Science.gov

Sample records for kinesin spindle protein

  1. Fission yeast pkl1 is a kinesin-related protein involved in mitotic spindle function.

    PubMed Central

    Pidoux, A L; LeDizet, M; Cande, W Z

    1996-01-01

    We have used anti-peptide antibodies raised against highly conserved regions of the kinesin motor domain to identify kinesin-related proteins in the fission yeast Schizosaccharomyces pombe. Here we report the identification of a new kinesin-related protein, which we have named pkl1. Sequence homology and domain organization place pkl1 in the Kar3/ncd subfamily of kinesin-related proteins. Bacterially expressed pkl1 fusion proteins display microtubule-stimulated ATPase activity, nucleotide-sensitive binding, and bundling of microtubules. Immunofluorescence studies with affinity-purified antibodies indicate that the pkl1 protein localizes to the nucleus and the mitotic spindle. Pkl1 null mutants are viable but have increased sensitivity to microtubule-disrupting drugs. Disruption of pkl1+ suppresses mutations in another kinesin-related protein, cut7, which is known to act in the spindle. Overexpression of pkl1 to very high levels causes a similar phenotype to that seen in cut7 mutants: V-shaped and star-shaped microtubule structures are observed, which we interpret to be spindles with unseparated spindle poles. These observations suggest that pkl1 and cut7 provide opposing forces in the spindle. We propose that pkl1 functions as a microtubule-dependent motor that is involved in microtubule organization in the mitotic spindle. Images PMID:8898367

  2. Acrylamide effects on kinesin-related proteins of the mitotic/meiotic spindle

    SciTech Connect

    Sickles, Dale W. . E-mail: dsickles@mcg.edu; Sperry, Ann O. . E-mail: sperrya@ecu.edu; Testino, Angie; Friedman, Marvin

    2007-07-01

    The microtubule (MT) motor protein kinesin is a vital component of cells and organs expressing acrylamide (ACR) toxicity. As a mechanism of its potential carcinogenicity, we determined whether kinesins involved in cell division are inhibited by ACR similar to neuronal kinesin [Sickles, D.W., Brady, S.T., Testino, A.R., Friedman, M.A., and Wrenn, R.A. (1996). Direct effect of the neurotoxicant acrylamide on kinesin-based microtubule motility. Journal of Neuroscience Research 46, 7-17.] Kinesin-related genes were isolated from rat testes [Navolanic, P.M., and Sperry, A.O. (2000). Identification of isoforms of a mitotic motor in mammalian spermatogenesis. Biology of Reproduction 62, 1360-1369.], their kinesin-like proteins expressed in bacteria using recombinant DNA techniques and the effects of ACR, glycidamide (GLY) and propionamide (a non-neurotoxic metabolite) on the function of two of the identified kinesin motors were tested. KIFC5A MT bundling activity, required for mitotic spindle formation, was measured in an MT-binding assay. Both ACR and GLY caused a similar concentration-dependent reduction in the binding of MT; concentrations of 100 {mu}M ACR or GLY reduced its activity by 60%. KRP2 MT disassembling activity was assayed using the quantity of tubulin disassembled from taxol-stabilized MT. Both ACR and GLY inhibited KRP2-induced MT disassembly. GLY was substantially more potent; significant reductions of 60% were achieved by 500 {mu}M, a comparable inhibition by ACR required a 5 mM concentration. Propionamide had no significant effect on either kinesin, except KRP2 at 10 mM. This is the first report of ACR inhibition of a mitotic/meiotic motor protein. ACR (or GLY) inhibition of kinesin may be an alternative mechanism to DNA adduction in the production of cell division defects and potential carcinogenicity. We conclude that ACR may act on multiple kinesin family members and produce toxicities in organs highly dependent on microtubule-based functions.

  3. Phosphorylation of Targeting Protein for Xenopus Kinesin-like Protein 2 (TPX2) at Threonine 72 in Spindle Assembly*

    PubMed Central

    Shim, Su Yeon; de Castro, Ignacio Perez; Neumayer, Gernot; Wang, Jian; Park, Sang Ki; Sanada, Kamon; Nguyen, Minh Dang

    2015-01-01

    The human ortholog of the targeting protein for Xenopus kinesin-like protein 2 (TPX2) is a cytoskeletal protein that plays a major role in spindle assembly and is required for mitosis. During spindle morphogenesis, TPX2 cooperates with Aurora A kinase and Eg5 kinesin to regulate microtubule organization. TPX2 displays over 40 putative phosphorylation sites identified from various high-throughput proteomic screenings. In this study, we characterize the phosphorylation of threonine 72 (Thr72) in human TPX2, a residue highly conserved across species. We find that Cdk1/2 phosphorylate TPX2 in vitro and in vivo. Using homemade antibodies specific for TPX2 phosphorylated at Thr72, we show that this phosphorylation is cell cycle-dependent and peaks at M phase. Endogenous TPX2 phosphorylated at Thr72 does not associate with the mitotic spindle. Furthermore, ectopic GFP-TPX2 T72A preferentially concentrates on the spindle, whereas GFP-TPX2 WT distributes to both spindle and cytosol. The T72A mutant also increases the proportion of cells with multipolar spindles phenotype. This effect is associated with increased Aurora A activity and abnormally elongated spindles, indicative of higher Eg5 activity. In summary, we propose that phosphorylation of Thr72 regulates TPX2 localization and impacts spindle assembly via Aurora A and Eg5. PMID:25688093

  4. Motor activity and mitotic spindle localization of the Drosophila kinesin-like protein KLP61F.

    PubMed Central

    Barton, N R; Pereira, A J; Goldstein, L S

    1995-01-01

    The KLP61F gene product is essential for Drosophila development. Mutations in KLP61F display a mitotic arrest phenotype caused by a failure in the proper separation of duplicated centrosomes (Heck et al., 1993). Sequence analysis of KLP61F identified it as a member of the bimC family of kinesin-like microtubule motor proteins. Here we report that KLP61F is distinct from KRP130, a kinesin-like protein recently purified from Drosophila embryos and suggested to be the product of the KLP61F gene (Cole et al., 1994). We also characterized recombinant KLP61F and found that it possesses microtubule-stimulated ATPase and microtubule translocation activities in vitro. In addition, we have used an affinity-purified, KLP61F-specific antiserum to localize native KLP61F and an epitope-tagged KLP61F fusion protein during various stages of mitosis in Drosophila syncytial blastoderm embryos. From early prophase through anaphase, KLP61F is coincident with the distribution of tubulin. Together these results confirm the existence of multiple bimC-like kinesins in Drosophila and suggest that KLP61F function is intrinsic to the mitotic spindle. Images PMID:8589456

  5. Activity of the kinesin spindle protein inhibitor ispinesib (SB-715992) in models of breast cancer

    SciTech Connect

    Purcell, James W; Davis, Jefferson; Reddy, Mamatha; Martin, Shamra; Samayoa, Kimberly; Vo, Hung; Thomsen, Karen; Bean, Peter; Kuo, Wen Lin; Ziyad, Safiyyah; Billig, Jessica; Feiler, Heidi S; Gray, Joe W; Wood, Kenneth W; Cases, Sylvaine

    2009-06-10

    Ispinesib (SB-715992) is a potent inhibitor of kinesin spindle protein (KSP), a kinesin motor protein essential for the formation of a bipolar mitotic spindle and cell cycle progression through mitosis. Clinical studies of ispinesib have demonstrated a 9% response rate in patients with locally advanced or metastatic breast cancer, and a favorable safety profile without significant neurotoxicities, gastrointestinal toxicities or hair loss. To better understand the potential of ispinesib in the treatment of breast cancer we explored the activity of ispinesib alone and in combination several therapies approved for the treatment of breast cancer. We measured the ispinesib sensitivity and pharmacodynamic response of breast cancer cell lines representative of various subtypes in vitro and as xenografts in vivo, and tested the ability of ispinesib to enhance the anti-tumor activity of approved therapies. In vitro, ispinesib displayed broad anti-proliferative activity against a panel of 53 breast cell-lines. In vivo, ispinesib produced regressions in each of five breast cancer models, and tumor free survivors in three of these models. The effects of ispinesib treatment on pharmacodynamic markers of mitosis and apoptosis were examined in vitro and in vivo, revealing a greater increase in both mitotic and apoptotic markers in the MDA-MB-468 model than in the less sensitive BT-474 model. In vivo, ispinesib enhanced the anti-tumor activity of trastuzumab, lapatinib, doxorubicin, and capecitabine, and exhibited activity comparable to paclitaxel and ixabepilone. These findings support further clinical exploration of KSP inhibitors for the treatment of breast cancer.

  6. The Maize Divergent spindle-1 (dv1) Gene Encodes a Kinesin-14A Motor Protein Required for Meiotic Spindle Pole Organization.

    PubMed

    Higgins, David M; Nannas, Natalie J; Dawe, R Kelly

    2016-01-01

    The classic maize mutant divergent spindle-1 (dv1) causes failures in meiotic spindle assembly and a decrease in pollen viability. By analyzing two independent dv1 alleles we demonstrate that this phenotype is caused by mutations in a member of the kinesin-14A subfamily, a class of C-terminal, minus-end directed microtubule motors. Further analysis demonstrates that defects in early spindle assembly are rare, but that later stages of spindle organization promoting the formation of finely focused spindle poles are strongly dependent on Dv1. Anaphase is error-prone in dv1 lines but not severely so, and the majority of cells show normal chromosome segregation. Live-cell imaging of wild type and mutant plants carrying CFP-tagged β-tubulin confirm that meiosis in dv1 lines fails primarily at the pole-sharpening phase of spindle assembly. These data indicate that plant kinesin-14A proteins help to enforce bipolarity by focusing spindle poles and that this stage of spindle assembly is not required for transition through the spindle checkpoint but improves the accuracy of chromosome segregation. PMID:27610117

  7. The Maize Divergent spindle-1 (dv1) Gene Encodes a Kinesin-14A Motor Protein Required for Meiotic Spindle Pole Organization

    PubMed Central

    Higgins, David M.; Nannas, Natalie J.; Dawe, R. Kelly

    2016-01-01

    The classic maize mutant divergent spindle-1 (dv1) causes failures in meiotic spindle assembly and a decrease in pollen viability. By analyzing two independent dv1 alleles we demonstrate that this phenotype is caused by mutations in a member of the kinesin-14A subfamily, a class of C-terminal, minus-end directed microtubule motors. Further analysis demonstrates that defects in early spindle assembly are rare, but that later stages of spindle organization promoting the formation of finely focused spindle poles are strongly dependent on Dv1. Anaphase is error-prone in dv1 lines but not severely so, and the majority of cells show normal chromosome segregation. Live-cell imaging of wild type and mutant plants carrying CFP-tagged β-tubulin confirm that meiosis in dv1 lines fails primarily at the pole-sharpening phase of spindle assembly. These data indicate that plant kinesin-14A proteins help to enforce bipolarity by focusing spindle poles and that this stage of spindle assembly is not required for transition through the spindle checkpoint but improves the accuracy of chromosome segregation. PMID:27610117

  8. Fluorinated quinazolinones as potential radiotracers for imaging kinesin spindle protein expression.

    PubMed

    Holland, Jason P; Jones, Michael W; Cohrs, Susan; Schibli, Roger; Fischer, Eliane

    2013-01-15

    Anti-mitotic anti-cancer drugs offer a potential platform for developing new radiotracers for imaging proliferation markers associated with the mitosis-phase of the cell-cycle. One interesting target is kinesin spindle protein (KSP)-an ATP-dependent motor protein that plays a vital role in bipolar spindle formation. In this work we synthesised a range of new fluorinated-quinazolinone compounds based on the structure of the clinical candidate KSP inhibitor, ispinesib, and investigated their properties in vitro as potential anti-mitotic agents targeting KSP expression. Anti-proliferation (MTT and BrdU) assays combined with additional studies including fluorescence-assisted cell sorting (FACS) analysis of cell-cycle arrest confirmed the mechanism and potency of these biphenyl compounds in a range of human cancer cell lines. Additional studies using confocal fluorescence microscopy showed that these compounds induce M-phase arrest via monoaster spindle formation. Structural studies revealed that compound 20-(R) is the most potent fluorinated-quinazolinone inhibitor of KSP and represents a suitable lead candidate for further studies on designing (18)F-radiolabelled agents for positron-emission tomography (PET). PMID:23245569

  9. Novel benzimidazole inhibitors bind to a unique site in the kinesin spindle protein motor domain.

    PubMed

    Sheth, Payal R; Shipps, Gerald W; Seghezzi, Wolfgang; Smith, Catherine K; Chuang, Cheng-Chi; Sanden, David; Basso, Andrea D; Vilenchik, Lev; Gray, Kimberly; Annis, D Allen; Nickbarg, Elliott; Ma, Yao; Lahue, Brian; Herbst, Ronald; Le, Hung V

    2010-09-28

    Affinity selection-mass spectrometry (AS-MS) screening of kinesin spindle protein (KSP) followed by enzyme inhibition studies and temperature-dependent circular dichroism (TdCD) characterization was utilized to identify a series of benzimidazole compounds. This series also binds in the presence of Ispinesib, a known anticancer KSP inhibitor in phase I/II clinical trials for breast cancer. TdCD and AS-MS analyses support simultaneous binding implying existence of a novel non-Ispinesib binding pocket within KSP. Additional TdCD analyses demonstrate direct binding of these compounds to Ispinesib-resistant mutants (D130V, A133D, and A133D + D130V double mutant), further strengthening the hypothesis that the compounds bind to a distinct binding pocket. Also importantly, binding to this pocket causes uncompetitive inhibition of KSP ATPase activity. The uncompetitive inhibition with respect to ATP is also confirmed by the requirement of nucleotide for binding of the compounds. After preliminary affinity optimization, the benzimidazole series exhibited distinctive antimitotic activity as evidenced by blockade of bipolar spindle formation and appearance of monoasters. Cancer cell growth inhibition was also demonstrated either as a single agent or in combination with Ispinesib. The combination was additive as predicted by the binding studies using TdCD and AS-MS analyses. The available data support the existence of a KSP inhibitory site hitherto unknown in the literature. The data also suggest that targeting this novel site could be a productive strategy for eluding Ispinesib-resistant tumors. Finally, AS-MS and TdCD techniques are general in scope and may enable screening other targets in the presence of known drugs, clinical candidates, or tool compounds that bind to the protein of interest in an effort to identify potency-enhancing small molecules that increase efficacy and impede resistance in combination therapy. PMID:20718440

  10. XCTK2: A Kinesin-related Protein That Promotes Mitotic Spindle Assembly in Xenopus laevis Egg Extracts

    PubMed Central

    Walczak, Claire E.; Verma, Suzie; Mitchison, Timothy J.

    1997-01-01

    We used a peptide antibody to a conserved sequence in the motor domain of kinesins to screen a Xenopus ovary cDNA expression library. Among the clones isolated were two that encoded a protein we named XCTK2 for Xenopus COOH-terminal kinesin 2. XCTK2 contains an NH2-terminal globular domain, a central α-helical stalk, and a COOH-terminal motor domain. XCTK2 is similar to CTKs in other organisms and is most homologous to CHO2. Antibodies raised against XCTK2 recognize a 75-kD protein in Xenopus egg extracts that cosediments with microtubules. In Xenopus tissue culture cells, the anti-XCTK2 antibodies stain mitotic spindles as well as a subset of interphase nuclei. To probe the function of XCTK2, we have used an in vitro assay for spindle assembly in Xenopus egg extracts. Addition of antibodies to cytostatic factor- arrested extracts causes a 70% reduction in the percentage of bipolar spindles formed. XCTK2 is not required for maintenance of bipolar spindles, as antibody addition to preformed spindles has no effect. To further evaluate the function of XCTK2, we expressed XCTK2 in insect Sf-9 cells using the baculovirus expression system. When purified (recombinant XCTK2 is added to Xenopus egg extracts at a fivefold excess over endogenous levels) there is a stimulation in both the rate and extent of bipolar spindle formation. XCTK2 exists in a large complex in extracts and can be coimmunoprecipitated with two other proteins from extracts. XCTK2 likely plays an important role in the establishment and structural integrity of mitotic spindles. PMID:9049251

  11. Candida albicans Kinesin Kar3 Depends on a Cik1-Like Regulatory Partner Protein for Its Roles in Mating, Cell Morphogenesis, and Bipolar Spindle Formation

    PubMed Central

    Frazer, Corey; Joshi, Monika; Delorme, Caroline; Davis, Darlene; Bennett, Richard J.

    2015-01-01

    Candida albicans is a major fungal pathogen whose virulence is associated with its ability to transition from a budding yeast form to invasive hyphal filaments. The kinesin-14 family member CaKar3 is required for transition between these morphological states, as well as for mitotic progression and karyogamy. While kinesin-14 proteins are ubiquitous, CaKar3 homologs in hemiascomycete fungi are unique because they form heterodimers with noncatalytic kinesin-like proteins. Thus, CaKar3-based motors may represent a novel antifungal drug target. We have identified and examined the roles of a kinesin-like regulator of CaKar3. We show that orf19.306 (dubbed CaCIK1) encodes a protein that forms a heterodimer with CaKar3, localizes CaKar3 to spindle pole bodies, and can bind microtubules and influence CaKar3 mechanochemistry despite lacking an ATPase activity of its own. Similar to CaKar3 depletion, loss of CaCik1 results in cell cycle arrest, filamentation defects, and an inability to undergo karyogamy. Furthermore, an examination of the spindle structure in cells lacking either of these proteins shows that a large proportion have a monopolar spindle or two dissociated half-spindles, a phenotype unique to the C. albicans kinesin-14 homolog. These findings provide new insights into mitotic spindle structure and kinesin motor function in C. albicans and identify a potentially vulnerable target for antifungal drug development. PMID:26024903

  12. Kid, a novel kinesin-like DNA binding protein, is localized to chromosomes and the mitotic spindle.

    PubMed

    Tokai, N; Fujimoto-Nishiyama, A; Toyoshima, Y; Yonemura, S; Tsukita, S; Inoue, J; Yamamota, T

    1996-02-01

    Microtubule-associated motor proteins are thought to be involved in spindle formation and chromosome movements in mitosis/meiosis. We have molecularly cloned cDNAs for a gene that codes for a novel member of the kinesin family of proteins. Nucleotide sequencing reveals that the predicted gene product is a 73 kDa protein and is related to some extent to the Drosophila node gene product, which is involved in chromosomal segregation during meiosis. A sequence similar to the microtubule binding motor domain of kinesin is present in the N-terminal half of the protein, and its ability to bind to microtubules is demonstrated. Furthermore we show that its C-terminal half contains a putative nuclear localization signal similar to that of Jun and is able to bind to DNA. Accordingly, the protein was termed Kid (kinesin-like DNA binding protein). Indirect immunofluorescence studies show that Kid colocalizes with mitotic chromosomes and that it is enriched in the kinetochore at anaphase. Thus, we propose that Kid might play a role(s) in regulating the chromosomal movement along microtubules during mitosis. PMID:8599929

  13. Chromokinesin: Kinesin superfamily regulating cell division through chromosome and spindle.

    PubMed

    Zhong, Ai; Tan, Fu-Qing; Yang, Wan-Xi

    2016-09-01

    Material transportation is essential for appropriate cellular morphology and functions, especially during cell division. As a motor protein moving along microtubules, kinesin has several intracellular functions. Many kinesins play important roles in chromosome condensation and separation and spindle organization during the cell cycle. Some of them even can directly bind to chromosomes, as a result, these proteins are called chromokinesins. Kinesin-4 and kinesin-10 family are two major families of chromokinesin and many members can regulate some processes, both in mitosis and meiosis. Their functions have been widely studied. Here, we summarize current knowledge about known chromokinesins and introduce their intracellular features in accordance with different families. Furthermore, we have also introduced some new-found but unconfirmed kinesins which may have a relationship with chromosomes or the cell cycle. PMID:27196062

  14. Initial Testing (Stage 1) of the Kinesin Spindle Protein Inhibitor Ispinesib by the Pediatric Preclinical Testing Program

    PubMed Central

    Carol, Hernan; Lock, Richard; Houghton, Peter J.; Morton, Christopher L.; Kolb, E. Anders; Gorlick, Richard; Reynolds, C. Patrick; Maris, John M.; Keir, Stephen T.; Billups, Catherine A.; Smith, Malcolm A.

    2009-01-01

    Background Ispinesib is a highly specific inhibitor of kinesin spindle protein (KSP, HsEg5), a mitotic kinesin required for separation of the spindle poles. Here we report the activity of ispinesib against the in vitro and in vivo panels of the Pediatric Preclinical Testing Program (PPTP). Procedures Ispinesib was tested against the PPTP in vitro panel cell lines at concentrations from 0.1 nM to 1 μM and against the in vivo tumor panel xenografts by intraperitoneal administration (5 or 10 mg/kg) every 4 days for 3 doses repeated at day 21. Results Ispinesib was highly potent against the PPTP’s in vitro cell lines with a median IC50 of 4.1 nM. Ispinesib (10 mg/kg) induced unexplained toxicity in mice bearing osteosarcoma xenografts and exceeded the MTD in 12 of 40 non-osteosarcoma xenografts. Ispinesib induced significant tumor growth delay in 88% (23/26) of evaluable xenografts. Using a time to event measure of efficacy, ispinesib had intermediate and high levels of activity against 4 (21%) and 5 (26%) of the 19 evaluable solid tumor xenografts, respectively. Ispinesib induced maintained complete responses (CR) in a rhabdoid tumor, a Wilms tumor and a Ewing sarcoma xenograft. Ispinesib (5 mg/kg) produced 2 complete and 2 partial responses among 6 evaluable xenografts in the ALL panel. The in vivo pattern of activity was distinctive from that previously reported for vincristine. Conclusions Ispinesib demonstrated broad in vivo antitumor activity, including maintained complete responses for several xenografts, although with high toxicity rates at the doses studied. PMID:19554570

  15. An inhibitor of the kinesin spindle protein activates the intrinsic apoptotic pathway independently of p53 and de novo protein synthesis.

    PubMed

    Tao, Weikang; South, Victoria J; Diehl, Ronald E; Davide, Joseph P; Sepp-Lorenzino, Laura; Fraley, Mark E; Arrington, Kenneth L; Lobell, Robert B

    2007-01-01

    The kinesin spindle protein (KSP), a microtubule motor protein, is essential for the formation of bipolar spindles during mitosis. Inhibition of KSP activates the spindle checkpoint and causes apoptosis. It was shown that prolonged inhibition of KSP activates Bax and caspase-3, which requires a competent spindle checkpoint and couples with mitotic slippage. Here we investigated how Bax is activated by KSP inhibition and the roles of Bax and p53 in KSP inhibitor-induced apoptosis. We demonstrate that small interfering RNA-mediated knockdown of Bax greatly attenuates KSP inhibitor-induced apoptosis and that Bax activation is upstream of caspase activation. This indicates that Bax mediates the lethality of KSP inhibitors and that KSP inhibition provokes apoptosis via the intrinsic apoptotic pathway where Bax activation is prior to caspase activation. Although the BH3-only protein Puma is induced after mitotic slippage, suppression of de novo protein synthesis that abrogates Puma induction does not block activation of Bax or caspase-3, indicating that Bax activation is triggered by a posttranslational event. Comparison of KSP inhibitor-induced apoptosis between matched cell lines containing either functional or deficient p53 reveals that inhibition of KSP induces apoptosis independently of p53 and that p53 is dispensable for spindle checkpoint function. Thus, KSP inhibitors should be active in p53-deficient tumors. PMID:17101792

  16. Delivery of kinesin spindle protein targeting siRNA in solid lipid nanoparticles to cellular models of tumor vasculature

    SciTech Connect

    Ying, Bo; Campbell, Robert B.

    2014-04-04

    Highlights: • siRNA-lipid nanoparticles are solid particles not lipid bilayers with aqueous core. • High, but not low, PEG content can prevent nanoparticle encapsulation of siRNA. • PEG reduces cellular toxicity of cationic nanoparticles in vitro. • PEG reduces zeta potential while improving gene silencing of siRNA nanoparticles. • Kinesin spindle protein can be an effective target for tumor vascular targeting. - Abstract: The ideal siRNA delivery system should selectively deliver the construct to the target cell, avoid enzymatic degradation, and evade uptake by phagocytes. In the present study, we evaluated the importance of polyethylene glycol (PEG) on lipid-based carrier systems for encapsulating, and delivering, siRNA to tumor vessels using cellular models. Lipid nanoparticles containing different percentage of PEG were evaluated based on their physical chemical properties, density compared to water, siRNA encapsulation, toxicity, targeting efficiency and gene silencing in vitro. siRNA can be efficiently loaded into lipid nanoparticles (LNPs) when DOTAP is included in the formulation mixture. However, the total amount encapsulated decreased with increase in PEG content. In the presence of siRNA, the final formulations contained a mixed population of particles based on density. The major population which contains the majority of siRNA exhibited a density of 4% glucose, and the minor fraction associated with a decreased amount of siRNA had a density less than PBS. The inclusion of 10 mol% PEG resulted in a greater amount of siRNA associated with the minor fraction. Finally, when kinesin spindle protein (KSP) siRNA was encapsulated in lipid nanoparticles containing a modest amount of PEG, the proliferation of endothelial cells was inhibited due to the efficient knock down of KSP mRNA. The presence of siRNA resulted in the formation of solid lipid nanoparticles when prepared using the thin film and hydration method. LNPs with a relatively modest amount of

  17. Chromosome and mitotic spindle dynamics in fission yeast kinesin-8 mutants

    NASA Astrophysics Data System (ADS)

    Crapo, Ammon M.; Gergley, Zachary R.; McIntosh, J. Richard; Betterton, M. D.

    2014-03-01

    Fission yeast proteins Klp5p and Klp6p are plus-end directed motors of the kinesin-8 family which promote microtubule (MT) depolymerization and also affect chromosome segregation, but the mechanism of these activities is not well understood. Using live-cell time-lapse fluorescence microscopy of fission yeast wild-type (WT) and klp5/6 mutant strains, we quantify and compare the dynamics of kinetochore motion and mitotic spindle length in 3D. In WT cells, the spindle, once formed, remains a consistent size and chromosomes are correctly organized and segregated. In kinesin-8 mutants, spindles undergo large length fluctuations of several microns. Kinetochore motions are also highly fluctuating, with kinetochores frequently moving away from the spindle rather than toward it. We observe transient pushing of chromosomes away from the spindle by as much as 10 microns in distance.

  18. Mechanism and regulation of kinesin-5, an essential motor for the mitotic spindle.

    PubMed

    Waitzman, Joshua S; Rice, Sarah E

    2014-01-01

    Mitotic cell division is the most fundamental task of all living cells. Cells have intricate and tightly regulated machinery to ensure that mitosis occurs with appropriate frequency and high fidelity. A core element of this machinery is the kinesin-5 motor protein, which plays essential roles in spindle formation and maintenance. In this review, we discuss how the structural and mechanical properties of kinesin-5 motors uniquely suit them to their mitotic role. We describe some of the small molecule inhibitors and regulatory proteins that act on kinesin-5, and discuss how these regulators may influence the process of cell division. Finally, we touch on some more recently described functions of kinesin-5 motors in non-dividing cells. Throughout, we highlight a number of open questions that impede our understanding of both this motor's function and the potential utility of kinesin-5 inhibitors. PMID:24125467

  19. Mechanism and Regulation of Kinesin-5, an essential motor for the mitotic spindle

    PubMed Central

    Waitzman, Joshua S.; Rice, Sarah E.

    2014-01-01

    Mitotic cell division is the most fundamental task of all living cells. Cells have intricate and tightly regulated machinery to ensure that mitosis occurs with appropriate frequency and high fidelity. A core element of this machinery is the kinesin-5 motor protein, which plays essential roles in spindle formation and maintenance. In this review, we discuss how the structural and mechanical properties of kinesin-5 motors uniquely suit them to their mitotic role. We describe some of the small molecule inhibitors and regulatory proteins that act on kinesin-5, and discuss how these regulators may influence the process of cell division. Finally, we touch on some more recently described functions of kinesin-5 motors in non-dividing cells. Throughout, we highlight a number of open questions that impede our understanding of both this motor's function and the potential utility of kinesin-5 inhibitors. PMID:24125467

  20. The STARD9/Kif16a Kinesin Associates With Mitotic Microtubules and Regulates Spindle Pole Assembly

    PubMed Central

    Torres, Jorge Z.; Summers, Matthew K.; Peterson, David; Brauer, Matthew J.; Lee, James; Senese, Silvia; Gholkar, Ankur A.; Lo, Yu-Chen; Lei, Xingye; Jung, Kenneth; Anderson, David C.; Davis, David P.; Belmont, Lisa; Jackson, Peter K.

    2011-01-01

    SUMMARY During cell division cells form the microtubule-based mitotic spindle, a highly specialized and dynamic structure that mediates proper chromosome transmission to daughter cells. Cancer cells can show perturbed mitotic spindles and an approach in cancer treatment has been to trigger cell killing by targeting microtubule dynamics or spindle assembly. To identify and characterize proteins necessary for spindle assembly, and potential antimitotic targets, we performed a proteomic and genetic analysis of 592 mitotic microtubule co-purifying proteins (MMCPs). Screening for regulators that affect both mitosis and apoptosis, we report the identification and characterization of STARD9, a kinesin-3 family member, which localizes to centrosomes and stabilizes the pericentriolar material (PCM). STARD9-depleted cells have fragmented PCM, form multipolar spindles, activate the spindle assembly checkpoint (SAC), arrest in mitosis, and undergo apoptosis. Interestingly, STARD9-depletion synergizes with the chemotherapeutic agent taxol to increase mitotic death, demonstrating that STARD9 is a mitotic kinesin and a potential anti-mitotic target. PMID:22153075

  1. Kinesin-1 Prevents Capture of the Oocyte Meiotic Spindle by the Sperm Aster

    PubMed Central

    McNally, Karen L.P.; Fabritius, Amy S.; Ellefson, Marina L.; Flynn, Jonathan R.; Milan, Jennifer A.; McNally, Francis J.

    2012-01-01

    Centrioles are lost during oogenesis and inherited from the sperm at fertilization. In the zygote, the centrioles recruit pericentriolar proteins from the egg to form a mature centrosome that nucleates a sperm aster. The sperm aster then captures the female pronucleus to join the maternal and paternal genomes. Because fertilization occurs before completion of female meiosis, some mechanism must prevent capture of the meiotic spindle by the sperm aster. Here we show that in wild-type Caenorhabditis elegans zygotes, maternal pericentriolar proteins are not recruited to the sperm centrioles until after completion of meiosis. Depletion of kinesin-1 heavy chain or its binding partner resulted in premature centrosome maturation during meiosis and growth of a sperm aster that could capture the oocyte meiotic spindle. Kinesin prevents recruitment of pericentriolar proteins by coating the sperm DNA and centrioles and thus prevents triploidy by a non-motor mechanism. PMID:22465668

  2. Optimized S-Trityl-l-cysteine-Based Inhibitors of Kinesin Spindle Protein with Potent in Vivo Antitumor Activity in Lung Cancer Xenograft Models

    PubMed Central

    2013-01-01

    The mitotic kinesin Eg5 is critical for the assembly of the mitotic spindle and is a promising chemotherapy target. Previously, we identified S-trityl-l-cysteine as a selective inhibitor of Eg5 and developed triphenylbutanamine analogues with improved potency, favorable drug-like properties, but moderate in vivo activity. We report here their further optimization to produce extremely potent inhibitors of Eg5 (Kiapp < 10 nM) with broad-spectrum activity against cancer cell lines comparable to the Phase II drug candidates ispinesib and SB-743921. They have good oral bioavailability and pharmacokinetics and induced complete tumor regression in nude mice explanted with lung cancer patient xenografts. Furthermore, they display fewer liabilities with CYP-metabolizing enzymes and hERG compared with ispinesib and SB-743921, which is important given the likely application of Eg5 inhibitors in combination therapies. We present the case for this preclinical series to be investigated in single and combination chemotherapies, especially targeting hematological malignancies. PMID:23394180

  3. Physical limits on kinesin-5–mediated chromosome congression in the smallest mitotic spindles

    PubMed Central

    McCoy, Kelsey M.; Tubman, Emily S.; Claas, Allison; Tank, Damien; Clancy, Shelly Applen; O’Toole, Eileen T.; Berman, Judith; Odde, David J.

    2015-01-01

    A characteristic feature of mitotic spindles is the congression of chromosomes near the spindle equator, a process mediated by dynamic kinetochore microtubules. A major challenge is to understand how precise, submicrometer-scale control of kinetochore micro­tubule dynamics is achieved in the smallest mitotic spindles, where the noisiness of microtubule assembly/disassembly will potentially act to overwhelm the spatial information that controls microtubule plus end–tip positioning to mediate congression. To better understand this fundamental limit, we conducted an integrated live fluorescence, electron microscopy, and modeling analysis of the polymorphic fungal pathogen Candida albicans, which contains one of the smallest known mitotic spindles (<1 μm). Previously, ScCin8p (kinesin-5 in Saccharomyces cerevisiae) was shown to mediate chromosome congression by promoting catastrophe of long kinetochore microtubules (kMTs). Using C. albicans yeast and hyphal kinesin-5 (Kip1p) heterozygotes (KIP1/kip1∆), we found that mutant spindles have longer kMTs than wild-type spindles, consistent with a less-organized spindle. By contrast, kinesin-8 heterozygous mutant (KIP3/kip3∆) spindles exhibited the same spindle organization as wild type. Of interest, spindle organization in the yeast and hyphal states was indistinguishable, even though yeast and hyphal cell lengths differ by two- to fivefold, demonstrating that spindle length regulation and chromosome congression are intrinsic to the spindle and largely independent of cell size. Together these results are consistent with a kinesin-5–mediated, length-dependent depolymerase activity that organizes chromosomes at the spindle equator in C. albicans to overcome fundamental noisiness in microtubule self-assembly. More generally, we define a dimensionless number that sets a fundamental physical limit for maintaining congression in small spindles in the face of assembly noise and find that C. albicans operates very close to

  4. Physical limits on kinesin-5-mediated chromosome congression in the smallest mitotic spindles.

    PubMed

    McCoy, Kelsey M; Tubman, Emily S; Claas, Allison; Tank, Damien; Clancy, Shelly Applen; O'Toole, Eileen T; Berman, Judith; Odde, David J

    2015-11-01

    A characteristic feature of mitotic spindles is the congression of chromosomes near the spindle equator, a process mediated by dynamic kinetochore microtubules. A major challenge is to understand how precise, submicrometer-scale control of kinetochore micro-tubule dynamics is achieved in the smallest mitotic spindles, where the noisiness of microtubule assembly/disassembly will potentially act to overwhelm the spatial information that controls microtubule plus end-tip positioning to mediate congression. To better understand this fundamental limit, we conducted an integrated live fluorescence, electron microscopy, and modeling analysis of the polymorphic fungal pathogen Candida albicans, which contains one of the smallest known mitotic spindles (<1 μm). Previously, ScCin8p (kinesin-5 in Saccharomyces cerevisiae) was shown to mediate chromosome congression by promoting catastrophe of long kinetochore microtubules (kMTs). Using C. albicans yeast and hyphal kinesin-5 (Kip1p) heterozygotes (KIP1/kip1∆), we found that mutant spindles have longer kMTs than wild-type spindles, consistent with a less-organized spindle. By contrast, kinesin-8 heterozygous mutant (KIP3/kip3∆) spindles exhibited the same spindle organization as wild type. Of interest, spindle organization in the yeast and hyphal states was indistinguishable, even though yeast and hyphal cell lengths differ by two- to fivefold, demonstrating that spindle length regulation and chromosome congression are intrinsic to the spindle and largely independent of cell size. Together these results are consistent with a kinesin-5-mediated, length-dependent depolymerase activity that organizes chromosomes at the spindle equator in C. albicans to overcome fundamental noisiness in microtubule self-assembly. More generally, we define a dimensionless number that sets a fundamental physical limit for maintaining congression in small spindles in the face of assembly noise and find that C. albicans operates very close to this

  5. Kinesin superfamily motor proteins and intracellular transport.

    PubMed

    Hirokawa, Nobutaka; Noda, Yasuko; Tanaka, Yosuke; Niwa, Shinsuke

    2009-10-01

    Intracellular transport is fundamental for cellular function, survival and morphogenesis. Kinesin superfamily proteins (also known as KIFs) are important molecular motors that directionally transport various cargos, including membranous organelles, protein complexes and mRNAs. The mechanisms by which different kinesins recognize and bind to specific cargos, as well as how kinesins unload cargo and determine the direction of transport, have now been identified. Furthermore, recent molecular genetic experiments have uncovered important and unexpected roles for kinesins in the regulation of such physiological processes as higher brain function, tumour suppression and developmental patterning. These findings open exciting new areas of kinesin research. PMID:19773780

  6. Phase I dose-escalation and pharmacokinetic study of ispinesib, a kinesin spindle protein inhibitor, administered on days 1 and 15 of a 28-day schedule in patients with no prior treatment for advanced breast cancer.

    PubMed

    Gomez, Henry L; Philco, Manuel; Pimentel, Patricia; Kiyan, Miriam; Monsalvo, Maria Laura; Conlan, Maureen G; Saikali, Khalil G; Chen, Michael M; Seroogy, Joseph J; Wolff, Andrew A; Escandon, Rafael D

    2012-03-01

    The objective of the study was to evaluate the safety, pharmacokinetics, and antitumor activity of ispinesib, a kinesin spindle protein inhibitor. Patients with locally advanced or metastatic breast cancer who had received only prior neoadjuvant or adjuvant chemotherapy were treated with escalating doses of ispinesib administered as a 1-h infusion on days 1 and 15 every 28 days until toxicity or progression of disease. Doses were escalated until dose-limiting toxicity was observed in two out of six patients during cycle 1. A total of 16 patients were treated at three dose levels: 10 mg/m (n=3), 12 mg/m (n=6), and 14 mg/m (n=7). Forty-four percent of the patients had locally advanced disease and 56% had metastatic disease; 50% were estrogen receptor positive, 44% were progesterone receptor positive, 25% human epidermal growth factor 2 were positive, and 31% triple (estrogen receptor, progesterone receptor, human epidermal growth factor 2) negative. Sixty-nine percent of patients were chemo-naive. The maximum tolerated dose was 12 mg/m and dose-limiting toxicity was grade 3 increased aspartate aminotransferase and alanine aminotransferase. The most common toxicities included neutropenia (88%; 38% grade 3 and 44% grade 4), increased alanine aminotransferase (56%), anemia (38%), increased aspartate aminotransferase (31%), and diarrhea (31%). No neuropathy, mucositis, or alopecia was reported. Among the 15 patients evaluable for antitumor activity, there were three partial responses, one confirmed by the response evaluation criteria in solid tumors (7% response rate). Nine patients (60%) had stable disease lasting at least 42 days, with four (27%) lasting for at least 90 days. Disease stabilization (partial responses+stable disease) was observed in 11 (73.3%) patients. In conclusion, ispinesib was well tolerated when administered on days 1 and 15 every 28 days. Limited activity was observed with this schedule in patients with previously untreated advanced breast cancer

  7. Kinesin-Binding Protein Controls Microtubule Dynamics and Cargo Trafficking by Regulating Kinesin Motor Activity.

    PubMed

    Kevenaar, Josta T; Bianchi, Sarah; van Spronsen, Myrrhe; Olieric, Natacha; Lipka, Joanna; Frias, Cátia P; Mikhaylova, Marina; Harterink, Martin; Keijzer, Nanda; Wulf, Phebe S; Hilbert, Manuel; Kapitein, Lukas C; de Graaff, Esther; Ahkmanova, Anna; Steinmetz, Michel O; Hoogenraad, Casper C

    2016-04-01

    Kinesin motor proteins play a fundamental role for normal neuronal development by controlling intracellular cargo transport and microtubule (MT) cytoskeleton organization. Regulating kinesin activity is important to ensure their proper functioning, and their misregulation often leads to severe human neurological disorders. Homozygous nonsense mutations in kinesin-binding protein (KBP)/KIAA1279 cause the neurological disorder Goldberg-Shprintzen syndrome (GOSHS), which is characterized by intellectual disability, microcephaly, and axonal neuropathy. Here, we show that KBP regulates kinesin activity by interacting with the motor domains of a specific subset of kinesins to prevent their association with the MT cytoskeleton. The KBP-interacting kinesins include cargo-transporting motors such as kinesin-3/KIF1A and MT-depolymerizing motor kinesin-8/KIF18A. We found that KBP blocks KIF1A/UNC-104-mediated synaptic vesicle transport in cultured hippocampal neurons and in C. elegans PVD sensory neurons. In contrast, depletion of KBP results in the accumulation of KIF1A motors and synaptic vesicles in the axonal growth cone. We also show that KBP regulates neuronal MT dynamics by controlling KIF18A activity. Our data suggest that KBP functions as a kinesin inhibitor that modulates MT-based cargo motility and depolymerizing activity of a subset of kinesin motors. We propose that misregulation of KBP-controlled kinesin motors may represent the underlying molecular mechanism that contributes to the neuropathological defects observed in GOSHS patients. PMID:26948876

  8. Phospho-regulated interaction between kinesin-6 klp9p and microtubule bundler ase1p promotes spindle elongation

    PubMed Central

    Fu, Chuanhai; Ward, Jonathan J.; Loiodice, Isabelle; Velve-Casquillas, Guilhem; Nedelec, Francois J.; Tran, Phong T.

    2010-01-01

    The spindle midzone – composed of antiparallel microtubules, microtubule-associated proteins (MAPs), and motors – is the structure responsible for microtubule organization and sliding during anaphase B. In general, MAPs and motors stabilize the midzone and motors produce sliding. We show that fission yeast kinesin-6 motor klp9p binds to the microtubule antiparallel bundler ase1p at the midzone at anaphase B onset. This interaction depends upon the phosphorylation states of klp9p and ase1p. The cyclin-dependent kinase cdc2p phosphorylates and its antagonist phosphatase clp1p dephosphorylates klp9p and ase1p to control the position and timing of klp9p-ase1p interaction. Failure of klp9p-ase1p binding leads to decreased spindle elongation velocity. The ase1p-mediated recruitment of klp9p to the midzone accelerates pole separation, as suggested by computer simulation. Our findings indicate that a phosphorylation switch controls the spatial-temporal interactions of motors and MAPs for proper anaphase B, and suggest a mechanism whereby a specific motor-MAP conformation enables efficient microtubule sliding. PMID:19686686

  9. Neuronal polarity and the kinesin superfamily proteins.

    PubMed

    Nakata, Takao; Hirokawa, Nobutaka

    2007-02-01

    Neurons are highly polarized cells, typically with a long axon and relatively short dendrites. A wealth of recent data has identified a number of signaling molecules that are involved in neuronal polarization. Kinesin superfamily proteins (KIFs) contribute to the establishment and maintenance of neuronal polarity by selectively transporting various proteins and vesicles to either the axon or dendrites. Now evidence is emerging that KIFs also play an important role in axonal formation, the initial event of neuronal polarization. In particular, KIF13B transports phosphatidylinositol (3,4,5)-trisphosphate, which, based on current hypotheses, is one of the most upstream molecules in the intracellular signaling cascades involved in axonal formation. PMID:17284724

  10. Engineered kinesin motor proteins amenable to small-molecule inhibition

    PubMed Central

    Engelke, Martin F.; Winding, Michael; Yue, Yang; Shastry, Shankar; Teloni, Federico; Reddy, Sanjay; Blasius, T. Lynne; Soppina, Pushpanjali; Hancock, William O.; Gelfand, Vladimir I.; Verhey, Kristen J.

    2016-01-01

    The human genome encodes 45 kinesin motor proteins that drive cell division, cell motility, intracellular trafficking and ciliary function. Determining the cellular function of each kinesin would benefit from specific small-molecule inhibitors. However, screens have yielded only a few specific inhibitors. Here we present a novel chemical-genetic approach to engineer kinesin motors that can carry out the function of the wild-type motor yet can also be efficiently inhibited by small, cell-permeable molecules. Using kinesin-1 as a prototype, we develop two independent strategies to generate inhibitable motors, and characterize the resulting inhibition in single-molecule assays and in cells. We further apply these two strategies to create analogously inhibitable kinesin-3 motors. These inhibitable motors will be of great utility to study the functions of specific kinesins in a dynamic manner in cells and animals. Furthermore, these strategies can be used to generate inhibitable versions of any motor protein of interest. PMID:27045608

  11. Engineered kinesin motor proteins amenable to small-molecule inhibition.

    PubMed

    Engelke, Martin F; Winding, Michael; Yue, Yang; Shastry, Shankar; Teloni, Federico; Reddy, Sanjay; Blasius, T Lynne; Soppina, Pushpanjali; Hancock, William O; Gelfand, Vladimir I; Verhey, Kristen J

    2016-01-01

    The human genome encodes 45 kinesin motor proteins that drive cell division, cell motility, intracellular trafficking and ciliary function. Determining the cellular function of each kinesin would benefit from specific small-molecule inhibitors. However, screens have yielded only a few specific inhibitors. Here we present a novel chemical-genetic approach to engineer kinesin motors that can carry out the function of the wild-type motor yet can also be efficiently inhibited by small, cell-permeable molecules. Using kinesin-1 as a prototype, we develop two independent strategies to generate inhibitable motors, and characterize the resulting inhibition in single-molecule assays and in cells. We further apply these two strategies to create analogously inhibitable kinesin-3 motors. These inhibitable motors will be of great utility to study the functions of specific kinesins in a dynamic manner in cells and animals. Furthermore, these strategies can be used to generate inhibitable versions of any motor protein of interest. PMID:27045608

  12. The kinesin-13 KLP10A motor regulates oocyte spindle length and affects EB1 binding without altering microtubule growth rates.

    PubMed

    Do, Kevin K; Hoàng, Kim Liên; Endow, Sharyn A

    2014-01-01

    Kinesin-13 motors are unusual in that they do not walk along microtubules, but instead diffuse to the ends, where they remove tubulin dimers, regulating microtubule dynamics. Here we show that Drosophila kinesin-13 klp10A regulates oocyte meiosis I spindle length and is haplo-insufficient - KLP10A, reduced by RNAi or a loss-of-function P element insertion mutant, results in elongated and mispositioned oocyte spindles, and abnormal cortical microtubule asters and aggregates. KLP10A knockdown by RNAi does not significantly affect microtubule growth rates in oocyte spindles, but, unexpectedly, EB1 binding and unbinding are slowed, suggesting a previously unobserved role for kinesin-13 in mediating EB1 binding interactions with microtubules. Kinesin-13 may regulate spindle length both by disassembling subunits from microtubule ends and facilitating EB1 binding to plus ends. We also observe an increased number of paused microtubules in klp10A RNAi knockdown spindles, consistent with a reduced frequency of microtubule catastrophes. Overall, our findings indicate that reduced kinesin-13 decreases microtubule disassembly rates and affects EB1 interactions with microtubules, rather than altering microtubule growth rates, causing spindles to elongate and abnormal cortical microtubule asters and aggregates to form. PMID:24907370

  13. Microcephaly protein Asp focuses the minus ends of spindle microtubules at the pole and within the spindle

    PubMed Central

    Ito, Ami

    2015-01-01

    Depletion of Drosophila melanogaster Asp, an orthologue of microcephaly protein ASPM, causes spindle pole unfocusing during mitosis. However, it remains unclear how Asp contributes to pole focusing, a process that also requires the kinesin-14 motor Ncd. We show that Asp localizes to the minus ends of spindle microtubule (MT) bundles and focuses them to make the pole independent of Ncd. We identified a critical domain in Asp exhibiting MT cross-linking activity in vitro. Asp was also localized to, and focuses the minus ends of, intraspindle MTs that were nucleated in an augmin-dependent manner and translocated toward the poles by spindle MT flux. Ncd, in contrast, functioned as a global spindle coalescence factor not limited to MT ends. We propose a revised molecular model for spindle pole focusing in which Asp at the minus ends cross-links MTs at the pole and within the spindle. Additionally, this study provides new insight into the dynamics of intraspindle MTs by using Asp as a minus end marker. PMID:26644514

  14. Microcephaly protein Asp focuses the minus ends of spindle microtubules at the pole and within the spindle.

    PubMed

    Ito, Ami; Goshima, Gohta

    2015-12-01

    Depletion of Drosophila melanogaster Asp, an orthologue of microcephaly protein ASPM, causes spindle pole unfocusing during mitosis. However, it remains unclear how Asp contributes to pole focusing, a process that also requires the kinesin-14 motor Ncd. We show that Asp localizes to the minus ends of spindle microtubule (MT) bundles and focuses them to make the pole independent of Ncd. We identified a critical domain in Asp exhibiting MT cross-linking activity in vitro. Asp was also localized to, and focuses the minus ends of, intraspindle MTs that were nucleated in an augmin-dependent manner and translocated toward the poles by spindle MT flux. Ncd, in contrast, functioned as a global spindle coalescence factor not limited to MT ends. We propose a revised molecular model for spindle pole focusing in which Asp at the minus ends cross-links MTs at the pole and within the spindle. Additionally, this study provides new insight into the dynamics of intraspindle MTs by using Asp as a minus end marker. PMID:26644514

  15. Molecular motor proteins of the kinesin superfamily proteins (KIFs): structure, cargo and disease.

    PubMed

    Seog, Dae-Hyun; Lee, Dae-Ho; Lee, Sang-Kyoung

    2004-02-01

    Intracellular organelle transport is essential for morphogenesis and functioning of the cell. Kinesins and kinesin-related proteins make up a large superfamily of molecular motors that transport cargoes such as vesicles, organelles (e.g. mitochondria, peroxisomes, lysosomes), protein complexes (e.g. elements of the cytoskeleton, virus particles), and mRNAs in a microtubule- and ATP-dependent manner in neuronal and non-neuronal cells. Until now, more than 45 kinesin superfamily proteins (KIFs) have been identified in the mouse and human genomes. Elucidating the transport pathways mediated by kinesins, the identities of the cargoes moved, and the nature of the proteins that link kinesin motors to cargoes are areas of intense investigation. This review focuses on the structure, the binding partners of kinesins and kinesin-based human diseases. PMID:14966333

  16. Kinesin-related proteins in the mammalian testes: candidate motors for meiosis and morphogenesis.

    PubMed Central

    Sperry, A O; Zhao, L P

    1996-01-01

    The kinesin superfamily of molecular motors comprises proteins that participate in a wide variety of motile events within the cell. Members of this family share a highly homologous head domain responsible for force generation attached to a divergent tail domain thought to couple the motor domain to its target cargo. Many kinesin-related proteins (KRPs) participate in spindle morphogenesis and chromosome movement in cell division. Genetic analysis of mitotic KRPs in yeast and Drosophila, as well as biochemical experiments in other species, have suggested models for the function of KRPs in cell division, including both mitosis and meiosis. Although many mitotic KRPs have been identified, the relationship between mitotic motors and meiotic function is not clearly understood. We have used sequence similarity between mitotic KRPs to identify candidates for meiotic and/or mitotic motors in a vertebrate. We have identified a group of kinesin-related proteins from rat testes (termed here testes KRP1 through KRP6) that includes new members of the bimC and KIF2 subfamilies as well as proteins that may define new kinesin subfamilies. Five of the six testes KRPs identified are expressed primarily in testes. Three of these are expressed in a region of the seminiferous epithelia (SE) rich in meiotically active cells. Further characterization of one of these KRPs, KRP2, showed it to be a promising candidate for a motor in meiosis: it is localized to a meiotically active region of the SE and is homologous to motor proteins associated with the mitotic apparatus. Testes-specific genes provide the necessary probes to investigate whether the motor proteins that function in mammalian meiosis overlap with those of mitosis and whether motor proteins exist with functions unique to meiosis. Our search for meiotic motors in a vertebrate testes has successfully identified proteins with properties consistent with those of meiotic motors in addition to uncovering proteins that may function in

  17. Phase transition of spindle-associated protein regulate spindle apparatus assembly.

    PubMed

    Jiang, Hao; Wang, Shusheng; Huang, Yuejia; He, Xiaonan; Cui, Honggang; Zhu, Xueliang; Zheng, Yixian

    2015-09-24

    Spindle assembly required during mitosis depends on microtubule polymerization. We demonstrate that the evolutionarily conserved low-complexity protein, BuGZ, undergoes phase transition or coacervation to promote assembly of both spindles and their associated components. BuGZ forms temperature-dependent liquid droplets alone or on microtubules in physiological buffers. Coacervation in vitro or in spindle and spindle matrix depends on hydrophobic residues in BuGZ. BuGZ coacervation and its binding to microtubules and tubulin are required to promote assembly of spindle and spindle matrix in Xenopus egg extract and in mammalian cells. Since several previously identified spindle-associated components also contain low-complexity regions, we propose that coacervating proteins may be a hallmark of proteins that comprise a spindle matrix that functions to promote assembly of spindles by concentrating its building blocks. PMID:26388440

  18. Force generation by kinesin and myosin cytoskeletal motor proteins.

    PubMed

    Kull, F Jon; Endow, Sharyn A

    2013-01-01

    Kinesins and myosins hydrolyze ATP, producing force that drives spindle assembly, vesicle transport and muscle contraction. How do motors do this? Here we discuss mechanisms of motor force transduction, based on their mechanochemical cycles and conformational changes observed in crystal structures. Distortion or twisting of the central β-sheet - proposed to trigger actin-induced Pi and ADP release by myosin, and microtubule-induced ADP release by kinesins - is shown in a movie depicting the transition between myosin ATP-like and nucleotide-free states. Structural changes in the switch I region form a tube that governs ATP hydrolysis and Pi release by the motors, explaining the essential role of switch I in hydrolysis. Comparison of the motor power strokes reveals that each stroke begins with the force-amplifying structure oriented opposite to the direction of rotation or swing. Motors undergo changes in their mechanochemical cycles in response to small-molecule inhibitors, several of which bind to kinesins by induced fit, trapping the motors in a state that resembles a force-producing conformation. An unusual motor activator specifically increases mechanical output by cardiac myosin, potentially providing valuable information about its mechanism of function. Further study is essential to understand motor mechanochemical coupling and energy transduction, and could lead to new therapies to treat human disease. PMID:23487037

  19. Force generation by kinesin and myosin cytoskeletal motor proteins

    PubMed Central

    Kull, F. Jon; Endow, Sharyn A.

    2013-01-01

    Summary Kinesins and myosins hydrolyze ATP, producing force that drives spindle assembly, vesicle transport and muscle contraction. How do motors do this? Here we discuss mechanisms of motor force transduction, based on their mechanochemical cycles and conformational changes observed in crystal structures. Distortion or twisting of the central β-sheet – proposed to trigger actin-induced Pi and ADP release by myosin, and microtubule-induced ADP release by kinesins – is shown in a movie depicting the transition between myosin ATP-like and nucleotide-free states. Structural changes in the switch I region form a tube that governs ATP hydrolysis and Pi release by the motors, explaining the essential role of switch I in hydrolysis. Comparison of the motor power strokes reveals that each stroke begins with the force-amplifying structure oriented opposite to the direction of rotation or swing. Motors undergo changes in their mechanochemical cycles in response to small-molecule inhibitors, several of which bind to kinesins by induced fit, trapping the motors in a state that resembles a force-producing conformation. An unusual motor activator specifically increases mechanical output by cardiac myosin, potentially providing valuable information about its mechanism of function. Further study is essential to understand motor mechanochemical coupling and energy transduction, and could lead to new therapies to treat human disease. PMID:23487037

  20. The kinesin related motor protein, Eg5, is essential for maintenance of pre-implantation embryogenesis

    SciTech Connect

    Castillo, Andrew; Justice, Monica J. . E-mail: mjustice@bcm.tmc.edu

    2007-06-08

    Eg5 is a plus end directed kinesin related motor protein (KRP) previously shown to be involved in the assembly and maintenance of the mitotic spindle. KRPs are molecular motors capable of generating forces upon microtubules (MTs) in dividing cells and driving structural rearrangements necessary in the developing spindle. In vitro experiments demonstrate that loss of Eg5 results in cell cycle arrest and defective centrosome separation resulting in the development of monopolar spindles. Here we describe mice with a genetrap insertion in Eg5. Heterozygous mutant mice appear phenotypically normal. In contrast, embryos homozygous for the Eg5 null allele recovered at embryonic days 2.5-3.5 display signs of a proliferation defect as reduced cell numbers and failure of compaction and progression to the blastocyst stage was observed. These data, in conjunction with previous in vitro data, suggest that loss of Eg5 results in abnormal spindle structure, cell cycle arrest and thereby reduced cell proliferation of early cleavage pre-implantation embryos. These observations further support the conclusion that Eg5 is essential for cell division early in mouse development, and that maternal contribution may sustain the embryo through the maternal to zygotic transition at which point supplies of functional Eg5 are exhausted, preventing further cell cleavage.

  1. Unexpected Roles for Ciliary Kinesins and Intraflagellar Transport Proteins.

    PubMed

    Pooranachandran, Niedharsan; Malicki, Jarema J

    2016-06-01

    Transport of proteins in the ciliary shaft is driven by microtubule-dependent motors, kinesins. Prior studies suggested that the heterotrimeric ciliary kinesin may be dispensable for certain aspects of transport in specialized cilia of vertebrate photoreceptor cells. To test this possibility further, we analyzed the mutant phenotype of the zebrafish kif3a gene, which encodes the common motor subunit of heterotrimeric ciliary kinesins. Cilia are absent in all organs examined, leading to the conclusion that kif3a is indispensable for ciliogenesis in all cells, including photoreceptors. Unexpectedly, kif3a function precedes ciliogenesis as ciliary basal bodies are mispositioned in mutant photoreceptors. This phenotype is much less pronounced in intraflagellar transport (IFT) mutants and reveals that kif3a has a much broader role than previously assumed. Despite the severity of their basal body phenotype, kif3a mutant photoreceptors survive longer compared to those in IFT mutants, which display much weaker basal body mispositioning. This effect is absent in kif3a;IFT double mutants, indicating that IFT proteins have ciliary transport-independent roles, which add to the severity of their photoreceptor phenotype. kif3a is dispensable for basal body docking in otic vesicle sensory epithelia and, surprisingly, short cilia form in mechanosensory cristae even in the absence of kif3a In contrast to Kif3a, the functions of the Kif3c-related protein, encoded by the kif3c-like (kif3cl) gene, and the homodimeric ciliary kinesin, kif17, are dispensable for photoreceptor morphogenesis. These studies demonstrate unexpected new roles for both ciliary heterotrimeric kinesins and IFT particle genes and clarify the function of kif17, the homodimeric ciliary kinesin gene. PMID:27038111

  2. XCTK1: A Xenopus C-terminal Kinesin-like Protein

    NASA Technical Reports Server (NTRS)

    Winfree, Seth; Wilhelm, Heike; Sawyer, Alan; Karsenti, Eric; Mitchison, Tim; Walczak, Claire; Reinsch, Sigrid; Dalton, Bonnie (Technical Monitor)

    2002-01-01

    XCTK1 is 97kDa kinesin-like protein homologous to FKIF2 and KIFC3. XCTK1 is present at picomolar levels in eggs, embryos and cultured cells in a soluble high-molecular weight complex that is not associated with membranes. XCKT1 localizes to centrosomes in Xenopus A6 cells. Anti-XCTK1 antibodies also localize to spindle poles when injected into A6 cells or when added to extracts during in vitro spindle assembly reactions. XCTK1 is associated with the center of taxol-induced microtubule asters in extracts. Therefore its localization to poles is dependent on microtubule minus-ends and not on centrosomes per se. Overexpression of XCTK1 leads to centrosome destruction in cultured cells. XCTK1 was tagged at either the N- or C-terminus and transfected into Xenopus A6 cells At low expression levels, XCTK1 associated with centrosomes. At higher levels, the protein localized to insoluble cytoplasmic structures. Gamma-tubulin staining was dramatically decreased from centrosomes or altogether absent. The centrosomal SPJ antigen colocalized with XCTK1-containing structures. Upon nocodozole treatment, microtubules failed to regrow from the centrosomes indicating that overexpression of XCTK1 severely compromises centrosomal function. Current studies are aimed at determining whether XCTK1 interacts directly with centrosomal proteins and to determine the effects of XCTK1 depletion on oocyte maturation and embryogenesis.

  3. A unique set of centrosome proteins requires pericentrin for spindle-pole localization and spindle orientation.

    PubMed

    Chen, Chun-Ting; Hehnly, Heidi; Yu, Qing; Farkas, Debby; Zheng, Guoqiang; Redick, Sambra D; Hung, Hui-Fang; Samtani, Rajeev; Jurczyk, Agata; Akbarian, Schahram; Wise, Carol; Jackson, Andrew; Bober, Michael; Guo, Yin; Lo, Cecilia; Doxsey, Stephen

    2014-10-01

    Majewski osteodysplastic primordial dwarfism type II (MOPDII) is caused by mutations in the centrosome gene pericentrin (PCNT) that lead to severe pre- and postnatal growth retardation. As in MOPDII patients, disruption of pericentrin (Pcnt) in mice caused a number of abnormalities including microcephaly, aberrant hemodynamics analyzed by in utero echocardiography, and cardiovascular anomalies; the latter being associated with mortality, as in the human condition. To identify the mechanisms underlying these defects, we tested for changes in cell and molecular function. All Pcnt(-/-) mouse tissues and cells examined showed spindle misorientation. This mouse phenotype was associated with misdirected ventricular septal growth in the heart, decreased proliferative symmetric divisions in brain neural progenitors, and increased misoriented divisions in fibroblasts; the same phenotype was seen in fibroblasts from three MOPDII individuals. Misoriented spindles were associated with disrupted astral microtubules and near complete loss of a unique set of centrosome proteins from spindle poles (ninein, Cep215, centriolin). All these proteins appear to be crucial for microtubule anchoring and all interacted with Pcnt, suggesting that Pcnt serves as a molecular scaffold for this functionally linked set of spindle pole proteins. Importantly, Pcnt disruption had no detectable effect on localization of proteins involved in the cortical polarity pathway (NuMA, p150(glued), aPKC). Not only do these data reveal a spindle-pole-localized complex for spindle orientation, but they identify key spindle symmetry proteins involved in the pathogenesis of MOPDII. PMID:25220058

  4. Kinesin superfamily proteins (KIFs) in the mouse transcriptome.

    PubMed

    Miki, Harukata; Setou, Mitsutoshi; Hirokawa, Nobutaka

    2003-06-01

    In the post genomic era where virtually all the genes and the proteins are known, an important task is to provide a comprehensive analysis of the expression of important classes of genes, such as those that are required for intracellular transport. We report the comprehensive analysis of the Kinesin Superfamily, which is the first and only large protein family whose constituents have been completely identified and confirmed in silico and at the cDNA, mRNA level. In FANTOM2, we have found 90 clones from 33 Kinesin Superfamily Protein (KIF) gene loci. The clones were analyzed in reference to sequence state, library of origin, detection methods, and alternative splicing. More than half of the representative transcriptional units (TU) were full length. The FANTOM2 library also contains novel splice variants previously unreported. We have compared and evaluated various protein classification tools and protein search methods using this data set. This report provides a foundation for future research of the intracellular transport along microtubules and proves the significance of intracellular transport protein transcripts as part of the transcriptome. PMID:12819144

  5. Kinesin-like proteins are involved in postmitotic nuclear migration of the unicellular green alga Micrasterias denticulata.

    PubMed

    Holzinger, Andreas; Lütz-Meindl, Ursula

    2002-01-01

    The unicellular green alga Micrasterias denticulata performs a two-directional postmitotic nuclear migration during development, a passive migration into the growing semicell, and a microtubule mediated backward migration towards the cell centre. The present study provides first evidence for force generation by motor proteins of the kinesin family in this process. The new kinesin specific inhibitor adociasulfate-2 causes abnormal nuclear displacement at 18 microM. AMP-PNP, a non hydrolyseable ATP analogue or the general ATPase inhibitors calyculin A and sodium orthovanadate also disturb nuclear migration. In addition kinesin-like proteins are detected by means of immunoblotting using antibodies against brain kinesin, plant derived antibodies to kinesin-like proteins and a calmodulin binding kinesin-like protein. Immunoelectron microscopy suggests a correlation of conventional kinesin-like proteins, but not of the calmodulin binding kinesin-like protein to the microtubule apparatus associated with the migrating nucleus. PMID:12175672

  6. Spindle

    Energy Science and Technology Software Center (ESTSC)

    2013-04-04

    Spindle is software infrastructure that solves file system scalabiltiy problems associated with starting dynamically linked applications in HPC environments. When an HPC applications starts up thousands of pricesses at once, and those processes simultaneously access a shared file system to look for shared libraries, it can cause significant performance problems for both the application and other users. Spindle scalably coordinates the distribution of shared libraries to an application to avoid hammering the shared file system.

  7. Förster resonance energy transfer and kinesin motor proteins.

    PubMed

    Prevo, Bram; Peterman, Erwin J G

    2014-02-21

    Förster Resonance Energy Transfer (FRET) is the phenomenon of non-radiative transfer of electronic excitations from a donor fluorophore to an acceptor, mediated by electronic dipole-dipole coupling. The transfer rate and, as a consequence, efficiency depend non-linearly on the distance between the donor and the acceptor. FRET efficiency can thus be used as an effective and accurate reporter of distance between two fluorophores and changes thereof. Over the last 50 years or so, FRET has been used as a spectroscopic ruler to measure conformations and conformational changes of biomolecules. More recently, FRET has been combined with microscopy, ultimately allowing measurement of FRET between a single donor and a single acceptor pair. In this review, we will explain the physical foundations of FRET and how FRET can be applied to biomolecules. We will highlight the power of the different FRET approaches by focusing on its application to the motor protein kinesin, which undergoes several conformational changes driven by enzymatic action, that ultimately result in unidirectional motion along microtubule filaments, driving active transport in the cell. Single-molecule and ensemble FRET studies of different aspects of kinesin have provided numerous insights into the complex chemomechanical mechanism of this fascinating protein. PMID:24071719

  8. Kinesin-5: cross-bridging mechanism to targeted clinical therapy

    PubMed Central

    Wojcik, Edward J.; Buckley, Rebecca S.; Richard, Jessica; Liu, Liqiong; Huckaba, Thomas M.; Kim, Sunyoung

    2013-01-01

    Kinesin motor proteins comprise an ATPase superfamily that goes hand in hand with microtubules in every eukaryote. The mitotic kinesins, by virtue of their potential therapeutic role in cancerous cells, have been a major focus of research for the past 28 years since the discovery of the canonical Kinesin-1 heavy chain. Perhaps the simplest player in mitotic spindle assembly, Kinesin-5 (also known as Kif11, Eg5, or kinesin spindle protein, KSP) is a plus-end-directed motor localized to interpolar spindle microtubules and to the spindle poles. Comprised of a homotetramer complex, its function primarily is to slide anti-parallel microtubules apart from one another. Based on a multi-faceted analysis of this motor from numerous laboratories over the years, we have learned a great deal about the function of this motor at the atomic level for catalysis and as an integrated element of the cytoskeleton. These data have, in turn, informed the function of motile kinesins on the whole, as well as spearheaded integrative models of the mitotic apparatus in particular and regulation of the microtubule cytoskeleton in general. We review what is known about how this nanomotor works, its place inside the cytoskeleton of cells, and its small-molecule inhibitors that provide a toolbox for understanding motor function and for anticancer treatment in the clinic. PMID:23954229

  9. Intracellular Transport and Kinesin Superfamily Proteins: Structure, Function and Dynamics

    NASA Astrophysics Data System (ADS)

    Hirokawa, N.; Takemura, R.

    Using various molecular cell biological and molecular genetic approaches, we identified kinesin superfamily proteins (KIFs) and characterized their significant functions in intracellular transport, which is fundamental for cellular morphogenesis, functioning, and survival. We showed that KIFs not only transport various membranous organelles, proteins complexes and mRNAs fundamental for cellular functions but also play significant roles in higher brain functions such as memory and learning, determination of important developmental processes such as left-right asymmetry formation and brain wiring. We also elucidated that KIFs recognize and bind to their specific cargoes using scaffolding or adaptor protein complexes. Concerning the mechanism of motility, we discovered the simplest unique monomeric motor KIF1A and determined by molecular biophysics, cryoelectron microscopy and X-ray crystallography that KIF1A can move on a microtubule processively as a monomer by biased Brownian motion and by hydolyzing ATP.

  10. The kinesin-1 motor protein is regulated by a direct interaction of its head and tail

    PubMed Central

    Dietrich, Kristen A.; Sindelar, Charles V.; Brewer, Paul D.; Downing, Kenneth H.; Cremo, Christine R.; Rice, Sarah E.

    2008-01-01

    Kinesin-1 is a molecular motor protein that transports cargo along microtubules. Inside cells, the vast majority of kinesin-1 is regulated to conserve ATP and to ensure its proper intracellular distribution and coordination with other molecular motors. Regulated kinesin-1 folds in half at a hinge in its coiled-coil stalk. Interactions between coiled-coil regions near the enzymatically active heads at the N terminus and the regulatory tails at the C terminus bring these globular elements in proximity and stabilize the folded conformation. However, it has remained a mystery how kinesin-1's microtubule-stimulated ATPase activity is regulated in this folded conformation. Here, we present evidence for a direct interaction between the kinesin-1 head and tail. We photochemically cross-linked heads and tails and produced an 8-Å cryoEM reconstruction of the cross-linked head–tail complex on microtubules. These data demonstrate that a conserved essential regulatory element in the kinesin-1 tail interacts directly and specifically with the enzymatically critical Switch I region of the head. This interaction suggests a mechanism for tail-mediated regulation of the ATPase activity of kinesin-1. In our structure, the tail makes simultaneous contacts with the kinesin-1 head and the microtubule, suggesting the tail may both regulate kinesin-1 in solution and hold it in a paused state with high ADP affinity on microtubules. The interaction of the Switch I region of the kinesin-1 head with the tail is strikingly similar to the interactions of small GTPases with their regulators, indicating that other kinesin motors may share similar regulatory mechanisms. PMID:18579780

  11. The kinesin-1 motor protein is regulated by a direct interaction of its head and tail.

    PubMed

    Dietrich, Kristen A; Sindelar, Charles V; Brewer, Paul D; Downing, Kenneth H; Cremo, Christine R; Rice, Sarah E

    2008-07-01

    Kinesin-1 is a molecular motor protein that transports cargo along microtubules. Inside cells, the vast majority of kinesin-1 is regulated to conserve ATP and to ensure its proper intracellular distribution and coordination with other molecular motors. Regulated kinesin-1 folds in half at a hinge in its coiled-coil stalk. Interactions between coiled-coil regions near the enzymatically active heads at the N terminus and the regulatory tails at the C terminus bring these globular elements in proximity and stabilize the folded conformation. However, it has remained a mystery how kinesin-1's microtubule-stimulated ATPase activity is regulated in this folded conformation. Here, we present evidence for a direct interaction between the kinesin-1 head and tail. We photochemically cross-linked heads and tails and produced an 8-A cryoEM reconstruction of the cross-linked head-tail complex on microtubules. These data demonstrate that a conserved essential regulatory element in the kinesin-1 tail interacts directly and specifically with the enzymatically critical Switch I region of the head. This interaction suggests a mechanism for tail-mediated regulation of the ATPase activity of kinesin-1. In our structure, the tail makes simultaneous contacts with the kinesin-1 head and the microtubule, suggesting the tail may both regulate kinesin-1 in solution and hold it in a paused state with high ADP affinity on microtubules. The interaction of the Switch I region of the kinesin-1 head with the tail is strikingly similar to the interactions of small GTPases with their regulators, indicating that other kinesin motors may share similar regulatory mechanisms. PMID:18579780

  12. Tum/RacGAP functions as a switch activating the Pav/kinesin-6 motor

    PubMed Central

    Tao, Li; Fasulo, Barbara; Warecki, Brandt; Sullivan, William

    2016-01-01

    Centralspindlin is essential for central spindle and cleavage furrow formation. Drosophila centralspindlin consists of a kinesin-6 motor (Pav/kinesin-6) and a GTPase-activating protein (Tum/RacGAP). Centralspindlin localization to the central spindle is mediated by Pav/kinesin-6. While Tum/RacGAP has well-documented scaffolding functions, whether it influences Pav/kinesin-6 function is less well-explored. Here we demonstrate that both Pav/kinesin-6 and the centralspindlin complex (co-expressed Pav/Tum) have strong microtubule bundling activity. Centralspindlin also has robust plus-end-directed motility. In contrast, Pav/kinesin-6 alone cannot move microtubules. However, the addition of Tum/RacGAP or a 65 amino acid Tum/RacGAP fragment to Pav/kinesin-6 restores microtubule motility. Further, ATPase assays reveal that microtubule-stimulated ATPase activity of centralspindlin is seven times higher than that of Pav/kinesin-6. These findings are supported by in vivo studies demonstrating that in Tum/RacGAP-depleted S2 Drosophila cells, Pav/kinesin-6 exhibits severely reduced localization to the central spindle and an abnormal concentration at the centrosomes. PMID:27091402

  13. Tum/RacGAP functions as a switch activating the Pav/kinesin-6 motor.

    PubMed

    Tao, Li; Fasulo, Barbara; Warecki, Brandt; Sullivan, William

    2016-01-01

    Centralspindlin is essential for central spindle and cleavage furrow formation. Drosophila centralspindlin consists of a kinesin-6 motor (Pav/kinesin-6) and a GTPase-activating protein (Tum/RacGAP). Centralspindlin localization to the central spindle is mediated by Pav/kinesin-6. While Tum/RacGAP has well-documented scaffolding functions, whether it influences Pav/kinesin-6 function is less well-explored. Here we demonstrate that both Pav/kinesin-6 and the centralspindlin complex (co-expressed Pav/Tum) have strong microtubule bundling activity. Centralspindlin also has robust plus-end-directed motility. In contrast, Pav/kinesin-6 alone cannot move microtubules. However, the addition of Tum/RacGAP or a 65 amino acid Tum/RacGAP fragment to Pav/kinesin-6 restores microtubule motility. Further, ATPase assays reveal that microtubule-stimulated ATPase activity of centralspindlin is seven times higher than that of Pav/kinesin-6. These findings are supported by in vivo studies demonstrating that in Tum/RacGAP-depleted S2 Drosophila cells, Pav/kinesin-6 exhibits severely reduced localization to the central spindle and an abnormal concentration at the centrosomes. PMID:27091402

  14. F-actin asymmetry and the endoplasmic reticulum-associated TCC-1 protein contribute to stereotypic spindle movements in the Caenorhabditis elegans embryo.

    PubMed

    Berends, Christian W H; Muñoz, Javier; Portegijs, Vincent; Schmidt, Ruben; Grigoriev, Ilya; Boxem, Mike; Akhmanova, Anna; Heck, Albert J R; van den Heuvel, Sander

    2013-07-01

    The microtubule spindle apparatus dictates the plane of cell cleavage in animal cells. During development, dividing cells control the position of the spindle to determine the size, location, and fate of daughter cells. Spindle positioning depends on pulling forces that act between the cell periphery and astral microtubules. This involves dynein recruitment to the cell cortex by a heterotrimeric G-protein α subunit in complex with a TPR-GoLoco motif protein (GPR-1/2, Pins, LGN) and coiled-coil protein (LIN-5, Mud, NuMA). In this study, we searched for additional factors that contribute to spindle positioning in the one-cell Caenorhabditis elegans embryo. We show that cortical actin is not needed for Gα-GPR-LIN-5 localization and pulling force generation. Instead, actin accumulation in the anterior actually reduces pulling forces, possibly by increasing cortical rigidity. Examining membrane-associated proteins that copurified with GOA-1 Gα, we found that the transmembrane and coiled-coil domain protein 1 (TCC-1) contributes to proper spindle movements. TCC-1 localizes to the endoplasmic reticulum membrane and interacts with UNC-116 kinesin-1 heavy chain in yeast two-hybrid assays. RNA interference of tcc-1 and unc-116 causes similar defects in meiotic spindle positioning, supporting the concept of TCC-1 acting with kinesin-1 in vivo. These results emphasize the contribution of membrane-associated and cortical proteins other than Gα-GPR-LIN-5 in balancing the pulling forces that position the spindle during asymmetric cell division. PMID:23699393

  15. F-actin asymmetry and the endoplasmic reticulum–associated TCC-1 protein contribute to stereotypic spindle movements in the Caenorhabditis elegans embryo

    PubMed Central

    Berends, Christian W. H.; Muñoz, Javier; Portegijs, Vincent; Schmidt, Ruben; Grigoriev, Ilya; Boxem, Mike; Akhmanova, Anna; Heck, Albert J. R.; van den Heuvel, Sander

    2013-01-01

    The microtubule spindle apparatus dictates the plane of cell cleavage in animal cells. During development, dividing cells control the position of the spindle to determine the size, location, and fate of daughter cells. Spindle positioning depends on pulling forces that act between the cell periphery and astral microtubules. This involves dynein recruitment to the cell cortex by a heterotrimeric G-protein α subunit in complex with a TPR-GoLoco motif protein (GPR-1/2, Pins, LGN) and coiled-coil protein (LIN-5, Mud, NuMA). In this study, we searched for additional factors that contribute to spindle positioning in the one-cell Caenorhabditis elegans embryo. We show that cortical actin is not needed for Gα–GPR–LIN-5 localization and pulling force generation. Instead, actin accumulation in the anterior actually reduces pulling forces, possibly by increasing cortical rigidity. Examining membrane-associated proteins that copurified with GOA-1 Gα, we found that the transmembrane and coiled-coil domain protein 1 (TCC-1) contributes to proper spindle movements. TCC-1 localizes to the endoplasmic reticulum membrane and interacts with UNC-116 kinesin-1 heavy chain in yeast two-hybrid assays. RNA interference of tcc-1 and unc-116 causes similar defects in meiotic spindle positioning, supporting the concept of TCC-1 acting with kinesin-1 in vivo. These results emphasize the contribution of membrane-associated and cortical proteins other than Gα–GPR–LIN-5 in balancing the pulling forces that position the spindle during asymmetric cell division. PMID:23699393

  16. The Cotton Kinesin-Like Calmodulin-Binding Protein Associates with Cortical Microtubles in Cotton Fibers

    SciTech Connect

    Preuss, Mary L.; Delmar, Deborah P.; Liu, Bo

    2003-05-01

    Microtubules in interphase plant cells form a cortical array, which is critical for plant cell morphogenesis. Genetic studies imply that the minus end-directed microtubule motor kinesin-like calmodulin-binding protein (KCBP) plays a role in trichome morphogenesis in Arabidopsis. However, it was not clear whether this motor interacted with interphase microtubules. In cotton (Gossypium hirsutum) fibers, cortical microtubules undergo dramatic reorganization during fiber development. In this study, cDNA clones of the cotton KCBP homolog GhKCBP were isolated from a cotton fiber-specific cDNA library. During cotton fiber development from 10 to 21 DPA, the GhKCBP protein level gradually decreases. By immunofluorescence, GhKCBP was detected as puncta along cortical microtubules in fiber cells of different developmental stages. Thus the results provide evidence that GhKCBP plays a role in interphase cell growth likely by interacting with cortical microtubules. In contrast to fibers, in dividing cells of cotton, GhKCBP localized to the nucleus, the microtubule preprophase band, mitotic spindle, and the phragmoplast. Therefore KCBP likely exerts multiple roles in cell division and cell growth in flowering plants.

  17. TPX2 regulates neuronal morphology through kinesin-5 interaction

    PubMed Central

    Kahn, Olga I.; Ha, Ngoc; Baird, Michelle A.; Davidson, Michael W.; Baas, Peter W.

    2015-01-01

    TPX2 (targeting protein for Xklp2) is a multifunctional mitotic spindle assembly factor that in mammalian cells localizes and regulates mitotic motor protein kinesin-5 (also called Eg5 or kif11). We previously showed that upon depletion or inhibition of kinesin-5 in cultured neurons, microtubule movements increase, resulting in faster growing axons and thinner dendrites. Here, we show that depletion of TPX2 from cultured neurons speeds their rate of process outgrowth, similarly to kinesin-5 inhibition. The phenotype is rescued by TPX2 re-expression, but not if TPX2’s kinesin-5-interacting domain is deleted. These results, together with studies showing a spike in TPX2 expression during dendritic differentiation, suggest that the levels and distribution of TPX2 are likely to be determinants of when and where kinesin-5 acts in neurons. PMID:26257190

  18. The Molecular Basis for Kinesin Functional Specificity During Mitosis

    PubMed Central

    Welburn, Julie P I

    2013-01-01

    Microtubule-based motor proteins play key roles during mitosis to assemble the bipolar spindle, define the cell division axis, and align and segregate the chromosomes. The majority of mitotic motors are members of the kinesin superfamily. Despite sharing a conserved catalytic core, each kinesin has distinct functions and localization, and is uniquely regulated in time and space. These distinct behaviors and functional specificity are generated by variations in the enzymatic domain as well as the non-conserved regions outside of the kinesin motor domain and the stalk. These flanking regions can directly modulate the properties of the kinesin motor through dimerization or self-interactions, and can associate with extrinsic factors, such as microtubule or DNA binding proteins, to provide additional functional properties. This review discusses the recently identified molecular mechanisms that explain how the control and functional specification of mitotic kinesins is achieved. © 2013 Wiley Periodicals, Inc. PMID:24039047

  19. The presence of kinesin superfamily motor proteins KIFC1 and KIF17 in normal and pathological human placenta.

    PubMed

    Sati, L; Seval-Celik, Y; Unek, G; Korgun, E T; Demir, R

    2009-10-01

    Kinesin superfamily proteins (KIFs) are motor proteins that participate in chromosomal and spindle movements during mitosis and meiosis, and transport membranous organelles and macromolecules fundamental for cellular functions. Although the roles of KIFs in axonal and dendritic transports have been studied extensively, their role in intracellular transport in general is less well known. The diversity of kinesins suggests that each kinesin may have a specific function. Therefore, in this study we aimed to investigate the presence and cellular localization of KIFC1 and KIF17 in normal and pathological human placentas. First-trimester (22-56 days) and normal, preeclamptic (PE), and diabetic-term placental tissues were obtained and further studied by immunohistochemistry (IHC) and Western blot methods. KIFC1 was mainly localized to the syncytiotrophoblast both in early and term placental samples. However, a stronger immunoreactivity was observed both in PE and diabetic placentas compared to normal-term placentas. KIF17 was most intensively localized in developing vascular endothelium in early pregnancy. Even though KIF17 was moderately stained in the endothelium of villi from normal human-term placentas, stronger immunoreactivity was observed in all types of villi of both PE and diabetic placentas. Western blotting of tissue extracts confirmed the IHC results. Here, we demonstrate the presence of KIFC1 and KIF17 in human placenta for the first time. The intense expression of KIFC1 in syncytiotrophoblast and KIF17 in vascular endothelium suggests that both the proteins might be important in a cargo-transport system. An increased expression pattern of both KIFC1 and KIF17 in PE and diabetes might suggest that these proteins may be involved in complex trophoblast functions and placental pathologies. Further studies will clarify the physiological role of KIFs in human placental transport and development. PMID:19679349

  20. Microtubule-binding protein doublecortin-like kinase 1 (DCLK1) guides kinesin-3-mediated cargo transport to dendrites.

    PubMed

    Lipka, Joanna; Kapitein, Lukas C; Jaworski, Jacek; Hoogenraad, Casper C

    2016-02-01

    In neurons, the polarized distribution of vesicles and other cellular materials is established through molecular motors that steer selective transport between axons and dendrites. It is currently unclear whether interactions between kinesin motors and microtubule-binding proteins can steer polarized transport. By screening all 45 kinesin family members, we systematically addressed which kinesin motors can translocate cargo in living cells and drive polarized transport in hippocampal neurons. While the majority of kinesin motors transport cargo selectively into axons, we identified five members of the kinesin-3 (KIF1) and kinesin-4 (KIF21) subfamily that can also target dendrites. We found that microtubule-binding protein doublecortin-like kinase 1 (DCLK1) labels a subset of dendritic microtubules and is required for KIF1-dependent dense-core vesicles (DCVs) trafficking into dendrites and dendrite development. Our study demonstrates that microtubule-binding proteins can provide local signals for specific kinesin motors to drive polarized cargo transport. PMID:26758546

  1. Kinesin-14 and kinesin-5 antagonistically regulate microtubule nucleation by γ-TuRC in yeast and human cells.

    PubMed

    Olmsted, Zachary T; Colliver, Andrew G; Riehlman, Timothy D; Paluh, Janet L

    2014-01-01

    Bipolar spindle assembly is a critical control point for initiation of mitosis through nucleation and organization of spindle microtubules and is regulated by kinesin-like proteins. In fission yeast, the kinesin-14 Pkl1 binds the γ-tubulin ring complex (γ-TuRC) microtubule-organizing centre at spindle poles and can alter its structure and function. Here we show that kinesin-14 blocks microtubule nucleation in yeast and reveal that this inhibition is countered by the kinesin-5 protein, Cut7. Furthermore, we demonstrate that Cut7 binding to γ-TuRC and the Cut7 BimC domain are both required for inhibition of Pkl1. We also demonstrate that a yeast kinesin-14 peptide blocks microtubule nucleation in two human breast cancer cell lines, suggesting that this mechanism is evolutionarily conserved. In conclusion, using genetic, biochemical and cell biology approaches we uncover antagonistic control of microtubule nucleation at γ-TuRC by two kinesin-like proteins, which may represent an attractive anti-mitotic target for cancer therapies. PMID:25348260

  2. Nanofabrication and Detection of Molecular Shuttles powered by Kinesin Motor Proteins

    NASA Astrophysics Data System (ADS)

    Oliveira, Daniel; Domyoung, Kim; Umetsu, Mitsuo; Adschiri, Tadafumi; Teizer, Winfried

    2011-03-01

    The intracellular cargo delivery performed by kinesin motor proteins can be biomimetically employed to engineer tailor-made artificial nanotransport systems. Kinesin (expressed on an Escherichia coli system) and microtubules (obtained from the polymerization of tubulin proteins) were prepared and characterized. We report recent results and explore the aim of the construction of Nanoelectromechanical Systems and their potential applications, e.g. as drug delivery systems. This work was supported by the WPI Program.

  3. Role and regulation of kinesin-8 motors through the cell cycle.

    PubMed

    Messin, Liam J; Millar, Jonathan B A

    2014-09-01

    Members of the kinesin-8 motor family play a central role in controlling microtubule length throughout the eukaryotic cell cycle. Inactivation of kinesin-8 causes defects in cell polarity during interphase and astral and mitotic spindle length, metaphase chromosome alignment, timing of anaphase onset and accuracy of chromosome segregation. Although the biophysical mechanism by which kinesin-8 molecules influence microtubule dynamics has been studied extensively in a variety of species, a consensus view has yet to emerge. One reason for this might be that some members of the kinesin-8 family can associate to other microtubule-associated proteins, cell cycle regulatory proteins and other kinesin family members. In this review we consider how cell cycle specific modification and its association to other regulatory proteins may modulate the function of kinesin-8 to enable it to function as a master regulator of microtubule dynamics. PMID:25136382

  4. Kinesin superfamily proteins and their various functions and dynamics.

    PubMed

    Hirokawa, Nobutaka; Takemura, Reiko

    2004-11-15

    Kinesin superfamily proteins (KIFs) are motor proteins that transport membranous organelles and macromolecules fundamental for cellular functions along microtubules. Their roles in transport in axons and dendrites have been studied extensively, but KIFs are also used in intracellular transport in general. Recent findings have revealed that in many cases, the specific interaction of cargoes and motors is mediated via adaptor/scaffolding proteins. Cargoes are sorted to precise destinations, such as axons or dendrites. KIFs also participate in polarized transport in epithelial cells as shown in the apical transport of annexin XIIIb-containing vesicles by KIFC3. KIFs play important roles in higher order neuronal activity; transgenic mice overexpressing KIF17, which transports N-methyl-d-asp (NMDA) receptors to dendrites, show enhanced memory and learning. KIFs also play significant roles in neuronal development and brain wiring: KIF2A suppresses elongation of axon collaterals by its unique microtubule-depolymerizing activity. X-ray crystallography has revealed the structural uniqueness of KIF2 underlying the microtubule-depolymerizing activity. In addition, single molecule biophysics and optical trapping have shown that the motility of monomeric KIF1A is caused by biased Brownian movement, and X-ray crystallography has shown how the conformational changes occur for KIF1A to move during ATP hydrolysis. These multiple approaches in analyzing KIF functions will illuminate many basic mechanisms underlying intracellular events and will be a very promising and fruitful area for future studies. PMID:15501445

  5. Functions of Kinesin Superfamily Proteins in Neuroreceptor Trafficking

    PubMed Central

    Wang, Na

    2015-01-01

    Synaptic plasticity is widely regarded as the cellular basis of learning and memory. Understanding the molecular mechanism of synaptic plasticity has been one of center pieces of neuroscience research for more than three decades. It has been well known that the trafficking of α-amino-3-hydroxy-5-methylisoxazoloe-4-propionic acid- (AMPA-) type, N-methyl-D-aspartate- (NMDA-) type glutamate receptors to and from synapses is a key molecular event underlying many forms of synaptic plasticity. Kainate receptors are another type of glutamate receptors playing important roles in synaptic transmission. In addition, GABA receptors also play important roles in modulating the synaptic plasticity. Kinesin superfamily proteins (also known as KIFs) transport various cargos in both anterograde and retrograde directions through the interaction with different adaptor proteins. Recent studies indicate that KIFs regulate the trafficking of NMDA receptors, AMPA receptors, kainate receptors, and GABA receptors and thus play important roles in neuronal activity. Here we review the essential functions of KIFs in the trafficking of neuroreceptor and synaptic plasticity. PMID:26075252

  6. All kinesin superfamily protein, KIF, genes in mouse and human.

    PubMed

    Miki, H; Setou, M; Kaneshiro, K; Hirokawa, N

    2001-06-19

    Intracellular transport is essential for morphogenesis and functioning of the cell. The kinesin superfamily proteins (KIFs) have been shown to transport membranous organelles and protein complexes in a microtubule- and ATP-dependent manner. More than 30 KIFs have been reported in mice. However, the nomenclature of KIFs has not been clearly established, resulting in various designations and redundant names for a single KIF. Here, we report the identification and classification of all KIFs in mouse and human genome transcripts. Previously unidentified murine KIFs were found by a PCR-based search. The identification of all KIFs was confirmed by a database search of the total human genome. As a result, there are a total of 45 KIFs. The nomenclature of all KIFs is presented. To understand the function of KIFs in intracellular transport in a single tissue, we focused on the brain. The expression of 38 KIFs was detected in brain tissue by Northern blotting or PCR using cDNA. The brain, mainly composed of highly differentiated and polarized cells such as neurons and glia, requires a highly complex intracellular transport system as indicated by the increased number of KIFs for their sophisticated functions. It is becoming increasingly clear that the cell uses a number of KIFs and tightly controls the direction, destination, and velocity of transportation of various important functional molecules, including mRNA. This report will set the foundation of KIF and intracellular transport research. PMID:11416179

  7. Functions of kinesin superfamily proteins in neuroreceptor trafficking.

    PubMed

    Wang, Na; Xu, Junyu

    2015-01-01

    Synaptic plasticity is widely regarded as the cellular basis of learning and memory. Understanding the molecular mechanism of synaptic plasticity has been one of center pieces of neuroscience research for more than three decades. It has been well known that the trafficking of α-amino-3-hydroxy-5-methylisoxazoloe-4-propionic acid- (AMPA-) type, N-methyl-D-aspartate- (NMDA-) type glutamate receptors to and from synapses is a key molecular event underlying many forms of synaptic plasticity. Kainate receptors are another type of glutamate receptors playing important roles in synaptic transmission. In addition, GABA receptors also play important roles in modulating the synaptic plasticity. Kinesin superfamily proteins (also known as KIFs) transport various cargos in both anterograde and retrograde directions through the interaction with different adaptor proteins. Recent studies indicate that KIFs regulate the trafficking of NMDA receptors, AMPA receptors, kainate receptors, and GABA receptors and thus play important roles in neuronal activity. Here we review the essential functions of KIFs in the trafficking of neuroreceptor and synaptic plasticity. PMID:26075252

  8. Analysis of Cooperative Behavior in Multiple Kinesins Motor Protein Transport by Varying Structural and Chemical Properties

    PubMed Central

    Uppulury, Karthik; Efremov, Artem K.; Driver, Jonathan W.; Jamison, D. Kenneth

    2012-01-01

    Intracellular transport is a fundamental biological process during which cellular materials are driven by enzymatic molecules called motor proteins. Recent optical trapping experiments and theoretical analysis have uncovered many features of cargo transport by multiple kinesin motor protein molecules under applied loads. These studies suggest that kinesins cooperate negatively under typical transport conditions, although some productive cooperation could be achieved under higher applied loads. However, the microscopic origins of this complex behavior are still not well understood. Using a discrete-state stochastic approach we analyze factors that affect the cooperativity among kinesin motors during cargo transport. Kinesin cooperation is shown to be largely unaffected by the structural and mechanical parameters of a multiple motor complex connected to a cargo, but much more sensitive to biochemical parameters affecting motor-filament affinities. While such behavior suggests the net negative cooperative responses of kinesins will persist across a relatively wide range of cargo types, it is also shown that the rates with which cargo velocities relax in time upon force perturbations are influenced by structural factors that affect the free energies of and load distributions within a multiple kinesin complex. The implications of these later results on transport phenomena where loads change temporally, as in the case of bidirectional transport, are discussed. PMID:24489614

  9. A Novel Kinesin-Like Protein with a Calmodulin-Binding Domain

    NASA Technical Reports Server (NTRS)

    Wang, W.; Takezawa, D.; Narasimhulu, S. B.; Reddy, A. S. N.; Poovaiah, B. W.

    1996-01-01

    Calcium regulates diverse developmental processes in plants through the action of calmodulin. A cDNA expression library from developing anthers of tobacco was screened with S-35-labeled calmodulin to isolate cDNAs encoding calmodulin-binding proteins. Among several clones isolated, a kinesin-like gene (TCK1) that encodes a calmodulin-binding kinesin-like protein was obtained. The TCK1 cDNA encodes a protein with 1265 amino acid residues. Its structural features are very similar to those of known kinesin heavy chains and kinesin-like proteins from plants and animals, with one distinct exception. Unlike other known kinesin-like proteins, TCK1 contains a calmodulin-binding domain which distinguishes it from all other known kinesin genes. Escherichia coli-expressed TCK1 binds calmodulin in a Ca(2+)-dependent manner. In addition to the presence of a calmodulin-binding domain at the carboxyl terminal, it also has a leucine zipper motif in the stalk region. The amino acid sequence at the carboxyl terminal of TCK1 has striking homology with the mechanochemical motor domain of kinesins. The motor domain has ATPase activity that is stimulated by microtubules. Southern blot analysis revealed that TCK1 is coded by a single gene. Expression studies indicated that TCKI is expressed in all of the tissues tested. Its expression is highest in the stigma and anther, especially during the early stages of anther development. Our results suggest that Ca(2+)/calmodulin may play an important role in the function of this microtubule-associated motor protein and may be involved in the regulation of microtubule-based intracellular transport.

  10. Kinesin and dynein superfamily proteins in organelle transport and cell division.

    PubMed

    Hirokawa, N; Noda, Y; Okada, Y

    1998-02-01

    Microtubule-associated motor proteins of the kinesin and dynein superfamilies play important roles in cellular mechanisms such as organelle transport and mitosis. Identification and characterization of new family members (in particular KIFC2, 16 new KIFs, XKlp2 and XKCM1 of the kinesin superfamily, and DHC2 and DHC3 of the dynein superfamily) and further characterization of known family members have improved our understanding of these cellular mechanisms. Sophisticated biophysical and structural analyses of monomeric and dimeric motor proteins have contributed to elucidating the mechanisms behind motor protein motility and polarity. PMID:9484596

  11. Discovery of a novel inhibitor of kinesin-like protein KIFC1.

    PubMed

    Zhang, Wei; Zhai, Ling; Wang, Yimin; Boohaker, Rebecca J; Lu, Wenyan; Gupta, Vandana V; Padmalayam, Indira; Bostwick, Robert J; White, E Lucile; Ross, Larry J; Maddry, Joseph; Ananthan, Subramaniam; Augelli-Szafran, Corinne E; Suto, Mark J; Xu, Bo; Li, Rongbao; Li, Yonghe

    2016-04-15

    Historically, drugs used in the treatment of cancers also tend to cause damage to healthy cells while affecting cancer cells. Therefore, the identification of novel agents that act specifically against cancer cells remains a high priority in the search for new therapies. In contrast with normal cells, most cancer cells contain multiple centrosomes which are associated with genome instability and tumorigenesis. Cancer cells can avoid multipolar mitosis, which can cause cell death, by clustering the extra centrosomes into two spindle poles, thereby enabling bipolar division. Kinesin-like protein KIFC1 plays a critical role in centrosome clustering in cancer cells, but is not essential for normal cells. Therefore, targeting KIFC1 may provide novel insight into selective killing of cancer cells. In the present study, we identified a small-molecule KIFC1 inhibitor, SR31527, which inhibited microtubule (MT)-stimulated KIFC1 ATPase activity with an IC50 value of 6.6 μM. By using bio layer interferometry technology, we further demonstrated that SR31527 bound directly to KIFC1 with high affinity (Kd=25.4 nM). Our results from computational modelling and saturation-transfer difference (STD)-NMR experiments suggest that SR31527 bound to a novel allosteric site of KIFC1 that appears suitable for developing selective inhibitors of KIFC1. Importantly, SR31527 prevented bipolar clustering of extra centrosomes in triple negative breast cancer (TNBC) cells and significantly reduced TNBC cell colony formation and viability, but was less toxic to normal fibroblasts. Therefore, SR31527 provides a valuable tool for studying the biological function of KIFC1 and serves as a potential lead for the development of novel therapeutic agents for breast cancer treatment. PMID:26846349

  12. Microtubule-associated protein-like binding of the kinesin-1 tail to microtubules.

    PubMed

    Seeger, Mark A; Rice, Sarah E

    2010-03-12

    The kinesin-1 molecular motor contains an ATP-dependent microtubule-binding site in its N-terminal head domain and an ATP-independent microtubule-binding site in its C-terminal tail domain. Here we demonstrate that a kinesin-1 tail fragment associates with microtubules with submicromolar affinity. Binding is largely electrostatic in nature, and is facilitated by a region of basic amino acids in the tail and the acidic E-hook at the C terminus of tubulin. The tail binds to a site on tubulin that is independent of the head domain-binding site but overlaps with the binding site of the microtubule-associated protein Tau. Surprisingly, the kinesin tail domain stimulates microtubule assembly and stability in a manner similar to Tau. The biological function of this strong kinesin tail-microtubule interaction remains to be seen, but it is likely to play an important role in kinesin regulation due to the close proximity of the microtubule-binding region to the conserved regulatory and cargo-binding domains of the tail. PMID:20071331

  13. Microtubule-associated Protein-like Binding of the Kinesin-1 Tail to Microtubules*

    PubMed Central

    Seeger, Mark A.; Rice, Sarah E.

    2010-01-01

    The kinesin-1 molecular motor contains an ATP-dependent microtubule-binding site in its N-terminal head domain and an ATP-independent microtubule-binding site in its C-terminal tail domain. Here we demonstrate that a kinesin-1 tail fragment associates with microtubules with submicromolar affinity. Binding is largely electrostatic in nature, and is facilitated by a region of basic amino acids in the tail and the acidic E-hook at the C terminus of tubulin. The tail binds to a site on tubulin that is independent of the head domain-binding site but overlaps with the binding site of the microtubule-associated protein Tau. Surprisingly, the kinesin tail domain stimulates microtubule assembly and stability in a manner similar to Tau. The biological function of this strong kinesin tail-microtubule interaction remains to be seen, but it is likely to play an important role in kinesin regulation due to the close proximity of the microtubule-binding region to the conserved regulatory and cargo-binding domains of the tail. PMID:20071331

  14. The interaction of Kinesin-1 with its adaptor protein JIP1 can be regulated via proteins binding to the JIP1-PTB domain

    PubMed Central

    2013-01-01

    Background The regulatory mechanisms of motor protein-dependent intracellular transport are still not fully understood. The kinesin-1-binding protein, JIP1, can function as an adaptor protein that links kinesin-1 and other JIP1-binding “cargo” proteins. However, it is unknown whether these “cargo” proteins influence the JIP1–kinesin-1 binding. Results We show here that JIP1–kinesin-1 binding in Neuro2a cells was dependent on conserved amino acid residues in the JIP1-phosphotyrosine binding (PTB) domain, including F687. In addition, mutation of F687 severely affected the neurite tip localization of JIP1. Proteomic analysis revealed another kinesin-1 binding protein, JIP3, as a major JIP1 binding protein. The association between JIP1 and JIP3 was dependent on the F687 residue in JIP1, and this association induced the formation of a stable ternary complex with kinesin-1. On the other hand, the binding of JIP1 and JIP3 was independent of kinesin-1 binding. We also show that other PTB binding proteins can interrupt the formation of the ternary complex. Conclusions The formation of the JIP1–kinesin-1 complex depends on the protein binding-status of the JIP1 PTB domain. This may imply a regulatory mechanism of kinesin-1-dependent intracellular transport. PMID:23496950

  15. Small Molecule Approach to Study the Function of Mitotic Kinesins.

    PubMed

    Al-Obaidi, Naowras; Kastl, Johanna; Mayer, Thomas U

    2016-01-01

    Mitotic motor proteins of the kinesin superfamily are critical for the faithful segregation of chromosomes and the formation of the two daughter cells during meiotic and mitotic M-phase. Of the 45 human kinesins, roughly a dozen are involved in the assembly of the bipolar spindle, alignment of chromosomes at the spindle equator, chromosome segregation, and cytokinesis. The functions of kinesins in these processes are highly diverse and include the transport of cargo molecules, sliding and bundling of microtubules, and regulation of microtubule dynamics. In light of this multitude of diverse functions and the complex functional interplay of different kinesins during M-phase, it is not surprising that one of the greatest challenges in cell biology is the functional dissection of individual motor proteins. Reversible and fast acting small molecules are powerful tools to accomplish this challenge. However, the validity of conclusions drawn from small molecule studies strictly depends on compound specificity. In this chapter, we present methods for the identification of small molecule inhibitors of a motor protein of interest. In particular, we focus on a protein-based large throughput screen to identify inhibitors of the ATPase activity of kinesins. Furthermore, we provide protocols and guidelines for secondary screens to validate hits and select for specific inhibitors. PMID:27193856

  16. Stochastic Mechanochemistry for Processive Motor Proteins: Kinesin Crouches before Sprinting.

    NASA Astrophysics Data System (ADS)

    Kim, Young C.

    2005-03-01

    Experiments by Block and coworkers (2003) applied assisting, resisting, and sideways loads F=(Fx,Fy,Fz) to single-molecules of kinesin as they moved along a microtubule (MT) taking steps of size d˜8.2 nm. The velocity, Vx, and the randomness were observed as functions of F and [ATP]. To uncover substeps and intermediate motions from such data, we have extended a discrete-state stochastic model, previously applied to kinesin^ 1 and myosin V,^2 to allow for the vectorial loading of processive motors by invoking a three- dimensional ``energy landscape'' with a potential φ(F).^3 The size of the attached bead and the resulting angle of the motor's tether relative to the track play a crucial role. The analysis for kinesin then indicates that on binding ATP (and, possibly, catalysing hydrolysis, etc.) the motor `crouches,' i.e., the point of attachment of the tether moves downwards (toward the MT) by 0.5-0.8 nm but forwards by only 0.1-0.2 nm, before completing a rapid swing of close to 8 nm. Unlike the scalar, Fx-only, analysis,^1 this is consistent with the observations of Higuchi and coworkers. Furthermore, assisting (i.e., forward) loads are opposed since the `upwards' component, Fz, is enhanced by ˜2 pN which reduces the velocity.1. M. E. Fisher and A. B. Kolomeisky, PNAS USA 98, 7748 (2001).2. A. B. Kolomeisky and M. E. Fisher, Biophys. J. 84, 1642 (2003).3. M. E. Fisher and Y. C. Kim, Biophys. J. 86, 527a, 2738-Plat. (2004).

  17. Kinesin-13 regulates flagellar, interphase, and mitotic microtubule dynamics in Giardia intestinalis.

    PubMed

    Dawson, Scott C; Sagolla, Meredith S; Mancuso, Joel J; Woessner, David J; House, Susan A; Fritz-Laylin, Lillian; Cande, W Zacheus

    2007-12-01

    Microtubule depolymerization dynamics in the spindle are regulated by kinesin-13, a nonprocessive kinesin motor protein that depolymerizes microtubules at the plus and minus ends. Here we show that a single kinesin-13 homolog regulates flagellar length dynamics, as well as other interphase and mitotic dynamics in Giardia intestinalis, a widespread parasitic diplomonad protist. Both green fluorescent protein-tagged kinesin-13 and EB1 (a plus-end tracking protein) localize to the plus ends of mitotic and interphase microtubules, including a novel localization to the eight flagellar tips, cytoplasmic anterior axonemes, and the median body. The ectopic expression of a kinesin-13 (S280N) rigor mutant construct caused significant elongation of the eight flagella with significant decreases in the median body volume and resulted in mitotic defects. Notably, drugs that disrupt normal interphase and mitotic microtubule dynamics also affected flagellar length in Giardia. Our study extends recent work on interphase and mitotic kinesin-13 functioning in metazoans to include a role in regulating flagellar length dynamics. We suggest that kinesin-13 universally regulates both mitotic and interphase microtubule dynamics in diverse microbial eukaryotes and propose that axonemal microtubules are subject to the same regulation of microtubule dynamics as other dynamic microtubule arrays. Finally, the present study represents the first use of a dominant-negative strategy to disrupt normal protein function in Giardia and provides important insights into giardial microtubule dynamics with relevance to the development of antigiardial compounds that target critical functions of kinesins in the giardial life cycle. PMID:17766466

  18. Effects of kinesin-5 inhibition on dendritic architecture and microtubule organization

    PubMed Central

    Kahn, Olga I.; Sharma, Vandana; González-Billault, Christian; Baas, Peter W.

    2015-01-01

    Kinesin-5 is a slow homotetrameric motor protein best known for its essential role in the mitotic spindle, where it limits the rate at which faster motors can move microtubules. In neurons, experimental suppression of kinesin-5 causes the axon to grow faster by increasing the mobility of microtubules in the axonal shaft and the invasion of microtubules into the growth cone. Does kinesin-5 act differently in dendrites, given that they have a population of minus end–distal microtubules not present in axons? Using rodent primary neurons in culture, we found that inhibition of kinesin-5 during various windows of time produces changes in dendritic morphology and microtubule organization. Specifically, dendrites became shorter and thinner and contained a greater proportion of minus end–distal microtubules, suggesting that kinesin-5 acting normally restrains the number of minus end–distal microtubules that are transported into dendrites. Additional data indicate that, in neurons, CDK5 is the kinase responsible for phosphorylating kinesin-5 at Thr-926, which is important for kinesin-5 to associate with microtubules. We also found that kinesin-5 associates preferentially with microtubules rich in tyrosinated tubulin. This is consistent with an observed accumulation of kinesin-5 on dendritic microtubules, as they are known to be less detyrosinated than axonal microtubules. PMID:25355946

  19. Stable Kinesin and Dynein Assemblies Drive the Axonal Transport of Mammalian Prion Protein Vesicles

    PubMed Central

    Encalada, Sandra E.; Szpankowski, Lukasz; Xia, Chun-hong; Goldstein, Lawrence S. B.

    2012-01-01

    SUMMARY Kinesin and dynein are opposite-polarity microtubule motors that drive the tightly regulated transport of a variety of cargoes. Both motors can bind to cargo but their overall composition on axonal vesicles and whether this composition directly modulates transport activity, is unknown. Here we characterize the intracellular transport and steady state motor subunit composition of mammalian prion protein (PrPC) vesicles. We identify Kinesin-1 and cytoplasmic dynein as major PrPC vesicle motor complexes, and show that their activities are tightly coupled. Regulation of normal retrograde transport by Kinesin-1 is independent of dynein-vesicle attachment, and requires the vesicle association of a complete Kinesin-1 heavy and light chain holoenzyme. Furthermore, motor subunits remain stably associated with stationary as well as with moving vesicles. Our data suggest a coordination model where PrPC vesicles maintain a stable population of associated motors whose activity is modulated by regulatory factors instead of by structural changes to motor-cargo associations. PMID:21335237

  20. WD40-repeat protein 62 is a JNK-phosphorylated spindle pole protein required for spindle maintenance and timely mitotic progression

    PubMed Central

    Bogoyevitch, Marie A.; Yeap, Yvonne Y. C.; Qu, Zhengdong; Ngoei, Kevin R.; Yip, Yan Y.; Zhao, Teresa T.; Heng, Julian I.; Ng, Dominic C. H.

    2012-01-01

    Summary The impact of aberrant centrosomes and/or spindles on asymmetric cell division in embryonic development indicates the tight regulation of bipolar spindle formation and positioning that is required for mitotic progression and cell fate determination. WD40-repeat protein 62 (WDR62) was recently identified as a spindle pole protein linked to the neurodevelopmental defect of microcephaly but its roles in mitosis have not been defined. We report here that the in utero electroporation of neuroprogenitor cells with WDR62 siRNAs induced their cell cycle exit and reduced their proliferative capacity. In cultured cells, we demonstrated cell-cycle-dependent accumulation of WDR62 at the spindle pole during mitotic entry that persisted until metaphase–anaphase transition. Utilizing siRNA depletion, we revealed WDR62 function in stabilizing the mitotic spindle specifically during metaphase. WDR62 loss resulted in spindle orientation defects, decreased the integrity of centrosomes displaced from the spindle pole and delayed mitotic progression. Additionally, we revealed JNK phosphorylation of WDR62 is required for maintaining metaphase spindle organization during mitosis. Our study provides the first functional characterization of WDR62 and has revealed requirements for JNK/WDR62 signaling in mitotic spindle regulation that may be involved in coordinating neurogenesis. PMID:22899712

  1. In vivo collection of rare proteins using kinesin-based "nano-harvesters".

    SciTech Connect

    Bachand, Marlene; Bachand, George David; Greene, Adrienne Celeste; Carroll-Portillo, Amanda

    2008-11-01

    In this project, we have developed a novel platform for capturing, transport, and separating target analytes using the work harnessed from biomolecular transport systems. Nanoharvesters were constructed by co-organizing kinesin motor proteins and antibodies on a nanocrystal quantum dot (nQD) scaffold. Attachment of kinesin and antibodies to the nQD was achieved through biotin-streptavidin non-covalent bonds. Assembly of the nanoharvesters was characterized using a modified enzyme-linked immunosorbent assay (ELISA) that confirmed attachment of both proteins. Nanoharvesters selective against tumor necrosis factor-{alpha} (TNF-{alpha}) and nuclear transcription factor-{kappa}B (NF-{kappa}B) were capable of detecting target antigens at <100 ng/mL in ELISAs. A motility-based assay was subsequently developed using an antibody-sandwich approach in which the target antigen (TNF-{alpha}) formed a sandwich with the red-emitting nanoharvester and green-emitting detection nQD. In this format, successful sandwich formation resulted in a yellow emission associated with surface-bound microtubules. Step-wise analysis of sandwich formation suggested that the motility function of the kinesin motors was not adversely affected by either antigen capture or the subsequent binding of the detection nQDs. TNF-{alpha} was detected as low as {approx}1.5 ng/mL TNF-{alpha}, with 5.2% of the nanoharvesters successfully capturing the target analyte and detection nQDs. Overall, these results demonstrate the ability to capture target protein analytes in vitro using the kinesin-based nanoharvesters in nanofluidic environments. This system has direct relevance for lab-on-a-chip applications where pressure-driven or electrokinetic movement of fluids is impractical, and offers potential application for in vivo capture of rare proteins within the cytoplasmic domain of live cells.

  2. The secretory epithelial cells of the choroid plexus employ a novel kinesin-related protein.

    PubMed

    Rogers, K R; Griffin, M; Brophy, P J

    1997-11-01

    The proteins of the kinesin superfamily (KIFs) are microtubule-based molecular motors whose functions include the transport of membrane-bound organelles. We have isolated the cDNA encoding a novel kinesin by reverse transcription and polymerase chain reaction using degenerate primers that flank the highly conserved motor domain. The deduced amino acid sequence of this protein shows considerable similarity to both KIF1A and KIF1B thus defining it as a new member of the monomeric KIF1/unc104 family. The C-terminal domain of KIF1D is the most divergent by comparison with the other members of the family, which supports the view that the tail region is responsible for conferring specificity on the interactions of these kinesins with their cargoes. In the adult rat brain KIF1D mRNA is expressed in neurons in the hippocampus and in the Purkinje cells of the cerebellum. However, the levels of KIF1D are particularly high in the choroid plexus which is a polarised epithelium that lines the lateral, third and fourth ventricles. The major function of the epithelial cells in the choroid plexus is to produce cerebrospinal fluid, which suggests that KIF1D plays an important role in their secretory function. PMID:9427518

  3. Kinesin-5 inhibitor resistance is driven by kinesin-12.

    PubMed

    Sturgill, Emma G; Norris, Stephen R; Guo, Yan; Ohi, Ryoma

    2016-04-25

    The microtubule (MT) cytoskeleton bipolarizes at the onset of mitosis to form the spindle. In animal cells, the kinesin-5 Eg5 primarily drives this reorganization by actively sliding MTs apart. Its primacy during spindle assembly renders Eg5 essential for mitotic progression, demonstrated by the lethal effects of kinesin-5/Eg5 inhibitors (K5Is) administered in cell culture. However, cultured cells can acquire resistance to K5Is, indicative of alternative spindle assembly mechanisms and/or pharmacological failure. Through characterization of novel K5I-resistant cell lines, we unveil an Eg5 motility-independent spindle assembly pathway that involves both an Eg5 rigor mutant and the kinesin-12 Kif15. This pathway centers on spindle MT bundling instead of Kif15 overexpression, distinguishing it from those previously described. We further show that large populations (∼10(7) cells) of HeLa cells require Kif15 to survive K5I treatment. Overall, this study provides insight into the functional plasticity of mitotic kinesins during spindle assembly and has important implications for the development of antimitotic regimens that target this process. PMID:27091450

  4. Kinesin superfamily proteins (KIFs): Various functions and their relevance for important phenomena in life and diseases.

    PubMed

    Hirokawa, Nobutaka; Tanaka, Yosuke

    2015-05-15

    Kinesin superfamily proteins (KIFs) largely serve as molecular motors on the microtubule system and transport various cellular proteins, macromolecules, and organelles. These transports are fundamental to cellular logistics, and at times, they directly modulate signal transduction by altering the semantics of informational molecules. In this review, we will summarize recent approaches to the regulation of the transport destinations and to the physiological relevance of the role of these proteins in neuroscience, ciliary functions, and metabolic diseases. Understanding these burning questions will be essential in establishing a new paradigm of cellular functions and disease pathogenesis. PMID:25724902

  5. Sorting Nexin 17 Interacts Directly with Kinesin Superfamily KIF1Bbeta Protein.

    PubMed

    Seog, Dae-Hyun; Han, Jin

    2008-08-01

    KIF1Bbeta is a member of the Kinesin superfamily proteins (KIFs), which are microtubule-dependent molecular motors that are involved in various intracellular organellar transport processes. KIF1Bbeta is not restricted to neuronal systems, however, is widely expressed in other tissues, even though the function of KIF1Bbeta is still unclear. To elucidate the KIF1Bbeta-binding proteins in non-neuronal cells, we used the yeast two-hybrid system, and found a specific interaction of KIF1Bbeta and the sorting nexin (SNX) 17. The C-terminal region of SNX17 is required for the binding with KIF1Bbeta. SNX17 protein bound to the specific region of KIF1Bbeta (813-916. aa), but not to other kinesin family members. In addition, this specific interaction was also observed in the Glutathione S-transferase pull-down assay. An antibody to SNX17 specifically co-immunoprecipitated KIF1Bbeta associated with SNX17 from mouse brain extracts. These results suggest that SNX17 might be involved in the KIF1Bbeta-mediated transport as a KIF1Bbeta adaptor protein. PMID:19967056

  6. Localization of kinesin superfamily proteins to the connecting cilium of fish photoreceptors.

    PubMed

    Beech, P L; Pagh-Roehl, K; Noda, Y; Hirokawa, N; Burnside, B; Rosenbaum, J L

    1996-04-01

    Kinesin superfamily proteins (KIFs) are probable motors in vesicular and non-vesicular transport along microtubular tracks. Since a variety of KIFs have been recently identified in the motile flagella of Chlamydomonas, we sought to ascertain whether KIFs are also associated with the connecting cilia of vertebrate rod photoreceptors. As the only structural link between the rod inner segment and the photosensitive rod outer segment, the connecting cilium is thought to be the channel through which all material passes into and out of the outer segment from the rod cell body. We have performed immunological tests on isolated sunfish rod inner-outer segments (RIS-ROS) using two antibodies that recognize the conserved motor domain of numerous KIFs (anti-LAGSE, a peptide antibody, and anti-Klp1 head, generated against the N terminus of Chlamydomonas Klp1) as well as an antibody specific to a neuronal KIF, KIF3A. On immunoblots of RIS-ROS, LAGSE antibody detected a prominent band at approximately 117 kDa, which is likely to be kinesin heavy chain, and Klp1 head antibody detected a single band at approximately 170 kDa; KIF3A antibody detected a polypeptide at approximately 85 kDa which co-migrated with mammalian KIF3A and displayed ATP-dependent release from rod cytoskeletons. Immunofluorescence localizations with anti-LAGSE and anti-Klp1 head antibodies detected epitopes in the axoneme and ellipsoid, and immunoelectron microscopy with the LAGSE antibody showed that the connecting cilium region was particularly antigenic. Immunofluorescence with anti-KIF3A showed prominent labelling of the connecting cilium and the area surrounding its basal body; the outer segment axoneme and parts of the inner segment coincident with microtubules were also labelled. We propose that these putative kinesin superfamily proteins may be involved in the translocation of material between the rod inner and outer segments. PMID:8718680

  7. TRIM3 Regulates the Motility of the Kinesin Motor Protein KIF21B

    PubMed Central

    Labonté, Dorthe; Thies, Edda; Pechmann, Yvonne; Groffen, Alexander J.; Verhage, Matthijs; Smit, August B.; van Kesteren, Ronald E.; Kneussel, Matthias

    2013-01-01

    Kinesin superfamily proteins (KIFs) are molecular motors that transport cellular cargo along the microtubule cytoskeleton. KIF21B is a neuronal kinesin that is highly enriched in dendrites. The regulation and specificity of microtubule transport involves the binding of motors to individual cargo adapters and accessory proteins. Moreover, posttranslational modifications of either the motor protein, their cargos or tubulin regulate motility, cargo recognition and the binding or unloading of cargos. Here we show that the ubiquitin E3 ligase TRIM3, also known as BERP, interacts with KIF21B via its RBCC domain. TRIM3 is found at intracellular and Golgi-derived vesicles and co-localizes with the KIF21B motor in neurons. Trim3 gene deletion in mice and TRIM3 overexpression in cultured neurons both suggested that the E3-ligase function of TRIM3 is not involved in KIF21B degradation, however TRIM3 depletion reduces the motility of the motor. Together, our data suggest that TRIM3 is a regulator in the modulation of KIF21B motor function. PMID:24086586

  8. TRIM3 regulates the motility of the kinesin motor protein KIF21B.

    PubMed

    Labonté, Dorthe; Thies, Edda; Pechmann, Yvonne; Groffen, Alexander J; Verhage, Matthijs; Smit, August B; van Kesteren, Ronald E; Kneussel, Matthias

    2013-01-01

    Kinesin superfamily proteins (KIFs) are molecular motors that transport cellular cargo along the microtubule cytoskeleton. KIF21B is a neuronal kinesin that is highly enriched in dendrites. The regulation and specificity of microtubule transport involves the binding of motors to individual cargo adapters and accessory proteins. Moreover, posttranslational modifications of either the motor protein, their cargos or tubulin regulate motility, cargo recognition and the binding or unloading of cargos. Here we show that the ubiquitin E3 ligase TRIM3, also known as BERP, interacts with KIF21B via its RBCC domain. TRIM3 is found at intracellular and Golgi-derived vesicles and co-localizes with the KIF21B motor in neurons. Trim3 gene deletion in mice and TRIM3 overexpression in cultured neurons both suggested that the E3-ligase function of TRIM3 is not involved in KIF21B degradation, however TRIM3 depletion reduces the motility of the motor. Together, our data suggest that TRIM3 is a regulator in the modulation of KIF21B motor function. PMID:24086586

  9. A novel split kinesin assay identifies motor proteins that interact with distinct vesicle populations

    PubMed Central

    Jenkins, Brian; Decker, Helena; Bentley, Marvin; Luisi, Julie

    2012-01-01

    Identifying the kinesin motors that interact with different vesicle populations is a longstanding and challenging problem with implications for many aspects of cell biology. Here we introduce a new live-cell assay to assess kinesin–vesicle interactions and use it to identify kinesins that bind to vesicles undergoing dendrite-selective transport in cultured hippocampal neurons. We prepared a library of “split kinesins,” comprising an axon-selective kinesin motor domain and a series of kinesin tail domains that can attach to their native vesicles; when the split kinesins were assembled by chemical dimerization, bound vesicles were misdirected into the axon. This method provided highly specific results, showing that three Kinesin-3 family members—KIF1A, KIF13A, and KIF13B—interacted with dendritic vesicle populations. This experimental paradigm allows a systematic approach to evaluate motor–vesicle interactions in living cells. PMID:22908316

  10. Roles for kinesin and myosin during cytokinesis.

    PubMed Central

    Hepler, Peter K; Valster, Aline; Molchan, Tasha; Vos, Jan W

    2002-01-01

    Cytokinesis in higher plants involves the phragmoplast, a complex cytoplasmic structure that consists of microtubules (MTs), microfilaments (MFs) and membrane elements. Both MTs and MFs are essential for cell plate formation, although it is not clear which motor proteins are involved. Some candidate processes for motor proteins include transport of Golgi vesicles to the plane of the cell plate and the spatiotemporal organization of the cytoskeletal elements in order to achieve proper deposition and alignment of the cell plate. We have focused on the kinesin-like calmodulin binding protein (KCBP) and, more broadly, on myosins. Using an antibody that constitutively activates KCBP, we find that this MT motor, which is minus-end directed, contributes to the organization of the spindle and phragmoplast MTs. It does not participate in vesicle transport; rather, because of the orientation of the phragmoplast MTs, it is supposed that plus-end kinesins fill this role. Myosins, on the other hand, based on their inhibition with 2,3-butanedione monoxime and 1-(5-iodonaphthalene-1-sulphonyl)-1H-hexahydro-1,4-diazepine (ML-7), are associated with the process of post-mitotic spindle/phragmoplast alignment and with late lateral expansion of the cell plate. They are also not the principal motors involved in vesicle transport. PMID:12079671

  11. Advances in the discovery of kinesin spindle protein (Eg5) inhibitors as antitumor agents.

    PubMed

    El-Nassan, Hala Bakr

    2013-04-01

    Cancer is considered as one of the most serious health problems. Despite the presence of many effective chemotherapeutic agents, their severe side effects together with the appearance of mutant tumors limit the use of these drugs and increase the need for new anticancer agents. Eg5 represents an attractive target for medicinal chemists since Eg5 is overexpressed in many proliferative tissues while almost no Eg5 is detected in nonproliferative tissues. Many Eg5 inhibitors displayed potent anticancer activity against some of the mutant tumors with limited side effects. The present review provides an overview about the progress in the discovery of Eg5 inhibitors especially from 2009 to 2012 as well as the clinical trials conducted on some of these inhibitors. PMID:23434636

  12. Dissection of Kinesin's Processivity

    PubMed Central

    Adio, Sarah; Jaud, Johann; Ebbing, Bettina; Rief, Matthias; Woehlke, Günther

    2009-01-01

    The protein family of kinesins contains processive motor proteins that move stepwise along microtubules. This mechanism requires the precise coupling of the catalytic steps in the two heads, and their precise mechanical coordination. Here we show that these functionalities can be uncoupled in chimera of processive and non-processive kinesins. A chimera with the motor domain of Kinesin-1 and the dimerization domain of a non-processive Kinesin-3 motor behaves qualitatively as conventional kinesin and moves processively in TIRF and bead motility assays, suggesting that spatial proximity of two Kinein-1 motor domains is sufficient for processive behavior. In the reverse chimera, the non-processive motor domains are unable to step along microtubules, despite the presence of the Kinesin-1 neck coiled coil. Still, ATP-binding to one head of these chimera induces ADP-release from the partner head, a characteristic feature of alternating site catalysis. These results show that processive movement of kinesin dimers requires elements in the motor head that respond to ADP-release and induce stepping, in addition to a proper spacing of the motor heads via the neck coiled coil. PMID:19242550

  13. The kinesin KIF9 and reggie/flotillin proteins regulate matrix degradation by macrophage podosomes

    PubMed Central

    Cornfine, Susanne; Himmel, Mirko; Kopp, Petra; el Azzouzi, Karim; Wiesner, Christiane; Krüger, Marcus; Rudel, Thomas; Linder, Stefan

    2011-01-01

    Podosomes are actin-based matrix contacts in a variety of cell types, most notably monocytic cells, and are characterized by their ability to lyse extracellular matrix material. Besides their dependence on actin regulation, podosomes are also influenced by microtubules and microtubule-dependent transport processes. Here we describe a novel role for KIF9, a previously little-characterized member of the kinesin motor family, in the regulation of podosomes in primary human macrophages. We find that small interfering RNA (siRNA)/short-hairpin RNA–induced knockdown of KIF9 significantly affects both numbers and matrix degradation of podosomes. Overexpression and microinjection experiments reveal that the unique C-terminal region of KIF9 is crucial for these effects, presumably through binding of specific interactors. Indeed, we further identify reggie-1/flotillin-2, a signaling mediator between intracellular vesicles and the cell periphery, as an interactor of the KIF9 C-terminus. Reggie-1 dynamically colocalizes with KIF9 in living cells, and, consistent with KIF9-mediated effects, siRNA-induced knockdown of reggies/flotillins significantly impairs matrix degradation by podosomes. In sum, we identify the kinesin KIF9 and reggie/flotillin proteins as novel regulators of macrophage podosomes and show that their interaction is critical for the matrix-degrading ability of these structures. PMID:21119006

  14. Identification and classification of 16 new kinesin superfamily (KIF) proteins in mouse genome.

    PubMed

    Nakagawa, T; Tanaka, Y; Matsuoka, E; Kondo, S; Okada, Y; Noda, Y; Kanai, Y; Hirokawa, N

    1997-09-01

    KIF (kinesin superfamily) proteins are microtubule-dependent molecular motors that play important roles in intracellular transport and cell division. The extent to which KIFs are involved in various transporting phenomena, as well as their regulation mechanism, are unknown. The identification of 16 new KIFs in this report doubles the existing number of KIFs known in the mouse. Conserved nucleotide sequences in the motor domain were amplified by PCR using cDNAs of mouse nervous tissue, kidney, and small intestine as templates. The new KIFs were studied with respect to their expression patterns in different tissues, chromosomal location, and molecular evolution. Our results suggest that (i) there is no apparent tendency among related subclasses of KIFs of cosegregation in chromosomal mapping, and (ii) according to their tissue distribution patterns, KIFs can be divided into two classes-i.e., ubiquitous and specific tissue-dominant. Further characterization of KIFs may elucidate unknown fundamental phenomena underlying intracellular transport. Finally, we propose a straightforward nomenclature system for the members of the mouse kinesin superfamily. PMID:9275178

  15. Brittle Culm 12, a dual-targeting kinesin-4 protein, controls cell-cycle progression and wall properties in rice

    PubMed Central

    Zhang, Mu; Zhang, Baocai; Qian, Qian; Yu, Yanchun; Li, Rui; Zhang, Junwen; Liu, Xiangling; Zeng, Dali; Li, Jiayang; Zhou, Yihua

    2010-01-01

    Kinesins are encoded by a large gene family involved in many basic processes of plant development. However, the number of functionally identified kinesins in rice is very limited. Here, we report the functional characterization of Brittle Culm12 (BC12), a gene encoding a kinesin-4 protein. bc12 mutants display dwarfism resulting from a significant reduction in cell number and brittleness due to an alteration in cellulose microfibril orientation and wall composition. BC12 is expressed mainly in tissues undergoing cell division and secondary wall thickening. In vitro biochemical analyses verified BC12 as an authentic motor protein. This protein was present in both the nucleus and cytoplasm and associated with microtubule arrays during cell division. Mitotic microtubule array comparison, flow cytometric analysis and expression assays of cyclin-dependent kinase (CDK) complexes in root-tip cells showed that cell-cycle progression is affected in bc12 mutants. BC12 is very probably regulated by CDKA;3 based on yeast two-hybrid and microarray data. Therefore, BC12 functions as a dual-targeting kinesin protein and is implicated in cell-cycle progression, cellulose microfibril deposition and wall composition in the monocot plant rice. PMID:20444225

  16. Plant Kinesin-Like Calmodulin Binding Protein Employs Its Regulatory Domain for Dimerization

    PubMed Central

    Vinogradova, Maia V.; Malanina, Galina G.; Waitzman, Joshua S.; Rice, Sarah E.; Fletterick, Robert J.

    2013-01-01

    Kinesin-like calmodulin binding protein (KCBP), a Kinesin-14 family motor protein, is involved in the structural organization of microtubules during mitosis and trichome morphogenesis in plants. The molecular mechanism of microtubule bundling by KCBP remains unknown. KCBP binding to microtubules is regulated by Ca2+-binding proteins that recognize its C-terminal regulatory domain. In this work, we have discovered a new function of the regulatory domain. We present a crystal structure of an Arabidopsis KCBP fragment showing that the C-terminal regulatory domain forms a dimerization interface for KCBP. This dimerization site is distinct from the dimerization interface within the N-terminal domain. Side chains of hydrophobic residues of the calmodulin binding helix of the regulatory domain form the C-terminal dimerization interface. Biochemical experiments show that another segment of the regulatory domain located beyond the dimerization interface, its negatively charged coil, is unexpectedly and absolutely required to stabilize the dimers. The strong microtubule bundling properties of KCBP are unaffected by deletion of the C-terminal regulatory domain. The slow minus-end directed motility of KCBP is also unchanged in vitro. Although the C-terminal domain is not essential for microtubule bundling, we suggest that KCBP may use its two independent dimerization interfaces to support different types of bundled microtubule structures in cells. Two distinct dimerization sites may provide a mechanism for microtubule rearrangement in response to Ca2+ signaling since Ca2+- binding proteins can disengage KCBP dimers dependent on its C-terminal dimerization interface. PMID:23805258

  17. Plant Kinesin-Like Calmodulin Binding Protein Employs Its Regulatory Domain for Dimerization.

    PubMed

    Vinogradova, Maia V; Malanina, Galina G; Waitzman, Joshua S; Rice, Sarah E; Fletterick, Robert J

    2013-01-01

    Kinesin-like calmodulin binding protein (KCBP), a Kinesin-14 family motor protein, is involved in the structural organization of microtubules during mitosis and trichome morphogenesis in plants. The molecular mechanism of microtubule bundling by KCBP remains unknown. KCBP binding to microtubules is regulated by Ca(2+)-binding proteins that recognize its C-terminal regulatory domain. In this work, we have discovered a new function of the regulatory domain. We present a crystal structure of an Arabidopsis KCBP fragment showing that the C-terminal regulatory domain forms a dimerization interface for KCBP. This dimerization site is distinct from the dimerization interface within the N-terminal domain. Side chains of hydrophobic residues of the calmodulin binding helix of the regulatory domain form the C-terminal dimerization interface. Biochemical experiments show that another segment of the regulatory domain located beyond the dimerization interface, its negatively charged coil, is unexpectedly and absolutely required to stabilize the dimers. The strong microtubule bundling properties of KCBP are unaffected by deletion of the C-terminal regulatory domain. The slow minus-end directed motility of KCBP is also unchanged in vitro. Although the C-terminal domain is not essential for microtubule bundling, we suggest that KCBP may use its two independent dimerization interfaces to support different types of bundled microtubule structures in cells. Two distinct dimerization sites may provide a mechanism for microtubule rearrangement in response to Ca(2+) signaling since Ca(2+)- binding proteins can disengage KCBP dimers dependent on its C-terminal dimerization interface. PMID:23805258

  18. Generating a "Humanized" Drosophila S2 Cell Line Sensitive to Pharmacological Inhibition of Kinesin-5

    PubMed Central

    Ye, Anna A.; Maresca, Thomas J.

    2016-01-01

    Kinetochores are large protein-based structures that assemble on centromeres during cell division and link chromosomes to spindle microtubules. Proper distribution of the genetic material requires that sister kinetochores on every chromosome become bioriented by attaching to microtubules from opposite spindle poles before progressing into anaphase. However, erroneous, non-bioriented attachment states are common and cellular pathways exist to both detect and correct such attachments during cell division. The process by which improper kinetochore-microtubule interactions are destabilized is referred to as error correction. To study error correction in living cells, incorrect attachments are purposely generated via chemical inhibition of kinesin-5 motor, which leads to monopolar spindle assembly, and the transition from mal-orientation to biorientation is observed following drug washout. The large number of chromosomes in many model tissue culture cell types poses a challenge in observing individual error correction events. Drosophila S2 cells are better subjects for such studies as they possess as few as 4 pairs of chromosomes. However, small molecule kinesin-5 inhibitors are ineffective against Drosophila kinesin-5 (Klp61F). Here we describe how to build a Drosophila cell line that effectively replaces Klp61F with human kinesin-5, which renders the cells sensitive to pharmacological inhibition of the motor and suitable for use in the cell-based error correction assay. PMID:26863489

  19. The actin-binding ERM protein Moesin directly regulates spindle assembly and function during mitosis.

    PubMed

    Vilmos, Péter; Kristó, Ildikó; Szikora, Szilárd; Jankovics, Ferenc; Lukácsovich, Tamás; Kari, Beáta; Erdélyi, Miklós

    2016-06-01

    Ezrin-Radixin-Moesin proteins are highly conserved, actin-binding cytoskeletal proteins that play an essential role in microvilli formation, T-cell activation, and tumor metastasis by linking actin filaments to the plasma membrane. Recent studies demonstrated that the only Ezrin-Radixin-Moesin protein of Drosophila melanogaster, Moesin, is involved in mitotic spindle function through stabilizing cell shape and microtubules at the cell cortex. We previously observed that Moesin localizes to the mitotic spindle; hence, we tested for the biological significance of this surprising localization and investigated whether it plays a direct role in spindle function. To separate the cortical and spindle functions of Moesin during mitosis we combined cell biological and genetic methods. We used early Drosophila embryos, in which mitosis occurs in the absence of a cell cortex, and found in vivo evidence for the direct requirement of Moesin in mitotic spindle assembly and function. We also found that the accumulation of Moesin precedes the construction of the microtubule spindle, and the fusiform structure formed by Moesin persists even after the microtubules have disassembled. PMID:27006187

  20. Spindle Checkpoint Protein Xmad1 Recruits Xmad2 to Unattached Kinetochores

    PubMed Central

    Chen, Rey-Huei; Shevchenko, Andrej; Mann, Matthias; Murray, Andrew W.

    1998-01-01

    The spindle checkpoint prevents the metaphase to anaphase transition in cells containing defects in the mitotic spindle or in chromosome attachment to the spindle. When the checkpoint protein Xmad2 is depleted from Xenopus egg extracts, adding Xmad2 to its endogenous concentration fails to restore the checkpoint, suggesting that other checkpoint component(s) were depleted from the extract through their association with Xmad2. Mass spectrometry provided peptide sequences from an 85-kD protein that coimmunoprecipitates with Xmad2 from egg extracts. This information was used to clone XMAD1, which encodes a homologue of the budding yeast (Saccharomyces cerevisiae) checkpoint protein Mad1. Xmad1 is essential for establishing and maintaining the spindle checkpoint in egg extracts. Like Xmad2, Xmad1 localizes to the nuclear envelope and the nucleus during interphase, and to those kinetochores that are not bound to spindle microtubules during mitosis. Adding an anti-Xmad1 antibody to egg extracts inactivates the checkpoint and prevents Xmad2 from localizing to unbound kinetochores. In the presence of excess Xmad2, neither chromosomes nor Xmad1 are required to activate the spindle checkpoint, suggesting that the physiological role of Xmad1 is to recruit Xmad2 to kinetochores that have not bound microtubules. PMID:9786942

  1. Kinesin superfamily protein 2A (KIF2A) functions in suppression of collateral branch extension.

    PubMed

    Homma, Noriko; Takei, Yosuke; Tanaka, Yosuke; Nakata, Takao; Terada, Sumio; Kikkawa, Masahide; Noda, Yasuko; Hirokawa, Nobutaka

    2003-07-25

    Through interactions with microtubules, the kinesin superfamily of proteins (KIFs) could have multiple roles in neuronal function and development. During neuronal development, postmitotic neurons develop primary axons extending toward targets, while other collateral branches remain short. Although the process of collateral branching is important for correct wiring of the brain, the mechanisms involved are not well understood. In this study, we analyzed kif2a(-/-) mice, whose brains showed multiple phenotypes, including aberrant axonal branching due to overextension of collateral branches. In kif2a(-/-) growth cones, microtubule-depolymerizing activity decreased. Moreover, many individual microtubules showed abnormal behavior at the kif2a(-/-) cell edge. Based on these results, we propose that KIF2A regulates microtubule dynamics at the growth cone edge by depolymerizing microtubules and that it plays an important role in the suppression of collateral branch extension. PMID:12887924

  2. Kinesin superfamily proteins and the regulation of microtubule dynamics in morphogenesis.

    PubMed

    Niwa, Shinsuke

    2015-01-01

    Kinesin superfamily proteins (KIFs) are microtubule-dependent molecular motors that serve as sources of force for intracellular transport and cell division. Recent studies have revealed new roles of KIFs as microtubule stabilizers and depolymerizers, and these activities are fundamental to cellular morphogenesis and mammalian development. KIF2A and KIF19A have microtubule-depolymerizing activities and regulate the neuronal morphology and cilia length, respectively. KIF21A and KIF26A work as microtubule stabilizers that regulate axonal morphology. Morphological defects that are similar to human diseases are observed in mice in which these KIF genes have been deleted. Actually, KIF2A and KIF21A have been identified as causes of human neuronal diseases. In this review, the functions of these atypical KIFs that regulate microtubule dynamics are discussed. Moreover, some interesting unanswered questions and hypothetical answers to them are discussed. PMID:25347970

  3. Crystal structure of the Candida albicans Kar3 kinesin motor domain fused to maltose-binding protein

    SciTech Connect

    Delorme, Caroline; Joshi, Monika; Allingham, John S.

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer The Candida albicans Kar3 motor domain structure was solved as a maltose-binding protein fusion. Black-Right-Pointing-Pointer The electrostatic surface and part of the ATPase pocket of the motor domain differs markedly from other kinesins. Black-Right-Pointing-Pointer The MBP-Kar3 interface highlights a new site for intramolecular or intermolecular interactions. -- Abstract: In the human fungal pathogen Candida albicans, the Kinesin-14 motor protein Kar3 (CaKar3) is critical for normal mitotic division, nuclear fusion during mating, and morphogenic transition from the commensal yeast form to the virulent hyphal form. As a first step towards detailed characterization of this motor of potential medical significance, we have crystallized and determined the X-ray structure of the motor domain of CaKar3 as a maltose-binding protein (MBP) fusion. The structure shows strong conservation of overall motor domain topology to other Kar3 kinesins, but with some prominent differences in one of the motifs that compose the nucleotide-binding pocket and the surface charge distribution. The MBP and Kar3 modules are arranged such that MBP interacts with the Kar3 motor domain core at the same site where the neck linker of conventional kinesins docks during the 'ATP state' of the mechanochemical cycle. This site differs from the Kar3 neck-core interface in the recent structure of the ScKar3Vik1 heterodimer. The position of MBP is also completely distinct from the Vik1 subunit in this complex. This may suggest that the site of MBP interaction on the CaKar3 motor domain provides an interface for the neck, or perhaps a partner subunit, at an intermediate state of its motile cycle that has not yet been observed for Kinesin-14 motors.

  4. Depletion of kinesin-12, a myosin-IIB-interacting protein, promotes migration of cortical astrocytes.

    PubMed

    Feng, Jie; Hu, Zunlu; Chen, Haijiao; Hua, Juan; Wu, Ronghua; Dong, Zhangji; Qiang, Liang; Liu, Yan; Baas, Peter W; Liu, Mei

    2016-06-15

    Kinesin-12 (also named Kif15) participates in important events during neuronal development, such as cell division of neuronal precursors, migration of young neurons and establishment of axons and dendritic arbors, by regulating microtubule organization. Little is known about the molecular mechanisms behind the functions of kinesin-12, and even less is known about its roles in other cell types of the nervous system. Here, we show that kinesin-12 depletion from cultured rat cortical astrocytes decreases cell proliferation but increases migration. Co-immunoprecipitation, GST pulldown and small interfering RNA (siRNA) experiments indicated that kinesin-12 directly interacts with myosin-IIB through their tail domains. Immunofluorescence analyses indicated that kinesin-12 and myosin-IIB colocalize in the lamellar region of astrocytes, and fluorescence resonance energy transfer analyses revealed an interaction between the two. The phosphorylation at Thr1142 of kinesin-12 was vital for their interaction. Loss of their interaction through expression of a phosphorylation mutant of kinesin-12 promoted astrocyte migration. We suggest that kinesin-12 and myosin-IIB can form a hetero-oligomer that generates force to integrate microtubules and actin filaments in certain regions of cells, and in the case of astrocytes, that this interaction can modulate their migration. PMID:27170353

  5. Kinesin-8 Is a Low-Force Motor Protein with a Weakly Bound Slip State

    PubMed Central

    Jannasch, Anita; Bormuth, Volker; Storch, Marko; Howard, Jonathon; Schäffer, Erik

    2013-01-01

    During the cell cycle, kinesin-8s control the length of microtubules by interacting with their plus ends. To reach these ends, the motors have to be able to take many steps without dissociating. However, the underlying mechanism for this high processivity and how stepping is affected by force are unclear. Here, we tracked the motion of yeast (Kip3) and human (Kif18A) kinesin-8s with high precision under varying loads using optical tweezers. Surprisingly, both kinesin-8 motors were much weaker compared with other kinesins. Furthermore, we discovered a force-induced stick-slip motion: the motor frequently slipped, recovered from this state, and then resumed normal stepping motility without detaching from the microtubule. The low forces are consistent with kinesin-8s being regulators of microtubule dynamics rather than cargo transporters. The weakly bound slip state, reminiscent of a molecular safety leash, may be an adaptation for high processivity. PMID:23746518

  6. Intracellular transport and kinesin superfamily proteins, KIFs: structure, function, and dynamics.

    PubMed

    Hirokawa, Nobutaka; Noda, Yasuko

    2008-07-01

    Various molecular cell biology and molecular genetic approaches have indicated significant roles for kinesin superfamily proteins (KIFs) in intracellular transport and have shown that they are critical for cellular morphogenesis, functioning, and survival. KIFs not only transport various membrane organelles, protein complexes, and mRNAs for the maintenance of basic cellular activity, but also play significant roles for various mechanisms fundamental for life, such as brain wiring, higher brain functions such as memory and learning and activity-dependent neuronal survival during brain development, and for the determination of important developmental processes such as left-right asymmetry formation and suppression of tumorigenesis. Accumulating data have revealed a molecular mechanism of cargo recognition involving scaffolding or adaptor protein complexes. Intramolecular folding and phosphorylation also regulate the binding activity of motor proteins. New techniques using molecular biophysics, cryoelectron microscopy, and X-ray crystallography have detected structural changes in motor proteins, synchronized with ATP hydrolysis cycles, leading to the development of independent models of monomer and dimer motors for processive movement along microtubules. PMID:18626067

  7. Trichoplusia ni Kinesin-1 Associates with Autographa californica Multiple Nucleopolyhedrovirus Nucleocapsid Proteins and Is Required for Production of Budded Virus

    PubMed Central

    Biswas, Siddhartha; Blissard, Gary W.

    2016-01-01

    ABSTRACT The mechanism by which nucleocapsids of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) egress from the nucleus to the plasma membrane, leading to the formation of budded virus (BV), is not known. AC141 is a nucleocapsid-associated protein required for BV egress and has previously been shown to be associated with β-tubulin. In addition, AC141 and VP39 were previously shown by fluorescence resonance energy transfer by fluorescence lifetime imaging to interact directly with the Drosophila melanogaster kinesin-1 light chain (KLC) tetratricopeptide repeat (TPR) domain. These results suggested that microtubule transport systems may be involved in baculovirus nucleocapsid egress and BV formation. In this study, we investigated the role of lepidopteran microtubule transport using coimmunoprecipitation, colocalization, yeast two-hybrid, and small interfering RNA (siRNA) analyses. We show that nucleocapsid AC141 associates with the lepidopteran Trichoplusia ni KLC and kinesin-1 heavy chain (KHC) by coimmunoprecipitation and colocalization. Kinesin-1, AC141, and microtubules colocalized predominantly at the plasma membrane. In addition, the nucleocapsid proteins VP39, FP25, and BV/ODV-C42 were also coimmunoprecipitated with T. ni KLC. Direct analysis of the role of T. ni kinesin-1 by downregulation of KLC by siRNA resulted in a significant decrease in BV production. Nucleocapsids labeled with VP39 fused with three copies of the mCherry fluorescent protein also colocalized with microtubules. Yeast two-hybrid analysis showed no evidence of a direct interaction between kinesin-1 and AC141 or VP39, suggesting that either other nucleocapsid proteins or adaptor proteins may be required. These results further support the conclusion that microtubule transport is required for AcMNPV BV formation. IMPORTANCE In two key processes of the replication cycle of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV), nucleocapsids are

  8. A complex of LIN-5 and GPR proteins regulates G protein signaling and spindle function in C. elegans

    PubMed Central

    Srinivasan, Dayalan G.; Fisk, Ridgely M.; Xu, Huihong; van den Heuvel, Sander

    2003-01-01

    The Caenorhabditis elegans coiled-coil protein LIN-5 mediates several processes in cell division that depend on spindle forces, including alignment and segregation of chromosomes and positioning of the spindle. Here, we describe two closely related proteins, GPR-1 and GPR-2 (Gprotein regulator), which associate with LIN-5 in vivo and in vitro and depend on LIN-5 for localization to the spindle and cell cortex. GPR-1/GPR-2 contain a GoLoco/GPR motif that mediates interaction with GDP-bound Gαi/o. Inactivation of lin-5, gpr-1/gpr-2, or the Gαi/o genes goa-1 and gpa-16 all cause highly similar chromosome segregation and spindle positioning defects, indicating a positive role for the LIN-5 and GPR proteins in G protein signaling. The lin-5 and gpr-1/gpr-2 genes appear to act downstream of the par polarity genes in the one- and two-cell stages and downstream of the tyrosine kinase-related genes mes-1 and src-1 at the four-cell stage. Together, these results indicate that GPR-1/GPR-2 in association with LIN-5 activate G protein signaling to affect spindle force. Polarity determinants may regulate LIN-5/GPR/Gα locally to create the asymmetric forces that drive spindle movement. Results in C. elegans and other species are consistent with a novel model for receptor-independent activation of Gαi/o signaling. PMID:12730122

  9. Centaurin-alpha1 and KIF13B kinesin motor protein interaction in ARF6 signalling.

    PubMed

    Kanamarlapudi, V

    2005-12-01

    The ARF (ADP-ribosylation factor) family of small GTPases regulate intracellular membrane trafficking by cycling between an inactive GDP- and an active GTP-bound form. Among the six known mammalian ARFs (ARF1-ARF6), ARF6 is the least conserved and plays critical roles in membrane trafficking and cytoskeletal dynamics near the cell surface. Since ARFs have undetectable levels of intrinsic GTP binding and hydrolysis, they are totally dependent on extrinsic GEFs (guanine nucleotide-exchange factors) for GTP binding and GAPs (GTPase-activating proteins) for GTP hydrolysis. We have recently isolated a novel KIF (kinesin) motor protein (KIF13B) that binds to centaurin-alpha1, an ARF6GAP that binds to the second messenger PIP3 [PtdIns(3,4,5)P3]. KIFs transport intracellular vesicles and recognize their cargo by binding to proteins (receptors) localized on the surface of the cargo vesicles. Identification of centaurin-alpha1 as a KIF13B interactor suggests that KIF13B may transport ARF6 and/or PIP3 using centaurin-alpha1 as its receptor. This paper reviews the studies carried out to assess the interaction and regulation of centaurin-alpha1 by KIF13B. PMID:16246098

  10. An Essential Farnesylated Kinesin in Trypanosoma brucei

    PubMed Central

    Engelson, Erin J.; Buckner, Frederick S.; Van Voorhis, Wesley C.

    2011-01-01

    Kinesins are a family of motor proteins conserved throughout eukaryotes. In our present study we characterize a novel kinesin, KinesinCaaX, orthologs of which are only found in the kinetoplastids and not other eukaryotes. KinesinCaaX has the CVIM amino acids at the C-terminus, and CVIM was previously shown to be an ideal signal for protein farnesylation in T. brucei. In this study we show KinesinCaaX is farnesylated using radiolabeling studies and that farnesylation is dependent on the CVIM motif. Using RNA interference, we show KinesinCaaX is essential for T. brucei proliferation. Additionally RNAi KinesinCaaX depleted T. brucei are 4 fold more sensitive to the protein farneysltransferase (PFT) inhibitor LN-59, suggesting that KinesinCaaX is a target of PFT inhibitors' action to block proliferation of T. brucei. Using tetracycline-induced exogenous tagged KinesinCaaX and KinesinCVIMdeletion (non-farnesylated Kinesin) expression lines in T. brucei, we demonstrate KinesinCaaX is farnesylated in T. brucei cells and this farnesylation has functional effects. In cells expressing a CaaX-deleted version of Kinesin, the localization is more diffuse which suggests correct localization depends on farnesylation. Through our investigation of cell cycle, nucleus and kinetoplast quantitation and immunofluorescence assays an important role is suggested for KinesinCaaX in the separation of nuclei and kinetoplasts during and after they have been replicated. Taken together, our work suggests KinesinCaaX is a target of PFT inhibition of T. brucei cell proliferation and KinesinCaaX functions through both the motor and farnesyl groups. PMID:22073170

  11. An Improved Optical Tweezers Assay for Measuring the Force Generation of Single Kinesin Molecules

    PubMed Central

    Nicholas, Matthew P.; Rao, Lu; Gennerich, Arne

    2014-01-01

    Numerous microtubule-associated molecular motors, including several kinesins and cytoplasmic dynein, produce opposing forces that regulate spindle and chromosome positioning during mitosis. The motility and force generation of these motors are therefore critical to normal cell division, and dysfunction of these processes may contribute to human disease. Optical tweezers provide a powerful method for studying the nanometer motility and piconewton force generation of single motor proteins in vitro. Using kinesin-1 as a prototype, we present a set of step-by-step, optimized protocols for expressing a kinesin construct (K560-GFP) in Escherichia coli, purifying it, and studying its force generation in an optical tweezers microscope. We also provide detailed instructions on proper alignment and calibration of an optical trapping microscope. These methods provide a foundation for a variety of similar experiments. PMID:24633799

  12. Kinesin superfamily protein 3 (KIF3) motor transports fodrin-associating vesicles important for neurite building.

    PubMed

    Takeda, S; Yamazaki, H; Seog, D H; Kanai, Y; Terada, S; Hirokawa, N

    2000-03-20

    Kinesin superfamily proteins (KIFs) comprise several dozen molecular motor proteins. The KIF3 heterotrimer complex is one of the most abundantly and ubiquitously expressed KIFs in mammalian cells. To unveil the functions of KIF3, microinjection of function-blocking monovalent antibodies against KIF3 into cultured superior cervical ganglion (SCG) neurons was carried out. They significantly blocked fast axonal transport and brought about inhibition of neurite extension. A yeast two-hybrid binding assay revealed the association of fodrin with the KIF3 motor through KAP3. This was further confirmed by using vesicles collected from large bundles of axons (cauda equina), from which membranous vesicles could be prepared in pure preparations. Both immunoprecipitation and immunoelectron microscopy indicated the colocalization of fodrin and KIF3 on the same vesicles, the results reinforcing the evidence that the cargo of the KIF3 motor consists of fodrin-associating vesicles. In addition, pulse-labeling study implied partial comigration of both molecules as fast flow components. Taken together, the KIF3 motor is engaged in fast axonal transport that conveys membranous components important for neurite extension. PMID:10725338

  13. Hsp110 is required for spindle length control

    PubMed Central

    Makhnevych, Taras; Wong, Philip; Pogoutse, Oxana; Vizeacoumar, Franco J.; Greenblatt, Jack F.; Emili, Andrew

    2012-01-01

    Systematic affinity purification combined with mass spectrometry analysis of N- and C-tagged cytoplasmic Hsp70/Hsp110 chaperones was used to identify new roles of Hsp70/Hsp110 in the cell. This allowed the mapping of a chaperone–protein network consisting of 1,227 unique interactions between the 9 chaperones and 473 proteins and highlighted roles for Hsp70/Hsp110 in 14 broad biological processes. Using this information, we uncovered an essential role for Hsp110 in spindle assembly and, more specifically, in modulating the activity of the widely conserved kinesin-5 motor Cin8. The role of Hsp110 Sse1 as a nucleotide exchange factor for the Hsp70 chaperones Ssa1/Ssa2 was found to be required for maintaining the proper distribution of kinesin-5 motors within the spindle, which was subsequently required for bipolar spindle assembly in S phase. These data suggest a model whereby the Hsp70–Hsp110 chaperone complex antagonizes Cin8 plus-end motility and prevents premature spindle elongation in S phase. PMID:22908312

  14. mini spindles

    PubMed Central

    Cullen, C. Fiona; Deák, Peter; Glover, David M.; Ohkura, Hiroyuki

    1999-01-01

    We describe a new Drosophila gene, mini spindles (msps) identified in a cytological screen for mitotic mutant. Mutation in msps disrupts the structural integrity of the mitotic spindle, resulting in the formation of one or more small additional spindles in diploid cells. Nucleation of microtubules from centrosomes, metaphase alignment of chromosomes, or the focusing of spindle poles appears much less affected. The msps gene encodes a 227-kD protein with high similarity to the vertebrate microtubule-associated proteins (MAPs), human TOGp and Xenopus XMAP215, and with limited similarity to the Dis1 and STU2 proteins from fission yeast and budding yeast. Consistent with their sequence similarity, Msps protein also associates with microtubules in vitro. In the embryonic division cycles, Msps protein localizes to centrosomal regions at all mitotic stages, and spreads over the spindles during metaphase and anaphase. The absence of centrosomal staining in interphase of the cellularized embryos suggests that the interactions between Msps protein and microtubules or centrosomes may be regulated during the cell cycle. PMID:10477755

  15. Interaction between RB protein and NuMA is required for proper alignment of spindle microtubules.

    PubMed

    Uchida, Chiharu; Hattori, Takayuki; Takahashi, Hirotaka; Yamamoto, Naoki; Kitagawa, Masatoshi; Taya, Yoichi

    2014-02-01

    Retinoblastoma protein (pRB) controls cell cycle progression and cell cycle exit through interactions with cellular proteins. Many pRB-binding proteins, which function in gene transcription or modulation of chromatin structure, harbor LXCXE motifs in their binding domain for pRB. In this study, we found that nuclear mitotic apparatus protein (NuMA), a mitotic spindle organizer, interacts with pRB through LSCEE sequences located in its C-terminal region. siRNA-mediated down-regulation of pRB caused aberrant distribution of NuMA and alignment of spindle microtubules in mitotic cells. Abnormal organization of spindle microtubules was also accompanied by misalignment of an over-expressed NuMA mutant (mut-NuMA) with a defect in pRB binding caused by an LSGEK mutation. The mut-NuMA-over-expressing cells showed lower potency for survival than wild-type NuMA (wt-NuMA)-over-expressing cells during 2 weeks of culture. Interestingly, knockdown of pRB reduced the population of wt-NuMA-over-expressing cells to the same level as mut-NuMA cells after 2 weeks. Taken together, pRB may have a novel function in regulating the mitotic function of NuMA and spindle organization, which are required for proper cell cycle progression. PMID:24350565

  16. A Role for Mitogen-activated Protein Kinase in the Spindle Assembly Checkpoint in XTC Cells

    PubMed Central

    Wang, Xiao Min; Zhai, Ye; Ferrell, James E.

    1997-01-01

    The spindle assembly checkpoint prevents cells whose spindles are defective or chromosomes are misaligned from initiating anaphase and leaving mitosis. Studies of Xenopus egg extracts have implicated the Erk2 mitogen-activated protein kinase (MAP kinase) in this checkpoint. Other studies have suggested that MAP kinases might be important for normal mitotic progression. Here we have investigated whether MAP kinase function is required for mitotic progression or the spindle assembly checkpoint in vivo in Xenopus tadpole cells (XTC). We determined that Erk1 and/or Erk2 are present in the mitotic spindle during prometaphase and metaphase, consistent with the idea that MAP kinase might regulate or monitor the status of the spindle. Next, we microinjected purified recombinant XCL100, a Xenopus MAP kinase phosphatase, into XTC cells in various stages of mitosis to interfere with MAP kinase activation. We found that mitotic progression was unaffected by the phosphatase. However, XCL100 rendered the cells unable to remain arrested in mitosis after treatment with nocodazole. Cells injected with phosphatase at prometaphase or metaphase exited mitosis in the presence of nocodazole—the chromosomes decondensed and the nuclear envelope re-formed—whereas cells injected with buffer or a catalytically inactive XCL100 mutant protein remained arrested in mitosis. Coinjection of constitutively active MAP kinase kinase-1, which opposes XCL100's effects on MAP kinase, antagonized the effects of XCL100. Since the only known targets of MAP kinase kinase-1 are Erk1 and Erk2, these findings argue that MAP kinase function is required for the spindle assembly checkpoint in XTC cells. PMID:9128253

  17. Kinesin Light Chain 1 Suppression Impairs Human Embryonic Stem Cell Neural Differentiation and Amyloid Precursor Protein Metabolism

    PubMed Central

    Killian, Rhiannon L.; Flippin, Jessica D.; Herrera, Cheryl M.; Almenar-Queralt, Angels; Goldstein, Lawrence S. B.

    2012-01-01

    The etiology of sporadic Alzheimer disease (AD) is largely unknown, although evidence implicates the pathological hallmark molecules amyloid beta (Aβ) and phosphorylated Tau. Work in animal models suggests that altered axonal transport caused by Kinesin-1 dysfunction perturbs levels of both Aβ and phosphorylated Tau in neural tissues, but the relevance of Kinesin-1 dependent functions to the human disease is unknown. To begin to address this issue, we generated human embryonic stem cells (hESC) expressing reduced levels of the kinesin light chain 1 (KLC1) Kinesin-1 subunit to use as a source of human neural cultures. Despite reduction of KLC1, undifferentiated hESC exhibited apparently normal colony morphology and pluripotency marker expression. Differentiated neural cultures derived from KLC1-suppressed hESC contained neural rosettes but further differentiation revealed obvious morphological changes along with reduced levels of microtubule-associated neural proteins, including Tau and less secreted Aβ, supporting the previously established connection between KLC1, Tau and Aβ. Intriguingly, KLC1-suppressed neural precursors (NPs), isolated using a cell surface marker signature known to identify cells that give rise to neurons and glia, unlike control cells, failed to proliferate. We suggest that KLC1 is required for normal human neural differentiation, ensuring proper metabolism of AD-associated molecules APP and Tau and for proliferation of NPs. Because impaired APP metabolism is linked to AD, this human cell culture model system will not only be a useful tool for understanding the role of KLC1 in regulating the production, transport and turnover of APP and Tau in neurons, but also in defining the essential function(s) of KLC1 in NPs and their progeny. This knowledge should have important implications for human neurodevelopmental and neurodegenerative diseases. PMID:22272245

  18. RGS14 is a mitotic spindle protein essential from the first division of the mammalian zygote.

    PubMed

    Martin-McCaffrey, Luke; Willard, Francis S; Oliveira-dos-Santos, Antonio J; Natale, David R C; Snow, Bryan E; Kimple, Randall J; Pajak, Agnieszka; Watson, Andrew J; Dagnino, Lina; Penninger, Josef M; Siderovski, David P; D'Souza, Sudhir J A

    2004-11-01

    Heterotrimeric G protein alpha subunits, RGS proteins, and GoLoco motif proteins have been recently implicated in the control of mitotic spindle dynamics in C. elegans and D. melanogaster. Here we show that "regulator of G protein signaling-14" (RGS14) is expressed by the mouse embryonic genome immediately prior to the first mitosis, where it colocalizes with the anastral mitotic apparatus of the mouse zygote. Loss of Rgs14 expression in the mouse zygote results in cytofragmentation and failure to progress to the 2-cell stage. RGS14 is found in all tissues and segregates to the nucleus in interphase and to the mitotic spindle and centrioles during mitosis. Alteration of RGS14 levels in exponentially proliferating cells leads to cell growth arrest. Our results indicate that RGS14 is one of the earliest essential product of the mammalian embryonic genome yet described and has a general role in mitosis. PMID:15525537

  19. Kinesin-5 is a microtubule polymerase

    PubMed Central

    Chen, Yalei; Hancock, William O

    2015-01-01

    Kinesin-5 slides antiparallel microtubules during spindle assembly, and regulates the branching of growing axons. Besides the mechanical activities enabled by its tetrameric configuration, the specific motor properties of kinesin-5 that underlie its cellular function remain unclear. Here by engineering a stable kinesin-5 dimer and reconstituting microtubule dynamics in vitro, we demonstrate that kinesin-5 promotes microtubule polymerization by increasing the growth rate and decreasing the catastrophe frequency. Strikingly, microtubules growing in the presence of kinesin-5 have curved plus ends, suggesting that the motor stabilizes growing protofilaments. Single-molecule fluorescence experiments reveal that kinesin-5 remains bound to the plus ends of static microtubules for 7 s, and tracks growing microtubule plus ends in a manner dependent on its processivity. We propose that kinesin-5 pauses at microtubule plus ends and enhances polymerization by stabilizing longitudinal tubulin–tubulin interactions, and that these activities underlie the ability kinesin-5 to slide and stabilize microtubule bundles in cells. PMID:26437877

  20. Tumour Suppressor Adenomatous Polyposis Coli (APC) localisation is regulated by both Kinesin-1 and Kinesin-2

    PubMed Central

    Ruane, Peter T.; Gumy, Laura F.; Bola, Becky; Anderson, Beverley; Wozniak, Marcin J.; Hoogenraad, Casper C.; Allan, Victoria J.

    2016-01-01

    Microtubules and their associated proteins (MAPs) underpin the polarity of specialised cells. Adenomatous polyposis coli (APC) is one such MAP with a multifunctional agenda that requires precise intracellular localisations. Although APC has been found to associate with kinesin-2 subfamily members, the exact mechanism for the peripheral localization of APC remains unclear. Here we show that the heavy chain of kinesin-1 directly interacts with the APC C-terminus, contributing to the peripheral localisation of APC in fibroblasts. In rat hippocampal neurons the kinesin-1 binding domain of APC is required for its axon tip enrichment. Moreover, we demonstrate that APC requires interactions with both kinesin-2 and kinesin-1 for this localisation. Underlining the importance of the kinesin-1 association, neurons expressing APC lacking kinesin-1-binding domain have shorter axons. The identification of this novel kinesin-1-APC interaction highlights the complexity and significance of APC localisation in neurons. PMID:27272132

  1. Tumour Suppressor Adenomatous Polyposis Coli (APC) localisation is regulated by both Kinesin-1 and Kinesin-2.

    PubMed

    Ruane, Peter T; Gumy, Laura F; Bola, Becky; Anderson, Beverley; Wozniak, Marcin J; Hoogenraad, Casper C; Allan, Victoria J

    2016-01-01

    Microtubules and their associated proteins (MAPs) underpin the polarity of specialised cells. Adenomatous polyposis coli (APC) is one such MAP with a multifunctional agenda that requires precise intracellular localisations. Although APC has been found to associate with kinesin-2 subfamily members, the exact mechanism for the peripheral localization of APC remains unclear. Here we show that the heavy chain of kinesin-1 directly interacts with the APC C-terminus, contributing to the peripheral localisation of APC in fibroblasts. In rat hippocampal neurons the kinesin-1 binding domain of APC is required for its axon tip enrichment. Moreover, we demonstrate that APC requires interactions with both kinesin-2 and kinesin-1 for this localisation. Underlining the importance of the kinesin-1 association, neurons expressing APC lacking kinesin-1-binding domain have shorter axons. The identification of this novel kinesin-1-APC interaction highlights the complexity and significance of APC localisation in neurons. PMID:27272132

  2. The Spindle Matrix Protein, Chromator, Is a Novel Tubulin Binding Protein That Can Interact with Both Microtubules and Free Tubulin

    PubMed Central

    Yao, Changfu; Wang, Chao; Li, Yeran; Ding, Yun; Rath, Uttama; Sengupta, Saheli; Girton, Jack; Johansen, Kristen M.; Johansen, Jørgen

    2014-01-01

    The chromodomain protein, Chromator, is localized to chromosomes during interphase; however, during cell division together with other nuclear proteins Chromator redistributes to form a macro molecular spindle matrix complex that embeds the microtubule spindle apparatus. It has been demonstrated that the CTD of Chromator is sufficient for localization to the spindle matrix and that expression of this domain alone could partially rescue Chro mutant microtubule spindle defects. Furthermore, the presence of frayed and unstable microtubule spindles during mitosis after Chromator RNAi depletion in S2 cells indicated that Chromator may interact with microtubules. In this study using a variety of biochemical assays we have tested this hypothesis and show that Chromator not only has binding activity to microtubules with a Kd of 0.23 µM but also to free tubulin. Furthermore, we have mapped the interaction with microtubules to a relatively small stretch of 139 amino acids in the carboxy-terminal region of Chromator. This sequence is likely to contain a novel microtubule binding interface since database searches did not find any sequence matches with known microtubule binding motifs. PMID:25072297

  3. Molecular properties of the N-terminal extension of the fission yeast kinesin-5, Cut7.

    PubMed

    Edamatsu, M

    2016-01-01

    Kinesin-5 plays an essential role in spindle formation and function, and serves as a potential target for anti-cancer drugs. The aim of this study was to elucidate the molecular properties of the N-terminal extension of the Schizosaccharomyces pombe kinesin-5, Cut7. This extension is rich in charged amino acids and predicted to be intrinsically disordered. In S. pombe cells, a Cut7 construct lacking half the N-terminal extension failed to localize along the spindle microtubules and formed a monopolar spindle. However, a construct lacking the entire N-terminal extension exhibited normal localization and formed a typical bipolar spindle. In addition, in vitro analyses revealed that the truncated Cut7 constructs demonstrated similar motile velocities and directionalities as the wild-type motor protein, but the microtubule landing rates were significantly reduced. These findings suggest that the N-terminal extension is not required for normal Cut7 intracellular localization or function, but alters the microtubule-binding properties of this protein in vitro. PMID:26909973

  4. The Mother Centriole Appendage Protein Cenexin Modulates Lumen Formation through Spindle Orientation.

    PubMed

    Hung, Hui-Fang; Hehnly, Heidi; Doxsey, Stephen

    2016-03-21

    Establishing apical-basal polarity is instrumental in the functional shaping of a solitary lumen within an acinus. By exploiting micropatterned slides, wound healing assays, and three-dimensional culture systems, we identified a mother centriole subdistal appendage protein, cenexin, as a critical player in symmetric lumen expansion through the control of microtubule organization. In this regard, cenexin was required for both centrosome positioning in interphase cells and proper spindle orientation during mitosis. In contrast, the essential mother centriole distal appendage protein CEP164 did not play a role in either process, demonstrating the specificity of subdistal appendages for these events. Importantly, upon closer examination we found that cenexin depletion decreased astral microtubule length, disrupted astral microtubule minus-end organization, and increased levels of the polarity protein NuMA at the cell cortex. Interestingly, spindle misorientation and NuMA mislocalization were reversed by treatment with a low dose of the microtubule-stabilizing agent paclitaxel. Taken together, these results suggest that cenexin modulates microtubule organization and stability to mediate spindle orientation. PMID:26948879

  5. Sulfolobus Spindle-Shaped Virus 1 Contains Glycosylated Capsid Proteins, a Cellular Chromatin Protein, and Host-Derived Lipids

    PubMed Central

    Quemin, Emmanuelle R. J.; Pietilä, Maija K.; Oksanen, Hanna M.; Forterre, Patrick; Rijpstra, W. Irene C.; Schouten, Stefan; Bamford, Dennis H.; Prangishvili, David

    2015-01-01

    ABSTRACT Geothermal and hypersaline environments are rich in virus-like particles, among which spindle-shaped morphotypes dominate. Currently, viruses with spindle- or lemon-shaped virions are exclusive to Archaea and belong to two distinct viral families. The larger of the two families, the Fuselloviridae, comprises tail-less, spindle-shaped viruses, which infect hosts from phylogenetically distant archaeal lineages. Sulfolobus spindle-shaped virus 1 (SSV1) is the best known member of the family and was one of the first hyperthermophilic archaeal viruses to be isolated. SSV1 is an attractive model for understanding virus-host interactions in Archaea; however, the constituents and architecture of SSV1 particles remain only partially characterized. Here, we have conducted an extensive biochemical characterization of highly purified SSV1 virions and identified four virus-encoded structural proteins, VP1 to VP4, as well as one DNA-binding protein of cellular origin. The virion proteins VP1, VP3, and VP4 undergo posttranslational modification by glycosylation, seemingly at multiple sites. VP1 is also proteolytically processed. In addition to the viral DNA-binding protein VP2, we show that viral particles contain the Sulfolobus solfataricus chromatin protein Sso7d. Finally, we provide evidence indicating that SSV1 virions contain glycerol dibiphytanyl glycerol tetraether (GDGT) lipids, resolving a long-standing debate on the presence of lipids within SSV1 virions. A comparison of the contents of lipids isolated from the virus and its host cell suggests that GDGTs are acquired by the virus in a selective manner from the host cytoplasmic membrane, likely during progeny egress. IMPORTANCE Although spindle-shaped viruses represent one of the most prominent viral groups in Archaea, structural data on their virion constituents and architecture still are scarce. The comprehensive biochemical characterization of the hyperthermophilic virus SSV1 presented here brings novel and

  6. Fission yeast kinesin-8 controls chromosome congression independently of oscillations

    PubMed Central

    Mary, Hadrien; Fouchard, Jonathan; Gay, Guillaume; Reyes, Céline; Gauthier, Tiphaine; Gruget, Clémence; Pécréaux, Jacques; Tournier, Sylvie; Gachet, Yannick

    2015-01-01

    ABSTRACT In higher eukaryotes, efficient chromosome congression relies, among other players, on the activity of chromokinesins. Here, we provide a quantitative analysis of kinetochore oscillations and positioning in Schizosaccharomyces pombe, a model organism lacking chromokinesins. In wild-type cells, chromosomes align during prophase and, while oscillating, maintain this alignment throughout metaphase. Chromosome oscillations are dispensable both for kinetochore congression and stable kinetochore alignment during metaphase. In higher eukaryotes, kinesin-8 family members control chromosome congression by regulating their oscillations. By contrast, here, we demonstrate that fission yeast kinesin-8 controls chromosome congression by an alternative mechanism. We propose that kinesin-8 aligns chromosomes by controlling pulling forces in a length-dependent manner. A coarse-grained model of chromosome segregation implemented with a length-dependent process that controls the force at kinetochores is necessary and sufficient to mimic kinetochore alignment, and prevents the appearance of lagging chromosomes. Taken together, these data illustrate how the local action of a motor protein at kinetochores provides spatial cues within the spindle to align chromosomes and to prevent aneuploidy. PMID:26359299

  7. Connections between cadherin-catenin proteins, spindle misorientation, and cancer

    PubMed Central

    Shahbazi, Marta N; Perez-Moreno, Mirna

    2015-01-01

    Cadherin-catenin mediated adhesion is an important determinant of tissue architecture in multicellular organisms. Cancer progression and maintenance is frequently associated with loss of their expression or functional activity, which not only leads to decreased cell-cell adhesion, but also to enhanced tumor cell proliferation and loss of differentiated characteristics. This review is focused on the emerging implications of cadherin-catenin proteins in the regulation of polarized divisions through their connections with the centrosomes, cytoskeleton, tissue tension and signaling pathways; and illustrates how alterations in cadherin-catenin levels or functional activity may render cells susceptible to transformation through the loss of their proliferation-differentiation balance. PMID:26451345

  8. Arabidopsis kinesin KP1 specifically interacts with VDAC3, a mitochondrial protein, and regulates respiration during seed germination at low temperature.

    PubMed

    Yang, Xue-Yong; Chen, Zi-Wei; Xu, Tao; Qu, Zhe; Pan, Xiao-Di; Qin, Xing-Hua; Ren, Dong-Tao; Liu, Guo-Qin

    2011-03-01

    The involvement of cytoskeleton-related proteins in regulating mitochondrial respiration has been revealed in mammalian cells. However, it is unclear if there is a relationship between the microtubule-based motor protein kinesin and mitochondrial respiration. In this research, we demonstrate that a plant-specific kinesin, Kinesin-like protein 1 (KP1; At KIN14 h), is involved in respiratory regulation during seed germination at a low temperature. Using in vitro biochemical methods and in vivo transgenic cell observations, we demonstrate that KP1 is able to localize to mitochondria via its tail domain (C terminus) and specifically interacts with a mitochondrial outer membrane protein, voltage-dependent anion channel 3 (VDAC3). Targeting of the KP1-tail to mitochondria is dependent on the presence of VDAC3. When grown at 4° C, KP1 dominant-negative mutants (TAILOEs) and vdac3 mutants exhibited a higher seed germination frequency. All germinating seeds of the kp1 and vdac3 mutants had increased oxygen consumption; the respiration balance between the cytochrome pathway and the alternative oxidase pathway was disrupted, and the ATP level was reduced. We conclude that the plant-specific kinesin, KP1, specifically interacts with VDAC3 on the mitochondrial outer membrane and that both KP1 and VDAC3 regulate aerobic respiration during seed germination at low temperature. PMID:21406623

  9. Fast axonal transport of kinesin in the rat visual system: functionality of kinesin heavy chain isoforms.

    PubMed Central

    Elluru, R G; Bloom, G S; Brady, S T

    1995-01-01

    The mechanochemical ATPase kinesin is thought to move membrane-bounded organelles along microtubules in fast axonal transport. However, fast transport includes several classes of organelles moving at rates that differ by an order of magnitude. Further, the fact that cytoplasmic forms of kinesin exist suggests that kinesins might move cytoplasmic structures such as the cytoskeleton. To define cellular roles for kinesin, the axonal transport of kinesin was characterized. Retinal proteins were pulse-labeled, and movement of radiolabeled kinesin through optic nerve and tract into the terminals was monitored by immunoprecipitation. Heavy and light chains of kinesin appeared in nerve and tract at times consistent with fast transport. Little or no kinesin moved with slow axonal transport indicating that effectively all axonal kinesin is associated with membranous organelles. Both kinesin heavy chain molecular weight variants of 130,000 and 124,000 M(r) (KHC-A and KHC-B) moved in fast anterograde transport, but KHC-A moved at 5-6 times the rate of KHC-B. KHC-A cotransported with the synaptic vesicle marker synaptophysin, while a portion of KHC-B cotransported with the mitochondrial marker hexokinase. These results suggest that KHC-A is enriched on small tubulovesicular structures like synaptic vesicles and that at least one form of KHC-B is predominantly on mitochondria. Biochemical specialization may target kinesins to appropriate organelles and facilitate differential regulation of transport. Images PMID:7538359

  10. The molecular mechanism of organelle transport along microtubules: the identification and characterization of KIFs (kinesin superfamily proteins).

    PubMed

    Hirokawa, N

    1996-10-01

    In the cells various kinds of organelles are transported and distributed to their proper destinations in the cell. Organelle transports are very important for cellular morphogenesis and functions, with the conveying and targeting of essential materials to their correct destination being conducted, often at considerable velocities. Recently we have identified at least 10 new microtubule-associated motor proteins named as KIFs (kinesin superfamily proteins). Their characterization reveals that each member can convey a specific organelle or cargo, although there is some redundancy. It has also become clear that there are distinct subclasses of KIFs that form monomeric, heterodimeric and homodimeric motors. Molecular cell biological approaches combining multidisciplinary methods such as new electron microscopy, biochemistry, immunocytochemistry, biophysics, molecular biology and molecular genetics have revealed precise mechanisms of organelle transports in the cells by KIFs. PMID:9118241

  11. Kinesin-8 from Fission Yeast: A Heterodimeric, Plus-End–directed Motor that Can Couple Microtubule Depolymerization to Cargo Movement

    PubMed Central

    Grissom, Paula M.; Fiedler, Thomas; Grishchuk, Ekaterina L.; Nicastro, Daniela; West, Robert R.

    2009-01-01

    Fission yeast expresses two kinesin-8s, previously identified and characterized as products of the klp5+ and klp6+ genes. These polypeptides colocalize throughout the vegetative cell cycle as they bind cytoplasmic microtubules during interphase, spindle microtubules, and/or kinetochores during early mitosis, and the interpolar spindle as it elongates in anaphase B. Here, we describe in vitro properties of these motor proteins and some truncated versions expressed in either bacteria or Sf9 cells. The motor-plus-neck domain of Klp6p formed soluble dimers that cross-linked microtubules and showed both microtubule-activated ATPase and plus-end–directed motor activities. Full-length Klp5p and Klp6p, coexpressed in Sf9 cells, formed soluble heterodimers with the same activities. The latter recombinant protein could also couple microbeads to the ends of shortening microtubules and use energy from tubulin depolymerization to pull a load in the minus end direction. These results, together with the spindle localizations of these proteins in vivo and their requirement for cell viability in the absence of the Dam1/DASH kinetochore complex, support the hypothesis that fission yeast kinesin-8 contributes both to chromosome congression to the metaphase plate and to the coupling of spindle microtubules to kinetochores during anaphase A. PMID:19037096

  12. The nuclear scaffold protein SAF-A is required for kinetochore-microtubule attachment and contributes to the targeting of Aurora-A to mitotic spindles.

    PubMed

    Ma, Nan; Matsunaga, Sachihiro; Morimoto, Akihiro; Sakashita, Gyosuke; Urano, Takeshi; Uchiyama, Susumu; Fukui, Kiichi

    2011-02-01

    Segregation of chromosomes during cell division requires correct formation of mitotic spindles. Here, we show that a scaffold attachment factor A (SAF-A), also known as heterogeneous nuclear ribonucleoprotein-U, contributes to the attachment of spindle microtubules (MTs) to kinetochores and spindle organization. During mitosis, SAF-A was localized at the spindles, spindle midzone and cytoplasmic bridge. Depletion of SAF-A by RNA interference induced mitotic delay and defects in chromosome alignment and spindle assembly. We found that SAF-A specifically co-immunoprecipitated with the chromosome peripheral protein nucleolin and the spindle regulators Aurora-A and TPX2, indicating that SAF-A is associated with nucleolin and the Aurora-A-TPX2 complex. SAF-A was colocalized with TPX2 and Aurora-A in spindle poles and MTs. Elimination of TPX2 or Aurora-A from cells abolished the association of SAF-A with the mitotic spindle. Interestingly, SAF-A can bind to MTs and contributes to the targeting of Aurora-A to mitotic spindle MTs. Our finding indicates that SAF-A is a novel spindle regulator that plays an essential role in kinetochore-MT attachment and mitotic spindle organization. PMID:21242313

  13. Detection of the quantity of kinesin and microgravity-sensitive kinesin genes in rat bone marrow stromal cells grown in a simulated microgravity environment

    NASA Astrophysics Data System (ADS)

    Ni, Chengzhi; Wang, Chunyan; Li, Yuan; Li, Yinghui; Dai, Zhongquan; Zhao, Dongming; Sun, Hongyi; Wu, Bin

    2011-06-01

    Kinesin and kinesin-like proteins (KLPs) constitute a superfamily of microtubule motor proteins found in all eukaryotic organisms. Members of the kinesin superfamily are known to play important roles in many fundamental cellular and developmental processes. To date, few published studies have reported on the effects of microgravity on kinesin expression. In this paper, we describe the expression pattern and microgravity-sensitive genes of kinesin in rat bone marrow stromal cells cultured in a ground-based rotating bioreactor. The quantity of kinesin under the clinorotation condition was examined by immunoblot analysis with anti-kinesin. Furthermore, the distribution of kinesin at various times during clinorotation was determined by dual immunostaining, using anti-kinesin monoclonal antibody or anti-β-tubulin monoclonal antibody. In terms of kinesin quantity, we found that the ratios of the amounts of clinorotated/stationary KLPs decreased from clinorotation day 5 to day 10, although it increased on days 2 and 3. Immunofluorescence analysis revealed that kinesin in the nucleus was the first to be affected by simulated microgravity, following the kinesin at the periphery that was affected at various times during clinorotation. Real-time RT-PCR analysis of kinesin mRNA expression was performed and led to the identification of 3 microgravity-sensitive kinesin genes: KIF9, KIFC1, and KIF21A. Our results suggest that kinesin has a distinct expression pattern, and the identification of microgravity-sensitive kinesin genes offers insight into fundamental cell biology.

  14. Downregulation of Protein 4.1R impairs centrosome function,bipolar spindle organization and anaphase

    SciTech Connect

    Spence, Jeffrey R.; Go, Minjoung M.; Bahmanyar, S.; Barth,A.I.M.; Krauss, Sharon Wald

    2006-03-17

    Centrosomes nucleate and organize interphase MTs and areinstrumental in the assembly of the mitotic bipolar spindle. Here wereport that two members of the multifunctional protein 4.1 family havedistinct distributions at centrosomes. Protein 4.1R localizes to maturecentrioles whereas 4.1G is a component of the pericentriolar matrixsurrounding centrioles. To selectively probe 4.1R function, we used RNAinterference-mediated depletion of 4.1R without decreasing 4.1Gexpression. 4.1R downregulation reduces MT anchoring and organization atinterphase and impairs centrosome separation during prometaphase.Metaphase chromosomes fail to properly condense/align and spindleorganization is aberrant. Notably 4.1R depletion causes mislocalizationof its binding partner NuMA (Nuclear Mitotic Apparatus Protein),essential for spindle pole focusing, and disrupts ninein. Duringanaphase/telophase, 4.1R-depleted cells have lagging chromosomes andaberrant MT bridges. Our data provide functional evidence that 4.1R makescrucial contributions to centrosome integrity and to mitotic spindlestructure enabling mitosis and anaphase to proceed with the coordinatedprecision required to avoid pathological events.

  15. EFHC1, a protein mutated in juvenile myoclonic epilepsy, associates with the mitotic spindle through its N-terminus

    SciTech Connect

    Nijs, Laurence de; Lakaye, Bernard; Coumans, Bernard; Leon, Christine; Ikeda, Takashi; Delgado-Escueta, Antonio V.; Chanas, Grazyna . E-mail: G.Chanas@ulg.ac.be

    2006-09-10

    A novel gene, EFHC1, mutated in juvenile myoclonic epilepsy (JME) encodes a protein with three DM10 domains of unknown function and one putative EF-hand motif. To study the properties of EFHC1, we expressed EGFP-tagged protein in various cell lines. In interphase cells, the fusion protein was present in the cytoplasm and in the nucleus with specific accumulation at the centrosome. During mitosis EGFP-EFHC1 colocalized with the mitotic spindle, especially at spindle poles and with the midbody during cytokinesis. Using a specific antibody, we demonstrated the same distribution of the endogenous protein. Deletion analyses revealed that the N-terminal region of EFHC1 is crucial for the association with the mitotic spindle and the midbody. Our results suggest that EFHC1 could play an important role during cell division.

  16. The nuclear localization signal of mitotic kinesin-like protein Mklp-1: Effect on Mklp-1 function during cytokinesis

    SciTech Connect

    Liu Xiaoqi; E-mail: liu8@purdue.edu; Erikson, Raymond L.

    2007-02-23

    The mitotic kinesin-like protein (Mklp-1) localizes in the nucleus during interphase due to the presence of nuclear localization signal(s) [NLS(s)] within its sequence. Here, we mapped two NLSs to be {sub 899}SRKRRSST{sub 906} and {sub 949}KRKKP{sub 953} in the tail domain of Mklp-1, and showed that ectopic expression of a mutant Mklp-1 without the NLSs leads to cell cycle arrest at cytokinesis, indicating that the NLSs are necessary for Mklp-1 to execute its normal function during cell division. Furthermore, mutation of two serine residues in First NLS to aspartic acid, which mimics phosphorylation, attenuated its nuclear localization function, suggesting that the function of this NLS might be regulated by phosphorylation.

  17. Kinesin tail domains are intrinsically disordered.

    PubMed

    Seeger, Mark A; Zhang, Yongbo; Rice, Sarah E

    2012-10-01

    Kinesin motor proteins transport a wide variety of molecular cargoes in a spatially and temporally regulated manner. Kinesin motor domains, which hydrolyze ATP to produce a directed mechanical force along a microtubule, are well conserved throughout the entire superfamily. Outside of the motor domains, kinesin sequences diverge along with their transport functions. The nonmotor regions, particularly the tails, respond to a wide variety of structural and molecular cues that enable kinesins to carry specific cargoes in response to particular cellular signals. Here, we demonstrate that intrinsic disorder is a common structural feature of kinesins. A bioinformatics survey of the full-length sequences of all 43 human kinesins predicts that significant regions of intrinsically disordered residues are present in all kinesins. These regions are concentrated in the nonmotor domains, particularly in the tails and near sites for ligand binding or post-translational modifications. In order to experimentally verify these predictions, we expressed and purified the tail domains of kinesins representing three different families (Kif5B, Kif10, and KifC3). Circular dichroism and NMR spectroscopy experiments demonstrate that the isolated tails are disordered in vitro, yet they retain their functional microtubule-binding activity. On the basis of these results, we propose that intrinsic disorder is a common structural feature that confers functional specificity to kinesins. PMID:22674872

  18. Kinesin Tail Domains Are Intrinsically Disordered

    PubMed Central

    Seeger, Mark A.; Zhang, Yongbo; Rice, Sarah E.

    2012-01-01

    Kinesin motor proteins transport a wide variety of molecular cargoes in a spatially and temporally regulated manner. Kinesin motor domains, which hydrolyze ATP to produce a directed mechanical force along a microtubule, are well conserved throughout the entire superfamily. Outside of the motor domains, kinesin sequences diverge along with their transport functions. The non-motor regions, particularly the tails, respond to a wide variety of structural and molecular cues that enable kinesins to carry specific cargoes in response to particular cellular signals. Here, we demonstrate that intrinsic disorder is a common structural feature of kinesins. A bioinformatics survey of the full-length sequences of all 43 human kinesins predicts that significant regions of intrinsically disordered residues are present in all kinesins. These regions are concentrated in the non-motor domains, particularly in the tails and near sites for ligand binding or post-translational modifications. In order to experimentally verify these predictions, we expressed and purified the tail domains of kinesins representing three different families (Kif5B, Kif10, and KifC3). Circular dichroism (CD) and NMR spectroscopy experiments demonstrate that the isolated tails are disordered in vitro, yet they retain their functional microtubule-binding activity. Based on these results, we propose that intrinsic disorder is a common structural feature that confers functional specificity to kinesins. PMID:22674872

  19. Downregulation of protein 4.1R, a mature centriole protein, disrupts centrosomes, alters cell cycle progression, and perturbs mitotic spindles and anaphase.

    PubMed

    Krauss, Sharon Wald; Spence, Jeffrey R; Bahmanyar, Shirin; Barth, Angela I M; Go, Minjoung M; Czerwinski, Debra; Meyer, Adam J

    2008-04-01

    Centrosomes nucleate and organize interphase microtubules and are instrumental in mitotic bipolar spindle assembly, ensuring orderly cell cycle progression with accurate chromosome segregation. We report that the multifunctional structural protein 4.1R localizes at centrosomes to distal/subdistal regions of mature centrioles in a cell cycle-dependent pattern. Significantly, 4.1R-specific depletion mediated by RNA interference perturbs subdistal appendage proteins ninein and outer dense fiber 2/cenexin at mature centrosomes and concomitantly reduces interphase microtubule anchoring and organization. 4.1R depletion causes G(1) accumulation in p53-proficient cells, similar to depletion of many other proteins that compromise centrosome integrity. In p53-deficient cells, 4.1R depletion delays S phase, but aberrant ninein distribution is not dependent on the S-phase delay. In 4.1R-depleted mitotic cells, efficient centrosome separation is reduced, resulting in monopolar spindle formation. Multipolar spindles and bipolar spindles with misaligned chromatin are also induced by 4.1R depletion. Notably, all types of defective spindles have mislocalized NuMA (nuclear mitotic apparatus protein), a 4.1R binding partner essential for spindle pole focusing. These disruptions contribute to lagging chromosomes and aberrant microtubule bridges during anaphase/telophase. Our data provide functional evidence that 4.1R makes crucial contributions to the structural integrity of centrosomes and mitotic spindles which normally enable mitosis and anaphase to proceed with the coordinated precision required to avoid pathological events. PMID:18212055

  20. Downregulation of Protein 4.1R, a Mature Centriole Protein, Disrupts Centrosomes, Alters Cell Cycle Progression, and Perturbs Mitotic Spindles and Anaphase▿

    PubMed Central

    Krauss, Sharon Wald; Spence, Jeffrey R.; Bahmanyar, Shirin; Barth, Angela I. M.; Go, Minjoung M.; Czerwinski, Debra; Meyer, Adam J.

    2008-01-01

    Centrosomes nucleate and organize interphase microtubules and are instrumental in mitotic bipolar spindle assembly, ensuring orderly cell cycle progression with accurate chromosome segregation. We report that the multifunctional structural protein 4.1R localizes at centrosomes to distal/subdistal regions of mature centrioles in a cell cycle-dependent pattern. Significantly, 4.1R-specific depletion mediated by RNA interference perturbs subdistal appendage proteins ninein and outer dense fiber 2/cenexin at mature centrosomes and concomitantly reduces interphase microtubule anchoring and organization. 4.1R depletion causes G1 accumulation in p53-proficient cells, similar to depletion of many other proteins that compromise centrosome integrity. In p53-deficient cells, 4.1R depletion delays S phase, but aberrant ninein distribution is not dependent on the S-phase delay. In 4.1R-depleted mitotic cells, efficient centrosome separation is reduced, resulting in monopolar spindle formation. Multipolar spindles and bipolar spindles with misaligned chromatin are also induced by 4.1R depletion. Notably, all types of defective spindles have mislocalized NuMA (nuclear mitotic apparatus protein), a 4.1R binding partner essential for spindle pole focusing. These disruptions contribute to lagging chromosomes and aberrant microtubule bridges during anaphase/telophase. Our data provide functional evidence that 4.1R makes crucial contributions to the structural integrity of centrosomes and mitotic spindles which normally enable mitosis and anaphase to proceed with the coordinated precision required to avoid pathological events. PMID:18212055

  1. Recent findings and future directions for interpolar mitotic kinesin inhibitors in cancer therapy

    PubMed Central

    Myers, Stephanie M.; Collins, Ian

    2016-01-01

    The kinesin class of microtubule-associated motor proteins present attractive anti-cancer targets owing to their roles in key functions in dividing cells. Two interpolar mitotic kinesins Eg5 and HSET have opposing motor functions in mitotic spindle assembly with respect to microtubule movement, but both offer opportunities to develop cancer selective therapeutic agents. Here, we summarize the progress to date in developing inhibitors of Eg5 and HSET, with an emphasis on structural biology insights into the binding modes of allosteric inhibitors, compound selectivity and mechanisms of action of different chemical scaffolds. We discuss translation of preclinical studies to clinical experience with Eg5 inhibitors, recent findings on potential resistance mechanisms, and explore the implications for future anticancer drug development against these targets. PMID:26976726

  2. Recent findings and future directions for interpolar mitotic kinesin inhibitors in cancer therapy.

    PubMed

    Myers, Stephanie M; Collins, Ian

    2016-03-01

    The kinesin class of microtubule-associated motor proteins present attractive anticancer targets owing to their roles in key functions in dividing cells. Two interpolar mitotic kinesins Eg5 and HSET have opposing motor functions in mitotic spindle assembly with respect to microtubule movement, but both offer opportunities to develop cancer selective therapeutic agents. Here, we summarize the progress to date in developing inhibitors of Eg5 and HSET, with an emphasis on structural biology insights into the binding modes of allosteric inhibitors, compound selectivity and mechanisms of action of different chemical scaffolds. We discuss translation of preclinical studies to clinical experience with Eg5 inhibitors, recent findings on potential resistance mechanisms and explore the implications for future anticancer drug development against these targets. PMID:26976726

  3. A FRET-based study reveals site-specific regulation of spindle position checkpoint proteins at yeast centrosomes.

    PubMed

    Gryaznova, Yuliya; Koca Caydasi, Ayse; Malengo, Gabriele; Sourjik, Victor; Pereira, Gislene

    2016-01-01

    The spindle position checkpoint (SPOC) is a spindle pole body (SPB, equivalent of mammalian centrosome) associated surveillance mechanism that halts mitotic exit upon spindle mis-orientation. Here, we monitored the interaction between SPB proteins and the SPOC component Bfa1 by FRET microscopy. We show that Bfa1 binds to the scaffold-protein Nud1 and the γ-tubulin receptor Spc72. Spindle misalignment specifically disrupts Bfa1-Spc72 interaction by a mechanism that requires the 14-3-3-family protein Bmh1 and the MARK/PAR-kinase Kin4. Dissociation of Bfa1 from Spc72 prevents the inhibitory phosphorylation of Bfa1 by the polo-like kinase Cdc5. We propose Spc72 as a regulatory hub that coordinates the activity of Kin4 and Cdc5 towards Bfa1. In addition, analysis of spc72∆ cells shows that a mitotic-exit-promoting dominant signal, which is triggered upon elongation of the spindle into the bud, overrides the SPOC. Our data reinforce the importance of daughter-cell-associated factors and centrosome-based regulations in mitotic exit and SPOC control. PMID:27159239

  4. A FRET-based study reveals site-specific regulation of spindle position checkpoint proteins at yeast centrosomes

    PubMed Central

    Gryaznova, Yuliya; Caydasi, Ayse Koca; Malengo, Gabriele; Sourjik, Victor; Pereira, Gislene

    2016-01-01

    The spindle position checkpoint (SPOC) is a spindle pole body (SPB, equivalent of mammalian centrosome) associated surveillance mechanism that halts mitotic exit upon spindle mis-orientation. Here, we monitored the interaction between SPB proteins and the SPOC component Bfa1 by FRET microscopy. We show that Bfa1 binds to the scaffold-protein Nud1 and the γ-tubulin receptor Spc72. Spindle misalignment specifically disrupts Bfa1-Spc72 interaction by a mechanism that requires the 14-3-3-family protein Bmh1 and the MARK/PAR-kinase Kin4. Dissociation of Bfa1 from Spc72 prevents the inhibitory phosphorylation of Bfa1 by the polo-like kinase Cdc5. We propose Spc72 as a regulatory hub that coordinates the activity of Kin4 and Cdc5 towards Bfa1. In addition, analysis of spc72∆ cells shows that a mitotic-exit-promoting dominant signal, which is triggered upon elongation of the spindle into the bud, overrides the SPOC. Our data reinforce the importance of daughter-cell-associated factors and centrosome-based regulations in mitotic exit and SPOC control. DOI: http://dx.doi.org/10.7554/eLife.14029.001 PMID:27159239

  5. Novel interactions of fission yeast kinesin 8 revealed through in vivo expression of truncation alleles.

    PubMed

    West, Robert R; McIntosh, J Richard

    2008-08-01

    Fission yeast expresses two kinesin 8s, klp5+ and klp6+, which are important for diverse cellular functions: mitosis, meiosis, and the maintenance of normal cell morphology. During vegetative growth these motors display complex localization patterns, moving from the cytoplasm during interphase to the kinetochores in early mitosis, the interpolar spindle in anaphase B, and then back into the cytoplasm. We have expressed GFP-tagged alleles of domains from these motors, seeking the signals required for their localizations. The tail of Klp5p localized to the interphase nucleus, more specifically to telomeres. Addition of the neck re-directed this fragment to microtubules in the cytoplasm. Klp6-tail and the neck-tail domains of both motors localized at microtubule ends. Klp6-neck-tail localized to the spindle in early mitosis but to the pole-proximal ends of the spindle in anaphase B. The Klp5-motor and motor-neck localized to microtubules, often causing them to bundle. Over-expression of Klp6-motor or motor-neck resulted in shorter microtubules. These localization patterns were no different when constructs were expressed in strains lacking either or both of the endogenous, full-length proteins. Our results indicate that the localization signals for these kinesins are not derived from simple amino acid sequences but from complex interactions among multiple domains of each motor. PMID:18553361

  6. Characterization of a tomato protein kinase gene induced by infection by Potato spindle tuber viroid.

    PubMed

    Hammond, R W; Zhao, Y

    2000-09-01

    Viroids--covalently closed, circular RNA molecules in the size range of 250 to 450 nucleotides-are the smallest known infectious agents and cause a number of diseases of crop plants. Viroids do not encode proteins and replicate within the nucleus without a helper virus. In many cases, viroid infection results in symptoms of stunting, epinasty, and vein clearing. In our study of the molecular basis of the response of tomato cv. Rutgers to infection by Potato spindle tuber viroid (PSTVd), we have identified a specific protein kinase gene, pkv, that is transcriptionally activated in plants infected with either the intermediate or severe strain of PSTVd, at a lower level in plants inoculated with a mild strain, and not detectable in mock-inoculated plants. A full-length copy of the gene encoding the 55-kDa PKV (protein kinase viroid)-induced protein has been isolated and sequence analysis revealed significant homologies to cyclic nucleotide-dependent protein kinases. Although the sequence motifs in the catalytic domain suggest that it is a serine/threonine protein kinase, the recombinant PKV protein autophosphorylates in vitro on serine and tyrosine residues, suggesting that it is a putative member of the class of dual-specificity protein kinases. PMID:10975647

  7. Review: Mechanochemistry of the kinesin-1 ATPase.

    PubMed

    Cross, R A

    2016-08-01

    Kinesins are P-loop NTPases that can do mechanical work. Like small G-proteins, to which they are related, kinesins execute a program of active site conformational changes that cleaves the terminal phosphate from an NTP substrate. But unlike small G-proteins, kinesins can amplify and harness these conformational changes in order to exert force. In this short review I summarize current ideas about how the kinesin active site works and outline how the active site chemistry is coupled to the larger-scale structural cycle of the kinesin motor domain. Focusing largely on kinesin-1, the best-studied kinesin, I discuss how the active site switch machinery of kinesin cycles between three distinct states, how docking of the neck linker stabilizes two of these states, and how tension-sensitive and position-sensitive neck linker docking may modulate both the hydrolysis step of ATP turnover and the trapping of product ADP in the active site. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 476-482, 2016. PMID:27120111

  8. The Microtubule Plus-End Tracking Protein ARMADILLO-REPEAT KINESIN1 Promotes Microtubule Catastrophe in Arabidopsis[W][OPEN

    PubMed Central

    Eng, Ryan Christopher; Wasteneys, Geoffrey O.

    2014-01-01

    Microtubule dynamics are critically important for plant cell development. Here, we show that Arabidopsis thaliana ARMADILLO-REPEAT KINESIN1 (ARK1) plays a key role in root hair tip growth by promoting microtubule catastrophe events. This destabilizing activity appears to maintain adequate free tubulin concentrations in order to permit rapid microtubule growth, which in turn is correlated with uniform tip growth. Microtubules in ark1-1 root hairs exhibited reduced catastrophe frequency and slower growth velocities, both of which were restored by low concentrations of the microtubule-destabilizing drug oryzalin. An ARK1-GFP (green fluorescent protein) fusion protein expressed under its endogenous promoter localized to growing microtubule plus ends and rescued the ark1-1 root hair phenotype. Transient overexpression of ARK1-RFP (red fluorescent protein) increased microtubule catastrophe frequency. ARK1-fusion protein constructs lacking the N-terminal motor domain still labeled microtubules, suggesting the existence of a second microtubule binding domain at the C terminus of ARK1. ARK1-GFP was broadly expressed in seedlings, but mutant phenotypes were restricted to root hairs, indicating that ARK1’s function is redundant in cells other than those forming root hairs. PMID:25159991

  9. Mlp1 Acts as a Mitotic Scaffold to Spatially Regulate Spindle Assembly Checkpoint Proteins in Aspergillus nidulans

    PubMed Central

    De Souza, Colin P.; Hashmi, Shahr B.; Nayak, Tania; Oakley, Berl

    2009-01-01

    During open mitosis several nuclear pore complex (NPC) proteins have mitotic specific localizations and functions. We find that the Aspergillus nidulans Mlp1 NPC protein has previously unrealized mitotic roles involving spatial regulation of spindle assembly checkpoint (SAC) proteins. In interphase, An-Mlp1 tethers the An-Mad1 and An-Mad2 SAC proteins to NPCs. During a normal mitosis, An-Mlp1, An-Mad1, and An-Mad2 localize similarly on, and around, kinetochores until telophase when they transiently localize near the spindle but not at kinetochores. During SAC activation, An-Mlp1 remains associated with kinetochores in a manner similar to An-Mad1 and An-Mad2. Although An-Mlp1 is not required for An-Mad1 kinetochore localization during early mitosis, it is essential to maintain An-Mad1 in the extended region around kinetochores in early mitosis and near the spindle in telophase. Our data are consistent with An-Mlp1 being part of a mitotic spindle matrix similar to its Drosophila orthologue and demonstrate that this matrix localizes SAC proteins. By maintaining SAC proteins near the mitotic apparatus, An-Mlp1 may help monitor mitotic progression and coordinate efficient mitotic exit. Consistent with this possibility, An-Mad1 and An-Mlp1 redistribute from the telophase matrix and associate with segregated kinetochores when mitotic exit is prevented by expression of nondegradable cyclin B. PMID:19225157

  10. Polyglutamylated Tubulin Binding Protein C1orf96/CSAP Is Involved in Microtubule Stabilization in Mitotic Spindles

    PubMed Central

    Ohta, Shinya; Hamada, Mayako; Sato, Nobuko; Toramoto, Iyo

    2015-01-01

    The centrosome-associated C1orf96/Centriole, Cilia and Spindle-Associated Protein (CSAP) targets polyglutamylated tubulin in mitotic microtubules (MTs). Loss of CSAP causes critical defects in brain development; however, it is unclear how CSAP association with MTs affects mitosis progression. In this study, we explored the molecular mechanisms of the interaction of CSAP with mitotic spindles. Loss of CSAP caused MT instability in mitotic spindles and resulted in mislocalization of Nuclear protein that associates with the Mitotic Apparatus (NuMA), with defective MT dynamics. Thus, CSAP overload in the spindles caused extensive MT stabilization and recruitment of NuMA. Moreover, MT stabilization by CSAP led to high levels of polyglutamylation on MTs. MT depolymerization by cold or nocodazole treatment was inhibited by CSAP binding. Live-cell imaging analysis suggested that CSAP-dependent MT-stabilization led to centrosome-free MT aster formation immediately upon nuclear envelope breakdown without γ-tubulin. We therefore propose that CSAP associates with MTs around centrosomes to stabilize MTs during mitosis, ensuring proper bipolar spindle formation and maintenance. PMID:26562023

  11. Kinesin molecular motors: Transport pathways, receptors, and human disease

    NASA Astrophysics Data System (ADS)

    Goldstein, Lawrence S. B.

    2001-06-01

    Kinesin molecular motor proteins are responsible for many of the major microtubule-dependent transport pathways in neuronal and non-neuronal cells. Elucidating the transport pathways mediated by kinesins, the identity of the cargoes moved, and the nature of the proteins that link kinesin motors to cargoes are areas of intense investigation. Kinesin-II recently was found to be required for transport in motile and nonmotile cilia and flagella where it is essential for proper left-right determination in mammalian development, sensory function in ciliated neurons, and opsin transport and viability in photoreceptors. Thus, these pathways and proteins may be prominent contributors to several human diseases including ciliary dyskinesias, situs inversus, and retinitis pigmentosa. Kinesin-I is needed to move many different types of cargoes in neuronal axons. Two candidates for receptor proteins that attach kinesin-I to vesicular cargoes were recently found. One candidate, sunday driver, is proposed to both link kinesin-I to an unknown vesicular cargo and to bind and organize the mitogen-activated protein kinase components of a c-Jun N-terminal kinase signaling module. A second candidate, amyloid precursor protein, is proposed to link kinesin-I to a different, also unknown, class of axonal vesicles. The finding of a possible functional interaction between kinesin-I and amyloid precursor protein may implicate kinesin-I based transport in the development of Alzheimer's disease.

  12. Characterization of an active, fluorescein-labelled kinesin.

    PubMed

    Marya, P K; Fraylich, P E; Eagles, P A

    1990-10-01

    Kinesin was isolated from bovine intradural nerve roots and conjugated with 5-(iodoacetamido)fluorescein. The modified kinesin (AF-kinesin) supports the movement of organelles along microtubules at rates comparable with those obtained using unmodified kinesin. AF-kinesin was purified by high-performance liquid chromatography. SDS/PAGE analysis of the purified fraction showed the presence of a fluorescent band at the position of the 125-kDa kinesin heavy chain. This protein promoted microtubule gliding with MgATP and with MgGTP at rates comparable to those of unlabelled kinesin. AF-kinesin had a fluorescein/protein ratio of one. Video microscopy at low light levels was used to monitor the interactions between the analogue and microtubules. AF-kinesin binds to microtubules in the presence of adenosine 5'-[beta, gamma-imino]triphosphate or ADP. Brief incubation of the microtubule. AF-kinesin complex with 10 mM ATP or GTP completely removes the labelled molecule. AF-kinesin can be inactivated in its ability to cause microtubule gliding by irradiating it with light that bleaches the bound fluorophore. When the protein is damaged in this way it still binds to microtubules and does so in the presence of ATP. PMID:2146115

  13. Fin1-PP1 Helps Clear Spindle Assembly Checkpoint Protein Bub1 from Kinetochores in Anaphase.

    PubMed

    Bokros, Michael; Gravenmier, Curtis; Jin, Fengzhi; Richmond, Daniel; Wang, Yanchang

    2016-02-01

    The spindle assembly checkpoint (SAC) monitors chromosome attachment defects, and the assembly of SAC proteins at kinetochores is essential for its activation, but the SAC disassembly process remains unknown. We found that deletion of a 14-3-3 protein, Bmh1, or hyperactivation of Cdc14 early anaphase release (FEAR) allows premature SAC silencing in budding yeast, which depends on a kinetochore protein Fin1 that forms a complex with protein phosphatase PP1. Previous works suggest that FEAR-dependent Fin1 dephosphorylation promotes Bmh1-Fin1 dissociation, which enables kinetochore recruitment of Fin1-PP1. We found persistent kinetochore association of SAC protein Bub1 in fin1Δ mutants after anaphase entry. Therefore, we revealed a mechanism that clears SAC proteins from kinetochores. After anaphase entry, FEAR activation promotes kinetochore enrichment of Fin1-PP1, resulting in SAC disassembly at kinetochores. This mechanism is required for efficient SAC silencing after SAC is challenged, and untimely Fin1-kinetochore association causes premature SAC silencing and chromosome missegregation. PMID:26832405

  14. How Interactions Affect Multiple Kinesin Dynamics

    NASA Astrophysics Data System (ADS)

    Kolomeisky, Anatoly

    2013-03-01

    Intracellullar transport is supported by several classes of enzymatic molecules known as motor proteins. Cellular cargos are frequently transported by teams of motor proteins, and recent experimental and theoretical studies uncovered many features of such complex dynamics. Here we investigate theoretically the role of nonmechanical interactions between kinesin motor proteins and microtubules in the collective motion of motor proteins. Our analysis is based on stochastic model that explicitly takes into account all chemical and mechanical transitions. Nonmechanical interactions are assumed to affect kinesin mechanochemistry only when the motors are separated by less than 3 microtubule lattice sites, and it is shown that relatively weak interaction energies can have a significant effect on collective motor dynamics. In agreement with optical trapping experiments on structurally defined kinesin complexes, the model predicts that these effects primarily occur when cargos are transported against loads exceeding single-kinesin stalling forces. These results highlights the complex dynamics of multiple motor proteins in cellular transport phenomena.

  15. Interplay between Velocity and Travel Distance of Kinesin-based Transport in the Presence of Tau

    NASA Astrophysics Data System (ADS)

    Xu, Jing; King, Stephen; Lapierre-Landry, Maryse; Nemec, Brian

    2014-03-01

    Although the disease-relevant microtubule-associated protein tau is known to severely inhibit kinesin-based transport in vitro, potential mechanisms for reversing this detrimental effect to maintain healthy transport in cells remain unknown. Here we report the unambiguous up-regulation of multiple-kinesin travel distance despite the presence of tau, via decreased single-kinesin velocity. Intriguingly, the presence of tau also modestly reduced velocity in multiple-kinesin transport. Our stochastic simulations indicate that the tau-mediated reduction in single-kinesin travel is sufficient for the observed reduction in multiple-kinesin velocity. Taken together, our observations suggest that single-kinesin velocity is a promising experimental handle for tuning the effect of tau on multiple-kinesin travel distance, and uncover a previously unexplored role of tau for inhibiting multiple-kinesin velocity via reducing single-kinesin travel distance. This work was supported in part by NIH grant NS048501 to SJK.

  16. The 14-3-3 protein PAR-5 regulates the asymmetric localization of the LET-99 spindle positioning protein.

    PubMed

    Wu, Jui-Ching; Espiritu, Eugenel B; Rose, Lesilee S

    2016-04-15

    PAR proteins play important roles in establishing cytoplasmic polarity as well as regulating spindle positioning during asymmetric division. However, the molecular mechanisms by which the PAR proteins generate asymmetry in different cell types are still being elucidated. Previous studies in Caenorhabditis elegans revealed that PAR-3 and PAR-1 regulate the asymmetric localization of LET-99, which in turn controls spindle positioning by affecting the distribution of the conserved force generating complex. In wild-type embryos, LET-99 is localized in a lateral cortical band pattern, via inhibition at the anterior by PAR-3 and at the posterior by PAR-1. In this report, we show that the 14-3-3 protein PAR-5 is also required for cortical LET-99 asymmetry. PAR-5 associated with LET-99 in pull-down assays, and two PAR-5 binding sites were identified in LET-99 using the yeast two-hybrid assay. Mutation of these sites abolished binding in yeast and altered LET-99 localization in vivo: LET-99 was present at the highest levels at the posterior pole of the embryo instead of a band in par-5 embryos. Together the results indicate that PAR-5 acts in a mechanism with PAR-1 to regulate LET-99 cortical localization. PMID:26921457

  17. Molecular mechanisms of kinetochore capture by spindle microtubules.

    PubMed

    Tanaka, Kozo; Mukae, Naomi; Dewar, Hilary; van Breugel, Mark; James, Euan K; Prescott, Alan R; Antony, Claude; Tanaka, Tomoyuki U

    2005-04-21

    For high-fidelity chromosome segregation, kinetochores must be properly captured by spindle microtubules, but the mechanisms underlying initial kinetochore capture have remained elusive. Here we visualized individual kinetochore-microtubule interactions in Saccharomyces cerevisiae by regulating the activity of a centromere. Kinetochores are captured by the side of microtubules extending from spindle poles, and are subsequently transported poleward along them. The microtubule extension from spindle poles requires microtubule plus-end-tracking proteins and the Ran GDP/GTP exchange factor. Distinct kinetochore components are used for kinetochore capture by microtubules and for ensuring subsequent sister kinetochore bi-orientation on the spindle. Kar3, a kinesin-14 family member, is one of the regulators that promote transport of captured kinetochores along microtubules. During such transport, kinetochores ensure that they do not slide off their associated microtubules by facilitating the conversion of microtubule dynamics from shrinkage to growth at the plus ends. This conversion is promoted by the transport of Stu2 from the captured kinetochores to the plus ends of microtubules. PMID:15846338

  18. The kinesin I family member KIF5C is a novel substrate for protein kinase CK2

    SciTech Connect

    Schaefer, Barbara; Goetz, Claudia; Montenarh, Mathias

    2008-10-17

    Protein kinase CK2 is ubiquitously expressed. The holoenzyme is composed of two catalytic {alpha}- or {alpha}'-subunits and two regulatory {beta}-subunits but evidence is accumulating that the subunits can function independently. The composition of the holoenzyme as well as the expression of the individual subunits varies in different tissues, with high expression of CK2{alpha}' in testis and brain. CK2 phosphorylates a number of different substrates which are implicated in basal cellular processes such as proliferation and survival of cells. Here, we report a new substrate, KIF5C, which is a member of the kinesin 1 family of motor neuron proteins. Phosphorylation of KIF5C was demonstrated in vitro and in vivo. Using deletion mutants, a peptide library, and mutation analysis a phosphorylation site for CK2 was mapped to amino acid 338 which is located in the non-motor domain of KIF5C. Interestingly, KIF5C is phosphorylated by holoenzymes composed of CK2{alpha}/CK2{beta} and CK2{alpha}'/CK2{beta} as well as by CK2{alpha}' alone but not by CK2{alpha} alone.

  19. ATP-binding motifs play key roles in Krp1p, kinesin-related protein 1, function for bi-polar growth control in fission yeast

    SciTech Connect

    Rhee, Dong Keun; Cho, Bon A; Kim, Hyong Bai . E-mail: hbkim5212@hotmail.com

    2005-06-03

    Kinesin is a microtubule-based motor protein with various functions related to the cell growth and division. It has been reported that Krp1p, kinesin-related protein 1, which belongs to the kinesin heavy chain superfamily, localizes on microtubules and may play an important role in cytokinesis. However, the function of Krp1p has not been fully elucidated. In this study, we overexpressed an intact form and three different mutant forms of Krp1p in fission yeast constructed by site-directed mutagenesis in two ATP-binding motifs or by truncation of the leucine zipper-like motif (LZiP). We observed hyper-extended microtubules and the aberrant nuclear shape in Krp1p-overexpressed fission yeast. As a functional consequence, a point mutation of ATP-binding domain 1 (G89E) in Krp1p reversed the effect of Krp1p overexpression in fission yeast, whereas the specific mutation in ATP-binding domain 2 (G238E) resulted in the altered cell polarity. Additionally, truncation of the leucine zipper-like domain (LZiP) at the C-terminal of Krp1p showed a normal nuclear division. Taken together, we suggest that krp1p is involved in regulation of cell-polarized growth through ATP-binding motifs in fission yeast.

  20. Myosin-V, Kinesin-1, and Kinesin-3 Cooperate in Hyphal Growth of the Fungus Ustilago maydisD⃞

    PubMed Central

    Schuchardt, Isabel; Aßmann, Daniela; Thines, Eckhard; Schuberth, Christian; Steinberg, Gero

    2005-01-01

    Long-distance transport is crucial for polar-growing cells, such as neurons and fungal hyphae. Kinesins and myosins participate in this process, but their functional interplay is poorly understood. Here, we investigate the role of kinesin motors in hyphal growth of the plant pathogen Ustilago maydis. Although the microtubule plus-ends are directed to the hyphal tip, of all 10 kinesins analyzed, only conventional kinesin (Kinesin-1) and Unc104/Kif1A-like kinesin (Kinesin-3) were up-regulated in hyphae and they are essential for extended hyphal growth. Δkin1 and Δkin3 mutant hyphae grew irregular and remained short, but they were still able to grow polarized. No additional phenotype was detected in Δkin1rkin3 double mutants, but polarity was lost in Δmyo5rkin1 and Δmyo5rkin3 mutant cells, suggesting that kinesins and class V myosin cooperate in hyphal growth. Consistent with such a role in secretion, fusion proteins of green fluorescent protein and Kinesin-1, Myosin-V, and Kinesin-3 accumulate in the apex of hyphae, a region where secretory vesicles cluster to form the fungal Spitzenkörper. Quantitative assays revealed a role of Kin3 in secretion of acid phosphatase, whereas Kin1 was not involved. Our data demonstrate that just two kinesins and at least one myosin support hyphal growth. PMID:16120650

  1. Xorbit/CLASP links dynamic microtubules to chromosomes in the Xenopus meiotic spindle

    PubMed Central

    Hannak, Eva; Heald, Rebecca

    2006-01-01

    A family of microtubule (MT)-binding proteins, Orbit/multiple asters/cytoplasmic linker protein–associated protein, has emerged as an important player during mitosis, but their functional mechanisms are poorly understood. In this study, we used meiotic egg extracts to gain insight into the role of the Xenopus laevis homologue Xorbit in spindle assembly and function. Xorbit immunodepletion or its inhibition by a dominant-negative fragment resulted in chromosome alignment defects and aberrant MT structures, including monopolar and small spindles. Xorbit-depleted extracts failed to nucleate MTs around chromatin-coated beads, indicating its essential requirement for spindle assembly in the absence of centrosomes and kinetochores. Xorbit's MT stabilizing effect was most apparent during anaphase, when spindle MTs depolymerized rapidly upon Xorbit inhibition. Biochemical interaction between a COOH-terminal Xorbit fragment and the kinetochore-associated kinesin centromeric protein E may contribute to Xorbit's role in chromosome congression. We propose that Xorbit tethers dynamic MT plus ends to kinetochores and chromatin, providing a stabilizing activity that is crucial for spindle assembly and chromosome segregation. PMID:16390996

  2. Formin-mediated actin polymerization cooperates with Mushroom body defect (Mud)–Dynein during Frizzled–Dishevelled spindle orientation

    PubMed Central

    Johnston, Christopher A.; Manning, Laurina; Lu, Michelle S.; Golub, Ognjen; Doe, Chris Q.; Prehoda, Kenneth E.

    2013-01-01

    Summary To position the mitotic spindle, cytoskeletal components must be coordinated to generate cortical forces on astral microtubules. Although the dynein motor is common to many spindle orientation systems, ‘accessory pathways’ are often also required. In this work, we identified an accessory spindle orientation pathway in Drosophila that functions with Dynein during planar cell polarity, downstream of the Frizzled (Fz) effector Dishevelled (Dsh). Dsh contains a PDZ ligand and a Dynein-recruiting DEP domain that are both required for spindle orientation. The Dsh PDZ ligand recruits Canoe/Afadin and ultimately leads to Rho GTPase signaling mediated through RhoGEF2. The formin Diaphanous (Dia) functions as the Rho effector in this pathway, inducing F-actin enrichment at sites of cortical Dsh. Chimeric protein experiments show that the Dia–actin accessory pathway can be replaced by an independent kinesin (Khc73) accessory pathway for Dsh-mediated spindle orientation. Our results define two ‘modular’ spindle orientation pathways and show an essential role for actin regulation in Dsh-mediated spindle orientation. PMID:23868974

  3. Spindle assembly checkpoint proteins are positioned close to core microtubule attachment sites at kinetochores

    PubMed Central

    Wan, Xiaohu; Cheerambathur, Dhanya; Gassmann, Reto; Suzuki, Aussie; Lawrimore, Josh; Desai, Arshad; Salmon, E.D.

    2013-01-01

    Spindle assembly checkpoint proteins have been thought to reside in the peripheral corona region of the kinetochore, distal to microtubule attachment sites at the outer plate. However, recent biochemical evidence indicates that checkpoint proteins are closely linked to the core kinetochore microtubule attachment site comprised of the Knl1–Mis12–Ndc80 (KMN) complexes/KMN network. In this paper, we show that the Knl1–Zwint1 complex is required to recruit the Rod–Zwilch–Zw10 (RZZ) and Mad1–Mad2 complexes to the outer kinetochore. Consistent with this, nanometer-scale mapping indicates that RZZ, Mad1–Mad2, and the C terminus of the dynein recruitment factor Spindly are closely juxtaposed with the KMN network in metaphase cells when their dissociation is blocked and the checkpoint is active. In contrast, the N terminus of Spindly is ∼75 nm outside the calponin homology domain of the Ndc80 complex. These results reveal how checkpoint proteins are integrated within the substructure of the kinetochore and will aid in understanding the coordination of microtubule attachment and checkpoint signaling during chromosome segregation. PMID:23979716

  4. Histone deacetylase inhibitors disrupt the mitotic spindle assembly checkpoint by targeting histone and nonhistone proteins.

    PubMed

    Gabrielli, Brian; Brown, Mellissa

    2012-01-01

    Histone deacetylase inhibitors exhibit pleiotropic effects on cell functions, both in vivo and in vitro. One of the more dramatic effects of these drugs is their ability to disrupt normal mitotic division, which is a significant contributor to the anticancer properties of these drugs. The most important feature of the disrupted mitosis is that drug treatment overcomes the mitotic spindle assembly checkpoint and drives mitotic slippage, but in a manner that triggers apoptosis. The mechanism by which histone deacetylase inhibitors affect mitosis is now becoming clearer through the identification of a number of chromatin and nonchromatin protein targets that are critical to the regulation of normal mitotic progression and cell division. These proteins are directly regulated by acetylation and deacetylation, or in some cases indirectly through the acetylation of essential partner proteins. There appears to be little contribution from deacetylase inhibitor-induced transcriptional changes to the mitotic effects of these drugs. The overall mitotic phenotype of drug treatment appears to be the sum of these disrupted mechanisms. PMID:23088867

  5. Spindle assembly checkpoint proteins regulate and monitor meiotic synapsis in C. elegans

    PubMed Central

    Bohr, Tisha; Nelson, Christian R.; Klee, Erin

    2015-01-01

    Homologue synapsis is required for meiotic chromosome segregation, but how synapsis is initiated between chromosomes is poorly understood. In Caenorhabditis elegans, synapsis and a checkpoint that monitors synapsis depend on pairing centers (PCs), cis-acting loci that interact with nuclear envelope proteins, such as SUN-1, to access cytoplasmic microtubules. Here, we report that spindle assembly checkpoint (SAC) components MAD-1, MAD-2, and BUB-3 are required to negatively regulate synapsis and promote the synapsis checkpoint response. Both of these roles are independent of a conserved component of the anaphase-promoting complex, indicating a unique role for these proteins in meiotic prophase. MAD-1 and MAD-2 localize to the periphery of meiotic nuclei and interact with SUN-1, suggesting a role at PCs. Consistent with this idea, MAD-1 and BUB-3 require full PC function to inhibit synapsis. We propose that SAC proteins monitor the stability of pairing, or tension, between homologues to regulate synapsis and elicit a checkpoint response. PMID:26483555

  6. RBM14 prevents assembly of centriolar protein complexes and maintains mitotic spindle integrity

    PubMed Central

    Shiratsuchi, Gen; Takaoka, Katsuyoshi; Ashikawa, Tomoko; Hamada, Hiroshi; Kitagawa, Daiju

    2015-01-01

    Formation of a new centriole adjacent to a pre-existing centriole occurs only once per cell cycle. Despite being crucial for genome integrity, the mechanisms controlling centriole biogenesis remain elusive. Here, we identify RBM14 as a novel suppressor of assembly of centriolar protein complexes. Depletion of RBM14 in human cells induces ectopic formation of centriolar protein complexes through function of the STIL/CPAP complex. Intriguingly, the formation of such structures seems not to require the cartwheel structure that normally acts as a scaffold for centriole formation, whereas they can retain pericentriolar material and microtubule nucleation activity. Moreover, we find that, upon RBM14 depletion, a part of the ectopic centriolar protein complexes in turn assemble into structures more akin to centrioles, presumably by incorporating HsSAS-6, a cartwheel component, and cause multipolar spindle formation. We further demonstrate that such structures assemble in the cytoplasm even in the presence of pre-existing centrioles. This study sheds light on the possibility that ectopic formation of aberrant structures related to centrioles may contribute to genome instability and tumorigenesis. PMID:25385835

  7. Growth-associated protein 43 in differentiating peripheral nerve sheath tumors from other non-neural spindle cell neoplasms.

    PubMed

    Chen, Wei-Shen; Chen, Pei-Ling; Lu, Dongsi; Lind, Anne C; Dehner, Louis P

    2014-02-01

    The malignant peripheral nerve sheath tumor is a relatively uncommon type of soft tissue sarcoma arising from a peripheral nerve or extraneural soft tissues and showing nerve sheath differentiation. The diagnosis of malignant peripheral nerve sheath tumor is one of the most challenging tasks in surgical pathology because of its uncommon type (5-10% soft tissue sarcomas), morphologic resemblance to other spindle cell neoplasms and lack of sensitive and specific immunohistochemical markers. The pathologic diagnosis is more straightforward in the clinical setting of neurofibromatosis-1, but problems are mainly centered on the non-neurofibromatosis-1 malignant peripheral nerve sheath tumors. To date, S100 protein is the most widely applied marker in the case of a suspected malignant peripheral nerve sheath tumor, yet its suboptimal sensitivity and its expression in other spindle cell neoplasms, including spindle cell melanoma, clear-cell sarcoma, leiomyosarcoma and monophasic synovial sarcoma, add to the diagnostic conundrum. Growth-associated protein 43 (GAP43), a membrane-associated phosphoprotein expressed in neuronal growth cones and Schwann cell precursors during neural development and axonal regeneration, was applied to a set of nerve sheath and non-nerve sheath spindle cell neoplasms. The findings in this study indicate that GAP43 is expressed in malignant peripheral nerve sheath tumors (n=18/21; 86%) and demonstrates a sensitivity superior to S100 protein (n=13/21; 62%). GAP43 is also positive in neurofibromas (n=17/18; 94%), schwannomas (n=11/12; 92%) and desmoplastic melanomas (n=7/10; 70%). In contrast, it is negative in the non-desmoplastic spindle cell melanomas (n=20/22; 91%). Of the other non-neural soft tissue sarcomas, GAP43 is non-reactive in most leiomyosarcomas (n=14/16; 88%) and clear-cell sarcomas (n=8/8), and only focally positive in monophasic synovial sarcomas (n=3/7; 43%). GAP43 is seemingly a highly sensitive marker for peripheral nerve

  8. Kinesin Kip2 enhances microtubule growth in vitro through length-dependent feedback on polymerization and catastrophe.

    PubMed

    Hibbel, Anneke; Bogdanova, Aliona; Mahamdeh, Mohammed; Jannasch, Anita; Storch, Marko; Schäffer, Erik; Liakopoulos, Dimitris; Howard, Jonathon

    2015-01-01

    The size and position of mitotic spindles is determined by the lengths of their constituent microtubules. Regulation of microtubule length requires feedback to set the balance between growth and shrinkage. Whereas negative feedback mechanisms for microtubule length control, based on depolymerizing kinesins and severing proteins, have been studied extensively, positive feedback mechanisms are not known. Here, we report that the budding yeast kinesin Kip2 is a microtubule polymerase and catastrophe inhibitor in vitro that uses its processive motor activity as part of a feedback loop to further promote microtubule growth. Positive feedback arises because longer microtubules bind more motors, which walk to the ends where they reinforce growth and inhibit catastrophe. We propose that positive feedback, common in biochemical pathways to switch between signaling states, can also be used in a mechanical signaling pathway to switch between structural states, in this case between short and long polymers. PMID:26576948

  9. Release of kinesin from vesicles by hsc70 and regulation of fast axonal transport

    NASA Technical Reports Server (NTRS)

    Tsai, M. Y.; Morfini, G.; Szebenyi, G.; Brady, S. T.

    2000-01-01

    The nature of kinesin interactions with membrane-bound organelles and mechanisms for regulation of kinesin-based motility have both been surprisingly difficult to define. Most kinesin is recovered in supernatants with standard protocols for purification of motor proteins, but kinesin recovered on membrane-bound organelles is tightly bound. Partitioning of kinesin between vesicle and cytosolic fractions is highly sensitive to buffer composition. Addition of either N-ethylmaleimide or EDTA to homogenization buffers significantly increased the fraction of kinesin bound to organelles. Given that an antibody against kinesin light chain tandem repeats also releases kinesin from vesicles, these observations indicated that specific cytoplasmic factors may regulate kinesin release from membranes. Kinesin light tandem repeats contain DnaJ-like motifs, so the effects of hsp70 chaperones were evaluated. Hsc70 released kinesin from vesicles in an MgATP-dependent and N-ethylmaleimide-sensitive manner. Recombinant kinesin light chains inhibited kinesin release by hsc70 and stimulated the hsc70 ATPase. Hsc70 actions may provide a mechanism to regulate kinesin function by releasing kinesin from cargo in specific subcellular domains, thereby effecting delivery of axonally transported materials.

  10. CEP215 is involved in the dynein-dependent accumulation of pericentriolar matrix proteins for spindle pole formation.

    PubMed

    Lee, Seongju; Rhee, Kunsoo

    2010-02-15

    CEP 215 is a human orthologue of Drosophila centrosomin which is a core centrosome component for the pericentriolar matrix protein recruitment. Recent investigations revealed that CEP 215 is required for centrosome cohesion, centrosomal attachment of the gamma-TuRC, and microtubule dynamics. However, it remains obscure how CEP 215 functions for recruitment of the centrosomal proteins during the centrosome cycle. Here, we investigated a role of CEP 215 during mitosis. Knockdown of CEP 215 resulted in characteristic mitotic phenotypes, including monopolar spindle formation, a decrease in distance between the spindle pole pair, and detachment of the centrosomes from the spindle poles. We noticed that CEP 215 is critical for centrosomal localization of dynein throughout the cell cycle. As a consequence, the selective centrosomal proteins were not recruited to the centrosome properly. Finally, the centrosomal localization of CEP 215 also depends on the dynein-dynactin complex. Based on the results, we propose that CEP 215 regulates a dynein-dependent transport of the pericentriolar matrix proteins during the centrosome maturation. PMID:20139723

  11. The natural diterpene tonantzitlolone A and its synthetic enantiomer inhibit cell proliferation and kinesin-5 function.

    PubMed

    Pfeffer, Tobias J; Sasse, Florenz; Schmidt, Christoph F; Lakämper, Stefan; Kirschning, Andreas; Scholz, Tim

    2016-04-13

    Tonantzitlolone A, a diterpene isolated from the Mexican plant Stillingia sanguinolenta, shows cytostatic activity. Both the natural product tonantzitlolone A and its synthetic enantiomer induce monoastral spindle formation in cell experiments which indicates inhibitory activity on kinesin-5 mitotic motor molecules. These inhibitory effects on kinesin-5 could be verified in in vitro single-molecule motility assays, where both tonantzitlolones interfered with kinesin-5 binding to its cellular interaction partner microtubules in a concentration-dependent manner, yet with a larger effect of the synthetic enantiomer. In contrast to kinesin-5 inhibition, both tonantzitlolone A enantiomers did not affect conventional kinesin-1 function; hence tonantzitlolones are not unspecific kinesin inhibitors. The observed stronger inhibitory effect of the synthetic enantiomer demonstrates the possibility to enhance the overall moderate anti-proliferative effect of the lead compound tonantzitlolon A by chemical modification. PMID:26896705

  12. Motion observation and SPR measurements of kinesin motility on microtubules

    NASA Astrophysics Data System (ADS)

    Sikora, A.; Oliveira, D.; Kim, K.; Liao, A. L.; Umetsu, M.; Adschiri, T.; Hwang, W.; Teizer, W.

    2012-02-01

    Motor proteins convert chemical energy directly into mechanical work with high efficiency (˜50%). One of these proteins, kinesin, is used in the cell to transport organelles. It ``walks'' along biopolymer tracks called microtubules and, depending on the type, can reach speeds of a few micrometers per second. Kinesin can carry intracellular cargo over long distances against several piconewtons of loads and is barely limited by the cargo size. Motion of streptavidin-coated quantum dots carried by kinesin on microtubules will be presented. We have expressed biotinylated Kinesin-1 using Escherichia coli. Attachment to quantum dots was performed using the strong binding affinity between streptavidin and biotin. Microtubules, labeled with rhodamine, allow visualization by fluorescence microscopy. The measured speed of our kinesin fits well with results found in the literature. Surface Plasmon Resonance (SPR) measurements allow the identification and strength evaluation of bonding. Using this technique, we will present results on the binding between our expressed kinesin and microtubule.

  13. Proteins related to the spindle and checkpoint mitotic emphasize the different pathogenesis of hypoplastic MDS.

    PubMed

    Heredia, Fabiola Fernandes; de Sousa, Juliana Cordeiro; Ribeiro Junior, Howard Lopes; Carvalho, Alex Fiorini; Magalhaes, Silvia Maria Meira; Pinheiro, Ronald Feitosa

    2014-02-01

    Some studies show that alterations in expression of proteins related to mitotic spindle (AURORAS KINASE A and B) and mitotic checkpoint (CDC20 and MAD2L1) are involved in chromosomal instability and tumor progression in various solid and hematologic malignancies. This study aimed to evaluate these genes in MDS patients. The cytogenetics analysis was carried out by G-banding, AURKA and AURKB amplification was performed using FISH, and AURKA, AURKB, CDC20 and MAD2L1 gene expression was performed by qRT-PCR in 61 samples of bone marrow from MDS patients. AURKA gene amplification was observed in 10% of the cases, which also showed higher expression levels than the control group (p=0.038). Patients with normo/hypercellular BM presented significantly higher expression levels than hypocellular BM patients, but normo and hypercellular BM groups did not differ. After logistic regression analysis, our results showed that HIGH expression levels were associated with increased risk of developing normo/hypercellular MDS. It also indicated that age is associated with AURKA, CDC20 and MAD2L1 HIGH expression levels. The distinct expression of hypocellular patients emphasizes the prognostic importance of cellularity to MDS. The amplification/high expression of AURKA suggests that the increased expression of this gene may be related to the pathogenesis of disease. PMID:24314588

  14. Protein phosphatase 4 is phosphorylated and inactivated by Cdk in response to spindle toxins and interacts with γ-tubulin

    PubMed Central

    Voss, Martin; Campbell, Kathryn; Saranzewa, Nastja; Campbell, David G; Hastie, C James; Peggie, Mark W; Martin-Granados, Cristina; Prescott, Alan R; Cohen, Patricia TW

    2013-01-01

    Many pharmaceuticals used to treat cancer target the cell cycle or mitotic spindle dynamics, such as the anti-tumor drug, paclitaxel, which stabilizes microtubules. Here we show that, in cells arrested in mitosis with the spindle toxins, nocodazole, or paclitaxel, the endogenous protein phosphatase 4 (Ppp4) complex Ppp4c-R2-R3A is phosphorylated on its regulatory (R) subunits, and its activity is inhibited. The phosphorylations are blocked by roscovitine, indicating that they may be mediated by Cdk1-cyclin B. Endogenous Ppp4c is enriched at the centrosomes in the absence and presence of paclitaxel, nocodazole, or roscovitine, and the activity of endogenous Ppp4c-R2-R3A is inhibited from G1/S to the G2/M phase of the cell cycle. Endogenous γ-tubulin and its associated protein, γ-tubulin complex protein 2, both of which are essential for nucleation of microtubules at centrosomes, interact with the Ppp4 complex. Recombinant γ-tubulin can be phosphorylated by Cdk1-cyclin B or Brsk1 and dephosphorylated by Ppp4c-R2-R3A in vitro. The data indicate that Ppp4c-R2-R3A regulates microtubule organization at centrosomes during cell division in response to stress signals such as spindle toxins, paclitaxel, and nocodazole, and that inhibition of the Ppp4 complex may be advantageous for treatment of some cancers. PMID:23966160

  15. Molecular modeling of oscillating GHz electric field influence on the kinesin affinity to microtubule

    NASA Astrophysics Data System (ADS)

    R. Saeidi, H.; S. Setayandeh, S.; Lohrasebi, A.

    2015-08-01

    Kinesin is a microtubule-associated motor protein which can respond to the external electric field due to its polarity. Using a molecular dynamics simulation method, the effect of such a field on the affinity of kinesin to the αβ-tubulin is investigated in this study. To consider kinesin affinity, the system is exposed to an electric field of 0.03 V/nm with frequency values of 1, 2, …, 9, and 10 GHz. It is found that the applied electric field can change kinesin affinity to the microtubule. These changes could perturb the normal operation of kinesin, such as the processive motility of kinesin on the microtubule.

  16. Structure of an intermediate conformer of the spindle checkpoint protein Mad2

    PubMed Central

    Hara, Mayuko; Özkan, Engin; Sun, Hongbin; Yu, Hongtao; Luo, Xuelian

    2015-01-01

    The spindle checkpoint senses unattached kinetochores during prometaphase and inhibits the anaphase-promoting complex or cyclosome (APC/C), thus ensuring accurate chromosome segregation. The checkpoint protein mitotic arrest deficient 2 (Mad2) is an unusual protein with multiple folded states. Mad2 adopts the closed conformation (C-Mad2) in a Mad1–Mad2 core complex. In mitosis, kinetochore-bound Mad1–C-Mad2 recruits latent, open Mad2 (O-Mad2) from the cytosol and converts it to an intermediate conformer (I-Mad2), which can then bind and inhibit the APC/C activator cell division cycle 20 (Cdc20) as C-Mad2. Here, we report the crystal structure and NMR analysis of I-Mad2 bound to C-Mad2. Although I-Mad2 retains the O-Mad2 fold in crystal and in solution, its core structural elements undergo discernible rigid-body movements and more closely resemble C-Mad2. Residues exhibiting methyl chemical shift changes in I-Mad2 form a contiguous, interior network that connects its C-Mad2–binding site to the conformationally malleable C-terminal region. Mutations of residues at the I-Mad2–C-Mad2 interface hinder I-Mad2 formation and impede the structural transition of Mad2. Our study provides insight into the conformational activation of Mad2 and establishes the basis of allosteric communication between two distal sites in Mad2. PMID:26305957

  17. Structure of an intermediate conformer of the spindle checkpoint protein Mad2.

    PubMed

    Hara, Mayuko; Özkan, Engin; Sun, Hongbin; Yu, Hongtao; Luo, Xuelian

    2015-09-01

    The spindle checkpoint senses unattached kinetochores during prometaphase and inhibits the anaphase-promoting complex or cyclosome (APC/C), thus ensuring accurate chromosome segregation. The checkpoint protein mitotic arrest deficient 2 (Mad2) is an unusual protein with multiple folded states. Mad2 adopts the closed conformation (C-Mad2) in a Mad1-Mad2 core complex. In mitosis, kinetochore-bound Mad1-C-Mad2 recruits latent, open Mad2 (O-Mad2) from the cytosol and converts it to an intermediate conformer (I-Mad2), which can then bind and inhibit the APC/C activator cell division cycle 20 (Cdc20) as C-Mad2. Here, we report the crystal structure and NMR analysis of I-Mad2 bound to C-Mad2. Although I-Mad2 retains the O-Mad2 fold in crystal and in solution, its core structural elements undergo discernible rigid-body movements and more closely resemble C-Mad2. Residues exhibiting methyl chemical shift changes in I-Mad2 form a contiguous, interior network that connects its C-Mad2-binding site to the conformationally malleable C-terminal region. Mutations of residues at the I-Mad2-C-Mad2 interface hinder I-Mad2 formation and impede the structural transition of Mad2. Our study provides insight into the conformational activation of Mad2 and establishes the basis of allosteric communication between two distal sites in Mad2. PMID:26305957

  18. Mechanisms of Mitotic Spindle Assembly

    PubMed Central

    Petry, Sabine

    2016-01-01

    Life depends on cell proliferation and the accurate segregation of chromosomes, which are mediated by the microtubule (MT)-based mitotic spindle and ~200 essential MT-associated proteins. Yet, a mechanistic understanding of how the mitotic spindle is assembled and achieves chromosome segregation is still missing. This is mostly due to the density of MTs in the spindle, which presumably precludes their direct observation. Recent insight has been gained into the molecular building plan of the metaphase spindle using bulk and single-molecule measurements combined with computational modeling. MT nucleation was uncovered as a key principle of spindle assembly, and mechanistic details about MT nucleation pathways and their coordination are starting to be revealed. Lastly, advances in studying spindle assembly can be applied to address the molecular mechanisms of how the spindle segregates chromosomes. PMID:27145846

  19. Ubiquitin ligase RNF20/40 facilitates spindle assembly and promotes breast carcinogenesis through stabilizing motor protein Eg5

    PubMed Central

    Duan, Yang; Huo, Dawei; Gao, Jie; Wu, Heng; Ye, Zheng; Liu, Zhe; Zhang, Kai; Shan, Lin; Zhou, Xing; Wang, Yue; Su, Dongxue; Ding, Xiang; Shi, Lei; Wang, Yan; Shang, Yongfeng; Xuan, Chenghao

    2016-01-01

    Whether transcriptional regulators are functionally involved in mitosis is a fundamental question in cell biology. Here we report that the RNF20/40 complex, a major ubiquitin ligase catalysing histone H2B monoubiquitination, interacts with the motor protein Eg5 during mitosis and participates in spindle assembly. We show that the RNF20/40 complex monoubiquitinates and stabilizes Eg5. Loss of RNF20/40 results in spindle assembly defects, cell cycle arrest and apoptosis. Consistently, depletion of either RNF20/40 or Eg5 suppresses breast cancer in vivo. Significantly, RNF20/40 and Eg5 are concurrently upregulated in human breast carcinomas and high Eg5 expression is associated with poorer overall survival of patients with luminal A, or B, breast cancer. Our study uncovers an important spindle assembly role of the RNF20/40 complex, and implicates the RNF20/40-Eg5 axis in breast carcinogenesis, supporting the pursuit of these proteins as potential targets for breast cancer therapeutic interventions. PMID:27557628

  20. Short report: production of recombinant kinesin-related protein of Leishmania donovani and its application in the serodiagnosis of visceral leishmaniasis.

    PubMed

    Takagi, Hidekazu; Islam, Mohammad Zahidul; Itoh, Makoto; Islam, Anwar Ul; Saifuddin Ekram, A R M; Hussain, Sultana Monira; Hashiguchi, Yoshihisa; Kimura, Eisaku

    2007-05-01

    To detect IgG antibody in the serodiagnosis of visceral leishmaniasis (VL), a recombinant antigen rK39, which is part of a Leishmania chagasi kinesin-related protein, has been used successfully and showed high sensitivity and specificity. We report production of a recombinant protein rKRP42, which is part of an L. donovani kinesin-related protein and a homolog of rK39, and its application in an enzyme-linked immunosorbent assay (ELISA) for the diagnosis of VL. When rKRP42 and rK39 were compared, amino acid sequence analysis showed 89.3% identity and 98.7% homology, with rKRP42 having 39 more amino acids than rK39. The ELISA using rKRP42 showed a sensitivity of 94.6% (70 positive samples among 74 from VL patients) and a specificity of 99.3% (148 negative samples among 149 samples from Japanese controls), whereas the sensitivity of the commercial rK39 dipstick test was 93.2% (69 positive samples among 74 from patients with VL). The rKRP42 is a promising new antigen in developing immunodiagnostic methods for VL. PMID:17488913

  1. Conventional Kinesin Holoenzymes Are Composed of Heavy and Light Chain Homodimers†

    PubMed Central

    DeBoer, Scott R.; You, YiMei; Szodorai, Anita; Kaminska, Agnieszka; Pigino, Gustavo; Nwabuisi, Evelyn; Wang, Bin; Estrada-Hernandez, Tatiana; Kins, Stefan; Brady, Scott T.; Morfini, Gerardo

    2009-01-01

    Conventional kinesin is a major microtubule-based motor protein responsible for anterograde transport of various membrane-bounded organelles (MBO) along axons. Structurally, this molecular motor protein is a tetrameric complex composed of two heavy (kinesin-1) chains and two light chain (KLC) subunits. The products of three kinesin-1 (kinesin-1A, -1B, and -1C, formerly KIF5A, -B, and -C) and two KLC (KLC1, KLC2) genes are expressed in mammalian nervous tissue, but the functional significance of this subunit heterogeneity remains unknown. In this work, we examine all possible combinations among conventional kinesin subunits in brain tissue. In sharp contrast with previous reports, immunoprecipitation experiments here demonstrate that conventional kinesin holoenzymes are formed of kinesin-1 homodimers. Similar experiments confirmed previous findings of KLC homodimerization. Additionally, no specificity was found in the interaction between kinesin-1s and KLCs, suggesting the existence of six variant forms of conventional kinesin, as defined by their gene product composition. Subcellular fractionation studies indicate that such variants associate with biochemically different MBOs and further suggest a role of kinesin-1s in the targeting of conventional kinesin holoenzymes to specific MBO cargoes. Taken together, our data address the combination of subunits that characterize endogenous conventional kinesin. Findings on the composition and subunit organization of conventional kinesin as described here provide a molecular basis for the regulation of axonal transport and delivery of selected MBOs to discrete subcellular locations. PMID:18361505

  2. The Ca2+ Sensor Protein Swiprosin-1/EFhd2 Is Present in Neurites and Involved in Kinesin-Mediated Transport in Neurons

    PubMed Central

    Borger, Eva; Gunn-Moore, Frank; Welzel, Oliver; Loy, Kristina; Wenzel, Eva Maria; Grömer, Teja W.; Brachs, Sebastian; Holzer, Max; Buslei, Rolf; Fritsch, Kristin; Regensburger, Martin; Böhm, Konrad J.; Winner, Beate; Mielenz, Dirk

    2014-01-01

    Swiprosin-1/EFhd2 (EFhd2) is a cytoskeletal Ca2+ sensor protein strongly expressed in the brain. It has been shown to interact with mutant tau, which can promote neurodegeneration, but nothing is known about the physiological function of EFhd2 in the nervous system. To elucidate this question, we analyzed EFhd2−/−/lacZ reporter mice and showed that lacZ was strongly expressed in the cortex, the dentate gyrus, the CA1 and CA2 regions of the hippocampus, the thalamus, and the olfactory bulb. Immunohistochemistry and western blotting confirmed this pattern and revealed expression of EFhd2 during neuronal maturation. In cortical neurons, EFhd2 was detected in neurites marked by MAP2 and co-localized with pre- and post-synaptic markers. Approximately one third of EFhd2 associated with a biochemically isolated synaptosome preparation. There, EFhd2 was mostly confined to the cytosolic and plasma membrane fractions. Both synaptic endocytosis and exocytosis in primary hippocampal EFhd2−/− neurons were unaltered but transport of synaptophysin-GFP containing vesicles was enhanced in EFhd2−/− primary hippocampal neurons, and notably, EFhd2 inhibited kinesin mediated microtubule gliding. Therefore, we found that EFhd2 is a neuronal protein that interferes with kinesin-mediated transport. PMID:25133820

  3. Pollen Semi-Sterility1 Encodes a Kinesin-1–Like Protein Important for Male Meiosis, Anther Dehiscence, and Fertility in Rice[W

    PubMed Central

    Zhou, Shirong; Wang, Yang; Li, Wanchang; Zhao, Zhigang; Ren, Yulong; Wang, Yong; Gu, Suhai; Lin, Qibing; Wang, Dan; Jiang, Ling; Su, Ning; Zhang, Xin; Liu, Linglong; Cheng, Zhijun; Lei, Cailin; Wang, Jiulin; Guo, Xiuping; Wu, Fuqing; Ikehashi, Hiroshi; Wang, Haiyang; Wan, Jianmin

    2011-01-01

    In flowering plants, male meiosis produces four microspores, which develop into pollen grains and are released by anther dehiscence to pollinate female gametophytes. The molecular and cellular mechanisms regulating male meiosis in rice (Oryza sativa) remain poorly understood. Here, we describe a rice pollen semi-sterility1 (pss1) mutant, which displays reduced spikelet fertility (~40%) primarily caused by reduced pollen viability (~50% viable), and defective anther dehiscence. Map-based molecular cloning revealed that PSS1 encodes a kinesin-1–like protein. PSS1 is broadly expressed in various organs, with highest expression in panicles. Furthermore, PSS1 expression is significantly upregulated during anther development and peaks during male meiosis. The PSS1–green fluorescent protein fusion is predominantly localized in the cytoplasm of rice protoplasts. Substitution of a conserved Arg (Arg-289) to His in the PSS1 motor domain nearly abolishes its microtubule-stimulated ATPase activity. Consistent with this, lagging chromosomes and chromosomal bridges were found at anaphase I and anaphase II of male meiosis in the pss1 mutant. Together, our results suggest that PSS1 defines a novel member of the kinesin-1 family essential for male meiotic chromosomal dynamics, male gametogenesis, and anther dehiscence in rice. PMID:21282525

  4. Suppression of ectopic assembly of centriole proteins ensures mitotic spindle integrity.

    PubMed

    Shiratsuchi, Gen; Kitagawa, Daiju

    2015-01-01

    Abnormalities in maintaining the appropriate number of centrioles could be the origin of genome instability in tumor formation. Recently, we demonstrated that ectopic formation of aberrant centriole-related structures occurs even in the presence of pre-existing centrioles, leading to mitotic spindle defects and possibly contributing to tumorigenesis. PMID:27308496

  5. Suppression of ectopic assembly of centriole proteins ensures mitotic spindle integrity

    PubMed Central

    Shiratsuchi, Gen; Kitagawa, Daiju

    2015-01-01

    Abnormalities in maintaining the appropriate number of centrioles could be the origin of genome instability in tumor formation. Recently, we demonstrated that ectopic formation of aberrant centriole-related structures occurs even in the presence of pre-existing centrioles, leading to mitotic spindle defects and possibly contributing to tumorigenesis. PMID:27308496

  6. Analysis of the kinesin superfamily: insights into structure and function.

    PubMed

    Miki, Harukata; Okada, Yasushi; Hirokawa, Nobutaka

    2005-09-01

    Kinesin superfamily proteins (KIFs) are key players or 'hub' proteins in the intracellular transport system, which is essential for cellular function and morphology. The KIF superfamily is also the first large protein family in mammals whose constituents have been completely identified and confirmed both in silico and in vivo. Numerous studies have revealed the structures and functions of individual family members; however, the relationships between members or a perspective of the whole superfamily structure until recently remained elusive. Here, we present a comprehensive summary based on a large, systematic phylogenetic analysis of the kinesin superfamily. All available sequences in public databases, including genomic information from all model organisms, were analyzed to yield the most complete phylogenetic kinesin tree thus far, comprising 14 families. This comprehensive classification builds on the recently proposed standardized nomenclature for kinesins and allows systematic analysis of the structural and functional relationships within the kinesin superfamily. PMID:16084724

  7. Interplay between Velocity and Travel Distance of Kinesin-based Transport in the Presence of Tau

    PubMed Central

    Xu, Jing; King, Stephen J.; Lapierre-Landry, Maryse; Nemec, Brian

    2013-01-01

    Although the disease-relevant microtubule-associated protein tau is known to severely inhibit kinesin-based transport in vitro, the potential mechanisms for reversing this detrimental effect to maintain healthy transport in cells remain unknown. Here we report the unambiguous upregulation of multiple-kinesin travel distance despite the presence of tau, via decreased single-kinesin velocity. Interestingly, the presence of tau also modestly reduced cargo velocity in multiple-kinesin transport, and our stochastic simulations indicate that the tau-mediated reduction in single-kinesin travel underlies this observation. Taken together, our observations highlight a nontrivial interplay between velocity and travel distance for kinesin transport, and suggest that single-kinesin velocity is a promising experimental handle for tuning the effect of tau on multiple-kinesin travel distance. PMID:24268156

  8. Identification of tail binding effect of kinesin-1 using an elastic network model.

    PubMed

    Kim, Jae In; Chang, Hyun Joon; Na, Sungsoo

    2015-10-01

    Kinesin is a motor protein that delivers cargo inside a cell. Kinesin has many different families, but they perform basically same function and have same motions. The walking motion of kinesin enables the cargo delivery inside the cell. Autoinhibition of kinesin is important because it explains how function of kinesin inside a cell is stopped. Former researches showed that tail binding is related to autoinhibition of kinesin. In this work, we performed normal mode analysis with elastic network model using different conformation of kinesin to determine the effect of tail binding by considering four models such as functional form, autoinhibited form, autoinhibited form without tail, and autoinhibited form with carbon structure. Our calculation of the thermal fluctuation and cross-correlation shows the change of tail-binding region in structural motion. Also strain energy of kinesin showed that elimination of tail binding effect leads the structure to have energetically similar behavior with the functional form. PMID:25676575

  9. Pten regulates spindle pole movement through Dlg1-mediated recruitment of Eg5 to centrosomes

    PubMed Central

    van Ree, Janine H.; Nam, Hyun-Ja; Jeganathan, Karthik B.; Kanakkanthara, Arun; van Deursen, Jan M.

    2016-01-01

    Phosphatase and tensin homologue (Pten) suppresses neoplastic growth by negatively regulating PI(3)K signalling through its phosphatase activity1. To gain insight into the actions of non-catalytic Pten domains in normal physiological processes and tumorigenesis2,3, we engineered mice lacking the PDZ-binding domain (PDZ-BD). Here, we show that the PDZ-BD regulates centrosome movement and that its heterozygous or homozygous deletion promotes aneuploidy and tumour formation. We found that Pten is recruited to pre-mitotic centrosomes in a Plk1-dependent fashion to create a docking site for protein complexes containing the PDZ-domain-containing protein Dlg1 (also known as Sap97) and Eg5 (also known as Kif11), a kinesin essential for centrosome movement and bipolar spindle formation4. Docking of Dlg1–Eg5 complexes to Pten depended on Eg5 phosphorylation by the Nek9–Nek6 mitotic kinase cascade and Cdk1. PDZ-BD deletion or Dlg1 ablation impaired loading of Eg5 onto centrosomes and spindle pole motility, yielding asymmetrical spindles that are prone to chromosome missegregation. Collectively, these data demonstrate that Pten, through the Dlg1-binding ability of its PDZ-BD, accumulates phosphorylated Eg5 at duplicated centrosomes to establish symmetrical bipolar spindles that properly segregate chromosomes, and suggest that this function contributes to tumour suppression. PMID:27240320

  10. Microcystin-LR induces mitotic spindle assembly disorders in Vicia faba by protein phosphatase inhibition and not reactive oxygen species induction.

    PubMed

    Garda, Tamás; Kónya, Zoltán; Tándor, Ildikó; Beyer, Dániel; Vasas, Gábor; Erdődi, Ferenc; Vereb, György; Papp, Georgina; Riba, Milán; M-Hamvas, Márta; Máthé, Csaba

    2016-07-20

    We aimed to reveal the mechanisms of mitotic spindle anomalies induced by microcystin-LR (MCY-LR), a cyanobacterial toxin in Vicia faba, a well-known model in plant cell and molecular biology. MCY-LR inhibits type 1 and 2A phosphoserine/threonine specific protein phosphatases (PP1 and PP2A) and induces reactive oxygen species (ROS) formation. The cytoskeleton is one of the main targets of the cyanotoxin during cytopathogenesis. Histochemical-immunohistochemical and biochemical methods were used. A significant number of MCY-LR induced spindle alterations are described for the first time. Disrupted, multipolar spindles and missing kinetochore fibers were detected both in metaphase and anaphase cells. Additional polar microtubule (MT) bundles, hyperbundling of spindle MTs, monopolar spindles, C-S- shaped, additional and asymmetric spindles were detected in metaphase, while midplane kinetochore fibers were detected in anaphase cells only. Several spindle anomalies induced mitotic disorders, i.e. they occurred concomitantly with altered sister chromatid separation. Alterations were dependent on the MCY-LR dose and exposure time. Under long-term (2 and mainly 6 days') exposure they were detected in the concentration range of 0.1-20μgmL(-1) MCY-LR that inhibited PP1 and PP2A significantly without significant ROS induction. Elevated peroxidase/catalase activities indicated that MCY-LR treated V. faba plants showed efficient defense against oxidative stress. Thus, although the elevation of ROS is known to induce cytoskeletal aberrations in general, this study shows that long-term protein phosphatase inhibition is the primary cause of MCY-LR induced spindle disorders. PMID:27186862

  11. Left-right asymmetry and kinesin superfamily protein KIF3A: new insights in determination of laterality and mesoderm induction by kif3A-/- mice analysis.

    PubMed

    Takeda, S; Yonekawa, Y; Tanaka, Y; Okada, Y; Nonaka, S; Hirokawa, N

    1999-05-17

    KIF3A is a classical member of the kinesin superfamily proteins (KIFs), ubiquitously expressed although predominantly in neural tissues, and which forms a heterotrimeric KIF3 complex with KIF3B or KIF3C and an associated protein, KAP3. To elucidate the function of the kif3A gene in vivo, we made kif3A knockout mice. kif3A-/- embryos displayed severe developmental abnormalities characterized by neural tube degeneration and mesodermal and caudal dysgenesis and died during the midgestational period at approximately 10.5 dpc (days post coitum), possibly resulting from cardiovascular insufficiency. Whole mount in situ hybridization of Pax6 revealed a normal pattern while staining by sonic hedgehog (shh) and Brachyury (T) exhibited abnormal patterns in the anterior-posterior (A-P) direction at both mesencephalic and thoracic levels. These results suggest that KIF3A might be involved in mesodermal patterning and in turn neurogenesis. PMID:10330409

  12. Purified Kinesin Promotes Vesicle Motility and Induces Active Sliding Between Microtubules In vitro

    NASA Astrophysics Data System (ADS)

    Urrutia, Raul; McNiven, Mark A.; Albanesi, Joseph P.; Murphy, Douglas B.; Kachar, Bechara

    1991-08-01

    We examined the ability of kinesin to support the movement of adrenal medullary chromaffin granules on microtubules in a defined in vitro system. We found that kinesin and ATP are all that is required to support efficient (33% vesicle motility) and rapid (0.4-0.6 μ m/s) translocation of secretory granule membranes on microtubules in the presence of a low-salt motility buffer. Kinesin also induced the formation of microtubule asters in this buffer, with the plus ends of microtubules located at the center of each aster. This observation indicates that kinesin is capable of promoting active sliding between microtubules toward their respective plus ends, a movement analogous to that of anaphase b in the mitotic spindle. The fact that vesicle translocation, microtubule sliding, and microtubule-dependent kinesin ATPase activities are all enhanced in low-salt buffer establishes a functional parallel between this translocator and other motility ATPases, myosin, and dynein.

  13. A computational model predicts Xenopus meiotic spindle organization

    PubMed Central

    Loughlin, Rose

    2010-01-01

    The metaphase spindle is a dynamic bipolar structure crucial for proper chromosome segregation, but how microtubules (MTs) are organized within the bipolar architecture remains controversial. To explore MT organization along the pole-to-pole axis, we simulated meiotic spindle assembly in two dimensions using dynamic MTs, a MT cross-linking force, and a kinesin-5–like motor. The bipolar structures that form consist of antiparallel fluxing MTs, but spindle pole formation requires the addition of a NuMA-like minus-end cross-linker and directed transport of MT depolymerization activity toward minus ends. Dynamic instability and minus-end depolymerization generate realistic MT lifetimes and a truncated exponential MT length distribution. Keeping the number of MTs in the simulation constant, we explored the influence of two different MT nucleation pathways on spindle organization. When nucleation occurs throughout the spindle, the simulation quantitatively reproduces features of meiotic spindles assembled in Xenopus egg extracts. PMID:21173114

  14. The Clathrin-dependent Spindle Proteome.

    PubMed

    Rao, Sushma R; Flores-Rodriguez, Neftali; Page, Scott L; Wong, Chin; Robinson, Phillip J; Chircop, Megan

    2016-08-01

    The mitotic spindle is required for chromosome congression and subsequent equal segregation of sister chromatids. These processes involve a complex network of signaling molecules located at the spindle. The endocytic protein, clathrin, has a "moonlighting" role during mitosis, whereby it stabilizes the mitotic spindle. The signaling pathways that clathrin participates in to achieve mitotic spindle stability are unknown. Here, we assessed the mitotic spindle proteome and phosphoproteome in clathrin-depleted cells using quantitative MS/MS (data are available via ProteomeXchange with identifier PXD001603). We report a spindle proteome that consists of 3046 proteins and a spindle phosphoproteome consisting of 5157 phosphosites in 1641 phosphoproteins. Of these, 2908 (95.4%) proteins and 1636 (99.7%) phosphoproteins are known or predicted spindle-associated proteins. Clathrin-depletion from spindles resulted in dysregulation of 121 proteins and perturbed signaling to 47 phosphosites. The majority of these proteins increased in mitotic spindle abundance and six of these were validated by immunofluorescence microscopy. Functional pathway analysis confirmed the reported role of clathrin in mitotic spindle stabilization for chromosome alignment and highlighted possible new mechanisms of clathrin action. The data also revealed a novel second mitotic role for clathrin in bipolar spindle formation. PMID:27174698

  15. The DASH complex and Klp5/Klp6 kinesin coordinate bipolar chromosome attachment in fission yeast.

    PubMed

    Sanchez-Perez, Isabel; Renwick, Steven J; Crawley, Karen; Karig, Inga; Buck, Vicky; Meadows, John C; Franco-Sanchez, Alejandro; Fleig, Ursula; Toda, Takashi; Millar, Jonathan B A

    2005-08-17

    We identified a truncated allele of dam1 as a multicopy suppressor of the sensitivity of cdc13-117 (cyclin B) and mal3-1 (EB-1) cells to thiabendazole, a microtubule poison. We find that Dam1 binds to the plus end of spindle microtubules and kinetochores as cells enter mitosis and this is dependent on other components of the fission yeast DASH complex, including Ask1, Duo1, Spc34 and Dad1. By contrast, Dad1 remains bound to kinetochores throughout the cell cycle and its association is dependent on the Mis6 and Mal2, but not Mis12, Nuf2 or Cnp1, kinetochore proteins. In cells lacking Dam1, or other components of the DASH complex, anaphase is delayed due to activation of the spindle assembly checkpoint and lagging sister chromatids are frequently observed and occasionally sister chromatid pairs segregate to the same spindle pole. We find that the mitotic centromere-associated Klp5/Klp6 kinesin complex is essential in cells lacking components of the DASH complex. Cells lacking both Dam1 and Klp5 undergo a first cell cycle arrest in mitosis due to a failure to establish bipolar chromosome attachment. PMID:16079915

  16. Regulation of spindle pole body assembly and cytokinesis by the centrin-binding protein Sfi1 in fission yeast

    PubMed Central

    Lee, I-Ju; Wang, Ning; Hu, Wen; Schott, Kersey; Bähler, Jürg; Giddings, Thomas H.; Pringle, John R.; Du, Li-Lin; Wu, Jian-Qiu

    2014-01-01

    Centrosomes play critical roles in the cell division cycle and ciliogenesis. Sfi1 is a centrin-binding protein conserved from yeast to humans. Budding yeast Sfi1 is essential for the initiation of spindle pole body (SPB; yeast centrosome) duplication. However, the recruitment and partitioning of Sfi1 to centrosomal structures have never been fully investigated in any organism, and the presumed importance of the conserved tryptophans in the internal repeats of Sfi1 remains untested. Here we report that in fission yeast, instead of doubling abruptly at the initiation of SPB duplication and remaining at a constant level thereafter, Sfi1 is gradually recruited to SPBs throughout the cell cycle. Like an sfi1Δ mutant, a Trp-to-Arg mutant (sfi1-M46) forms monopolar spindles and exhibits mitosis and cytokinesis defects. Sfi1-M46 protein associates preferentially with one of the two daughter SPBs during mitosis, resulting in a failure of new SPB assembly in the SPB receiving insufficient Sfi1. Although all five conserved tryptophans tested are involved in Sfi1 partitioning, the importance of the individual repeats in Sfi1 differs. In summary, our results reveal a link between the conserved tryptophans and Sfi1 partitioning and suggest a revision of the model for SPB assembly. PMID:25031431

  17. Regulation of spindle pole body assembly and cytokinesis by the centrin-binding protein Sfi1 in fission yeast.

    PubMed

    Lee, I-Ju; Wang, Ning; Hu, Wen; Schott, Kersey; Bähler, Jürg; Giddings, Thomas H; Pringle, John R; Du, Li-Lin; Wu, Jian-Qiu

    2014-09-15

    Centrosomes play critical roles in the cell division cycle and ciliogenesis. Sfi1 is a centrin-binding protein conserved from yeast to humans. Budding yeast Sfi1 is essential for the initiation of spindle pole body (SPB; yeast centrosome) duplication. However, the recruitment and partitioning of Sfi1 to centrosomal structures have never been fully investigated in any organism, and the presumed importance of the conserved tryptophans in the internal repeats of Sfi1 remains untested. Here we report that in fission yeast, instead of doubling abruptly at the initiation of SPB duplication and remaining at a constant level thereafter, Sfi1 is gradually recruited to SPBs throughout the cell cycle. Like an sfi1Δ mutant, a Trp-to-Arg mutant (sfi1-M46) forms monopolar spindles and exhibits mitosis and cytokinesis defects. Sfi1-M46 protein associates preferentially with one of the two daughter SPBs during mitosis, resulting in a failure of new SPB assembly in the SPB receiving insufficient Sfi1. Although all five conserved tryptophans tested are involved in Sfi1 partitioning, the importance of the individual repeats in Sfi1 differs. In summary, our results reveal a link between the conserved tryptophans and Sfi1 partitioning and suggest a revision of the model for SPB assembly. PMID:25031431

  18. Cell cycle regulation of the activity and subcellular localization of Plk1, a human protein kinase implicated in mitotic spindle function.

    PubMed

    Golsteyn, R M; Mundt, K E; Fry, A M; Nigg, E A

    1995-06-01

    Correct assembly and function of the mitotic spindle during cell division is essential for the accurate partitioning of the duplicated genome to daughter cells. Protein phosphorylation has long been implicated in controlling spindle function and chromosome segregation, and genetic studies have identified several protein kinases and phosphatases that are likely to regulate these processes. In particular, mutations in the serine/threonine-specific Drosophila kinase polo, and the structurally related kinase Cdc5p of Saccharomyces cerevisae, result in abnormal mitotic and meiotic divisions. Here, we describe a detailed analysis of the cell cycle-dependent activity and subcellular localization of Plk1, a recently identified human protein kinase with extensive sequence similarity to both Drosophila polo and S. cerevisiae Cdc5p. With the aid of recombinant baculoviruses, we have established a reliable in vitro assay for Plk1 kinase activity. We show that the activity of human Plk1 is cell cycle regulated, Plk1 activity being low during interphase but high during mitosis. We further show, by immunofluorescent confocal laser scanning microscopy, that human Plk1 binds to components of the mitotic spindle at all stages of mitosis, but undergoes a striking redistribution as cells progress from metaphase to anaphase. Specifically, Plk1 associates with spindle poles up to metaphase, but relocalizes to the equatorial plane, where spindle microtubules overlap (the midzone), as cells go through anaphase. These results indicate that the association of Plk1 with the spindle is highly dynamic and that Plk1 may function at multiple stages of mitotic progression. Taken together, our data strengthen the notion that human Plk1 may represent a functional homolog of polo and Cdc5p, and they suggest that this kinase plays an important role in the dynamic function of the mitotic spindle during chromosome segregation. PMID:7790358

  19. Central Spindle Self-Organization and Cytokinesis in Artificially Activated Sea Urchin Eggs.

    PubMed

    Henson, John H; Buckley, Mary W; Yeterian, Mesrob; Weeks, Richard M; Simerly, Calvin R; Shuster, Charles B

    2016-04-01

    The ability of microtubules of the mitotic apparatus to control the positioning and initiation of the cleavage furrow during cytokinesis was first established from studies on early echinoderm embryos. However, the identity of the microtubule population that imparts cytokinetic signaling is unclear. The two main--and not necessarily mutually exclusive--candidates are the central spindle and the astral rays. In the present study, we examined cytokinesis in ammonia-activated sea urchin eggs, which lack paternally derived centrosomes and undergo mitosis mediated by unusual anastral, bipolar mini-spindles. Live cell imaging and immunolabeling for microtubules and the centralspindlin constituent and kinesin-related protein, MKLP1, demonstrated that furrowing in ammonia-activated eggs was associated with aligned arrays of centralspindlin-linked, opposed bundles of antiparallel microtubules. These autonomous, zipper-like arrays were not associated with a mitotic apparatus, but did possess characteristics similar to the central spindle region of control, fertilized embryos. Our results highlight the self-organizing nature of the central spindle region and its ability to induce cytokinesis-like furrowing, even in the absence of a complete mitotic apparatus. PMID:27132131

  20. A standardized kinesin nomenclature

    PubMed Central

    Lawrence, Carolyn J.; Dawe, R. Kelly; Christie, Karen R.; Cleveland, Don W.; Dawson, Scott C.; Endow, Sharyn A.; Goldstein, Lawrence S.B.; Goodson, Holly V.; Hirokawa, Nobutaka; Howard, Jonathon; Malmberg, Russell L.; McIntosh, J. Richard; Miki, Harukata; Mitchison, Timothy J.; Okada, Yasushi; Reddy, Anireddy S.N.; Saxton, William M.; Schliwa, Manfred; Scholey, Jonathan M.; Vale, Ronald D.; Walczak, Claire E.; Wordeman, Linda

    2004-01-01

    In recent years the kinesin superfamily has become so large that several different naming schemes have emerged, leading to confusion and miscommunication. Here, we set forth a standardized kinesin nomenclature based on 14 family designations. The scheme unifies all previous phylogenies and nomenclature proposals, while allowing individual sequence names to remain the same, and for expansion to occur as new sequences are discovered. PMID:15479732

  1. Tau excess impairs mitosis and kinesin-5 function, leading to aneuploidy and cell death.

    PubMed

    Bougé, Anne-Laure; Parmentier, Marie-Laure

    2016-03-01

    In neurodegenerative diseases such as Alzheimer's disease (AD), cell cycle defects and associated aneuploidy have been described. However, the importance of these defects in the physiopathology of AD and the underlying mechanistic processes are largely unknown, in particular with respect to the microtubule (MT)-binding protein Tau, which is found in excess in the brain and cerebrospinal fluid of affected individuals. Although it has long been known that Tau is phosphorylated during mitosis to generate a lower affinity for MTs, there is, to our knowledge, no indication that an excess of this protein could affect mitosis. Here, we studied the effect of an excess of human Tau (hTau) protein on cell mitosis in vivo. Using the Drosophila developing wing disc epithelium as a model, we show that an excess of hTau induces a mitotic arrest, with the presence of monopolar spindles. This mitotic defect leads to aneuploidy and apoptotic cell death. We studied the mechanism of action of hTau and found that the MT-binding domain of hTau is responsible for these defects. We also demonstrate that the effects of hTau occur via the inhibition of the function of the kinesin Klp61F, the Drosophila homologue of kinesin-5 (also called Eg5 or KIF11). We finally show that this deleterious effect of hTau is also found in other Drosophila cell types (neuroblasts) and tissues (the developing eye disc), as well as in human HeLa cells. By demonstrating that MT-bound Tau inhibits the Eg5 kinesin and cell mitosis, our work provides a new framework to consider the role of Tau in neurodegenerative diseases. PMID:26822478

  2. Tau excess impairs mitosis and kinesin-5 function, leading to aneuploidy and cell death

    PubMed Central

    Bougé, Anne-Laure; Parmentier, Marie-Laure

    2016-01-01

    ABSTRACT In neurodegenerative diseases such as Alzheimer's disease (AD), cell cycle defects and associated aneuploidy have been described. However, the importance of these defects in the physiopathology of AD and the underlying mechanistic processes are largely unknown, in particular with respect to the microtubule (MT)-binding protein Tau, which is found in excess in the brain and cerebrospinal fluid of affected individuals. Although it has long been known that Tau is phosphorylated during mitosis to generate a lower affinity for MTs, there is, to our knowledge, no indication that an excess of this protein could affect mitosis. Here, we studied the effect of an excess of human Tau (hTau) protein on cell mitosis in vivo. Using the Drosophila developing wing disc epithelium as a model, we show that an excess of hTau induces a mitotic arrest, with the presence of monopolar spindles. This mitotic defect leads to aneuploidy and apoptotic cell death. We studied the mechanism of action of hTau and found that the MT-binding domain of hTau is responsible for these defects. We also demonstrate that the effects of hTau occur via the inhibition of the function of the kinesin Klp61F, the Drosophila homologue of kinesin-5 (also called Eg5 or KIF11). We finally show that this deleterious effect of hTau is also found in other Drosophila cell types (neuroblasts) and tissues (the developing eye disc), as well as in human HeLa cells. By demonstrating that MT-bound Tau inhibits the Eg5 kinesin and cell mitosis, our work provides a new framework to consider the role of Tau in neurodegenerative diseases. PMID:26822478

  3. A Novel Rho-Like Protein TbRHP Is Involved in Spindle Formation and Mitosis in Trypanosomes

    PubMed Central

    Abbasi, Kanwal; DuBois, Kelly N.; Dacks, Joel B.; Field, Mark C.

    2011-01-01

    Background In animals and fungi Rho subfamily small GTPases are involved in signal transduction, cytoskeletal function and cellular proliferation. These organisms typically possess multiple Rho paralogues and numerous downstream effectors, consistent with the highly complex contributions of Rho proteins to cellular physiology. By contrast, trypanosomatids have a much simpler Rho-signaling system, and the Trypanosoma brucei genome contains only a single divergent Rho-related gene, TbRHP (Tb927.10.6240). Further, only a single RhoGAP-like protein (Tb09.160.4180) is annotated, contrasting with the >70 Rho GAP proteins from Homo sapiens. We wished to establish the function(s) of TbRHP and if Tb09.160.4180 is a potential GAP for this protein. Methods/Findings TbRHP represents an evolutionarily restricted member of the Rho GTPase clade and is likely trypanosomatid restricted. TbRHP is expressed in both mammalian and insect dwelling stages of T. brucei and presents with a diffuse cytoplasmic location and is excluded from the nucleus. RNAi ablation of TbRHP results in major cell cycle defects and accumulation of multi-nucleated cells, coinciding with a loss of detectable mitotic spindles. Using yeast two hybrid analysis we find that TbRHP interacts with both Tb11.01.3180 (TbRACK), a homolog of Rho-kinase, and the sole trypanosome RhoGAP protein Tb09.160.4180, which is related to human OCRL. Conclusions Despite minimization of the Rho pathway, TbRHP retains an important role in spindle formation, and hence mitosis, in trypanosomes. TbRHP is a partner for TbRACK and an OCRL-related trypanosome Rho-GAP. PMID:22096505

  4. Overexpression of kinesins mediates docetaxel resistance in breast cancer cells.

    PubMed

    De, Sarmishtha; Cipriano, Rocky; Jackson, Mark W; Stark, George R

    2009-10-15

    Resistance to chemotherapy remains a major barrier to the successful treatment of cancer. To understand mechanisms underlying docetaxel resistance in breast cancer, we used an insertional mutagenesis strategy to identify proteins whose overexpression confers resistance. A strong promoter was inserted approximately randomly into the genomes of tumor-derived breast cancer cells, using a novel lentiviral vector. We isolated a docetaxel-resistant clone in which the level of the kinesin KIFC3 was elevated. When KIFC3 or the additional kinesins KIFC1, KIF1A, or KIF5A were overexpressed in the breast cancer cell lines MDA-MB231 and MDA-MB 468, the cells became more resistant to docetaxel. The binding of kinesins to microtubules opposes the stabilizing effect of docetaxel that prevents cytokinesis and leads to apoptosis. Our finding that kinesins can mediate docetaxel resistance might lead to novel therapeutic approaches in which kinesin inhibitors are paired with taxanes. PMID:19789344

  5. Kip3, the yeast kinesin-8, is required for clustering of kinetochores at metaphase

    PubMed Central

    Wargacki, Megan M; Tay, Jessica C; Muller, Eric G; Asbury, Charles L

    2010-01-01

    In Saccharomyces cerevisiae, chromosome congression clusters kinetochores on either side of the spindle equator at metaphase. Many organisms require one or more kinesin-8 molecular motors to achieve chromosome alignment. the yeast kinesin-8, Kip3, has been well studied in vitro but a role in chromosome congression has not been reported. We investigated Kip3's role in this process using semi-automated, quantitative fluorescence microscopy and time-lapse imaging and found that Kip3 is required for congression. Deletion of KIP3 increases inter-kinetochore distances and increases the variability in the position of sister kinetochores along the spindle axis during metaphase. Kip3 does not regulate spindle length and is not required for kinetochore-microtubule attachment. Instead, Kip3 clusters kinetochores on the metaphase spindle by tightly regulating kinetochore microtubule lengths. PMID:20603597

  6. A Bromodomain-Containing Protein from Tomato Specifically Binds Potato Spindle Tuber Viroid RNA In Vitro and In Vivo

    PubMed Central

    Martínez de Alba, Angel Emilio; Sägesser, Rudolf; Tabler, Martin; Tsagris, Mina

    2003-01-01

    For the identification of RNA-binding proteins that specifically interact with potato spindle tuber viroid (PSTVd), we subjected a tomato cDNA expression library prepared from viroid-infected leaves to an RNA ligand screening procedure. We repeatedly identified cDNA clones that expressed a protein of 602 amino acids. The protein contains a bromodomain and was termed viroid RNA-binding protein 1 (VIRP1). The specificity of interaction of VIRP1 with viroid RNA was studied by different methodologies, which included Northwestern blotting, plaque lift, and electrophoretic mobility shift assays. VIRP1 interacted strongly and specifically with monomeric and oligomeric PSTVd positive-strand RNA transcripts. Other RNAs, for example, U1 RNA, did not bind to VIRP1. Further, we could immunoprecipitate complexes from infected tomato leaves that contained VIRP1 and viroid RNA in vivo. Analysis of the protein sequence revealed that VIRP1 is a member of a newly identified family of transcriptional regulators associated with chromatin remodeling. VIRP1 is the first member of this family of proteins, for which a specific RNA-binding activity is shown. A possible role of VIRP1 in viroid replication and in RNA mediated chromatin remodeling is discussed. PMID:12915580

  7. PTEN regulates EG5 to control spindle architecture and chromosome congression during mitosis.

    PubMed

    He, Jinxue; Zhang, Zhong; Ouyang, Meng; Yang, Fan; Hao, Hongbo; Lamb, Kristy L; Yang, Jingyi; Yin, Yuxin; Shen, Wen H

    2016-01-01

    Architectural integrity of the mitotic spindle is required for efficient chromosome congression and accurate chromosome segregation to ensure mitotic fidelity. Tumour suppressor PTEN has multiple functions in maintaining genome stability. Here we report an essential role of PTEN in mitosis through regulation of the mitotic kinesin motor EG5 for proper spindle architecture and chromosome congression. PTEN depletion results in chromosome misalignment in metaphase, often leading to catastrophic mitotic failure. In addition, metaphase cells lacking PTEN exhibit defects of spindle geometry, manifested prominently by shorter spindles. PTEN is associated and co-localized with EG5 during mitosis. PTEN deficiency induces aberrant EG5 phosphorylation and abrogates EG5 recruitment to the mitotic spindle apparatus, leading to spindle disorganization. These data demonstrate the functional interplay between PTEN and EG5 in controlling mitotic spindle structure and chromosome behaviour during mitosis. We propose that PTEN functions to equilibrate mitotic phosphorylation for proper spindle formation and faithful genomic transmission. PMID:27492783

  8. PTEN regulates EG5 to control spindle architecture and chromosome congression during mitosis

    PubMed Central

    He, Jinxue; Zhang, Zhong; Ouyang, Meng; Yang, Fan; Hao, Hongbo; Lamb, Kristy L.; Yang, Jingyi; Yin, Yuxin; Shen, Wen H.

    2016-01-01

    Architectural integrity of the mitotic spindle is required for efficient chromosome congression and accurate chromosome segregation to ensure mitotic fidelity. Tumour suppressor PTEN has multiple functions in maintaining genome stability. Here we report an essential role of PTEN in mitosis through regulation of the mitotic kinesin motor EG5 for proper spindle architecture and chromosome congression. PTEN depletion results in chromosome misalignment in metaphase, often leading to catastrophic mitotic failure. In addition, metaphase cells lacking PTEN exhibit defects of spindle geometry, manifested prominently by shorter spindles. PTEN is associated and co-localized with EG5 during mitosis. PTEN deficiency induces aberrant EG5 phosphorylation and abrogates EG5 recruitment to the mitotic spindle apparatus, leading to spindle disorganization. These data demonstrate the functional interplay between PTEN and EG5 in controlling mitotic spindle structure and chromosome behaviour during mitosis. We propose that PTEN functions to equilibrate mitotic phosphorylation for proper spindle formation and faithful genomic transmission. PMID:27492783

  9. SAP-like domain in nucleolar spindle associated protein mediates mitotic chromosome loading as well as interphase chromatin interaction

    SciTech Connect

    Verbakel, Werner; Carmeliet, Geert; Engelborghs, Yves

    2011-08-12

    Highlights: {yields} The SAP-like domain in NuSAP is a functional DNA-binding domain with preference for dsDNA. {yields} This SAP-like domain is essential for chromosome loading during early mitosis. {yields} NuSAP is highly dynamic on mitotic chromatin, as evident from photobleaching experiments. {yields} The SAP-like domain also mediates NuSAP-chromatin interaction in interphase nucleoplasm. -- Abstract: Nucleolar spindle associated protein (NuSAP) is a microtubule-stabilizing protein that localizes to chromosome arms and chromosome-proximal microtubules during mitosis and to the nucleus, with enrichment in the nucleoli, during interphase. The critical function of NuSAP is underscored by the finding that its depletion in HeLa cells results in various mitotic defects. Moreover, NuSAP is found overexpressed in multiple cancers and its expression levels often correlate with the aggressiveness of cancer. Due to its localization on chromosome arms and combination of microtubule-stabilizing and DNA-binding properties, NuSAP takes a special place within the extensive group of spindle assembly factors. In this study, we identify a SAP-like domain that shows DNA binding in vitro with a preference for dsDNA. Deletion of the SAP-like domain abolishes chromosome arm binding of NuSAP during mitosis, but is not sufficient to abrogate its chromosome-proximal localization after anaphase onset. Fluorescence recovery after photobleaching experiments revealed the highly dynamic nature of this NuSAP-chromatin interaction during mitosis. In interphase cells, NuSAP also interacts with chromatin through its SAP-like domain, as evident from its enrichment on dense chromatin regions and intranuclear mobility, measured by fluorescence correlation spectroscopy. The obtained results are in agreement with a model where NuSAP dynamically stabilizes newly formed microtubules on mitotic chromosomes to enhance chromosome positioning without immobilizing these microtubules. Interphase Nu

  10. Analyzing kinesin motor domain translocation in cultured hippocampal neurons

    PubMed Central

    Huang, Chung-Fang; Banker, Gary

    2016-01-01

    Neuronal microtubules are subject to extensive posttranslational modifications and are bound by MAPs, tip-binding proteins, and other accessory proteins. All of these features, which are difficult to replicate in vitro, are likely to influence the translocation of kinesin motors. Here we describe assays for evaluating the translocation of a population of fluorescently labeled kinesin motor domains, based on their accumulation in regions of the cell enriched in microtubule plus ends. Neurons lend themselves to these experiments because of their microtubule organization. In axons, microtubules are oriented with their plus ends out; dendrites contain a mixed population of microtubules, but those near the tips are also plus end out. The assays involve the expression of constitutively active kinesins that can walk processively, but that lack the autoinhibitory domain in the tail that normally prevents their binding to microtubules until they attach to vesicles. The degree to which such motor domains accumulate at neurite tips serves as a measure of the efficiency of their translocation. Although these assays cannot provide the kind of quantitative kinetic information obtained from in vitro assays, they offer a simple way to examine kinesin translocation in living neurons. They can be used to compare the translocation efficiency of different kinesin motors and to evaluate how mutations or posttranslational modifications within the motor domain influence kinesin translocation. Changes to motor domain accumulation in these assays can also serve as readout for changes in the microtubule cytoskeleton that affect kinesin translocation. PMID:26794516

  11. Isolation and purification of kinesin from Drosophila embryos.

    PubMed

    Sigua, Robilyn; Tripathy, Suvranta; Anand, Preetha; Gross, Steven P

    2012-01-01

    Motor proteins move cargoes along microtubules, and transport them to specific sub-cellular locations. Because altered transport is suggested to underlie a variety of neurodegenerative diseases, understanding microtubule based motor transport and its regulation will likely ultimately lead to improved therapeutic approaches. Kinesin-1 is a eukaryotic motor protein which moves in an anterograde (plus-end) direction along microtubules (MTs), powered by ATP hydrolysis. Here we report a detailed purification protocol to isolate active full length kinesin from Drosophila embryos, thus allowing the combination of Drosophila genetics with single-molecule biophysical studies. Starting with approximately 50 laying cups, with approximately 1000 females per cup, we carried out overnight collections. This provided approximately 10 ml of packed embryos. The embryos were bleach dechorionated (yielding approximately 9 grams of embryos), and then homogenized. After disruption, the homogenate was clarified using a low speed spin followed by a high speed centrifugation. The clarified supernatant was treated with GTP and taxol to polymerize MTs. Kinesin was immobilized on polymerized MTs by adding the ATP analog, 5'-adenylyl imidodiphosphate at room temperature. After kinesin binding, microtubules were sedimented via high speed centrifugation through a sucrose cushion. The microtubule pellet was then re-suspended, and this process was repeated. Finally, ATP was added to release the kinesin from the MTs. High speed centrifugation then spun down the MTs, leaving the kinesin in the supernatant. This kinesin was subjected to a centrifugal filtration using a 100 KD cut off filter for further purification, aliquoted, snap frozen in liquid nitrogen, and stored at -80 °C. SDS gel electrophoresis and western blotting was performed using the purified sample. The motor activity of purified samples before and after the final centrifugal filtration step was evaluated using an in vitro single

  12. A Specific Form of Phospho Protein Phosphatase 2 Regulates Anaphase-promoting Complex/Cyclosome Association with Spindle Poles

    PubMed Central

    Ban, Kenneth H.

    2010-01-01

    In early mitosis, the END (Emi1/NuMA/Dynein-dynactin) network anchors the anaphase-promoting complex/cyclosome (APC/C) to the mitotic spindle and poles. Spindle anchoring restricts APC/C activity, thereby limiting the destruction of spindle-associated cyclin B and ensuring maintenance of spindle integrity. Emi1 binds directly to hypophosphorylated APC/C, linking the APC/C to the spindle via NuMA. However, whether the phosphorylation state of the APC/C is important for its association with the spindle and what kinases and phosphatases are necessary for regulating this event remain unknown. Here, we describe the regulation of APC/C-mitotic spindle pole association by phosphorylation. We find that only hypophosphorylated APC/C associates with microtubule asters, suggesting that phosphatases are important. Indeed, a specific form of PPP2 (CA/R1A/R2B) binds APC/C, and PPP2 activity is necessary for Cdc27 dephosphorylation. Screening by RNA interference, we find that inactivation of CA, R1A, or R2B leads to delocalization of APC/C from spindle poles, early mitotic spindle defects, a failure to congress chromosomes, and decreased levels of cyclin B on the spindle. Consistently, inhibition of cyclin B/Cdk1 activity increased APC/C binding to microtubules. Thus, cyclin B/Cdk1 and PPP2 regulate the dynamic association of APC/C with spindle poles in early mitosis, a step necessary for proper spindle formation. PMID:20089842

  13. Microtubule organization by the antagonistic mitotic motors kinesin-5 and kinesin-14

    PubMed Central

    Hentrich, Christian

    2010-01-01

    During cell division, different molecular motors act synergistically to rearrange microtubules. Minus end–directed motors are thought to have a dual role: focusing microtubule ends to poles and establishing together with plus end–directed motors a balance of force between antiparallel microtubules in the spindle. We study here the competing action of Xenopus laevis kinesin-14 and -5 in vitro in situations in which these motors with opposite directionality cross-link and slide microtubules. We find that full-length kinesin-14 can form microtubule asters without additional factors, whereas kinesin-5 does not, likely reflecting an adaptation to mitotic function. A stable balance of force is not established between two antiparallel microtubules with these motors. Instead, directional instability is generated, promoting efficient motor and microtubule sorting. A nonmotor microtubule cross-linker can suppress directional instability but also impedes microtubule sorting, illustrating a conflict between stability and dynamicity of organization. These results establish the basic organizational properties of these antagonistic mitotic motors and a microtubule bundler. PMID:20439998

  14. Gene SGL, encoding a kinesin-like protein with transactivation activity, is involved in grain length and plant height in rice.

    PubMed

    Wu, Tao; Shen, Yingyue; Zheng, Ming; Yang, Chunyan; Chen, Yilin; Feng, Zhiming; Liu, Xi; Liu, Shijia; Chen, Zhijun; Lei, Cailin; Wang, Jiulin; Jiang, Ling; Wan, Jianmin

    2014-02-01

    Grain shape, a complex agronomic trait, plays an important role in determining yield and quality in rice. In the present study, a mutant named short grain length (sgl) was identified among explants of tissue cultured japonica variety Kita-ake. It exhibited reduced plant height (about 72 % of WT) and short grain length (about 80 % of WT). The reduced length was due to decreased cell elongation. The Short Grain Length (SGL) gene was isolated via map-based cloning and identified to encode a kinesin-like protein. SGL was expressed in the whole plant, especially in the stem and panicles. SGL was shown to have transcriptional activity. In onion epidermal cells, SGL protein was found mainly in the nucleus. Real-time PCR analyses showed that expression levels of genes involved in gibberellin metabolic pathways were affected in the sgl mutant. These data suggested that SGL protein may be involved in regulating GA synthesis and response genes, that in turn, regulates grain length and plant height. PMID:24170341

  15. From electron microscopy to molecular cell biology, molecular genetics and structural biology: intracellular transport and kinesin superfamily proteins, KIFs: genes, structure, dynamics and functions.

    PubMed

    Hirokawa, Nobutaka

    2011-01-01

    Cells transport and sort various proteins and lipids following synthesis as distinct types of membranous organelles and protein complexes to the correct destination at appropriate velocities. This intracellular transport is fundamental for cell morphogenesis, survival and functioning not only in highly polarized neurons but also in all types of cells in general. By developing quick-freeze electron microscopy (EM), new filamentous structures associated with cytoskeletons are uncovered. The characterization of chemical structures and functions of these new filamentous structures led us to discover kinesin superfamily molecular motors, KIFs. In this review, I discuss the identification of these new structures and characterization of their functions using molecular cell biology and molecular genetics. KIFs not only play significant roles by transporting various cargoes along microtubule rails, but also play unexpected fundamental roles on various important physiological processes such as learning and memory, brain wiring, development of central nervous system and peripheral nervous system, activity-dependent neuronal survival, development of early embryo, left-right determination of our body and tumourigenesis. Furthermore, by combining single-molecule biophysics with structural biology such as cryo-electrom microscopy and X-ray crystallography, atomic structures of KIF1A motor protein of almost all states during ATP hydrolysis have been determined and a common mechanism of motility has been proposed. Thus, this type of studies could be a good example of really integrative multidisciplinary life science in the twenty-first century. PMID:21844601

  16. Bovine brain kinesin is a microtubule-activated ATPase.

    PubMed Central

    Kuznetsov, S A; Gelfand, V I

    1986-01-01

    Recently, a protein called kinesin was described, which is capable of inducing movement of inert particles along microtubules. To purify this protein from bovine brain, we used the ability of kinesin to bind to taxol-stabilized microtubules in the presence of inorganic tripolyphosphate. The brain kinesin preparation contained one major polypeptide of 135 kDa and four minor polypeptides of 45-70 kDa. The minor polypeptides were eluted from a gel-permeation chromatography column at the same position as the major component. All the polypeptides of the preparation were capable of binding to the microtubules under identical conditions. The kinesin molecule is most probably a complex of these polypeptides. Brain kinesin had a very low ATPase activity (0.06-0.08 mumol X min-1 X mg-1 in 3 mM Mg2+ at pH 6.7). ATPase activity was strongly stimulated by microtubules (Vmax = 4.6 mumol per min per mg of kinesin). Microtubule-activated kinesin ATPase had a Km for ATP between 10 and 12 X 10(-6) M and a Kapp for microtubules (i.e., polymerized tubulin concentration required for a half-maximal activation) of 12-14 X 10(-6) M. Kinesin had a significant ATPase activity even without microtubules if 2 mM Ca2+ was substituted for Mg2+ (Vmax = 1.6 mumol X min-1 X mg-1; Km = 800 X 10(-6) M). Kinesin is therefore a mechanochemical ATPase that is activated by microtubules. Images PMID:2946042

  17. Microtubule acetylation promotes kinesin-1 binding and transport.

    PubMed

    Reed, Nathan A; Cai, Dawen; Blasius, T Lynne; Jih, Gloria T; Meyhofer, Edgar; Gaertig, Jacek; Verhey, Kristen J

    2006-11-01

    Long-distance intracellular delivery is driven by kinesin and dynein motor proteins that ferry cargoes along microtubule tracks . Current models postulate that directional trafficking is governed by known biophysical properties of these motors-kinesins generally move to the plus ends of microtubules in the cell periphery, whereas cytoplasmic dynein moves to the minus ends in the cell center. However, these models are insufficient to explain how polarized protein trafficking to subcellular domains is accomplished. We show that the kinesin-1 cargo protein JNK-interacting protein 1 (JIP1) is localized to only a subset of neurites in cultured neuronal cells. The mechanism of polarized trafficking appears to involve the preferential recognition of microtubules containing specific posttranslational modifications (PTMs) by the kinesin-1 motor domain. Using a genetic approach to eliminate specific PTMs, we show that the loss of a single modification, alpha-tubulin acetylation at Lys-40, influences the binding and motility of kinesin-1 in vitro. In addition, pharmacological treatments that increase microtubule acetylation cause a redirection of kinesin-1 transport of JIP1 to nearly all neurite tips in vivo. These results suggest that microtubule PTMs are important markers of distinct microtubule populations and that they act to control motor-protein trafficking. PMID:17084703

  18. Fbxo30 Regulates Mammopoiesis by Targeting the Bipolar Mitotic Kinesin Eg5

    PubMed Central

    Liu, Yan; Wang, Yin; Du, Zhanwen; Yan, Xiaoli; Zheng, Pan; Liu, Yang

    2016-01-01

    Fbxo30 is an orphan member of the F-box protein family with no known substrate or function. Here, we report that while Fbxo30−/− mice exhibit normal development, growth, life span, and fertility, the females fail to nurture their offspring due to defective mammopoiesis. Mass spectrometry analysis of Fbxo30-associated proteins revealed that Fbxo30 specifically interacts with the bipolar spindle kinesin EG5 (encoded by Kif11). As a result, Fbxo30 targets Eg5 for ubiquitinylation and controls its oscillation during the cell cycle. Correlated with EG5 dysregulation, Fbxo30−/− mammary epithelial cells exhibit multiple defects in centrosome homeostasis, mitotic spindle formation, and proliferation. Effects on proliferation, centrosome homeostasis, and mammopoiesis in the Fbxo30−/− mice were rescued through normalization of Eg5 activity using shRNA and/or an EG5 inhibitor. Our data reveal the Fbxo30-Eg5 interaction as a critical checkpoint in mammopoiesis and a critical role for ubiquitinylation-regulated Eg5 oscillation in the cell cycle. PMID:27117404

  19. Fbxo30 Regulates Mammopoiesis by Targeting the Bipolar Mitotic Kinesin Eg5.

    PubMed

    Liu, Yan; Wang, Yin; Du, Zhanwen; Yan, Xiaoli; Zheng, Pan; Liu, Yang

    2016-05-01

    Fbxo30 is an orphan member of the F-box protein family with no known substrate or function. Here we report that, while Fbxo30(-/-) mice exhibit normal development, growth, lifespan, and fertility, the females fail to nurture their offspring as a result of defective mammopoiesis. Mass spectrometry analysis of Fbxo30-associated proteins revealed that Fbxo30 specifically interacts with the bipolar spindle kinesin EG5 (encoded by Kif11). As a result, Fbxo30 targets Eg5 for ubiquitinylation and controls its oscillation during the cell cycle. Correlated with EG5 dysregulation, Fbxo30(-/-) mammary epithelial cells exhibit multiple defects in centrosome homeostasis, mitotic spindle formation, and proliferation. Effects on proliferation, centrosome homeostasis, and mammopoiesis in the Fbxo30(-/-) mice were rescued through normalization of Eg5 activity using shRNA and/or an EG5 inhibitor. Our data reveal the Fbxo30-Eg5 interaction as a critical checkpoint in mammopoiesis and a critical role for ubiquitinylation-regulated Eg5 oscillation in the cell cycle. PMID:27117404

  20. Identification and characterization of INMAP, a novel interphase nucleus and mitotic apparatus protein that is involved in spindle formation and cell cycle progression

    SciTech Connect

    Shen, Enzhi; Lei, Yan; Liu, Qian; Zheng, Yanbo; Song, Chunqing; Marc, Jan; Wang, Yongchao; Sun, Le; Liang, Qianjin

    2009-04-15

    A novel protein that associates with interphase nucleus and mitotic apparatus (INMAP) was identified by screening HeLa cDNA expression library with an autoimmune serum followed by tandem mass spectrometry. Its complete cDNA sequence of 1.818 kb encodes 343 amino acids with predicted molecular mass of 38.2 kDa and numerous phosphorylation sites. The sequence is identical with nucleotides 1-1800 bp of an unnamed gene (GenBank accession no. (7022388)) and highly homologous with the 3'-terminal sequence of POLR3B. A monoclonal antibody against INMAP reacted with similar proteins in S. cerevisiae, Mel and HeLa cells, suggesting that it is a conserved protein. Confocal microscopy using either GFP-INMAP fusion protein or labeling with the monoclonal antibody revealed that the protein localizes as distinct dots in the interphase nucleus, but during mitosis associates closely with the spindle. Double immunolabeling using specific antibodies showed that the INMAP co-localizes with {alpha}-tubulin, {gamma}-tubulin, and NuMA. INMAP also co-immunoprecipitated with these proteins in their native state. Stable overexpression of INMAP in HeLa cell lines leads to defects in the spindle, mitotic arrest, formation of polycentrosomal and multinuclear cells, inhibition of growth, and apoptosis. We propose that INMAP is a novel protein that plays essential role in spindle formation and cell-cycle progression.

  1. Stranglehold on the spindle assembly checkpoint: the human papillomavirus E2 protein provokes BUBR1-dependent aneuploidy.

    PubMed

    Tan, Chye Ling; Teissier, Sébastien; Gunaratne, Jayantha; Quek, Ling Shih; Bellanger, Sophie

    2015-01-01

    The Human Papillomavirus (HPV) E2 protein, which inhibits the E6 and E7 viral oncogenes, is believed to have anti-oncogenic properties. Here, we challenge this view and show that HPV-18 E2 over-activates the Spindle Assembly Checkpoint (SAC) and induces DNA breaks in mitosis followed by aneuploidy. This phenotype is associated with interaction of E2 with the Mitotic Checkpoint Complex (MCC) proteins Cdc20, MAD2 and BUBR1. While BUBR1 silencing rescues the mitotic phenotype induced by E2, p53 silencing or presence of E6/E7 (inactivating p53 and increasing BUBR1 levels respectively) both amplify it. This work pinpoints E2 as a key protein in the initiation of HPV-induced cervical cancer and identifies the SAC as a target for oncogenic pathogens. Moreover, our results suggest a role of p53 in regulating the mitotic process itself and highlight SAC over-activation in a p53-negative context as a highly pathogenic event. PMID:25789401

  2. Stranglehold on the spindle assembly checkpoint: the human papillomavirus E2 protein provokes BUBR1-dependent aneuploidy

    PubMed Central

    Tan, Chye Ling; Teissier, Sébastien; Gunaratne, Jayantha; Quek, Ling Shih; Bellanger, Sophie

    2015-01-01

    The Human Papillomavirus (HPV) E2 protein, which inhibits the E6 and E7 viral oncogenes, is believed to have anti-oncogenic properties. Here, we challenge this view and show that HPV-18 E2 over-activates the Spindle Assembly Checkpoint (SAC) and induces DNA breaks in mitosis followed by aneuploidy. This phenotype is associated with interaction of E2 with the Mitotic Checkpoint Complex (MCC) proteins Cdc20, MAD2 and BUBR1. While BUBR1 silencing rescues the mitotic phenotype induced by E2, p53 silencing or presence of E6/E7 (inactivating p53 and increasing BUBR1 levels respectively) both amplify it. This work pinpoints E2 as a key protein in the initiation of HPV-induced cervical cancer and identifies the SAC as a target for oncogenic pathogens. Moreover, our results suggest a role of p53 in regulating the mitotic process itself and highlight SAC over-activation in a p53-negative context as a highly pathogenic event. PMID:25789401

  3. Kinesin 1 Drives Autolysosome Tubulation.

    PubMed

    Du, Wanqing; Su, Qian Peter; Chen, Yang; Zhu, Yueyao; Jiang, Dong; Rong, Yueguang; Zhang, Senyan; Zhang, Yixiao; Ren, He; Zhang, Chuanmao; Wang, Xinquan; Gao, Ning; Wang, Yanfeng; Sun, Lingfei; Sun, Yujie; Yu, Li

    2016-05-23

    Autophagic lysosome reformation (ALR) plays an important role in maintaining lysosome homeostasis. During ALR, lysosomes are reformed by recycling lysosomal components from autolysosomes. The most noticeable step of ALR is autolysosome tubulation, but it is currently unknown how the process is regulated. Here, using an approach combining in vivo studies and in vitro reconstitution, we found that the kinesin motor protein KIF5B is required for autolysosome tubulation and that KIF5B drives autolysosome tubulation by pulling on the autolysosomal membrane. Furthermore, we show that KIF5B directly interacts with PtdIns(4,5)P2. Kinesin motors are recruited and clustered on autolysosomes via interaction with PtdIns(4,5)P2 in a clathrin-dependent manner. Finally, we demonstrate that clathrin promotes formation of PtdIns(4,5)P2-enriched microdomains, which are required for clustering of KIF5B. Our study reveals a mechanism by which autolysosome tubulation was generated. PMID:27219061

  4. Coupling viruses to dynein and kinesin-1

    PubMed Central

    Dodding, Mark P; Way, Michael

    2011-01-01

    It is now clear that transport on microtubules by dynein and kinesin family motors has an important if not critical role in the replication and spread of many different viruses. Understanding how viruses hijack dynein and kinesin motors using a limited repertoire of proteins offers a great opportunity to determine the molecular basis of motor recruitment. In this review, we discuss the interactions of dynein and kinesin-1 with adenovirus, the α herpes viruses: herpes simplex virus (HSV1) and pseudorabies virus (PrV), human immunodeficiency virus type 1 (HIV-1) and vaccinia virus. We highlight where the molecular links to these opposite polarity motors have been defined and discuss the difficulties associated with identifying viral binding partners where the basis of motor recruitment remains to be established. Ultimately, studying microtubule-based motility of viruses promises to answer fundamental questions as to how the activity and recruitment of the dynein and kinesin-1 motors are coordinated and regulated during bi-directional transport. PMID:21878994

  5. Nuclear envelope-associated dynein drives prophase centrosome separation and enables Eg5-independent bipolar spindle formation

    PubMed Central

    Raaijmakers, Jonne A; van Heesbeen, Roy G H P; Meaders, Johnathan L; Geers, Erica F; Fernandez-Garcia, Belen; Medema, René H; Tanenbaum, Marvin E

    2012-01-01

    The microtubule motor protein kinesin-5 (Eg5) provides an outward force on centrosomes, which drives bipolar spindle assembly. Acute inhibition of Eg5 blocks centrosome separation and causes mitotic arrest in human cells, making Eg5 an attractive target for anti-cancer therapy. Using in vitro directed evolution, we show that human cells treated with Eg5 inhibitors can rapidly acquire the ability to divide in the complete absence of Eg5 activity. We have used these Eg5-independent cells to study alternative mechanisms of centrosome separation. We uncovered a pathway involving nuclear envelope (NE)-associated dynein that drives centrosome separation in prophase. This NE-dynein pathway is essential for bipolar spindle assembly in the absence of Eg5, but also functions in the presence of full Eg5 activity, where it pulls individual centrosomes along the NE and acts in concert with Eg5-dependent outward pushing forces to coordinate prophase centrosome separation. Together, these results reveal how the forces are produced to drive prophase centrosome separation and identify a novel mechanism of resistance to kinesin-5 inhibitors. PMID:23034402

  6. A splicing alteration of 4.1R pre-mRNA generates 2 protein isoforms with distinct assembly to spindle poles in mitotic cells.

    PubMed

    Delhommeau, François; Vasseur-Godbillon, Corinne; Leclerc, Philippe; Schischmanoff, Pierre-Olivier; Croisille, Laure; Rince, Patricia; Morinière, Madeleine; Benz, Edward J; Tchernia, Gil; Tamagnini, Gabriel; Ribeiro, Leticia; Delaunay, Jean; Baklouti, Faouzi

    2002-10-01

    The C-terminal region of erythroid cytoskeletal protein 4.1R, encoded by exons 20 and 21, contains a binding site for nuclear mitotic apparatus protein (NuMA), a protein needed for the formation and stabilization of the mitotic spindle. We have previously described a splicing mutation of 4.1R that yields 2 isoforms: One, CO.1, lacks most of exon 20-encoded peptide and carries a missense C-terminal sequence. The other, CO.2, lacks exon 20-encoded C-terminal sequence, but retains the normal exon 21-encoded C-terminal sequence. Knowing that both shortened proteins are expressed in red cells and assemble to the membrane skeleton, we asked whether they would ensure 4.1R mitotic function in dividing cells. We show here that CO.2, but not CO.1, assembles to spindle poles, and colocalizes with NuMA in erythroid and lymphoid mutated cells, but none of these isoforms interact with NuMA in vitro. In microtubule-destabilizing conditions, again only CO.2 localizes to the centrosomes. These data suggest that the stability of 4.1R association with centrosomes requires an intact C-terminal end, either for a proper conformation of the protein, for a direct binding to an unknown centrosome-cytoskeletal network, or for both. We also found that 4.1G, a ubiquitous homolog of 4.1R, is present in mutated as well as control cells and that its C-terminal region binds efficiently to NuMA, suggesting that in fact mitotic spindles host a mixture of the two 4.1 family members. These findings led to the postulate that the coexpression at the spindle poles of 2 related proteins, 4.1R and 4.1G, might reflect a functional redundancy in mitotic cells. PMID:12239178

  7. Bidirectional motility of the fission yeast kinesin-5, Cut7

    SciTech Connect

    Edamatsu, Masaki

    2014-03-28

    Highlights: • Motile properties of Cut7 (fission yeast kinesin-5) were studied for the first time. • Half-length Cut7 moved toward plus-end direction of microtubule. • Full-length Cut7 moved toward minus-end direction of microtubule. • N- and C-terminal microtubule binding sites did not switch the motile direction. - Abstract: Kinesin-5 is a homotetrameric motor with its motor domain at the N-terminus. Kinesin-5 crosslinks microtubules and functions in separating spindle poles during mitosis. In this study, the motile properties of Cut7, fission yeast kinesin-5, were examined for the first time. In in vitro motility assays, full-length Cut7 moved toward minus-end of microtubules, but the N-terminal half of Cut7 moved toward the opposite direction. Furthermore, additional truncated constructs lacking the N-terminal or C-terminal regions, but still contained the motor domain, did not switch the motile direction. These indicated that Cut7 was a bidirectional motor, and microtubule binding regions at the N-terminus and C-terminus were not involved in its directionality.

  8. Kinesin superfamily protein-derived peptides with the ability to induce glioma-reactive cytotoxic T lymphocytes in human leukocyte antigen-A24+ glioma patients.

    PubMed

    Harada, Mamoru; Ishihara, Yuki; Itoh, Kyogo; Yamanaka, Ryuya

    2007-03-01

    One promising modality in the treatment of malignant glioma is specific immunotherapy. However, this modality requires information about target antigens and their epitope peptides that are recognized by T cells. In this study, we searched for new target candidates in specific immunotherapy for malignant glioma by utilizing cDNA microarray technology to compare gene expressions in malignant glioma tissues to those in benign glioma and a panel of normal tissues. The selected genes included three members of the kinesin superfamily proteins (KIFs): KIF1C, KIF3C, and KIF21B. RT-PCR showed that these three genes were expressed in the majority of glioma cell lines. These antigen-derived 25 peptides, which had the ability to bind to human leukocyte antigen (HLA)-A24 molecules, were first screened for their ability to be recognized by the immunoglobulin G of glioma patients, and then tested for their potential to induce peptide-specific and glioma-reactive cytotoxic T lymphocytes (CTLs) from the peripheral blood mononuclear cells of HLA-A24+ glioma patients. The results showed that the KIF1C149-158 and KIF3C512-520 peptides efficiently induced HLA-A24-restricted and glioma-reactive CD8+ T cells. These results suggest the existence of KIF-reactive CTL precursors in glioma patients, and should facilitate the development of specific immunotherapies for malignant glioma. PMID:17273744

  9. Coordinated hydrolysis explains the mechanical behavior of kinesin.

    PubMed Central

    Peskin, C S; Oster, G

    1995-01-01

    The two-headed motor protein kinesin hydrolyzes nucleotide to move unidirectionally along its microtubule track at speeds up to 1000 nm/s (Saxton et al., 1988) and develops forces in excess of 5 pN (Hunt et al., 1994; Svoboda et al., 1994a). Individual kinesin molecules have been studied recently in vitro, and their behavior has been characterized in terms of force-velocity curves and variance measurements (Svoboda and Block, 1994a; Svoboda et al., 1994b). We present a model for force generation in kinesin in which the ATP hydrolysis reactions are coordinated with the relative positions of the two heads. The model explains the experimental data and permits us to study the relative roles of Brownian motion and elastic deformation in the motor mechanism of kinesin. Images FIGURE 1 FIGURE 2 FIGURE 3 PMID:7787069

  10. The Kinesin-1 Chemomechanical Cycle: Stepping Toward a Consensus.

    PubMed

    Hancock, William O

    2016-03-29

    Kinesin-1 serves as a model for understanding fundamentals of motor protein mechanochemistry and for interpreting functional diversity across the kinesin superfamily. Despite sustained work over the last three decades, disagreements remain regarding the events that trigger the two key transitions in the stepping cycle: detachment of the trailing head from the microtubule and binding of the tethered head to the next tubulin binding site. This review describes the conflicting views of these events and highlights recent work that sheds light on these long-standing controversies. It concludes by presenting a consensus kinesin-1 chemomechanical that incorporates recent work, resolves discrepancies, and highlights key questions for future experimental work. It is hoped that this model provides a framework for understanding how diverse kinesins are tuned for their specific cellular roles. PMID:27028632

  11. Investigation on the isoform selectivity of novel kinesin-like protein 1 (KIF11) inhibitor using chemical feature based pharmacophore, molecular docking, and quantum mechanical studies.

    PubMed

    Karunagaran, Subramanian; Subhashchandrabose, Subramaniyan; Lee, Keun Woo; Meganathan, Chandrasekaran

    2016-04-01

    Kinesin-like protein (KIF11) is a molecular motor protein that is essential in mitosis. Removal of KIF11 prevents centrosome migration and causes cell arrest in mitosis. KIF11 defects are linked to the disease of microcephaly, lymph edema or mental retardation. The human KIF11 protein has been actively studied for its role in mitosis and its potential as a therapeutic target for cancer treatment. Pharmacophore modeling, molecular docking and density functional theory approaches was employed to reveal the structural, chemical and electronic features essential for the development of small molecule inhibitor for KIF11. Hence we have developed chemical feature based pharmacophore models using Discovery Studio v 2.5 (DS). The best hypothesis (Hypo1) consisting of four chemical features (two hydrogen bond acceptor, one hydrophobic and one ring aromatic) has exhibited high correlation co-efficient of 0.9521, cost difference of 70.63 and low RMS value of 0.9475. This Hypo1 is cross validated by Cat Scramble method; test set and decoy set to prove its robustness, statistical significance and predictability respectively. The well validated Hypo1 was used as 3Dquery to perform virtual screening. The hits obtained from the virtual screening were subjected to various scrupulous drug-like filters such as Lipinski's rule of five and ADMET properties. Finally, six hit compounds were identified based on the molecular interaction and its electronic properties. Our final lead compound could serve as a powerful tool for the discovery of potent inhibitor as KIF11 agonists. PMID:26815769

  12. Identification of MAC1: A Small Molecule That Rescues Spindle Bipolarity in Monastrol-Treated Cells.

    PubMed

    Al-Obaidi, Naowras; Mitchison, Timothy J; Crews, Craig M; Mayer, Thomas U

    2016-06-17

    The genetic integrity of each organism is intimately tied to the correct segregation of its genome during mitosis. Insights into the underlying mechanisms are fundamental for both basic research and the development of novel strategies to treat mitosis-relevant diseases such as cancer. Due to their fast mode of action, small molecules are invaluable tools to dissect mitosis. Yet, there is a great demand for novel antimitotic compounds. We performed a chemical genetic suppression screen to identify compounds that restore spindle bipolarity in cells treated with Monastrol, an inhibitor of the mitotic kinesin Eg5. We identified one compound-MAC1-that rescued spindle bipolarity in cells lacking Eg5 activity. Mechanistically, MAC1 induces the formation of additional microtubule nucleation centers, which allows kinesin Kif15-dependent bipolar spindle assembly in the absence of Eg5 activity. Thus, our chemical genetic suppression screen revealed novel unexpected insights into the mechanism of spindle assembly in mammalian cells. PMID:27121275

  13. XMAP215 activity sets spindle length by controlling the total mass of spindle microtubules.

    PubMed

    Reber, Simone B; Baumgart, Johannes; Widlund, Per O; Pozniakovsky, Andrei; Howard, Jonathon; Hyman, Anthony A; Jülicher, Frank

    2013-09-01

    Metaphase spindles are microtubule-based structures that use a multitude of proteins to modulate their morphology and function. Today, we understand many details of microtubule assembly, the role of microtubule-associated proteins, and the action of molecular motors. Ultimately, the challenge remains to understand how the collective behaviour of these nanometre-scale processes gives rise to a properly sized spindle on the micrometre scale. By systematically engineering the enzymatic activity of XMAP215, a processive microtubule polymerase, we show that Xenopus laevis spindle length increases linearly with microtubule growth velocity, whereas other parameters of spindle organization, such as microtubule density, lifetime and spindle shape, remain constant. We further show that mass balance can be used to link the global property of spindle size to individual microtubule dynamic parameters. We propose that spindle length is set by a balance of non-uniform nucleation and global microtubule disassembly in a liquid-crystal-like arrangement of microtubules. PMID:23974040

  14. Structural insights into human Kif7, a kinesin involved in Hedgehog signalling

    PubMed Central

    Klejnot, Marta; Kozielski, Frank

    2012-01-01

    Kif7, a member of the kinesin 4 superfamily, is implicated in a variety of diseases including Joubert, hydrolethalus and acrocallosal syndromes. It is also involved in primary cilium formation and the Hedgehog signalling pathway and may play a role in cancer. Its activity is crucial for embryonic development. Kif7 and Kif27, a closely related kinesin in the same subfamily, are orthologues of the Drosophila melano­gaster kinesin-like protein Costal-2 (Cos2). In vertebrates, they work together to fulfil the role of the single Cos2 gene in Drosophila. Here, the high-resolution structure of the human Kif7 motor domain is reported and is compared with that of conventional kinesin, the founding member of the kinesin superfamily. These data are a first step towards structural characterization of a kinesin-4 family member and of this interesting molecular motor of medical significance. PMID:22281744

  15. A spacer protein in the Saccharomyces cerevisiae spindle poly body whose transcript is cell cycle-regulated.

    PubMed

    Kilmartin, J V; Dyos, S L; Kershaw, D; Finch, J T

    1993-12-01

    Monoclonal antibodies against the 110-kD component of the yeast spindle pole body (SPB) were used to clone the corresponding gene SPC110. SPC110 is identical to NUF1 (Mirzayan, C., C. S. Copeland, and M. Synder. 1992. J. Cell Biol. 116:1319-1332). SPC110/NUF1 has an MluI cell cycle box consensus sequence in its putative promoter region, and we found that the transcript was cell cycle regulated in a similar way to other MluI-regulated transcripts. Spc110p/Nuflp has a long central region with a predicted coiled-coil structure. We expressed this region in Escherichia coli and showed by rotary shadowing that rods of the predicted length were present. The 110-kD component is localized in the SPB to the gap between the central plaque and the sealed ends of the nuclear microtubules near the inner plaque (Rout, M., and J. V. Kilmartin. 1990. J. Cell Biol. 111:1913-1927). We found that rodlike structures bridge this gap. When truncations of SPC110 with deletions in the coiled-coil region of the protein replaced the wild-type gene, the gap between the central plaque and the ends of the microtubules decreased in proportion to the size of the deletion. This suggests that Spc110p connects these two parts of the SPB together and that the coiled-coil domain acts as a spacer element. PMID:7503995

  16. Spindle Size Scaling Contributes to Robust Silencing of Mitotic Spindle Assembly Checkpoint.

    PubMed

    Chen, Jing; Liu, Jian

    2016-09-01

    Chromosome segregation during mitosis hinges on proper assembly of the microtubule spindle that establishes bipolar attachment to each chromosome. Experiments demonstrate allometry of mitotic spindles and a universal scaling relationship between spindle size and cell size across metazoans, which indicates a conserved principle of spindle assembly at play during evolution. However, the nature of this principle is currently unknown. Researchers have focused on deriving the mechanistic underpinning of the size scaling from the mechanical aspects of the spindle assembly process. In this work we take a different standpoint and ask: What is the size scaling for? We address this question from the functional perspectives of spindle assembly checkpoint (SAC). SAC is the critical surveillance mechanism that prevents premature chromosome segregation in the presence of unattached or misattached chromosomes. The SAC signal gets silenced after and only after the last chromosome-spindle attachment in mitosis. We previously established a model that explains the robustness of SAC silencing based on spindle-mediated spatiotemporal regulation of SAC proteins. Here, we refine the previous model, and find that robust and timely SAC silencing entails proper size scaling of mitotic spindle. This finding provides, to our knowledge, a novel, function-oriented angle toward understanding the observed spindle allometry, and the universal scaling relationship between spindle size and cell size in metazoans. In a broad sense, the functional requirement of robust SAC silencing could have helped shape the spindle assembly mechanism in evolution. PMID:27602734

  17. Centrin: Another target of monastrol, an inhibitor of mitotic spindle

    NASA Astrophysics Data System (ADS)

    Duan, Lian; Wang, Tong-Qing; Bian, Wei; Liu, Wen; Sun, Yue; Yang, Bin-Sheng

    2015-02-01

    Monastrol, a cell-permeable inhibitor, considered to specifically inhibit kinesin Eg5, can cause mitotic arrest and monopolar spindle formation, thus exhibiting antitumor properties. Centrin, a ubiquitous protein associated with centrosome, plays a critical role in centrosome duplication. Moreover, a correlation between centrosome amplification and cancer has been reported. In this study, it is proposed for the first time that centrin may be another target of the anticancer drug monastrol since monastrol can effectively inhibit not only the growth of the transformed Escherichia coli cells in vivo, but also the Lu3+-dependent self-assembly of EoCen in vitro. The two closely related compounds (Compounds 1 and 2) could not take the same effect. Fluorescence titration experiments suggest that four monastrols per protein is the optimum binding pattern, and the binding constants at different temperatures were obtained. Detailed thermodynamic analysis indicates that hydrophobic force is the main acting force between monastrol and centrin, and the extent of monastrol inhibition of centrin self-assembly is highly dependent upon the hydrophobic region of the protein, which is largely exposed by the binding of metal ions.

  18. Casein Kinase 2 Reverses Tail-Independent Inactivation of Kinesin-1

    NASA Astrophysics Data System (ADS)

    Xu, Jing

    2013-03-01

    Kinesin-1 is a plus-end microtubule-based motor, and defects in kinesin-based transport are linked to diseases including neurodegeneration. Kinesin can auto-inhibit via a head-tail interaction, but is believed to be active otherwise. Here we report a tail-independent inactivation of kinesin, reversible by the disease-relevant signalling protein, casein kinase 2 (CK2). The majority of initially active kinesin (native or tail-less) loses its ability to interact with microtubules in vitro, and CK2 reverses this inactivation (approximately fourfold) without altering kinesin's single motor properties. This activation pathway does not require motor phosphorylation, and is independent of head-tail auto-inhibition. In cultured mammalian cells, reducing CK2 expression, but not its kinase activity, decreases the force required to stall lipid droplet transport, consistent with a decreased number of active kinesin motors. Our results (Nat. Commun., 3:754, 2012) provide the first direct evidence of a protein kinase upregulating kinesin-based transport, and suggest a novel pathway for regulating the activity of cargo-bound kinesin. Work supported by NIGMS grants GM64624 to SPG, GM74830-06A1 to LH, GM76516 to LB, NS048501 to SJK, and AHA grant 825278F to JX.

  19. Centromere-tethered Mps1 pombe homolog (Mph1) kinase is a sufficient marker for recruitment of the spindle checkpoint protein Bub1, but not Mad1.

    PubMed

    Ito, Daisuke; Saito, Yu; Matsumoto, Tomohiro

    2012-01-01

    The spindle checkpoint delays the onset of anaphase until all of the chromosomes properly achieve bipolar attachment to the spindle. It has been shown that unattached kinetochores are the site that emits a signal for activation of the checkpoint. Although the components of the checkpoint such as Bub1, Mad1 and Mad2 selectively accumulate at unattached kinetochores, the answer to how they recognize unattached kinetochores has remained elusive. Mps1 pombe homolog (Mph1) kinase has been shown to function upstream of most of the components of the checkpoint and thus it is thought to recognize unattached kinetochores by itself and recruit other components. In this study we have expressed a fusion protein of Mph1 and Ndc80 (a kinetochore protein of the outer plate) and shown that the fusion protein arrests cell cycle progression in a spindle-checkpoint\\x{2013}dependent manner in fission yeast. When expression of Mad2 is turned off, the cells grow normally with Mph1 constitutively localized at centromeres/kinetochores. Under this condition, Bub1 can be found with Mph1 throughout the cell cycle, indicating that localization of Mph1 at centromeres/kinetochores is sufficient to recruit Bub1. In contrast, Mad1 is found to transiently localize at kinetochores, which are presumably unattached to the spindle, but soon it dissociates from kinetochores. We propose that Mph1 is a sufficient marker for recruitment of Bub1. Mad1, in contrast, requires an additional condition/component for stable association with kinetochores. PMID:22184248

  20. Yeast GSK-3 kinase regulates astral microtubule function through phosphorylation of the microtubule-stabilizing kinesin Kip2.

    PubMed

    Drechsler, Hauke; Tan, Ann Na; Liakopoulos, Dimitris

    2015-11-01

    The S. cerevisiae kinesin Kip2 stabilises astral microtubules (MTs) and facilitates spindle positioning through transport of MT-associated proteins, such as the yeast CLIP-170 homologue Bik1, dynein and the adenomatous-polyposis-coli-related protein Kar9 to the plus ends of astral MTs. Here, we show that Kip2 associates with its processivity factor Bim1, the yeast homologue of the plus-end-tracking protein EB1. This interaction requires an EB1-binding motif in the N-terminal extension of Kip2 and is negatively regulated by phosphorylation through Mck1, the yeast glycogen synthase kinase 3. In addition, Mck1-dependent phosphorylation decreases the intrinsic MT affinity of Kip2. Reduction in Kip2 phosphorylation leads to stabilisation of astral MTs, and accumulation of Kip2, dynein and Kar9 at MT plus ends, whereas loss of Mck1 function leads to defects in spindle positioning. Furthermore, we provide evidence that a subpopulation of Mck1 at the bud-cortex phosphorylates Kip2. We propose that yeast GSK-3 spatially controls astral MT dynamics and the loading of dynein and Kar9 on astral MT plus ends by regulating Kip2 interactions with Bim1 and MTs. PMID:26395399

  1. Kinesin molecular motor Eg5 functions during polypeptide synthesis

    PubMed Central

    Bartoli, Kristen M.; Jakovljevic, Jelena; Woolford, John L.; Saunders, William S.

    2011-01-01

    The kinesin-related molecular motor Eg5 plays roles in cell division, promoting spindle assembly. We show that during interphase Eg5 is associated with ribosomes and is required for optimal nascent polypeptide synthesis. When Eg5 was inhibited, ribosomes no longer bound to microtubules in vitro, ribosome transit rates slowed, and polysomes accumulated in intact cells, suggesting defects in elongation or termination during polypeptide synthesis. These results demonstrate that the molecular motor Eg5 associates with ribosomes and enhances the efficiency of translation. PMID:21795388

  2. Inhibition of the Motor Protein Eg5/Kinesin-5 in Amyloid β-Mediated Impairment of Hippocampal Long-Term Potentiation and Dendritic Spine Loss.

    PubMed

    Freund, Ronald K; Gibson, Emily S; Potter, Huntington; Dell'Acqua, Mark L

    2016-05-01

    Alzheimer's disease (AD) is characterized by neurofibrillary tangles, amyloid plaques, and neurodegeneration. However, this pathology is preceded by increased soluble amyloid beta (Aβ) 1-42 oligomers that interfere with the glutamatergic synaptic plasticity required for learning and memory, includingN-methyl-d-aspartate receptor (NMDAR)-dependent long-term potentiation (LTP). In particular, soluble Aβ(1-42) acutely inhibits LTP and chronically causes synapse loss. Many mechanisms have been proposed for Aβ-induced synaptic dysfunction, but we recently found that Aβ(1-42) inhibits the microtubule motor protein Eg5/kinesin-5. Here we compared the impacts of Aβ(1-42) and monastrol, a small-molecule Eg5 inhibitor, on LTP in hippocampal slices and synapse loss in neuronal cultures. Acute (20-minute) treatment with monastrol, like Aβ, completely inhibited LTP at doses >100 nM. In addition, 1 nM Aβ(1-42) or 50 nM monastrol inhibited LTP #x223c;50%, and when applied together caused complete LTP inhibition. At concentrations that impaired LTP, neither Aβ(1-42) nor monastrol inhibited NMDAR synaptic responses until #x223c;60 minutes, when only #x223c;25% inhibition was seen for monastrol, indicating that NMDAR inhibition was not responsible for LTP inhibition by either agent when applied for only 20 minutes. Finally, 48 hours of treatment with either 0.5-1.0μM Aβ(1-42) or 1-5μM monastrol reduced the dendritic spine/synapse density in hippocampal cultures up to a maximum of #x223c;40%, and when applied together at maximal concentrations, no additional spine loss resulted. Thus, monastrol can mimic and in some cases occlude the impact of Aβon LTP and synapse loss, suggesting that Aβinduces acute and chronic synaptic dysfunction in part through inhibiting Eg5. PMID:26957206

  3. Kinesin Kip2 enhances microtubule growth in vitro through length-dependent feedback on polymerization and catastrophe

    PubMed Central

    Hibbel, Anneke; Bogdanova, Aliona; Mahamdeh, Mohammed; Jannasch, Anita; Storch, Marko; Schäffer, Erik; Liakopoulos, Dimitris; Howard, Jonathon

    2015-01-01

    The size and position of mitotic spindles is determined by the lengths of their constituent microtubules. Regulation of microtubule length requires feedback to set the balance between growth and shrinkage. Whereas negative feedback mechanisms for microtubule length control, based on depolymerizing kinesins and severing proteins, have been studied extensively, positive feedback mechanisms are not known. Here, we report that the budding yeast kinesin Kip2 is a microtubule polymerase and catastrophe inhibitor in vitro that uses its processive motor activity as part of a feedback loop to further promote microtubule growth. Positive feedback arises because longer microtubules bind more motors, which walk to the ends where they reinforce growth and inhibit catastrophe. We propose that positive feedback, common in biochemical pathways to switch between signaling states, can also be used in a mechanical signaling pathway to switch between structural states, in this case between short and long polymers. DOI: http://dx.doi.org/10.7554/eLife.10542.001 PMID:26576948

  4. Identification of the full-length KIAA0591 gene encoding a novel kinesin-related protein which is mapped to the neuroblastoma suppressor gene locus at 1p36.2.

    PubMed

    Nagai, M; Ichimiya, S; Ozaki, T; Seki, N; Mihara, M; Furuta, S; Ohira, M; Tomioka, N; Nomura, N; Sakiyama, S; Kubo, O; Takakura, K; Hori, T; Nakagawara, A

    2000-05-01

    The distal region of a short arm of chromosome 1p is frequently deleted in many human cancers including neuroblastoma (NBL), in which it has been narrowed down to the smallest region of overlap between D1S244 and D1S214 (approximately 7 cM). During the search for the candidate tumor suppressor genes mapped within the region, we found the KIAA0591 gene which encoded a new human kinesin-related protein with a homology to human axonal transporter of synaptic vesicles (ATSV). The kinesin is an intracellular motor protein and often associated with neuronal differentiation and survival. Here we identified a complete open reading frame of the KIAA0591 gene by screening a cDNA library derived from human substantia nigra. The KIAA0591 protein contains a possible pleckstrin homology (PH) domain at its carboxy-terminus. However, it did not possess a force-generating motor domain which is well conserved among kinesin superfamily members (KIFs). Northern blot analysis demonstrated that KIAA0591 mRNA was preferentially expressed in both adult and fetal brains, kidney, skeletal muscle and pancreas. KIAA0591 was expressed in favorable NBLs at higher levels than in unfavorable NBLs, although RT-PCR SSCP analysis showed no mutation within the coding region of the KIAA0591 gene, when 8 neuroblastoma tissues and 15 neuroblastoma-derived cell lines were examined. Thus, the full-length KIAA0591 gene may be a novel member of human KIF superfamily which lacks motor domain and might function as a tumor suppressor in an epigenetic but not a classic Knudson's manner. PMID:10762626

  5. Spindle Dynamics during Meiosis in Drosophila Oocytes

    PubMed Central

    Endow, Sharyn A.; Komma, Donald J.

    1997-01-01

    Mature oocytes of Drosophila are arrested in metaphase of meiosis I. Upon activation by ovulation or fertilization, oocytes undergo a series of rapid changes that have not been directly visualized previously. We report here the use of the Nonclaret disjunctional (Ncd) microtubule motor protein fused to the green fluorescent protein (GFP) to monitor changes in the meiotic spindle of live oocytes after activation in vitro. Meiotic spindles of metaphase-arrested oocytes are relatively stable, however, meiotic spindles of in vitro–activated oocytes are highly dynamic: the spindles elongate, rotate around their long axis, and undergo an acute pivoting movement to reorient perpendicular to the oocyte surface. Many oocytes spontaneously complete the meiotic divisions, permitting visualization of progression from meiosis I to II. The movements of the spindle after oocyte activation provide new information about the dynamic changes in the spindle that occur upon re-entry into meiosis and completion of the meiotic divisions. Spindles in live oocytes mutant for a lossof-function ncd allele fused to gfp were also imaged. The genesis of spindle defects in the live mutant oocytes provides new insights into the mechanism of Ncd function in the spindle during the meiotic divisions. PMID:9182665

  6. Transcriptome analysis reveals a diverse family of kinesins essential for spermatogenesis in the fern Marsilea.

    PubMed

    Tomei, Erika J; Wolniak, Stephen M

    2016-03-01

    The male gametophyte of the semi-aquatic fern, Marsilea vestita, produces multiciliated spermatozoids in a rapid developmental sequence that is controlled post-transcriptionally when dry microspores are placed in water. Development can be divided into two phases, mitosis and differentiation. During the mitotic phase, a series of nine successive division cycles produce 7 sterile cells and 32 spermatids in 4.5-5 h. During the next 5-6 h, each spermatid differentiates into a corkscrew-shaped motile spermatozoid with ∼140 cilia. In order to study the mechanisms that regulate spermatogenesis, we used RNAseq to generate a reference transcriptome that allowed us to assess abundance of transcripts at different stages of development. Here, we characterize transcripts present in the kinesin motor family. Over 120 kinesin-like sequences were identified in our transcriptome that represent 56 unique kinesin transcripts. Members of the kinesin-2, -4, -5, -7, -8, -9, -12, -13, and -14 families, in addition to several plant specific and 'orphan' kinesins are present. Most (91%) of these kinesin transcripts change in abundance throughout gametophyte development, with 52% of kinesin mRNAs enriched during the mitotic phase and 39% enriched during differentiation. Functional analyses of six kinesins with different patterns of transcript abundance show that the temporal regulation of these transcripts during gametogenesis correlates directly with kinesin protein function. PMID:26887361

  7. High-resolution tracking of microtubule motility driven by a single kinesin motor.

    PubMed Central

    Malik, F; Brillinger, D; Vale, R D

    1994-01-01

    Kinesin is a microtubule-based motor protein that contains two identical force-generating subunits. The kinesin binding sites along the microtubule lie 8 nm apart (the dimension of the tubulin dimer), which implies that kinesin must translocate a minimum distance of 8 nm per hydrolysis cycle. Measurements of kinesin's microtubule-stimulated ATPase activity (approximately 20 ATP per sec) and velocity of transport (approximately 0.6 micron/sec), however, suggest that the net distance moved per ATP (approximately 30 nm) may be greater than one tubulin dimer under zero load conditions. To explore how kinesin translocates during its ATPase cycle, we constructed a microscope capable of tracking movement with 1-nm resolution at a bandwidth of 200 Hz and used this device to examine microtubule movement driven by a single kinesin motor. Regular stepwise movements were not observed in displacement traces of moving microtubules, although Brownian forces acting on elastic elements within the kinesin motor precluded detection of steps that were < 12 nm. Though individual steps of approximately 16 nm were occasionally observed, their infrequent occurrence suggests that kinesin rarely moves abruptly by distances of two or more tubulin subunits during its ATP hydrolysis cycle. Instead it is more likely that kinesin moves forward by the distance of only a single tubulin subunit under zero load conditions. Images PMID:8183952

  8. Identification of Kinesin-1 Cargos Using Fluorescence Microscopy

    PubMed Central

    Lee, Clement M.

    2016-01-01

    Fluorescence microscopy is employed to identify Kinesin-1 cargos. Recently, the heavy chain of Kinesin-1 (KIF5B) was shown to transport the nuclear transcription factor c-MYC for proteosomal degradation in the cytoplasm. The method described here involves the study of a motorless KIF5B mutant for fluorescence microscopy. The wild-type and motorless KIF5B proteins are tagged with the fluorescent protein tdTomato. The wild-type tdTomato-KIF5B appears homogenously in the cytoplasm, while the motorless tdTomato-KIF5B mutant forms aggregates in the cytoplasm. Aggregation of the motorless KIF5B mutant induces aggregation of its cargo c-MYC in the cytoplasm. Hence, this method provides a visual means to identify the cargos of Kinesin-1. A similar strategy can be utilized to identify cargos of other motor proteins. PMID:26966786

  9. Potential involvement of kinesin-1 in the regulation of subcellular localization of Girdin

    SciTech Connect

    Muramatsu, Aya; Enomoto, Atsushi; Kato, Takuya; Weng, Liang; Kuroda, Keisuke; Asai, Naoya; Asai, Masato; Mii, Shinji; Takahashi, Masahide

    2015-08-07

    Girdin is an actin-binding protein that has multiple functions in postnatal neural development and cancer progression. We previously showed that Girdin is a regulator of migration for neuroblasts born from neural stem cells in the subventricular zone (SVZ) and the dentate gyrus of the hippocampus in the postnatal brain. Despite a growing list of Girdin-interacting proteins, the mechanism of Girdin-mediated migration has not been fully elucidated. Girdin interacts with Disrupted-In-Schizophrenia 1 and partitioning-defective 3, both of which have been shown to interact with the kinesin microtubule motor proteins. Based on this, we have identified that Girdin also interacts with kinesin-1, a member of neuronal kinesin proteins. Although a direct interaction of Girdin and kinesin-1 has not been determined, it is of interest to find that Girdin loss-of-function mutant mice with the mutation of a basic amino acid residue-rich region (Basic mut mice) exhibit limited interaction with kinesin-1. Furthermore, expression of a kinesin-1 mutant with motor defects, leads to Girdin mislocalization. Finally, consistent with previous studies on the role of kinesin proteins in trafficking a cell–cell adhesion molecule N-cadherin, Basic mut mice showed an aberrant expression pattern of N-cadherin in migrating SVZ neuroblasts. These findings suggest a potential role of Girdin/kinesin-1 interaction in the regulation of neuroblast migration in the postnatal brain. - Highlights: • Girdin is a regulator of migration for neuroblasts in the postnatal brain. • Girdin interacts with kinesin-1, a member of neuronal kinesin proteins. • Girdin mutant mice showed an aberrant expression of N-cadherin in neuroblasts.

  10. Truncated form of tenascin-X, XB-S, interacts with mitotic motor kinesin Eg5.

    PubMed

    Endo, Toshiya; Ariga, Hiroyoshi; Matsumoto, Ken-ichi

    2009-01-01

    XB-S is a protein with an amino-terminal-truncated form of tenascin-X (TNXB). However, the precise roles of XB-S in vivo are unknown. In this study, to determine the role of XB-S in vivo, we screened XB-S-binding proteins. FLAG-tagged XB-S was transiently introduced into 293T cells. Then its associated proteins were purified by immunoprecipitation using an anti-FLAG antibody and its components were identified by mass spectrometric analyses. Mitotic motor kinesin Eg5 was identified in the immunoprecipitates. XB-S and Eg5 proteins were co-localized in the cytoplasm in interphase and mitosis, but XB-S did not localize on mitotic spindle microtubules, on which Eg5 prominently localized in mitosis. As for Eg5 binding to XB-S, glutathione S-transferase-fused XB-S expressed in vitro directly bound to full-length Eg5 translated in reticulocyte lysate, and the XB-S-binding region was located in the motor domain of Eg5. Furthermore, during cell cycle progression XB-S showed a similar expression profile to that of Eg5. These results suggest possible involvement of XB-S in the function of Eg5. PMID:18679583