taha F S; Radwan, Mohamed O; Tateishi, Hiroshi; Koga, Ryoko; Ocak, Zeynep; Can, Mustafa; Otsuka, Masami; Fujita, Mikako

    2018-04-01

    The discovery of the chimeric tyrosine kinase breakpoint cluster region kinase-Abelson kinase (BCR-ABL)-targeted drug imatinib conceptually changed the treatment of chronic myelogenous leukemia (CML). However, some CML patients show drug resistance to imatinib. To address this issue, some artificial heterocyclic compounds have been identified as BCR-ABL inhibitors. Here we examined whether plant-derived pentacyclic triterpenoid gypsogenin and/or their derivatives show inhibitory activity against BCR-ABL. Among the three derivatives, benzyl 3-hydroxy-23-oxoolean-12-en-28-oate (1c) was found to be the most effective anticancer agent on the CML cell line K562, with an IC 50 value of 9.3 µM. In contrast, the IC 50 against normal peripheral blood mononuclear cells was 276.0 µM, showing better selectivity than imatinib. Compound 1c had in vitro inhibitory activity against Abelson kinase 1 (ABL1) (IC 50 =8.7 µM), the kinase component of BCR-ABL. In addition, compound 1c showed a different inhibitory profile against eight kinases compared with imatinib. The interaction between ATP binding site of ABL and 1c was examined by molecular docking study, and the binding mode was different from imatinib and newer generation inhibitors. Furthermore, 1c suppressed signaling downstream of BCR-ABL. This study suggests the possibility that plant extracts may be a source for CML treatment and offer a strategy to overcome drug resistance to known BCR-ABL inhibitors.

  9. PHYTOCHROME KINASE SUBSTRATE 1 is a phototropin 1 binding protein required for phototropism

    PubMed Central

    Lariguet, Patricia; Schepens, Isabelle; Hodgson, Daniel; Pedmale, Ullas V.; Trevisan, Martine; Kami, Chitose; de Carbonnel, Matthieu; Alonso, José M.; Ecker, Joseph R.; Liscum, Emmanuel; Fankhauser, Christian

    2006-01-01

    Phototropism, or plant growth in response to unidirectional light, is an adaptive response of crucial importance. Lateral differences in low fluence rates of blue light are detected by phototropin 1 (phot1) in Arabidopsis. Only NONPHOTOTROPIC HYPOCOTYL 3 (NPH3) and root phototropism 2, both belonging to the same family of proteins, have been previously identified as phototropin-interacting signal transducers involved in phototropism. PHYTOCHROME KINASE SUBSTRATE (PKS) 1 and PKS2 are two phytochrome signaling components belonging to a small gene family in Arabidopsis (PKS1–PKS4). The strong enhancement of PKS1 expression by blue light and its light induction in the elongation zone of the hypocotyl prompted us to study the function of this gene family during phototropism. Photobiological experiments show that the PKS proteins are critical for hypocotyl phototropism. Furthermore, PKS1 interacts with phot1 and NPH3 in vivo at the plasma membrane and in vitro, indicating that the PKS proteins may function directly with phot1 and NPH3 to mediate phototropism. The phytochromes are known to influence phototropism but the mechanism involved is still unclear. We show that PKS1 induction by a pulse of blue light is phytochrome A-dependent, suggesting that the PKS proteins may provide a molecular link between these two photoreceptor families. PMID:16777956

  10. FGF inhibits the activity of the cyclin B1/CDK1 kinase to induce a transient G₂arrest in RCS chondrocytes.

    PubMed

    Tran, Tri; Kolupaeva, Victoria; Basilico, Claudio

    2010-11-01

    Fibroblast growth factors (FGFs) negatively regulate long bone development by inhibiting the proliferation of chondrocytes that accumulate in the G₁ phase of the cycle following FGF treatment. Here we report that FGF also causes a striking but transient delay in mitotic entry in RCS chondrocytes by inactivating the cyclin B1-associated CDK1(CDC2) kinase. As a consequence of this inactivation, cells accumulate in the G₂ phase of the cycle for the first 4-6 hours of the treatment. Cyclin B1/CDK1 activity is then restored and cells reach a G₁ arrest. The reduced cyclin B1/CDK1 activity was accompanied by increased CDK1 inhibitory phosphorylation, likely caused by increased activity and expression of the Myt1 kinase. FGF1 also caused dephosphorylation of the CDC25C phosphatase, that however appears due the inactivation of cyclin B1/CDK1 complex in the CDK1 feedback loop, and not the activation of specific phosphatases. the inactivation of the cyclin B1/CDK1 complex is a direct effect of FGF signaling, and not a consequence of the G₂ arrest as it can be observed also in cells blocked at mitosis by Nocodazole. The Chk1 and AtM/ATR kinase are known to play essential roles in the G₂ checkpoint induced by DNA damage/genotoxic stress, but inhibition of Chk1 or ATM/ATR not only did not prevent, but rather potentiated the FGF-induced G₂ arrest. Additionally our results indicate that the transient G₂ arrest is induced by FGF in RCS cell through mechanisms that are independent of the G₁ arrest, and that the G₂ block is not strictly required for the sustained G₁ arrest but may provide a pausing mechanism that allows the FGF response to be fully established.

  11. Early Steps in Autophagy Depend on Direct Phosphorylation of Atg9 by the Atg1 Kinase

    PubMed Central

    Papinski, Daniel; Schuschnig, Martina; Reiter, Wolfgang; Wilhelm, Larissa; Barnes, Christopher A.; Maiolica, Alessio; Hansmann, Isabella; Pfaffenwimmer, Thaddaeus; Kijanska, Monika; Stoffel, Ingrid; Lee, Sung Sik; Brezovich, Andrea; Lou, Jane Hua; Turk, Benjamin E.; Aebersold, Ruedi; Ammerer, Gustav; Peter, Matthias; Kraft, Claudine

    2014-01-01

    Summary Bulk degradation of cytoplasmic material is mediated by a highly conserved intracellular trafficking pathway termed autophagy. This pathway is characterized by the formation of double-membrane vesicles termed autophagosomes engulfing the substrate and transporting it to the vacuole/lysosome for breakdown and recycling. The Atg1/ULK1 kinase is essential for this process; however, little is known about its targets and the means by which it controls autophagy. Here we have screened for Atg1 kinase substrates using consensus peptide arrays and identified three components of the autophagy machinery. The multimembrane-spanning protein Atg9 is a direct target of this kinase essential for autophagy. Phosphorylated Atg9 is then required for the efficient recruitment of Atg8 and Atg18 to the site of autophagosome formation and subsequent expansion of the isolation membrane, a prerequisite for a functioning autophagy pathway. These findings show that the Atg1 kinase acts early in autophagy by regulating the outgrowth of autophagosomal membranes. PMID:24440502

  12. The Structure of Arabidopsis thaliana OST1 Provides Insights into the Kinase Regulation Mechanism in Response to Osmotic Stress

    PubMed Central

    Yunta, Cristina; Martínez-Ripoll, Martín; Zhu, Jian-Kang; Albert, Armando

    2013-01-01

    SnRK [SNF1 (sucrose non-fermenting-1)-related protein kinase] 2.6 [open stomata 1 (OST1)] is well characterized at molecular and physiological levels to control stomata closure in response to water-deficit stress. OST1 is a member of a family of 10 protein kinases from Arabidopsis thaliana (SnRK2) that integrates abscisic acid (ABA)-dependent and ABA-independent signals to coordinate the cell response to osmotic stress. A subgroup of protein phosphatases type 2C binds OST1 and keeps the kinase dephosphorylated and inactive. Activation of OST1 relies on the ABA-dependent inhibition of the protein phosphatases type 2C and the subsequent self-phosphorylation of the kinase. The OST1 ABA-independent activation depends on a short sequence motif that is conserved among all the members of the SnRK2 family. However, little is known about the molecular mechanism underlying this regulation. The crystallographic structure of OST1 shows that ABA-independent regulation motif stabilizes the conformation of the kinase catalytically essential α C helix, and it provides the basis of the ABA-independent regulation mechanism for the SnRK2 family of protein kinases. PMID:21983340

  13. An Apple Protein Kinase MdSnRK1.1 Interacts with MdCAIP1 to Regulate ABA Sensitivity.

    PubMed

    Liu, Xiao-Juan; Liu, Xin; An, Xiu-Hong; Han, Peng-Liang; You, Chun-Xiang; Hao, Yu-Jin

    2017-10-01

    ABA is a crucial phytohormone for development and stress responses in plants. Snf1-related protein kinase 1.1 (SnRK1.1) is involved in the ABA response. However, the molecular mechanism underlying the SnRK1.1 response to ABA is largely unknown. Here, it was found that overexpression of the apple MdSnRK1.1 gene enhanced ABA sensitivity in both transgenic apple calli and Arabidopsis seedlings. Subsequently, a yeast two-hybrid screen demonstrated that MdCAIP1 (C2-domain ABA Insensitive Protein1) interacted with MdSnRK1.1. Their interaction was further confirmed by pull-down and co-immunoprecipitation assays. Expression of the MdCAIP1 gene was positively induced by ABA. Its overexpression enhanced ABA sensitivity in transgenic apple calli. Furthermore, it was found that MdSnRK1.1 phosphorylated the MdCAIP1 protein in vivo and promoted its degradation in vitro and in vivo. As a result, MdSnRK1.1 inhibited MdCAIP1-mediated ABA sensitivity, and MdCAIP1 partially reduced MdSnRK1.1-mediated ABA sensitivity. Our findings indicate that MdSnRK1.1 plays an important role in the ABA response, partially by controlling the stability of the MdCAIP1 protein. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Interleukin-1 receptor-associated kinase-1 plays an essential role for Toll-like receptor (TLR)7- and TLR9-mediated interferon-α induction

    PubMed Central

    Uematsu, Satoshi; Sato, Shintaro; Yamamoto, Masahiro; Hirotani, Tomonori; Kato, Hiroki; Takeshita, Fumihiko; Matsuda, Michiyuki; Coban, Cevayir; Ishii, Ken J.; Kawai, Taro; Takeuchi, Osamu; Akira, Shizuo

    2005-01-01

    Toll-like receptors (TLRs) recognize microbial pathogens and trigger innate immune responses. Among TLR family members, TLR7, TLR8, and TLR9 induce interferon (IFN)-α in plasmacytoid dendritic cells (pDCs). This induction requires the formation of a complex consisting of the adaptor MyD88, tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) and IFN regulatory factor (IRF) 7. Here we show an essential role of IL-1 receptor-associated kinase (IRAK)-1 in TLR7- and TLR9-mediated IRF7 signaling pathway. IRAK-1 directly bound and phosphorylated IRF7 in vitro. The kinase activity of IRAK-1 was necessary for transcriptional activation of IRF7. TLR7- and TLR9-mediated IFN-α production was abolished in Irak-1–deficient mice, whereas inflammatory cytokine production was not impaired. Despite normal activation of NF-κB and mitogen-activated protein kinases, IRF7 was not activated by a TLR9 ligand in Irak-1–deficient pDCs. These results indicated that IRAK-1 is a specific regulator for TLR7- and TLR9-mediated IFN-α induction in pDCs. PMID:15767370

  15. Involvement of Alpha-PAK-Interacting Exchange Factor in the PAK1–c-Jun NH2-Terminal Kinase 1 Activation and Apoptosis Induced by Benzo[a]pyrene

    PubMed Central

    Yoshii, Shigeto; Tanaka, Masamitsu; Otsuki, Yoshiro; Fujiyama, Toshiharu; Kataoka, Hideki; Arai, Hajime; Hanai, Hiroyuki; Sugimura, Haruhiko

    2001-01-01

    Benzo[a]pyrene [B(a)P], a potent procarcinogen found in combustion products such as diesel exhaust and cigarette smoke, has been recently shown to activate the c-Jun NH2-terminal kinase 1 (JNK1) and induce caspase-3-mediated apoptosis in Hepa1c1c7 cells. However, the molecules of the signaling pathway that control the mitogen-activated protein kinase cascades induced by B(a)P and the interaction between those and apoptosis by B(a)P have not been well defined. We report here that B(a)P promoted Cdc42/Rac1, p21-activated kinase 1 (PAK1), and JNK1 activities in 293T and HeLa cells. Moreover, alpha-PAK-interacting exchange factor (α PIX) mRNA and its protein expression were upregulated by B(a)P. While overexpression of an active mutant of α PIX (ΔCH) facilitated B(a)P-induced activation of Cdc42/Rac1, PAK1, and JNK1, overexpression of mutated αPIX (L383R, L384S), which lacks guanine nucleotide exchange factor activity, SH3 domain-deleted αPIX (Δ SH3), which lacks the ability to bind PAK, kinase-negative PAK1 (K299R), and kinase-negative SEK1 (K220A, K224L) inhibited B(a)P-triggered JNK1 activation. Interestingly, overexpression of αPIX (Δ CH) and a catalytically active mutant PAK1 (T423E) accelerated B(a)P-induced apoptosis in HeLa cells, whereas αPIX (Δ SH3), PAK1 (K299R), and SEK 1 (K220A, K224L) inhibited B(a)P-initiated apoptosis. Finally, a preferential caspase inhibitor, Z-Asp-CH2-DCB, strongly blocked the αPIX (Δ CH)-enhanced apoptosis in cells treated with B(a)P but did not block PAK1/JNK1 activation. Taken together, these results indicate that αPIX plays a crucial role in B(a)P-induced apoptosis through activation of the JNK1 pathway kinases. PMID:11564864

  16. Stanniocalcin-1 Rescued Photoreceptor Degeneration in Two Rat Models of Inherited Retinal Degeneration

    PubMed Central

    Roddy, Gavin W; Rosa Jr, Robert H; Youn Oh, Joo; Ylostalo, Joni H; Bartosh, Thomas J; Choi, Hosoon; Lee, Ryang Hwa; Yasumura, Douglas; Ahern, Kelly; Nielsen, Gregory; Matthes, Michael T; LaVail, Matthew M; Prockop, Darwin J

    2012-01-01

    Oxidative stress and photoreceptor apoptosis are prominent features of many forms of retinal degeneration (RD) for which there are currently no effective therapies. We previously observed that mesenchymal stem/stromal cells reduce apoptosis by being activated to secrete stanniocalcin-1 (STC-1), a multifunctional protein that reduces oxidative stress by upregulating mitochondrial uncoupling protein-2 (UCP-2). Therefore, we tested the hypothesis that intravitreal injection of STC-1 can rescue photoreceptors. We first tested STC-1 in the rhodopsin transgenic rat characterized by rapid photoreceptor loss. Intravitreal STC-1 decreased the loss of photoreceptor nuclei and transcripts and resulted in measurable retinal function when none is otherwise present in this rapid degeneration. We then tested STC-1 in the Royal College of Surgeons (RCS) rat characterized by a slower photoreceptor degeneration. Intravitreal STC-1 reduced the number of pyknotic nuclei in photoreceptors, delayed the loss of photoreceptor transcripts, and improved function of rod photoreceptors. Additionally, STC-1 upregulated UCP-2 and decreased levels of two protein adducts generated by reactive oxygen species (ROS). Microarrays from the two models demonstrated that STC-1 upregulated expression of a similar profile of genes for retinal development and function. The results suggested that intravitreal STC-1 is a promising therapy for various forms of RD including retinitis pigmentosa and atrophic age-related macular degeneration (AMD). PMID:22294148

  17. Aberrant hypertrophy in Smad3-deficient murine chondrocytes is rescued by restoring transforming growth factor beta-activated kinase 1/activating transcription factor 2 signaling: a potential clinical implication for osteoarthritis.

    PubMed

    Li, Tian-Fang; Gao, Lin; Sheu, Tzong-Jen; Sampson, Erik R; Flick, Lisa M; Konttinen, Yrjö T; Chen, Di; Schwarz, Edward M; Zuscik, Michael J; Jonason, Jennifer H; O'Keefe, Regis J

    2010-08-01

    To investigate the biologic significance of Smad3 in the progression of osteoarthritis (OA), the crosstalk between Smad3 and activating transcription factor 2 (ATF-2) in the transforming growth factor beta (TGFbeta) signaling pathway, and the effects of ATF-2 overexpression and p38 activation in chondrocyte differentiation. Joint disease in Smad3-knockout (Smad3(-/-)) mice was examined by microfocal computed tomography and histologic analysis. Numerous in vitro methods including immunostaining, real-time polymerase chain reaction, Western blotting, an ATF-2 DNA-binding assay, and a p38 kinase activity assay were used to study the various signaling responses and protein interactions underlying the altered chondrocyte phenotype in Smad3(-/-) mice. In Smad3(-/-) mice, an end-stage OA phenotype gradually developed. TGFbeta-activated kinase 1 (TAK1)/ATF-2 signaling was disrupted in Smad3(-/-) mouse chondrocytes at the level of p38 MAP kinase (MAPK) activation, resulting in reduced ATF-2 phosphorylation and transcriptional activity. Reintroduction of Smad3 into Smad3(-/-) cells restored the normal p38 response to TGFbeta. Phosphorylated p38 formed a complex with Smad3 by binding to a portion of Smad3 containing both the MAD homology 1 and linker domains. Additionally, Smad3 inhibited the dephosphorylation of p38 by MAPK phosphatase 1 (MKP-1). Both ATF-2 overexpression and p38 activation repressed type X collagen expression in wild-type and Smad3(-/-) chondrocytes. P38 was detected in articular cartilage and perichondrium; articular and sternal chondrocytes expressed p38 isoforms alpha, beta, and gamma, but not delta. Smad3 is involved in both the onset and progression of OA. Loss of Smad3 abrogates TAK1/ATF-2 signaling, most likely by disrupting the Smad3-phosphorylated p38 complex, thereby promoting p38 dephosphorylation and inactivation by MKP-1. ATF-2 and p38 activation inhibit chondrocyte hypertrophy. Modulation of p38 isoform activity may provide a new therapeutic

  18. The Receptor Tyrosine Kinase Alk Controls Neurofibromin Functions in Drosophila Growth and Learning

    PubMed Central

    Walker, James A.; Apostolopoulou, Anthi A.; Palmer, Ruth H.; Bernards, André; Skoulakis, Efthimios M. C.

    2011-01-01

    Anaplastic Lymphoma Kinase (Alk) is a Receptor Tyrosine Kinase (RTK) activated in several cancers, but with largely unknown physiological functions. We report two unexpected roles for the Drosophila ortholog dAlk, in body size determination and associative learning. Remarkably, reducing neuronal dAlk activity increased body size and enhanced associative learning, suggesting that its activation is inhibitory in both processes. Consistently, dAlk activation reduced body size and caused learning deficits resembling phenotypes of null mutations in dNf1, the Ras GTPase Activating Protein-encoding conserved ortholog of the Neurofibromatosis type 1 (NF1) disease gene. We show that dAlk and dNf1 co-localize extensively and interact functionally in the nervous system. Importantly, genetic or pharmacological inhibition of dAlk rescued the reduced body size, adult learning deficits, and Extracellular-Regulated-Kinase (ERK) overactivation dNf1 mutant phenotypes. These results identify dAlk as an upstream activator of dNf1-regulated Ras signaling responsible for several dNf1 defects, and they implicate human Alk as a potential therapeutic target in NF1. PMID:21949657

  19. Pantethine rescues a Drosophila model for pantothenate kinase–associated neurodegeneration

    PubMed Central

    Rana, Anil; Seinen, Erwin; Siudeja, Katarzyna; Muntendam, Remco; Srinivasan, Balaji; van der Want, Johannes J.; Hayflick, Susan; Reijngoud, Dirk-Jan; Kayser, Oliver; Sibon, Ody C. M.

    2010-01-01

    Pantothenate kinase–associated neurodegeneration (PKAN), a progressive neurodegenerative disorder, is associated with impairment of pantothenate kinase function. Pantothenate kinase is the first enzyme required for de novo synthesis of CoA, an essential metabolic cofactor. The pathophysiology of PKAN is not understood, and there is no cure to halt or reverse the symptoms of this devastating disease. Recently, we and others presented a PKAN Drosophila model, and we demonstrated that impaired function of pantothenate kinase induces a neurodegenerative phenotype and a reduced lifespan. We have explored this Drosophila model further and have demonstrated that impairment of pantothenate kinase is associated with decreased levels of CoA, mitochondrial dysfunction, and increased protein oxidation. Furthermore, we searched for compounds that can rescue pertinent phenotypes of the Drosophila PKAN model and identified pantethine. Pantethine feeding restores CoA levels, improves mitochondrial function, rescues brain degeneration, enhances locomotor abilities, and increases lifespan. We show evidence for the presence of a de novo CoA biosynthesis pathway in which pantethine is used as a precursor compound. Importantly, this pathway is effective in the presence of disrupted pantothenate kinase function. Our data suggest that pantethine may serve as a starting point to develop a possible treatment for PKAN. PMID:20351285

  20. TAK1 kinase switches cell fate from apoptosis to necrosis following TNF stimulation.

    PubMed

    Morioka, Sho; Broglie, Peter; Omori, Emily; Ikeda, Yuka; Takaesu, Giichi; Matsumoto, Kunihiro; Ninomiya-Tsuji, Jun

    2014-02-17

    TNF activates three distinct intracellular signaling cascades leading to cell survival, caspase-8-mediated apoptosis, or receptor interacting protein kinase 3 (RIPK3)-dependent necrosis, also called necroptosis. Depending on the cellular context, one of these pathways is activated upon TNF challenge. When caspase-8 is activated, it drives the apoptosis cascade and blocks RIPK3-dependent necrosis. Here we report the biological event switching to activate necrosis over apoptosis. TAK1 kinase is normally transiently activated upon TNF stimulation. We found that prolonged and hyperactivation of TAK1 induced phosphorylation and activation of RIPK3, leading to necrosis without caspase activation. In addition, we also demonstrated that activation of RIPK1 and RIPK3 promoted TAK1 activation, suggesting a positive feedforward loop of RIPK1, RIPK3, and TAK1. Conversely, ablation of TAK1 caused caspase-dependent apoptosis, in which Ripk3 deletion did not block cell death either in vivo or in vitro. Our results reveal that TAK1 activation drives RIPK3-dependent necrosis and inhibits apoptosis. TAK1 acts as a switch between apoptosis and necrosis.

  1. The p21-activated kinase 1 (Pak1) signalling pathway in cardiac disease: from mechanistic study to therapeutic exploration.

    PubMed

    Wang, Yanwen; Wang, Shunyao; Lei, Ming; Boyett, Mark; Tsui, Hoyee; Liu, Wei; Wang, Xin

    2018-04-01

    p21-activated kinase 1 (Pak1) is a member of the highly conserved family of serine/threonine protein kinases regulated by Ras-related small G-proteins, Cdc42/Rac1. It has been previously demonstrated to be involved in cardiac protection. Based on recent studies, this review provides an overview of the role of Pak1 in cardiac diseases including disrupted Ca 2+ homoeostasis-related cardiac arrhythmias, adrenergic stress- and pressure overload-induced hypertrophy, and ischaemia/reperfusion injury. These findings demonstrate the important role of Pak1 mediated through the phosphorylation and transcriptional modification of hypertrophy and/or arrhythmia-related genes. This review also discusses the anti-arrhythmic and anti-hypertrophic, protective function of Pak1 and the beneficial effects of fingolimod (an FDA-approved sphingolipid drug), a Pak1 activator, and its ability to prevent arrhythmias and cardiac hypertrophy. These findings also highlight the therapeutic potential of Pak1 signalling in the treatment and prevention of cardiac diseases. This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc. © 2017 The British Pharmacological Society.

  2. Protein kinase D1 is essential for bone acquisition during pubertal growth.

    PubMed

    Ford, Jeffery J; Yeh, Lee-Chuan C; Schmidgal, Eric C; Thompson, Jason F; Adamo, Martin L; Lee, John C

    2013-11-01

    Bone formation and maintenance represents the summation of the balance of local and endocrine hormonal stimuli within a complex organ. Protein kinase D (PKD) is a member of the Ca(2+)/calmodulin-dependent kinase superfamily of serine/threonine kinases and has been described as the crossroads for the bone morphogenetic protein (BMP)-IGF-I signaling axis, which plays a major role in bone formation. The current study exploits the PKD1-deficient mouse model to examine the role of PKD in vivo in the skeleton. Dual-energy x-ray absorptiometry scan analysis of male and female pubescent mice demonstrated significantly decreased bone mineral density in the whole body and femoral bone compartments of PKD1 (+/-) mice, compared with their wild-type littermates. The body weight, nasal-anal length, and percentage body fat of the mice were not significantly different from their wild-type littermates. Cultured bone marrow stromal cells from PKD1 (+/-) mice demonstrated lower alkaline phosphatase activity in early differentiating osteoblasts and decreased mineralized nodule formation in mature osteoblasts. Quantitative RT-PCR analysis of osteoblast differentiation markers and osteoclast markers exhibited lower levels of expression in PKD1 (+/-) male mice than wild type. In female mice, however, only markers of osteoblast differentiation were reduced. PKD1 (+/-) mice also demonstrated a profound reduction in mRNA expression levels of BMP type II receptor and IGF-I receptor and in BMP-7 responsiveness in vitro. Together these data suggest that in mice, PKD1 action contributes to the regulation of osteoblastogenesis by altering gene expression with gender-specific effects on osteoclastogenesis, subsequently affecting skeletal matrix acquisition during puberty.

  3. Saccharomyces cerevisiae as a platform for assessing sphingolipid lipid kinase inhibitors

    PubMed Central

    Agah, Sayeh; Mendelson, Anna J.; Eletu, Oluwafunmilayo T.; Barkey-Bircann, Peter; Gesualdi, James

    2018-01-01

    Successful medicinal chemistry campaigns to discover and optimize sphingosine kinase inhibitors require a robust assay for screening chemical libraries and for determining rank order potencies. Existing assays for these enzymes are laborious, expensive and/or low throughput. The toxicity of excessive levels of phosphorylated sphingoid bases for the budding yeast, Saccharomyces cerevisiae, affords an assay wherein inhibitors added to the culture media rescue growth in a dose-dependent fashion. Herein, we describe our adaptation of a simple, inexpensive, and high throughput assay for assessing inhibitors of sphingosine kinase types 1 and 2 as well as ceramide kinase and for testing enzymatic activity of sphingosine kinase type 2 mutants. The assay was validated using recombinant enzymes and generally agrees with the rank order of potencies of existing inhibitors. PMID:29672528

  4. Autistic behavior in Scn1a+/− mice and rescue by enhanced GABAergic transmission

    PubMed Central

    Han, Sung; Tai, Chao; Westenbroek, Ruth E.; Yu, Frank H.; Cheah, Christine S.; Potter, Gregory B.; Rubenstein, John L.; Scheuer, Todd; de la Iglesia, Horacio O; Catterall, William A

    2012-01-01

    Haploinsufficiency of the SCN1A gene encoding voltage-gated sodium channel NaV1.1 causes Dravet Syndrome (DS), a childhood neuropsychiatric disorder including recurrent intractable seizures, cognitive deficit, and autism-spectrum behaviors. The neural mechanisms responsible for cognitive deficit and autism-spectrum behaviors in DS are poorly understood. Here we show that mice with Scn1a haploinsufficiency display hyperactivity, stereotyped behaviors, social interaction deficits, and impaired context-dependent spatial memory. Olfactory sensitivity is retained, but novel food odors and social odors are aversive to Scn1a+/− mice. GABAergic neurotransmission is specifically impaired by this mutation, and selective deletion of NaV1.1 channels in forebrain interneurons is sufficient to cause these behavioral and cognitive impairments. Remarkably, treatment with low-dose clonazepam, a positive allosteric modulator of GABAA receptors, completely rescued the abnormal social behaviors and deficits in fear memory in DS mice, demonstrating that they are caused by impaired GABAergic neurotransmission and not by neuronal damage from recurrent seizures. These results demonstrate a critical role for NaV1.1 channels in neuropsychiatric functions and provide a potential therapeutic strategy for cognitive deficit and autism-spectrum behaviors in DS. PMID:22914087

  5. Pim1 kinase is upregulated in glioblastoma multiforme and mediates tumor cell survival

    PubMed Central

    Herzog, Susann; Fink, Matthias Alexander; Weitmann, Kerstin; Friedel, Claudius; Hadlich, Stefan; Langner, Sönke; Kindermann, Katharina; Holm, Tobias; Böhm, Andreas; Eskilsson, Eskil; Miletic, Hrvoje; Hildner, Markus; Fritsch, Michael; Vogelgesang, Silke; Havemann, Christoph; Ritter, Christoph Alexander; Meyer zu Schwabedissen, Henriette Elisabeth; Rauch, Bernhard; Hoffmann, Wolfgang; Kroemer, Heyo Klaus; Schroeder, Henry; Bien-Möller, Sandra

    2015-01-01

    Background The current therapy for glioblastoma multiforme (GBM), the most aggressive and common primary brain tumor of adults, involves surgery and a combined radiochemotherapy that controls tumor progression only for a limited time window. Therefore, the identification of new molecular targets is highly necessary. Inhibition of kinases has become a standard of clinical oncology, and thus the oncogenic kinase Pim1 might represent a promising target for improvement of GBM therapy. Methods Expression of Pim1 and associated signaling molecules was analyzed in human GBM samples, and the potential role of this kinase in patients' prognosis was evaluated. Furthermore, we analyzed the in vivo role of Pim1 in GBM cell growth in an orthotopic mouse model and examined the consequences of Pim1 inhibition in vitro to clarify underlying pathways. Results In comparison with normal brain, a strong upregulation of Pim1 was demonstrated in human GBM samples. Notably, patients with short overall survival showed a significantly higher Pim1 expression compared with GBM patients who lived longer than the median. In vitro experiments with GBM cells and analysis of patients' GBM samples suggest that Pim1 regulation is dependent on epidermal growth factor receptor. Furthermore, inhibition of Pim1 resulted in reduced cell viability accompanied by decreased cell numbers and increased apoptotic cells, as seen by elevated subG1 cell contents and caspase-3 and -9 activation, as well as modulation of several cell cycle or apoptosis regulatory proteins. Conclusions Altogether, Pim1 could be a novel therapeutic target, which should be further analyzed to improve the outcome of patients with aggressive GBM. PMID:25155357

  6. Space Rescue

    NASA Technical Reports Server (NTRS)

    Muratore, John F.

    2007-01-01

    Space Rescue has been a topic of speculation for a wide community of people for decades. Astronauts, aerospace engineers, diplomats, medical and rescue professionals, inventors and science fiction writers have all speculated on this problem. Martin Caidin's 1964 novel Marooned dealt with the problems of rescuing a crew stranded in low earth orbit. Legend at the Johnson Space Center says that Caidin's portrayal of a Russian attempt to save the American crew played a pivotal role in convincing the Russians to join the real joint Apollo-Soyuz mission. Space Rescue has been a staple in science fiction television and movies portrayed in programs such as Star Trek, Stargate-SG1 and Space 1999 and movies such as Mission To Mars and Red Planet. As dramatic and as difficult as rescue appears in fictional accounts, in the real world it has even greater drama and greater difficulty. Space rescue is still in its infancy as a discipline and the purpose of this chapter is to describe the issues associated with space rescue and the work done so far in this field. For the purposes of this chapter, the term space rescue will refer to any system which allows for rescue or escape of personnel from situations which endanger human life in a spaceflight operation. This will span the period from crew ingress prior to flight through crew egress postlanding. For the purposes of this chapter, the term primary system will refer to the spacecraft system that a crew is either attempting to escape from or from which an attempt is being made to rescue the crew.

  7. Structural basis of reversine selectivity in inhibiting Mps1 more potently than aurora B kinase.

    PubMed

    Hiruma, Yoshitaka; Koch, Andre; Dharadhar, Shreya; Joosten, Robbie P; Perrakis, Anastassis

    2016-12-01

    Monopolar spindle 1 (Mps1, also known as TTK) is a protein kinase crucial for ensuring that cell division progresses to anaphase only after all chromosomes are connected to spindle microtubules. Incomplete chromosomal attachment leads to abnormal chromosome counts in the daughter cells (aneuploidy), a condition common in many solid cancers. Therefore Mps1 is an established target in cancer therapy. Mps1 kinase inhibitors include reversine (2-(4-morpholinoanilino)-6-cyclohexylaminopurine), a promiscuous compound first recognized as an inhibitor of the Aurora B mitotic kinase. Here, we present the 3.0-Å resolution crystal structure of the Mps1 kinase domain bound to reversine. Structural comparison of reversine bound to Mps1 and Aurora B, indicates a similar binding pose for the purine moiety of reversine making three conserved hydrogen bonds to the protein main chain, explaining the observed promiscuity of this inhibitor. The cyclohexyl and morpholinoaniline moieties of reversine however, have more extensive contacts with the protein in Mps1 than in Aurora B. This is reflected both in structure-based docking energy calculations, and in new experimental data we present here, that both confirm that the affinity of reversine towards Mps1 is about two orders of magnitude higher than towards Aurora B. Thus, our data provides detailed structural understanding of the existing literature that argues reversine inhibits Mps1 more efficiently than Aurora B based on biochemical and in-cell assays. Proteins 2016; 84:1761-1766. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Lipid Signaling via Pkh1/2 Regulates Fungal CO2 Sensing through the Kinase Sch9

    PubMed Central

    Pohlers, Susann; Martin, Ronny; Krüger, Thomas; Hellwig, Daniela; Hänel, Frank; Saluz, Hans Peter; Ernst, Joachim F.; Brakhage, Axel; Mühlschlegel, Fritz A.

    2017-01-01

    ABSTRACT Adaptation to alternating CO2 concentrations is crucial for all organisms. Carbonic anhydrases—metalloenzymes that have been found in all domains of life—enable fixation of scarce CO2 by accelerating its conversion to bicarbonate and ensure maintenance of cellular metabolism. In fungi and other eukaryotes, the carbonic anhydrase Nce103 has been shown to be essential for growth in air (~0.04% CO2). Expression of NCE103 is regulated in response to CO2 availability. In Saccharomyces cerevisiae, NCE103 is activated by the transcription factor ScCst6, and in Candida albicans and Candida glabrata, it is activated by its homologues CaRca1 and CgRca1, respectively. To identify the kinase controlling Cst6/Rca1, we screened an S. cerevisiae kinase/phosphatase mutant library for the ability to regulate NCE103 in a CO2-dependent manner. We identified ScSch9 as a potential ScCst6-specific kinase, as the sch9Δ mutant strain showed deregulated NCE103 expression on the RNA and protein levels. Immunoprecipitation revealed the binding capabilities of both proteins, and detection of ScCst6 phosphorylation by ScSch9 in vitro confirmed Sch9 as the Cst6 kinase. We could show that CO2-dependent activation of Sch9, which is part of a kinase cascade, is mediated by lipid/Pkh1/2 signaling but not TORC1. Finally, we tested conservation of the identified regulatory cascade in the pathogenic yeast species C. albicans and C. glabrata. Deletion of SCH9 homologues of both species impaired CO2-dependent regulation of NCE103 expression, which indicates a conservation of the CO2 adaptation mechanism among yeasts. Thus, Sch9 is a Cst6/Rca1 kinase that links CO2 adaptation to lipid signaling via Pkh1/2 in fungi. PMID:28143980

  9. The Nuclear Dbf2-Related Kinase COT1 and the Mitogen-Activated Protein Kinases MAK1 and MAK2 Genetically Interact to Regulate Filamentous Growth, Hyphal Fusion and Sexual Development in Neurospora crassa

    PubMed Central

    Maerz, Sabine; Ziv, Carmit; Vogt, Nico; Helmstaedt, Kerstin; Cohen, Nourit; Gorovits, Rena; Yarden, Oded; Seiler, Stephan

    2008-01-01

    Ndr kinases, such as Neurospora crassa COT1, are important for cell differentiation and polar morphogenesis, yet their input signals as well as their integration into a cellular signaling context are still elusive. Here, we identify the cot-1 suppressor gul-4 as mak-2 and show that mutants of the gul-4/mak-2 mitogen-activated protein (MAP) kinase pathway suppress cot-1 phenotypes along with a concomitant reduction in protein kinase A (PKA) activity. Furthermore, mak-2 pathway defects are partially overcome in a cot-1 background and are associated with increased MAK1 MAPK signaling. A comparative characterization of N. crassa MAPKs revealed that they act as three distinct modules during vegetative growth and asexual development. In addition, common functions of MAK1 and MAK2 signaling during maintenance of cell-wall integrity distinguished the two ERK-type pathways from the p38-type OS2 osmosensing pathway. In contrast to separate functions during vegetative growth, the concerted activity of the three MAPK pathways is essential for cell fusion and for the subsequent formation of multicellular structures that are required for sexual development. Taken together, our data indicate a functional link between COT1 and MAPK signaling in regulating filamentous growth, hyphal fusion, and sexual development. PMID:18562669

  10. The role of PIM1/PIM2 kinases in tumors of the male reproductive system.

    PubMed

    Jiménez-García, Manuel Pedro; Lucena-Cacace, Antonio; Robles-Frías, María José; Narlik-Grassow, Maja; Blanco-Aparicio, Carmen; Carnero, Amancio

    2016-11-30

    The PIM family of serine/threonine kinases has three highly conserved isoforms (PIM1, PIM2 and PIM3). PIM proteins are regulated through transcription and stability by JAK/STAT pathways and are overexpressed in hematological malignancies and solid tumors. The PIM kinases possess weak oncogenic abilities, but enhance other genes or chemical carcinogens to induce tumors. We generated conditional transgenic mice that overexpress PIM1 or PIM2 in male reproductive organs and analyzed their contribution to tumorigenesis. We found an increase in alterations of sexual organs and hyperplasia in the transgenic mice correlating with inflammation. We also found that PIM1/2 are overexpressed in a subset of human male germ cells and prostate tumors correlating with inflammatory features and stem cell markers. Our data suggest that PIM1/2 kinase overexpression is a common feature of male reproductive organs tumors, which provoke tissue alterations and a large inflammatory response that may act synergistically during the process of tumorigenesis. There is also a correlation with markers of cancer stem cells, which may contribute to the therapy resistance found in tumors overexpressing PIM kinases.

  11. Src family kinase expression and subcellular localization in macrophages: implications for their role in CSF-1-induced macrophage migration.

    PubMed

    Dwyer, Amy R; Mouchemore, Kellie A; Steer, James H; Sunderland, Andrew J; Sampaio, Natalia G; Greenland, Eloise L; Joyce, David A; Pixley, Fiona J

    2016-07-01

    A major role of colony-stimulating factor-1 is to stimulate the differentiation of mononuclear phagocytic lineage cells into adherent, motile, mature macrophages. The colony-stimulating factor-1 receptor transduces colony-stimulating factor-1 signaling, and we have shown previously that phosphatidylinositol 3-kinase p110δ is a critical mediator of colony-stimulating factor-1-stimulated motility through the colony-stimulating factor-1 receptor pY721 motif. Src family kinases are also implicated in the regulation of macrophage motility and in colony-stimulating factor-1 receptor signaling, although functional redundancy of the multiple SFKs expressed in macrophages makes it challenging to delineate their specific functions. We report a comprehensive analysis of individual Src family kinase expression in macrophage cell lines and primary macrophages and demonstrate colony-stimulating factor-1-induced changes in Src family kinase subcellular localization, which provides clues to their distinct and redundant functions in macrophages. Moreover, expression of individual Src family kinases is both species specific and dependent on colony-stimulating factor-1-induced macrophage differentiation. Hck associated with the activated colony-stimulating factor-1 receptor, whereas Lyn associated with the receptor in a constitutive manner. Consistent with this, inhibitor studies revealed that Src family kinases were important for both colony-stimulating factor-1 receptor activation and colony-stimulating factor-1-induced macrophage spreading, motility, and invasion. Distinct colony-stimulating factor-1-induced changes in the subcellular localization of individual SFKs suggest specific roles for these Src family kinases in the macrophage response to colony-stimulating factor-1. © Society for Leukocyte Biology.

  12. Polo-like kinase 1 regulates Nlp, a centrosome protein involved in microtubule nucleation.

    PubMed

    Casenghi, Martina; Meraldi, Patrick; Weinhart, Ulrike; Duncan, Peter I; Körner, Roman; Nigg, Erich A

    2003-07-01

    In animal cells, most microtubules are nucleated at centrosomes. At the onset of mitosis, centrosomes undergo a structural reorganization, termed maturation, which leads to increased microtubule nucleation activity. Centrosome maturation is regulated by several kinases, including Polo-like kinase 1 (Plk1). Here, we identify a centrosomal Plk1 substrate, termed Nlp (ninein-like protein), whose properties suggest an important role in microtubule organization. Nlp interacts with two components of the gamma-tubulin ring complex and stimulates microtubule nucleation. Plk1 phosphorylates Nlp and disrupts both its centrosome association and its gamma-tubulin interaction. Overexpression of an Nlp mutant lacking Plk1 phosphorylation sites severely disturbs mitotic spindle formation. We propose that Nlp plays an important role in microtubule organization during interphase, and that the activation of Plk1 at the onset of mitosis triggers the displacement of Nlp from the centrosome, allowing the establishment of a mitotic scaffold with enhanced microtubule nucleation activity.

  13. The wheat AGC kinase TaAGC1 is a positive contributor to host resistance to the necrotrophic pathogen Rhizoctonia cerealis.

    PubMed

    Zhu, Xiuliang; Yang, Kun; Wei, Xuening; Zhang, Qiaofeng; Rong, Wei; Du, Lipu; Ye, Xingguo; Qi, Lin; Zhang, Zengyan

    2015-11-01

    Considerable progress has been made in understanding the roles of AGC kinases in mammalian systems. However, very little is known about the roles of AGC kinases in wheat (Triticum aestivum). The necrotrophic fungus Rhizoctonia cerealis is the major pathogen of the destructive disease sharp eyespot of wheat. In this study, the wheat AGC kinase gene TaAGC1, responding to R. cerealis infection, was isolated, and its properties and role in wheat defence were characterized. R. cerealis-resistant wheat lines expressed TaAGC1 at higher levels than susceptible wheat lines. Sequence and phylogenetic analyses showed that the TaAGC1 protein is a serine/threonine kinase belonging to the NDR (nuclear Dbf2-related) subgroup of AGC kinases. Kinase activity assays proved that TaAGC1 is a functional kinase and the Asp-239 residue located in the conserved serine/threonine kinase domain of TaAGC1 is required for the kinase activity. Subcellular localization assays indicated that TaAGC1 localized in the cytoplasm and nucleus. Virus-induced TaAGC1 silencing revealed that the down-regulation of TaAGC1 transcripts significantly impaired wheat resistance to R. cerealis. The molecular characterization and responses of TaAGC1 overexpressing transgenic wheat plants indicated that TaAGC1 overexpression significantly enhanced resistance to sharp eyespot and reduced the accumulation of reactive oxygen species (ROS) in wheat plants challenged with R. cerealis. Furthermore, ROS-scavenging and certain defence-associated genes were up-regulated in resistant plants overexpressing TaAGC1 but down-regulated in susceptible knock-down plants. These results suggested that the kinase TaAGC1 positively contributes to wheat immunity to R. cerealis through regulating expression of ROS-related and defence-associated genes. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. The wheat AGC kinase TaAGC1 is a positive contributor to host resistance to the necrotrophic pathogen Rhizoctonia cerealis

    PubMed Central

    Zhu, Xiuliang; Yang, Kun; Wei, Xuening; Zhang, Qiaofeng; Rong, Wei; Du, Lipu; Ye, Xingguo; Qi, Lin; Zhang, Zengyan

    2015-01-01

    Considerable progress has been made in understanding the roles of AGC kinases in mammalian systems. However, very little is known about the roles of AGC kinases in wheat (Triticum aestivum). The necrotrophic fungus Rhizoctonia cerealis is the major pathogen of the destructive disease sharp eyespot of wheat. In this study, the wheat AGC kinase gene TaAGC1, responding to R. cerealis infection, was isolated, and its properties and role in wheat defence were characterized. R. cerealis-resistant wheat lines expressed TaAGC1 at higher levels than susceptible wheat lines. Sequence and phylogenetic analyses showed that the TaAGC1 protein is a serine/threonine kinase belonging to the NDR (nuclear Dbf2-related) subgroup of AGC kinases. Kinase activity assays proved that TaAGC1 is a functional kinase and the Asp-239 residue located in the conserved serine/threonine kinase domain of TaAGC1 is required for the kinase activity. Subcellular localization assays indicated that TaAGC1 localized in the cytoplasm and nucleus. Virus-induced TaAGC1 silencing revealed that the down-regulation of TaAGC1 transcripts significantly impaired wheat resistance to R. cerealis. The molecular characterization and responses of TaAGC1 overexpressing transgenic wheat plants indicated that TaAGC1 overexpression significantly enhanced resistance to sharp eyespot and reduced the accumulation of reactive oxygen species (ROS) in wheat plants challenged with R. cerealis. Furthermore, ROS-scavenging and certain defence-associated genes were up-regulated in resistant plants overexpressing TaAGC1 but down-regulated in susceptible knock-down plants. These results suggested that the kinase TaAGC1 positively contributes to wheat immunity to R. cerealis through regulating expression of ROS-related and defence-associated genes. PMID:26220083

  15. The maize OST1 kinase homolog phosphorylates and regulates the maize SNAC1-type transcription factor.

    PubMed

    Vilela, Belmiro; Moreno-Cortés, Alicia; Rabissi, Agnese; Leung, Jeffrey; Pagès, Montserrat; Lumbreras, Victoria

    2013-01-01

    The Arabidopsis kinase OPEN STOMATA 1 (OST1) plays a key role in regulating drought stress signalling, particularly stomatal closure. We have identified and investigated the functions of the OST1 ortholog in Z. mays (ZmOST1). Ectopic expression of ZmOST1 in the Arabidopsis ost1 mutant restores the stomatal closure phenotype in response to drought. Furthermore, we have identified the transcription factor, ZmSNAC1, which is directly phosphorylated by ZmOST1 with implications on its localization and protein stability. Interestingly, ZmSNAC1 binds to the ABA-box of ZmOST1, which is conserved in SnRK2s activated by ABA and is part of the contact site for the negative-regulating clade A PP2C phosphatases. Taken together, our results indicate that ZmSNAC1 is a substrate of ZmOST1 and delineate a novel osmotic stress transcriptional pathway in maize.

  16. The Maize OST1 Kinase Homolog Phosphorylates and Regulates the Maize SNAC1-Type Transcription Factor

    PubMed Central

    Rabissi, Agnese; Leung, Jeffrey; Pagès, Montserrat; Lumbreras, Victoria

    2013-01-01

    The Arabidopsis kinase OPEN STOMATA 1 (OST1) plays a key role in regulating drought stress signalling, particularly stomatal closure. We have identified and investigated the functions of the OST1 ortholog in Z. mays (ZmOST1). Ectopic expression of ZmOST1 in the Arabidopsis ost1 mutant restores the stomatal closure phenotype in response to drought. Furthermore, we have identified the transcription factor, ZmSNAC1, which is directly phosphorylated by ZmOST1 with implications on its localization and protein stability. Interestingly, ZmSNAC1 binds to the ABA-box of ZmOST1, which is conserved in SnRK2s activated by ABA and is part of the contact site for the negative-regulating clade A PP2C phosphatases. Taken together, our results indicate that ZmSNAC1 is a substrate of ZmOST1 and delineate a novel osmotic stress transcriptional pathway in maize. PMID:23469147

  17. The osmotic shock-induced glucose transport pathway in 3T3-L1 adipocytes is mediated by gab-1 and requires Gab-1-associated phosphatidylinositol 3-kinase activity for full activation.

    PubMed

    Janez, A; Worrall, D S; Imamura, T; Sharma, P M; Olefsky, J M

    2000-09-01

    Osmotic shock treatment of 3T3-L1 adipocytes causes an increase in glucose transport activity and translocation of GLUT4 protein similar to that elicited by insulin treatment. Insulin stimulation of GLUT4 translocation and glucose transport activity was completely inhibited by wortmannin, however, activation by osmotic shock was only partially blocked. Additionally, we have found that the newly identified insulin receptor substrate Gab-1 (Grb2-associated binder-1) is tyrosine-phosphorylated following sorbitol stimulation. Treatment of cells with the tyrosine kinase inhibitor genistein inhibited osmotic shock-stimulated Gab-1 phosphorylation as well as shock-induced glucose transport. Furthermore, pretreatment with the selective Src family kinase inhibitor PP2 completely inhibited the ability of sorbitol treatment to cause tyrosine phosphorylation of Gab-1. We have also shown that microinjection of anti-Gab-1 antibody inhibits osmotic shock-induced GLUT4 translocation. Furthermore, phosphorylated Gab-1 binds and activates phosphatidylinositol 3-kinase (PI3K) in response to osmotic shock. The PI3K activity associated with Gab-1 was 82% of that associated with anti-phosphotyrosine antibodies, indicating that Gab-1 is the major site for PI3K recruitment following osmotic shock stimulation. Although wortmannin only causes a partial block of osmotic shock-stimulated glucose uptake, wortmannin completely abolishes Gab-1 associated PI3K activity. This suggests that other tyrosine kinase-dependent pathways, in addition to the Gab-1-PI3K pathway, contribute to osmotic shock-mediated glucose transport. To date, Gab-1 is the first protein identified as a member of the osmotic shock signal transduction pathway.

  18. Insulin Receptor Substrate 1, the Hub Linking Follicle-stimulating Hormone to Phosphatidylinositol 3-Kinase Activation.

    PubMed

    Law, Nathan C; Hunzicker-Dunn, Mary E

    2016-02-26

    The ubiquitous phosphatidylinositol 3-kinase (PI3K) signaling pathway regulates many cellular functions. However, the mechanism by which G protein-coupled receptors (GPCRs) signal to activate PI3K is poorly understood. We have used ovarian granulosa cells as a model to investigate this pathway, based on evidence that the GPCR agonist follicle-stimulating hormone (FSH) promotes the protein kinase A (PKA)-dependent phosphorylation of insulin receptor substrate 1 (IRS1) on tyrosine residues that activate PI3K. We report that in the absence of FSH, granulosa cells secrete a subthreshold concentration of insulin-like growth factor-1 (IGF-1) that primes the IGF-1 receptor (IGF-1R) but fails to promote tyrosine phosphorylation of IRS1. FSH via PKA acts to sensitize IRS1 to the tyrosine kinase activity of the IGF-1R by activating protein phosphatase 1 (PP1) to promote dephosphorylation of inhibitory Ser/Thr residues on IRS1, including Ser(789). Knockdown of PP1β blocks the ability of FSH to activate PI3K in the presence of endogenous IGF-1. Activation of PI3K thus requires both PKA-mediated relief of IRS1 inhibition and IGF-1R-dependent tyrosine phosphorylation of IRS1. Treatment with FSH and increasing concentrations of exogenous IGF-1 triggers synergistic IRS1 tyrosine phosphorylation at PI3K-activating residues that persists downstream through protein kinase B (AKT) and FOXO1 (forkhead box protein O1) to drive synergistic expression of genes that underlies follicle maturation. Based on the ability of GPCR agonists to synergize with IGFs to enhance gene expression in other cell types, PP1 activation to relieve IRS1 inhibition may be a more general mechanism by which GPCRs act with the IGF-1R to activate PI3K/AKT. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Sliding p21-activated kinase 1 to nucleus impacts tamoxifen sensitivity.

    PubMed

    Rayala, Suresh K; Kumar, Rakesh

    2007-08-01

    The anti-estrogen, tamoxifen is the most commonly used treatment for patients with estrogen receptor (ER)-alpha-positive breast cancer. Recent data suggest that levels of ER coregulatory proteins as well as extra- and intracellular signaling in response to growth factor stimulation of breast cancer cells play an important role in acquiring resistance to anti-estrogen action. P21-activated kinase 1 (PAK1), a major target of the small GTPases, growth factors and lipid signaling, regulates cell motility, hormone action, invasiveness, and survival, all of which are required for both tumor development and normal mammary gland development. Over the years, the PAK1 has been regarded as cytosolic serine-threonine kinase with regulatory function in cytoskeleton reorganization and motility. However, emerging data now provide evidence of PAK1 function in the nucleus of breast cancer cells. Elevated PAK1 expression in premenopausal breast cancer patients correlates well with the lack of tamoxifen response despite the presence of ER-alpha expression, and such relationship was even distinctly stronger in breast tumors with nuclear PAK1. These typical effects of PAK1 are mechanistically linked with the ability of PAK1 to phosphorylate ER-alpha on serine 305, accompanied by secondary activation of serine 118, and such structural modifications may participate in the development of tamoxifen resistance. These findings suggest that the levels, subcellular localization, and activation status of PAK1 are likely to be important determinants of tamoxifen resistance, and that raising the possibility that tamoxifen resistance might be prevented or reversed by PAK1 inhibition.

  20. Binding of HIV-1 gp120 to DC-SIGN Promotes ASK-1-Dependent Activation-Induced Apoptosis of Human Dendritic Cells

    PubMed Central

    Chan, Vera S. F.; Chung, Nancy P. Y.; Wang, Shu-Rong; Li, Zhongye; Ma, Jing; Lin, Chia-Wei; Hsieh, Ya-Ju; Chang, Kao-Ping; Kung, Sui-Sum; Wu, Yi-Chia; Chu, Cheng-Wei; Tai, Hsiao-Ting; Gao, George F.; Zheng, Bojian; Yokoyama, Kazunari K.; Austyn, Jonathan M.; Lin, Chen-Lung S.

    2013-01-01

    During disease progression to AIDS, HIV-1 infected individuals become increasingly immunosuppressed and susceptible to opportunistic infections. It has also been demonstrated that multiple subsets of dendritic cells (DC), including DC-SIGN(+) cells, become significantly depleted in the blood and lymphoid tissues of AIDS patients, which may contribute to the failure in initiating effective host immune responses. The mechanism for DC depletion, however, is unclear. It is also known that vast quantities of viral envelope protein gp120 are shed from maturing HIV-1 virions and form circulating immune complexes in the serum of HIV-1-infected individuals, but the pathological role of gp120 in HIV-1 pathogenesis remains elusive. Here we describe a previously unrecognized mechanism of DC death in chronic HIV-1 infection, in which ligation of DC-SIGN by gp120 sensitizes DC to undergo accelerated apoptosis in response to a variety of activation stimuli. The cultured monocyte-derived DC and also freshly-isolated DC-SIGN(+) blood DC that were exposed to either cross-linked recombinant gp120 or immune-complex gp120 in HIV(+) serum underwent considerable apoptosis after CD40 ligation or exposure to bacterial lipopolysaccharide (LPS) or pro-inflammatory cytokines such as TNFα and IL-1β. Furthermore, circulating DC-SIGN(+) DC that were isolated directly from HIV-1(+) individuals had actually been pre-sensitized by serum gp120 for activation-induced exorbitant apoptosis. In all cases the DC apoptosis was substantially inhibited by DC-SIGN blockade. Finally, we showed that accelerated DC apoptosis was a direct consequence of excessive activation of the pro-apoptotic molecule ASK-1 and transfection of siRNA against ASK-1 significantly prevented the activation-induced excessive DC death. Our study discloses a previously unknown mechanism of immune modulation by envelope protein gp120, provides new insights into HIV immunopathogenesis, and suggests potential therapeutic approaches to

  1. Effects of Butyltins (BTs) on Mitogen-Activated-Protein Kinase Kinase Kinase (MAP3K) and Ras Activity in Human Natural Killer Cells

    PubMed Central

    Celada, Lindsay J.; Whalen, Margaret M.

    2013-01-01

    Butyltins (BTs) contaminate the environment and are found in human blood. BTs, tributyltin (TBT) and dibutyltin (DBT), diminish the cytotoxic function and levels of key proteins of human natural killer (NK) cells. NK cells are an initial immune defense against tumors, virally-infected cells and antibody-coated cells and thus critical to human health. The signaling pathways that regulate NK cell functions include mitogen-activated protein kinases (MAPKs). Studies have shown that exposure to BTs leads to the activation of specific MAPKs and MAPK kinases (MAP2Ks) in human NK cells. MAP2K kinases (MAP3Ks) are upstream activators of MAP2Ks, which then activate MAPKs. The current study examined if BT-induced activation of MAP3Ks was responsible for MAP2K and thus, MAPK activation. This study examines the effects of TBT and DBT on the total levels of two MAP3Ks, c-Raf and ASK1, as well as activating and inhibitory phosphorylation sites on these MAP3Ks. In addition, the immediate upstream activator of c-Raf, Ras, was examined for BT-induced alterations. Our results show significant activation of the MAP3K, c-Raf, in human NK cells within 10 minutes of TBT exposure and the MAP3K, ASK1, after one hour exposures to TBT. In addition, our results suggest that both TBT and DBT are impacting the regulation of c-Raf. PMID:24038145

  2. Mps1 kinase-dependent Sgo2 centromere localisation mediates cohesin protection in mouse oocyte meiosis I.

    PubMed

    El Yakoubi, Warif; Buffin, Eulalie; Cladière, Damien; Gryaznova, Yulia; Berenguer, Inés; Touati, Sandra A; Gómez, Rocío; Suja, José A; van Deursen, Jan M; Wassmann, Katja

    2017-09-25

    A key feature of meiosis is the step-wise removal of cohesin, the protein complex holding sister chromatids together, first from arms in meiosis I and then from the centromere region in meiosis II. Centromeric cohesin is protected by Sgo2 from Separase-mediated cleavage, in order to maintain sister chromatids together until their separation in meiosis II. Failures in step-wise cohesin removal result in aneuploid gametes, preventing the generation of healthy embryos. Here, we report that kinase activities of Bub1 and Mps1 are required for Sgo2 localisation to the centromere region. Mps1 inhibitor-treated oocytes are defective in centromeric cohesin protection, whereas oocytes devoid of Bub1 kinase activity, which cannot phosphorylate H2A at T121, are not perturbed in cohesin protection as long as Mps1 is functional. Mps1 and Bub1 kinase activities localise Sgo2 in meiosis I preferentially to the centromere and pericentromere respectively, indicating that Sgo2 at the centromere is required for protection.In meiosis I centromeric cohesin is protected by Sgo2 from Separase-mediated cleavage ensuring that sister chromatids are kept together until their separation in meiosis II. Here the authors demonstrate that Bub1 and Mps1 kinase activities are required for Sgo2 localisation to the centromere region.

  3. CB1 Cannabinoid Receptors Modulate Kinase and Phosphatase Activity during Extinction of Conditioned Fear in Mice

    ERIC Educational Resources Information Center

    Kamprath, Kornelia; Hermann, Heike; Lutz, Beat; Marsicano, Giovanni; Cannich, Astrid; Wotjak, Carsten T.

    2004-01-01

    Cannabinoid receptors type 1 (CB1) play a central role in both short-term and long-term extinction of auditory-cued fear memory. The molecular mechanisms underlying this function remain to be clarified. Several studies indicated extracellular signal-regulated kinases (ERKs), the phosphatidylinositol 3-kinase with its downstream effector AKT, and…

  4. BACE1 inhibition by microdose lithium formulation NP03 rescues memory loss and early stage amyloid neuropathology

    PubMed Central

    Wilson, E N; Do Carmo, S; Iulita, M F; Hall, H; Ducatenzeiler, A; Marks, A R; Allard, S; Jia, D T; Windheim, J; Cuello, A C

    2017-01-01

    Lithium is first-line therapy for bipolar affective disorder and has recently been shown to have protective effects in populations at risk for Alzheimer’s disease (AD). However, the mechanism underlying this protection is poorly understood and consequently limits its possible therapeutic application in AD. Moreover, conventional lithium formulations have a narrow therapeutic window and are associated with a severe side effect profile. Here we evaluated a novel microdose formulation of lithium, coded NP03, in a well-characterized rat model of progressive AD-like amyloid pathology. This formulation allows microdose lithium delivery to the brain in the absence of negative side effects. We found that NP03 rescued key initiating components of AD pathology, including inactivating GSK-3β, reducing BACE1 expression and activity, and reducing amyloid levels. Notably, NP03 rescued memory loss, impaired CRTC1 promoter binding of synaptic plasticity genes and hippocampal neurogenesis. These results raise the possibility that NP03 be of therapeutic value in the early or preclinical stages of AD. PMID:28763060

  5. Calcium/calmodulin-dependent kinase II phosphorylation of the GABAA receptor alpha1 subunit modulates benzodiazepine binding.

    PubMed

    Churn, Severn B; Rana, Aniruddha; Lee, Kangmin; Parsons, J Travis; De Blas, Angel; Delorenzo, Robert J

    2002-09-01

    gamma-Aminobutyric acid (GABA) is the primary neurotransmitter that is responsible for the fast inhibitory synaptic transmission in the central nervous system. A major post-translational mechanism that can rapidly regulate GABAAR function is receptor phosphorylation. This study was designed to test the effect of endogenous calcium and calmodulin-dependent kinase II (CaM kinase II) activation on both allosteric modulator binding and GABAA receptor subunit phosphorylation. Endogenous CaM kinase II activity was stimulated, and GABAA receptors were subsequently analyzed for bothallosteric modulator binding properties and immunoprecipitated and analyzed for subunit phosphorylation levels. A significant increase in allosteric-modulator binding of the GABAAR was observed under conditions maximal for CaM kinase II activation. In addition, CaM kinase II activation resulted in a direct increase in phosphorylation of the GABAA receptor alpha1 subunit. The data suggest that the CaM kinase II-dependent phosphorylation of the GABAA receptor alpha1 subunit modulated allosteric modulator binding to the GABAA receptor.

  6. Kinase-dependent activation of voltage-gated Ca2+ channels by ET-1 in pulmonary arterial myocytes during chronic hypoxia.

    PubMed

    Luke, Trevor; Maylor, Julie; Undem, Clark; Sylvester, J T; Shimoda, Larissa A

    2012-05-15

    Exposure to chronic hypoxia (CH) causes pulmonary hypertension. The vasoconstrictor endothelin-1 (ET-1) is thought to play a role in the development of hypoxic pulmonary hypertension. In pulmonary arterial smooth muscle cells (PASMCs) from chronically hypoxic rats, ET-1 signaling is altered, with the ET-1-induced change in intracellular calcium concentration (Δ[Ca(2+)](i)) occurring through activation of voltage-dependent Ca(2+) channels (VDCC) even though ET-1-induced depolarization via inhibition of K(+) channels is lost. The mechanism underlying this response is unclear. We hypothesized that activation of VDCCs by ET-1 following CH might be mediated by protein kinase C (PKC) and/or Rho kinase, both of which have been shown to phosphorylate and activate VDCCs. To test this hypothesis, we examined the effects of PKC and Rho kinase inhibitors on the ET-1-induced Δ[Ca(2+)](i) in PASMCs from rats exposed to CH (10% O(2), 3 wk) using the Ca(2+)-sensitive dye fura 2-AM and fluorescent microscopy techniques. We found that staurosporine and GF109203X, inhibitors of PKC, and Y-27632 and HA 1077, Rho kinase inhibitors, reduced the ET-1-induced Δ[Ca(2+)](i) by >70%. Inhibition of tyrosine kinases (TKs) with genistein or tyrphostin A23, or combined inhibition of PKC, TKs, and Rho kinase, reduced the Δ[Ca(2+)](i) to a similar extent as inhibition of either PKC or Rho kinase alone. The ability of PKC or Rho kinase to activate VDCCs in our cells was verified using phorbol 12-myristate 13-acetate and GTP-γ-S. These results suggest that following CH, the ET-1-induced Δ[Ca(2+)](i) in PASMCs occurs via Ca(2+) influx through VDCCs mediated primarily by PKC, TKs, and Rho kinase.

  7. Phosphoproteomic insights into processes influenced by the kinase-like protein DIA1/C3orf58

    PubMed Central

    Hareza, Agnieszka; Bakun, Magda; Świderska, Bianka; Dudkiewicz, Małgorzata; Koscielny, Alicja; Bajur, Anna; Jaworski, Jacek

    2018-01-01

    Many kinases are still ‘orphans,’ which means knowledge about their substrates, and often also about the processes they regulate, is lacking. Here, DIA1/C3orf58, a member of a novel predicted kinase-like family, is shown to be present in the endoplasmic reticulum and to influence trafficking via the secretory pathway. Subsequently, DIA1 is subjected to phosphoproteomics analysis to cast light on its signalling pathways. A liquid chromatography–tandem mass spectrometry proteomic approach with phosphopeptide enrichment is applied to membrane fractions of DIA1-overexpressing and control HEK293T cells, and phosphosites dependent on the presence of DIA1 are elucidated. Most of these phosphosites belonged to CK2- and proline-directed kinase types. In parallel, the proteomics of proteins immunoprecipitated with DIA1 reported its probable interactors. This pilot study provides the basis for deeper studies of DIA1 signalling. PMID:29666759

  8. Phosphoproteomic insights into processes influenced by the kinase-like protein DIA1/C3orf58.

    PubMed

    Hareza, Agnieszka; Bakun, Magda; Świderska, Bianka; Dudkiewicz, Małgorzata; Koscielny, Alicja; Bajur, Anna; Jaworski, Jacek; Dadlez, Michał; Pawłowski, Krzysztof

    2018-01-01

    Many kinases are still 'orphans,' which means knowledge about their substrates, and often also about the processes they regulate, is lacking. Here, DIA1/C3orf58, a member of a novel predicted kinase-like family, is shown to be present in the endoplasmic reticulum and to influence trafficking via the secretory pathway. Subsequently, DIA1 is subjected to phosphoproteomics analysis to cast light on its signalling pathways. A liquid chromatography-tandem mass spectrometry proteomic approach with phosphopeptide enrichment is applied to membrane fractions of DIA1-overexpressing and control HEK293T cells, and phosphosites dependent on the presence of DIA1 are elucidated. Most of these phosphosites belonged to CK2- and proline-directed kinase types. In parallel, the proteomics of proteins immunoprecipitated with DIA1 reported its probable interactors. This pilot study provides the basis for deeper studies of DIA1 signalling.

  9. A role for the tyrosine kinase ACK1 in neurotrophin signaling and neuronal extension and branching

    PubMed Central

    La Torre, A; del Mar Masdeu, M; Cotrufo, T; Moubarak, R S; del Río, J A; Comella, J X; Soriano, E; Ureña, J M

    2013-01-01

    Neurotrophins are involved in many crucial cellular functions, including neurite outgrowth, synapse formation, and plasticity. Although these events have long been known, the molecular determinants underlying neuritogenesis have not been fully characterized. Ack1 (activated Cdc42-associated tyrosine kinase) is a non-receptor tyrosine kinase that is highly expressed in the brain. Here, we demonstrate that Ack1 is a molecular constituent of neurotrophin signaling cascades in neurons and PC12 cells. We report that Ack1 interacts with Trk receptors and becomes tyrosine phosphorylated and its kinase activity is increased in response to neurotrophins. Moreover, our data indicate that Ack1 acts upstream of the Akt and MAPK pathways. We show that Ack1 overexpression induces neuritic outgrowth and promotes branching in neurotrophin-treated neuronal cells, whereas the expression of Ack1 dominant negatives or short-hairpin RNAs counteract neurotrophin-stimulated differentiation. Our results identify Ack1 as a novel regulator of neurotrophin-mediated events in primary neurons and in PC12 cells. PMID:23598414

  10. Mitogen-activated protein kinase phosphatase-1: a critical phosphatase manipulating mitogen-activated protein kinase signaling in cardiovascular disease (review).

    PubMed

    Li, Chang-Yi; Yang, Ling-Chao; Guo, Kai; Wang, Yue-Peng; Li, Yi-Gang

    2015-04-01

    Mitogen-activated protein kinase (MAPK) cascades are important players in the overall representation of cellular signal transduction pathways, and the deregulation of MAPKs is involved in a variety of diseases. The activation of MAPK signals occurs through phosphorylation by MAPK kinases at conserved threonine and tyrosine (Thr-Xaa-Tyr) residues. The mitogen-activated protein kinase phosphatases (MKPs) are a major part of the dual-specificity family of phosphatases and specifically inactivate MAPKs by dephosphorylating both phosphotyrosine and phosphoserine/phosphothreonine residues within the one substrate. MAPKs binding to MKPs can enhance MKP stability and activity, providing an important negative-feedback control mechanism that limits the MAPK cascades. In recent years, accumulating and compelling evidence from studies mainly employing cultured cells and mouse models has suggested that the archetypal MKP family member, MKP-1, plays a pivotal role in cardiovascular disease as a major negative modulator of MAPK signaling pathways. In the present review, we summarize the current knowledge on the pathological properties and the regulation of MKP-1 in cardiovascular disease, which may provide valuable therapeutic options.

  11. Mitochondria-Translocated PGK1 Functions as a Protein Kinase to Coordinate Glycolysis and the TCA Cycle in Tumorigenesis.

    PubMed

    Li, Xinjian; Jiang, Yuhui; Meisenhelder, Jill; Yang, Weiwei; Hawke, David H; Zheng, Yanhua; Xia, Yan; Aldape, Kenneth; He, Jie; Hunter, Tony; Wang, Liwei; Lu, Zhimin

    2016-03-03

    It is unclear how the Warburg effect that exemplifies enhanced glycolysis in the cytosol is coordinated with suppressed mitochondrial pyruvate metabolism. We demonstrate here that hypoxia, EGFR activation, and expression of K-Ras G12V and B-Raf V600E induce mitochondrial translocation of phosphoglycerate kinase 1 (PGK1); this is mediated by ERK-dependent PGK1 S203 phosphorylation and subsequent PIN1-mediated cis-trans isomerization. Mitochondrial PGK1 acts as a protein kinase to phosphorylate pyruvate dehydrogenase kinase 1 (PDHK1) at T338, which activates PDHK1 to phosphorylate and inhibit the pyruvate dehydrogenase (PDH) complex. This reduces mitochondrial pyruvate utilization, suppresses reactive oxygen species production, increases lactate production, and promotes brain tumorigenesis. Furthermore, PGK1 S203 and PDHK1 T338 phosphorylation levels correlate with PDH S293 inactivating phosphorylation levels and poor prognosis in glioblastoma patients. This work highlights that PGK1 acts as a protein kinase in coordinating glycolysis and the tricarboxylic acid (TCA) cycle, which is instrumental in cancer metabolism and tumorigenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Mucuna pruriens (Velvet bean) rescues motor, olfactory, mitochondrial and synaptic impairment in PINK1B9 Drosophila melanogaster genetic model of Parkinson's disease.

    PubMed

    Poddighe, Simone; De Rose, Francescaelena; Marotta, Roberto; Ruffilli, Roberta; Fanti, Maura; Secci, Pietro Paolo; Mostallino, Maria Cristina; Setzu, Maria Dolores; Zuncheddu, Maria Antonietta; Collu, Ignazio; Solla, Paolo; Marrosu, Francesco; Kasture, Sanjay; Acquas, Elio; Liscia, Anna

    2014-01-01

    The fruit fly Drosophila melanogaster (Dm) mutant for PTEN-induced putative kinase 1 (PINK1B9) gene is a powerful tool to investigate physiopathology of Parkinson's disease (PD). Using PINK1B9 mutant Dm we sought to explore the effects of Mucuna pruriens methanolic extract (Mpe), a L-Dopa-containing herbal remedy of PD. The effects of Mpe on PINK1B9 mutants, supplied with standard diet to larvae and adults, were assayed on 3-6 (I), 10-15 (II) and 20-25 (III) days old flies. Mpe 0.1% significantly extended lifespan of PINK1B9 and fully rescued olfactory response to 1-hexanol and improved climbing behavior of PINK1B9 of all ages; in contrast, L-Dopa (0.01%, percentage at which it is present in Mpe 0.1%) ameliorated climbing of only PINK1B9 flies of age step II. Transmission electron microscopy analysis of antennal lobes and thoracic ganglia of PINK1B9 revealed that Mpe restored to wild type (WT) levels both T-bars and damaged mitochondria. Western blot analysis of whole brain showed that Mpe, but not L-Dopa on its own, restored bruchpilot (BRP) and tyrosine hydroxylase (TH) expression to age-matched WT control levels. These results highlight multiple sites of action of Mpe, suggesting that its effects cannot only depend upon its L-Dopa content and support the clinical observation of Mpe as an effective medication with intrinsic ability of delaying the onset of chronic L-Dopa-induced long-term motor complications. Overall, this study strengthens the relevance of using PINK1B9 Dm as a translational model to study the properties of Mucuna pruriens for PD treatment.

  13. Novel pyrrolopyrimidines as Mps1/TTK kinase inhibitors for breast cancer.

    PubMed

    Sugimoto, Yasuro; Sawant, Dwitiya B; Fisk, Harold A; Mao, Liguang; Li, Chenglong; Chettiar, Somsundaram; Li, Pui-Kai; Darby, Michael V; Brueggemeier, Robert W

    2017-04-01

    New targeted therapy approaches for certain subtypes of breast cancer, such as triple-negative breast cancers and other aggressive phenotypes, are desired. High levels of the mitotic checkpoint kinase Mps1/TTK have correlated with high histologic grade in breast cancer, suggesting a potential new therapeutic target for aggressive breast cancers (BC). Novel small molecules targeting Mps1 were designed by computer assisted docking analyses, and several candidate compounds were synthesized. These compounds were evaluated in anti-proliferative assays of a panel of 15 breast cancer cell lines and further examined for their ability to inhibit a variety of Mps1-dependent biological functions. The results indicate that the lead compounds have strong anti-proliferative potential through Mps1/TTK inhibition in both basal and luminal BC cell lines, exhibiting IC 50 values ranging from 0.05 to 1.0μM. In addition, the lead compounds 1 and 13 inhibit Mps1 kinase enzymatic activity with IC 50 values from 0.356μM to 0.809μM, and inhibited Mps1-associated cellular functions such as centrosome duplication and the spindle checkpoint in triple negative breast cancer cells. The most promising analog, compound 13, significantly decreased tumor growth in nude mice containing Cal-51 triple negative breast cancer cell xenografts. Using drug discovery technologies, computational modeling, medicinal chemistry, cell culture and in vivo assays, novel small molecule Mps1/TTK inhibitors have been identified as potential targeted therapies for breast cancers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Potential role of p21 Activated Kinase 1 (PAK1) in the invasion and motility of oral cancer cells.

    PubMed

    Parvathy, Muraleedharan; Sreeja, Sreeharshan; Kumar, Rakesh; Pillai, Madhavan Radhakrishna

    2016-05-16

    Oral cancer malignancy consists of uncontrolled division of cells primarily in and around the floor of the oral cavity, gingiva, oropharynx, lower lip and base of the tongue. According to GLOBOCAN 2012 report, oral cancer is one of the most common cancers among males and females in India. Even though significant advancements have been made in the field of oral cancer treatment modalities, the overall prognosis for the patients has not improved in the past few decades and hence, this demands a new thrust for the identification of novel therapeutic targets in oral cancer. p21 Activated Kinases (PAKs) are potential therapeutic targets that are involved in numerous physiological functions. PAKs are serine-threonine kinases and they serve as important regulators of cytoskeletal dynamics and cell motility, transcription through MAP kinase cascades, death and survival signalling, and cell-cycle progression. Although PAKs are known to play crucial roles in cancer progression, the role and clinical significance of PAKs in oral cancer remains poorly understood. Our results suggest that PAK1 is over-expressed in oral cancer cell lines. Stimulation of Oral Squamous Cell Carcinoma (OSCC) cells with serum growth factors leads to PAK1 re-localization and might cause a profound cytoskeletal remodelling. PAK1 was also found to be involved in the invasion, migration and cytoskeletal remodelling of OSCC cells. Our study revealed that PAK1 may play a crucial role in the progression of OSCC. Studying the role of PAK1 and its substrates is likely to enhance our understanding of oral carcinogenesis and potential therapeutic value of PAKs in oral cancer.

  15. M-phase kinases induce phospho-dependent ubiquitination of somatic Wee1 by SCFβ-TrCP

    PubMed Central

    Watanabe, Nobumoto; Arai, Harumi; Nishihara, Yoshifumi; Taniguchi, Makoto; Watanabe, Naoko; Hunter, Tony; Osada, Hiroyuki

    2004-01-01

    Wee1, the Cdc2 inhibitory kinase, needs to be down-regulated at the onset of mitosis to ensure rapid activation of Cdc2. Previously, we have shown that human somatic Wee1 (Wee1A) is down-regulated both by protein phosphorylation and degradation, but the underlying mechanisms had not been elucidated. In the present study, we have identified the β-transducin repeat-containing protein 1/2 (β-TrCP1/2) F-box protein-containing SKP1/Cul1/F-box protein (SCF) complex (SCFβ-TrCP1/2) as an E3 ubiquitin ligase for Wee1A ubiquitination. Although Wee1A lacks a consensus DS(p)GXXS(p) phospho-dependent binding motif for β-TrCP, recognition of Wee1A by β-TrCP depended on phosphorylation, and two serine residues in Wee1A, S53 and S123, were found to be the most important phosphorylation sites for β-TrCP recognition. We have found also that the major M-phase kinases polo-like kinase 1 (Plk1) and Cdc2 are responsible for the phosphorylation of S53 and S123, respectively, and that in each case phosphorylation generates an unconventional phospho-degron (signal for degradation) that can be recognized by β-TrCP. Phosphorylation of Wee1A by these kinases cooperatively stimulated the recognition and ubiquitination of Wee1A by SCFβ-TrCP1/2 in vitro. Mutation of these residues or depletion of β-TrCP by small-interfering RNA treatment increased the stability of Wee1A in HeLa cells. Moreover, our analysis indicates that β-TrCP-dependent degradation of Wee1A is important for the normal onset of M-phase in vivo. These results also establish the existence of a feedback loop between Cdc2 and Wee1A in somatic cells that depends on ubiquitination and protein degradation and ensures the rapid activation of Cdc2 when cells are ready to divide. PMID:15070733

  16. Evacuation and rescue in automated guideway transit. Volume 1 : data collection, scenarios, and evaluation

    DOT National Transportation Integrated Search

    1979-12-01

    Evacuation and rescue are significant problems in all transportation systems. Serious injuries and loss of life can result from situations in which inadequate means of evacuating and rescuing passengers exist. In conventional transportation systems, ...

  17. Conditional rescue of protein kinase C epsilon regulates ethanol preference and hypnotic sensitivity in adult mice.

    PubMed

    Choi, Doo-Sup; Wang, Dan; Dadgar, Jahan; Chang, Wesley S; Messing, Robert O

    2002-11-15

    Conventional gene targeting is a powerful tool to study the influence of specific genes on behavior. However, conclusions relevant for adult animals are limited by consequences of gene loss during development. Mice lacking protein kinase C epsilon (PKCepsilon) consume less alcohol and show greater acute sensitivity to alcohol than do wild-type mice. There are no selective inhibitors of PKCepsilon that can be administered systemically and cross the blood-brain barrier to test whether these phenotypes result from loss of PKCepsilon during development or in adulthood. Here we used conditional expression of PKCepsilon in the basal forebrain, amygdala, and cerebellum to rescue wild-type responses to alcohol in adult PKCepsilon(-/-) mice. Subsequent suppression of transgenic PKCepsilon restored PKCepsilon(-/-) behaviors. These findings establish that PKCepsilon signaling in the adult brain regulates alcohol consumption and sensitivity. If this extends to humans, then PKCepsilon inhibitors might prove useful as novel therapeutics for alcoholism.

  18. Phosphorylation of HSP27 by Protein Kinase D is Essential for Mediating Neuroprotection Against Ischemic Neuronal Injury

    PubMed Central

    Stetler, R. Anne; Gao, Yanqin; Zhang, Lili; Weng, Zhongfang; Zhang, Feng; Hu, Xiaoming; Wang, Suping; Vosler, Peter; Cao, Guodong; Sun, Dandan; Graham, Steven H.; Chen, Jun

    2012-01-01

    Heat shock protein 27 (HSP27, or HSPB1) exerts cytoprotection against many cellular insults, including cerebral ischemia. We previously identified apoptosis signal-regulating kinase 1 (ASK1) as a critical downstream target of HSP27 conferring the neuroprotective effects of HSP27 against neuronal ischemia. However, the function of HSP27 is highly influenced by post-translational modification, with differential cellular effects based on phosphorylation at specific serine residues. The role of phosphorylation in neuronal ischemic neuroprotection is currently unknown. We have created transgenic mice and viral vectors containing HSP27 mutated at three critical serine residues (Ser15, Ser78 and Ser82) to either alanine (HSP27-A, non-phosphorylatable) or aspartate (HSP27-D, phospho-mimetic) residues. Under both in vitro and in vivo neuronal ischemic settings, overexpression of wild-type HSP27 (HSP27) and HSP27-D, but not HSP27-A, was neuroprotective and inhibited downstream ASK1 signaling pathways. Consistently, overexpressed HSP27 was phosphorylated by endogenous mechanisms when neurons were under ischemic stress, and single point mutations identified Ser15 and Ser82 as critical for neuroprotection. Using a panel of inhibitors and gene knockdown approaches, we identified the upstream kinase protein kinase D (PKD) as the primary kinase targeting HSP27 directly for phosphorylation. PKD and HSP27 co-immunoprecipitated, and inhibition or knockdown of PKD abrogated the neuroprotective effects of HSP27 as well as the interaction with and inhibition of ASK1 signaling. Taken together, these data demonstrate that HSP27 requires PKD-mediated phosphorylation for its suppression of ASK1 cell death signaling and neuroprotection against ischemic injury. PMID:22357851

  19. Casein kinase 1α–dependent feedback loop controls autophagy in RAS-driven cancers

    PubMed Central

    Cheong, Jit Kong; Zhang, Fuquan; Chua, Pei Jou; Bay, Boon Huat; Thorburn, Andrew; Virshup, David M.

    2015-01-01

    Activating mutations in the RAS oncogene are common in cancer but are difficult to therapeutically target. RAS activation promotes autophagy, a highly regulated catabolic process that metabolically buffers cells in response to diverse stresses. Here we report that casein kinase 1α (CK1α), a ubiquitously expressed serine/threonine kinase, is a key negative regulator of oncogenic RAS–induced autophagy. Depletion or pharmacologic inhibition of CK1α enhanced autophagic flux in oncogenic RAS–driven human fibroblasts and multiple cancer cell lines. FOXO3A, a master longevity mediator that transcriptionally regulates diverse autophagy genes, was a critical target of CK1α, as depletion of CK1α reduced levels of phosphorylated FOXO3A and increased expression of FOXO3A-responsive genes. Oncogenic RAS increased CK1α protein abundance via activation of the PI3K/AKT/mTOR pathway. In turn, elevated levels of CK1α increased phosphorylation of nuclear FOXO3A, thereby inhibiting transactivation of genes critical for RAS-induced autophagy. In both RAS-driven cancer cells and murine xenograft models, pharmacologic CK1α inactivation synergized with lysosomotropic agents to inhibit growth and promote tumor cell death. Together, our results identify a kinase feedback loop that influences RAS-dependent autophagy and suggest that targeting CK1α-regulated autophagy offers a potential therapeutic opportunity to treat oncogenic RAS–driven cancers. PMID:25798617

  20. Hit to lead optimization of pyrazolo[1,5-a]pyrimidines as B-Raf kinase inhibitors.

    PubMed

    Gopalsamy, Ariamala; Ciszewski, Greg; Shi, Mengxiao; Berger, Dan; Hu, Yongbo; Lee, Frederick; Feldberg, Larry; Frommer, Eileen; Kim, Steven; Collins, Karen; Wojciechowicz, Donald; Mallon, Robert

    2009-12-15

    Our continued effort towards optimization of the pyrazolo[1,5-a]pyrimidine scaffold as B-Raf kinase inhibitors is described. Structure guided design was utilized to introduce kinase hinge region interacting groups in the 2-position of the scaffold. This strategy led to the identification of lead compound 9 with enhanced enzyme and cellular potency, while maintaining good selectivity over a number of kinases.

  1. Resveratrol upregulates Egr-1 expression and activity involving extracellular signal-regulated protein kinase and ternary complex factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rössler, Oliver G.; Glatzel, Daniel; Thiel, Gerald, E-mail: gerald.thiel@uks.eu

    2015-03-01

    Many intracellular functions have been attributed to resveratrol, a polyphenolic phytoalexin found in grapes and in other plants. Here, we show that resveratrol induces the expression of the transcription factor Egr-1 in human embryonic kidney cells. Using a chromosomally embedded Egr-1-responsive reporter gene, we show that the Egr-1 activity was significantly elevated in resveratrol-treated cells, indicating that the newly synthesized Egr-1 protein was biologically active. Stimulus-transcription coupling leading to the resveratrol-induced upregulation of Egr-1 expression and activity requires the protein kinases Raf and extracellular signal-regulated protein kinase ERK, while MAP kinase phosphatase-1 functions as a nuclear shut-off device that interruptsmore » the signaling cascade connecting resveratrol stimulation with enhanced Egr-1 expression. On the transcriptional level, Elk-1, a key transcriptional regulator of serum response element-driven gene transcription, connects the intracellular signaling cascade elicited by resveratrol with transcription of the Egr-1 gene. These data were corroborated by the observation that stimulation of the cells with resveratrol increased the transcriptional activation potential of Elk-1. The SRE as well as the GC-rich DNA binding site of Egr-1 function as resveratrol-responsive elements. Thus, resveratrol regulates gene transcription via activation of the stimulus-regulated protein kinases Raf and ERK and the stimulus-responsive transcription factors TCF and Egr-1. - Highlights: • The plant polyphenol resveratrol upregulates Egr-1 expression and activity. • The stimulation of Egr-1 requires the protein kinases ERK and Raf. • Resveratrol treatment upregulates the transcriptional activation potential of Elk-1. • Resveratrol-induced stimulation of Egr-1 requires ternary complex factors. • Two distinct resveratrol-responsive elements were identified.« less

  2. Mip1 associates with both the Mps1 kinase and actin and is required for cell cortex stability and anaphase spindle positioning

    USDA-ARS?s Scientific Manuscript database

    The Mps1 family of protein kinases contributes to cell cycle control by regulating multiple microtubule cytoskeleton activities. We have uncovered a new Mps1 substrate that provides a novel link between Mps1 and the actin cytoskeleton. We have identified a conserved human Mps1 (hMps1) interacting pr...

  3. Itk tyrosine kinase substrate docking is mediated by a nonclassical SH2 domain surface of PLCgamma1.

    PubMed

    Min, Lie; Joseph, Raji E; Fulton, D Bruce; Andreotti, Amy H

    2009-12-15

    Interleukin-2 tyrosine kinase (Itk) is a Tec family tyrosine kinase that mediates signaling processes after T cell receptor engagement. Activation of Itk requires recruitment to the membrane via its pleckstrin homology domain, phosphorylation of Itk by the Src kinase, Lck, and binding of Itk to the SLP-76/LAT adapter complex. After activation, Itk phosphorylates and activates phospholipase C-gamma1 (PLC-gamma1), leading to production of two second messengers, DAG and IP(3). We have previously shown that phosphorylation of PLC-gamma1 by Itk requires a direct, phosphotyrosine-independent interaction between the Src homology 2 (SH2) domain of PLC-gamma1 and the kinase domain of Itk. We now define this docking interface using a combination of mutagenesis and NMR spectroscopy and show that disruption of the Itk/PLCgamma1 docking interaction attenuates T cell signaling. The binding surface on PLCgamma1 that mediates recognition by Itk highlights a nonclassical binding activity of the well-studied SH2 domain providing further evidence that SH2 domains participate in important signaling interactions beyond recognition of phosphotyrosine.

  4. A Phosphatidylinositol 3-kinase-regulated Akt-independent signaling promotes cigarette smoke-induced FRA-1 expression.

    PubMed

    Zhang, Qin; Adiseshaiah, Pavan; Kalvakolanu, Dhananjaya V; Reddy, Sekhar P

    2006-04-14

    The FRA-1 proto-oncogene is overexpressed in a variety of human tumors and is known to up-regulate the expression of genes involved in tumor progression and invasion. The phosphatidylinositol 3-kinase (PI3K)-Akt pathway is also known to regulate these cellular processes. More importantly, respiratory toxicants and carcinogens activate both the PI3K-Akt pathway and FRA-1 expression in human bronchial epithelial (HBE) cells. In this study we investigated a potential link between the PI3K-Akt pathway and the cigarette smoke (CS)-stimulated epidermal growth factor receptor-mediated FRA-1 induction in non-oncogenic HBE cells. Treatment of cells with LY294002, an inhibitor of the PI3K-Akt pathway, completely blocked CS-induced FRA-1 expression. Surprisingly pharmacological inhibition of Akt had no significant effect on CS-induced FRA-1 expression. Likewise the inhibition of protein kinase C zeta, which is a known downstream effector of PI3K, did not alter FRA-1 expression. We found that the PI3K through p21-activated kinase 1 regulates FRA-1 proto-oncogene induction by CS and the subsequent activation of the Elk1 and cAMP-response element-binding protein transcription factors that are bound to the promoter in HBE cells.

  5. Rescue therapy in adult and pediatric patients with pH1N1 influenza infection: a tertiary center intensive care unit experience from April to October 2009.

    PubMed

    Norfolk, Stephanie G; Hollingsworth, Caroline L; Wolfe, Cameron R; Govert, Joseph A; Que, Loretta G; Cheifetz, Ira M; Hollingsworth, John W

    2010-11-01

    Severe respiratory failure is a well-recognized complication of pH1N1 influenza infection. Limited data regarding the efficacy of rescue therapies, including high-frequency oscillatory ventilation and extracorporeal membrane oxygenation, have been previously reported in the setting of pH1N1 influenza infection in the United States. Retrospective, single-center cohort study. Pediatric, cardiac, surgical, and medical intensive care units in a single tertiary care center in the United States. One hundred twenty-seven consecutive patients with confirmed influenza A infection requiring hospitalization between April 1, 2009, and October 31, 2009. Electronic medical records were reviewed for demographic and clinical data. The number of intensive care unit admissions appears inversely related to age with 39% of these admissions <20 yrs of age. Median duration of intensive care unit care was 10.0 days (4.0-24.0), and median duration of mechanical ventilation was 8.0 days (0.0-23.5). Rescue therapy (high-frequency oscillatory ventilation or extracorporeal membrane oxygenation) was used in 36% (12 of 33) of intensive care unit patients. The severity of respiratory impairment was determined by Pao²/Fio² ratio and oxygenation index. High-frequency oscillatory ventilation at 24 hrs resulted in improvements in median Pao²/Fio² ratio (71 [58-93] vs. 145 [126-185]; p < .001), oxygenation index (27 [20-30] vs. 18 [12-25]; p = .016), and Fio2 (100 [70-100] vs. 45 [40-55]; p < .001). Extracorporeal membrane oxygenation resulted in anticipated improvement in parameters of oxygenation at both 2 hrs and 24 hrs after initiation of therapy. Despite the severity of oxygenation impairment, overall survival for both rescue therapies was 75% (nine of 12), 80% (four of five) for high-frequency oscillatory ventilation alone, and 71% (five of seven) for high-frequency oscillatory ventilation + extracorporeal membrane oxygenation. In critically ill adult and pediatric patients with pH1N1

  6. The Raf-like Kinase ILK1 and the High Affinity K+ Transporter HAK5 Are Required for Innate Immunity and Abiotic Stress Response1[OPEN

    PubMed Central

    Brauer, Elizabeth K.; Ahsan, Nagib; Kato, Naohiro; Coluccio, Alison E.; Thelen, Jay J.

    2016-01-01

    Plant perception of pathogen-associated molecular patterns (PAMPs) and other environmental stresses trigger transient ion fluxes at the plasma membrane. Apart from the role of Ca2+ uptake in signaling, the regulation and significance of PAMP-induced ion fluxes in immunity remain unknown. We characterized the functions of INTEGRIN-LINKED KINASE1 (ILK1) that encodes a Raf-like MAP2K kinase with functions insufficiently understood in plants. Analysis of ILK1 mutants impaired in the expression or kinase activity revealed that ILK1 contributes to plant defense to bacterial pathogens, osmotic stress sensitivity, and cellular responses and total ion accumulation in the plant upon treatment with a bacterial-derived PAMP, flg22. The calmodulin-like protein CML9, a negative modulator of flg22-triggered immunity, interacted with, and suppressed ILK1 kinase activity. ILK1 interacted with and promoted the accumulation of HAK5, a putative (H+)/K+ symporter that mediates a high-affinity uptake during K+ deficiency. ILK1 or HAK5 expression was required for several flg22 responses including gene induction, growth arrest, and plasma membrane depolarization. Furthermore, flg22 treatment induced a rapid K+ efflux at both the plant and cellular levels in wild type, while mutants with impaired ILK1 or HAK5 expression exhibited a comparatively increased K+ loss. Taken together, our results position ILK1 as a link between plant defense pathways and K+ homeostasis. PMID:27208244

  7. Barley ROP Binding Kinase1 Is Involved in Microtubule Organization and in Basal Penetration Resistance to the Barley Powdery Mildew Fungus1[W

    PubMed Central

    Huesmann, Christina; Reiner, Tina; Hoefle, Caroline; Preuss, Jutta; Jurca, Manuela E.; Domoki, Mónika; Fehér, Attila; Hückelhoven, Ralph

    2012-01-01

    Certain plant receptor-like cytoplasmic kinases were reported to interact with small monomeric G-proteins of the RHO of plant (ROP; also called RAC) family in planta and to be activated by this interaction in vitro. We identified a barley (Hordeum vulgare) partial cDNA of a ROP binding protein kinase (HvRBK1) in yeast (Saccharomyces cerevisiae) two-hybrid screenings with barley HvROP bait proteins. Protein interaction of the constitutively activated (CA) barley HvROPs CA HvRACB and CA HvRAC1 with full-length HvRBK1 was verified in yeast and in planta. Green fluorescent protein-tagged HvRBK1 appears in the cytoplasm and nucleoplasm, but CA HvRACB or CA HvRAC1 can recruit green fluorescent protein-HvRBK1 to the cell periphery. Barley HvRBK1 is an active kinase in vitro, and activity is enhanced by CA HvRACB or GTP-loaded HvRAC1. Hence, HvRBK1 might act downstream of active HvROPs. Transient-induced gene silencing of barley HvRBK1 supported penetration by the parasitic fungus Blumeria graminis f. sp. hordei, suggesting a function of the protein in basal disease resistance. Transient knockdown of HvRBK1 also influenced the stability of cortical microtubules in barley epidermal cells. Hence, HvRBK1 might function in basal resistance to powdery mildew by influencing microtubule organization. PMID:22415513

  8. Genetic and Pharmacological Inhibition of PDK1 in Cancer Cells: Characterization of a Selective Allosteric Kinase Inhibitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagashima, Kumiko; Shumway, Stuart D.; Sathyanarayanan, Sriram

    2013-11-20

    Phosphoinositide-dependent kinase 1 (PDK1) is a critical activator of multiple prosurvival and oncogenic protein kinases and has garnered considerable interest as an oncology drug target. Despite progress characterizing PDK1 as a therapeutic target, pharmacological support is lacking due to the prevalence of nonspecific inhibitors. Here, we benchmark literature and newly developed inhibitors and conduct parallel genetic and pharmacological queries into PDK1 function in cancer cells. Through kinase selectivity profiling and x-ray crystallographic studies, we identify an exquisitely selective PDK1 inhibitor (compound 7) that uniquely binds to the inactive kinase conformation (DFG-out). In contrast to compounds 1-5, which are classical ATP-competitivemore » kinase inhibitors (DFG-in), compound 7 specifically inhibits cellular PDK1 T-loop phosphorylation (Ser-241), supporting its unique binding mode. Interfering with PDK1 activity has minimal antiproliferative effect on cells growing as plastic-attached monolayer cultures (i.e. standard tissue culture conditions) despite reduced phosphorylation of AKT, RSK, and S6RP. However, selective PDK1 inhibition impairs anchorage-independent growth, invasion, and cancer cell migration. Compound 7 inhibits colony formation in a subset of cancer cell lines (four of 10) and primary xenograft tumor lines (nine of 57). RNAi-mediated knockdown corroborates the PDK1 dependence in cell lines and identifies candidate biomarkers of drug response. In summary, our profiling studies define a uniquely selective and cell-potent PDK1 inhibitor, and the convergence of genetic and pharmacological phenotypes supports a role of PDK1 in tumorigenesis in the context of three-dimensional in vitro culture systems.« less

  9. Role of Gab1 in Heart, Placenta, and Skin Development and Growth Factor- and Cytokine-Induced Extracellular Signal-Regulated Kinase Mitogen-Activated Protein Kinase Activation

    PubMed Central

    Itoh, Motoyuki; Yoshida, Yuichi; Nishida, Keigo; Narimatsu, Masahiro; Hibi, Masahiko; Hirano, Toshio

    2000-01-01

    Gab1 is a member of the Gab/DOS (Daughter of Sevenless) family of adapter molecules, which contain a pleckstrin homology (PH) domain and potential binding sites for SH2 and SH3 domains. Gab1 is tyrosine phosphorylated upon stimulation of various cytokines, growth factors, and antigen receptors in cell lines and interacts with signaling molecules, such as SHP-2 and phosphatidylinositol 3-kinase, although its biological roles have not yet been established. To reveal the functions of Gab1 in vivo, we generated mice lacking Gab1 by gene targeting. Gab1-deficient embryos died in utero and displayed developmental defects in the heart, placenta, and skin, which were similar to phenotypes observed in mice lacking signals of the hepatocyte growth factor/scatter factor, platelet-derived growth factor, and epidermal growth factor pathways. Consistent with these observations, extracellular signal-regulated kinase mitogen-activated protein (ERK MAP) kinases were activated at much lower levels in cells from Gab1-deficient embryos in response to these growth factors or to stimulation of the cytokine receptor gp130. These results indicate that Gab1 is a common player in a broad range of growth factor and cytokine signaling pathways linking ERK MAP kinase activation. PMID:10779359

  10. Structural basis for Mob1-dependent activation of the core Mst–Lats kinase cascade in Hippo signaling

    DOE PAGES

    Ni, Lisheng; Zheng, Yonggang; Hara, Mayuko; ...

    2015-06-24

    The Mst–Lats kinase cascade is central to the Hippo tumor-suppressive pathway that controls organ size and tissue homeostasis. The adaptor protein Mob1 promotes Lats activation by Mst, but the mechanism remains unknown. Here, we show that human Mob1 binds to autophosphorylated docking motifs in active Mst2. This binding enables Mob1 phosphorylation by Mst2. Phosphorylated Mob1 undergoes conformational activation and binds to Lats1. We determine the crystal structures of phospho-Mst2–Mob1 and phospho-Mob1–Lats1 complexes, revealing the structural basis of both phosphorylation-dependent binding events. Further biochemical and functional analyses demonstrate that Mob1 mediates Lats1 activation through dynamic scaffolding and allosteric mechanisms. Thus, Mob1more » acts as a phosphorylation-regulated coupler of kinase activation by virtue of its ability to engage multiple ligands. We propose that stepwise, phosphorylation-triggered docking interactions of nonkinase elements enhance the specificity and robustness of kinase signaling cascades.« less

  11. Diabetic complications within the context of aging: Nicotinamide adenine dinucleotide redox, insulin C-peptide, sirtuin 1-liver kinase B1-adenosine monophosphate-activated protein kinase positive feedback and forkhead box O3.

    PubMed

    Ido, Yasuo

    2016-07-01

    Recent research in nutritional control of aging suggests that cytosolic increases in the reduced form of nicotinamide adenine dinucleotide and decreasing nicotinamide adenine dinucleotide metabolism plays a central role in controlling the longevity gene products sirtuin 1 (SIRT1), adenosine monophosphate-activated protein kinase (AMPK) and forkhead box O3 (FOXO3). High nutrition conditions, such as the diabetic milieu, increase the ratio of reduced to oxidized forms of cytosolic nicotinamide adenine dinucleotide through cascades including the polyol pathway. This redox change is associated with insulin resistance and the development of diabetic complications, and might be counteracted by insulin C-peptide. My research and others' suggest that the SIRT1-liver kinase B1-AMPK cascade creates positive feedback through nicotinamide adenine dinucleotide synthesis to help cells cope with metabolic stress. SIRT1 and AMPK can upregulate liver kinase B1 and FOXO3, key factors that help residential stem cells cope with oxidative stress. FOXO3 directly changes epigenetics around transcription start sites, maintaining the health of stem cells. 'Diabetic memory' is likely a result of epigenetic changes caused by high nutritional conditions, which disturb the quiescent state of residential stem cells and impair tissue repair. This could be prevented by restoring SIRT1-AMPK positive feedback through activating FOXO3. © 2016 The Author. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  12. Design of targeted libraries against the human Chk1 kinase using PGVL Hub.

    PubMed

    Peng, Zhengwei; Hu, Qiyue

    2011-01-01

    PGVL Hub is a Pfizer internal desktop tool for chemical library and singleton design. In this chapter, we give a short introduction to PGVL Hub, the core workflow it supports, and the rich design capabilities it provides. By re-creating two legacy targeted libraries against the human checkpoint kinase 1 (Chk1) as a showcase, we illustrate how PGVL Hub could be used to help library designers carry out the steps in library design and realize design objectives such as SAR expansion and improvement in both kinase selectivity and compound aqueous solubility. Finally we share several tips about library design and usage of PGVL Hub.

  13. PAS Kinase Promotes Cell Survival and Growth Through Activation of Rho1

    PubMed Central

    Cardon, Caleb M.; Beck, Thomas; Hall, Michael N.; Rutter, Jared

    2014-01-01

    In Saccharomyces cerevisiae, phosphorylation of Ugp1 by either of the yeast PASK family protein kinases (yPASK), Psk1 or Psk2, directs this metabolic enzyme to deliver glucose to the periphery for synthesis of the cell wall. However, we isolated PSK1 and PSK2 in a high-copy suppressor screen of a temperature-sensitive mutant of target of rapamycin 2 (TOR2). Posttranslational activation of yPASK, either by cell integrity stress or by growth on nonfermentative carbon sources, also suppressed the growth defect resulting from tor2 mutation. Although suppression of the tor2 mutant growth phenotype by activation of the kinase activity of yPASK required phosphorylation of the metabolic enzyme Ugp1 on serine 11, this resulted in the formation of a complex that induced Rho1 activation, rather than required the glucose partitioning function of Ugp1. In addition to phosphorylated Ugp1, this complex contained Rom2, a Rho1 guanine nucleotide exchange factor, and Ssd1, an mRNA-binding protein. Activation of yPASK-dependent Ugp1 phosphorylation, therefore, enables two processes that are required for cell growth and stress resistance: synthesis of the cell wall through partitioning glucose to the periphery and the formation of the signaling complex with Rom2 and Ssd1 to promote Rho1-dependent polarized cell growth. This complex may integrate metabolic and signaling responses required for cell growth and survival in suboptimal conditions. PMID:22296835

  14. OsAGSW1, an ABC1-like kinase gene, is involved in the regulation of grain size and weight in rice.

    PubMed

    Li, Tao; Jiang, Jieming; Zhang, Shengchun; Shu, Haoran; Wang, Yaqin; Lai, Jianbin; Du, Jinju; Yang, Chengwei

    2015-09-01

    Grain shape and weight are two determining agronomic traits of rice yield. ABC1 (Activity of bc1 complex) is a newly found atypical kinase in plants. Here, we report on an ABC1 protein kinase gene, OsAGSW1 (ABC1-like kinase related to Grain size and Weight). Expression of OsAGSW1-GFP in rice revealed that OsAGSW1 is localized to the chloroplasts in rice. Analysis of OsAGSW1 promoter::β-glucuronidase transgenic rice indicated that this gene was highly expressed in vascular bundles in shoot, hull and caryopsis. Furthermore, OsAGSW1-RNAi and overexpressed transgenic rice lines were generated. Stable transgenic lines overexpressing OsAGSW1 exhibited a phenotype with a significant increase in grain size, grain weight, grain filling rate and 1000-grain weight compared with the wild-type and RNAi transgenic plants. Microscopy analysis showed that spikelet hulls just before heading were different in the OsAGSW1-overexpressed plants compared with wild-type and OsAGSW1 RNAi rice. Further cytological analysis showed that the number of external parenchyma cells in rice hulls of OsAGSW1-overexpressed plants increased, leading to wider and longer spikelet hulls than those of the wild-type and OsAGSW1-RNAi plants. The vascular cross-sectional area in lemma, carpopodium and ovules also strikingly increased and area of both xylem and phloem were enlarged in the OsAGSW1-overexpressed plants. Thus, our results demonstrated that OsAGSW1 plays an important role in seed shape and size of rice by regulating the number of external parenchyma cells and the development of vascular bundles, providing a new insight into the functions of ABC1 genes in plants. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Molecular dynamics reveal BCR-ABL1 polymutants as a unique mechanism of resistance to PAN-BCR-ABL1 kinase inhibitor therapy

    PubMed Central

    Gibbons, Don L.; Pricl, Sabrina; Posocco, Paola; Laurini, Erik; Fermeglia, Maurizio; Sun, Hanshi; Talpaz, Moshe; Donato, Nicholas; Quintás-Cardama, Alfonso

    2014-01-01

    The acquisition of mutations within the BCR-ABL1 kinase domain is frequently associated with tyrosine kinase inhibitor (TKI) failure in chronic myeloid leukemia. Sensitive sequencing techniques have revealed a high prevalence of compound BCR-ABL1 mutations (polymutants) in patients failing TKI therapy. To investigate the molecular consequences of such complex mutant proteins with regards to TKI resistance, we determined by cloning techniques the presence of polymutants in a cohort of chronic-phase patients receiving imatinib followed by dasatinib therapy. The analysis revealed a high frequency of polymutant BCR-ABL1 alleles even after failure of frontline imatinib, and also the progressive exhaustion of the pool of unmutated BCR-ABL1 alleles over the course of sequential TKI therapy. Molecular dynamics analyses of the most frequent polymutants in complex with TKIs revealed the basis of TKI resistance. Modeling of BCR-ABL1 in complex with the potent pan-BCR-ABL1 TKI ponatinib highlighted potentially effective therapeutic strategies for patients carrying these recalcitrant and complex BCR-ABL1 mutant proteins while unveiling unique mechanisms of escape to ponatinib therapy. PMID:24550512

  16. Genomic organization, expression, and chromosome localization of a third aurora-related kinase gene, Aie1.

    PubMed

    Hu, H M; Chuang, C K; Lee, M J; Tseng, T C; Tang, T K

    2000-11-01

    We previously reported two novel testis-specific serine/threonine kinases, Aie1 (mouse) and AIE2 (human), that share high amino acid identities with the kinase domains of fly aurora and yeast Ipl1. Here, we report the entire intron-exon organization of the Aie1 gene and analyze the expression patterns of Aie1 mRNA during testis development. The mouse Aie1 gene spans approximately 14 kb and contains seven exons. The sequences of the exon-intron boundaries of the Aie1 gene conform to the consensus sequences (GT/AG) of the splicing donor and acceptor sites of most eukaryotic genes. Comparative genomic sequencing revealed that the gene structure is highly conserved between mouse Aie1 and human AIE2. However, much less homology was found in the sequence outside the kinase-coding domains. The Aie1 locus was mapped to mouse chromosome 7A2-A3 by fluorescent in situ hybridization. Northern blot analysis indicates that Aie1 mRNA likely is expressed at a low level on day 14 and reaches its plateau on day 21 in the developing postnatal testis. RNA in situ hybridization indicated that the expression of the Aie1 transcript was restricted to meiotically active germ cells, with the highest levels detected in spermatocytes at the late pachytene stage. These findings suggest that Aie1 plays a role in spermatogenesis.

  17. Casein kinase 2 promotes interaction between Rad17 and the 9-1-1 complex through constitutive phosphorylation of the C-terminal tail of human Rad17.

    PubMed

    Fukumoto, Yasunori; Takahashi, Kazuaki; Suzuki, Noriyuki; Ogra, Yasumitsu; Nakayama, Yuji; Yamaguchi, Naoto

    2018-06-15

    An interaction between the Rad17-RFC2-5 and 9-1-1 complexes is essential for ATR-Chk1 signaling, which is one of the major DNA damage checkpoints. Recently, we showed that the polyanionic C-terminal tail of human Rad17 and the embedded conserved sequence iVERGE are important for the interaction with 9-1-1 complex. Here, we show that Rad17-S667 in the C-terminal tail is constitutively phosphorylated in vivo in a casein kinase 2-dependent manner, and the phosphorylation is important for 9-1-1 interaction. The serine phosphorylation of Rad17 could be seen in the absence of exogenous genotoxic stress, and was mostly abolished by S667A substitution. Rad17-S667 was also phosphorylated when the C-terminal tail was fused with EGFP, but the phosphorylation was inhibited by two casein kinase 2 inhibitors. Furthermore, interaction between Rad17 and the 9-1-1 complex was inhibited by the casein kinase 2 inhibitor CX-4945/Silmitasertib, and the effect was dependent on the Rad17-S667 residue, indicating that S667 phosphorylation is the only role of casein kinase 2 in the 9-1-1 interaction. Our data raise the possibility that the C-terminal tail of vertebrate Rad17 regulates ATR-Chk1 signaling through multi-site phosphorylation in the iVERGE. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Coordinate regulation of the mother centriole component nlp by nek2 and plk1 protein kinases.

    PubMed

    Rapley, Joseph; Baxter, Joanne E; Blot, Joelle; Wattam, Samantha L; Casenghi, Martina; Meraldi, Patrick; Nigg, Erich A; Fry, Andrew M

    2005-02-01

    Mitotic entry requires a major reorganization of the microtubule cytoskeleton. Nlp, a centrosomal protein that binds gamma-tubulin, is a G(2)/M target of the Plk1 protein kinase. Here, we show that human Nlp and its Xenopus homologue, X-Nlp, are also phosphorylated by the cell cycle-regulated Nek2 kinase. X-Nlp is a 213-kDa mother centriole-specific protein, implicating it in microtubule anchoring. Although constant in abundance throughout the cell cycle, it is displaced from centrosomes upon mitotic entry. Overexpression of active Nek2 or Plk1 causes premature displacement of Nlp from interphase centrosomes. Active Nek2 is also capable of phosphorylating and displacing a mutant form of Nlp that lacks Plk1 phosphorylation sites. Importantly, kinase-inactive Nek2 interferes with Plk1-induced displacement of Nlp from interphase centrosomes and displacement of endogenous Nlp from mitotic spindle poles, while active Nek2 stimulates Plk1 phosphorylation of Nlp in vitro. Unlike Plk1, Nek2 does not prevent association of Nlp with gamma-tubulin. Together, these results provide the first example of a protein involved in microtubule organization that is coordinately regulated at the G(2)/M transition by two centrosomal kinases. We also propose that phosphorylation by Nek2 may prime Nlp for phosphorylation by Plk1.

  19. PHYTOCHROME KINASE SUBSTRATE1 regulates root phototropism and gravitropism.

    PubMed

    Boccalandro, Hernán E; De Simone, Silvia N; Bergmann-Honsberger, Ariane; Schepens, Isabelle; Fankhauser, Christian; Casal, Jorge J

    2008-01-01

    Light promotes the expression of PHYTOCHROME KINASE SUBSTRATE1 (PKS1) in the root of Arabidopsis thaliana, but the function of PKS1 in this organ is unknown. Unilateral blue light induced a negative root phototropic response mediated by phototropin 1 in wild-type seedlings. This response was absent in pks1 mutants. In the wild type, unilateral blue light enhanced PKS1 expression in the subapical region of the root several hours before bending was detectable. The negative phototropism and the enhanced PKS1 expression in response to blue light required phytochrome A (phyA). In addition, the pks1 mutation enhanced the root gravitropic response when vertically oriented seedlings were placed horizontally. The negative regulation of gravitropism by PKS1 occurred even in dark-grown seedlings and did not require phyA. Blue light also failed to induce negative phototropism in pks1 under reduced gravitational stimulation, indicating that the effect of pks1 on phototropism is not simply the consequence of the counteracting effect of enhanced gravitropism. We propose a model where the background level of PKS1 reduces gravitropism. After a phyA-dependent increase in its expression, PKS1 positively affects root phototropism and both effects contribute to negative curvature in response to unilateral blue light.

  20. Target identification, lead optimization and antitumor evaluation of some new 1,2,4-triazines as c-Met kinase inhibitors.

    PubMed

    El-Wakil, Marwa H; Ashour, Hayam M; Saudi, Manal N; Hassan, Ahmed M; Labouta, Ibrahim M

    2017-08-01

    In silico target fishing approach using PharmMapper server identified c-Met kinase as the selective target for our previously synthesized compound NCI 748494/1. This approach was validated by in vitro kinase assay which showed that NCI 748494/1 possessed promising inhibitory activity against c-Met kinase (IC 50 =31.70μM). Assessment of ADMET profiling, drug-likeness, drug score as well as docking simulation for the binding pose of that compound in the active site of c-Met kinase domain revealed that NCI 748494/1 could be considered as a promising drug lead. Based on target identification and validation, it was observed that there is structure similarity between NCI 748494/1 and the reported type II c-Met kinase inhibitor BMS-777607. Optimization of our lead NCI 748494/1 furnished newly synthesized 1,2,4-triazine derivatives based on well-established structure-activity relationships, whereas three compounds namely; 4d, 7a and 8c displayed excellent in vitro cytotoxicity against three c-Met addicted cancer cell lines; A549 (lung adenocarcinoma), HT-29 (colon cancer) and MKN-45 (gastric carcinoma); with IC 50 values in the range 0.01-1.86µM. In vitro c-Met kinase assay showed 8c to possess the highest c-Met kinase inhibition profile (IC 50 =4.31µM). Docking of the active compounds in c-Met kinase active site revealed strong binding interactions comparable to the lead NCI 748494/1 and BMS-777607, suggesting that c-Met inhibition is very likely to be the mechanism of the antitumor effect of these derivatives. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Design, synthesis, and anaplastic lymphoma kinase (ALK) inhibitory activity for a novel series of 2,4,8,22-tetraazatetracyclo[14.3.1.1³,⁷.1⁹,¹³]docosa-1(20),3(22),4,6,9(21),10,12,16,18-nonaene macrocycles.

    PubMed

    Breslin, Henry J; Lane, Brandon M; Ott, Gregory R; Ghose, Arup K; Angeles, Thelma S; Albom, Mark S; Cheng, Mangeng; Wan, Weihua; Haltiwanger, R Curtis; Wells-Knecht, Kevin J; Dorsey, Bruce D

    2012-01-12

    A novel set of 2,4,8,22-tetraazatetracyclo[14.3.1.1(3,7).1(9,13)]docosa-1(20),3(22),4,6,9(21),10,12,16,18-nonaene macrocycles were prepared as potential anaplastic lymphoma kinase (ALK) inhibitors, designed to rigidly lock an energy-minimized bioactive conformation of the diaminopyrimidine (DAP) scaffold, a well-documented kinase platform. From 13 analogues prepared, macrocycle 2m showed the most promising in vitro ALK enzymatic (IC(50) = 0.5 nM) and cellular (IC(50) = 10 nM) activities. In addition, macrocycle 2m exhibited a favorable kinase selectivity preference for inhibition of ALK relative to the highly homologous insulin receptor (IR) kinase (IR/ALK ratio of 173). The inclusive in vitro biological results for this set of macrocycles validate this scaffold as a viable kinase template and further corroborate recent DAP/ALK solid state studies indicating that the inverted "U" shaped conformation of the acyclic DAPs is a preferred bioactive conformation.

  2. Understanding inhibitor resistance in Mps1 kinase through novel biophysical assays and structures.

    PubMed

    Hiruma, Yoshitaka; Koch, Andre; Hazraty, Nazila; Tsakou, Foteini; Medema, René H; Joosten, Robbie P; Perrakis, Anastassis

    2017-09-01

    Monopolar spindle 1 (Mps1/TTK) is a protein kinase essential in mitotic checkpoint signaling, preventing anaphase until all chromosomes are properly attached to spindle microtubules. Mps1 has emerged as a potential target for cancer therapy, and a variety of compounds have been developed to inhibit its kinase activity. Mutations in the catalytic domain of Mps1 that give rise to inhibitor resistance, but retain catalytic activity and do not display cross-resistance to other Mps1 inhibitors, have been described. Here we characterize the interactions of two such mutants, Mps1 C604Y and C604W, which raise resistance to two closely related compounds, NMS-P715 and its derivative Cpd-5, but not to the well characterized Mps1 inhibitor, reversine. We show that estimates of the IC 50 (employing a novel specific and efficient assay that utilizes a fluorescently labeled substrate) and the binding affinity ( K D ) indicate that, in both mutants, Cpd-5 should be better tolerated than the closely related NMS-P715. To gain further insight, we determined the crystal structure of the Mps1 kinase mutants bound to Cpd-5 and NMS-P715 and compared the binding modes of Cpd-5, NMS-P715, and reversine. The difference in steric hindrance between Tyr/Trp 604 and the trifluoromethoxy moiety of NMS-P715, the methoxy moiety of Cpd-5, and complete absence of such a group in reversine, account for differences we observe in vitro Our analysis enforces the notion that inhibitors targeting Mps1 drug-resistant mutations can emerge as a feasible intervention strategy based on existing scaffolds, if the clinical need arises. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Activated Cdc42-associated kinase 1 (ACK1) binds the sterile α motif (SAM) domain of the adaptor SLP-76 and phosphorylates proximal tyrosines.

    PubMed

    Thaker, Youg R; Recino, Asha; Raab, Monika; Jabeen, Asma; Wallberg, Maja; Fernandez, Nelson; Rudd, Christopher E

    2017-04-14

    The adaptor protein Src homology 2 domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76) plays a crucial role in T cell activation by linking antigen receptor (T cell receptor, TCR) signals to downstream pathways. At its N terminus, SLP-76 has three key tyrosines (Tyr-113, Tyr-128, and Tyr-145, "3Y") as well as a sterile α motif (SAM) domain whose function is unclear. We showed previously that the SAM domain has two binding regions that mediate dimer and oligomer formation. In this study, we have identified SAM domain-carrying non-receptor tyrosine kinase, activated Cdc42-associated tyrosine kinase 1 (ACK1; also known as Tnk2, tyrosine kinase non-receptor 2) as a novel binding partner of SLP-76. Co-precipitation, laser-scanning confocal microscopy, and in situ proximity analysis confirmed the binding of ACK1 to SLP-76. Further, the interaction was induced in response to the anti-TCR ligation and abrogated by the deletion of SLP-76 SAM domain (ΔSAM) or mutation of Tyr-113, Tyr-128, and Tyr-145 to phenylalanine (3Y3F). ACK1 induced phosphorylation of the SLP-76 N-terminal tyrosines (3Y) dependent on the SAM domain. Further, ACK1 promoted calcium flux and NFAT-AP1 promoter activity and decreased the motility of murine CD4 + primary T cells on ICAM-1-coated plates, an event reversed by a small molecule inhibitor of ACK1 (AIM-100). These findings identify ACK1 as a novel SLP-76-associated protein-tyrosine kinase that modulates early activation events in T cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Activated Cdc42-associated kinase 1 (ACK1) binds the sterile α motif (SAM) domain of the adaptor SLP-76 and phosphorylates proximal tyrosines

    PubMed Central

    Thaker, Youg R.; Recino, Asha; Raab, Monika; Jabeen, Asma; Wallberg, Maja; Fernandez, Nelson; Rudd, Christopher E.

    2017-01-01

    The adaptor protein Src homology 2 domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76) plays a crucial role in T cell activation by linking antigen receptor (T cell receptor, TCR) signals to downstream pathways. At its N terminus, SLP-76 has three key tyrosines (Tyr-113, Tyr-128, and Tyr-145, “3Y”) as well as a sterile α motif (SAM) domain whose function is unclear. We showed previously that the SAM domain has two binding regions that mediate dimer and oligomer formation. In this study, we have identified SAM domain-carrying non-receptor tyrosine kinase, activated Cdc42-associated tyrosine kinase 1 (ACK1; also known as Tnk2, tyrosine kinase non-receptor 2) as a novel binding partner of SLP-76. Co-precipitation, laser-scanning confocal microscopy, and in situ proximity analysis confirmed the binding of ACK1 to SLP-76. Further, the interaction was induced in response to the anti-TCR ligation and abrogated by the deletion of SLP-76 SAM domain (ΔSAM) or mutation of Tyr-113, Tyr-128, and Tyr-145 to phenylalanine (3Y3F). ACK1 induced phosphorylation of the SLP-76 N-terminal tyrosines (3Y) dependent on the SAM domain. Further, ACK1 promoted calcium flux and NFAT-AP1 promoter activity and decreased the motility of murine CD4+ primary T cells on ICAM-1-coated plates, an event reversed by a small molecule inhibitor of ACK1 (AIM-100). These findings identify ACK1 as a novel SLP-76-associated protein-tyrosine kinase that modulates early activation events in T cells. PMID:28188290

  5. Leptin gene therapy attenuates neuronal damages evoked by amyloid-β and rescues memory deficits in APP/PS1 mice.

    PubMed

    Pérez-González, R; Alvira-Botero, M X; Robayo, O; Antequera, D; Garzón, M; Martín-Moreno, A M; Brera, B; de Ceballos, M L; Carro, E

    2014-03-01

    There is growing evidence that leptin is able to ameliorate Alzheimer's disease (AD)-like pathologies, including brain amyloid-β (Aβ) burden. In order to improve the therapeutic potential for AD, we generated a lentivirus vector expressing leptin protein in a self-inactivating HIV-1 vector (HIV-leptin), and delivered this by intra-cerebroventricular administration to APP/PS1 transgenic model of AD. Three months after intra-cerebroventricular administration of HIV-leptin, brain Aβ accumulation was reduced. By electron microscopy, we found that APP/PS1 mice exhibited deficits in synaptic density, which were partially rescued by HIV-leptin treatment. Synaptic deficits in APP/PS1 mice correlated with an enhancement of caspase-3 expression, and a reduction in synaptophysin levels in synaptosome preparations. Notably, HIV-leptin therapy reverted these dysfunctions. Moreover, leptin modulated neurite outgrowth in primary neuronal cultures, and rescued them from Aβ42-induced toxicity. All the above changes suggest that leptin may affect multiple aspects of the synaptic status, and correlate with behavioral improvements. Our data suggest that leptin gene delivery has a therapeutic potential for Aβ-targeted treatment of mouse model of AD.

  6. Impaired cross-talk between the thioredoxin and glutathione systems is related to ASK-1 mediated apoptosis in neuronal cells exposed to mercury.

    PubMed

    Branco, Vasco; Coppo, Lucia; Solá, Susana; Lu, Jun; Rodrigues, Cecília M P; Holmgren, Arne; Carvalho, Cristina

    2017-10-01

    Mercury (Hg) compounds target both cysteine (Cys) and selenocysteine (Sec) residues in peptides and proteins. Thus, the components of the two major cellular antioxidant systems - glutathione (GSH) and thioredoxin (Trx) systems - are likely targets for mercurials. Hg exposure results in GSH depletion and Trx and thioredoxin reductase (TrxR) are prime targets for mercury. These systems have a wide-range of common functions and interaction between their components has been reported. However, toxic effects over both systems are normally treated as isolated events. To study how the interaction between the glutathione and thioredoxin systems is affected by Hg, human neuroblastoma (SH-SY5Y) cells were exposed to 1 and 5μM of inorganic mercury (Hg 2+ ), methylmercury (MeHg) or ethylmercury (EtHg) and examined for TrxR, GSH and Grx levels and activities, as well as for Trx redox state. Phosphorylation of apoptosis signalling kinase 1 (ASK1), caspase-3 activity and the number of apoptotic cells were evaluated to investigate the induction of Trx-mediated apoptotic cell death. Additionally, primary cerebellar neurons from mice depleted of mitochondrial Grx2 (mGrx2D) were used to examine the link between Grx activity and Trx function. Results showed that Trx was affected at higher exposure levels than TrxR, especially for EtHg. GSH levels were only significantly affected by exposure to a high concentration of EtHg. Depletion of GSH with buthionine sulfoximine (BSO) severely increased Trx oxidation by Hg. Notably, EtHg-induced oxidation of Trx was significantly enhanced in primary neurons of mGrx2D mice. Our results suggest that GSH/Grx acts as backups for TrxR in neuronal cells to maintain Trx turnover during Hg exposure, thus linking different mechanisms of molecular and cellular toxicity. Finally, Trx oxidation by Hg compounds was associated to apoptotic hallmarks, including increased ASK-1 phosphorylation, caspase-3 activation and increased number of apoptotic cells

  7. Growth Inhibition by Bupivacaine Is Associated with Inactivation of Ribosomal Protein S6 Kinase 1

    PubMed Central

    Beigh, Mushtaq Ahmad; Showkat, Mehvish; Bashir, Basharat; Bashir, Asma; Hussain, Mahboob ul; Andrabi, Khurshid Iqbal

    2014-01-01

    Bupivacaine is an amide type long acting local anesthetic used for epidural anesthesia and nerve blockade in patients. Use of bupivacaine is associated with severe cytotoxicity and apoptosis along with inhibition of cell growth and proliferation. Although inhibition of Erk, Akt, and AMPK seemingly appears to mediate some of the bupivacaine effects, potential downstream targets that mediate its effect remain unknown. S6 kinase 1 is a common downstream effector of several growth regulatory pathways involved in cell growth and proliferation known to be affected by bupivacaine. We have accordingly attempted to relate the growth inhibitory effects of bupivacaine with the status of S6K1 activity and we present evidence that decrease in cell growth and proliferation by bupivacaine is mediated through inactivation of S6 kinase 1 in a concentration and time dependent manner. We also show that ectopic expression of constitutively active S6 kinase 1 imparts substantial protection from bupivacaine induced cytotoxicity. Inactivation of S6K1 though associated with loss of putative mTOR mediated phosphorylation did not correspond with loss of similar phosphorylations in 4EBP1 indicating that S6K1 inhibition was not mediated through inactivation of mTORC1 signaling pathway or its down regulation. PMID:24605337

  8. The PINK1 p.I368N mutation affects protein stability and ubiquitin kinase activity.

    PubMed

    Ando, Maya; Fiesel, Fabienne C; Hudec, Roman; Caulfield, Thomas R; Ogaki, Kotaro; Górka-Skoczylas, Paulina; Koziorowski, Dariusz; Friedman, Andrzej; Chen, Li; Dawson, Valina L; Dawson, Ted M; Bu, Guojun; Ross, Owen A; Wszolek, Zbigniew K; Springer, Wolfdieter

    2017-04-24

    Mutations in PINK1 and PARKIN are the most common causes of recessive early-onset Parkinson's disease (EOPD). Together, the mitochondrial ubiquitin (Ub) kinase PINK1 and the cytosolic E3 Ub ligase PARKIN direct a complex regulated, sequential mitochondrial quality control. Thereby, damaged mitochondria are identified and targeted to degradation in order to prevent their accumulation and eventually cell death. Homozygous or compound heterozygous loss of either gene function disrupts this protective pathway, though at different steps and by distinct mechanisms. While structure and function of PARKIN variants have been well studied, PINK1 mutations remain poorly characterized, in particular under endogenous conditions. A better understanding of the exact molecular pathogenic mechanisms underlying the pathogenicity is crucial for rational drug design in the future. Here, we characterized the pathogenicity of the PINK1 p.I368N mutation on the clinical and genetic as well as on the structural and functional level in patients' fibroblasts and in cell-based, biochemical assays. Under endogenous conditions, PINK1 p.I368N is expressed, imported, and N-terminally processed in healthy mitochondria similar to PINK1 wild type (WT). Upon mitochondrial damage, however, full-length PINK1 p.I368N is not sufficiently stabilized on the outer mitochondrial membrane (OMM) resulting in loss of mitochondrial quality control. We found that binding of PINK1 p.I368N to the co-chaperone complex HSP90/CDC37 is reduced and stress-induced interaction with TOM40 of the mitochondrial protein import machinery is abolished. Analysis of a structural PINK1 p.I368N model additionally suggested impairments of Ub kinase activity as the ATP-binding pocket was found deformed and the substrate Ub was slightly misaligned within the active site of the kinase. Functional assays confirmed the lack of Ub kinase activity. Here we demonstrated that mutant PINK1 p.I368N can not be stabilized on the OMM upon

  9. Polo-like kinase 1 is essential for early embryonic development and tumor suppression.

    PubMed

    Lu, Lin-Yu; Wood, Jamie L; Minter-Dykhouse, Katherine; Ye, Lin; Saunders, Thomas L; Yu, Xiaochun; Chen, Junjie

    2008-11-01

    Polo-like kinases (Plks) are serine/threonine kinases that are highly conserved in organisms from yeasts to humans. Previous reports have shown that Plk1 is critical for all stages of mitosis and may play a role in DNA replication during S phase. While much work has focused on Plk1, little is known about the physiological function of Plk1 in vivo. To address this question, we generated Plk1 knockout mice. Plk1 homozygous null mice were embryonic lethal, and early Plk1(-/-) embryos failed to survive after the eight-cell stage. Immunocytochemistry studies revealed that Plk1-null embryos were arrested outside the mitotic phase, suggesting that Plk1 is important for proper cell cycle progression. It has been postulated that Plk1 is a potential oncogene, due to its overexpression in a variety of tumors and tumor cell lines. While the Plk1 heterozygotes were healthy at birth, the incidence of tumors in these animals was threefold greater than that in their wild-type counterparts, demonstrating that the loss of one Plk1 allele accelerates tumor formation. Collectively, our data support that Plk1 is important for early embryonic development and may function as a haploinsufficient tumor suppressor.

  10. Acute Mitochondrial Inhibition by Mitogen-activated Protein Kinase/Extracellular Signal-regulated Kinase Kinase (MEK) 1/2 Inhibitors Regulates Proliferation*

    PubMed Central

    Ripple, Maureen O.; Kim, Namjoon; Springett, Roger

    2013-01-01

    The Ras-MEK1/2-ERK1/2 kinase signaling pathway regulates proliferation, survival, and differentiation and, because it is often aberrant in tumors, is a popular target for small molecule inhibition. A novel metabolic analysis that measures the real-time oxidation state of NAD(H) and the hemes of the electron transport chain and oxygen consumption within intact, living cells found that structurally distinct MEK1/2 inhibitors had an immediate, dose-dependent effect on mitochondrial metabolism. The inhibitors U0126, MIIC and PD98059 caused NAD(H) reduction, heme oxidation, and decreased oxygen consumption, characteristic of complex I inhibition. PD198306, an orally active MEK1/2 inhibitor, acted as an uncoupler. Each MEK1/2 inhibitor depleted phosphorylated ERK1/2 and inhibited proliferation, but the most robust antiproliferative effects always correlated with the metabolic failure which followed mitochondrial inhibition rather than inhibition of MEK1/2. This warrants rethinking the role of ERK1/2 in proliferation and emphasizes the importance of mitochondrial function in this process. PMID:23235157

  11. Delta-like 1/Fetal Antigen-1 (Dlk1/FA1) Is a Novel Regulator of Chondrogenic Cell Differentiation via Inhibition of the Akt Kinase-dependent Pathway*

    PubMed Central

    Chen, Li; Qanie, Diyako; Jafari, Abbas; Taipaleenmaki, Hanna; Jensen, Charlotte H.; Säämänen, Anna-Marja; Sanz, Maria Luisa Nueda; Laborda, Jorge; Abdallah, Basem M.; Kassem, Moustapha

    2011-01-01

    Delta-like 1 (Dlk1, also known as fetal antigen-1, FA1) is a member of Notch/Delta family that inhibits adipocyte and osteoblast differentiation; however, its role in chondrogenesis is still not clear. Thus, we overexpressed Dlk1/FA1 in mouse embryonic ATDC5 cells and tested its effects on chondrogenic differentiation. Dlk1/FA1 inhibited insulin-induced chondrogenic differentiation as evidenced by reduction of cartilage nodule formation and gene expression of aggrecan, collagen Type II and X. Similar effects were obtained either by using Dlk1/FA1-conditioned medium or by addition of a purified, secreted, form of Dlk1 (FA1) directly to the induction medium. The inhibitory effects of Dlk1/FA1 were dose-dependent and occurred irrespective of the chondrogenic differentiation stage: proliferation, differentiation, maturation, or hypertrophic conversion. Overexpression or addition of the Dlk1/FA1 protein to the medium strongly inhibited the activation of Akt, but not the ERK1/2, or p38 MAPK pathways, and the inhibition of Akt by Dlk1/FA1 was mediated through PI3K activation. Interestingly, inhibition of fibronectin expression by siRNA rescued the Dlk1/FA1-mediated inhibition of Akt, suggesting interaction of Dlk1/FA1 and fibronectin in chondrogenic cells. Our results identify Dlk1/FA1 as a novel regulator of chondrogenesis and suggest Dlk1/FA1 acts as an inhibitor of the PI3K/Akt pathways that leads to its inhibitory effects on chondrogenesis. PMID:21724852

  12. Protective effect of FK506 on myocardial ischemia/reperfusion injury by suppression of CaN and ASK1 signaling circuitry.

    PubMed

    Feng, Xing; Li, Jing; Liu, Jinyu; Jin, Minghua; Liu, Xiaomei; Du, Haiying; Zhang, Long; Sun, Zhiwei; Li, Xiaoguang

    2011-03-01

    We investigated protective effect of FK506 on rat hearts subjected to ischemia/reperfusion (I/R) injury by regulating CaN and ASK1. Wistar rats were divided into four groups: Ischemia/reperfusion group (I/R), FK506 + Ischemia/reperfusion group (FK506-I/R), sham group, and FK506 + sham group (FK506-sham). Ischemia/reperfusion was achieved by occluding left coronary artery for 30 min and subsequently reperfusing for 120 min. FK506 was administered 15 min before ischemia. Rats in sham group and FK506-sham group were operated only by placing a ligature around the coronary artery, and the blood supply was not blocked. I/R group showed a rapid increase in TUNEL-positive cells and high risks of histopathological changes in damaged cardiac tissues. FK506 reduced the infarct size and inhibited the activation of CaN enzyme in FK506-I/R group. Increase in Bcl-2/Bax ratio in FK506-IR group indicated that FK506 protected myocardium from apoptosis induced by IR. The activity of CaN and ASK1 protein level decreased significantly after I/R injury in FK506-treated I/R heart. FK506 suppresses the activation of CaN and ASK1 through CaN-mediated apoptosis pathway, and ASK1 negatively regulates CaN activity. Suppression of CaN and ASK1 signaling circuitry are involved in protective effect of FK506 on rat myocardium I/R injury.

  13. MAPK pathway inhibition induces MET and GAB1 levels, priming BRAF mutant melanoma for rescue by hepatocyte growth factor

    PubMed Central

    Caenepeel, Sean; Cooke, Keegan; Wadsworth, Sarah; Huang, Guo; Robert, Lidia; Moreno, Blanca Homet; Parisi, Giulia; Cajulis, Elaina; Kendall, Richard; Beltran, Pedro; Ribas, Antoni; Coxon, Angela; Hughes, Paul E.

    2017-01-01

    Therapeutic resistance is a major obstacle to achieving durable clinical responses with targeted therapies, highlighting a need to elucidate the underlying mechanisms responsible for resistance and identify strategies to overcome this challenge. An emerging body of data implicates the tyrosine kinase MET in mediating resistance to BRAF inhibitors in BRAFV600E mutant melanoma. In this study we observed a dominant role for the HGF/MET axis in mediating resistance to BRAF and MEK inhibitors in models of BRAFV600E and NRAS mutant melanoma. In addition, we showed that MAPK pathway inhibition induced rapid increases in MET and GAB1 levels, providing novel mechanistic insight into how BRAFV600E mutant melanoma is primed for HGF-mediated rescue. We also determined that tumor-derived HGF, not systemic HGF, may be required to convey resistance to BRAF inhibition in vivo and that resistance could be reversed following treatment with AMG 337, a selective MET inhibitor. In summary, these findings support the clinical evaluation of MET-directed targeted therapy to circumvent resistance to BRAF and MEK inhibitors in BRAFV600E mutant melanoma. In addition, the induction of MET following treatment with BRAF and MEK inhibitors has the potential to serve as a predictive biomarker for identifying patients best suited for MET inhibitor combination therapy. PMID:28147313

  14. The role of Rho-kinase and calcium ions in constriction triggered by ET-1.

    PubMed

    Wiciński, Michał; Szadujkis-Szadurska, Katarzyna; Węclewicz, Mateusz M; Malinowski, Bartosz; Matusiak, Grzegorz; Walczak, Maciej; Wódkiewicz, Eryk; Grześk, Grzegorz; Pawlak-Osińska, Katarzyna

    2018-05-05

    Endothelin-1 (ET-1) is one of the key factors regulating tension of smooth muscles in blood vessels. It is believed that ET-1 plays an important role in pathogenesis of hypertension, and cardiovascular diseases; therefore, research in order to limit ET-1-mediated action is still in progress. The main objective of this paper was to evaluate the role of Rho-kinase in the ET-1-induced constriction of arteries. The analysis also included significance of intra- and extracellular pool of calcium ions in constriction triggered by ET-1. The studies were performed on perfused Wistar rat tail arteries. Concentration response curve (CRC) was determined for ET-1 in the presence of increased concentrations of Rho-kinase inhibitor (Y-27632) and IP3-receptor antagonist (2APB), both in reference to constriction triggered by solely ET-1. Afterwards, the influence of calcium ions present in the perfusion fluid was evaluated in terms of the effect triggered by 2APB and occurring in arteries constricted by ET-1. ET-1, in concentration dependent manner, leads to increase in perfusion pressure. Y-27632 and 2APB lead to shift of the concentration response curve for ET-1 to the right with simultaneously lowered maximum effect. There was no difference in reaction of the artery constricted by ET-1 and treated with 2APB in solution containing calcium and in calcium-free solution. Vasoconstrictive action of endothelin is not significantly dependent on the inflow of extracellular calcium, but it is proportional to inflow of Ca 2+ related to activation of IP3 receptors and to Rho-kinase activity. Copyright © 2018. Published by Elsevier Inc.

  15. Role of protein kinase C alpha and mitogen-activated protein kinases in endothelin-1-stimulation of cytosolic phospholipase A2 in iris sphincter smooth muscle.

    PubMed

    Abdel-Latif, A A; Husain, S; Yousufzai, S Y

    2000-11-01

    We have investigated the roles of protein kinase C (PKC) and mitogen-activated protein kinases (MAPK) in the phosphorylation and activation of cytosolic phospholipase A2 (cPLA2) in endothelin-1- (ET-1) stimulated cat iris sphincter smooth muscle (CISM) cells. We found that in these cells both PKC and p38 MAP kinases play a critical role in ET-1-induced cPLA, phosphorylation and arachidonic acid (AA) release. Our findings indicate that stimulation of the endothelin-A- (ET(A)) receptor leads to: (1) activation of Gq protein which stimulates phospholipase C to hydrolyze the polyphosphoinositide PIP, into diacylglycerol (DAG) and inositol trisphosphate (IP3), the DAG may then activate PKC to phosphorylate and activate cPLA2; and (2) activation of Gi protein, which, through a series of kinases, leads to the stimulation of p38 MAPK and subsequently to phosphorylation and activation of cPLA2. The ability of the activated ET(A)-receptor, which is coupled to both Gq and Gi proteins, to recruit and activate this complex signal transduction mechanism remains to be clarified.

  16. Chronological Lifespan in Yeast Is Dependent on the Accumulation of Storage Carbohydrates Mediated by Yak1, Mck1 and Rim15 Kinases.

    PubMed

    Cao, Lu; Tang, Yingzhi; Quan, Zhenzhen; Zhang, Zhe; Oliver, Stephen G; Zhang, Nianshu

    2016-12-01

    Upon starvation for glucose or any other macronutrient, yeast cells exit from the mitotic cell cycle and acquire a set of characteristics that are specific to quiescent cells to ensure longevity. Little is known about the molecular determinants that orchestrate quiescence entry and lifespan extension. Using starvation-specific gene reporters, we screened a subset of the yeast deletion library representing the genes encoding 'signaling' proteins. Apart from the previously characterised Rim15, Mck1 and Yak1 kinases, the SNF1/AMPK complex, the cell wall integrity pathway and a number of cell cycle regulators were shown to be necessary for proper quiescence establishment and for extension of chronological lifespan (CLS), suggesting that entry into quiescence requires the integration of starvation signals transmitted via multiple signaling pathways. The CLS of these signaling mutants, and those of the single, double and triple mutants of RIM15, YAK1 and MCK1 correlates well with the amount of storage carbohydrates but poorly with transition-phase cell cycle status. Combined removal of the glycogen and trehalose biosynthetic genes, especially GSY2 and TPS1, nearly abolishes the accumulation of storage carbohydrates and severely reduces CLS. Concurrent overexpression of GSY2 and TSL1 or supplementation of trehalose to the growth medium ameliorates the severe CLS defects displayed by the signaling mutants (rim15Δyak1Δ or rim15Δmck1Δ). Furthermore, we reveal that the levels of intracellular reactive oxygen species are cooperatively controlled by Yak1, Rim15 and Mck1, and the three kinases mediate the TOR1-regulated accumulation of storage carbohydrates and CLS extension. Our data support the hypothesis that metabolic reprogramming to accumulate energy stores and the activation of anti-oxidant defence systems are coordinated by Yak1, Rim15 and Mck1 kinases to ensure quiescence entry and lifespan extension in yeast.

  17. TANK-Binding Kinase 1 (TBK1) Isoforms Negatively Regulate Type I Interferon Induction by Inhibiting TBK1-IRF3 Interaction and IRF3 Phosphorylation.

    PubMed

    Hu, Yi Wei; Zhang, Jie; Wu, Xiao Man; Cao, Lu; Nie, Pin; Chang, Ming Xian

    2018-01-01

    TANK-binding kinase 1 (TBK1) is an important serine/threonine-protein kinase that mediates phosphorylation and nuclear translocation of IRF3, which contributes to induction of type I interferons (IFNs) in the innate antiviral response. In mammals, TBK1 spliced isoform negatively regulates the virus-triggered IFN-β signaling pathway by disrupting the interaction between retinoic acid-inducible gene I (RIG-I) and mitochondria antiviral-signaling protein (MAVS). However, it is still unclear whether alternative splicing patterns and the function of TBK1 isoform(s) exist in teleost fish. In this study, we identify two alternatively spliced isoforms of TBK1 from zebrafish, termed TBK1_tv1 and TBK1_tv2. Both TBK1_tv1 and TBK1_tv2 contain an incomplete STKc_TBK1 domain. Moreover, the UBL_TBK1_like domain is also missing for TBK1_tv2. TBK1_tv1 and TBK1_tv2 are expressed in zebrafish larvae. Overexpression of TBK1_tv1 and TBK1_tv2 inhibits RIG-I-, MAVS-, TBK1-, and IRF3-mediated activation of IFN promoters in response to spring viremia of carp virus infection. Also, TBK1_tv1 and TBK1_tv2 inhibit expression of IFNs and IFN-stimulated genes induced by MAVS and TBK1 . Mechanistically, TBK1_tv1 and TBK1_tv2 competitively associate with TBK1 and IRF3 to disrupt the formation of a functional TBK1-IRF3 complex, impeding the phosphorylation of IRF3 mediated by TBK1. Collectively, these results demonstrate that TBK1 spliced isoforms are dominant negative regulators in the RIG-I/MAVS/TBK1/IRF3 antiviral pathway by targeting the functional TBK1-IRF3 complex formation. Identification and functional characterization of piscine TBK1 spliced isoforms may contribute to understanding the role of TBK1 expression in innate antiviral response.

  18. Polo-like kinase 1-mediated phosphorylation stabilizes Pin1 by inhibiting its ubiquitination in human cells.

    PubMed

    Eckerdt, Frank; Yuan, Juping; Saxena, Krishna; Martin, Bernd; Kappel, Sven; Lindenau, Christine; Kramer, Andrea; Naumann, Steffen; Daum, Sebastian; Fischer, Gunter; Dikic, Ivan; Kaufmann, Manfred; Strebhardt, Klaus

    2005-11-04

    The Polo-like kinase 1 (Plk1) is a key regulator of mitosis. It is reported that the human peptidyl-prolyl cis/trans-isomerase Pin1 binds to Plk1 from mitotic cell extracts in vitro. Here we demonstrate that Ser-65 in Pin1 is the major site for Plk1-specific phosphorylation, and the polo-box domain of Plk1 is required for this phosphorylation. Interestingly, the phosphorylation of Pin1 by Plk1 does not affect its isomerase activity but rather is linked to its protein stability. Pin1 is ubiquitinated in HeLa S3 cells, and substitution of Glu for Ser-65 reduces the ubiquitination of Pin1. Furthermore, inhibition of Plk1 activity by expression of a dominant negative form of Plk1 or by transfection of small interfering RNA targeted to Plk1 enhances the ubiquitination of Pin1 and subsequently reduces the amount of Pin1 in human cancer cells. Since previous reports suggested that Plk1 is a substrate of Pin1, our work adds a new dimension to this interaction of two important mitotic regulators.

  19. Human T-Cell Leukemia Virus Type 1 Tax Induction of NF-κB Involves Activation of the IκB Kinase α (IKKα) and IKKβ Cellular Kinases

    PubMed Central

    Geleziunas, Romas; Ferrell, Sharon; Lin, Xin; Mu, Yajun; Cunningham, Emmett T.; Grant, Mark; Connelly, Margery A.; Hambor, John E.; Marcu, Kenneth B.; Greene, Warner C.

    1998-01-01

    Tax corresponds to a 40-kDa transforming protein from the pathogenic retrovirus human T-cell leukemia virus type 1 (HTLV-1) that activates nuclear expression of the NF-κB/Rel family of transcription factors by an unknown mechanism. Tax expression promotes N-terminal phosphorylation and degradation of IκBα, a principal cytoplasmic inhibitor of NF-κB. Our studies now demonstrate that HTLV-1 Tax activates the recently identified cellular kinases IκB kinase α (IKKα) and IKKβ, which normally phosphorylate IκBα on both of its N-terminal regulatory serines in response to tumor necrosis factor alpha (TNF-α) and interleukin-1 (IL-1) stimulation. In contrast, a mutant of Tax termed M22, which does not induce NF-κB, fails to activate either IKKα or IKKβ. Furthermore, endogenous IKK enzymatic activity was significantly elevated in HTLV-1-infected and Tax-expressing T-cell lines. Transfection of kinase-deficient mutants of IKKα and IKKβ into either human Jurkat T or 293 cells also inhibits NF-κB-dependent reporter gene expression induced by Tax. Similarly, a kinase-deficient mutant of NIK (NF-κB-inducing kinase), which represents an upstream kinase in the TNF-α and IL-1 signaling pathways leading to IKKα and IKKβ activation, blocks Tax induction of NF-κB. However, plasma membrane-proximal elements in these proinflammatory cytokine pathways are apparently not involved since dominant negative mutants of the TRAF2 and TRAF6 adaptors, which effectively block signaling through the cytoplasmic tails of the TNF-α and IL-1 receptors, respectively, do not inhibit Tax induction of NF-κB. Together, these studies demonstrate that HTLV-1 Tax exploits a distal part of the proinflammatory cytokine signaling cascade leading to induction of NF-κB. The pathological alteration of this cytokine pathway leading to NF-κB activation by Tax may play a central role in HTLV-1-mediated transformation of human T cells, clinically manifested as the adult T-cell leukemia. PMID

  20. Rejuvenation of human cardiac progenitor cells with Pim-1 kinase.

    PubMed

    Mohsin, Sadia; Khan, Mohsin; Nguyen, Jonathan; Alkatib, Monique; Siddiqi, Sailay; Hariharan, Nirmala; Wallach, Kathleen; Monsanto, Megan; Gude, Natalie; Dembitsky, Walter; Sussman, Mark A

    2013-10-25

    Myocardial function is enhanced by adoptive transfer of human cardiac progenitor cells (hCPCs) into a pathologically challenged heart. However, advanced age, comorbidities, and myocardial injury in patients with heart failure constrain the proliferation, survival, and regenerative capacity of hCPCs. Rejuvenation of senescent hCPCs will improve the outcome of regenerative therapy for a substantial patient population possessing functionally impaired stem cells. Reverse phenotypic and functional senescence of hCPCs by ex vivo modification with Pim-1. C-kit-positive hCPCs were isolated from heart biopsy samples of patients undergoing left ventricular assist device implantation. Growth kinetics, telomere lengths, and expression of cell cycle regulators showed significant variation between hCPC isolated from multiple patients. Telomere length was significantly decreased in hCPC with slow-growth kinetics concomitant with decreased proliferation and upregulation of senescent markers compared with hCPC with fast-growth kinetics. Desirable youthful characteristics were conferred on hCPCs by genetic modification using Pim-1 kinase, including increases in proliferation, telomere length, survival, and decreased expression of senescence markers. Senescence characteristics of hCPCs are ameliorated by Pim-1 kinase resulting in rejuvenation of phenotypic and functional properties. hCPCs show improved cellular properties resulting from Pim-1 modification, but benefits were more pronounced in hCPC with slow-growth kinetics relative to hCPC with fast-growth kinetics. With the majority of patients with heart failure presenting advanced age, infirmity, and impaired regenerative capacity, the use of Pim-1 modification should be incorporated into cell-based therapeutic approaches to broaden inclusion criteria and address limitations associated with the senescent phenotype of aged hCPC.

  1. Rejuvenation of Human Cardiac Progenitor Cells With Pim-1 Kinase

    PubMed Central

    Mohsin, Sadia; Khan, Mohsin; Nguyen, Jonathan; Alkatib, Monique; Siddiqi, Sailay; Hariharan, Nirmala; Wallach, Kathleen; Monsanto, Megan; Gude, Natalie; Dembitsky, Walter; Sussman, Mark A.

    2014-01-01

    Rationale Myocardial function is enhanced by adoptive transfer of human cardiac progenitor cells (hCPCs) into a pathologically challenged heart. However, advanced age, comorbidities, and myocardial injury in patients with heart failure constrain the proliferation, survival, and regenerative capacity of hCPCs. Rejuvenation of senescent hCPCs will improve the outcome of regenerative therapy for a substantial patient population possessing functionally impaired stem cells. Objective Reverse phenotypic and functional senescence of hCPCs by ex vivo modification with Pim-1. Methods and Results C-kit–positive hCPCs were isolated from heart biopsy samples of patients undergoing left ventricular assist device implantation. Growth kinetics, telomere lengths, and expression of cell cycle regulators showed significant variation between hCPC isolated from multiple patients. Telomere length was significantly decreased in hCPC with slow-growth kinetics concomitant with decreased proliferation and upregulation of senescent markers compared with hCPC with fast-growth kinetics. Desirable youthful characteristics were conferred on hCPCs by genetic modification using Pim-1 kinase, including increases in proliferation, telomere length, survival, and decreased expression of senescence markers. Conclusions Senescence characteristics of hCPCs are ameliorated by Pim-1 kinase resulting in rejuvenation of phenotypic and functional properties. hCPCs show improved cellular properties resulting from Pim-1 modification, but benefits were more pronounced in hCPC with slow-growth kinetics relative to hCPC with fast-growth kinetics. With the majority of patients with heart failure presenting advanced age, infirmity, and impaired regenerative capacity, the use of Pim-1 modification should be incorporated into cell-based therapeutic approaches to broaden inclusion criteria and address limitations associated with the senescent phenotype of aged hCPC. PMID:24044948

  2. Targets of B-cell antigen receptor signaling: the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase-3 signaling pathway and the Rap1 GTPase.

    PubMed

    Gold, M R; Ingham, R J; McLeod, S J; Christian, S L; Scheid, M P; Duronio, V; Santos, L; Matsuuchi, L

    2000-08-01

    In this review, we discuss the role of phosphatidylinositol 3-kinase (PI3K) and Rap 1 in B-cell receptor (BCR) signaling. PI3K produces lipids that recruit pleckstrin homology domain-containing proteins to the plasma membrane. Akt is a kinase that the BCR activates in this manner. Akt phosphorylates several transcription factors as well as proteins that regulate apoptosis and protein synthesis. Akt also regulates glycogen synthase kinase-3, a kinase whose substrates include the nuclear factor of activated T cells (NF-AT)cl and beta-catenin transcriptional activators. In addition to Akt, PI3K-derived lipids also regulate the activity and localization of other targets of BCR signaling. Thus, a key event in BCR signaling is the recruitment of PI3K to the plasma membrane where its substrates are located. This is mediated by binding of the Src homology (SH) 2 domains in PI3K to phosphotyrosine-containing sequences on membrane-associated docking proteins. The docking proteins that the BCR uses to recruit PI3K include CD19, Cbl, Gab1, and perhaps Gab2. We have shown that Gab1 colocalizes PI3K with SH2 domain-containing inositol phosphatase (SHIP) and SHP2, two enzymes that regulate PI3K-dependent signaling. In contrast to PI3K, little is known about the Rap1 GTPase. We showed that the BCR activates Rap1 via phospholipase C-dependent production of diacylglycerol. Since Rap1 is thought to regulate cell adhesion and cell polarity, it may be involved in B-cell migration.

  3. Chk1 and Wee1 kinases coordinate DNA replication, chromosome condensation, and anaphase entry

    PubMed Central

    Fasulo, Barbara; Koyama, Carol; Yu, Kristina R.; Homola, Ellen M.; Hsieh, Tao S.; Campbell, Shelagh D.; Sullivan, William

    2012-01-01

    Defects in DNA replication and chromosome condensation are common phenotypes in cancer cells. A link between replication and condensation has been established, but little is known about the role of checkpoints in monitoring chromosome condensation. We investigate this function by live analysis, using the rapid division cycles in the early Drosophila embryo. We find that S-phase and topoisomerase inhibitors delay both the initiation and the rate of chromosome condensation. These cell cycle delays are mediated by the cell cycle kinases chk1 and wee1. Inhibitors that cause severe defects in chromosome condensation and congression on the metaphase plate result in delayed anaphase entry. These delays are mediated by wee1 and are not the result of spindle assembly checkpoint activation. In addition, we provide the first detailed live analysis of the direct effect of widely used anticancer agents (aclarubicin, ICRF-193, VM26, doxorubicin, camptothecin, aphidicolin, hydroxyurea, cisplatin, mechlorethamine and x-rays) on key nuclear and cytoplasmic cell cycle events. PMID:22262459

  4. The Cak1p Protein Kinase Is Required at G(1)/S and G(2)/M in the Budding Yeast Cell Cycle

    PubMed Central

    Sutton, A.; Freiman, R.

    1997-01-01

    The CAK1 gene encodes the major CDK-activating kinase (CAK) in budding yeast and is required for activation of Cdc28p for cell cycle progression from G(2) to M phase. Here we describe the isolation of a mutant allele of CAK1 in a synthetic lethal screen with the Sit4 protein phosphatase. Analysis of several different cak1 mutants shows that although the G(2) to M transition appears most sensitive to loss of Cak1p function, Cak1p is also required for activation of Cdc28p for progression from G(1) into S phase. Further characterization of these mutants suggests that, unlike the CAK identified from higher eukaryotes, Cak1p of budding yeast may not play a role in general transcription. Finally, although Cak1 protein levels and in vitro protein kinase activity do not fluctuate during the cell cycle, at least a fraction of Cak1p associates with higher molecular weight proteins, which may be important for its in vivo function. PMID:9286668

  5. Ectopic expression of the Drosophila Cdk1 inhibitory kinases, Wee1 and Myt1, interferes with the second mitotic wave and disrupts pattern formation during eye development.

    PubMed Central

    Price, Donald M; Jin, Zhigang; Rabinovitch, Simon; Campbell, Shelagh D

    2002-01-01

    Wee1 kinases catalyze inhibitory phosphorylation of the mitotic regulator Cdk1, preventing mitosis during S phase and delaying it in response to DNA damage or developmental signals during G2. Unlike yeast, metazoans have two distinct Wee1-like kinases, a nuclear protein (Wee1) and a cytoplasmic protein (Myt1). We have isolated the genes encoding Drosophila Wee1 and Myt1 and are using genetic approaches to dissect their functions during normal development. Overexpression of Dwee1 or Dmyt1 during eye development generates a rough adult eye phenotype. The phenotype can be modified by altering the gene dosage of known regulators of the G2/M transition, suggesting that we could use these transgenic strains in modifier screens to identify potential regulators of Wee1 and Myt1. To confirm this idea, we tested a collection of deletions for loci that can modify the eye overexpression phenotypes and identified several loci as dominant modifiers. Mutations affecting the Delta/Notch signaling pathway strongly enhance a GMR-Dmyt1 eye phenotype but do not affect a GMR-Dwee1 eye phenotype, suggesting that Myt1 is potentially a downstream target for Notch activity during eye development. We also observed interactions with p53, which suggest that Wee1 and Myt1 activity can block apoptosis. PMID:12072468

  6. The DUF1669 domain of FAM83 family proteins anchor casein kinase 1 isoforms.

    PubMed

    Fulcher, Luke J; Bozatzi, Polyxeni; Tachie-Menson, Theresa; Wu, Kevin Z L; Cummins, Timothy D; Bufton, Joshua C; Pinkas, Daniel M; Dunbar, Karen; Shrestha, Sabin; Wood, Nicola T; Weidlich, Simone; Macartney, Thomas J; Varghese, Joby; Gourlay, Robert; Campbell, David G; Dingwell, Kevin S; Smith, James C; Bullock, Alex N; Sapkota, Gopal P

    2018-05-22

    Members of the casein kinase 1 (CK1) family of serine-threonine protein kinases are implicated in the regulation of many cellular processes, including the cell cycle, circadian rhythms, and Wnt and Hedgehog signaling. Because these kinases exhibit constitutive activity in biochemical assays, it is likely that their activity in cells is controlled by subcellular localization, interactions with inhibitory proteins, targeted degradation, or combinations of these mechanisms. We identified members of the FAM83 family of proteins as partners of CK1 in cells. All eight members of the FAM83 family (FAM83A to FAM83H) interacted with the α and α-like isoforms of CK1; FAM83A, FAM83B, FAM83E, and FAM83H also interacted with the δ and ε isoforms of CK1. We detected no interaction between any FAM83 member and the related CK1γ1, CK1γ2, and CK1γ3 isoforms. Each FAM83 protein exhibited a distinct pattern of subcellular distribution and colocalized with the CK1 isoform(s) to which it bound. The interaction of FAM83 proteins with CK1 isoforms was mediated by the conserved domain of unknown function 1669 (DUF1669) that characterizes the FAM83 family. Mutations in FAM83 proteins that prevented them from binding to CK1 interfered with the proper subcellular localization and cellular functions of both the FAM83 proteins and their CK1 binding partners. On the basis of its function, we propose that DUF1669 be renamed the polypeptide anchor of CK1 domain. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  7. Characterization of Plasmodium falciparum Calcium-dependent Protein Kinase 1 (PfCDPK1) and Its Role in Microneme Secretion during Erythrocyte Invasion*

    PubMed Central

    Bansal, Abhisheka; Singh, Shailja; More, Kunal R.; Hans, Dhiraj; Nangalia, Kuldeep; Yogavel, Manickam; Sharma, Amit; Chitnis, Chetan E.

    2013-01-01

    Calcium-dependent protein kinases (CDPKs) play important roles in the life cycle of Plasmodium falciparum and other apicomplexan parasites. CDPKs commonly have an N-terminal kinase domain (KD) and a C-terminal calmodulin-like domain (CamLD) with calcium-binding EF hands. The KD and CamLD are separated by a junction domain (JD). Previous studies on Plasmodium and Toxoplasma CDPKs suggest a role for the JD and CamLD in the regulation of kinase activity. Here, we provide direct evidence for the binding of the CamLD with the P3 region (Leu356 to Thr370) of the JD in the presence of calcium (Ca2+). Moreover, site-directed mutagenesis of conserved hydrophobic residues in the JD (F363A/I364A, L356A, and F350A) abrogates functional activity of PfCDPK1, demonstrating the importance of these residues in PfCDPK1 function. Modeling studies suggest that these residues play a role in interaction of the CamLD with the JD. The P3 peptide, which specifically inhibits the functional activity of PfCDPK1, blocks microneme discharge and erythrocyte invasion by P. falciparum merozoites. Purfalcamine, a previously identified specific inhibitor of PfCDPK1, also inhibits microneme discharge and erythrocyte invasion, confirming a role for PfCDPK1 in this process. These studies validate PfCDPK1 as a target for drug development and demonstrate that interfering with its mechanistic regulation may provide a novel approach to design-specific PfCDPK1 inhibitors that limit blood stage parasite growth and clear malaria parasite infections. PMID:23204525

  8. MaHog1, a Hog1-type mitogen-activated protein kinase gene, contributes to stress tolerance and virulence of the entomopathogenic fungus Metarhizium acridum.

    PubMed

    Jin, Kai; Ming, Yue; Xia, Yu Xian

    2012-12-01

    Fungal biocontrol agents have great potential in integrated pest management. However, poor efficacy and sensitivity to various adverse factors have hampered their wide application. In eukaryotic cells, Hog1 kinase plays a critical role in stress responses. In this study, MaHog1 (GenBank accession no. EFY85878), encoding a member of the Hog1/Sty1/p38 mitogen-activated protein kinase family in Metarhizium (Me.) acridum, was identified. Targeted gene disruption was used to analyse the role of MaHog1 in virulence and tolerance of adverse factors. Mutants with MaHog1 depletion showed increased sensitivity to high osmotic stress, high temperature and oxidative stress, and exhibited remarkable resistance to cell wall-disturbing agents. These results suggest that Hog1 kinase has a conserved function in regulating multistress responses among fungi, and that MaHog1 might influence cell wall biogenesis in Me. acridum. Bioassays conducted with topical inoculation and intrahaemocoel injection revealed that MaHog1 is required for both penetration and postpenetration development of Me. acridum. MaHog1 disruption resulted in a significant reduction in virulence, likely due to the combination of a decrease in conidial germination, a reduction in appressorium formation and a decline in growth rate in insect haemolymph, which might be caused by impairing fungal tolerance of various stresses during infection.

  9. Inhibition of polo-like kinase 1 by blocking polo-box domain-dependent protein-protein interactions.

    PubMed

    Reindl, Wolfgang; Yuan, Juping; Krämer, Andrea; Strebhardt, Klaus; Berg, Thorsten

    2008-05-01

    The serine/threonine kinase Polo-like kinase 1 (Plk1) is overexpressed in many types of human cancers, and has been implicated as an adverse prognostic marker for cancer patients. Plk1 localizes to its intracellular anchoring sites via its polo-box domain (PBD). Here we show that Plk1 can be inhibited by small molecules which interfere with its intracellular localization by inhibiting the function of the PBD. We report the natural product thymoquinone and, especially, the synthetic thymoquinone derivative Poloxin as inhibitors of the Plk1 PBD. Both compounds inhibit the function of the Plk1 PBD in vitro, and cause Plk1 mislocalization, chromosome congression defects, mitotic arrest, and apoptosis in HeLa cells. Our data validate the Plk1 PBD as an anticancer target and provide a rationale for developing thymoquinone derivatives as anticancer drugs.

  10. N-terminal regions of Mps1 kinase determine functional bifurcation.

    PubMed

    Araki, Yasuhiro; Gombos, Linda; Migueleti, Suellen P S; Sivashanmugam, Lavanya; Antony, Claude; Schiebel, Elmar

    2010-04-05

    Mps1 is a conserved kinase that in budding yeast functions in duplication of the spindle pole body (SPB), spindle checkpoint activation, and kinetochore biorientation. The identity of Mps1 targets and the subdomains that convey specificity remain largely unexplored. Using a novel combination of systematic deletion analysis and chemical biology, we identified two regions within the N terminus of Mps1 that are essential for either SPB duplication or kinetochore biorientation. Suppression analysis of the MPS1 mutants defective in SPB duplication and biochemical enrichment of Mps1 identified the essential SPB components Spc29 and the yeast centrin Cdc31 as Mps1 targets in SPB duplication. Our data suggest that phosphorylation of Spc29 by Mps1 in G1/S recruits the Mps2-Bbp1 complex to the newly formed SPB to facilitate its insertion into the nuclear envelope. Mps1 phosphorylation of Cdc31 at the conserved T110 residue controls substrate binding to Kar1 protein. These findings explain the multiple SPB duplication defects of mps1 mutants on a molecular level.

  11. Phosphatidylinositol 3-kinase/Akt signaling pathway activates the WNK-OSR1/SPAK-NCC phosphorylation cascade in hyperinsulinemic db/db mice.

    PubMed

    Nishida, Hidenori; Sohara, Eisei; Nomura, Naohiro; Chiga, Motoko; Alessi, Dario R; Rai, Tatemitsu; Sasaki, Sei; Uchida, Shinichi

    2012-10-01

    Metabolic syndrome patients have insulin resistance, which causes hyperinsulinemia, which in turn causes aberrant increased renal sodium reabsorption. The precise mechanisms underlying this greater salt sensitivity of hyperinsulinemic patients remain unclear. Abnormal activation of the recently identified with-no-lysine kinase (WNK)-oxidative stress-responsive kinase 1 (OSR1)/STE20/SPS1-related proline/alanine-rich kinase (SPAK)-NaCl cotransporter (NCC) phosphorylation cascade results in the salt-sensitive hypertension of pseudohypoaldosteronism type II. Here, we report a study of renal WNK-OSR1/SPAK-NCC cascade activation in the db/db mouse model of hyperinsulinemic metabolic syndrome. Thiazide sensitivity was increased, suggesting greater activity of NCC in db/db mice. In fact, increased phosphorylation of OSR1/SPAK and NCC was observed. In both SpakT243A/+ and Osr1T185A/+ knock-in db/db mice, which carry mutations that disrupt the signal from WNK kinases, increased phosphorylation of NCC and elevated blood pressure were completely corrected, indicating that phosphorylation of SPAK and OSR1 by WNK kinases is required for the increased activation and phosphorylation of NCC in this model. Renal phosphorylated Akt was increased in db/db mice, suggesting that increased NCC phosphorylation is regulated by the phosphatidylinositol 3-kinase/Akt signaling cascade in the kidney in response to hyperinsulinemia. A phosphatidylinositol 3-kinase inhibitor (NVP-BEZ235) corrected the increased OSR1/SPAK-NCC phosphorylation. Another more specific phosphatidylinositol 3-kinase inhibitor (GDC-0941) and an Akt inhibitor (MK-2206) also inhibited increased NCC phosphorylation. These results indicate that the phosphatidylinositol 3-kinase/Akt signaling pathway activates the WNK-OSR1/SPAK-NCC phosphorylation cascade in db/db mice. This mechanism may play a role in the pathogenesis of salt-sensitive hypertension in human hyperinsulinemic conditions, such as the metabolic syndrome.

  12. CB1 Cannabinoid Receptors Couple to Focal Adhesion Kinase to Control Insulin Release*

    PubMed Central

    Malenczyk, Katarzyna; Jazurek, Magdalena; Keimpema, Erik; Silvestri, Cristoforo; Janikiewicz, Justyna; Mackie, Ken; Di Marzo, Vincenzo; Redowicz, Maria J.; Harkany, Tibor; Dobrzyn, Agnieszka

    2013-01-01

    Endocannabinoid signaling has been implicated in modulating insulin release from β cells of the endocrine pancreas. β Cells express CB1 cannabinoid receptors (CB1Rs), and the enzymatic machinery regulating anandamide and 2-arachidonoylglycerol bioavailability. However, the molecular cascade coupling agonist-induced cannabinoid receptor activation to insulin release remains unknown. By combining molecular pharmacology and genetic tools in INS-1E cells and in vivo, we show that CB1R activation by endocannabinoids (anandamide and 2-arachidonoylglycerol) or synthetic agonists acutely or after prolonged exposure induces insulin hypersecretion. In doing so, CB1Rs recruit Akt/PKB and extracellular signal-regulated kinases 1/2 to phosphorylate focal adhesion kinase (FAK). FAK activation induces the formation of focal adhesion plaques, multimolecular platforms for second-phase insulin release. Inhibition of endocannabinoid synthesis or FAK activity precluded insulin release. We conclude that FAK downstream from CB1Rs mediates endocannabinoid-induced insulin release by allowing cytoskeletal reorganization that is required for the exocytosis of secretory vesicles. These findings suggest a mechanistic link between increased circulating and tissue endocannabinoid levels and hyperinsulinemia in type 2 diabetes. PMID:24089517

  13. Mucuna pruriens (Velvet bean) Rescues Motor, Olfactory, Mitochondrial and Synaptic Impairment in PINK1B9 Drosophila melanogaster Genetic Model of Parkinson’s Disease

    PubMed Central

    Ruffilli, Roberta; Fanti, Maura; Secci, Pietro Paolo; Mostallino, Maria Cristina; Setzu, Maria Dolores; Zuncheddu, Maria Antonietta; Collu, Ignazio; Solla, Paolo; Marrosu, Francesco; Kasture, Sanjay; Acquas, Elio; Liscia, Anna

    2014-01-01

    The fruit fly Drosophila melanogaster (Dm) mutant for PTEN-induced putative kinase 1 (PINK1B9) gene is a powerful tool to investigate physiopathology of Parkinson's disease (PD). Using PINK1B9 mutant Dm we sought to explore the effects of Mucuna pruriens methanolic extract (Mpe), a L-Dopa-containing herbal remedy of PD. The effects of Mpe on PINK1B9 mutants, supplied with standard diet to larvae and adults, were assayed on 3–6 (I), 10–15 (II) and 20–25 (III) days old flies. Mpe 0.1% significantly extended lifespan of PINK1B9 and fully rescued olfactory response to 1-hexanol and improved climbing behavior of PINK1B9 of all ages; in contrast, L-Dopa (0.01%, percentage at which it is present in Mpe 0.1%) ameliorated climbing of only PINK1B9 flies of age step II. Transmission electron microscopy analysis of antennal lobes and thoracic ganglia of PINK1B9 revealed that Mpe restored to wild type (WT) levels both T-bars and damaged mitochondria. Western blot analysis of whole brain showed that Mpe, but not L-Dopa on its own, restored bruchpilot (BRP) and tyrosine hydroxylase (TH) expression to age-matched WT control levels. These results highlight multiple sites of action of Mpe, suggesting that its effects cannot only depend upon its L-Dopa content and support the clinical observation of Mpe as an effective medication with intrinsic ability of delaying the onset of chronic L-Dopa-induced long-term motor complications. Overall, this study strengthens the relevance of using PINK1B9 Dm as a translational model to study the properties of Mucuna pruriens for PD treatment. PMID:25340511

  14. mTOR-Independent Autophagy Inducer Trehalose Rescues against Insulin Resistance-Induced Myocardial Contractile Anomalies: Role of p38 MAPK and Foxo1

    PubMed Central

    Wang, Qiurong; Ren, Jun

    2016-01-01

    Insulin resistance is associated with cardiovascular diseases although the precise mechanisms remain elusive. Akt2, a critical member of the Akt family, plays an essential role in insulin signaling. This study was designed to examine the effect of trehalose, an mTOR-independent autophagy inducer, on myocardial function in an Akt2 knockout-induced insulin resistance model. Adult WT and Akt2 knockout (Akt2−/−) mice were administered trehalose (1 mg/g/day, i.p.) for two days and were then given 2% trehalose in drinking water for two more months. Echocardiographic and myocardial mechanics, intracellular Ca2+ properties, glucose tolerance, and autophagy were assessed. Apoptosis and ER stress were evaluated using TUNEL staining, Caspase 3 assay and Western blot. Autophagy and autophagy flux were examined with a focus on p38 mitogen activated protein kinase (MAPK), Forkhead box O (Foxo1) and Akt. Akt2 ablation impaired glucose tolerance, myocardial geometry and function accompanied with pronounced apoptosis, ER stress and dampened autophagy, the effects of which were ameliorated by trehalose treatment. Inhibition of lysosomal activity using bafilomycin A1 negated trehalose–induced induction of autophagy (LC3B–II and p62). Moreover, phosphorylation of p38 MAPK and Foxo1 were upregulated in Akt2−/− mice, the effect of which was attenuated by trehalose. Phosphorylation of Akt was suppressed in Akt2−/− mice and was unaffected by trehalose. In vitro findings revealed that the p38 MAPK activator anisomycin and the Foxo1 inhibitor (through phosphorylation) AS1842856 effectively masked trehalose-offered beneficial cardiomyocyte contractile response against Akt2 ablation. These data suggest that trehalose may rescue against insulin resistance-induced myocardial contractile defect and apoptosis, via autophagy associated with dephosphorylation of p38 MAPK and Foxo1 without affecting phosphorylation of Akt. PMID:27363949

  15. mTOR-Independent autophagy inducer trehalose rescues against insulin resistance-induced myocardial contractile anomalies: Role of p38 MAPK and Foxo1.

    PubMed

    Wang, Qiurong; Ren, Jun

    2016-09-01

    Insulin resistance is associated with cardiovascular diseases although the precise mechanisms remain elusive. Akt2, a critical member of the Akt family, plays an essential role in insulin signaling. This study was designed to examine the effect of trehalose, an mTOR-independent autophagy inducer, on myocardial function in an Akt2 knockout-induced insulin resistance model. Adult WT and Akt2 knockout (Akt2(-/-)) mice were administered trehalose (1mg/g/day, i.p.) for two days and were then given 2% trehalose in drinking water for two more months. Echocardiographic and myocardial mechanics, intracellular Ca(2+) properties, glucose tolerance, and autophagy were assessed. Apoptosis and ER stress were evaluated using TUNEL staining, Caspase 3 assay and Western blot. Autophagy and autophagy flux were examined with a focus on p38 mitogen activated protein kinase (MAPK), Forkhead box O (Foxo1) and Akt. Akt2 ablation impaired glucose tolerance, myocardial geometry and function accompanied with pronounced apoptosis, ER stress and dampened autophagy, the effects of which were ameliorated by trehalose treatment. Inhibition of lysosomal activity using bafilomycin A1 negated trehalose-induced induction of autophagy (LC3B-II and p62). Moreover, phosphorylation of p38 MAPK and Foxo1 were upregulated in Akt2(-/-) mice, the effect of which was attenuated by trehalose. Phosphorylation of Akt was suppressed in Akt2(-/-) mice and was unaffected by trehalose. In vitro findings revealed that the p38 MAPK activator anisomycin and the Foxo1 inhibitor (through phosphorylation) AS1842856 effectively masked trehalose-offered beneficial cardiomyocyte contractile response against Akt2 ablation. These data suggest that trehalose may rescue against insulin resistance-induced myocardial contractile defect and apoptosis, via autophagy associated with dephosphorylation of p38 MAPK and Foxo1 without affecting phosphorylation of Akt. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Structure-based design, synthesis, and biological evaluation of imidazo[1,2-b]pyridazine-based p38 MAP kinase inhibitors.

    PubMed

    Kaieda, Akira; Takahashi, Masashi; Takai, Takafumi; Goto, Masayuki; Miyazaki, Takahiro; Hori, Yuri; Unno, Satoko; Kawamoto, Tomohiro; Tanaka, Toshimasa; Itono, Sachiko; Takagi, Terufumi; Hamada, Teruki; Shirasaki, Mikio; Okada, Kengo; Snell, Gyorgy; Bragstad, Ken; Sang, Bi-Ching; Uchikawa, Osamu; Miwatashi, Seiji

    2018-02-01

    We identified novel potent inhibitors of p38 MAP kinase using structure-based design strategy. X-ray crystallography showed that when p38 MAP kinase is complexed with TAK-715 (1) in a co-crystal structure, Phe169 adopts two conformations, where one interacts with 1 and the other shows no interaction with 1. Our structure-based design strategy shows that these two conformations converge into one via enhanced protein-ligand hydrophobic interactions. According to the strategy, we focused on scaffold transformation to identify imidazo[1,2-b]pyridazine derivatives as potent inhibitors of p38 MAP kinase. Among the herein described and evaluated compounds, N-oxide 16 exhibited potent inhibition of p38 MAP kinase and LPS-induced TNF-α production in human monocytic THP-1 cells, and significant in vivo efficacy in rat collagen-induced arthritis models. In this article, we report the discovery of potent, selective and orally bioavailable imidazo[1,2-b]pyridazine-based p38 MAP kinase inhibitors with pyridine N-oxide group. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Inhibition of mitogen-activated protein kinase Erk1/2 promotes protein degradation of ATP binding cassette transporters A1 and G1 in CHO and HuH7 cells.

    PubMed

    Mulay, Vishwaroop; Wood, Peta; Manetsch, Melanie; Darabi, Masoud; Cairns, Rose; Hoque, Monira; Chan, Karen Cecilia; Reverter, Meritxell; Alvarez-Guaita, Anna; Rye, Kerry-Anne; Rentero, Carles; Heeren, Joerg; Enrich, Carlos; Grewal, Thomas

    2013-01-01

    Signal transduction modulates expression and activity of cholesterol transporters. We recently demonstrated that the Ras/mitogen-activated protein kinase (MAPK) signaling cascade regulates protein stability of Scavenger Receptor BI (SR-BI) through Proliferator Activator Receptor (PPARα) -dependent degradation pathways. In addition, MAPK (Mek/Erk 1/2) inhibition has been shown to influence liver X receptor (LXR) -inducible ATP Binding Cassette (ABC) transporter ABCA1 expression in macrophages. Here we investigated if Ras/MAPK signaling could alter expression and activity of ABCA1 and ABCG1 in steroidogenic and hepatic cell lines. We demonstrate that in Chinese Hamster Ovary (CHO) cells and human hepatic HuH7 cells, extracellular signal-regulated kinase 1/2 (Erk1/2) inhibition reduces PPARα-inducible ABCA1 protein levels, while ectopic expression of constitutively active H-Ras, K-Ras and MAPK/Erk kinase 1 (Mek1) increases ABCA1 protein expression, respectively. Furthermore, Mek1/2 inhibitors reduce ABCG1 protein levels in ABCG1 overexpressing CHO cells (CHO-ABCG1) and human embryonic kidney 293 (HEK293) cells treated with LXR agonist. This correlates with Mek1/2 inhibition reducing ABCG1 cell surface expression and decreasing cholesterol efflux onto High Density Lipoproteins (HDL). Real Time reverse transcriptase polymerase chain reaction (RT-PCR) and protein turnover studies reveal that Mek1/2 inhibitors do not target transcriptional regulation of ABCA1 and ABCG1, but promote ABCA1 and ABCG1 protein degradation in HuH7 and CHO cells, respectively. In line with published data from mouse macrophages, blocking Mek1/2 activity upregulates ABCA1 and ABCG1 protein levels in human THP1 macrophages, indicating opposite roles for the Ras/MAPK pathway in the regulation of ABC transporter activity in macrophages compared to steroidogenic and hepatic cell types. In summary, this study suggests that Ras/MAPK signaling modulates PPARα- and LXR-dependent protein degradation

  18. SAV1 promotes Hippo kinase activation through antagonizing the PP2A phosphatase STRIPAK

    PubMed Central

    Osinski, Adam; Tomchick, Diana R; Brautigam, Chad A

    2017-01-01

    The Hippo pathway controls tissue growth and homeostasis through a central MST-LATS kinase cascade. The scaffold protein SAV1 promotes the activation of this kinase cascade, but the molecular mechanisms remain unknown. Here, we discover SAV1-mediated inhibition of the PP2A complex STRIPAKSLMAP as a key mechanism of MST1/2 activation. SLMAP binding to autophosphorylated MST2 linker recruits STRIPAK and promotes PP2A-mediated dephosphorylation of MST2 at the activation loop. Our structural and biochemical studies reveal that SAV1 and MST2 heterodimerize through their SARAH domains. Two SAV1–MST2 heterodimers further dimerize through SAV1 WW domains to form a heterotetramer, in which MST2 undergoes trans-autophosphorylation. SAV1 directly binds to STRIPAK and inhibits its phosphatase activity, protecting MST2 activation-loop phosphorylation. Genetic ablation of SLMAP in human cells leads to spontaneous activation of the Hippo pathway and alleviates the need for SAV1 in Hippo signaling. Thus, SAV1 promotes Hippo activation through counteracting the STRIPAKSLMAP PP2A phosphatase complex. PMID:29063833

  19. Sulforaphane rescues amyloid-β peptide-mediated decrease in MerTK expression through its anti-inflammatory effect in human THP-1 macrophages.

    PubMed

    Jhang, Kyoung A; Park, Jin-Sun; Kim, Hee-Sun; Chong, Young Hae

    2018-03-12

    Mer tyrosine kinase (MerTK) activity necessary for amyloid-stimulated phagocytosis strongly implicates that MerTK dysregulation might contribute to chronic inflammation implicated in Alzheimer's disease (AD) pathology. However, the precise mechanism involved in the regulation of MerTK expression by amyloid-β (Aβ) in proinflammatory environment has not yet been ascertained. The objective of this study was to determine the underlying mechanism involved in Aβ-mediated decrease in MerTK expression through Aβ-mediated regulation of MerTK expression and its modulation by sulforaphane in human THP-1 macrophages challenged with Aβ1-42. We used protein preparation, Ca 2+ influx fluorescence imaging, nuclear fractionation, Western blotting techniques, and small interfering RNA (siRNA) knockdown to perform our study. Aβ1-42 elicited a marked decrease in MerTK expression along with increased intracellular Ca 2+ level and induction of proinflammatory cytokines such as IL-1β and TNF-α. Ionomycin A and thapsigargin also increased intracellular Ca 2+ levels and production of IL-1β and TNF-α, mimicking the effect of Aβ1-42. In contrast, the Aβ1-42-evoked responses were attenuated by depletion of Ca 2+ with ethylene glycol tetraacetic acid. Furthermore, recombinant IL-1β or TNF-α elicited a decrease in MerTK expression. However, immunodepletion of IL-1β or TNF-α with neutralizing antibodies significantly inhibited Aβ1-42-mediated downregulation of MerTK expression. Notably, sulforaphane treatment potently inhibited Aβ1-42-induced intracellular Ca 2+ level and rescued the decrease in MerTK expression by blocking nuclear factor-κB (NF-κB) nuclear translocation, thereby decreasing IL-1β and TNF-α production upon Aβ1-42 stimulation. Such adverse effects of sulforaphane were replicated by BAY 11-7082, a NF-κB inhibitor. Moreover, sulforaphane's anti-inflammatory effects on Aβ1-42-induced production of IL-1β and TNF-α were significantly diminished by si

  20. BCR-ABL1 tyrosine kinase inhibitors for the treatment of chronic myeloid leukemia.

    PubMed

    Cuellar, Sandra; Vozniak, Michael; Rhodes, Jill; Forcello, Nicholas; Olszta, Daniel

    2017-01-01

    The management of chronic myeloid leukemia with BCR-ABL1 tyrosine kinase inhibitors has evolved chronic myeloid leukemia into a chronic, manageable disease. A patient-centered approach is important for the appropriate management of chronic myeloid leukemia and optimization of long-term treatment outcomes. The pharmacist plays a key role in treatment selection, monitoring drug-drug interactions, identification and management of adverse events, and educating patients on adherence. The combination of tyrosine kinase inhibitors with unique safety profiles and individual patients with unique medical histories can make managing treatment difficult. This review will provide up-to-date information regarding tyrosine kinase inhibitor-based treatment of patients with chronic myeloid leukemia. Management strategies for adverse events and considerations for drug-drug interactions will not only vary among patients but also across tyrosine kinase inhibitors. Drug-drug interactions can be mild to severe. In instances where co-administration of concomitant medications cannot be avoided, it is critical to understand how drug levels are impacted and how subsequent dose modifications ensure therapeutic drug levels are maintained. An important component of patient-centered management of chronic myeloid leukemia also includes educating patients on the significance of early and regular monitoring of therapeutic milestones, emphasizing the importance of adhering to treatment in achieving these targets, and appropriately modifying treatment if these clinical goals are not being met. Overall, staying apprised of current research, utilizing the close pharmacist-patient relationship, and having regular interactions with patients, will help achieve successful long-term treatment of chronic myeloid leukemia in the age of BCR-ABL1 tyrosine kinase inhibitors.