Sample records for kinetic phosphorescence analysis

  1. Evaluation of kinetic phosphorescence analysis for the determination of uranium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croatto, P.V.; Frank, I.W.; Johnson, K.D.

    In the past, New Brunswick Laboratory (NBL) has used a fluorometric method for the determination of sub-microgram quantities of uranium. In its continuing effort to upgrade and improve measurement technology, NBL has evaluated the commercially-available KPA-11 kinetic phosphorescence analyzer (Chemchek, Richland, WA). The Chemchek KPA-11 is a bench-top instrument which performs single-measurement, quench-corrected analyses for trace uranium. It incorporates patented kinetic phosphorimetry techniques to measure and analyze sample phosphorescence as a function of time. With laser excitation and time-corrected photon counting, the KPA-11 has a lower detection limit than conventional fluorometric methods. Operated with a personal computer, the state-of-the-art KPA-11more » offers extensive time resolution and phosphorescence lifetime capabilities for additional specificity. Interferences are thereby avoided while obtaining precise measurements. Routine analyses can be easily and effectively accomplished, with the accuracy and precision equivalent to the pulsed-laser fluorometric method presently performed at NBL, without the need for internal standards. Applications of kinetic phosphorimetry at NBL include the measurement of trace level uranium in retention tank, waste samples, and low-level samples. It has also been used to support other experimental activities at NBL by the measuring of nanogram amounts of uranium contamination (in blanks) in isotopic sample preparations, and the determining of elution curves of different ion exchange resins used for uranium purification. In many cases, no pretreatment of samples was necessary except to fume them with nitric acid, and then to redissolve and dilute them to an appropriate concentration with 1 M HNO{sub 3} before measurement. Concentrations were determined on a mass basis ({micro}g U/g of solution), but no density corrections were needed since all the samples (including the samples used for calibration) were in the

  2. Effect of Proton Radiation on the Kinetics of Phosphorescence Decay in the Ceramic Material ZnS-Cu

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuchakova, T.A.; Vesna, G.V.; Makara, V.A.

    2004-11-01

    The results of studying the dose dependences of the decay kinetics of phosphorescence excited by X-ray radiation in luminescent ZnS-Cu ceramic material before and after irradiation with 50-MeV protons are considered. An anomalous variation in the exponent of the hyperbolic phosphorescence curves was observed experimentally as the accumulated light sum increased. It is found from an analysis of the data obtained that two processes are involved in the decay: one of these is monomolecular and corresponds to the first-order kinetics; the other is bimolecular and corresponds to the second-order kinetics. Transitions of charge carriers delocalized from traps occur at themore » nonradiative-recombination centers induced by proton radiation. Recombination of these charge carriers at the emission centers in the course of decay is described by the second-order kinetics.« less

  3. Phosphorescence Kinetics of Singlet Oxygen Produced by Photosensitization in Spherical Nanoparticles. Part I. Theory.

    PubMed

    Hovan, Andrej; Datta, Shubhashis; Kruglik, Sergei G; Jancura, Daniel; Miskovsky, Pavol; Bánó, Gregor

    2018-05-24

    The singlet oxygen produced by energy transfer between an excited photosensitizer (pts) and ground-state oxygen molecules plays a key role in photodynamic therapy. Different nanocarrier systems are extensively studied to promote targeted pts delivery in a host body. The phosphorescence kinetics of the singlet oxygen produced by the short laser pulse photosensitization of pts inside nanoparticles is influenced by singlet oxygen diffusion from the particles to the surrounding medium. Two theoretical models are presented in this work: a more complex numerical one and a simple analytical one. Both the models predict the time course of singlet oxygen concentration inside and outside of the spherical particles following short-pulse excitation of pts. On the basis of the comparison of the numerical and analytical results, a semiempirical analytical formula is derived to calculate the characteristic diffusion time of singlet oxygen from the nanoparticles to the surrounding solvent. The phosphorescence intensity of singlet oxygen produced in pts-loaded nanocarrier systems can be calculated as a linear combination of the two concentrations (inside and outside the particles), taking the different phosphorescence emission rate constants into account.

  4. Investigating Uranium Concentrations in Groundwaters in the State of Idaho Using Kinetic Phosphorescence Analysis and Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Tkavadze, Levan; Dunker, Roy E; Brey, Richard R; Dudgeon, John

    2016-11-01

    The determination of uranium concentrations in natural water samples is of great interest due to the environmental consequences of this radionuclide. In this study, 380 groundwater samples from various locations within the state of Idaho were analyzed using two different techniques. The first method was Kinetic Phosphorescence Analysis (KPA), which gives the total uranium concentrations in water samples. The second analysis method was inductively coupled plasma mass spectrometry (ICP- MS). This method determines the total uranium concentration as well as the separate isotope concentrations of uranium. The U/U isotopic ratio was also measured for each sample to confirm that there was no depleted or enriched uranium present. The results were compared and mapped separately from each other. The study also found that in some areas of the state, natural uranium concentrations are relatively high.

  5. Phosphorescence Kinetics of Singlet Oxygen Produced by Photosensitization in Spherical Nanoparticles. Part II. The Case of Hypericin-Loaded Low-Density Lipoprotein Particles.

    PubMed

    Datta, Shubhashis; Hovan, Andrej; Jutková, Annamária; Kruglik, Sergei G; Jancura, Daniel; Miskovsky, Pavol; Bánó, Gregor

    2018-05-24

    The phosphorescence kinetics of singlet oxygen produced by photosensitized hypericin (Hyp) molecules inside low-density lipoprotein (LDL) particles was studied experimentally and by means of numerical and analytical modeling. The phosphorescence signal was measured after short laser pulse irradiation of aqueous Hyp/LDL solutions. The Hyp triplet state lifetime determined by a laser flash-photolysis measurement was 5.3 × 10 -6 s. The numerical and the analytical model described in part I of the present work (DOI: 10.1021/acs.jpcb.8b00658) were used to analyze the observed phosphorescence kinetics of singlet oxygen. It was shown that singlet oxygen diffuses out of LDL particles on a time scale shorter than 0.1 μs. The total (integrated) concentration of singlet oxygen inside LDL is more than an order of magnitude smaller than the total singlet oxygen concentration in the solvent. The time course of singlet oxygen concentrations inside and outside the particles was calculated using simplified representations of the LDL internal structure. The experimental phosphorescence data were fitted by a linear combination of these concentrations using the emission factor E (the ratio of the radiative singlet oxygen depopulation rate constants inside and outside LDL) as a fitting parameter. The emission factor was determined to be E = 6.7 ± 2.5. Control measurements were carried out by adding sodium azide, a strong singlet oxygen quencher, to the solution.

  6. Using phosphorescence as a fingerprint for the Hope and other blue diamonds

    NASA Astrophysics Data System (ADS)

    Eaton-Magaña, Sally; Post, Jeffrey E.; Heaney, Peter J.; Freitas, Jaime; Klein, Paul; Walters, Roy; Butler, James E.

    2008-01-01

    Sixty-seven natural blue diamonds, including the two largestsuch gemstones known (the Hope and the Blue Heart), were probedby ultraviolet radiation, and their luminescence was analyzedusing a novel spectrometer system. Prior to this study, thefiery red phosphorescence of the Hope Diamond was regarded asquite rare compared to greenish-blue phosphorescence. However,our results demonstrated that virtually all blue diamonds phosphoresceat 660 nm (orange-red) but that this emission often is obscuredby a concomitant luminescence at 500 nm (green-blue). Althoughboth bands were nearly always present, the relative intensitiesof these emissions and their decay kinetics varied dramatically.Consequently, phosphorescence analysis provides a method todiscriminate among individual blue diamonds. Treated and syntheticblue diamonds showed behavior distinct from natural stones.Temperature-dependent phosphorescence revealed that the 660nm emission has an activation energy of 0.4 eV, close to the0.37 eV acceptor energy for boron, suggesting that the phosphorescenceis caused by donor-acceptor pair recombination.

  7. Analysis of the phosphorescent dye concentration dependence of triplet-triplet annihilation in organic host-guest systems

    NASA Astrophysics Data System (ADS)

    Zhang, L.; van Eersel, H.; Bobbert, P. A.; Coehoorn, R.

    2016-10-01

    Using a novel method for analyzing transient photoluminescence (PL) experiments, a microscopic description is obtained for the dye concentration dependence of triplet-triplet annihilation (TTA) in phosphorescent host-guest systems. It is demonstrated that the TTA-mechanism, which could be a single-step dominated process or a diffusion-mediated multi-step process, can be deduced for any given dye concentration from a recently proposed PL intensity analysis. A comparison with the results of kinetic Monte Carlo simulations provides the TTA-Förster radius and shows that the TTA enhancement due to triplet diffusion can be well described in a microscopic manner assuming Förster- or Dexter-type energy transfer.

  8. Characterization of f-actin tryptophan phosphorescence in the presence and absence of tryptophan-free myosin motor domain.

    PubMed

    Bódis, Emöke; Strambini, Giovanni B; Gonnelli, Margherita; Málnási-Csizmadia, András; Somogyi, Béla

    2004-08-01

    The effect of binding the Trp-free motor domain mutant of Dictyostelium discoideum, rabbit skeletal muscle myosin S1, and tropomyosin on the dynamics and conformation of actin filaments was characterized by an analysis of steady-state tryptophan phosphorescence spectra and phosphorescence decay kinetics over a temperature range of 140-293 K. The binding of the Trp-free motor domain mutant of D. discoideum to actin caused red shifts in the phosphorescence spectrum of two internal Trp residues of actin and affected the intrinsic lifetime of each emitter, decreasing by roughly twofold the short phosphorescence lifetime components (tau(1) and tau(2)) and increasing by approximately 20% the longest component (tau(3)). The alteration of actin phosphorescence by the motor protein suggests that i), structural changes occur deep down in the core of actin and that ii), subtle changes in conformation appear also on the surface but in regions distant from the motor domain binding site. When actin formed complexes with skeletal S1, an extra phosphorescence lifetime component appeared (tau(4), twice as long as tau(3)) in the phosphorescence decay that is absent in the isolated proteins. The lack of this extra component in the analogous actin-Trp-free motor domain mutant of D. discoideum complex suggests that it should be assigned to Trps in S1 that in the complex attain a more compact local structure. Our data indicated that the binding of tropomyosin to actin filaments had no effect on the structure or flexibility of actin observable by this technique.

  9. Rewritable phosphorescent paper by the control of competing kinetic and thermodynamic self-assembling events

    NASA Astrophysics Data System (ADS)

    Kishimura, Akihiro; Yamashita, Takashi; Yamaguchi, Kentaro; Aida, Takuzo

    2005-07-01

    Security inks have become of increasing importance. They are composed of invisible substances that provide printed images that are not able to be photocopied, and are readable only under special environments. Here we report a novel photoluminescent ink for rewritable media that dichroically emits phosphorescence due to a structural bistability of the self-assembled luminophor. Long-lasting images have been developed by using conventional thermal printers, which are readable only on exposure to ultraviolet light, and more importantly, are thermally erasable for rewriting. Although thermally rewritable printing media have already been developed using visible dyes and cholesteric liquid crystals, security inks that allow rewriting of invisible printed images are unprecedented. We realized this unique feature by the control of kinetic and thermodynamic processes that compete with one another in the self-assembly of the luminophor. This strategy can provide an important step towards the next-generation security technology for information handling.

  10. Phosphorescence dynamics of singlet oxygen and Radachlorin photosensitizer in aqueous solution

    NASA Astrophysics Data System (ADS)

    Belik, V. P.; Beltukova, D. M.; Gadzhiev, I. M.; Semenova, I. V.; Vasyutinskii, O. S.

    2017-07-01

    The luminescence spectrum of aqueous solution of Radachlorin photosensitizer in the near IR spectral range (950-1350 nm) has been determined at the excitation in both the Soret and Q absorption bands. Major sources of the recorded luminescence were analyzed. Kinetics of photosensitizer and singlet oxygen phosphorescence signals were studied by means of time-resolved spectroscopy. The corresponding characteristic lifetimes were determined.

  11. Novel red phosphorescent polymers bearing both ambipolar and functionalized Ir(III) phosphorescent moieties for highly efficient organic light-emitting diodes.

    PubMed

    Zhao, Jiang; Lian, Meng; Yu, Yue; Yan, Xiaogang; Xu, Xianbin; Yang, Xiaolong; Zhou, Guijiang; Wu, Zhaoxin

    2015-01-01

    A series of novel red phosphorescent polymers is successfully developed through Suzuki cross-coupling among ambipolar units, functionalized Ir(III) phosphorescent blocks, and fluorene-based silane moieties. The photophysical and electrochemical investigations indicate not only highly efficient energy-transfer from the organic segments to the phosphorescent units in the polymer backbone but also the ambipolar character of the copolymers. Benefiting from all these merits, the phosphorescent polymers can furnish organic light-emitting diodes (OLEDs) with exceptional high electroluminescent (EL) efficiencies with a current efficiency (η L ) of 8.31 cd A(-1) , external quantum efficiency (η ext ) of 16.07%, and power efficiency (η P ) of 2.95 lm W(-1) , representing the state-of-the-art electroluminescent performances ever achieved by red phosphorescent polymers. This work here might represent a new pathway to design and synthesize highly efficient phosphorescent polymers. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Application of Time-Resolved Tryptophan Phosphorescence Spectroscopy to Protein Folding Studies.

    NASA Astrophysics Data System (ADS)

    Subramaniam, Vinod

    This thesis presents studies of the protein folding problem, one of the most significant questions in contemporary biophysics. Sensitive biophysical techniques, including room temperature tryptophan phosphorescence, which reports on the local environment of the residue, and the lability of proteins to denaturation, a global parameter, were used to assess the validity of the traditional assumption that the biologically active state of a protein is the 'native' state, and to determine whether the pathways of folding in vitro lead to the folded state achieved in vivo. Phosphorescence techniques have also been extended to study, for the first time, emission from tryptophan residues engineered into specific positions as reporters of protein structure. During in vitro refolding of E. coli alkaline phosphatase and bovine 13-lactoglobulin, significant differences were found between the refolded proteins and the native conformations, which have no apparent effect on the biological functions. Slow conformational transitions, termed 'annealing,' that occur long after the return of enzyme activity of alkaline phosphatase are manifested in the retarded recovery of phosphorescence intensity, lifetime, and protein lability. While 'annealing' is not observed for beta -lactoglobulin, both phosphorescence and lability experiments reveal changes in the structure of the refolded protein, even though its biological activity, retinol binding, is fully recovered. This result suggests that the pathways of folding in vitro need not lead to the structure formed in vivo. We have used phosphorescence techniques to study the refolding of ribonuclease T1, which exhibits slow kinetics characteristic of proline isomerization. Furthermore, the ability to extract structural information from phosphorescent tryptophan probes engineered into selected regions represents an important advance in studying protein structure; we have reported the first such results from a mutant staphylococcal nuclease. The

  13. Hybrid phosphorescence and fluorescence native spectroscopy for breast cancer detection.

    PubMed

    Alimova, Alexandra; Katz, A; Sriramoju, Vidyasagar; Budansky, Yuri; Bykov, Alexei A; Zeylikovich, Roman; Alfano, R R

    2007-01-01

    Fluorescence and phosphorescence measurements are performed on normal and malignant ex vivo human breast tissues using UV LED and xenon lamp excitation. Tryptophan (trp) phosphorescence intensity is higher in both normal glandular and adipose tissue when compared to malignant tissue. An algorithm based on the ratio of trp fluorescence intensity at 345 nm to phosphorescence intensity at 500 nm is successfully used to separate normal from malignant tissue types. Normal specimens consistently exhibited a low I(345)I(500) ratio (<10), while for malignant specimens, the I(345)I(500) ratio is consistently high (>15). The ratio analysis correlates well with histopathology. Intensity ratio maps with a spatial resolution of 0.5 mm are generated in which local regions of malignancy could be identified.

  14. Stable blue phosphorescent organic light emitting devices

    DOEpatents

    Forrest, Stephen R.; Thompson, Mark; Giebink, Noel

    2014-08-26

    Novel combination of materials and device architectures for organic light emitting devices is provided. An organic light emitting device, is provided, having an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer includes a host and a phosphorescent emissive dopant having a peak emissive wavelength less than 500 nm, and a radiative phosphorescent lifetime less than 1 microsecond. Preferably, the phosphorescent emissive dopant includes a ligand having a carbazole group.

  15. Decreasing luminescence lifetime of evaporating phosphorescent droplets

    NASA Astrophysics Data System (ADS)

    van der Voort, D. D.; Dam, N. J.; Sweep, A. M.; Kunnen, R. P. J.; van Heijst, G. J. F.; Clercx, H. J. H.; van de Water, W.

    2016-12-01

    Laser-induced phosphorescence has been used extensively to study spray dynamics. It is important to understand the influence of droplet evaporation in the interpretation of such measurements, as it increases luminescence quenching. By suspending a single evaporating n-heptane droplet in an acoustic levitator, the properties of lanthanide-complex europium-thenoyltrifluoroacetone-trioctylphosphine oxide (Eu-TTA-TOPO) phosphorescence are determined through high-speed imaging. A decrease was found in the measured phosphorescence decay coefficient (780 → 200 μs) with decreasing droplet volumes (10-9 → 10-11 m3) corresponding to increasing concentrations (10-4 → 10-2 M). This decrease continues up to the point of shell-formation at supersaturated concentrations. The diminished luminescence is shown not to be attributable to triplet-triplet annihilation, quenching between excited triplet-state molecules. Instead, the pure exponential decays found in the measurements show that a non-phosphorescent quencher, such as free TTA/TOPO, can be attributable to this decay. The concentration dependence of the phosphorescence lifetime can therefore be used as a diagnostic of evaporation in sprays.

  16. High resolution imaging of intracellular oxygen concentration by phosphorescence lifetime

    PubMed Central

    Kurokawa, Hiromi; Ito, Hidehiro; Inoue, Mai; Tabata, Kenji; Sato, Yoshifumi; Yamagata, Kazuya; Kizaka-Kondoh, Shinae; Kadonosono, Tetsuya; Yano, Shigenobu; Inoue, Masahiro; Kamachi, Toshiaki

    2015-01-01

    Optical methods using phosphorescence quenching by oxygen are suitable for sequential monitoring and non-invasive measurements for oxygen concentration (OC) imaging within cells. Phosphorescence intensity measurement is widely used with phosphorescent dyes. These dyes are ubiquitously but heterogeneously distributed inside the whole cell. The distribution of phosphorescent dye is a major disadvantage in phosphorescence intensity measurement. We established OC imaging system for a single cell using phosphorescence lifetime and a laser scanning confocal microscope. This system had improved spatial resolution and reduced the measurement time with the high repetition rate of the laser. By the combination of ubiquitously distributed phosphorescent dye with this lifetime imaging microscope, we can visualize the OC inside the whole cell and spheroid. This system uses reversible phosphorescence quenching by oxygen, so it can measure successive OC changes from normoxia to anoxia. Lower regions of OC inside the cell colocalized with mitochondria. The time-dependent OC change in an insulin-producing cell line MIN6 by the glucose stimulation was successfully visualized. Assessing the detailed distribution and dynamics of OC inside cells achieved by the presented system will be useful to understanding a physiological and pathological oxygen metabolism. PMID:26065366

  17. Study of teeth phosphorescence detection technique

    NASA Astrophysics Data System (ADS)

    Cai, De-Fang; Wang, Shui-ping; Yang, Zhen-jiang; An, Yuying; Huang, Li-Zi; Liang, Yan

    1995-05-01

    On the basis of research and analysis into optical properties of teeth, this paper introduces the techniques to transform teeth phosphorescence excited by ultraviolet light into electric signals and following steps for data collection, analysis and processing. Also presented are the methods to diagnose pulp-vitality, decayed teeth, and, especially, infant caries and pre-caries diseases. By measurement of a tooth's temperature, other stomatic illnesses can be diagnosed.

  18. Phosphorescent cyclometalated complexes for efficient blue organic light-emitting diodes

    PubMed Central

    Suzuri, Yoshiyuki; Oshiyama, Tomohiro; Ito, Hiroto; Hiyama, Kunihisa; Kita, Hiroshi

    2014-01-01

    Phosphorescent emitters are extremely important for efficient organic light-emitting diodes (OLEDs), which attract significant attention. Phosphorescent emitters, which have a high phosphorescence quantum yield at room temperature, typically contain a heavy metal such as iridium and have been reported to emit blue, green and red light. In particular, the blue cyclometalated complexes with high efficiency and high stability are being developed. In this review, we focus on blue cyclometalated complexes. Recent progress of computational analysis necessary to design a cyclometalated complex is introduced. The prediction of the radiative transition is indispensable to get an emissive cyclometalated complex. We summarize four methods to control phosphorescence peak of the cyclometalated complex: (i) substituent effect on ligands, (ii) effects of ancillary ligands on heteroleptic complexes, (iii) design of the ligand skeleton, and (iv) selection of the central metal. It is considered that novel ligand skeletons would be important to achieve both a high efficiency and long lifetime in the blue OLEDs. Moreover, the combination of an emitter and a host is important as well as the emitter itself. According to the dependences on the combination of an emitter and a host, the control of exciton density of the triplet is necessary to achieve both a high efficiency and a long lifetime, because the annihilations of the triplet state cause exciton quenching and material deterioration. PMID:27877712

  19. Phosphorescent cyclometalated complexes for efficient blue organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Suzuri, Yoshiyuki; Oshiyama, Tomohiro; Ito, Hiroto; Hiyama, Kunihisa; Kita, Hiroshi

    2014-10-01

    Phosphorescent emitters are extremely important for efficient organic light-emitting diodes (OLEDs), which attract significant attention. Phosphorescent emitters, which have a high phosphorescence quantum yield at room temperature, typically contain a heavy metal such as iridium and have been reported to emit blue, green and red light. In particular, the blue cyclometalated complexes with high efficiency and high stability are being developed. In this review, we focus on blue cyclometalated complexes. Recent progress of computational analysis necessary to design a cyclometalated complex is introduced. The prediction of the radiative transition is indispensable to get an emissive cyclometalated complex. We summarize four methods to control phosphorescence peak of the cyclometalated complex: (i) substituent effect on ligands, (ii) effects of ancillary ligands on heteroleptic complexes, (iii) design of the ligand skeleton, and (iv) selection of the central metal. It is considered that novel ligand skeletons would be important to achieve both a high efficiency and long lifetime in the blue OLEDs. Moreover, the combination of an emitter and a host is important as well as the emitter itself. According to the dependences on the combination of an emitter and a host, the control of exciton density of the triplet is necessary to achieve both a high efficiency and a long lifetime, because the annihilations of the triplet state cause exciton quenching and material deterioration.

  20. Phosphorescent organic light emitting diodes with high efficiency and brightness

    DOEpatents

    Forrest, Stephen R; Zhang, Yifan

    2015-11-12

    An organic light emitting device including a) an anode; b) a cathode; and c) an emissive layer disposed between the anode and the cathode, the emissive layer comprising an organic host compound and a phosphorescent compound exhibiting a Stokes Shift overlap greater than 0.3 eV. The organic light emitting device may further include a hole transport layer disposed between the emissive layer and the anode; and an electron transport layer disposed between the emissive layer and the cathode. In some embodiments, the phosphorescent compound exhibits a phosphorescent lifetime of less than 10 .mu.s. In some embodiments, the concentration of the phosphorescent compound ranges from 0.5 wt. % to 10 wt. %.

  1. Extremely high efficiency phosphorescent organic light-emitting diodes with horizontal emitting dipoles

    NASA Astrophysics Data System (ADS)

    Kim, Kwon-Hyeon; Moon, Chang-Ki; Lee, Jeong-Hwan; Kim, Jang-Joo

    2014-10-01

    We present the factors influencing the orientation of the phosphorescent dyes in phosphorescent OLEDs. And, we report that an OLED containing a phosphorescent emitter with horizontally oriented dipoles in an exciplex-forming co-host that exhibits an extremely high EQE of 32.3% and power efficiency of 142 lm/W, the highest values ever reported in literature. Furthermore, we experimentally and theoretically correlated the EQE of OLEDs to the PL quantum yield and the horizontal dipole ratio of phosphorescent dyes using three different dyes.

  2. Principles of phosphorescent organic light emitting devices.

    PubMed

    Minaev, Boris; Baryshnikov, Gleb; Agren, Hans

    2014-02-07

    Organic light-emitting device (OLED) technology has found numerous applications in the development of solid state lighting, flat panel displays and flexible screens. These applications are already commercialized in mobile phones and TV sets. White OLEDs are of especial importance for lighting; they now use multilayer combinations of organic and elementoorganic dyes which emit various colors in the red, green and blue parts of the visible spectrum. At the same time the stability of phosphorescent blue emitters is still a major challenge for OLED applications. In this review we highlight the basic principles and the main mechanisms behind phosphorescent light emission of various classes of photofunctional OLED materials, like organic polymers and oligomers, electron and hole transport molecules, elementoorganic complexes with heavy metal central ions, and clarify connections between the main features of electronic structure and the photo-physical properties of the phosphorescent OLED materials.

  3. pO(2) measurements by phosphorescence quenching: characteristics and applications of an automated system.

    PubMed

    Kerger, Heinz; Groth, Gesine; Kalenka, Armin; Vajkoczy, Peter; Tsai, Amy G; Intaglietta, Marcos

    2003-01-01

    An automated system for pO(2) analysis based upon phosphorescence quenching was tested. The system was calibrated in vitro with capillary samples of saline and blood. Results were compared to a conventional measuring procedure wherein pO(2) was calculated off-line by computer fitting of phosphorescence decay signals. PO(2) measurements obtained by the automated system were correlated (r(2) = 0.98) with readings simultaneously generated by a blood gas analyzer, accuracy being highest in the low (0-20 mm Hg) and medium pO(2) ranges (21-70 mm Hg). Measurements in in vivo studies in the hamster skin-fold preparation were similar to previously reported results. The automated system fits the phosphorescence decay data to a single exponential and allows repeated pO(2) measurements in rapid sequence.

  4. Lanthanide-based laser-induced phosphorescence for spray diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voort, D. D. van der, E-mail: d.d.v.d.voort@tue.nl; Water, W. van de; Kunnen, R. P. J.

    2016-03-15

    Laser-induced phosphorescence (LIP) is a relatively recent and versatile development for studying flow dynamics. This work investigates certain lanthanide-based molecular complexes for their use in LIP for high-speed sprays. Lanthanide complexes in solutions have been shown to possess long phosphorescence lifetimes (∼1-2 ms) and to emit light in the visible wavelength range. In particular, europium and terbium complexes are investigated using fluorescence/phosphorescence spectrometry, showing that europium-thenoyltrifluoracetone-trioctylphosphineoxide (Eu-TTA-TOPO) can be easily and efficiently excited using a standard frequency-tripled Nd:YAG laser. The emitted spectrum, with maximum intensity at a wavelength of 614 nm, is shown not to vary strongly with temperature (293-383more » K). The decay constant of the phosphorescence, while independent of ambient pressure, decreases by approximately 12 μs/K between 323 and 373 K, with the base level of the decay constant dependent on the used solvent. The complex does not luminesce in the gas or solid state, meaning only the liquid phase is visualized, even in an evaporating spray. By using an internally excited spray containing the phosphorescent complex, the effect of vaporization is shown through the decrease in measured intensity over the length of the spray, together with droplet size measurements using interferometric particle imaging. This study shows that LIP, using the Eu-TTA-TOPO complex, can be used with different solvents, including diesel surrogates. Furthermore, it can be easily handled and used in sprays to investigate spray breakup and evaporation.« less

  5. Red Phosphorescence from Benzo[2,1,3]thiadiazoles at Room Temperature.

    PubMed

    Gutierrez, Gregory D; Sazama, Graham T; Wu, Tony; Baldo, Marc A; Swager, Timothy M

    2016-06-03

    We describe the red phosphorescence exhibited by a class of structurally simple benzo[2,1,3]thiadiazoles at room temperature. The photophysical properties of these molecules in deoxygenated cyclohexane, including their absorption spectra, steady-state photoluminescence and excitation spectra, and phosphorescence lifetimes, are presented. Time-dependent density functional theory calculations were carried out to better understand the electronic excited states of these benzo[2,1,3]thiadiazoles and why they are capable of phosphorescence.

  6. Vacuum Nanohole Array Embedded Phosphorescent Organic Light Emitting Diodes

    PubMed Central

    Jeon, Sohee; Lee, Jeong-Hwan; Jeong, Jun-Ho; Song, Young Seok; Moon, Chang-Ki; Kim, Jang-Joo; Youn, Jae Ryoun

    2015-01-01

    Light extraction from organic light-emitting diodes that utilize phosphorescent materials has an internal efficiency of 100% but is limited by an external quantum efficiency (EQE) of 30%. In this study, extremely high-efficiency organic light emitting diodes (OLEDs) with an EQE of greater than 50% and low roll-off were produced by inserting a vacuum nanohole array (VNHA) into phosphorescent OLEDs (PhOLEDs). The resultant extraction enhancement was quantified in terms of EQE by comparing experimentally measured results with those produced from optical modeling analysis, which assumes the near-perfect electric characteristics of the device. A comparison of the experimental data and optical modeling results indicated that the VNHA extracts the entire waveguide loss into the air. The EQE obtained in this study is the highest value obtained to date for bottom-emitting OLEDs. PMID:25732061

  7. Red phosphorescence from benzo[2,1,3]thiadiazoles at room temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutierrez, Gregory D.; Sazama, Graham T.; Wu, Tony

    2016-05-23

    In this paper, we describe the red phosphorescence exhibited by a class of structurally simple benzo[2,1,3]thiadiazoles at room temperature. The photophysical properties of these molecules in deoxygenated cyclohexane, including their absorption spectra, steady-state photoluminescence and excitation spectra, and phosphorescence lifetimes, are presented. Finally, time-dependent density functional theory calculations were carried out to better understand the electronic excited states of these benzo[2,1,3]thiadiazoles and why they are capable of phosphorescence.

  8. Effect of frost on phosphorescence for thermographic phosphor thermometry

    NASA Astrophysics Data System (ADS)

    Kim, Dong; Kim, Mirae; Kim, Kyung Chun

    2017-12-01

    In this study, we analyzed phosphorescence lifetime and its accuracy by growing frost for thermographic phosphor thermometry in a low-temperature environment. Mg4FGeO6:Mn particles were coated on an aluminum plate and excited with a UV-LED to obtain phosphorescence signals. The surface temperature was maintained at  -20, -15, -10 °C, and the phosphorescence signal was acquired as the frost grew for 3700 s. The lifetime was calculated and compared with the calibration curve under no-frost conditions. The error of the measured lifetime was within 0.7% of that in the no-frost conditions. A 2D surface temperature profile of the target plate was successfully obtained with the frost formation.

  9. Smart responsive phosphorescent materials for data recording and security protection.

    PubMed

    Sun, Huibin; Liu, Shujuan; Lin, Wenpeng; Zhang, Kenneth Yin; Lv, Wen; Huang, Xiao; Huo, Fengwei; Yang, Huiran; Jenkins, Gareth; Zhao, Qiang; Huang, Wei

    2014-04-07

    Smart luminescent materials that are responsive to external stimuli have received considerable interest. Here we report ionic iridium (III) complexes simultaneously exhibiting mechanochromic, vapochromic and electrochromic phosphorescence. These complexes share the same phosphorescent iridium (III) cation with a N-H moiety in the N^N ligand and contain different anions, including hexafluorophosphate, tetrafluoroborate, iodide, bromide and chloride. The anionic counterions cause a variation in the emission colours of the complexes from yellow to green by forming hydrogen bonds with the N-H proton. The electronic effect of the N-H moiety is sensitive towards mechanical grinding, solvent vapour and electric field, resulting in mechanochromic, vapochromic and electrochromic phosphorescence. On the basis of these findings, we construct a data-recording device and demonstrate data encryption and decryption via fluorescence lifetime imaging and time-gated luminescence imaging techniques. Our results suggest that rationally designed phosphorescent complexes may be promising candidates for advanced data recording and security protection.

  10. Phosphorescence quenching microrespirometry of skeletal muscle in situ

    PubMed Central

    Golub, Aleksander S.; Tevald, Michael A.

    2011-01-01

    We have developed an optical method for the evaluation of the oxygen consumption (V̇o2) in microscopic volumes of spinotrapezius muscle. Using phosphorescence quenching microscopy (PQM) for the measurement of interstitial Po2, together with rapid pneumatic compression of the organ, we recorded the oxygen disappearance curve (ODC) in the muscle of the anesthetized rats. A 0.6-mm diameter area in the tissue, preloaded with the phosphorescent oxygen probe, was excited once a second by a 532-nm Q-switched laser with pulse duration of 15 ns. Each of the evoked phosphorescence decays was analyzed to obtain a sequence of Po2 values that constituted the ODC. Following flow arrest and tissue compression, the interstitial Po2 decreased rapidly and the initial slope of the ODC was used to calculate the V̇o2. Special analysis of instrumental factors affecting the ODC was performed, and the resulting model was used for evaluation of V̇o2. The calculation was based on the observation of only a small amount of residual blood in the tissue after compression. The contribution of oxygen photoconsumption by PQM and oxygen inflow from external sources was evaluated in specially designed tests. The average oxygen consumption of the rat spinotrapezius muscle was V̇o2 = 123.4 ± 13.4 (SE) nl O2/cm3·s (N = 38, within 6 muscles) at a baseline interstitial Po2 of 50.8 ± 2.9 mmHg. This technique has opened the opportunity for monitoring respiration rates in microscopic volumes of functioning skeletal muscle. PMID:20971766

  11. Sensitized phosphorescence of benzil-doped ladder-type methyl-poly(para-phenylene).

    PubMed

    Bagnich, S A; Bässler, H; Neher, D

    2004-11-08

    The delayed luminescence and phosphorescence of ladder-type methyl-poly(para-phenylene) (MeLPPP) doped with benzil at a concentration of 20% by weight has been measured. The introduction of benzil leads to a dramatic reduction of the polymer singlet emission. At the same time, a new band with maximum at 611 nm appears, corresponding to the phosphorescence of MeLPPP. The phosphorescence decay on the short time scale is close to an exponential law with a time decay of 15 ms. This indicates that benzil can efficiently sensitize the phosphorescence of the polymer. In addition, a broad and featureless emission is observed in the delayed luminescence spectra of benzil-doped MeLPPP, which is attributed to an exciplex formed between the polymer host and the dopant. We further observe that the delayed fluorescence is enhanced by the addition of benzil. It is concluded that the delayed fluorescence of benzil-doped MeLPPP is mainly due to the annihilation of triplet excitons on the polymer. Finally, efficient triplet-triplet energy transfer from the benzil-doped polymer to the red-emitting phosphorescent dye Pt(II)octaethylporphyrin is established. Copyright 2004 American Institute of Physics.

  12. Sensitized phosphorescence of benzil-doped ladder-type methyl-poly(para-phenylene)

    NASA Astrophysics Data System (ADS)

    Bagnich, S. A.; Bässler, H.; Neher, D.

    2004-11-01

    The delayed luminescence and phosphorescence of ladder-type methyl-poly(para-phenylene) (MeLPPP) doped with benzil at a concentration of 20% by weight has been measured. The introduction of benzil leads to a dramatic reduction of the polymer singlet emission. At the same time, a new band with maximum at 611 nm appears, corresponding to the phosphorescence of MeLPPP. The phosphorescence decay on the short time scale is close to an exponential law with a time decay of 15 ms. This indicates that benzil can efficiently sensitize the phosphorescence of the polymer. In addition, a broad and featureless emission is observed in the delayed luminescence spectra of benzil-doped MeLPPP, which is attributed to an exciplex formed between the polymer host and the dopant. We further observe that the delayed fluorescence is enhanced by the addition of benzil. It is concluded that the delayed fluorescence of benzil-doped MeLPPP is mainly due to the annihilation of triplet excitons on the polymer. Finally, efficient triplet-triplet energy transfer from the benzil-doped polymer to the red-emitting phosphorescent dye Pt(II)octaethylporphyrin is established.

  13. Spectroscopic and phosphorescent modulation in triphosphine-supported PtAg2 heterotrinuclear alkynyl complexes.

    PubMed

    Zhang, Li-Yi; Xu, Liang-Jin; Zhang, Xu; Wang, Jin-Yun; Li, Jia; Chen, Zhong-Ning

    2013-05-06

    A series of highly phosphorescent PtAg2 heterotrinuclear alkynyl complexes with bis(diphenylphosphinomethyl)phenylphosphine (dpmp) were prepared and characterized structurally. The solution phosphorescence with various emitting colors is systematically modulated by modifying substituents as well as π-conjugated systems in aromatic acetylides. The crystals, powders, or films exhibit reversible stimuli-responsive phosphorescence changes upon exposure to vapor of MeCN, pyridine, DMF, etc., resulting from perturbation of d(8)-d(10) metallophilic interaction in the excited states as a consequence of the formation/disruption of Ag-solvent bonds. Both experimental and time-dependent density functional theory (TD-DFT) studies demonstrate that d(8)-d(10) metallophilic interaction exerts a crucial role on phosphorescent characteristics due to the PtAg2 cluster-based (3)[d → p] state. This study affords a paradigm for phosphorescence modulation in d(8)-d(10) heteronuclear complexes.

  14. Phosphorescent Organic Light-Emitting Devices: Working Principle and Iridium Based Emitter Materials

    PubMed Central

    Kappaun, Stefan; Slugovc, Christian; List, Emil J. W.

    2008-01-01

    Even though organic light-emitting device (OLED) technology has evolved to a point where it is now an important competitor to liquid crystal displays (LCDs), further scientific efforts devoted to the design, engineering and fabrication of OLEDs are required for complete commercialization of this technology. Along these lines, the present work reviews the essentials of OLED technology putting special focus on the general working principle of single and multilayer OLEDs, fluorescent and phosphorescent emitter materials as well as transfer processes in host materials doped with phosphorescent dyes. Moreover, as a prototypical example of phosphorescent emitter materials, a brief discussion of homo- and heteroleptic iridium(III) complexes is enclosed concentrating on their synthesis, photophysical properties and approaches for realizing iridium based phosphorescent polymers. PMID:19325819

  15. Induction of long-lived room temperature phosphorescence of carbon dots by water in hydrogen-bonded matrices.

    PubMed

    Li, Qijun; Zhou, Ming; Yang, Mingyang; Yang, Qingfeng; Zhang, Zhixun; Shi, Jing

    2018-02-21

    Phosphorescence shows great potential for application in bioimaging and ion detection because of its long-lived luminescence and high signal-to-noise ratio, but establishing phosphorescence emission in aqueous environments remains a challenge. Herein, we present a general design strategy that effectively promotes phosphorescence by utilising water molecules to construct hydrogen-bonded networks between carbon dots (CDs) and cyanuric acid (CA). Interestingly, water molecules not only cause no phosphorescence quenching but also greatly enhance the phosphorescence emission. This enhancement behaviour can be explained by the fact that the highly ordered bound water on the CA particle surface can construct robust bridge-like hydrogen-bonded networks between the CDs and CA, which not only effectively rigidifies the C=O bonds of the CDs but also greatly enhances the rigidity of the entire system. In addition, the CD-CA suspension exhibits a high phosphorescence lifetime (687 ms) and is successfully applied in ion detection based on its visible phosphorescence.

  16. Triplet diffusion leads to triplet-triplet annihilation in organic phosphorescent emitters

    NASA Astrophysics Data System (ADS)

    Zhang, Yifan; Forrest, Stephen R.

    2013-12-01

    In organic materials, triplet-triplet annihilation (TTA) can be dominated by triplet diffusion or triplet-to-triplet energy transfer. Here, we discuss the diffusion and transfer dominated mechanisms in the context of photoluminescence (PL) transient measurements from thin films of archetype phosphorescent organic light emitters based on Ir and Pt complexes. We find that TTA in these emitters is controlled by diffusion due to a Dexter-type exchange interaction, suggesting triplet radiative decay and TTA are independent processes. Minimizing the PL and absorption spectral overlap in phosphorescent emitters can lead to a significantly decreased TTA rate, and thus suppressed efficiency roll-off in phosphorescent organic light emitting diodes at high brightness.

  17. Phosphorescent probes for two-photon microscopy of oxygen (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Vinogradov, Sergei A.; Esipova, Tatiana V.

    2016-03-01

    The ability to quantify oxygen in vivo in 3D with high spatial and temporal resolution is much needed in many areas of biological research. Our laboratory has been developing the phosphorescence quenching technique for biological oximetry - an optical method that possesses intrinsic microscopic capability. In the past we have developed dendritically protected oxygen probes for quantitative imaging of oxygen in tissue. More recently we expanded our design on special two-photon enhanced phosphorescent probes. These molecules brought about first demonstrations of the two-photon phosphorescence lifetime microscopy (2PLM) of oxygen in vivo, providing new information for neouroscience and stem cell biology. However, current two-photon oxygen probes suffer from a number of limitations, such as sub-optimal brightness and high cost of synthesis, which dramatically reduce imaging performance and limit usability of the method. In this paper we discuss principles of 2PLM and address the interplay between the probe chemistry, photophysics and spatial and temporal imaging resolution. We then present a new approach to brightly phosphorescent chromophores with internally enhanced two-photon absorption cross-sections, which pave a way to a new generation of 2PLM probes.

  18. Host compounds for red phosphorescent OLEDs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Chuanjun; Cheon, Kwang -Ohk

    2015-08-25

    Novel compounds containing a triphenylene moiety linked to an .alpha..beta. connected binaphthyl ring system are provided. These compounds have surprisingly good solubility in organic solvents and are useful as host compounds in red phosphorescent OLEDs.

  19. Extended OLED operational lifetime through phosphorescent dopant profile management

    DOEpatents

    Forrest, Stephen R.; Zhang, Yifan

    2017-05-30

    This disclosure relates, at least in part, an organic light emitting device, which in some embodiments comprises an anode; a cathode; a first emissive layer disposed between the anode and the cathode, the first emissive layer comprising an electron transporting compound and a phosphorescent emissive dopant compound; and wherein the phosphorescent emissive dopant compound has a concentration gradient, in the emissive layer, which varies from the cathode side of the first emissive layer to the anode side of the emissive layer.

  20. Optimization of Semitransparent Anode Electrode for Flexible Green and Red Phosphorescent Organic Light-Emitting Diodes.

    PubMed

    Lee, Ho Won; Park, Jaehoon; Yang, Hyung Jin; Lee, Song Eun; Lee, Seok Jae; Koo, Ja Ryong; Kim, Hye Jeong; Yoon, Seung Soo; Kim, Young Kwan

    2015-03-01

    In this paper, we demonstrated thin film semitransparent anode electrode using Ni/Ag/Ni (3/6/3 nm) on green and red phosphorescent OLEDs, which have basically high efficiency and good optical characteristics. Moreover, we applied this semitransparent anode on flexible green and red phosphorescent OLEDs, which were then optimized for possible applications on flexible substrates. First, we studied optimization using various conditions of Ni/Ag/Ni electrodes via transmittance and sheet resistance. We then fabricated the devices on a glass substrate with ITO or Ni/Ag/Ni electrodes as well as on a flexible substrate with a Ni/Ag/Ni electrode for green and red phosphorescent OLEDs. Consequently, we could be proposed that the potential of our semitransparent anode electrode is demonstrated. Green phosphorescent OLEDs characteristics using ITO or Ni/Ag/Ni anode electrodes were coincided and those of the red phosphorescent OLEDs were improved by semitransparent electrodes at 10,000 cd/m2 criterion. Therefore, this research suggests for additional studies to be conducted on flexible and high-performance phosphorescent OLED displays and light applications for ITO-free processes.

  1. Cyclic Triimidazole Derivatives: Intriguing Examples of Multiple Emissions and Ultralong Phosphorescence at Room Temperature.

    PubMed

    Lucenti, Elena; Forni, Alessandra; Botta, Chiara; Carlucci, Lucia; Giannini, Clelia; Marinotto, Daniele; Pavanello, Alessandro; Previtali, Andrea; Righetto, Stefania; Cariati, Elena

    2017-12-18

    The performance of solid luminogens depends on both their inherent electronic properties and their packing status. Intermolecular interactions have been exploited to achieve persistent room-temperature phosphorescence (RTP) from organic molecules. However, the design of organic materials with bright RTP and the rationalization of the role of interchromophoric electronic coupling remain challenging tasks. Cyclic triimidazole has been shown to be a promising scaffold for such purposes owing to its crystallization-induced room-temperature ultralong phosphorescence (RTUP), which has been associated with H-aggregation. Herein, we report three triimidazole derivatives as significant examples of multifaceted emission. In particular, dual fluorescence, RTUP, and phosphorescence from the molecular and supramolecular units were observed. H-aggregation is responsible for the red RTUP, and Br substituents favor yellow molecular phosphorescence while halogen-bonded Br⋅⋅⋅Br tetrameric units are involved in the blue-green phosphorescence. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Stabilizing g-States in Centrosymmetric Tetrapyrroles: Two-Photon-Absorbing Porphyrins with Bright Phosphorescence.

    PubMed

    Esipova, Tatiana V; Rivera-Jacquez, Héctor J; Weber, Bruno; Masunov, Artëm E; Vinogradov, Sergei A

    2017-08-24

    Using time-dependent density functional theory (TDDFT) and sum-overstates (SOS) formalism, we predicted significant stabilization of 2P-active g-states in a compact fully symmetric porphyrin, in which all four pyrrolic fragments are fused with phathalimide residues via the β-carbon positions. The synthesis of a soluble, nonaggregating meso-unsubstituted tetraarylphthalimidoporphyrin (TAPIP) was then developed, and the spectroscopic measurements confirmed that a strongly 2P-active state in this porphyrin is stabilized below the B (Soret) state level. Single-crystal X-ray analysis revealed near-ideally planar geometry of the TAPIP macrocycle, while its tetra-meso-arylated analogue (meso-Ar 4 TAPIP) was found to be highly saddled. Consistent with these structural features, Pt meso-Ar 4 TAPIP phosphoresces rather weakly (ϕ phos = 0.05 in DMF at 22 °C), while both Pt and Pd complexes of TAPIP are highly phosphorescent (ϕ phos = 0.45 and 0.23, respectively). In addition PdTAPIP exhibits non-negligible thermally activated (E-type) delayed fluorescence (ϕ fl (d) ∼ 0.012). Taken together, these photophysical properties make metal complexes of meso-unsubstituted tetaarylphthalimidoporphyrins the brightest 2P-absorbing phosphorescent chromophores known to date.

  3. The application of high efficient yellow phosphorescent material to white OLEDs

    NASA Astrophysics Data System (ADS)

    Lin, Jin-Sheng; Ku, Chun-Neng; Huang, Pang-Chi; Wu, Cheng-An; Chang, Meng-Hao; Liou, Jia-Lun; Tseng, Mei-Rurng

    2014-10-01

    A new type of thiopyridinyl-based iridium molecule (POT) was used as the yellow phosphorescent material in our research. On fabricating a yellow PHOLED by doping POT-02 with host as the emitter, the device achieved a high power efficiency of 66.0 lm/W and an external quantum efficiency of 23.2%. On the other hand, a white organic lightemitting diode (WOLED) with a high power efficiency has been demonstrated by dispersing a host-free, yellow phosphorescent material in-between double blue phosphorescent emitters. In this study, we introduce a simple process for generating yellow emission of a WOLED by using the B/Y/B EML configuration. The B/Y/B EML configuration can achieve a higher efficiency and a smaller color shift with various operational brightness values. Based on the concept of this device, the molecular engineering of the blue phosphorescent host material as well as the light-extraction film, a WOLED with a power efficiency of 103 lm/W and an external quantum efficiency of 38.2% at a practical brightness of 1000 cd/m2 with CIE coordinates (CIEx, y) of (0.36, 0.48) can be achieved.

  4. Crystal induced phosphorescence from Benz(a)anthracene microcrystals at room temperature

    NASA Astrophysics Data System (ADS)

    Maity, Samir; Mazumdar, Prativa; Shyamal, Milan; Sahoo, Gobinda Prasad; Misra, Ajay

    2016-03-01

    Pure organic compounds that are also phosphorescent at room temperature are very rare in literature. Here, we report efficient phosphorescence emission from aggregated hydrosol of Benz(a)anthracene (BaA) at room temperature. Aggregated hydrosol of BaA has been synthesized by re-precipitation method and SDS is used as morphology directing agent. Morphology of the particles is characterized using optical and scanning electronic microcopy (SEM). Photophysical properties of the aggregated hydrosol are carried out using UV-vis, steady state and time resolved fluorescence study. The large stoke shifted structured emission from aggregated hydrosol of BaA has been explained due to phosphorescence emission of BaA at room temperature. In the crystalline state, the restricted intermolecular motions (RIM) such as rotations and vibrations are activated by crystal lattice. This rigidification effect makes the chromophore phosphorescent at room temperature. The possible stacking arrangement of the neighboring BaA within the aggregates has been substantiated by computing second order Fukui parameter as local reactivity descriptors. Computational study also reveals that the neighboring BaA molecules are present in parallel slipped conformation in its aggregated crystalline form.

  5. Suppressing molecular motions for enhanced room-temperature phosphorescence of metal-free organic materials

    PubMed Central

    Kwon, Min Sang; Yu, Youngchang; Coburn, Caleb; Phillips, Andrew W.; Chung, Kyeongwoon; Shanker, Apoorv; Jung, Jaehun; Kim, Gunho; Pipe, Kevin; Forrest, Stephen R.; Youk, Ji Ho; Gierschner, Johannes; Kim, Jinsang

    2015-01-01

    Metal-free organic phosphorescent materials are attractive alternatives to the predominantly used organometallic phosphors but are generally dimmer and are relatively rare, as, without heavy-metal atoms, spin–orbit coupling is less efficient and phosphorescence usually cannot compete with radiationless relaxation processes. Here we present a general design rule and a method to effectively reduce radiationless transitions and hence greatly enhance phosphorescence efficiency of metal-free organic materials in a variety of amorphous polymer matrices, based on the restriction of molecular motions in the proximity of embedded phosphors. Covalent cross-linking between phosphors and polymer matrices via Diels–Alder click chemistry is devised as a method. A sharp increase in phosphorescence quantum efficiency is observed in a variety of polymer matrices with this method, which is ca. two to five times higher than that of phosphor-doped polymer systems having no such covalent linkage. PMID:26626796

  6. Intravital phosphorescence lifetime imaging of the renal cortex accurately measures renal hypoxia.

    PubMed

    Hirakawa, Yosuke; Mizukami, Kiichi; Yoshihara, Toshitada; Takahashi, Ippei; Khulan, Purevsuren; Honda, Tomoko; Mimura, Imari; Tanaka, Tetsuhiro; Tobita, Seiji; Nangaku, Masaomi

    2018-06-01

    Renal tubulointerstitial hypoxia is recognized as a final common pathway of chronic kidney disease and is considered a promising drug target. However, hypoxia in the tubules is not well examined because of limited detection methods. Here, we devised a method to visualize renal tubular oxygen tension with spatial resolution at a cellular level using the cell-penetrating phosphorescent probe, BTPDM1 (an iridium-based cationic lipophilic dye), and confocal phosphorescence lifetime imaging microscopy to precisely assess renal hypoxia. Imaging with BTPDM1 revealed an oxygen gradient between S1 and S2 segments in mouse kidney. We also demonstrated that our microscopy system can detect subtle changes of hypoxemia and reoxygenation, and the acquired phosphorescence lifetime can be converted to partial pressure of oxygen. This new method allows, for the first time, visualization of intravital oxygen gradients at the renal surface with high spatial resolution. Thus, the confocal phosphorescence lifetime imaging microscopy platform, combined with BTPDM1, will promote an accurate understanding of tissue hypoxia, including renal hypoxia. Copyright © 2018 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  7. Lifetime enhanced phosphorescent organic light emitting diode using an electron scavenger layer

    NASA Astrophysics Data System (ADS)

    Hong, Seokhwan; Kim, Ji Whan; Lee, Sangyeob

    2015-07-01

    We demonstrate a method to improve lifetime of a phosphorescent organic light emitting diode (OLED) using an electron scavenger layer (ESL) in a hole transporting layer (HTL) of the device. We use a bis(1-(phenyl)isoquinoline)iridium(III)acetylacetonate [Ir(piq)2(acac)] doped HTL to stimulate radiative decay, preventing thermal degradation in HTL. The ESL effectively prevented non-radiative decay of leakage electron in HTL by converting non-radiative decay to radiative decay via a phosphorescent red emitter, Ir(piq)2(acac). The lifetime of device (t95: time after 5% decrease of luminance) has been increased from 75 h to 120 h by using the ESL in a phosphorescent green-emitting OLED.

  8. Afterglow luminescence in sol-gel/Pechini grown oxide materials: persistence or phosphorescence process? (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sontakke, Atul; Ferrier, Alban; Viana, Bruno

    2017-03-01

    Persistent luminescence and phosphorescence, both yields afterglow luminescence, but are completely different mechanisms. Persistent luminescence involves a slow thermal release of trapped electrons stored in defect states, whereas the phosphorescence is caused due to triplet to singlet transition [1,2]. Many persistent luminescence phosphors are based on oxide inorganic hosts, and exhibit long afterglow luminescence after ceasing the excitation. We observed intense and long afterglow luminescence in sol-gel/pechini grown inorganic oxides, and as a first interpretation thought to be due to persistence mechanism. However, some of these materials do not exhibit defect trap centers, and a detailed investigation suggested it is due to phosphorescence, but not the persistence. Phosphorescence is not common in inorganic solids, and that too at room temperature, and therefore usually misinterpreted as persistence luminescence [3]. Here we present a detailed methodology to distinguish phosphorescence from persistence luminescence in inorganic solids, and the process to harvest highly efficient long phosphorescence afterglow at room temperature. 1. Jian Xu, Setsuhisa Tanabe, Atul D. Sontakke, Jumpei Ueda, Appl. Phys. Lett. 107, 081903 (2015) 2. Sebastian Reineke, Marc A. Baldo, Scientific Reports, 4, 3797 (2014) 3. Pengchong Xue, Panpan Wang, Peng Chen, Boqi Yao, Peng Gong, Jiabao Sun, Zhenqi Zhang, Ran Lu, Chem. Sci. (2016) DOI: 10.1039/C5SC03739E

  9. Spatially resolved frequency domain phosphorescence lifetime-based oxygen sensing for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Lai, Benjamin; Gurari, Mark; Wee, Wallace; Lilge, Lothar

    2008-06-01

    Photodynamic Therapy (PDT) is a minimally invasive treatment that uses a photosensitive drug into convert triplet state oxygen (3O2) to singlet oxygen (1O2) to destroy malignant tissue. A fiber-optic system based on frequency domain detection of phosphorescence quenching by 3O2 is described which optically measures the distribution of 3O2 in the treatment volume during PDT to permit adjustments of treatment parameters to improve outcome. A specially designed fiber optic probe containing phosphorescent sensors embedded along its length permit spatially resolved measurements. Each sensor is composed of a phosphorescent metalloporphyrin compound that emits a characteristic spectrum. Four candidate sensors with high absorption at the excitation wavelength of 405nm and emission in the 650nm to 700nm region are considered. The dependence of phosphorescence lifetime (τ) on 3O2 concentration is described by the linearized Stern-Volmer relationship as being inversely proportional. Determination of τ, and hence 3O2 concentration, is accomplished in the frequency domain by means of phase-modulation detection of the phosphorescence signal due to an amplitude modulated excitation. The τ's of each sensor are recovered by performing global non-linear least squares fit on the measured phase and modulation index over a range of frequencies and wavelengths. With the τ of each sensor known, the oxygen concentration at each sensor's location can be determined with the Stern-Volmer relationship.

  10. Phosphorescence/microwave double-resonance spectra of tryptophan perturbed by methylmercury(II).

    PubMed Central

    Davis, J M; Maki, A H

    1982-01-01

    Amplitude-modulated phosphorescence/microwave double-resonance (AM-PMDR) spectra are reported for complexes of methylmercury(II) cation, designated CH3Hg(II), with tryptophan and glyceraldehyde-3-phosphate dehydrogenase (GPDHase; from rabbit muscle). Wavelength shifts are observed in the AM-PMDR spectra of CH3Hg(II)-tryptophan, which are obtained by microwave pumping in distinct zero-field D + E magnetic resonance transitions, demonstrating that AM-PMDR can be used to display selectively the phosphorescence spectra of structurally distinct complexes with different zero-field splittings. The AM-PMDR spectra accurately represent the phosphorescence of CH3Hg(II)-tryptophan. Binding of CH3Hg(II) to a cysteine site of GDPHase perturbs the luminescence of one of the two optically resolved tryptophan. The AM-PMDR spectrum of the perturbed tryptophan is obtained by microwave pumping of the D + E magnetic resonance signal, which can be observed optically only in the presence of a heavy atom perturbation. The resulting spectrum is broadened and shifted to the blue relative to the corresponding tryptophan phosphorescence spectrum of the uncomplexed enzyme. Comparison of the AM-PMDR spectra of CH3Hg(II)-tryptophan and CH3Hg(II)-GPDHase suggests that there are differences in the mechanisms of heavy atom perturbation in these complexes. PMID:6956860

  11. Lifetime enhanced phosphorescent organic light emitting diode using an electron scavenger layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Seokhwan; Kim, Ji Whan; Lee, Sangyeob, E-mail: sy96.lee@samsung.com

    2015-07-27

    We demonstrate a method to improve lifetime of a phosphorescent organic light emitting diode (OLED) using an electron scavenger layer (ESL) in a hole transporting layer (HTL) of the device. We use a bis(1-(phenyl)isoquinoline)iridium(III)acetylacetonate [Ir(piq){sub 2}(acac)] doped HTL to stimulate radiative decay, preventing thermal degradation in HTL. The ESL effectively prevented non-radiative decay of leakage electron in HTL by converting non-radiative decay to radiative decay via a phosphorescent red emitter, Ir(piq){sub 2}(acac). The lifetime of device (t{sub 95}: time after 5% decrease of luminance) has been increased from 75 h to 120 h by using the ESL in a phosphorescent green-emitting OLED.

  12. Highly efficient and stable organic light-emitting diodes with a greatly reduced amount of phosphorescent emitter

    PubMed Central

    Fukagawa, Hirohiko; Shimizu, Takahisa; Kamada, Taisuke; Yui, Shota; Hasegawa, Munehiro; Morii, Katsuyuki; Yamamoto, Toshihiro

    2015-01-01

    Organic light-emitting diodes (OLEDs) have been intensively studied as a key technology for next-generation displays and lighting. The efficiency of OLEDs has improved markedly in the last 15 years by employing phosphorescent emitters. However, there are two main issues in the practical application of phosphorescent OLEDs (PHOLEDs): the relatively short operational lifetime and the relatively high cost owing to the costly emitter with a concentration of about 10% in the emitting layer. Here, we report on our success in resolving these issues by the utilization of thermally activated delayed fluorescent materials, which have been developed in the past few years, as the host material for the phosphorescent emitter. Our newly developed PHOLED employing only 1 wt% phosphorescent emitter exhibits an external quantum efficiency of over 20% and a long operational lifetime of about 20 times that of an OLED consisting of a conventional host material and 1 wt% phosphorescent emitter. PMID:25985084

  13. C6 Peptide-Based Multiplex Phosphorescence Analysis (PHOSPHAN) for Serologic Confirmation of Lyme Borreliosis.

    PubMed

    Pomelova, Vera G; Korenberg, Edward I; Kuznetsova, Tatiana I; Bychenkova, Tatiana A; Bekman, Natalya I; Osin, Nikolay S

    2015-01-01

    A single-tier immunoassay using the C6 peptide of VlsE (C6) from Borrelia burgdorferi sensu stricto (Bb) has been proposed as a potential alternative to conventional two-tier testing for the serologic diagnosis of Lyme disease in the United States and Europe. To evaluate the performance of C6 peptide based multiplex Phosphorescence Analysis (PHOSPHAN) for the serologic confirmation of Lyme borreliosis (LB) in Russian patients. Serum samples (n = 351) were collected from 146 patients with erythema migrans (EM); samples from 131 of these patients were taken several times prior to treatment and at different stages of recovery. The control group consisted of 197 healthy blood donors and 31 patients with other diseases, all from the same highly endemic region of Russia. All samples were analyzed by PHOSPHAN for IgM and IgG to Bb C6, recombinant OspC and VlsE proteins, and C6 peptides from B. garinii and B. afzelii. IgM and IgG to Bb C6 were identified in 43 and 95 out of 131 patients (32.8 and 72.5%, respectively); seroconversion of IgM antibodies was observed in about half of the patients (51.2%), and of IgG antibodies, in almost all of them (88.4%). Additional detection of OspC-IgM and VlsE-IgM or IgG to C6 from B. garinii or B. afzelii did not contribute significantly to the overall sensitivity of the multiplex immunoassay. The multiplex phosphorescence immunoassay is a promising method for simultaneously revealing the spectrum of antibodies to several Borrelia antigens. Detection of IgM and IgG to Bb C6 in the sera of EM patients provides effective serologic confirmation of LB and, with high probability, indicates an active infection process.

  14. Study of different roles phosphorescent material played in different positions of organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Keke, Gu; Jian, Zhong; Jiule, Chen; Yucheng, Chen; Ming, Deng

    2013-09-01

    Phosphorescent materials are crucial to improve the luminescence and efficiency of organic light emitting diodes (OLED), because its internal quantum efficiency can reach 100%. So the studying of optical and electrical properties of phosphorescent materials is propitious for the further development of phosphorescent OLED. Phosphorescent materials were generally doped into different host materials as emitting components, not only played an important role in emitting light but also had a profound influence on carrier transport properties. We studied the optical and electrical properties of the blue 4,4'-bis(2,2-diphenylvinyl)-1,1'-biphenyl (DPVBi)-based devices, adding a common yellow phosphorescent material bis[2-(4- tert-butylphenyl)benzothiazolato- N,C2'] iridium(acetylacetonate) [( t-bt)2Ir(acac)] in different positions. The results showed ( t-bt)2Ir(acac) has remarkable hole-trapping ability. Especially the ultrathin structure device, compared to the device without ( t-bt)2Ir(acac), had increased the luminance by about 60%, and the efficiency by about 97%. Then introduced thin 4,4'-bis(carbazol-9-yl)biphenyl (CBP) host layer between DPVBi and ( t-bt)2Ir(acac), and got devices with stable white color.

  15. Intracellular O2 sensing probe based on cell-penetrating phosphorescent nanoparticles.

    PubMed

    Fercher, Andreas; Borisov, Sergey M; Zhdanov, Alexander V; Klimant, Ingo; Papkovsky, Dmitri B

    2011-07-26

    A new intracellular O(2) (icO(2)) sensing probe is presented, which comprises a nanoparticle (NP) formulation of a cationic polymer Eudragit RL-100 and a hydrophobic phosphorescent dye Pt(II)-tetrakis(pentafluorophenyl)porphyrin (PtPFPP). Using the time-resolved fluorescence (TR-F) plate reader set-up, cell loading was investigated in detail, particularly the effects of probe concentration, loading time, serum content in the medium, cell type, density, etc. The use of a fluorescent analogue of the probe in conjunction with confocal microscopy and flow cytometry analysis, revealed that cellular uptake of the NPs is driven by nonspecific energy-dependent endocytosis and that the probe localizes inside the cell close to the nucleus. Probe calibration in biological environment was performed, which allowed conversion of measured phosphorescence lifetime signals into icO(2) concentration (μM). Its analytical performance in icO(2) sensing experiments was demonstrated by monitoring metabolic responses of mouse embryonic fibroblast cells under ambient and hypoxic macroenvironment. The NP probe was seen to generate stable and reproducible signals in different types of mammalian cells and robust responses to their metabolic stimulation, thus allowing accurate quantitative analysis. High brightness and photostability allow its use in screening experiments with cell populations on a commercial TR-F reader, and for single cell analysis on a fluorescent microscope.

  16. FAST TRACK COMMUNICATION Host-free, yellow phosphorescent material in white organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Lee, Meng-Ting; Chu, Miao-Tsai; Lin, Jin-Sheng; Tseng, Mei-Rurng

    2010-11-01

    A white organic light-emitting diode (WOLED) with a high power efficiency has been demonstrated by dispersing a host-free, yellow phosphorescent material in between double blue phosphorescent emitters. The device performance achieved a comparable value to that of using a complicated host-guest doping system to form the yellow emitter in WOLEDs. Based on this device concept as well as the molecular engineering of blue phosphorescent host material and light-extraction film, a WOLED with a power efficiency of 65 lm W-1 at a practical brightness of 1000 cd m-2 with Commission Internationale d'Echariage coordinates (CIEx,y) of (0.37, 0.47) was achieved.

  17. Gram Scale Synthesis of Benzophenanthroline and Its Blue Phosphorescent Platinum Complex

    DOE PAGES

    Saris, Patrick J. G.; Thompson, Mark E.

    2016-08-04

    Here, the design, synthesis, and characterization of 12-phenylbenzo[f][1,7]phenanthroline, Bzp, is reported. Its use as a fluorine free ligand for sky blue phosphorescence is demonstrated in a cyclometallated platinum complex, BzpPtDpm. BzpPtDpm phosphoresces at the same wavelength as its analogous 4,6-difluorophenylpyridine complex at both room temperature (466 nm) and 77 kelvin (458 nm). Finally, production of a conformationally restricted derivative of BzpPtDpm with greatly increased quantum yield (46%) validates the versatility of the synthetic route.

  18. Gram Scale Synthesis of Benzophenanthroline and Its Blue Phosphorescent Platinum Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saris, Patrick J. G.; Thompson, Mark E.

    Here, the design, synthesis, and characterization of 12-phenylbenzo[f][1,7]phenanthroline, Bzp, is reported. Its use as a fluorine free ligand for sky blue phosphorescence is demonstrated in a cyclometallated platinum complex, BzpPtDpm. BzpPtDpm phosphoresces at the same wavelength as its analogous 4,6-difluorophenylpyridine complex at both room temperature (466 nm) and 77 kelvin (458 nm). Finally, production of a conformationally restricted derivative of BzpPtDpm with greatly increased quantum yield (46%) validates the versatility of the synthetic route.

  19. Flexible phosphorescent OLEDs on metal foil for military and commercial applications

    NASA Astrophysics Data System (ADS)

    Chwang, Anna; Lu, JengPing; Shih, Chinwen; Tung, Yeh-Jiun; Hewitt, Richard; Hack, Michael; Ho, Jackson; Brown, Julie

    2005-05-01

    We report recent advances in the development of low power consumption, emissive, flexible active matrix displays through integration of top emitting phosphorescent OLED (T-PHOLED) and poly-Si TFT backplane technologies. The displays are fabricated on flexible stainless steel foil. The T-PHOLEDs are based on UDC phosphorescent OLED technology, and the backplane is based on PARC's Excimer Laser Annealed (ELA) poly-Si TFT process. We also present progress in operational lifetime of encapsulated T-PHOLED pixels on planarized metal foil and discuss PHOLED encapsulation strategy.

  20. Tyrosine quenching of tryptophan phosphorescence in glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus.

    PubMed Central

    Strambini, G B; Gabellieri, E; Gonnelli, M; Rahuel-Clermont, S; Branlant, G

    1998-01-01

    Tyrosine is known to quench the phosphorescence of free tryptophan derivatives in solution, but the interaction between tryptophan residues in proteins and neighboring tyrosine side chains has not yet been demonstrated. This report examines the potential role of Y283 in quenching the phosphorescence emission of W310 of glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus by comparing the phosphorescence characteristics of the wild-type enzyme to that of appositely designed mutants in which either the second tryptophan residue, W84, is replaced with phenylalanine or Y283 is replaced by valine. Phosphorescence spectra and lifetimes in polyol/buffer low-temperature glasses demonstrate that W310, in both wild-type and W84F (Trp84-->Phe) mutant proteins, is already quenched in viscous low-temperature solutions, before the onset of major structural fluctuations in the macromolecule, an anomalous quenching that is abolished with the mutation Y283V (Tyr283-->Val). In buffer at ambient temperature, the effect of replacing Y283 with valine on the phosphorescence of W310 is to lengthen its lifetime from 50 micros to 2.5 ms, a 50-fold enhancement that again emphasizes how W310 emission is dominated by the local interaction with Y283. Tyr quenching of W310 exhibits a strong temperature dependence, with a rate constant kq = 0.1 s(-1) at 140 K and 2 x 10(4) s(-1) at 293 K. Comparison between thermal quenching profiles of the W84F mutant in solution and in the dry state, where protein flexibility is drastically reduced, shows that the activation energy of the quenching reaction is rather small, Ea < or = 0.17 kcal mol(-1), and that, on the contrary, structural fluctuations play an important role on the effectiveness of Tyr quenching. Various putative quenching mechanisms are examined, and the conclusion, based on the present results as well as on the phosphorescence characteristics of other protein systems, is that Tyr quenching occurs through the formation of

  1. Pink light emitting long-lasting phosphorescence in Sm 3+-doped CdSiO 3

    NASA Astrophysics Data System (ADS)

    Lei, Bingfu; Liu, Yingliang; Liu, Jie; Ye, Zeren; Shi, Chunshan

    2004-04-01

    Novel pink light emitting long-lasting afterglow CdSiO 3:Sm 3+ phosphors are prepared by the conventional high-temperature solid-state method and their luminescent properties are investigated. XRD and photoluminescence (PL) spectra are used to characterize the synthesized phosphors. The phosphors are well crystallized by calcinations at 1050°C for 5 h. These phosphors emit pink light and show long-lasting phosphorescence after they are excited with 254 nm ultraviolet light. The phosphorescence lasts for nearly 5 h in the light perception of the dark-adapted human eye (0.32 mcd/m 2). The phosphorescence mechanism is also investigated. All the results indicate that these phosphors have promising potential practical applications.

  2. Kinetic Monte Carlo modeling of the efficiency roll-off in a multilayer white organic light-emitting device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mesta, M.; Coehoorn, R.; Bobbert, P. A.

    2016-03-28

    Triplet-triplet annihilation (TTA) and triplet-polaron quenching (TPQ) in organic light-emitting devices (OLEDs) lead to a roll-off of the internal quantum efficiency (IQE) with increasing current density J. We employ a kinetic Monte Carlo modeling study to analyze the measured IQE and color balance as a function of J in a multilayer hybrid white OLED that combines fluorescent blue with phosphorescent green and red emission. We investigate two models for TTA and TPQ involving the phosphorescent green and red emitters: short-range nearest-neighbor quenching and long-range Förster-type quenching. Short-range quenching predicts roll-off to occur at much higher J than measured. Taking long-rangemore » quenching with Förster radii for TTA and TPQ equal to twice the Förster radii for exciton transfer leads to a fair description of the measured IQE-J curve, with the major contribution to the roll-off coming from TPQ. The measured decrease of the ratio of phosphorescent to fluorescent component of the emitted light with increasing J is correctly predicted. A proper description of the J-dependence of the ratio of red and green phosphorescent emission needs further model refinements.« less

  3. Kinetic Monte Carlo modeling of the efficiency roll-off in a multilayer white organic light-emitting device

    NASA Astrophysics Data System (ADS)

    Mesta, M.; van Eersel, H.; Coehoorn, R.; Bobbert, P. A.

    2016-03-01

    Triplet-triplet annihilation (TTA) and triplet-polaron quenching (TPQ) in organic light-emitting devices (OLEDs) lead to a roll-off of the internal quantum efficiency (IQE) with increasing current density J. We employ a kinetic Monte Carlo modeling study to analyze the measured IQE and color balance as a function of J in a multilayer hybrid white OLED that combines fluorescent blue with phosphorescent green and red emission. We investigate two models for TTA and TPQ involving the phosphorescent green and red emitters: short-range nearest-neighbor quenching and long-range Förster-type quenching. Short-range quenching predicts roll-off to occur at much higher J than measured. Taking long-range quenching with Förster radii for TTA and TPQ equal to twice the Förster radii for exciton transfer leads to a fair description of the measured IQE-J curve, with the major contribution to the roll-off coming from TPQ. The measured decrease of the ratio of phosphorescent to fluorescent component of the emitted light with increasing J is correctly predicted. A proper description of the J-dependence of the ratio of red and green phosphorescent emission needs further model refinements.

  4. Efficient non-doped phosphorescent orange, blue and white organic light-emitting devices.

    PubMed

    Yin, Yongming; Yu, Jing; Cao, Hongtao; Zhang, Letian; Sun, Haizhu; Xie, Wenfa

    2014-10-24

    Efficient phosphorescent orange, blue and white organic light-emitting devices (OLEDs) with non-doped emissive layers were successfully fabricated. Conventional blue phosphorescent emitters bis [4,6-di-fluorophenyl]-pyridinato-N,C(2')] picolinate (Firpic) and Bis(2,4-difluorophenylpyridinato) (Fir6) were adopted to fabricate non-doped blue OLEDs, which exhibited maximum current efficiency of 7.6 and 4.6 cd/A for Firpic and Fir6 based devices, respectively. Non-doped orange OLED was fabricated utilizing the newly reported phosphorescent material iridium (III) (pbi)₂Ir(biq), of which manifested maximum current and power efficiency of 8.2 cd/A and 7.8 lm/W. The non-doped white OLEDs were achieved by simply combining Firpic or Fir6 with a 2-nm (pbi)₂Ir(biq). The maximum current and power efficiency of the Firpic and (pbi)₂Ir(biq) based white OLED were 14.8 cd/A and 17.9 lm/W.

  5. Efficient non-doped phosphorescent orange, blue and white organic light-emitting devices

    NASA Astrophysics Data System (ADS)

    Yin, Yongming; Yu, Jing; Cao, Hongtao; Zhang, Letian; Sun, Haizhu; Xie, Wenfa

    2014-10-01

    Efficient phosphorescent orange, blue and white organic light-emitting devices (OLEDs) with non-doped emissive layers were successfully fabricated. Conventional blue phosphorescent emitters bis [4,6-di-fluorophenyl]-pyridinato-N,C2'] picolinate (Firpic) and Bis(2,4-difluorophenylpyridinato) (Fir6) were adopted to fabricate non-doped blue OLEDs, which exhibited maximum current efficiency of 7.6 and 4.6 cd/A for Firpic and Fir6 based devices, respectively. Non-doped orange OLED was fabricated utilizing the newly reported phosphorescent material iridium (III) (pbi)2Ir(biq), of which manifested maximum current and power efficiency of 8.2 cd/A and 7.8 lm/W. The non-doped white OLEDs were achieved by simply combining Firpic or Fir6 with a 2-nm (pbi)2Ir(biq). The maximum current and power efficiency of the Firpic and (pbi)2Ir(biq) based white OLED were 14.8 cd/A and 17.9 lm/W.

  6. Phosphorescent inner filter effect-based sensing of xanthine oxidase and its inhibitors with Mn-doped ZnS quantum dots.

    PubMed

    Tang, Dandan; Zhang, Jinyi; Zhou, Rongxin; Xie, Ya-Ni; Hou, Xiandeng; Xu, Kailai; Wu, Peng

    2018-05-10

    Overexpression and crystallization of uric acid have been recognized as the course of hyperuricemia and gout, which is produced via xanthine oxidase (XOD)-catalyzed oxidation of xanthine. Therefore, the medicinal therapy of hyperuricemia and gout is majorly based on the inhibition of the XOD enzymatic pathway. The spectroscopic nature of xanthine and uric acid, namely both absorption (near the ultraviolet region) and emission (non-fluorescent) characteristics, hinders optical assay development for XOD analysis. Therefore, the state-of-the-art analysis of XOD and the screening of XOD inhibitors are majorly based on chromatography. Here, we found the near ultraviolet absorption of uric acid overlapped well with the absorption of a large bandgap semiconductor quantum dots, ZnS. On the other hand, the intrinsic weak fluorescence of ZnS QDs can be substantially improved via transition metal ion doping. Therefore, herein, we developed an inner filter effect-based assay for XOD analysis and inhibitor screening with Mn-doped ZnS QDs. The phosphorescence of Mn-doped ZnS QDs could be quenched by uric acid generated from xanthine catabolism by XOD, leading to the phosphorescence turn-off detection of XOD with a limit of detection (3σ) of 0.02 U L-1. Furthermore, the existence of XOD inhibitors could inhibit the XOD enzymatic reaction, resulting in weakened phosphorescence quenching. Therefore, the proposed assay could also be explored for the facile screening analysis of XOD inhibitors, which is important for the potential medicinal therapy of hyperuricemia and gout.

  7. Phosphorescent nanosensors for in vivo tracking of histamine levels.

    PubMed

    Cash, Kevin J; Clark, Heather A

    2013-07-02

    Continuously tracking bioanalytes in vivo will enable clinicians and researchers to profile normal physiology and monitor diseased states. Current in vivo monitoring system designs are limited by invasive implantation procedures and biofouling, limiting the utility of these tools for obtaining physiologic data. In this work, we demonstrate the first success in optically tracking histamine levels in vivo using a modular, injectable sensing platform based on diamine oxidase and a phosphorescent oxygen nanosensor. Our new approach increases the range of measurable analytes by combining an enzymatic recognition element with a reversible nanosensor capable of measuring the effects of enzymatic activity. We use these enzyme nanosensors (EnzNS) to monitor the in vivo histamine dynamics as the concentration rapidly increases and decreases due to administration and clearance. The EnzNS system measured kinetics that match those reported from ex vivo measurements. This work establishes a modular approach to in vivo nanosensor design for measuring a broad range of potential target analytes. Simply replacing the recognition enzyme, or both the enzyme and nanosensor, can produce a new sensor system capable of measuring a wide range of specific analytical targets in vivo.

  8. Simultaneous Fluorescence and Phosphorescence Lifetime Imaging Microscopy in Living Cells

    NASA Astrophysics Data System (ADS)

    Jahn, Karolina; Buschmann, Volker; Hille, Carsten

    2015-09-01

    In living cells, there are always a plethora of processes taking place at the same time. Their precise regulation is the basis of cellular functions, since small failures can lead to severe dysfunctions. For a comprehensive understanding of intracellular homeostasis, simultaneous multiparameter detection is a versatile tool for revealing the spatial and temporal interactions of intracellular parameters. Here, a recently developed time-correlated single-photon counting (TCSPC) board was evaluated for simultaneous fluorescence and phosphorescence lifetime imaging microscopy (FLIM/PLIM). Therefore, the metabolic activity in insect salivary glands was investigated by recording ns-decaying intrinsic cellular fluorescence, mainly related to oxidized flavin adenine dinucleotide (FAD) and the μs-decaying phosphorescence of the oxygen-sensitive ruthenium-complex Kr341. Due to dopamine stimulation, the metabolic activity of salivary glands increased, causing a higher pericellular oxygen consumption and a resulting increase in Kr341 phosphorescence decay time. Furthermore, FAD fluorescence decay time decreased, presumably due to protein binding, thus inducing a quenching of FAD fluorescence decay time. Through application of the metabolic drugs antimycin and FCCP, the recorded signals could be assigned to a mitochondrial origin. The dopamine-induced changes could be observed in sequential FLIM and PLIM recordings, as well as in simultaneous FLIM/PLIM recordings using an intermediate TCSPC timing resolution.

  9. Direct Detection of Potential Pyrethroids in Yangtze River via an Imprinted Multilayer Phosphorescence Probe.

    PubMed

    Chen, Li; Lv, Xiaodong; Dai, Jiangdong; Sun, Lin; Huo, Pengwei; Li, Chunxiang; Yan, Yongsheng

    2018-01-01

    A novel tailored multilayer probe for monitoring potential pyrethroids in the Yangtze River was proposed. The room-temperature phosphorescence method was applied to realize a detection strategy that is superior to the fluorescence method. Efficient Mn-doped ZnS quantum dots with uniform size of 4.6 nm were firstly coated with a mesoporous silica to obtain a suitable intermediate transition layer, then an imprinted layer containing bifenthrin specific recognition sites was anchored. Characterizations verified the multilayer structure convincingly and the detection process relied on the electron transfer-induced fluorescence quenching mechanism. Optional detection time and standard detection curve were obtained within a concentration range from 5.0 to 50 μmol L -1 . The stability was verified to be good after 12 replicates. Feasibility of the probe was proved by monitoring water samples from the Zhenjiang reach of the Yangtze River. The probe offers promise for direct bifenthrin detection in unknown environmental water with an accurate and stable phosphorescence analysis strategy.

  10. Measurement of muon annual modulation and muon-induced phosphorescence in NaI(Tl) crystals with DM-Ice17

    DOE PAGES

    Cherwinka, J.; Grant, D.; Halzen, F.; ...

    2016-02-01

    We report the measurement of muons and muon-induced phosphorescence in DM-Ice17, a NaI(Tl) direct detection dark matter experiment at the South Pole. Muon interactions in the crystal are identified by their observed pulse shape and large energy depositions. The measured muon rate in DM-Ice17 is 2.93±0.04 μ/crystal/day with a modulation amplitude of 12.3±1.7%, consistent with expectation. Following muon interactions, we observe long-lived phosphorescence in the NaI(Tl) crystals with a decay time of 5.5±0.5 s. The prompt energy deposited by a muon is correlated to the amount of delayed phosphorescence, the brightest of which consist of tens of millions of photons.more » These photons are distributed over tens of seconds with a rate and arrival timing that do not mimic a scintillation signal above 2 keV ee. Furthermore, while the properties of phosphorescence vary among individual crystals, the annually modulating signal observed by DAMA cannot be accounted for by phosphorescence with the characteristics observed in DM-Ice17.« less

  11. Fullerol-fluorescein isothiocyanate-concanavalin agglutinin phosphorescent sensor for the detection of alpha-fetoprotein and forecast of human diseases

    NASA Astrophysics Data System (ADS)

    Liu, Jia-ming; Lin, Li-ping; Jiang, Shu-Lian; Cui, Ma Lin; Jiao, Li; Zhang, Xiao Yang; Zhang, Li-hong; Zheng, Zhi Yong; Lin, Xuan; Lin, Shao-qin

    2013-11-01

    Based on the reaction of the active -OH group in fullerol (F) with the dissociated -COOH group in fluorescein isothiocyanate (FITC) to form an F-FITC and the enhanced effect of N, N-dimethylaniline (DMA) on phosphorescence signal of F-FITC, a new phosphorescent labeling reagent (DMA-F-FITC) was developed. What's more, a phosphorescent sensor for the determination of alpha-fetoprotein variant (AFP-V) has been designed via the coupling technique of the high sensitivity for affinity adsorption-solid substrate-room temperature phosphorimetry (AA-SS-RTP) with the strong specificity reaction between DMA-F-FITC-Con A and AFP-V. The DMA-F-FITC increased the number of luminescent molecules in the biological target which improved the sensitivity of phosphorescent sensor. The proposed sensor was responsive, simple, selective and sensitive, and it has been applied to the determination of trace AFP-V in human serum and the forecast of human diseases using phosphorescence emission wavelength of F or FITC, with the results agreed well with those obtained by enzyme-linked immunoassay (ELISA). Meanwhile, the mechanisms for the labeling reaction and the sensing detection of AFP-V were discussed.

  12. Study of the heavy atom-induced room temperature phosphorescence properties of melatonin and its analytical application

    NASA Astrophysics Data System (ADS)

    Amjadi, Mohammad; Manzoori, Jamshid L.; Miller, James N.

    2006-02-01

    Liquid phase room temperature phosphorescence (RTP) properties of melatonin were studied using heavy atom induced-room temperature phosphorescence (HAI-RTP) technique. 1.2 M potassium iodide was used as a heavy atom reagent together with 0.002 M sodium sulphite as deoxygenating agent to produce the RTP signal. The maximum phosphorescence emission and excitation wavelengths of melatonin were 290 and 457 nm, respectively. The effect of potassium iodide concentration on the RTP lifetime of melatonin was also investigated and based on the results, the rate constants for phosphorescence decay ( kp) and radiationless deactivation through reaction with heavy atom ( kh) were determined. Based on the obtained results, a simple and sensitive room temperature phosphorimetric method was developed for the determination of melatonin. The method allowed the determination of 10.0-200 ng ml -1 melatonin in aqueous solution with the limits of detection and quantification of 3.6 and 12 ng ml -1, respectively. The proposed method was satisfactorily applied to the determination of melatonin in commercial pharmaceutical formulations.

  13. High-efficiency non-blocking phosphorescent organic light emitting diode with ultrathin emission layer

    NASA Astrophysics Data System (ADS)

    Qiu, Jacky; Helander, Michael G.; Wang, Zhibin; Chang, Yi-Lu; Lu, ZhengHong

    2012-09-01

    Non-blocking Phosphorescent Organic Light Emitting Diode (NB-PHOLED) is a highly simplified device structure that has achieved record high device performance on chlorinated ITO[1], flexible substrates[2], also with Pt based phosphorescent dopants[3] and NB-PHOLED has significantly reduced efficiency roll-off[4]. The principle novel features of NB-PHOLED is the absence of blocking layer in the OLED stack, as well as the absence of organic hole injection layer, this allows for reduction of carrier accumulation in between organic layers and result in higher efficiencies.

  14. Acrylonitrile Quenching of Trp Phosphorescence in Proteins: A Probe of the Internal Flexibility of the Globular Fold

    PubMed Central

    Strambini, Giovanni B.; Gonnelli, Margherita

    2010-01-01

    Quenching of Trp phosphorescence in proteins by diffusion of solutes of various molecular sizes unveils the frequency-amplitude of structural fluctuations. To cover the sizes gap between O2 and acrylamide, we examined the potential of acrylonitrile to probe conformational flexibility of proteins. The distance dependence of the through-space acrylonitrile quenching rate was determined in a glass at 77 K, with the indole analog 2-(3-indoyl) ethyl phenyl ketone. Intensity and decay kinetics data were fitted to a rate, k(r) = k0 exp[−(r − r0)/re], with an attenuation length re = 0.03 nm and a contact rate k0 = 3.6 × 1010 s−1. At ambient temperature, the bimolecular quenching rate constant (kq) was determined for a series of proteins, appositely selected to test the importance of factors such as the degree of Trp burial and structural rigidity. Relative to kq = 1.9 × 109 M−1s−1 for free Trp in water, in proteins kq ranged from 6.5 × 106 M−1s−1 for superficial sites to 1.3 × 102 M−1s−1 for deep cores. The short-range nature of the interaction and the direct correlation between kq and structural flexibility attest that in the microsecond-second timescale of phosphorescence acrylonitrile readily penetrates even compact protein cores and exhibits significant sensitivity to variations in dynamical structure of the globular fold. PMID:20682273

  15. The energies and kinetics of triplet carotenoids in the LH2 antenna complexes as determined by phosphorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Rondonuwu, Ferdy S.; Taguchi, Tokio; Fujii, Ritsuko; Yokoyama, Kyosuke; Koyama, Yasushi; Watanabe, Yasutaka

    2004-01-01

    The triplet (T 1) states of carotenoids (Cars) and bacteriochlorophyll a (BChl) in the LH2 antenna complexes from Rhodobacter sphaeroides G1C, Rba. sphaeroides 2.4.1 and Rhodospirillum molischianum, containing neurosporene, spheroidene and lycopene, respectively, were examined by stationary-state and time-resolved phosphorescence spectroscopy. The T 1 energies of Cars were determined, irrespective of the Car or BChl excitation, to be 7030 cm -1 (neurosporene), 6920 cm -1 (spheroidene) and 6870 cm -1 (lycopene), respectively, whereas that of BChl to be 7590 cm -1. In the Rba. sphaeroides G1C, the Car and BChl triplet states decayed in similar time constant as the BChl Q y state, a fact which indicates that the pair of triplet states decays through the triplet-triplet annihilation mechanism.

  16. Binding of naproxen enantiomers to human serum albumin studied by fluorescence and room-temperature phosphorescence

    NASA Astrophysics Data System (ADS)

    Lammers, Ivonne; Lhiaubet-Vallet, Virginie; Ariese, Freek; Miranda, Miguel A.; Gooijer, Cees

    2013-03-01

    The interaction of the enantiomers of the non-steroidal anti-inflammatory drug naproxen (NPX) with human serum albumin (HSA) has been investigated using fluorescence and phosphorescence spectroscopy in the steady-state and time-resolved mode. The absorption, fluorescence excitation, and fluorescence emission spectra of (S)-NPX and (R)-NPX differ in shape in the presence of HSA, indicating that these enantiomers experience a different environment when bound. In solutions containing 0.2 M KI, complexation with HSA results in a strongly increased NPX fluorescence intensity and a decreased NPX phosphorescence intensity due to the inhibition of the collisional interaction with the heavy atom iodide. Fluorescence intensity curves obtained upon selective excitation of NPX show 8-fold different slopes for bound and free NPX. No significant difference in the binding constants of (3.8 ± 0.6) × 105 M-1 for (S)-NPX and (3.9 ± 0.6) × 105 M-1 for (R)-NPX was found. Furthermore, the addition of NPX quenches the phosphorescence of the single tryptophan in HSA (Trp-214) based on Dexter energy transfer. The short-range nature of this mechanism explains the upward curvature of the Stern-Volmer plot observed for HSA: At low concentrations NPX binds to HSA at a distance from Trp-214 and no quenching occurs, whereas at high NPX concentrations the phosphorescence intensity decreases due to dynamic quenching by NPX diffusing into site I from the bulk solution. The dynamic quenching observed in the Stern-Volmer plots based on the longest phosphorescence lifetime indicates an overall binding constant to HSA of about 3 × 105 M-1 for both enantiomers.

  17. Phosphorescence detection of manganese(VII) based on Mn-doped ZnS quantum dots

    NASA Astrophysics Data System (ADS)

    Deng, Pan; Lu, Li-Qiang; Cao, Wei-Cheng; Tian, Xi-Ke

    2017-02-01

    The phosphorescent L-cysteine modified manganese-doped zinc sulfide quantum dots (L-cys-MnZnS QDs) was developed for a highly sensitive detection of permanganate anions (MnO4-). L-cys-MnZnS QDs, which were easily synthesized in aqueous media using safe and low-cost materials, can emit intense phosphorescence even though the solution was not deoxygenated. However, the phosphorescence of L-cys-Mn-ZnS QDs was strongly quenched by MnO4- ascribed to the oxidation of L-cys and the increase of surface defects on L-cys-MnZnS QDs. Under the optimal conditions, L-cys-MnZnS QDs offer high selectivity over other anions for MnO4- determination, and good linear Stern-Volmer equation was obtained for MnO4- in the range of 0.5-100 μM with a detection limit down to 0.24 μM. The developed method was finally applied to the detection of MnO4- in water samples, and the spike-recoveries fell in the range of 95-106%.

  18. Ultralong room temperature phosphorescence from amorphous organic materials toward confidential information encryption and decryption

    PubMed Central

    Li, Youbing; Zhou, Xianju; Jana, Deblin; Liu, Guofeng; Lim, Wei Qi; Ong, Wee Kong

    2018-01-01

    Ultralong room temperature phosphorescence (URTP) emitted from pure amorphous organic molecules is very rare. Although a few crystalline organic molecules could realize URTP with long lifetimes (>100 ms), practical applications of these crystalline organic phosphors are still challenging because the formation and maintenance of high-quality crystals are very difficult and complicated. Herein, we present a rational design for minimizing the vibrational dissipation of pure amorphous organic molecules to achieve URTP. By using this strategy, a series of URTP films with long lifetimes and high phosphorescent quantum yields (up to 0.75 s and 11.23%, respectively) were obtained from amorphous organic phosphors without visible fluorescence and phosphorescence under ambient conditions. On the basis of the unique features of URTP films, a new green screen printing technology without using any ink was developed toward confidential information encryption and decryption. This work presents a breakthrough strategy in applying amorphous organic materials for URTP. PMID:29736419

  19. Ultralong room temperature phosphorescence from amorphous organic materials toward confidential information encryption and decryption.

    PubMed

    Su, Yan; Phua, Soo Zeng Fiona; Li, Youbing; Zhou, Xianju; Jana, Deblin; Liu, Guofeng; Lim, Wei Qi; Ong, Wee Kong; Yang, Chaolong; Zhao, Yanli

    2018-05-01

    Ultralong room temperature phosphorescence (URTP) emitted from pure amorphous organic molecules is very rare. Although a few crystalline organic molecules could realize URTP with long lifetimes (>100 ms), practical applications of these crystalline organic phosphors are still challenging because the formation and maintenance of high-quality crystals are very difficult and complicated. Herein, we present a rational design for minimizing the vibrational dissipation of pure amorphous organic molecules to achieve URTP. By using this strategy, a series of URTP films with long lifetimes and high phosphorescent quantum yields (up to 0.75 s and 11.23%, respectively) were obtained from amorphous organic phosphors without visible fluorescence and phosphorescence under ambient conditions. On the basis of the unique features of URTP films, a new green screen printing technology without using any ink was developed toward confidential information encryption and decryption. This work presents a breakthrough strategy in applying amorphous organic materials for URTP.

  20. Frequency domain phosphorescence lifetime Imaging measurements and applications by ISS FastFLIM and multi pulse excitation

    NASA Astrophysics Data System (ADS)

    Coskun, Ulas C.; Lam, Sandra; Sun, Yuansheng; Liao, Shih-Chu Jeff; George, Steven C.; Barbieri, Beniamino

    2017-02-01

    Phosphorescence probes can have significantly long lifetimes, on the order of micro- to milli-seconds or longer. In addition, environmental changes can affect the lifetimes of these phosphorescence probes. Thus, Phosphorescence Lifetime Imaging Microscopy (PLIM) is a very useful tool to localize the phosphorescence probes based on their lifetimes to study the variance in the lifetimes due to the micro environmental changes. Since the probes respond to the biologically relevant parameters like oxygen concentration, they can be used to study various biologically relevant processes like cellular metabolism, protein interaction etc. In this case, we study the effects of oxygen on Oxyphor G4 with PLIM. Since The Oxyphor G4 can be quenched by O2, it is a good example of such a probe and has a lifetime around 250us. Here we present the digital frequency domain PLIM technique and study the lifetime of the Oxyphor G4 as a function of the O2 concentration. The lifetime data are successfully presented in a phasor plot for various O2 concentrations and are consistent with the time domain data. Overall, we can analyze the oxygen consumption of varying cells using this technique.

  1. Mixing of phosphorescent and exciplex emission in efficient organic electroluminescent devices.

    PubMed

    Cherpak, Vladyslav; Stakhira, Pavlo; Minaev, Boris; Baryshnikov, Gleb; Stromylo, Evgeniy; Helzhynskyy, Igor; Chapran, Marian; Volyniuk, Dmytro; Hotra, Zenon; Dabuliene, Asta; Tomkeviciene, Ausra; Voznyak, Lesya; Grazulevicius, Juozas Vidas

    2015-01-21

    We fabricated a yellow organic light-emitting diode (OLED) based on the star-shaped donor compound tri(9-hexylcarbazol-3-yl)amine, which provides formation of the interface exciplexes with the iridium(III) bis[4,6-difluorophenyl]-pyridinato-N,C2']picolinate (FIrpic). The exciplex emission is characterized by a broad band and provides a condition to realize the highly effective white OLED. It consists of a combination of the blue phosphorescent emission from the FIrpic complex and a broad efficient delayed fluorescence induced by thermal activation with additional direct phosphorescence from the triplet exciplex formed at the interface. The fabricated exciplex-type device exhibits a high brightness of 38 000 cd/m(2) and a high external quantum efficiency.

  2. High-performance hybrid white organic light-emitting devices without interlayer between fluorescent and phosphorescent emissive regions.

    PubMed

    Sun, Ning; Wang, Qi; Zhao, Yongbiao; Chen, Yonghua; Yang, Dezhi; Zhao, Fangchao; Chen, Jiangshan; Ma, Dongge

    2014-03-12

    By using mixed hosts with bipolar transport properties for blue emissive layers, a novel phosphorescence/fluorescence hybrid white OLED without using an interlayer between the fluorescent and phosphorescent regions is demonstrated. The peak EQE of the device is 19.0% and remains as high as 17.0% at the practical brightness of 1000 cd m(-2) . © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Synthesis of Phosphorescent Asymmetrically π-Extended Porphyrins for Two-Photon Applications

    PubMed Central

    2015-01-01

    Significant effort has been directed in recent years toward porphyrins with enhanced two-photon absorption (2PA). However, the properties of their triplet states, which are central to many applications, have rarely been examined in parallel. Here we report the synthesis of asymmetrically π-extended platinum(II) and palladium(II) porphyrins, whose 2PA into single-photon-absorbing states is enhanced as a result of the broken center-of-inversion symmetry and whose triplet states can be monitored by room-temperature phosphorescence. 5,15-Diaryl-syn-dibenzoporphyrins (DBPs) and syn-dinaphthoporphyrins (DNPs) were synthesized by [2 + 2] condensation of the corresponding dipyrromethanes and subsequent oxidative aromatization. Butoxycarbonyl groups on the meso-aryl rings render these porphyrins well-soluble in a range of organic solvents, while 5,15-meso-aryl substitution causes minimal nonplanar distortion of the macrocycle, ensuring high triplet emissivity. A syn-DBP bearing four alkoxycarbonyl groups in the benzo rings and possessing a large static dipole moment was also synthesized. Photophysical properties (2PA brightness and phosphorescence quantum yields and lifetimes) of the new porphyrins were measured, and their ground-state structures were determined by DFT calculations and/or X-ray analysis. The developed synthetic methods should facilitate the construction of π-extended porphyrins for applications requiring high two-photon triplet action cross sections. PMID:25157580

  4. Transparent Ti-In-Sn-O multicomponent anodes for highly efficient phosphorescent organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Lim, Jong-Wook; Jun Kang, Seong; Lee, Sunghun; Kim, Jang-Joo; Kim, Han-Ki

    2012-07-01

    We report on transparent Ti-In-Sn-O (TITO) multicomponent anodes prepared by co-sputtering anatase TiO2-x and ITO targets to produce highly efficient phosphorescent organic light emitting diodes (OLEDs). In spite of the incorporation of low cost TiO2, the crystalline TITO electrode annealed at temperature of 600 °C showed a sheet resistance of 18.06 Ω/sq, an optical transmittance of 87.96% at a wavelength of 550 nm, and a work function of 4.71 eV comparable to conventional ITO electrode. Both the quantum (21.69%) and power efficiencies (90.92 lm/W) of the phosphorescent OLED fabricated on the TITO anode were higher than those of the OLED with the reference ITO anode due to the high transparency of the TITO electrodes. This indicates that the TITO electrode is a promising indium-saving electrode that can replace high-cost ITO electrodes in the manufacture of low-cost, highly efficient phosphorescent OLEDs.

  5. High-efficiency/CRI/color stability warm white organic light-emitting diodes by incorporating ultrathin phosphorescence layers in a blue fluorescence layer

    NASA Astrophysics Data System (ADS)

    Miao, Yanqin; Wang, Kexiang; Zhao, Bo; Gao, Long; Tao, Peng; Liu, Xuguang; Hao, Yuying; Wang, Hua; Xu, Bingshe; Zhu, Furong

    2018-01-01

    By incorporating ultrathin (<0.1 nm) green, yellow, and red phosphorescence layers with different sequence arrangements in a blue fluorescence layer, four unique and simplified fluorescence/phosphorescence (F/P) hybrid, white organic light-emitting diodes (WOLEDs) were obtained. All four devices realize good warm white light emission, with high color rending index (CRI) of >80, low correlated color temperature of <3600 K, and high color stability at a wide voltage range of 5 V-9 V. These hybrid WOLEDs also reveal high forward-viewing external quantum efficiencies (EQE) of 17.82%-19.34%, which are close to the theoretical value of 20%, indicating an almost complete exciton harvesting. In addition, the electroluminescence spectra of the hybrid WOLEDs can be easily improved by only changing the incorporating sequence of the ultrathin phosphorescence layers without device efficiency loss. For example, the hybrid WOLED with an incorporation sequence of ultrathin red/yellow/green phosphorescence layers exhibits an ultra-high CRI of 96 and a high EQE of 19.34%. To the best of our knowledge, this is the first WOLED with good tradeoff among device efficiency, CRI, and color stability. The introduction of ultrathin (<0.1 nm) phosphorescence layers can also greatly reduce the consumption of phosphorescent emitters as well as simplify device structures and fabrication process, thus leading to low cost. Such a finding is very meaningful for the potential commercialization of hybrid WOLEDs.

  6. How the Molecular Packing Affects the Room Temperature Phosphorescence in Pure Organic Compounds: Ingenious Molecular Design, Detailed Crystal Analysis, and Rational Theoretical Calculations.

    PubMed

    Xie, Yujun; Ge, Yuwei; Peng, Qian; Li, Conggang; Li, Qianqian; Li, Zhen

    2017-05-01

    Long-lived phosphorescence at room temperature (RTP) from pure organic molecules is rare. Recent research reveals various crystalline organic molecules can realize RTP with lifetimes extending to the magnitude of second. There is little research on how molecular packing affecting RTP. Three compounds are designed with similar optical properties in solution, but tremendously different solid emission characteristics. By investigating the molecular packing arrangement in single crystals, it is found that the packing style of the compact face to face favors of long phosphorescence lifetime and high photoluminescence efficiency, with the lifetime up to 748 ms observed in the crystal of CPM ((9H-carbazol-9-yl)(phenyl)methanone). Theoretical calculation analysis also reveals this kind of packing style can remarkably reduce the singlet excited energy level and prompt electron communication between dimers. Surprisingly, CPM has two very similar single crystals, labeled as CPM and CPM-A, with almost identical crystal data, and the only difference is that molecules in CPM-A crystal take a little looser packing arrangement. X-ray diffraction and cross-polarization under magic spinning 13 C NMR spectra double confirm that they are different crystals. Interestingly, CPM-A crystal shows negligible RTP compared to the CPM crystal, once again proving that the packing style is critical to the RTP property. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Two-Photon Absorbing Phosphorescent Metalloporphyrins: Effects of π-Extension and Peripheral Substitution.

    PubMed

    Esipova, Tatiana V; Rivera-Jacquez, Héctor J; Weber, Bruno; Masunov, Artëm E; Vinogradov, Sergei A

    2016-12-07

    The ability to form triplet excited states upon two-photon excitation is important for several applications of metalloporphyrins, including two-photon phosphorescence lifetime microscopy (2PLM) and two-photon photodynamic therapy (PDT). Here we analyzed one-photon (1P) and degenerate two-photon (2P) absorption properties of several phosphorescent Pt (II) porphyrins, focusing on the effects of aromatic π-extension and peripheral substitution on triplet emissivity and two-photon absorption (2PA). Our 2PA measurements for the first time made use of direct time-resolved detection of phosphorescence, having the ability to efficiently reject laser background through microsecond time gating. π-Extension of the porphyrin macrocycle by way of syn-fusion with two external aromatic fragments, such as in syn-dibenzo- (DBP) and syn-dinaphthoporphyrins (DNP), lowers the symmetry of the porphyrin skeleton. As a result, DBPs and DNPs exhibit stronger 2PA into the one-photon-allowed B (Soret) and Q states than fully symmetric (D 4h ) nonextended porphyrins. However, much more 2P-active states lie above the B state and cannot be accessed due to the interfering linear absorption. Alkoxycarbonyl groups (CO 2 R) in the benzo-rings dramatically enhance 2PA near the B state level. Time-dependent density functional theory (TDDFT) calculations in combinations with the sum-over-states (SOS) formalism revealed that the enhancement is due to the stabilization of higher-lying 2P-active states, which are dominated by the excitations involving orbitals extending onto the carbonyl groups. Furthermore, calculations predicted even stronger stabilization of the 2P-allowed gerade-states in symmetric Pt octaalkoxycarbonyl-tetrabenzoporphyrins. Experiments confirmed that the 2PA cross-section of PtTBP(CO 2 Bu) 8 near 810 nm reaches above 500 GM in spite of its completely centrosymmetric structure. Combined with exceptionally bright phosphorescence (ϕ phos = 0.45), strong 2PA makes Pt(II) complexes

  8. Enhancement of efficiencies for tandem green phosphorescent organic light-emitting devices with a p-type charge generation layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Byung Soo; Jeon, Young Pyo; Lee, Dae Uk

    2014-10-15

    The operating voltage of the tandem green phosphorescent organic light-emitting device with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer was improved by 3% over that of the organic light-emitting device with a molybdenum trioxide layer. The maximum brightness of the tandem green phosphorescent organic light-emitting device at 21.9 V was 26,540 cd/m{sup 2}. The dominant peak of the electroluminescence spectra for the devices was related to the fac-tris(2-phenylpyridine) iridium emission. - Highlights: • Tandem OLEDs with CGL were fabricated to enhance their efficiency. • The operating voltage of the tandem OLED with a HAT-CN layer was improved by 3%. • The efficiency and brightnessmore » of the tandem OLED were 13.9 cd/A and 26,540 cd/m{sup 2}. • Efficiency of the OLED with a HAT-CN layer was lower than that with a MoO{sub 3} layer. - Abstract: Tandem green phosphorescent organic light-emitting devices with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile or a molybdenum trioxide charge generation layer were fabricated to enhance their efficiency. Current density–voltage curves showed that the operating voltage of the tandem green phosphorescent organic light-emitting device with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer was improved by 3% over that of the corresponding organic light-emitting device with a molybdenum trioxide layer. The efficiency and the brightness of the tandem green phosphorescent organic light-emitting device were 13.9 cd/A and 26,540 cd/m{sup 2}, respectively. The current efficiency of the tandem green phosphorescent organic light-emitting device with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer was lower by 1.1 times compared to that of the corresponding organic light-emitting device with molybdenum trioxide layer due to the decreased charge generation and transport in the 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer resulting from triplet–triplet exciton annihilation.« less

  9. Photomultiplier window materials under electron irradiation - Fluorescence and phosphorescence

    NASA Technical Reports Server (NTRS)

    Viehmann, W.; Eubanks, A. G.; Pieper, G. F.; Bredekamp, J. H.

    1975-01-01

    The fluorescence and phosphorescence of photomultiplier window materials under electron irradiation have been investigated using a Sr-90/Y-90 beta emitter as the electron source. Spectral emission curves of UV-grade, optical-grade, and electron-irradiated samples of MgF2 and LiF, and of CaF2, BaF2, sapphire, fused silica, and UV-transmitting glasses were obtained over the 200-650-nm spectral range. Fluorescence yields were determined on these materials utilizing photomultiplier tubes with cesium telluride, bialkali, and trialkali (S-20) photocathodes, respectively. Optical-grade MgF2 and LiF, as well as electron-irradiated UV-grade samples of these two materials, show enhanced fluorescence due to color-center formation and associated emission bands in the blue and red wavelength regions. Large variations in fluorescence intensities were found in UV-grade sapphire samples of different origins, particularly in the red end of the spectrum, presumably due to various amounts of chromium-ion content. Phosphorescence decay with time is best described by a sum of exponential terms, with time constants ranging from a few minutes to several days.

  10. Fiber-based time-resolved fluorescence and phosphorescence spectroscopy of tumors

    NASA Astrophysics Data System (ADS)

    Shirmanova, M.; Lukina, M.; Orlova, A.; Studier, H.; Zagaynova, E.; Becker, W.; Shcheslavskiy, V.

    2017-07-01

    The study of metabolic and oxygen states of cells in a tumor in vivo is crucial for understanding of the mechanisms responsible for the tumor development and provides background for the relevant tumor's treatment. Here, we show that a specially designed implantable fiber-optical probe provides a promising tool for optical interrogation of metabolic and oxygen states of a tumor in vivo. In our experiments, the excitation light from a ps diode laser source is delivered to the sample through an exchangeable tip via a multimode fiber, and the emission light is transferred to the detector by another multimode fiber. Fluorescence lifetime of nicotinamid adenine dinucleotide (NAD(P)H) and phosphorescence lifetime of an oxygen sensor based on iridium (III) complex of enzothienylpyridine (BTPDM1) are explored both in model experiment in solutions, and in living mice. The luminescence spectroscopy data is substantiated with immunohistochemistry experiments. To the best of our knowledge, the measurements of both metabolic status and oxygenation of tumor in vivo by fluorescence/phosphorescence lifetime spectroscopy with a fiber-optic probe are done for the first time.

  11. Organic Nanocrystals with Bright Red Persistent Room-Temperature Phosphorescence for Biological Applications.

    PubMed

    Fateminia, S M Ali; Mao, Zhu; Xu, Shidang; Yang, Zhiyong; Chi, Zhenguo; Liu, Bin

    2017-09-25

    Persistent room-temperature phosphorescence (RTP) in pure organic materials has attracted great attention because of their unique optical properties. The design of organic materials with bright red persistent RTP remains challenging. Herein, we report a new design strategy for realizing high brightness and long lifetime of red-emissive RTP molecules, which is based on introducing an alkoxy spacer between the hybrid units in the molecule. The spacer offers easy Br-H bond formation during crystallization, which also facilitates intermolecular electron coupling to favor persistent RTP. As the majority of RTP compounds have to be confined in a rigid environment to quench nonradiative relaxation pathways for bright phosphorescence emission, nanocrystallization is used to not only rigidify the molecules but also offer the desirable size and water-dispersity for biomedical applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Effect of Stepwise Doping on Lifetime and Efficiency of Blue and White Phosphorescent Organic Light Emitting Diodes.

    PubMed

    Lee, Song Eun; Lee, Ho Won; Lee, Seok Jae; Koo, Ja-ryong; Lee, Dong Hyung; Yang, Hyung Jin; Kim, Hye Jeong; Yoon, Seung Soo; Kim, Young Kwan

    2015-02-01

    We investigated a light emission mechanism of blue phosphorescent organic light emitting diodes (PHOLEDs), using a stepwise doping profile of 2, 8, and 14 wt.% within the emitting layer (EML). We fabricated several blue PHOLEDs with phosphorescent blue emitter iridium(III) bis[(4,6-difluorophenyl)-pyridinato-N,C2]picolinate doped in N,N'-dicarbazolyl-3,5-benzene as a p-type host material. A blue PHOLED with the highest doping concentration as part of the EML close to an electron transporting layer showed a maximum luminous efficiency of 20.74 cd/A, and a maximum external quantum efficiency of 10.52%. This can be explained by effective electron injection through a highly doped EML side. Additionally, a white OLED based on the doping profile was fabricated with two thin red EMLs within a blue EML maintaining a thickness of 30 nm for the entire EML. Keywords: Blue Phosphorescent Organic Light Emitting Diodes, Stepwise Doping Structure, Charge Trapping Effect.

  13. Mono- and Dinuclear Phosphorescent Rhenium(I) Complexes: Impact of Subcellular Localization on Anticancer Mechanisms.

    PubMed

    Ye, Rui-Rong; Tan, Cai-Ping; Chen, Mu-He; Hao, Liang; Ji, Liang-Nian; Mao, Zong-Wan

    2016-06-01

    Elucidation of relationship among chemical structure, cellular uptake, localization, and biological activity of anticancer metal complexes is important for the understanding of their mechanisms of action. Organometallic rhenium(I) tricarbonyl compounds have emerged as potential multifunctional anticancer drug candidates that can integrate therapeutic and imaging capabilities in a single molecule. Herein, two mononuclear phosphorescent rhenium(I) complexes (Re1 and Re2), along with their corresponding dinuclear complexes (Re3 and Re4), were designed and synthesized as potent anticancer agents. The subcellular accumulation of Re1-Re4 was conveniently analyzed by confocal microscopy in situ in live cells by utilizing their intrinsic phosphorescence. We found that increased lipophilicity of the bidentate ligands could enhance their cellular uptake, leading to improved anticancer efficacy. The dinuclear complexes were more potent than the mononuclear counterparts. The molecular anticancer mechanisms of action evoked by Re3 and Re4 were explored in detail. Re3 with a lower lipophilicity localizes to lysosomes and induces caspase-independent apoptosis, whereas Re4 with higher lipophilicity specially accumulates in mitochondria and induces caspase-independent paraptosis in cancer cells. Our study demonstrates that subcellular localization is crucial for the anticancer mechanisms of these phosphorescent rhenium(I) complexes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A novel optical biosensor for direct and selective determination of serotonin in serum by Solid Surface-Room Temperature Phosphorescence.

    PubMed

    Ramon-Marquez, Teresa; Medina-Castillo, Antonio L; Fernandez-Gutierrez, Alberto; Fernandez-Sanchez, Jorge F

    2016-08-15

    This paper describes a novel biosensor which combines the use of nanotechnology (non-woven nanofibre mat) with Solid Surface-Room Temperature Phosphorescence (SS-RTP) measurement for the determination of serotonin in human serum. The developed biosensor is simple and can be directly applied in serum; only requires a simple clean-up protocol. Therefore it is the first time that serotonin is analysed directly in serum with a non-enzymatic technique. This new approach is based on the covalent immobilization of serotonin directly from serum on a functional nanofibre material (Tiss®-Link) with a preactivated surface for direct covalent immobilization of primary and secondary amines, and the subsequent measurement of serotonin phosphorescent emission from the solid surface. The phosphorescent detection allows avoiding the interference from any fluorescence emission or scattering light from any molecule present in the serum sample which can be also immobilised on the nanofibre material. The determination of serotonin with this SS-RTP sensor overcomes some limitations, such as large interference from the matrix and high cost and complexity of many of the methods widely used for serotonin analysis. The potential applicability of the sensor in the clinical diagnosis was demonstrated by analysing serum samples from seven healthy volunteers. The method was validated with an external reference laboratory, obtaining a correlation coefficient of 0.997 which indicates excellent correlation between the two methods. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer

    NASA Astrophysics Data System (ADS)

    Ikai, Masamichi; Tokito, Shizuo; Sakamoto, Youichi; Suzuki, Toshiyasu; Taga, Yasunori

    2001-07-01

    One of the keys to highly efficient phosphorescent emission in organic light-emitting devices is to confine triplet excitons generated within the emitting layer. We employ "starburst" perfluorinated phenylenes (C60F42) as a both hole- and exciton-block layer, and a hole-transport material 4,4',4″-tri(N-carbazolyl) triphenylamine as a host for the phosphorescent dopant dye in the emitting layer. A maximum external quantum efficiency reaches to 19.2%, and keeps over 15% even at high current densities of 10-20 mA/cm2, providing several times the brightness of fluorescent tubes for lighting. The onset voltage of the electroluminescence is as low as 2.4 V and the peak power efficiency is 70-72 lm/W, promising for low-power display devices.

  16. Efficient fluorescence/phosphorescence white organic light-emitting diodes with ultra high color stability and mild efficiency roll-off

    NASA Astrophysics Data System (ADS)

    Du, Xiaoyang; Tao, Silu; Huang, Yun; Yang, Xiaoxia; Ding, Xulin; Zhang, Xiaohong

    2015-11-01

    Efficient fluorescence/phosphorescence hybrid white organic light-emitting diodes (OLEDs) with single doped co-host structure have been fabricated. Device using 9-Naphthyl-10 -(4-triphenylamine)anthrancene as the fluorescent dopant and Ir(ppy)3 and Ir(2-phq)3 as the green and orange phosphorescent dopants show the luminous efficiency of 12.4% (17.6 lm/W, 27.5 cd/A) at 1000 cd/m2. Most important to note that the efficiency-brightness roll-off of the device was very mild. With the brightness rising up to 5000 and 10 000 cd/m2, the efficiency could be kept at 11.8% (14.0 lm/W, 26.5 cd/A) and 11.0% (11.8 lm/W, 25.0 cd/A). The Commission Internationale de L'Eclairage (CIE) coordinates and color rending index (CRI) were measured to be (0.45, 0.48) and 65, respectively, and remained the same in a large range of brightness (1000-10 000 cd/m2), which is scarce in the reported white OLEDs. The performance of the device at high luminance (5000 and 10 000 cd/m2) was among the best reported results including fluorescence/phosphorescence hybrid and all-phosphorescent white OLEDs. Moreover, the CRI of the white OLED can be improved to 83 by using a yellow-green emitter (Ir(ppy)2bop) in the device.

  17. Molecular Fluorescence, Phosphorescence, and Chemiluminescence Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powe, Aleeta; Das, Susmita; Lowry, Mark

    This review covers the 2 year period since our last review (1) from January 2008 through December 2009. A computer search of Chemical Abstracts provided most of the references for this review. A search for documents written in English containing the terms fluorescence or phosphorescence or chemiluminescence published in 2008-2009 resulted in more than 100 000 hits. An initial screening reduced this number to approximately 23 000 publications that were considered for inclusion in this review. Key word searches of this subset provided subtopics of manageable size. Other citations were found through individual searches by the various authors who wrotemore » a particular section of this review.« less

  18. Characterization of the low-temperature triplet state of chlorophyll in photosystem II core complexes: Application of phosphorescence measurements and Fourier transform infrared spectroscopy.

    PubMed

    Zabelin, Alexey A; Neverov, Konstantin V; Krasnovsky, Alexander A; Shkuropatova, Valentina A; Shuvalov, Vladimir A; Shkuropatov, Anatoly Ya

    2016-06-01

    Phosphorescence measurements at 77 K and light-induced FTIR difference spectroscopy at 95 K were applied to study of the triplet state of chlorophyll a ((3)Chl) in photosystem II (PSII) core complexes isolated from spinach. Using both methods, (3)Chl was observed in the core preparations with doubly reduced primary quinone acceptor QA. The spectral parameters of Chl phosphorescence resemble those in the isolated PSII reaction centers (RCs). The main spectral maximum and the lifetime of the phosphorescence corresponded to 955±1 nm and of 1.65±0.05 ms respectively; in the excitation spectrum, the absorption maxima of all core complex pigments (Chl, pheophytin a (Pheo), and β-carotene) were observed. The differential signal at 1667(-)/1628(+)cm(-1) reflecting a downshift of the stretching frequency of the 13(1)-keto C=O group of Chl was found to dominate in the triplet-minus-singlet FTIR difference spectrum of core complexes. Based on FTIR results and literature data, it is proposed that (3)Chl is mostly localized on the accessory chlorophyll that is in triplet equilibrium with P680. Analysis of the data suggests that the Chl triplet state responsible for the phosphorescence and the FTIR difference spectrum is mainly generated due to charge recombination in the reaction center radical pair P680(+)PheoD1(-), and the energy and temporal parameters of this triplet state as well as the molecular environment and interactions of the triplet-bearing Chl molecule are similar in the PSII core complexes and isolated PSII RCs. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Color stable white phosphorescent organic light emitting diodes with red emissive electron transport layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wook Kim, Jin; Yoo, Seung Il; Sung Kang, Jin

    2015-06-28

    We analyzed the performance of multi-emissive white phosphorescent organic light-emitting diodes (PHOLEDs) in relation to various red emitting sites of hole and electron transport layers (HTL and ETL). The shift of the recombination zone producing stable white emission in PHOLEDs was utilized as luminance was increased with red emission in its electron transport layer. Multi-emissive white PHOLEDs including the red light emitting electron transport layer yielded maximum external quantum efficiency of 17.4% with CIE color coordinates (−0.030, +0.001) shifting only from 1000 to 10 000 cd/m{sup 2}. Additionally, we observed a reduction of energy loss in the white PHOLED via Ir(piq){submore » 3} as phosphorescent red dopant in electron transport layer.« less

  20. Steady-state fluorescence and phosphorescence spectroscopic studies of bacterial luciferase tryptophan mutants.

    PubMed

    Li, Z; Meighen, E A

    1994-09-01

    Bacterial luciferase, which catalyzes the bioluminescence reaction in luminous bacteria, consists of two nonidentical polypeptides, α and β. Eight mutants of luciferase with each of the tryptophans replaced by tyrosine were generated by site-directed mutagenesis and purified to homogeneity. The steady-state tryptophan fluorescence and low-temperature phosphorescence spectroscopic properties of these mutants were characterized. In some instances, mutation of only a single tryptophan residue resulted in large spectral changes. The tryptophan residues conserved in both the α and the β subunits exhibited distinct fluorescence emission properties, suggesting that these tryptophans have different local enviroments. The low-temperature phosphorescence data suggest that the tryptophans conserved in bot the α and the β subunits are not located at the subunit interface and/or involved in subunit interactions. The differences in the spectral properties of the mutants have provided useful information on the local environment of the individual tryptophan residues as well as on the quaternary structure of the protein.

  1. Creation of a U.S. Phosphorescent OLED Lighting Panel Manufacturing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hack, Michael

    Universal Display Corporation (UDC) has pioneered high efficacy phosphorescent OLED (PHOLED™) technology to enable the realization of an exciting new form of high quality, energy saving solid-date lighting. In laboratory test devices, we have demonstrated greater than 100 lm/W conversion efficacy. In this program, Universal Display will demonstrate the scalability of its proprietary UniversalPHOLED technology and materials for the manufacture of white OLED lighting panels that meet commercial lighting targets. Moser Baer Technologies will design and build a U.S.- based pilot facility. The objective of this project is to establish a pilot phosphorescent OLED (PHOLED) manufacturing line in the U.S.more » Our goal is that at the end of the project, prototype lighting panels could be provided to U.S. luminaire manufacturers for incorporation into products to facilitate the testing of design concepts and to gauge customer acceptance, so as to facilitate the growth of the embryonic U.S. OLED lighting industry. In addition, the team will provide a cost of ownership analysis to quantify production costs including OLED performance metrics which relate to OLED cost such as yield, materials usage, cycle time, substrate area, and capital depreciation. This project was part of a new DOE initiative designed to help establish and maintain U.S. leadership in this program will support key DOE objectives by showing a path to meet Department of Energy Solid-State Lighting Manufacturing Roadmap cost targets, as well as meeting its efficiency targets by demonstrating the energy saving potential of our technology through the realization of greater than 76 lm/W OLED lighting panels by 2012.« less

  2. Electroluminescence of fluorescent-phosphorescent organic light-emitting diodes with regular, inverted, and symmetrical structures

    NASA Astrophysics Data System (ADS)

    Yang, Su-Hua; Shih, Po-Jen; Wu, Wen-Jie

    2014-11-01

    The influence of the device structure on the electroluminescence (EL) properties of fluorescent-phosphorescent organic light emitting diodes (OLEDs) was demonstrated. Four devices with regular-, inverted-, compensated- and symmetrical-emission layers (EMLs) were prepared. In regular-EML device, DCJTB emission increased when the phosphorescent sensitized EML was thickened. In inverted-EML device, low electron energy barrier at the Bphen/BCzVB interface resulted in weakened blue emission. The compensated-EML device, prepared with a red color-compensated layer, showed a color-tunable broadband white emission. Conversely, device with a quantum-like symmetrical-EML showed a narrow color-temperature range. Stable EL efficiency was obtained from regular, compensated, and symmetrical-EML devices. In contrast, EL efficiency of inverted-EML device rolled off significantly, though it had the highest EL efficiency of 11.4 cd/A.

  3. Phosphorescence Tuning through Heavy Atom Placement in Unsymmetrical Difluoroboron β-Diketonate Materials.

    PubMed

    Liu, Tiandong; Zhang, Guoqing; Evans, Ruffin E; Trindle, Carl O; Altun, Zikri; DeRosa, Christopher A; Wang, Fang; Zhuang, Meng; Fraser, Cassandra L

    2018-02-06

    Difluoroboron β-diketonates (BF 2 bdks) show both fluorescence (F) and room-temperature phosphorescence (RTP) when confined to a rigid matrix, such as poly(lactic acid). These materials have been utilized as optical oxygen sensors (e.g., in tumors, wounds, and cells). Spectral features include charge transfer (CT) from the major aromatic donor to the dioxaborine acceptor. A series of naphthyl-phenyl dyes (BF 2 nbm) (1-6) were prepared to test heavy-atom placement effects. The BF 2 nbm dye (1) was substituted with Br on naphthyl (2), phenyl (3), or both rings (4) to tailor the fluorescence/phosphorescence ratio and RTP lifetime-important features for designing O 2 sensing dyes by means of the heavy atom effect. Computational studies identify the naphthyl ring as the major donor. Thus, Br substitution on the naphthyl ring produced greater effects on the optical properties, such as increased RTP intensity and decreased RTP lifetime compared to phenyl substitution. However, for electron-donating piperidyl-phenyl dyes (5), the phenyl aromatic is the major donor. As a result, Br substitution on the naphthyl ring (6) did not alter the optical properties significantly. Experimental data and computational modeling show the importance of Br position. The S 1 and T 1 states are described by two singly occupied MOs (SOMOs). When both of these SOMOs have substantial amplitude on the heavy atom, passage from S 1 to T 1 and emission from T 1 to S 0 are both favored. This shortens the excited-state lifetimes and enhances phosphorescence. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Indirect consequences of exciplex states on the phosphorescence lifetime of phenazine-based 1,2,3-triazole luminescent probes.

    PubMed

    Costa, Bárbara B A; Jardim, Guilherme A M; Santos, Paloma L; Calado, Hállen D R; Monkman, Andrew P; Dias, Fernando B; da Silva Júnior, Eufrânio N; Cury, Luiz A

    2017-02-01

    The optical properties of phenazine derivative probe solutions involving intersystem crossing from singlet to triplet states were investigated by time resolved spectroscopy. The room temperature phosphorescence emission presented different time responses when Cd 2+ ions were bound to the probe chemical structure. The complex exciplex formation observed to occur in this case was not directly responsible for the change in the phosphorescence lifetime. This was more influenced by the new molecular conformation and modified spin-orbit coupling imposed by the binding of the Cd 2+ ions to the phenazine molecules.

  5. Highly phosphorescent hollow fibers inner-coated with tungstate nanocrystals

    NASA Astrophysics Data System (ADS)

    Ng, Pui Fai; Bai, Gongxun; Si, Liping; Lee, Ka I.; Hao, Jianhua; Xin, John H.; Fei, Bin

    2017-12-01

    In order to develop luminescent microtubes from natural fibers, a facile biomimetic mineralization method was designed to introduce the CaWO4-based nanocrystals into kapok lumens. The structure, composition, and luminescence properties of resultant fibers were investigated with microscopes, x-ray diffraction, thermogravimetric analysis, and fluorescence spectrometry. The yield of tungstate crystals inside kapok was significantly promoted with a process at high temperature and pressure—the hydrothermal treatment. The tungstate crystals grown on the inner wall of kapok fibers showed the same crystal structure with those naked powders, but smaller in crystal size. The resultant fiber assemblies demonstrated reduced phosphorescence intensity in comparison to the naked tungstate powders. However, the fibers gave more stable luminescence than the naked powders in wet condition. This approach explored the possibility of decorating natural fibers with high load of nanocrystals, hinting potential applications in anti-counterfeit labels, security textiles, and even flexible and soft optical devices.

  6. A Century of Enzyme Kinetic Analysis, 1913 to 2013

    PubMed Central

    Johnson, Kenneth A.

    2013-01-01

    This review traces the history and logical progression of methods for quantitative analysis of enzyme kinetics from the 1913 Michaelis and Menten paper to the application of modern computational methods today. Following a brief review of methods for fitting steady state kinetic data, modern methods are highlighted for fitting full progress curve kinetics based upon numerical integration of rate equations, including a re-analysis of the original Michaelis-Menten full time course kinetic data. Finally, several illustrations of modern transient state kinetic methods of analysis are shown which enable the elucidation of reactions occurring at the active sites of enzymes in order to relate structure and function. PMID:23850893

  7. Bipolar host materials for red and green phosphorescent OLED

    NASA Astrophysics Data System (ADS)

    Kwon, Jang Hyuk; Park, Tae Jin; Jeon, Woo Sik; Park, Jung Joo

    2007-11-01

    We report novel bipolar host materials for high efficiency red and green phosphorescent OLEDs (PHOLEDs). Phenyl moieties were inserted in a 4,4'-N,N'-dicarbazolebipheyl (CBP) compound to provide much easier electron injection and to increase electron mobility. The efficiency increase and voltage reduction by this modification were observed in red and green PHOLEDs. At a given constant luminance of 1000 cd/m2, the power efficiency was enhanced at least by twenty percent in the general red and green PHOLED devices.

  8. Determination of Trace Deoxyribonucleic Acid by Using Fluorescein Isothiocyanate-Phenosafranine as a Double-Luminescent Phosphorescence Probe

    PubMed Central

    Huang, Xiao-Mei; Liu, Zhen-Bo; Li, Fei-Ming; Lin, Li-Ping; Wang, Xin-Xing; Lin, Chang-Qing; Huang, Ya-Hong; Li, Zhi-Ming; Lin, Shao-Qin

    2010-01-01

    Using Pb2+ as ion perturber, phenosafranine (PF) and fluorescein isothiocyanate (FITC) could emit strong and stable room temperature phosphorescence (RTP) signal on the filter paper, respectively. When they were mixed, the phenomenon that the RTP signal of PF and FITC enhanced significantly was found. And 1.12 ag DNA spot−1 (sample volume was 0.40 μL, corresponding concentration was 2.8 × 10–15 g mL–1) could cause the RTP signal of both PF and FITC to enhance sharply. The content of DNA was proportional to the ΔIp of PF and FITC in the system at 634 and 659 nm. Thus, a new solid substrate room temperature phosphorimetry (SSRTP) for the determination of trace DNA was established by using FITC-PF as double-luminescent phosphorescence probe. The detection limit (LD) of this method calculated by 3Sb/k was 14 zg DNA spot–1 for PF and 18 zg DNA spot–1 for FITC, respectively, showing high sensitivity. It has been applied to the determination of trace DNA in practical samples and the analysis results were in accordance with those of fluorescence probe. The reaction mechanism of SSRTP for the determination of trace DNA was also discussed. PMID:20665096

  9. Concepts for the material development of phosphorescent organic materials processable from solution and their application in OLEDs

    NASA Astrophysics Data System (ADS)

    Janietz, S.; Krueger, H.; Thesen, M.; Salert, B.; Wedel, A.

    2014-10-01

    One example of organic electronics is the application of polymer based light emitting devices (PLEDs). PLEDs are very attractive for large area and fine-pixel displays, lighting and signage. The polymers are more amenable to solution processing by printing techniques which are favourable for low cost production in large areas. With phosphorescent emitters like Ir-complexes higher quantum efficiencies were obtained than with fluorescent systems, especially if multilayer stack systems with separated charge transport and emitting layers were applied in the case of small molecules. Polymers exhibit the ability to integrate all the active components like the hole-, electron-transport and phosphorescent molecules in only one layer. Here, the active components of a phosphorescent system - triplet emitter, hole- and electron transport molecules - can be linked as a side group to a polystyrene main chain. By varying the molecular structures of the side groups as well as the composition of the side chains with respect to the triplet emitter, hole- and electron transport structure, and by blending with suitable glass-forming, so-called small molecules, brightness, efficiency and lifetime of the produced OLEDs can be optimized. By choosing the triplet emitter, such as iridium complexes, different emission colors can be specially set. Different substituted triazine molecules were introduced as side chain into a polystyrene backbone and applied as electron transport material in PLED blend systems. The influence of alkyl chain lengths of the performance will be discussed. For an optimized blend system with a green emitting phosphorescent Ir-complex efficiencies of 60 cd/A and an lifetime improvement of 66.000 h @ 1000 cd/m2 were achieved.

  10. A Brief History of Fluorescence and Phosphorescence before the Emergence of Quantum Theory

    ERIC Educational Resources Information Center

    Valeur, Bernard; Berberan-Santos, Mario N.

    2011-01-01

    Fluorescence and phosphorescence are two forms of photoluminescence used in modern research and in practical applications. The early observations of these phenomena, before the emergence of quantum theory, highlight the investigation into the mechanism of light emission. In contrast to incandescence, photoluminescence does not require high…

  11. Imaging of oxygenation in 3D tissue models with multi-modal phosphorescent probes

    NASA Astrophysics Data System (ADS)

    Papkovsky, Dmitri B.; Dmitriev, Ruslan I.; Borisov, Sergei

    2015-03-01

    Cell-penetrating phosphorescence based probes allow real-time, high-resolution imaging of O2 concentration in respiring cells and 3D tissue models. We have developed a panel of such probes, small molecule and nanoparticle structures, which have different spectral characteristics, cell penetrating and tissue staining behavior. The probes are compatible with conventional live cell imaging platforms and can be used in different detection modalities, including ratiometric intensity and PLIM (Phosphorescence Lifetime IMaging) under one- or two-photon excitation. Analytical performance of these probes and utility of the O2 imaging method have been demonstrated with different types of samples: 2D cell cultures, multi-cellular spheroids from cancer cell lines and primary neurons, excised slices from mouse brain, colon and bladder tissue, and live animals. They are particularly useful for hypoxia research, ex-vivo studies of tissue physiology, cell metabolism, cancer, inflammation, and multiplexing with many conventional fluorophors and markers of cellular function.

  12. Model-based analysis of coupled equilibrium-kinetic processes: indirect kinetic studies of thermodynamic parameters using the dynamic data.

    PubMed

    Emami, Fereshteh; Maeder, Marcel; Abdollahi, Hamid

    2015-05-07

    Thermodynamic studies of equilibrium chemical reactions linked with kinetic procedures are mostly impossible by traditional approaches. In this work, the new concept of generalized kinetic study of thermodynamic parameters is introduced for dynamic data. The examples of equilibria intertwined with kinetic chemical mechanisms include molecular charge transfer complex formation reactions, pH-dependent degradation of chemical compounds and tautomerization kinetics in micellar solutions. Model-based global analysis with the possibility of calculating and embedding the equilibrium and kinetic parameters into the fitting algorithm has allowed the complete analysis of the complex reaction mechanisms. After the fitting process, the optimal equilibrium and kinetic parameters together with an estimate of their standard deviations have been obtained. This work opens up a promising new avenue for obtaining equilibrium constants through the kinetic data analysis for the kinetic reactions that involve equilibrium processes.

  13. Mechanism of phosphorescence quenching in photomagnetic molecules determined by positron annihilation spectroscopy

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Eftekhari, A.; Naidu, S. V. N.

    1994-01-01

    Platinum Octaethyl Porphyrin (Pt.OEP) is an efficient phosphor under ultraviolet excitation. The phosphorescent triplet state (T(sub 1)) is readily quenched by the oxygen (O2) molecules. This phenomenon is being utilized as the basis for global air pressure measurements in aerodynamic facilities at various laboratories. The exact mechanism by which O2 molecules quench the (T(sub 1)-S(sub 0)) transitions is still unknown. The diamagnetic S(sub n) singlet states, which feed T(sub 1) states via intersystem crossings, would presumably not be affected by O2. It must be the magnetic T(sub 1) states, which can interact with the paramagnetic O2 molecules, that are affected. However, our positron lifetime and Doppler broadening studies suggest the formation of (S(sub n).02) complexes which can also eventually reduce the population of the T(sub 1) states (i.e. quench phosphorescence). This is possible since higher triplet states in (Pt-OEP) are admixed with the S(sub n) states via spin orbit interactions. The experimental procedures and the results of various measurements are discussed in this paper.

  14. Size-tunable phosphorescence in colloidal metastable gamma-Ga2O3 nanocrystals.

    PubMed

    Wang, Ting; Farvid, Shokouh S; Abulikemu, Mutalifu; Radovanovic, Pavle V

    2010-07-14

    We report a colloidal synthesis of gallium oxide (Ga(2)O(3)) nanocrystals having metastable cubic crystal structure (gamma phase) and uniform size distribution. Using the synthesized nanocrystal size series we demonstrate for the first time a size-tunable photoluminescence in Ga(2)O(3) from ultraviolet to blue, with the emission shifting to lower energies with increasing nanocrystal size. The observed photoluminescence is dominated by defect-based donor-acceptor pair recombination and has a lifetime of several milliseconds. Importantly, the decay of this phosphorescence is also size dependent. The phosphorescence energy and the decay rate increase with decreasing nanocrystal size, owing to a reduced donor-acceptor separation. These results allow for a rational and predictable tuning of the optical properties of this technologically important material and demonstrate the possibility of manipulating the localized defect interactions via nanocrystal size. Furthermore, the same defect states, particularly donors, are also implicated in electrical conductivity rendering monodispersed Ga(2)O(3) nanocrystals a promising material for multifunctional optoelectronic structures and devices.

  15. High efficient white organic light-emitting diodes with single emissive layer using phosphorescent red, green, and blue dopants

    NASA Astrophysics Data System (ADS)

    Kim, You-Hyun; Wai Cheah, Kok; Young Kim, Woo

    2013-07-01

    Phosphorescent white organic light-emitting diodes (PHWOLEDs) with single emissive layer were fabricated by co-doping phosphorescent blue, green, and red emitters with different concentrations. WOLEDs using Ir(piq)3 and Ir(ppy)3 as red and green dopants along with 8% of Firpic as blue dopant with host materials of 4CzPBP in the emissive layer were compared under various doping ratio between Ir(piq)3 and Ir(ppy)3. Triplet-triplet Dexter energy transfer in single emissive PHWOLEDs including three primary colors was saturated from higher triplet energy levels to lower triplet energy levels directly.

  16. Room-temperature phosphorescence logic gates developed from nucleic acid functionalized carbon dots and graphene oxide

    NASA Astrophysics Data System (ADS)

    Gui, Rijun; Jin, Hui; Wang, Zonghua; Zhang, Feifei; Xia, Jianfei; Yang, Min; Bi, Sai; Xia, Yanzhi

    2015-04-01

    Room-temperature phosphorescence (RTP) logic gates were developed using capture ssDNA (cDNA) modified carbon dots and graphene oxide (GO). The experimental results suggested the feasibility of these developed RTP-based ``OR'', ``INHIBIT'' and ``OR-INHIBIT'' logic gate operations, using Hg2+, target ssDNA (tDNA) and doxorubicin (DOX) as inputs.Room-temperature phosphorescence (RTP) logic gates were developed using capture ssDNA (cDNA) modified carbon dots and graphene oxide (GO). The experimental results suggested the feasibility of these developed RTP-based ``OR'', ``INHIBIT'' and ``OR-INHIBIT'' logic gate operations, using Hg2+, target ssDNA (tDNA) and doxorubicin (DOX) as inputs. Electronic supplementary information (ESI) available: All experimental details, Part S1-3, Fig. S1-6 and Table S1. See DOI: 10.1039/c4nr07620f

  17. Laser induced fluorescence and phosphorescence of matrix isolated glyoxal - Evidence for exciplex formation in the A 1Au and a 3Au states

    NASA Technical Reports Server (NTRS)

    Van Ijzendoorn, L. J.; Baas, F.; Koernig, S.; Greenberg, J. M.; Allamandola, L. J.

    1986-01-01

    Laser-induced fluorescence and phosphorescence as well as infrared and visible absorption spectra of glyoxal in Ar, N2, and CO matrices are presented and analyzed. Glyoxal in its first excited electronic state is shown to form an exciplex with its nearest neighbors in all three matrices, and transitions normally forbidden dominate the emission spectra. The spectral characteristics of these complexes are similar to those of the Ar-glyoxal complex found in supersonic beam experiments. Due to the matrix cage effect, no vibrational predissociation is observed. The phosphorescence lifetime is determined and an upper limit is given for the fluorescence lifetime. This, in combination with the relative intensities of fluorescence and phosphorescence, can be used to place limits on the quantum yields of the various relaxation processes.

  18. A century of enzyme kinetic analysis, 1913 to 2013.

    PubMed

    Johnson, Kenneth A

    2013-09-02

    This review traces the history and logical progression of methods for quantitative analysis of enzyme kinetics from the 1913 Michaelis and Menten paper to the application of modern computational methods today. Following a brief review of methods for fitting steady state kinetic data, modern methods are highlighted for fitting full progress curve kinetics based upon numerical integration of rate equations, including a re-analysis of the original Michaelis-Menten full time course kinetic data. Finally, several illustrations of modern transient state kinetic methods of analysis are shown which enable the elucidation of reactions occurring at the active sites of enzymes in order to relate structure and function. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  19. A phosphorescent rhenium(I) histone deacetylase inhibitor: mitochondrial targeting and paraptosis induction.

    PubMed

    Ye, Rui-Rong; Tan, Cai-Ping; Lin, Yan-Nan; Ji, Liang-Nian; Mao, Zong-Wan

    2015-05-14

    In this report, we designed a histone deacetylase-targeted phosphorescent Re(I) complex ReLMito. Colocalization studies suggested that ReLMito could specially localize to mitochondria. We also demonstrated that ReLMito could induce paraptosis in cancer cells. These features endowed the complex with potential to induce and monitor mitochondrial morphological changes during the paraptosis simultaneously.

  20. Highly efficient phosphorescent, TADF, and fluorescent OLEDs (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kim, Jang-Joo; Kim, Kwon-Hyeon; Moon, Chang-Ki; Shin, Hyun

    2016-09-01

    High efficiency OLEDs based on phosphorescent, thermally activated delayed fluorescent (TADF) and fluorescent emitters will be presented. We will show that EQEs over 60% is achievable if OLEDs are fabricated using organic semiconductors with the refractive indices of 1.5 and fully horizontal emitting dipoles without any extra light extracting structure. We will also show that reverse intersystem crossing RISC rate plays an important role to reduce the efficiency roll-off in efficient TADF and fluorescent OLEDs and a couple to methods will be presented to increase the RISC rate in the devices.

  1. Improvement of operation voltage and efficiency in inverted blue phosphorescent organic light-emitting devices

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Hao; Huang, Hao Siang; Su, Yu-De; Liang, Yi-Hu; Chang, Yu-Shuo; Chiu, Chuan-Hao; Chang, Hsin-Hua

    2013-09-01

    Inverted organic light-emitting diodes (IOLEDs) have drawn considerable attention for use in active-matrix OLED (AMOLED) displays because of their easy integration with n-channel metal-oxide-based thin film transistors (TFTs). The most crucial issue for IOLEDs is the poor electron injection caused by the bottom cathode. According to previous reports, the turn-on voltages of FIrpic-based IOLEDs are within a range from 4 to 8 V. In this study, we focus on developing bottom-emission IOLEDs with low operating voltages through the use of adequate-charge injection materials. We successfully demonstrate a turn-on voltage as low as 3.7 V for blue phosphorescent IOLEDs. The effective electron injection layers (EIL) were constructed by combining an ultrathin aluminum layer, an alkali metal oxide layer and an organic layer doped with alkali metal oxide, allowing for the effective adjustment of the carrier balance in IOLEDs. The peak efficiencies of the IOLEDs reached 15.6%, 31.8 cd/A and 23.4 lm/W. An external nanocomposite scattering layer was used to further improve light extraction efficiency. The IOLEDs equipped with the SiO2 nanocomposite scattering layer respectively provided performance improvements of 1.3 and 1.5 times that of pristine blue phosphorescent IOLEDs at practical luminance levels of 100 cd/m2 and 1000 cd/m2. Through sophisticated EIL and external light-extraction structures, we obtained blue phosphorescent IOLEDs with satisfactory efficiency and low operation voltages, thereby demonstrating the great potential of nanocomposite film for application in IOLEDs.

  2. Enhancement of green long lasting phosphorescence in CaSnO3:Tb3+ by addition of alkali ions

    NASA Astrophysics Data System (ADS)

    Liang, Zuoqiu; Zhang, Jinsu; Sun, Jiashi; Li, Xiangping; Cheng, Lihong; Zhong, Haiyang; Fu, Shaobo; Tian, Yue; Chen, Baojiu

    2013-03-01

    Long lasting phosphors of CaSnO3:Tb3+ added alkali ions (Li+, Na+, K+) were prepared by solid-state reaction. The phosphorescence of samples consists of a group of green emission lines originating from 5D4→7FJ transitions of Tb3+. The afterglow spectra and concentration quenching behaviors of fluorescence were investigated in the Tb3+ mono-doped sample. The result shows the optimal doping concentration of Tb3+ is 0.3 mol%. In the co-doped samples, the doping concentrations of Tb3+ and alkali ions are both at 0.3 mol%. It is found from the afterglow decay curves that the introduction of alkali ions can prolong the phosphorescent lasting time and the sample of incorporating Na+ shows the best result. Tb3+ and alkali ions can substitute Ca2+ ions, acting as hole and electron traps, respectively. The thermoluminescence (TL) spectra are also investigated. The depths of traps for the mono- and co-doped samples are calculated to be 0.622, 0.541, 0.529 and 0.538 eV, respectively. Moreover, the possible mechanism of the green long lasting phosphorescence is proposed based on the experiment results.

  3. Employing exciton transfer molecules to increase the lifetime of phosphorescent red organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Lindla, Florian; Boesing, Manuel; van Gemmern, Philipp; Bertram, Dietrich; Keiper, Dietmar; Heuken, Michael; Kalisch, Holger; Jansen, Rolf H.

    2011-04-01

    The lifetime of phosphorescent red organic light emitting diodes (OLEDs) is investigated employing either N,N'-diphenyl-N,N'-bis(1-naphthylphenyl)-1,1'-biphenyl-4,4'-diamine (NPB), TMM117, or 4,4',4″-tris(N-carbazolyl)-triphenylamine (TCTA) as hole-conducting host material (mixed with an electron conductor). All OLED (organic vapor phase deposition-processed) show similar efficiencies around 30 lm/W but strongly different lifetimes. Quickly degrading OLED based on TCTA can be stabilized by doping exciton transfer molecules [tris-(phenyl-pyridyl)-Ir (Ir(ppy)3)] to the emission layer. At a current density of 50 mA/cm2 (12 800 cd/m2), a lifetime of 387 h can be achieved. Employing exciton transfer molecules is suggested to prevent the degradation of the red emission layer in phosphorescent white OLED.

  4. High-performance blue phosphorescent OLEDs using energy transfer from exciplex.

    PubMed

    Seino, Yuki; Sasabe, Hisahiro; Pu, Yong-Jin; Kido, Junji

    2014-03-12

    An efficient energy transfer from an exciplex between a sulfone and an arylamine derivatives to a blue phosphorescent emitter enables OLED performances among the best, of over 50 lm W(-1) at 100 cd m(-2) . The formation of the exciplex realizes a barrier-free hole-electron recombination pathway, thereby leading to high OLED performances with an extremely low driving voltage of 2.9 V at 100 cd m(-2) . © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Mechanism of phosphorescence quenching in photomagnetic molecules determined by positron annihilation spectroscopy

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Eftekhari, A.; Naidu, S. V. N.

    1994-01-01

    Platinum Octaethyl Porphyrin (Pt.OEP) is an efficient phosphor under ultraviolet excitation. The phosphorescent triplet state (T(sub 1)) is readily quenched by the oxygen (O2) molecules. This phenomenon is being utilized as the basis for global air pressure measurements in aerodynamic facilities at various laboratories. The exact mechanism by which O2 molecules quench the (T(sub 1) - S(sub 0)) transitions is still unknown. The diamagnetic S(sub n) singlet states, which feed T(sub 1) states via intersystem crossings, would presumably not be affected by O2. It must be the magnetic T(sub 1) states, which can interact with the paramagnetic O2 molecules, that are affected. However, our positron lifetime and Doppler broadening studies suggest the formation of (S(sub n) central dot O2) complexes which can also eventually reduce the population of the T(sub 1) states (i.e. quench phosphorescence). This is possible since higher triplet states in (Pt.OEP) are admixed with the S(sub n) states via spin orbit interactions. The experimental procedures and the results of various measurements are discussed in this paper.

  6. Evaluation of phototoxicity of dendritic porphyrin-based phosphorescent oxygen probes: an in vitro study†

    PubMed Central

    Lebedev, Artem Y.; Marchi, Enrico; Yuan, Min; Esipova, Tatiana V.; Bergamini, Giacomo; Wilson, David F.

    2013-01-01

    Biological oxygen measurements by phosphorescence quenching make use of exogenous phosphorescent probes, which are introduced directly into the medium of interest (e.g. blood or interstitial fluid) where they serve as molecular sensors for oxygen. The byproduct of the quenching reaction is singlet oxygen, a highly reactive species capable of damaging biological tissue. Consequently, potential probe phototoxicity is a concern for biological applications. Herein, we compared the ability of polyethyleneglycol (PEG)-coated Pd tetrabenzoporphyrin (PdTBP)-based dendritic nanoprobes of three successive generations to sensitize singlet oxygen. It was found that the size of the dendrimer has practically no effect on the singlet oxygen sensitization efficiency in spite of the strong attenuation of the triplet quenching rate with an increase in the dendrimer generation. This unexpected result is due to the fact that the lifetime of the PdTBP triplet state in the absence of oxygen increases with dendritic generation, thus compensating for the concomitant decrease in the rate of quenching. Nevertheless, in spite of their ability to sensitize singlet oxygen, the phosphorescent probes were found to be non-phototoxic when compared with the commonly used photodynamic drug Photofrin in a standard cell-survival assay. The lack of phototoxicity is presumably due to the inability of PEGylated probes to associate with cell surfaces and/or penetrate cellular membranes. In contrast, conventional photosensitizers bind to cell components and act by generating singlet oxygen inside or in the immediate vicinity of cellular organelles. Therefore, PEGylated dendritic probes are safe to use for tissue oxygen measurements as long as the light doses are less than or equal to those commonly employed in photodynamic therapy. PMID:21409208

  7. Electroplex as a New Concept of Universal Host for Improved Efficiency and Lifetime in Red, Yellow, Green, and Blue Phosphorescent Organic Light‐Emitting Diodes

    PubMed Central

    Song, Wook; Cho, Yong Joo; Yu, Hyeonghwa; Aziz, Hany; Lee, Kang Mun

    2017-01-01

    Abstract A new concept of host, electroplex host, is developed for high efficiency and long lifetime phosphorescent organic light‐emitting diodes by mixing two host materials generating an electroplex under an electric field. A carbazole‐type host and a triazine‐type host are selected as the host materials to form the electroplex host. The electroplex host is found to induce light emission through an energy transfer process rather than charge trapping, and universally improves the lifetime of red, yellow, green, and blue phosphorescent organic light‐emitting diodes by more than four times. Furthermore, the electroplex host shows much longer lifetime than a common exciplex host. This is the first demonstration of using the electroplex as the host of high efficiency and long lifetime phosphorescent organic light‐emitting diodes. PMID:29610726

  8. Improvements of phosphorescent white OLEDs performance for lighting application.

    PubMed

    Lee, Jonghee; Chu, Hye Yong; Lee, Jeong-Ik; Song, Ki-Im; Lee, Su Jin

    2008-10-01

    We developed white OLED device with high power efficiency, in which blue and orange phosphorescent emitters were used. By introduction of multi-functional interlayer which has partial doping of orange dopant inside EBL, we report WOLEDs with peak external efficiencies up to (14.1% EQE, 31.3 Im/W) without light out-coupling technique. At 1000 cd/m2, the performance achieved was 11.9% EQE, 18.7 Im/W with CIE = (0.39, 0.44). We also found that WOLED performances are related with doping ratio of the orange dopant that was inserted inside EBL.

  9. Enhanced phosphorescence in N contained Ba 2SiO 4:Eu 2+ for X-ray and cathode ray tubes

    NASA Astrophysics Data System (ADS)

    Wang, Meiyuan; Zhang, Xia; Hao, Zhendong; Ren, Xinguang; Luo, Yongshi; Wang, Xiaojun; Zhang, Jiahua

    2010-07-01

    A bluish-green color long-lasting phosphorescent phosphor of N contained Ba 2SiO 4:Eu 2+ for X-ray and cathode ray tubes are prepared with the chemical component formula Ba 2SiO 4:0.01Eu 2+ - xSi 3N 4 - 2BaCO 3 ( x = 0.1 to 1.0) by the conventional high-temperature solid-state method. The phosphorescence and fluorescence properties as a function of Si 3N 4 content and temperature are investigated. The emission spectra show a single broad band peaking at 505 nm, which are ascribed to the 4f 65d 1 → 4f 7 transition of Eu 2+. Thermoluminescence (TL) glow-curves show that Ba 2SiO 4:0.01Eu 2+ without N holds a high-temperature peak at 417 K. With increasing the content of Si 3N 4, the phosphorescence grows super-linearly and some new TL peaks appear at low temperatures of about 400, 355, 365, and 335 K. These peaks are ascribed to the formation of new traps related to N substitution for O.

  10. Highly efficient orange and warm white phosphorescent OLEDs based on a host material with a carbazole-fluorenyl hybrid.

    PubMed

    Du, Xiaoyang; Huang, Yun; Tao, Silu; Yang, Xiaoxia; Wu, Chuan; Wei, Huaixin; Chan, Mei-Yee; Yam, Vivian Wing-Wah; Lee, Chun-Sing

    2014-06-01

    A new carbazole-fluorenyl hybrid compound, 3,3'(2,7-di(naphthaline-2-yl)-9H-fluorene-9,9-diyl)bis(9-phenyl-9H-carbazole) (NFBC) was synthesized and characterized. The compound exhibits blue-violet emission both in solution and in film, with peaks centered at 404 and 420 nm. In addition to the application as a blue emitter, NFBC is demonstrated to be a good host for phosphorescent dopants. By doping Ir(2-phq)3 in NFBC, a highly efficient orange organic light-emitting diode (OLED) with a maximum efficiency of 32 cd A(-1) (26.5 Lm W(-1)) was obtained. Unlike most phosphorescent OLEDs, the device prepared in our study shows little efficiency roll-off at high brightness and maintains current efficiencies of 31.9 and 26.8 cd A(-1) at a luminance of 1000 and 10,000 cd m(-2), respectively. By using NFBC simultaneously as a blue fluorescence emitter and as a host for a phosphorescent dopant, a warm white OLED with a maximum efficiency of 22.9 Lm W(-1) (21.9 cd A(-1)) was also obtained. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A phosphorescent silver(I)-gold (I) cluster complex that specifically lights up the nucleolus of living cells with FLIM imaging.

    PubMed

    Chen, Min; Lei, Zhen; Feng, Wei; Li, Chunyan; Wang, Quan-Ming; Li, Fuyou

    2013-06-01

    The phosphorescent silver(I)-gold(I) cluster complex [CAu6Ag2(dppy)6](BF4)4 (N1) selectively stains the nucleolus, with a much lower uptake in the nucleus and cytoplasm, and exhibits excellent photostability. This Ag-Au cluster, which has a photoluminescent lifetime of microseconds, is particularly attractive as a probe in applications of time-gated microscopy. Investigation of the pathway of cellular entry indicated that N1 permeates the outer membrane and nuclear membrane of living cells through an energy-dependent and non-endocytic route within 10 min. High concentrations of N1 in the nucleolus have been quantified by inductively coupled plasma atomic emission spectroscopy (ICP-AES) and transmission electron microscopy coupled with an energy dispersive X-ray analysis (TEM-EDXA), which also helped to elucidate the mechanism of the specific staining. Intracellular selective staining may be correlated with the microenvironment of the nucleolus, which is consistent with experiments conducted at different phases of the cell cycle. These results prove that N1 is a very attractive phosphorescent staining reagent for visualizing the nucleolus of living cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Photon counting phosphorescence lifetime imaging with TimepixCam

    DOE PAGES

    Hirvonen, Liisa M.; Fisher-Levine, Merlin; Suhling, Klaus; ...

    2017-01-12

    TimepixCam is a novel fast optical imager based on an optimized silicon pixel sensor with a thin entrance window, and read out by a Timepix ASIC. The 256 x 256 pixel sensor has a time resolution of 15 ns at a sustained frame rate of 10 Hz. We used this sensor in combination with an image intensifier for wide-field time-correlated single photon counting (TCSPC) imaging. We have characterised the photon detection capabilities of this detector system, and employed it on a wide-field epifluorescence microscope to map phosphorescence decays of various iridium complexes with lifetimes of about 1 μs in 200more » μm diameter polystyrene beads.« less

  13. Photon counting phosphorescence lifetime imaging with TimepixCam.

    PubMed

    Hirvonen, Liisa M; Fisher-Levine, Merlin; Suhling, Klaus; Nomerotski, Andrei

    2017-01-01

    TimepixCam is a novel fast optical imager based on an optimized silicon pixel sensor with a thin entrance window and read out by a Timepix Application Specific Integrated Circuit. The 256 × 256 pixel sensor has a time resolution of 15 ns at a sustained frame rate of 10 Hz. We used this sensor in combination with an image intensifier for wide-field time-correlated single photon counting imaging. We have characterised the photon detection capabilities of this detector system and employed it on a wide-field epifluorescence microscope to map phosphorescence decays of various iridium complexes with lifetimes of about 1 μs in 200 μm diameter polystyrene beads.

  14. Photon counting phosphorescence lifetime imaging with TimepixCam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirvonen, Liisa M.; Fisher-Levine, Merlin; Suhling, Klaus

    TimepixCam is a novel fast optical imager based on an optimized silicon pixel sensor with a thin entrance window, and read out by a Timepix ASIC. The 256 x 256 pixel sensor has a time resolution of 15 ns at a sustained frame rate of 10 Hz. We used this sensor in combination with an image intensifier for wide-field time-correlated single photon counting (TCSPC) imaging. We have characterised the photon detection capabilities of this detector system, and employed it on a wide-field epifluorescence microscope to map phosphorescence decays of various iridium complexes with lifetimes of about 1 μs in 200more » μm diameter polystyrene beads.« less

  15. Photon counting phosphorescence lifetime imaging with TimepixCam

    NASA Astrophysics Data System (ADS)

    Hirvonen, Liisa M.; Fisher-Levine, Merlin; Suhling, Klaus; Nomerotski, Andrei

    2017-01-01

    TimepixCam is a novel fast optical imager based on an optimized silicon pixel sensor with a thin entrance window and read out by a Timepix Application Specific Integrated Circuit. The 256 × 256 pixel sensor has a time resolution of 15 ns at a sustained frame rate of 10 Hz. We used this sensor in combination with an image intensifier for wide-field time-correlated single photon counting imaging. We have characterised the photon detection capabilities of this detector system and employed it on a wide-field epifluorescence microscope to map phosphorescence decays of various iridium complexes with lifetimes of about 1 μs in 200 μm diameter polystyrene beads.

  16. Arene-Inserted Extended Germa[n]pericyclynes: Synthesis, Structure, and Phosphorescence Properties.

    PubMed

    Tanimoto, Hiroki; Mori, Junta; Ito, Shunichiro; Nishiyama, Yasuhiro; Morimoto, Tsumoru; Tanaka, Kazuo; Chujo, Yoshiki; Kakiuchi, Kiyomi

    2017-07-26

    This report describes the synthesis and characterization of arene-inserted extended (ArEx) germa[n]pericyclynes composed of germanium and 1,4-diethynylbenzene units. These novel cyclic germanium-π unit materials were synthesized with diethynylbenzene and germanium dichloride. X-ray crystallographic analysis revealed their structures, and the planar conformation of ArEx germa[4]pericyclyne along with the regular aromatic rings. UV/Vis absorption spectra and fluorescence emission spectra showed considerably unique and highly improved character compared to previously reported germa[n]pericyclynes. Even in the absence of transition metal components, phosphorescence emissions were observed, and the emission lifetimes were dramatically improved. ArEx germa[n]pericyclynes showed high photoluminescence quantum yields, whereas low photoluminescence quantum yields were observed for acyclic compounds. Density functional theory calculations show delocalized orbitals between skipped alkyne units through a germanium tether, and an increase in the HOMO energy level, leading to a small HOMO-LUMO energy gap. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Microchambers with Solid-State Phosphorescent Sensor for Measuring Single Mitochondrial Respiration.

    PubMed

    Pham, Ted D; Wallace, Douglas C; Burke, Peter J

    2016-07-09

    It is now well established that, even within a single cell, multiple copies of the mitochondrial genome may be present (genetic heteroplasmy). It would be interesting to develop techniques to determine if and to what extent this genetic variation results in functional variation from one mitochondrion to the next (functional heteroplasmy). Measuring mitochondrial respiration can reveal the organelles' functional capacity for Adenosine triphosphate (ATP) production and determine mitochondrial damage that may arise from genetic or age related defects. However, available technologies require significant quantities of mitochondria. Here, we develop a technology to assay the respiration of a single mitochondrion. Our "micro-respirometer" consists of micron sized chambers etched out of borofloat glass substrates and coated with an oxygen sensitive phosphorescent dye Pt(II) meso-tetra(pentafluorophenyl)porphine (PtTFPP) mixed with polystyrene. The chambers are sealed with a polydimethylsiloxane layer coated with oxygen impermeable Viton rubber to prevent diffusion of oxygen from the environment. As the mitochondria consume oxygen in the chamber, the phosphorescence signal increases, allowing direct determination of the respiration rate. Experiments with coupled vs. uncoupled mitochondria showed a substantial difference in respiration, confirming the validity of the microchambers as single mitochondrial respirometers. This demonstration could enable future high-throughput assays of mitochondrial respiration and benefit the study of mitochondrial functional heterogeneity, and its role in health and disease.

  18. Distinguishing triplet energy transfer and trap-assisted recombination in multi-color organic light-emitting diode with an ultrathin phosphorescent emissive layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Qin, E-mail: xueqin19851202@163.com; Liu, Shouyin; Xie, Guohua

    2014-03-21

    An ultrathin layer of deep-red phosphorescent emitter tris(1-phenylisoquinoline) iridium (III) (Ir(piq){sub 3}) is inserted within different positions of the electron blocking layer fac-tris (1-phenylpyrazolato-N,C{sup 2′})-iridium(III) (Ir(ppz){sub 3}) to distinguish the contribution of the emission from the triplet exciton energy transfer/diffusion from the adjacent blue phosphorescent emitter and the trap-assisted recombination from the narrow band-gap emitter itself. The charge trapping effect of the narrow band-gap deep-red emitter which forms a quantum-well-like structure also plays a role in shaping the electroluminescent characteristics of multi-color organic light-emitting diodes. By accurately controlling the position of the ultrathin sensing layer, it is considerably easy tomore » balance the white emission which is quite challenging for full-color devices with multiple emission zones. There is nearly no energy transfer detectable if 7 nm thick Ir(ppz){sub 3} is inserted between the blue phosphorescent emitter and the ultrathin red emitter.« less

  19. Efficient blue and green phosphorescent OLEDs with host material containing electronically isolated carbazolyl fragments

    NASA Astrophysics Data System (ADS)

    Grigalevicius, Saulius; Tavgeniene, Daiva; Krucaite, Gintare; Blazevicius, Dovydas; Griniene, Raimonda; Lai, Yi-Ning; Chiu, Hao-Hsuan; Chang, Chih-Hao

    2018-05-01

    Dry process-able host materials are well suited to realize high performance phosphorescent organic light-emitting diodes (OLED) with precise deposition of organic layers. We demonstrate in this study high efficiency green and blue phosphorescent OLED devices by employing 3-[bis(9-ethylcarbazol-3-yl)methyl]-9-hexylcarbazole based host material. By doping a typical green emitter of fac tris(2-phenylpyridine)iridium (Ir (ppy)3) in the compound the resultant dry-processed green device exhibited superior performance with low turn on voltage of 3.0 V and with peak efficiencies of 11.4%, 39.9 cd/A and 41.8 lm/W. When blue emitter of bis [2-(4,6-difluorophenyl)pyridinato-C2,N](picolinato)iridium (III) was used, the resultant blue device showed turn on voltage of 2.9 V and peak efficiencies of 9.4%, 21.4 cd/A and 21.7 lm/W. The high efficiencies may be attributed to the host possessing high triplet energy level, effective host-to-guest energy transfer and effective carrier injection balance.

  20. Phosphorescent nanoparticles for quantitative measurements of oxygen profiles in vitro and in vivo

    PubMed Central

    Choi, Nak Won; Verbridge, Scott S.; Williams, Rebecca M.; Chen, Jin; Kim, Ju-Young; Schmehl, Russel; Farnum, Cornelia E.; Zipfel, Warren R.; Fischbach, Claudia; Stroock, Abraham D.

    2012-01-01

    We present the development and characterization of nanoparticles loaded with a custom phosphor; we exploit these nanoparticles to perform quantitative measurements of the concentration of oxygen within three-dimensional (3-D) tissue cultures in vitro and blood vessels in vivo. We synthesized a customized ruthenium (Ru)-phosphor and incorporated it into polymeric nanoparticles via self-assembly. We demonstrate that the encapsulated phosphor is non-toxic with and without illumination. We evaluated two distinct modes of employing the phosphorescent nanoparticles for the measurement of concentrations of oxygen: 1) in vitro, in a 3-D microfluidic tumor model via ratiometric measurements of intensity with an oxygen-insensitive fluorophore as a reference, and 2) in vivo, in mouse vasculature using measurements of phosphorescence lifetime. With both methods, we demonstrated micrometer-scale resolution and absolute calibration to the dissolved oxygen concentration. Based on the ease and customizability of the synthesis of the nanoparticles and the flexibility of their application, these oxygen-sensing polymeric nanoparticles will find a natural home in a range of biological applications, benefiting studies of physiological as well as pathological processes in which oxygen availability and concentration play a critical role. PMID:22240511

  1. Transient electroluminescence on pristine and degraded phosphorescent blue OLEDs

    NASA Astrophysics Data System (ADS)

    Niu, Quan; Blom, Paul W. M.; May, Falk; Heimel, Paul; Zhang, Minlu; Eickhoff, Christian; Heinemeyer, Ute; Lennartz, Christian; Crǎciun, N. Irina

    2017-11-01

    In state-of-the-art blue phosphorescent organic light-emitting diode (PHOLED) device architectures, electrons and holes are injected into the emissive layer, where they are carried by the emitting and hole transporting units, respectively. Using transient electroluminescence measurements, we disentangle the contribution of the electrons and holes on the transport and efficiency of both pristine and degraded PHOLEDs. By varying the concentration of hole transporting units, we show that for pristine PHOLEDs, the transport is electron dominated. Furthermore, degradation of the PHOLEDs upon electrical aging is not related to the hole transport but is governed by a decrease in the electron transport due to the formation of electron traps.

  2. Recent development of organic light-emitting diode utilizing energy transfer from exciplex to phosphorescent emitter

    NASA Astrophysics Data System (ADS)

    Seo, Satoshi; Shitagaki, Satoko; Ohsawa, Nobuharu; Inoue, Hideko; Suzuki, Kunihiko; Nowatari, Hiromi; Takahashi, Tatsuyoshi; Hamada, Takao; Watabe, Takeyoshi; Yamada, Yui; Mitsumori, Satomi

    2016-09-01

    This study investigates an organic light-emitting diode (OLED) utilizing energy transfer from an excited complex (exciplex) comprising donor and acceptor molecules to a phosphorescent dopant. An exciplex has a very small energy gap between the lowest singlet and triplet excited states (S1 and T1). Thus, both S1 and T1 energies of the exciplex can be directly transferred to the T1 of the phosphorescent dopant by adjusting the emission energy of the exciplex to the absorption-edge energy of the dopant. Such an exciplex‒triplet energy transfer (ExTET) achieves high efficiency at low drive voltage because the electrical excitation energy of the exciplex approximates the T1 energy of the dopant. Furthermore, the efficiency of the reverse intersystem crossing (RISC) of the exciplex does not affect the external quantum efficiency (EQE) of the ExTET OLED. The RISC of the exciplex is inhibited when the T1 energy of either donor or acceptor molecules is close to or lower than that of the exciplex itself. Even in this case, however, the ExTET OLED maintains its high efficiency because the T1 energy of each component of the exciplex or the T1 energy of the exciplex itself can be transferred to the dopant. We also varied the emission colors of ExTET OLEDs from sky-blue to red by introducing various phosphorescent dopants. These devices achieved high EQEs (≍30%), low drive voltages (≍3 V), and extremely long lifetimes (e.g., 1 million hours for the orange OLED) at a luminance of 1,000 cd/m2.

  3. Organic Light-Emitting Diodes Using Multifunctional Phosphorescent Dendrimers with Iridium-Complex Core and Charge-Transporting Dendrons

    NASA Astrophysics Data System (ADS)

    Tsuzuki, Toshimitsu; Shirasawa, Nobuhiko; Suzuki, Toshiyasu; Tokito, Shizuo

    2005-06-01

    We report a novel class of light-emitting materials for use in organic light-emitting diodes (OLEDs): multifunctional phosphorescent dendrimers that have a phosphorescent core and dendrons based on charge-transporting building blocks. We synthesized first-generation and second-generation dendrimers consisting of a fac-tris(2-phenylpyridine)iridium [Ir(ppy)3] core and hole-transporting phenylcarbazole-based dendrons. Smooth amorphous films of these dendrimers were formed by spin-coating them from solutions. The OLEDs using the dendrimer exhibited bright green or yellowish-green emission from the Ir(ppy)3 core. The OLEDs using the film containing a mixture of the dendrimer and an electron-transporting material exhibited higher efficiency than those using the neat dendrimer film. The external quantum efficiency of OLEDs using the film containing a mixture of the first-generation dendrimer and an electron-transporting material was as high as 7.6%.

  4. Comparison of Cherenkov excited fluorescence and phosphorescence molecular sensing from tissue with external beam irradiation.

    PubMed

    Lin, Huiyun; Zhang, Rongxiao; Gunn, Jason R; Esipova, Tatiana V; Vinogradov, Sergei; Gladstone, David J; Jarvis, Lesley A; Pogue, Brian W

    2016-05-21

    Ionizing radiation delivered by a medical linear accelerator (LINAC) generates Cherenkov emission within the treated tissue. A fraction of this light, in the 600-900 nm wavelength region, propagates through centimeters of tissue and can be used to excite optical probes in vivo, enabling molecular sensing of tissue analytes. The success of isolating the emission signal from this Cherenkov excitation background is dependent on key factors such as: (i) the Stokes shift of the probe spectra; (ii) the excited state lifetime; (iii) the probe concentration; (iv) the depth below the tissue surface; and (v) the radiation dose used. Previous studies have exclusively focused on imaging phosphorescent dyes, rather than fluorescent dyes. However there are only a few biologically important phosphorescent dyes and yet in comparison there are thousands of biologically relevant fluorescent dyes. So in this study the focus was a study of efficacy of Cherenkov-excited luminescence using fluorescent commercial near-infrared probes, IRDye 680RD, IRDye 700DX, and IRDye 800CW, and comparing them to the well characterized phosphorescent probe Oxyphor PtG4, an oxygen sensitive dye. Each probe was excited by Cherenkov light from a 6 MV external radiation beam, and measured in continuous wave or time-gated modes. The detection was performed by spectrally resolving the luminescence signals, and measuring them with spectrometer-based separation on an ICCD detector. The results demonstrate that IRDye 700DX and PtG4 allowed for the maximal signal to noise ratio. In the case of the phosphorescent probe, PtG4, with emission decays on the microsecond (μs) time scale, time-gated acquisition was possible, and it allowed for higher efficacy in terms of the probe concentration and detection depth. Phantoms containing the probe at 5 mm depth could be detected at concentrations down to the nanoMolar range, and at depths into the tissue simulating phantom near 3 cm. In vivo studies showed that 5

  5. Comparison of Cherenkov excited fluorescence and phosphorescence molecular sensing from tissue with external beam irradiation

    NASA Astrophysics Data System (ADS)

    Lin, Huiyun; Zhang, Rongxiao; Gunn, Jason R.; Esipova, Tatiana V.; Vinogradov, Sergei; Gladstone, David J.; Jarvis, Lesley A.; Pogue, Brian W.

    2016-05-01

    Ionizing radiation delivered by a medical linear accelerator (LINAC) generates Cherenkov emission within the treated tissue. A fraction of this light, in the 600-900 nm wavelength region, propagates through centimeters of tissue and can be used to excite optical probes in vivo, enabling molecular sensing of tissue analytes. The success of isolating the emission signal from this Cherenkov excitation background is dependent on key factors such as: (i) the Stokes shift of the probe spectra; (ii) the excited state lifetime; (iii) the probe concentration; (iv) the depth below the tissue surface; and (v) the radiation dose used. Previous studies have exclusively focused on imaging phosphorescent dyes, rather than fluorescent dyes. However there are only a few biologically important phosphorescent dyes and yet in comparison there are thousands of biologically relevant fluorescent dyes. So in this study the focus was a study of efficacy of Cherenkov-excited luminescence using fluorescent commercial near-infrared probes, IRDye 680RD, IRDye 700DX, and IRDye 800CW, and comparing them to the well characterized phosphorescent probe Oxyphor PtG4, an oxygen sensitive dye. Each probe was excited by Cherenkov light from a 6 MV external radiation beam, and measured in continuous wave or time-gated modes. The detection was performed by spectrally resolving the luminescence signals, and measuring them with spectrometer-based separation on an ICCD detector. The results demonstrate that IRDye 700DX and PtG4 allowed for the maximal signal to noise ratio. In the case of the phosphorescent probe, PtG4, with emission decays on the microsecond (μs) time scale, time-gated acquisition was possible, and it allowed for higher efficacy in terms of the probe concentration and detection depth. Phantoms containing the probe at 5 mm depth could be detected at concentrations down to the nanoMolar range, and at depths into the tissue simulating phantom near 3 cm. In vivo studies showed that 5

  6. Laser-induced down-conversion and infrared phosphorescence emissivity of novel ligand-free perovskite nanomaterials

    NASA Astrophysics Data System (ADS)

    Ahmed, M. A.; Khafagy, Rasha M.; El-sayed, O.

    2014-03-01

    For the first time, standalone and ligand-free series of novel rare-earth-based perovskite nanomaterials are used as near infrared (NIR) and mid infrared (MIR) emitters. Nano-sized La0.7Sr0.3M0.1Fe0.9O3; where M = 0, Mn2+, Co2+ or Ni2+ were synthesized using the flash auto-combustion method and characterized using FTIR, FT-Raman, SEM and EDX. Photoluminescence spectra were spontaneously recorded during pumping the samples with 0.5 mW of green laser emitting continuously at 532 nm. La0.7Sr0.3FeO3 (where M = 0) did not result in any infrared emissivity, while intense near and mid infrared down-converted phosphorescence was released from the M-doped samples. The released phosphorescence greatly shifted among the infrared spectral region with changing the doping cation. Ni2+-doped perovskite emitted at the short-wavelength near-infrared region, while Mn2+ and Co2+-doped perovskites emitted at the mid-wavelength infrared region. The detected laser-induced spontaneous parametric down-conversion phosphorescence (SPDC) occurred through a two-photon process by emitting two NIR or MIR photons among a cooperative energy transfer between the La3+ cations and the M2+ cations. Combining SrFeO3 ceramic with both a rare earth cation (RE3+) and a transition metal cation (Mn2+, Co2+ or Ni2+), rather than introducing merely RE3+ cations, greatly improved and controlled the infrared emissivity properties of synthesized perovskites through destroying their crystal symmetry and giving rise to asymmetrical lattice vibration and the nonlinear optical character. The existence of SPDC in the M2+-doped samples verifies their nonlinear character after the absence of this character in La0.7Sr0.3FeO3. Obtained results verify that, for the first time, perovskite nanomaterials are considered as nonlinear optical crystals with intense infrared emissivity at low pumping power of visible wavelengths, which nominates them for photonic applications and requires further studies regarding their lasing

  7. [Phosphorescent effect of Ir (ppy)3 on the luminescent characteristic of Rubrene].

    PubMed

    Xu, Hong-Hua; Xu, Zheng; Zhang, Fu-Jun; Zhao, Su-Ling; Yuan, Guang-Cai; Chen, Yue-Ning

    2008-07-01

    Many organic matters including heavy metal ions can validly utilize the singlet and triplet for luminescence owiog to the spin-orbit coupling. As a result, the internal quantum efficiency can easily achieve a value higher than traditional organic light emitting diodes in theory. There is a strong luminescence of PVK in PVK : PBD : Rubrene system. PL spectra excited by 345 nm of PVK : PBD : Rubrene thin film has a 410 nm PVK luminescent peak and a 560 nm Rubrene peak. EL still has a PVK luminescent peak, which should be kept from happening. Excitons can not adequately transferred from the matrix solution to Rubrene. The doping with Ir(ppy)3 improves the PVK : PBD : Rubrene system performance. PL spectra excited by 345 nm of PVK : PBD : Ir(ppy)3 : Rubrene with low concentration of Rubrene has a 510 nm Ir(ppy)3 peak and a new 548 nm one. However, the Ir(ppy)3 peak is smaller and the Rubrene one is bigger in EL spectra. Notably a strong and single luminescence of Rubrene is obtained in EL and PL spectra excited by 345 nm of PVK : PBD : Ir(ppy)3 : Rubrene with high concentration of Rubrene. Meanwhile, the Ir(ppy)3 luminescent peak disappears. The mechanism originates from the phosphorescent effect of Ir (ppy)3. The singlet excitons can basically be transferred from PVK : PBD or Ir(ppy)3 to Rubrene. But most excitons from Ir (ppy)3 can directly tunnel to the fluorescent material and come into being singlet states that can return to ground states and cause luminescence. Rubrene can accept proportional excitons with low concentration. While the concentration of Rubrene is higher, excitons can be entirely accepted by Rubrene. The effect also restricts the luminescent intensity of Ir(ppy)3 and boosts up that of Rubrene. Furthermore, the energy transfer in PVK : PBD : Ir(ppy)3 : Rubrene system is primary the Forester energy transfer. Excitation spectra of Rubrene and emission spectra of Ir(ppy)3 have a large overlap revealing that there is a strong energy transfer and further

  8. Device Engineering and Degradation Mechanism Study of All-Phosphorescent White Organic Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Xu, Lisong

    As a possible next-generation solid-state lighting source, white organic light-emitting diodes (WOLEDs) have the advantages in high power efficiency, large area and flat panel form factor applications. Phosphorescent emitters and multiple emitting layer structures are typically used in high efficiency WOLEDs. However due to the complexity of the device structure comprising a stack of multiple layers of organic thin films, ten or more organic materials are usually required, and each of the layers in the stack has to be optimized to produce the desired electrical and optical functions such that collectively a WOLED of the highest possible efficiency can be achieved. Moreover, device degradation mechanisms are still unclear for most OLED systems, especially blue phosphorescent OLEDs. Such challenges require a deep understanding of the device operating principles and materials/device degradation mechanisms. This thesis will focus on achieving high-efficiency and color-stable all-phosphorescent WOLEDs through optimization of the device structures and material compositions. The operating principles and the degradation mechanisms specific to all-phosphorescent WOLED will be studied. First, we investigated a WOLED where a blue emitter was based on a doped mix-host system with the archetypal bis(4,6-difluorophenyl-pyridinato-N,C2) picolinate iridium(III), FIrpic, as the blue dopant. In forming the WOLED, the red and green components were incorporated in a single layer adjacent to the blue layer. The WOLED efficiency and color were optimized through variations of the mixed-host compositions to control the electron-hole recombination zone and the dopant concentrations of the green-red layers to achieve a balanced white emission. Second, a WOLED structure with two separate blue layers and an ultra-thin red and green co-doped layer was studied. Through a systematic investigation of the placement of the co-doped red and green layer between the blue layers and the material

  9. 3D-resolved fluorescence and phosphorescence lifetime imaging using temporal focusing wide-field two-photon excitation

    PubMed Central

    Choi, Heejin; Tzeranis, Dimitrios S.; Cha, Jae Won; Clémenceau, Philippe; de Jong, Sander J. G.; van Geest, Lambertus K.; Moon, Joong Ho; Yannas, Ioannis V.; So, Peter T. C.

    2012-01-01

    Fluorescence and phosphorescence lifetime imaging are powerful techniques for studying intracellular protein interactions and for diagnosing tissue pathophysiology. While lifetime-resolved microscopy has long been in the repertoire of the biophotonics community, current implementations fall short in terms of simultaneously providing 3D resolution, high throughput, and good tissue penetration. This report describes a new highly efficient lifetime-resolved imaging method that combines temporal focusing wide-field multiphoton excitation and simultaneous acquisition of lifetime information in frequency domain using a nanosecond gated imager from a 3D-resolved plane. This approach is scalable allowing fast volumetric imaging limited only by the available laser peak power. The accuracy and performance of the proposed method is demonstrated in several imaging studies important for understanding peripheral nerve regeneration processes. Most importantly, the parallelism of this approach may enhance the imaging speed of long lifetime processes such as phosphorescence by several orders of magnitude. PMID:23187477

  10. Measurement of Local Partial Pressure of Oxygen in the Brain Tissue under Normoxia and Epilepsy with Phosphorescence Lifetime Microscopy

    PubMed Central

    Zhang, Cong; Bélanger, Samuel; Pouliot, Philippe; Lesage, Frédéric

    2015-01-01

    In this work a method for measuring brain oxygen partial pressure with confocal phosphorescence lifetime microscopy system is reported. When used in conjunction with a dendritic phosphorescent probe, Oxyphor G4, this system enabled minimally invasive measurements of oxygen partial pressure (pO2) in cerebral tissue with high spatial and temporal resolution during 4-AP induced epileptic seizures. Investigating epileptic events, we characterized the spatio-temporal distribution of the "initial dip" in pO2 near the probe injection site and along nearby arterioles. Our results reveal a correlation between the percent change in the pO2 signal during the "initial dip" and the duration of seizure-like activity, which can help localize the epileptic focus and predict the length of seizure. PMID:26305777

  11. Measurement of Local Partial Pressure of Oxygen in the Brain Tissue under Normoxia and Epilepsy with Phosphorescence Lifetime Microscopy.

    PubMed

    Zhang, Cong; Bélanger, Samuel; Pouliot, Philippe; Lesage, Frédéric

    2015-01-01

    In this work a method for measuring brain oxygen partial pressure with confocal phosphorescence lifetime microscopy system is reported. When used in conjunction with a dendritic phosphorescent probe, Oxyphor G4, this system enabled minimally invasive measurements of oxygen partial pressure (pO2) in cerebral tissue with high spatial and temporal resolution during 4-AP induced epileptic seizures. Investigating epileptic events, we characterized the spatio-temporal distribution of the "initial dip" in pO2 near the probe injection site and along nearby arterioles. Our results reveal a correlation between the percent change in the pO2 signal during the "initial dip" and the duration of seizure-like activity, which can help localize the epileptic focus and predict the length of seizure.

  12. Solid-state phosphorescence-to-fluorescence switching in a cyclometalated Ir(III) complex containing an acid-labile chromophoric ancillary ligand: implication for multimodal security printing.

    PubMed

    Whang, Dong Ryeol; You, Youngmin; Chae, Weon-Sik; Heo, Jeongyun; Kim, Sehoon; Park, Soo Young

    2012-11-06

    In this study, we have demonstrated the reconstruction of encrypted information by employing photoluminescence spectra and lifetimes of a phosphorescent Ir(III) complex (IrHBT). IrHBT was constructed on the basis of a heteroleptic structure comprising a fluorescent N^O ancillary ligand. From the viewpoint of information security, the transformation of the Ir(III) complex between phosphorescent and fluorescent states can be encoded with chemical/photoirradiation methods. Thin polymer films (poly(methylmethacrylate), PMMA) doped with IrHBT display long-lived emission typical of phosphorescence (λ(max) = 586 nm, τ(obs) = 2.90 μs). Meanwhile, exposure to HCl vapor switches the emission to fluorescence (λ(max) = 514 nm, τ(obs) = 1.53 ns) with drastic changes in both the photoluminescence color and lifetime. Security printing on paper impregnated with IrHBT or on a PMMA film containing IrHBT and photoacid generator (triphenylsulfonium triflate) enables the bimodal readout of photoluminescence color and lifetime.

  13. Dependence of the Intensity of Components of the Multiplet in Sensitized Phosphorescence of Acenaphthene in N-Hexane on the Exciting Pulse Duration at 77 K

    NASA Astrophysics Data System (ADS)

    Zhdanova, N. V.; Deryabin, M. I.; Valyukhov, D. P.

    2017-10-01

    The special features of the multiplet structure in spectra of sensitized acenaphthene phosphorescence caused by triplet-triplet energy transfer from 2,7-dibromodiphenylen sulfide (the energy donor) molecules in n-hexane matrices are investigated at 77 K. It is demonstrated that the distribution of intensities between components of the multiplet in quasi-line spectrum of sensitized acenaphthene phosphorescence depends on the freezing rate of the solution and the exciting pulse duration. The possible reasons for these dependences are discussed.

  14. Ratiometric Phosphorescent Probe for Thallium in Serum, Water, and Soil Samples Based on Long-Lived, Spectrally Resolved, Mn-Doped ZnSe Quantum Dots and Carbon Dots.

    PubMed

    Lu, Xiaomei; Zhang, Jinyi; Xie, Ya-Ni; Zhang, Xinfeng; Jiang, Xiaoming; Hou, Xiandeng; Wu, Peng

    2018-02-20

    Thallium (Tl) is an extremely toxic heavy metal and exists in very low concentrations in the environment, but its sensing is largely underexplored as compared to its neighboring elements in the periodic table (especially mercury and lead). In this work, we developed a ratiometric phosphorescent nanoprobe for thallium detection based on Mn-doped ZnSe quantum dots (QDs) and water-soluble carbon dots (C-dots). Upon excitation with 360 nm, Mn-doped ZnSe QDs and C-dots can emit long-lived and spectrally resolved phosphorescence at 580 and 440 nm, respectively. In the presence of thallium, the phosphorescence emission from Mn-doped ZnSe QDs could be selectively quenched, while that from C-dots retained unchanged. Therefore, a ratiometric phosphorescent probe was thus developed, which can eliminate the potential influence from both background fluorescence and other analyte-independent external environment factors. Several other heavy metal ions caused interferences to thallium detection but could be efficiently masked with EDTA. The proposed method offered a detection limit of 1 μg/L, which is among the most sensitive probes ever reported. Successful application of this method for thallium detection in biological serum as well as in environmental water and soil samples was demonstrated.

  15. Tracking the Oxygen Status in the Cell Nucleus with a Hoechst-Tagged Phosphorescent Ruthenium Complex.

    PubMed

    Hara, Daiki; Umehara, Yui; Son, Aoi; Asahi, Wataru; Misu, Sotaro; Kurihara, Ryohsuke; Kondo, Teruyuki; Tanabe, Kazuhito

    2018-05-04

    Molecular oxygen in living cells is distributed and consumed inhomogeneously, depending on the activity of each organelle. Therefore, tractable methods that can be used to monitor the oxygen status in each organelle are needed to understand cellular function. Here we report the design of a new oxygen-sensing probe for use in the cell nucleus. We prepared "Ru-Hoechsts", each consisting of a phosphorescent ruthenium complex linked to a Hoechst 33258 moiety, and characterized their properties as oxygen sensors. The Hoechst unit shows strong DNA-binding properties in the nucleus, and the ruthenium complex shows oxygen-dependent phosphorescence. Thus, Ru-Hoechsts accumulated in the cell nucleus and showed oxygen-dependent signals that could be monitored. Of the Ru-Hoechsts prepared in this study, Ru-Hoechst b, in which the ruthenium complex and the Hoechst unit were linked through a hexyl chain, showed the most suitable properties for monitoring the oxygen status. Ru-Hoechsts are probes with high potential for visualizing oxygen fluctuations in the nucleus. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Long-lived and highly efficient green and blue phosphorescent emitters and device architectures for OLED displays

    NASA Astrophysics Data System (ADS)

    Eickhoff, Christian; Murer, Peter; Geßner, Thomas; Birnstock, Jan; Kröger, Michael; Choi, Zungsun; Watanabe, Soichi; May, Falk; Lennartz, Christian; Stengel, Ilona; Münster, Ingo; Kahle, Klaus; Wagenblast, Gerhard; Mangold, Hannah

    2015-09-01

    In this paper, two OLED device concepts are introduced. First, classical phosphorescent green carbene emitters with unsurpassed lifetime, combined with low voltage and high efficiency are presented and the associated optimized OLED stacks are explained. Second, a path towards highly efficient, long-lived deep blue systems is shown. The high efficiencies can be reached by having the charge-recombination on the phosphorescent carbene emitter while at the same time short emissive lifetimes are realized by fast energy transfer to the fluorescent emitter, which eventually allows for higher OLED stability in the deep blue. Device architectures, materials and performance data are presented showing that carbene type emitters have the potential to outperform established phosphorescent green emitters both in terms of lifetime and efficiency. The specific class of green emitters under investigation shows distinctly larger electron affinities (2.1 to 2.5 eV) and ionization potentials (5.6 to 5.8 eV) as compared to the "standard" emitter Ir(ppy)3 (5.0/1.6 eV). This difference in energy levels requires an adopted OLED design, in particular with respect to emitter hosts and blocking layers. Consequently, in the diode setup presented here, the emitter species is electron transporting or electron trapping. For said green carbene emitters, the typical peak wavelength is 525 nm yielding CIE color coordinates of (x = 0.33, y = 0.62). Device data of green OLEDs are shown with EQEs of 26 %. Driving voltage at 1000 cd/m2 is below 3 V. In an optimized stack, a device lifetime of LT95 > 15,000 h (1000 cd/m2) has been reached, thus fulfilling AMOLED display requirements.

  17. Conjugation of glucose oxidase onto Mn-doped ZnS quantum dots for phosphorescent sensing of glucose in biological fluids.

    PubMed

    Wu, Peng; He, Yu; Wang, He-Fang; Yan, Xiu-Ping

    2010-02-15

    Integrating various enzymes with nanomaterials provides various nanohybrids with new possibilities in biosensor applications. Furthermore, the enzymatic activity and stability are also improved due to the large surface area of nanomaterials. Here we report the conjugation of glucose oxidase (GOD) onto phosphorescent Mn-doped ZnS quantum dots (QDs) using 1-ethyl-3-(3-dimethylaminopropy)carbodiimide (EDC)/N-hydroxysuccinimide (NHS) as coupling reagents for glucose biosensing based on the effective quenching of the room temperature phosphorescence (RTP) of Mn-doped ZnS QDs by the H(2)O(2) generated from GOD-catalyzed oxidation of glucose. The obtained bioconjugate not only provided improved enzymatic performance with Michaelis-Menten constant of 0.70 mM but also favored biological applications because the phosphorescent detection mode avoided the interference from autofluorescence and scattering light from the biological matrix. In addition, the GOD-conjugated Mn-doped ZnS QDs showed better thermal stability in the temperature range of 20-80 degrees C. The GOD-Mn-doped ZnS QDs based RTP sensor for glucose gave a detection limit of 3 microM and two linear ranges from 10 microM to 0.1 mM and from 0.1 to 1 mM. The developed biosensor was successfully applied to the determination of glucose in real serum samples without the need for any complicated sample pretreatments.

  18. Fluorescence and phosphorescence of photomultiplier window materials under electron irradiation

    NASA Technical Reports Server (NTRS)

    Viehmann, W.; Eubanks, A. G.; Bredekamp, J. H.

    1974-01-01

    The fluorescence and phosphorescence of photomultiplier window materials under electron irradiation were investigated using a Sr-90/Y-90 beta emitter as the electron source. Spectral emission curves of UV grade, optical grade, and electron-irradiated samples of MGF2 and LiF, CaF2, BaF2, sapphire, fused silica, and UV transmitting glasses were obtained over the spectral range of 200 nm to 650 nm. Fluorescence yields, expressed as the number of counts in a solid angle of 2 pi steradian per 1MeV of incident electron energy deposited, were determined on these materials utilizing photomultiplier tubes with cesium telluride, bialkali, and trialkali (S-20) photocathodes, respectively.

  19. Layered host-guest long-afterglow ultrathin nanosheets: high-efficiency phosphorescence energy transfer at 2D confined interface.

    PubMed

    Gao, Rui; Yan, Dongpeng

    2017-01-01

    Tuning and optimizing the efficiency of light energy transfer play an important role in meeting modern challenges of minimizing energy loss and developing high-performance optoelectronic materials. However, attempts to fabricate systems giving highly efficient energy transfer between luminescent donor and acceptor have achieved limited success to date. Herein, we present a strategy towards phosphorescence energy transfer at a 2D orderly crystalline interface. We first show that new ultrathin nanosheet materials giving long-afterglow luminescence can be obtained by assembling aromatic guests into a layered double hydroxide host. Furthermore, we demonstrate that co-assembly of these long-lived energy donors with an energy acceptor in the same host generates an ordered arrangement of phosphorescent donor-acceptor pairs spatially confined within the 2D nanogallery, which affords energy transfer efficiency as high as 99.7%. Therefore, this work offers an alternative route to develop new types of long-afterglow nanohybrids and efficient light transfer systems with potential energy, illumination and sensor applications.

  20. Methods for Kinetic and Thermodynamic Analysis of Aminoacyl-tRNA Synthetases

    PubMed Central

    Francklyn, Christopher S.; First, Eric A.; Perona, John J.; Hou, Ya-Ming

    2008-01-01

    The accuracy of protein synthesis relies on the ability of aminoacyl-tRNA synthetases (aaRSs) to discriminate among true and near cognate substrates. To date, analysis of aaRSs function, including identification of residues of aaRS participating in amino acid and tRNA discrimination, has largely relied on the steady state kinetic pyrophosphate exchange and aminoacylation assays. Pre-steady state kinetic studies investigating a more limited set of aaRS systems have also been undertaken to assess the energetic contributions of individual enzyme-substrate interactions, particularly in the adenylation half reaction. More recently, a renewed interest in the use of rapid kinetics approaches for aaRSs has led to their application to several new aaRS systems, resulting in the identification of mechanistic differences that distinguish the two structurally distinct aaRS classes. Here, we review the techniques for thermodynamic and kinetic analysis of aaRS function. Following a brief survey of methods for the preparation of materials and for steady state kinetic analysis, this review will describe pre-steady state kinetic methods employing rapid quench and stopped-flow fluorescence for analysis of the activation and aminoacyl transfer reactions. Application of these methods to any aaRS system allows the investigator to derive detailed kinetic mechanisms for the activation and aminoacyl transfer reactions, permitting issues of substrate specificity, stereochemical mechanism, and inhibitor interaction to be addressed in a rigorous and quantitative fashion. PMID:18241792

  1. Cherenkov excited phosphorescence-based pO2 estimation during multi-beam radiation therapy: phantom and simulation studies

    NASA Astrophysics Data System (ADS)

    Holt, Robert W.; Zhang, Rongxiao; Esipova, Tatiana V.; Vinogradov, Sergei A.; Glaser, Adam K.; Gladstone, David J.; Pogue, Brian W.

    2014-09-01

    Megavoltage radiation beams used in External Beam Radiotherapy (EBRT) generate Cherenkov light emission in tissues and equivalent phantoms. This optical emission was utilized to excite an oxygen-sensitive phosphorescent probe, PtG4, which has been developed specifically for NIR lifetime-based sensing of the partial pressure of oxygen (pO2). Phosphorescence emission, at different time points with respect to the excitation pulse, was acquired by an intensifier-gated CCD camera synchronized with radiation pulses delivered by a medical linear accelerator. The pO2 distribution was tomographically recovered in a tissue-equivalent phantom during EBRT with multiple beams targeted from different angles at a tumor-like anomaly. The reconstructions were tested in two different phantoms that have fully oxygenated background, to compare a fully oxygenated and a fully deoxygenated inclusion. To simulate a realistic situation of EBRT, where the size and location of the tumor is well known, spatial information of a prescribed region was utilized in the recovery estimation. The phantom results show that region-averaged pO2 values were recovered successfully, differentiating aerated and deoxygenated inclusions. Finally, a simulation study was performed showing that pO2 in human brain tumors can be measured to within 15 mmHg for edge depths less than 10-20 mm using the Cherenkov Excited Phosphorescence Oxygen imaging (CEPhOx) method and PtG4 as a probe. This technique could allow non-invasive monitoring of pO2 in tumors during the normal process of EBRT, where beams are generally delivered from multiple angles or arcs during each treatment fraction.

  2. Cherenkov excited phosphorescence-based pO2 estimation during multi-beam radiation therapy: phantom and simulation studies.

    PubMed

    Holt, Robert W; Zhang, Rongxiao; Esipova, Tatiana V; Vinogradov, Sergei A; Glaser, Adam K; Gladstone, David J; Pogue, Brian W

    2014-09-21

    Megavoltage radiation beams used in External Beam Radiotherapy (EBRT) generate Cherenkov light emission in tissues and equivalent phantoms. This optical emission was utilized to excite an oxygen-sensitive phosphorescent probe, PtG4, which has been developed specifically for NIR lifetime-based sensing of the partial pressure of oxygen (pO2). Phosphorescence emission, at different time points with respect to the excitation pulse, was acquired by an intensifier-gated CCD camera synchronized with radiation pulses delivered by a medical linear accelerator. The pO2 distribution was tomographically recovered in a tissue-equivalent phantom during EBRT with multiple beams targeted from different angles at a tumor-like anomaly. The reconstructions were tested in two different phantoms that have fully oxygenated background, to compare a fully oxygenated and a fully deoxygenated inclusion. To simulate a realistic situation of EBRT, where the size and location of the tumor is well known, spatial information of a prescribed region was utilized in the recovery estimation. The phantom results show that region-averaged pO2 values were recovered successfully, differentiating aerated and deoxygenated inclusions. Finally, a simulation study was performed showing that pO2 in human brain tumors can be measured to within 15 mmHg for edge depths less than 10-20 mm using the Cherenkov Excited Phosphorescence Oxygen imaging (CEPhOx) method and PtG4 as a probe. This technique could allow non-invasive monitoring of pO2 in tumors during the normal process of EBRT, where beams are generally delivered from multiple angles or arcs during each treatment fraction.

  3. Dopant effects on charge transport to enhance performance of phosphorescent white organic light emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Liping; Chen, Jiangshan; Ma, Dongge, E-mail: mdg1014@ciac.ac.cn

    2015-11-07

    We compared the performance of phosphorescent white organic light emitting diodes (WOLEDs) with red-blue-green and green-blue-red sequent emissive layers. It was found that the influence of red and green dopants on electron and hole transport in emissive layers leads to the large difference in the efficiency of fabricated WOLEDs. This improvement mechanism is well investigated by the current density-voltage characteristics of single-carrier devices based on dopant doped emissive layers and the comparison of electroluminescent and photoluminescence spectra, and attributed to the different change of charge carrier transport by the dopants. The optimized device achieves a maximum power efficiency, current efficiency,more » and external quantum efficiency of 37.0 lm/W, 38.7 cd/A, and 17.7%, respectively, which are only reduced to 32.8 lm/W, 38.5 cd/A, and 17.3% at 1000 cd/m{sup 2} luminance. The critical current density is as high as 210 mA/cm{sup 2}. It can be seen that the efficiency roll-off in phosphorescent WOLEDs can be well improved by effectively designing the structure of emissive layers.« less

  4. Investigation of Oxygen-Induced Quenching of Phosphorescence in Photoexcited Aromatic Molecules by Positron Annihilation Spectroscopy

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Eftekhari, Abe

    1996-01-01

    Platinum OctaEthyl Porphyrin (Pt.OEP) is an efficient phosphor under ultraviolet excitation. The phosphorescent triplet state P(T(Sup 1)) is readily quenched by the oxygen O2 molecules. This phenomenon is being utilized as the basis for global air pressure measurements in aerodynamic facilities at various laboratories. The exact mechanism by which O2 molecules quench the P(T(Sup 1) approaches P(S(Sub O)) transitions is still unknown. The diamagnetic singlet states P(S(Sub n)), which feed P(T(Sub 1)) states via intersystem crossings, would presumably not be affected by O2. It must be only the magnetic P(T(Sub 1)) states, which can interact with the paramagnetic O2 molecules, that are affected. However, our positron lifetime and Doppler broadening studies suggest the formation of O2P(S(Sub n)), complexes which can also eventually reduce the population of the P(T(Sub 1)) states (i.e., quench phosphorescence). This reduction is possible because higher triplet states in (Pt.OEP) are admixed with the P(S(Sub 1)), states via spin orbit interactions. The experimental procedures and the results of various measurements are presented in this paper.

  5. 3D brain oxygenation measurements in awake hypertensive mice using two photon phosphorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    Lu, Xuecong; Moeini, Mohammad; Li, Baoqiang; Zhang, Cong; Sakadžić, Sava; Lesage, Frédéric

    2018-02-01

    Cardiovascular risk factors, such as hypertension, have been associated with cognitive decline, potentially due to their impact on brain tissue oxygenation. In this study, high spatial resolution imaging in three dimensions was used to understand changes in brain oxygenation with hypertension. Experiments were performed on Young (WT_Y, 3-4 months, n=8), Old (WT_O, 6-7 months, n=8), and Old with hypertension (HP_O, 6-7 months, n=8) C57bL/6 awake mice. Two photon phosphorescence lifetime microscopy using an O2-sensitive phosphorescent dye PtPC343 was employed to measure two dimensional grids of PO2 in capillary beds (400um*400um, 25*25 pixels, acquired in 4 mins) and decays from arterioles. Scans were obtained continuously at depths from 50 um to 300 um under the brain surface. Using 3D measurements and a 250 um depth stack, we removed the compounding effects on brain oxygenation diffusion from surrounding brain vessels. The entire measurement of each vasculature stack required less than 30 minutes. This study indicates that among vascular risk factors, hypertension can reduce oxygen delivery and could potentially contribute to cognition decline.

  6. Analysis of a kinetic multi-segment foot model part II: kinetics and clinical implications.

    PubMed

    Bruening, Dustin A; Cooney, Kevin M; Buczek, Frank L

    2012-04-01

    Kinematic multi-segment foot models have seen increased use in clinical and research settings, but the addition of kinetics has been limited and hampered by measurement limitations and modeling assumptions. In this second of two companion papers, we complete the presentation and analysis of a three segment kinetic foot model by incorporating kinetic parameters and calculating joint moments and powers. The model was tested on 17 pediatric subjects (ages 7-18 years) during normal gait. Ground reaction forces were measured using two adjacent force platforms, requiring targeted walking and the creation of two sub-models to analyze ankle, midtarsal, and 1st metatarsophalangeal joints. Targeted walking resulted in only minimal kinematic and kinetic differences compared with walking at self selected speeds. Joint moments and powers were calculated and ensemble averages are presented as a normative database for comparison purposes. Ankle joint powers are shown to be overestimated when using a traditional single-segment foot model, as substantial angular velocities are attributed to the mid-tarsal joint. Power transfer is apparent between the 1st metatarsophalangeal and mid-tarsal joints in terminal stance/pre-swing. While the measurement approach presented here is limited to clinical populations with only minimal impairments, some elements of the model can also be incorporated into routine clinical gait analysis. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Structural perturbations of azurin deposited on solid matrices as revealed by trp phosphorescence.

    PubMed Central

    Gabellieri, E; Strambini, G B

    2001-01-01

    The phosphorescence emission of Cd-azurin from Pseudomonas aeruginosa was used as a probe of possible perturbations in the dynamical structure of the protein core that may be induced by protein-sorbent and protein-protein interactions occurring when the macromolecule is deposited into amorphous, thin solid films. Relative to the protein in aqueous solution, the spectrum is unrelaxed and the phosphorescence decay becomes highly heterogeneous, the average lifetime increasing sharply with film thickness and upon its dehydration. According to the lifetime parameter, adsorption of the protein to the substrate is found to produce a multiplicity of partially unfolded structures, an influence that propagates for several protein layers from the surface. Among the substrates used for film deposition, hydrophilic silica, dextran, DEAE-dextran, dextran sulfate, and hydrophobic octodecylamine, the perturbation is smallest with dextran sulfate and largest with octodecylamine. The destabilizing effect of protein-protein interactions, as monitored on 50-layer-thick films, is most evident at a relative humidity of 75%. Stabilizing agents were incorporated to attenuate the deleterious effects of protein aggregation. Among them, the most effective in preserving a more native-like structure are the disaccharides sucrose and trehalose in dry films and the polymer dextran in wet films. Interestingly, the polymer was found to achieve maximum efficacy at sensibly lower additive/protein ratios than the sugars. PMID:11325742

  8. Di-nuclear Cu(I) Complex with Combined Bright TADF and Phosphorescence. Zero-Field Splitting and Spin-Lattice Relaxation Effects of the Triplet State.

    PubMed

    Schinabeck, Alexander; Leitl, Markus J; Yersin, Hartmut

    2018-05-11

    The three-fold bridged di-nuclear Cu(I) complex Cu 2 (µ-I) 2 (1N-n-butyl-5-diphenyl-phosphino-1,2,4-triazole) 3 , Cu 2 I 2 (P^N) 3 , shows bright thermally activated delayed fluorescence (TADF) as well as phosphorescence at ambient temperature with a total quantum yield of 85 % at an emission decay time of 7 μs. The singlet(S 1 )-triplet(T 1 ) energy gap is as small as only 430 cm -1 (54 meV). Spin-orbit-coupling induces a short-lived phosphorescence with a decay time of 52 μs (T = 77 K) and a distinct zero-field splitting (ZFS) of T 1 into substates by ≈ 2.5 cm -1 (0.3 meV). Below T ≈ 10 K, effects of spin-lattice relaxation (SLR) are observed and agree with the size of ZFS. According to the combined phosphorescence and TADF, the overall emission decay time is reduced by ≈ 13 % as compared to the TADF-only process. The compound may potentially be applied in solution-processed OLEDs exploiting both the singlet and triplet harvesting mechanisms.

  9. Combustor kinetic energy efficiency analysis of the hypersonic research engine data

    NASA Astrophysics Data System (ADS)

    Hoose, K. V.

    1993-11-01

    A one-dimensional method for measuring combustor performance is needed to facilitate design and development scramjet engines. A one-dimensional kinetic energy efficiency method is used for measuring inlet and nozzle performance. The objective of this investigation was to assess the use of kinetic energy efficiency as an indicator for scramjet combustor performance. A combustor kinetic energy efficiency analysis was performed on the Hypersonic Research Engine (HRE) data. The HRE data was chosen for this analysis due to its thorough documentation and availability. The combustor, inlet, and nozzle kinetic energy efficiency values were utilized to determine an overall engine kinetic energy efficiency. Finally, a kinetic energy effectiveness method was developed to eliminate thermochemical losses from the combustion of fuel and air. All calculated values exhibit consistency over the flight speed range. Effects from fuel injection, altitude, angle of attack, subsonic-supersonic combustion transition, and inlet spike position are shown and discussed. The results of analyzing the HRE data indicate that the kinetic energy efficiency method is effective as a measure of scramjet combustor performance.

  10. Kinetic Studies on Enzyme-Catalyzed Reactions: Oxidation of Glucose, Decomposition of Hydrogen Peroxide and Their Combination

    PubMed Central

    Tao, Zhimin; Raffel, Ryan A.; Souid, Abdul-Kader; Goodisman, Jerry

    2009-01-01

    The kinetics of the glucose oxidase-catalyzed reaction of glucose with O2, which produces gluconic acid and hydrogen peroxide, and the catalase-assisted breakdown of hydrogen peroxide to generate oxygen, have been measured via the rate of O2 depletion or production. The O2 concentrations in air-saturated phosphate-buffered salt solutions were monitored by measuring the decay of phosphorescence from a Pd phosphor in solution; the decay rate was obtained by fitting the tail of the phosphorescence intensity profile to an exponential. For glucose oxidation in the presence of glucose oxidase, the rate constant determined for the rate-limiting step was k = (3.0 ± 0.7) ×104 M−1s−1 at 37°C. For catalase-catalyzed H2O2 breakdown, the reaction order in [H2O2] was somewhat greater than unity at 37°C and well above unity at 25°C, suggesting different temperature dependences of the rate constants for various steps in the reaction. The two reactions were combined in a single experiment: addition of glucose oxidase to glucose-rich cell-free media caused a rapid drop in [O2], and subsequent addition of catalase caused [O2] to rise and then decrease to zero. The best fit of [O2] to a kinetic model is obtained with the rate constants for glucose oxidation and peroxide decomposition equal to 0.116 s−1 and 0.090 s−1 respectively. Cellular respiration in the presence of glucose was found to be three times as rapid as that in glucose-deprived cells. Added NaCN inhibited O2 consumption completely, confirming that oxidation occurred in the cellular mitochondrial respiratory chain. PMID:19348778

  11. Phosphorescent Organic Light Emitting Diodes Implementing Platinum Complexes

    NASA Astrophysics Data System (ADS)

    Ecton, Jeremy Exton

    Organic light emitting diodes (OLEDs) are a promising approach for display and solid state lighting applications. However, further work is needed in establishing the availability of efficient and stable materials for OLEDs with high external quantum efficiency's (EQE) and high operational lifetimes. Recently, significant improvements in the internal quantum efficiency or ratio of generated photons to injected electrons have been achieved with the advent of phosphorescent complexes with the ability to harvest both singlet and triplet excitons. Since then, a variety of phosphorescent complexes containing heavy metal centers including Os, Ni, Ir, Pd, and Pt have been developed. Thus far, the majority of the work in the field has focused on iridium based complexes. Platinum based complexes, however, have received considerably less attention despite demonstrating efficiency's equal to or better than their iridium analogs. In this study, a series of OLEDs implementing newly developed platinum based complexes were demonstrated with efficiency's or operational lifetimes equal to or better than their iridium analogs for select cases. In addition to demonstrating excellent device performance in OLEDs, platinum based complexes exhibit unique photophysical properties including the ability to form excimer emission capable of generating broad white light emission from a single emitter and the ability to form narrow band emission from a rigid, tetradentate molecular structure for select cases. These unique photophysical properties were exploited and their optical and electrical properties in a device setting were elucidated. Utilizing the unique properties of a tridentate Pt complex, Pt-16, a highly efficient white device employing a single emissive layer exhibited a peak EQE of over 20% and high color quality with a CRI of 80 and color coordinates CIE(x=0.33, y=0.33). Furthermore, by employing a rigid, tetradentate platinum complex, PtN1N, with a narrow band emission into a

  12. Analysis of Crystallization Kinetics

    NASA Technical Reports Server (NTRS)

    Kelton, Kenneth F.

    1997-01-01

    A realistic computer model for polymorphic crystallization (i.e., initial and final phases with identical compositions), which includes time-dependent nucleation and cluster-size-dependent growth rates, is developed and tested by fits to experimental data. Model calculations are used to assess the validity of two of the more common approaches for the analysis of crystallization data. The effects of particle size on transformation kinetics, important for the crystallization of many systems of limited dimension including thin films, fine powders, and nanoparticles, are examined.

  13. Penetration of analogues of H2O and CO2 in proteins studied by room temperature phosphorescence of tryptophan.

    PubMed

    Wright, W W; Owen, C S; Vanderkooi, J M

    1992-07-21

    The influence of the protein matrix on the reactivity of external molecules with a species buried within the protein interior is considered in two general ways: (1) there may be structural fluctuations that allow for the diffusive penetration of the small molecules and/or (2) the external molecule may react over a distance. As a means to study the protein matrix, a reactive species within the protein can be formed by exciting tryptophan to the triplet state, and then the reaction of the triplet-state molecule with an external molecule can be monitored by a decrease in phosphorescence. In this work, the quenching ability (i.e., reactivity) was examined for H2S, CS2, and NO2- acting on tryptophan phosphorescence in parvalbumin, azurin, horse liver alcohol dehydrogenase, and alkaline phosphatase. A comparison of charged versus uncharged quenchers (H2S vs SH- and CS2 vs NO2-) reveals that the uncharged molecules are much more effective than charged species in quenching the phosphorescence of fully buried tryptophan, whereas the quenching for exposed tryptophan is relatively independent of the charge of the quencher. This is consistent with the view that uncharged triatomic molecules can penetrate the protein matrix to some extent. The energies of activation of the quenching reaction are low for the charged quenchers and higher for the uncharged CS2. A model is presented in which the quenchability of a buried tryptophan is inversely related to the distance from the surface when diffusion through the protein is the rate-limiting step.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. The absorption, fluorescence and phosphorescence spectra of α and β-F, Cl, Br-naphthalenes in crystalline matrixes at 77 K

    NASA Astrophysics Data System (ADS)

    Iliescu, T.; Milea, I.; Abdolrahman, P. M.

    1984-03-01

    The paper studies the absorption, fluorescence and phosphorescence spectra of α and β-F, Cl, Br-naphtalenes (α, β-F, Cl,BrN) in different matrixes at 77 K and different concentrations. From these spectra one obtaines the vibrational frequences.

  15. From kinetic-structure analysis to engineering crystalline fiber networks in soft materials.

    PubMed

    Wang, Rong-Yao; Wang, Peng; Li, Jing-Liang; Yuan, Bing; Liu, Yu; Li, Li; Liu, Xiang-Yang

    2013-03-07

    Understanding the role of kinetics in fiber network microstructure formation is of considerable importance in engineering gel materials to achieve their optimized performances/functionalities. In this work, we present a new approach for kinetic-structure analysis for fibrous gel materials. In this method, kinetic data is acquired using a rheology technique and is analyzed in terms of an extended Dickinson model in which the scaling behaviors of dynamic rheological properties in the gelation process are taken into account. It enables us to extract the structural parameter, i.e. the fractal dimension, of a fibrous gel from the dynamic rheological measurement of the gelation process, and to establish the kinetic-structure relationship suitable for both dilute and concentrated gelling systems. In comparison to the fractal analysis method reported in a previous study, our method is advantageous due to its general validity for a wide range of fractal structures of fibrous gels, from a highly compact network of the spherulitic domains to an open fibrous network structure. With such a kinetic-structure analysis, we can gain a quantitative understanding of the role of kinetic control in engineering the microstructure of the fiber network in gel materials.

  16. Kinetic Analysis for Macrocyclizations Involving Anionic Template at the Transition State

    PubMed Central

    Martí-Centelles, Vicente; Burguete, M. Isabel; Luis, Santiago V.

    2012-01-01

    Several kinetic models for the macrocyclization of a C2 pseudopeptide with a dihalide through a SN2 reaction have been developed. These models not only focus on the kinetic analysis of the main macrocyclization reaction, but also consider the competitive oligomerization/polymerization processes yielding undesired oligomeric/polymeric byproducts. The effect of anions has also been included in the kinetic models, as they can act as catalytic templates in the transition state reducing and stabilizing the transition state. The corresponding differential equation systems for each kinetic model can be solved numerically. Through a comprehensive analysis of these results, it is possible to obtain a better understanding of the different parameters that are involved in the macrocyclization reaction mechanism and to develop strategies for the optimization of the desired processes. PMID:22666148

  17. Combined phosphorescence-holographic approach for singlet oxygen detection in biological media

    NASA Astrophysics Data System (ADS)

    Semenova, I. V.; Belashov, A. V.; Beltukova, D. M.; Petrov, N. V.; Vasyutinskii, O. S.

    2015-06-01

    The paper presents a novel combined approach aimed to detect and monitor singlet oxygen molecules in biological specimens by means of the simultaneous recording and monitoring of their deactivation dynamics in the two complementary channels: radiative and nonradiative. The approach involves both the direct registration of phosphorescence at the wavelength of about 1270 nm caused by radiative relaxation of excited singlet oxygen molecules and holographic recording of thermal disturbances in the medium produced by their nonradiative relaxation. The data provides a complete set of information on singlet oxygen location and dynamics in the medium. The approach was validated in the case study of photosensitized generation of singlet oxygen in onion cell structures.

  18. Fabrication and optimization of phosphorescent organic light emitting diodes for solid-state lighting applications

    NASA Astrophysics Data System (ADS)

    Bhansali, Unnat S.

    Organic Light Emitting Diodes (OLEDs) have made tremendous progress over the last decade and are under consideration for use as solid-state lighting sources to replace the existing incandescent and fluorescent technology. Use of metal-organic phosphorescent complexes as bright emitters and efficient charge transporting organic semiconductors has resulted in OLEDs with internal quantum efficiency ˜ 100% and power efficiency ˜100 lm/W (green OLEDs) at 1000 cd/m2. For lighting applications, white OLEDs (WOLEDs) are required to have a color rendering index (CRI) > 80, correlated color temperature (CCT) (2700 ≤ WOLEDs ≤ 6500 °K), power efficiency > 100 lm/W and a lifetime > 25,000 hrs (at 70% of its original lumen value) at a brightness of 1000 cd/m2. Typically, high CRIs and high power efficiencies are obtained by either a combination of a blue fluorescent emitter with green and red phosphorescent emitters or a stack of blue, green and red phosphorescent emitters doped in a host material. In this work, we implement a single-emitter WOLEDs (SWOLEDs) approach by using monomer (blue) and broad excimer emissions (green and orange) from a self-sensitizing Pt-based phosphorescent complex, designed and synthesized by Prof. M.A. Omary's group. We have optimized and demonstrated high efficiency turquoise-blue OLEDs from monomer emission of Pt(ptp)2-bis[3,5-bis(2-pyridyl)-1,2,4-triazolato]platinum(II) doped in a phosphine-oxide based host molecule and an electron transport molecule. The device peak power efficiency and external quantum efficiency were maintained >40 lm/W and >11%, respectively throughout the wide range of dopant concentrations (1% to 10%). A monotonic increase in the excimer/monomer emission intensity ratio is observed at the higher doping concentrations within 1%-10%, causing a small green-shift in the color. The peak performance of 60 -- 70 lm/W for the best optimized device represents the highest power efficiency known to date for blue OLEDs. Typically

  19. Combined magnetic resonance and optical imaging of head and neck tumor xenografts using Gadolinium-labelled phosphorescent polymeric nanomicelles

    PubMed Central

    2010-01-01

    Background The overall objective of this study was to develop a nanoparticle formulation for dual modality imaging of head and neck cancer. Here, we report the synthesis and characterization of polymeric phospholipid-based nanomicelles encapsulating near-infrared (NIR) phosphorescent molecules of Pt(II)-tetraphenyltetranaphthoporphyrin [Pt(TPNP)] and surface functionalized with gadolinium [Pt(TPNP)-Gd] for combined magnetic resonance imaging (MRI) and NIR optical imaging applications. Methods Dynamic light scattering, electron microscopy, optical spectroscopy and MR relaxometric measurements were performed to characterize the optical and magnetic properties of nanoparticles in vitro. Subsequently, in vivo imaging experiments were carried out using nude mice bearing primary patient tumor-derived human head and neck squamous cell carcinoma xenografts. Results The nanomicelles were ~100 nm in size and stable in aqueous suspension. T1-weighted MRI and relaxation rate (R1 = 1/T1) measurements carried out at 4.7 T revealed enhancement in the tumor immediately post injection with nanomicelles, particularly in the tumor periphery which persisted up to 24 hours post administration. Maximum intensity projections (MIPs) generated from 3D T1-weighted images also demonstrated visible enhancement in contrast within the tumor, liver and blood vessels. NIR optical imaging performed (in vivo and ex vivo) following completion of MRI at the 24 h time point confirmed tumor localization of the nanoparticles. The large spectral separation between the Pt(TPNP) absorption (~700 nm) and phosphorescence emission (~900 nm) provided a dramatic decrease in the level of background, resulting in high contrast optical (NIR phosphorescence) imaging. Conclusions In conclusion, Pt(TPNP)-Gd nanomicelles exhibit a high degree of tumor-avidity and favorable imaging properties that allow for combined MR and optical imaging of head and neck tumors. Further investigation into the potential of Pt

  20. Development and Utilization of Host Materials for White Phosphorescent Organic Light-Emitting Diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Ching; Chen, Shaw

    Our project was primarily focused on the MYPP 2015 goal for white phosphorescent organic devices (PhOLEDs or phosphorescent organic light-emitting diodes) for solid-state lighting with long lifetimes and high efficiencies. Our central activity was to synthesize and evaluate a new class of host materials for blue phosphors in the PhOLEDs, known to be a weak link in the device operating lifetime. The work was a collaborative effort between three groups, one primarily responsible for chemical design and characterization (Chen), one primarily responsible for device development (Tang) and one primarily responsible for mechanistic studies and degradation analysis (Rothberg). The host materialsmore » were designed with a novel architecture that chemically links groups with good ability to move electrons with those having good ability to move “holes” (positive charges), the main premise being that we could suppress the instability associated with physical separation and crystallization of the electron conducting and hole conducting materials that might cause the devices to fail. We found that these materials do prevent crystallization and that this will increase device lifetimes but that efficiencies were reduced substantially due to interactions between the materials creating new low energy “charge transfer” states that are non-luminescent. Therefore, while our proposed strategy could in principle improve device lifetimes, we were unable to find a materials combination where the efficiency was not substantially compromised. In the course of our project, we made several important contributions that are peripherally related to the main project goal. First, we were able to prepare the proposed new family of materials and develop synthetic routes to make them efficiently. These types of materials that can transport both electrons and holes may yet have important roles to play in organic device technology. Second we developed an important new method for controlling

  1. High Power Efficiency Solution-Processed Blue Phosphorescent Organic Light-Emitting Diodes Using Exciplex-Type Host with a Turn-on Voltage Approaching the Theoretical Limit.

    PubMed

    Ban, Xinxin; Sun, Kaiyong; Sun, Yueming; Huang, Bin; Ye, Shanghui; Yang, Min; Jiang, Wei

    2015-11-18

    Three solution-processable exciplex-type host materials were successfully designed and characterized by equal molar blending hole transporting molecules with a newly synthesized electron transporting material, which possesses high thermal stability and good film-forming ability through a spin-coating technique. The excited-state dynamics and the structure-property relationships were systematically investigated. By gradually deepening the highest occupied molecular orbital (HOMO) level of electron-donating components, the triplet energy of exciplex hosts were increased from 2.64 to 3.10 eV. Low temperature phosphorescence spectra demonstrated that the excessively high triplet energy of exciplex would induce a serious energy leakage from the complex state to the constituting molecule. Furthermore, the low energy electromer state, which only exists under the electroexcitation, was found as another possible channel for energy loss in exciplex-based phosphorescent organic light-emitting diodes (OLEDs). In particular, as quenching of the exciplex-state and the triplet exciton were largely eliminated, solution-processed blue phosphorescence OLEDs using the exciplex-type host achieved an extremely low turn-on voltage of 2.7 eV and record-high power efficiency of 22.5 lm W(-1), which were among the highest values in the devices with identical structure.

  2. Simplified efficient phosphorescent organic light-emitting diodes by organic vapor phase deposition

    NASA Astrophysics Data System (ADS)

    Pfeiffer, P.; Beckmann, C.; Stümmler, D.; Sanders, S.; Simkus, G.; Heuken, M.; Vescan, A.; Kalisch, H.

    2017-12-01

    The most efficient phosphorescent organic light-emitting diodes (OLEDs) are comprised of complex stacks with numerous organic layers. State-of-the-art phosphorescent OLEDs make use of blocking layers to confine charge carriers and excitons. On the other hand, simplified OLEDs consisting of only three organic materials have shown unexpectedly high efficiency when first introduced. This was attributed to superior energy level matching and suppressed external quantum efficiency (EQE) roll-off. In this work, we study simplified OLED stacks, manufactured by organic vapor phase deposition, with a focus on charge balance, turn-on voltage (Von), and efficiency. To prevent electrons from leaking through the device, we implemented a compositionally graded emission layer. By grading the emitter with the hole transport material, charge confinement is enabled without additional blocking layers. Our best performing organic stack is composed of only three organic materials in two layers including the emitter Ir(ppy)3 and yields a Von of 2.5 V (>1 cd/m2) and an EQE of 13% at 3000 cd/m2 without the use of any additional light extraction techniques. Changes in the charge balance, due to barrier tuning or adjustments in the grading parameters and layer thicknesses, are clearly visible in the current density-voltage-luminance (J-V-L) measurements. As charge injection at the electrodes and organic interfaces is of great interest but difficult to investigate in complex device structures, we believe that our simplified organic stack is not only a potent alternative to complex state-of-the-art OLEDs but also a well suited test vehicle for experimental studies focusing on the modification of the electrode-organic semiconductor interface.

  3. Selective turn-off phosphorescent and colorimetric detection of mercury(II) in water by half-lantern platinum(II) complexes.

    PubMed

    Sicilia, Violeta; Borja, Pilar; Baya, Miguel; Casas, José M

    2015-04-21

    The platinum(ii) half-lantern dinuclear complexes [{Pt(bzq)(μ-C7H4NS2-κN,S)}2] () and [{Pt(bzq)(μ-C7H4NOS-κN,S)}2] () [bzq = benzo[h]quinolinate, C7H4NS2 = 2-mercaptobenzothiazolate, C7H4NOS = 2-mercaptobenzoxazolate] in solution of DMSO-H2O undergo a dramatic color change from yellowish-orange to purple and turn-off phosphorescence in the presence of a small amount of Hg(2+), being discernible by the naked-eye and by spectroscopic methods. Other metal ions as Ag(+), Li(+), Na(+), K(+), Ca(2+), Mg(2+), Ba(2+), Pb(2+), Cd(2+), Zn(2+) and Tl(+) were tested and, even in a big excess, showed no interference in the selective detection of Hg(2+) in water. Job's plot analysis indicated a 1 : 1 stoichiometry in the complexation mode of Hg(2+) by /. The phosphorescence quenching attributed to the formation of [/ : Hg(2+)] complexes showed binding constants of K = 1.13 × 10(5) M(-1) () and K = 1.99 × 10(4) M(-1) (). The limit of detection has been also evaluated. In addition, dried paper test strips impregnated in DMSO solutions of and can detect concentration of Hg(2+) in water as low as 1 × 10(-5) M for and 5 × 10(-5) M for , making these complexes good candidates to be used as real-time Hg(2+) detectors. The nature of the interaction of the Pt2 half-lantern complex with the Hg(2+) cation, has been investigated by theoretical calculations.

  4. A computational protocol for the study of circularly polarized phosphorescence and circular dichroism in spin-forbidden absorption.

    PubMed

    Kamiński, Maciej; Cukras, Janusz; Pecul, Magdalena; Rizzo, Antonio; Coriani, Sonia

    2015-07-15

    We present a computational methodology to calculate the intensity of circular dichroism (CD) in spin-forbidden absorption and of circularly polarized phosphorescence (CPP) signals, a manifestation of the optical activity of the triplet-singlet transitions in chiral compounds. The protocol is based on the response function formalism and is implemented at the level of time-dependent density functional theory. It has been employed to calculate the spin-forbidden circular dichroism and circularly polarized phosphorescence signals of valence n → π* and n ← π* transitions, respectively, in several chiral enones and diketones. Basis set effects in the length and velocity gauge formulations have been explored, and the accuracy achieved when employing approximate (mean-field and effective nuclear charge) spin-orbit operators has been investigated. CPP is shown to be a sensitive probe of the triplet excited state structure. In many cases the sign of the spin-forbidden CD and CPP signals are opposite. For the β,γ-enones under investigation, where there are two minima on the lowest triplet excited state potential energy surface, each minimum exhibits a CPP signal of a different sign.

  5. Enhanced photoluminescence and phosphorescence properties of green phosphor Zn2GeO4:Mn(2+)via composition modification with GeO2 and MgF2.

    PubMed

    Pan, Yuexiao; Li, Li; Lu, Jing; Pang, Ran; Wan, Li; Huang, Shaoming

    2016-06-21

    A green long-lasting phosphorescence (LLP) phosphor Zn2GeO4:Mn(2+) (ZGOM) has been synthesized by a solid-state method at 1100 °C in air. The luminescence intensity has been improved up to 9 and 6 times through mixing GeO2 and MgF2 into the composition, respectively. The phosphorescence duration of the sample has been prolonged to 5 h. The phosphor, composed of a mixture of Zn2GeO4 (ZGO), GeO2, and MgGeO3 phases, emits enhanced green luminescence with a broad excitation band between 250 nm to 400 nm. Under identical measurement conditions, the optimized phosphor ZGOM has a higher emission intensity and shows longer wavelength emission than those of the commercial green LLP phosphor SrAl2O4:Eu,Dy (SAOED) under an excitation at 336 nm. The quantum yield of the sample modified by GeO2 and MgF2 is as high as 95.0%. Understanding of the formation mechanism for enhancement of emission intensity and prolonging of phosphorescence duration of ZGOM is fundamentally important, which might be extended to other identified solid-state inorganic phosphor materials for advanced properties.

  6. Synthesis of dibenzothiophene-containing ladder polysilsesquioxane as a blue phosphorescent host material.

    PubMed

    Ren, Zhongjie; Sun, Dianming; Li, Huihui; Fu, Qiang; Ma, Dongge; Zhang, Jianming; Yan, Shouke

    2012-03-26

    A ladder polysilsesquioxanes with side chain of dibenzothiophene groups (BS-LPSQ) was successfully synthesized. The ladder structure of BS-LPSQ was characterized by MALDI-TOF MS, XRD, and (1)H NMR spectroscopy. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), atomic force microscopy (AFM), and spectroscopic analyses revealed that the BS-LPSQ has good film-forming ability, high thermal and morphological stability, and good miscibility to the dopant iridium bis(4,6-difluorophenyl)pyridinato-N,C(2)-picolinate (FIrpic), high triplet energy, and a wide bandgap. In addition, compared with the ringed polysiloxane BS-PSQ phosphorescent host material reported previously, the ladder structure of BS-LPSQ has not only a higher thermal resistance, but also could prevent molecular aggregation and effectively avoid quenching of fluorescence. Thus, the BS-LPSQ may be used as a better host for the blue-light-emitting iridium complex FIrpic. The performance of the electrophosphorescent device, based on the ladder BS-LPSQ as the active layer, is superior to that of ringed BS-PSQ and any other polyhedral oligomeric silsesquioxane (POSS)-based or polymer host materials. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Strong ligand field effects of blue phosphorescent Ir(III) complexes with phenylpyrazole and phosphines.

    PubMed

    Park, Se Won; Ham, Ho Wan; Kim, Young Sik

    2012-04-01

    In the paper, we describe new Ir complexes for achieving efficient blue phosphorescence. New blue-emitting mixed-ligand Ir complexes comprising one cyclometalating, two phosphines trans to each other such as Ir(dppz)(PPh3)2(H)(L) (Ll= Cl, NCMe+, CN), [dppz = 3,5-Diphenylpyrazole] were synthesized and studied to tune the phosphorescence wavelength to the deep blue region and to enhance the luminescence efficiencies. To gain insight into the factors responsible for the emission color change and the variation of luminescence efficiency, we investigate the electron-withdrawing capabilities of ancillary ligands using DFT and TD-DFT calculations on the ground and excited states of the complexes. To achieve deep blue emission and increase the emission efficiency, (1) we substitute the phenyl group on the 3-position of the pyrazole ring that lowers the triplet energy enough that the quenching channel is not thermally accessible and (2) change the ancillary ligands coordinated to iridium atom to phosphine and cyano groups known as very strong field ligands. Their inclusion in the coordination sphere can increase the HOMO-LUMO gap to achieve the hypsochromic shift in emission color and lower the HOMO and LUMO energy level, which causes a large d-orbital energy splitting and avoids the quenching effect to improve the luminescence efficiency. The maximum emission spectra of Ir(dppz)(PPh3)2(H)(CI) and Ir(dppz)(PPh3)2(H)(CN) were in the ranges of 439, 432 nm, respectively.

  8. A resource facility for kinetic analysis: modeling using the SAAM computer programs.

    PubMed

    Foster, D M; Boston, R C; Jacquez, J A; Zech, L

    1989-01-01

    Kinetic analysis and integrated system modeling have contributed significantly to understanding the physiology and pathophysiology of metabolic systems in humans and animals. Many experimental biologists are aware of the usefulness of these techniques and recognize that kinetic modeling requires special expertise. The Resource Facility for Kinetic Analysis (RFKA) provides this expertise through: (1) development and application of modeling technology for biomedical problems, and (2) development of computer-based kinetic modeling methodologies concentrating on the computer program Simulation, Analysis, and Modeling (SAAM) and its conversational version, CONversational SAAM (CONSAM). The RFKA offers consultation to the biomedical community in the use of modeling to analyze kinetic data and trains individuals in using this technology for biomedical research. Early versions of SAAM were widely applied in solving dosimetry problems; many users, however, are not familiar with recent improvements to the software. The purpose of this paper is to acquaint biomedical researchers in the dosimetry field with RFKA, which, together with the joint National Cancer Institute-National Heart, Lung and Blood Institute project, is overseeing SAAM development and applications. In addition, RFKA provides many service activities to the SAAM user community that are relevant to solving dosimetry problems.

  9. Kinetic stability analysis on electromagnetic filamentary structure

    NASA Astrophysics Data System (ADS)

    Lee, Wonjae; Krasheninnikov, Sergei

    2014-10-01

    A coherent radial transport of filamentary structures in SOL region is important for its characteristics that can increase unwanted high fluxes to plasma facing components. In the course of propagation in radial direction, the coherency of the filaments is significantly limited by electrostatic resistive drift instability (Angus et al., 2012). Considering higher plasma pressure, which would have more large impact in heat fluxes, electromagnetic effects will reduce the growth rate of the drift wave instability and increase the instabilities from electron inertial effects. According to a linear stability analysis on equations with fluid approximation, the maximum growth rate of the instability from the electron inertia is higher than that of drift-Alfvén wave instability in high beta filaments such as ELMs. However, the analysis on the high beta filaments requires kinetic approach, since the decreased collisionality will make the fluid approximation broken. Therefore, the kinetic analysis will be presented for the electromagnetic effects on the dynamics of filamentary structures. This work was supported by the USDOE Grants DE-FG02-04ER54739 and DE-SC0010413 at UCSD and also by the Kwanjeong Educational Foundation.

  10. Phosphorescent Iridium(III) Complexes Bearing Fluorinated Aromatic Sulfonyl Group with Nearly Unity Phosphorescent Quantum Yields and Outstanding Electroluminescent Properties.

    PubMed

    Zhao, Jiang; Yu, Yue; Yang, Xiaolong; Yan, Xiaogang; Zhang, Huiming; Xu, Xianbin; Zhou, Guijiang; Wu, Zhaoxin; Ren, Yixia; Wong, Wai-Yeung

    2015-11-11

    A series of heteroleptic functional Ir(III) complexes bearing different fluorinated aromatic sulfonyl groups has been synthesized. Their photophysical features, electrochemical behaviors, and electroluminescent (EL) properties have been characterized in detail. These complexes emit intense yellow phosphorescence with exceptionally high quantum yields (ΦP > 0.9) at room temperature, and the emission maxima of these complexes can be finely tuned depending upon the number of the fluorine substituents on the pendant phenyl ring of the sulfonyl group. Furthermore, the electrochemical properties and electron injection/transporting (EI/ET) abilities of these Ir(III) phosphors can also be effectively tuned by the fluorinated aromatic sulfonyl group to furnish some desired characters for enhancing the EL performance. Hence, the maximum luminance efficiency (ηL) of 81.2 cd A(-1), corresponding to power efficiency (ηP) of 64.5 lm W(-1) and external quantum efficiency (ηext) of 19.3%, has been achieved, indicating the great potential of these novel phosphors in the field of organic light-emitting diodes (OLEDs). Furthermore, a clear picture has been drawn for the relationship between their optoelectronic properties and chemical structures. These results should provide important information for developing highly efficient phosphors.

  11. Physico-Geometrical Kinetics of Solid-State Reactions in an Undergraduate Thermal Analysis Laboratory

    ERIC Educational Resources Information Center

    Koga, Nobuyoshi; Goshi, Yuri; Yoshikawa, Masahiro; Tatsuoka, Tomoyuki

    2014-01-01

    An undergraduate kinetic experiment of the thermal decomposition of solids by microscopic observation and thermal analysis was developed by investigating a suitable reaction, applicable techniques of thermal analysis and microscopic observation, and a reliable kinetic calculation method. The thermal decomposition of sodium hydrogen carbonate is…

  12. An Exciplex Host for Deep-Blue Phosphorescent Organic Light-Emitting Diodes.

    PubMed

    Lim, Hyoungcheol; Shin, Hyun; Kim, Kwon-Hyeon; Yoo, Seung-Jun; Huh, Jin-Suk; Kim, Jang-Joo

    2017-11-01

    The use of exciplex hosts is attractive for high-performance phosphorescent organic light-emitting diodes (PhOLEDs) and thermally activated delayed fluorescence OLEDs, which have high external quantum efficiency, low driving voltage, and low efficiency roll-off. However, exciplex hosts for deep-blue OLEDs have not yet been reported because of the difficulties in identifying suitable molecules. Here, we report a deep-blue-emitting exciplex system with an exciplex energy of 3.0 eV. It is composed of a carbazole-based hole-transporting material (mCP) and a phosphine-oxide-based electron-transporting material (BM-A10). The blue PhOLEDs exhibited maximum external quantum efficiency of 24% with CIE coordinates of (0.15, 0.21) and longer lifetime than the single host devices.

  13. Vibronic Coupling Investigation to Compute Phosphorescence Spectra of Pt(II) Complexes.

    PubMed

    Vazart, Fanny; Latouche, Camille; Bloino, Julien; Barone, Vincenzo

    2015-06-01

    The present paper reports a comprehensive quantum mechanical investigation on the luminescence properties of several mono- and dinuclear platinum(II) complexes. The electronic structures and geometric parameters are briefly analyzed together with the absorption bands of all complexes. In all cases agreement with experiment is remarkable. Next, emission (phosphorescence) spectra from the first triplet states have been investigated by comparing different computational approaches and taking into account also vibronic effects. Once again, agreement with experiment is good, especially using unrestricted electronic computations coupled to vibronic contributions. Together with the intrinsic interest of the results, the robustness and generality of the approach open the opportunity for computationally oriented chemists to provide accurate results for the screening of large targets which could be of interest in molecular materials design.

  14. Pre-Steady-State Kinetic Analysis of Single-Nucleotide Incorporation by DNA Polymerases

    PubMed Central

    Su, Yan; Guengerich, F. Peter

    2016-01-01

    Pre-steady-state kinetic analysis is a powerful and widely used method to obtain multiple kinetic parameters. This protocol provides a step-by-step procedure for pre-steady-state kinetic analysis of single-nucleotide incorporation by a DNA polymerase. It describes the experimental details of DNA substrate annealing, reaction mixture preparation, handling of the RQF-3 rapid quench-flow instrument, denaturing polyacrylamide DNA gel preparation, electrophoresis, quantitation, and data analysis. The core and unique part of this protocol is the rationale for preparation of the reaction mixture (the ratio of the polymerase to the DNA substrate) and methods for conducting pre-steady-state assays on an RQF-3 rapid quench-flow instrument, as well as data interpretation after analysis. In addition, the methods for the DNA substrate annealing and DNA polyacrylamide gel preparation, electrophoresis, quantitation and analysis are suitable for use in other studies. PMID:27248785

  15. Ultrasonic assisted synthesis of adenosine triphosphate capped manganese-doped ZnS quantum dots for selective room temperature phosphorescence detection of arginine and methylated arginine in urine based on supramolecular Mg(2+)-adenosine triphosphate-arginine ternary system.

    PubMed

    Ren, Hu-Bo; Yan, Xiu-Ping

    2012-08-15

    An ultrasonic assisted approach was developed for rapid synthesis of highly water soluble phosphorescent adenosine triphosphate (ATP)-capped Mn-doped ZnS QDs. The prepared ATP-capped Mn-doped ZnS QDs allow selective phosphorescent detection of arginine and methylated arginine based on the specific recognition nature of supramolecular Mg(2+)-ATP-arginine ternary system in combination with the phosphorescence property of Mn-doped ZnS QDs. The developed QD based probe gives excellent selectivity and reproducibility (1.7% relative standard deviation for 11 replicate detections of 10 μM arginine) and low detection limit (3 s, 0.23 μM), and favors biological applications due to the effective elimination of interference from scattering light and autofluorescence. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Validation of Bayesian analysis of compartmental kinetic models in medical imaging.

    PubMed

    Sitek, Arkadiusz; Li, Quanzheng; El Fakhri, Georges; Alpert, Nathaniel M

    2016-10-01

    Kinetic compartmental analysis is frequently used to compute physiologically relevant quantitative values from time series of images. In this paper, a new approach based on Bayesian analysis to obtain information about these parameters is presented and validated. The closed-form of the posterior distribution of kinetic parameters is derived with a hierarchical prior to model the standard deviation of normally distributed noise. Markov chain Monte Carlo methods are used for numerical estimation of the posterior distribution. Computer simulations of the kinetics of F18-fluorodeoxyglucose (FDG) are used to demonstrate drawing statistical inferences about kinetic parameters and to validate the theory and implementation. Additionally, point estimates of kinetic parameters and covariance of those estimates are determined using the classical non-linear least squares approach. Posteriors obtained using methods proposed in this work are accurate as no significant deviation from the expected shape of the posterior was found (one-sided P>0.08). It is demonstrated that the results obtained by the standard non-linear least-square methods fail to provide accurate estimation of uncertainty for the same data set (P<0.0001). The results of this work validate new methods for a computer simulations of FDG kinetics. Results show that in situations where the classical approach fails in accurate estimation of uncertainty, Bayesian estimation provides an accurate information about the uncertainties in the parameters. Although a particular example of FDG kinetics was used in the paper, the methods can be extended for different pharmaceuticals and imaging modalities. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  17. Kinetic analysis of overlapping multistep thermal decomposition comprising exothermic and endothermic processes: thermolysis of ammonium dinitramide.

    PubMed

    Muravyev, Nikita V; Koga, Nobuyoshi; Meerov, Dmitry B; Pivkina, Alla N

    2017-01-25

    This study focused on kinetic modeling of a specific type of multistep heterogeneous reaction comprising exothermic and endothermic reaction steps, as exemplified by the practical kinetic analysis of the experimental kinetic curves for the thermal decomposition of molten ammonium dinitramide (ADN). It is known that the thermal decomposition of ADN occurs as a consecutive two step mass-loss process comprising the decomposition of ADN and subsequent evaporation/decomposition of in situ generated ammonium nitrate. These reaction steps provide exothermic and endothermic contributions, respectively, to the overall thermal effect. The overall reaction process was deconvoluted into two reaction steps using simultaneously recorded thermogravimetry and differential scanning calorimetry (TG-DSC) curves by considering the different physical meanings of the kinetic data derived from TG and DSC by P value analysis. The kinetic data thus separated into exothermic and endothermic reaction steps were kinetically characterized using kinetic computation methods including isoconversional method, combined kinetic analysis, and master plot method. The overall kinetic behavior was reproduced as the sum of the kinetic equations for each reaction step considering the contributions to the rate data derived from TG and DSC. During reproduction of the kinetic behavior, the kinetic parameters and contributions of each reaction step were optimized using kinetic deconvolution analysis. As a result, the thermal decomposition of ADN was successfully modeled as partially overlapping exothermic and endothermic reaction steps. The logic of the kinetic modeling was critically examined, and the practical usefulness of phenomenological modeling for the thermal decomposition of ADN was illustrated to demonstrate the validity of the methodology and its applicability to similar complex reaction processes.

  18. Theoretical study on the electronic structures and phosphorescent properties of four Ir(III) complexes with different substituents on the ancillary ligand

    NASA Astrophysics Data System (ADS)

    Han, Deming; Shang, Xiaohong; Zhang, Gang; Zhao, Lihui

    2013-12-01

    The geometry structures, electronic structures, absorption and phosphorescent properties of four Ir(III) complexes {[(F2-ppy)2Ir(pta-X)], where F2-ppy = (2,4-difluoro)phenylpyridine; pta = pyridine-1,2,4-triazole; X = -CF3; -H; -CH3; -N(CH3)2}, are investigated using the density functional method. The results reveal that the electron-accepting group -CF3 has no obvious effect on absorption and emission properties, while the substitutive group -N(CH3)2 with strong electron-donating ability has obvious effect on the emission properties. The mobility of hole and electron were studied computationally based on the Marcus-Hush theory. Calculations of ionisation potential and electron affinity were used to evaluate the injection abilities of holes and electrons into these complexes. We hope that this theoretical work can provide a suitable guide to the future design and synthesis of novel phosphorescent materials for use in the organic light-emitting diodes.

  19. Stochastic lumping analysis for linear kinetics and its application to the fluctuation relations between hierarchical kinetic networks.

    PubMed

    Deng, De-Ming; Chang, Cheng-Hung

    2015-05-14

    Conventional studies of biomolecular behaviors rely largely on the construction of kinetic schemes. Since the selection of these networks is not unique, a concern is raised whether and under which conditions hierarchical schemes can reveal the same experimentally measured fluctuating behaviors and unique fluctuation related physical properties. To clarify these questions, we introduce stochasticity into the traditional lumping analysis, generalize it from rate equations to chemical master equations and stochastic differential equations, and extract the fluctuation relations between kinetically and thermodynamically equivalent networks under intrinsic and extrinsic noises. The results provide a theoretical basis for the legitimate use of low-dimensional models in the studies of macromolecular fluctuations and, more generally, for exploring stochastic features in different levels of contracted networks in chemical and biological kinetic systems.

  20. Visual evaluation of kinetic characteristics of PET probe for neuroreceptors using a two-phase graphic plot analysis.

    PubMed

    Ito, Hiroshi; Ikoma, Yoko; Seki, Chie; Kimura, Yasuyuki; Kawaguchi, Hiroshi; Takuwa, Hiroyuki; Ichise, Masanori; Suhara, Tetsuya; Kanno, Iwao

    2017-05-01

    Objectives In PET studies for neuroreceptors, tracer kinetics are described by the two-tissue compartment model (2-TCM), and binding parameters, including the total distribution volume (V T ), non-displaceable distribution volume (V ND ), and binding potential (BP ND ), can be determined from model parameters estimated by kinetic analysis. The stability of binding parameter estimates depends on the kinetic characteristics of radioligands. To describe these kinetic characteristics, we previously developed a two-phase graphic plot analysis in which V ND and V T can be estimated from the x-intercept of regression lines for early and delayed phases, respectively. In this study, we applied this graphic plot analysis to visual evaluation of the kinetic characteristics of radioligands for neuroreceptors, and investigated a relationship between the shape of these graphic plots and the stability of binding parameters estimated by the kinetic analysis with 2-TCM in simulated brain tissue time-activity curves (TACs) with various binding parameters. Methods 90-min TACs were generated with the arterial input function and assumed kinetic parameters according to 2-TCM. Graphic plot analysis was applied to these simulated TACs, and the curvature of the plot for each TAC was evaluated visually. TACs with several noise levels were also generated with various kinetic parameters, and the bias and variation of binding parameters estimated by kinetic analysis were calculated in each TAC. These bias and variation were compared with the shape of graphic plots. Results The graphic plots showed larger curvature for TACs with higher specific binding and slower dissociation of specific binding. The quartile deviations of V ND and BP ND determined by kinetic analysis were smaller for radioligands with slow dissociation. Conclusions The larger curvature of graphic plots for radioligands with slow dissociation might indicate a stable determination of V ND and BP ND by kinetic analysis. For

  1. Designing Single-Ion Magnets and Phosphorescent Materials with 1-Methylimidazole-5-carboxylate and Transition-Metal Ions.

    PubMed

    García-Valdivia, Antonio A; Seco, Jose M; Cepeda, Javier; Rodríguez-Diéguez, Antonio

    2017-11-20

    Detailed structural, magnetic, and photoluminescence (PL) characterization of four new compounds based on 1-methylimidazole-5-carboxylate (mimc) ligand and transition metal ions, namely [Ni(mimc) 2 (H 2 O) 4 ] (1), [Co(μ-mimc) 2 ] n (2), {[Cu 2 (μ-mimc) 4 (H 2 O)]·2H 2 O} n (3), and [Cd(μ-mimc) 2 (H 2 O)] n (4) is reported. The structural diversity found in the family of compounds derives from the coordination versatility of the ligand, which coordinates as a terminal ligand to give a supramolecular network of monomeric entities in 1 or acts as a bridging linker to build isoreticular 2D coordination polymers (CPs) in 2-4. Magnetic direct-current (dc) susceptibility data have been measured for compounds 1-3 to analyze the exchange interactions among paramagnetic centers, which have been indeed supported by calculations based on broken symmetry (BS) and density functional theory (DFT) methodology. The temperature dependence of susceptibility and magnetization data of 2 are indicative of easy-plane anisotropy (D = +12.9 cm -1 , E = +0.5 cm -1 ) that involves a bistable M s = ±1/2 ground state. Alternating-current (ac) susceptibility curves exhibit field-induced single-ion magnet (SIM) behavior that occurs below 14 K, which is characterized by two spin relaxation processes of distinct nature: fast relaxation of single ions proceeding through multiple mechanisms (U eff = 26 K) and a slow relaxation attributed to interactions along the polymeric crystal building. Exhaustive PL analysis of compound 4 in the solid state confirms low-temperature phosphorescent green emission consisting of radiative lifetimes in the range of 0.25-0.43 s, which explains the afterglow observed during about 1 s after the removal of the UV source. Time-dependent DFT and computational calculations to estimate phosphorescent vertical transitions have been also employed to provide an accurate description of the PL performance of this long-lasting phosphor.

  2. Rhenium(I) polypyridine dibenzocyclooctyne complexes as phosphorescent bioorthogonal probes: Synthesis, characterization, emissive behavior, and biolabeling properties.

    PubMed

    Choi, Alex Wing-Tat; Liu, Hua-Wei; Lo, Kenneth Kam-Wing

    2015-07-01

    We report the development of rhenium(I) polypyridine complexes appended with a dibenzocyclooctyne (DIBO) moiety as bioorthogonal probes for azide-modified biomolecules. Three phosphorescent rhenium(I) polypyridine DIBO complexes [Re(N^N)(CO)3(py-C6-DIBO)][CF3SO3] (py-C6-DIBO=3-(N-(6-(3,4:7,8-dibenzocyclooctyne-5-oxycarbonylamino)hexyl)aminocarbonyl)pyridine; N^N=1,10-phenanthroline (phen) (1a), 3,4,7,8-tetramethyl-1,10-phenanthroline (Me4-phen) (2a), 4,7-diphenyl-1,10-phenanthroline (Ph2-phen) (3a)) and their DIBO-free counterparts [Re(N^N)(CO)3(py-C6-BOC)][CF3SO3] (py-C6-BOC=3-(N-(6-(tert-butoxycarbonylamino)hexyl)aminocarbonyl)pyridine; N^N=phen (1b), Me4-phen (2b), Ph2-phen (3b)) were synthesized and characterized. Upon photoexcitation, all the complexes displayed intense and long-lived yellow triplet metal-to-ligand charge-transfer ((3)MLCT) (dπ(Re)→π*(N^N)) emission. The DIBO complexes underwent facile reactions with benzyl azide in methanol at 298 K with second-order rate constants (k2) in the range of 0.077 to 0.091 M(-1) s(-1). As revealed from SDS-PAGE analysis, the DIBO complexes can selectively label azide-modified proteins and the resulting bioconjugates displayed strong phosphorescence upon photoexcitation. Results of inductively coupled plasma mass spectrometry (ICP-MS) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays indicated that the DIBO complexes accumulated in Chinese Hamster Ovary (CHO) cells with considerable cytotoxic activity. Upon incubation of CHO cells with these complexes, relatively weak intracellular emission was observed. In contrast, upon pretreatment of the cells with 1,3,4,6-tetra-O-acetyl-N-azidoacetyl-D-mannosamine (Ac4ManNAz), intense emission was observed from the cell membrane and some internal compartments. The results suggest that the DIBO complexes are promising candidates for imaging azide-labeled biomolecules. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Kinetic analysis of a Michaelis-Menten mechanism in which the enzyme is unstable.

    PubMed Central

    Garrido-del Solo, C; García-Cánovas, F; Havsteen, B H; Varón-Castellanos, R

    1993-01-01

    A kinetic analysis of the Michaelis-Menten mechanism is made for the cases in which the free enzyme, or the enzyme-substrate complex, or both, are unstable, either spontaneously or as a result of the addition of a reagent. The explicit time-course equations of all of the species involved has been derived under conditions of limiting enzyme concentration. The validity of these equations has been checked by using numerical simulations. An experimental design and a kinetic data analysis allowing the evaluation of the parameters and kinetic constants are recommended. PMID:8373361

  4. Direct Detection of Singlet-Triplet Interconversion in OLED Magnetoelectroluminescence with a Metal-Free Fluorescence-Phosphorescence Dual Emitter

    NASA Astrophysics Data System (ADS)

    Ratzke, Wolfram; Bange, Sebastian; Lupton, John M.

    2018-05-01

    We demonstrate that a simple phenazine derivative can serve as a dual emitter for organic light-emitting diodes, showing simultaneous luminescence from the singlet and triplet excited states at room temperature without the need of heavy-atom substituents. Although devices made with this emitter achieve only low quantum efficiencies of <0.2 % , changes in fluorescence and phosphorescence intensity on the subpercent scale caused by an external magnetic field of up to 30 mT are clearly resolved with an ultra-low-noise optical imaging technique. The results demonstrate the concept of using simple reporter molecules, available commercially, to optically detect the spin of excited states formed in an organic light-emitting diode and thereby probe the underlying spin statistics of recombining electron-hole pairs. A clear anticorrelation of the magnetic-field dependence of singlet and triplet emission shows that it is the spin interconversion between singlet and triplet which dominates the magnetoluminescence response: the phosphorescence intensity decreases by the same amount as the fluorescence intensity increases. The concurrent detection of singlet and triplet emission as well as device resistance at cryogenic and room temperature constitute a useful tool to disentangle the effects of spin-dependent recombination from spin-dependent transport mechanisms.

  5. Comparative kinetic analysis on thermal degradation of some cephalosporins using TG and DSC data

    PubMed Central

    2013-01-01

    Background The thermal decomposition of cephalexine, cefadroxil and cefoperazone under non-isothermal conditions using the TG, respectively DSC methods, was studied. In case of TG, a hyphenated technique, including EGA, was used. Results The kinetic analysis was performed using the TG and DSC data in air for the first step of cephalosporin’s decomposition at four heating rates. The both TG and DSC data were processed according to an appropriate strategy to the following kinetic methods: Kissinger-Akahira-Sunose, Friedman, and NPK, in order to obtain realistic kinetic parameters, even if the decomposition process is a complex one. The EGA data offer some valuable indications about a possible decomposition mechanism. The obtained data indicate a rather good agreement between the activation energy’s values obtained by different methods, whereas the EGA data and the chemical structures give a possible explanation of the observed differences on the thermal stability. A complete kinetic analysis needs a data processing strategy using two or more methods, but the kinetic methods must also be applied to the different types of experimental data (TG and DSC). Conclusion The simultaneous use of DSC and TG data for the kinetic analysis coupled with evolved gas analysis (EGA) provided us a more complete picture of the degradation of the three cephalosporins. It was possible to estimate kinetic parameters by using three different kinetic methods and this allowed us to compare the Ea values obtained from different experimental data, TG and DSC. The thermodegradation being a complex process, the both differential and integral methods based on the single step hypothesis are inadequate for obtaining believable kinetic parameters. Only the modified NPK method allowed an objective separation of the temperature, respective conversion influence on the reaction rate and in the same time to ascertain the existence of two simultaneous steps. PMID:23594763

  6. Study on the paper substrate room temperature phosphorescence of theobromine, caffeine and theophylline and analytical application

    NASA Astrophysics Data System (ADS)

    Chuan, Dong; Yan-Li, Wei; Shao-Min, Shuang

    2003-05-01

    Paper substrate room temperature phosphorescence (RTP) of theobromine (TB), caffeine (CF) and theophylline (TP) were investigated. The method is based on fast speed quantitative filter paper as substrate and KI-NaAc as heavy atom perturber. Various factors affecting their RTP were discussed in detail. Under the optimum experimental conditions, the linear dynamic range, limit of detection (LOD), and relative standard deviation (R.S.D.) were 14.41˜576.54 ng per spot, 1.14 ng per spot, 4.8% for TB, 5.44˜699.08 ng per spot, 0.78 ng per spot, 1.56% for CF, 7.21˜360.34 ng per spot, 1.80 ng per spot, 3.80% for TP, respectively. The first analytical application for the determination of these compounds was developed. The recovery of standard samples added to commercial products chocolate, tea, coffee and aminophylline is in the range 92.80-106.08%. The proposed method was successfully applied to real sample analysis without separation.

  7. Mitochondrial Dynamics Tracking with Two-Photon Phosphorescent Terpyridyl Iridium(III) Complexes

    NASA Astrophysics Data System (ADS)

    Huang, Huaiyi; Zhang, Pingyu; Qiu, Kangqiang; Huang, Juanjuan; Chen, Yu; Ji, Liangnian; Chao, Hui

    2016-02-01

    Mitochondrial dynamics, including fission and fusion, control the morphology and function of mitochondria, and disruption of mitochondrial dynamics leads to Parkinson’s disease, Alzheimer’s disease, metabolic diseases, and cancers. Currently, many types of commercial mitochondria probes are available, but high excitation energy and low photo-stability render them unsuitable for tracking mitochondrial dynamics in living cells. Therefore, mitochondrial targeting agents that exhibit superior anti-photo-bleaching ability, deep tissue penetration and intrinsically high three-dimensional resolutions are urgently needed. Two-photon-excited compounds that use low-energy near-infrared excitation lasers have emerged as non-invasive tools for cell imaging. In this work, terpyridyl cyclometalated Ir(III) complexes (Ir1-Ir3) are demonstrated as one- and two-photon phosphorescent probes for real-time imaging and tracking of mitochondrial morphology changes in living cells.

  8. Database-Centric Method for Automated High-Throughput Deconvolution and Analysis of Kinetic Antibody Screening Data.

    PubMed

    Nobrega, R Paul; Brown, Michael; Williams, Cody; Sumner, Chris; Estep, Patricia; Caffry, Isabelle; Yu, Yao; Lynaugh, Heather; Burnina, Irina; Lilov, Asparouh; Desroches, Jordan; Bukowski, John; Sun, Tingwan; Belk, Jonathan P; Johnson, Kirt; Xu, Yingda

    2017-10-01

    The state-of-the-art industrial drug discovery approach is the empirical interrogation of a library of drug candidates against a target molecule. The advantage of high-throughput kinetic measurements over equilibrium assessments is the ability to measure each of the kinetic components of binding affinity. Although high-throughput capabilities have improved with advances in instrument hardware, three bottlenecks in data processing remain: (1) intrinsic molecular properties that lead to poor biophysical quality in vitro are not accounted for in commercially available analysis models, (2) processing data through a user interface is time-consuming and not amenable to parallelized data collection, and (3) a commercial solution that includes historical kinetic data in the analysis of kinetic competition data does not exist. Herein, we describe a generally applicable method for the automated analysis, storage, and retrieval of kinetic binding data. This analysis can deconvolve poor quality data on-the-fly and store and organize historical data in a queryable format for use in future analyses. Such database-centric strategies afford greater insight into the molecular mechanisms of kinetic competition, allowing for the rapid identification of allosteric effectors and the presentation of kinetic competition data in absolute terms of percent bound to antigen on the biosensor.

  9. LSENS, The NASA Lewis Kinetics and Sensitivity Analysis Code

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, K.

    2000-01-01

    A general chemical kinetics and sensitivity analysis code for complex, homogeneous, gas-phase reactions is described. The main features of the code, LSENS (the NASA Lewis kinetics and sensitivity analysis code), are its flexibility, efficiency and convenience in treating many different chemical reaction models. The models include: static system; steady, one-dimensional, inviscid flow; incident-shock initiated reaction in a shock tube; and a perfectly stirred reactor. In addition, equilibrium computations can be performed for several assigned states. An implicit numerical integration method (LSODE, the Livermore Solver for Ordinary Differential Equations), which works efficiently for the extremes of very fast and very slow reactions, is used to solve the "stiff" ordinary differential equation systems that arise in chemical kinetics. For static reactions, the code uses the decoupled direct method to calculate sensitivity coefficients of the dependent variables and their temporal derivatives with respect to the initial values of dependent variables and/or the rate coefficient parameters. Solution methods for the equilibrium and post-shock conditions and for perfectly stirred reactor problems are either adapted from or based on the procedures built into the NASA code CEA (Chemical Equilibrium and Applications).

  10. DFT/TDDFT investigation on the photophysical properties of a series of phosphorescent cyclometalated complexes based on the benchmark complex FIrpic

    NASA Astrophysics Data System (ADS)

    Han, Deming; Gong, Ping; Lv, Shuhui; Zhao, Lihui; Zhao, Henan

    2018-05-01

    The photophysical properties of four Ir(III) complexes have been investigated by means of the density functional theory/time-dependent density functional theory (DFT/TDDFT). The effect of the electron-withdrawing and electron-donating substituents on charge injection, transport, absorption and phosphorescent properties has been studied. The theoretical calculation shows that the lowest-lying singlet absorptions for complexes 1-4 are located at 387, 385, 418 and 386 nm, respectively. For 1-4, the phosphorescence at 465, 485, 494 and 478 nm is mainly attributed to the LUMO → HOMO and LUMO → HOMO-1 transition configurations characteristics. In addition, ionisation potential (IP), electron affinities (EAs) and reorganisation energy have been investigated to evaluate the charge transfer and balance properties between hole and electron. The balance of the reorganisation energies for complex 3 is better than others. The difference between hole transport and electron transport for complex 3 is the smallest among these complexes, which is beneficial to achieve the hole and electron transfer balance in emitting layer.

  11. LSENS - GENERAL CHEMICAL KINETICS AND SENSITIVITY ANALYSIS CODE

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.

    1994-01-01

    LSENS has been developed for solving complex, homogeneous, gas-phase, chemical kinetics problems. The motivation for the development of this program is the continuing interest in developing detailed chemical reaction mechanisms for complex reactions such as the combustion of fuels and pollutant formation and destruction. A reaction mechanism is the set of all elementary chemical reactions that are required to describe the process of interest. Mathematical descriptions of chemical kinetics problems constitute sets of coupled, nonlinear, first-order ordinary differential equations (ODEs). The number of ODEs can be very large because of the numerous chemical species involved in the reaction mechanism. Further complicating the situation are the many simultaneous reactions needed to describe the chemical kinetics of practical fuels. For example, the mechanism describing the oxidation of the simplest hydrocarbon fuel, methane, involves over 25 species participating in nearly 100 elementary reaction steps. Validating a chemical reaction mechanism requires repetitive solutions of the governing ODEs for a variety of reaction conditions. Analytical solutions to the systems of ODEs describing chemistry are not possible, except for the simplest cases, which are of little or no practical value. Consequently, there is a need for fast and reliable numerical solution techniques for chemical kinetics problems. In addition to solving the ODEs describing chemical kinetics, it is often necessary to know what effects variations in either initial condition values or chemical reaction mechanism parameters have on the solution. Such a need arises in the development of reaction mechanisms from experimental data. The rate coefficients are often not known with great precision and in general, the experimental data are not sufficiently detailed to accurately estimate the rate coefficient parameters. The development of a reaction mechanism is facilitated by a systematic sensitivity analysis

  12. k-OptForce: Integrating Kinetics with Flux Balance Analysis for Strain Design

    PubMed Central

    Chowdhury, Anupam; Zomorrodi, Ali R.; Maranas, Costas D.

    2014-01-01

    Computational strain design protocols aim at the system-wide identification of intervention strategies for the enhanced production of biochemicals in microorganisms. Existing approaches relying solely on stoichiometry and rudimentary constraint-based regulation overlook the effects of metabolite concentrations and substrate-level enzyme regulation while identifying metabolic interventions. In this paper, we introduce k-OptForce, which integrates the available kinetic descriptions of metabolic steps with stoichiometric models to sharpen the prediction of intervention strategies for improving the bio-production of a chemical of interest. It enables identification of a minimal set of interventions comprised of both enzymatic parameter changes (for reactions with available kinetics) and reaction flux changes (for reactions with only stoichiometric information). Application of k-OptForce to the overproduction of L-serine in E. coli and triacetic acid lactone (TAL) in S. cerevisiae revealed that the identified interventions tend to cause less dramatic rearrangements of the flux distribution so as not to violate concentration bounds. In some cases the incorporation of kinetic information leads to the need for additional interventions as kinetic expressions render stoichiometry-only derived interventions infeasible by violating concentration bounds, whereas in other cases the kinetic expressions impart flux changes that favor the overproduction of the target product thereby requiring fewer direct interventions. A sensitivity analysis on metabolite concentrations shows that the required number of interventions can be significantly affected by changing the imposed bounds on metabolite concentrations. Furthermore, k-OptForce was capable of finding non-intuitive interventions aiming at alleviating the substrate-level inhibition of key enzymes in order to enhance the flux towards the product of interest, which cannot be captured by stoichiometry-alone analysis. This study paves

  13. Light-Addressable Measurement of in Vivo Tissue Oxygenation in an Unanesthetized Zebrafish Embryo via Phase-Based Phosphorescence Lifetime Detection

    PubMed Central

    Huang, Shih-Hao; Yu, Chu-Hung; Chien, Yi-Lung

    2015-01-01

    We have developed a digital light modulation system that utilizes a modified commercial projector equipped with a laser diode as a light source for quantitative measurements of in vivo tissue oxygenation in an unanesthetized zebrafish embryo via phase-based phosphorescence lifetime detection. The oxygen-sensitive phosphorescent probe (Oxyphor G4) was first inoculated into the bloodstream of 48 h post-fertilization (48 hpf) zebrafish embryos via the circulation valley to rapidly disperse probes throughout the embryo. The unanesthetized zebrafish embryo was introduced into the microfluidic device and immobilized on its lateral side by using a pneumatically actuated membrane. By controlling the illumination pattern on the digital micromirror device in the projector, the modulated excitation light can be spatially projected to illuminate arbitrarily-shaped regions of tissue of interest for in vivo oxygen measurements. We have successfully measured in vivo oxygen changes in the cardiac region and cardinal vein of a 48 hpf zebrafish embryo that experience hypoxia and subsequent normoxic conditions. Our proposed platform provides the potential for the real-time investigation of oxygen distribution in tissue microvasculature that relates to physiological stimulation and diseases in a developing organism. PMID:25856326

  14. Study of Sequential Dexter Energy Transfer in High Efficient Phosphorescent White Organic Light-Emitting Diodes with Single Emissive Layer

    NASA Astrophysics Data System (ADS)

    Kim, Jin Wook; You, Seung Il; Kim, Nam Ho; Yoon, Ju-An; Cheah, Kok Wai; Zhu, Fu Rong; Kim, Woo Young

    2014-11-01

    In this study, we report our effort to realize high performance single emissive layer three color white phosphorescent organic light emitting diodes (PHOLEDs) through sequential Dexter energy transfer of blue, green and red dopants. The PHOLEDs had a structure of; ITO(1500 Å)/NPB(700 Å)/mCP:Firpic-x%:Ir(ppy)3-0.5%:Ir(piq)3-y%(300 Å)/TPBi(300 Å)/Liq(20 Å)/Al(1200 Å). The dopant concentrations of FIrpic, Ir(ppy)3 and Ir(piq)3 were adjusted and optimized to facilitate the preferred energy transfer processes attaining both the best luminous efficiency and CIE color coordinates. The presence of a deep trapping center for charge carriers in the emissive layer was confirmed by the observed red shift in electroluminescent spectra. White PHOLEDs, with phosphorescent dopant concentrations of FIrpic-8.0%:Ir(ppy)3-0.5%:Ir(piq)3-0.5% in the mCP host of the single emissive layer, had a maximum luminescence of 37,810 cd/m2 at 11 V and a luminous efficiency of 48.10 cd/A at 5 V with CIE color coordinates of (0.35, 0.41).

  15. Kinetic Analysis of Horizontal Plyometric Exercise Intensity.

    PubMed

    Kossow, Andrew J; Ebben, William P

    2018-05-01

    Kossow, AJ, DeChiara, TG, Neahous, SM, and Ebben, WP. Kinetic analysis of horizontal plyometric exercise intensity. J Strength Cond Res 32(5): 1222-1229, 2018-Plyometric exercises are frequently performed as part of a strength and conditioning program. Most studies assessed the kinetics of plyometric exercises primarily performed in the vertical plane. The purpose of this study was to evaluate the multiplanar kinetic characteristics of a variety of plyometric exercises, which have a significant horizontal component. This study also sought to assess sex differences in the intensity progression of these exercises. Ten men and 10 women served as subjects. The subjects performed a variety of plyometric exercises including the double-leg hop, standing long jump, single-leg standing long jump, bounding, skipping, power skipping, cone hops, and 45.72-cm hurdle hops. Subjects also performed the countermovement jump for comparison. All plyometric exercises were evaluated using a force platform. Dependent variables included the landing rate of force development and landing ground reaction forces for each exercise in the vertical, frontal, and sagittal planes. A 2-way mixed analysis of variance with repeated-measures for plyometric exercise type demonstrated main effects for exercise type for all dependent variables (p ≤ 0.001). There was no significant interaction between plyometric exercise type and sex for any of the variable assessed. Bonferroni-adjusted pairwise comparisons identified a number of differences between the plyometric exercises for the dependent variables assessed (p ≤ 0.05). These findings should be used to guide practitioners in the progression of plyometric exercise intensity, and thus program design, for those who require significant horizontal power in their sport.

  16. In-depth investigation on the pyrolysis kinetics of raw biomass. Part I: kinetic analysis for the drying and devolatilization stages.

    PubMed

    Chen, Dengyu; Zheng, Yan; Zhu, Xifeng

    2013-03-01

    An in-depth investigation was conducted on the kinetic analysis of raw biomass using thermogravimetric analysis (TGA), from which the activation energy distribution of the whole pyrolysis process was obtained. Two different stages, namely, drying stage (Stage I) and devolatilization stage (Stage II), were shown in the pyrolysis process in which the activation energy values changed with conversion. The activation energy at low conversions (below 0.15) in the drying stage ranged from 10 to 30 kJ/mol. Such energy was calculated using the nonisothermal Page model, known as the best model to describe the drying kinetics. Kinetic analysis was performed using the distributed activation energy model in a wide range of conversions (0.15-0.95) in the devolatilization stage. The activation energy first ranged from 178.23 to 245.58 kJ/mol and from 159.66 to 210.76 kJ/mol for corn straw and wheat straw, respectively, then increasing remarkably with an irregular trend. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. "Batch" kinetics in flow: online IR analysis and continuous control.

    PubMed

    Moore, Jason S; Jensen, Klavs F

    2014-01-07

    Currently, kinetic data is either collected under steady-state conditions in flow or by generating time-series data in batch. Batch experiments are generally considered to be more suitable for the generation of kinetic data because of the ability to collect data from many time points in a single experiment. Now, a method that rapidly generates time-series reaction data from flow reactors by continuously manipulating the flow rate and reaction temperature has been developed. This approach makes use of inline IR analysis and an automated microreactor system, which allowed for rapid and tight control of the operating conditions. The conversion/residence time profiles at several temperatures were used to fit parameters to a kinetic model. This method requires significantly less time and a smaller amount of starting material compared to one-at-a-time flow experiments, and thus allows for the rapid generation of kinetic data. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Time-resolved methods in biophysics. 7. Photon counting vs. analog time-resolved singlet oxygen phosphorescence detection.

    PubMed

    Jiménez-Banzo, Ana; Ragàs, Xavier; Kapusta, Peter; Nonell, Santi

    2008-09-01

    Two recent advances in optoelectronics, namely novel near-IR sensitive photomultipliers and inexpensive yet powerful diode-pumped solid-state lasers working at kHz repetition rate, enable the time-resolved detection of singlet oxygen (O2(a1Deltag)) phosphorescence in photon counting mode, thereby boosting the time-resolution, sensitivity, and dynamic range of this well-established detection technique. Principles underlying this novel approach and selected examples of applications are provided in this perspective, which illustrate the advantages over the conventional analog detection mode.

  19. Integrated luminometer for the determination of trace metals in seawater using fluorescence, phosphorescence and chemiluminescence detection

    PubMed Central

    Achterberg, E. P.; Bowie, A. R.; Cannizzaro, V.; Charles, S.; Costa, J. M.; Dubois, F.; Pereiro, R.; San Vicente, B.; Sanz-Medel, A.; Vandeloise, R.; Donckt, E. Vander; Wollast, P.; Yunus, S.

    2002-01-01

    The paper describes an integrated luminometer able to perform fluorescence (FL), room temperature phosphorescence (RTP) and chemiluminescence (CL) measurements on seawater samples. The technical details of the instrumentation are presented together with flow injection (FI) manifolds for the determination of cadmium and zinc (by FL), lead (RTP) and cobalt (CL). The analytical figures of merit are given for each manifold and results are presented for the determination of the four trace metals in seawater reference materials (NASS-5, SLEW-2) and Scheldt estuarine water samples. PMID:18924742

  20. Graph-based analysis of kinetics on multidimensional potential-energy surfaces.

    PubMed

    Okushima, T; Niiyama, T; Ikeda, K S; Shimizu, Y

    2009-09-01

    The aim of this paper is twofold: one is to give a detailed description of an alternative graph-based analysis method, which we call saddle connectivity graph, for analyzing the global topography and the dynamical properties of many-dimensional potential-energy landscapes and the other is to give examples of applications of this method in the analysis of the kinetics of realistic systems. A Dijkstra-type shortest path algorithm is proposed to extract dynamically dominant transition pathways by kinetically defining transition costs. The applicability of this approach is first confirmed by an illustrative example of a low-dimensional random potential. We then show that a coarse-graining procedure tailored for saddle connectivity graphs can be used to obtain the kinetic properties of 13- and 38-atom Lennard-Jones clusters. The coarse-graining method not only reduces the complexity of the graphs, but also, with iterative use, reveals a self-similar hierarchical structure in these clusters. We also propose that the self-similarity is common to many-atom Lennard-Jones clusters.

  1. Red phosphorescent organic light-emitting diodes based on the simple structure.

    PubMed

    Seo, Ji Hyun; Lee, Seok Jae; Kim, Bo Young; Choi, Eun Young; Han, Wone Keun; Lee, Kum Hee; Yoon, Seung Soo; Kim, Young Kwan

    2012-05-01

    We demonstrated that the simple layered red phosphorescent organic light-emitting diodes (OLEDs) are possible to have high efficiency, low driving voltage, stable roll-off efficiency, and pure emission color without hole injection and transport layers. We fabricated the OLEDs with a structure of ITO/CBP doped with Ir(pq)2(acac)/BPhen/Liq/Al, where the doping concentration of red dopant, Ir(pq)2(acac), was varied from 4% to 20%. As a result, the quantum efficiencies of 13.4, 11.2, 16.7, 10.8 and 9.8% were observed in devices with doping concentrations of 4, 8, 12, 16 and 20%, respectively. Despite of absence of the hole injection and transport layers, these efficiencies are superior to efficiencies of device with hole transporting layer due to direct hole injection from anode to dopant in emission layer.

  2. Surface molecularly imprinted polymer capped Mn-doped ZnS quantum dots as a phosphorescent nanosensor for detecting patulin in apple juice.

    PubMed

    Zhang, Wengang; Han, Yong; Chen, Xiumei; Luo, Xueli; Wang, Jianlong; Yue, Tianli; Li, Zhonghong

    2017-10-01

    A Mn-doped ZnS quantum dots (QDs) based nanosensor for selective phosphorescent determination of patulin (PAT) was synthesized with 6-hydroxynicotinic acid (6-HNA) as dummy template via a surface molecular imprinting sol-gel process. FTIR and XRD indicated the successful graft of molecularly imprinted polymer (MIP) onto crystal QDs. Binding tests revealed that the MIP-QDs presented higher selectivity, adsorption capacity and mass transfer rate than non-imprinted polymers, demonstrating a specific recognition for PAT among competitive mycotoxins and its analogues with the imprinting factor of 2.02. The MIP-QDs could recognize PAT in a linear range of 0.43-6.50μmolL -1 with a detection limit of 0.32μmolL -1 and a correlation coefficient (R 2 ) of 0.9945. Recoveries of 102.9-127.2% with relative standard deviations <4.95% were achieved in apple juice samples which were in good agreement with high-performance liquid chromatography (HPLC) (P>0.05). The results indicated a simple phosphorescent nanosensor for PAT detection in complex matrix. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. High-efficiency orange and tandem white organic light-emitting diodes using phosphorescent dyes with horizontally oriented emitting dipoles.

    PubMed

    Lee, Sunghun; Shin, Hyun; Kim, Jang-Joo

    2014-09-03

    Tandem white organic light-emitting diodes (WOLEDs) using horizontally oriented phosphorescent dyes in an exciplex-forming co-host are presented, along with an orange OLED. A high external quantum efficiency of 32% is achieved for the orange OLED at 1000 cd m(-2) and the tandem WOLEDs exhibit a high maximum EQE of 54.3% (PE of 63 lm W(-1)). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Benzil fluorescence and phosphorescence emissions: a pertinent probe for the kinematic behaviour and microheterogeneity of supercritical CO 2

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Nitin; Serpa, Carlos; Isilda Silva, M.; Arnaut, Luis G.; Formosinho, Sebastião J.

    2001-10-01

    The relative intensity (RI) of the phosphorescence and fluorescence from the relaxed trans-planar geometry of benzil has been studied as a function of pressure and temperature in supercritical carbon dioxide (SC-CO 2). The nature of the variation of RI with pressure and temperature is similar to that of the kinematic viscosity (KV) with the two said parameters. The experimental results have been interpreted in terms of microheterogeneity of the supercritical fluid (SCF).

  5. A novel bipolar phosphorescent host for highly efficient deep-red OLEDs at a wide luminance range of 1000-10 000 cd m(-2).

    PubMed

    Feng, Yansong; Li, Ping; Zhuang, Xuming; Ye, Kaiqi; Peng, Tai; Liu, Yu; Wang, Yue

    2015-08-14

    A novel phosphorescent host FPYPCA possessing the bipolar charge transporting ability realizes the most efficient deep-red PhOLED, which maintains very high-level EQEs of >23% at rather a high and wide luminance range of 1000-10 000 cd m(-2).

  6. Annihilation limit of a visible-to-UV photon upconversion composition ascertained from transient absorption kinetics.

    PubMed

    Deng, Fan; Blumhoff, Jörg; Castellano, Felix N

    2013-05-30

    Noncoherent sensitized green-to-near-visible upconversion has been achieved utilizing palladium(II) octaethylporphyrin (PdOEP) as the triplet sensitizer and anthracene as the energy acceptor/annihilator in vacuum degassed toluene. Selective 547 nm excitation of PdOEP with incident irradiance as low as 600 μW/cm(2) results in the observation of anthryl fluorescence at higher energy. Stern-Volmer analysis of the dynamic phosphorescence quenching of PdOEP by anthracene possesses an extremely large K(SV) of 810,000 M(-1), yielding a triplet-triplet energy transfer quenching constant of 3.3 × 10(9) M(-1) s(-1). Clear evidence for the subsequent triplet-triplet annihilation (TTA) of anthracene was afforded by numerous experiments, one of the most compelling was an excitation scan illustrating that the Q-band absorption features of PdOEP are solely responsible for sensitizing the anti-Stokes fluorescence. The upconverted emission intensity with respect to the excitation power was shown to vary between quadratic and linear using either coherent or noncoherent light sources, illustrating the expected kinetic limits for the light producing photochemistry under continuous wave illumination. Time-resolved experiments directly comparing the total integrated anthracene intensity/time fluorescence data produced through upconversion (λ(ex) = 547 nm, delayed signal) and with direct excitation (λ(ex) = 355 nm, prompt signal) under conditions where the laser pulse is completely absorbed by the sample reveal annihilation efficiencies of approximately 40%. Similarly, the delayed fluorescence kinetic analysis reported by Schmidt and co-workers (J. Phys. Chem. Lett. 2010, 1, 1795-1799) was used to reveal the maximum possible efficiency from a model red-to-yellow upconverting composition and this treatment was applied to the anthryl triplet absorption decay transients of anthracene measured for the PdOEP/anthracene composition at 430 nm. From this analysis approximately 50% of the

  7. Vibronic Coupling Analysis of the Ligand-Centered Phosphorescence of Gas-Phase Gd(III) and Lu(III) 9-Oxophenalen-1-one Complexes.

    PubMed

    Chmela, Jiří; Greisch, Jean-François; Harding, Michael E; Klopper, Wim; Kappes, Manfred M; Schooss, Detlef

    2018-03-08

    The gas-phase laser-induced photoluminescence of cationic mononuclear gadolinium and lutetium complexes involving two 9-oxophenalen-1-one ligands is reported. Performing measurements at a temperature of 83 K enables us to resolve vibronic transitions. Via comparison to Franck-Condon computations, the main vibrational contributions to the ligand-centered phosphorescence are determined to involve rocking, wagging, and stretching of the 9-oxophenalen-1-one-lanthanoid coordination in the low-energy range, intraligand bending, and stretching in the medium- to high-energy range, rocking of the carbonyl and methine groups, and C-H stretching beyond. Whereas Franck-Condon calculations based on density-functional harmonic frequency computations reproduce the main features of the vibrationally resolved emission spectra, the absolute transition energies as determined by density functional theory are off by several thousand wavenumbers. This discrepancy is found to remain at higher computational levels. The relative energy of the Gd(III) and Lu(III) emission bands is only reproduced at the coupled-cluster singles and doubles level and beyond.

  8. Intersystem-crossing and phosphorescence rates in fac-Ir(III)(ppy)3: a theoretical study involving multi-reference configuration interaction wavefunctions.

    PubMed

    Kleinschmidt, Martin; van Wüllen, Christoph; Marian, Christel M

    2015-03-07

    We have employed combined density functional theory and multi-reference configuration interaction methods including spin-orbit coupling (SOC) effects to investigate the photophysics of the green phosphorescent emitter fac-tris-(2-phenylpyridine)iridium (fac-Ir(ppy)3). A critical evaluation of our quantum chemical approaches shows that a perturbational treatment of SOC is the method of choice for computing the UV/Vis spectrum of this heavy transition metal complex while multi-reference spin-orbit configuration interaction is preferable for calculating the phosphorescence rates. The particular choice of the spin-orbit interaction operator is found to be of minor importance. Intersystem crossing (ISC) rates have been determined by Fourier transformation of the time correlation function of the transition including Dushinsky rotations. In the electronic ground state, fac-Ir(ppy)3 is C3 symmetric. The calculated UV/Vis spectrum is in excellent agreement with experiment. The effect of SOC is particularly pronounced for the metal-to-ligand charge transfer (MLCT) band in the visible region of the absorption spectrum which does not only extend its spectral onset towards longer wavelengths but also experiences a blue shift of its maximum. Pseudo-Jahn-Teller interaction leads to asymmetric coordinate displacements in the lowest MLCT states. Substantial electronic SOC and a small energy gap make ISC an ultrafast process in fac-Ir(ppy)3. For the S1↝T1 non-radiative transition, we compute a rate constant of kISC = 6.9 × 10(12) s(-1) which exceeds the rate constant of radiative decay to the electronic ground state by more than six orders of magnitude, in agreement with the experimental observation of a subpicosecond ISC process and a triplet quantum yield close to unity. As a consequence of the geometric distortion in the T1 state, the T1 → S0 transition densities are localized on one of the phenylpyridyl moieties. In our best quantum chemical model, we obtain phosphorescence

  9. New iridium dopants forg white phosphorescent devices: enhancement of efficiency and color stability by an energy-harvesting layer.

    PubMed

    Chou, Ho-Hsiu; Li, Yi-Kai; Chen, Yu-Han; Chang, Ching-Chih; Liao, Chuang-Yi; Cheng, Chien-Hong

    2013-07-10

    A new light blue complex (fmoppy)2Ir(tfpypz) [bis(4'-fluoro-6'-methoxylphenyl pyridinato)-iridium(III)-3-(trifluoromethyl)-5-(pyridin-2-yl)-1,2,4-triazolate] and a new orange complex (dpiq)2Ir(acac) [bis(3,4-diphenylisoquinoline)-iridium(III)-acetylacetonate] were synthesized. These two complexes were used as the dopants for the fabrication of two-element white phosphorescent devices. Via the introduction of a thin energy-harvesting layer (EHL) to harvest the extra energy and exciton from the emission zone, highly efficient two-element white devices with excellent color stability were created. One of the best devices shows yellow-white color emission with an extremely high external quantum efficiency (EQE) of 21.5% and a current efficiency of 68.8 cd/A. The other device gave a pure white emission with an external quantum efficiency of 19.2% and a current efficiency of 53.2 cd/A. At a high brightness of 1000 cd/m(2), the EQE still remains as high as 18.9 and 17.2%. With a brightness of 1000-10000 cd/m(2), the CIE coordinates of these two devices shift by only (0.02, ≤0.01). The white phosphorescent devices with the EHL showed much higher efficiency and better color stability than the one without the EHL.

  10. Simple color tuning of phosphorescent dendrimer light emitting diodes

    NASA Astrophysics Data System (ADS)

    Namdas, Ebinazar B.; Anthopoulos, Thomas D.; Samuel, Ifor D. W.; Frampton, Michael J.; Lo, Shih-Chun; Burn, Paul L.

    2005-04-01

    A simple way of tuning the emission color in solution processed phosphorescent organic light emitting diodes is demonstrated. For each color a single emissive spin-coated layer consisting of a blend of three materials, a fac-tris(2-phenylpyridyl)iridium (III) cored dendrimer (Ir-G1) as the green emitter, a heteroleptic [bis(2-phenylpyridyl)-2-(2'-benzo[4,5-α]thienyl)pyridyl]iridium (III) cored dendrimer [Ir(ppy)2btp] as the red emitter, and 4,4'-bis(N-carbazolyl) biphenyl (CBP) as the host was employed. By adjusting the relative amount of green and red dendrimers in the blends, the color of the light emission was tuned from green to red. High efficiency two layer devices were achieved by evaporating a layer of electron transporting 1,3,5-tris(2-N-phenylbenzimidazolyl)benzene (TPBI) on top of the spin-coated emissive layer. A brightness of 100cd/m2 was achieved at drive voltages in the range 5.3-7.3 V. The peak external efficiencies at this brightness ranged from 31cd/A(18lm/W) to 7cd/A(4lm/W).

  11. Highly efficient green phosphorescent organic light emitting diodes with improved efficiency roll-off

    NASA Astrophysics Data System (ADS)

    Thangaraju, K.; Lee, Jonghee; Lee, Jeong-Ik; Chu, Hye Yong; Kim, Yun-Hi; Kwon, Soon-Ki

    2015-06-01

    A 10-nm thick 4,4',4″-tris(carbazole-9-yl)tri-phenylamine (TcTa) interlayer effectively confines triplet excitons within the emissive layer (EML) of phosphorescent organic light emitting diodes (PHOLEDs) based on green-emitting Ir(ppy)3 dopant and improves the charge balance in the EML of the device, resulting the higher device efficiencies of 61.7 cd/A, 19.7 %, and 43.2 lm/W with the maximum luminance of 75,310 cd/m2 and highly improved efficiency roll-off (22.2% at 20 mA/cm2) when compared to those (61.1 cd/A, 19.6 %, and 47.2 lm/W with a maximum luminance of 38,350 cd/m2) of the standard device with efficiency roll-off of 62.3 % at 20 mA/cm2.

  12. Unraveling the Decomposition Process of Lead(II) Acetate: Anhydrous Polymorphs, Hydrates, and Byproducts and Room Temperature Phosphorescence.

    PubMed

    Martínez-Casado, Francisco J; Ramos-Riesco, Miguel; Rodríguez-Cheda, José A; Cucinotta, Fabio; Matesanz, Emilio; Miletto, Ivana; Gianotti, Enrica; Marchese, Leonardo; Matěj, Zdeněk

    2016-09-06

    Lead(II) acetate [Pb(Ac)2, where Ac = acetate group (CH3-COO(-))2] is a very common salt with many and varied uses throughout history. However, only lead(II) acetate trihydrate [Pb(Ac)2·3H2O] has been characterized to date. In this paper, two enantiotropic polymorphs of the anhydrous salt, a novel hydrate [lead(II) acetate hemihydrate: Pb(Ac)2·(1)/2H2O], and two decomposition products [corresponding to two different basic lead(II) acetates: Pb4O(Ac)6 and Pb2O(Ac)2] are reported, with their structures being solved for the first time. The compounds present a variety of molecular arrangements, being 2D or 1D coordination polymers. A thorough thermal analysis, by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), was also carried out to study the behavior and thermal data of the salt and its decomposition process, in inert and oxygenated atmospheres, identifying the phases and byproducts that appear. The complex thermal behavior of lead(II) acetate is now solved, finding the existence of another hydrate, two anhydrous enantiotropic polymorphs, and some byproducts. Moreover, some of them are phosphorescent at room temperature. The compounds were studied by TGA, DSC, X-ray diffraction, and UV-vis spectroscopy.

  13. Increasing temperature speeds intracellular PO2 kinetics during contractions in single Xenopus skeletal muscle fibers.

    PubMed

    Koga, S; Wüst, R C I; Walsh, B; Kindig, C A; Rossiter, H B; Hogan, M C

    2013-01-01

    Precise determination of the effect of muscle temperature (T(m)) on mitochondrial oxygen consumption kinetics has proven difficult in humans, in part due to the complexities in controlling for T(m)-related variations in blood flow, fiber recruitment, muscle metabolism, and contractile properties. To address this issue, intracellular Po(2) (P(i)(O(2))) was measured continuously by phosphorescence quenching following the onset of contractions in single Xenopus myofibers (n = 24) while controlling extracellular temperature. Fibers were subjected to two identical contraction bouts, in random order, at 15°C (cold, C) and 20°C (normal, N; n = 12), or at N and 25°C (hot, H; n = 12). Contractile properties were determined for every contraction. The time delay of the P(i)(O(2)) response was significantly greater in C (59 ± 35 s) compared with N (35 ± 26 s, P = 0.01) and H (27 ± 14 s, P = 0.01). The time constant for the decline in P(i)(O(2)) was significantly greater in C (89 ± 34 s) compared with N (52 ± 15 s; P < 0.01) and H (37 ± 10 s; P < 0.01). There was a linear relationship between the rate constant for P(i)(O(2)) kinetics and T(m) (r = 0.322, P = 0.03). Estimated ATP turnover was significantly greater in H than in C (P < 0.01), but this increased energy requirement alone with increased T(m) could not account for the differences observed in P(i)(O(2)) kinetics among conditions. These results demonstrate that P(i)(O(2)) kinetics in single contracting myofibers are dependent on T(m), likely caused by temperature-induced differences in metabolic demand and by temperature-dependent processes underlying mitochondrial activation at the start of muscle contractions.

  14. An electron transporting unit linked multifunctional Ir(III) complex: a promising strategy to improve the performance of solution-processed phosphorescent organic light-emitting diodes.

    PubMed

    Giridhar, Thota; Saravanan, Chinnusamy; Cho, Woosum; Park, Young Geun; Lee, Jin Yong; Jin, Sung-Ho

    2014-04-18

    An oxadiazole based electron transporting (ET) unit was glued to the heteroleptic Ir(III) complex (TPQIr-ET) and used as a dopant for phosphorescent organic light-emitting diodes (PhOLEDs). It shows superior device performance than the dopant without the ET unit (TPQIr) due to the balanced charge carrier injection by the ET unit.

  15. Determination of trace alkaline phosphatase by affinity adsorption solid substrate room temperature phosphorimetry based on wheat germ agglutinin labeled with 8-quinolineboronic acid phosphorescent molecular switch and prediction of diseases

    NASA Astrophysics Data System (ADS)

    Liu, Jia-Ming; Gao, Hui; Li, Fei-Ming; Shi, Xiu-Mei; Lin, Chang-Qing; Lin, Li-Ping; Wang, Xin-Xing; Li, Zhi-Ming

    2010-09-01

    The 8-quinolineboronic acid phosphorescent molecular switch (abbreviated as PMS-8-QBA. Thereinto, 8-QBA is 8-quinolineboronic acid, and PMS is phosphorescent molecular switch) was found for the first time. PMS-8-QBA, which was in the "off" state, could only emit weak room temperature phosphorescence (RTP) on the acetyl cellulose membrane (ACM). However, PMS-8-QBA turned "on" automatically for its changed structure, causing that the RTP of 8-QBA in the system increased, after PMS-8-QBA-WGA (WGA is wheat germ agglutinin) was formed by reaction between -OH of PMS-8-QBA and -COOH of WGA. More interesting is that the -NH 2 of PMS-8-QBA-WGA could react with the -COOH of alkaline phosphatase (AP) to form the affinity adsorption (AA) product WGA-AP-WGA-8-QBA-PMS (containing -NH-CO- bond), which caused RTP of the system to greatly increase. Thus, affinity adsorption solid substrate room temperature phosphorimetry using PMS-8-QBA as labelling reagent (PMS-8-QBA-AA-SSRTP) for the determination of trace AP was established. The method had many advantages, such as high sensitivity (the detection limit (LD) was 2.5 zg spot -1. For sample volume of 0.40 μl spot -1, corresponding concentration was 6.2 × 10 -18 g ml -1), good selectivity (the allowed concentration of coexisting material was higher, when the relative error was ±5%), high accuracy (applied to detection of AP content in serum samples, the result was coincided with those obtained by enzyme-linked immunoassay), which was suitable for the detection of trace AP content in serum samples and the forecast of human diseases. Meanwhile, the mechanism of PMS-8-QBA-AASSRTP was discussed. The new field of analytical application and clinic diagnosis technique of molecule switch are exploited, based on the phosphorescence characteristic of PMS-8-QBA, the AA reaction between WGA and AP, as well as the relation between AP content and human diseases. The research results promote the development and interpenetrate among molecule

  16. 1,3,4-Oxadiazole containing silanes as novel hosts for blue phosphorescent organic light emitting diodes.

    PubMed

    Leung, Man-kit; Yang, Wan-Hsi; Chuang, Ching-Nan; Lee, Jiun-Haw; Lin, Chi-Feng; Wei, Mao-Kuo; Liu, Yu-Hao

    2012-10-05

    Five rigid oxadiazole (OXD) containing silanes, denoted 1-5, have been developed with high morphological stability. Disruption of the π-aromatic conjugation by introduction of Si atoms leads to a large band gap and high triplet energy. Among the OXDs we studied, 2,5-bis(triphenylsilylphenyl)-1,3,4-oxadiazole 5 is the best host for FIrpic, with a phosphorescent organic light emitting diode (PHOLED) turn-on voltage of 6.9 V, maximum luminance of 5124 cd/m(2), current efficiency of 39.9 cd/A, and external quantum efficiency of 13.1%. Special molecular stacking in the single crystal of 5 was discussed.

  17. Phosphorescence quenching of fac-tris(2-phenylpyridyl)iridium(iii) complexes in thin films on dielectric surfaces.

    PubMed

    Ribierre, J C; Ruseckas, A; Staton, S V; Knights, K; Cumpstey, N; Burn, P L; Samuel, I D W

    2016-02-07

    We study the influence of the film thickness on the time-resolved phosphorescence and the luminescence quantum yield of fac-tris(2-phenylpyridyl)iridium(iii) [Ir(ppy)3]-cored dendrimers deposited on dielectric substrates. A correlation is observed between the surface quenching velocity and the quenching rate by intermolecular interactions in the bulk film, which suggests that both processes are controlled by dipole-dipole interactions between Ir(ppy)3 complexes at the core of the dendrimers. It is also found that the surface quenching velocity decreases as the refractive index of the substrate is increased. This can be explained by partial screening of dipole-dipole interactions by the dielectric environment.

  18. Four-Component Damped Density Functional Response Theory Study of UV/Vis Absorption Spectra and Phosphorescence Parameters of Group 12 Metal-Substituted Porphyrins.

    PubMed

    Fransson, Thomas; Saue, Trond; Norman, Patrick

    2016-05-10

    The influences of group 12 (Zn, Cd, Hg) metal-substitution on the valence spectra and phosphorescence parameters of porphyrins (P) have been investigated in a relativistic setting. In order to obtain valence spectra, this study reports the first application of the damped linear response function, or complex polarization propagator, in the four-component density functional theory framework [as formulated in Villaume et al. J. Chem. Phys. 2010 , 133 , 064105 ]. It is shown that the steep increase in the density of states as due to the inclusion of spin-orbit coupling yields only minor changes in overall computational costs involved with the solution of the set of linear response equations. Comparing single-frequency to multifrequency spectral calculations, it is noted that the number of iterations in the iterative linear equation solver per frequency grid-point decreases monotonously from 30 to 0.74 as the number of frequency points goes from one to 19. The main heavy-atom effect on the UV/vis-absorption spectra is indirect and attributed to the change of point group symmetry due to metal-substitution, and it is noted that substitutions using heavier atoms yield small red-shifts of the intense Soret-band. Concerning phosphorescence parameters, the adoption of a four-component relativistic setting enables the calculation of such properties at a linear order of response theory, and any higher-order response functions do not need to be considered-a real, conventional, form of linear response theory has been used for the calculation of these parameters. For the substituted porphyrins, electronic coupling between the lowest triplet states is strong and results in theoretical estimates of lifetimes that are sensitive to the wave function and electron density parametrization. With this in mind, we report our best estimates of the phosphorescence lifetimes to be 460, 13.8, 11.2, and 0.00155 s for H2P, ZnP, CdP, and HgP, respectively, with the corresponding transition

  19. Novel molecular host materials based on carbazole/PO hybrids with wide bandgap via unique linkages for solution-processed blue phosphorescent OLEDs

    NASA Astrophysics Data System (ADS)

    Ye, Hua; Zhou, Kaifeng; Wu, Hongyu; Chen, Kai; Xie, Gaozhan; Hu, Jingang; Yan, Guobing; Ma, Songhua; Su, Shi-Jian; Cao, Yong

    2016-10-01

    A series of novel molecules with wide bandgap based on electron-withdrawing diphenyl phosphine oxide units and electron-donating carbazolyl moieties through insulated unique linkages of flexible chains terminated by oxygen or sulfur atoms as solution-processable host materials were successfully synthesized for the first time, and their thermal, photophysical, and electrochemical properties were studied thoroughly. These materials possess high triplet energy levels (ET, 2.76-2.77 eV) due to the introduction of alkyl chain to interrupt the conjugation between electron-donor and electron-acceptor. Such high ET could effectively curb the energy from phosphorescent emitter transfer to the host molecules and thus assuring the emission of devices was all from the blue phosphorescent emitter iridium (III) bis [(4,6-difluorophenyl)-pyridinate-N,C2‧]picolinate (FIrpic). Among them, the solution-processed device based on CBCR6OPO without extra vacuum thermal-deposited hole-blocking layer and electron-transporting layer showed the highest maximum current efficiency (CEmax) of 4.16 cd/A. Moreover, the device presented small efficiency roll-off with current efficiency (CE) of 4.05 cd/A at high brightness up to 100 cd/m2. Our work suggests the potential applications of the solution-processable materials with wide bandgap in full-color flat-panel displays and organic lighting.

  20. High brightness phosphorescent organic light emitting diodes on transparent and flexible cellulose films.

    PubMed

    Purandare, Sumit; Gomez, Eliot F; Steckl, Andrew J

    2014-03-07

    Organic light-emitting diodes (OLED) were fabricated on flexible and transparent reconstituted cellulose obtained from wood pulp. Cellulose is naturally available, abundant, and biodegradable and offers a unique substrate alternative for the fabrication of flexible OLEDs. Transparent cellulose material was formed by dissolution of cellulose in an organic solvent (dimethyl acetamide) at elevated temperature (165 °C) in the presence of a salt (LiCl). The optical transmission of 40-μm thick transparent cellulose sheet averaged 85% over the visible spectrum. High brightness and high efficiency thin film OLEDs were fabricated on transparent cellulose films using phosphorescent Ir(ppy)3 as the emitter material. The OLEDs achieved current and luminous emission efficiencies as high as 47 cd A(-1) and 20 lm W(-1), respectively, and a maximum brightness of 10,000 cd m(-2).

  1. High brightness phosphorescent organic light emitting diodes on transparent and flexible cellulose films

    NASA Astrophysics Data System (ADS)

    Purandare, Sumit; Gomez, Eliot F.; Steckl, Andrew J.

    2014-03-01

    Organic light-emitting diodes (OLED) were fabricated on flexible and transparent reconstituted cellulose obtained from wood pulp. Cellulose is naturally available, abundant, and biodegradable and offers a unique substrate alternative for the fabrication of flexible OLEDs. Transparent cellulose material was formed by dissolution of cellulose in an organic solvent (dimethyl acetamide) at elevated temperature (165 °C) in the presence of a salt (LiCl). The optical transmission of 40-μm thick transparent cellulose sheet averaged 85% over the visible spectrum. High brightness and high efficiency thin film OLEDs were fabricated on transparent cellulose films using phosphorescent Ir(ppy)3 as the emitter material. The OLEDs achieved current and luminous emission efficiencies as high as 47 cd A-1 and 20 lm W-1, respectively, and a maximum brightness of 10 000 cd m-2.

  2. The origin of phosphorescence in Iridium (III) complexes. The role of relativistic effects

    NASA Astrophysics Data System (ADS)

    Cantero-López, Plinio; Páez-Hernández, Dayan; Arratia-Pérez, Ramiro

    2017-10-01

    A series of luminescent Ir(III) complexes of the type [Ir(F2ppy)2L] (where L = Lpytz , LOMe , Lbut) have been studied using relativistic two-component density functional theory considering the spin-orbit coupling. The absorption spectra of the three complexes were determined. The most important transition appears in the region between 250 and 350 nm, which is in good agreement with the experimental reports. The three complexes show phosphorescent properties due to a metal-ligand charge transfer (MLCT) process, where the spin-orbit coupling (SOC) plays a key role due to the introduction of a zero field splitting (ZFS) and the mixing of states with different spins which contributes to modify the emission selection rule. The lifetimes of the emission processes were calculated, and the values are in the same order of the experimental reports.

  3. Demon voltammetry and analysis software: Analysis of cocaine-induced alterations in dopamine signaling using multiple kinetic measures

    PubMed Central

    Yorgason, Jordan T.; España, Rodrigo A.; Jones, Sara R.

    2011-01-01

    The fast sampling rates of fast scan cyclic voltammetry make it a favorable method for measuring changes in brain monoamine release and uptake kinetics in slice, anesthetized, and freely moving preparations. The most common analysis technique for evaluating changes in dopamine signaling uses well-established Michaelis-Menten kinetic methods that can accurately model dopamine release and uptake parameters across multiple experimental conditions. Nevertheless, over the years, many researchers have turned to other measures to estimate changes in dopamine release and uptake, yet to our knowledge no systematic comparison amongst these measures has been conducted. To address this lack of uniformity in kinetic analyses, we have created the Demon Voltammetry and Analysis software suite, which is freely available to academic and non-profit institutions. Here we present an explanation of the Demon Acquisition and Analysis features, and demonstrate its utility for acquiring voltammetric data under in vitro, in vivo anesthetized, and freely moving conditions. Additionally, the software was used to compare the sensitivity of multiple kinetic measures of release and uptake to cocaine-induced changes in electrically evoked dopamine efflux in nucleus accumbens core slices. Specifically, we examined and compared tau, full width at half height, half-life, T20, T80, slope, peak height, calibrated peak dopamine concentration, and area under the curve to the well-characterized Michaelis-Menten parameters, dopamine per pulse, maximal uptake rate, and apparent affinity. Based on observed results we recommend tau for measuring dopamine uptake and calibrated peak dopamine concentration for measuring dopamine release. PMID:21392532

  4. Generic analysis of kinetically driven inflation

    NASA Astrophysics Data System (ADS)

    Saitou, Rio

    2018-04-01

    We perform a model-independent analysis of kinetically driven inflation (KDI) which (partially) includes generalized G-inflation and ghost inflation. We evaluate the background evolution splitting into the inflationary attractor and the perturbation around it. We also consider the quantum fluctuation of the scalar mode with a usual scaling and derive the spectral index, ignoring the contribution from the second-order products of slow-roll parameters. Using these formalisms, we find that within our generic framework the models of KDI which possess the shift symmetry of scalar field cannot create the quantum fluctuation consistent with the observation. Breaking the shift symmetry, we obtain a few essential conditions for viable models of KDI associated with the graceful exit.

  5. Room temperature fluorescence and phosphorescence study on the interactions of iodide ions with single tryptophan containing serum albumins

    NASA Astrophysics Data System (ADS)

    Gałęcki, Krystian; Kowalska-Baron, Agnieszka

    2016-12-01

    In this study, the influence of heavy-atom perturbation, induced by the addition of iodide ions, on the fluorescence and phosphorescence decay parameters of some single tryptophan containing serum albumins isolated from: human (HSA), equine (ESA) and leporine (LSA) has been studied. The obtained results indicated that, there exist two distinct conformations of the proteins with different exposure to the quencher. In addition, the Stern-Volmer plots indicated saturation of iodide ions in the binding region. Therefore, to determine quenching parameter, we proposed alternative quenching model and we have performed a global analysis of each conformer to define the effect of iodide ions in the cavity by determining the value of the association constant. The possible quenching mechanism may be based on long-range through-space interactions between the buried chromophore and quencher in the aqueous phase. The discrepancies of the decay parameters between the albumins studied may be related with the accumulation of positive charge at the main and the back entrance to the Drug Site 1 where tryptophan residue is located.

  6. Thermally Cross-Linkable Hole Transport Materials for Solution Processed Phosphorescent OLEDs

    NASA Astrophysics Data System (ADS)

    Kim, Beom Seok; Kim, Ohyoung; Chin, Byung Doo; Lee, Chil Won

    2018-04-01

    Materials for unique fabrication of a solution-processed, multi-layered organic light-emitting diode (OLED) were developed. Preparation of a hole transport layer with a thermally cross-linkable chemical structure, which can be processed to form a thin film and then transformed into an insoluble film by using an amine-alcohol condensation reaction with heat treatment, was investigated. Functional groups, such as triplenylamine linked with phenylcarbazole or biphenyl, were employed in the chemical structure of the hole transport layer in order to maintain high triplet energy properties. When phenylcarbazole or biphenyl compounds continuously react with triphenylamine under acid catalysis, a chemically stable thin film material with desirable energy-level properties for a blue OLED could be obtained. The prepared hole transport materials showed excellent surface roughness and thermal stability in comparison with the commercial reference material. On the solution-processed model hole transport layer, we fabricated a device with a blue phosphorescent OLED by using sequential vacuum deposition. The maximum external quantum, 19.3%, was improved by more than 40% over devices with the commercial reference material (11.4%).

  7. Brain Tissue PO2 Measurement During Normoxia and Hypoxia Using Two-Photon Phosphorescence Lifetime Microscopy.

    PubMed

    Xu, Kui; Boas, David A; Sakadžić, Sava; LaManna, Joseph C

    2017-01-01

    Key to the understanding of the principles of physiological and structural acclimatization to changes in the balance between energy supply (represented by substrate and oxygen delivery, and mitochondrial oxidative phosphorylation) and energy demand (initiated by neuronal activity) is to determine the controlling variables, how they are sensed and the mechanisms initiated to maintain the balance. The mammalian brain depends completely on continuous delivery of oxygen to maintain its function. We hypothesized that tissue oxygen is the primary sensed variable. In this study two-photon phosphorescence lifetime microscopy (2PLM) was used to determine and define the tissue oxygen tension field within the cerebral cortex of mice to a cortical depth of between 200-250 μm under normoxia and acute hypoxia (FiO 2  = 0.10). High-resolution images can provide quantitative distributions of oxygen and intercapillary oxygen gradients. The data are best appreciated by quantifying the distribution histogram that can then be used for analysis. For example, in the brain cortex of a mouse, at a depth of 200 μm, tissue oxygen tension was mapped and the distribution histogram was compared under normoxic and mild hypoxic conditions. This powerful method can provide for the first time a description of the delivery and availability of brain oxygen in vivo.

  8. Analysis of senior high school student understanding on gas kinetic theory material

    NASA Astrophysics Data System (ADS)

    Anri, Y.; Maknun, J.; Chandra, D. T.

    2018-05-01

    The purpose of this research conducted to find out student understanding profile about gas kinetic theory. Particularly, on ideal gas law material, ideal gas equations and kinetic energy of ideal gas. This research was conducted on student of class XII in one of the schools in Bandung. This research is a descriptive research. The data of this research collected by using test instrument which was the essay that has been developed by the researcher based on Bloom’s Taxonomy revised. Based on the analysis result to student answer, this research discovered that whole student has low understanding in the material of gas kinetic theory. This low understanding caused of the misconception of the student, student attitude on physic subjects, and teacher teaching method who are less helpful in obtaining clear pictures in material being taught.

  9. Automatic network coupling analysis for dynamical systems based on detailed kinetic models.

    PubMed

    Lebiedz, Dirk; Kammerer, Julia; Brandt-Pollmann, Ulrich

    2005-10-01

    We introduce a numerical complexity reduction method for the automatic identification and analysis of dynamic network decompositions in (bio)chemical kinetics based on error-controlled computation of a minimal model dimension represented by the number of (locally) active dynamical modes. Our algorithm exploits a generalized sensitivity analysis along state trajectories and subsequent singular value decomposition of sensitivity matrices for the identification of these dominant dynamical modes. It allows for a dynamic coupling analysis of (bio)chemical species in kinetic models that can be exploited for the piecewise computation of a minimal model on small time intervals and offers valuable functional insight into highly nonlinear reaction mechanisms and network dynamics. We present results for the identification of network decompositions in a simple oscillatory chemical reaction, time scale separation based model reduction in a Michaelis-Menten enzyme system and network decomposition of a detailed model for the oscillatory peroxidase-oxidase enzyme system.

  10. Versatile benzimidazole/triphenylamine hybrids: efficient nondoped deep-blue electroluminescence and good host materials for phosphorescent emitters.

    PubMed

    Gong, Shaolong; Zhao, Yongbiao; Wang, Meng; Yang, Chuluo; Zhong, Cheng; Qin, Jingui; Ma, Dongge

    2010-09-03

    Two new bipolar compounds, N,N,N',N'-tetraphenyl-5'-(1-phenyl-1H-benzimidazol-2-yl)-1,1':3',1''-terphenyl-4,4''-diamine (1) and N,N,N',N'-tetraphenyl-5'-(1-phenyl-1H-benzimidazol-2-yl)-1,1':3',1''-terphenyl-3,3''-diamine (2), were synthesized and characterized, and their thermal, photophysical, and electrochemical properties were investigated. Compounds 1 and 2 possess good thermal stability with high glass-transition temperatures of 109-129 degrees C and thermal decomposition temperatures of 501-531 degrees C. The fluorescence quantum yield of 1 (0.52) is higher than that of 2 (0.16), which could be attributed to greater pi conjugation between the donor and acceptor moieties. A nondoped deep-blue fluorescent organic light-emitting diode (OLED) using 1 as the blue emitter displays high performance, with a maximum current efficiency of 2.2 cd A(-1) and a maximum external efficiency of 2.9 % at the CIE coordinates of (0.17, 0.07) that are very close to the National Television System Committee's blue standard (0.15, 0.07). Electrophosphorescent devices using the two compounds as host materials for green and red phosphor emitters show high efficiencies. The best performance of a green phosphorescent device was achieved using 2 as the host, with a maximum current efficiency of 64.3 cd A(-1) and a maximum power efficiency of 68.3 lm W(-1); whereas the best performance of a red phosphorescent device was achieved using 1 as the host, with a maximum current efficiency of 11.5 cd A(-1), and a maximum power efficiency of 9.8 lm W(-1). The relationship between the molecular structures and optoelectronic properties are discussed.

  11. A rapidly self-healing supramolecular polymer hydrogel with photostimulated room-temperature phosphorescence responsiveness.

    PubMed

    Chen, Hui; Ma, Xiang; Wu, Shuaifan; Tian, He

    2014-12-15

    Development of self-healing and photostimulated luminescent supramolecular polymeric materials is important for artificial soft materials. A supramolecular polymeric hydrogel is reported based on the host-guest recognition between a β-cyclodextrin (β-CD) host polymer (poly-β-CD) and an α-bromonaphthalene (α-BrNp) polymer (poly-BrNp) without any additional gelator, which can self-heal within only about one minute under ambient atmosphere without any additive. This supramolecular polymer system can be excited to engender room-temperature phosphorescence (RTP) signals based on the fact that the inclusion of β-CD macrocycle with α-BrNp moiety is able to induce RTP emission (CD-RTP). The RTP signal can be adjusted reversibly by competitive complexation of β-CD with azobenzene moiety under specific irradiation by introducing another azobenzene guest polymer (poly-Azo). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Updated Chemical Kinetics and Sensitivity Analysis Code

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan

    2005-01-01

    An updated version of the General Chemical Kinetics and Sensitivity Analysis (LSENS) computer code has become available. A prior version of LSENS was described in "Program Helps to Determine Chemical-Reaction Mechanisms" (LEW-15758), NASA Tech Briefs, Vol. 19, No. 5 (May 1995), page 66. To recapitulate: LSENS solves complex, homogeneous, gas-phase, chemical-kinetics problems (e.g., combustion of fuels) that are represented by sets of many coupled, nonlinear, first-order ordinary differential equations. LSENS has been designed for flexibility, convenience, and computational efficiency. The present version of LSENS incorporates mathematical models for (1) a static system; (2) steady, one-dimensional inviscid flow; (3) reaction behind an incident shock wave, including boundary layer correction; (4) a perfectly stirred reactor; and (5) a perfectly stirred reactor followed by a plug-flow reactor. In addition, LSENS can compute equilibrium properties for the following assigned states: enthalpy and pressure, temperature and pressure, internal energy and volume, and temperature and volume. For static and one-dimensional-flow problems, including those behind an incident shock wave and following a perfectly stirred reactor calculation, LSENS can compute sensitivity coefficients of dependent variables and their derivatives, with respect to the initial values of dependent variables and/or the rate-coefficient parameters of the chemical reactions.

  13. Intersystem-crossing and phosphorescence rates in fac-Ir{sup III}(ppy){sub 3}: A theoretical study involving multi-reference configuration interaction wavefunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleinschmidt, Martin; Marian, Christel M., E-mail: Christel.Marian@hhu.de; Wüllen, Christoph van

    2015-03-07

    We have employed combined density functional theory and multi-reference configuration interaction methods including spin–orbit coupling (SOC) effects to investigate the photophysics of the green phosphorescent emitter fac-tris-(2-phenylpyridine)iridium (fac-Ir(ppy){sub 3}). A critical evaluation of our quantum chemical approaches shows that a perturbational treatment of SOC is the method of choice for computing the UV/Vis spectrum of this heavy transition metal complex while multi-reference spin–orbit configuration interaction is preferable for calculating the phosphorescence rates. The particular choice of the spin–orbit interaction operator is found to be of minor importance. Intersystem crossing (ISC) rates have been determined by Fourier transformation of the timemore » correlation function of the transition including Dushinsky rotations. In the electronic ground state, fac-Ir(ppy){sub 3} is C{sub 3} symmetric. The calculated UV/Vis spectrum is in excellent agreement with experiment. The effect of SOC is particularly pronounced for the metal-to-ligand charge transfer (MLCT) band in the visible region of the absorption spectrum which does not only extend its spectral onset towards longer wavelengths but also experiences a blue shift of its maximum. Pseudo-Jahn-Teller interaction leads to asymmetric coordinate displacements in the lowest MLCT states. Substantial electronic SOC and a small energy gap make ISC an ultrafast process in fac-Ir(ppy){sub 3}. For the S{sub 1}↝T{sub 1} non-radiative transition, we compute a rate constant of k{sub ISC} = 6.9 × 10{sup 12} s{sup −1} which exceeds the rate constant of radiative decay to the electronic ground state by more than six orders of magnitude, in agreement with the experimental observation of a subpicosecond ISC process and a triplet quantum yield close to unity. As a consequence of the geometric distortion in the T{sub 1} state, the T{sub 1} → S{sub 0} transition densities are localized on one of the

  14. Pyrolysis characteristics and kinetics of microalgae via thermogravimetric analysis (TGA): A state-of-the-art review.

    PubMed

    Bach, Quang-Vu; Chen, Wei-Hsin

    2017-12-01

    Pyrolysis is a promising route for biofuels production from microalgae at moderate temperatures (400-600°C) in an inert atmosphere. Depending on the operating conditions, pyrolysis can produce biochar and/or bio-oil. In practice, knowledge for thermal decomposition characteristics and kinetics of microalgae during pyrolysis is essential for pyrolyzer design and pyrolysis optimization. Recently, the pyrolysis kinetics of microalgae has become a crucial topic and received increasing interest from researchers. Thermogravimetric analysis (TGA) has been employed as a proven technique for studying microalgae pyrolysis in a kinetic control regime. In addition, a number of kinetic models have been applied to process the TGA data for kinetic evaluation and parameters estimation. This paper aims to provide a state-of-the art review on recent research activities in pyrolysis characteristics and kinetics of various microalgae. Common kinetic models predicting the thermal degradation of microalgae are examined and their pros and cons are illustrated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Determination of trace alkaline phosphatase by affinity adsorption solid substrate room temperature phosphorimetry based on wheat germ agglutinin labeled with 8-quinolineboronic acid phosphorescent molecular switch and prediction of diseases.

    PubMed

    Liu, Jia-Ming; Gao, Hui; Li, Fei-Ming; Shi, Xiu-Mei; Lin, Chang-Qing; Lin, Li-Ping; Wang, Xin-Xing; Li, Zhi-Ming

    2010-09-01

    The 8-quinolineboronic acid phosphorescent molecular switch (abbreviated as PMS-8-QBA. Thereinto, 8-QBA is 8-quinolineboronic acid, and PMS is phosphorescent molecular switch) was found for the first time. PMS-8-QBA, which was in the "off" state, could only emit weak room temperature phosphorescence (RTP) on the acetyl cellulose membrane (ACM). However, PMS-8-QBA turned "on" automatically for its changed structure, causing that the RTP of 8-QBA in the system increased, after PMS-8-QBA-WGA (WGA is wheat germ agglutinin) was formed by reaction between -OH of PMS-8-QBA and -COOH of WGA. More interesting is that the -NH(2) of PMS-8-QBA-WGA could react with the -COOH of alkaline phosphatase (AP) to form the affinity adsorption (AA) product WGA-AP-WGA-8-QBA-PMS (containing -NH-CO- bond), which caused RTP of the system to greatly increase. Thus, affinity adsorption solid substrate room temperature phosphorimetry using PMS-8-QBA as labelling reagent (PMS-8-QBA-AA-SSRTP) for the determination of trace AP was established. The method had many advantages, such as high sensitivity (the detection limit (LD) was 2.5zgspot(-1). For sample volume of 0.40mulspot(-1), corresponding concentration was 6.2x10(-18)gml(-1)), good selectivity (the allowed concentration of coexisting material was higher, when the relative error was +/-5%), high accuracy (applied to detection of AP content in serum samples, the result was coincided with those obtained by enzyme-linked immunoassay), which was suitable for the detection of trace AP content in serum samples and the forecast of human diseases. Meanwhile, the mechanism of PMS-8-QBA-AASSRTP was discussed. The new field of analytical application and clinic diagnosis technique of molecule switch are exploited, based on the phosphorescence characteristic of PMS-8-QBA, the AA reaction between WGA and AP, as well as the relation between AP content and human diseases. The research results promote the development and interpenetrate among molecule switch

  16. The effect of sodium chloride on molecular mobility in amorphous sucrose detected by phosphorescence from the triplet probe erythrosin B.

    PubMed

    You, Yumin; Ludescher, Richard D

    2008-02-04

    Phosphorescence from the triplet probe erythrosin B provides spectroscopic characteristics such as emission energy and lifetime that are specifically sensitive to molecular mobility of the local environment. This study used phosphorescence of erythrosin B to investigate how variation in NaCl content modulated the mobility of the amorphous sucrose matrix over the temperature range from 5 to 100 degrees C. Addition of NaCl increased the emission energy and the energy difference with excitation at the absorption maximum and the red edge, and increased the lifetime by reducing the non-radiative decay rate in the glass as well as in the undercooled liquid in a concentration dependent manner, indicating that NaCl decreased the matrix molecular mobility. Emission energy and lifetime increased with increasing NaCl content up to a maximum at NaCl/sucrose mole ratio of approximately 0.5; above 0.5 mole ratio, the effect of NaCl was less significant and appeared to be opposed by increasing plasticization by residual water. Changes in the width of the distribution of the emission energy and lifetime and variation in the lifetime with excitation and emission wavelength indicated that NaCl increased the spectral heterogeneity and thus increased the extent of dynamic site heterogeneity. These results are consistent with a physical model in which sodium and chloride ions interact with sucrose OH by ion-dipole interactions, forming clusters of less mobile molecules within the matrix.

  17. From thermometric to spectrophotometric kinetic-catalytic methods of analysis. A review.

    PubMed

    Cerdà, Víctor; González, Alba; Danchana, Kaewta

    2017-05-15

    Kinetic-catalytic analytical methods have proved to be very easy and highly sensitive strategies for chemical analysis, that rely on simple instrumentation [1,2]. Molecular absorption spectrophotometry is commonly used as the detection technique. However, other detection systems, like electrochemical or thermometric ones, offer some interesting possibilities since they are not affected by the color or turbidity of the samples. In this review some initial experience with thermometric kinetic-catalytic methods is described, up to our current experience exploiting spectrophotometric flow techniques to automate this kind of reactions, including the use of integrated chips. Procedures for determination of inorganic and organic species in organic and inorganic matrices are presented. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Kinetic products in coordination networks: ab initio X-ray powder diffraction analysis.

    PubMed

    Martí-Rujas, Javier; Kawano, Masaki

    2013-02-19

    Porous coordination networks are materials that maintain their crystal structure as molecular "guests" enter and exit their pores. They are of great research interest with applications in areas such as catalysis, gas adsorption, proton conductivity, and drug release. As with zeolite preparation, the kinetic states in coordination network preparation play a crucial role in determining the final products. Controlling the kinetic state during self-assembly of coordination networks is a fundamental aspect of developing further functionalization of this class of materials. However, unlike for zeolites, there are few structural studies reporting the kinetic products made during self-assembly of coordination networks. Synthetic routes that produce the necessary selectivity are complex. The structural knowledge obtained from X-ray crystallography has been crucial for developing rational strategies for design of organic-inorganic hybrid networks. However, despite the explosive progress in the solid-state study of coordination networks during the last 15 years, researchers still do not understand many chemical reaction processes because of the difficulties in growing single crystals suitable for X-ray diffraction: Fast precipitation can lead to kinetic (metastable) products, but in microcrystalline form, unsuitable for single crystal X-ray analysis. X-ray powder diffraction (XRPD) routinely is used to check phase purity, crystallinity, and to monitor the stability of frameworks upon guest removal/inclusion under various conditions, but rarely is used for structure elucidation. Recent advances in structure determination of microcrystalline solids from ab initio XRPD have allowed three-dimensional structure determination when single crystals are not available. Thus, ab initio XRPD structure determination is becoming a powerful method for structure determination of microcrystalline solids, including porous coordination networks. Because of the great interest across scientific

  19. Hot excited state management for long-lived blue phosphorescent organic light-emitting diodes

    DOE PAGES

    Lee, Jaesang; Jeong, Changyeong; Batagoda, Thilini; ...

    2017-05-31

    Since their introduction over 15 years ago, the operational lifetime of blue phosphorescent organic light-emitting diodes (PHOLEDs) has remained insufficient for their practical use in displays and lighting. Their short lifetime results from annihilation between high-energy excited states, producing energetically hot states (46.0 eV) that lead to molecular dissociation. We introduce a strategy to avoid dissociative reactions by including a molecular hot excited state manager within the device emission layer. Hot excited states transfer to the manager and rapidly thermalize before damage is induced on the dopant or host. As a consequence, the managed blue PHOLED attains T80=334±5 h (timemore » to 80% of the 1,000 cd m -2 initial luminance) with a chromaticity coordinate of (0.16, 0.31), corresponding to 3.6±0.1 times improvement in a lifetime compared to conventional, unmanaged devices. We believe that, this significant improvement results in the longest lifetime for such a blue PHOLED.« less

  20. Two novel blue phosphorescent host materials containing phenothiazine-5,5-dioxide structure derivatives

    PubMed Central

    Xie, Feng-Ming; Ou, Qingdong; Zhang, Qiang; Zhang, Jiang-Kun; Dai, Guo-Liang

    2018-01-01

    Two novel D–A bipolar blue phosphorescent host materials based on phenothiazine-5,5-dioxide: 3-(9H-carbazol-9-yl)-10-ethyl-10H-phenothiazine-5,5-dioxide (CEPDO) and 10-butyl-3-(9H-carbazol-9-yl)-10H-phenothiazine-5,5-dioxide (CBPDO) were synthesized and characterized. The photophysical, electrochemical and thermal properties were systematically investigated. CEPDO and CBPDO not only have a high triplet energy but also show a bipolar behavior. Moreover, their fluorescence emission peaks are in the blue fluorescence region at 408 nm and the fluorescence quantum efficiency (Φ) of CEPDO and CBPDO were 62.5% and 59.7%, respectively. Both CEPDO and CBPDO showed very high thermal stability with decomposition temperatures (T d) of 409 and 396 °C as well as suitable HOMO and LUMO energy levels. This preferable performance suggests that CEPDO and CBPDO are alternative bipolar host materials for the PhOLEDs. PMID:29765467

  1. Hot excited state management for long-lived blue phosphorescent organic light-emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jaesang; Jeong, Changyeong; Batagoda, Thilini

    Since their introduction over 15 years ago, the operational lifetime of blue phosphorescent organic light-emitting diodes (PHOLEDs) has remained insufficient for their practical use in displays and lighting. Their short lifetime results from annihilation between high-energy excited states, producing energetically hot states (46.0 eV) that lead to molecular dissociation. We introduce a strategy to avoid dissociative reactions by including a molecular hot excited state manager within the device emission layer. Hot excited states transfer to the manager and rapidly thermalize before damage is induced on the dopant or host. As a consequence, the managed blue PHOLED attains T80=334±5 h (timemore » to 80% of the 1,000 cd m -2 initial luminance) with a chromaticity coordinate of (0.16, 0.31), corresponding to 3.6±0.1 times improvement in a lifetime compared to conventional, unmanaged devices. We believe that, this significant improvement results in the longest lifetime for such a blue PHOLED.« less

  2. Solution-processed small molecules as mixed host for highly efficient blue and white phosphorescent organic light-emitting diodes.

    PubMed

    Fu, Qiang; Chen, Jiangshan; Shi, Changsheng; Ma, Dongge

    2012-12-01

    The widely used hole-transporting host 4,4',4″-tris(N-carbazolyl)-triphenylamine (TCTA) blended with either a hole-transporting or an electron-transporting small-molecule material as a mixed-host was investigated in the phosphorescent organic light-emitting diodes (OLEDs) fabricated by the low-cost solution-process. The performance of the solution-processed OLEDs was found to be very sensitive to the composition of the mixed-host systems. The incorporation of the hole-transporting 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) into TCTA as the mixed-host was demonstrated to greatly reduce the driving voltage and thus enhance the efficiency due to the improvement of hole injection and transport. On the basis of the mixed-host of TCTA:TAPC, we successfully fabricated low driving voltage and high efficiency blue and white phosphorescent OLEDs. A maximum forward viewing current efficiency of 32.0 cd/A and power efficiency of 25.9 lm/W were obtained in the optimized mixed-host blue OLED, which remained at 29.6 cd/A and 19.1 lm/W at the luminance of 1000 cd/m(2) with a driving voltage as low as 4.9 V. The maximum efficiencies of 37.1 cd/A and 32.1 lm/W were achieved in a single emissive layer white OLED based on the TCTA:TAPC mixed-host. Even at 1000 cd/m(2), the efficiencies still reach 34.2 cd/A and 23.3 lm/W and the driving voltage is only 4.6 V, which is comparable to those reported from the state-of-the-art vacuum-evaporation deposited white OLEDs.

  3. Determination of trace selenium by solid substrate-room temperature phosphorescence enhancing method based on potassium chlorate oxidizing phenyl hydrazine-1,2-dihydroxynaphthalene-3,6-disulfonic acid system.

    PubMed

    Liu, Jia-Ming; Cui, Xiao-Jie; Li, Lai-Ming; Fu, Geng-Min; Lin, Shao-Xian; Yang, Min-Lan; Xu, Mei-Ying; Wu, Zhi-Qun

    2007-04-01

    A new method for the determination of trace selenium based on solid substrate-room temperature phosphorimetry (SS-RTP) has been established. This method was based on the fact that in HCl-KCl buffer solution, potassium chlorate could oxidize phenyl hydrazine to form chloridize diazo-ion after being heated at 100 degrees C for 20 min, and then the diazo-ion reacted with 1,2-dihydroxynaphthalene-3,6-disulfonic acid to form red azo-compound which could emit strong room temperature phosphorescence (RTP) signal on filter paper. Selenium could catalyze potassium chlorate oxidizing the reaction between phenyl hydrazine and 1,2-dihydroxynaphthalene-3,6-disulfonic acid, which caused the sharp enhancement of SS-RTP. Under the optimum condition, the relationship between the phosphorescence emission intensity (DeltaIp) and the content of selenium obeyed Beer's law when the concentration of selenium is within the range of 1.60-320 fg spot-1 (or 0.0040-0.80 ng ml-1 with a sample volume of 0.4 microl). The regression equation of working curve can be expressed as DeltaIp=13.12+0.4839CSe(IV) (fg spot-1) (n=6), with correlation coefficient r=0.9991 and a detection limit of 0.28 fg spot-1 (corresponding to a concentration range of 7.0x10(-13) g ml-1 Se(IV), n=11). After 11-fold measurement, R.S.D. were 2.8 and 3.5% for the samples containing 0.0040 and 0.80 ng ml-1 of Se(IV), respectively. This accurate and sensitive method with good repeatability has been successfully applied to the determination of trace selenium in Chinese wolfberry and egg yolk with satisfactory results. The mechanism of the enhancement of phosphorescence was also discussed.

  4. Determination of trace selenium by solid substrate-room temperature phosphorescence enhancing method based on potassium chlorate oxidizing phenyl hydrazine-1,2-dihydroxynaphthalene-3,6-disulfonic acid system

    NASA Astrophysics Data System (ADS)

    Liu, Jia-Ming; Cui, Xiao-Jie; Li, Lai-Ming; Fu, Geng-Min; Lin, Shao-Xian; Yang, Min-Lan; Xu, Mei-Ying; Wu, Zhi-Qun

    2007-04-01

    A new method for the determination of trace selenium based on solid substrate-room temperature phosphorimetry (SS-RTP) has been established. This method was based on the fact that in HCl-KCl buffer solution, potassium chlorate could oxidize phenyl hydrazine to form chloridize diazo-ion after being heated at 100 °C for 20 min, and then the diazo-ion reacted with 1,2-dihydroxynaphthalene-3,6-disulfonic acid to form red azo-compound which could emit strong room temperature phosphorescence (RTP) signal on filter paper. Selenium could catalyze potassium chlorate oxidizing the reaction between phenyl hydrazine and 1,2-dihydroxynaphthalene-3,6-disulfonic acid, which caused the sharp enhancement of SS-RTP. Under the optimum condition, the relationship between the phosphorescence emission intensity (Δ Ip) and the content of selenium obeyed Beer's law when the concentration of selenium is within the range of 1.60-320 fg spot -1 (or 0.0040-0.80 ng ml -1 with a sample volume of 0.4 μl). The regression equation of working curve can be expressed as Δ Ip = 13.12 + 0.4839 CSe(IV) (fg spot -1) ( n = 6), with correlation coefficient r = 0.9991 and a detection limit of 0.28 fg spot -1 (corresponding to a concentration range of 7.0 × 10 -13 g ml -1 Se(IV), n = 11). After 11-fold measurement, R.S.D. were 2.8 and 3.5% for the samples containing 0.0040 and 0.80 ng ml -1 of Se(IV), respectively. This accurate and sensitive method with good repeatability has been successfully applied to the determination of trace selenium in Chinese wolfberry and egg yolk with satisfactory results. The mechanism of the enhancement of phosphorescence was also discussed.

  5. Room-Temperature Phosphorescence in Pure Organic Materials: Halogen Bonding Switching Effects.

    PubMed

    Xiao, Lu; Wu, Yishi; Yu, Zhenyi; Xu, Zhenzhen; Li, Jinbiao; Liu, Yanping; Yao, Jiannian; Fu, Hongbing

    2018-02-06

    Organic room-temperature phosphorescence (ORTP), when combined with external stimuli-responsive capability, is very attractive for sensors and bio-imaging devices, but remains challenging. Herein, by doping two β-iminoenamine-BF 2 derivatives (S-2CN and S-2I) into a 4-iodoaniline (I-Ph-NH 2 ) crystalline matrix, the formation of S-2CN⋅⋅⋅I-Ph-NH 2 and S-2I⋅⋅⋅I-Ph-NH 2 halogen bonds leads to bright-red RTP emissions from these two host-guest doped crystals (hgDCs) with quantum efficiencies up to 13.43 % and 15.96 %, respectively. Upon treatment with HCl, the competition of I-Ph-NH 2 ⋅HCl formation against S-2I⋅⋅⋅I-Ph-NH 2 halogen bonding switches off the red RTP from S-2I/I-Ph-NH 2 hgDCs, whereas the stable halogen-bonded S-2CN⋅⋅⋅I-Ph-NH 2 ensures red RTP from S-2CN/I-Ph-NH 2 hgDCs remains unchanged. A security protection luminescence pattern by using these different HCl-responsive RTP behaviors was designed. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Direct observation of back energy transfer in blue phosphorescent materials for organic light emitting diodes by time-resolved optical waveguide spectroscopy.

    PubMed

    Hirayama, H; Sugawara, Y; Miyashita, Y; Mitsuishi, M; Miyashita, T

    2013-02-25

    We demonstrate a high-sensitive transient absorption technique for detection of excited states in an organic thin film by time-resolved optical waveguide spectroscopy. By using a laser beam as a probe light, we detect small change in the transient absorbance which is equivalent to 10 -7 absorbance unit in a conventional method. This technique was applied to organic thin films of blue phosphorescent materials for organic light emitting diodes. We directly observed the back energy transfer from emitting guest molecules to conductive host molecules.

  7. Mechanistic study of manganese-substituted glycerol dehydrogenase using a kinetic and thermodynamic analysis.

    PubMed

    Fang, Baishan; Niu, Jin; Ren, Hong; Guo, Yingxia; Wang, Shizhen

    2014-01-01

    Mechanistic insights regarding the activity enhancement of dehydrogenase by metal ion substitution were investigated by a simple method using a kinetic and thermodynamic analysis. By profiling the binding energy of both the substrate and product, the metal ion's role in catalysis enhancement was revealed. Glycerol dehydrogenase (GDH) from Klebsiella pneumoniae sp., which demonstrated an improvement in activity by the substitution of a zinc ion with a manganese ion, was used as a model for the mechanistic study of metal ion substitution. A kinetic model based on an ordered Bi-Bi mechanism was proposed considering the noncompetitive product inhibition of dihydroxyacetone (DHA) and the competitive product inhibition of NADH. By obtaining preliminary kinetic parameters of substrate and product inhibition, the number of estimated parameters was reduced from 10 to 4 for a nonlinear regression-based kinetic parameter estimation. The simulated values of time-concentration curves fit the experimental values well, with an average relative error of 11.5% and 12.7% for Mn-GDH and GDH, respectively. A comparison of the binding energy of enzyme ternary complex for Mn-GDH and GDH derived from kinetic parameters indicated that metal ion substitution accelerated the release of dioxyacetone. The metal ion's role in catalysis enhancement was explicated.

  8. Mechanistic analysis of multi-omics datasets to generate kinetic parameters for constraint-based metabolic models.

    PubMed

    Cotten, Cameron; Reed, Jennifer L

    2013-01-30

    Constraint-based modeling uses mass balances, flux capacity, and reaction directionality constraints to predict fluxes through metabolism. Although transcriptional regulation and thermodynamic constraints have been integrated into constraint-based modeling, kinetic rate laws have not been extensively used. In this study, an in vivo kinetic parameter estimation problem was formulated and solved using multi-omic data sets for Escherichia coli. To narrow the confidence intervals for kinetic parameters, a series of kinetic model simplifications were made, resulting in fewer kinetic parameters than the full kinetic model. These new parameter values are able to account for flux and concentration data from 20 different experimental conditions used in our training dataset. Concentration estimates from the simplified kinetic model were within one standard deviation for 92.7% of the 790 experimental measurements in the training set. Gibbs free energy changes of reaction were calculated to identify reactions that were often operating close to or far from equilibrium. In addition, enzymes whose activities were positively or negatively influenced by metabolite concentrations were also identified. The kinetic model was then used to calculate the maximum and minimum possible flux values for individual reactions from independent metabolite and enzyme concentration data that were not used to estimate parameter values. Incorporating these kinetically-derived flux limits into the constraint-based metabolic model improved predictions for uptake and secretion rates and intracellular fluxes in constraint-based models of central metabolism. This study has produced a method for in vivo kinetic parameter estimation and identified strategies and outcomes of kinetic model simplification. We also have illustrated how kinetic constraints can be used to improve constraint-based model predictions for intracellular fluxes and biomass yield and identify potential metabolic limitations through the

  9. Mechanistic analysis of multi-omics datasets to generate kinetic parameters for constraint-based metabolic models

    PubMed Central

    2013-01-01

    Background Constraint-based modeling uses mass balances, flux capacity, and reaction directionality constraints to predict fluxes through metabolism. Although transcriptional regulation and thermodynamic constraints have been integrated into constraint-based modeling, kinetic rate laws have not been extensively used. Results In this study, an in vivo kinetic parameter estimation problem was formulated and solved using multi-omic data sets for Escherichia coli. To narrow the confidence intervals for kinetic parameters, a series of kinetic model simplifications were made, resulting in fewer kinetic parameters than the full kinetic model. These new parameter values are able to account for flux and concentration data from 20 different experimental conditions used in our training dataset. Concentration estimates from the simplified kinetic model were within one standard deviation for 92.7% of the 790 experimental measurements in the training set. Gibbs free energy changes of reaction were calculated to identify reactions that were often operating close to or far from equilibrium. In addition, enzymes whose activities were positively or negatively influenced by metabolite concentrations were also identified. The kinetic model was then used to calculate the maximum and minimum possible flux values for individual reactions from independent metabolite and enzyme concentration data that were not used to estimate parameter values. Incorporating these kinetically-derived flux limits into the constraint-based metabolic model improved predictions for uptake and secretion rates and intracellular fluxes in constraint-based models of central metabolism. Conclusions This study has produced a method for in vivo kinetic parameter estimation and identified strategies and outcomes of kinetic model simplification. We also have illustrated how kinetic constraints can be used to improve constraint-based model predictions for intracellular fluxes and biomass yield and identify potential

  10. Precise Design of Phosphorescent Molecular Butterflies with Tunable Photoinduced Structural Change and Dual Emission.

    PubMed

    Zhou, Chenkun; Tian, Yu; Yuan, Zhao; Han, Mingu; Wang, Jamie; Zhu, Lei; Tameh, Maliheh Shaban; Huang, Chen; Ma, Biwu

    2015-08-10

    Photoinduced structural change (PSC) is a fundamental excited-state dynamic process in chemical and biological systems. However, precise control of PSC processes is very challenging, owing to the lack of guidelines for designing excited-state potential energy surfaces (PESs). A series of rationally designed butterfly-like phosphorescent binuclear platinum complexes that undergo controlled PSC by Pt-Pt distance shortening and exhibit tunable dual (greenish-blue and red) emission are herein reported. Based on the Bell-Evans-Polanyi principle, it is demonstrated how the energy barrier of the PSC, which can be described as a chemical-reaction-like process between the two energy minima on the first triplet excited-state PES, can be controlled by synthetic means. These results reveal a simple method to engineer the dual emission of molecular systems by manipulating PES to control PSC. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Enhancement of external quantum efficiency and reduction of roll-off in blue phosphorescent organic light emitt diodes using TCTA inter-layer

    NASA Astrophysics Data System (ADS)

    Kim, Ji Young; Kim, Nam Ho; Kim, Jin Wook; Kang, Jin Sung; Yoon, Ju-An; Yoo, Seung Il; Kim, Woo Young; Cheah, Kok Wai

    2014-11-01

    The improved external quantum efficiency (EQE) and reduced roll-off properties of blue phosphorescent organic light-emitting diodes (PHOLEDs), were fabricated with structure, ITO/NPB (400 Å)/TCTA (200 Å)/mCP:FIrpic (7%)(300 Å)/TPBi (300 Å)/Liq (20 Å)/Al (800 Å) by incorporating an 4,4‧,4‧‧-tris(carbazol-9-yl)-triphenylamine (TCTA) interlayer. We compared the properties of 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) and 1,3,5-tris(N-phenylbenzimidazole-2-yl)benzene (TPBi) as the electron transport layer (ETL) with a typical structure of hole transport layer (HTL)/emissive layer (EML)/ETL in OLEDs and utilized inter-layer in the optimized structure to enhance EQE to 52% at 5.5 V, also stabilize the roll-off of 23%. The use of inter-layer in blue PHOLEDs exhibits a current efficiency of 10.04 cd/A, an EQE of 6.20% at 5.5 V and the highest luminance of 10310 cd/m2 at 9.5 V. We have identified the properties of electroluminescence through the inter-layer in blue PHOLEDs which can be divided into singlet excitons and triplet excitons which emit fluorescence of N,N‧-bis(1-naphthalenyl)-N,N‧-bis-phenyl-(1,1‧-biphenyl)-4,4‧-diamine (NPB) at 420 nm and phosphorescence of Iridium (III) bis[(4,6-difluorophenyl)-pyridinato-N,C2‧] picolinate (FIrpic) at 470 nm, 494 nm, respectively.

  12. Formation of a Fluorous/Organic Biphasic Supramolecular Octopus Assembly for Enhanced Porphyrin Phosphorescence in Air

    DOE PAGES

    Yang, Chi; Arvapally, Ravi K.; Tekarli, Sammer M.; ...

    2015-03-03

    The trinuclear triangle-shaped system [tris{3,5-bis(heptafluoropropyl)-1,2,4-triazolatosilver(I)}] (1) and the multi-armed square-shaped metalloporphyrin PtOEP or the free porphyrin base H2OEP serve as excellent octopus hosts (OEP=2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphine). Coupling of the fluorous/organic molecular octopi 1 and H2OEP or PtOEP by strong quadrupole-quadrupole and metal- interactions affords the supramolecular assemblies [1PtOEP] or [1H(2)OEP] (2a), which feature nanoscopic cavities surrounding the upper triangular and lower square cores. The fluorous/organic biphasic configuration of [1PtOEP] leads to an increase in the phosphorescence of PtOEP under ambient conditions. Guest molecules can be included in the biphasic double-octopus assembly in three different site-selective modes.

  13. Oxygen-dependent quenching of phosphorescence used to characterize improved myocardial oxygenation resulting from vasculogenic cytokine therapy

    PubMed Central

    Hiesinger, William; Vinogradov, Sergei A.; Atluri, Pavan; Fitzpatrick, J. Raymond; Frederick, John R.; Levit, Rebecca D.; McCormick, Ryan C.; Muenzer, Jeffrey R.; Yang, Elaine C.; Marotta, Nicole A.; MacArthur, John W.; Wilson, David F.

    2011-01-01

    This study evaluates a therapy for infarct modulation and acute myocardial rescue and utilizes a novel technique to measure local myocardial oxygenation in vivo. Bone marrow-derived endothelial progenitor cells (EPCs) were targeted to the heart with peri-infarct intramyocardial injection of the potent EPC chemokine stromal cell-derived factor 1α (SDF). Myocardial oxygen pressure was assessed using a noninvasive, real-time optical technique for measuring oxygen pressures within microvasculature based on the oxygen-dependent quenching of the phosphorescence of Oxyphor G3. Myocardial infarction was induced in male Wistar rats (n = 15) through left anterior descending coronary artery ligation. At the time of infarction, animals were randomized into two groups: saline control (n = 8) and treatment with SDF (n = 7). After 48 h, the animals underwent repeat thoracotomy and 20 μl of the phosphor Oxyphor G3 was injected into three areas (peri-infarct myocardium, myocardial scar, and remote left hindlimb muscle). Measurements of the oxygen distribution within the tissue were then made in vivo by applying the end of a light guide to the beating heart. Compared with controls, animals in the SDF group exhibited a significantly decreased percentage of hypoxic (defined as oxygen pressure ≤ 15.0 Torr) peri-infarct myocardium (9.7 ± 6.7% vs. 21.8 ± 11.9%, P = 0.017). The peak oxygen pressures in the peri-infarct region of the animals in the SDF group were significantly higher than the saline controls (39.5 ± 36.7 vs. 9.2 ± 8.6 Torr, P = 0.02). This strategy for targeting EPCs to vulnerable peri-infarct myocardium via the potent chemokine SDF-1α significantly decreased the degree of hypoxia in peri-infarct myocardium as measured in vivo by phosphorescence quenching. This effect could potentially mitigate the vicious cycle of myocyte death, myocardial fibrosis, progressive ventricular dilatation, and eventual heart failure seen after acute myocardial infarction. PMID

  14. Simplified half-life methods for the analysis of kinetic data

    NASA Technical Reports Server (NTRS)

    Eberhart, J. G.; Levin, E.

    1988-01-01

    The analysis of reaction rate data has as its goal the determination of the order rate constant which characterize the data. Chemical reactions with one reactant and present simplified methods for accomplishing this goal are considered. The approaches presented involve the use of half lives or other fractional lives. These methods are particularly useful for the more elementary discussions of kinetics found in general and physical chemistry courses.

  15. Phosphorescence white organic light-emitting diodes with single emitting layer based on isoquinolinefluorene-carbazole containing host.

    PubMed

    Koo, Ja Ryong; Lee, Seok Jae; Hyung, Gun Woo; Kim, Bo Young; Shin, Hyun Su; Lee, Kum Hee; Yoon, Seung Soo; Kim, Woo Young; Kim, Young Kwan

    2013-03-01

    We have demonstrated a stable phosphorescent white organic light-emitting diodes (WOLEDs) using an orange emitter, Bis(5-benzoyl-2-(4-fluorophenyl)pyridinato-C,N) iridium(III)acetylacetonate [(Bz4Fppy)2Ir(III)acac] doped into a newly synthesized blue host material, 2-(carbazol-9-yl)-7-(isoquinolin-1-yl)-9,9-diethylfluorene (CzFliq). When 1 wt.% (Bz4Fppy)2Ir(III)acac was doped into emitting layer, it was realized an improved EL performance and a pure white color in the OLED. The optimum WOLED showed maximum values as a luminous efficiency of 10.14 cd/A, a power efficiency of 10.24 Im/W, a peak external quantum efficiency 4.07%, and Commission Internationale de L'Eclairage coordinates of (0.34, 0.39) at 8 V.

  16. Kinetic analysis of central ( sup 11 C)raclopride binding to D2-dopamine receptors studied by PET--a comparison to the equilibrium analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farde, L.; Eriksson, L.; Blomquist, G.

    1989-10-01

    (11C)Raclopride binding to central D2-dopamine receptors in humans has previously been examined by positron emission tomography (PET). Based on the rapid occurrence of binding equilibrium, a saturation analysis has been developed for the determination of receptor density (Bmax) and affinity (Kd). For analysis of PET measurements obtained with other ligands, a kinetic three-compartment model has been used. In the present study, the brain uptake of (11C)raclopride was analyzed further by applying both a kinetic and an equilibrium analysis to data obtained from four PET experiments in each of three healthy subjects. First regional CBV was determined. In the second andmore » third experiment, (11C)-raclopride with high and low specific activity was used. In a fourth experiment, the (11C)raclopride enantiomer (11C)FLB472 was used to examine the concentration of free radioligand and nonspecific binding in brain. Radio-activity in arterial blood was measured using an automated blood sampling system. Bmax and Kd values for (11C)raclopride binding could be determined also with the kinetic analysis. As expected theoretically, those values were similar to those obtained with the equilibrium analysis. In addition, the kinetic analysis allowed separate determination of the association and dissociation rate constants, kon and koff, respectively. Examination of (11C)raclopride and (11C)FLB472 uptake in brain regions devoid of specific D2-dopamine receptor binding indicated a fourth compartment in which uptake was reversible, nonstereoselective, and nonsaturable in the dose range studied.« less

  17. Phosphorescent quantum dots/ethidium bromide nanohybrids based on photoinduced electron transfer for DNA detection.

    PubMed

    Bi, Lin; Yu, Yuan-Hua

    2015-04-05

    Mercaptopropionic acid-capped Mn-doped ZnS quantum dots/ethidium bromide (EB) nanohybrids were constructed for photoinduced electron transfer (PIET) and then used as a room-temperature phosphorescence (RTP) probe for DNA detection. EB could quench the RTP of Mn-doped ZnS QDs by PIET, thereby forming Mn-doped ZnS QDs/EB nanohybrids and storing RTP. Meanwhile, EB could be inserted into DNA and EB could be competitively desorbed from the surface of Mn-doped ZnS QDs by DNA, thereby releasing the RTP of Mn-doped ZnS QDs. Based on this mechanism, a RTP sensor for DNA detection was developed. Under optimal conditions, the detection limit for DNA was 0.045 mg L(-1), the relative standard deviation was 1.7%, and the method linear ranged from 0.2 to 20 mg L(-1). The proposed method was applied to biological fluids, in which satisfactory results were obtained. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Improved efficiency in blue phosphorescent organic light-emitting diodes by the stepwise doping structure

    NASA Astrophysics Data System (ADS)

    Yang, Liping; Wang, Xiaoping; Kou, Zhiqi; Ji, Changyan

    2017-04-01

    The electro-optical properties of the blue phosphorescent organic light-emitting diodes (PHOLEDs) can be affected by the stepwise doping structure in the emitting layer (EML). A series of multi-EML devices with different doping concentration of blue dopant (FIrpic) are fabricated. The effect of the stepwise doping structure close to the electron transport layer is more obvious than that close to the hole transport layer. When the doping concentration increases gradually from the hole injection side to the electron injection side, the maximum values of the luminance, current and power efficiency can reach to 9745 cd/m2 (at 9 V), 32.0 cd/A and 25.1 lm/W in the device with the asymmetric tri-EML structure, which is improved by about 10% compared with that in the bi-EML device. When the number of the EML is four, the performance of the device becomes worse because of the interface effect resulting from different concentration of dopant.

  19. Unusual Circularly Polarized and Aggregation-Induced Near-Infrared Phosphorescence of Helical Platinum(II) Complexes with Tetradentate Salen Ligands.

    PubMed

    Song, Jintong; Wang, Man; Zhou, Xiangge; Xiang, Haifeng

    2018-05-17

    A series of chiral and helical Pt II -Salen complexes with 1,1'-binaphthyl linkers were synthesized and characterized. Owing to the restriction of intramolecular motions of central 1,1'-binaphthyls, the complexes exhibit unusual near-infrared aggregation-induced phosphorescence (AIP). The (R)/(S) enantiopure complexes were characterized by X-ray diffraction, circular dichroism spectra, time-dependent density functional theory calculations, and circularly polarized luminescence (CPL). The present work explores the use of tetradentate ligands that can be easily prepared from commercially available enantiopure compounds, and the subsequent preparation of stable CPL-active square planar Pt II complexes with AIP effect that may have interest in many applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A Yellow-Emitting Homoleptic Iridium(III) Complex Constructed from a Multifunctional Spiro Ligand for Highly Efficient Phosphorescent Organic Light-Emitting Diodes.

    PubMed

    Ren, Bao-Yi; Guo, Run-Da; Zhong, Dao-Kun; Ou, Chang-Jin; Xiong, Gang; Zhao, Xiang-Hua; Sun, Ya-Guang; Jurow, Matthew; Kang, Jun; Zhao, Yi; Li, Sheng-Biao; You, Li-Xin; Wang, Lin-Wang; Liu, Yi; Huang, Wei

    2017-07-17

    To suppress concentration quenching and to improve charge-carrier injection/transport in the emission layer (EML) of phosphorescent organic light-emitting diodes (PhOLEDs), a facial homoleptic iridium(III) complex emitter with amorphous characteristics was designed and prepared in one step from a multifunctional spiro ligand containing spiro[fluorene-9,9'-xanthene] (SFX) unit. Single-crystal X-ray analysis of the resulting fac-Ir(SFXpy) 3 complex revealed an enlarged Ir···Ir distance and negligible intermolecular π-π interactions between the spiro ligands. The emitter exhibits yellow emission and almost equal energy levels compared to the commercial phosphor iridium(III) bis(4-phenylthieno[3,2-c]pyridinato-N,C 2 ')acetylacetonate (PO-01). Dry-processed devices using a common host, 4,4'-bis(N-carbazolyl)-1,1'-biphenyl, and the fac-Ir(SFXpy) 3 emitter at a doping concentration of 15 wt % exhibited a peak performance of 46.2 cd A -1 , 36.3 lm W -1 , and 12.1% for the current efficiency (CE), power efficiency (PE), and external quantum efficiency (EQE), respectively. Compared to control devices using PO-01 as the dopant, the fac-Ir(SFXpy) 3 -based devices remained superior in the doping range between 8 and 15 wt %. The current densities went up with increasing doping concentration at the same driving voltage, while the roll-offs remain relatively low even at high doping levels. The superior performance of the new emitter-based devices was ascribed to key roles of the spiro ligand for suppressing aggregation and assisting charge-carrier injection/transport. Benefiting from the amorphous stability of the emitter, the wet-processed device also exhibited respectful CE, PE, and EQE of 32.2 cd A -1 , 22.1 lm W -1 , and 11.3%, respectively, while the EQE roll-off was as low as 1.7% at the luminance of 1000 cd m -2 . The three-dimensional geometry and binary-conjugation features render SFX the ideal multifunctional module for suppressing concentration quenching

  1. Potential and kinetic energetic analysis of phonon modes in varied molecular solids

    NASA Astrophysics Data System (ADS)

    Kraczek, Brent

    2015-03-01

    We calculate partitioned kinetic and potential energies of the phonon modes in molecular solids to illuminate the dynamical behavior of the constituent molecules. This enables analysis of the relationship between the characteristics of sets of phonon modes, molecular structure and chemical reactivity by partitioning the kinetic energy into the translational, rotational and vibrational motions of groups of atoms (including molecules), and the potential energy into the energy contained within interatomic interactions. We consider three solids of differing size and rigidity: naphthalene (C1 0 H6), nitromethane (CH3NO2)andα-HMX(C4H8N8O8). Naphthalene and nitromethane mostly act in the semi-rigid manner often expected in molecular solids. HMX exhibits behavior that is significantly less-rigid. While there are definite correlations between the kinetic and potential energetic analyses, there are also differences, particularly in the excitation of chemical bonds by low-frequency lattice modes. This suggests that in many cases computational and experimental methods dependent on atomic displacements may not identify phonon modes active in chemical reactivity.

  2. Quantitative kinetic analysis of lung nodules by temporal subtraction technique in dynamic chest radiography with a flat panel detector

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Yuichiro; Kodera, Yoshie; Tanaka, Rie; Sanada, Shigeru

    2007-03-01

    Early detection and treatment of lung cancer is one of the most effective means to reduce cancer mortality; chest X-ray radiography has been widely used as a screening examination or health checkup. The new examination method and the development of computer analysis system allow obtaining respiratory kinetics by the use of flat panel detector (FPD), which is the expanded method of chest X-ray radiography. Through such changes functional evaluation of respiratory kinetics in chest has become available. Its introduction into clinical practice is expected in the future. In this study, we developed the computer analysis algorithm for the purpose of detecting lung nodules and evaluating quantitative kinetics. Breathing chest radiograph obtained by modified FPD was converted into 4 static images drawing the feature, by sequential temporal subtraction processing, morphologic enhancement processing, kinetic visualization processing, and lung region detection processing, after the breath synchronization process utilizing the diaphragmatic analysis of the vector movement. The artificial neural network used to analyze the density patterns detected the true nodules by analyzing these static images, and drew their kinetic tracks. For the algorithm performance and the evaluation of clinical effectiveness with 7 normal patients and simulated nodules, both showed sufficient detecting capability and kinetic imaging function without statistically significant difference. Our technique can quantitatively evaluate the kinetic range of nodules, and is effective in detecting a nodule on a breathing chest radiograph. Moreover, the application of this technique is expected to extend computer-aided diagnosis systems and facilitate the development of an automatic planning system for radiation therapy.

  3. Kinetic analysis on precursors for iturin A production from Bacillus amyloliquefaciens BPD1.

    PubMed

    Wu, Jiun-Yan; Liao, Jen-Hung; Shieh, Chwen-Jen; Hsieh, Feng-Chia; Liu, Yung-Chuan

    2018-06-12

    In this study, the precursor effect for iturin A production was quantitatively analyzed. A strain identified as Bacillus amyloliquefaciens BPD1 (Ba-BPD1) was selected due to its ability to produce iturin A. The enhancement of iturin A production in a submerged culture was tested using various additives, including palmitic acid, oils, and complex amino acids. Among these, complex amino acids triggered the highest yield at 559 mg/L. The respective amino acids that contribute to the structure of iturin A were used as precursors. In fact, it was found that the addition of l-proline, l-glutamine, l-asparagine and l-serine could improve iturin A yield in the defined medium. However, during the kinetic analysis, all the amino acids exhibited a lower saturation level than l-serine, which exhibited a high saturation level at 1.2% resulting in an iturin A yield of 914 mg/L. In contrast, a negative effect was observed following the addition of l-tyrosine. To analyze the kinetic behavior of l-serine, three kinetic models were adopted: the kinetic order equation, the Langmuir kinetic equation, and a modified logistic equation. The regression results showed that the modified logistic model was the best fit for the kinetic behavior of l-serine as the major precursor, which could be further referred to the biosynthesis pathway of iturin A. Among the proposed processes for iturin A production, this study achieved the highest iturin A levels as a result of the addition of precursors. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. High efficiency blue and white phosphorescent organic light emitting devices

    NASA Astrophysics Data System (ADS)

    Eom, Sang-Hyun

    Organic light-emitting devices (OLEDs) have important applications in full-color flat-panel displays and as solid-state lighting sources. Achieving high efficiency deep-blue phosphorescent OLEDs (PHOLEDs) is necessary for high performance full-color displays and white light sources with a high color rendering index (CRI); however it is more challenging compared to the longer wavelength light emissions such as green and red due to the higher energy excitations for the deep-blue emitter as well as the weak photopic response of deep-blue emission. This thesis details several effective strategies to enhancing efficiencies of deep-blue PHOLEDs based on iridium(III) bis(4',6'-difluorophenylpyridinato)tetrakis(1-pyrazolyl)borate (FIr6), which are further employed to demonstrate high efficiency white OLEDs by combining the deep-blue emitter with green and red emitters. First, we have employed 1,1-bis-(di-4-tolylaminophenyl) cyclohexane (TAPC) as the hole transporting material to enhance electron and triplet exciton confinement in Fir6-based PHOLEDs, which increased external quantum efficiency up to 18 %. Second, dual-emissive-layer (D-EML) structures consisting of an N,N -dicarbazolyl-3,5-benzene (mCP) layer doped with 4 wt % FIr6 and a p-bis (triphenylsilyly)benzene (UGH2) layer doped with 25 wt % FIr6 was employed to maximize exciton generation in the emissive layer. Combined with the p-i-n device structure, high power efficiencies of (25 +/- 2) lm/W at 100 cd/m2 and (20 +/- 2) lm/W at 1000 cd/m 2 were achieved. Moreover, the peak external quantum efficiency of (20 +/- 1) % was achieved by employing tris[3-(3-pyridyl)mesityl]borane (3TPYMB) as the electron transporting material, which further improves the exciton confinement in the emissive layer. With Cs2CO3 doping in the 3TPYMB layer to greatly increase its electrical conductivity, a peak power efficiency up to (36 +/- 2) lm/W from the deep-blue PHOLED was achieved, which also maintains Commission Internationale de L

  5. Jahn-Teller distortion in the phosphorescent excited state of three-coordinate Au(I) phosphine complexes.

    PubMed

    Barakat, Khaldoon A; Cundari, Thomas R; Omary, Mohammad A

    2003-11-26

    DFT calculations were used to optimize the phosphorescent excited state of three-coordinate [Au(PR3)3]+ complexes. The results indicate that the complexes rearrange from their singlet ground-state trigonal planar geometry to a T-shape in the lowest triplet luminescent excited state. The optimized structure of the exciton contradicts the structure predicted based on the AuP bonding properties of the ground-state HOMO and LUMO. The rearrangement to T-shape is a Jahn-Teller distortion because an electron is taken from the degenerate e' (5dxy, 5dx2-y2) orbital upon photoexcitation of the ground-state D3h complex. The calculated UV absorption and visible emission energies are consistent with the experimental data and explain the large Stokes' shifts while such correlations are not possible in optimized models that constrained the exciton to the ground-state trigonal geometry.

  6. Highly efficient solution-processed phosphorescent organic light-emitting devices with double-stacked hole injection layers

    NASA Astrophysics Data System (ADS)

    Chen, Yuehua; Hao, Lin; Zhang, Xinwen; Zhang, Xiaolin; Liu, Mengjiao; Zhang, Mengke; Wang, Jiong; Lai, Wen-Yong; Huang, Wei

    2017-08-01

    In this paper, solution-processed nickel oxide (NiOx) is used as hole-injection layers (HILs) in solution-processed phosphorescent organic light-emitting diodes (PhOLEDs). Serious exciton quenching is verified at the NiOx/emitting layer (EML) interface, resulting in worse device performance. The device performance is significantly improved by inserting a layer of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) between the EML and NiOx. The solution-processed blue PhOLED with the double-stacked NiOx/PEDOT:PSS HILs shows a maximum current efficiency of 30.5 cd/A, which is 75% and 30% higher than those of the devices with a single NiOx HIL and a PEDOT:PSS HIL, respectively. Improvement of device efficiency can be attributed to reducing exciton quenching of the PEDOT:PSS layer as well as the electron blocking effect of the NiOx layer.

  7. Kinetic analysis of enzyme systems with suicide substrate in the presence of a reversible competitive inhibitor, tested by simulated progress curves.

    PubMed

    Moruno-Dávila, M A; Garrido-del Solo, C; García-Moreno, M; Havsteen, B H; Garcia-Sevilla, F; Garcia-Cánovas, F; Varón, R

    2001-02-01

    The use of suicide substrates remains a very important and useful method in enzymology for studying enzyme mechanisms and designing potential drugs. Suicide substrates act as modified substrates for the target enzymes and bind to the active site. Therefore the presence of a competitive reversible inhibitor decreases the rate of substrate-induced inactivation and protects the enzyme from this inactivation. This lowering on the inactivation rate has evident physiological advantages, since it allows the easy acquisition of experimental data and facilitates kinetic data analysis by providing another variable (inhibitor concentration). However despite the importance of the simultaneous action of a suicide substrate and a competitive reversible inhibition, to date no corresponding kinetic analysis has been carried out. Therefore we present a general kinetic analysis of a Michaelis-Menten reaction mechanism with double inhibition caused by both, a suicide substrate and a competitive reversible inhibitor. We assume rapid equilibrium of the reversible reaction steps involved, while the time course equations for the reaction product have been derived with the assumption of a limiting enzyme. The goodness of the analytical solutions has been tested by comparison with the simulated curves obtained by numerical integration. A kinetic data analysis to determine the corresponding kinetic parameters from the time progress curve of the product is suggested. In conclusion, we present a complete kinetic analysis of an enzyme reaction mechanism as described above in an attempt to fill a gap in the theoretical treatment of this type of system.

  8. Thermodynamic and kinetic analysis of heterogeneous photocatalysis for semiconductor systems.

    PubMed

    Liu, Baoshun; Zhao, Xiujian; Terashima, Chiaki; Fujishima, Akira; Nakata, Kazuya

    2014-05-21

    Since the report of the Honda-Fujishima effect, heterogeneous photocatalysis has attracted much attention around the world because of its potential energy and environmental applications. Although great progresses have been made in recent years, most were focused on preparing highly-active photocatalysts and investigating visible light utilization. In fact, we are still unclear on the thermodynamic and kinetic nature of photocatalysis to date, which sometimes leads to misunderstandings for experimental results. It is timely to give a review and discussion on the thermodynamics and kinetics of photocatalysis, so as to direct future researches. However, there is an absence of a detailed review on this topic until now. In this article, we tried to review and discuss the thermodynamics and kinetics of photocatalysis. We explained the thermodynamic driving force of photocatalysis, and distinguished the functions of light and heat in photocatalysis. The Langmuir-Hinshelwood kinetic model, the ˙OH oxidation mechanism, and the direct-indirect (D-I) kinetic model were reviewed and compared. Some applications of the D-I model to study photocatalytic kinetics were also discussed. The electron transport mode and its importance in photocatalysis were investigated. Finally, the intrinsic relation between the kinetics and the thermodynamics of photocatalytic reactions was discussed.

  9. Distinct dissociation kinetics between ion pairs: Solvent-coordinate free-energy landscape analysis.

    PubMed

    Yonetani, Yoshiteru

    2015-07-28

    Different ion pairs exhibit different dissociation kinetics; however, while the nature of this process is vital for understanding various molecular systems, the underlying mechanism remains unclear. In this study, to examine the origin of different kinetic rate constants for this process, molecular dynamics simulations were conducted for LiCl, NaCl, KCl, and CsCl in water. The results showed substantial differences in dissociation rate constant, following the trend kLiCl < kNaCl < kKCl < kCsCl. Analysis of the free-energy landscape with a solvent reaction coordinate and subsequent rate component analysis showed that the differences in these rate constants arose predominantly from the variation in solvent-state distribution between the ion pairs. The formation of a water-bridging configuration, in which the water molecule binds to an anion and a cation simultaneously, was identified as a key step in this process: water-bridge formation lowers the related dissociation free-energy barrier, thereby increasing the probability of ion-pair dissociation. Consequently, a higher probability of water-bridge formation leads to a higher ion-pair dissociation rate.

  10. Application of phosphorescence quenching by O2 to the investigation of O2 delivery to ocular tissues

    NASA Astrophysics Data System (ADS)

    Chamot, Stephane R.; Petrig, Benno L.; Pournaras, Constantin J.; Percicot, Christine L.; Lambrou, George N.; Riva, Charles E.

    2001-10-01

    The technique of phosphorescence quenching by O2 (PQ) allows the non-invasive measurement of the partial pressure of oxygen in blood (pO2blood). This technique and its application to the investigation of the pO2blood in the microvasculature of the retina and optic nerve head (ONH) of two animal species is described. Using the imaging mode of PQ, 2-dimensional pO2blood maps were obtained to investigate the response of the pO2blood to various physiological stimuli in miniature pigs and the effect of experimental glaucoma in monkeys. Applied in its focal mode, PQ allows measurements of the pO2blood with a time resolution of 1 second and is adequate to investigate the pO2blood time course during light stimulation.

  11. Piezoresistive microcantilever aptasensor for ricin detection and kinetic analysis

    NASA Astrophysics Data System (ADS)

    Liu, Zhi-Wei; Tong, Zhao-Yang; Liu, Bing; Hao, Lan-Qun; Mu, Xi-Hui; Zhang, Jin-Ping; Gao, Chuan

    2015-04-01

    Up to now, there has been no report on target molecules detection by a piezoresistive microcantilever aptasensor. In order to evaluate the test performance and investigate the response dynamic characteristics of a piezoresistive microcantilever aptasensor, a novel method for ricin detection and kinetic analysis based on a piezoresistive microcantilever aptasensor was proposed, where ricin aptamer was immobilised on the microcantilever surface by biotin-avidin binding system. Results showed that the detection limit of ricin was 0.04μg L-1 (S/N ≥ 3). A linear relationship between the response voltage and the concentration of ricin in the range of 0.2μg L-1-40μg L-1 was obtained, with the linear regression equation of ΔUe = 0.904C + 5.852 (n = 5, R = 0.991, p < 0.001). The sensor showed no response for abrin, BSA, and could overcome the influence of complex environmental disruptors, indicating high specificity and good selectivity. Recovery and reproducibility in the result of simulated samples (simulated water, soil, and flour sample) determination met the analysis requirements, which was 90.5˜95.5% and 7.85%˜9.39%, respectively. On this basis, a reaction kinetic model based on ligand-receptor binding and the relationship with response voltage was established. The model could well reflect the dynamic response of the sensor. The correlation coefficient (R) was greater than or equal to 0.9456 (p < 0.001). Response voltage (ΔUe) and response time (t0) obtained from the fitting equation on different concentrations of ricin fitted well with the measured values.

  12. Goal-oriented sensitivity analysis for lattice kinetic Monte Carlo simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arampatzis, Georgios, E-mail: garab@math.uoc.gr; Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003; Katsoulakis, Markos A., E-mail: markos@math.umass.edu

    2014-03-28

    In this paper we propose a new class of coupling methods for the sensitivity analysis of high dimensional stochastic systems and in particular for lattice Kinetic Monte Carlo (KMC). Sensitivity analysis for stochastic systems is typically based on approximating continuous derivatives with respect to model parameters by the mean value of samples from a finite difference scheme. Instead of using independent samples the proposed algorithm reduces the variance of the estimator by developing a strongly correlated-“coupled”- stochastic process for both the perturbed and unperturbed stochastic processes, defined in a common state space. The novelty of our construction is that themore » new coupled process depends on the targeted observables, e.g., coverage, Hamiltonian, spatial correlations, surface roughness, etc., hence we refer to the proposed method as goal-oriented sensitivity analysis. In particular, the rates of the coupled Continuous Time Markov Chain are obtained as solutions to a goal-oriented optimization problem, depending on the observable of interest, by considering the minimization functional of the corresponding variance. We show that this functional can be used as a diagnostic tool for the design and evaluation of different classes of couplings. Furthermore, the resulting KMC sensitivity algorithm has an easy implementation that is based on the Bortz–Kalos–Lebowitz algorithm's philosophy, where events are divided in classes depending on level sets of the observable of interest. Finally, we demonstrate in several examples including adsorption, desorption, and diffusion Kinetic Monte Carlo that for the same confidence interval and observable, the proposed goal-oriented algorithm can be two orders of magnitude faster than existing coupling algorithms for spatial KMC such as the Common Random Number approach. We also provide a complete implementation of the proposed sensitivity analysis algorithms, including various spatial KMC examples, in a

  13. Vibronic singlet and triplet steady-state interplay emissions in phenazine-based 1,2,3-triazole films

    NASA Astrophysics Data System (ADS)

    Costa, Bárbara B. A.; Souza, Paula D. C.; Gontijo, Rafael N.; Jardim, Guilherme A. M.; Moreira, Roberto L.; da Silva, Eufrânio N.; Cury, Luiz A.

    2018-03-01

    Photoluminescence and phosphorescence emissions of solid-state phenazine films were investigated in steady-state experimental conditions. Important discrepancies were observed for blended films where a host optically inert matrix was introduced to disperse the probe molecules. A vibronic spin-orbit phosphorescent emission clearly appeared, while for the films solely composed by the probe molecules, the phosphorescence broadened and presented a structureless shape, shifted to longer wavelengths. Further Arrhenius behavior analysis on the photoluminescent and phosphorescent emissions on temperature, corroborated the direct and reverse intersystem crossing interplay between singlet and triplet states. Molecular aggregation is responsible for the deterioration of non-blended triazole films phosphorescence.

  14. A biomechanical analysis of upper extremity kinetics in children with cerebral palsy using anterior and posterior walkers.

    PubMed

    Konop, Katherine A; Strifling, Kelly M B; Wang, Mei; Cao, Kevin; Schwab, Jeffrey P; Eastwood, Daniel; Jackson, Scott; Ackman, Jeffrey D; Harris, Gerald F

    2009-10-01

    Upper extremity (UE) joint kinetics during aided ambulation is an area of research that is not well characterized in the current literature. Biped UE joints are not anatomically designed to be weight bearing, therefore it is important to quantify UE kinetics during assisted gait. This will help to better understand the biomechanical implications of UE weight bearing, and enable physicians to prescribe more effective methods for treatment and therapy, perhaps minimizing excessive loads and torques. To address this challenge, an UE model that incorporates both kinematics and kinetics has been developed for use with walkers instrumented with load cells. In this study, the UE joint kinetics are calculated for 10 children with cerebral palsy using both anterior and posterior walkers. Three-dimensional joint reaction forces and moments are fully characterized for the wrist, elbow, and shoulder (glenohumeral) joints for both walker types. Statistical analysis methods are used to quantify the differences in forces or moments between the two walker types. Comparisons showed no significant differences in kinetic joint parameters between walker types. Results from a power analysis of the current data are provided which may be useful for planning longer term clinical studies. If risk factors for UE joint pathology can be identified early, perhaps a change in gait training routine, walker prescription, or walker design could prevent further harm.

  15. CERENA: ChEmical REaction Network Analyzer--A Toolbox for the Simulation and Analysis of Stochastic Chemical Kinetics.

    PubMed

    Kazeroonian, Atefeh; Fröhlich, Fabian; Raue, Andreas; Theis, Fabian J; Hasenauer, Jan

    2016-01-01

    Gene expression, signal transduction and many other cellular processes are subject to stochastic fluctuations. The analysis of these stochastic chemical kinetics is important for understanding cell-to-cell variability and its functional implications, but it is also challenging. A multitude of exact and approximate descriptions of stochastic chemical kinetics have been developed, however, tools to automatically generate the descriptions and compare their accuracy and computational efficiency are missing. In this manuscript we introduced CERENA, a toolbox for the analysis of stochastic chemical kinetics using Approximations of the Chemical Master Equation solution statistics. CERENA implements stochastic simulation algorithms and the finite state projection for microscopic descriptions of processes, the system size expansion and moment equations for meso- and macroscopic descriptions, as well as the novel conditional moment equations for a hybrid description. This unique collection of descriptions in a single toolbox facilitates the selection of appropriate modeling approaches. Unlike other software packages, the implementation of CERENA is completely general and allows, e.g., for time-dependent propensities and non-mass action kinetics. By providing SBML import, symbolic model generation and simulation using MEX-files, CERENA is user-friendly and computationally efficient. The availability of forward and adjoint sensitivity analyses allows for further studies such as parameter estimation and uncertainty analysis. The MATLAB code implementing CERENA is freely available from http://cerenadevelopers.github.io/CERENA/.

  16. CERENA: ChEmical REaction Network Analyzer—A Toolbox for the Simulation and Analysis of Stochastic Chemical Kinetics

    PubMed Central

    Kazeroonian, Atefeh; Fröhlich, Fabian; Raue, Andreas; Theis, Fabian J.; Hasenauer, Jan

    2016-01-01

    Gene expression, signal transduction and many other cellular processes are subject to stochastic fluctuations. The analysis of these stochastic chemical kinetics is important for understanding cell-to-cell variability and its functional implications, but it is also challenging. A multitude of exact and approximate descriptions of stochastic chemical kinetics have been developed, however, tools to automatically generate the descriptions and compare their accuracy and computational efficiency are missing. In this manuscript we introduced CERENA, a toolbox for the analysis of stochastic chemical kinetics using Approximations of the Chemical Master Equation solution statistics. CERENA implements stochastic simulation algorithms and the finite state projection for microscopic descriptions of processes, the system size expansion and moment equations for meso- and macroscopic descriptions, as well as the novel conditional moment equations for a hybrid description. This unique collection of descriptions in a single toolbox facilitates the selection of appropriate modeling approaches. Unlike other software packages, the implementation of CERENA is completely general and allows, e.g., for time-dependent propensities and non-mass action kinetics. By providing SBML import, symbolic model generation and simulation using MEX-files, CERENA is user-friendly and computationally efficient. The availability of forward and adjoint sensitivity analyses allows for further studies such as parameter estimation and uncertainty analysis. The MATLAB code implementing CERENA is freely available from http://cerenadevelopers.github.io/CERENA/. PMID:26807911

  17. Single-cell analysis of transcription kinetics across the cell cycle

    PubMed Central

    Skinner, Samuel O; Xu, Heng; Nagarkar-Jaiswal, Sonal; Freire, Pablo R; Zwaka, Thomas P; Golding, Ido

    2016-01-01

    Transcription is a highly stochastic process. To infer transcription kinetics for a gene-of-interest, researchers commonly compare the distribution of mRNA copy-number to the prediction of a theoretical model. However, the reliability of this procedure is limited because the measured mRNA numbers represent integration over the mRNA lifetime, contribution from multiple gene copies, and mixing of cells from different cell-cycle phases. We address these limitations by simultaneously quantifying nascent and mature mRNA in individual cells, and incorporating cell-cycle effects in the analysis of mRNA statistics. We demonstrate our approach on Oct4 and Nanog in mouse embryonic stem cells. Both genes follow similar two-state kinetics. However, Nanog exhibits slower ON/OFF switching, resulting in increased cell-to-cell variability in mRNA levels. Early in the cell cycle, the two copies of each gene exhibit independent activity. After gene replication, the probability of each gene copy to be active diminishes, resulting in dosage compensation. DOI: http://dx.doi.org/10.7554/eLife.12175.001 PMID:26824388

  18. Long persistent phosphorescence of V3+ centers in MgAl2O4:Ce3+

    NASA Astrophysics Data System (ADS)

    Jia, Dongdong; William, Yen

    2002-03-01

    : Ceramic samples of Ce3+ doped and undoped MgAl2O4 have been prepared and studied. Long persistent phosphorescence was observed at 520nm in Ce3+ doped sample. The persistence time of the 520nm afterglow is longer than 10 hours. The long persistent 520nm afterglow is due to the V3+ centers in MgAl2O4. The V3+ emission is coming from a recombination of the electron from conduction band and the hole of the V3+ center. The hole level of the V3+ center is about 2.4eV below the conduction band. Thermoluminescence spectra of the two samples have been studied. There two hole traps in the MgAl2O4 are found at 41 and 238oC . Doping of Ce3+ also produces two F center like electron traps at 14 and 131oC. Doping of Ce3+ greatly enhanced the afterglow emission of the V3+ center.

  19. Accounting for unintended binding events in the analysis of quartz crystal microbalance kinetic data.

    PubMed

    Heller, Gabriella T; Zwang, Theodore J; Sarapata, Elizabeth A; Haber, Michael A; Sazinsky, Matthew H; Radunskaya, Ami E; Johal, Malkiat S

    2014-05-01

    Previous methods for analyzing protein-ligand binding events using the quartz crystal microbalance with dissipation monitoring (QCM-D) fail to account for unintended binding that inevitably occurs during surface measurements and obscure kinetic information. In this article, we present a system of differential equations that accounts for both reversible and irreversible unintended interactions. This model is tested on three protein-ligand systems, each of which has different features, to establish the feasibility of using the QCM-D for protein binding analysis. Based on this analysis, we were able to obtain kinetic information for the intended interaction that is consistent with those obtained in literature via bulk-phase methods. In the appendix, we include a method for decoupling these from the intended binding events and extracting relevant affinity information. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Pre-Steady State Kinetic Analysis of cis-3-Chloroacrylic Acid Dehalogenase: Analysis and Implications†

    PubMed Central

    Robertson, Brooklyn A.; Schroeder, Gottfried K.; Jin, Zhinan; Johnson, Kenneth A.; Whitman, Christian P.

    2009-01-01

    Isomer-specific 3-chloroacrylic acid dehalogenases catalyze the hydrolytic dehalogenation of the cis- and trans-isomers of 3-chloroacrylate to yield malonate semialdehyde. These reactions represent key steps in the degradation of the nematocide, 1,3-dichloropropene. The kinetic mechanism of cis-3-chloroacrylic acid dehalogenase (cis-CaaD) has now been examined using stopped-flow and chemical-quench techniques. Stopped-flow analysis of the reaction, following the fluorescence of an active site tryptophan, is consistent with a minimal three-step model involving substrate binding, chemistry, and product release. Chemical quench experiments show burst kinetics, indicating that product release is at least partially rate limiting. Global fitting of all of the kinetic results by simulation is best accommodated by a four-step mechanism. In the final kinetic model, the enzyme binds substrate and isomerizes to an alternate fluorescent form, chemistry occurs, and is followed by the ordered release of two products, with the release of the first product as the rate-limiting step. Bromide ion is a competitive inhibitor of the reaction indicating that it binds to the free enzyme rather than to the enzyme with one product still bound. This observation suggests that malonate semialdehyde is the first product released by the enzyme (rate limiting), followed by halide. A comparison of the unliganded cis-CaaD crystal structure with that of an inactivated cis-CaaD where the prolyl nitrogen of Pro-1 is covalently attached to (R)-2-hydroxypropanoate provides a possible explanation for the isomerization step. The structure of the covalently modified enzyme shows that a 7-residue loop comprised of residues 32-38 is closed down on the active site cavity where the backbone amides of two residues (Phe-37 and Leu-38) interact with the carboxylate group of the adduct. In the unliganded form, the same loop points away from the active site cavity. Similarly, substrate binding may cause this loop

  1. Kinetic Analysis of Benign and Malignant Breast Lesions With Ultrafast Dynamic Contrast-Enhanced MRI: Comparison With Standard Kinetic Assessment.

    PubMed

    Abe, Hiroyuki; Mori, Naoko; Tsuchiya, Keiko; Schacht, David V; Pineda, Federico D; Jiang, Yulei; Karczmar, Gregory S

    2016-11-01

    The purposes of this study were to evaluate diagnostic parameters measured with ultrafast MRI acquisition and with standard acquisition and to compare diagnostic utility for differentiating benign from malignant lesions. Ultrafast acquisition is a high-temporal-resolution (7 seconds) imaging technique for obtaining 3D whole-breast images. The dynamic contrast-enhanced 3-T MRI protocol consists of an unenhanced standard and an ultrafast acquisition that includes eight contrast-enhanced ultrafast images and four standard images. Retrospective assessment was performed for 60 patients with 33 malignant and 29 benign lesions. A computer-aided detection system was used to obtain initial enhancement rate and signal enhancement ratio (SER) by means of identification of a voxel showing the highest signal intensity in the first phase of standard imaging. From the same voxel, the enhancement rate at each time point of the ultrafast acquisition and the AUC of the kinetic curve from zero to each time point of ultrafast imaging were obtained. There was a statistically significant difference between benign and malignant lesions in enhancement rate and kinetic AUC for ultrafast imaging and also in initial enhancement rate and SER for standard imaging. ROC analysis showed no significant differences between enhancement rate in ultrafast imaging and SER or initial enhancement rate in standard imaging. Ultrafast imaging is useful for discriminating benign from malignant lesions. The differential utility of ultrafast imaging is comparable to that of standard kinetic assessment in a shorter study time.

  2. Measurement of cell respiration and oxygenation in standard multichannel biochips using phosphorescent O2-sensitive probes.

    PubMed

    Kondrashina, Alina V; Papkovsky, Dmitri B; Dmitriev, Ruslan I

    2013-09-07

    Measurement of cell oxygenation and oxygen consumption is useful for studies of cell bioenergetics, metabolism, mitochondrial function, drug toxicity and common pathophysiological conditions. Here we present a new platform for such applications which uses commercial multichannel biochips (μ-slides, Ibidi) and phosphorescent O2 sensitive probes. This platform was evaluated with both extracellular and intracellular O2 probes, several different cell types and treatments including mitochondrial uncoupling and inhibition, depletion of extracellular Ca(2+) and inhibition of V-ATPase and histone deacetylases. The results show that compared to the standard microwell plates currently used, the μ-slide platform provides facile O2 measurements with both suspension and adherent cells, higher sensitivity and reproducibility, and faster measurement time. It also allows re-perfusion and multiple treatments of cells and multi-parametric analyses in conjunction with other probes. Optical measurements are conducted on standard fluorescence readers and microscopes.

  3. Kinetic analysis of manure pyrolysis and combustion processes.

    PubMed

    Fernandez-Lopez, M; Pedrosa-Castro, G J; Valverde, J L; Sanchez-Silva, L

    2016-12-01

    Due to the depletion of fossil fuel reserves and the environmental issues derived from their use, biomass seems to be an excellent source of renewable energy. In this work, the kinetics of the pyrolysis and combustion of three different biomass waste samples (two dairy manure samples before (Pre) and after (Dig R) anaerobic digestion and one swine manure sample (SW)) was studied by means of thermogravimetric analysis. In this work, three iso-conversional methods (Friedman, Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS)) were compared with the Coats-Redfern method. The E a values of devolatilization stages were in the range of 152-170kJ/mol, 148-178kJ/mol and 156-209kJ/mol for samples Pre, Dig R and SW, respectively. Concerning combustion process, char oxidation stages showed lower E a values than that obtained for the combustion devolatilization stage, being in the range of 140-175kJ/mol, 178-199kJ/mol and 122-144kJ/mol for samples Pre, Dig R and SW, respectively. These results were practically the same for samples Pre and Dig R, which means that the kinetics of the thermochemical processes were not affected by anaerobic digestion. Finally, the distributed activation energy model (DAEM) and the pseudo-multi component stage model (PMSM) were applied to predict the weight loss curves of pyrolysis and combustion. DAEM was the best model that fitted the experimental data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Synthesis and photophysical studies of blue phosphorescent Ir(III) complexes with dimethylphenylphospine.

    PubMed

    Ham, Ho-Wan; Jung, Kyung-Yoon; Kim, Young-Sik

    2012-02-01

    New blue emitting mixed ligand iridium(III) complexes comprising one cyclometalating, two phosphines trans to each other such as Ir{(CF3)2Meppy}(PPhMe3)2(H)(L) [L = CI, NCMe, CN] [(CF3)2Meppy = 2-(3', 5'-bis-trifluoromethylphenyl)-4-methylpyridine] were synthesized and studied to tune the phosphorescence wavelength to the deep blue region and to enhance the luminescence efficiencies. To achieve deep blue emission, the trifluoromethyl group substituted on the phenyl ring and the methyl group substituted on the pyridyl ring increased HOMO-LUMO gap and achieved the hypsochromic shift. To gain insight into the factors responsible for the emission color change and the different luminescence efficiency, we investigate the electron-withdrawing capabilities of ancillary ligands using the DFT and TD-DFT calculations on the ground and excited states of the complexes. From these results, we discuss how the ancillary ligand influences the emission peak as well as the metal to ligand charge transfer (MLCT) transition efficiency. The maximum emission spectra of Ir{(CF3)2Meppy}(PPhMe3)2(H)(Cl), [Ir{(CF3),Meppy)(PPhMe3),(H)(NCMe)]+ and Ir{(CF3)2Meppy}(PPhMe3)2(H)(CN) were in the ranges of 441, 435, 434 nm, respectively.

  5. Hole transport characteristics in phosphorescent dye-doped NPB films by admittance spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Chen, Jiangshan; Huang, Jinying; Dai, Yanfeng; Zhang, Zhiqiang; Liu, Su; Ma, Dongge

    2014-05-01

    Admittance spectroscopy is a powerful tool to determine the carrier mobility. The carrier mobility is a significant parameter to understand the behavior or to optimize the organic light-emitting diode or other organic semiconductor devices. Hole transport in phosphorescent dye, bis[2-(9,9-diethyl-9H-fluoren-2-yl)-1-phenyl-1Hbenzoimidazol-N,C3] iridium(acetylacetonate [(fbi)2Ir(acac)]) doped into N,N-diphenyl-N,N-bis(1-naphthylphenyl)-1,1-biphenyl-4,4-diamine (NPB) films was investigated by admittance spectroscopy. The results show that doped (fbi)2Ir(acac) molecules behave as hole traps in NPB, and lower the hole mobility. For thicker films(≳300 nm), the electric field dependence of hole mobility is as expected positive, i.e., the mobility increases exponentially with the electric field. However, for thinner films (≲300 nm), the electric field dependence of hole mobility is negative, i.e., the hole mobility decreases exponentially with the electric field. Physical mechanisms behind the negative field dependence of hole mobility are discussed. In addition, three frequency regions were divided to analyze the behaviors of the capacitance in the hole-only device and the physical mechanism was explained by trap theory and the parasitic capacitance effect.

  6. Upper limb joint kinetic analysis during tennis serve: Assessment of competitive level on efficiency and injury risks.

    PubMed

    Martin, C; Bideau, B; Ropars, M; Delamarche, P; Kulpa, R

    2014-08-01

    The aim of this work was to compare the joint kinetics and stroke production efficiency for the shoulder, elbow, and wrist during the serve between professionals and advanced tennis players and to discuss their potential relationship with given overuse injuries. Eleven professional and seven advanced tennis players were studied with an optoelectronic motion analysis system while performing serves. Normalized peak kinetic values of the shoulder, elbow, and wrist joints were calculated using inverse dynamics. To measure serve efficiency, all normalized peak kinetic values were divided by ball velocity. t-tests were used to determine significant differences between the resultant joint kinetics and efficiency values in both groups (advanced vs professional). Shoulder inferior force, shoulder anterior force, shoulder horizontal abduction torque, and elbow medial force were significantly higher in advanced players. Professional players were more efficient than advanced players, as they maximize ball velocity with lower joint kinetics. Since advanced players are subjected to higher joint kinetics, the results suggest that they appeared more susceptible to high risk of shoulder and elbow injuries than professionals, especially during the cocking and deceleration phases of the serve. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis.

    PubMed

    Mishra, Ranjeet Kumar; Mohanty, Kaustubha

    2018-03-01

    The present study reports pyrolysis behavior of three waste biomass using thermogravimetric analysis to determine kinetic parameters at five different heating rates. Physiochemical characterization confirmed that these biomass have the potential for fuel and energy production. Pyrolysis experiments were carried out at five different heating rates (5-25 °C min -1 ). Five model-free methods such as Kissinger-Akahira-Sunose (KAS), Ozawa-Flynn-Wall (OFW), Friedman, Coats-Redfern, and distributed activation energy (DAEM) were used to calculate the kinetic parameters. The activation energy was found to be 171.66 kJ mol -1 , 148.44 kJ mol -1 , and 171.24 kJ mol -1 from KAS model; 179.29 kJ mol -1 , 156.58 kJ mol -1 , and 179.47 kJ mol -1 from OFW model; 168.58 kJ mol -1 , 181.53 kJ mol -1 , and 184.61 kJ mol -1 from Friedman model; and 206.62 kJ mol -1 , 171.63 kJ mol -1 , and 160.45 kJ mol -1 from DAEM model for PW, SW, AN biomass respectively. The calculated kinetic parameters are in good agreement with other reported biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Kinematic and kinetic analysis of overhand, sidearm and underhand lacrosse shot techniques.

    PubMed

    Macaulay, Charles A J; Katz, Larry; Stergiou, Pro; Stefanyshyn, Darren; Tomaghelli, Luciano

    2017-12-01

    Lacrosse requires the coordinated performance of many complex skills. One of these skills is shooting on the opponents' net using one of three techniques: overhand, sidearm or underhand. The purpose of this study was to (i) determine which technique generated the highest ball velocity and greatest shot accuracy and (ii) identify kinematic and kinetic variables that contribute to a high velocity and high accuracy shot. Twelve elite male lacrosse players participated in this study. Kinematic data were sampled at 250 Hz, while two-dimensional force plates collected ground reaction force data (1000 Hz). Statistical analysis showed significantly greater ball velocity for the sidearm technique than overhand (P < 0.001) and underhand (P < 0.001) techniques. No statistical difference was found for shot accuracy (P > 0.05). Kinematic and kinetic variables were not significantly correlated to shot accuracy or velocity across all shot types; however, when analysed independently, the lead foot horizontal impulse showed a negative correlation with underhand ball velocity (P = 0.042). This study identifies the technique with the highest ball velocity, defines kinematic and kinetic predictors related to ball velocity and provides information to coaches and athletes concerned with improving lacrosse shot performance.

  9. On-Line Analysis and Kinetic Behavior of Arsenic Release during Coal Combustion and Pyrolysis.

    PubMed

    Shen, Fenghua; Liu, Jing; Zhang, Zhen; Dai, Jinxin

    2015-11-17

    The kinetic behavior of arsenic (As) release during coal combustion and pyrolysis in a fluidized bed was investigated by applying an on-line analysis system of trace elements in flue gas. This system, based on inductively coupled plasma optical emission spectroscopy (ICP-OES), was developed to measure trace elements concentrations in flue gas quantitatively and continuously. Obvious variations of arsenic concentration in flue gas were observed during coal combustion and pyrolysis, indicating strong influences of atmosphere and temperature on arsenic release behavior. Kinetic laws governing the arsenic release during coal combustion and pyrolysis were determined based on the results of instantaneous arsenic concentration in flue gas. A second-order kinetic law was determined for arsenic release during coal combustion, and the arsenic release during coal pyrolysis followed a fourth-order kinetic law. The results showed that the arsenic release rate during coal pyrolysis was faster than that during coal combustion. Thermodynamic calculations were carried out to identify the forms of arsenic in vapor and solid phases during coal combustion and pyrolysis, respectively. Ca3(AsO4)2 and Ca(AsO2)2 are the possible species resulting from As-Ca interaction during coal combustion. Ca(AsO2)2 is the most probable species during coal pyrolysis.

  10. Statistical analysis of kinetic energy entrainment in a model wind turbine array boundary layer

    NASA Astrophysics Data System (ADS)

    Cal, Raul Bayoan; Hamilton, Nicholas; Kang, Hyung-Suk; Meneveau, Charles

    2012-11-01

    For large wind farms, kinetic energy must be entrained from the flow above the wind turbines to replenish wakes and enable power extraction in the array. Various statistical features of turbulence causing vertical entrainment of mean-flow kinetic energy are studied using hot-wire velocimetry data taken in a model wind farm in a scaled wind tunnel experiment. Conditional statistics and spectral decompositions are employed to characterize the most relevant turbulent flow structures and determine their length-scales. Sweep and ejection events are shown to be the largest contributors to the vertical kinetic energy flux, although their relative contribution depends upon the location in the wake. Sweeps are shown to be dominant in the region above the wind turbine array. A spectral analysis of the data shows that large scales of the flow, about the size of the rotor diameter in length or larger, dominate the vertical entrainment. The flow is more incoherent below the array, causing decreased vertical fluxes there. The results show that improving the rate of vertical kinetic energy entrainment into wind turbine arrays is a standing challenge and would require modifying the large-scale structures of the flow. This work was funded in part by the National Science Foundation (CBET-0730922, CBET-1133800 and CBET-0953053).

  11. Crystallography Coupled with Kinetic Analysis Provide Mechanistic Underpinnings of a Nicotine-Degrading Enzyme.

    PubMed

    Tararina, Margarita A; Xue, Song; Smith, Lauren C; Muellers, Samantha N; Miranda, Pedro O; Janda, Kim D; Allen, Karen N

    2018-05-29

    Nicotine oxidoreductase (NicA2) is a bacterial flavoenzyme, which catalyzes the first step of nicotine catabolism by oxidizing S-nicotine into N-methyl-myosmine. Its use has been proposed as a biotherapeutic for nicotine addiction due to its nanomolar substrate binding affinity. The first crystal structure of NicA2 has been reported, establishing NicA2 as a member of the monoamine oxidase (MAO) family. However, substrate specificity and structural determinants of substrate binding/catalysis have not been explored. Herein, analysis of pH-rate profile, single-turnover kinetics and binding data establish that pH does not significantly affect catalytic rate and product release is not rate limiting. The X-ray crystal structure of NicA2 with S-nicotine refined to 2.65 Å resolution reveals a hydrophobic binding site with a solvent exclusive cavity. Hydrophobic interactions predominantly orient the substrate, promoting the binding of a deprotonated species and supporting a hydride-transfer mechanism. Notably, NicA2 showed no activity against neurotransmitters oxidized by the two isoforms of human MAO. To further probe the substrate range of NicA2, enzyme activity was evaluated using a series of substrate analogs, indicating that S-nicotine is the optimal substrate and substitutions within the pyridyl ring abolish NicA2 activity. Moreover, mutagenesis and kinetic analysis of active-site residues reveal that removal of a hydrogen bond between the pyridyl ring of S-nicotine and the hydroxyl group of T381 has a 10-fold effect on KM, supporting the role of this bond in positioning the catalytically competent form of the substrate. Together, crystallography combined with kinetic analysis provide a deeper understanding of this enzyme's remarkable specificity.

  12. Formation kinetics of gemfibrozil chlorination reaction products: analysis and application.

    PubMed

    Krkosek, Wendy H; Peldszus, Sigrid; Huck, Peter M; Gagnon, Graham A

    2014-07-01

    Aqueous chlorination kinetics of the lipid regulator gemfibrozil and the formation of reaction products were investigated in deionized water over the pH range 3 to 9, and in two wastewater matrices. Chlorine oxidation of gemfibrozil was found to be highly dependent on pH. No statistically significant degradation of gemfibrozil was observed at pH values greater than 7. Gemfibrozil oxidation between pH 4 and 7 was best represented by first order kinetics. At pH 3, formation of three reaction products was observed. 4'-C1Gem was the only reaction product formed from pH 4-7 and was modeled with zero order kinetics. Chlorine oxidation of gemfibrozil in two wastewater matrices followed second order kinetics. 4'-C1Gem was only formed in wastewater with pH below 7. Deionized water rate kinetic models were applied to two wastewater effluents with gemfibrozil concentrations reported in literature in order to calculate potential mass loading rates of 4'C1Gem to the receiving water.

  13. Development of kinetic analysis technique for PACS management and a screening examination in dynamic radiography

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Yuichiro; Kodera, Yoshie

    2005-04-01

    The purpose of this study was to develop of kinetic analysis method for PACS management and computer-aided diagnosis. We obtained dynamic chest radiographs (512x512, 8bit, 4fps, and 1344x1344, 12bit, 3fps) of five healthy volunteers during respiration using an I.I. system twice, and one healthy volunteer using dynamic FPD system. Optical flows of images were obtained using customized block matching technique, and were divided into a direction, and transformed into the RGB color. Density was determined by the sum pixel length of movement during respiration phase. The made new static image was defined as the "kinetic map". The evaluation of patient's collation was performed with a template matching to the three colors. The same person's each correlation value and similar-coefficient which is defined in this study were statistically significant high (P<0.01). We used the artificial neural network (ANN) for the judgment of the same person. Five volunteers were divided into two groups, three volunteers and two volunteers became a training signal and unknown signal. Correlation value and similar-coefficient was used for the input signal, and ANN was designed so that the same person's probability might be outputted. The average of the specificity of the unknown signal obtained 98.2%. The kinetic map including the imitation tumor was used for the simulation. The tumor was detected by temporal subtraction of kinetic map, and then the superior sensitivity was obtained. Our analysis method was useful in risk management and computer-aided diagnosis.

  14. White polymer light-emitting diodes based on star-shaped polymers with an orange dendritic phosphorescent core.

    PubMed

    Zhu, Minrong; Li, Yanhu; Cao, Xiaosong; Jiang, Bei; Wu, Hongbin; Qin, Jingui; Cao, Yong; Yang, Chuluo

    2014-12-01

    A series of new star-shaped polymers with a triphenylamine-based iridium(III) dendritic complex as the orange-emitting core and poly(9,9-dihexylfluorene) (PFH) chains as the blue-emitting arms is developed towards white polymer light-emitting diodes (WPLEDs). By fine-tuning the content of the orange phosphor, partial energy transfer and charge trapping from the blue backbone to the orange core is realized to achieve white light emission. Single-layer WPLEDs with the configuration of ITO (indium-tin oxide)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/polymer/CsF/Al exhibit a maximum current efficiency of 1.69 cd A(-1) and CIE coordinates of (0.35, 0.33), which is very close to the pure white-light point of (0.33, 0.33). To the best of our knowledge, this is the first report on star-shaped white-emitting single polymers that simultaneously consist of fluorescent and phosphorescent species. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Use of Ambient Ionization High-Resolution Mass Spectrometry for the Kinetic Analysis of Organic Surface Reactions.

    PubMed

    Sen, Rickdeb; Escorihuela, Jorge; Smulders, Maarten M J; Zuilhof, Han

    2016-04-12

    In contrast to homogeneous systems, studying the kinetics of organic reactions on solid surfaces remains a difficult task due to the limited availability of appropriate analysis techniques that are general, high-throughput, and capable of offering quantitative, structural surface information. Here, we demonstrate how direct analysis in real time mass spectrometry (DART-MS) complies with above considerations and can be used for determining interfacial kinetic parameters. The presented approach is based on the use of a MS tag that--in principle--allows application to other reactions. To show the potential of DART-MS, we selected the widely applied strain-promoted alkyne-azide cycloaddition (SPAAC) as a model reaction to elucidate the effects of the nanoenvironment on the interfacial reaction rate.

  16. Kinetic therapy in multiple trauma patients with severe blunt chest trauma: an analysis at a level-1 trauma center.

    PubMed

    Zeckey, C; Wendt, K; Mommsen, P; Winkelmann, M; Frömke, C; Weidemann, J; Stübig, T; Krettek, C; Hildebrand, F

    2015-01-01

    Chest trauma is a relevant risk factor for mortality after multiple trauma. Kinetic therapy (KT) represents a potential treatment option in order to restore pulmonary function. Decision criteria for performing kinetic therapy are not fully elucidated. The purpose of this study was to investigate the decision making process to initiate kinetic therapy in a well defined multiple trauma cohort. A retrospective analysis (2000-2009) of polytrauma patients (age > 16 years, ISS ⩾ 16) with severe chest trauma (AIS(Chest) ⩾ 3) was performed. Patients with AIS(Head) ⩾ 3 were excluded. Patients receiving either kinetic (KT+) or lung protective ventilation strategy (KT-) were compared. Chest trauma was classified according to the AIS(Chest), Pulmonary Contusion Score (PCS), Wagner Jamieson Score and Thoracic Trauma Severity Score (TTS). There were multiple outcome parameters investigated included mortality, posttraumatic complications and clinical data. A multivariate regression analysis was performed. Two hundred and eighty-three patients were included (KT+: n=160; KT-: n=123). AIS(Chest), age and gender were comparable in both groups. There were significant higher values of the ISS, PCS, Wagner Jamieson Score and TTS in group KT+. The incidence of posttraumatic complications and mortality was increased compared to group KT- (p< 0.05). Despite that, kinetic therapy failed to be an independent risk factor for mortality in multivariate logistic regression analysis. Kinetic therapy is an option in severely injured patients with severe chest trauma. Decision making is not only based on anatomical aspects such as the AIS(Chest), but on overall injury severity, pulmonary contusions and physiological deterioration. It could be assumed that the increased mortality in patients receiving KT is primarily caused by these factors and does not reflect an independent adverse effect of KT. Furthermore, KT was not shown to be an independent risk factor for mortality.

  17. Derringer desirability and kinetic plot LC-column comparison approach for MS-compatible lipopeptide analysis.

    PubMed

    D'Hondt, Matthias; Verbeke, Frederick; Stalmans, Sofie; Gevaert, Bert; Wynendaele, Evelien; De Spiegeleer, Bart

    2014-06-01

    Lipopeptides are currently re-emerging as an interesting subgroup in the peptide research field, having historical applications as antibacterial and antifungal agents and new potential applications as antiviral, antitumor, immune-modulating and cell-penetrating compounds. However, due to their specific structure, chromatographic analysis often requires special buffer systems or the use of trifluoroacetic acid, limiting mass spectrometry detection. Therefore, we used a traditional aqueous/acetonitrile based gradient system, containing 0.1% (m/v) formic acid, to separate four pharmaceutically relevant lipopeptides (polymyxin B 1 , caspofungin, daptomycin and gramicidin A 1 ), which were selected based upon hierarchical cluster analysis (HCA) and principal component analysis (PCA). In total, the performance of four different C18 columns, including one UPLC column, were evaluated using two parallel approaches. First, a Derringer desirability function was used, whereby six single and multiple chromatographic response values were rescaled into one overall D -value per column. Using this approach, the YMC Pack Pro C18 column was ranked as the best column for general MS-compatible lipopeptide separation. Secondly, the kinetic plot approach was used to compare the different columns at different flow rate ranges. As the optimal kinetic column performance is obtained at its maximal pressure, the length elongation factor λ ( P max / P exp ) was used to transform the obtained experimental data (retention times and peak capacities) and construct kinetic performance limit (KPL) curves, allowing a direct visual and unbiased comparison of the selected columns, whereby the YMC Triart C18 UPLC and ACE C18 columns performed as best. Finally, differences in column performance and the (dis)advantages of both approaches are discussed.

  18. A prospectus on kinetic heliophysics

    NASA Astrophysics Data System (ADS)

    Howes, Gregory G.

    2017-05-01

    Under the low density and high temperature conditions typical of heliospheric plasmas, the macroscopic evolution of the heliosphere is strongly affected by the kinetic plasma physics governing fundamental microphysical mechanisms. Kinetic turbulence, collisionless magnetic reconnection, particle acceleration, and kinetic instabilities are four poorly understood, grand-challenge problems that lie at the new frontier of kinetic heliophysics. The increasing availability of high cadence and high phase-space resolution measurements of particle velocity distributions by current and upcoming spacecraft missions and of massively parallel nonlinear kinetic simulations of weakly collisional heliospheric plasmas provides the opportunity to transform our understanding of these kinetic mechanisms through the full utilization of the information contained in the particle velocity distributions. Several major considerations for future investigations of kinetic heliophysics are examined. Turbulent dissipation followed by particle heating is highlighted as an inherently two-step process in weakly collisional plasmas, distinct from the more familiar case in fluid theory. Concerted efforts must be made to tackle the big-data challenge of visualizing the high-dimensional (3D-3V) phase space of kinetic plasma theory through physics-based reductions. Furthermore, the development of innovative analysis methods that utilize full velocity-space measurements, such as the field-particle correlation technique, will enable us to gain deeper insight into these four grand-challenge problems of kinetic heliophysics. A systems approach to tackle the multi-scale problem of heliophysics through a rigorous connection between the kinetic physics at microscales and the self-consistent evolution of the heliosphere at macroscales will propel the field of kinetic heliophysics into the future.

  19. A prospectus on kinetic heliophysics

    PubMed Central

    2017-01-01

    Under the low density and high temperature conditions typical of heliospheric plasmas, the macroscopic evolution of the heliosphere is strongly affected by the kinetic plasma physics governing fundamental microphysical mechanisms. Kinetic turbulence, collisionless magnetic reconnection, particle acceleration, and kinetic instabilities are four poorly understood, grand-challenge problems that lie at the new frontier of kinetic heliophysics. The increasing availability of high cadence and high phase-space resolution measurements of particle velocity distributions by current and upcoming spacecraft missions and of massively parallel nonlinear kinetic simulations of weakly collisional heliospheric plasmas provides the opportunity to transform our understanding of these kinetic mechanisms through the full utilization of the information contained in the particle velocity distributions. Several major considerations for future investigations of kinetic heliophysics are examined. Turbulent dissipation followed by particle heating is highlighted as an inherently two-step process in weakly collisional plasmas, distinct from the more familiar case in fluid theory. Concerted efforts must be made to tackle the big-data challenge of visualizing the high-dimensional (3D-3V) phase space of kinetic plasma theory through physics-based reductions. Furthermore, the development of innovative analysis methods that utilize full velocity-space measurements, such as the field-particle correlation technique, will enable us to gain deeper insight into these four grand-challenge problems of kinetic heliophysics. A systems approach to tackle the multi-scale problem of heliophysics through a rigorous connection between the kinetic physics at microscales and the self-consistent evolution of the heliosphere at macroscales will propel the field of kinetic heliophysics into the future. PMID:29104421

  20. Quantitative Förster resonance energy transfer analysis for kinetic determinations of SUMO-specific protease.

    PubMed

    Liu, Yan; Song, Yang; Madahar, Vipul; Liao, Jiayu

    2012-03-01

    Förster resonance energy transfer (FRET) technology has been widely used in biological and biomedical research, and it is a very powerful tool for elucidating protein interactions in either dynamic or steady state. SUMOylation (the process of SUMO [small ubiquitin-like modifier] conjugation to substrates) is an important posttranslational protein modification with critical roles in multiple biological processes. Conjugating SUMO to substrates requires an enzymatic cascade. Sentrin/SUMO-specific proteases (SENPs) act as an endopeptidase to process the pre-SUMO or as an isopeptidase to deconjugate SUMO from its substrate. To fully understand the roles of SENPs in the SUMOylation cycle, it is critical to understand their kinetics. Here, we report a novel development of a quantitative FRET-based protease assay for SENP1 kinetic parameter determination. The assay is based on the quantitative analysis of the FRET signal from the total fluorescent signal at acceptor emission wavelength, which consists of three components: donor (CyPet-SUMO1) emission, acceptor (YPet) emission, and FRET signal during the digestion process. Subsequently, we developed novel theoretical and experimental procedures to determine the kinetic parameters, k(cat), K(M), and catalytic efficiency (k(cat)/K(M)) of catalytic domain SENP1 toward pre-SUMO1. Importantly, the general principles of this quantitative FRET-based protease kinetic determination can be applied to other proteases. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Impact of constitutional isomers of (BMes(2))phenylpyridine on structure, stability, phosphorescence, and Lewis acidity of mononuclear and dinuclear Pt(II) complexes.

    PubMed

    Rao, Ying-Li; Wang, Suning

    2009-08-17

    The impact of two constitutional isomers, 2-(4-BMes(2)-Ph)-pyridine (p-B-ppy, 1) and 5-BMes(2)-2-ph-pyridine (p-ppy-B, 2), as N,C-chelate ligands on the structures, stabilities, electronic and photophysical properties, and Lewis acidities of Pt(II) complexes has been investigated. Six Pt(II) complexes, Pt(p-B-ppy)Ph(DMSO) (1a), Pt(p-B-ppy)Ph(py) (1b), [Pt(p-B-ppy)Ph](2)(4,4'-bipy) (1c), Pt(p-ppy-B)Ph(DMSO) (2a), Pt(p-ppy-B)Ph(py) (2b), and [Pt(p-ppy-B)Ph](2)(4,4'-bipy) (2c), have been synthesized and fully characterized. The structures of 1a, 1c, 2a, and 2c were established by single-crystal X-ray diffraction analysis. All complexes adopt a cis geometry with the phenyl ligand being cis to the phenyl ring of the ppy chelate. The dinuclear complexes 2a and 2c were found to exist in two isomeric forms in solution, syn and anti, with respect to the relative orientation of the two BMes(2) groups in the molecule. While all complexes are stable in solution under ambient air, compound 2a was found to react with H(2)O slowly in solution and form complex 2a-OH, where one of the mesityl groups on the boron center was replaced by an OH group. This instability of 2a is attributed to an internal dimethylsulfoxide-directed hydrolysis process via hydrogen bonds. The electron-accepting ability of the free ligands and the complexes were examined by cyclic voltammetry, establishing that, for p-ppy-B, Pt(II) chelation enhances the electron-accepting ability while, for p-B-ppy, Pt(II) chelation has little impact. All Pt(II) complexes display oxygen-sensitive phosphorescence in solution at ambient temperature, dominated by B-ppy or ppy-B centered pi --> pi* transitions. The Lewis acidity of the complexes was examined by fluoride titration experiments using UV-vis, phosphorescence, and NMR spectroscopic methods, establishing that the p-ppy-B complexes have similar and strong binding constants while the p-B-ppy complexes have a much lower affinity toward F(-), compared to the free ligands

  2. Data Capture and Analysis Using the BBC Microcomputer--an Interfacing Project Applied to Enzyme Kinetics.

    ERIC Educational Resources Information Center

    Jones, Lawrence; Graham, Ian

    1986-01-01

    Reviews the main principles of interfacing and discusses the software developed to perform kinetic data capture and analysis with a BBC microcomputer linked to a recording spectrophotometer. Focuses on the steps in software development. Includes results of a lactate dehydrogenase assay. (ML)

  3. Wetting of biopolymer coatings: contact angle kinetics and image analysis investigation.

    PubMed

    Farris, Stefano; Introzzi, Laura; Biagioni, Paolo; Holz, Torsten; Schiraldi, Alberto; Piergiovanni, Luciano

    2011-06-21

    The surface wetting of five biopolymers, used as coating materials for a plastic film, was monitored over a span of 8 min by means of the optical contact angle technique. Because most of the total variation was observed to occur during the first 60 s, we decided to focus on this curtailed temporal window. Initial contact angle values (θ(0)) ranged from ∼91° for chitosan to ∼30° for pullulan. However, the water drop profile began to change immediately following drop deposition for all biocoatings, confirming that the concept of water contact angle equilibrium is not applicable to most biopolymers. First, a three-parameter decay equation [θ(t) = θ(0) exp(kt(n))] was fit to the experimental contact angle data to describe the kinetics of the contact angle change for each biocoating. Interestingly, the k constant correlated well with the contact angle evolution rate and the n exponent seemed to be somehow linked to the physicochemical phenomena underlying the overall kinetics process. Second, to achieve a reliable description of droplet evolution, the contact angle (CA) analysis was coupled with image analysis (IA) through a combined geometric/trigonometric approach. Absorption and spreading were the key factors governing the overall mechanism of surface wetting during the 60 s analysis, although the individual quantification of both phenomena demonstrated that spreading provided the largest contribution for all biopolymers, with the only exception of gelatin, which showed two quasi-equivalent and counterbalancing effects. The possible correlation between these two phenomena and the topography of the biopolymer surfaces are then discussed on the basis of atomic force microscopy analyses. © 2011 American Chemical Society

  4. LSENS: A General Chemical Kinetics and Sensitivity Analysis Code for homogeneous gas-phase reactions. Part 3: Illustrative test problems

    NASA Technical Reports Server (NTRS)

    Bittker, David A.; Radhakrishnan, Krishnan

    1994-01-01

    LSENS, the Lewis General Chemical Kinetics and Sensitivity Analysis Code, has been developed for solving complex, homogeneous, gas-phase chemical kinetics problems and contains sensitivity analysis for a variety of problems, including nonisothermal situations. This report is part 3 of a series of three reference publications that describe LSENS, provide a detailed guide to its usage, and present many example problems. Part 3 explains the kinetics and kinetics-plus-sensitivity analysis problems supplied with LSENS and presents sample results. These problems illustrate the various capabilities of, and reaction models that can be solved by, the code and may provide a convenient starting point for the user to construct the problem data file required to execute LSENS. LSENS is a flexible, convenient, accurate, and efficient solver for chemical reaction problems such as static system; steady, one-dimensional, inviscid flow; reaction behind incident shock wave, including boundary layer correction; and perfectly stirred (highly backmixed) reactor. In addition, the chemical equilibrium state can be computed for the following assigned states: temperature and pressure, enthalpy and pressure, temperature and volume, and internal energy and volume. For static problems the code computes the sensitivity coefficients of the dependent variables and their temporal derivatives with respect to the initial values of the dependent variables and/or the three rate coefficient parameters of the chemical reactions.

  5. Predicting kinetics of polymorphic transformations from structure mapping and coordination analysis

    NASA Astrophysics Data System (ADS)

    Stevanović, Vladan; Trottier, Ryan; Musgrave, Charles; Therrien, Félix; Holder, Aaron; Graf, Peter

    2018-03-01

    To extend materials design and discovery into the space of metastable polymorphs, rapid and reliable assessment of transformation kinetics to lower energy structures is essential. Herein we focus on diffusionless polymorphic transformations and investigate routes to assess their kinetics using solely crystallographic arguments. As part of this investigation we developed a general algorithm to map crystal structures onto each other, and ascertain the low-energy (fast-kinetics) transformation pathways between them. Pathways with minimal dissociation of chemical bonds, along which the number of bonds (in ionic systems the first-shell coordination) does not decrease below that in the end structures, are shown to always be the fast-kinetics pathways. These findings enable the rapid assessment of the kinetics of polymorphic transformation and the identification of long-lived metastable structures. The utility is demonstrated on a number of transformations including those between high-pressure SnO2 phases, which lack a detailed atomic-level understanding.

  6. Kinetic energy budgets in areas of intense convection

    NASA Technical Reports Server (NTRS)

    Fuelberg, H. E.; Berecek, E. M.; Ebel, D. M.; Jedlovec, G. J.

    1980-01-01

    A kinetic energy budget analysis of the AVE-SESAME 1 period which coincided with the deadly Red River Valley tornado outbreak is presented. Horizontal flux convergence was found to be the major kinetic energy source to the region, while cross contour destruction was the major sink. Kinetic energy transformations were dominated by processes related to strong jet intrusion into the severe storm area. A kinetic energy budget of the AVE 6 period also is presented. The effects of inherent rawinsonde data errors on widely used basic kinematic parameters, including velocity divergence, vorticity advection, and kinematic vertical motion are described. In addition, an error analysis was performed in terms of the kinetic energy budget equation. Results obtained from downward integration of the continuity equation to obtain kinematic values of vertical motion are described. This alternate procedure shows promising results in severe storm situations.

  7. Phosphorescent heterobimetallic complexes involving platinum(iv) and rhenium(vii) centers connected by an unsupported μ-oxido bridge.

    PubMed

    Molaee, Hajar; Nabavizadeh, S Masoud; Jamshidi, Mahboubeh; Vilsmeier, Max; Pfitzner, Arno; Samandar Sangari, Mozhgan

    2017-11-28

    Heterobimetallic compounds [(C^N)LMe 2 Pt(μ-O)ReO 3 ] (C^N = ppy, L = PPh 3 , 2a; C^N = ppy, L = PMePh 2 , 2b; C^N = bhq, L = PPh 3 , 2c; C^N = bhq, L = PMePh 2 , 2d) containing a discrete unsupported Pt(iv)-O-Re(vii) bridge have been synthesized through a targeted synthesis route. The compounds have been prepared by a single-pot synthesis in which the Pt(iv) precursor [PtMe 2 I(C^N)L] complexes are allowed to react easily with AgReO 4 in which the iodide ligand of the starting Pt(iv) complex is replaced by an ReO 4 - anion. In these Pt-O-Re complexes, the Pt(iv) centers have an octahedral geometry, completed by a cyclometalated bidentate ligand (C^N), two methyl groups and a phosphine ligand, while the Re(vii) centers have a tetrahedral geometry. Elemental analysis, single crystal X-ray diffraction analysis and multinuclear NMR spectroscopy are used to establish their identities. The new complexes exhibit phosphorescence emission in the solid and solution states at 298 and 77 K, which is an uncommon property of platinum complexes with an oxidation state of +4. According to DFT calculations, we found that this emission behavior in the new complexes originates from ligand centered 3 LC (C^N) character with a slight amount of metal to ligand charge transfer ( 3 MLCT). The solid-state emission data of the corresponding cycloplatinated(iv) precursor complexes [PtMe 2 I(C^N)L], 1a-1d, pointed out that the replacement of I - by an ReO 4 - anion helps enhancing the emission efficiency besides shifting the emission wavelengths.

  8. Near Infrared Phosphorescent, Non-oxidizable Palladium and Platinum Perfluoro-phthalocyanines.

    PubMed

    Łapok, Łukasz; Obłoza, Magdalena; Gorski, Alexandr; Knyukshto, Valeri; Raichyonok, Tamara; Waluk, Jacek; Nowakowska, Maria

    2016-04-18

    New Pd(II) and Pt(II) complexes with a highly electron-deficient ligand (H2 PcF64 ) were conveniently prepared in a three-step synthesis. This is the first time that the phosphorescence of phthalocyanines with a H2 PcF64 framework has been measured. Based on these measurements, the triplet-state energies (ET ) were directly determined. Transient absorption experiments revealed broad T1 →Tn absorption spanning from ca. 350 to ca. 1000 nm and allowed determination of the triplet-state lifetimes. Removal of the Pd or Pt from the perfluoro-phthalocyanine resulted in a significant increase of the triplet lifetime for H2 PcF64 . The very efficient intersystem crossing observed for both PdPcF64 and PtPcF64 leads to residual fluorescence and suppresses the fluorescence lifetimes to less than 50 ps. The absence of Pd and Pt in the perfluoro-phthalocyanine ligand, viz. H2 PcF64 , led to a recovery of fluorescence. Cyclic voltamperometry studies pointed to complete resistance of PdPcF64 and PtPcF64 to oxidation and very strong electron affinity, which rendered these materials very good electron acceptors (n-type materials). The presence of d-orbital metals such as Pd(II) and Pt(II) in the phthalocyanine ring stabilizes their reduced forms, as indicated by the spectroelectrochemical experiments. PdPcF64 and PtPcF64 easily sensitize singlet oxygen production with very high quantum yields. Both phthalocyanines presented resistance to photodegradation in the solid state under aerobic conditions and under intense irradiation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Blood, urine, and hair kinetic analysis following an acute lead intoxication.

    PubMed

    Ho, G; Keutgens, A; Schoofs, R; Kotolenko, S; Denooz, R; Charlier, C

    2011-01-01

    A case of lead exposure resulting from the accidental ingestion of a lead-containing solution is reported. Because of clinical management rapidly performed through chelation therapy by 2,3-dimercaptopropane sulfonate sodium and meso-2,3-dimercaptosuccinic acid, blood lead levels of this 51-year-old patient were moderate (412.9 μg/L) and no clinical symptoms were observed. Numerous blood and urine samples were collected for kinetic analysis of lead elimination. However, we report the first case in which hair samples were analyzed to determine the excretion level of lead after acute intoxication.

  10. Kinetic Analysis of Competitive Electrocatalytic Pathways: New Insights into Hydrogen Production with Nickel Electrocatalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiedner, Eric S.; Brown, Houston J.; Helm, Monte L.

    2016-01-20

    The hydrogen production electrocatalyst Ni(PPh2NPh2)22+ (1) is capable of traversing multiple electrocatalytic pathways. When using dimethylformamidium, DMF(H)+, the mechanism of formation of H2 catalyzed by 1 changes from an ECEC to an EECC mechanism as the potential approaches the Ni(I/0) couple. Two recent electrochemical methods, current-potential analysis and foot-of-the-wave analysis (FOWA), were performed on 1 to measure the detailed chemical kinetics of the competing ECEC and EECC pathways. A sensitivity analysis was performed on the electrochemical methods using digital simulations to gain a better understanding of their strengths and limitations. Notably, chemical rate constants were significantly underestimated when not accountingmore » for electron transfer kinetics, even when electron transfer was fast enough to afford a reversible non-catalytic wave. The EECC pathway of 1 was found to be faster than the ECEC pathway under all conditions studied. Using buffered DMF: DMF(H)+ mixtures led to an increase in the catalytic rate constant (kobs) of the EECC pathway, but kobs for the ECEC pathway did not change when using buffered acid. Further kinetic analysis of the ECEC path revealed that added base increases the rate of isomerization of the exo-protonated Ni(0) isomers to the catalytically active endo-isomers, but decreases the net rate of protonation of Ni(I). FOWA on 1 did not provide accurate rate constants due to incomplete reduction of the exo-protonated Ni(I) intermediate at the foot of the wave, but FOWA could be used to estimate the reduction potential of this previously undetected intermediate. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.« less

  11. Oxidative desulfurization: kinetic modelling.

    PubMed

    Dhir, S; Uppaluri, R; Purkait, M K

    2009-01-30

    Increasing environmental legislations coupled with enhanced production of petroleum products demand, the deployment of novel technologies to remove organic sulfur efficiently. This work represents the kinetic modeling of ODS using H(2)O(2) over tungsten-containing layered double hydroxide (LDH) using the experimental data provided by Hulea et al. [V. Hulea, A.L. Maciuca, F. Fajula, E. Dumitriu, Catalytic oxidation of thiophenes and thioethers with hydrogen peroxide in the presence of W-containing layered double hydroxides, Appl. Catal. A: Gen. 313 (2) (2006) 200-207]. The kinetic modeling approach in this work initially targets the scope of the generation of a superstructure of micro-kinetic reaction schemes and models assuming Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms. Subsequently, the screening and selection of above models is initially based on profile-based elimination of incompetent schemes followed by non-linear regression search performed using the Levenberg-Marquardt algorithm (LMA) for the chosen models. The above analysis inferred that Eley-Rideal mechanism describes the kinetic behavior of ODS process using tungsten-containing LDH, with adsorption of reactant and intermediate product only taking place on the catalyst surface. Finally, an economic index is presented that scopes the economic aspects of the novel catalytic technology with the parameters obtained during regression analysis to conclude that the cost factor for the catalyst is 0.0062-0.04759 US $ per barrel.

  12. Highly efficient phosphorescent organic light-emitting diode with a nanometer-thick Ni silicide/polycrystalline p-Si composite anode.

    PubMed

    Li, Y Z; Wang, Z L; Luo, H; Wang, Y Z; Xu, W J; Ran, G Z; Qin, G G; Zhao, W Q; Liu, H

    2010-07-19

    A phosphorescent organic light-emitting diode (PhOLED) with a nanometer-thick (approximately 10 nm) Ni silicide/ polycrystalline p-Si composite anode is reported. The structure of the PhOLED is Al mirror/ glass substrate / Si isolation layer / Ni silicide / polycrystalline p-Si/ V(2)O(5)/ NPB/ CBP: (ppy)(2)Ir(acac)/ Bphen/ Bphen: Cs(2)CO(3)/ Sm/ Au/ BCP. In the composite anode, the Ni-induced polycrystalline p-Si layer injects holes into the V(2)O(5)/ NPB, and the Ni silicide layer reduces the sheet resistance of the composite anode and thus the series resistance of the PhOLED. By adopting various measures for specially optimizing the thickness of the Ni layer, which induces Si crystallization and forms a Ni silicide layer of appropriate thickness, the highest external quantum efficiency and power conversion efficiency have been raised to 26% and 11%, respectively.

  13. Curing kinetics of visible light curing dental resin composites investigated by dielectric analysis (DEA).

    PubMed

    Steinhaus, Johannes; Hausnerova, Berenika; Haenel, Thomas; Großgarten, Mandy; Möginger, Bernhard

    2014-03-01

    During the curing process of light curing dental composites the mobility of molecules and molecule segments is reduced leading to a significant increase of the viscosity as well as the ion viscosity. Thus, the kinetics of the curing behavior of 6 different composites was derived from dielectric analysis (DEA) using especially redesigned flat sensors with interdigit comb electrodes allowing for irradiation at the top side and measuring the ion viscosity at the bottom side. As the ion viscosities of dental composites change 1-3 orders of magnitude during the curing process, DEA provides a sensitive approach to evaluate their curing behavior, especially in the phase of undisturbed chain growth. In order to determine quantitative kinetic parameters a kinetic model is presented and examined for the evaluation of the ion viscosity curves. From the obtained results it is seen that DEA might be employed in the investigation of the primary curing process, the quality assurance of ingredients as well as the control of processing stability of the light curing dental composites. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Highly Simplified Reddish Orange Phosphorescent Organic Light-Emitting Diodes Incorporating a Novel Carrier- and Exciton-Confining Spiro-Exciplex-Forming Host for Reduced Efficiency Roll-off.

    PubMed

    Xu, Ting; Zhang, Ye-Xin; Wang, Bo; Huang, Chen-Chao; Murtaza, Imran; Meng, Hong; Liao, Liang-Sheng

    2017-01-25

    A novel exciplex-forming host is applied so as to design highly simplified reddish orange light-emitting diodes (OLEDs) with low driving voltage, high efficiency, and an extraordinarily low efficiency roll-off, by combining N,N-10-triphenyl-10H-spiro [acridine-9,9'-fluoren]-3'-amine (SAFDPA) with 4,7-diphenyl-1,10-phenanthroline (Bphen) doped with trivalent iridium complex bis(2-methyldibenzo[f,h]quinoxaline) (acetylacetonate)iridium(III) (Ir(MDQ) 2 (acac)). The reddish orange OLEDs achieve a strikingly high power efficiency (PE) of 31.80 lm/W with an ultralow threshold voltage of 2.24 V which is almost equal to the triplet energy level of the phosphorescent reddish orange emitting dopant. The power efficiency of the device with the exciplex-forming host is enhanced, achieving 36.2% mainly owing to the lower operating voltage by the novel exciplex forming cohost, compared with the reference device (23.54 lm/W). Moreover, the OLEDs show extraordinarily low current efficiency (CE) roll-off to 1.41% at the brightness from 500 to 5000 cd/m 2 with a maximal CE of 32.87 cd/A (EQE max = 11.01%). The devices display a good reddish orange color (CIE of (0.628, 0.372) at 500 cd/m 2 ) nearly without color shift with increasing brightness. Co-host architecture phosphorescent OLEDs show a simpler device structure, lower working voltage, and a better efficiency and stability than those of the reference devices without the cohost architecture, which helps to simplify the OLED structure, lower the cost, and popularize OLED technology.

  15. Nucleation and Growth Kinetics from LaMer Burst Data.

    PubMed

    Chu, Daniel B K; Owen, Jonathan S; Peters, Baron

    2017-10-12

    In LaMer burst nucleation, the individual nucleation events happen en masse, quasi-simultaneously, and at nearly identical homogeneous conditions. These properties make LaMer burst nucleation important for applications that require monodispersed particles and also for theoretical analyses. Sugimoto and co-workers predicted that the number of nuclei generated during a LaMer burst depends only on the solute supply rate and the growth rate, independent of the nucleation kinetics. Some experiments confirm that solute supply kinetics control the number of nuclei, but flaws in the original theoretical analysis raise questions about the predicted roles of growth and nucleation kinetics. We provide a rigorous analysis of the coupled equations that govern concentrations of nuclei and solutes. Our analysis confirms that the number of nuclei is largely determined by the solute supply and growth rates, but our predicted relationship differs from that of Sugimoto et al. Moreover, we find that additional nucleus size dependent corrections should emerge in systems with slow growth kinetics. Finally, we show how the nucleation kinetics determine the particle size distribution. We suggest that measured particle size distributions might therefore provide ways to test theoretical models of homogeneous nucleation kinetics.

  16. Hybrid Parallelization of Adaptive MHD-Kinetic Module in Multi-Scale Fluid-Kinetic Simulation Suite

    DOE PAGES

    Borovikov, Sergey; Heerikhuisen, Jacob; Pogorelov, Nikolai

    2013-04-01

    The Multi-Scale Fluid-Kinetic Simulation Suite has a computational tool set for solving partially ionized flows. In this paper we focus on recent developments of the kinetic module which solves the Boltzmann equation using the Monte-Carlo method. The module has been recently redesigned to utilize intra-node hybrid parallelization. We describe in detail the redesign process, implementation issues, and modifications made to the code. Finally, we conduct a performance analysis.

  17. Analysis of Network Topologies Underlying Ethylene Growth Response Kinetics

    PubMed Central

    Prescott, Aaron M.; McCollough, Forest W.; Eldreth, Bryan L.; Binder, Brad M.; Abel, Steven M.

    2016-01-01

    Most models for ethylene signaling involve a linear pathway. However, measurements of seedling growth kinetics when ethylene is applied and removed have resulted in more complex network models that include coherent feedforward, negative feedback, and positive feedback motifs. The dynamical responses of the proposed networks have not been explored in a quantitative manner. Here, we explore (i) whether any of the proposed models are capable of producing growth-response behaviors consistent with experimental observations and (ii) what mechanistic roles various parts of the network topologies play in ethylene signaling. To address this, we used computational methods to explore two general network topologies: The first contains a coherent feedforward loop that inhibits growth and a negative feedback from growth onto itself (CFF/NFB). In the second, ethylene promotes the cleavage of EIN2, with the product of the cleavage inhibiting growth and promoting the production of EIN2 through a positive feedback loop (PFB). Since few network parameters for ethylene signaling are known in detail, we used an evolutionary algorithm to explore sets of parameters that produce behaviors similar to experimental growth response kinetics of both wildtype and mutant seedlings. We generated a library of parameter sets by independently running the evolutionary algorithm many times. Both network topologies produce behavior consistent with experimental observations, and analysis of the parameter sets allows us to identify important network interactions and parameter constraints. We additionally screened these parameter sets for growth recovery in the presence of sub-saturating ethylene doses, which is an experimentally-observed property that emerges in some of the evolved parameter sets. Finally, we probed simplified networks maintaining key features of the CFF/NFB and PFB topologies. From this, we verified observations drawn from the larger networks about mechanisms underlying ethylene

  18. On the relationships between Michaelis–Menten kinetics, reverse Michaelis–Menten kinetics, Equilibrium Chemistry Approximation kinetics and quadratic kinetics

    DOE PAGES

    Tang, J. Y.

    2015-09-03

    The Michaelis–Menten kinetics and the reverse Michaelis–Menten kinetics are two popular mathematical formulations used in many land biogeochemical models to describe how microbes and plants would respond to changes in substrate abundance. However, the criteria of when to use which of the two are often ambiguous. Here I show that these two kinetics are special approximations to the Equilibrium Chemistry Approximation kinetics, which is the first order approximation to the quadratic kinetics that solves the equation of enzyme-substrate complex exactly for a single enzyme single substrate biogeochemical reaction with the law of mass action and the assumption of quasi-steady-state formore » the enzyme-substrate complex and that the product genesis from enzyme-substrate complex is much slower than the equilibration between enzyme-substrate complexes, substrates and enzymes. In particular, I showed that the derivation of the Michaelis–Menten kinetics does not consider the mass balance constraint of the substrate, and the reverse Michaelis–Menten kinetics does not consider the mass balance constraint of the enzyme, whereas both of these constraints are taken into account in the Equilibrium Chemistry Approximation kinetics. By benchmarking against predictions from the quadratic kinetics for a wide range of substrate and enzyme concentrations, the Michaelis–Menten kinetics was found to persistently under-predict the normalized sensitivity ∂ ln v / ∂ ln k 2 + of the reaction velocity v with respect to the maximum product genesis rate k 2 +, persistently over-predict the normalized sensitivity ∂ ln v / ∂ ln k 1 + of v with respect to the intrinsic substrate affinity k 1 +, persistently over-predict the normalized sensitivity ∂ ln v / ∂ ln [ E ] T of v with respect the total enzyme concentration [ E ] T and persistently under-predict the normalized sensitivity ∂ ln v / ∂ ln [ S ] T of v with respect to the total substrate concentration [ S ] T

  19. Kinetic analysis for cyclic CO2 capture using lithium orthosilicate sorbents derived from different silicon precursors.

    PubMed

    Zhao, Ming; Fan, Hanlu; Yan, Feng; Song, Yinqiang; He, Xu; Memon, Muhammad Zaki; Bhatia, Suresh K; Ji, Guozhao

    2018-06-21

    A series of Li4SiO4 was synthesized using LiNO3 and six different silicon precursors. The precipitated-silica-derived Li4SiO4 presented the highest CO2 capacity in a 10 h sorption test, and ZSM-5-derived Li4SiO4 demonstrated the most rapid CO2 sorption. The CO2 sorption kinetics predominantly followed the nucleation mode and could be accurately described by the Avrami-Erofeev model. The Avrami-Erofeev model provided an in-depth analysis of correlation between sorption performance and material properties. Both the nucleation speed and nucleation dimensionality affected the overall sorption kinetics. The kinetics and pore-size distribution suggest that the sorption kinetics was dependent on the quantity of ∼4 nm-pores which favors nucleation dimensionality. For the cyclic tests, the precipitated-silica-derived sample presented the poorest performance with the capacity decreasing from 31.33 wt% at the 1st cycle to only 11.52 wt% at the 30th cycle. However, the sample made from fumed silica displayed an opposite trend with the capacity increasing from 19.90 wt% at the 1st cycle to 34.23 wt% at the 30th cycle. The radically distinct behaviour of samples during cycles was on account of the alternation of sorption kinetics. The decrease in ∼4 nm-pores after cycles was responsible for the decrease of nucleation dimensionality for the precipitated-silica-derived sample. The rearrangement during cycles could enrich the pores of ∼4 nm for the fumed silica-derived sample, which improved the nucleation growth, thus enhancing the kinetics with cycles.

  20. Electroluminescence of organic light-emitting diodes consisting of an undoped (pbi)2Ir(acac) phosphorescent layer

    NASA Astrophysics Data System (ADS)

    Lei, Xia; Yu, Junsheng; Zhao, Juan; Jiang, Yadong

    2011-11-01

    The electroluminescence (EL) characteristics of phosphorescent organic light-emitting diodes (OLEDs) with an undoped bis(1,2-dipheny1-1H-benzoimidazole) iridium (acetylacetonate) [(pbi)2Ir(acac)] emissive layer (EML) of various film thicknesses were studied. The results showed that the intensity of green light emission decreased rapidly with the increasing thickness of (pbi)2Ir(acac), which was relevant to the triplet excimer emission. It suggested that the concentration quenching of monomer emission in the undoped (pbi)2Ir(acac) film was mainly due to the formation of triplet excimer and partly due to the triplet-triplet annihilation (TTA) and triplet-polaron annihilation (TPA). A green OLED with a maximum luminance of 26,531 cd/m2, a current efficiency of 36.2 cd/A, and a power efficiency of 32.4 lm/W was obtained, when the triplet excimer emission was eliminated. Moreover, the white OLED with low efficiency roll-off was realized due to the broadened recombination zone and reduced quenching effects in the EML when no electron blocking layer was employed.

  1. Influence of confinement layers in the emitting layer of the blue phosphorescent organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Ji, Chang-Yan; Gu, Zheng-Tian; Kou, Zhi-Qi

    2016-10-01

    The electrical and optical properties of the blue phosphorescent organic light-emitting diodes (PHOLEDs) can be affected by the various structure of confinement layer in the emitting layer (EML). A series of devices with different electron or hole confinement layer (TCTA or Bphen) are fabricated, it is more effective to balance charge carriers injection for the device with the double electron confinement layers structure, the power efficiency and luminance can reach 17.7 lm/W (at 103 cd/m2) and 3536 cd/m2 (at 8 V). In case of the same double electron confinement layers, another series of devices with different profile of EML are fabricated by changing the confinement layers position, the power efficiency and luminance can be improved to 21.7 lm/W (at 103 cd/m2) and 7674 cd/m2 (at 8 V) when the thickness of EML separated by confinement layers increases gradually from the hole injection side to the electron injection side, the driving voltage can also be reduced.

  2. Thermal decomposition and kinetics of coal and fermented cornstalk using thermogravimetric analysis.

    PubMed

    He, Yuyuan; Chang, Chun; Li, Pan; Han, Xiuli; Li, Hongliang; Fang, Shuqi; Chen, Junying; Ma, Xiaojian

    2018-07-01

    The thermal behavior and kinetics of Yiluo coal (YC) and the residues of fermented cornstalk (FC) were investigated in this study. The Kissinger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO) methods were used for the kinetic analysis of the pyrolysis process. The results showed that the activation energy (E α ) was increased with the increase of the thermal conversion rate (α), and the average values of E α of YC, FC and the blend (m YC /m FC  = 6/4) were 304.26, 224.94 and 233.46 kJ/mol, respectively. The order reaction model function for the blend was also developed by the master-plots method. By comparing the E a and the enthalpy, it was found that the blend was favored to format activated complex due to the lower potential energy barrier. Meanwhile, the average value of Gibbs free energy of the blend was 169.83 kJ/mol, and the changes of entropies indicated that the pyrolysis process was evolved from ordered-state to disordered-state. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. The logic of kinetic regulation in the thioredoxin system

    PubMed Central

    2011-01-01

    Background The thioredoxin system consisting of NADP(H), thioredoxin reductase and thioredoxin provides reducing equivalents to a large and diverse array of cellular processes. Despite a great deal of information on the kinetics of individual thioredoxin-dependent reactions, the kinetic regulation of this system as an integrated whole is not known. We address this by using kinetic modeling to identify and describe kinetic behavioral motifs found within the system. Results Analysis of a realistic computational model of the Escherichia coli thioredoxin system revealed several modes of kinetic regulation in the system. In keeping with published findings, the model showed that thioredoxin-dependent reactions were adaptable (i.e. changes to the thioredoxin system affected the kinetic profiles of these reactions). Further and in contrast to other systems-level descriptions, analysis of the model showed that apparently unrelated thioredoxin oxidation reactions can affect each other via their combined effects on the thioredoxin redox cycle. However, the scale of these effects depended on the kinetics of the individual thioredoxin oxidation reactions with some reactions more sensitive to changes in the thioredoxin cycle and others, such as the Tpx-dependent reduction of hydrogen peroxide, less sensitive to these changes. The coupling of the thioredoxin and Tpx redox cycles also allowed for ultrasensitive changes in the thioredoxin concentration in response to changes in the thioredoxin reductase concentration. We were able to describe the kinetic mechanisms underlying these behaviors precisely with analytical solutions and core models. Conclusions Using kinetic modeling we have revealed the logic that underlies the functional organization and kinetic behavior of the thioredoxin system. The thioredoxin redox cycle and associated reactions allows for a system that is adaptable, interconnected and able to display differential sensitivities to changes in this redox cycle. This

  4. Segment-interaction in sprint start: Analysis of 3D angular velocity and kinetic energy in elite sprinters.

    PubMed

    Slawinski, J; Bonnefoy, A; Ontanon, G; Leveque, J M; Miller, C; Riquet, A; Chèze, L; Dumas, R

    2010-05-28

    The aim of the present study was to measure during a sprint start the joint angular velocity and the kinetic energy of the different segments in elite sprinters. This was performed using a 3D kinematic analysis of the whole body. Eight elite sprinters (10.30+/-0.14s 100 m time), equipped with 63 passive reflective markers, realised four maximal 10 m sprints start on an indoor track. An opto-electronic Motion Analysis system consisting of 12 digital cameras (250 Hz) was used to collect the 3D marker trajectories. During the pushing phase on the blocks, the 3D angular velocity vector and its norm were calculated for each joint. The kinetic energy of 16 segments of the lower and upper limbs and of the total body was calculated. The 3D kinematic analysis of the whole body demonstrated that joints such as shoulders, thoracic or hips did not reach their maximal angular velocity with a movement of flexion-extension, but with a combination of flexion-extension, abduction-adduction and internal-external rotation. The maximal kinetic energy of the total body was reached before clearing block (respectively, 537+/-59.3 J vs. 514.9+/-66.0 J; p< or =0.01). These results suggested that a better synchronization between the upper and lower limbs could increase the efficiency of pushing phase on the blocks. Besides, to understand low interindividual variances in the sprint start performance in elite athletes, a 3D complete body kinematic analysis shall be used. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. Enzyme catalysis in microgravity: steady-state kinetic analysis of the isocitrate lyase reaction.

    PubMed

    Ranaldi, Francesco; Vanni, Paolo; Giachetti, Eugenio

    2003-01-21

    Two decades of research in microgravity have shown that certain biochemical processes can be altered by weightlessness. Approximately 10 years ago, our team, supported by the European Space Agency (ESA) and the Agenzia Spaziale Italiana, started the Effect of Microgravity on Enzyme Catalysis project to test the possibility that the microgravity effect observed at cellular level could be mediated by enzyme reactions. An experiment to study the cleavage reaction catalyzed by isocitrate lyase was flown on the sounding rocket MASER 7, and we found that the kinetic parameters were not altered by microgravity. During the 28th ESA parabolic flight campaign, we had the opportunity to replicate the MASER 7 experiment and to perform a complete steady-state analysis of the isocitrate lyase reaction. This study showed that both in microgravity and in standard g controls the enzyme reaction obeyed the same kinetic mechanism and none of the kinetic parameters, nor the equilibrium constant of the overall reaction were altered. Our results contrast with those of a similar experiment, which was performed during the same parabolic flight campaign, and showed that microgravity increased the affinity of lipoxygenase-1 for linoleic acid. The hypotheses suggested to explain this change effect of the latter were here tested by computer simulation, and appeared to be inconsistent with the experimental outcome.

  6. Influence of Prolonged Spaceflight on Heart Rate and Oxygen Uptake Kinetics

    NASA Astrophysics Data System (ADS)

    Hoffmann, U.; Moore, A.; Drescher, U.

    2013-02-01

    During prolonged spaceflight, physical training is used to minimize cardiovascular deconditioning. Measurement of the kinetics of cardiorespiratory parameters, in particular the kinetic analysis of heart rate, respiratory and muscular oxygen uptake, provides useful information with regard to the efficiency and regulation of the cardiorespiratory system. Practically, oxygen uptake kinetics can only be measured at the lung site (V’O2 resp). The dynamics of V’O2 resp, however, is not identical with the dynamics at the site of interest: skeletal muscle. Eight Astronauts were tested pre- and post-flight using pseudo random binary workload changes between 30 and 80 W. Their kinetic responses of heart rate, respiratory as well as muscular V’O2 kinetics were estimated by using time-series analysis. Statistical analysis revealed that the kinetic responses of respiratory as well as muscular V’O2 kinetics are slowed post-flight than pre-flight. Heart rate seems not to be influenced following flight. The influence of other factors (e. g. astronauts’ exercise training) may impact these parameters and is an area for future studies.

  7. Synthetic spectral analysis of a kinetic model for slow-magnetosonic waves in solar corona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruan, Wenzhi; He, Jiansen; Tu, Chuanyi

    We propose a kinetic model of slow-magnetosonic waves to explain various observational features associated with the propagating intensity disturbances (PIDs) occurring in the solar corona. The characteristics of slow mode waves, e.g, inphase oscillations of density, velocity, and thermal speed, are reproduced in this kinetic model. Moreover, the red-blue (R-B) asymmetry of the velocity distribution as self-consistently generated in the model is found to be contributed from the beam component, as a result of the competition between Landau resonance and Coulomb collisions. Furthermore, we synthesize the spectral lines and make the spectral analysis, based on the kinetic simulation data ofmore » the flux tube plasmas and the hypothesis of the surrounding background plasmas. It is found that the fluctuations of parameters of the synthetic spectral lines are basically consistent with the observations: (1) the line intensity, Doppler shift, and line width are fluctuating in phase; (2) the R-B asymmetry usually oscillate out of phase with the former three parameters; (3) the blueward asymmetry is more evident than the redward asymmetry in the R-B fluctuations. The oscillations of line parameters become weakened for the case with denser surrounding background plasmas. Similar to the observations, there is no doubled-frequency oscillation of the line width for the case with flux-tube plasmas flowing bulkly upward among the static background plasmas. Therefore, we suggest that the “wave + beam flow” kinetic model may be a viable interpretation for the PIDs observed in the solar corona.« less

  8. Thermal analysis and kinetics of coal during oxy-fuel combustion

    NASA Astrophysics Data System (ADS)

    Kosowska-Golachowska, Monika

    2017-08-01

    The pyrolysis and oxy-fuel combustion characteristics of Polish bituminous coal were studied using non-isothermal thermogravimetric analysis. Pyrolysis tests showed that the mass loss profiles were almost similar up to 870°C in both N2 and CO2 atmospheres, while further mass loss occurred in CO2 atmosphere at higher temperatures due to char-CO2 gasification. Replacement of N2 in the combustion environment by CO2 delayed the combustion of bituminous coal. At elevated oxygen levels, TG/DTG profiles shifted through lower temperature zone, ignition and burnout temperatures decreased and mass loss rate significantly increased and complete combustion was achieved at lower temperatures and shorter times. Kinetic analysis for the tested coal was performed using Kissinger-Akahira-Sunose (KAS) method. The activation energies of bituminous coal combustion at the similar oxygen content in oxy-fuel with that of air were higher than that in air atmosphere. The results indicated that, with O2 concentration increasing, the activation energies decreased.

  9. Supramolecular assembly of group 11 phosphorescent metal complexes for chemosensors of alcohol derivatives

    NASA Astrophysics Data System (ADS)

    Lintang, H. O.; Ghazalli, N. F.; Yuliati, L.

    2018-04-01

    We report on systematic study on vapochromic sensing of ethanol by using phosphorescent trinuclear metal pyrazolate complexes with supramolecular assembly of weak intermolecular metal-metal interactions using 4-(3,5-dimethoxybenzyl)-3,5-dimethyl pyrazole ligand (1) and group 11 metal ions (Cu(I), Ag(I), Au(I)). Upon excitation at 284, the resulting complexes showed emission bands with a peak centered at 616, 473 and 612 nm for 2(Cu), 2(Ag) and 2(Au), respectively. Chemosensor 2(Cu) showed positive response to ethanol vapors in 5 mins by blue-shifting its emission band from 616 to 555 nm and emitting bright orange to green. Otherwise 2(Au) gave shifting from its emission band centered at 612 to 587 nm with Δλ of 25 nm (41%) and color changes from red-orange to light green-orange while 2(Ag) showed quenching in its original emission intensity at 473 nm in 40% with color changes from dark green to less emissive. These results demonstrate that sensing capability of chemosensor 2(Cu) with suitable molecular design of ligand and metal ion in the complex is due to the formation of a weak intermolecular hydrogen bonding interaction of O atom at the methoxy of the benzyl ring with the OH of the vapors at the outside of the molecules.

  10. Phosphorescent binuclear iridium complexes based on terpyridine-carboxylate: an experimental and theoretical study.

    PubMed

    Andreiadis, Eugen S; Imbert, Daniel; Pécaut, Jacques; Calborean, Adrian; Ciofini, Ilaria; Adamo, Carlo; Demadrille, Renaud; Mazzanti, Marinella

    2011-09-05

    The phosphorescent binuclear iridium(III) complexes tetrakis(2-phenylpyridine)μ-(2,2':6',2''-terpyridine-6,6''-dicarboxylic acid)diiridium (Ir1) and tetrakis(2-(2,4-difluorophenyl) pyridine))μ-(2,2':6',2''-terpyridine-6,6''-dicarboxylic acid)diiridium (Ir2) were synthesized in a straightforward manner and characterized using X-ray diffraction, NMR, UV-vis absorption, and emission spectroscopy. The complexes have similar solution structures in which the two iridium centers are equivalent. This is further confirmed by the solid state structure of Ir2. The newly reported complexes display intense luminescence in dichloromethane solutions with maxima at 538 (Ir1) and 477 nm (Ir2) at 298 K (496 and 468 nm at 77 K, respectively) and emission quantum yields reaching ~18% for Ir1. The emission quantum yield for Ir1 is among the highest values reported for dinuclear iridium complexes. It shows only a 11% decrease with respect to the emission quantum yield reported for its mononuclear analogue, while the molar extinction coefficient is roughly doubled. This suggests that such architectures are of potential interest for the development of polymetallic assemblies showing improved optical properties. DFT and time-dependent-DFT calculations were performed on the ground and excited states of the complexes to provide insights into their structural, electronic, and photophysical properties.

  11. Exciplex-Forming Cohost for High Efficiency and High Stability Phosphorescent Organic Light-Emitting Diodes.

    PubMed

    Shih, Chun-Jen; Lee, Chih-Chien; Chen, Ying-Hao; Biring, Sajal; Kumar, Gautham; Yeh, Tzu-Hung; Sen, Somaditya; Liu, Shun-Wei; Wong, Ken-Tsung

    2018-01-17

    An exciplex forming cohost system is employed to achieve a highly efficient organic light-emitting diode (OLED) with good electroluminescent lifetime. The exciplex is formed at the interfacial contact of a conventional star-shaped carbazole hole-transporting material, 4,4',4″-tris(N-carbazolyl)-triphenylamine (TCTA), and a triazine electron-transporting material, 2,4,6-tris[3-(1H-pyrazol-1-yl)phenyl]-1,3,5-triazine (3P-T2T). The excellent combination of TCTA and 3P-T2T is applied as the cohost of a common green phosphorescent emitter with almost zero energy loss. When Ir(ppy) 2 (acac) is dispersed in such exciplex cohost system, OLED device with maximum external quantum efficiency of 29.6%, the ultrahigh power efficiency of 147.3 lm/W, and current efficiency of 107 cd/A were successfully achieved. More importantly, the OLED device showed a low-efficiency roll-off and an operational lifetime (τ 80 ) of ∼1020 min with the initial brightness of 2000 cd/m 2 , which is 56 times longer than the reference device. The significant difference of device stability was attributed to the degradation of exciplex system for energy transfer process, which was investigated by the photoluminescence aging measurement at room temperature and 100 K, respectively.

  12. Phosphorescent quantum dots/doxorubicin nanohybrids based on photoinduced electron transfer for detection of DNA.

    PubMed

    Miao, Yanming; Zhang, Zhifeng; Gong, Yan; Yan, Guiqin

    2014-09-15

    MPA-capped Mn-doped ZnS QDs/DXR nanohybrids (MPA: 3-mercaptopropionic acid; QDs: quantum dots; DXR: cetyltrimethyl ammonium bromide) were constructed via photoinduced electron transfer (PIET) and then used as a room-temperature phosphorescence (RTP) probe for detection of DNA. DXR as a quencher will quench the RTP of Mn-doped ZnS QDs via PIET, thereby forming Mn-doped ZnS QDs/DXR nanohybrids and storing RTP. With the addition of DNA, it will be inserted into DXR and thus DXR will be competitively desorbed from the surface of Mn-doped ZnS QDs, thereby releasing the RTP of Mn-doped ZnS QDs. Based on this, a new method for DNA detection was built. The sensor for DNA has a detection limit of 0.039 mg L(-1) and a linear range from 0.1 to 14 mg L(-1). The present QDs-based RTP method does not need deoxidants or other inducers as required by conventional RTP detection methods, and avoids interference from autofluorescence and the scattering light of the matrix that are encountered in spectrofluorometry. Therefore, this method can be used to detect the DNA content in body fluid. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Design rules for charge-transport efficient host materials for phosphorescent organic light-emitting diodes.

    PubMed

    May, Falk; Al-Helwi, Mustapha; Baumeier, Björn; Kowalsky, Wolfgang; Fuchs, Evelyn; Lennartz, Christian; Andrienko, Denis

    2012-08-22

    The use of blue phosphorescent emitters in organic light-emitting diodes (OLEDs) imposes demanding requirements on a host material. Among these are large triplet energies, the alignment of levels with respect to the emitter, the ability to form and sustain amorphous order, material processability, and an adequate charge carrier mobility. A possible design strategy is to choose a π-conjugated core with a high triplet level and to fulfill the other requirements by using suitable substituents. Bulky substituents, however, induce large spatial separations between conjugated cores, can substantially reduce intermolecular electronic couplings, and decrease the charge mobility of the host. In this work we analyze charge transport in amorphous 2,8-bis(triphenylsilyl)dibenzofuran, an electron-transporting material synthesized to serve as a host in deep-blue OLEDs. We show that mesomeric effects delocalize the frontier orbitals over the substituents recovering strong electronic couplings and lowering reorganization energies, especially for electrons, while keeping energetic disorder small. Admittance spectroscopy measurements reveal that the material has indeed a high electron mobility and a small Poole-Frenkel slope, supporting our conclusions. By linking electronic structure, molecular packing, and mobility, we provide a pathway to the rational design of hosts with high charge mobilities.

  14. Kinetics of the creatine kinase reaction in neonatal rabbit heart: An empirical analysis of the rate equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McAuliffe, J.J.; Perry, S.B.; Brooks, E.E.

    1991-03-12

    Here the authors define the kinetics of the creatine kinase (CK) reaction in an intact mammalian heart containing the full rnage of CK isoenzymes. Previously derived kinetic constants were refit for the reaction occurring at 37C. Steady-state metabolite concentrations from {sup 31}P NMR and standard biochemical techniques were determined. {sup 31}P magnetization transfer data were obtained to determine unidirectional creatine kinase fluxes in hearts with differing total creatine contents and differing mitochondrial CK activities during KCl arrest and isovolumic work for both the forward reaction (MgATP synthesis) and reverse reaction (phosphocreatine synthesis). The NMR kinetic data and substrate concentrations datamore » were used in conjunction with a kinetic model based on MM-CK in solution to determine the applicability of the solution-based kinetic models to the CK kinetics of the intact heart. The results indicated that no single set of rate equation constants could describe both the KCl-arrested and working hearts. Analysis of the results indicated that the CK reaction is rate limited in the direction of ATP synthesis, the size of the guanidino substrate pool drives the measured CK flux in the intact heart, and during isovolumic work, the CK reaction operates under saturating conditions; that is, the substrate concentrations are at least 2-fold greater than the K{sub m} or K{sub im} for each substrate. However, during KCl arrest the reaction does not operate under saturating conditions and the CK reaction velocity is strongly influenced by the guanidino substrate pool size.« less

  15. On the relationships between the Michaelis–Menten kinetics, reverse Michaelis–Menten kinetics, equilibrium chemistry approximation kinetics, and quadratic kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, J. Y.

    The Michaelis–Menten kinetics and the reverse Michaelis–Menten kinetics are two popular mathematical formulations used in many land biogeochemical models to describe how microbes and plants would respond to changes in substrate abundance. However, the criteria of when to use either of the two are often ambiguous. Here I show that these two kinetics are special approximations to the equilibrium chemistry approximation (ECA) kinetics, which is the first-order approximation to the quadratic kinetics that solves the equation of an enzyme–substrate complex exactly for a single-enzyme and single-substrate biogeochemical reaction with the law of mass action and the assumption of a quasi-steadymore » state for the enzyme–substrate complex and that the product genesis from enzyme–substrate complex is much slower than the equilibration between enzyme–substrate complexes, substrates, and enzymes. In particular, I show that the derivation of the Michaelis–Menten kinetics does not consider the mass balance constraint of the substrate, and the reverse Michaelis–Menten kinetics does not consider the mass balance constraint of the enzyme, whereas both of these constraints are taken into account in deriving the equilibrium chemistry approximation kinetics. By benchmarking against predictions from the quadratic kinetics for a wide range of substrate and enzyme concentrations, the Michaelis–Menten kinetics was found to persistently underpredict the normalized sensitivity ∂ ln v / ∂ ln k 2 + of the reaction velocity v with respect to the maximum product genesis rate k 2 +, persistently overpredict the normalized sensitivity ∂ ln v / ∂ ln k 1 + of v with respect to the intrinsic substrate affinity k 1 +, persistently overpredict the normalized sensitivity ∂ ln v / ∂ ln [ E] T of v with respect the total enzyme concentration [ E] T, and persistently underpredict the normalized sensitivity ∂ ln v / ∂ ln [ S] T of v with respect to the total substrate

  16. On the relationships between the Michaelis–Menten kinetics, reverse Michaelis–Menten kinetics, equilibrium chemistry approximation kinetics, and quadratic kinetics

    DOE PAGES

    Tang, J. Y.

    2015-12-01

    The Michaelis–Menten kinetics and the reverse Michaelis–Menten kinetics are two popular mathematical formulations used in many land biogeochemical models to describe how microbes and plants would respond to changes in substrate abundance. However, the criteria of when to use either of the two are often ambiguous. Here I show that these two kinetics are special approximations to the equilibrium chemistry approximation (ECA) kinetics, which is the first-order approximation to the quadratic kinetics that solves the equation of an enzyme–substrate complex exactly for a single-enzyme and single-substrate biogeochemical reaction with the law of mass action and the assumption of a quasi-steadymore » state for the enzyme–substrate complex and that the product genesis from enzyme–substrate complex is much slower than the equilibration between enzyme–substrate complexes, substrates, and enzymes. In particular, I show that the derivation of the Michaelis–Menten kinetics does not consider the mass balance constraint of the substrate, and the reverse Michaelis–Menten kinetics does not consider the mass balance constraint of the enzyme, whereas both of these constraints are taken into account in deriving the equilibrium chemistry approximation kinetics. By benchmarking against predictions from the quadratic kinetics for a wide range of substrate and enzyme concentrations, the Michaelis–Menten kinetics was found to persistently underpredict the normalized sensitivity ∂ ln v / ∂ ln k 2 + of the reaction velocity v with respect to the maximum product genesis rate k 2 +, persistently overpredict the normalized sensitivity ∂ ln v / ∂ ln k 1 + of v with respect to the intrinsic substrate affinity k 1 +, persistently overpredict the normalized sensitivity ∂ ln v / ∂ ln [ E] T of v with respect the total enzyme concentration [ E] T, and persistently underpredict the normalized sensitivity ∂ ln v / ∂ ln [ S] T of v with respect to the total substrate

  17. Kinetic analysis of volatile formation in milk subjected to pressure-assisted thermal treatments.

    PubMed

    Vazquez-Landaverde, P A; Qian, M C; Torres, J A

    2007-09-01

    Volatile formation in milk subjected to pressure-assisted thermal processing (PATP) was investigated from a reaction kinetic analysis point of view to illustrate the advantages of this technology. The concentration of 27 volatiles of different chemical class in milk subjected to pressure, temperature, and time treatments was fitted to zero-, 1st-, and 2nd-order chemical reaction models. Temperature and pressure effects on rate constants were analyzed to obtain activation energy (E(a)) and activation volume (deltaV*) values. Hexanal, heptanal, octanal, nonanal, and decanal followed 1st-order kinetics with rate constants characterized by E(a) values decreasing with pressure reflecting negative deltaV* values. Formation of 2-methylpropanal, 2,3-butanedione, and hydrogen sulfide followed zero-order kinetics with rate constants increasing with temperature but with unclear pressure effects. E(a) values for 2-methylpropanal and 2,3-butanedione increased with pressure, that is, deltaV* > 0, whereas values for hydrogen sulfide remained constant, that is, deltaV* = 0. The concentration of all other volatiles, including methanethiol, remained unchanged in pressure-treated samples, suggesting large negative deltaV* values. The concentration of methyl ketones, including 2-pentanone, 2-hexanone, 2-heptanone, 2-octanone, 2-nonanone, 2-decanone, and 2-undecanone, was independent of pressure and pressure-holding time. PATP promoted the formation of few compounds, had no effect on some, and inhibited the formation of volatiles reported to be factors of the consumer rejection of "cooked" milk flavor. The kinetic behavior observed suggested that new reaction formation mechanisms were not likely involved in volatile formation in PATP milk. The application of the Le Chatelier principle frequently used to explain the high quality of pressure-treated foods, often with no supporting experimental evidence, was not necessary.

  18. Time-resolved singlet oxygen luminescence detection under photodynamic therapy relevant conditions: comparison of ex vivo application of two photosensitizer formulations

    NASA Astrophysics Data System (ADS)

    Schlothauer, Jan C.; Hackbarth, Steffen; Jäger, Lutz; Drobniewski, Kai; Patel, Hemantbhai; Gorun, Sergiu M.; Röder, Beate

    2012-11-01

    Singlet oxygen plays a crucial role in photo-dermatology and photodynamic therapy (PDT) of cancer. Its direct observation by measuring the phosphorescence at 1270 nm, however, is still challenging due to the very low emission probability. It is especially challenging for the time-resolved detection of singlet oxygen kinetics in vivo which is of special interest for biomedical applications. Photosensitized generation of singlet oxygen, in pig ear skin as model for human skin, is investigated here. Two photosensitizers (PS) were topically applied to the pig ear skin and examined in a comparative study, which include the amphiphilic pheophorbide-a and the highly hydrophobic perfluoroalkylated zinc phthalocyanine (F64PcZn). Fluorescence microscopy indicates the exclusive accumulation of pheophorbide-a in the stratum corneum, while F64PcZn can also accumulate in deeper layers of the epidermis of the pig ear skin. The kinetics obtained with phosphorescence measurements show the singlet oxygen interaction with the PS microenvironment. Different generation sites of singlet oxygen correlate with the luminescence kinetics. The results show that singlet oxygen luminescence detection can be used as a diagnostic tool, not only for research, but also during treatment. The detection methodology is suitable for the monitoring of chemical quenchers' oxidation as well as O2 saturation at singlet oxygen concentration levels relevant to PDT treatment protocols.

  19. Development of patient collation system by kinetic analysis for chest dynamic radiogram with flat panel detector

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Yuichiro; Kodera, Yoshie

    2006-03-01

    In the picture archiving and communication system (PACS) environment, it is important that all images be stored in the correct location. However, if information such as the patient's name or identification number has been entered incorrectly, it is difficult to notice the error. The present study was performed to develop a system of patient collation automatically for dynamic radiogram examination by a kinetic analysis, and to evaluate the performance of the system. Dynamic chest radiographs during respiration were obtained by using a modified flat panel detector system. Our computer algorithm developed in this study was consisted of two main procedures, kinetic map imaging processing, and collation processing. Kinetic map processing is a new algorithm to visualize a movement for dynamic radiography; direction classification of optical flows and intensity-density transformation technique was performed. Collation processing consisted of analysis with an artificial neural network (ANN) and discrimination for Mahalanobis' generalized distance, those procedures were performed to evaluate a similarity of combination for the same person. Finally, we investigated the performance of our system using eight healthy volunteers' radiographs. The performance was shown as a sensitivity and specificity. The sensitivity and specificity for our system were shown 100% and 100%, respectively. This result indicated that our system has excellent performance for recognition of a patient. Our system will be useful in PACS management for dynamic chest radiography.

  20. Study on using I - as heavy atom perturber in cyclodextrin-induced room temperature phosphorimetry

    NASA Astrophysics Data System (ADS)

    Li, Longdi; Hai, Xuan; Tong, Aijun

    2000-07-01

    A cyclodextrin induced room temperature phosphorimetry (CD-RTP) for determine β-NOA, which using I- as a heavy atom perturber (HAP) and sodium sulfite as a deoxygenator, was developed. The phosphorescence peak wavelength maxima λex/λem=287/496 521 nm. The analytical curve of β-NOA gives a linear dynamic range of 2.0×10-7-6.0×10-6 mol/l and a detection limit of 4×10-8 mol/l. The relative standard deviation (RSD; n=7) was 3.2% for the 4.0×10-6 mol/l β-NOA in spiked apple samples. The influence of I- concentration on RTP lifetime of β-NOA was studied in detail, the static Stern-Volmer equation for phosphorescence was derived and the luminescence kinetic parameters were calculated. It is found that the relation between I- concentration (x) and RTP lifetime (τ) can be expressed as τ=1.047 e-0.354x and the rate constants of phosphorescence emission kp and non-radiation process ki from T1→S0 were 0.9551s-1 and 0.4276 s-1l-1mol, respectively.

  1. LSENS, a general chemical kinetics and sensitivity analysis code for homogeneous gas-phase reactions. 2: Code description and usage

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan; Bittker, David A.

    1994-01-01

    LSENS, the Lewis General Chemical Kinetics Analysis Code, has been developed for solving complex, homogeneous, gas-phase chemical kinetics problems and contains sensitivity analysis for a variety of problems, including nonisothermal situations. This report is part 2 of a series of three reference publications that describe LSENS, provide a detailed guide to its usage, and present many example problems. Part 2 describes the code, how to modify it, and its usage, including preparation of the problem data file required to execute LSENS. Code usage is illustrated by several example problems, which further explain preparation of the problem data file and show how to obtain desired accuracy in the computed results. LSENS is a flexible, convenient, accurate, and efficient solver for chemical reaction problems such as static system; steady, one-dimensional, inviscid flow; reaction behind incident shock wave, including boundary layer correction; and perfectly stirred (highly backmixed) reactor. In addition, the chemical equilibrium state can be computed for the following assigned states: temperature and pressure, enthalpy and pressure, temperature and volume, and internal energy and volume. For static problems the code computes the sensitivity coefficients of the dependent variables and their temporal derivatives with respect to the initial values of the dependent variables and/or the three rate coefficient parameters of the chemical reactions. Part 1 (NASA RP-1328) derives the governing equations describes the numerical solution procedures for the types of problems that can be solved by lSENS. Part 3 (NASA RP-1330) explains the kinetics and kinetics-plus-sensitivity-analysis problems supplied with LSENS and presents sample results.

  2. The platinum microelectrode/Nafion interface - An electrochemical impedance spectroscopic analysis of oxygen reduction kinetics and Nafion characteristics

    NASA Technical Reports Server (NTRS)

    Parthasarathy, Arvind; Dave, Bhasker; Srinivasan, Supramaniam; Appleby, John A.; Martin, Charles R.

    1992-01-01

    The objectives of this study were to use electrochemical impedance spectroscopy (EIS) to study the oxygen-reduction reaction under lower humidification conditions than previously studied. The EIS technique permits the discrimination of electrode kinetics of oxygen reduction, mass transport of O2 in the membrane, and the electrical characteristics of the membrane. Electrode-kinetic parameters for the oxygen-reduction reaction, corrosion current densities for Pt, and double-layer capacitances were calculated. The production of water due to electrochemical reduction of oxygen greatly influenced the EIS response and the electrode kinetics at the Pt/Nafion interface. From the finite-length Warburg behavior, a measure of the diffusion coefficient of oxygen in Nafion and diffusion-layer thickness was obtained. An analysis of the EIS data in the high-frequency domain yielded membrane and interfacial characteristics such as ionic conductivity of the membrane, membrane grain-boundary capacitance and resistance, and uncompensated resistance.

  3. Qualitative analysis of a discrete thermostatted kinetic framework modeling complex adaptive systems

    NASA Astrophysics Data System (ADS)

    Bianca, Carlo; Mogno, Caterina

    2018-01-01

    This paper deals with the derivation of a new discrete thermostatted kinetic framework for the modeling of complex adaptive systems subjected to external force fields (nonequilibrium system). Specifically, in order to model nonequilibrium stationary states of the system, the external force field is coupled to a dissipative term (thermostat). The well-posedness of the related Cauchy problem is investigated thus allowing the new discrete thermostatted framework to be suitable for the derivation of specific models and the related computational analysis. Applications to crowd dynamics and future research directions are also discussed within the paper.

  4. Analysis of heart rate and oxygen uptake kinetics studied by two different pseudo-random binary sequence work rate amplitudes.

    PubMed

    Drescher, U; Koschate, J; Schiffer, T; Schneider, S; Hoffmann, U

    2017-06-01

    The aim of the study was to compare the kinetics responses of heart rate (HR), pulmonary (V˙O 2 pulm) and predicted muscular (V˙O 2 musc) oxygen uptake between two different pseudo-random binary sequence (PRBS) work rate (WR) amplitudes both below anaerobic threshold. Eight healthy individuals performed two PRBS WR protocols implying changes between 30W and 80W and between 30W and 110W. HR and V˙O 2 pulm were measured beat-to-beat and breath-by-breath, respectively. V˙O 2 musc was estimated applying the approach of Hoffmann et al. (Eur J Appl Physiol 113: 1745-1754, 2013) considering a circulatory model for venous return and cross-correlation functions (CCF) for the kinetics analysis. HR and V˙O 2 musc kinetics seem to be independent of WR intensity (p>0.05). V˙O 2 pulm kinetics show prominent differences in the lag of the CCF maximum (39±9s; 31±4s; p<0.05). A mean difference of 14W between the PRBS WR amplitudes impacts venous return significantly, while HR and V˙O 2 musc kinetics remain unchanged. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Purification of SUMO conjugating enzymes and kinetic analysis of substrate conjugation

    PubMed Central

    Yunus, Ali A.; Lima, Christopher D.

    2009-01-01

    SUMO conjugation to protein substrates requires the concerted action of a dedicated E2 ubiquitin conjugation enzyme (Ubc9) and associated E3 ligases. Although Ubc9 can directly recognize and modify substrate lysine residues that occur within a consensus site for SUMO modification, E3 ligases can redirect specificity and enhance conjugation rates during SUMO conjugation in vitro and in vivo. In this chapter, we will describe methods utilized to purify SUMO conjugating enzymes and model substrates which can be used for analysis of SUMO conjugation in vitro. We will also describe methods to extract kinetic parameters during E3-dependent or E3-independent substrate conjugation. PMID:19107417

  6. Chemkin-II: A Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kee, R.J.; Rupley, F.M.; Miller, J.A.

    1989-09-01

    This document is the user's manual for the second-generation Chemkin package. Chemkin is a software package for whose purpose is to facilitate the formation, solution, and interpretation of problems involving elementary gas-phase chemical kinetics. It provides an especially flexible and powerful tool for incorporating complex chemical kinetics into simulations of fluid dynamics. The package consists of two major software components: an Interpreter and Gas-Phase Subroutine Library. The Interpreter is a program that reads a symbolic description of an elementary, user-specified chemical reaction mechanism. One output from the Interpreter is a data file that forms a link to the Gas-Phase Subroutinemore » Library. This library is a collection of about 100 highly modular Fortran subroutines that may be called to return information on equation of state, thermodynamic properties, and chemical production rates.« less

  7. Structure and Kinetic Analysis of H2S Production by Human Mercaptopyruvate Sulfurtransferase*

    PubMed Central

    Yadav, Pramod Kumar; Yamada, Kazuhiro; Chiku, Taurai; Koutmos, Markos; Banerjee, Ruma

    2013-01-01

    Mercaptopyruvate sulfurtransferase (MST) is a source of endogenous H2S, a gaseous signaling molecule implicated in a wide range of physiological processes. The contribution of MST versus the other two H2S generators, cystathionine β-synthase and γ-cystathionase, has been difficult to evaluate because many studies on MST have been conducted at high pH and have used varied reaction conditions. In this study, we have expressed, purified, and crystallized human MST in the presence of the substrate 3-mercaptopyruvate (3-MP). The kinetics of H2S production by MST from 3-MP was studied at pH 7.4 in the presence of various physiological persulfide acceptors: cysteine, dihydrolipoic acid, glutathione, homocysteine, and thioredoxin, and in the presence of cyanide. The crystal structure of MST reveals a mixture of the product complex containing pyruvate and an active site cysteine persulfide (Cys248-SSH) and a nonproductive intermediate in which 3-MP is covalently linked via a disulfide bond to an active site cysteine. The crystal structure analysis allows us to propose a detailed mechanism for MST in which an Asp-His-Ser catalytic triad is positioned to activate the nucleophilic cysteine residue and participate in general acid-base chemistry, whereas our kinetic analysis indicates that thioredoxin is likely to be the major physiological persulfide acceptor for MST. PMID:23698001

  8. Biluminescence via Fluorescence and Persistent Phosphorescence in Amorphous Organic Donor(D4)-Acceptor(A) Conjugates, and Application in Data Security Protection.

    PubMed

    Bhatia, Harsh; Bhattacharjee, Indranil; Ray, Debdas

    2018-06-25

    Purely organic biluminescent materials are of great interest due to the involvement of both singlet and long-lived triplet emissions, which have been used in bio-imaging and organic light-emitting diodes. We show two molecules 3,4,5,6-tetraphenyloxy-phthlonitrile (POP) and 3,4,5,6-tetrakis-p-tolyloxy-phthalonitrile (TOP), in which POP was found to exhibit fluorescence and persistent room-temperature green phosphorescence (pRTGP) in the amorphous and crystal states. Both POP and TOP show aggregation induced emission in tetrahydrofuran-water mixture. We found in single crystal X-ray analysis that intra-and inter molecular lp(O)•••π interactions along with (π(C=C)•••π(C≡N), hydrogen bond (H-B), and C-H•••π interactions induce head-to-tail slipped-stacked arrangement in POP. In addition, X-ray structure of TOP with slipped-stack arrangement induced by only (π(C=C)•••π(C≡N) and H-B interactions, shows dim afterglow only in crystals. These indicate that more number of non-covalent interactions may reinforce relatively efficient inter system crossing that leads to pRTGP even in the amorphous state of POP. Given the unique green afterglow feature in amorphous state of POP, document security protection application is achievable.

  9. Room-temperature phosphorescence chemosensor and Rayleigh scattering chemodosimeter dual-recognition probe for 2,4,6-trinitrotoluene based on manganese-doped ZnS quantum dots.

    PubMed

    Zou, Wen-Sheng; Sheng, Dong; Ge, Xin; Qiao, Jun-Qin; Lian, Hong-Zhen

    2011-01-01

    Rayleigh scattering (RS) as an interference factor to detection sensitivity in ordinary fluorescence spectrometry is always avoided in spite of considerable efforts toward the development of RS-based resonance Rayleigh scattering (RRS) and hyper-Rayleigh scattering (HRS) techniques. Here, combining advantages of quantum dots (QDs) including chemical modification of functional groups and the installation of recognition receptors at their surfaces with those of phosphorescence such as the avoidance of autofluorescence and scattering light, l-cys-capped Mn-doped ZnS QDs have been synthesized and used for room-temperature phosphorescence (RTP) to sense and for RS chemodosimetry to image ultratrace 2,4,6-trinitrotoluene (TNT) in water. The l-cys-capped Mn-doped ZnS QDs interdots aggregate with TNT species induced by the formation of Meisenheimer complexes (MHCs) through acid-base pairing interaction between l-cys and TNT, hydrogen bonding, and electrostatic interaction between l-cys intermolecules. Although the resultant MHCs may quench the fluorescence at 430 nm, interdots aggregation can greatly influence the light scattering property of the aqueous QDs system, and therefore, dominant RS enhancement at defect-related emission wavelength was observed under the excitation of violet light of Mn-doped ZnS QDs, which was applied in chemodosimetry to image TNT in water. Meanwhile, Mn-doped ZnS QDs also exhibited a highly selective response to the quenching of the (4)T(1)-(6)A(1) transition emission (RTP) and showed a very good linearity in the range of 0.0025-0.45 μM TNT with detection limit down to 0.8 nM and RSD of 2.3% (n = 5). The proposed methods are well-suited for detecting the ultratrace TNT and distinguishing different nitro compounds.

  10. Kinetic analysis of the effects of target structure on siRNA efficiency

    NASA Astrophysics Data System (ADS)

    Chen, Jiawen; Zhang, Wenbing

    2012-12-01

    RNAi efficiency for target cleavage and protein expression is related to the target structure. Considering the RNA-induced silencing complex (RISC) as a multiple turnover enzyme, we investigated the effect of target mRNA structure on siRNA efficiency with kinetic analysis. The 4-step model was used to study the target cleavage kinetic process: hybridization nucleation at an accessible target site, RISC-mRNA hybrid elongation along with mRNA target structure melting, target cleavage, and enzyme reactivation. At this model, the terms accounting for the target accessibility, stability, and the seed and the nucleation site effects are all included. The results are in good agreement with that of experiments which show different arguments about the structure effects on siRNA efficiency. It shows that the siRNA efficiency is influenced by the integrated factors of target's accessibility, stability, and the seed effects. To study the off-target effects, a simple model of one siRNA binding to two mRNA targets was designed. By using this model, the possibility for diminishing the off-target effects by the concentration of siRNA was discussed.

  11. Kinetic magnetic resonance imaging analysis of abnormal segmental motion of the functional spine unit.

    PubMed

    Kong, Min Ho; Hymanson, Henry J; Song, Kwan Young; Chin, Dong Kyu; Cho, Yong Eun; Yoon, Do Heum; Wang, Jeffrey C

    2009-04-01

    infiltration were both significantly associated with excessive abnormal angular motion (p < 0.05). This kinetic MR imaging analysis showed that the lumbar functional unit with more disc degeneration, FJO, and LFH had abnormal sagittal plane translation and angulation. These findings suggest that abnormal segmental motion noted on kinetic MR images is closely associated with disc degeneration, FJO, and the pathological characteristics of interspinous ligaments, ligamentum flavum, and paraspinal muscles. Kinetic MR imaging in patients with mechanical back pain may prove a valuable source of information about the stability of the functional spine unit by measuring abnormal segmental motion and grading of radiographic parameters simultaneously.

  12. Direct dynamic kinetic analysis and computer simulation of growth of Clostridium perfringens in cooked turkey during cooling

    USDA-ARS?s Scientific Manuscript database

    This research applied a new one-step methodology to directly construct a tertiary model for describing the growth of C. perfringens in cooked turkey meat under dynamically cooling conditions. The kinetic parameters of the growth models were determined by numerical analysis and optimization using mu...

  13. Microwave treatment of dairy manure for resource recovery: Reaction kinetics and energy analysis.

    PubMed

    Srinivasan, Asha; Liao, Ping H; Lo, Kwang V

    2016-12-01

    A newly designed continuous-flow 915 MHz microwave wastewater treatment system was used to demonstrate the effectiveness of the microwave enhanced advanced oxidation process (MW/H 2 O 2 -AOP) for treating dairy manure. After the treatment, about 84% of total phosphorus and 45% of total chemical oxygen demand were solubilized with the highest H 2 O 2 dosage (0.4% H 2 O 2 per %TS). The reaction kinetics of soluble chemical oxygen demand revealed activation energy to be in the range of 5-22 kJ mole -1 . The energy required by the processes was approximately 0.16 kWh per liter of dairy manure heated. A higher H 2 O 2 dosage used in the system had a better process performance in terms of solids solubilization, reaction kinetics, and energy consumption. Cost-benefit analysis for a farm-scale MW/H 2 O 2 -AOP treatment system was also presented. The results obtained from this study would provide the basic knowledge for designing an effective farm-scale dairy manure treatment system.

  14. Photoacoustic Analysis of the Penetration Kinetics of Cordia verbenacea DC in Human Skin

    NASA Astrophysics Data System (ADS)

    Carvalho, S. S.; Barja, P. R.

    2012-11-01

    Phonophoresis consists of the utilization of ultrasound radiation associated to pharmacological agents in order to enhance transdermal penetration of applied drugs. It is a widely employed resource in physiotherapy practice, normally associated with anti-inflammatory drugs, such as Acheflan. This drug was developed in Brazil from the essential oil of Cordia verbenacea DC, a native plant of the Brazilian southern coast. In previous studies, the photoacoustic (PA) technique proved effective in the study of the penetration kinetics of topically applied products and in the evaluation of drug delivery after phonophoresis application. The present work aimed to evaluate the penetration kinetics of Acheflan in human skin, employing in vivo PA measurements after massage application or phonophoresis application. Ten volunteers (aged between 18 and 30 years) took part in the study. Time evolution of the PA signal was fitted to a Boltzmann curve, S-shaped. After statistical analysis, PA measurements have shown drug penetration for both application forms, but drug delivery was more evident after phonophoresis application, with a characteristic penetration time of less than 15 min for the stratum corneum.

  15. Inhibition of acetylcholinesterase by two genistein derivatives: kinetic analysis, molecular docking and molecular dynamics simulation.

    PubMed

    Fang, Jiansong; Wu, Ping; Yang, Ranyao; Gao, Li; Li, Chao; Wang, Dongmei; Wu, Song; Liu, Ai-Lin; Du, Guan-Hua

    2014-12-01

    In this study two genistein derivatives (G1 and G2) are reported as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), and differences in the inhibition of AChE are described. Although they differ in structure by a single methyl group, the inhibitory effect of G1 (IC50=264 nmol/L) on AChE was 80 times stronger than that of G2 (IC50=21,210 nmol/L). Enzyme-kinetic analysis, molecular docking and molecular dynamics (MD) simulations were conducted to better understand the molecular basis for this difference. The results obtained by kinetic analysis demonstrated that G1 can interact with both the catalytic active site and peripheral anionic site of AChE. The predicted binding free energies of two complexes calculated by the molecular mechanics/generalized born surface area (MM/GBSA) method were consistent with the experimental data. The analysis of the individual energy terms suggested that a difference between the net electrostatic contributions (ΔE ele+ΔG GB) was responsible for the binding affinities of these two inhibitors. Additionally, analysis of the molecular mechanics and MM/GBSA free energy decomposition revealed that the difference between G1 and G2 originated from interactions with Tyr124, Glu292, Val294 and Phe338 of AChE. In conclusion, the results reveal significant differences at the molecular level in the mechanism of inhibition of AChE by these structurally related compounds.

  16. An explanation of the very low fluorescence and phosphorescence in pyridine: a CASSCF/CASMP2 study

    NASA Astrophysics Data System (ADS)

    Varras, Panayiotis C.; Gritzapis, Panagiotis S.; Fylaktakidou, Konstantina C.

    2018-01-01

    In this work, we applied the multiconfigurational complete active space self-consistent field method and the multiconfigurational second-order perturbation theory CASMP2 to study the fundamental excited states of pyridine and its possible photophysical and photochemical transformations. Our calculations, which are in agreement with the experimental results corresponding to excitations around the 0-0 transition, showed that the very low experimentally observed fluorescence of pyridine is due to the presence of two almost isoenergetic crossings, one of triple character, S1/T1/S0 and the other of S1/S0 character. Both crossings are below the minimum of S1(nπ*) and have a common transition state (S1(TS)) with a very low energy barrier (1.85 kcal/mol or 0.08 eV at the CASMP2 level of theory) separating them. A third triple crossing of the type S1/T1/S0 lying lower with respect to the other two elucidates the observed T1→S0 radiationless transition. This explains not only pyridine's very low fluorescence and phosphorescence but also its almost negligible photochemistry, showing that photophysics is the prevalent process in this molecule.

  17. Analysis of Protein Kinetics Using Fluorescence Recovery After Photobleaching (FRAP).

    PubMed

    Giakoumakis, Nickolaos Nikiforos; Rapsomaniki, Maria Anna; Lygerou, Zoi

    2017-01-01

    Fluorescence recovery after photobleaching (FRAP) is a cutting-edge live-cell functional imaging technique that enables the exploration of protein dynamics in individual cells and thus permits the elucidation of protein mobility, function, and interactions at a single-cell level. During a typical FRAP experiment, fluorescent molecules in a defined region of interest within the cell are bleached by a short and powerful laser pulse, while the recovery of the fluorescence in the region is monitored over time by time-lapse microscopy. FRAP experimental setup and image acquisition involve a number of steps that need to be carefully executed to avoid technical artifacts. Equally important is the subsequent computational analysis of FRAP raw data, to derive quantitative information on protein diffusion and binding parameters. Here we present an integrated in vivo and in silico protocol for the analysis of protein kinetics using FRAP. We focus on the most commonly encountered challenges and technical or computational pitfalls and their troubleshooting so that valid and robust insight into protein dynamics within living cells is gained.

  18. Evolution of inhibitor-resistant natural mutant forms of HIV-1 protease probed by pre-steady state kinetic analysis.

    PubMed

    Zakharova, Maria Yu; Kuznetsova, Alexandra A; Kaliberda, Elena N; Dronina, Maria A; Kolesnikov, Alexander V; Kozyr, Arina V; Smirnov, Ivan V; Rumsh, Lev D; Fedorova, Olga S; Knorre, Dmitry G; Gabibov, Alexander G; Kuznetsov, Nikita A

    2017-11-01

    Pre-steady state kinetic analysis of mechanistic features of substrate binding and processing is crucial for insight into the evolution of inhibitor-resistant forms of HIV-1 protease. These data may provide a correct vector for rational drug design assuming possible intrinsic dynamic effects. These data should also give some clues to the molecular mechanism of protease action and resistance to inhibitors. Here we report pre-steady state kinetics of the interaction of wild type or mutant forms of HIV-1 protease with a FRET-labeled peptide. The three-stage "minimal" kinetic scheme with first and second reversible steps of substrate binding and with following irreversible peptide cleavage step adequately described experimental data. For the first time, a set of "elementary" kinetic parameters of wild type HIV-1 protease and its natural mutant inhibitor-resistant forms MDR-HM, ANAM-11 and prDRV4 were compared. Inhibitors of the first and second generation were used to estimate the inhibitory effects on HIV-1 protease activity. The resulting set of kinetic data supported that the mutant forms are kinetically unaffected by inhibitors of the first generation, proving their functional resistance to these compounds. The second generation inhibitor darunavir inhibited mutant forms MDR-HM and ANAM-11, but was ineffective against prDRV4. Our kinetic data revealed that these inhibitors induced different conformational changes in the enzyme and, thereby they have different mode of binding in the enzyme active site. These data confirmed hypothesis that the driving force of the inhibitor-resistance evolution is disruption of enzyme-inhibitor complex by changing of the contact network in the inhibitor binding site. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  19. LSENS, A General Chemical Kinetics and Sensitivity Analysis Code for Homogeneous Gas-Phase Reactions. Part 2; Code Description and Usage

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan; Bittker, David A.

    1994-01-01

    LSENS, the Lewis General Chemical Kinetics and Sensitivity Analysis Code, has been developed for solving complex, homogeneous, gas-phase chemical kinetics problems and contains sensitivity analysis for a variety of problems, including nonisothermal situations. This report is part II of a series of three reference publications that describe LSENS, provide a detailed guide to its usage, and present many example problems. Part II describes the code, how to modify it, and its usage, including preparation of the problem data file required to execute LSENS. Code usage is illustrated by several example problems, which further explain preparation of the problem data file and show how to obtain desired accuracy in the computed results. LSENS is a flexible, convenient, accurate, and efficient solver for chemical reaction problems such as static system; steady, one-dimensional, inviscid flow; reaction behind incident shock wave, including boundary layer correction; and perfectly stirred (highly backmixed) reactor. In addition, the chemical equilibrium state can be computed for the following assigned states: temperature and pressure, enthalpy and pressure, temperature and volume, and internal energy and volume. For static problems the code computes the sensitivity coefficients of the dependent variables and their temporal derivatives with respect to the initial values of the dependent variables and/or the three rate coefficient parameters of the chemical reactions. Part I (NASA RP-1328) derives the governing equations and describes the numerical solution procedures for the types of problems that can be solved by LSENS. Part III (NASA RP-1330) explains the kinetics and kinetics-plus-sensitivity-analysis problems supplied with LSENS and presents sample results.

  20. Singlet and triplet excitation management in a bichromophoric near-infrared-phosphorescent BODIPY-benzoporphyrin platinum complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whited, M. T.; Djurovich, P. I.; Roberts, Sean T.

    2011-01-12

    Multichromophoric arrays provide one strategy for assembling molecules with intense absorptions across the visible spectrum but are generally focused on systems that efficiently produce and manipulate singlet excitations and therefore are burdened by the restrictions of (a) unidirectional energy transfer and (b) limited tunability of the lowest molecular excited state. In contrast, we present here a multichromophoric array based on four boron dipyrrins (BODIPY) bound to a platinum benzoporphyrin scaffold that exhibits intense panchromatic absorption and efficiently generates triplets. The spectral complementarity of the BODIPY and porphryin units allows the direct observation of fast bidirectional singlet and triplet energy transfermore » processes (k ST( 1BDP→ 1Por) = 7.8 × 10 11 s -1, k TT( 3Por→ 3BDP) = 1.0 × 10 10 s -1, k TT( 3BDP→ 3Por) = 1.6 × 10 10 s -1), leading to a long-lived equilibrated [ 3BDP][Por]⇌[BDP][ 3Por] state. This equilibrated state contains approximately isoenergetic porphyrin and BODIPY triplets and exhibits efficient near-infrared phosphorescence (λ em = 772 nm, Φ = 0.26). Taken together, these studies show that appropriately designed triplet-utilizing arrays may overcome fundamental limitations typically associated with core-shell chromophores by tunable redistribution of energy from the core back onto the antennae.« less

  1. Large-scale kinetic energy spectra from Eulerian analysis of EOLE wind data

    NASA Technical Reports Server (NTRS)

    Desbois, M.

    1975-01-01

    A data set of 56,000 winds determined from the horizontal displacements of EOLE balloons at the 200 mb level in the Southern Hemisphere during the period October 1971-February 1972 is utilized for the computation of planetary- and synoptic-scale kinetic energy space spectra. However, the random distribution of measurements in space and time presents some problems for the spectral analysis. Two different approaches are used, i.e., a harmonic analysis of daily wind values at equi-distant points obtained by space-time interpolation of the data, and a correlation method using the direct measurements. Both methods give similar results for small wavenumbers, but the second is more accurate for higher wavenumbers (k above or equal to 10). The spectra show a maximum at wavenumbers 5 and 6 due to baroclinic instability and then decrease for high wavenumbers up to wavenumber 35 (which is the limit of the analysis), according to the inverse power law k to the negative p, with p close to 3.

  2. Time-resolved spectral analysis of Radachlorin luminescence in water

    NASA Astrophysics Data System (ADS)

    Belik, V. P.; Gadzhiev, I. M.; Semenova, I. V.; Vasyutinskii, O. S.

    2017-05-01

    We report results of spectral- and time-resolved study of Radachlorin photosensitizer luminescence in water in the spectral range of 950-1350nm and for determination of the photosensitizer triplet state and the singlet oxygen lifetimes responsible for singlet oxygen generation and degradation. At any wavelength within the explored spectral range the luminescence decay contained two major contributions: a fast decay at the ns time scale and a slow evolution at the μs time scale. The fast decay was attributed to electric dipole fluorescence transitions in photosensitizer molecules and the slow evolution to intercombination phosphorescence transitions in singlet oxygen and photosensitizer molecules. Relatively high-amplitude ns peak observed at all wavelengths suggests that singlet oxygen monitoring with spectral isolation methods alone, without additional temporal resolution can be controversial. In the applied experimental conditions the total phosphorescence signal at any wavelength contained a contribution from the photosensitizer triplet state decay, while at 1274nm the singlet oxygen phosphorescence dominated. The results obtained can be used for optimization of the methods of singlet oxygen monitoring and imaging.

  3. Carrier Injection and Transport in Blue Phosphorescent Organic Light-Emitting Device with Oxadiazole Host

    PubMed Central

    Chiu, Tien-Lung; Lee, Pei-Yu

    2012-01-01

    In this paper, we investigate the carrier injection and transport characteristics in iridium(III)bis[4,6-(di-fluorophenyl)-pyridinato-N,C2′]picolinate (FIrpic) doped phosphorescent organic light-emitting devices (OLEDs) with oxadiazole (OXD) as the bipolar host material of the emitting layer (EML). When doping Firpic inside the OXD, the driving voltage of OLEDs greatly decreases because FIrpic dopants facilitate electron injection and electron transport from the electron-transporting layer (ETL) into the EML. With increasing dopant concentration, the recombination zone shifts toward the anode side, analyzed with electroluminescence (EL) spectra. Besides, EL redshifts were also observed with increasing driving voltage, which means the electron mobility is more sensitive to the electric field than the hole mobility. To further investigate carrier injection and transport characteristics, FIrpic was intentionally undoped at different positions inside the EML. When FIrpic was undoped close to the ETL, driving voltage increased significantly which proves the dopant-assisted-electron-injection characteristic in this OLED. When the undoped layer is near the electron blocking layer, the driving voltage is only slightly increased, but the current efficiency is greatly reduced because the main recombination zone was undoped. However, non-negligible FIrpic emission is still observed which means the recombination zone penetrates inside the EML due to certain hole-transporting characteristics of the OXD. PMID:22837713

  4. Nonlinear analyte concentration gradients for one-step kinetic analysis employing optical microring resonators.

    PubMed

    Marty, Michael T; Sloan, Courtney D Kuhnline; Bailey, Ryan C; Sligar, Stephen G

    2012-07-03

    Conventional methods to probe the binding kinetics of macromolecules at biosensor surfaces employ a stepwise titration of analyte concentrations and measure the association and dissociation to the immobilized ligand at each concentration level. It has previously been shown that kinetic rates can be measured in a single step by monitoring binding as the analyte concentration increases over time in a linear gradient. We report here the application of nonlinear analyte concentration gradients for determining kinetic rates and equilibrium binding affinities in a single experiment. A versatile nonlinear gradient maker is presented, which is easily applied to microfluidic systems. Simulations validate that accurate kinetic rates can be extracted for a wide range of association and dissociation rates, gradient slopes, and curvatures, and with models for mass transport. The nonlinear analyte gradient method is demonstrated with a silicon photonic microring resonator platform to measure prostate specific antigen-antibody binding kinetics.

  5. Nonlinear Analyte Concentration Gradients for One-Step Kinetic Analysis Employing Optical Microring Resonators

    PubMed Central

    Marty, Michael T.; Kuhnline Sloan, Courtney D.; Bailey, Ryan C.; Sligar, Stephen G.

    2012-01-01

    Conventional methods to probe the binding kinetics of macromolecules at biosensor surfaces employ a stepwise titration of analyte concentrations and measure the association and dissociation to the immobilized ligand at each concentration level. It has previously been shown that kinetic rates can be measured in a single step by monitoring binding as the analyte concentration increases over time in a linear gradient. We report here the application of nonlinear analyte concentration gradients for determining kinetic rates and equilibrium binding affinities in a single experiment. A versatile nonlinear gradient maker is presented, which is easily applied to microfluidic systems. Simulations validate that accurate kinetic rates can be extracted for a wide range of association and dissociation rates, gradient slopes and curvatures, and with models for mass transport. The nonlinear analyte gradient method is demonstrated with a silicon photonic microring resonator platform to measure prostate specific antigen-antibody binding kinetics. PMID:22686186

  6. Detectable states, cycle fluxes, and motility scaling of molecular motor kinesin: An integrative kinetic graph theory analysis

    NASA Astrophysics Data System (ADS)

    Ren, Jie

    2017-12-01

    The process by which a kinesin motor couples its ATPase activity with concerted mechanical hand-over-hand steps is a foremost topic of molecular motor physics. Two major routes toward elucidating kinesin mechanisms are the motility performance characterization of velocity and run length, and single-molecular state detection experiments. However, these two sets of experimental approaches are largely uncoupled to date. Here, we introduce an integrative motility state analysis based on a theorized kinetic graph theory for kinesin, which, on one hand, is validated by a wealth of accumulated motility data, and, on the other hand, allows for rigorous quantification of state occurrences and chemomechanical cycling probabilities. An interesting linear scaling for kinesin motility performance across species is discussed as well. An integrative kinetic graph theory analysis provides a powerful tool to bridge motility and state characterization experiments, so as to forge a unified effort for the elucidation of the working mechanisms of molecular motors.

  7. Characterization of the efficiency of microbore liquid chromatography columns by van Deemter and kinetic plot analysis.

    PubMed

    Hetzel, Terence; Loeker, Denise; Teutenberg, Thorsten; Schmidt, Torsten C

    2016-10-01

    The efficiency of miniaturized liquid chromatography columns with inner diameters between 200 and 300 μm has been investigated using a dedicated micro-liquid chromatography system. Fully porous, core-shell and monolithic commercially available stationary phases were compared applying van Deemter and kinetic plot analysis. The sub-2 μm fully porous as well as the 2.7 μm core-shell particle packed columns showed superior efficiency and similar values for the minimum reduced plate heights (2.56-2.69) before correction for extra-column contribution compared to normal-bore columns. Moreover, the influence of extra-column contribution was investigated to demonstrate the difference between apparent and intrinsic efficiency by replacing the column by a zero dead volume union to determine the band spreading caused by the system. It was demonstrated that 72% of the intrinsic efficiency could be reached. The results of the kinetic plot analysis indicate the superior performance of the sub-2 μm fully porous particle packed column for ultra-fast liquid chromatography. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Analysis of a kinetic multi-segment foot model. Part I: Model repeatability and kinematic validity.

    PubMed

    Bruening, Dustin A; Cooney, Kevin M; Buczek, Frank L

    2012-04-01

    Kinematic multi-segment foot models are still evolving, but have seen increased use in clinical and research settings. The addition of kinetics may increase knowledge of foot and ankle function as well as influence multi-segment foot model evolution; however, previous kinetic models are too complex for clinical use. In this study we present a three-segment kinetic foot model and thorough evaluation of model performance during normal gait. In this first of two companion papers, model reference frames and joint centers are analyzed for repeatability, joint translations are measured, segment rigidity characterized, and sample joint angles presented. Within-tester and between-tester repeatability were first assessed using 10 healthy pediatric participants, while kinematic parameters were subsequently measured on 17 additional healthy pediatric participants. Repeatability errors were generally low for all sagittal plane measures as well as transverse plane Hindfoot and Forefoot segments (median<3°), while the least repeatable orientations were the Hindfoot coronal plane and Hallux transverse plane. Joint translations were generally less than 2mm in any one direction, while segment rigidity analysis suggested rigid body behavior for the Shank and Hindfoot, with the Forefoot violating the rigid body assumptions in terminal stance/pre-swing. Joint excursions were consistent with previously published studies. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Electron-Deficient Near-Infrared Pt(II) and Pd(II) Benzoporphyrins with Dual Phosphorescence and Unusually Efficient Thermally Activated Delayed Fluorescence: First Demonstration of Simultaneous Oxygen and Temperature Sensing with a Single Emitter.

    PubMed

    Zach, Peter W; Freunberger, Stefan A; Klimant, Ingo; Borisov, Sergey M

    2017-11-01

    We report a family of Pt and Pd benzoporphyrin dyes with versatile photophysical properties and easy access from cheap and abundant chemicals. Attaching 4 or 8 alkylsulfone groups onto a meso-tetraphenyltetrabenzoporphyrin (TPTBP) macrocylcle renders the dyes highly soluble in organic solvents, photostable, and electron-deficient with the redox potential raised up to 0.65 V versus the parent porphyrin. The new dyes intensively absorb in the blue (Soret band, 440-480 nm) and in the red (Q-band, 620-650 nm) parts of the electromagnetic spectrum and show bright phosphorescence at room-temperature in the NIR with quantum yields up to 30% in solution. The small singlet-triplet energy gap yields unusually efficient thermally activated delayed fluorescence (TADF) at elevated temperatures in solution and in polymeric matrices with quantum yields as high as 27% at 120 °C, which is remarkable for benzoporphyrins. Apart from oxygen sensing, these properties enable unprecedented simultaneous, self-referenced oxygen and temperature sensing with a single indicator dye: whereas oxygen can be determined either via the decay time of phosphorescence or TADF, the temperature is accessed via the ratio of the two emissions. Moreover, the dyes are efficient sensitizers for triplet-triplet annihilation (TTA)-based upconversion making possible longer sensitization wavelength than the conventional benzoporphyrin complexes. The Pt-octa-sulfone dye also features interesting semireversible transformation in basic media, which generates new NIR absorbing species.

  10. Multijoint kinetic chain analysis of knee extension during the soccer instep kick.

    PubMed

    Naito, Kozo; Fukui, Yosuke; Maruyama, Takeo

    2010-04-01

    Although previous studies have shown that motion-dependent interactions between adjacent segments play an important role in producing knee extension during the soccer instep kick, detailed knowledge about the mechanisms underlying those interactions is lacking. The present study aimed to develop a 3-D dynamical model for the multijoint kinetic chain of the instep kick in order to quantify the contributions of the causal dynamical factors to the production of maximum angular velocity during knee extension. Nine collegiate soccer players volunteered to participate in the experiment and performed instep kicking movements while 3-D positional data and the ground reaction force were measured. A dynamical model was developed in the form of a linked system containing 8 segments and 18 joint rotations, and the knee extension/flexion motion was decomposed into causal factors related to muscular moment, gyroscopic moment, centrifugal force, Coriolis force, gravity, proximal endpoint linear acceleration, and external force-dependent terms. The rapid knee extension during instep kicking was found to result almost entirely from kicking leg centrifugal force, trunk rotation muscular moment, kicking leg Coriolis force, and trunk rotation gyroscopic-dependent components. Based on the finding that rapid knee extension during instep kicking stems from multiple dynamical factors, it is suggested that the multijoint kinetic chain analysis used in the present study is more useful for achieving a detailed understanding of the cause of rapid kicking leg movement than the previously used 2-D, two-segment kinetic chain model. The present results also indicated that the centrifugal effect due to the kicking hip flexion angular velocity contributed substantially to the generation of a rapid knee extension, suggesting that the adjustment between the kicking hip flexion angular velocity and the leg configuration (knee flexion angle) is more important for effective instep kicking than other

  11. Kinetic analysis of concurrent activation potentiation during back squats and jump squats.

    PubMed

    Ebben, William P; Kaufmann, Clare E; Fauth, McKenzie L; Petushek, Erich J

    2010-06-01

    Concurrent activation potentiation enhances muscular force during open kinetic chain isometric and isokinetic exercises via remote voluntary contractions (RVCs). The purpose of this study was to evaluate the effect of RVCs on the performance of closed kinetic chain ground-based exercises. Subjects included 13 men (21.4+/-1.5 years) who performed the back squat and jump squat in 2 test conditions. The RVC condition included performing the test exercises while clenching the jaw on a mouth guard, forcefully gripping and pulling the barbell down into the trapezius, and performing a Valsalva maneuver. The normal condition (NO-RVC) included performing the test exercises without RVCs. Exercises were assessed with a force platform. Peak ground reaction force (GRF), rate of force development (RFD) during the first 100 milliseconds (RFD-100), RFD to peak GRF (RFD-P), and jump squat height (JH) were calculated from the force-time records. Data were analyzed using an analysis of variance. Results reveal that GRF and RFD-100 were higher in the RVC compared with the NO-RVC condition for both the back squat and jump squat (pkinetic chain exercises for most of the outcome variables assessed, yielding a 2.9-32.3% greater performance. Practitioners should encourage athletes to use RVCs to improve the acute training effect of exercises such as those used in this study.

  12. Validation of Non-Invasive Tracer Kinetic Analysis of 18F-Florbetaben PET Using a Dual Time-Window Acquisition Protocol.

    PubMed

    Bullich, Santiago; Barthel, Henryk; Koglin, Norman; Becker, Georg A; De Santi, Susan; Jovalekic, Aleksandar; Stephens, Andrew W; Sabri, Osama

    2017-11-24

    Accurate amyloid PET quantification is necessary for monitoring amyloid-beta accumulation and response to therapy. Currently, most of the studies are analyzed using the static standardized uptake value ratio (SUVR) approach because of its simplicity. However, this approach may be influenced by changes in cerebral blood flow (CBF) or radiotracer clearance. Full tracer kinetic models require arterial blood sampling and dynamic image acquisition. The objectives of this work were: (1) to validate a non-invasive kinetic modeling approach for 18 F-florbetaben PET using an acquisition protocol with the best compromise between quantification accuracy and simplicity and (2) to assess the impact of CBF changes and radiotracer clearance on SUVRs and non-invasive kinetic modeling data in 18 F-florbetaben PET. Methods: Data from twenty subjects (10 patients with probable Alzheimer's dementia/ 10 healthy volunteers) were used to compare the binding potential (BP ND ) obtained from the full kinetic analysis to the SUVR and to non-invasive tracer kinetic methods (simplified reference tissue model (SRTM), and multilinear reference tissue model 2 (MRTM2)). Different approaches using shortened or interrupted acquisitions were compared to the results of the full acquisition (0-140 min). Simulations were carried out to assess the effect of CBF and radiotracer clearance changes on SUVRs and non-invasive kinetic modeling outputs. Results: A 0-30 and 120-140 min dual time-window acquisition protocol using appropriate interpolation of the missing time points provided the best compromise between patient comfort and quantification accuracy. Excellent agreement was found between BP ND obtained using full and dual time-window (2TW) acquisition protocols (BP ND,2TW =0.01+ 1.00 BP ND,FULL , R2=0.97 (MRTM2); BP ND,2TW = 0.05+ 0.92·BP ND,FULL , R2=0.93 (SRTM)). Simulations showed a limited impact of CBF and radiotracer clearance changes on MRTM parameters and SUVRs. Conclusion: This study

  13. Understanding protein lids: kinetic analysis of active hinge mutants in triosephosphate isomerase.

    PubMed

    Sun, J; Sampson, N S

    1999-08-31

    In previous work we tested what three amino acid sequences could serve as a protein hinge in triosephosphate isomerase [Sun, J., and Sampson, N. S. (1998) Protein Sci. 7, 1495-1505]. We generated a genetic library encoding all 8000 possible 3 amino acid combinations at the C-terminal hinge and selected for those combinations of amino acids that formed active mutants. These mutants were classified into six phylogenetic families. Two families resembled wild-type hinges, and four families represented new types of hinges. In this work, the kinetic characteristics and thermal stabilities of mutants representing each of these families were determined in order to understand what properties make an efficient protein hinge, and why all of the families are not observed in nature. From a steady-state kinetic analysis of our mutants, it is clear that the partitioning between protonation of intermediate to form product and intermediate release from the enzyme surface to form methylglyoxal (a decomposition product) is not affected. The two most impaired mutants undergo a change in rate-limiting step from enediol formation to dihydroxyacetone phosphate binding. Thus, it appears that k(cat)/K(m)'s are reduced relative to wild type as a result of slower Michaelis complex formation and dissociation, rather than increased loop opening speed.

  14. Nonisothermal Analysis of Solution Kinetics by Spreadsheet Simulation

    ERIC Educational Resources Information Center

    de Levie, Robert

    2012-01-01

    A fast and generally applicable alternative solution to the problem of determining the useful shelf life of medicinal solutions is described. It illustrates the power and convenience of the combination of numerical simulation and nonlinear least squares with a practical pharmaceutical application of chemical kinetics and thermodynamics, validated…

  15. Optimal bioprocess design through a gene regulatory network - growth kinetic hybrid model: Towards Replacing Monod kinetics.

    PubMed

    Tsipa, Argyro; Koutinas, Michalis; Usaku, Chonlatep; Mantalaris, Athanasios

    2018-05-02

    Currently, design and optimisation of biotechnological bioprocesses is performed either through exhaustive experimentation and/or with the use of empirical, unstructured growth kinetics models. Whereas, elaborate systems biology approaches have been recently explored, mixed-substrate utilisation is predominantly ignored despite its significance in enhancing bioprocess performance. Herein, bioprocess optimisation for an industrially-relevant bioremediation process involving a mixture of highly toxic substrates, m-xylene and toluene, was achieved through application of a novel experimental-modelling gene regulatory network - growth kinetic (GRN-GK) hybrid framework. The GRN model described the TOL and ortho-cleavage pathways in Pseudomonas putida mt-2 and captured the transcriptional kinetics expression patterns of the promoters. The GRN model informed the formulation of the growth kinetics model replacing the empirical and unstructured Monod kinetics. The GRN-GK framework's predictive capability and potential as a systematic optimal bioprocess design tool, was demonstrated by effectively predicting bioprocess performance, which was in agreement with experimental values, when compared to four commonly used models that deviated significantly from the experimental values. Significantly, a fed-batch biodegradation process was designed and optimised through the model-based control of TOL Pr promoter expression resulting in 61% and 60% enhanced pollutant removal and biomass formation, respectively, compared to the batch process. This provides strong evidence of model-based bioprocess optimisation at the gene level, rendering the GRN-GK framework as a novel and applicable approach to optimal bioprocess design. Finally, model analysis using global sensitivity analysis (GSA) suggests an alternative, systematic approach for model-driven strain modification for synthetic biology and metabolic engineering applications. Copyright © 2018. Published by Elsevier Inc.

  16. Laser induced phosphorescence uranium analysis

    DOEpatents

    Bushaw, B.A.

    1983-06-10

    A method is described for measuring the uranium content of aqueous solutions wherein a uranyl phosphate complex is irradiated with a 5 nanosecond pulse of 425 nanometer laser light and resultant 520 nanometer emissions are observed for a period of 50 to 400 microseconds after the pulse. Plotting the natural logarithm of emission intensity as a function of time yields an intercept value which is proportional to uranium concentration.

  17. Laser induced phosphorescence uranium analysis

    DOEpatents

    Bushaw, Bruce A.

    1986-01-01

    A method is described for measuring the uranium content of aqueous solutions wherein a uranyl phosphate complex is irradiated with a 5 nanosecond pulse of 425 nanometer laser light and resultant 520 nanometer emissions are observed for a period of 50 to 400 microseconds after the pulse. Plotting the natural logarithm of emission intensity as a function of time yields an intercept value which is proportional to uranium concentration.

  18. A kinetic and equilibrium analysis of silicon carbide chemical vapor deposition on monofilaments

    NASA Technical Reports Server (NTRS)

    Gokoglu, S. A.; Kuczmarski, M. A.

    1993-01-01

    Chemical kinetics of atmospheric pressure silicon carbide (SiC) chemical vapor deposition (CVD) from dilute silane and propane source gases in hydrogen is numerically analyzed in a cylindrical upflow reactor designed for CVD on monofilaments. The chemical composition of the SiC deposit is assessed both from the calculated total fluxes of carbon and silicon and from chemical equilibrium considerations for the prevailing temperatures and species concentrations at and along the filament surface. The effects of gas and surface chemistry on the evolution of major gas phase species are considered in the analysis.

  19. Sum over Histories Representation for Kinetic Sensitivity Analysis: How Chemical Pathways Change When Reaction Rate Coefficients Are Varied

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Shirong; Davis, Michael J.; Skodje, Rex T.

    2015-11-12

    The sensitivity of kinetic observables is analyzed using a newly developed sum over histories representation of chemical kinetics. In the sum over histories representation, the concentrations of the chemical species are decomposed into the sum of probabilities for chemical pathways that follow molecules from reactants to products or intermediates. Unlike static flux methods for reaction path analysis, the sum over histories approach includes the explicit time dependence of the pathway probabilities. Using the sum over histories representation, the sensitivity of an observable with respect to a kinetic parameter such as a rate coefficient is then analyzed in terms of howmore » that parameter affects the chemical pathway probabilities. The method is illustrated for species concentration target functions in H-2 combustion where the rate coefficients are allowed to vary over their associated uncertainty ranges. It is found that large sensitivities are often associated with rate limiting steps along important chemical pathways or by reactions that control the branching of reactive flux« less

  20. The mechanism of long phosphorescence of SrAl{sub 2-x}B{sub x}O{sub 4} (0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nag, Abanti; Kutty, T.R.N

    2004-03-01

    The role of B{sub 2}O{sub 3} in realizing the long phosphorescence of Eu(II)+Dy(III) doped strontium aluminates has been investigated. IR and solid state {sup 27}Al MAS NMR spectra show the incorporation of boron as BO{sub 4} in the AlO{sub 4} framework of SrAl{sub 2}O{sub 4} and Sr{sub 4}Al{sub 14}O{sub 25}. Phosphor, made free of glassy phases by washing with hot acetic acid+glycerol, did not show any photoconductivity under UV irradiation, indicating that the mechanism involving hole conduction in valence band is untenable for long phosphorescence. EPR studies confirm the presence of both electron and hole trap centers. Dy{sup 3+} formsmore » substitutional defect complex with borate; [Dy-BO{sub 4}-V{sub Sr}]{sup 2-}, and acts as a hole trap center. The electron centers are formed by the oxygen vacancies associated with BO{sub 3}{sup 3-}, i.e. [BO{sub 3}-V{sub O}]{sup 3-}. Under indigo light or near UV irradiation, the photoinduced electron centers are formed as [BO{sub 3}-V{sub O}(e')]{sup 4-}. The holes are released from [Dy-BO{sub 4}-V{sub Sr}(h{center_dot})]{sup 1-} under thermal excitation at room temperature. The recombination of electrons with holes releases energy which is expended to excite Eu{sup 2+} to induce long phosphorescence.« less

  1. LSENS, a general chemical kinetics and sensitivity analysis code for gas-phase reactions: User's guide

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan; Bittker, David A.

    1993-01-01

    A general chemical kinetics and sensitivity analysis code for complex, homogeneous, gas-phase reactions is described. The main features of the code, LSENS, are its flexibility, efficiency and convenience in treating many different chemical reaction models. The models include static system, steady, one-dimensional, inviscid flow, shock initiated reaction, and a perfectly stirred reactor. In addition, equilibrium computations can be performed for several assigned states. An implicit numerical integration method, which works efficiently for the extremes of very fast and very slow reaction, is used for solving the 'stiff' differential equation systems that arise in chemical kinetics. For static reactions, sensitivity coefficients of all dependent variables and their temporal derivatives with respect to the initial values of dependent variables and/or the rate coefficient parameters can be computed. This paper presents descriptions of the code and its usage, and includes several illustrative example problems.

  2. Relative effectiveness of kinetic analysis vs single point readings for classifying environmental samples based on community-level physiological profiles (CLPP)

    NASA Technical Reports Server (NTRS)

    Garland, J. L.; Mills, A. L.; Young, J. S.

    2001-01-01

    The relative effectiveness of average-well-color-development-normalized single-point absorbance readings (AWCD) vs the kinetic parameters mu(m), lambda, A, and integral (AREA) of the modified Gompertz equation fit to the color development curve resulting from reduction of a redox sensitive dye from microbial respiration of 95 separate sole carbon sources in microplate wells was compared for a dilution series of rhizosphere samples from hydroponically grown wheat and potato ranging in inoculum densities of 1 x 10(4)-4 x 10(6) cells ml-1. Patterns generated with each parameter were analyzed using principal component analysis (PCA) and discriminant function analysis (DFA) to test relative resolving power. Samples of equivalent cell density (undiluted samples) were correctly classified by rhizosphere type for all parameters based on DFA analysis of the first five PC scores. Analysis of undiluted and 1:4 diluted samples resulted in misclassification of at least two of the wheat samples for all parameters except the AWCD normalized (0.50 abs. units) data, and analysis of undiluted, 1:4, and 1:16 diluted samples resulted in misclassification for all parameter types. Ordination of samples along the first principal component (PC) was correlated to inoculum density in analyses performed on all of the kinetic parameters, but no such influence was seen for AWCD-derived results. The carbon sources responsible for classification differed among the variable types with the exception of AREA and A, which were strongly correlated. These results indicate that the use of kinetic parameters for pattern analysis in CLPP may provide some additional information, but only if the influence of inoculum density is carefully considered. c2001 Elsevier Science Ltd. All rights reserved.

  3. Kinetic concepts of thermally stimulated reactions in solids

    NASA Astrophysics Data System (ADS)

    Vyazovkin, Sergey

    Historical analysis suggests that the basic kinetic concepts of reactions in solids were inherited from homogeneous kinetics. These concepts rest upon the assumption of a single-step reaction that disagrees with the multiple-step nature of solid-state processes. The inadequate concepts inspire such unjustified anticipations of kinetic analysis as evaluating constant activation energy and/or deriving a single-step reaction mechanism for the overall process. A more adequate concept is that of the effective activation energy, which may vary with temperature and extent of conversion. The adequacy of this concept is illustrated by literature data as well as by experimental data on the thermal dehydration of calcium oxalate monohydrate and thermal decomposition of calcium carbonate, ammonium nitrate and 1,3,5,7- tetranitro-1,3,5,7-tetrazocine.

  4. Recovery of nickel and cobalt as MHP from limonitic ore leaching solution: Kinetics analysis and precipitate characterization

    NASA Astrophysics Data System (ADS)

    Safitri, Nina; Mubarok, M. Zaki; Winarko, Ronny; Tanlega, Zela

    2018-05-01

    In the present study, precipitation of nickel and cobalt as mixed hydroxide precipitate (MHP) from pregnant leach solution of nickel limonite ore from Soroako after iron removal stage was carried out. A series of MHP precipitation experiments was conducted by using MgO slurry as neutralizing agent and the effects of pH, temperature, duration of precipitation and the addition of MHP seed on the precipitation behavior of nickel, cobalt, as well as iron and manganese was studied. Characterization of MHP product was performed by particle size analyzer (PSA) as well as X-Ray Fluorescence (XRF), X-Ray Diffractometer (XRD) and Scanning Electron Microscope (SEM) analyses. Kinetics analysis was made by using differential-integral method for the rate of homogenous reaction. Precipitation at pH 7, temperature 50°C for 30 minute, without seed addition resulted in nickel and cobalt recoveries of 82.8% and 92%, respectively with co-precipitated iron and manganese of 70% and 24.2%, respectively. The seed addition increases nickel and cobalt precipitations significantly to 99.9% and 99.1%, respectively. However, the addition of seed into led to a significant increase of manganese co-precipitation from 24.2% without seed addition to 39.5% at the addition of 1 g seed per 200 mL of PLS. Kinetics analysis revealed that Ni precipitation to form MHP follows the second-order reaction kinetics with activation energy of 94.6 kJ/mol.

  5. qPIPSA: Relating enzymatic kinetic parameters and interaction fields

    PubMed Central

    Gabdoulline, Razif R; Stein, Matthias; Wade, Rebecca C

    2007-01-01

    Background The simulation of metabolic networks in quantitative systems biology requires the assignment of enzymatic kinetic parameters. Experimentally determined values are often not available and therefore computational methods to estimate these parameters are needed. It is possible to use the three-dimensional structure of an enzyme to perform simulations of a reaction and derive kinetic parameters. However, this is computationally demanding and requires detailed knowledge of the enzyme mechanism. We have therefore sought to develop a general, simple and computationally efficient procedure to relate protein structural information to enzymatic kinetic parameters that allows consistency between the kinetic and structural information to be checked and estimation of kinetic constants for structurally and mechanistically similar enzymes. Results We describe qPIPSA: quantitative Protein Interaction Property Similarity Analysis. In this analysis, molecular interaction fields, for example, electrostatic potentials, are computed from the enzyme structures. Differences in molecular interaction fields between enzymes are then related to the ratios of their kinetic parameters. This procedure can be used to estimate unknown kinetic parameters when enzyme structural information is available and kinetic parameters have been measured for related enzymes or were obtained under different conditions. The detailed interaction of the enzyme with substrate or cofactors is not modeled and is assumed to be similar for all the proteins compared. The protein structure modeling protocol employed ensures that differences between models reflect genuine differences between the protein sequences, rather than random fluctuations in protein structure. Conclusion Provided that the experimental conditions and the protein structural models refer to the same protein state or conformation, correlations between interaction fields and kinetic parameters can be established for sets of related enzymes

  6. Determining Kinetic Parameters for Isothermal Crystallization of Glasses

    NASA Technical Reports Server (NTRS)

    Ray, C. S.; Zhang, T.; Reis, S. T.; Brow, R. K.

    2006-01-01

    Non-isothermal crystallization techniques are frequently used to determine the kinetic parameters for crystallization in glasses. These techniques are experimentally simple and quick compared to the isothermal techniques. However, the analytical models used for non-isothermal data analysis, originally developed for describing isothermal transformation kinetics, are fundamentally flawed. The present paper describes a technique for determining the kinetic parameters for isothermal crystallization in glasses, which eliminates most of the common problems that generally make the studies of isothermal crystallization laborious and time consuming. In this technique, the volume fraction of glass that is crystallized as a function of time during an isothermal hold was determined using differential thermal analysis (DTA). The crystallization parameters for the lithium-disilicate (Li2O.2SiO2) model glass were first determined and compared to the same parameters determined by other techniques to establish the accuracy and usefulness of the present technique. This technique was then used to describe the crystallization kinetics of a complex Ca-Sr-Zn-silicate glass developed for sealing solid oxide fuel cells.

  7. Kinetics analysis and quantitative calculations for the successive radioactive decay process

    NASA Astrophysics Data System (ADS)

    Zhou, Zhiping; Yan, Deyue; Zhao, Yuliang; Chai, Zhifang

    2015-01-01

    The general radioactive decay kinetics equations with branching were developed and the analytical solutions were derived by Laplace transform method. The time dependence of all the nuclide concentrations can be easily obtained by applying the equations to any known radioactive decay series. Taking the example of thorium radioactive decay series, the concentration evolution over time of various nuclide members in the family has been given by the quantitative numerical calculations with a computer. The method can be applied to the quantitative prediction and analysis for the daughter nuclides in the successive decay with branching of the complicated radioactive processes, such as the natural radioactive decay series, nuclear reactor, nuclear waste disposal, nuclear spallation, synthesis and identification of superheavy nuclides, radioactive ion beam physics and chemistry, etc.

  8. Kinetic and kinematic follow‐up gait analysis in Doberman Pinschers with cervical spondylomyelopathy treated medically and surgically

    PubMed Central

    Smith, Rebecca L.; da Costa, Ronaldo C.

    2018-01-01

    Background The efficacy of treatment of dogs with cervical spondylomyelopathy (CSM) is commonly based on the owner's and clinician's perception of the gait, which is highly subjective and suffers from observer bias. Hypothesis/Objectives To compare selected kinetic and kinematic parameters before and after treatments and to correlate the findings of gait analysis to clinical outcome. Animals Eight Doberman Pinschers with CSM confirmed by magnetic resonsance imaging. Methods Patients were prospectively studied and treated with either medical management (n = 5) or surgery (n = 3). Force plate analysis and 3‐D kinematic motion capture were performed at initial presentation and approximately 8 weeks later. Force plate parameters evaluated included peak vertical force (PVF). Kinematic parameters measured included number of pelvic limb strides, stifle flexion and extension, maximum and minimum thoracic limb distance, truncal sway, and thoracic limb stride duration. Results Kinematic analysis showed that deviation of the spine to the right (truncal sway) was significantly smaller (P < .001) and the degree of right stifle flexion was significantly larger (P = .029) after treatment. Force plate analysis indicated that PVF was significantly different after treatment (P = .049) and the difference of the PVF also was significantly larger (P = .027). However, no correlation was found with either method of gait analysis and clinical recovery. Conclusions and Clinical Importance Kinetic and kinematic gait analysis were able to detect differences in dogs with CSM before and after treatment. A correlation of gait analysis to clinical improvement could not be determined. PMID:29572944

  9. Combination of Markov state models and kinetic networks for the analysis of molecular dynamics simulations of peptide folding.

    PubMed

    Radford, Isolde H; Fersht, Alan R; Settanni, Giovanni

    2011-06-09

    Atomistic molecular dynamics simulations of the TZ1 beta-hairpin peptide have been carried out using an implicit model for the solvent. The trajectories have been analyzed using a Markov state model defined on the projections along two significant observables and a kinetic network approach. The Markov state model allowed for an unbiased identification of the metastable states of the system, and provided the basis for commitment probability calculations performed on the kinetic network. The kinetic network analysis served to extract the main transition state for folding of the peptide and to validate the results from the Markov state analysis. The combination of the two techniques allowed for a consistent and concise characterization of the dynamics of the peptide. The slowest relaxation process identified is the exchange between variably folded and denatured species, and the second slowest process is the exchange between two different subsets of the denatured state which could not be otherwise identified by simple inspection of the projected trajectory. The third slowest process is the exchange between a fully native and a partially folded intermediate state characterized by a native turn with a proximal backbone H-bond, and frayed side-chain packing and termini. The transition state for the main folding reaction is similar to the intermediate state, although a more native like side-chain packing is observed.

  10. Synthesis, Properties, Calculations and Applications of Small Molecular Host Materials Containing Oxadiazole Units with Different Nitrogen and Oxygen Atom Orientations for Solution-Processable Blue Phosphorescent OLEDs

    NASA Astrophysics Data System (ADS)

    Ye, Hua; Wu, Hongyu; Chen, Liangyuan; Ma, Songhua; Zhou, Kaifeng; Yan, Guobing; Shen, Jiazhong; Chen, Dongcheng; Su, Shi-Jian

    2018-03-01

    A series of new small molecules based on symmetric electron-acceptor of 1,3,4-oxadiazole moiety or its asymmetric isomer of 1,2,4-oxadiazole unit were successfully synthesized and applied to solution-processable blue phosphorescent organic light-emitting diodes for the first time, and their thermal, photophysical, electrochemical properties and density functional theory calculations were studied thoroughly. Due to the high triplet energy levels ( E T, 2.82-2.85 eV), the energy from phosphorescent emitter of iridium(III) bis[(4,6-difluorophenyl)-pyridinate- N,C2']picolinate (FIrpic) transfer to the host molecules could be effectively suppressed and thus assuring the emission of devices was all from FIrpic. In comparison with the para-mode conjugation in substitution of five-membered 1,3,4-oxadiazole in 134OXD, the meta-linkages of 1,2,4-isomer appending with two phenyl rings cause the worse conjugation degree and the electron delocalization as well as the lower electron-withdrawing ability for the other 1,2,4-oxadiazole-based materials. Noting that the solution-processed device based on 134OXD containing 1,3,4-oxadiazole units without extra vacuum thermal-deposited hole/exciton-blocking layer and electron-transporting layer showed the highest maximum current efficiency (CEmax) of 8.75 cd/A due to the excellent charge transporting ability of 134OXD, which far surpassed the similar devices based on other host materials containing 1,2,4-oxadiazole units. Moreover, the device based on 134OXD presented small efficiency roll-off with current efficiency (CE) of 6.26 cd/A at high brightness up to 100 cd/m2. This work demonstrates different nitrogen and oxygen atom orientations of the oxadiazole-based host materials produce major impact on the optoelectronic characteristics of the solution-processable devices.

  11. Permeability and kinetic coefficients for mesoscale BCF surface step dynamics: Discrete two-dimensional deposition-diffusion equation analysis

    DOE PAGES

    Zhao, Renjie; Evans, James W.; Oliveira, Tiago J.

    2016-04-08

    Here, a discrete version of deposition-diffusion equations appropriate for description of step flow on a vicinal surface is analyzed for a two-dimensional grid of adsorption sites representing the stepped surface and explicitly incorporating kinks along the step edges. Model energetics and kinetics appropriately account for binding of adatoms at steps and kinks, distinct terrace and edge diffusion rates, and possible additional barriers for attachment to steps. Analysis of adatom attachment fluxes as well as limiting values of adatom densities at step edges for nonuniform deposition scenarios allows determination of both permeability and kinetic coefficients. Behavior of these quantities is assessedmore » as a function of key system parameters including kink density, step attachment barriers, and the step edge diffusion rate.« less

  12. Permeability and kinetic coefficients for mesoscale BCF surface step dynamics: Discrete two-dimensional deposition-diffusion equation analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Renjie; Evans, James W.; Oliveira, Tiago J.

    Here, a discrete version of deposition-diffusion equations appropriate for description of step flow on a vicinal surface is analyzed for a two-dimensional grid of adsorption sites representing the stepped surface and explicitly incorporating kinks along the step edges. Model energetics and kinetics appropriately account for binding of adatoms at steps and kinks, distinct terrace and edge diffusion rates, and possible additional barriers for attachment to steps. Analysis of adatom attachment fluxes as well as limiting values of adatom densities at step edges for nonuniform deposition scenarios allows determination of both permeability and kinetic coefficients. Behavior of these quantities is assessedmore » as a function of key system parameters including kink density, step attachment barriers, and the step edge diffusion rate.« less

  13. Efficient use of single molecule time traces to resolve kinetic rates, models and uncertainties

    NASA Astrophysics Data System (ADS)

    Schmid, Sonja; Hugel, Thorsten

    2018-03-01

    Single molecule time traces reveal the time evolution of unsynchronized kinetic systems. Especially single molecule Förster resonance energy transfer (smFRET) provides access to enzymatically important time scales, combined with molecular distance resolution and minimal interference with the sample. Yet the kinetic analysis of smFRET time traces is complicated by experimental shortcomings—such as photo-bleaching and noise. Here we recapitulate the fundamental limits of single molecule fluorescence that render the classic, dwell-time based kinetic analysis unsuitable. In contrast, our Single Molecule Analysis of Complex Kinetic Sequences (SMACKS) considers every data point and combines the information of many short traces in one global kinetic rate model. We demonstrate the potential of SMACKS by resolving the small kinetic effects caused by different ionic strengths in the chaperone protein Hsp90. These results show an unexpected interrelation between conformational dynamics and ATPase activity in Hsp90.

  14. Biomechanical Analysis of the Closed Kinetic Chain Upper-Extremity Stability Test.

    PubMed

    Tucci, Helga T; Felicio, Lilian R; McQuade, Kevin J; Bevilaqua-Grossi, Debora; Camarini, Paula Maria Ferreira; Oliveira, Anamaria S

    2017-01-01

    The closed kinetic chain upper-extremity stability (CKCUES) test is a functional test for the upper extremity performed in the push-up position, where individuals support their body weight on 1 hand placed on the ground and swing the opposite hand until touching the hand on the ground, then switch hands and repeat the process as fast as possible for 15 s. To study scapular kinematic and kinetic measures during the CKCUES test for 3 different distances between hands. Experimental. Laboratory. 30 healthy individuals (15 male, 15 female). Participants performed 3 repetitions of the test at 3 distance conditions: original (36 in), interacromial, and 150% interacromial distance between hands. Participants completed a questionnaire on pain intensity and perceived exertion before and after the procedures. Scapular internal/external rotation, upward/downward rotation, and posterior/anterior tilting kinematics and kinetic data on maximum force and time to maximum force were measured bilaterally in all participants. Percentage of body weight on upper extremities was calculated. Data analyses were based on the total numbers of hand touches performed for each distance condition, and scapular kinematics and kinetic values were averaged over the 3 trials. Scapular kinematics, maximum force, and time to maximum force were compared for the 3 distance conditions within each gender. Significance level was set at α = .05. Scapular internal rotation, posterior tilting, and upward rotation were significantly greater in the dominant side for both genders. Scapular upward rotation was significantly greater in original distance than interacromial distance in swing phase. Time to maximum force in women was significantly greater in the dominant side. CKCUES test kinematic and kinetic measures were not different among 3 conditions based on distance between hands. However, the test might not be suitable for initial or mild-level rehabilitation due to its challenging requirements.

  15. Thermal oxidative degradation kinetics of agricultural residues using distributed activation energy model and global kinetic model.

    PubMed

    Ren, Xiu'e; Chen, Jianbiao; Li, Gang; Wang, Yanhong; Lang, Xuemei; Fan, Shuanshi

    2018-08-01

    The study concerned the thermal oxidative degradation kinetics of agricultural residues, peanut shell (PS) and sunflower shell (SS). The thermal behaviors were evaluated via thermogravimetric analysis and the kinetic parameters were determined by using distributed activation energy model (DAEM) and global kinetic model (GKM). Results showed that thermal oxidative decomposition of two samples processed in three zones; the ignition, burnout, and comprehensive combustibility between two agricultural residues were of great difference; and the combustion performance could be improved by boosting heating rate. The activation energy ranges calculated by the DAEM for the thermal oxidative degradation of PS and SS were 88.94-145.30 kJ mol -1 and 94.86-169.18 kJ mol -1 , respectively. The activation energy obtained by the GKM for the oxidative decomposition of hemicellulose and cellulose was obviously lower than that for the lignin oxidation at identical heating rate. To some degree, the determined kinetic parameters could acceptably simulate experimental data. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Influence of silver nanoparticles on relaxation processes and efficiency of dipole – dipole energy transfer between dye molecules in polymethylmethacrylate films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryukhanov, V V; Borkunov, R Yu; Tsarkov, M V

    The fluorescence and phosphorescence of dyes in thin polymethylmethacrylate (PMMA) films in the presence of ablated silver nanoparticles has been investigated in a wide temperature range by methods of femtosecond and picosecond laser photoexcitation. The fluorescence and phosphorescence times, as well as spectral and kinetic characteristics of rhodamine 6G (R6G) molecules in PMMA films are measured in a temperature range of 80 – 330 K. The temperature quenching activation energy of the fluorescence of R6G molecules in the presence of ablated silver nanoparticles is found. The vibrational relaxation rate of R6G in PMMA films is estimated, the efficiency of themore » dipole – dipole electron energy transfer between R6G and brilliant green molecules (enhanced by plasmonic interaction with ablated silver nanoparticles) is analysed, and the constants of this energy transfer are determined. (nanophotonics)« less

  17. The comparative kinetic analysis of Acetocell and Lignoboost® lignin pyrolysis: the estimation of the distributed reactivity models.

    PubMed

    Janković, Bojan

    2011-10-01

    The non-isothermal pyrolysis kinetics of Acetocell (the organosolv) and Lignoboost® (kraft) lignins, in an inert atmosphere, have been studied by thermogravimetric analysis. Using isoconversional analysis, it was concluded that the apparent activation energy for all lignins strongly depends on conversion, showing that the pyrolysis of lignins is not a single chemical process. It was identified that the pyrolysis process of Acetocell and Lignoboost® lignin takes place over three reaction steps, which was confirmed by appearance of the corresponding isokinetic relationships (IKR). It was found that major pyrolysis stage of both lignins is characterized by stilbene pyrolysis reactions, which were subsequently followed by decomposition reactions of products derived from the stilbene pyrolytic process. It was concluded that non-isothermal pyrolysis of Acetocell and Lignoboost® lignins can be best described by n-th (n>1) reaction order kinetics, using the Weibull mixture model (as distributed reactivity model) with alternating shape parameters. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Structural and kinetic analysis of the unnatural fusion protein 4-coumaroyl-CoA ligase::stilbene synthase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yechun; Yi, Hankuil; Wang, Melissa

    2012-10-24

    To increase the biochemical efficiency of biosynthetic systems, metabolic engineers have explored different approaches for organizing enzymes, including the generation of unnatural fusion proteins. Previous work aimed at improving the biosynthesis of resveratrol, a stilbene associated a range of health-promoting activities, in yeast used an unnatural engineered fusion protein of Arabidopsis thaliana (thale cress) 4-coumaroyl-CoA ligase (At4CL1) and Vitis vinifera (grape) stilbene synthase (VvSTS) to increase resveratrol levels 15-fold relative to yeast expressing the individual enzymes. Here we present the crystallographic and biochemical analysis of the 4CL::STS fusion protein. Determination of the X-ray crystal structure of 4CL::STS provides the firstmore » molecular view of an artificial didomain adenylation/ketosynthase fusion protein. Comparison of the steady-state kinetic properties of At4CL1, VvSTS, and 4CL::STS demonstrates that the fusion protein improves catalytic efficiency of either reaction less than 3-fold. Structural and kinetic analysis suggests that colocalization of the two enzyme active sites within 70 {angstrom} of each other provides the basis for enhanced in vivo synthesis of resveratrol.« less

  19. Linear and non-linear regression analysis for the sorption kinetics of methylene blue onto activated carbon.

    PubMed

    Kumar, K Vasanth

    2006-10-11

    Batch kinetic experiments were carried out for the sorption of methylene blue onto activated carbon. The experimental kinetics were fitted to the pseudo first-order and pseudo second-order kinetics by linear and a non-linear method. The five different types of Ho pseudo second-order expression have been discussed. A comparison of linear least-squares method and a trial and error non-linear method of estimating the pseudo second-order rate kinetic parameters were examined. The sorption process was found to follow a both pseudo first-order kinetic and pseudo second-order kinetic model. Present investigation showed that it is inappropriate to use a type 1 and type pseudo second-order expressions as proposed by Ho and Blanachard et al. respectively for predicting the kinetic rate constants and the initial sorption rate for the studied system. Three correct possible alternate linear expressions (type 2 to type 4) to better predict the initial sorption rate and kinetic rate constants for the studied system (methylene blue/activated carbon) was proposed. Linear method was found to check only the hypothesis instead of verifying the kinetic model. Non-linear regression method was found to be the more appropriate method to determine the rate kinetic parameters.

  20. Molecular Self-Assembly of Group 11 Pyrazolate Complexes as Phosphorescent Chemosensors for Detection of Benzene

    NASA Astrophysics Data System (ADS)

    Ghazalli, N. F.; Yuliati, L.; Lintang, H. O.

    2018-01-01

    We highlight the systematic study on vapochromic sensing of aromatic vapors such as benzene using phosphorescent trinuclear pyrazolate complexes (2) with supramolecular assembly of a weak intermolecular metal-metal interaction consisting of 4-(3,5-dimethoxybenzyl)-3,5-dimethyl pyrazole ligand (1) and group 11 metal ions (Cu(I), Ag(I), Au(I)). The resulting chemosensor 2(Cu) revealed positive response to benzene vapors in 5 mins by blue-shifting its emission band in 44 nm (from 616 to 572 nm) and emitted bright orange to green, where this change cannot be recovered even with external stimuli. Comparing to 2(Ag) with longer metal-metal distance (473 nm) with same sensing time and quenching in 37%, 2(Au) gave quenching in 81% from its original intensity at 612 nm with reusability in 82% without external stimuli and emitted less emissive of red-orange from its original color. The shifting phenomenon in 2(Cu) suggests diffusion of benzene vapors to inside molecules for formation of intermolecular interaction with Cu(I)-Cu(I) interaction while quenching phenomenon in 2(Au) suggests diffusion of benzene vapors to between the Au(I)-Au(I) interaction. These results indicate that suitable molecular structure of ligand and metal ion in pyrazolate complex is important for designing chemosensor in the detection of benzene vapors.

  1. Virus Neutralisation: New Insights from Kinetic Neutralisation Curves

    PubMed Central

    Magnus, Carsten

    2013-01-01

    Antibodies binding to the surface of virions can lead to virus neutralisation. Different theories have been proposed to determine the number of antibodies that must bind to a virion for neutralisation. Early models are based on chemical binding kinetics. Applying these models lead to very low estimates of the number of antibodies needed for neutralisation. In contrast, according to the more conceptual approach of stoichiometries in virology a much higher number of antibodies is required for virus neutralisation by antibodies. Here, we combine chemical binding kinetics with (virological) stoichiometries to better explain virus neutralisation by antibody binding. This framework is in agreement with published data on the neutralisation of the human immunodeficiency virus. Knowing antibody reaction constants, our model allows us to estimate stoichiometrical parameters from kinetic neutralisation curves. In addition, we can identify important parameters that will make further analysis of kinetic neutralisation curves more valuable in the context of estimating stoichiometries. Our model gives a more subtle explanation of kinetic neutralisation curves in terms of single-hit and multi-hit kinetics. PMID:23468602

  2. An integral turbulent kinetic energy analysis of free shear flows

    NASA Technical Reports Server (NTRS)

    Peters, C. E.; Phares, W. J.

    1973-01-01

    Mixing of coaxial streams is analyzed by application of integral techniques. An integrated turbulent kinetic energy (TKE) equation is solved simultaneously with the integral equations for the mean flow. Normalized TKE profile shapes are obtained from incompressible jet and shear layer experiments and are assumed to be applicable to all free turbulent flows. The shear stress at the midpoint of the mixing zone is assumed to be directly proportional to the local TKE, and dissipation is treated with a generalization of the model developed for isotropic turbulence. Although the analysis was developed for ducted flows, constant-pressure flows were approximated with the duct much larger than the jet. The axisymmetric flows under consideration were predicted with reasonable accuracy. Fairly good results were also obtained for the fully developed two-dimensional shear layers, which were computed as thin layers at the boundary of a large circular jet.

  3. Evaluation of the cure kinetics of the wood/pMDI bondline

    Treesearch

    David P. Harper; Michael P. Wolcott; Timothy G. Rials

    2001-01-01

    Micro-dielectric analysis (µDEA) and differentia1 scanning calorimetry (DSC) were used to monitor cure of polymeric diphenyl-methane diisocyanate (pMDI) resin with wood strands in a saturated steam environment. A first-order autocatalyzed kinetic model was employed to determine kinetic parameters. The kinetics were found to follow an Arrhenius relation. A single ramp...

  4. Kinetic analysis of contralateral liver hypertrophy after radioembolization of primary and metastatic liver tumors.

    PubMed

    Orcutt, Sonia T; Abuodeh, Yazan; Naghavi, Arash; Frakes, Jessica; Hoffe, Sarah; Kis, Bela; Anaya, Daniel A

    2018-05-01

    Radioembolization induces liver hypertrophy, although the extent and rate of hypertrophy are unknown. Our goal was to examine the kinetics of contralateral liver hypertrophy after transarterial radioembolization. A retrospective study (2010-2014) of treatment-naïve patients with primary/secondary liver malignancies undergoing right lobe radioembolization was performed. Computed tomography volumetry was performed before and 1, 3, and 6 months after radioembolization. Outcomes of interest were left lobe (standardized future liver remnant) degree of hypertrophy, kinetic growth rate, and ability to reach goal standardized future liver remnant ≥40%. Medians were compared with the Kruskall-Wallis test. Time to event analysis was used to estimate time to reach goal standardized future liver remnant. In the study, 25 patients were included. At 1, 3, and 6 months, median degree of hypertrophy was 4%, 8%, and 12% (P < .001), degree of hypertrophy relative to baseline future liver remnants was 11%, 17%, and 31% (P = .015), and kinetic growth rate was 0.8%, 0.5%, and 0.4%/week (P = .002). In patients with baseline standardized future liver remnant <40% (N= 16), median time to reach standardized future liver remnant ≥40% was 7.3 months, with 75% accomplishing standardized future liver remnant ≥40% at 8.2 months. Radioembolization induces hypertrophy of the contralateral lobe to a similar extent as existing methods, although at a lower rate. The role of radioembolization as a dual therapy (neoadjuvant and hypetrophy-inducing) for selected patients needs to be studied. (Surgery 2017;160:XXX-XXX.). Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Effects of thermal treatment on high solid anaerobic digestion of swine manure: Enhancement assessment and kinetic analysis.

    PubMed

    Wu, Jing; Hu, Yu-Ying; Wang, Shi-Feng; Cao, Zhi-Ping; Li, Huai-Zhi; Fu, Xin-Mei; Wang, Kai-Jun; Zuo, Jian-E

    2017-04-01

    Anaerobic digestion (AD), which is a process for generating biogas, can be applied to the treatment of organic wastes. Owing to its smaller footprint, lower energy consumption, and less digestate, high solid anaerobic digestion (HSAD) has attracted increasing attention. However, its biogas production is poor. In order to improve biogas production and decrease energy consumption, an improved thermal treatment process was proposed. Raw swine manure (>20% solid content) without any dilution was thermally treated at 70±1°C for different retention times, and then its effect on HSAD was investigated via batch AD experiments at 8.9% solid content. Results showed that the main organic components of swine manure hydrolyzed significantly during the thermal treatment, and HSAD's methane production rate was improved by up to 39.5%. Analysis using two kinetic models confirmed that the treatment could increase biodegradable organics (especially the readily biodegradable organics) in swine manure rather than upgrading its hydrolysis rate. It is worth noting that the superimposed first-order kinetics model was firstly applied in AD, and was a good tool to reveal the AD kinetics mechanism of substrates with complex components. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Comparative evaluation of thermal oxidative decomposition for oil-plant residues via thermogravimetric analysis: Thermal conversion characteristics, kinetics, and thermodynamics.

    PubMed

    Chen, Jianbiao; Wang, Yanhong; Lang, Xuemei; Ren, Xiu'e; Fan, Shuanshi

    2017-11-01

    Thermal oxidative decomposition characteristics, kinetics, and thermodynamics of rape straw (RS), rapeseed meal (RM), camellia seed shell (CS), and camellia seed meal (CM) were evaluated via thermogravimetric analysis (TGA). TG-DTG-DSC curves demonstrated that the combustion of oil-plant residues proceeded in three stages, including dehydration, release and combustion of organic volatiles, and chars oxidation. As revealed by combustion characteristic parameters, the ignition, burnout, and comprehensive combustion performance of residues were quite distinct from each other, and were improved by increasing heating rate. The kinetic parameters were determined by Coats-Redfern approach. The results showed that the most possible combustion mechanisms were order reaction models. The existence of kinetic compensation effect was clearly observed. The thermodynamic parameters (ΔH, ΔG, ΔS) at peak temperatures were calculated through the activated complex theory. With the combustion proceeding, the variation trends of ΔH, ΔG, and ΔS for RS (RM) similar to those for CS (CM). Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Advances in electron kinetics and theory of gas discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolobov, Vladimir I.; The University of Alabama in Huntsville, Huntsville, Alabama 35899

    2013-10-15

    “Electrons, like people, are fertile and infertile: high-energy electrons are fertile and able to reproduce.”—Lev TsendinModern physics of gas discharges increasingly uses physical kinetics for analysis of non-equilibrium plasmas. The description of underlying physics at the kinetic level appears to be important for plasma applications in modern technologies. In this paper, we attempt to grasp the legacy of Professor Lev Tsendin, who advocated the use of the kinetic approach for understanding fundamental problems of gas discharges. We outline the fundamentals of electron kinetics in low-temperature plasmas, describe elements of the modern kinetic theory of gas discharges, and show examples ofmore » the theoretical approach to gas discharge problems used by Lev Tsendin. Important connections between electron kinetics in gas discharges and semiconductors are also discussed. Using several examples, we illustrate how Tsendin's ideas and methods are currently being developed for the implementation of next generation computational tools for adaptive kinetic-fluid simulations of gas discharges used in modern technologies.« less

  8. A combined kinematic and kinetic analysis at the residuum/socket interface of a knee-disarticulation amputee.

    PubMed

    Tang, Jinghua; McGrath, Michael; Hale, Nick; Jiang, Liudi; Bader, Dan; Laszczak, Piotr; Moser, David; Zahedi, Saeed

    2017-11-01

    The bespoke interface between a lower limb residuum and a prosthetic socket is critical for an amputee's comfort and overall rehabilitation outcomes. Analysis of interface kinematics and kinetics is important to gain full understanding of the interface biomechanics, which could aid clinical socket fit, rehabilitation and amputee care. This pilot study aims to investigate the dynamic correlation between kinematic movement and kinetic stresses at the interface during walking tests on different terrains. One male, knee disarticulation amputee participated in the study. He was asked to walk on both a level surface and a 5° ramped surface. The movement between the residuum and the socket was evaluated by the angular and axial couplings, based on the outputs from a 3D motion capture system. The corresponding kinetic stresses at anterior-proximal (AP), posterior-proximal (PP) and anterior-distal (AD) locations of the residuum were measured, using individual stress sensors. Approximately 8° of angular coupling and up to 32 mm of axial coupling were measured when walking on different terrains. The direction of the angular coupling shows strong correlation with the pressure difference between the PP and AP sensors. Higher pressure was obtained at the PP location than the AP location during stance phase, associated with the direction of the angular coupling. A strong correlation between axial coupling length, L, and longitudinal shear was also evident at the PP and AD locations i.e. the shortening of L corresponds to the increase of shear in the proximal direction. Although different terrains did not affect these correlations in principle, interface kinematic and kinetic values suggested that gait changes can induce modifications to the interface biomechanics. It is envisaged that the reported techniques could be potentially used to provide combined kinematics and kinetics for the understanding of biomechanics at the residuum/socket interface, which may play an important

  9. STATIC AND KINETIC SITE-SPECIFIC PROTEIN-DNA PHOTOCROSSLINKING: ANALYSIS OF BACTERIAL TRANSCRIPTION INITIATION COMPLEXES

    PubMed Central

    Naryshkin, Nikolai; Druzhinin, Sergei; Revyakin, Andrei; Kim, Younggyu; Mekler, Vladimir; Ebright, Richard H.

    2009-01-01

    Static site-specific protein-DNA photocrosslinking permits identification of protein-DNA interactions within multiprotein-DNA complexes. Kinetic site-specific protein-DNA photocrosslinking--involving rapid-quench-flow mixing and pulsed-laser irradiation--permits elucidation of pathways and kinetics of formation of protein-DNA interactions within multiprotein-DNA complexes. We present detailed protocols for application of static and kinetic site-specific protein-DNA photocrosslinking to bacterial transcription initiation complexes. PMID:19378179

  10. Upper limb kinetic analysis of three sitting pivot wheelchair transfer techniques.

    PubMed

    Koontz, Alicia M; Kankipati, Padmaja; Lin, Yen-Sheng; Cooper, Rory A; Boninger, Michael L

    2011-11-01

    The objective of this study was to investigate differences in shoulder, elbow and hand kinetics while performing three different SPTs that varied in terms of hand and trunk positioning. Fourteen unimpaired individuals (8 male and 6 female) performed three variations of sitting pivot transfers in a random order from a wheelchair to a level tub bench. Two transfers involved a forward flexed trunk (head-hips technique) and the third with the trunk remaining upright. The two transfers involving a head hips technique were performed with two different leading hand initial positions. Motion analysis equipment recorded upper body movements and force sensors recorded hand reaction forces. Shoulder and elbow joint and hand kinetics were computed for the lift phase of the transfer. Transferring using either of the head hips techniques compared to the trunk upright style of transferring resulted in reduced superior forces at the shoulder (P<0.002), elbow (P<0.004) and hand (P<0.013). There was a significant increase in the medial forces in the leading elbow (P=0.049) for both head hip transfers and the trailing hand for the head hip technique with the arm further away from the body (P<0.028). The head hip techniques resulted in higher shoulder external rotation, flexion and extension moments compared to the trunk upright technique (P<0.021). Varying the hand placement and trunk positioning during transfers changes the load distribution across all upper limb joints. The results of this study may be useful for determining a technique that helps preserve upper limb function overtime. Published by Elsevier Ltd.

  11. Free Radical Addition Polymerization Kinetics without Steady-State Approximations: A Numerical Analysis for the Polymer, Physical, or Advanced Organic Chemistry Course

    ERIC Educational Resources Information Center

    Iler, H. Darrell; Brown, Amber; Landis, Amanda; Schimke, Greg; Peters, George

    2014-01-01

    A numerical analysis of the free radical addition polymerization system is described that provides those teaching polymer, physical, or advanced organic chemistry courses the opportunity to introduce students to numerical methods in the context of a simple but mathematically stiff chemical kinetic system. Numerical analysis can lead students to an…

  12. General methods for analysis of sequential "n-step" kinetic mechanisms: application to single turnover kinetics of helicase-catalyzed DNA unwinding.

    PubMed

    Lucius, Aaron L; Maluf, Nasib K; Fischer, Christopher J; Lohman, Timothy M

    2003-10-01

    Helicase-catalyzed DNA unwinding is often studied using "all or none" assays that detect only the final product of fully unwound DNA. Even using these assays, quantitative analysis of DNA unwinding time courses for DNA duplexes of different lengths, L, using "n-step" sequential mechanisms, can reveal information about the number of intermediates in the unwinding reaction and the "kinetic step size", m, defined as the average number of basepairs unwound between two successive rate limiting steps in the unwinding cycle. Simultaneous nonlinear least-squares analysis using "n-step" sequential mechanisms has previously been limited by an inability to float the number of "unwinding steps", n, and m, in the fitting algorithm. Here we discuss the behavior of single turnover DNA unwinding time courses and describe novel methods for nonlinear least-squares analysis that overcome these problems. Analytic expressions for the time courses, f(ss)(t), when obtainable, can be written using gamma and incomplete gamma functions. When analytic expressions are not obtainable, the numerical solution of the inverse Laplace transform can be used to obtain f(ss)(t). Both methods allow n and m to be continuous fitting parameters. These approaches are generally applicable to enzymes that translocate along a lattice or require repetition of a series of steps before product formation.

  13. Fast and sensitive optical toxicity bioassay based on dual wavelength analysis of bacterial ferricyanide reduction kinetics.

    PubMed

    Pujol-Vila, F; Vigués, N; Díaz-González, M; Muñoz-Berbel, X; Mas, J

    2015-05-15

    Global urban and industrial growth, with the associated environmental contamination, is promoting the development of rapid and inexpensive general toxicity methods. Current microbial methodologies for general toxicity determination rely on either bioluminescent bacteria and specific medium solution (i.e. Microtox(®)) or low sensitivity and diffusion limited protocols (i.e. amperometric microbial respirometry). In this work, fast and sensitive optical toxicity bioassay based on dual wavelength analysis of bacterial ferricyanide reduction kinetics is presented, using Escherichia coli as a bacterial model. Ferricyanide reduction kinetic analysis (variation of ferricyanide absorption with time), much more sensitive than single absorbance measurements, allowed for direct and fast toxicity determination without pre-incubation steps (assay time=10 min) and minimizing biomass interference. Dual wavelength analysis at 405 (ferricyanide and biomass) and 550 nm (biomass), allowed for ferricyanide monitoring without interference of biomass scattering. On the other hand, refractive index (RI) matching with saccharose reduced bacterial light scattering around 50%, expanding the analytical linear range in the determination of absorbent molecules. With this method, different toxicants such as metals and organic compounds were analyzed with good sensitivities. Half maximal effective concentrations (EC50) obtained after 10 min bioassay, 2.9, 1.0, 0.7 and 18.3 mg L(-1) for copper, zinc, acetic acid and 2-phenylethanol respectively, were in agreement with previously reported values for longer bioassays (around 60 min). This method represents a promising alternative for fast and sensitive water toxicity monitoring, opening the possibility of quick in situ analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Spectroscopic Chemical Analysis Methods and Apparatus

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Lane, Arthur L. (Inventor); Bhartia, Rohit (Inventor); Reid, Ray D. (Inventor)

    2017-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted along with photoluminescence spectroscopy (i.e. fluorescence and/or phosphorescence spectroscopy) to provide high levels of sensitivity and specificity in the same instrument.

  15. Spectroscopic Chemical Analysis Methods and Apparatus

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Lane, Arthur L. (Inventor); Reid, Ray D. (Inventor); Bhartia, Rohit (Inventor)

    2018-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted along with photoluminescence spectroscopy (i.e. fluorescence and/or phosphorescence spectroscopy) to provide high levels of sensitivity and specificity in the same instrument.

  16. Effect of a broad recombination zone with a triple-emitting layer on the efficiency of blue phosphorescent organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Lee, Seok Jae; Koo, Ja Ryong; Lee, Ho Won; Lee, Song Eun; Yang, Hyung Jin; Yoon, Seung Soo; Park, Jaehoon; Kim, Young Kwan

    2014-11-01

    The device characteristics of blue phosphorescent organic lightemitting diodes (PHOLEDs) with a broad recombination region within emitting layers (EMLs) were investigated by changing the combination and the composition of the host materials. Six types of devices were fabricated with the novel host material 9-(4-(triphenylsilyl)phenyl)-9H-carbazole, hole transport-type host material N,N'-dicarbazolyl-3,5-benzene, and electron transporttype host material 2,2',2″-(1,3,5-benzenetriyl)tris-[1-phenyl-1H-benzimidazole] as diverse EML structures. Balanced chargecarrier injection and a distributed recombination zone within EMLs were achieved through a triple-emitting layer (T-EML). The properties of a device with a T-EML using a stepwise structure without any mixed host system were found to be superior to the other PHOLEDs. This can be explained in terms of improved charge balance and triplet-exciton confinement within the broad recombination region. [Figure not available: see fulltext.

  17. Clarifications regarding the use of model-fitting methods of kinetic analysis for determining the activation energy from a single non-isothermal curve.

    PubMed

    Sánchez-Jiménez, Pedro E; Pérez-Maqueda, Luis A; Perejón, Antonio; Criado, José M

    2013-02-05

    This paper provides some clarifications regarding the use of model-fitting methods of kinetic analysis for estimating the activation energy of a process, in response to some results recently published in Chemistry Central journal. The model fitting methods of Arrhenius and Savata are used to determine the activation energy of a single simulated curve. It is shown that most kinetic models correctly fit the data, each providing a different value for the activation energy. Therefore it is not really possible to determine the correct activation energy from a single non-isothermal curve. On the other hand, when a set of curves are recorded under different heating schedules are used, the correct kinetic parameters can be clearly discerned. Here, it is shown that the activation energy and the kinetic model cannot be unambiguously determined from a single experimental curve recorded under non isothermal conditions. Thus, the use of a set of curves recorded under different heating schedules is mandatory if model-fitting methods are employed.

  18. Kinetic analysis of pre-ribosome structure in vivo

    PubMed Central

    Swiatkowska, Agata; Wlotzka, Wiebke; Tuck, Alex; Barrass, J. David; Beggs, Jean D.; Tollervey, David

    2012-01-01

    Pre-ribosomal particles undergo numerous structural changes during maturation, but their high complexity and short lifetimes make these changes very difficult to follow in vivo. In consequence, pre-ribosome structure and composition have largely been inferred from purified particles and analyzed in vitro. Here we describe techniques for kinetic analyses of the changes in pre-ribosome structure in living cells of Saccharomyces cerevisiae. To allow this, in vivo structure probing by DMS modification was combined with affinity purification of newly synthesized 20S pre-rRNA over a time course of metabolic labeling with 4-thiouracil. To demonstrate that this approach is generally applicable, we initially analyzed the accessibility of the region surrounding cleavage site D site at the 3′ end of the mature 18S rRNA region of the pre-rRNA. This revealed a remarkably flexible structure throughout 40S subunit biogenesis, with little stable RNA–protein interaction apparent. Analysis of folding in the region of the 18S central pseudoknot was consistent with previous data showing U3 snoRNA–18S rRNA interactions. Dynamic changes in the structure of the hinge between helix 28 (H28) and H44 of pre-18S rRNA were consistent with recently reported interactions with the 3′ guide region of U3 snoRNA. Finally, analysis of the H18 region indicates that the RNA structure matures early, but additional protection appears subsequently, presumably reflecting protein binding. The structural analyses described here were performed on total, affinity-purified, newly synthesized RNA, so many classes of RNA and RNA–protein complex are potentially amenable to this approach. PMID:23093724

  19. Estimation of kinetics parameters for the adsorption of human serum albumin onto hydroxyapatite-modified silver electrodes by piezoelectric quartz crystal impedance analysis.

    PubMed

    Tian, Lu; Wei, Wan-Zhi; Mao, You-An

    2004-04-01

    The adsorption of human serum albumin onto hydroxyapatite-modified silver electrodes has been in situ investigated by utilizing the piezoelectric quartz crystal impedance technique. The changes of equivalent circuit parameters were used to interpret the adsorption process. A kinetic model of two consecutive steps was derived to describe the process and compared with a first-order kinetic model by using residual analysis. The experimental data of frequency shift fitted to the model and kinetics parameters, k1, k2, psi1, psi2 and qr, were obtained. All fitted results were in reasonable agreement with the corresponding experimental results. Two adsorption constants (7.19 kJ mol(-1) and 22.89 kJ mol(-1)) were calculated according to the Arrhenius formula.

  20. Exciplex-Forming Co-Host-Based Red Phosphorescent Organic Light-Emitting Diodes with Long Operational Stability and High Efficiency.

    PubMed

    Lee, Jeong-Hwan; Shin, Hyun; Kim, Jae-Min; Kim, Kwon-Hyeon; Kim, Jang-Joo

    2017-02-01

    The use of exciplex forming cohosts and phosphors incredibly boosts the efficiency of organic light-emitting diodes (OLEDs) by providing a barrier-free charge injection into an emitting layer and a broad recombination zone. However, most of the efficient OLEDs based on the exciplex forming cohosts has suffered from the short operational lifetime. Here, we demonstrated phosphorescent OLEDs (PhOLEDs) having both high efficiency and long lifetime by using a new exciplex forming cohost composed of N,N'-diphenyl-N,N'-bis(1,1'-biphenyl)-4,4'-diamine (NPB) and (1,3,5-triazine-2,4,6-triyl)tris(benzene-3,1-diyl))tris(diphenylphosphine oxide) (PO-T2T). The red-emitting PhOLEDs using the exciplex forming cohost achieved a maximum external quantum efficiency (EQE) of 34.1% and power efficiency of 62.2 lm W 1- with low operating voltages and low efficiency roll-offs. More importantly, the device demonstrated a long lifetime around 2249 h from 1000 cd m -2 to 900 cd m -2 (LT 90 ) under a continuous flow of constant current. The efficiencies of the devices are the highest for red OLEDs with an LT 90 > 1000 h.

  1. Transparent indium oxide films doped with high Lewis acid strength Ge dopant for phosphorescent organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Kang, Sin-Bi; Lim, Jong-Wook; Lee, Sunghun; Kim, Jang-Joo; Kim, Han-Ki

    2012-08-01

    We report on Ge-doped In2O3(IGO) films prepared by co-sputtering GeO2 and In2O3 targets for anode of phosphorescent organic light-emitting diodes (POLEDs). Under optimized annealing conditions, the IGO film exhibited a low sheet resistance of 14.0 Ω/square, a high optical transmittance of 86.9% and a work function of 5.2 eV, comparable to conventional Sn-doped In2O3 (ITO) films. Due to the higher Lewis acid strength of the Ge4+ ion (3.06) than that of Sn3+(1.62), the IGO film showed higher transparency in the near infrared and higher carrier mobility of 39.16 cm2 V-1 s-1 than the ITO films. In addition, the strongly preferred (2 2 2) orientation of the IGO grains, caused by Zone II grain growth during rapid thermal annealing, increased the carrier mobility and improved the surface morphology of the IGO film. POLEDs fabricated on IGO anodes showed identical current density-voltage-luminance curves and efficiencies to POLEDs with ITO electrodes due to the low sheet resistance and high transmittance of the IGO anode.

  2. Substrate degradation by the proteasome: a single-molecule kinetic analysis

    PubMed Central

    Lu, Ying; Lee, Byung-hoon; King, Randall W; Finley, Daniel; Kirschner, Marc W

    2015-01-01

    To address how the configuration of conjugated ubiquitins determines the recognition of substrates by the proteasome, we analyzed the degradation kinetics of substrates with chemically defined ubiquitin configurations. Contrary to the view that a tetraubiquitin chain is the minimal signal for efficient degradation, we find that distributing the ubiquitins as diubiquitin chains provides a more efficient signal. To understand how the proteasome actually discriminates among ubiquitin configurations, we developed single-molecule assays that distinguished intermediate steps of degradation kinetically. The level of ubiquitin on a substrate drives proteasome-substrate interaction, whereas the chain structure of ubiquitin affects translocation into the axial channel on the proteasome. Together these two features largely determine the susceptibility of substrates for proteasomal degradation. PMID:25859050

  3. Kinetic Analysis of the Main Temperature Stage of Fast Pyrolysis

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoxiao; Zhao, Yuying; Xu, Lanshu; Li, Rui

    2017-10-01

    Kinetics of the thermal decomposition of eucalyptus chips was evaluated using a high-rate thermogravimetric analyzer (BL-TGA) designed by our research group. The experiments were carried out under non-isothermal condition in order to determine the fast pyrolysis behavior of the main temperature stage (350-540ºC) at heating rates of 60, 120, 180, and 360ºC min-1. The Coats-Redfern integral method and four different reaction mechanism models were adopted to calculate the kinetic parameters including apparent activation energy and pre-exponential factor, and the Flynn-Wall-Ozawa method was employed to testify apparent activation energy. The results showed that estimation value was consistent with the values obtained by linear fitting equations, and the best-fit model for fast pyrolysis was found.

  4. Machine learning-based kinetic modeling: a robust and reproducible solution for quantitative analysis of dynamic PET data

    NASA Astrophysics Data System (ADS)

    Pan, Leyun; Cheng, Caixia; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia

    2017-05-01

    A variety of compartment models are used for the quantitative analysis of dynamic positron emission tomography (PET) data. Traditionally, these models use an iterative fitting (IF) method to find the least squares between the measured and calculated values over time, which may encounter some problems such as the overfitting of model parameters and a lack of reproducibility, especially when handling noisy data or error data. In this paper, a machine learning (ML) based kinetic modeling method is introduced, which can fully utilize a historical reference database to build a moderate kinetic model directly dealing with noisy data but not trying to smooth the noise in the image. Also, due to the database, the presented method is capable of automatically adjusting the models using a multi-thread grid parameter searching technique. Furthermore, a candidate competition concept is proposed to combine the advantages of the ML and IF modeling methods, which could find a balance between fitting to historical data and to the unseen target curve. The machine learning based method provides a robust and reproducible solution that is user-independent for VOI-based and pixel-wise quantitative analysis of dynamic PET data.

  5. Machine learning-based kinetic modeling: a robust and reproducible solution for quantitative analysis of dynamic PET data.

    PubMed

    Pan, Leyun; Cheng, Caixia; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia

    2017-05-07

    A variety of compartment models are used for the quantitative analysis of dynamic positron emission tomography (PET) data. Traditionally, these models use an iterative fitting (IF) method to find the least squares between the measured and calculated values over time, which may encounter some problems such as the overfitting of model parameters and a lack of reproducibility, especially when handling noisy data or error data. In this paper, a machine learning (ML) based kinetic modeling method is introduced, which can fully utilize a historical reference database to build a moderate kinetic model directly dealing with noisy data but not trying to smooth the noise in the image. Also, due to the database, the presented method is capable of automatically adjusting the models using a multi-thread grid parameter searching technique. Furthermore, a candidate competition concept is proposed to combine the advantages of the ML and IF modeling methods, which could find a balance between fitting to historical data and to the unseen target curve. The machine learning based method provides a robust and reproducible solution that is user-independent for VOI-based and pixel-wise quantitative analysis of dynamic PET data.

  6. A theoretical investigation on the neutral Cu(I) phosphorescent complexes with azole-based and phosphine mixed ligand

    NASA Astrophysics Data System (ADS)

    Ding, Xiao-Li; Shen, Lu; Zou, Lu-Yi; Ma, Ming-Shuo; Ren, Ai-Min

    2018-04-01

    A theoretical study on a series of neutral heteroleptic Cu(I) complexes with different azole-pyridine-based N^N ligands has been presented to get insight into the effect of various nitrogen atoms in the azole ring on photophysical properties. The results reveal that the highest occupied molecular orbital (HOMO) levels and the emission wavelengths of these complexes are mainly governed by the nitrogen atom number in azole ring. With the increasing number of nitrogen atom , the electron density distribution of HOMO gradually extend from the N^N ligand to the whole molecule, meanwhile, the improved contribution from Cu(d) orbits in HOMO results in an effective mixing of various charge transfermodes, and hence, the fast radiative decay(kr) and the slow non-radiative decay rate(knr) are achieved. The photoluminescence quantum yield (PLQY) show an apparent dependence on the nitrogen atom number in the five-membered nitrogen heterocycles. However, the increasing number of nitrogen atoms is not necessary for increasing PLQY. The complex 3 with 1,2,4-triazole-pyridine-based N^N ligands is considered to be a potential emitter with high phosphorescence efficiency. Finally, we hope that our investigations will contribute to systematical understanding and guiding for material molecular engineering.

  7. Oxidation Kinetics of Ferritic Alloys in High-Temperature Steam Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Stephen S.; White, Josh; Hosemann, Peter

    High-temperature isothermal steam oxidation kinetic parameters of several ferritic alloys were determined by thermogravimetric analysis. We measured the oxidation kinetic constant (k) as a function of temperature from 900°C to 1200°C. The results show a marked increase in oxidation resistance compared to reference Zircaloy-2, with kinetic constants 3–5 orders of magnitude lower across the experimental temperature range. Our results of this investigation supplement previous findings on the properties of ferritic alloys for use as candidate cladding materials and extend kinetic parameter measurements to high-temperature steam environments suitable for assessing accident tolerance for light water reactor applications.

  8. Oxidation Kinetics of Ferritic Alloys in High-Temperature Steam Environments

    DOE PAGES

    Parker, Stephen S.; White, Josh; Hosemann, Peter; ...

    2017-11-03

    High-temperature isothermal steam oxidation kinetic parameters of several ferritic alloys were determined by thermogravimetric analysis. We measured the oxidation kinetic constant (k) as a function of temperature from 900°C to 1200°C. The results show a marked increase in oxidation resistance compared to reference Zircaloy-2, with kinetic constants 3–5 orders of magnitude lower across the experimental temperature range. Our results of this investigation supplement previous findings on the properties of ferritic alloys for use as candidate cladding materials and extend kinetic parameter measurements to high-temperature steam environments suitable for assessing accident tolerance for light water reactor applications.

  9. Oxidation Kinetics of Ferritic Alloys in High-Temperature Steam Environments

    NASA Astrophysics Data System (ADS)

    Parker, Stephen S.; White, Josh; Hosemann, Peter; Nelson, Andrew

    2018-02-01

    High-temperature isothermal steam oxidation kinetic parameters of several ferritic alloys were determined by thermogravimetric analysis. The oxidation kinetic constant ( k) was measured as a function of temperature from 900°C to 1200°C. The results show a marked increase in oxidation resistance compared to reference Zircaloy-2, with kinetic constants 3-5 orders of magnitude lower across the experimental temperature range. The results of this investigation supplement previous findings on the properties of ferritic alloys for use as candidate cladding materials and extend kinetic parameter measurements to high-temperature steam environments suitable for assessing accident tolerance for light water reactor applications.

  10. Breakdown parameter for kinetic modeling of multiscale gas flows.

    PubMed

    Meng, Jianping; Dongari, Nishanth; Reese, Jason M; Zhang, Yonghao

    2014-06-01

    Multiscale methods built purely on the kinetic theory of gases provide information about the molecular velocity distribution function. It is therefore both important and feasible to establish new breakdown parameters for assessing the appropriateness of a fluid description at the continuum level by utilizing kinetic information rather than macroscopic flow quantities alone. We propose a new kinetic criterion to indirectly assess the errors introduced by a continuum-level description of the gas flow. The analysis, which includes numerical demonstrations, focuses on the validity of the Navier-Stokes-Fourier equations and corresponding kinetic models and reveals that the new criterion can consistently indicate the validity of continuum-level modeling in both low-speed and high-speed flows at different Knudsen numbers.

  11. Pyrolysis characteristics and kinetics of acid tar waste from crude benzol refining: A thermogravimetry-mass spectrometry analysis.

    PubMed

    Chihobo, Chido H; Chowdhury, Arindrajit; Kuipa, Pardon K; Simbi, David J

    2016-12-01

    Pyrolysis is an attractive thermochemical conversion technology that may be utilised as a safe disposal option for acid tar waste. The kinetics of acid tar pyrolysis were investigated using thermogravimetry coupled with mass spectrometry under a nitrogen atmosphere at different heating rates of 10, 15 and 20 K min -1 The thermogravimetric analysis shows three major reaction peaks centred around 178 °C, 258 °C, and 336 °C corresponding to the successive degradation of water soluble lower molecular mass sulphonic acids, sulphonated high molecular mass hydrocarbons, and high molecular mass hydrocarbons. The kinetic parameters were evaluated using the iso-conversional Kissinger-Akahira-Sunose method. A variation in the activation energy with conversion revealed that the pyrolysis of the acid tar waste progresses through complex multi-step kinetics. Mass spectrometry results revealed a predominance of gases such as hydrogen, methane and carbon monoxide, implying that the pyrolysis of acid tar waste is potentially an energy source. Thus the pyrolysis of acid tar waste may present a viable option for its environmental treatment. There are however, some limitations imposed by the co-evolution of corrosive gaseous components for which appropriate considerations must be provided in both pyrolysis reactor design and selection of construction materials. © The Author(s) 2016.

  12. Kinetic analysis of thermal stability of human low density lipoproteins: a model for LDL fusion in atherogenesis.

    PubMed

    Lu, Mengxiao; Gantz, Donald L; Herscovitz, Haya; Gursky, Olga

    2012-10-01

    Fusion of modified LDL in the arterial wall promotes atherogenesis. Earlier we showed that thermal denaturation mimics LDL remodeling and fusion, and revealed kinetic origin of LDL stability. Here we report the first quantitative analysis of LDL thermal stability. Turbidity data show sigmoidal kinetics of LDL heat denaturation, which is unique among lipoproteins, suggesting that fusion is preceded by other structural changes. High activation energy of denaturation, E(a) = 100 ± 8 kcal/mol, indicates disruption of extensive packing interactions in LDL. Size-exclusion chromatography, nondenaturing gel electrophoresis, and negative-stain electron microscopy suggest that LDL dimerization is an early step in thermally induced fusion. Monoclonal antibody binding suggests possible involvement of apoB N-terminal domain in early stages of LDL fusion. LDL fusion accelerates at pH < 7, which may contribute to LDL retention in acidic atherosclerotic lesions. Fusion also accelerates upon increasing LDL concentration in near-physiologic range, which likely contributes to atherogenesis. Thermal stability of LDL decreases with increasing particle size, indicating that the pro-atherogenic properties of small dense LDL do not result from their enhanced fusion. Our work provides the first kinetic approach to measuring LDL stability and suggests that lipid-lowering therapies that reduce LDL concentration but increase the particle size may have opposite effects on LDL fusion.

  13. SVD-aided pseudo principal-component analysis: A new method to speed up and improve determination of the optimum kinetic model from time-resolved data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oang, Key Young; Yang, Cheolhee; Muniyappan, Srinivasan

    Determination of the optimum kinetic model is an essential prerequisite for characterizing dynamics and mechanism of a reaction. Here, we propose a simple method, termed as singular value decomposition-aided pseudo principal-component analysis (SAPPA), to facilitate determination of the optimum kinetic model from time-resolved data by bypassing any need to examine candidate kinetic models. We demonstrate the wide applicability of SAPPA by examining three different sets of experimental time-resolved data and show that SAPPA can efficiently determine the optimum kinetic model. In addition, the results of SAPPA for both time-resolved X-ray solution scattering (TRXSS) and transient absorption (TA) data of themore » same protein reveal that global structural changes of protein, which is probed by TRXSS, may occur more slowly than local structural changes around the chromophore, which is probed by TA spectroscopy.« less

  14. Entropy Analysis of Kinetic Flux Vector Splitting Schemes for the Compressible Euler Equations

    NASA Technical Reports Server (NTRS)

    Shiuhong, Lui; Xu, Jun

    1999-01-01

    Flux Vector Splitting (FVS) scheme is one group of approximate Riemann solvers for the compressible Euler equations. In this paper, the discretized entropy condition of the Kinetic Flux Vector Splitting (KFVS) scheme based on the gas-kinetic theory is proved. The proof of the entropy condition involves the entropy definition difference between the distinguishable and indistinguishable particles.

  15. Molecular mechanisms of protein aggregation from global fitting of kinetic models.

    PubMed

    Meisl, Georg; Kirkegaard, Julius B; Arosio, Paolo; Michaels, Thomas C T; Vendruscolo, Michele; Dobson, Christopher M; Linse, Sara; Knowles, Tuomas P J

    2016-02-01

    The elucidation of the molecular mechanisms by which soluble proteins convert into their amyloid forms is a fundamental prerequisite for understanding and controlling disorders that are linked to protein aggregation, such as Alzheimer's and Parkinson's diseases. However, because of the complexity associated with aggregation reaction networks, the analysis of kinetic data of protein aggregation to obtain the underlying mechanisms represents a complex task. Here we describe a framework, using quantitative kinetic assays and global fitting, to determine and to verify a molecular mechanism for aggregation reactions that is compatible with experimental kinetic data. We implement this approach in a web-based software, AmyloFit. Our procedure starts from the results of kinetic experiments that measure the concentration of aggregate mass as a function of time. We illustrate the approach with results from the aggregation of the β-amyloid (Aβ) peptides measured using thioflavin T, but the method is suitable for data from any similar kinetic experiment measuring the accumulation of aggregate mass as a function of time; the input data are in the form of a tab-separated text file. We also outline general experimental strategies and practical considerations for obtaining kinetic data of sufficient quality to draw detailed mechanistic conclusions, and the procedure starts with instructions for extensive data quality control. For the core part of the analysis, we provide an online platform (http://www.amylofit.ch.cam.ac.uk) that enables robust global analysis of kinetic data without the need for extensive programming or detailed mathematical knowledge. The software automates repetitive tasks and guides users through the key steps of kinetic analysis: determination of constraints to be placed on the aggregation mechanism based on the concentration dependence of the aggregation reaction, choosing from several fundamental models describing assembly into linear aggregates and

  16. A critical analysis of the accuracy of several numerical techniques for combustion kinetic rate equations

    NASA Technical Reports Server (NTRS)

    Radhadrishnan, Krishnan

    1993-01-01

    A detailed analysis of the accuracy of several techniques recently developed for integrating stiff ordinary differential equations is presented. The techniques include two general-purpose codes EPISODE and LSODE developed for an arbitrary system of ordinary differential equations, and three specialized codes CHEMEQ, CREK1D, and GCKP4 developed specifically to solve chemical kinetic rate equations. The accuracy study is made by application of these codes to two practical combustion kinetics problems. Both problems describe adiabatic, homogeneous, gas-phase chemical reactions at constant pressure, and include all three combustion regimes: induction, heat release, and equilibration. To illustrate the error variation in the different combustion regimes the species are divided into three types (reactants, intermediates, and products), and error versus time plots are presented for each species type and the temperature. These plots show that CHEMEQ is the most accurate code during induction and early heat release. During late heat release and equilibration, however, the other codes are more accurate. A single global quantity, a mean integrated root-mean-square error, that measures the average error incurred in solving the complete problem is used to compare the accuracy of the codes. Among the codes examined, LSODE is the most accurate for solving chemical kinetics problems. It is also the most efficient code, in the sense that it requires the least computational work to attain a specified accuracy level. An important finding is that use of the algebraic enthalpy conservation equation to compute the temperature can be more accurate and efficient than integrating the temperature differential equation.

  17. Enhanced Electron Affinity and Exciton Confinement in Exciplex-Type Host: Power Efficient Solution-Processed Blue Phosphorescent OLEDs with Low Turn-on Voltage.

    PubMed

    Ban, Xinxin; Sun, Kaiyong; Sun, Yueming; Huang, Bin; Jiang, Wei

    2016-01-27

    A benzimidazole/phosphine oxide hybrid 1,3,5-tris(1-(4-(diphenylphosphoryl)phenyl)-1H-benzo[d]imidazol-2-yl)benzene (TPOB) was newly designed and synthesized as the electron-transporting component to form an exciplex-type host with the conventional hole-transporting material tris(4-carbazoyl-9-ylphenyl)amine (TCTA). Because of the enhanced triplet energy and electron affinity of TPOB, the energy leakage from exciplex-state to the constituting molecule was eliminated. Using energy transfer from exciplex-state, solution-processed blue phosphorescent organic light-emitting diodes (PHOLEDs) achieved an extremely low turn-on voltage of 2.8 V and impressively high power efficiency of 22 lm W(-1). In addition, the efficiency roll-off was very small even at luminance up to 10 000 cd m(-2), which suggested the balanced charge transfer in the emission layer. This study demonstrated that molecular modulation was an effective way to develop efficient exciplex-type host for high performanced PHOLEDs.

  18. Novel optical sensing film based on a functional nonwoven nanofibre mat for an easy, fast and highly selective and sensitive detection of tryptamine in beer.

    PubMed

    Ramon-Marquez, Teresa; Medina-Castillo, Antonio L; Fernandez-Gutierrez, Alberto; Fernandez-Sanchez, Jorge F

    2016-05-15

    In this paper, the combination of Solid Surface-Room Temperature Phosphorescence (SS-RTP) and nanotechnology has led to a new approach in the detection of biogenic amines in complex matrices. This novel approach allows, for the first time, the direct determination of the concentration of tryptamine in beers. The novelty of the proposed optical sensor resides in its simplicity, rapidity, absence of complex chromatographic separation, sample clean-up, preconcentration, and derivatization protocols. Therefore, this novel methodology simplifies and reduces considerably the time and cost of the analysis, resolving the two major problems of the determination of tryptamine in beer up to now: low sensitivity and matrix effects. The proposed sensor is based on a novel white, uncharged, and non-luminescent functional nonwoven nanofibre mat (Tiss®-Link) formed by hydrophilic nanofibres of 300 nm of diameter functionalized with a high concentration of active vinyl groups (330 µmol g(-1)). It is used to carry out a kinetically controlled covalent immobilisation of tryptamine via Michael type-reaction. The transduction of the sensor is phosphorescence; the covalently immobilized tryptamine is quantified by SS-RTP, obtaining a detection limit of 6 ng mL(-1) with short response times (15 min). The applicability of the sensor was demonstrated by analysing tryptamine in 10 different varieties of beers, obtaining recovery percentages close to 100%. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Compartmental analysis of [11C]flumazenil kinetics for the estimation of ligand transport rate and receptor distribution using positron emission tomography.

    PubMed

    Koeppe, R A; Holthoff, V A; Frey, K A; Kilbourn, M R; Kuhl, D E

    1991-09-01

    The in vivo kinetic behavior of [11C]flumazenil ([11C]FMZ), a non-subtype-specific central benzodiazepine antagonist, is characterized using compartmental analysis with the aim of producing an optimized data acquisition protocol and tracer kinetic model configuration for the assessment of [11C]FMZ binding to benzodiazepine receptors (BZRs) in human brain. The approach presented is simple, requiring only a single radioligand injection. Dynamic positron emission tomography data were acquired on 18 normal volunteers using a 60- to 90-min sequence of scans and were analyzed with model configurations that included a three-compartment, four-parameter model, a three-compartment, three-parameter model, with a fixed value for free plus nonspecific binding; and a two-compartment, two-parameter model. Statistical analysis indicated that a four-parameter model did not yield significantly better fits than a three-parameter model. Goodness of fit was improved for three- versus two-parameter configurations in regions with low receptor density, but not in regions with moderate to high receptor density. Thus, a two-compartment, two-parameter configuration was found to adequately describe the kinetic behavior of [11C]FMZ in human brain, with stable estimates of the model parameters obtainable from as little as 20-30 min of data. Pixel-by-pixel analysis yields functional images of transport rate (K1) and ligand distribution volume (DV"), and thus provides independent estimates of ligand delivery and BZR binding.

  20. ¹³C solid-state NMR analysis of the most common pharmaceutical excipients used in solid drug formulations Part II: CP kinetics and relaxation analysis.

    PubMed

    Pisklak, Dariusz Maciej; Zielińska-Pisklak, Monika; Szeleszczuk, Łukasz; Wawer, Iwona

    2016-04-15

    Excipients used in the solid drug formulations differ in their NMR relaxation and (13)C cross-polarization (CP) kinetics parameters. Therefore, experimental parameters like contact time of cross-polarization and repetition time have a major impact on the registered solid state NMR spectra and in consequence on the results of the NMR analysis. In this work the CP kinetics and relaxation of the most common pharmaceutical excipients: anhydrous α-lactose, α-lactose monohydrate, mannitol, sucrose, sorbitol, sodium starch glycolate type A and B, starch of different origin, microcrystalline cellulose, hypromellose, ethylcellulose, methylcellulose, hydroxyethylcellulose, sodium alginate, magnesium stearate, sodium laurilsulfate and Kollidon(®) were analyzed. The studied excipients differ significantly in their optimum repetition time (from 5 s to 1200 s) and T(1ρ)(I) parameters (from 2 ms to 73 ms). The practical use of those differences in the excipients composition analysis was demonstrated on the example of commercially available tablets containing indapamide as an API. The information presented in this article will help to choose the correct acquisition parameters and also will save the time and effort needed for their optimization in the NMR analysis of the solid drug formulations. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Fundamental electrode kinetics

    NASA Technical Reports Server (NTRS)

    Elder, J. P.

    1968-01-01

    Report presents the fundamentals of electrode kinetics and the methods used in evaluating the characteristic parameters of rapid-charge transfer processes at electrode-electrolyte interfaces. The concept of electrode kinetics is outlined, followed by the principles underlying the experimental techniques for the investigation of electrode kinetics.

  2. Occurrence of dead core in catalytic particles containing immobilized enzymes: analysis for the Michaelis-Menten kinetics and assessment of numerical methods.

    PubMed

    Pereira, Félix Monteiro; Oliveira, Samuel Conceição

    2016-11-01

    In this article, the occurrence of dead core in catalytic particles containing immobilized enzymes is analyzed for the Michaelis-Menten kinetics. An assessment of numerical methods is performed to solve the boundary value problem generated by the mathematical modeling of diffusion and reaction processes under steady state and isothermal conditions. Two classes of numerical methods were employed: shooting and collocation. The shooting method used the ode function from Scilab software. The collocation methods included: that implemented by the bvode function of Scilab, the orthogonal collocation, and the orthogonal collocation on finite elements. The methods were validated for simplified forms of the Michaelis-Menten equation (zero-order and first-order kinetics), for which analytical solutions are available. Among the methods covered in this article, the orthogonal collocation on finite elements proved to be the most robust and efficient method to solve the boundary value problem concerning Michaelis-Menten kinetics. For this enzyme kinetics, it was found that the dead core can occur when verified certain conditions of diffusion-reaction within the catalytic particle. The application of the concepts and methods presented in this study will allow for a more generalized analysis and more accurate designs of heterogeneous enzymatic reactors.

  3. Kinetic Study of Acetone-Butanol-Ethanol Fermentation in Continuous Culture

    PubMed Central

    Buehler, Edward A.; Mesbah, Ali

    2016-01-01

    Acetone-butanol-ethanol (ABE) fermentation by clostridia has shown promise for industrial-scale production of biobutanol. However, the continuous ABE fermentation suffers from low product yield, titer, and productivity. Systems analysis of the continuous ABE fermentation will offer insights into its metabolic pathway as well as into optimal fermentation design and operation. For the ABE fermentation in continuous Clostridium acetobutylicum culture, this paper presents a kinetic model that includes the effects of key metabolic intermediates and enzymes as well as culture pH, product inhibition, and glucose inhibition. The kinetic model is used for elucidating the behavior of the ABE fermentation under the conditions that are most relevant to continuous cultures. To this end, dynamic sensitivity analysis is performed to systematically investigate the effects of culture conditions, reaction kinetics, and enzymes on the dynamics of the ABE production pathway. The analysis provides guidance for future metabolic engineering and fermentation optimization studies. PMID:27486663

  4. Kinetic and Kinematic Analysis for Assessing the Differences in Countermovement Jump Performance in Rugby Players.

    PubMed

    Floría, Pablo; Gómez-Landero, Luis A; Suárez-Arrones, Luis; Harrison, Andrew J

    2016-09-01

    Floría, P, Gómez-Landero, LA, Suárez-Arrones, L, and Harrison, AJ. Kinetic and kinematic analysis for assessing the differences in countermovement jump performance in rugby players. J Strength Cond Res 30(9): 2533-2539, 2016-The aim of this study was to ascertain the differences in kinetic and kinematic profiles between better and poorer performers of the vertical jump within a homogeneous group of trained adults. Fifty rugby players were divided into low scoring (LOW) and high scoring (HIGH) groups based on their performance in the vertical jump. The force, velocity, displacement, and rate of force development (RFD)-time curves were analyzed to determine the differences between groups. The analysis of the data showed differences in all the patterns of the ensemble mean curves of the HIGH and LOW groups. During the eccentric phase, the differences in the HIGH group with respect to the LOW group were lower crouch position, higher downward velocity, and higher force and RFD during the braking of the downward movement. During the concentric phase, the HIGH group achieved higher upward velocity, higher force at the end of phase, and a higher position at takeoff. The higher jump performances seem to be related to a more effective stretch-shortening cycle function that is characterized by a deeper and faster countermovement with higher eccentric forces being applied to decelerate the downward movement leading to enhanced force generation during the concentric phase.

  5. Variability of Grip Kinetics during Adult Signature Writing

    PubMed Central

    Ghali, Bassma; Thalanki Anantha, Nayanashri; Chan, Jennifer; Chau, Tom

    2013-01-01

    Grip kinetics and their variation are emerging as important considerations in the clinical assessment of handwriting pathologies, fine motor rehabilitation, biometrics, forensics and ergonomic pen design. This study evaluated the intra- and inter-participant variability of grip shape kinetics in adults during signature writing. Twenty (20) adult participants wrote on a digitizing tablet using an instrumented pen that measured the forces exerted on its barrel. Signature samples were collected over 10 days, 3 times a day, to capture temporal variations in grip shape kinetics. A kinetic topography (i.e., grip shape image) was derived per signature by time-averaging the measured force at each of 32 locations around the pen barrel. The normalized cross correlations (NCC) of grip shape images were calculated within- and between-participants. Several classification algorithms were implemented to gauge the error rate of participant discrimination based on grip shape kinetics. Four different grip shapes emerged and several participants made grip adjustments (change in grip shape or grip height) or rotated the pen during writing. Nonetheless, intra-participant variation in grip kinetics was generally much smaller than inter-participant force variations. Using the entire grip shape images as a 32-dimensional input feature vector, a K-nearest neighbor classifier achieved an error rate of % in discriminating among participants. These results indicate that writers had unique grip shape kinetics that were repeatable over time but distinct from those of other participants. The topographic analysis of grip kinetics may inform the development of personalized interventions or customizable grips in clinical and industrial applications, respectively. PMID:23658812

  6. Variability of grip kinetics during adult signature writing.

    PubMed

    Ghali, Bassma; Thalanki Anantha, Nayanashri; Chan, Jennifer; Chau, Tom

    2013-01-01

    Grip kinetics and their variation are emerging as important considerations in the clinical assessment of handwriting pathologies, fine motor rehabilitation, biometrics, forensics and ergonomic pen design. This study evaluated the intra- and inter-participant variability of grip shape kinetics in adults during signature writing. Twenty (20) adult participants wrote on a digitizing tablet using an instrumented pen that measured the forces exerted on its barrel. Signature samples were collected over 10 days, 3 times a day, to capture temporal variations in grip shape kinetics. A kinetic topography (i.e., grip shape image) was derived per signature by time-averaging the measured force at each of 32 locations around the pen barrel. The normalized cross correlations (NCC) of grip shape images were calculated within- and between-participants. Several classification algorithms were implemented to gauge the error rate of participant discrimination based on grip shape kinetics. Four different grip shapes emerged and several participants made grip adjustments (change in grip shape or grip height) or rotated the pen during writing. Nonetheless, intra-participant variation in grip kinetics was generally much smaller than inter-participant force variations. Using the entire grip shape images as a 32-dimensional input feature vector, a K-nearest neighbor classifier achieved an error rate of 1.2±0.4% in discriminating among participants. These results indicate that writers had unique grip shape kinetics that were repeatable over time but distinct from those of other participants. The topographic analysis of grip kinetics may inform the development of personalized interventions or customizable grips in clinical and industrial applications, respectively.

  7. Core Physics and Kinetics Calculations for the Fissioning Plasma Core Reactor

    NASA Technical Reports Server (NTRS)

    Butler, C.; Albright, D.

    2007-01-01

    Highly efficient, compact nuclear reactors would provide high specific impulse spacecraft propulsion. This analysis and numerical simulation effort has focused on the technical feasibility issues related to the nuclear design characteristics of a novel reactor design. The Fissioning Plasma Core Reactor (FPCR) is a shockwave-driven gaseous-core nuclear reactor, which uses Magneto Hydrodynamic effects to generate electric power to be used for propulsion. The nuclear design of the system depends on two major calculations: core physics calculations and kinetics calculations. Presently, core physics calculations have concentrated on the use of the MCNP4C code. However, initial results from other codes such as COMBINE/VENTURE and SCALE4a. are also shown. Several significant modifications were made to the ISR-developed QCALC1 kinetics analysis code. These modifications include testing the state of the core materials, an improvement to the calculation of the material properties of the core, the addition of an adiabatic core temperature model and improvement of the first order reactivity correction model. The accuracy of these modifications has been verified, and the accuracy of the point-core kinetics model used by the QCALC1 code has also been validated. Previously calculated kinetics results for the FPCR were described in the ISR report, "QCALC1: A code for FPCR Kinetics Model Feasibility Analysis" dated June 1, 2002.

  8. A kinetic energy analysis of the meso beta-scale severe storm environment

    NASA Technical Reports Server (NTRS)

    Fuelberg, H. E.; Printy, M. F.

    1984-01-01

    Analyses are performed of the meso beta-scale (20-200 km wavelengths and several hours to one-day periods) severe storm kinetic energy balance on the fifth day of the AVE SESAME campaign of May 1979. A 24-hr interval covering the antecedent, active and post-convective outbreak activity over Oklahoma are considered. Use is made of the kinetic energy budget equation (KEBE) for a finite volume in an isobaric coordinate system. Rawindsonde data with 75 km resolution were treated. The KEBE model covered changes in kinetic energy due to the cross contour flows, horizontal and vertical components of flux divergence, and volumic mass changes on synoptic and subsynoptic scales. The greatest variability was concentrated above 400 mb height and over the most intense storm activity. Energy was generated at the highest rates in divergence and decreased the most in convection. The meso beta-scale lacked sufficient resolution for analyzing mesoscale activity.

  9. Kinetics of enzymatic trans-esterification of glycerides for biodiesel production.

    PubMed

    Calabrò, Vincenza; Ricca, Emanuele; De Paola, Maria Gabriela; Curcio, Stefano; Iorio, Gabriele

    2010-08-01

    In this paper, the reaction of enzymatic trans-esterification of glycerides with ethanol in a reaction medium containing hexane at a temperature of 37 degrees C has been studied. The enzyme was Lipase from Mucor miehei, immobilized on ionic exchange resin, aimed at achieving high catalytic specific surface and recovering, regenerating and reusing the biocatalyst. A kinetic analysis has been carried out to identify the reaction path; the rate equation and kinetic parameters have been also calculated. The kinetic model has been validated by comparison between predicted and experimental results. Mass transport resistances estimation was undertaken in order to verify that the kinetics found was intrinsic. Model potentialities in terms of reactors design and optimization are also shown.

  10. Kinetic Model Facilitates Analysis of Fibrin Generation and Its Modulation by Clotting Factors: Implications for Hemostasis-Enhancing Therapies

    DTIC Science & Technology

    2014-01-01

    facilitates analysis of fibrin generation and its modulation by clotting factors : implications for hemostasis-enhancing therapies† Alexander Y...investigate the ability of fibrinogen and a recently proposed prothrombin complex concentrate composition, PCC-AT (a combination of the clotting factors II...kinetics. Moreover, the model qualitatively predicted the impact of tissue factor and tPA/tenecteplase level variations on the fibrin output. In the

  11. Pyrolytic Characteristics and Kinetics of Phragmites australis

    PubMed Central

    Zhao, Hui; Yan, Huaxiao; Zhang, Congwang; Liu, Xiaodong; Xue, Yanhui; Qiao, Yingyun; Tian, Yuanyu; Qin, Song

    2011-01-01

    The pyrolytic kinetics of Phragmites australis was investigated using thermogravimetric analysis (TGA) method with linear temperature programming process under an inert atmosphere. Kinetic expressions for the degradation rate in devolatilization and combustion steps have been obtained for P. australis with Dollimore method. The values of apparent activation energy, the most probable mechanism functions, and the corresponding preexponential factor were determined. The results show that the model agrees well with the experimental data and provide useful information for the design of pyrolytic processing system using P. australis as feedstock to produce biofuel. PMID:22007256

  12. Simplification and analysis of models of calcium dynamics based on IP3-sensitive calcium channel kinetics.

    PubMed

    Tang, Y; Stephenson, J L; Othmer, H G

    1996-01-01

    We study the models for calcium (Ca) dynamics developed in earlier studies, in each of which the key component is the kinetics of intracellular inositol-1,4,5-trisphosphate-sensitive Ca channels. After rapidly equilibrating steps are eliminated, the channel kinetics in these models are represented by a single differential equation that is linear in the state of the channel. In the reduced kinetic model, the graph of the steady-state fraction of conducting channels as a function of log10(Ca) is a bell-shaped curve. Dynamically, a step increase in inositol-1,4,5-trisphosphate induces an incremental increase in the fraction of conducting channels, whereas a step increase in Ca can either potentiate or inhibit channel activation, depending on the Ca level before and after the increase. The relationships among these models are discussed, and experimental tests to distinguish between them are given. Under certain conditions the models for intracellular calcium dynamics are reduced to the singular perturbed form epsilon dx/d tau = f(x, y, p), dy/d tau = g(x, y, p). Phase-plane analysis is applied to a generic form of these simplified models to show how different types of Ca response, such as excitability, oscillations, and a sustained elevation of Ca, can arise. The generic model can also be used to study frequency encoding of hormonal stimuli, to determine the conditions for stable traveling Ca waves, and to understand the effect of channel properties on the wave speed.

  13. Highly efficient and stable white organic light emitting diode base on double recombination zones of phosphorescent blue/orange emitters.

    PubMed

    Lee, Seok Jae; Koo, Ja Ryong; Lim, Dong Hwan; Park, Hye Rim; Kim, Young Kwan; Ha, Yunkyoung

    2011-08-01

    We demonstrated efficient and stable white phosphorescent organic light-emitting diodes (OLEDs) with double-emitting layers (D-EMLs), which were comprised of two emissive layers with a hole transport-type host of N,N'-dicarbazolyl-3,5-benzene (mCP) and a electron transport-type host of 2,2',2"-(1,3,5-benzenetryl)tris(1-phenyl)-1H-benzimidazol (TPBi) with blue/orange emitters, respectively. We fabricated two type white devices with single emitting layer (S-EML) and D-EML of orange emitter, maintaining double recombination zone of blue emitter. In addition, the device architecture was developed to confine excitons inside the D-EMLs and to manage triplet excitons by controlling the charge injection. As a result, light-emitting performances of white OLED with D-EMLs were improved and showed the steady CIE coordinates compared to that with S-EML of orange emitter, which demonstrated the maximum luminous efficiency and external quantum efficiency were 21.38 cd/A and 11.09%. It also showed the stable white emission with CIE(x,y) coordinates from (x = 0.36, y = 0.37) at 6 V to (x = 0.33, y = 0.38) at 12 V.

  14. Structural kinetic modeling of metabolic networks.

    PubMed

    Steuer, Ralf; Gross, Thilo; Selbig, Joachim; Blasius, Bernd

    2006-08-08

    To develop and investigate detailed mathematical models of metabolic processes is one of the primary challenges in systems biology. However, despite considerable advance in the topological analysis of metabolic networks, kinetic modeling is still often severely hampered by inadequate knowledge of the enzyme-kinetic rate laws and their associated parameter values. Here we propose a method that aims to give a quantitative account of the dynamical capabilities of a metabolic system, without requiring any explicit information about the functional form of the rate equations. Our approach is based on constructing a local linear model at each point in parameter space, such that each element of the model is either directly experimentally accessible or amenable to a straightforward biochemical interpretation. This ensemble of local linear models, encompassing all possible explicit kinetic models, then allows for a statistical exploration of the comprehensive parameter space. The method is exemplified on two paradigmatic metabolic systems: the glycolytic pathway of yeast and a realistic-scale representation of the photosynthetic Calvin cycle.

  15. Determination of kinetic data for soot oxidation: Modeling of competition between oxygen diffusion and reaction during thermogravimetric analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilot, P.; Bonnefoy, F.; Marcuccilli, F.

    1993-10-01

    Kinetic data concerning carbon black oxidation in the temperature range between 600 and 900 C have been obtained using thermogravimetric analysis. Modeling of diffusion in a boundary layer above the pan and inside the porous medium coupled to oxygen reaction with carbon black is necessary to obtain kinetic constants as a function of temperature. These calculations require the knowledge of the oxidation rate at a given constant temperature as a function of the initial mass loading m[sub o]. This oxidation rate, expressed in milligrams of soot consumed per second and per milligram of initial soot loading, decreases when m[sub o]more » increases, in agreement with a reaction in an intermediary regime where the kinetics and the oxygen diffusion operate. The equivalent diffusivity of oxygen inside the porous medium is evaluated assuming two degrees of porosity: between soot aggregates and inside each aggregate. Below 700 C an activation energy of about 103 kJ/mol can be related to a combustion reaction probably kinetically controlled. Beyond 700 C the activation energy of about 20 kJ/ mol corresponds to a reaction essentially controlled by oxygen diffusion leading to a constant density oxidation with oxygen consumption at or near the particle surface. To validate these data, they are used in the modeling of a Diesel particulate trap regeneration. In this particular case, the oxidizing flux is forced across the carbon black deposit, oxygen diffusion being insignificant. A good agreement between experimental results and model predictions is obtained, proving the rate constants validity.« less

  16. Kinetic Atom.

    ERIC Educational Resources Information Center

    Wilson, David B.

    1981-01-01

    Surveys the research of scientists like Joule, Kelvin, Maxwell, Clausius, and Boltzmann as it comments on the basic conceptual issues involved in the development of a more precise kinetic theory and the idea of a kinetic atom. (Author/SK)

  17. Number and brightness image analysis reveals ATF-induced dimerization kinetics of uPAR in the cell membrane

    PubMed Central

    Hellriegel, Christian; Caiolfa, Valeria R.; Corti, Valeria; Sidenius, Nicolai; Zamai, Moreno

    2011-01-01

    We studied the molecular forms of the GPI-anchored urokinase plasminogen activator receptor (uPAR-mEGFP) in the human embryo kidney (HEK293) cell membrane and demonstrated that the binding of the amino-terminal fragment (ATF) of urokinase plasminogen activator is sufficient to induce the dimerization of the receptor. We followed the association kinetics and determined precisely the dimeric stoichiometry of uPAR-mEGFP complexes by applying number and brightness (N&B) image analysis. N&B is a novel fluctuation-based approach for measuring the molecular brightness of fluorophores in an image time sequence in live cells. Because N&B is very sensitive to long-term temporal fluctuations and photobleaching, we have introduced a filtering protocol that corrects for these important sources of error. Critical experimental parameters in N&B analysis are illustrated and analyzed by simulation studies. Control experiments are based on mEGFP-GPI, mEGFP-mEGFP-GPI, and mCherry-GPI, expressed in HEK293. This work provides a first direct demonstration of the dimerization of uPAR in live cells. We also provide the first methodological guide on N&B to discern minor changes in molecular composition such as those due to dimerization events, which are involved in fundamental cell signaling mechanisms.—Hellriegel, C., Caiolfa, V. R., Corti, V., Sidenius, N., Zamai, M. Number and brightness image analysis reveals ATF-induced dimerization kinetics of uPAR in the cell membrane. PMID:21602447

  18. The histone H3 N-terminal tail: a computational analysis of the free energy landscape and kinetics.

    PubMed

    Zheng, Yuqing; Cui, Qiang

    2015-05-28

    Histone tails are the short peptide protrusions outside of the nucleosome core particle and they play a critical role in regulating chromatin dynamics and gene activity. A histone H3 N-terminal tail, like other histone tails, can be covalently modified on different residues to activate or repress gene expression. Previous studies have indicated that, despite its intrinsically disordered nature, the histone H3 N-terminal tail has regions of notable secondary structural propensities. To further understand the structure-dynamics-function relationship in this system, we have carried out 75.6 μs long implicit solvent simulations and 29.3 μs long explicit solvent simulations. The extensive samplings allow us to better characterize not only the underlying free energy landscape but also kinetic properties through Markov state models (MSM). Dihedral principal component analysis (dPCA) and locally scaled diffusion map (LSDMap) analysis yield consistent results that indicate an overall flat free energy surface with several shallow basins that correspond to conformations with a high α-helical propensity in two regions of the peptide. Kinetic information extracted from Markov state models reveals rapid transitions between different metastable states with mean first passage times spanning from several hundreds of nanoseconds to hundreds of microseconds. These findings shed light on how the dynamical nature of the histone H3 N-terminal tail is related to its function. The complementary nature of dPCA, LSDMap and MSM for the analysis of biomolecules is also discussed.

  19. A practical approach to the sensitivity analysis for kinetic Monte Carlo simulation of heterogeneous catalysis

    DOE PAGES

    Hoffmann, Max J.; Engelmann, Felix; Matera, Sebastian

    2017-01-31

    Lattice kinetic Monte Carlo simulations have become a vital tool for predictive quality atomistic understanding of complex surface chemical reaction kinetics over a wide range of reaction conditions. In order to expand their practical value in terms of giving guidelines for atomic level design of catalytic systems, it is very desirable to readily evaluate a sensitivity analysis for a given model. The result of such a sensitivity analysis quantitatively expresses the dependency of the turnover frequency, being the main output variable, on the rate constants entering the model. In the past the application of sensitivity analysis, such as Degree ofmore » Rate Control, has been hampered by its exuberant computational effort required to accurately sample numerical derivatives of a property that is obtained from a stochastic simulation method. Here in this study we present an efficient and robust three stage approach that is capable of reliably evaluating the sensitivity measures for stiff microkinetic models as we demonstrate using CO oxidation on RuO 2(110) as a prototypical reaction. In a first step, we utilize the Fisher Information Matrix for filtering out elementary processes which only yield negligible sensitivity. Then we employ an estimator based on linear response theory for calculating the sensitivity measure for non-critical conditions which covers the majority of cases. Finally we adopt a method for sampling coupled finite differences for evaluating the sensitivity measure of lattice based models. This allows efficient evaluation even in critical regions near a second order phase transition that are hitherto difficult to control. The combined approach leads to significant computational savings over straightforward numerical derivatives and should aid in accelerating the nano scale design of heterogeneous catalysts.« less

  20. A practical approach to the sensitivity analysis for kinetic Monte Carlo simulation of heterogeneous catalysis.

    PubMed

    Hoffmann, Max J; Engelmann, Felix; Matera, Sebastian

    2017-01-28

    Lattice kinetic Monte Carlo simulations have become a vital tool for predictive quality atomistic understanding of complex surface chemical reaction kinetics over a wide range of reaction conditions. In order to expand their practical value in terms of giving guidelines for the atomic level design of catalytic systems, it is very desirable to readily evaluate a sensitivity analysis for a given model. The result of such a sensitivity analysis quantitatively expresses the dependency of the turnover frequency, being the main output variable, on the rate constants entering the model. In the past, the application of sensitivity analysis, such as degree of rate control, has been hampered by its exuberant computational effort required to accurately sample numerical derivatives of a property that is obtained from a stochastic simulation method. In this study, we present an efficient and robust three-stage approach that is capable of reliably evaluating the sensitivity measures for stiff microkinetic models as we demonstrate using the CO oxidation on RuO 2 (110) as a prototypical reaction. In the first step, we utilize the Fisher information matrix for filtering out elementary processes which only yield negligible sensitivity. Then we employ an estimator based on the linear response theory for calculating the sensitivity measure for non-critical conditions which covers the majority of cases. Finally, we adapt a method for sampling coupled finite differences for evaluating the sensitivity measure for lattice based models. This allows for an efficient evaluation even in critical regions near a second order phase transition that are hitherto difficult to control. The combined approach leads to significant computational savings over straightforward numerical derivatives and should aid in accelerating the nano-scale design of heterogeneous catalysts.

  1. A practical approach to the sensitivity analysis for kinetic Monte Carlo simulation of heterogeneous catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffmann, Max J.; Engelmann, Felix; Matera, Sebastian

    Lattice kinetic Monte Carlo simulations have become a vital tool for predictive quality atomistic understanding of complex surface chemical reaction kinetics over a wide range of reaction conditions. In order to expand their practical value in terms of giving guidelines for atomic level design of catalytic systems, it is very desirable to readily evaluate a sensitivity analysis for a given model. The result of such a sensitivity analysis quantitatively expresses the dependency of the turnover frequency, being the main output variable, on the rate constants entering the model. In the past the application of sensitivity analysis, such as Degree ofmore » Rate Control, has been hampered by its exuberant computational effort required to accurately sample numerical derivatives of a property that is obtained from a stochastic simulation method. Here in this study we present an efficient and robust three stage approach that is capable of reliably evaluating the sensitivity measures for stiff microkinetic models as we demonstrate using CO oxidation on RuO 2(110) as a prototypical reaction. In a first step, we utilize the Fisher Information Matrix for filtering out elementary processes which only yield negligible sensitivity. Then we employ an estimator based on linear response theory for calculating the sensitivity measure for non-critical conditions which covers the majority of cases. Finally we adopt a method for sampling coupled finite differences for evaluating the sensitivity measure of lattice based models. This allows efficient evaluation even in critical regions near a second order phase transition that are hitherto difficult to control. The combined approach leads to significant computational savings over straightforward numerical derivatives and should aid in accelerating the nano scale design of heterogeneous catalysts.« less

  2. A practical approach to the sensitivity analysis for kinetic Monte Carlo simulation of heterogeneous catalysis

    NASA Astrophysics Data System (ADS)

    Hoffmann, Max J.; Engelmann, Felix; Matera, Sebastian

    2017-01-01

    Lattice kinetic Monte Carlo simulations have become a vital tool for predictive quality atomistic understanding of complex surface chemical reaction kinetics over a wide range of reaction conditions. In order to expand their practical value in terms of giving guidelines for the atomic level design of catalytic systems, it is very desirable to readily evaluate a sensitivity analysis for a given model. The result of such a sensitivity analysis quantitatively expresses the dependency of the turnover frequency, being the main output variable, on the rate constants entering the model. In the past, the application of sensitivity analysis, such as degree of rate control, has been hampered by its exuberant computational effort required to accurately sample numerical derivatives of a property that is obtained from a stochastic simulation method. In this study, we present an efficient and robust three-stage approach that is capable of reliably evaluating the sensitivity measures for stiff microkinetic models as we demonstrate using the CO oxidation on RuO2(110) as a prototypical reaction. In the first step, we utilize the Fisher information matrix for filtering out elementary processes which only yield negligible sensitivity. Then we employ an estimator based on the linear response theory for calculating the sensitivity measure for non-critical conditions which covers the majority of cases. Finally, we adapt a method for sampling coupled finite differences for evaluating the sensitivity measure for lattice based models. This allows for an efficient evaluation even in critical regions near a second order phase transition that are hitherto difficult to control. The combined approach leads to significant computational savings over straightforward numerical derivatives and should aid in accelerating the nano-scale design of heterogeneous catalysts.

  3. Determination of urea kinetics by isotope dilution with [13C]urea and gas chromatography-isotope ratio mass spectrometry (GC-IRMS) analysis.

    PubMed

    Kloppenburg, W D; Wolthers, B G; Stellaard, F; Elzinga, H; Tepper, T; de Jong, P E; Huisman, R M

    1997-07-01

    1. Stable urea isotopes can be used to study urea kinetics in humans. The use of stable urea isotopes for studying urea kinetic parameters in humans on a large scale is hampered by the high costs of the labelled material. We devised a urea dilution for measurement of the distribution volume, production rate and clearance of urea in healthy subjects and renal failure patients using the inexpensive single labelled [13C]urea isotope with subsequent analysis by headspace chromatography-isotope ratio MS (GC-IRMS) of the [13C]urea enrichment. 2. The method involves measurement of the molar percentage excess of [13C]urea in plasma samples taken over a 4 h period after an intravenous bolus injection of [13C]urea. During the sample processing procedure, the plasma samples together with calibration samples containing a known molar percentage excess of [13C]urea are acidified with phosphoric acid to remove endogenous CO2, and are subsequently incubated with urease to convert the urea present in the plasma samples into CO2. The 13C enrichment of the generated CO2 is analysed by means of GC-IRMS. This method allows measurement of the molar percentage excess of [13C]urea to an accuracy of 0.02%. 3. Reproducibility studies showed that the sample processing procedure [within-run coefficient of variation (CV) < 2.8% and between-run CV < 8.8%] and the GC-IRMS analysis (within-day CV < 1.3% and between-day CV < 1.3%) could be repeated with good reproducibility. 4. In clinical urea kinetic studies in a healthy subject and in a renal failure patient without residual renal function, reproducible values of the distribution volume, production rate and clearance of urea were determined using minimal amounts of [13C]urea (25-50 mg). 5. Because only low [13C]urea enrichments are needed in this urea dilution method using GC-IRMS analysis, the costs of urea kinetic studies are reduced considerably, especially in patients with renal failure.

  4. The moisture outgassing kinetics of a silica reinforced polydimethylsiloxane

    NASA Astrophysics Data System (ADS)

    Sharma, H. N.; McLean, W.; Maxwell, R. S.; Dinh, L. N.

    2016-09-01

    A silica-filled polydimethylsiloxane (PDMS) composite M9787 was investigated for potential outgassing in a vacuum/dry environment with the temperature programmed desorption/reaction method. The outgassing kinetics of 463 K vacuum heat-treated samples, vacuum heat-treated samples which were subsequently re-exposed to moisture, and untreated samples were extracted using the isoconversional and constrained iterative regression methods in a complementary fashion. Density functional theory (DFT) calculations of water interactions with a silica surface were also performed to provide insight into the structural motifs leading to the obtained kinetic parameters. Kinetic analysis/model revealed that no outgassing occurs from the vacuum heat-treated samples in subsequent vacuum/dry environment applications at room temperature (˜300 K). The main effect of re-exposure of the vacuum heat-treated samples to a glove box condition (˜30 ppm by volume of H2O) for even a couple of days was the formation, on the silica surface fillers, of ˜60 ppm by weight of physisorbed and loosely bonded moisture, which subsequently outgasses at room temperature in a vacuum/dry environment in a time span of 10 yr. However, without any vacuum heat treatment and even after 1 h of vacuum pump down, about 300 ppm by weight of H2O would be released from the PDMS in the next few hours. Thereafter the outgassing rate slows down substantially. The presented methodology of using the isoconversional kinetic analysis results and some appropriate nature of the reaction as the constraints for more accurate iterative regression analysis/deconvolution of complex kinetic spectra, and of checking the so-obtained results with first principle calculations such as DFT can serve as a template for treating other complex physical/chemical processes as well.

  5. The moisture outgassing kinetics of a silica reinforced polydimethylsiloxane

    DOE PAGES

    Sharma, H. N.; McLean, W.; Maxwell, R. S.; ...

    2016-09-21

    We investigated a silica-filled polydimethylsiloxane (PDMS) composite M9787 for potential outgassing in a vacuum/dry environment with the temperature programmed desorption/reaction method. The outgassing kinetics of 463 K vacuum heat-treated samples, vacuum heat-treated samples which were subsequently re-exposed to moisture, and untreated samples were extracted using the isoconversional and constrained iterative regression methods in a complementary fashion. Density functional theory (DFT) calculations of water interactions with a silica surface were also performed to provide insight into the structural motifs leading to the obtained kinetic parameters. Kinetic analysis/model revealed that no outgassing occurs from the vacuum heat-treated samples in subsequent vacuum/dry environmentmore » applications at room temperature (~300 K). Moreover, the main effect of re-exposure of the vacuum heat-treated samples to a glove box condition (~30 ppm by volume of H 2O) for even a couple of days was the formation, on the silica surface fillers, of ~60 ppm by weight of physisorbed and loosely bonded moisture, which subsequently outgasses at room temperature in a vacuum/dry environment in a time span of 10 yr. However, without any vacuum heat treatment and even after 1 h of vacuum pump down, about 300 ppm by weight of H 2O would be released from the PDMS in the next few hours. Thereafter the outgassing rate slows down substantially. Our presented methodology of using the isoconversional kinetic analysis results and some appropriate nature of the reaction as the constraints for more accurate iterative regression analysis/deconvolution of complex kinetic spectra, and of checking the so-obtained results with first principle calculations such as DFT can serve as a template for treating other complex physical/chemical processes as well.« less

  6. Analysis of population mortality kinetics with application to the longevity followup of the Navy's '1,000 aviators'

    NASA Technical Reports Server (NTRS)

    Economos, A. C.; Miquel, J.

    1979-01-01

    A simple physiological model of mortality kinetics is used to assess the intuitive concept that the aging rates of populations are proportional to their mortality rates. It is assumed that the vitality of an individual can be expressed as a simple summation of the weighted functional capacities of its organs and homeostatic systems that are indispensable for survival. It is shown that the mortality kinetics of a population can be derived by a linear transformation of the frequency distribution of vitality, assuming a uniform constant rate of decline of the physiological functions. A simple comparison of two populations is not possible when they have different vitality frequency distributions. Analysis of the data using the model suggests that the differences in decline of survivorship with age between the military pilot population, a medically insured population, and the control population can be accounted for by the effect of physical selection on the vitality frequency distribution of the screened populations.

  7. Deep Blue Phosphorescent Organic Light-Emitting Diodes with CIEy Value of 0.11 and External Quantum Efficiency up to 22.5.

    PubMed

    Li, Xiaoyue; Zhang, Juanye; Zhao, Zifeng; Wang, Liding; Yang, Hannan; Chang, Qiaowen; Jiang, Nan; Liu, Zhiwei; Bian, Zuqiang; Liu, Weiping; Lu, Zhenghong; Huang, Chunhui

    2018-03-01

    Organic light-emitting diodes (OLEDs) based on red and green phosphorescent iridium complexes are successfully commercialized in displays and solid-state lighting. However, blue ones still remain a challenge on account of their relatively dissatisfactory Commission International de L'Eclairage (CIE) coordinates and low efficiency. After analyzing the reported blue iridium complexes in the literature, a new deep-blue-emitting iridium complex with improved photoluminescence quantum yield is designed and synthesized. By rational screening host materials showing high triplet energy level in neat film as well as the OLED architecture to balance electron and hole recombination, highly efficient deep-blue-emission OLEDs with a CIE at (0.15, 0.11) and maximum external quantum efficiency (EQE) up to 22.5% are demonstrated. Based on the transition dipole moment vector measurement with a variable-angle spectroscopic ellipsometry method, the ultrahigh EQE is assigned to a preferred horizontal dipole orientation of the iridium complex in doped film, which is beneficial for light extraction from the OLEDs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. General Methods for Analysis of Sequential “n-step” Kinetic Mechanisms: Application to Single Turnover Kinetics of Helicase-Catalyzed DNA Unwinding

    PubMed Central

    Lucius, Aaron L.; Maluf, Nasib K.; Fischer, Christopher J.; Lohman, Timothy M.

    2003-01-01

    Helicase-catalyzed DNA unwinding is often studied using “all or none” assays that detect only the final product of fully unwound DNA. Even using these assays, quantitative analysis of DNA unwinding time courses for DNA duplexes of different lengths, L, using “n-step” sequential mechanisms, can reveal information about the number of intermediates in the unwinding reaction and the “kinetic step size”, m, defined as the average number of basepairs unwound between two successive rate limiting steps in the unwinding cycle. Simultaneous nonlinear least-squares analysis using “n-step” sequential mechanisms has previously been limited by an inability to float the number of “unwinding steps”, n, and m, in the fitting algorithm. Here we discuss the behavior of single turnover DNA unwinding time courses and describe novel methods for nonlinear least-squares analysis that overcome these problems. Analytic expressions for the time courses, fss(t), when obtainable, can be written using gamma and incomplete gamma functions. When analytic expressions are not obtainable, the numerical solution of the inverse Laplace transform can be used to obtain fss(t). Both methods allow n and m to be continuous fitting parameters. These approaches are generally applicable to enzymes that translocate along a lattice or require repetition of a series of steps before product formation. PMID:14507688

  9. Thermochemical and kinetic analysis of the thermal decomposition of monomethylhydrazine: an elementary reaction mechanism.

    PubMed

    Sun, Hongyan; Law, Chung K

    2007-05-17

    The reaction kinetics for the thermal decomposition of monomethylhydrazine (MMH) was studied with quantum Rice-Ramsperger-Kassel (QRRK) theory and a master equation analysis for pressure falloff. Thermochemical properties were determined by ab initio and density functional calculations. The entropies, S degrees (298.15 K), and heat capacities, Cp degrees (T) (0 < or = T/K < or = 1500), from vibrational, translational, and external rotational contributions were calculated using statistical mechanics based on the vibrational frequencies and structures obtained from the density functional study. Potential barriers for internal rotations were calculated at the B3LYP/6-311G(d,p) level, and hindered rotational contributions to S degrees (298.15 K) and Cp degrees (T) were calculated by solving the Schrödinger equation with free rotor wave functions, and the partition coefficients were treated by direct integration over energy levels of the internal rotation potentials. Enthalpies of formation, DeltafH degrees (298.15 K), for the parent MMH (CH3NHNH2) and its corresponding radicals CH3N*NH2, CH3NHN*H, and C*H2NHNH2 were determined to be 21.6, 48.5, 51.1, and 62.8 kcal mol(-1) by use of isodesmic reaction analysis and various ab initio methods. The kinetic analysis of the thermal decomposition, abstraction, and substitution reactions of MMH was performed at the CBS-QB3 level, with those of N-N and C-N bond scissions determined by high level CCSD(T)/6-311++G(3df,2p)//MPWB1K/6-31+G(d,p) calculations. Rate constants of thermally activated MMH to dissociation products were calculated as functions of pressure and temperature. An elementary reaction mechanism based on the calculated rate constants, thermochemical properties, and literature data was developed to model the experimental data on the overall MMH thermal decomposition rate. The reactions of N-N and C-N bond scission were found to be the major reaction paths for the modeling of MMH homogeneous decomposition at

  10. Spectral kinetic energy transfer in turbulent premixed reacting flows.

    PubMed

    Towery, C A Z; Poludnenko, A Y; Urzay, J; O'Brien, J; Ihme, M; Hamlington, P E

    2016-05-01

    Spectral kinetic energy transfer by advective processes in turbulent premixed reacting flows is examined using data from a direct numerical simulation of a statistically planar turbulent premixed flame. Two-dimensional turbulence kinetic-energy spectra conditioned on the planar-averaged reactant mass fraction are computed through the flame brush and variations in the spectra are connected to terms in the spectral kinetic energy transport equation. Conditional kinetic energy spectra show that turbulent small-scale motions are suppressed in the burnt combustion products, while the energy content of the mean flow increases. An analysis of spectral kinetic energy transfer further indicates that, contrary to the net down-scale transfer of energy found in the unburnt reactants, advective processes transfer energy from small to large scales in the flame brush close to the products. Triadic interactions calculated through the flame brush show that this net up-scale transfer of energy occurs primarily at spatial scales near the laminar flame thermal width. The present results thus indicate that advective processes in premixed reacting flows contribute to energy backscatter near the scale of the flame.

  11. A model analysis of halogen kinetics: the ClOOCl catalytic cycle revisited

    NASA Astrophysics Data System (ADS)

    Canty, T. P.; Salawitch, R. J.; Wilmouth, D. M.

    2016-12-01

    We revisit prior analyses of simultaneous in situ observations of [ClO] and [ClOOCl] obtained in the Arctic polar vortex to evaluate recommended updates that govern the kinetics of the ClOOCl catalytic cycle. Available laboratory measurements of the ClOOCl absorption cross sections, the ClO+ClO reaction rate constant, and the ClO/ClOOCl equilibrium constant are considered, along with compendium evaluations of these kinetic parameters. We show that the latest recommendations for the kinetics that govern the partitioning of ClO and ClOOCl put forth by the JPL panel in Spring 2016 (JPL 15-10) are in good agreement with atmospheric observations of [ClO] and [ClOOCl]. Hence, we suggest that studies of polar ozone loss adopt these most recent recommendations. The latest JPL recommendation for the equilibrium constant suggests that ClOOCl is less stable than previously assumed, resulting in a shift in the termination temperature of polar ozone loss due to the ClOOCl catalytic cycle. Remaining uncertainties in our knowledge of the kinetics that govern the partitioning of ClO and ClOOCl within the activated vortex, and hence the efficiency of O3 loss by the ClO+ClO cycle, will be best addressed by future laboratory determinations of the absolute cross section of ClOOCl as well as measurements designed to reduce the uncertainty in the rate constant of the ClO+ClO reaction at cold temperatures characteristic of the polar, lower stratosphere.

  12. Growth of non-toxigenic Clostridium botulinum mutant LNT01 in cooked beef: One-step kinetic analysis and comparison with C. sporogenes and C. perfringens.

    PubMed

    Huang, Lihan

    2018-05-01

    The objective of this study was to investigate the growth kinetics of Clostridium botulinum LNT01, a non-toxigenic mutant of C. botulinum 62A, in cooked ground beef. The spores of C. botulinum LNT01 were inoculated to ground beef and incubated anaerobically under different temperature conditions to observe growth and develop growth curves. A one-step kinetic analysis method was used to analyze the growth curves simultaneously to minimize the global residual error. The data analysis was performed using the USDA IPMP-Global Fit, with the Huang model as the primary model and the cardinal parameters model as the secondary model. The results of data analysis showed that the minimum, optimum, and maximum growth temperatures of this mutant are 11.5, 36.4, and 44.3 °C, and the estimated optimum specific growth rate is 0.633 ln CFU/g per h, or 0.275 log CFU/g per h. The maximum cell density is 7.84 log CFU/g. The models and kinetic parameters were validated using additional isothermal and dynamic growth curves. The resulting residual errors of validation followed a Laplace distribution, with about 60% of the residual errors within ±0.5 log CFU/g of experimental observations, suggesting that the models could predict the growth of C. botulinum LNT01 in ground beef with reasonable accuracy. Comparing with C. perfringens, C. botulinum LNT01 grows at much slower rates and with much longer lag times. Its growth kinetics is also very similar to C. sporogenes in ground beef. The results of computer simulation using kinetic models showed that, while prolific growth of C. perfringens may occur in ground beef during cooling, no growth of C. botulinum LNT01 or C. sporogenes would occur under the same cooling conditions. The models developed in this study may be used for prediction of the growth and risk assessments of proteolytic C. botulinum in cooked meats. Published by Elsevier Ltd.

  13. Neutron lifetimes behavior analysis considering the two-region kinetic model in the IPEN/MB-01 reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonnelli, Eduardo; Diniz, Ricardo

    2014-11-11

    This is a complementary work about the behavior analysis of the neutron lifetimes that was developed in the IPEN/MB-01 nuclear reactor facility. The macroscopic neutron noise technique was experimentally employed using pulse mode detectors for two stages of control rods insertion, where a total of twenty levels of subcriticality have been carried out. It was also considered that the neutron reflector density was treated as an additional group of delayed neutrons, being a sophisticated approach in the two-region kinetic theoretical model.

  14. Kinetic constrained optimization of the golf swing hub path.

    PubMed

    Nesbit, Steven M; McGinnis, Ryan S

    2014-12-01

    This study details an optimization of the golf swing, where the hand path and club angular trajectories are manipulated. The optimization goal was to maximize club head velocity at impact within the interaction kinetic limitations (force, torque, work, and power) of the golfer as determined through the analysis of a typical swing using a two-dimensional dynamic model. The study was applied to four subjects with diverse swing capabilities and styles. It was determined that it is possible for all subjects to increase their club head velocity at impact within their respective kinetic limitations through combined modifications to their respective hand path and club angular trajectories. The manner of the modifications, the degree of velocity improvement, the amount of kinetic reduction, and the associated kinetic limitation quantities were subject dependent. By artificially minimizing selected kinetic inputs within the optimization algorithm, it was possible to identify swing trajectory characteristics that indicated relative kinetic weaknesses of a subject. Practical implications are offered based upon the findings of the study. Key PointsThe hand path trajectory is an important characteristic of the golf swing and greatly affects club head velocity and golfer/club energy transfer.It is possible to increase the energy transfer from the golfer to the club by modifying the hand path and swing trajectories without increasing the kinetic output demands on the golfer.It is possible to identify relative kinetic output strengths and weakness of a golfer through assessment of the hand path and swing trajectories.Increasing any one of the kinetic outputs of the golfer can potentially increase the club head velocity at impact.The hand path trajectory has important influences over the club swing trajectory.

  15. Kinetic Constrained Optimization of the Golf Swing Hub Path

    PubMed Central

    Nesbit, Steven M.; McGinnis, Ryan S.

    2014-01-01

    This study details an optimization of the golf swing, where the hand path and club angular trajectories are manipulated. The optimization goal was to maximize club head velocity at impact within the interaction kinetic limitations (force, torque, work, and power) of the golfer as determined through the analysis of a typical swing using a two-dimensional dynamic model. The study was applied to four subjects with diverse swing capabilities and styles. It was determined that it is possible for all subjects to increase their club head velocity at impact within their respective kinetic limitations through combined modifications to their respective hand path and club angular trajectories. The manner of the modifications, the degree of velocity improvement, the amount of kinetic reduction, and the associated kinetic limitation quantities were subject dependent. By artificially minimizing selected kinetic inputs within the optimization algorithm, it was possible to identify swing trajectory characteristics that indicated relative kinetic weaknesses of a subject. Practical implications are offered based upon the findings of the study. Key Points The hand path trajectory is an important characteristic of the golf swing and greatly affects club head velocity and golfer/club energy transfer. It is possible to increase the energy transfer from the golfer to the club by modifying the hand path and swing trajectories without increasing the kinetic output demands on the golfer. It is possible to identify relative kinetic output strengths and weakness of a golfer through assessment of the hand path and swing trajectories. Increasing any one of the kinetic outputs of the golfer can potentially increase the club head velocity at impact. The hand path trajectory has important influences over the club swing trajectory. PMID:25435779

  16. Topological and kinetic determinants of the modal matrices of dynamic models of metabolism

    PubMed Central

    2017-01-01

    Large-scale kinetic models of metabolism are becoming increasingly comprehensive and accurate. A key challenge is to understand the biochemical basis of the dynamic properties of these models. Linear analysis methods are well-established as useful tools for characterizing the dynamic response of metabolic networks. Central to linear analysis methods are two key matrices: the Jacobian matrix (J) and the modal matrix (M-1) arising from its eigendecomposition. The modal matrix M-1 contains dynamically independent motions of the kinetic model near a reference state, and it is sparse in practice for metabolic networks. However, connecting the structure of M-1 to the kinetic properties of the underlying reactions is non-trivial. In this study, we analyze the relationship between J, M-1, and the kinetic properties of the underlying network for kinetic models of metabolism. Specifically, we describe the origin of mode sparsity structure based on features of the network stoichiometric matrix S and the reaction kinetic gradient matrix G. First, we show that due to the scaling of kinetic parameters in real networks, diagonal dominance occurs in a substantial fraction of the rows of J, resulting in simple modal structures with clear biological interpretations. Then, we show that more complicated modes originate from topologically-connected reactions that have similar reaction elasticities in G. These elasticities represent dynamic equilibrium balances within reactions and are key determinants of modal structure. The work presented should prove useful towards obtaining an understanding of the dynamics of kinetic models of metabolism, which are rooted in the network structure and the kinetic properties of reactions. PMID:29267329

  17. Solar-simulator-pumped atomic iodine laser kinetics

    NASA Technical Reports Server (NTRS)

    Wilson, H. W.; Raju, S.; Shiu, Y. J.

    1983-01-01

    The literature contains broad ranges of disagreement in kinetic data for the atomic iodine laser. A kinetic model of a solar-simulator-pumped iodine laser is used to select those kinetic data consistent with recent laser experiments at the Langley Research Center. Analysis of the solar-simulator-pumped laser experiments resulted in the following estimates of rate coefficients: for alkyl radical (n-C3F7) and atomic iodine (I) recombination, 4.3 x 10 to the 11th power (1.9) + or - cu cm/s; for n-C3F7I stabilized atomic iodine recombination (I + I) 3.7 x 10 to the -32nd power (2.3) + or -1 cm to the 6th power/s; and for molecular iodine (I2) quenching, 3.1 x 10 to the -11th power (1.6) + or - 1 cu cm/s. These rates are consistent with the recent measurements.

  18. Multielectron, multisubstrate molecular catalysis of electrochemical reactions: Formal kinetic analysis in the total catalysis regime.

    PubMed

    Costentin, Cyrille; Nocera, Daniel G; Brodsky, Casey N

    2017-10-24

    Cyclic voltammetry responses are derived for two-electron, two-step homogeneous electrocatalytic reactions in the total catalysis regime. The models developed provide a framework for extracting kinetic information from cyclic voltammograms (CVs) obtained in conditions under which the substrate or cosubstrate is consumed in a multielectron redox process, as is particularly prevalent for very active catalysts that promote energy conversion reactions. Such determination of rate constants in the total catalysis regime is a prerequisite for the rational benchmarking of molecular electrocatalysts that promote multielectron conversions of small-molecule reactants. The present analysis is illustrated with experimental systems encompassing various limiting behaviors.

  19. Spectroscopic chemical analysis methods and apparatus

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor); Bhartia, Rohit (Inventor)

    2013-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. Chemical analysis instruments employed in some embodiments include capillary and gel plane electrophoresis, capillary electrochromatography, high performance liquid chromatography, flow cytometry, flow cells for liquids and aerosols, and surface detection instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted along with photoluminescence spectroscopy (i.e. fluorescence and/or phosphorescence spectroscopy) to provide high levels of sensitivity and specificity in the same instrument.

  20. A KINETIC ANALYSIS OF THE CONFORMATIONAL FLEXIBILITY OF STEROID HORMONES

    EPA Science Inventory

    For a set of 10 androgen steroids and estradiol (E2), the kinetic feasibility of conformation flexibility of the cyclic moieties was studied under the constraint of maintaining the B/C trans and C/D trans ring fusion of the natural and biologically active enantiomer. To this end,...