Science.gov

Sample records for kinetic phosphorescence analysis

  1. Evaluation of kinetic phosphorescence analysis for the determination of uranium

    SciTech Connect

    Croatto, P.V.; Frank, I.W.; Johnson, K.D.; Mason, P.B.; Smith, M.M.

    1997-12-01

    In the past, New Brunswick Laboratory (NBL) has used a fluorometric method for the determination of sub-microgram quantities of uranium. In its continuing effort to upgrade and improve measurement technology, NBL has evaluated the commercially-available KPA-11 kinetic phosphorescence analyzer (Chemchek, Richland, WA). The Chemchek KPA-11 is a bench-top instrument which performs single-measurement, quench-corrected analyses for trace uranium. It incorporates patented kinetic phosphorimetry techniques to measure and analyze sample phosphorescence as a function of time. With laser excitation and time-corrected photon counting, the KPA-11 has a lower detection limit than conventional fluorometric methods. Operated with a personal computer, the state-of-the-art KPA-11 offers extensive time resolution and phosphorescence lifetime capabilities for additional specificity. Interferences are thereby avoided while obtaining precise measurements. Routine analyses can be easily and effectively accomplished, with the accuracy and precision equivalent to the pulsed-laser fluorometric method presently performed at NBL, without the need for internal standards. Applications of kinetic phosphorimetry at NBL include the measurement of trace level uranium in retention tank, waste samples, and low-level samples. It has also been used to support other experimental activities at NBL by the measuring of nanogram amounts of uranium contamination (in blanks) in isotopic sample preparations, and the determining of elution curves of different ion exchange resins used for uranium purification. In many cases, no pretreatment of samples was necessary except to fume them with nitric acid, and then to redissolve and dilute them to an appropriate concentration with 1 M HNO{sub 3} before measurement. Concentrations were determined on a mass basis ({micro}g U/g of solution), but no density corrections were needed since all the samples (including the samples used for calibration) were in the same

  2. A sensitive method for the determination of uranium in biological samples utilizing kinetic phosphorescence analysis (KPA).

    PubMed

    Hedaya, M A; Birkenfeld, H P; Kathren, R L

    1997-05-01

    Kinetic phosphorescence analysis is a technique that provides rapid, precise and accurate determination of uranium concentration in aqueous solutions. This technique utilizes a laser source to excite an aqueous solution of uranium, and measures the emission luminescence intensity over time to determine the luminescence decay profile. The lifetime of the luminescence decay profile and the linearity of the log luminescence intensity versus time profile are indications of the specificity of the technique for uranium determination. The luminescence intensity at the onset of decay (the initial luminescence intensity), which is the luminescence intensity at time zero after termination of the laser pulse used for excitation, is proportional to the uranium concentration in the sample. Calibration standards of known uranium concentrations are used to construct the calibration curve between the initial luminescence intensity and uranium concentration. This calibration curve is used to determine the uranium concentration of unknown samples from their initial luminescence intensity. We developed the sample preparation method that allows the determination of uranium concentrations in urine, plasma, kidney, liver, bone spleen and soft tissue samples. Tissue samples are subjected to dry-ashing in a muffle furnace at 600 degrees C and wet-ashing with concentrated nitric acid and hydrogen peroxide twice to destroy the organic component in the sample that may interfere with uranium determination by KPA. Samples are then solubilized in 0.82 M nitric acid prior to analysis by KPA. The assay calibration curves are linear and cover the range of uranium concentrations between 0.05 micrograms l-1 and 1000 micrograms l-1 (0.05-1000 ppb). The developed sample preparation procedures coupled with the KPA technique provide a specific, sensitive, precise and accurate method for the determination of uranium concentration in tissue samples. This method was used to quantify uranium in different

  3. Optimal sample preparation conditions for the determination of uranium in biological samples by kinetic phosphorescence analysis (KPA).

    PubMed

    Ejnik, J W; Hamilton, M M; Adams, P R; Carmichael, A J

    2000-12-15

    Kinetic phosphorescence analysis (KPA) is a proven technique for rapid, precise, and accurate determination of uranium in aqueous solutions. Uranium analysis of biological samples require dry-ashing in a muffle furnace between 400 and 600 degrees C followed by wet-ashing with concentrated nitric acid and hydrogen peroxide to digest the organic component in the sample that interferes with uranium determination by KPA. The optimal dry-ashing temperature was determined to be 450 degrees C. At dry-ashing temperatures greater than 450 degrees C, uranium loss was attributed to vaporization. High temperatures also caused increased background values that were attributed to uranium leaching from the glass vials. Dry-ashing temperatures less than 450 degrees C result in the samples needing additional wet-ashing steps. The recovery of uranium in urine samples was 99.2+/-4.02% between spiked concentrations of 1.98-1980 ng (0.198-198 microg l(-1)) uranium, whereas the recovery in whole blood was 89.9+/-7.33% between the same spiked concentrations. The limit of quantification in which uranium in urine and blood could be accurately measured above the background was determined to be 0.05 and 0.6 microg l(-1), respectively. PMID:11130202

  4. Kinetic spectroscopy of erythrosin phosphorescence and delayed fluorescence in aqueous solution at room temperature.

    PubMed

    Duchowicz, R; Ferrer, M L; Acuña, A U

    1998-10-01

    The photophysics and polarization of the phosphorescence and delayed fluorescence of erythrosin in conditions compatible with the current biological applications of the dye (aqueous buffers at pH 7.4 at ambient temperatures) and in ethanol have been studied as a function of dye concentration (10(-7)-10(-5) M) and temperature (245-333 K). The emission decay is strictly single exponential and the detailed kinetic analysis of all the rate processes connected with the emitting T1 state showed that (1) the lowering of the emission lifetime at the higher temperatures is due to a very efficient self-quenching process, (2) the back intersystem crossing rate T1-->S1 is temperature dependent (delta ETS approximately 7 kcal mol-1) but the T1-->S0 is not (Ea < 0.1 kcal mol-1) and (3) both intersystem crossing processes are very sensitive to solvent polarity, which accounts for the solvent dependence of the phosphorescence yield and lifetime. The high value of the phosphorescence anisotropy (r0 = 0.25 +/- 0.006) is independent of the excitation and emission wavelengths, and its evolution in time accurately reflects the rotational restrictions in solid solutions. The relevance of these findings to studies with protein-dye conjugates is also outlined to facilitate the design and interpretation of phosphorescence depolarization experiments that probe the microsecond-ms dynamics of biomolecules and supramolecular systems. PMID:9796431

  5. Simplex optimization of the variables affecting the micelle-stabilized room temperature phosphorescence of 6-methoxy-2-naphthylacetic acid and its kinetic determination in human urine.

    PubMed

    Pulgarín, J A Murillo; Molina, A Alañón; Pardo, M T Alañón

    2005-04-01

    This article reports the kinetic determination of 6-methoxy-2-naphthylacetic acid (6-MNA), the major metabolite of nabumetone, from micelle-stabilized room temperature phosphorescence (MS-RTP) measurements made by using the stopped-flow mixing technique. This methodology allows one to determine analytes in complex matrices without the need for a tedious separation process. It also shortens analysis times substantially. The proposed method uses simplex methodology to optimize the chemical and instrumental variables affecting the phosphorescence. It was applied to the determination of 6-MNA in human urine. The maximum phosphorescence signal is obtained within only 10 s after the sample is prepared. The maximum slope of the kinetic curve, which corresponds to the maximum rate of the phosphorescence development, is measured at lambda(ex)=273 nm and lambda(em)=516 nm. Least-squares regression was used to fit experimental data, and the detection limit, repeatability, and standard deviation for replicate samples were determined. PMID:15766723

  6. Rewritable phosphorescent paper by the control of competing kinetic and thermodynamic self-assembling events

    NASA Astrophysics Data System (ADS)

    Kishimura, Akihiro; Yamashita, Takashi; Yamaguchi, Kentaro; Aida, Takuzo

    2005-07-01

    Security inks have become of increasing importance. They are composed of invisible substances that provide printed images that are not able to be photocopied, and are readable only under special environments. Here we report a novel photoluminescent ink for rewritable media that dichroically emits phosphorescence due to a structural bistability of the self-assembled luminophor. Long-lasting images have been developed by using conventional thermal printers, which are readable only on exposure to ultraviolet light, and more importantly, are thermally erasable for rewriting. Although thermally rewritable printing media have already been developed using visible dyes and cholesteric liquid crystals, security inks that allow rewriting of invisible printed images are unprecedented. We realized this unique feature by the control of kinetic and thermodynamic processes that compete with one another in the self-assembly of the luminophor. This strategy can provide an important step towards the next-generation security technology for information handling.

  7. Kinetic Monte Carlo study of triplet-triplet annihilation in organic phosphorescent emitters

    NASA Astrophysics Data System (ADS)

    van Eersel, H.; Bobbert, P. A.; Coehoorn, R.

    2015-03-01

    The triplet-triplet annihilation (TTA) rate in organic phosphorescent materials such as used in organic light-emitting diodes is determined predominantly either by the rate of single-step Förster-type triplet-triplet interactions, or by multi-step triplet diffusion. We show how kinetic Monte Carlo simulations may be used to analyze the role of both processes. Under steady state conditions, the effective triplet-triplet interaction rate coefficient, kTT, which is often regarded as a constant, is found to depend actually on the number of excitons lost upon a triplet-triplet interaction process and to show a significant higher-order dependence on the triplet volume density. Under the conditions encountered in transient photoluminescence (PL) studies, kTT is found to be effectively constant in the case of diffusion-dominated TTA. However, for the case of single-step TTA, a strongly different decay of the emission intensity is found, which also deviates from an analytic expression proposed in the literature. We discuss how the transient PL response may be used to make a distinction between both mechanisms. The simulations are applied to recently published work on the dye concentration dependence of the TTA rate in materials based on the archetypal green emitter tris[2-phenylpyridine]iridium (Ir(ppy)3).

  8. Phosphorescence lifetime analysis with a quadratic programming algorithm for determining quencher distributions in heterogeneous systems.

    PubMed Central

    Vinogradov, S A; Wilson, D F

    1994-01-01

    A new method for analysis of phosphorescence lifetime distributions in heterogeneous systems has been developed. This method is based on decomposition of the data vector to a linearly independent set of exponentials and uses quadratic programming principles for x2 minimization. Solution of the resulting algorithm requires a finite number of calculations (it is not iterative) and is computationally fast and robust. The algorithm has been tested on various simulated decays and for analysis of phosphorescence measurements of experimental systems with descrete distributions of lifetimes. Critical analysis of the effect of signal-to-noise on the resolving capability of the algorithm is presented. This technique is recommended for resolution of the distributions of quencher concentration in heterogeneous samples, of which oxygen distributions in tissue is an important example. Phosphors of practical importance for biological oxygen measurements: Pd-meso-tetra (4-carboxyphenyl) porphyrin (PdTCPP) and Pd-meso-porphyrin (PdMP) have been used to provide experimental test of the algorithm. PMID:7858142

  9. Influence of the donor concentration on the decay kinetics of sensitized phosphorescence of 1,3,5-triphenylbenzene in toluene at 77 K

    NASA Astrophysics Data System (ADS)

    Suraeva, E. Yu.; Tishchenko, A. B.; Deryabin, M. I.; Avdeev, A. V.

    2012-04-01

    Dependence of the kinetics of sensitized phosphorescence (SP) of 1,3,5-triphenylbenzene (1,3,5-TPB) on the concentration of the energy donor - benzophenone (BP) - is studied in toluene at 77 K. An increase in the SP decay rate of 1,3,5-TPB with concentration is established. It is demonstrated that the reason for the increase in the decay rate is the increased radiative deactivation rate constant of triplet excitations caused by exchange interactions. The coefficient characterizing the exponential dependence of the radiative deactivation rate constant for triplet excitations of 1,3,5-TPB on the intermolecular distance in the donor-acceptor pair is determined.

  10. Analysis of phosphorescence in heterogeneous systems using distributions of quencher concentration.

    PubMed Central

    Golub, A S; Popel, A S; Zheng, L; Pittman, R N

    1997-01-01

    A continuous distribution approach, instead of the traditional mono- and multiexponential analysis, for determining quencher concentration in a heterogeneous system has been developed. A mathematical model of phosphorescence decay inside a volume with homogeneous concentration of phosphor and heterogeneous concentration of quencher was formulated to obtain pulse-response fitting functions for four different distributions of quencher concentration: rectangular, normal (Gaussian), gamma, and multimodal. The analysis was applied to parameter estimates of a heterogeneous distribution of oxygen tension (PO2) within a volume. Simulated phosphorescence decay data were randomly generated for different distributions and heterogeneity of PO2 inside the excitation/emission volume, consisting of 200 domains, and then fit with equations developed for the four models. Analysis using a monoexponential fit yielded a systematic error (underestimate) in mean PO2 that increased with the degree of heterogeneity. The fitting procedures based on the continuous distribution approach returned more accurate values for parameters of the generated PO2 distribution than did the monoexponential fit. The parameters of the fit (M = mean; sigma = standard deviation) were investigated as a function of signal-to-noise ratio (SNR = maximum signal amplitude/peak-to-peak noise). The best-fit parameter values were stable when SNR > or = 20. All four fitting models returned accurate values of M and sigma for different PO2 distributions. The ability of our procedures to resolve two different heterogeneous compartments was also demonstrated using a bimodal fitting model. An approximate scheme was formulated to allow calculation of the first moments of a spatial distribution of quencher without specifying the distribution. In addition, a procedure for the recovery of a histogram, representing the quencher concentration distribution, was developed and successfully tested. PMID:9199808

  11. Emissive or nonemissive? A theoretical analysis of the phosphorescence efficiencies of cyclometalated platinum(II) complexes.

    PubMed

    Tong, Glenna So-Ming; Che, Chi-Ming

    2009-07-20

    We herein report a theoretical analysis based on a density functional theory/time-dependent density functional theory (DFT/TDDFT) approach to understand the different phosphorescence efficiencies of a family of cyclometalated platinum(II) complexes: [Pt(NCN)Cl] (1; NCN = 1,3-bis(2-pyridyl)phenyl(-)), [Pt(CNN)Cl] (2; CNN = 6-phenyl-2,2'-bipyridyl(-)), [Pt(CNC)(CNPh)] (3; CNC = 2,6-diphenylpyridyl(2-)), [Pt(R-CNN)Cl] (4; R-CNN = 3-(6'-(2''-naphthyl)-2'-pyridyl)isoquinolinyl(-)), and [Pt(R-CNC)(CNPh)] (5; R-CNC = 2,6-bis(2'-naphthyl)pyridyl(2-)). By considering both the spin-orbit coupling (SOC) and the electronic structures of these complexes at their respective optimized singlet ground (S(0)) and first triplet (T(opt)(1)) excited states, we were able to rationalize the experimental findings that 1) 1 is a strong emitter while its isomer 2 is only weakly emissive in CH(2)Cl(2) solution at room temperature; 2) although the cyclometalated ligand of 3 has a higher ligand-field strength than that of 1, 3 is nonemissive in CH(2)Cl(2) solution at 298 K; and 3) extension of pi conjugation at the lateral aryl rings of the cyclometalated ligands of 2 and 3 to give 4 and 5, respectively, leads to increased emission quantum yields under the same conditions. We found that Jahn-Teller and pseudo-Jahn-Teller effects are operative in complexes 2 and 3, respectively, on going from the optimized S(0) ground state to the optimized T(opt)(1) excited state, and thus lead to large excited-state structural distortions and hence fast nonradiative decay. Furthermore, a strong-field ligand may push the two different occupied d orbitals so far apart that the SOC effect is small and the radiative decay rate is slow. This work is an example of electronic-structure-driven tuning of the phosphorescence efficiency, and the DFT/TDDFT approach is demonstrated to be a versatile tool for the design of phosphorescent materials with target characteristics. PMID:19544517

  12. C6 Peptide-Based Multiplex Phosphorescence Analysis (PHOSPHAN) for Serologic Confirmation of Lyme Borreliosis

    PubMed Central

    Pomelova, Vera G.; Korenberg, Edward I.

    2015-01-01

    Background A single-tier immunoassay using the C6 peptide of VlsE (C6) from Borrelia burgdorferi sensu stricto (Bb) has been proposed as a potential alternative to conventional two-tier testing for the serologic diagnosis of Lyme disease in the United States and Europe. Objective To evaluate the performance of C6 peptide based multiplex Phosphorescence Analysis (PHOSPHAN) for the serologic confirmation of Lyme borreliosis (LB) in Russian patients. Methods Serum samples (n = 351) were collected from 146 patients with erythema migrans (EM); samples from 131 of these patients were taken several times prior to treatment and at different stages of recovery. The control group consisted of 197 healthy blood donors and 31 patients with other diseases, all from the same highly endemic region of Russia. All samples were analyzed by PHOSPHAN for IgM and IgG to Bb C6, recombinant OspC and VlsE proteins, and C6 peptides from B. garinii and B. afzelii. Results IgM and IgG to Bb C6 were identified in 43 and 95 out of 131 patients (32.8 and 72.5%, respectively); seroconversion of IgM antibodies was observed in about half of the patients (51.2%), and of IgG antibodies, in almost all of them (88.4%). Additional detection of OspC-IgM and VlsE-IgM or IgG to C6 from B. garinii or B. afzelii did not contribute significantly to the overall sensitivity of the multiplex immunoassay. Conclusions The multiplex phosphorescence immunoassay is a promising method for simultaneously revealing the spectrum of antibodies to several Borrelia antigens. Detection of IgM and IgG to Bb C6 in the sera of EM patients provides effective serologic confirmation of LB and, with high probability, indicates an active infection process. PMID:26147441

  13. Analysis of microsecond relaxation dynamics of proteins and viscous media by recording relaxation shifts of phosphorescence spectra

    NASA Astrophysics Data System (ADS)

    Barinov, A. V.; Goryachev, N. S.; Kotel'nikov, A. I.

    2011-05-01

    We studied the low-temperature dynamics of the Stokes shift of instantaneous phosphorescence spectra of eosin and eosin maleimide covalently bound to hemoglobin in a 66% v/v aqueous solution of glycerol under conditions of pulsed excitation. The kinetics of the Stokes shifts are described using the Cole-Davidson distribution function. From the experimental data, we obtain the parameters τ0 and β, which describe the Cole-Davidson distribution. Values of τ0 and β agree well with data obtained by other methods, and these parameters can be used to describe electron transfer reactions in polar solutions and proteins.

  14. The energies and kinetics of triplet carotenoids in the LH2 antenna complexes as determined by phosphorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Rondonuwu, Ferdy S.; Taguchi, Tokio; Fujii, Ritsuko; Yokoyama, Kyosuke; Koyama, Yasushi; Watanabe, Yasutaka

    2004-01-01

    The triplet (T 1) states of carotenoids (Cars) and bacteriochlorophyll a (BChl) in the LH2 antenna complexes from Rhodobacter sphaeroides G1C, Rba. sphaeroides 2.4.1 and Rhodospirillum molischianum, containing neurosporene, spheroidene and lycopene, respectively, were examined by stationary-state and time-resolved phosphorescence spectroscopy. The T 1 energies of Cars were determined, irrespective of the Car or BChl excitation, to be 7030 cm -1 (neurosporene), 6920 cm -1 (spheroidene) and 6870 cm -1 (lycopene), respectively, whereas that of BChl to be 7590 cm -1. In the Rba. sphaeroides G1C, the Car and BChl triplet states decayed in similar time constant as the BChl Q y state, a fact which indicates that the pair of triplet states decays through the triplet-triplet annihilation mechanism.

  15. Time-resolved room temperature protein phosphorescence: nonexponential decay from single emitting tryptophans.

    PubMed Central

    Schlyer, B D; Schauerte, J A; Steel, D G; Gafni, A

    1994-01-01

    The single room temperature phosphorescent (RTP) residue of horse liver alcohol dehydrogenase (LADH). Trp-314, and of alkaline phosphatase (AP), Trp-109, show nonexponential phosphorescence decays when the data are collected to a high degree of precision. Using the maximum entropy method (MEM) for the analysis of these decays, it is shown that AP phosphorescence decay is dominated by a single Gaussian distribution, whereas for LADH the data reveal two amplitude packets. The lifetime-normalized width of the MEM distribution for both proteins is larger than that obtained for model monoexponential chromophores (e.g., terbium in water and pyrene in cyclohexane). Experiments show that the nonexponential decay is fundamental; i.e., an intrinsic property of the pure protein. Because phosphorescence reports on the state of the emitting chromophore, such nonexponential behavior could be caused by the presence of excited state reactions. However, it is also well known that the phosphorescence lifetime of a tryptophan residue is strongly dependent on the local flexibility around the indole moiety. Hence, the nonexponential phosphorescence decay may also be caused by the presence of at least two states of different local rigidity (in the vicinity of the phosphorescing tryptophan) corresponding to different ground state conformers. The observation that in the chemically homogeneous LADH sample the phosphorescence decay kinetics depends on the excitation wavelength further supports this latter interpretation. This dependence is caused by the wavelength-selective excitation of Trp-314 in a subensemble of LADH molecules with differing hydrophobic and rigid environments. With this interpretation, the data show that interconversion of these states occurs on a time scale long compared with the phosphorescence decay (0.1-1.0 s). Further experiments reveal that with increasing temperature the distributed phosphorescence decay rates for both AP and LADH broaden, thus indicating that

  16. Synthesis, characterization and theoretical analysis on a oxygen-sensing phosphorescent copper(I) complex

    NASA Astrophysics Data System (ADS)

    Li, Zheng

    2011-10-01

    In this paper, we report the synthesis, crystal structure, photophysical properties, and electronic nature of a phosphorescent Cu(I) complex of [Cu(Phen-Ph)(PPh 3) 2]BF 4, where Phen-Ph and PPh 3 stand for 2-phenyl-1H-imidazo[4,5-f][1,10]phenanthroline and triphenylphosphine, respectively. [Cu(Phen-Ph)(PPh 3) 2]BF 4 renders a yellow phosphorescence peaking at 553 nm, with a long excited state lifetime of 13.2 μs under N 2 atmosphere. Density functional calculation reveals that the emission comes from a triplet metal-to-ligand-charge-transfer excited state. We electrospun composite nanofibers of [Cu(Phen-Ph)(PPh 3) 2]BF 4 and polystyrene (PS), hoping to explore the possibility of using the composite nanofibers as an oxygen sensing material. The finally obtained samples with average diameter of ˜400 nm exhibit a maximum sensitivity of 6.52 towards molecular oxygen with short response time of 15 s due to the large surface-area-to-volume ratio of nanofibrous membranes. No photobleaching is detected in these samples.

  17. Analysis of Crystallization Kinetics

    NASA Technical Reports Server (NTRS)

    Kelton, Kenneth F.

    1997-01-01

    A realistic computer model for polymorphic crystallization (i.e., initial and final phases with identical compositions), which includes time-dependent nucleation and cluster-size-dependent growth rates, is developed and tested by fits to experimental data. Model calculations are used to assess the validity of two of the more common approaches for the analysis of crystallization data. The effects of particle size on transformation kinetics, important for the crystallization of many systems of limited dimension including thin films, fine powders, and nanoparticles, are examined.

  18. Singlet molecular oxygen in photobiochemical systems: IR phosphorescence studies.

    PubMed

    Krasnovsky, A A

    1998-01-01

    Singlet molecular oxygen (1O2) is one of the most active intermediates involved in photosensitized oxygenation reactions in chemical and biological systems. Deactivation of singlet oxygen is accompanied by infrared phosphorescence (1270 nm) which is widely employed for 1O2 detection and study. This review considers techniques for phosphorescence detection, phosphorescence spectra, quantum yields and kinetics under laser excitation, the radiative and real 1O2 lifetimes in organic solvents and water, 1O2 quenching by biomolecules, and estimation of singlet oxygen lifetimes, diffusion lengths and phosphorescence quantum yields in blood plasma, cell cytoplasm, erythrocyte ghosts, retinal rod outer segments and chloroplast thylakoids. The experiments devoted to 1O2 phosphorescence detection in photosensitizer-containing living cells are discussed in detail. Information reviewed is important for understanding the mechanisms of photodestruction in biological systems and various applied problems of photobiology and photomedicine. PMID:10379647

  19. Characterization of F-Actin Tryptophan Phosphorescence in the Presence and Absence of Tryptophan-Free Myosin Motor Domain

    PubMed Central

    Bódis, Emöke; Strambini, Giovanni B.; Gonnelli, Margherita; Málnási-Csizmadia, András; Somogyi, Béla

    2004-01-01

    The effect of binding the Trp-free motor domain mutant of Dictyostelium discoideum, rabbit skeletal muscle myosin S1, and tropomyosin on the dynamics and conformation of actin filaments was characterized by an analysis of steady-state tryptophan phosphorescence spectra and phosphorescence decay kinetics over a temperature range of 140–293 K. The binding of the Trp-free motor domain mutant of D. discoideum to actin caused red shifts in the phosphorescence spectrum of two internal Trp residues of actin and affected the intrinsic lifetime of each emitter, decreasing by roughly twofold the short phosphorescence lifetime components (τ1 and τ2) and increasing by ∼20% the longest component (τ3). The alteration of actin phosphorescence by the motor protein suggests that i), structural changes occur deep down in the core of actin and that ii), subtle changes in conformation appear also on the surface but in regions distant from the motor domain binding site. When actin formed complexes with skeletal S1, an extra phosphorescence lifetime component appeared (τ4, twice as long as τ3) in the phosphorescence decay that is absent in the isolated proteins. The lack of this extra component in the analogous actin-Trp-free motor domain mutant of D. discoideum complex suggests that it should be assigned to Trps in S1 that in the complex attain a more compact local structure. Our data indicated that the binding of tropomyosin to actin filaments had no effect on the structure or flexibility of actin observable by this technique. PMID:15298917

  20. Using phosphorescence as a fingerprint for the Hope and other blue diamonds

    NASA Astrophysics Data System (ADS)

    Eaton-Magaña, Sally; Post, Jeffrey E.; Heaney, Peter J.; Freitas, Jaime; Klein, Paul; Walters, Roy; Butler, James E.

    2008-01-01

    Sixty-seven natural blue diamonds, including the two largestsuch gemstones known (the Hope and the Blue Heart), were probedby ultraviolet radiation, and their luminescence was analyzedusing a novel spectrometer system. Prior to this study, thefiery red phosphorescence of the Hope Diamond was regarded asquite rare compared to greenish-blue phosphorescence. However,our results demonstrated that virtually all blue diamonds phosphoresceat 660 nm (orange-red) but that this emission often is obscuredby a concomitant luminescence at 500 nm (green-blue). Althoughboth bands were nearly always present, the relative intensitiesof these emissions and their decay kinetics varied dramatically.Consequently, phosphorescence analysis provides a method todiscriminate among individual blue diamonds. Treated and syntheticblue diamonds showed behavior distinct from natural stones.Temperature-dependent phosphorescence revealed that the 660nm emission has an activation energy of 0.4 eV, close to the0.37 eV acceptor energy for boron, suggesting that the phosphorescenceis caused by donor-acceptor pair recombination.

  1. Time-resolved circularly polarized protein phosphorescence.

    PubMed Central

    Schauerte, J A; Steel, D G; Gafni, A

    1992-01-01

    The existence of circular polarization in room-temperature protein phosphorescence is demonstrated, and time-resolved circularly polarized phosphorescence (TR-CPP) is used to characterize unique tryptophan environments in multitryptophan proteins. Circularly polarized luminescence studies provide information regarding the excited state chirality of a lumiphore which can be used to extract sensitive structural information. It is shown by time resolving the circular polarization that it is possible to correlate the excited state chirality with unique decay components in a multiexponential phosphorescence decay profile. The present study presents a concurrent analysis of room-temperature time-resolved phosphorescence and TR-CPP of bacterial glucose-6-phosphate dehydrogenase as well as those of horse liver alcohol dehydrogenase. Only one of the two tryptophan residues per subunit of dimeric alcohol dehydrogenase is believed to phosphorescence, while the dimeric glucose-6-phosphate dehydrogenase has eight tryptophan residues per subunit and shows a corresponding complexity in its phosphorescence decay profile. The anisotropy factor [g(em) = delta I/(Itotal/2); delta I = Ileft circular-Iright circular] for alcohol dehydrogenase is time independent, suggesting a unique excited state chirality. The phosphorescence decay of glucose-6-phosphate dehydrogenase can be well fitted with four exponential terms of 4, 23, 76, and 142 msec, and the TR-CPP of this enzyme shows a strong time dependence that can be resolved into four individual time-independent anisotropy factors of -4.0, -2.1, +6.5, and +6.9 (x10(-3)), each respectively associated with one of the four lifetime components. These results demonstrate how the use of TR-CPP can facilitate the study of proteins with multiple lumiphores. PMID:1438204

  2. Applications of room-temperature tryptophan phosphorescence to the study of protein structure and dynamics

    NASA Astrophysics Data System (ADS)

    Mersol, Joseph V.; Gershenson, Anne; Steel, Duncan G.; Gafni, Ari

    1992-04-01

    Most proteins are capable of emitting tryptophan phosphorescence at room temperature in deoxygenated aqueous solutions. Like fluorescence, phosphorescence intensities and lifetimes are useful for studying protein structure. Phosphorescence differs from fluorescence, however, in several ways. Phosphorescence occurs on a time-scale of msec-sec, while fluorescence decays in nanoseconds. Second, the phosphorescence decay of a single tryptophan is nearly monoexponential, making assignments of decay components to individual residues possible. Finally, phosphorescence is a more sensitive probe of the local tryptophan environment, as the lifetime can change by orders of magnitude depending on site rigidity and other factors. The authors describe applications of phosphorescence spectroscopy for protein study. In particular, tryptophan phosphorescence quenching by resonance energy transfer to freely diffusing acceptors was used to show that Trp 109 is the origin of phosphorescence in E. coli alkaline phosphatase (AP). By following changes in the emissive lifetime of this deeply buried residue, the presence of an enzymatically active but structurally modified intermediate state is detected in the unfolding of AP in high concentrations of Guanidine:HCl, and followed the kinetics of the decline in activity upon further unfolding. In addition to the new understanding of AP, the results of these experiments show that room temperature tryptophan phosphorescence is a powerful tool for the study of proteins.

  3. Kinetic parameters from thermogravimetric analysis

    NASA Technical Reports Server (NTRS)

    Kiefer, Richard L.

    1993-01-01

    High performance polymeric materials are finding increased use in aerospace applications. Proposed high speed aircraft will require materials to withstand high temperatures in an oxidative atmosphere for long periods of time. It is essential that accurate estimates be made of the performance of these materials at the given conditions of temperature and time. Temperatures of 350 F (177 C) and times of 60,000 to 100,000 hours are anticipated. In order to survey a large number of high performance polymeric materials on a reasonable time scale, some form of accelerated testing must be performed. A knowledge of the rate of a process can be used to predict the lifetime of that process. Thermogravimetric analysis (TGA) has frequently been used to determine kinetic information for degradation reactions in polymeric materials. Flynn and Wall studied a number of methods for using TGA experiments to determine kinetic information in polymer reactions. Kinetic parameters, such as the apparent activation energy and the frequency factor, can be determined in such experiments. Recently, researchers at the McDonnell Douglas Research Laboratory suggested that a graph of the logarithm of the frequency factor against the apparent activation energy can be used to predict long-term thermo-oxidative stability for polymeric materials. Such a graph has been called a kinetic map. In this study, thermogravimetric analyses were performed in air to study the thermo-oxidative degradation of several high performance polymers and to plot their kinetic parameters on a kinetic map.

  4. Phosphorescent perylene imides.

    PubMed

    Ventura, Barbara; Langhals, Heinz; Böck, Bernd; Flamigni, Lucia

    2012-05-01

    Asymmetrically substituted perylene imide derivatives PIa and PIx display phosphorescence in glassy matrices at 77 K. The lifetime is 49.0 ms for PIa and 13.5 ms for PIx. The triplet energy is 1.79 eV for PIa and 1.68 eV for PIx as confirmed by sensitization experiments of the C(60) triplet. PMID:22436977

  5. Study of teeth phosphorescence detection technique

    NASA Astrophysics Data System (ADS)

    Cai, De-Fang; Wang, Shui-ping; Yang, Zhen-jiang; An, Yuying; Huang, Li-Zi; Liang, Yan

    1995-05-01

    On the basis of research and analysis into optical properties of teeth, this paper introduces the techniques to transform teeth phosphorescence excited by ultraviolet light into electric signals and following steps for data collection, analysis and processing. Also presented are the methods to diagnose pulp-vitality, decayed teeth, and, especially, infant caries and pre-caries diseases. By measurement of a tooth's temperature, other stomatic illnesses can be diagnosed.

  6. Direct phosphorescent detection of primary event of photodynamic action

    NASA Astrophysics Data System (ADS)

    Losev, Anatoly P.; Knukshto, Valentin N.; Zhuravkin, Ivan N.

    1994-07-01

    Highly phosphorescent photosensitizer Pd-tetra (o-methoxy-p-sulfo) phenyl porphyrin (Pd-MSPP) was used to follow the primary events of photodynamic action - quenching of triplet states by free oxygen in different systems: water solutions of proteins, cells and tissues in vivo and in vitro. The photosensitizer forms complexes with proteins in solutions and biosystems showing remarkable hypsochromic shifts of band and an increase of the quantum yield and lifetime of phosphorescence at the binding to proteins. In absence of oxygen the lifetime of phosphorescence is almost single exponential, and depends on the energy of lowest triplet state of the sensitizer. The photochemical quenching of the triplets by cell components is negligible. In presence of free oxygen the quenching of the sensitizer triplets takes place. The emission spectrum of singlet oxygen with maximum 1271 nm was recorded in water protein solutions and quantum yield of sensitized luminescence was measured. In the systems studied, oxygen consumption was detected and oxygen concentration was estimated in the course of photodynamics by an increase in photosensitizer phosphorescence lifetime, using laser flash photolysis technique. At least two exponential kinetics of the phosphorescence decay shows that the distribution of the free oxygen is not uniform in tissues.

  7. Near-infrared phosphorescent metalloporphyrins

    NASA Astrophysics Data System (ADS)

    Savitsky, Alexander P.; Savitskaja, Anna V.; Lukyanets, Eugeny A.; Dashkevich, Svetlana N.; Makarova, Elena A.

    1997-05-01

    In the near infrared range fluorescent background signals are very small and it is possible to reach high sensitivity in the detection of labeled compounds. With phosphorescent compounds as labels, it is possible, firstly, to add microsecond temporal resolution for background rejection for NIR labels and thus to improve sensitivity. Secondly, compounds that are phosphorescent in NIR are very promising for oxygen life-time imaging of living tissue. Several different groups of palladium and zinc porphyrins and phthalocyanins (meso-tetraphenyl)-(tetrabezo)-porphyrin, meso-tetraphenyl-(tetranaphtho)-porphyrin, tetraazaporphyrins, phthalocyanines) which possess strong absorbance in NIR range were synthesized and analyzed for room temperature phosphorescent properties in organic solvents and in water solution. Among them only Pd- tetrabenzo-(tetraphenyl) porphyrins have high quantum efficiency (10%) with the life-time 328 us and excitation 630 nm, emission 800 nm. In the NIR spectral range water strongly quenches the long-lived phosphorescence of metalloporphyrins. Metalloporphyrins can form inclusion complex with cyclodextrines in which water quenching is almost eliminated. Quantum efficiency and life-time in cyclodextrin solutions are the same as in organic solvents. We analyzed the influence of three different cyclodextrines (alfa, beta and gamma) on the phosphorescent properties of Pd-porphyrins and highest enhancement of the phosphorescence signal occurred for hydroxypropilated (Beta) -cyclodextrin.

  8. Nonexponential decay of room-temperature phosphorescence: evidence for several slowly interconverting or static protein conformers

    NASA Astrophysics Data System (ADS)

    Schlyer, Bruce D.; Schauerte, Joseph A.; Steel, Duncan G.; Gafni, Ari

    1994-08-01

    The phosphorescence decays of horse liver alcohol dehydrogenase (LADH) Trp314, E. coli alkaline phosphatase (AP) Trp109, and B. stearothermophilus phosphofructokinase (PFK) Trp179 are decidedly nonexponential at room temperature. When the data is analyzed using the maximum entropy method (MEM) the AP phosphorescence decay is dominated by a single gaussian distribution while for LADH and PFK the data reveals at least two amplitude packets. The MEM lifetime-normalized widths for these proteins are significantly larger than obtained for the model monoexponential chromophore terbium suggesting that the complex kinetics is intrinsic to the protein. Since the phosphorescence lifetime of a tryptophan residue is related to its microviscosity, the nonexponential decay behavior may imply that the phosphorescing tryptophan residue in each of these samples is best described as existing in at least two states of different local rigidity which interconvert more slowly than the time scale of the phosphorescence decay (0.1 to 1.0 sec). The existence of multiple, long-lived, conformers is further supported by the observation that the phosphorescence lifetime in the LADH sample is excitation wavelength dependent.

  9. Stable blue phosphorescent organic light emitting devices

    SciTech Connect

    Forrest, Stephen R.; Thompson, Mark; Giebink, Noel

    2014-08-26

    Novel combination of materials and device architectures for organic light emitting devices is provided. An organic light emitting device, is provided, having an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer includes a host and a phosphorescent emissive dopant having a peak emissive wavelength less than 500 nm, and a radiative phosphorescent lifetime less than 1 microsecond. Preferably, the phosphorescent emissive dopant includes a ligand having a carbazole group.

  10. Combined fluorescence and phosphorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    Shcheslavskiy, V. I.; Neubauer, A.; Bukowiecki, R.; Dinter, F.; Becker, W.

    2016-02-01

    We present a lifetime imaging technique that simultaneously records the fluorescence and phosphorescence lifetime images in confocal laser scanning systems. It is based on modulating a high-frequency pulsed laser synchronously with the pixel clock of the scanner, and recording the fluorescence and phosphorescence signals by multidimensional time-correlated single photon counting board. We demonstrate our technique on the recording of the fluorescence/phosphorescence lifetime images of human embryonic kidney cells at different environmental conditions.

  11. Phosphorescent imaging of oxygen gradients in tissues

    NASA Astrophysics Data System (ADS)

    Swanson, Curtis J.; Kitakis, F.

    1995-08-01

    Until recently, the ability to measure the changing oxygen gradients in perfused tissues in response to metabolic demand, has been limited to point-measurements and/or averaged A-V oxygen differences during perfusion using oxygen electrodes. With the recent introduction of novel phosphorescent probes specifically quenched by oxygen, the ability to spacially map oxygen gradients in real-time may offer new insights into the dynamics of microvascular design and supply. Accordingly, this paper provides initial image data on Langendorff perfused rat hearts wherein the relative change in phosphorescent intensity of Pd-meso-tetra(4- carboxyphenyl)phorphine (2micrometers ) as the reporter probe, is quantitatively related to spacial oxygen gradients as seen on the left-ventricle during changing gassing conditions. Digital image analysis (frame advance), after proper calibration and alignment, provides images which can be usefully interpreted. Clinical applications of such emerging technologies could have wide-spread diagnostic applications not only as applied to the coronary bed, but other tissue surfaces displaying various degrees of aschemia and/or hypoxia.

  12. Phosphorescent Nanocluster Light-Emitting Diodes.

    PubMed

    Kuttipillai, Padmanaban S; Zhao, Yimu; Traverse, Christopher J; Staples, Richard J; Levine, Benjamin G; Lunt, Richard R

    2016-01-13

    Devices utilizing an entirely new class of earth abundant, inexpensive phosphorescent emitters based on metal-halide nanoclusters are reported. Light-emitting diodes with tunable performance are demonstrated by varying cation substitution to these nanoclusters. Theoretical calculations provide insight about the nature of the phosphorescent emitting states, which involves a strong pseudo-Jahn-Teller distortion. PMID:26568044

  13. Integrated safety analysis based on spatial kinetics

    SciTech Connect

    Finnemann, H.; Drescher, G.

    1994-12-31

    The continuing progress in computer technology, characterized by the ever-increasing calculational speed of various computer architectures, enables the direct coupling of up to recently separate code systems. As a consequence different areas of analysis like reactor physics, core thermal hydraulics, and plant dynamics can be integrated to increase the accuracy of simulation over that obtained from imposing conservative boundary conditions at the interfaces. The coupling of thermal-hydraulic subchannel analysis with nodal space-time kinetics calculations is an important step toward an even more extensive integration of complex code systems. In this paper we present some results of a transient departure from nucleate boiling ratio (DNBR) calculation integrated in the nodal kinetics code PANBOX.

  14. Kinetic analysis of papaya proteinase omega.

    PubMed

    Sumner, I G; Vaughan, A; Eisenthal, R; Pickersgill, R W; Owen, A J; Goodenough, P W

    1993-08-01

    Papaya proteinase omega (pp omega) has been purified from dried latex both by immunoaffinity and traditional methods. Kinetic analysis revealed that (1), the pp omega-catalysed hydrolysis of N-benzoyl-L-arginine p-nitroanilide (BApNA) has a lower specificity (kcat/Km) than the same reaction catalysed by papain; (2), the pp omega-catalysed hydrolysis of a tripeptide substrate having phenylalanine at the second position (S2-site) showed a more similar specificity to that catalysed by papain; (3), the significant difference between the two enzymes is that steady state kinetics with both L-BApNA and a tripeptide enables the identification in pp omega of other ionizations affecting binding. The active sites of papain and pp omega can therefore be distinguished by pH-dependence of kcat/Km. PMID:8393709

  15. Kinetic Analysis of Protein Folding Lattice Models

    NASA Astrophysics Data System (ADS)

    Chen, Hu; Zhou, Xin; Liaw, Chih Young; Koh, Chan Ghee

    Based on two-dimensional square lattice models of proteins, the relation between folding time and temperature is studied by Monte Carlo simulation. The results can be represented by a kinetic model with three states — random coil, molten globule, and native state. The folding process is composed of nonspecific collapse and final searching for the native state. At high temperature, it is easy to escape from local traps in the folding process. With decreasing temperature, because of the trapping in local traps, the final searching speed decreases. Then the folding shows chevron rollover. Through the analysis of the fitted parameters of the kinetic model, it is found that the main difference between the energy landscapes of the HP model and the Go model is that the number of local minima of the Go model is less than that of the HP model.

  16. Vacuum Nanohole Array Embedded Phosphorescent Organic Light Emitting Diodes

    PubMed Central

    Jeon, Sohee; Lee, Jeong-Hwan; Jeong, Jun-Ho; Song, Young Seok; Moon, Chang-Ki; Kim, Jang-Joo; Youn, Jae Ryoun

    2015-01-01

    Light extraction from organic light-emitting diodes that utilize phosphorescent materials has an internal efficiency of 100% but is limited by an external quantum efficiency (EQE) of 30%. In this study, extremely high-efficiency organic light emitting diodes (OLEDs) with an EQE of greater than 50% and low roll-off were produced by inserting a vacuum nanohole array (VNHA) into phosphorescent OLEDs (PhOLEDs). The resultant extraction enhancement was quantified in terms of EQE by comparing experimentally measured results with those produced from optical modeling analysis, which assumes the near-perfect electric characteristics of the device. A comparison of the experimental data and optical modeling results indicated that the VNHA extracts the entire waveguide loss into the air. The EQE obtained in this study is the highest value obtained to date for bottom-emitting OLEDs. PMID:25732061

  17. Host compounds for red phosphorescent OLEDs

    SciTech Connect

    Xia, Chuanjun; Cheon, Kwang -Ohk

    2015-08-25

    Novel compounds containing a triphenylene moiety linked to an .alpha..beta. connected binaphthyl ring system are provided. These compounds have surprisingly good solubility in organic solvents and are useful as host compounds in red phosphorescent OLEDs.

  18. Kinetic and thermal analysis of polymeric materials

    NASA Astrophysics Data System (ADS)

    Peterson, Jeffery David

    2002-09-01

    Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) techniques have been used to study the thermal degradation of polymeric materials. These polymers were subjected to a variety of heating programs as well as numerous types of atmospheric conditions. The results from these analyses were then used to determine activation energies as a function of an extent of reaction variable, alpha. This technique, known as the model-free isoconversional method, allows for changes in energies to occur as decomposition pathways change. This produces a more realistic means of observing complex kinetic schemes and is a better representation of kinetic analysis. Chapters 1 and 2 provide introductory backgrounds into both polymer chemistry and the isoconversional analysis technique, respectively. A brief description of the research goals and motivations is also discussed. Thermal analysis of pure polystyrene (PS), polyethylene (PE), and polypropylene (PP) samples are presented in Chapter 3. The obtained activation energy dependencies are interpreted in terms of degradation mechanisms. These mechanisms vary greatly according to the gaseous environment in which they were analyzed. The thermal degradation of poly(methyl methacrylate) (PMMA) in both pure nitrogen and in various oxygen-containing atmospheres is discussed in Chapter 4. It was observed that oxygen exhibits a stabilizing effect on PMMA decomposition. Activation energies for these processes, and their mechanistic interpretations, will also be presented. Chapter 5 builds off the understanding gained in Chapter 4 by investigating the char-forming effects of silica gel and potassium carbonate additives on PMMA. These additives are known for their fire-resistant properties when combined in a 3:1 silica gel to potassium carbonate ratio. The effects of these additives, and their respective ratio amounts, on PMMA char formation are reported. Chapters 6 and 7 conclude the dissertation by looking at the thermal

  19. Kinetic Analysis of tRNA Methylfransferases

    PubMed Central

    Hou, Ya-Ming; Masuda, Isao

    2016-01-01

    Transfer RNA (tRNA) molecules contain many chemical modifications that are introduced after transcription. A major form of these modifications is methyl transfer to bases and backbone groups, using S-adenosyl methionine (AdoMet) as the methyl donor. Each methylation confers a specific advantage to tRNA in structure or in function. A remarkable methylation is to the G37 base on the 3' side of the anticodon to generate m1G37-tRNA, which suppresses frameshift errors during protein synthesis and is therefore essential for cell growth in all three domains of life. This methylation is catalyzed by TrmD in bacteria and by Trm5 in eukaryotes and archaea. Although TrmD and Trm5 catalyze the same methylation reaction, kinetic analysis reveal that these two enzymes are unrelated to each other and are distinct in their reaction mechanism. This chapter summarizes the kinetic assays that are used to reveal the distinction between TrmD and Trm5. Three types of assays are described, the steady-state, the pre-steady-state, and the single turnover assays, which collectively provide the basis for mechanistic investigation of AdoMet-dependent methyl transfer reactions. PMID:26253967

  20. Updated Chemical Kinetics and Sensitivity Analysis Code

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan

    2005-01-01

    An updated version of the General Chemical Kinetics and Sensitivity Analysis (LSENS) computer code has become available. A prior version of LSENS was described in "Program Helps to Determine Chemical-Reaction Mechanisms" (LEW-15758), NASA Tech Briefs, Vol. 19, No. 5 (May 1995), page 66. To recapitulate: LSENS solves complex, homogeneous, gas-phase, chemical-kinetics problems (e.g., combustion of fuels) that are represented by sets of many coupled, nonlinear, first-order ordinary differential equations. LSENS has been designed for flexibility, convenience, and computational efficiency. The present version of LSENS incorporates mathematical models for (1) a static system; (2) steady, one-dimensional inviscid flow; (3) reaction behind an incident shock wave, including boundary layer correction; (4) a perfectly stirred reactor; and (5) a perfectly stirred reactor followed by a plug-flow reactor. In addition, LSENS can compute equilibrium properties for the following assigned states: enthalpy and pressure, temperature and pressure, internal energy and volume, and temperature and volume. For static and one-dimensional-flow problems, including those behind an incident shock wave and following a perfectly stirred reactor calculation, LSENS can compute sensitivity coefficients of dependent variables and their derivatives, with respect to the initial values of dependent variables and/or the rate-coefficient parameters of the chemical reactions.

  1. Reaction kinetic analysis of reactor surveillance data

    NASA Astrophysics Data System (ADS)

    Yoshiie, T.; Sato, K.; Xu, Q.; Nagai, Y.

    2015-06-01

    In reactor pressure vessel surveillance data, it was found that the concentration of matrix defects was very low even after nearly 40 years of operation, though a large number of precipitates existed. In this paper, defect structures obtained from surveillance data of A533B (high Cu concentration) were simulated using reaction kinetic analysis with 11 rate equations. The coefficients used in the equations were quite different from those obtained by fitting a Fe-0.6 wt%Cu alloy irradiated by the Kyoto University Reactor. The difference was mainly caused by alloying elements in A533B, and the effect of alloying elements was extracted. The same code was applied to low-Cu A533B irradiated with high irradiation damage rate, and the formation of voids was correctly simulated.

  2. Kinetic analysis of complex reactions using FEMLAB

    SciTech Connect

    Cao, Chunshe; Wang, Yong

    2005-06-07

    A finite element method software FEMALB has been implemented to the kinetic analysis of complex reaction systems. The established protocol provides fast solutions to the coupled differential-algebraic equations. It shows significant advantages over the conventional coding process with the standard implicit Runge-Kutta (IRK) method. The accuracy and high efficiency have been demonstrated in the simulation of the reaction processes such as glucose/fructose hydrogenation and catalytic cracking of gasoil. As model validation, the numerical results showed satisfactory agreement with the exact solutions. With the powerful capability of solving large matrixes of differential equations (both ODE and PDE) with nonlinear algebraic constrains, such an algorithm has greatly reduced the coding labor in reaction mechanistic studies and provided a unique tool in reactor design and optimization.

  3. Simple determination of the herbicide napropamide in water and soil samples by room temperature phosphorescence.

    PubMed

    Salinas-Castillo, Alfonso; Fernández-Sanchez, Jorge Fernando; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto

    2005-08-01

    A new, simple, rapid and selective phosphorimetric method for determining napropamide is proposed which demonstrates the applicability of heavy-atom-induced room-temperature phosphorescence for analyzing pesticides in real samples. The phosphorescence signals are a consequence of intermolecular protection and are found exclusively with analytes in the presence of heavy atom salts. Sodium sulfite was used as an oxygen scavenger to minimize room-temperature phosphorescence quenching. The determination was performed in 1 M potassium iodide and 6 mM sodium sulfite at 20 degrees C. The phosphorescence intensity was measured at 520 nm with excitation at 290 nm. Phosphorescence was easily developed, with a linear relation to concentration between 3.2 and 600.0 ng ml(-1) and a detection limit of 3.2 ng ml(-1). The method has been successfully applied to the analysis of napropamide in water and soil samples and an exhaustive interference study was also carried out to display the selectivity of the proposed method. PMID:15838936

  4. Phosphorescent Sensor for Biological Mobile Zinc

    PubMed Central

    You, Youngmin; Lee, Sumin; Kim, Taehee; Ohkubo, Kei; Chae, Weon-Sik; Fukuzumi, Shunichi; Jhon, Gil-Ja; Nam, Wonwoo; Lippard, Stephen J.

    2011-01-01

    A new phosphorescent zinc sensor (ZIrF) was constructed based on an Ir(III) complex bearing two 2-(2,4-difluorophenyl)pyridine (dfppy) cyclometalating ligands and a neutral 1,10-phenanthroline (phen) ligand. A zinc-specific di(2-picolyl)amino (DPA) receptor was introduced at the 4-position of the phen ligand via a methylene linker. The cationic Ir(III) complex exhibited dual phosphorescence bands in CH3CN solutions originating from blue and yellow emission of the dfppy and phen ligands, respectively. Zinc coordination selectively enhanced the latter, affording a phosphorescence ratiometric response. Electrochemical techniques, quantum chemical calculations, and steady-state and femtosecond spectroscopy were employed to establish a photophysical mechanism for this phosphorescence response. The studies revealed that zinc coordination perturbs nonemissive processes of photoinduced electron transfer (PeT) and intraligand charge transfer (ILCT) transition occurring between DPA and phen. ZIrF can detect zinc ions in a reversible and selective manner in buffered solution (pH 7.0, 25 mM PIPES) with Kd = 11 nM and pKa = 4.16. Enhanced signal-to-noise ratios were achieved by time-gated acquisition of long-lived phosphorescence signals. The sensor was applied to image biological free zinc ions in live A549 cells by confocal laser scanning microscopy. A fluorescence lifetime imaging microscope (FLIM) detected an increase in photoluminescence lifetime for zinc-treated A549 cells as compared to controls. ZIrF is the first successful phosphorescent sensor that detects zinc ions in biological samples. PMID:22023085

  5. Phosphorescent zinc sulfide is a nonradioactive alternative for marking autoradiograms.

    PubMed

    Seto, D; Rohrabacher, C; Seto, J; Hood, L

    1990-08-15

    Phosphorescent zinc sulfide is a nonradioactive alternative for making orientation and identification markings on autoradiograms. Measurements with a luminometer show that light emission is linear with respect to ZnS concentration. A minimum activation time of 5 s has been determined, using an incandescent lamp as a light source. Emission decay kinetics show light emissions reached background levels within minutes, depending on the ZnS concentration. This time period is sufficient for X-ray films to be permanently marked. Because of its efficiency and nontoxicity, this autoradiogram marker could be extremely useful in many protocols, including high-throughput radioactive DNA sequencing. This nonradioactive marker will also be useful in protocols utilizing nonradioactive detection systems, such as those calling for biotinylated and chemiluminescent probes. PMID:2278390

  6. Oxygen distributions within tissue by phosphorescence quenching

    NASA Astrophysics Data System (ADS)

    Wilson, David F.; Grosul, Pavel; Rozhkov, Vladimir; Dugan, Benjamin W.; Reitveld, Ivo; Vinogradov, Sergei A.

    2002-06-01

    Oxygen dependent quenching of phosphorescence is a powerful method for measuring oxygen. Phosphors are now available that absorb and emit in the near IR region of the spectrum, are nontoxic, and remain in the blood, allowing rapid measure of oxygen through out selected tissue volumes. In vivo measurements are non-invasive except for the need to inject phosphor into the blood, and phosphorescence lifetimes can be measured without interference by tissue pigments that absorb or fluorescence at the measurement wavelengths. Phosphorescence quenching is uniquely useful for: (1) imaging oxygen in optically clear media or in the surface layer of the tissue, such as in the retina of the eye; (2) determining the distribution of oxygen in media, such as tissue, which have heterogeneous distributions by deconvoluting phosphorescence decay dat. These can be used to calculate the corresponding oxygen histograms. Measurement in 2D grids can b used to construct contour maps of the fraction of the sampled tissue volume with any selected range of oxygen pressures. These maps accurately show the location and size of any regions of hypoxia within the sampled tissue.

  7. Phosphorescence quenching microrespirometry of skeletal muscle in situ

    PubMed Central

    Golub, Aleksander S.; Tevald, Michael A.

    2011-01-01

    We have developed an optical method for the evaluation of the oxygen consumption (V̇o2) in microscopic volumes of spinotrapezius muscle. Using phosphorescence quenching microscopy (PQM) for the measurement of interstitial Po2, together with rapid pneumatic compression of the organ, we recorded the oxygen disappearance curve (ODC) in the muscle of the anesthetized rats. A 0.6-mm diameter area in the tissue, preloaded with the phosphorescent oxygen probe, was excited once a second by a 532-nm Q-switched laser with pulse duration of 15 ns. Each of the evoked phosphorescence decays was analyzed to obtain a sequence of Po2 values that constituted the ODC. Following flow arrest and tissue compression, the interstitial Po2 decreased rapidly and the initial slope of the ODC was used to calculate the V̇o2. Special analysis of instrumental factors affecting the ODC was performed, and the resulting model was used for evaluation of V̇o2. The calculation was based on the observation of only a small amount of residual blood in the tissue after compression. The contribution of oxygen photoconsumption by PQM and oxygen inflow from external sources was evaluated in specially designed tests. The average oxygen consumption of the rat spinotrapezius muscle was V̇o2 = 123.4 ± 13.4 (SE) nl O2/cm3·s (N = 38, within 6 muscles) at a baseline interstitial Po2 of 50.8 ± 2.9 mmHg. This technique has opened the opportunity for monitoring respiration rates in microscopic volumes of functioning skeletal muscle. PMID:20971766

  8. Nodal analysis for reactor kinetics and stability. [PWR; BWR

    SciTech Connect

    Park, J.K.; Becker, M.; Park, G.C.

    1983-07-01

    General space kinetics models have been developed for more accurate stability analysis utilizing nodal analysis, a commonly used technique for analyzing power distributions in large power reactors. Kinetics parameters for use in these kinetics models have been properly derived by utilizing self-consistent nodal data and power distributions. The procedure employed in the nodal code SIMULATE has been utilized for power distribution, since that methodology is general and includes various commonly used nodal methods as special cases. Cross sections are correlated as functions of void fraction and exposure. A computer program investigating thermo-hydrodynamic stability, NUFREQ has been modified to accommodate general spatial kinetics models with an improved thermal-hydraulics model. Stability analyses have been performed for density wave oscillations for a representative operating BWR system. Spatial coupling effects on the stability margins were found to be significant.

  9. Kinetic analysis of dynamic PET data

    SciTech Connect

    Knittel, B.

    1983-12-01

    Our goal is to quantify regional physiological processes such as blood flow and metabolism by means of tracer kinetic modeling and positron emission tomography (PET). Compartmental models are one way of characterizing the behavior of tracers in physiological systems. This paper describes a general method of estimating compartmental model rate constants from measurements of the concentration of tracers in blood and tissue, taken at multiple time intervals. A computer program which applies the method is described, and examples are shown for simulated and actual data acquired from the Donner 280-Crystal Positron Tomograph.

  10. Spectrum Analysis of Some Kinetic Equations

    NASA Astrophysics Data System (ADS)

    Yang, Tong; Yu, Hongjun

    2016-05-01

    We analyze the spectrum structure of some kinetic equations qualitatively by using semigroup theory and linear operator perturbation theory. The models include the classical Boltzmann equation for hard potentials with or without angular cutoff and the Landau equation with {γ≥q-2} . As an application, we show that the solutions to these two fundamental equations are asymptotically equivalent (mod time decay rate {t^{-5/4}} ) as {tto∞} to that of the compressible Navier-Stokes equations for initial data around an equilibrium state.

  11. Global kinetic analysis of seeded BSA aggregation.

    PubMed

    Sahin, Ziya; Demir, Yusuf Kemal; Kayser, Veysel

    2016-04-30

    Accelerated aggregation studies were conducted around the melting temperature (Tm) to elucidate the kinetics of seeded BSA aggregation. Aggregation was tracked by SEC-HPLC and intrinsic fluorescence spectroscopy. Time evolution of monomer, dimer and soluble aggregate concentrations were globally analysed to reliably deduce mechanistic details pertinent to the process. Results showed that BSA aggregated irreversibly through both sequential monomer addition and aggregate-aggregate interactions. Sequential monomer addition proceeded only via non-native monomers, starting to occur only by 1-2°C below the Tm. Aggregate-aggregate interactions were the dominant mechanism below the Tm due to an initial presence of small aggregates that acted as seeds. Aggregate-aggregate interactions were significant also above the Tm, particularly at later stages of aggregation when sequential monomer addition seemed to cease, leading in some cases to insoluble aggregate formation. The adherence (or non-thereof) of the mechanisms to Arrhenius kinetics were discussed alongside possible implications of seeding for biopharmaceutical shelf-life and spectroscopic data interpretation, the latter of which was found to often be overlooked in BSA aggregation studies. PMID:26970282

  12. Red long-lasting phosphorescence based on color conversion process

    NASA Astrophysics Data System (ADS)

    Li, Zhanjun; Zhang, Hongwu; Fu, Haixia

    2013-01-01

    The principle of color conversion process was used to generate red long-lasting phosphorescence (LLP) using SrAl2O4:Eu, Dy (SAO) as primary light source and rhodamine B encapsulated mesoporous silica nanoparticles (MCM-R) as effective color conversion agent. The phosphorescence spectra of MCM-R/SAO hybrid samples show green peaks from 425 nm to 550 nm and red peaks from 550 nm to 700 nm, which can be attributed to the phosphorescence of SAO and the fluorescence of MCM-R, respectively. The phosphorescence color can be adjusted from green to red by changing the mass ratio of MCM-R/SAO. When the mass ratio of MCM-R/SAO increases from 0.05 to 1.5, a blue shift for the green peak and a red shift for the red peak of the phosphorescence spectra can be observed and the intensity of the red emission peak increase relatively towards the green one. The phosphorescence decay curves show that MCM-R and SAO have similar decay dynamics and the MCM-R can inherit the LLP properties of SAO. The phosphorescence decay spectra indicate that the MCM-R/SAO hybrid can retain constant and steady visual phosphorescence color. The red phosphorescence can be seen in the dark with naked eyes for more than 5 h. So, the red LLP can be successfully achieved based on the principle of color conversion process.

  13. Application of Time-Resolved Tryptophan Phosphorescence Spectroscopy to Protein Folding Studies.

    NASA Astrophysics Data System (ADS)

    Subramaniam, Vinod

    This thesis presents studies of the protein folding problem, one of the most significant questions in contemporary biophysics. Sensitive biophysical techniques, including room temperature tryptophan phosphorescence, which reports on the local environment of the residue, and the lability of proteins to denaturation, a global parameter, were used to assess the validity of the traditional assumption that the biologically active state of a protein is the 'native' state, and to determine whether the pathways of folding in vitro lead to the folded state achieved in vivo. Phosphorescence techniques have also been extended to study, for the first time, emission from tryptophan residues engineered into specific positions as reporters of protein structure. During in vitro refolding of E. coli alkaline phosphatase and bovine 13-lactoglobulin, significant differences were found between the refolded proteins and the native conformations, which have no apparent effect on the biological functions. Slow conformational transitions, termed 'annealing,' that occur long after the return of enzyme activity of alkaline phosphatase are manifested in the retarded recovery of phosphorescence intensity, lifetime, and protein lability. While 'annealing' is not observed for beta -lactoglobulin, both phosphorescence and lability experiments reveal changes in the structure of the refolded protein, even though its biological activity, retinol binding, is fully recovered. This result suggests that the pathways of folding in vitro need not lead to the structure formed in vivo. We have used phosphorescence techniques to study the refolding of ribonuclease T1, which exhibits slow kinetics characteristic of proline isomerization. Furthermore, the ability to extract structural information from phosphorescent tryptophan probes engineered into selected regions represents an important advance in studying protein structure; we have reported the first such results from a mutant staphylococcal nuclease. The

  14. Tryptophan phosphorescence as a monitor of flexibility of membrane proteins in cells

    NASA Astrophysics Data System (ADS)

    Mazhul, Vladimir M.; Scherbin, Dmitry G.

    1997-05-01

    Method of room temperature tryptophan phosphorescence (RTTP) has been used to study slow intramolecular equilibrium motions in membrane proteins. The conventional home-made instruments were employed for measurement of RTTP kinetic and spectral parameters. Objects of the investigation were suspensions of human erythrocyte membranes, different animal and plant cells. On rat gepathocytes it has been shown that membrane proteins in composition of subcellular structures and native cells are able to the RTTP with tens and hundreds milliseconds lifetimes. An overwhelming part of soluble proteins of cytoplasm, karyoplasm and mitochondrial matrix has not capability to RTTP with lifetimes above 1 ms. It is concluded that unlike membrane proteins soluble proteins as a rule are characterized by motions of protein structure with intensive low frequency and large amplitude, that leads to pronounced quenching of their RTTP. In the case of membrane proteins, which are capable of phosphorescence in a millisecond range, the flexibility of the chromophores environment decreases. These results indicate that RTTP method gives the unique possibility to investigate dynamical structure of membrane proteins without their preliminary isolation from cells. The data on membrane proteins intramolecular dynamics in composition of cells at the action of biological active substances in physiological concentrations--Concavalin A, nerve growth factor, epidermal growth factor, 24-epibrassinosteroid received by the phosphorescent method are presented.

  15. High resolution imaging of intracellular oxygen concentration by phosphorescence lifetime

    PubMed Central

    Kurokawa, Hiromi; Ito, Hidehiro; Inoue, Mai; Tabata, Kenji; Sato, Yoshifumi; Yamagata, Kazuya; Kizaka-Kondoh, Shinae; Kadonosono, Tetsuya; Yano, Shigenobu; Inoue, Masahiro; Kamachi, Toshiaki

    2015-01-01

    Optical methods using phosphorescence quenching by oxygen are suitable for sequential monitoring and non-invasive measurements for oxygen concentration (OC) imaging within cells. Phosphorescence intensity measurement is widely used with phosphorescent dyes. These dyes are ubiquitously but heterogeneously distributed inside the whole cell. The distribution of phosphorescent dye is a major disadvantage in phosphorescence intensity measurement. We established OC imaging system for a single cell using phosphorescence lifetime and a laser scanning confocal microscope. This system had improved spatial resolution and reduced the measurement time with the high repetition rate of the laser. By the combination of ubiquitously distributed phosphorescent dye with this lifetime imaging microscope, we can visualize the OC inside the whole cell and spheroid. This system uses reversible phosphorescence quenching by oxygen, so it can measure successive OC changes from normoxia to anoxia. Lower regions of OC inside the cell colocalized with mitochondria. The time-dependent OC change in an insulin-producing cell line MIN6 by the glucose stimulation was successfully visualized. Assessing the detailed distribution and dynamics of OC inside cells achieved by the presented system will be useful to understanding a physiological and pathological oxygen metabolism. PMID:26065366

  16. Functionalization of phosphorescent emitters and their host materials by main-group elements for phosphorescent organic light-emitting devices.

    PubMed

    Yang, Xiaolong; Zhou, Guijiang; Wong, Wai-Yeung

    2015-12-01

    Phosphorescent organic light-emitting devices (OLEDs) have attracted increased attention from both academic and industrial communities due to their potential practical application in high-resolution full-color displays and energy-saving solid-state lightings. The performance of phosphorescent OLEDs is mainly limited by the phosphorescent transition metal complexes (such as iridium(III), platinum(II), gold(III), ruthenium(II), copper(I) and osmium(II) complexes, etc.) which can play a crucial role in furnishing efficient energy transfer, balanced charge injection/transporting character and high quantum efficiency in the devices. It has been shown that functionalized main-group element (such as boron, silicon, nitrogen, phosphorus, oxygen, sulfur and fluorine, etc.) moieties can be incorporated into phosphorescent emitters and their host materials to tune their triplet energies, frontier molecular orbital energies, charge injection/transporting behavior, photophysical properties and thermal stability and hence bring about highly efficient phosphorescent OLEDs. So, in this review, the recent advances in the phosphorescent emitters and their host materials functionalized with various main-group moieties will be introduced from the point of view of their structure-property relationship. The main emphasis lies on the important role played by the main-group element groups in addressing the key issues of both phosphorescent emitters and their host materials to fulfill high-performance phosphorescent OLEDs. PMID:26245654

  17. Photomultiplier window materials under electron irradiation: fluorescence and phosphorescence.

    PubMed

    Viehmann, W; Eubanks, A G; Pieper, G F; Bredekamp, J H

    1975-09-01

    The fluorescence and phosphorescence of photomultiplier window materials under electron irradiation have been investigated using a Sr(90)-Y(90) beta emitter as the electron source. Spectral emission curves of uv-grade, optical-grade, and electron-irradiated samples of MgF(2) and LiF, and of CaF(2), BaF(2), sapphire, fused silica, and uv-transmitting glasses were obtained over the 200-650-nm spectral range. Fluorescence yields, expressed as the number of counts in a solid angle of 2pi sr/MeV of incident electron energy deposited [MeV(-1) (2pi sr)(-1)], were determined on these materials utilizing photomultiplier tubes with cesium telluride, bialkali, and trialkali (S-20) photocathodes, respectively. Typical yields observed with a uv/visible sensitive bialkali cathode range from 10 MeV(-1) (2pi sr)(-1) for uv-grade MgF(2) to approximately 200 MeV(-1) (2pi sr)(-1) for CaF(2). For comparison, sodium-activated cesium iodide, one of the most efficient scintillator materials, yields about 700 MeV(-1) (2pi sr)(-1). High-purity fused silica has the lowest yield, approximately 6 MeVW(-1) (2pi sr)(-1). Optical-grade MgF(2)and LiF, as well as electron-irradiated uv-grade samples of these two materials, show enhanced fluorescence due to color-center formation and associated emission bands in the blue and red wavelength regions. Large variations in fluorescence intensities were found in uv-grade sapphire samples of different origins, particularly in the red end of the spectrum, presumably due to various amounts of chromium-ion content. Phosphorescence decay with time is best described by a sum of exponential terms, with time constants ranging from a few minutes to several days. Phosphorescence intensity expressed as a fraction of the steady-state fluorescence intensity is an extremely sensitive measure of crystalline perfection and purity. This fraction ranges from a high of approximately 10(-2) for some fluoride samples to a low of

  18. Molecular Fluorescence, Phosphorescence, and Chemiluminescence Spectrometry

    SciTech Connect

    Powe, Aleeta; Das, Susmita; Lowry, Mark; El-Zahab, Bilal; Fakayode, Sayo; Geng, Maxwell; Baker, Gary A; Wang, Lin; McCarroll, Matthew; Patonay, Gabor; Li, Min; Aljarrah, Mohannad; Neal, Sharon; Warner, Isiah M

    2010-01-01

    This review covers the 2 year period since our last review (1) from January 2008 through December 2009. A computer search of Chemical Abstracts provided most of the references for this review. A search for documents written in English containing the terms fluorescence or phosphorescence or chemiluminescence published in 2008-2009 resulted in more than 100 000 hits. An initial screening reduced this number to approximately 23 000 publications that were considered for inclusion in this review. Key word searches of this subset provided subtopics of manageable size. Other citations were found through individual searches by the various authors who wrote a particular section of this review.

  19. Kinetic analysis of complex metabolic networks

    SciTech Connect

    Stephanopoulos, G.

    1996-12-31

    A new methodology is presented for the analysis of complex metabolic networks with the goal of metabolite overproduction. The objective is to locate a small number of reaction steps in a network that have maximum impact on network flux amplification and whose rate can also be increased without functional network derangement. This method extends the concepts of Metabolic Control Analysis to groups of reactions and offers the means for calculating group control coefficients as measures of the control exercised by groups of reactions on the overall network fluxes and intracellular metabolite pools. It is further demonstrated that the optimal strategy for the effective increase of network fluxes, while maintaining an uninterrupted supply of intermediate metabolites, is through the coordinated amplification of multiple (as opposed to a single) reaction steps. Satisfying this requirement invokes the concept of the concentration control to coefficient, which emerges as a critical parameter in the identification of feasible enzymatic modifications with maximal impact on the network flux. A case study of aromatic aminoacid production is provided to illustrate these concepts.

  20. Detection of free oxygen in tissues and testing of primary step of photodynamics action by time-resolved phosphorescence of photosensitizer

    NASA Astrophysics Data System (ADS)

    Losev, Anatoly P.; Knukshto, Valentin N.; Zhuravkin, Ivan N.

    1995-01-01

    Highly phosphorescent photosensitizer Pd-tetra (o-methoxy-p-sulfo) phenyl porphyrin (Pd- MSPP) was used to follow the primary events of photodynamic action -- quenching of triplet states by free oxygen in different systems: water solutions of proteins, cells and tissues in vivo and in vitro. The photosensitizer forms complexes with proteins in solutions and biosystems showing remarkable hypsochromic shifts of band and an increase of the quantum yield and lifetime of phosphorescence at the binding to proteins. In absence of oxygen the lifetime of phosphorescence is almost single exponential, depends on the energy of the lowest triplet state of the sensitizer. The photochemical quenching of the triplets by cell components is negligible. In the presence of free oxygen the quenching of the sensitizer triplets takes place. The emission spectrum of singlet oxygen with maximum 1271 nm was recorded in water protein solutions and quantum yield of sensitized luminescence was measured. In the systems studied oxygen consumption was detected and oxygen concentration was estimated in the course of photodynamics by an increase in photosensitizer phosphorescence lifetime, using laser flash photolysis technique. At least two exponential kinetic of the phosphorescence decay shows that the distribution of the free oxygen is not uniform in tissues. The unexpected effect of photoinduced hyperoxia was observed just after the several minutes of tumor exposition with following slow development of a hyposia in a course of continual light exposition.

  1. Phosphorescent organic light emitting diodes with high efficiency and brightness

    SciTech Connect

    Forrest, Stephen R; Zhang, Yifan

    2015-11-12

    An organic light emitting device including a) an anode; b) a cathode; and c) an emissive layer disposed between the anode and the cathode, the emissive layer comprising an organic host compound and a phosphorescent compound exhibiting a Stokes Shift overlap greater than 0.3 eV. The organic light emitting device may further include a hole transport layer disposed between the emissive layer and the anode; and an electron transport layer disposed between the emissive layer and the cathode. In some embodiments, the phosphorescent compound exhibits a phosphorescent lifetime of less than 10 .mu.s. In some embodiments, the concentration of the phosphorescent compound ranges from 0.5 wt. % to 10 wt. %.

  2. LSENS, The NASA Lewis Kinetics and Sensitivity Analysis Code

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, K.

    2000-01-01

    A general chemical kinetics and sensitivity analysis code for complex, homogeneous, gas-phase reactions is described. The main features of the code, LSENS (the NASA Lewis kinetics and sensitivity analysis code), are its flexibility, efficiency and convenience in treating many different chemical reaction models. The models include: static system; steady, one-dimensional, inviscid flow; incident-shock initiated reaction in a shock tube; and a perfectly stirred reactor. In addition, equilibrium computations can be performed for several assigned states. An implicit numerical integration method (LSODE, the Livermore Solver for Ordinary Differential Equations), which works efficiently for the extremes of very fast and very slow reactions, is used to solve the "stiff" ordinary differential equation systems that arise in chemical kinetics. For static reactions, the code uses the decoupled direct method to calculate sensitivity coefficients of the dependent variables and their temporal derivatives with respect to the initial values of dependent variables and/or the rate coefficient parameters. Solution methods for the equilibrium and post-shock conditions and for perfectly stirred reactor problems are either adapted from or based on the procedures built into the NASA code CEA (Chemical Equilibrium and Applications).

  3. Kinetic analysis of drug-protein interactions by affinity chromatography.

    PubMed

    Bi, Cong; Beeram, Sandya; Li, Zhao; Zheng, Xiwei; Hage, David S

    2015-10-01

    Information on the kinetics of drug-protein interactions is of crucial importance in drug discovery and development. Several methods based on affinity chromatography have been developed in recent years to examine the association and dissociation rates of these processes. These techniques include band-broadening measurements, the peak decay method, peak fitting methods, the split-peak method, and free fraction analysis. This review will examine the general principles and applications of these approaches and discuss their use in the characterization, screening and analysis of drug-protein interactions in the body. PMID:26724332

  4. Comparative kinetic analysis of two fungal β-glucosidases

    PubMed Central

    2010-01-01

    Background The enzymatic hydrolysis of cellulose is still considered as one of the main limiting steps of the biological production of biofuels from lignocellulosic biomass. It is a complex multistep process, and various kinetic models have been proposed. The cellulase enzymatic cocktail secreted by Trichoderma reesei has been intensively investigated. β-glucosidases are one of a number of cellulolytic enzymes, and catalyze the last step releasing glucose from the inhibitory cellobiose. β-glucosidase (BGL1) is very poorly secreted by Trichoderma reesei strains, and complete hydrolysis of cellulose often requires supplementation with a commercial β-glucosidase preparation such as that from Aspergillus niger (Novozymes SP188). Surprisingly, kinetic modeling of β-glucosidases lacks reliable data, and the possible differences between native T. reesei and supplemented β-glucosidases are not taken into consideration, possibly because of the difficulty of purifying BGL1. Results A comparative kinetic analysis of β-glucosidase from Aspergillus niger and BGL1 from Trichoderma reesei, purified using a new and efficient fast protein liquid chromatography protocol, was performed. This purification is characterized by two major steps, including the adsorption of the major cellulases onto crystalline cellulose, and a final purification factor of 53. Quantitative analysis of the resulting β-glucosidase fraction from T. reesei showed it to be 95% pure. Kinetic parameters were determined using cellobiose and a chromogenic artificial substrate. A new method allowing easy and rapid determination of the kinetic parameters was also developed. β-Glucosidase SP188 (Km = 0.57 mM; Kp = 2.70 mM) has a lower specific activity than BGL1 (Km = 0.38 mM; Kp = 3.25 mM) and is also more sensitive to glucose inhibition. A Michaelis-Menten model integrating competitive inhibition by the product (glucose) has been validated and is able to predict the β-glucosidase activity of both enzymes

  5. Kinetics of microtubule catastrophe assessed by probabilistic analysis.

    PubMed

    Odde, D J; Cassimeris, L; Buettner, H M

    1995-09-01

    Microtubules are cytoskeletal filaments whose self-assembly occurs by abrupt switching between states of roughly constant growth and shrinkage, a process known as dynamic instability. Understanding the mechanism of dynamic instability offers potential for controlling microtubule-dependent cellular processes such as nerve growth and mitosis. The growth to shrinkage transitions (catastrophes) and the reverse transitions (rescues) that characterize microtubule dynamic instability have been assumed to be random events with first-order kinetics. By direct observation of individual microtubules in vitro and probabilistic analysis of their distribution of growth times, we found that while the slower growing and biologically inactive (minus) ends obeyed first-order catastrophe kinetics, the faster growing and biologically active (plus) ends did not. The non-first-order kinetics at plus ends imply that growing microtubule plus ends have an effective frequency of catastrophe that depends on how long the microtubules have been growing. This frequency is low initially but then rises asymptotically to a limiting value. Our results also suggest that an additional parameter, beyond the four parameters typically used to describe dynamic instability, is needed to account for the observed behavior and that changing this parameter can significantly affect the distribution of microtubule lengths at steady state. PMID:8519980

  6. Kinetics of microtubule catastrophe assessed by probabilistic analysis.

    PubMed Central

    Odde, D J; Cassimeris, L; Buettner, H M

    1995-01-01

    Microtubules are cytoskeletal filaments whose self-assembly occurs by abrupt switching between states of roughly constant growth and shrinkage, a process known as dynamic instability. Understanding the mechanism of dynamic instability offers potential for controlling microtubule-dependent cellular processes such as nerve growth and mitosis. The growth to shrinkage transitions (catastrophes) and the reverse transitions (rescues) that characterize microtubule dynamic instability have been assumed to be random events with first-order kinetics. By direct observation of individual microtubules in vitro and probabilistic analysis of their distribution of growth times, we found that while the slower growing and biologically inactive (minus) ends obeyed first-order catastrophe kinetics, the faster growing and biologically active (plus) ends did not. The non-first-order kinetics at plus ends imply that growing microtubule plus ends have an effective frequency of catastrophe that depends on how long the microtubules have been growing. This frequency is low initially but then rises asymptotically to a limiting value. Our results also suggest that an additional parameter, beyond the four parameters typically used to describe dynamic instability, is needed to account for the observed behavior and that changing this parameter can significantly affect the distribution of microtubule lengths at steady state. Images FIGURE 1 PMID:8519980

  7. Determination of the pesticide napropamide in soil, pepper, and tomato by micelle-stabilized room-temperature phosphorescence.

    PubMed

    Murillo Pulgarín, José A; García Bermejo, Luisa F

    2002-02-27

    A selective and sensitive method for determining napropamide by room-temperature phosphorescence in SDS micelles is proposed and applied to the determination of this substance in a technical formulation and in spiked soil, pepper, and tomato samples. The use of phosphorescence enhancers such as sodium dodecyl sulfate (micellar agent), thallium (I) nitrate (external heavy atom), and sodium sulfite (deoxygenation agent) was studied and optimized to obtain maximum sensitivity. The determination was performed in 66 mM SDS, 30 mM thallium (I) nitrate, and 8 mM sodium sulfite. Taking into account both maximum phosphorescence intensity and the time required to reach that, a pH value of 7.2 was selected. After the samples were left standing at room temperature for 10 min, the phosphorescence was totally developed. The intensity was then measured at lambda(ex) = 282 nm and lambda(em) = 528 nm. The calibration graph was linear for 50-600 ng mL(-1) napropamide. The detection limit, according to the error propagation theory, was 16 ng mL(-1). The method has been demonstrated for the analysis of soils, peppers, and tomatoes, but, because of matrix interference, the method of standard additions was applied to determine napropamide in the vegetable samples. Recoveries from all these matrixes of added napropamide were near 100%. PMID:11853471

  8. A uranium (VI) complex: Synthesis, structural and thermal kinetic analysis

    NASA Astrophysics Data System (ADS)

    Goel, Nidhi

    2016-08-01

    A new complex [UO2(2,6-DNP)2phen] (1) (2,6-DNP = 2,6-dinitrophenol, phen = 1,10-phenanthroline) was synthesized, and identified by elemental analysis, IR, Powder XRD and single crystal X-ray crystallography. Crystal structure provides the abundant information's about the bonding and geometry around the U(VI) metal center. The thermal decomposition was studied by TG-DSC, and the kinetics of thermolysis was investigated by applying model fitting as well as isoconversional methods. Explosion delay measurement (De) was also evaluated to determine the response of this complex under the condition of rapid heating.

  9. LSENS - GENERAL CHEMICAL KINETICS AND SENSITIVITY ANALYSIS CODE

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.

    1994-01-01

    LSENS has been developed for solving complex, homogeneous, gas-phase, chemical kinetics problems. The motivation for the development of this program is the continuing interest in developing detailed chemical reaction mechanisms for complex reactions such as the combustion of fuels and pollutant formation and destruction. A reaction mechanism is the set of all elementary chemical reactions that are required to describe the process of interest. Mathematical descriptions of chemical kinetics problems constitute sets of coupled, nonlinear, first-order ordinary differential equations (ODEs). The number of ODEs can be very large because of the numerous chemical species involved in the reaction mechanism. Further complicating the situation are the many simultaneous reactions needed to describe the chemical kinetics of practical fuels. For example, the mechanism describing the oxidation of the simplest hydrocarbon fuel, methane, involves over 25 species participating in nearly 100 elementary reaction steps. Validating a chemical reaction mechanism requires repetitive solutions of the governing ODEs for a variety of reaction conditions. Analytical solutions to the systems of ODEs describing chemistry are not possible, except for the simplest cases, which are of little or no practical value. Consequently, there is a need for fast and reliable numerical solution techniques for chemical kinetics problems. In addition to solving the ODEs describing chemical kinetics, it is often necessary to know what effects variations in either initial condition values or chemical reaction mechanism parameters have on the solution. Such a need arises in the development of reaction mechanisms from experimental data. The rate coefficients are often not known with great precision and in general, the experimental data are not sufficiently detailed to accurately estimate the rate coefficient parameters. The development of a reaction mechanism is facilitated by a systematic sensitivity analysis

  10. On-line chiral analysis using the kinetic method.

    PubMed

    Bain, Ryan M; Yan, Xin; Raab, Shannon A; Ayrton, Stephen T; Flick, Tawnya G; Cooks, R Graham

    2016-04-21

    Chiral analysis of constituents in solution-phase reaction mixtures can be performed by tandem mass spectrometry using the kinetic method to determine the enantiomeric excess (ee). Simply diluting an aliquot of a reaction mixture, adjusting the pH, and adding reagents necessary to form a chiral cluster ion allows chiral analysis. The product of a stereospecific N-selective alkylation reaction, 2-(3-(2-methoxyethoxy)-5-oxo-1,6-naphthyridin-6(5H)-yl)propanoic acid, was monitored for ee during the course of reaction, and it showed the expected inversion without ee erosion. Base-catalyzed racemization of the reaction product showed the expected decrease in ee as the reaction proceeded. The base-catalyzed racemization of ibuprofen was monitored on-line, providing near real-time data on ee. PMID:26979554

  11. Biomedical application of metalloporphyrins room-temperature phosphorescence

    NASA Astrophysics Data System (ADS)

    Savitsky, Alexander P.

    1993-05-01

    Biological specimens are characterized by high light-scattering and background fluorescence which cause decrease in sensitivity of immunoassays. These unfavorable effects can be minimized by selecting a label with high absolute sensitivity, appropriate excitation and emission wavelengths, and time-resolved mode of measurements. This can be achieved by the use of metalloporphyrin labels, microsecond logic for discrimination of scattered light and background fluorescence which arises in optical elements, cells, solvents, and samples. The intensity of metalloporphyrin phosphorescence depends to a great extent on pH. Nonionic and cationic micelles have a strong effect on the phosphorescence quantum yield of Pd- coproporphyrin. Under optimum conditions Pd-coproporphyrin can be detected at a concentration of 10-13M by using modified Arcus 1230 (Wallac, Finland). On the basis of these results a novel class of luminescent labels --phosphorescent metalloporphyrins -- was applied to immunoassays. Pd- and Pt-coproporphyrins were used for the covalent labeling of antibodies and antigens. Special derivatives of a porphyrin with activated side chain were synthesized. Techniques for covalent coupling of porphyrins and their metal derivatives with proteins were developed as well as methods for purification of conjugates. A solid-phase time-resolved porphyrin phosphorescence immunoassay test was developed. The well known `sandwich' and competition techniques are compatible with the proposed method. Two or more metalloporphyrins with distinguishable phosphorescent parameters may be used for the simultaneous determining of several antigens in one sample.

  12. Kinetic analysis of the thermal processing of silica and organosilica.

    PubMed

    Kappert, Emiel J; Bouwmeester, Henny J M; Benes, Nieck E; Nijmeijer, Arian

    2014-05-15

    The incorporation of an organic group into sol-gel-derived silica causes significant changes in the structure and properties of these materials. Therefore, the thermal treatment of organosilica materials may require a different approach. In the present paper, kinetic parameters (activation energy, pre-exponential constant, and reaction models) have been determined from mass loss data for the dehydration, dehydroxylation, and decomposition reactions that take place upon heating silica and organosilica. Parameters were obtained by employing model-free isoconversional methods to data obtained under multiple heating rates as well as by multivariate analysis of the kinetics using a multistep reaction model with distributed activation energy. For silica, it can be concluded that the reaction atmosphere (i.e., inert or thermo-oxidative) has no influence on the reaction rate of the dehydration and dehydroxylation reactions that are responsible for the densification of the material. Under inert atmosphere, full dehydration can be reached without affecting the organic moiety. Achieving complete dehydroxylation of the organosilica is practically impossible as decomposition does manifest itself under commonly employed calcination temperatures. This indicates that prudence is required in designing a heat treatment program for these hybrid materials. To aid in optimizing the thermal treatment, a predictive model was developed, which can be used to forecast the extent of dehydration, dehydroxylation, and decomposition reactions under a multitude of temperature programs. PMID:24754674

  13. Computational Study and Kinetic Analysis of the Aminolysis of Thiolactones.

    PubMed

    Desmet, Gilles B; D'hooge, Dagmar R; Sabbe, Maarten K; Marin, Guy B; Du Prez, Filip E; Espeel, Pieter; Reyniers, Marie-Françoise

    2015-09-01

    The aminolysis of three differently α-substituted γ-thiolactones (C4H5OSX, X = H, NH2, and NH(CO)CH3) is modeled based on CBS-QB3 calculated free energies corrected for solvation using COSMO-RS. For the first time, quantitative kinetic and thermodynamic data are provided for the concerted path and the stepwise path over a neutral tetrahedral intermediate. These paths can take place via an unassisted, an amine-assisted, or a thiol-assisted mechanism. Amine assistance lowers the free energy barriers along both paths, while thiol assistance only lowers the formation of the neutral tetrahedral intermediate. Based on the ab initio calculated rate coefficients, a kinetic model is constructed that is able to reliably describe experimental observations for the aminolysis of N-acetyl-dl-homocysteine thiolactone with n-butylamine in THF and CHCl3. Reaction path analysis shows that for all conditions relevant for applications in polymer synthesis and postpolymer modification, an assisted stepwise mechanism is operative in which the formation of the neutral tetrahedral intermediate is rate-determining and which is mainly amine-assisted at low conversions and thiol-assisted at high conversions. PMID:26280542

  14. An integral turbulent kinetic energy analysis of free shear flows

    NASA Technical Reports Server (NTRS)

    Peters, C. E.; Phares, W. J.

    1973-01-01

    Mixing of coaxial streams is analyzed by application of integral techniques. An integrated turbulent kinetic energy (TKE) equation is solved simultaneously with the integral equations for the mean flow. Normalized TKE profile shapes are obtained from incompressible jet and shear layer experiments and are assumed to be applicable to all free turbulent flows. The shear stress at the midpoint of the mixing zone is assumed to be directly proportional to the local TKE, and dissipation is treated with a generalization of the model developed for isotropic turbulence. Although the analysis was developed for ducted flows, constant-pressure flows were approximated with the duct much larger than the jet. The axisymmetric flows under consideration were predicted with reasonable accuracy. Fairly good results were also obtained for the fully developed two-dimensional shear layers, which were computed as thin layers at the boundary of a large circular jet.

  15. Pyrolytic and kinetic analysis of coastal plant Xanthium sibiricum

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoning; Zhu, Limeng; Qin, Song; Zhang, Yichen; Liu, Yichen; Sun, Jinsheng; Li, Lili

    2015-01-01

    The fuel properties of coastal plant Xanthium sibiricum were investigated in thermogravimetrics. The distributed activation energy model was employed in the kinetic analysis and a simplified mathematical model that can predict the thermogravimetry curves was proposed. The results show that the initial decomposition temperature tends to increase with the heating rate. The distributed E values ranged from 169.08 to 177.43 kJ/mol, and the frequency factor values ranged from 6.59×108 to 1.22×1012/s at different conversion rates. Furthermore, the prediction made with the simplified mathematical model perfectly matched the experimental data, and the model was found to be simple and accurate for the prediction of devolatilization curves.

  16. Analysis of Network Topologies Underlying Ethylene Growth Response Kinetics.

    PubMed

    Prescott, Aaron M; McCollough, Forest W; Eldreth, Bryan L; Binder, Brad M; Abel, Steven M

    2016-01-01

    Most models for ethylene signaling involve a linear pathway. However, measurements of seedling growth kinetics when ethylene is applied and removed have resulted in more complex network models that include coherent feedforward, negative feedback, and positive feedback motifs. The dynamical responses of the proposed networks have not been explored in a quantitative manner. Here, we explore (i) whether any of the proposed models are capable of producing growth-response behaviors consistent with experimental observations and (ii) what mechanistic roles various parts of the network topologies play in ethylene signaling. To address this, we used computational methods to explore two general network topologies: The first contains a coherent feedforward loop that inhibits growth and a negative feedback from growth onto itself (CFF/NFB). In the second, ethylene promotes the cleavage of EIN2, with the product of the cleavage inhibiting growth and promoting the production of EIN2 through a positive feedback loop (PFB). Since few network parameters for ethylene signaling are known in detail, we used an evolutionary algorithm to explore sets of parameters that produce behaviors similar to experimental growth response kinetics of both wildtype and mutant seedlings. We generated a library of parameter sets by independently running the evolutionary algorithm many times. Both network topologies produce behavior consistent with experimental observations, and analysis of the parameter sets allows us to identify important network interactions and parameter constraints. We additionally screened these parameter sets for growth recovery in the presence of sub-saturating ethylene doses, which is an experimentally-observed property that emerges in some of the evolved parameter sets. Finally, we probed simplified networks maintaining key features of the CFF/NFB and PFB topologies. From this, we verified observations drawn from the larger networks about mechanisms underlying ethylene

  17. Piezoresistive microcantilever aptasensor for ricin detection and kinetic analysis

    NASA Astrophysics Data System (ADS)

    Liu, Zhi-Wei; Tong, Zhao-Yang; Liu, Bing; Hao, Lan-Qun; Mu, Xi-Hui; Zhang, Jin-Ping; Gao, Chuan

    2015-04-01

    Up to now, there has been no report on target molecules detection by a piezoresistive microcantilever aptasensor. In order to evaluate the test performance and investigate the response dynamic characteristics of a piezoresistive microcantilever aptasensor, a novel method for ricin detection and kinetic analysis based on a piezoresistive microcantilever aptasensor was proposed, where ricin aptamer was immobilised on the microcantilever surface by biotin-avidin binding system. Results showed that the detection limit of ricin was 0.04μg L-1 (S/N ≥ 3). A linear relationship between the response voltage and the concentration of ricin in the range of 0.2μg L-1-40μg L-1 was obtained, with the linear regression equation of ΔUe = 0.904C + 5.852 (n = 5, R = 0.991, p < 0.001). The sensor showed no response for abrin, BSA, and could overcome the influence of complex environmental disruptors, indicating high specificity and good selectivity. Recovery and reproducibility in the result of simulated samples (simulated water, soil, and flour sample) determination met the analysis requirements, which was 90.5˜95.5% and 7.85%˜9.39%, respectively. On this basis, a reaction kinetic model based on ligand-receptor binding and the relationship with response voltage was established. The model could well reflect the dynamic response of the sensor. The correlation coefficient (R) was greater than or equal to 0.9456 (p < 0.001). Response voltage (ΔUe) and response time (t0) obtained from the fitting equation on different concentrations of ricin fitted well with the measured values.

  18. Analysis of Network Topologies Underlying Ethylene Growth Response Kinetics

    PubMed Central

    Prescott, Aaron M.; McCollough, Forest W.; Eldreth, Bryan L.; Binder, Brad M.; Abel, Steven M.

    2016-01-01

    Most models for ethylene signaling involve a linear pathway. However, measurements of seedling growth kinetics when ethylene is applied and removed have resulted in more complex network models that include coherent feedforward, negative feedback, and positive feedback motifs. The dynamical responses of the proposed networks have not been explored in a quantitative manner. Here, we explore (i) whether any of the proposed models are capable of producing growth-response behaviors consistent with experimental observations and (ii) what mechanistic roles various parts of the network topologies play in ethylene signaling. To address this, we used computational methods to explore two general network topologies: The first contains a coherent feedforward loop that inhibits growth and a negative feedback from growth onto itself (CFF/NFB). In the second, ethylene promotes the cleavage of EIN2, with the product of the cleavage inhibiting growth and promoting the production of EIN2 through a positive feedback loop (PFB). Since few network parameters for ethylene signaling are known in detail, we used an evolutionary algorithm to explore sets of parameters that produce behaviors similar to experimental growth response kinetics of both wildtype and mutant seedlings. We generated a library of parameter sets by independently running the evolutionary algorithm many times. Both network topologies produce behavior consistent with experimental observations, and analysis of the parameter sets allows us to identify important network interactions and parameter constraints. We additionally screened these parameter sets for growth recovery in the presence of sub-saturating ethylene doses, which is an experimentally-observed property that emerges in some of the evolved parameter sets. Finally, we probed simplified networks maintaining key features of the CFF/NFB and PFB topologies. From this, we verified observations drawn from the larger networks about mechanisms underlying ethylene

  19. Scene kinetics mitigation using factor analysis with derivative factors.

    SciTech Connect

    Larson, Kurt W.; Melgaard, David Kennett; Scholand, Andrew Joseph

    2010-07-01

    Line of sight jitter in staring sensor data combined with scene information can obscure critical information for change analysis or target detection. Consequently before the data analysis, the jitter effects must be significantly reduced. Conventional principal component analysis (PCA) has been used to obtain basis vectors for background estimation; however PCA requires image frames that contain the jitter variation that is to be modeled. Since jitter is usually chaotic and asymmetric, a data set containing all the variation without the changes to be detected is typically not available. An alternative approach, Scene Kinetics Mitigation, first obtains an image of the scene. Then it computes derivatives of that image in the horizontal and vertical directions. The basis set for estimation of the background and the jitter consists of the image and its derivative factors. This approach has several advantages including: (1) only a small number of images are required to develop the model, (2) the model can estimate backgrounds with jitter different from the input training images, (3) the method is particularly effective for sub-pixel jitter, and (4) the model can be developed from images before the change detection process. In addition the scores from projecting the factors on the background provide estimates of the jitter magnitude and direction for registration of the images. In this paper we will present a discussion of the theoretical basis for this technique, provide examples of its application, and discuss its limitations.

  20. Visible room-temperature phosphorescence of pure organic crystals via a radical-ion-pair mechanism.

    PubMed

    Kuno, Shinichi; Akeno, Hiroshi; Ohtani, Hiroyuki; Yuasa, Hideya

    2015-06-28

    The afterglow of phosphorescent compounds can be distinguished from background fluorescence and scattered light by a time-resolved observation, which is a beneficial property for bioimaging. Phosphorescence emission accompanies spin-forbidden transitions from an excited singlet state through an excited triplet state to a ground singlet state. Since these intersystem crossings are facilitated usually by the heavy-atom effect, metal-free organic solids are seldom phosphorescent, although these solids have recently been refurbished as low-cost, eco-friendly phosphorescent materials. Here, we show that crystalline isophthalic acid exhibits room-temperature phosphorescence with an afterglow that lasts several seconds through a nuclear spin magnetism-assisted spin exchange of a radical ion pair. The obvious afterglow that facilitates a time-resolved detection and the unusual phosphorescence mechanism that enables emission intensification by nuclear spin managements are promising for exploiting the phosphorescence materials in novel applications such as bioimaging. PMID:26027521

  1. n,. pi. /sup */ state of jet-cooled benzophenone as studied by sensitized phosphorescence excitation spectroscopy

    SciTech Connect

    Kamei, S.; Sato, T.; Mikami, N.; Ito, M.

    1986-10-23

    The sensitized phosphorescence excitation spectrum of jet-cooled benzophenone due to the S/sub 1/(n,..pi../sup */) produced from S/sub 0/ transition has been measured. It was found that the spectrum consists exclusively of several long progressions of 60 cm/sup -1/ which is the in-phase torsional mode of the phenyl rings. The vibrational analysis and the potential calculation shows that the in the S/sub 1/(n,..pi../sup */) state great geometry changes occur in the dihedral angle between the phenyl rings, the C=O bond distance, and the C-C bonds adjacent to the C=O bond.

  2. Cryoprotectant kinetic analysis of a human articular cartilage vitrification protocol.

    PubMed

    Shardt, Nadia; Al-Abbasi, Khaled K; Yu, Hana; Jomha, Nadr M; McGann, Locksley E; Elliott, Janet A W

    2016-08-01

    We recently published a protocol to vitrify human articular cartilage and a method of cryoprotectant removal in preparation for transplantation. The current study's goal was to perform a cryoprotectant kinetic analysis and theoretically shorten the procedure used to vitrify human articular cartilage. First, the loading of the cryoprotectants was modeled using Fick's law of diffusion, and this information was used to predict the kinetics of cryoprotectant efflux after the cartilage sample had been warmed. We hypothesized that diffusion coefficients obtained from the permeation of individual cryoprotectants into porcine articular cartilage could be used to provide a reasonable prediction of the cryoprotectant loading and of the combined cryoprotectant efflux from vitrified human articular cartilage. We tested this hypothesis with experimental efflux measurements. Osteochondral dowels from three patients were vitrified, and after warming, the articular cartilage was immersed in 3 mL X-VIVO at 4 °C in two consecutive solutions, each for 24 h, with the solution osmolality recorded at various times. Measured equilibrium values agreed with theoretical values within a maximum of 15% for all three samples. The results showed that diffusion coefficients for individual cryoprotectants determined from experiments with 2-mm thick porcine cartilage can be used to approximate the rate of efflux of the combined cryoprotectants from vitrified human articular cartilage of similar thickness. Finally, Fick's law of diffusion was used in a computational optimization to shorten the protocol with the constraint of maintaining the theoretical minimum cryoprotectant concentration needed to achieve vitrification. The learning provided by this study will enable future improvements in tissue vitrification. PMID:27221520

  3. Stochastic lumping analysis for linear kinetics and its application to the fluctuation relations between hierarchical kinetic networks

    SciTech Connect

    Deng, De-Ming; Chang, Cheng-Hung

    2015-05-14

    Conventional studies of biomolecular behaviors rely largely on the construction of kinetic schemes. Since the selection of these networks is not unique, a concern is raised whether and under which conditions hierarchical schemes can reveal the same experimentally measured fluctuating behaviors and unique fluctuation related physical properties. To clarify these questions, we introduce stochasticity into the traditional lumping analysis, generalize it from rate equations to chemical master equations and stochastic differential equations, and extract the fluctuation relations between kinetically and thermodynamically equivalent networks under intrinsic and extrinsic noises. The results provide a theoretical basis for the legitimate use of low-dimensional models in the studies of macromolecular fluctuations and, more generally, for exploring stochastic features in different levels of contracted networks in chemical and biological kinetic systems.

  4. Kinetic analysis of MHD ballooning modes in tokamaks

    SciTech Connect

    Tang, W.M.; Rewoldt, G.; Cheng, C.Z.; Chance, M.S.

    1984-10-01

    A comprehensive analysis of the stability properties of the appropriate kinetically generalized form of MHD ballooning modes together with the usual trapped-particle drift modes is presented. The calculations are fully electromagnetic and include the complete dynamics associated with compressional ion acoustic waves. Trapped-particle effects along with all forms of collisionless dissipation are taken into account without approximations. The influence of collisions is estimated with a model Krook operator. Results from the application of this analysis to realistic tokamak operating conditions indicate that unstable short-wavelength modes with significant growth rates can extend from ..beta.. = 0 to value above the upper ideal-MHD-critical-beta associated with the so-called second stability regime. Since the strength of the relevant modes appears to vary gradually with ..beta.., these results support a soft beta limit picture involving a continuous (rather than abrupt or hard) modification of anomalous transport already present in low-..beta..-tokamaks. However, at higher beta the increasing dominance of the electromagnetic component of the perturbations indicated by these calculations could also imply significantly different transport scaling properties.

  5. Analysis and Interpretation of Single Molecule Protein Unfolding Kinetics

    NASA Astrophysics Data System (ADS)

    Lannon, Herbert; Brujic, Jasna

    2012-02-01

    The kinetics of protein unfolding under a stretching force has been extensively studied by atomic force microscopy (AFM) over the past decade [1]. Experimental artifacts at the single molecule level introduce uncertainties in the data analysis that have led to several competing physical models for the unfolding process. For example, the unfolding dynamics of the protein ubiquitin under constant force has been described by probability distributions as diverse as exponential [2,3], a sum of exponentials, log-normal [4], and more recently a function describing static disorder in the Arrhenius model [5]. A new method for data analysis is presented that utilizes maximum likelihood estimation (MLE) combined with other traditional statistical tests to unambiguously rank the consistency of these and other models with the experimental data. These techniques applied to the ubiquitin unfolding data shows that the probability of unfolding is best fit with a stretched exponential distribution, with important implications on the complexity of the mechanism of protein unfolding. [4pt] [1] Carrion-Vazquez, et. al. Springer Series in Biophys. 2006 [0pt] [2] Fernandez et. al. Science 2004 [0pt] [3] Brujic et. al. Nat. Phys 2006 [0pt] [4] Garcia-Manyes et. al. Biophys. J. 2007 [0pt] [5] Kuo et. al. PNAS 2010

  6. Physico-Geometrical Kinetics of Solid-State Reactions in an Undergraduate Thermal Analysis Laboratory

    ERIC Educational Resources Information Center

    Koga, Nobuyoshi; Goshi, Yuri; Yoshikawa, Masahiro; Tatsuoka, Tomoyuki

    2014-01-01

    An undergraduate kinetic experiment of the thermal decomposition of solids by microscopic observation and thermal analysis was developed by investigating a suitable reaction, applicable techniques of thermal analysis and microscopic observation, and a reliable kinetic calculation method. The thermal decomposition of sodium hydrogen carbonate is…

  7. A Zn based coordination polymer exhibiting long-lasting phosphorescence.

    PubMed

    Cepeda, Javier; Sebastian, Eider San; Padro, Daniel; Rodríguez-Diéguez, Antonio; García, Jose A; Ugalde, Jesus M; Seco, Jose M

    2016-07-01

    A new Zn(ii) based coordination polymer (CP) built by the cohesive pilling of 2D Shubnikov type layers is reported. This material exhibits time dependent multicoloured emission, part of which shows a persistent green phosphorescence visible for up to two seconds to the naked eye, which originates from multiple charge transfer mechanisms. PMID:27297330

  8. Lanthanide-based laser-induced phosphorescence for spray diagnostics

    NASA Astrophysics Data System (ADS)

    van der Voort, D. D.; Maes, N. C. J.; Lamberts, T.; Sweep, A. M.; van de Water, W.; Kunnen, R. P. J.; Clercx, H. J. H.; van Heijst, G. J. F.; Dam, N. J.

    2016-03-01

    Laser-induced phosphorescence (LIP) is a relatively recent and versatile development for studying flow dynamics. This work investigates certain lanthanide-based molecular complexes for their use in LIP for high-speed sprays. Lanthanide complexes in solutions have been shown to possess long phosphorescence lifetimes (˜1-2 ms) and to emit light in the visible wavelength range. In particular, europium and terbium complexes are investigated using fluorescence/phosphorescence spectrometry, showing that europium-thenoyltrifluoracetone-trioctylphosphineoxide (Eu-TTA-TOPO) can be easily and efficiently excited using a standard frequency-tripled Nd:YAG laser. The emitted spectrum, with maximum intensity at a wavelength of 614 nm, is shown not to vary strongly with temperature (293-383 K). The decay constant of the phosphorescence, while independent of ambient pressure, decreases by approximately 12 μs/K between 323 and 373 K, with the base level of the decay constant dependent on the used solvent. The complex does not luminesce in the gas or solid state, meaning only the liquid phase is visualized, even in an evaporating spray. By using an internally excited spray containing the phosphorescent complex, the effect of vaporization is shown through the decrease in measured intensity over the length of the spray, together with droplet size measurements using interferometric particle imaging. This study shows that LIP, using the Eu-TTA-TOPO complex, can be used with different solvents, including diesel surrogates. Furthermore, it can be easily handled and used in sprays to investigate spray breakup and evaporation.

  9. Lanthanide-based laser-induced phosphorescence for spray diagnostics.

    PubMed

    van der Voort, D D; Maes, N C J; Lamberts, T; Sweep, A M; van de Water, W; Kunnen, R P J; Clercx, H J H; van Heijst, G J F; Dam, N J

    2016-03-01

    Laser-induced phosphorescence (LIP) is a relatively recent and versatile development for studying flow dynamics. This work investigates certain lanthanide-based molecular complexes for their use in LIP for high-speed sprays. Lanthanide complexes in solutions have been shown to possess long phosphorescence lifetimes (∼1-2 ms) and to emit light in the visible wavelength range. In particular, europium and terbium complexes are investigated using fluorescence/phosphorescence spectrometry, showing that europium-thenoyltrifluoracetone-trioctylphosphineoxide (Eu-TTA-TOPO) can be easily and efficiently excited using a standard frequency-tripled Nd:YAG laser. The emitted spectrum, with maximum intensity at a wavelength of 614 nm, is shown not to vary strongly with temperature (293-383 K). The decay constant of the phosphorescence, while independent of ambient pressure, decreases by approximately 12 μs/K between 323 and 373 K, with the base level of the decay constant dependent on the used solvent. The complex does not luminesce in the gas or solid state, meaning only the liquid phase is visualized, even in an evaporating spray. By using an internally excited spray containing the phosphorescent complex, the effect of vaporization is shown through the decrease in measured intensity over the length of the spray, together with droplet size measurements using interferometric particle imaging. This study shows that LIP, using the Eu-TTA-TOPO complex, can be used with different solvents, including diesel surrogates. Furthermore, it can be easily handled and used in sprays to investigate spray breakup and evaporation. PMID:27036779

  10. Kinetic analysis of thermally relativistic flow with dissipation

    NASA Astrophysics Data System (ADS)

    Yano, Ryosuke; Suzuki, Kojiro

    2011-01-01

    Nonequilibrium flow of thermally relativistic matter with dissipation is considered in the framework of the relativistic kinetic theory. As an object of the analysis, the supersonic rarefied flow of thermally relativistic matter around the triangle prism is analyzed using the Anderson-Witting model. Obtained numerical results indicate that the flow field changes in accordance with the flow velocity and temperature of the uniform flow owing to both effects derived from the Lorentz contraction and thermally relativistic effects, even when the Mach number of the uniform flow is fixed. The profiles of the heat flux along the stagnation streamline can be approximated on the basis of the relativistic Navier-Stokes-Fourier (NSF) law except for a strong nonequilibrium regime such as the middle of the shock wave and the vicinity of the wall, whereas the profile of the heat flux behind the triangle prism cannot be approximated on the basis of the relativistic NSF law owing to rarefied effects via the expansion behind the triangle prism. Additionally, the heat flux via the gradient of the static pressure is non-negligible owing to thermally relativistic effects. The profile of the dynamic pressure is different from that approximated on the basis of the NSF law, which is obtained by the Eckart decomposition. Finally, variations of convections of the mass and momentum owing to the effects derived from the Lorentz contraction and thermally relativistic effects are numerically confirmed.

  11. Kinetic analysis of thermally relativistic flow with dissipation

    SciTech Connect

    Yano, Ryosuke; Suzuki, Kojiro

    2011-01-15

    Nonequilibrium flow of thermally relativistic matter with dissipation is considered in the framework of the relativistic kinetic theory. As an object of the analysis, the supersonic rarefied flow of thermally relativistic matter around the triangle prism is analyzed using the Anderson-Witting model. Obtained numerical results indicate that the flow field changes in accordance with the flow velocity and temperature of the uniform flow owing to both effects derived from the Lorentz contraction and thermally relativistic effects, even when the Mach number of the uniform flow is fixed. The profiles of the heat flux along the stagnation streamline can be approximated on the basis of the relativistic Navier-Stokes-Fourier (NSF) law except for a strong nonequilibrium regime such as the middle of the shock wave and the vicinity of the wall, whereas the profile of the heat flux behind the triangle prism cannot be approximated on the basis of the relativistic NSF law owing to rarefied effects via the expansion behind the triangle prism. Additionally, the heat flux via the gradient of the static pressure is non-negligible owing to thermally relativistic effects. The profile of the dynamic pressure is different from that approximated on the basis of the NSF law, which is obtained by the Eckart decomposition. Finally, variations of convections of the mass and momentum owing to the effects derived from the Lorentz contraction and thermally relativistic effects are numerically confirmed.

  12. Design and Synthesis of Pyrimidine-Based Iridium(III) Complexes with Horizontal Orientation for Orange and White Phosphorescent OLEDs.

    PubMed

    Cui, Lin-Song; Liu, Yuan; Liu, Xiang-Yang; Jiang, Zuo-Quan; Liao, Liang-Sheng

    2015-05-27

    Two phosphorescent Ir(III) complexes Ir(ppm)2(acac) and Ir(dmppm)2(acac) were synthesized and characterized with emission ranged at 584/600 nm and high photoluminescence quantum yields (PLQYs) of 0.90/0.92, respectively. The angle-dependent PL spectra analysis reveals that the two orange iridium(III) complexes embodied horizontal orientation property. The high photoluminescence quantum yield and high horizontal dipoles ratio determine their excellent device performance. The devices based on Ir(ppm)2(acac) and Ir(dmppm)2(acac) achieved efficiencies of 26.8% and 28.2%, respectively, which can be comparable to the best orange phosphorescent devices reported in the literature. Furthermore, with the introduction of FIrpic as sky-blue emitter, phosphorescent two-element white organic light-emitting devices (OLEDs) have been realized with external quantum efficiencies (EQEs) as high as 25%, which are the highest values among the reported two-element white OLEDs. PMID:25943159

  13. A novel optical biosensor for direct and selective determination of serotonin in serum by Solid Surface-Room Temperature Phosphorescence.

    PubMed

    Ramon-Marquez, Teresa; Medina-Castillo, Antonio L; Fernandez-Gutierrez, Alberto; Fernandez-Sanchez, Jorge F

    2016-08-15

    This paper describes a novel biosensor which combines the use of nanotechnology (non-woven nanofibre mat) with Solid Surface-Room Temperature Phosphorescence (SS-RTP) measurement for the determination of serotonin in human serum. The developed biosensor is simple and can be directly applied in serum; only requires a simple clean-up protocol. Therefore it is the first time that serotonin is analysed directly in serum with a non-enzymatic technique. This new approach is based on the covalent immobilization of serotonin directly from serum on a functional nanofibre material (Tiss®-Link) with a preactivated surface for direct covalent immobilization of primary and secondary amines, and the subsequent measurement of serotonin phosphorescent emission from the solid surface. The phosphorescent detection allows avoiding the interference from any fluorescence emission or scattering light from any molecule present in the serum sample which can be also immobilised on the nanofibre material. The determination of serotonin with this SS-RTP sensor overcomes some limitations, such as large interference from the matrix and high cost and complexity of many of the methods widely used for serotonin analysis. The potential applicability of the sensor in the clinical diagnosis was demonstrated by analysing serum samples from seven healthy volunteers. The method was validated with an external reference laboratory, obtaining a correlation coefficient of 0.997 which indicates excellent correlation between the two methods. PMID:27085954

  14. Kinetic analysis and mechanistic aspects of autoxidation of catechins.

    PubMed

    Mochizuki, Manabu; Yamazaki, Shin-ichi; Kano, Kenji; Ikeda, Tokuji

    2002-01-15

    A peroxidase-based bioelectrochemical sensor of hydrogen peroxide (H(2)O(2)) and a Clark-type oxygen electrode were applied to continuous monitoring and kinetic analysis of the autoxidation of catechins. Four major catechins in green tea, (-)-epicatechin, (-)-epicatechin gallate, (-)-epigallocatechin, and (-)-epigallocatechin gallate, were used as model compounds. It was found that dioxygen (O(2)) is quantitatively reduced to H(2)O(2). The initial rate of autoxidation is suppressed by superoxide dismutase and H(+), but is independent of buffer capacity. Based on these results, a mechanism of autoxidation is proposed; the initial step is the one-electron oxidation of the B ring of catechins by O(2) to generate a superoxide anion (O(2)(*-)) and a semiquinone radical, as supported in part by electron spin resonance measurements. O(2)(*-) works as a stronger one-electron oxidant than O(2) against catechins and is reduced to H(2)O(2). The semiquinone radical is more susceptible to oxidation with O(2) than fully reduced catechins. The autoxidation rate increases with pH. This behavior can be interpreted in terms of the increase in the stability of O(2)(*-) and the semiquinone radical with increasing pH, rather than the acid dissociation of phenolic groups. Cupric ion enhances autoxidation; most probably it functions as a catalyst of the initial oxidation step of catechins. The product cuprous ion can trigger a Fenton reaction to generate hydroxyl radical. On the other hand, borate ion suppresses autoxidation drastically, due to the strong complex formation with catechins. The biological significance of autoxidation and its effectors are also discussed. PMID:11853955

  15. Single-point kinetic energy density functionals: A pointwise kinetic energy density analysis and numerical convergence investigation

    NASA Astrophysics Data System (ADS)

    Xia, Junchao; Carter, Emily A.

    2015-01-01

    We present a comprehensive study of single-point kinetic energy density functionals (KEDFs) to be used in orbital-free density functional theory (DFT) calculations. We first propose a form of KEDFs based on a pointwise Kohn-Sham (KS) kinetic energy density (KED) and electron localization function (ELF) analysis. We find that the ELF and modified enhancement factor have a very strong and transferable correlation with the reduced density in various bulk metals. The non-self-consistent kinetic energy errors predicted by our KEDF models are decreased greatly compared to previously reported generalized gradient approximation (GGA) KEDFs. Second, we perform self-consistent calculations with various single-point KEDFs and investigate their numerical convergence behavior. We find striking numerical instabilities for previous GGA KEDFs; most of the GGA KEDFs fail to converge and show unphysical densities during the optimization. In contrast, our KEDFs demonstrate stable convergence, and their self-consistent results of various bulk properties agree reasonably well with KSDFT. A further detailed KED analysis reveals an interesting bifurcation phenomenon in defective metals and alloys, which may shed light on directions for future KEDF development.

  16. Non-equilibrium thermodynamics analysis of transcriptional regulation kinetics

    NASA Astrophysics Data System (ADS)

    Hernández-Lemus, Enrique; Tovar, Hugo; Mejía, Carmen

    2014-12-01

    Gene expression in eukaryotic cells is an extremely complex and interesting phenomenon whose dynamics are controlled by a large number of subtle physicochemical processes commonly described by means of gene regulatory networks. Such networks consist in a series of coupled chemical reactions, conformational changes, and other biomolecular processes involving the interaction of the DNA molecule itself with a number of proteins usually called transcription factors as well as enzymes and other components. The kinetics behind the functioning of such gene regulatory networks are largely unknown, though its description in terms of non-equilibrium thermodynamics has been discussed recently. In this work we will derive general kinetic equations for a gene regulatory network from a non-equilibrium thermodynamical description and discuss its use in understanding the free energy constrains imposed in the network structure. We also will discuss explicit expressions for the kinetics of a simple model of gene regulation and show that the kinetic role of mRNA decay during the RNA synthesis stage (or transcription) is somehow limited due to the comparatively low values of decay rates. At the level discussed here, this implies a decoupling of the kinetics of mRNA synthesis and degradation a fact that may become quite useful when modeling gene regulatory networks from experimental data on whole genome gene expression.

  17. Red Phosphorescence from Benzo[2,1,3]thiadiazoles at Room Temperature.

    PubMed

    Gutierrez, Gregory D; Sazama, Graham T; Wu, Tony; Baldo, Marc A; Swager, Timothy M

    2016-06-01

    We describe the red phosphorescence exhibited by a class of structurally simple benzo[2,1,3]thiadiazoles at room temperature. The photophysical properties of these molecules in deoxygenated cyclohexane, including their absorption spectra, steady-state photoluminescence and excitation spectra, and phosphorescence lifetimes, are presented. Time-dependent density functional theory calculations were carried out to better understand the electronic excited states of these benzo[2,1,3]thiadiazoles and why they are capable of phosphorescence. PMID:27211248

  18. Light-Emitting Diodes: Phosphorescent Nanocluster Light-Emitting Diodes (Adv. Mater. 2/2016).

    PubMed

    Kuttipillai, Padmanaban S; Zhao, Yimu; Traverse, Christopher J; Staples, Richard J; Levine, Benjamin G; Lunt, Richard R

    2016-01-13

    On page 320, R. R. Lunt and co-workers demonstrate electroluminescence from earth-abundant phosphorescent metal halide nanoclusters. These inorganic emitters, which exhibit rich photophysics combined with a high phosphorescence quantum yield, are employed in red and near-infrared light-emitting diodes, providing a new platform of phosphorescent emitters for low-cost and high-performance light-emission applications. PMID:26749470

  19. In vivo imaging of brain metabolism activity using a phosphorescent oxygen-sensitive probe

    PubMed Central

    Tsytsarev, Vassiliy; Arakawa, Hiroyuki; Borisov, Sergei; Pumbo, Elena; Erzurumlu, Reha S.; Papkovsky, Dmitri B.

    2013-01-01

    Several approaches have been adopted for real-time imaging of neural activity in vivo. We tested a new cell-penetrating phosphorescent oxygen-sensitive probe, NanO2-IR, to monitor temporal and spatial dynamics of oxygen metabolism in the neocortex following peripheral sensory stimulation. Probe solution was applied to the surface of anesthetized mouse brain; optical imaging was performed using a MiCAM-02 system. Trains of whisker stimuli were delivered and associated changes in phosphorescent signal were recorded in the contralateral somatosensory (“barrel”) cortex. Sensory stimulation led to changes in oxygenation of activated areas of the barrel cortex. The oxygen imaging results were compared to those produced by the voltage-sensitive dye RH-1691. While the signals emitted by the two probes differed in shape and amplitude, they both faithfully indicated specific whisker evoked cortical activity. Thus, NanO2-IR probe can be used as a tool in visualization and realtime analysis of sensory- evoked neural activity in vivo. PMID:23624034

  20. Monte Carlo verification of point kinetics for safety analysis of nuclear reactors

    SciTech Connect

    Valentine, T.E.; Mihalczo, J.T.

    1995-06-01

    Monte Carlo neutron transport methods can be used to verify the applicability of point kinetics for safety analysis of nuclear reactors. KENO-NR was used to obtain the transfer function of the Advanced Neutron Source reactor and the time delay between the core power production and the external detectors, a parameter of interest to the safety systems design. The good agreement between the Monte Carlo generated transfer function and the point kinetics transfer function validates that the uncommon ANS geometry does not preclude the use of point kinetics in the frequency range that was investigated. Various features of the power spectral densities also demonstrated the applicability of point kinetics. The time delay was obtained from the cross-power spectral density (CPSD) and is {approximately}15 ms. These analyses show that frequency analysis can be used experimentally to investigate the validity of the use of point kinetics models in critical experiments or zero power testing of reactors.

  1. Kinetic analysis of bioconversion of cellulose in attrition bioreactor

    SciTech Connect

    Jones, E.O.; Lee, J.M.

    1988-01-01

    Enzymatic conversion of cellulosic wastes has great potential for the production of fuels and chemicals. However, the widespread conversion of cellulosic waste has been delayed by unfavorable process economics. The attrition bioreactor (ABR) combines wet ball milling and enzymatic hydrolysis in one process step. It was found that the ABR did not accelerate enzyme deactivation. Interfacial forces, not shear forces, caused the most deactivation. Elimination of the air-liquid interface by covering the reactor substantially increased enzyme stability. A simple exponential kinetic model was tested to predict the cellulose conversion in an ABR. Kinetic parameters were estimated from batch runs performed at various enzyme and substrate concentrations.

  2. NMR analysis of base-pair opening kinetics in DNA

    PubMed Central

    Szulik, Marta W.; Voehler, Markus; Stone, Michael P.

    2014-01-01

    Base pairing in nucleic acids plays a crucial role in their structure and function. Differences in the base pair opening and closing kinetics of individual double stranded DNA sequences or between chemically modified base pairs provide insight into the recognition of these base pairs by DNA processing enzymes. This unit describes how to quantify the kinetics for localized base pairs by observing changes in the imino proton signals by nuclear magnetic resonance spectroscopy. The determination of all relevant parameters using state of the art techniques and NMR instrumentation, including cryoprobes, is discussed. PMID:25501592

  3. Water-soluble iridium phosphorescent complexes for OLED applications

    NASA Astrophysics Data System (ADS)

    Eum, Min-Sik; Yoon, Heekoo; Kim, Tae Hyung

    2012-09-01

    Newly prepared water-soluble iridium phosphorescent complexes, trans-[Ir(ppy)(PAr3)2(H)L]0,+ (ppy = bidentate 2-phenylpyridinato anionic ligand; L= Cl (1), CO (2), CN- (3); H being trans to the nitrogen of ppy ligand; PAr3 (TPPTS) = P(m-C6H4SO3Na)3), have been synthesized and characterized. Those complexes containing water-soluble phosphine ligands can emit any color region as altering cyclometalated ligands in aqueous media with high quantum efficiencies. Even though these water-soluble phosphorescent iridium complexes can be the sensing probe for toxic CO gas and CN anion, they will be capable of promising materials in the solution processible OLED applications.

  4. Quantitating intracellular oxygen tension in vivo by phosphorescence lifetime measurement

    PubMed Central

    Hirakawa, Yosuke; Yoshihara, Toshitada; Kamiya, Mako; Mimura, Imari; Fujikura, Daichi; Masuda, Tsuyoshi; Kikuchi, Ryohei; Takahashi, Ippei; Urano, Yasuteru; Tobita, Seiji; Nangaku, Masaomi

    2015-01-01

    Hypoxia appears to have an important role in pathological conditions in many organs such as kidney; however, a method to quantify intracellular oxygen tension in vivo has not been well established. In this study, we established an optical method to quantify oxygen tension in mice kidneys using a cationic lipophilic phosphorescence probe, BTPDM1, which has an intracellular oxygen concentration-sensitive phosphorescence lifetime. Since this probe is distributed inside the tubular cells of the mice kidney, we succeeded in detecting acute renal hypoxic conditions and chronic kidney disease. This technique enabled us to estimate intracellular partial pressures of oxygen in vivo by extrapolating the calibration curve generated from cultured tubular cells. Since intracellular oxygen tension is directly related to cellular hypoxic reactions, such as the activation of hypoxia-inducible factors, our method will shed new light on hypoxia research in vivo. PMID:26644023

  5. Circularly polarised phosphorescent photoluminescence and electroluminescence of iridium complexes

    PubMed Central

    Li, Tian-Yi; Jing, Yi-Ming; Liu, Xuan; Zhao, Yue; Shi, Lin; Tang, Zhiyong; Zheng, You-Xuan; Zuo, Jing-Lin

    2015-01-01

    Nearly all the neutral iridium complexes widely used as dopants in PhOLEDs are racemic mixtures; however, this study observed that these complexes can be separated into stable optically active Λ and ∆ isomers and that their chirality is an intrinsic property. The circularly polarised phosphorescent photoluminescence (CPPPL) signals of Λ/Δ isomers are perfect mirror images with opposite polarisation and equal intensity exhibiting a “handedness” for the polarisation. For the first time, we applied the Λ/Δ iridium isomers as emitters in OLEDs, and the circularly polarised phosphorescent electroluminescence (CPPEL) spectra reveal completely positive or negative broad peaks consistent with the CPPPL spectra. The results demonstrate that the Λ/Δ isomers have potential application for 3D OLEDs because they can exhibit high efficiency and luminance, and 3D display technology based on circularly polarised light is the most comfortable for the eyes. PMID:26446521

  6. k-Cone analysis: determining all candidate values for kinetic parameters on a network scale.

    PubMed

    Famili, Iman; Mahadevan, Radhakrishnan; Palsson, Bernhard O

    2005-03-01

    The absence of comprehensive measured kinetic values and the observed inconsistency in the available in vitro kinetic data has hindered the formulation of network-scale kinetic models of biochemical reaction networks. To meet this challenge we present an approach to construct a convex space, termed the k-cone, which contains all the allowable numerical values of the kinetic constants in large-scale biochemical networks. The definition of the k-cone relies on the incorporation of in vivo concentration data and a simplified approach to represent enzyme kinetics within an established constraint-based modeling approach. The k-cone approach was implemented to define the allowable combination of numerical values for a full kinetic model of human red blood cell metabolism and to study its correlated kinetic parameters. The k-cone approach can be used to determine consistency between in vitro measured kinetic values and in vivo concentration and flux measurements when used in a network-scale kinetic model. k-Cone analysis was successful in determining whether in vitro measured kinetic values used in the reconstruction of a kinetic-based model of Saccharomyces cerevisiae central metabolism could reproduce in vivo measurements. Further, the k-cone can be used to determine which numerical values of in vitro measured parameters are required to be changed in a kinetic model if in vivo measured values are not reproduced. k-Cone analysis could identify what minimum number of in vitro determined kinetic parameters needed to be adjusted in the S. cerevisiae model to be consistent with the in vivo data. Applying the k-cone analysis a priori to kinetic model development may reduce the time and effort involved in model building and parameter adjustment. With the recent developments in high-throughput profiling of metabolite concentrations at a whole-cell scale and advances in metabolomics technologies, the k-cone approach presented here may hold the promise for kinetic

  7. k-Cone Analysis: Determining All Candidate Values for Kinetic Parameters on a Network Scale

    PubMed Central

    Famili, Iman; Mahadevan, Radhakrishnan; Palsson, Bernhard O.

    2005-01-01

    The absence of comprehensive measured kinetic values and the observed inconsistency in the available in vitro kinetic data has hindered the formulation of network-scale kinetic models of biochemical reaction networks. To meet this challenge we present an approach to construct a convex space, termed the k-cone, which contains all the allowable numerical values of the kinetic constants in large-scale biochemical networks. The definition of the k-cone relies on the incorporation of in vivo concentration data and a simplified approach to represent enzyme kinetics within an established constraint-based modeling approach. The k-cone approach was implemented to define the allowable combination of numerical values for a full kinetic model of human red blood cell metabolism and to study its correlated kinetic parameters. The k-cone approach can be used to determine consistency between in vitro measured kinetic values and in vivo concentration and flux measurements when used in a network-scale kinetic model. k-Cone analysis was successful in determining whether in vitro measured kinetic values used in the reconstruction of a kinetic-based model of Saccharomyces cerevisiae central metabolism could reproduce in vivo measurements. Further, the k-cone can be used to determine which numerical values of in vitro measured parameters are required to be changed in a kinetic model if in vivo measured values are not reproduced. k-Cone analysis could identify what minimum number of in vitro determined kinetic parameters needed to be adjusted in the S. cerevisiae model to be consistent with the in vivo data. Applying the k-cone analysis a priori to kinetic model development may reduce the time and effort involved in model building and parameter adjustment. With the recent developments in high-throughput profiling of metabolite concentrations at a whole-cell scale and advances in metabolomics technologies, the k-cone approach presented here may hold the promise for kinetic

  8. Low-cost gated system for monitoring phosphorescence lifetimes

    NASA Astrophysics Data System (ADS)

    Kostov, Yordan; Rao, Govind

    2003-09-01

    A low-cost, gated system for measurements of phosphorescence lifetimes is presented. An extensive description of the system operating principles and metrological characteristics is given. Remarkably, the system operates without optical filtering of the light emitting diode excitation source. A description of a practical system is also given and its performance is discussed. Because the device effectively suppresses high-level background fluorescence and scattered light, it is expected to find widespread application in bioprocess, environmental, and biomedical fields.

  9. Growth of Listeria monocytogenes in Salmon Roe - a kinetic analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to investigate the growth kinetics of Listeria monocytogenes in unsalted and salted (3%) salmon roe. Growth curves, developed using inoculated samples incubated at constant temperatures between 5 and 30 degrees C, were analyzed by curve-fitting to the Huang and Baran...

  10. Nonisothermal Analysis of Solution Kinetics by Spreadsheet Simulation

    ERIC Educational Resources Information Center

    de Levie, Robert

    2012-01-01

    A fast and generally applicable alternative solution to the problem of determining the useful shelf life of medicinal solutions is described. It illustrates the power and convenience of the combination of numerical simulation and nonlinear least squares with a practical pharmaceutical application of chemical kinetics and thermodynamics, validated…

  11. A KINETIC ANALYSIS OF THE CONFORMATIONAL FLEXIBILITY OF STEROID HORMONES

    EPA Science Inventory

    For a set of 10 androgen steroids and estradiol (E2), the kinetic feasibility of conformation flexibility of the cyclic moieties was studied under the constraint of maintaining the B/C trans and C/D trans ring fusion of the natural and biologically active enantiomer. To this end,...

  12. Methods for Kinetic and Thermodynamic Analysis of Aminoacyl-tRNA Synthetases

    PubMed Central

    Francklyn, Christopher S.; First, Eric A.; Perona, John J.; Hou, Ya-Ming

    2008-01-01

    The accuracy of protein synthesis relies on the ability of aminoacyl-tRNA synthetases (aaRSs) to discriminate among true and near cognate substrates. To date, analysis of aaRSs function, including identification of residues of aaRS participating in amino acid and tRNA discrimination, has largely relied on the steady state kinetic pyrophosphate exchange and aminoacylation assays. Pre-steady state kinetic studies investigating a more limited set of aaRS systems have also been undertaken to assess the energetic contributions of individual enzyme-substrate interactions, particularly in the adenylation half reaction. More recently, a renewed interest in the use of rapid kinetics approaches for aaRSs has led to their application to several new aaRS systems, resulting in the identification of mechanistic differences that distinguish the two structurally distinct aaRS classes. Here, we review the techniques for thermodynamic and kinetic analysis of aaRS function. Following a brief survey of methods for the preparation of materials and for steady state kinetic analysis, this review will describe pre-steady state kinetic methods employing rapid quench and stopped-flow fluorescence for analysis of the activation and aminoacyl transfer reactions. Application of these methods to any aaRS system allows the investigator to derive detailed kinetic mechanisms for the activation and aminoacyl transfer reactions, permitting issues of substrate specificity, stereochemical mechanism, and inhibitor interaction to be addressed in a rigorous and quantitative fashion. PMID:18241792

  13. Steady-State Kinetic Analysis of DNA Polymerase Single-Nucleotide Incorporation Products

    PubMed Central

    O'Flaherty, Derek K.

    2014-01-01

    This unit describes the experimental procedures for the steady-state kinetic analysis of DNA synthesis across DNA nucleotides (native or modified) by DNA polymerases. In vitro primer extension experiments with a single nucleoside triphosphate species followed by denaturing polyacrylamide gel electrophoresis of the extended products is described. Data analysis procedures and fitting to steady-state kinetic models is presented to highlight the kinetic differences involved in the bypass of damaged versus undamaged DNA. Moreover, explanations concerning problems encountered in these experiments are addressed. This approach provides useful quantitative parameters for the processing of damaged DNA by DNA polymerases. PMID:25501593

  14. Simultaneous Fluorescence and Phosphorescence Lifetime Imaging Microscopy in Living Cells

    PubMed Central

    Jahn, Karolina; Buschmann, Volker; Hille, Carsten

    2015-01-01

    In living cells, there are always a plethora of processes taking place at the same time. Their precise regulation is the basis of cellular functions, since small failures can lead to severe dysfunctions. For a comprehensive understanding of intracellular homeostasis, simultaneous multiparameter detection is a versatile tool for revealing the spatial and temporal interactions of intracellular parameters. Here, a recently developed time-correlated single-photon counting (TCSPC) board was evaluated for simultaneous fluorescence and phosphorescence lifetime imaging microscopy (FLIM/PLIM). Therefore, the metabolic activity in insect salivary glands was investigated by recording ns-decaying intrinsic cellular fluorescence, mainly related to oxidized flavin adenine dinucleotide (FAD) and the μs-decaying phosphorescence of the oxygen-sensitive ruthenium-complex Kr341. Due to dopamine stimulation, the metabolic activity of salivary glands increased, causing a higher pericellular oxygen consumption and a resulting increase in Kr341 phosphorescence decay time. Furthermore, FAD fluorescence decay time decreased, presumably due to protein binding, thus inducing a quenching of FAD fluorescence decay time. Through application of the metabolic drugs antimycin and FCCP, the recorded signals could be assigned to a mitochondrial origin. The dopamine-induced changes could be observed in sequential FLIM and PLIM recordings, as well as in simultaneous FLIM/PLIM recordings using an intermediate TCSPC timing resolution. PMID:26390855

  15. Simultaneous Fluorescence and Phosphorescence Lifetime Imaging Microscopy in Living Cells.

    PubMed

    Jahn, Karolina; Buschmann, Volker; Hille, Carsten

    2015-01-01

    In living cells, there are always a plethora of processes taking place at the same time. Their precise regulation is the basis of cellular functions, since small failures can lead to severe dysfunctions. For a comprehensive understanding of intracellular homeostasis, simultaneous multiparameter detection is a versatile tool for revealing the spatial and temporal interactions of intracellular parameters. Here, a recently developed time-correlated single-photon counting (TCSPC) board was evaluated for simultaneous fluorescence and phosphorescence lifetime imaging microscopy (FLIM/PLIM). Therefore, the metabolic activity in insect salivary glands was investigated by recording ns-decaying intrinsic cellular fluorescence, mainly related to oxidized flavin adenine dinucleotide (FAD) and the μs-decaying phosphorescence of the oxygen-sensitive ruthenium-complex Kr341. Due to dopamine stimulation, the metabolic activity of salivary glands increased, causing a higher pericellular oxygen consumption and a resulting increase in Kr341 phosphorescence decay time. Furthermore, FAD fluorescence decay time decreased, presumably due to protein binding, thus inducing a quenching of FAD fluorescence decay time. Through application of the metabolic drugs antimycin and FCCP, the recorded signals could be assigned to a mitochondrial origin. The dopamine-induced changes could be observed in sequential FLIM and PLIM recordings, as well as in simultaneous FLIM/PLIM recordings using an intermediate TCSPC timing resolution. PMID:26390855

  16. Simultaneous Fluorescence and Phosphorescence Lifetime Imaging Microscopy in Living Cells

    NASA Astrophysics Data System (ADS)

    Jahn, Karolina; Buschmann, Volker; Hille, Carsten

    2015-09-01

    In living cells, there are always a plethora of processes taking place at the same time. Their precise regulation is the basis of cellular functions, since small failures can lead to severe dysfunctions. For a comprehensive understanding of intracellular homeostasis, simultaneous multiparameter detection is a versatile tool for revealing the spatial and temporal interactions of intracellular parameters. Here, a recently developed time-correlated single-photon counting (TCSPC) board was evaluated for simultaneous fluorescence and phosphorescence lifetime imaging microscopy (FLIM/PLIM). Therefore, the metabolic activity in insect salivary glands was investigated by recording ns-decaying intrinsic cellular fluorescence, mainly related to oxidized flavin adenine dinucleotide (FAD) and the μs-decaying phosphorescence of the oxygen-sensitive ruthenium-complex Kr341. Due to dopamine stimulation, the metabolic activity of salivary glands increased, causing a higher pericellular oxygen consumption and a resulting increase in Kr341 phosphorescence decay time. Furthermore, FAD fluorescence decay time decreased, presumably due to protein binding, thus inducing a quenching of FAD fluorescence decay time. Through application of the metabolic drugs antimycin and FCCP, the recorded signals could be assigned to a mitochondrial origin. The dopamine-induced changes could be observed in sequential FLIM and PLIM recordings, as well as in simultaneous FLIM/PLIM recordings using an intermediate TCSPC timing resolution.

  17. Dendritic Phosphorescent Probes for Oxygen Imaging in Biological Systems

    PubMed Central

    Lebedev, Artem Y.; Cheprakov, Andrei V.; Sakadžić, Sava; Boas, David A.; Wilson, David F.; Vinogradov, Sergei A.

    2009-01-01

    Oxygen levels in biological systems can be measured by the phosphorescence quenching method using probes with controllable quenching parameters and defined biodistributions. We describe a general approach to the construction of phosphorescent nanosensors with tunable spectral characteristics, variable degrees of quenching, and a high selectivity for oxygen. The probes are based on bright phosphorescent Pt and Pd complexes of porphyrins and symmetrically π-extended porphyrins (tetrabenzoporphyrins and tetranaphthoporphyrins). π-Extension of the core macrocycle allows tuning of the spectral parameters of the probes in order to meet the requirements of a particular imaging application (e.g., oxygen tomography versus planar microscopic imaging). Metalloporphyrins are encapsulated into poly(arylglycine) dendrimers, which fold in aqueous environments and create diffusion barriers for oxygen, making it possible to regulate the sensitivity and the dynamic range of the method. The periphery of the dendrimers is modified with poly(ethylene glycol) residues, which enhance the probe’s solubility, diminish toxicity, and help prevent interactions of the probes with the biological environment. The probe’s parameters were measured under physiological conditions and shown to be unaffected by the presence of biomacromolecules. The performance of the probes was demonstrated in applications, including in vivo microscopy of vascular pO2 in the rat brain. PMID:20072726

  18. Progress Toward the Analysis of the Kinetic Stabilizer Concept

    SciTech Connect

    Post, R F; Byers, J A; Cohen, R H; Fowler, T K; Ryutov, D D; Tung, L S

    2005-02-08

    The Kinetic Stabilizer (K-S) concept [1] represents a means for stabilizing axisymmetric mirror and tandem-mirror (T-M) magnetic fusion systems against MHD interchange instability modes. Magnetic fusion research has given us examples of axisymmetric mirror confinement devices in which radial transport rates approach the classical ''Spitzer'' level, i.e. situations in which turbulence if present at all, is at too low a level to adversely affect the radial transport [2,3,4]. If such a low-turbulence condition could be achieved in a T-M system it could lead to a fusion power system that would be simpler, smaller, and easier to develop than one based on closed-field confinement, e.g., the tokamak, where the transport is known to be dominated by turbulence. However, since conventional axisymmetric mirror systems suffer from the MHD interchange instability, the key to exploiting this new opportunity is to find a practical way to stabilize this mode. The K-S represents one avenue to achieving this goal. The starting point for the K-S concept is a theoretical analysis by Ryutov [5]. He showed that a MHD-unstable plasma contained in an axisymmetric mirror cell can be MHD-stabilized by the presence of a low-density plasma on the expanding field lines outside the mirrors. If this plasma communicates well electrically with the plasma in the then this exterior plasma can stabilize the interior, confined, plasma. This stabilization technique was conclusively demonstrated in the Gas Dynamic Trap (GDT) experiment [6] at Novosibirsk, Russia, at mirror-cell plasma beta values of 40 percent. The GDT operates in a high collisionality regime. Thus the effluent plasma leaking through the mirrors, though much lower in density than that of the confined plasma, is still high enough to satisfy the stabilization criterion. This would not, however, be the case in a fusion T-M with axisymmetric plug and central cell fields. In such a case the effluent plasma would be far too low in density to

  19. A kinetic analysis of Drosophila melanogaster dopa decarboxylase.

    PubMed

    Black, B C; Smarrelli, J

    1986-03-01

    The kinetic mechanism of dopa decarboxylase (3,4-dihydroxy-L-phenylalanine carboxy-lyase, EC 4.1.1.28) was investigated in Drosophila melanogaster. Based on initial velocity and product inhibition studies, an ordered reaction is proposed for dopa decarboxylase. This kinetic mechanism is interpreted in the context of measured enzyme activities and the catecholamine pools in Drosophila. The 1(2)amd gene is immediately adjacent to the gene coding for dopa decarboxylase (Ddc) and determines hypersensitivity to alpha-methyldopa in Drosophila. Dopa decarboxylase does not decarboxylate alpha-methyldopa and hence does not generate a toxic product capable of inhibiting 1(2)amd gene function. We propose that the 1(2)amd gene is involved with an unknown catecholamine pathway involving dopa but not dopamine. PMID:3081033

  20. Systems engineering analysis of kinetic energy weapon concepts

    SciTech Connect

    Senglaub, M.

    1996-06-01

    This study examines, from a systems engineering design perspective, the potential of kinetic energy weapons being used in the role of a conventional strategic weapon. Within the Department of Energy (DOE) complex, strategic weapon experience falls predominantly in the nuclear weapons arena. The techniques developed over the years may not be the most suitable methodologies for use in a new design/development arena. For this reason a more fundamental approach was pursued with the objective of developing an information base from which design decisions might be made concerning the conventional strategic weapon system concepts. The study examined (1) a number of generic missions, (2) the effects of a number of damage mechanisms from a physics perspective, (3) measures of effectiveness (MOE`s), and (4) a design envelope for kinetic energy weapon concepts. With the base of information a cut at developing a set of high-level system requirements was made, and a number of concepts were assessed against these requirements.

  1. Enzyme Kinetics.

    ERIC Educational Resources Information Center

    Moe, Owen; Cornelius, Richard

    1988-01-01

    Conveys an appreciation of enzyme kinetic analysis by using a practical and intuitive approach. Discusses enzyme assays, kinetic models and rate laws, the kinetic constants (V, velocity, and Km, Michaels constant), evaluation of V and Km from experimental data, and enzyme inhibition. (CW)

  2. Combustor kinetic energy efficiency analysis of the hypersonic research engine data

    NASA Astrophysics Data System (ADS)

    Hoose, K. V.

    1993-11-01

    A one-dimensional method for measuring combustor performance is needed to facilitate design and development scramjet engines. A one-dimensional kinetic energy efficiency method is used for measuring inlet and nozzle performance. The objective of this investigation was to assess the use of kinetic energy efficiency as an indicator for scramjet combustor performance. A combustor kinetic energy efficiency analysis was performed on the Hypersonic Research Engine (HRE) data. The HRE data was chosen for this analysis due to its thorough documentation and availability. The combustor, inlet, and nozzle kinetic energy efficiency values were utilized to determine an overall engine kinetic energy efficiency. Finally, a kinetic energy effectiveness method was developed to eliminate thermochemical losses from the combustion of fuel and air. All calculated values exhibit consistency over the flight speed range. Effects from fuel injection, altitude, angle of attack, subsonic-supersonic combustion transition, and inlet spike position are shown and discussed. The results of analyzing the HRE data indicate that the kinetic energy efficiency method is effective as a measure of scramjet combustor performance.

  3. Pre-Steady-State Kinetic Analysis of Single-Nucleotide Incorporation by DNA Polymerases.

    PubMed

    Su, Yan; Peter Guengerich, F

    2016-01-01

    Pre-steady-state kinetic analysis is a powerful and widely used method to obtain multiple kinetic parameters. This protocol provides a step-by-step procedure for pre-steady-state kinetic analysis of single-nucleotide incorporation by a DNA polymerase. It describes the experimental details of DNA substrate annealing, reaction mixture preparation, handling of the RQF-3 rapid quench-flow instrument, denaturing polyacrylamide DNA gel preparation, electrophoresis, quantitation, and data analysis. The core and unique part of this protocol is the rationale for preparation of the reaction mixture (the ratio of the polymerase to the DNA substrate) and methods for conducting pre-steady-state assays on an RQF-3 rapid quench-flow instrument, as well as data interpretation after analysis. In addition, the methods for the DNA substrate annealing and DNA polyacrylamide gel preparation, electrophoresis, quantitation and analysis are suitable for use in other studies. © 2016 by John Wiley & Sons, Inc. PMID:27248785

  4. Frequency domain instrument for measuring phosphorescence lifetime distributions in heterogeneous samples

    NASA Astrophysics Data System (ADS)

    Vinogradov, Sergei A.; Fernandez-Searra, Maria A.; Dugan, Benjamin W.; Wilson, David F.

    2001-08-01

    The luminescence lifetime distribution can be used to determine the distribution of quencher concentrations in a heterogeneous sample. We describe a frequency domain instrument for real-time measurements of phosphorescence lifetime distributions in microheterogeneous objects. In this system (1) an array of harmonics (typically 100-200 frequencies) is used to modulate the excitation source, a light emitting diode. Due to the relatively long triplet state lifetimes, the frequencies required for the modulation are typically below 40 000 kHz, which allows direct digitization of both excitation and emission signals. (2) The dependence of the phase/amplitude factor on the modulation frequency is determined by linear least-squares analysis of the emission signal, which is sampled and summed over the multiple excitation cycles. (3) The phase/amplitude relationship obtained is analyzed in real time using a "light" version of the maximum entropy algorithm, which provides a complete phosphorescence lifetime distribution. (4) The lifetime distribution is converted into the distribution of quencher concentrations using an appropriate model of quenching. The instrument is also capable of measuring phosphorescence in "single-frequency" mode, which is useful for rapid evaluation of apparent luminescence lifetimes. In this mode, a correction for an in-phase signal, which is due to backscattering and fluorescence, is applied to improve the accuracy of lifetime measurements. The instruments were tested in Stern-Volmer calibrations of Pd-porphyrin based phosphors for oxygen measurements and used for preliminary evaluation of oxygen distributions in rat tumor tissues. The instruments were found to be capable of accurate determination of lifetimes in the range of 10-3000 μs. The average duration of a single lifetime distribution measurement was about 15 s, depending on the sample and on the density of the lifetime grid in the maximum entropy method analysis. In the single

  5. Expression, Purification, and Kinetic Analysis of PTP Domains.

    PubMed

    Mentel, Mihaela; Badea, Rodica A; Necula-Petrareanu, Georgiana; Mallikarjuna, Sujay T; Ionescu, Aura E; Szedlacsek, Stefan E

    2016-01-01

    Protein tyrosine phosphatases (PTP) are a large group of enzymes which work together with protein tyrosine kinases to control the tyrosine phosphorylation of proteins, thus playing a major role in cellular signaling. Here, we provide detailed protocols for expression and purification of the catalytic domain of RPTPμ and full length Eya3 as well as the extracellular region of PTPBR7. Methods are described for evaluation of the purity of the recombinant proteins thus obtained. For the purified Eya3 phosphatase we provide protocols for enzyme activity assay using either chromogenic, fluorescent, or peptide substrates. Determination of kinetic parameters by different graphical and computer-based procedures is also described. PMID:27514799

  6. Controlled positions and kinetic analysis of spontaneous tin whisker growth

    NASA Astrophysics Data System (ADS)

    Su, Chien-Hao; Chen, Hao; Lee, Hsin-Yi; Wu, Albert T.

    2011-09-01

    This study achieved controlling the positions of spontaneous growth of tin whiskers. We surmounted the unpredictable growing nature of such whiskers and performed accurately quantitative analyses of the growth kinetics and yielded precise measurement of the growth rate. Furthermore, using synchrotron radiation x-ray, this study determined the stress variations in conjunction with whisker growth that fitted appropriately to the model. Accordingly, the results could address the debate held for decades and prove that forming a surface oxide layer is one of the required and necessary conditions for controlling the positions of spontaneous growth of tin whiskers.

  7. Interaction of Nitric Oxide with Catalase: Structural and Kinetic Analysis

    PubMed Central

    2011-01-01

    We present the structures of bovine catalase in its native form and complexed with ammonia and nitric oxide, obtained by X-ray crystallography. Using the NO generator 1-(N,N-diethylamino)diazen-1-ium-1,2-diolate, we were able to generate sufficiently high NO concentrations within the catalase crystals that substantial occupation was observed despite a high dissociation rate. Nitric oxide seems to be slightly bent from the heme normal that may indicate some iron(II) character in the formally ferric catalase. Microspectrophotometric investigations inline with the synchrotron X-ray beam reveal photoreduction of the central heme iron. In the cases of the native and ammonia-complexed catalase, reduction is accompanied by a relaxation phase. This is likely not the case for the catalase NO complex. The kinetics of binding of NO to catalase were investigated using NO photolyzed from N,N′-bis(carboxymethyl)-N,N′-dinitroso-p-phenylenediamine using an assay that combines catalase with myoglobin binding kinetics. The off rate is 1.5 s–1. Implications for catalase function are discussed. PMID:21524057

  8. Kinetic Analysis of Pasma Transport in a Hall Effect Thruster

    NASA Astrophysics Data System (ADS)

    Batishchev, O.; Martinez-Sanchez, M.

    2002-01-01

    Peculiarities of the plasma transport and oscillation phenomena in the Xe-gas discharge of the SPT and TAL Hall effect thruster were subject of many theoretical-numerical and experimental studies [1-4]. Despite this fact, the origin of a so-called anomalous transport is not understood to this date. As a result, in the theoretical and numerical models [5-6] researches assume ad-hoc cross-field diffusion coefficients, which may differ by several times from the classical Bohm result. To study the transport phenomenon we develop a specialized kinetic model. Our model is 2-dimensional in space (for axial and azimuthal directions), but 3-dimensional in velocity. A similar geometry was adopted in references [1,3]. However, we try to push the simulation to the realistic scale (several centimeters), while keeping the minimum spatial resolution on the order of the local Debye length. New transport results will be compared to the results from the 2D3V axisymmetrical model [6], which is a further development of the fully kinetic model for plasma and neutral gas [5]. The PIC [7] code is applied to the realistic SPT thruster geometry. We add new elementary plasma-chemistry reaction and modify boundary conditions to capture self-consistent dynamics of high ionization states of xenon atoms. It is hoped that the numerical results will provide a better understanding of the anomalous transport in a Hall effect thruster due to the collective modes, and shed light on the nature of the experimentally observed high-frequency oscillations. [1] M.Hirakawa and Y.Arakawa, Particle simulation of plasma phenomena in Hall thrusters, IEPC-95-164 technical paper, 1995. [2] V. I. Baranov et al, "New Conceptions of Oscillation Mechanisms in the Accelerator with Closed Drift of Electrons". IEPC-95-44, 24thInternational Electric Propulsion Conference, Moscow, 1995. [3] M.Hirakawa, Electron transport mechanism in a Hall thruster, IEPC-97-021 technical paper, 1997. [4] N.B.Meerzan, W.A.Hargus, M

  9. Kinetic theory analysis of solar wind interaction with planetary objects

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Dryer, M.

    1973-01-01

    A purely kinetic treatment is proposed for the interaction of the solar wind with any small planetary object. Small refers to those cases where the solar wind proton's thermal gyroradius is arbitrarily taken to be greater than 0.1 radius of the object under investigation. The 'object' may possibly include an ionosphere or magnetosphere. The collisionless Boltzmann equation, neglecting the magnetic field, is used to calculate steady-state profiles of density and velocity around the obstacle. A low density plasma void in the umbral region and a compression in the penumbral region are clearly found. The present technique, despite its neglect of the interplanetary magnetic field, is proposed as an alternative zeroth order approach to the continuum, local magnetic anomaly, and guiding center approaches used by others for the particular case of moon. Some recent, potentially relevant, observations on and in front of the moon are discussed.

  10. Decoupled direct method for sensitivity analysis in combustion kinetics

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan

    1987-01-01

    An efficient, decoupled direct method for calculating the first order sensitivity coefficients of homogeneous, batch combustion kinetic rate equations is presented. In this method the ordinary differential equations for the sensitivity coefficients are solved separately from , but sequentially with, those describing the combustion chemistry. The ordinary differential equations for the thermochemical variables are solved using an efficient, implicit method (LSODE) that automatically selects the steplength and order for each solution step. The solution procedure for the sensitivity coefficients maintains accuracy and stability by using exactly the same steplengths and numerical approximations. The method computes sensitivity coefficients with respect to any combination of the initial values of the thermochemical variables and the three rate constant parameters for the chemical reactions. The method is illustrated by application to several simple problems and, where possible, comparisons are made with exact solutions and those obtained by other techniques.

  11. Kinetic analysis of barium currents in chick cochlear hair cells.

    PubMed Central

    Zidanic, M; Fuchs, P A

    1995-01-01

    Inward barium current (IBa) through voltage-gated calcium channels was recorded from chick cochlear hair cells using the whole-cell clamp technique. IBa was sensitive to dihydropyridines and insensitive to the peptide toxins omega-agatoxin IVa, omega-conotoxin GVIa, and omega-conotoxin MVIIC. Changing the holding potential over a -40 to -80 mV range had no effect on the time course or magnitude of IBa nor did it reveal any inactivating inward currents. The activation of IBa was modeled with Hodgkin-Huxley m2 kinetics. The time constant of activation, tau m, was 550 microseconds at -30 mV and gradually decreased to 100 microseconds at +50 mV. A Boltzmann fit to the activation curve, m infinity, yielded a half activation voltage of -15 mV and a steepness factor of 7.8 mV. Opening and closing rate constants, alpha m and beta m, were calculated from tau m and m infinity, then fit with modified exponential functions. The H-H model derived by evaluating the exponential functions for alpha m and beta m not only provided an excellent fit to the time course of IBa activation, but was predictive of the time course and magnitude of the IBa tail current. No differences in kinetics or voltage dependence of activation of IBa were found between tall and short hair cells. We conclude that both tall and short hair cells of the chick cochlea predominantly, if not exclusively, express noninactivating L-type calcium channels. These channels are therefore responsible for processes requiring voltage-dependent calcium entry through the basolateral cell membrane, such as transmitter release and activation of Ca(2+)-dependent K+ channels. PMID:7787021

  12. RETRAN-3D MOD003 Peach Bottom Turbine Trip 2 Multidimensional Kinetics Analysis Models and Results

    SciTech Connect

    Mori, Michitsugu; Ogura, Katsunori; Gose, Garry C.; Wu, J.-Y

    2003-04-15

    An analysis of the Peach Bottom Unit 2 Turbine Trip Test 2 (PB2/TT2) has been performed using RETRAN-3D MOD003. The purpose of the analysis was to investigate the PB2/TT2 overpressurization transient using the RETRAN-3D multidimensional kinetics model.

  13. White phosphorescent organic light emitting devices for lighting applications

    NASA Astrophysics Data System (ADS)

    D'Andrade, Brian; Alleyne, Bert; Hack, Mike; Hewitt, Richard; Brown, Julie J.

    2006-08-01

    Consumer display manufacturers are increasingly interested in white organic light emitting devices (WOLEDs), because these devices offer thinner display profiles, and in combination with color filters eliminate the need for high-resolution shadow masks. Additionally, WOLEDs are well suited for general-purpose illumination, since the power efficiencies of laboratory devices have surpassed that of today's commercial incandescent bulbs. In this paper, we report on an all phosphorescent 25 cm2 WOLED lighting system that achieves (31+/-3) lm/W at 850 cd/m2 with CIE coordinates (0.37, 0.36), and an external quantum efficiency of (29+/-3)%.

  14. Phosphorescent oxygen sensors based on nanostructured polyolefin substrates.

    PubMed

    Gillanders, Ross N; Arzhakova, Olga V; Hempel, Andreas; Dolgova, Alla; Kerry, Joe P; Yarysheva, Larisa M; Bakeev, Nikolai F; Volynskii, Alexander L; Papkovsky, Dmitri B

    2010-01-15

    New phosphorescent oxygen-sensitive materials based on nanostructured high density polyethylene and polypropylene films are described. The polymer substrates undergo treatment by a solvent crazing process to create a well-developed network of controlled, nanometer-size pores. Indicator dye molecules are then embedded by physical entrapment in such nanostructures which subsequently can be healed. Such sensors demonstrate improved working characteristics and allow simple, cost-efficient production and disposable use. They are well suited for large-scale applications such as nondestructive control of residual oxygen and "smart" packaging. PMID:20038091

  15. Creation of a U.S. Phosphorescent OLED Lighting Panel Manufacturing Facility

    SciTech Connect

    Hack, Michael

    2013-09-30

    Universal Display Corporation (UDC) has pioneered high efficacy phosphorescent OLED (PHOLED™) technology to enable the realization of an exciting new form of high quality, energy saving solid-date lighting. In laboratory test devices, we have demonstrated greater than 100 lm/W conversion efficacy. In this program, Universal Display will demonstrate the scalability of its proprietary UniversalPHOLED technology and materials for the manufacture of white OLED lighting panels that meet commercial lighting targets. Moser Baer Technologies will design and build a U.S.- based pilot facility. The objective of this project is to establish a pilot phosphorescent OLED (PHOLED) manufacturing line in the U.S. Our goal is that at the end of the project, prototype lighting panels could be provided to U.S. luminaire manufacturers for incorporation into products to facilitate the testing of design concepts and to gauge customer acceptance, so as to facilitate the growth of the embryonic U.S. OLED lighting industry. In addition, the team will provide a cost of ownership analysis to quantify production costs including OLED performance metrics which relate to OLED cost such as yield, materials usage, cycle time, substrate area, and capital depreciation. This project was part of a new DOE initiative designed to help establish and maintain U.S. leadership in this program will support key DOE objectives by showing a path to meet Department of Energy Solid-State Lighting Manufacturing Roadmap cost targets, as well as meeting its efficiency targets by demonstrating the energy saving potential of our technology through the realization of greater than 76 lm/W OLED lighting panels by 2012.

  16. Acrylamide quenching of Trp phosphorescence in liver alcohol dehydrogenase: evidence of gated quencher penetration.

    PubMed

    Strambini, Giovanni B; Gonnelli, Margherita

    2009-08-11

    Notwithstanding the relevance of their biological function, slow motions in proteins, beyond the microsecond range, are still poorly understood and often elusive. We propose that acrylamide quenching of Trp phosphorescence of deeply buried residues, when extended over the entire accessible range of lifetime measurements (tau > 10 micros), may help to unveil low-frequency protein motions that allow penetration of solute into the protein interior. The work examines in some detail acrylamide quenching of Trp phosphorescence in a model protein (liver alcohol dehydrogenase) over an extended submillimolar to molar acrylamide concentration range. The results, which encompass a >10(4)-fold variation in the quenching rate, provide the first evidence of a downward-curving lifetime Stern-Volmer plot, indicative of a nonlinear dependence of the quenching rate on the quencher concentration. From an analysis of saturation effects in terms of a protein-gated acrylamide diffusion mechanism, we infer two main routes for acrylamide to penetrate the globular fold and come into the proximity of internal W314: a low-frequency gate [36 s(-1) (at 25 degrees C)] tentatively assigned to partial opening of the dimer interface and a higher-frequency one (11800 s(-1)) tentatively assigned to a channel blocked by the side chains of V276 and L307. These motions are sharply inhibited in the rigid protein complexes formed with the coenzyme NAD(+) and the coenzyme analogue adenine diphosphate ribose, as well as by the frictional drag of the solvent in viscous glycerol solutions, evidence that rules out an alternative quenching mechanism involving acrylamide binding to the protein. PMID:19594170

  17. Kinetic Analysis of Monoclonal Antibody Binding to HIV-1 gp120-derived Hyperglycosylated Cores

    PubMed Central

    Ingale, Jidnyasa; Wyatt, Richard T

    2015-01-01

    Kinetic analysis of antibodies is one of the important study for characterization of antibodies and screening of ligands. In our recent study1, we compared the antigenic profiles and binding characteristics of four HIV-1 envelope glycoprotein (Env) core immunogens using multiple monoclonal antibodies by Bio-Layer Light Interferometry (BLI). This technology enables real-time analysis of interactions on the surface of a fiber optic biosensor by accurately measuring kinetic constants such as Ka, Kd, and KD in a 96-well format. PMID:26855965

  18. Dynamics of a lamellar system with diffusion and reaction: Scaling analysis and global kinetics

    NASA Astrophysics Data System (ADS)

    Muzzio, F. J.; Ottino, J. M.

    1989-12-01

    The evolution of a one-dimensional array of reactive lamellae with distributed striation thickness is studied by means of simulations, scaling analysis, and space-averaged kinetics. An infinitely fast, diffusion-controlled reaction A+B-->2P occurs at the interfaces between striations. As time increases, thin striations are eaten by thicker neighbors resulting in a modification of the striation thickness distribution (STD). Scaling analysis suggests that the STD evolves into a universal form and that the behavior of the system at short and long times is characterized by two different kinetic regimes. These predictions are confirmed by means of a novel numerical algorithm.

  19. Kinetics and kinematics analysis of incremental cycling to exhaustion.

    PubMed

    Bini, Rodrigo R; Diefenthaeler, Fernando

    2010-11-01

    Technique changes in cyclists are not well described during exhaustive exercise. Therefore the aim of the present study was to analyze pedaling technique during an incremental cycling test to exhaustion. Eleven cyclists performed an incremental cycling test to exhaustion. Pedal force and joint kinematics were acquired during the last three stages of the test (75%, 90% and 100% of the maximal power output). Inverse dynamics was conducted to calculate the net joint moments at the hip, knee and ankle joints. Knee joint had an increased contribution to the total net joint moments with the increase of workload (5-8% increase, p < 0.01). Total average absolute joint moment and knee joint moment increased during the test (25% and 39%, for p < 0.01, respectively). Increases in plantar flexor moment (32%, p < 0.01), knee (54%, p < 0.01) and hip flexor moments (42%, p = 0.02) were found. Higher dorsiflexion (2%, for p = 0.03) and increased range of motion (19%, for p = 0.02) were observed for the ankle joint. The hip joint had an increased flexion angle (2%, for p < 0.01) and a reduced range of motion (3%, for p = 0.04) with the increase of workload. Differences in joint kinetics and kinematics indicate that pedaling technique was affected by the combined fatigue and workload effects. PMID:21309297

  20. Temporal kinetics and quantitative analysis of Cryptococcus neoformans nonlytic exocytosis.

    PubMed

    Stukes, Sabriya A; Cohen, Hillel W; Casadevall, Arturo

    2014-05-01

    Cryptococcus neoformans is a facultative intracellular pathogen and the causative agent of cryptococcosis, a disease that is often fatal to those with compromised immune systems. C. neoformans has the capacity to escape phagocytic cells through a process known as nonlytic exocytosis whereby the cryptococcal cell is released from the macrophage into the extracellular environment, leaving both the host and pathogen alive. Little is known about the mechanism behind nonlytic exocytosis, but there is evidence that both the fungal and host cells contribute to the process. In this study, we used time-lapse movies of C. neoformans-infected macrophages to delineate the kinetics and quantitative aspects of nonlytic exocytosis. We analyzed approximately 800 macrophages containing intracellular C. neoformans and identified 163 nonlytic exocytosis events that were further characterized into three subcategories: type I (complete emptying of macrophage), type II (partial emptying of macrophage), and type III (cell-to-cell transfer). The majority of type I and II events occurred after several hours of intracellular residence, whereas type III events occurred significantly (P < 0.001) earlier in the course of macrophage infection. Our results show that nonlytic exocytosis is a morphologically and temporally diverse process that occurs relatively rapidly in the course of macrophage infection. PMID:24595144

  1. Temporal Kinetics and Quantitative Analysis of Cryptococcus neoformans Nonlytic Exocytosis

    PubMed Central

    Stukes, Sabriya A.; Cohen, Hillel W.

    2014-01-01

    Cryptococcus neoformans is a facultative intracellular pathogen and the causative agent of cryptococcosis, a disease that is often fatal to those with compromised immune systems. C. neoformans has the capacity to escape phagocytic cells through a process known as nonlytic exocytosis whereby the cryptococcal cell is released from the macrophage into the extracellular environment, leaving both the host and pathogen alive. Little is known about the mechanism behind nonlytic exocytosis, but there is evidence that both the fungal and host cells contribute to the process. In this study, we used time-lapse movies of C. neoformans-infected macrophages to delineate the kinetics and quantitative aspects of nonlytic exocytosis. We analyzed approximately 800 macrophages containing intracellular C. neoformans and identified 163 nonlytic exocytosis events that were further characterized into three subcategories: type I (complete emptying of macrophage), type II (partial emptying of macrophage), and type III (cell-to-cell transfer). The majority of type I and II events occurred after several hours of intracellular residence, whereas type III events occurred significantly (P < 0.001) earlier in the course of macrophage infection. Our results show that nonlytic exocytosis is a morphologically and temporally diverse process that occurs relatively rapidly in the course of macrophage infection. PMID:24595144

  2. Synthesis and evaluation of phosphorescent oligonucleotide probes for hybridisation assays.

    PubMed

    O'Sullivan, Paul J; Burke, Martina; Soini, Aleksi E; Papkovsky, Dmitri B

    2002-11-01

    Monofunctional, p-isothiocyanatophenyl-derivatives of platinum (II)-coproporphyrin-I (PtCP-NCS) were evaluated as phosphorescent labelling reagents for synthetic oligonucleotides containing a 3'- or 5'-amino modification. Synthesis and purification conditions were optimised to generate high yields and purity of PtCP-labelled oligonucleotide probes. Phosphorescent properties of the PtCP label have been shown to be largely unaffected by conjugation to oligonucleotides of various length, GC composition and label attachment site. 5'-PtCP-labelled oligonucleotides were shown to work efficiently as primers in a standard PCR. A dedicated 532 nm laser-based time-resolved fluorescence plate reader enabled highly sensitive detection of PtCP-labelled oligonucleotides and PCR products, both in solution and in agarose gels, with limits of detection in the order of 0.3 pM. A model system employing two complementary oligonucleotides labelled with PtCP and QSY 7 dye (dark quencher) showed strong (approximately 20-fold) and specific proximity quenching of PtCP label upon hybridisation in solution. The potential applications of PtCP-labelled probes in hybridisation assays were discussed. PMID:12409473

  3. Synthesis and evaluation of phosphorescent oligonucleotide probes for hybridisation assays

    PubMed Central

    O’Sullivan, Paul J.; Burke, Martina; Soini, Aleksi E.; Papkovsky, Dmitri B.

    2002-01-01

    Monofunctional, p-isothiocyanatophenyl-derivatives of platinum (II)-coproporphyrin-I (PtCP-NCS) were evaluated as phosphorescent labelling reagents for synthetic oligonucleotides containing a 3′- or 5′-amino modification. Synthesis and purification conditions were optimised to generate high yields and purity of PtCP-labelled oligonucleotide probes. Phosphorescent properties of the PtCP label have been shown to be largely unaffected by conjugation to oligonucleotides of various length, GC composition and label attachment site. 5′-PtCP-labelled oligonucleotides were shown to work efficiently as primers in a standard PCR. A dedicated 532 nm laser-based time-resolved fluorescence plate reader enabled highly sensitive detection of PtCP-labelled oligonucleotides and PCR products, both in solution and in agarose gels, with limits of detection in the order of 0.3 pM. A model system employing two complementary oligonucleotides labelled with PtCP and QSY® 7 dye (dark quencher) showed strong (∼20-fold) and specific proximity quenching of PtCP label upon hybridisation in solution. The potential applications of PtCP-labelled probes in hybridisation assays were discussed. PMID:12409473

  4. Photomultiplier window materials under electron irradiation - Fluorescence and phosphorescence

    NASA Technical Reports Server (NTRS)

    Viehmann, W.; Eubanks, A. G.; Pieper, G. F.; Bredekamp, J. H.

    1975-01-01

    The fluorescence and phosphorescence of photomultiplier window materials under electron irradiation have been investigated using a Sr-90/Y-90 beta emitter as the electron source. Spectral emission curves of UV-grade, optical-grade, and electron-irradiated samples of MgF2 and LiF, and of CaF2, BaF2, sapphire, fused silica, and UV-transmitting glasses were obtained over the 200-650-nm spectral range. Fluorescence yields were determined on these materials utilizing photomultiplier tubes with cesium telluride, bialkali, and trialkali (S-20) photocathodes, respectively. Optical-grade MgF2 and LiF, as well as electron-irradiated UV-grade samples of these two materials, show enhanced fluorescence due to color-center formation and associated emission bands in the blue and red wavelength regions. Large variations in fluorescence intensities were found in UV-grade sapphire samples of different origins, particularly in the red end of the spectrum, presumably due to various amounts of chromium-ion content. Phosphorescence decay with time is best described by a sum of exponential terms, with time constants ranging from a few minutes to several days.

  5. Measuring turbulent fluid dispersion using laser induced phosphorescence

    NASA Astrophysics Data System (ADS)

    van der Voort, Dennis; Dam, Nico; van de Water, Willem; Kunnen, Rudie; Clercx, Herman; van Heijst, Gertjan

    2015-11-01

    Fluid dispersion due to turbulence is an important subject in both natural and engineering processes, from cloud formation to turbulent mixing and liquid spray combustion. The combination of small scales and often high velocities results in few experimental techniques that can follow the course of events. We introduce a novel technique, which measures the dispersion of ``tagged'' fluid particles by means of laser-induced phosphorescence, using a solution containing a europium-based molecular complex with a relatively long phosphorescence half-life. This technique is used to measure transport processes in both the dispersion of droplets in homogeneous isotropic turbulence and the dispersion of fluid of near-nozzle spray breakup processes. By tagging a small amount of droplets/fluid via laser excitation, the tagged droplets can be tracked in a Lagrangian way. The absolute dispersion of the droplets can be measured in a variety of turbulent flows. Using this technique it is shows that droplets around St =τp /τη ~ 1 (Stokes number) disperse faster than true fluid tracers in homogeneous isotropic turbulence, as well as differences between longitudinal and radial dispersion in turbulent sprays. This work is part of the research programme of the Foundation for Fundamental Research on Matter (FOM), which is part of the Dutch Organisation for Scientific Research (NWO).

  6. Time resolved imaging microscopy. Phosphorescence and delayed fluorescence imaging.

    PubMed Central

    Marriott, G; Clegg, R M; Arndt-Jovin, D J; Jovin, T M

    1991-01-01

    An optical microscope capable of measuring time resolved luminescence (phosphorescence and delayed fluorescence) images has been developed. The technique employs two phase-locked mechanical choppers and a slow-scan scientific CCD camera attached to a normal fluorescence microscope. The sample is illuminated by a periodic train of light pulses and the image is recorded within a defined time interval after the end of each excitation period. The time resolution discriminates completely against light scattering, reflection, autofluorescence, and extraneous prompt fluorescence, which ordinarily decrease contrast in normal fluorescence microscopy measurements. Time resolved image microscopy produces a high contrast image and particular structures can be emphasized by displaying a new parameter, the ratio of the phosphorescence to fluorescence. Objects differing in luminescence decay rates are easily resolved. The lifetime of the long lived luminescence can be measured at each pixel of the microscope image by analyzing a series of images that differ by a variable time delay. The distribution of luminescence decay rates is displayed directly as an image. Several examples demonstrate the utility of the instrument and the complementarity it offers to conventional fluorescence microscopy. Images FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 PMID:1723311

  7. Kinetic analysis of mitotic spindle elongation in vitro.

    PubMed

    Baskin, T I; Cande, W Z

    1990-09-01

    Studies of mitotic spindle elongation in vitro using populations of diatom spindles visualized with immunofluorescence microscopy have shown that the two interdigitating half-spindles are driven apart by an ATP-dependent process that generates force in the zone of overlap between half-spindles. To characterize further the system responsible for spindle elongation, we observed spindle elongation directly with polarized light or phase-contrast video-microscopy. We report that the kinetics of spindle elongation versus time are linear. A constant rate of spindle elongation occurs despite the continuous decrease in length of the zone of overlap between half-spindles. The average rate of spindle elongation varies as a function of treatment, and rates measured match spindle elongation rates measured in vivo. When spindles elongated in the presence of polymerizing tubulin (from bovine brain), the extent of elongation was greater than the original zone of half-spindle overlap, but the rate of elongation was constant. No component of force due to tubulin polymerization was found. The total elongation observed in the presence of added tubulin could exceed a doubling of original spindle length, matching the elongation in the intact diatom. The linear rate of spindle elongation in vitro suggests that the force transducer for anaphase B is a mechanochemical ATPase, analogous to dynein or myosin, and that the force for spindle elongation does not arise from stored energy, e.g. in an elastic matrix in the midzone. Additionally, on the basis of observations described here, we conclude that the force-transduction system for spindle elongation must be able to remain in the zone of microtubule overlap during the sliding apart of half-spindles, and that the transducer can generate force between microtubules that are not strictly antiparallel. PMID:2258393

  8. Development and sensitivity analysis of a fully kinetic model of sequential reductive dechlorination in groundwater.

    PubMed

    Malaguerra, Flavio; Chambon, Julie C; Bjerg, Poul L; Scheutz, Charlotte; Binning, Philip J

    2011-10-01

    A fully kinetic biogeochemical model of sequential reductive dechlorination (SERD) occurring in conjunction with lactate and propionate fermentation, iron reduction, sulfate reduction, and methanogenesis was developed. Production and consumption of molecular hydrogen (H(2)) by microorganisms have been modeled using modified Michaelis-Menten kinetics and has been implemented in the geochemical code PHREEQC. The model have been calibrated using a Shuffled Complex Evolution Metropolis algorithm to observations of chlorinated solvents, organic acids, and H(2) concentrations in laboratory batch experiments of complete trichloroethene (TCE) degradation in natural sediments. Global sensitivity analysis was performed using the Morris method and Sobol sensitivity indices to identify the most influential model parameters. Results show that the sulfate concentration and fermentation kinetics are the most important factors influencing SERD. The sensitivity analysis also suggests that it is not possible to simplify the model description if all system behaviors are to be well described. PMID:21877704

  9. Integration of enzyme kinetic models and isotopomer distribution analysis for studies of in situ cell operation

    PubMed Central

    Selivanov, Vitaly A; Sukhomlin, Tatiana; Centelles, Josep J; Lee, Paul WN; Cascante, Marta

    2006-01-01

    A current trend in neuroscience research is the use of stable isotope tracers in order to address metabolic processes in vivo. The tracers produce a huge number of metabolite forms that differ according to the number and position of labeled isotopes in the carbon skeleton (isotopomers) and such a large variety makes the analysis of isotopomer data highly complex. On the other hand, this multiplicity of forms does provide sufficient information to address cell operation in vivo. By the end of last millennium, a number of tools have been developed for estimation of metabolic flux profile from any possible isotopomer distribution data. However, although well elaborated, these tools were limited to steady state analysis, and the obtained set of fluxes remained disconnected from their biochemical context. In this review we focus on a new numerical analytical approach that integrates kinetic and metabolic flux analysis. The related computational algorithm estimates the dynamic flux based on the time-dependent distribution of all possible isotopomers of metabolic pathway intermediates that are generated from a labeled substrate. The new algorithm connects specific tracer data with enzyme kinetic characteristics, thereby extending the amount of data available for analysis: it uses enzyme kinetic data to estimate the flux profile, and vice versa, for the kinetic analysis it uses in vivo tracer data to reveal the biochemical basis of the estimated metabolic fluxes. PMID:17118161

  10. Polymer characterization using the time-resolved phosphorescence of singlet oxygen as a spectroscopic probe

    SciTech Connect

    Ogilby, P.R.; Kristiansen, M.; Dillon, M.P. . Dept. of Chemistry); Taylor, V.L.; Clough, R.L. )

    1990-01-01

    The lowest excited electronic state of molecular oxygen, singlet oxygen ({sup 1}{Delta}{sub g}0{sub 2}), can be produced in solid organic polymers by a variety of different methods. Once produced, singlet oxygen will return to the ground triplet state by two pathways, radiative (phosphorescence) and non-radiative decay. Although the quantum efficiency of phosphorescence is small ({minus}10{sup {minus}5}), singlet oxygen can be detected by its emission at 1270 mn in both steady-state and time-resolved experiments. The phosphorescence of singlet oxygen can be used to characterize many properties of a solid organic polymer. 2 refs., 5 figs.

  11. Heat Transfer Analysis and Assessment of Kinetics Systems for PBX 9501

    SciTech Connect

    Jeffrey W. Jorenby

    2006-07-31

    The study of thermal decomposition in high explosive (HE) charges has been an ongoing process since the early 1900s. This work is specifically directed towards the analysis of PBX 9501. In the early 1970s, Dwight Jaeger of Los Alamos National Laboratory (LANL) developed a single-step, two-species kinetics system that was used in the development of one of the first finite element codes for thermal analyses known as EXPLO. Jaeger's research focused on unconfined spherical samples of HE charges to determine if varied heating ramps would cause detonation or deflagration. Tarver and McGuire of Lawrence Livermore National Laboratory (LLNL) followed soon after with a three-step, four-species kinetics system that was developed for confined spheres under relatively fast heating conditions. Peter Dickson et al. of LANL then introduced a kinetics system with four steps and five species that included bimolecular products to capture the effects of the endothermic phase change that the HE undergoes. The results of four experiments are examined to study the effectiveness of these kinetics systems. The experiments are: (1) The LLNL scaled thermal explosion (STEX) experiments on confined cylindrical charges with long heating ramps in the range of 90 hours. (2) The LLNL one-dimensional time to explosion (ODTX) experiments on spherical charges that include confined, partially confined, and aged HE experiments. (3) The LANL unconfined one-dimensional experiments for small spheres. (4) The Naval Air Warfare Center Weapons Division at China Lake experiments on small confined cylinders. The three kinetics systems are applied to each of the four experiments with the use of the finite element analysis (FEA) heat conduction solver COYOTE. The numerical results using the kinetics systems are compared to each other and to the experimental data to determine which kinetics systems are best suited for analyzing conditions such as time to ignition, containment, heating time, and location of

  12. Kinetic Analysis of Haloacetonitrile Stability in Drinking Waters.

    PubMed

    Yu, Yun; Reckhow, David A

    2015-09-15

    Haloacetonitriles (HANs) are an important class of drinking water disinfection byproducts (DBPs) that are reactive and can undergo considerable transformation on time scales relevant to system distribution (i.e., from a few hours to a week or more). The stability of seven mono-, di-, and trihaloacetonitriles was examined under a variety of conditions including different pH levels and disinfectant doses that are typical of drinking water distribution systems. Results indicated that hydroxide, hypochlorite, and their protonated forms could react with HANs via nucleophilic attack on the nitrile carbon, forming the corresponding haloacetamides (HAMs) and haloacetic acids (HAAs) as major reaction intermediates and end products. Other stable intermediate products, such as the N-chloro-haloacetamides (N-chloro-HAMs), may form during the course of HAN chlorination. A scheme of pathways for the HAN reactions was proposed, and the rate constants for individual reactions were estimated. Under slightly basic conditions, hydroxide and hypochlorite are primary reactants and their associated second-order reaction rate constants were estimated to be 6 to 9 orders of magnitude higher than those of their protonated conjugates (i.e., neutral water and hypochlorous acid), which are much weaker but more predominant nucleophiles at neutral and acidic pHs. Developed using the estimated reaction rate constants, the linear free energy relationships (LFERs) summarized the nucleophilic nature of HAN reactions and demonstrated an activating effect of the electron withdrawing halogens on nitrile reactivity, leading to decreasing HAN stability with increasing degree of halogenation of the substituents, while subsequent shift from chlorine to bromine atoms has a contrary stabilizing effect on HANs. The chemical kinetic model together with the reaction rate constants that were determined in this work can be used for quantitative predictions of HAN concentrations depending on pH and free chlorine

  13. Data Capture and Analysis Using the BBC Microcomputer--an Interfacing Project Applied to Enzyme Kinetics.

    ERIC Educational Resources Information Center

    Jones, Lawrence; Graham, Ian

    1986-01-01

    Reviews the main principles of interfacing and discusses the software developed to perform kinetic data capture and analysis with a BBC microcomputer linked to a recording spectrophotometer. Focuses on the steps in software development. Includes results of a lactate dehydrogenase assay. (ML)

  14. A kinetic analysis of strand breaks on large DNA induced by cigarette smoke extract

    NASA Astrophysics Data System (ADS)

    Kurita, Hirofumi; Takata, Tatsuya; Yasuda, Hachiro; Takashima, Kazunori; Mizuno, Akira

    2010-06-01

    We report a kinetic analysis of strand breakages on large DNA molecules induced by cigarette smoke extract (CSE), an extract of soluble cigarette smoke components. Previously, this DNA damage was analyzed by agarose gel electrophoresis, whereas we used fluorescence to kinetically analyze damage to individual DNA molecules. CSE caused a marked change in length of DNA molecules. The rate of CSE-induced double-strand breakage on large random-coiled DNA molecules was determined using a simple theoretical model, allowing the facile estimation of the rate of double-strand breaks on large DNA molecules.

  15. Pyrolysis and combustion kinetics of date palm biomass using thermogravimetric analysis.

    PubMed

    Sait, Hani H; Hussain, Ahmad; Salema, Arshad Adam; Ani, Farid Nasir

    2012-08-01

    The present research work is probably the first attempt to focus on the kinetics of pyrolysis and combustion process for date palm biomass wastes like seed, leaf and leaf stem by using Thermogravimetric Analysis (TGA) technique. The physical properties of biomass wastes were also examined. Proximate and ultimate analysis of the date palm biomass was investigated. FT-IR analysis was conducted to determine possible chemical functional groups in the biomass. Results showed that date palm seed and leaf can be characterized as high calorific values and high volatile content biomass materials as compared to the leaf stem. Kinetic analysis of this biomass was also given a particular attention. It is concluded that these biomasses can become useful source of energy, chemicals and bio-char. PMID:22705960

  16. Dynamic nuclear renography kinetic analysis: Four-compartment model for assessing kidney function

    SciTech Connect

    Raswan, T. R. Haryanto, F.

    2014-09-30

    Dynamic nuclear renography method produces TACs of kidneys and bladder. Multiple TACs data can be further analyzed to obtain the overview of urinary system's condition. Tracer kinetic analysis was performed using four-compartment models. The system's model consist of four irreversible compartment with four transport constants (k1, k2, k3 and k4). The mathematical expressions of tracer's distributions is fitted to experimental data (TACs) resulting in model constants. This transport constants represent the urinary system behavior, and later can be used for analyzing system's condition. Different intervals of kinetics parameter are clearly shown by abnormal system with respect to the normal one. Furthermore, the system with delayed uptake has 82% lower uptake parameters (k1 and k2) than normal one. Meanwhile, the system with prolonged clearance time has its kinetics parameters k3 or k4 lower than the others. This model is promising for quantitatively describe urinary system's function especially if supplied with more data.

  17. Dynamic nuclear renography kinetic analysis: Four-compartment model for assessing kidney function

    NASA Astrophysics Data System (ADS)

    Raswan, T. R.; Haryanto, F.

    2014-09-01

    Dynamic nuclear renography method produces TACs of kidneys and bladder. Multiple TACs data can be further analyzed to obtain the overview of urinary system's condition. Tracer kinetic analysis was performed using four-compartment models. The system's model consist of four irreversible compartment with four transport constants (k1, k2, k3 and k4). The mathematical expressions of tracer's distributions is fitted to experimental data (TACs) resulting in model constants. This transport constants represent the urinary system behavior, and later can be used for analyzing system's condition. Different intervals of kinetics parameter are clearly shown by abnormal system with respect to the normal one. Furthermore, the system with delayed uptake has 82% lower uptake parameters (k1 and k2) than normal one. Meanwhile, the system with prolonged clearance time has its kinetics parameters k3 or k4 lower than the others. This model is promising for quantitatively describe urinary system's function especially if supplied with more data.

  18. Suppressing molecular motions for enhanced room-temperature phosphorescence of metal-free organic materials

    PubMed Central

    Kwon, Min Sang; Yu, Youngchang; Coburn, Caleb; Phillips, Andrew W.; Chung, Kyeongwoon; Shanker, Apoorv; Jung, Jaehun; Kim, Gunho; Pipe, Kevin; Forrest, Stephen R.; Youk, Ji Ho; Gierschner, Johannes; Kim, Jinsang

    2015-01-01

    Metal-free organic phosphorescent materials are attractive alternatives to the predominantly used organometallic phosphors but are generally dimmer and are relatively rare, as, without heavy-metal atoms, spin–orbit coupling is less efficient and phosphorescence usually cannot compete with radiationless relaxation processes. Here we present a general design rule and a method to effectively reduce radiationless transitions and hence greatly enhance phosphorescence efficiency of metal-free organic materials in a variety of amorphous polymer matrices, based on the restriction of molecular motions in the proximity of embedded phosphors. Covalent cross-linking between phosphors and polymer matrices via Diels–Alder click chemistry is devised as a method. A sharp increase in phosphorescence quantum efficiency is observed in a variety of polymer matrices with this method, which is ca. two to five times higher than that of phosphor-doped polymer systems having no such covalent linkage. PMID:26626796

  19. Phosphorescence and E-type delayed fluorescence from azulene in phenazine host crystals

    NASA Astrophysics Data System (ADS)

    Klemp, Dieter; Nickel, Bernhard

    1983-07-01

    With azulene-doped phenazine crystals, excitation of the host crystal (') in the lowest singlet absorption band leads to three different delayed emissions: (1) the phosphorescence T 1 → S 0 from azulene: (2) the E-type delayed fluorescence S 1 → S 0 from azulene, resulting from thermally activated intersystem crossing T 1 → S 1 at higher temperatures: (3) the phosphorescence T' 1 → S' 0 from phenazine, resulting from reverse, thermally activated triplet energy transfer T 1 + S' 0 → S 0 + T' 1 at higher temperatures. The low-temperature phosphorescence decay time of azulene was (67 ± 5) μs. At 30 K, the average wavenumber of the 0.0 transition of the phosphorescence from azulene was 13870 cm -1 (site structure unresolved). All experimental facts are consistent with a predominant primary population of the triplet substate T 1 z of azulene ( z = symmetry axis of azulene).

  20. Suppressing molecular motions for enhanced room-temperature phosphorescence of metal-free organic materials.

    PubMed

    Kwon, Min Sang; Yu, Youngchang; Coburn, Caleb; Phillips, Andrew W; Chung, Kyeongwoon; Shanker, Apoorv; Jung, Jaehun; Kim, Gunho; Pipe, Kevin; Forrest, Stephen R; Youk, Ji Ho; Gierschner, Johannes; Kim, Jinsang

    2015-01-01

    Metal-free organic phosphorescent materials are attractive alternatives to the predominantly used organometallic phosphors but are generally dimmer and are relatively rare, as, without heavy-metal atoms, spin-orbit coupling is less efficient and phosphorescence usually cannot compete with radiationless relaxation processes. Here we present a general design rule and a method to effectively reduce radiationless transitions and hence greatly enhance phosphorescence efficiency of metal-free organic materials in a variety of amorphous polymer matrices, based on the restriction of molecular motions in the proximity of embedded phosphors. Covalent cross-linking between phosphors and polymer matrices via Diels-Alder click chemistry is devised as a method. A sharp increase in phosphorescence quantum efficiency is observed in a variety of polymer matrices with this method, which is ca. two to five times higher than that of phosphor-doped polymer systems having no such covalent linkage. PMID:26626796

  1. Kinetic analysis of receptor-controlled tracer efflux from sealed membrane fragments

    PubMed Central

    Bernhardt, Julius; Neumann, Eberhard

    1978-01-01

    A detailed kinetic analysis is presented for activator-receptor-mediated efflux of tracer substances from vesicular membrane systems in general and from sealed fragments of excitable membranes in particular. Rate constants and amplitudes, as the primary measurable quantities of the efflux kinetics, are expressed in terms of fundamental properties of vesicular membrane systems containing receptors of chemical gating systems. The experimental determination and theoretical analysis of single contributions to a complex receptor-controlled efflux has been treated for the acetylcholine receptor system; also the effect of “pharmacological densensitization” on efflux is explicitly formulated. The dependence of the measured efflux parameters on the concentration of activators can be used to derive the kinetic and thermodynamic constants for receptor activation and inactivation processes; a general kinetic scheme and two limiting cases are analyzed. The efflux of 22Na from “excitable microsacs” of Torpedo marmorata is treated as an example, and the power of the rigorous analytical method is demonstrated. In particular, the analysis of efflux amplitudes from only a few data points offers an alternative to the longer lasting measurements for obtaining efflux curves when a safety factor is involved, as in the case of tracer ions like 22Na. PMID:16592553

  2. Mechanistic Study of Manganese-Substituted Glycerol Dehydrogenase Using a Kinetic and Thermodynamic Analysis

    PubMed Central

    Fang, Baishan; Niu, Jin; Ren, Hong; Guo, Yingxia; Wang, Shizhen

    2014-01-01

    Mechanistic insights regarding the activity enhancement of dehydrogenase by metal ion substitution were investigated by a simple method using a kinetic and thermodynamic analysis. By profiling the binding energy of both the substrate and product, the metal ion's role in catalysis enhancement was revealed. Glycerol dehydrogenase (GDH) from Klebsiella pneumoniae sp., which demonstrated an improvement in activity by the substitution of a zinc ion with a manganese ion, was used as a model for the mechanistic study of metal ion substitution. A kinetic model based on an ordered Bi-Bi mechanism was proposed considering the noncompetitive product inhibition of dihydroxyacetone (DHA) and the competitive product inhibition of NADH. By obtaining preliminary kinetic parameters of substrate and product inhibition, the number of estimated parameters was reduced from 10 to 4 for a nonlinear regression-based kinetic parameter estimation. The simulated values of time-concentration curves fit the experimental values well, with an average relative error of 11.5% and 12.7% for Mn-GDH and GDH, respectively. A comparison of the binding energy of enzyme ternary complex for Mn-GDH and GDH derived from kinetic parameters indicated that metal ion substitution accelerated the release of dioxyacetone. The metal ion's role in catalysis enhancement was explicated. PMID:24896258

  3. In situ reaction kinetic analysis of dental restorative materials

    NASA Astrophysics Data System (ADS)

    Younas, Basma; Samad Khan, Abdul; Muzaffar, Danish; Hussain, Ijaz; Chaudhry, Aqif Anwar; Rehman, Ihtesham Ur

    2013-12-01

    The objective of this study was to evaluate in situ structural and thermal changes of dental restorative materials at periodical time intervals. The commercial materials included zinc oxide eugenol (ZOE), zinc phosphate type I (ZnPO4), glass ionomer cement type II (GIC) and resin-based nano-omposite (Filtek Z350 XT). These materials were processed according to manufacturer's instructions. For the structural analysis Fourier transform infrared spectroscopy (FTIR) was used at high resolution. TGA was used to evaluate thermal weight-loss. The FTIR spectra were collected at periodic time intervals. FTIR spectra showed that with time passing all materials exhibited an increase in peak intensities and a new appearance of shoulders and shifting of peaks for example, ZnPO4 (P-O), ZOE (C═O, C═N, C-O-C), GIC (COO-, C-H, Si-OH), composites (C═O, C═C, C═N, C-N-H). The peaks were replaced by bands and these bands became broader with time interval. Composites showed a degree of conversion and new peaks corresponded to the cross-linking of polymer composites. TGA analysis showed that significant changes in weight loss of set materials were observed after 24 h, where ZOE showed continuous changes in thermal degradation. The spectral changes and thermal degradation with time interval elucidated in situ setting behaviour and understanding of their bonding compatibility with tooth structure and change in relation to time.

  4. Dynamic oxygenation measurements using a phosphorescent coating within a mammary window chamber mouse model

    PubMed Central

    Schafer, Rachel; Gmitro, Arthur F.

    2015-01-01

    Phosphorescent lifetime imaging was employed to measure the spatial and temporal distribution of oxygen partial pressure in tissue under the coverslip of a mammary window chamber breast cancer mouse model. A thin platinum-porphyrin coating, whose phosphorescent lifetime varies monotonically with oxygen partial pressure, was applied to the coverslip surface. Dynamic temporal responses to induced modulations in oxygenation levels were measured using this approach. PMID:25780753

  5. Characterization of the low-temperature triplet state of chlorophyll in photosystem II core complexes: Application of phosphorescence measurements and Fourier transform infrared spectroscopy.

    PubMed

    Zabelin, Alexey A; Neverov, Konstantin V; Krasnovsky, Alexander A; Shkuropatova, Valentina A; Shuvalov, Vladimir A; Shkuropatov, Anatoly Ya

    2016-06-01

    Phosphorescence measurements at 77 K and light-induced FTIR difference spectroscopy at 95 K were applied to study of the triplet state of chlorophyll a ((3)Chl) in photosystem II (PSII) core complexes isolated from spinach. Using both methods, (3)Chl was observed in the core preparations with doubly reduced primary quinone acceptor QA. The spectral parameters of Chl phosphorescence resemble those in the isolated PSII reaction centers (RCs). The main spectral maximum and the lifetime of the phosphorescence corresponded to 955±1 nm and of 1.65±0.05 ms respectively; in the excitation spectrum, the absorption maxima of all core complex pigments (Chl, pheophytin a (Pheo), and β-carotene) were observed. The differential signal at 1667(-)/1628(+)cm(-1) reflecting a downshift of the stretching frequency of the 13(1)-keto C=O group of Chl was found to dominate in the triplet-minus-singlet FTIR difference spectrum of core complexes. Based on FTIR results and literature data, it is proposed that (3)Chl is mostly localized on the accessory chlorophyll that is in triplet equilibrium with P680. Analysis of the data suggests that the Chl triplet state responsible for the phosphorescence and the FTIR difference spectrum is mainly generated due to charge recombination in the reaction center radical pair P680(+)PheoD1(-), and the energy and temporal parameters of this triplet state as well as the molecular environment and interactions of the triplet-bearing Chl molecule are similar in the PSII core complexes and isolated PSII RCs. PMID:27040752

  6. White phosphorescent organic light emitting devices for display applications

    NASA Astrophysics Data System (ADS)

    D'Andrade, Brian; Brown, Julie J.

    2006-05-01

    Consumer display manufacturers are increasingly interested in white organic light emitting devices (WOLEDs), because these devices offer thinner display profiles, and in combination with color filters eliminate the need for shadow masks. Additionally, WOLEDs are well suited for general-purpose illumination, and laboratory results show that their power efficiencies have surpassed that of incandescent bulbs. To replace current backlight technologies with WOLEDs, further increases must be made in the power efficiency of blue and red phosphorescent devices, and in the power density of OLEDs. In this paper, we report on a blue-red-green 6" square striped lighting panel emitting >100 lumens, and on a stacked OLED (SOLED) 6" square panel. The SOLED consists of a red and green OLED connected by a 70 nm- thick aluminum electrode that simultaneously serves as the cathode for the bottom green device and as the anode for the top red device.

  7. Oxygen Microscopy by Two-Photon-Excited Phosphorescence

    PubMed Central

    Finikova, Olga S.; Lebedev, Artem Y.; Aprelev, Alexey; Troxler, Thomas; Gao, Feng; Garnacho, Carmen; Muro, Silvia; Hochstrasser, Robin M.; Vinogradov, Sergei A.

    2009-01-01

    High-resolution images of oxygen distributions in microheterogeneous samples are obtained by two-photon laser scanning microscopy (2P LSM), using a newly developed dendritic nanoprobe with internally enhanced two-photon absorption (2PA) cross-section. In this probe, energy is harvested by a 2PA antenna, which passes excitation onto a phosphorescent metalloporphyrin via intramolecular energy transfer. The 2P LSM allows sectioning of oxygen gradients with near diffraction-limited resolution, and lifetime-based acquisition eliminates dependence on the local probe concentration. The technique is validated on objects with a priori known oxygen distributions and applied to imaging of pO2 in cells. PMID:18663708

  8. Fluorescence and phosphorescence of photomultiplier window materials under electron irradiation

    NASA Technical Reports Server (NTRS)

    Viehmann, W.; Eubanks, A. G.; Bredekamp, J. H.

    1974-01-01

    The fluorescence and phosphorescence of photomultiplier window materials under electron irradiation were investigated using a Sr-90/Y-90 beta emitter as the electron source. Spectral emission curves of UV grade, optical grade, and electron-irradiated samples of MGF2 and LiF, CaF2, BaF2, sapphire, fused silica, and UV transmitting glasses were obtained over the spectral range of 200 nm to 650 nm. Fluorescence yields, expressed as the number of counts in a solid angle of 2 pi steradian per 1MeV of incident electron energy deposited, were determined on these materials utilizing photomultiplier tubes with cesium telluride, bialkali, and trialkali (S-20) photocathodes, respectively.

  9. Complexes trans-Pt(BODIPY)X(PEt3)2: excitation energy-dependent fluorescence and phosphorescence emissions, oxygen sensing and photocatalysis.

    PubMed

    Irmler, Peter; Winter, Rainer F

    2016-06-21

    We report on five new complexes with the general formula trans-Pt(BODIPY)X(PEt3)2 (), where the platinum(ii) ion is σ-bonded to a 4,4-difluoro-4-bora-3a,4a-diaza-s-indacen-8-yl (BODIPY) and an anionic ligand X(-) (X(-) = Cl(-), I(-), NO2(-), NCS(-), CH3(-)). All five complexes were characterized by multinuclear NMR, electronic absorption and luminescence spectroscopy and by X-ray diffraction analysis. Four of these complexes show efficient intersystem crossing (ISC) from an excited singlet state to a BODIPY-centred T1 state and exhibit dual fluorescence and phosphorescence emission from the BODIPY ligand. In , the fluorescence is almost completely quenched, whereas the phosphorescence quantum yield reaches a value of 40%. The rate of ISC and the ratio of phosphorescence to fluorescence emissions depend on the excitation wavelength (i.e. on which specific transition is excited). The performance of these complexes as one-component oxygen sensors and their photocatalytic activities were tested by Stern-Volmer quenching experiments and by monitoring the oxidation of 1,5-dihydroxynaphthalene with (1)O2 generated from the long-lived triplet state of the sensitizer by triplet-triplet annihilation with (3)O2. Exceptionally high (1)O2 generation quantum yields of up to near unity were obtained. PMID:27255789

  10. Power spectral analysis of Jupiter’s clouds and kinetic energy from Cassini

    NASA Astrophysics Data System (ADS)

    Choi, David S.; Showman, Adam P.

    2011-12-01

    We present suggestive evidence for an inverse energy cascade within Jupiter’s atmosphere through a calculation of the power spectrum of its kinetic energy and its cloud patterns. Using Cassini observations, we composed full-longitudinal mosaics of Jupiter’s atmosphere at several wavelengths. We also utilized image pairs derived from these observations to generate full-longitudinal maps of wind vectors and atmospheric kinetic energy within Jupiter’s troposphere. We computed power spectra of the image mosaics and kinetic energy maps using spherical harmonic analysis. Power spectra of Jupiter’s cloud patterns imaged at certain wavelengths resemble theoretical spectra of two-dimensional turbulence, with power-law slopes near -5/3 and -3 at low and high wavenumbers, respectively. The slopes of the kinetic energy power spectrum are also near -5/3 at low wavenumbers. At high wavenumbers, however, the spectral slopes are relatively flatter than the theoretical prediction of -3. In addition, the image mosaic and kinetic energy power spectra differ with respect to the location of the transition in slopes. The transition in slope is near planetary wavenumber 70 for the kinetic energy spectra, but is typically above 200 for the image mosaic spectra. Our results also show the importance of calculating spectral slopes from full 2D velocity maps rather than 1D zonal mean velocity profiles, since at large wavenumbers the spectra differ significantly, though at low wavenumbers, the 1D zonal and full 2D kinetic energy spectra are practically indistinguishable. Furthermore, the difference between the image and kinetic energy spectra suggests some caution in the interpretation of power spectrum results solely from image mosaics and its significance for the underlying dynamics. Finally, we also report prominent variations in kinetic energy within the equatorial jet stream that appear to be associated with the 5 μm hotspots. Other eddies are present within the flow collar of

  11. Metallochelate Coupling of Phosphorescent Pt-Porphyrins to Peptides, Proteins, and Self-Assembling Protein Nanoparticles.

    PubMed

    Dmitriev, Ruslan I; O'Donnell, Neil; Papkovsky, Dmitri B

    2016-02-17

    Specific and reversible metallochelate coupling via nitrilotriacetate (NTA) moiety is widely used for immobilization, purification, and labeling of oligo(histidine)-tagged proteins. Here, we evaluated this strategy to label various peptides and proteins with phosphorescent Pt-porphyrin derivatives bearing NTA group(s). Zn(2+) complexes were shown to have minimal effect on the photophysics of the porphyrin moiety, allowing quenched-phosphorescence sensing of O2. We complexed the PtTFPP-NTA conjugate with His-containing peptide that can facilitate intracellular loading, and observed efficient accumulation and phosphorescent staining of MEF cells. The more hydrophilic PtCP-NTA conjugate was also seen to form stable complexes with larger polypeptide constructs based on fluorescent proteins, and with subunits of protein nanoparticles, which retained their ability to self-assemble. Testing in phosphorescence lifetime based O2 sensing assays on a fluorescence reader and PLIM microscope revealed that phosphorescent metallochelate complexes perform similarly to the existing O2 probes. Thus, metallochelate coupling allows simple preparation of different types of biomaterials labeled with phosphorescent Pt-porphyrins. PMID:26704593

  12. Fluorescence and phosphorescence of tryptophan in peptides of different length and sequence.

    PubMed

    Radotić, Ksenija; Melø, Thor Bernt; Leblanc, Roger M; Yousef, Yaser A; Naqvi, K Razi

    2016-04-01

    To interpret accurately protein fluorescence and phosphorescence, it is essential to achieve a better understanding of the luminescence properties of tryptophan (Trp, or W) in peptides. In published literature data on luminescence of peptides of varied length are scarce. This article describes studies of fluorescence and phosphorescence properties of the eight Trp-containing synthetic peptides: WAK, AWK, SWA, KYLWE, AVSWK, WVSWAK, WAKLAWE, and AVSWAKLARE. The aim was to investigate which factors influence the fluorescence yield and phosphorescence-spectra and lifetimes. Absorption spectra, room temperature fluorescence emission and corresponding excitation spectra and time-resolved phosphorescence spectra (77K) have been recorded; the dependence of the fluorescence quantum yield on the specific peptide and its variation with the wavelength of excitation has been studied. The changes in fluorescence yield and shape of phosphorescence spectra are explained in terms of internal electron and proton transfer. The structured phosphorescence spectrum originates from proton transfer occurring upon excitation of Trp, while electron transfer gives rise to a non-structured luminescence spectrum. There is also electron transfer from higher vibronic S1 states. In the peptides there is higher probability of electron transfer than in Trp alone. The obtained data are interpreted in light of the peptides' sequence, length and conformation. PMID:26916609

  13. Glycerol effects on protein flexibility: a tryptophan phosphorescence study.

    PubMed Central

    Gonnelli, M.; Strambini, G. B.

    1993-01-01

    In exploring the dynamic properties of protein structure, numerous studies have focussed on the dependence of structural fluctuations on solvent viscosity, but the emerging picture is still not well defined. Exploiting the sensitivity of the phosphorescence lifetime of tryptophan to the viscosity of its environment we have used the delayed emission as an intrinsic probe of protein flexibility and investigated the effects of glycerol as a viscogenic cosolvent. The phosphorescence lifetime of alcohol dehydrogenase, alkaline phosphatase, apoazurin and RNase T1, as a function of glycerol concentration was studied at various temperatures. Flexibility data, which refer to rather rigid sites of the globular structures, point out that, for some concentration ranges glycerol, effects on the rate of structural fluctuations of alcohol dehydrogenase and RNase T1 do not obey Kramers' a power law on solvent viscosity and emphasize that cosolvent-induced structural changes can be important, even for inner cores of the macromolecule. When the data is analyzed in terms of Kramers' model, for the temperature range 0-30 degrees C one derives frictional coefficients that are relatively large (0.6-0.7) for RNase T1, where the probe is in a flexible region near the surface of the macromolecule and much smaller, less than 0.2, for the rigid sites of the other proteins. For the latter sites the frictional coefficient rises sharply between 40 and 60 degrees C, and its value correlates weakly with molecular parameters such as the depth of burial or the rigidity of a particular site. For RNase T1, coupling to solvent viscosity increases at subzero temperatures, with the coefficient becoming as large as 1 at -20 degrees C. Temperature effects were interpreted by proposing that solvent damping of internal protein motions is particularly effective for low frequency, large amplitude, structural fluctuations yielding highly flexible conformers of the macromolecule. PMID:8369422

  14. The fate of cells in skin: from clonal analysis to cell kinetics

    NASA Astrophysics Data System (ADS)

    Klein, Allon M.; Doupe, David P.; Winton, Douglas J.; Jones, Phil H.; Simons, Benjamin D.

    2007-03-01

    Biologists are keen to understand the mechanisms of development and maintenance of tissues in mammals. As well as its intrinsic scientific interest, an understanding of the kinetics of cell division has important implications for mechanisms of aging and cancer development. Analysis of cell populations (clones) resulting from progenitor cells provides indirect access to the laws governing cell division and fate. Yet, until recently, the quality of clonal fate data acquired in vivo has inhibited reliable quantitative analysis. By addressing a recent, detailed, and extensive experimental study of mammalian skin, we develop a general theoretical framework which shows that the wide range of clonal fate data are consistent with a remarkably simple cell kinetic model. As well as overturning the accepted paradigm for skin maintenance, the analysis introduces a general framework for analysing clone fate data in future experiments. We now have a robust platform to study the effect of drug treatments and the influence of cell mutations on the epidermis.

  15. Kinetic and Mechanical Analysis of Live Tube Morphogenesis

    PubMed Central

    Cheshire, Alan M.; Kerman, Bilal E.; Zipfel, Warren R.; Spector, Alexander A.; Andrew, Deborah J.

    2008-01-01

    Ribbon is a nuclear BTB-domain protein required for morphogenesis of the salivary gland and trachea. We recently showed that ribbon mutants exhibit decreased Crumbs and Rab11-coincident apical vesicles and increased apical Moesin activity and microvillar structure during tube elongation. To learn how these molecular and morphological changes affect the dynamics of tubulogenesis, we optimized an advanced two-photon microscope to enable high-resolution live imaging of the salivary gland and trachea. Live imaging revealed that ribbon mutant tissues exhibit slowed and incomplete lumenal morphogenesis, consistent with previously described apical defects. Since Moesin activity correlates with cortical stiffness, we hypothesize that ribbon mutants suffer from increased apical stiffness during morphogenesis. We develop this hypothesis through mechanical analysis, using the advantages of live imaging to construct computational elastic and analytical viscoelastic models of tube elongation, which suggest that ribbon mutant tubes exhibit three- to five-fold increased apical stiffness and two-fold increased effective apical viscosity. PMID:18816822

  16. Two dimensional kinetic analysis of electrostatic harmonic plasma waves

    NASA Astrophysics Data System (ADS)

    Fonseca-Pongutá, E. C.; Ziebell, L. F.; Gaelzer, R.; Yoon, P. H.

    2016-06-01

    Electrostatic harmonic Langmuir waves are virtual modes excited in weakly turbulent plasmas, first observed in early laboratory beam-plasma experiments as well as in rocket-borne active experiments in space. However, their unequivocal presence was confirmed through computer simulated experiments and subsequently theoretically explained. The peculiarity of harmonic Langmuir waves is that while their existence requires nonlinear response, their excitation mechanism and subsequent early time evolution are governed by essentially linear process. One of the unresolved theoretical issues regards the role of nonlinear wave-particle interaction process over longer evolution time period. Another outstanding issue is that existing theories for these modes are limited to one-dimensional space. The present paper carries out two dimensional theoretical analysis of fundamental and (first) harmonic Langmuir waves for the first time. The result shows that harmonic Langmuir wave is essentially governed by (quasi)linear process and that nonlinear wave-particle interaction plays no significant role in the time evolution of the wave spectrum. The numerical solutions of the two-dimensional wave spectra for fundamental and harmonic Langmuir waves are also found to be consistent with those obtained by direct particle-in-cell simulation method reported in the literature.

  17. NIR spectral-kinetic analysis for thermally degraded Sugi ( Cryptomeria japonica) wood

    NASA Astrophysics Data System (ADS)

    Inagaki, Tetsuya; Matsuo, Miyuki; Tsuchikawa, Satoru

    2016-03-01

    Kinetic analysis was conducted on principal component scores calculated from second-derivative near-infrared (NIR) spectra of thermally treated Sugi ( Cryptomeria japonica) wood samples. NIR reflectance spectra were measured for wood samples thermally treated at 90, 120, 150 and 180 °C in an air-circulating oven for periods ranging from 5 min to approximately 1.4 years. The Arrhenius approach, which involves the time-temperature superposition method, is used to understand the change in the principal component score. The master curve corresponded well with the change in principal component scores at each temperature and yielded a determination coefficient between the measured and estimated data of 0.99 for second principal component score. This report shows that kinetic analysis is useful to understand changes in the principal component score calculated from NIR spectra of wood subjected to thermal treatment.

  18. Theoretical analysis of kinetic effects on the quantitative comparison of K(d) values and contaminant retardation factors.

    PubMed

    Tinnacher, Ruth M; Honeyman, Bruce D

    2010-10-21

    Distribution coefficients (K(d) values) describe contaminant partitioning between liquids and solids for linear sorption at equilibrium conditions. If experimentally-determined K(d) values do not represent sorption equilibria, errors are introduced in contaminant transport models. These errors may be further propagated when K(d) values are used to compare contaminant mobility under different chemical solution conditions. Our theoretical analysis based on pseudo-first order sorption kinetics shows that, independent if two systems have the same or different sorption kinetics, relative comparisons of K(d) values and retardation factors are always affected by sorption times under non-equilibrium conditions. The time-frames required for attaining constant K(d) values are not only dependent on kinetic sorption characteristics, but also the equilibrium K(d) values approached. The type of kinetic errors introduced is affected by the specific differences in sorption kinetics and equilibrium K(d) values between the two systems. For systems with the same sorption kinetics, relative increases or decreases in contaminant velocities are always underestimated. In case of different kinetics, either an under- or overestimation of relative differences seems possible. Experimental sorption times should aim to equilibrate the system with the highest K(d) value for systems with comparable kinetics, and the system with the slowest sorption kinetics for different kinetics. PMID:20864208

  19. Kinetic analysis of two-phase enzymatic hydrolysis of hemicellulose of xylan type.

    PubMed

    Dutta, Sajal Kanti; Chakraborty, Saikat

    2015-12-01

    We present a coupled experimental and theoretical framework for quantifying the kinetics of two-phase enzymatic hydrolysis of hemicellulose. For xylan loading of 1-5mg/ml, the nature of inhibition by the product xylose (non-competitive), the kinetic constants (Km=3.93 mg/ml, Vmax=0.0252 mg/ml/min) and the xylose inhibition constant (Kx=0.122 mg/ml) are experimentally determined. Our multi-step two-phase kinetic model incorporating enzyme adsorption to the solid substrate and non-competitive product inhibition is simulated using our kinetic data and validated against our experimentally measured temporal dynamics of xylose and reducing sugars. Further experiments show that higher substrate loading reduces the specific adsorption of the endoxylanase to the solid xylan and the enzyme's solid-liquid distribution ratio, which decelerates the solid hydrolysis and accelerates the liquid phase reactions. Thus, the xylose yield increases with substrate loading, which increases product inhibition and decreases reducing sugar yields. An operating cost analysis gives 3mg/ml as the optimal substrate loading. PMID:26433789

  20. Raman mapping for kinetic analysis of crystallization of amorphous drug based on distributional images.

    PubMed

    Ueda, Hiroshi; Ida, Yasuo; Kadota, Kazunori; Tozuka, Yuichi

    2014-02-28

    The feasibility of Raman mapping for understanding the crystallization mechanism of an amorphous drug was investigated using described images. The crystallization tendency of amorphous indomethacin under dry condition at 30 °C was kinetically evaluated by means of Raman mapping and X-ray powder diffraction (XRPD) with change in the calculated crystallinities. Raman images directly revealed the occurrence of particle size-dependent non-uniform crystallization; slow crystallization of large particles, but fast crystallization of small particles. Kinetic analysis by fitting to the Kolmogorov-Johnson-Mehl-Avrami equation was performed for the crystallization profiles of both Raman mapping and XRPD data. For the Raman mapping data, the distribution of large particles was characterized and examined. The kinetic parameters calculated from the whole Raman image area agreed well with those of XRPD, suggesting accurate prediction of both techniques for the entire crystallization. Raman images revealed the change in the crystallization mechanism for the focused area; the large particles showed a reduced crystallization rate constant and an increase in the dimensional crystal growth exponent. Raman mapping is an attractive tool for quantitative and kinetic investigation of the crystallization mechanism with distributional images. PMID:24368105

  1. Evaluation of kinetic parameters for water soluble crystals by thermo gravimetric analysis

    NASA Astrophysics Data System (ADS)

    Rama, S.; Surendra Dilip, C.; Perumal, Rajesh Narayana

    2015-01-01

    This work elevates the relevance of kinetic parameters of nucleation and thermal decomposition for water soluble crystals. The positive soluble Potassium Dihydrogen Phosphate (KDP) and negative soluble Lithium Sulfate Monohydrate (LSMH) materials were chosen for the kinetic evaluation. The results obtained from the classical nucleation theory are verified with the kinetic parameters which are evaluated from thermo gravimetric analysis. Nucleation parameters of a crystallization process such as interfacial energy (σ), volume free energy (ΔGv), critical energy barrier for nucleation (ΔG*), radius of the critical nucleus (r*) and nucleation rate (J) of the positive (KDP) and negative solubility (LSMH) crystals are determined from the classical nucleation theory of solubility-enthalpy relation. The kinetic parameters viz. the order of reaction, enthalpy, Gibbs free energy of activation, frequency factor, and entropy of activation are obtained from the TG based models viz. Horowitz-Metzger, Coats-Redfern and Piloyan-Novikova. The effect of varying temperature with relative variation on Gibbs free energy for both positive and negative solubility crystals is also discussed. The developed model holds good for both positive and negative solubility crystals.

  2. Continuous cultivation of fission yeast: analysis of single-cell protein synthesis kinetics

    SciTech Connect

    Agar, D.W.; Bailey, J.E.

    1981-01-01

    A fundamental problem in microbial reactor analysis is identification of the relation between environment and individual cell metabolic activity. Population balance equations provide a link between experimental measurements of composition frequency functions in microbial populations on the one hand and macromolecule synthesis kinetics and cell division control parameters for single cells on the other. Flow microfluorometry measurements of frequency functions for single-cell protein content in Schizosaccharomyces pombe in balanced exponential growth were analyzed by 2 different methods. One approach utilizes the integrated form of the population balance equation known as the Collins-Richmond equation, and the other method involves optimization of parameters in assumed kinetic and cell division functional forms to fit measured frequency functions with corresponding model solutions. Both data interpretation techniques indicate that rates of protein synthesis increase most in low-protein-content cells as the population specific growth rate increases, leading to parabolic single-cell protein synthesis kinetics at large specific growth rates. Utilization of frequency function data for an asynchronous population is in this case a far more sensitive method for determination of single-cell kinetics than is monitoring the metabolic dynamics of a single cell or, equivalently, synchronous culture analyses.

  3. On-Line Analysis and Kinetic Behavior of Arsenic Release during Coal Combustion and Pyrolysis.

    PubMed

    Shen, Fenghua; Liu, Jing; Zhang, Zhen; Dai, Jinxin

    2015-11-17

    The kinetic behavior of arsenic (As) release during coal combustion and pyrolysis in a fluidized bed was investigated by applying an on-line analysis system of trace elements in flue gas. This system, based on inductively coupled plasma optical emission spectroscopy (ICP-OES), was developed to measure trace elements concentrations in flue gas quantitatively and continuously. Obvious variations of arsenic concentration in flue gas were observed during coal combustion and pyrolysis, indicating strong influences of atmosphere and temperature on arsenic release behavior. Kinetic laws governing the arsenic release during coal combustion and pyrolysis were determined based on the results of instantaneous arsenic concentration in flue gas. A second-order kinetic law was determined for arsenic release during coal combustion, and the arsenic release during coal pyrolysis followed a fourth-order kinetic law. The results showed that the arsenic release rate during coal pyrolysis was faster than that during coal combustion. Thermodynamic calculations were carried out to identify the forms of arsenic in vapor and solid phases during coal combustion and pyrolysis, respectively. Ca3(AsO4)2 and Ca(AsO2)2 are the possible species resulting from As-Ca interaction during coal combustion. Ca(AsO2)2 is the most probable species during coal pyrolysis. PMID:26488499

  4. Synthetic spectral analysis of a kinetic model for slow-magnetosonic waves in solar corona

    NASA Astrophysics Data System (ADS)

    Ruan, Wenzhi; He, Jiansen; Zhang, Lei; Vocks, Christian; Marsch, Eckart; Tu, Chuanyi; Peter, Hardi; Wang, Linghua

    2016-03-01

    We propose a kinetic model of slow-magnetosonic waves to explain various observational features associated with the propagating intensity disturbances (PIDs) occurring in the solar corona. The characteristics of slow mode waves, e.g, inphase oscillations of density, velocity, and thermal speed, are reproduced in this kinetic model. Moreover, the red-blue (R-B) asymmetry of the velocity distribution as self-consistently generated in the model is found to be contributed from the beam component, as a result of the competition between Landau resonance and Coulomb collisions. Furthermore, we synthesize the spectral lines and make the spectral analysis, based on the kinetic simulation data of the flux tube plasmas and the hypothesis of the surrounding background plasmas. It is found that the fluctuations of parameters of the synthetic spectral lines are basically consistent with the observations: (1) the line intensity, Doppler shift, and line width are fluctuating in phase; (2) the R-B asymmetry usually oscillate out of phase with the former three parameters; (3) the blueward asymmetry is more evident than the redward asymmetry in the R-B fluctuations. The oscillations of line parameters become weakened for the case with denser surrounding background plasmas. Similar to the observations, there is no doubled-frequency oscillation of the line width for the case with flux-tube plasmas flowing bulkly upward among the static background plasmas. Therefore, we suggest that the "wave + beam flow" kinetic model may be a viable interpretation for the PIDs observed in the solar corona.

  5. Kinetic Analysis of Competitive Electrocatalytic Pathways: New Insights into Hydrogen Production with Nickel Electrocatalysts.

    PubMed

    Wiedner, Eric S; Brown, Houston J S; Helm, Monte L

    2016-01-20

    The hydrogen production electrocatalyst Ni(P(Ph)2N(Ph)2)2(2+) (1) is capable of traversing multiple electrocatalytic pathways. When using dimethylformamidium, DMF(H)(+), the mechanism of H2 formation by 1 changes from an ECEC to an EECC mechanism as the potential approaches the Ni(I/0) couple. Two electrochemical methods, current-potential analysis and foot-of-the-wave analysis (FOWA), were performed on 1 to measure detailed kinetics of the competing ECEC and EECC pathways. A sensitivity analysis was performed on the methods using digital simulations to understand their strengths and limitations. Chemical rate constants were significantly underestimated when not accounting for electron-transfer kinetics, even when electron transfer was fast enough to afford a reversible noncatalytic wave. The EECC pathway of 1 was faster than the ECEC pathway under all conditions studied. Buffered DMF:DMF(H)(+) mixtures afforded an increase in the catalytic rate constant (k(obs)) of the EECC pathway, but k(obs) for the ECEC pathway did not change when using buffered acid. Further kinetic analysis of the ECEC path revealed that base increases the rate of isomerization from exo-protonated Ni(0) isomers to the catalytically active endo-isomers, but decreases the rate of protonation of Ni(I). FOWA did not provide accurate rate constants, but FOWA was used to estimate the reduction potential of the previously undetected exo-protonated Ni(I) intermediate. Comparison of catalytic Tafel plots for 1 under different conditions reveals substantial inaccuracies in the turnover frequency at zero overpotential when the kinetic and thermodynamic effects of the conjugate base are not accounted for properly. PMID:26692398

  6. Simplified half-life methods for the analysis of kinetic data

    NASA Technical Reports Server (NTRS)

    Eberhart, J. G.; Levin, E.

    1988-01-01

    The analysis of reaction rate data has as its goal the determination of the order rate constant which characterize the data. Chemical reactions with one reactant and present simplified methods for accomplishing this goal are considered. The approaches presented involve the use of half lives or other fractional lives. These methods are particularly useful for the more elementary discussions of kinetics found in general and physical chemistry courses.

  7. Kinetic analysis of sodium channel block by internal methylene blue in pronased crayfish giant axons.

    PubMed Central

    Starkus, J G; Heggeness, S T; Rayner, M D

    1984-01-01

    The cationic dye methylene blue (MB+) blocks INa in a voltage and time-dependent manner and exhibits no frequency dependent block at 1 Hz when internally perfused in normal or pronase-treated crayfish axons. Peak INa decreases with increasing MB+ concentrations in the range 50 microM to 5 mM, but the blocking time constant approaches an asymptote at concentrations above 500 microM. IgON is not noticeably affected by internal MB+ at concentrations of 500 microM or below, in the absence of external tetrodotoxin (TTX). However, 5 mM MB+ produces a visible suppression of IgON that is reversible following washout. A pseudo-first-order analysis of MB+ blocking kinetics suggests a drug binding site deep in the transmembrane voltage field (dz = 0.85, KD = 11 microM at 0 mV). The voltage sensitivity of the individual rate constants is highly asymmetric, suggesting that the major energy barrier for MB+ is very close to the axoplasmic margin of the voltage field. Reversing the Na+ gradient and direction of INa has little effect on the kinetics of MB+ block. The kinetic properties of state-dependent vs. state-independent blocking schemes are investigated and compared with our observations of MB+ block. Analysis of hooked sodium tail currents following depolarization to various test potentials demonstrates quantitatively that MB+ binds in a state-dependent manner to open sodium channels. The appropriateness of first-order kinetic analysis of drug block is then considered in light of these observations. PMID:6089923

  8. Microscopic basis for kinetic gating in Cytochrome c oxidase: insights from QM/MM analysis

    PubMed Central

    Goyal, Puja; Yang, Shuo; Cui, Qiang

    2014-01-01

    Understanding the mechanism of vectorial proton pumping in biomolecules requires establishing the microscopic basis for the regulation of both thermodynamic and kinetic features of the relevant proton transfer steps. For the proton pump cytochrome c oxidase, while the regulation of thermodynamic driving force for key proton transfers has been discussed in great detail, the microscopic basis for the control of proton transfer kinetics has been poorly understood. Here we carry out extensive QM/MM free energy simulations to probe the kinetics of relevant proton transfer steps and analyze the effects of local structure and hydration level. We show that protonation of the proton loading site (PLS, taken to be a propionate of heme a3) requires a concerted process in which a key glutamic acid (Glu286H) delivers the proton to the PLS while being reprotonated by an excess proton coming from the D-channel. The concerted nature of the mechanism is a crucial feature that enables the loading of the PLS before the cavity containing Glu286 is better hydrated to lower its pKa to experimentally measured range; the charged rather than dipolar nature of the process also ensures a tight coupling with heme a reduction, as emphasized by Siegbahn and Blomberg. In addition, we find that rotational flexibility of the PLS allows its protonation before that of the binuclear center (the site where oxygen gets reduced to water). Together with our recent study (P. Goyal, et al., Proc. Natl. Acad. Sci. USA, 110:18886-18891, 2013) that focused on the modulation of Glu286 pKa, the current work suggests a mechanism that builds in a natural sequence for the protonation of the PLS prior to that of the binuclear center. This provides microscopic support to the kinetic constraints revealed by kinetic network analysis as essential elements that ensure an efficient vectorial proton transport in cytochrome c oxidase. PMID:25678950

  9. Kinetic and thermodynamic analysis of Creosote degradation process under isothermal experimental conditions.

    PubMed

    Janković, Bojan Ž; Janković, Marija M

    2013-01-01

    Isothermal degradation process of commercial Creosote was analyzed by the thermogravimetric (TG) technique in a nitrogen atmosphere, at four different operating temperatures (230, 250, 270 and 290°C). The kinetic triplet [Ea , A and f(α)] and the thermodynamic parameters (ΔH (≠), ΔS (≠)and ΔG (≠)) for investigated Creosote samples were calculated. It was found that two-parameter autocatalytic Šesták-Berggren (SB) kinetic model best describes the process, but in the form of accommodation function with phenomenological character. Applying the multiplicative factor, the true value of activation energy (E (true) a ) was calculated. The experimental density distribution function of the apparent activation energy values was evaluated from isoconversional kinetic analysis. Based of the characteristic shape of distribution curve, it was concluded that the isothermal degradation of Creosote represents a complex physico-chemical process, given the chemical structure of the studied system. It is assumed that the considered process probably includes primary and secondary (autocatalytic) pyrolysis reactions, together with various decomposition reactions and radicals recombination pathways. The objective of the presented work is the proof of principle of the pyrolysis-based thermo-chemical conversion technologies for the production of value-added chemicals from the complex organic compounds, which even include chemical contaminants (such as PAHs). Also, the present work allows us that by using a unified kinetic approach we can obtain a significant physico-chemical characteristics of the tested system, which can then be used in the procedure for the separation of organics from creosote-treated woods and creosote-contaminated soils. The significance of this research is to identify the global kinetic behavior of some target contaminant compounds for pyrolysis, which are primarily PAHs. PMID:23705620

  10. Synthesis, crystal structure and photoluminescence of phosphorescent copper (I) complexes containing hole-transporting carbazoly moiety.

    PubMed

    Yu, Tianzhi; Chai, Haifang; Zhao, Yuling; Zhang, Chengcheng; Liu, Peng; Fan, Duowang

    2013-05-15

    Two new mononuclear Cu(I) complexes based on 2-(2'-pyridyl)benzimidazolyl derivative ligand containing hole-transporting carbazole (L), [Cu(L)(DPEphos)](BF4) and [Cu(L)(PPh3)2](BF4), where L=(4-(9H-carbazol-9-yl)phenyl)methyl-2-(2'-pyridyl)benzimidazole; DPEphos=bis[2-(diphenylphosphino)phenyl]ether and PPh3=triphenylphosphine, have been synthesized and characterized on the basis of elemental analysis, (1)H NMR and FT-IR spectra. The structures of the ligand L and the Cu(I) complexes were characterized by single crystal X-ray diffraction. The results reveal that in the Cu(I) complexes the central Cu(I) ions assume the irregular distorted tetrahedral geometry and are tetra-coordinated by the two nitrogen atoms from L ligand and two phosphorus atoms from ancillary ligands. The photophysical properties of the complexes were examined by using UV-vis, photoluminescence spectroscopic analysis. The complexes exhibit weak MLCT absorption bands ranging from 360 to 480 nm, and display strong orange phosphorescence in the solid states at room temperature, which is completely quenched in solutions. PMID:23524386

  11. Development and Utilization of Host Materials for White Phosphorescent Organic Light-Emitting Diodes

    SciTech Connect

    Tang, Ching; Chen, Shaw

    2013-05-31

    Our project was primarily focused on the MYPP 2015 goal for white phosphorescent organic devices (PhOLEDs or phosphorescent organic light-emitting diodes) for solid-state lighting with long lifetimes and high efficiencies. Our central activity was to synthesize and evaluate a new class of host materials for blue phosphors in the PhOLEDs, known to be a weak link in the device operating lifetime. The work was a collaborative effort between three groups, one primarily responsible for chemical design and characterization (Chen), one primarily responsible for device development (Tang) and one primarily responsible for mechanistic studies and degradation analysis (Rothberg). The host materials were designed with a novel architecture that chemically links groups with good ability to move electrons with those having good ability to move “holes” (positive charges), the main premise being that we could suppress the instability associated with physical separation and crystallization of the electron conducting and hole conducting materials that might cause the devices to fail. We found that these materials do prevent crystallization and that this will increase device lifetimes but that efficiencies were reduced substantially due to interactions between the materials creating new low energy “charge transfer” states that are non-luminescent. Therefore, while our proposed strategy could in principle improve device lifetimes, we were unable to find a materials combination where the efficiency was not substantially compromised. In the course of our project, we made several important contributions that are peripherally related to the main project goal. First, we were able to prepare the proposed new family of materials and develop synthetic routes to make them efficiently. These types of materials that can transport both electrons and holes may yet have important roles to play in organic device technology. Second we developed an important new method for controlling the

  12. Phosphorescent Organic Light Emitting Diodes Implementing Platinum Complexes

    NASA Astrophysics Data System (ADS)

    Ecton, Jeremy Exton

    Organic light emitting diodes (OLEDs) are a promising approach for display and solid state lighting applications. However, further work is needed in establishing the availability of efficient and stable materials for OLEDs with high external quantum efficiency's (EQE) and high operational lifetimes. Recently, significant improvements in the internal quantum efficiency or ratio of generated photons to injected electrons have been achieved with the advent of phosphorescent complexes with the ability to harvest both singlet and triplet excitons. Since then, a variety of phosphorescent complexes containing heavy metal centers including Os, Ni, Ir, Pd, and Pt have been developed. Thus far, the majority of the work in the field has focused on iridium based complexes. Platinum based complexes, however, have received considerably less attention despite demonstrating efficiency's equal to or better than their iridium analogs. In this study, a series of OLEDs implementing newly developed platinum based complexes were demonstrated with efficiency's or operational lifetimes equal to or better than their iridium analogs for select cases. In addition to demonstrating excellent device performance in OLEDs, platinum based complexes exhibit unique photophysical properties including the ability to form excimer emission capable of generating broad white light emission from a single emitter and the ability to form narrow band emission from a rigid, tetradentate molecular structure for select cases. These unique photophysical properties were exploited and their optical and electrical properties in a device setting were elucidated. Utilizing the unique properties of a tridentate Pt complex, Pt-16, a highly efficient white device employing a single emissive layer exhibited a peak EQE of over 20% and high color quality with a CRI of 80 and color coordinates CIE(x=0.33, y=0.33). Furthermore, by employing a rigid, tetradentate platinum complex, PtN1N, with a narrow band emission into a

  13. Novel Smart Windows Based on Transparent Phosphorescent OLEDs

    SciTech Connect

    Brian D'Andrade; Stephen Forest

    2006-09-15

    In this program, Universal Display Corporation (UDC) and Princeton University developed the use of white transparent phosphorescent organic light emitting devices (PHOLEDs{trademark}) to make low-cost ''transparent OLED (TOLED) smart windows'', that switch rapidly from being a highly efficient solid-state light source to being a transparent window. PHOLEDs are ideal for large area devices, and the UDC-Princeton team has demonstrated white PHOLEDs with efficiencies of >24 lm/W at a luminance of 1,000 cd/m{sup 2}. TOLEDs have transparencies >70% over the visible wavelengths of light, but their transparency drops to less than 5% for wavelengths shorter than 350 nm, so they can also be used as ultraviolet (UV) light filters. In addition to controlling the flow of UV radiation, TOLEDs coupled with an electromechanical or electrically activated reflecting shutter on a glass window can be employed to control the flow of heat from infrared (IR) radiation by varying the reflectance/transparency of the glass for wavelengths greater than 800nm. One particularly attractive shutter technology is reversible electrochromic mirrors (REM). Our goal was therefore to integrate two innovative concepts to meet the U.S. Department of Energy goals: high power efficiency TOLEDs, plus electrically controlled reflectors to produce a ''smart window''. Our efforts during this one year program have succeeded in producing a prototype smart window shown in the Fig. I, below. The four states of the smart window are pictured: reflective with lamp on, reflective with lamp off, transparent with lamp on, and transparent with lamp off. In the transparent states, the image is an outdoor setting viewed through the window. In the reflective states, the image is an indoor setting viewed via reflection off the window. We believe that the integration of our high efficiency white phosphorescent TOLED illumination source, with electrically activated shutters represents an innovative low-cost approach to

  14. Kinetic analysis of the thermal decomposition of pristine and gamma-irradiated zinc uranyl acetate

    NASA Astrophysics Data System (ADS)

    Al-Muhaimid, T. I. A.; Al-Qunaibit, M. H.; Al-Farhan, K. A.; Mahfouz, R. M.

    2004-11-01

    Thermal decomposition of pristine and gamma-irradiated zinc uranyl acetate was investigated in air using isothermal and dynamic thermogravimetric techniques. The decomposition proceeded via one major process with the formation of triuranates ZnU3O10 as solid residues. Kinetic analysis of isothermal data, when compared with various solid-state reaction models, showed that the decomposition reaction is best fitted by the phase-boundary model. Kinetic analysis of the cynamic TG curves was discussed with reference to integral methods of modified Coats and Redfern equations. Kinetic and thermodynamic parameters were calculated and evaluated. IR spectroscopy and X-ray powder diffraction techniques were employed to follow the chemical composition of solid residue at different calcination temperatures. The results display that the triuranate ZnU3O10 starts forming by calcination of zinc uranyl acetate at temperatures >300 degrees C and undergoes decomposition at higher temperatures (>600 degrees C) with the formation Of U3O8. The results were evaluated regarding the utilization of zinc uranyl acetate as an important source of diuranates and triuranates.

  15. Graph-based analysis of kinetics on multidimensional potential-energy surfaces

    NASA Astrophysics Data System (ADS)

    Okushima, T.; Niiyama, T.; Ikeda, K. S.; Shimizu, Y.

    2009-09-01

    The aim of this paper is twofold: one is to give a detailed description of an alternative graph-based analysis method, which we call saddle connectivity graph, for analyzing the global topography and the dynamical properties of many-dimensional potential-energy landscapes and the other is to give examples of applications of this method in the analysis of the kinetics of realistic systems. A Dijkstra-type shortest path algorithm is proposed to extract dynamically dominant transition pathways by kinetically defining transition costs. The applicability of this approach is first confirmed by an illustrative example of a low-dimensional random potential. We then show that a coarse-graining procedure tailored for saddle connectivity graphs can be used to obtain the kinetic properties of 13- and 38-atom Lennard-Jones clusters. The coarse-graining method not only reduces the complexity of the graphs, but also, with iterative use, reveals a self-similar hierarchical structure in these clusters. We also propose that the self-similarity is common to many-atom Lennard-Jones clusters.

  16. Graph-based analysis of kinetics on multidimensional potential-energy surfaces.

    PubMed

    Okushima, T; Niiyama, T; Ikeda, K S; Shimizu, Y

    2009-09-01

    The aim of this paper is twofold: one is to give a detailed description of an alternative graph-based analysis method, which we call saddle connectivity graph, for analyzing the global topography and the dynamical properties of many-dimensional potential-energy landscapes and the other is to give examples of applications of this method in the analysis of the kinetics of realistic systems. A Dijkstra-type shortest path algorithm is proposed to extract dynamically dominant transition pathways by kinetically defining transition costs. The applicability of this approach is first confirmed by an illustrative example of a low-dimensional random potential. We then show that a coarse-graining procedure tailored for saddle connectivity graphs can be used to obtain the kinetic properties of 13- and 38-atom Lennard-Jones clusters. The coarse-graining method not only reduces the complexity of the graphs, but also, with iterative use, reveals a self-similar hierarchical structure in these clusters. We also propose that the self-similarity is common to many-atom Lennard-Jones clusters. PMID:19905185

  17. Development of patient collation system by kinetic analysis for chest dynamic radiogram with flat panel detector

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Yuichiro; Kodera, Yoshie

    2006-03-01

    In the picture archiving and communication system (PACS) environment, it is important that all images be stored in the correct location. However, if information such as the patient's name or identification number has been entered incorrectly, it is difficult to notice the error. The present study was performed to develop a system of patient collation automatically for dynamic radiogram examination by a kinetic analysis, and to evaluate the performance of the system. Dynamic chest radiographs during respiration were obtained by using a modified flat panel detector system. Our computer algorithm developed in this study was consisted of two main procedures, kinetic map imaging processing, and collation processing. Kinetic map processing is a new algorithm to visualize a movement for dynamic radiography; direction classification of optical flows and intensity-density transformation technique was performed. Collation processing consisted of analysis with an artificial neural network (ANN) and discrimination for Mahalanobis' generalized distance, those procedures were performed to evaluate a similarity of combination for the same person. Finally, we investigated the performance of our system using eight healthy volunteers' radiographs. The performance was shown as a sensitivity and specificity. The sensitivity and specificity for our system were shown 100% and 100%, respectively. This result indicated that our system has excellent performance for recognition of a patient. Our system will be useful in PACS management for dynamic chest radiography.

  18. An application of high performance liquid chromatographic assay for the kinetic analysis of degradation of faropenem.

    PubMed

    Cielecka-Piontek, J; Krause, A; Paczkowska, M

    2012-11-01

    An isocratic RP-HPLC-DAD procedure was developed and validated for kinetic analysis of degradation of faropenem in bulk drug substance and in tablets. It involved the use of a C-18 analytical column (5 microm particle size, 250 mm x 4.6 mm), flow rate 1.3 ml/min and 50 microl injection volume. The mobile phase consisted of acetate buffer (pH 3.5) - acetonitrile (70:30 v/v). The determination was carried out at the wavelength of 323 nm. Kinetic studies of faropenem degradation in aqueous solutions included hydrolysis, oxidation, photolysis and thermal degradation. A derivative spectrophotometry was used as an alternative method to compare the observed rate constants. PMID:23210240

  19. Bioleaching kinetics and multivariate analysis of spent petroleum catalyst dissolution using two acidophiles.

    PubMed

    Pradhan, Debabrata; Mishra, Debaraj; Kim, Dong J; Ahn, Jong G; Chaudhury, G Roy; Lee, Seoung W

    2010-03-15

    Bioleaching studies were conducted to evaluate the recovery of metal values from waste petroleum catalyst using two different acidophilic microorganisms, Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. Various leaching parameters such as contact time, pH, oxidant concentration, pulp densities, particle size, and temperature were studied in detail. Activation energy was evaluated from Arrhenius equation and values for Ni, V and Mo were calculated in case of both the acidophiles. In both cases, the dissolution kinetics of Mo was lower than those of V and Ni. The lower dissolution kinetics may have been due to the formation of a sulfur product layer, refractoriness of MoS(2) or both. Multivariate statistical data were presented to interpret the leaching data in the present case. The significance of the leaching parameters was derived through principle component analysis and multi linear regression analyses for both iron and sulfur oxidizing bacteria. PMID:19879686

  20. LSENS, a general chemical kinetics and sensitivity analysis code for gas-phase reactions: User's guide

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan; Bittker, David A.

    1993-01-01

    A general chemical kinetics and sensitivity analysis code for complex, homogeneous, gas-phase reactions is described. The main features of the code, LSENS, are its flexibility, efficiency and convenience in treating many different chemical reaction models. The models include static system, steady, one-dimensional, inviscid flow, shock initiated reaction, and a perfectly stirred reactor. In addition, equilibrium computations can be performed for several assigned states. An implicit numerical integration method, which works efficiently for the extremes of very fast and very slow reaction, is used for solving the 'stiff' differential equation systems that arise in chemical kinetics. For static reactions, sensitivity coefficients of all dependent variables and their temporal derivatives with respect to the initial values of dependent variables and/or the rate coefficient parameters can be computed. This paper presents descriptions of the code and its usage, and includes several illustrative example problems.

  1. Development of kinetic analysis technique for PACS management and a screening examination in dynamic radiography

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Yuichiro; Kodera, Yoshie

    2005-04-01

    The purpose of this study was to develop of kinetic analysis method for PACS management and computer-aided diagnosis. We obtained dynamic chest radiographs (512x512, 8bit, 4fps, and 1344x1344, 12bit, 3fps) of five healthy volunteers during respiration using an I.I. system twice, and one healthy volunteer using dynamic FPD system. Optical flows of images were obtained using customized block matching technique, and were divided into a direction, and transformed into the RGB color. Density was determined by the sum pixel length of movement during respiration phase. The made new static image was defined as the "kinetic map". The evaluation of patient's collation was performed with a template matching to the three colors. The same person's each correlation value and similar-coefficient which is defined in this study were statistically significant high (P<0.01). We used the artificial neural network (ANN) for the judgment of the same person. Five volunteers were divided into two groups, three volunteers and two volunteers became a training signal and unknown signal. Correlation value and similar-coefficient was used for the input signal, and ANN was designed so that the same person's probability might be outputted. The average of the specificity of the unknown signal obtained 98.2%. The kinetic map including the imitation tumor was used for the simulation. The tumor was detected by temporal subtraction of kinetic map, and then the superior sensitivity was obtained. Our analysis method was useful in risk management and computer-aided diagnosis.

  2. Oxygen tomography by Čerenkov-excited phosphorescence during external beam irradiation

    PubMed Central

    Zhang, Rongxiao; Davis, Scott C.; Demers, Jennifer-Lynn H.; Glaser, Adam K.; Gladstone, David J.; Esipova, Tatiana V.; Vinogradov, Sergei A.

    2013-01-01

    Abstract. The efficacy of radiation therapy depends strongly on tumor oxygenation during irradiation. However, current techniques to measure this parameter in vivo do not facilitate routine monitoring in patients. Herein, we demonstrate a noninvasive method for tomographic imaging of oxygen partial pressure (pO2) in deep tissue using the phosphorescence decay of an oxygen-sensitive probe excited by Čerenkov radiation induced by external beam radiotherapy. Tissue-simulating scattering phantoms (60 mm diameter with a 20 mm anomaly) containing platinum(II)-G4 (PtG4), a dendritic porphyrin-based phosphor, whose phosphorescence is quenched in the presence of oxygen, were irradiated with a clinical linear accelerator. The emitted phosphorescence was measured at various positions on the phantom boundary using a spectrograph coupled to an intensified charge-coupled device (ICCD). At each position, PtG4 phosphorescence decay curves were measured by synchronizing the ICCD to the linear accelerator pulses. Tomographic images of phosphorescence yield and lifetime were recovered for phantoms with homogenous PtG4 concentrations and heterogeneous pO2. Since PtG4 lifetime is strongly and predictably dependent on pO2 through the Stern-Volmer relationship, tomographic images of pO2 were also reported, and showed excellent agreement with independent oxygenation measurements. Translating this approach to the clinic could facilitate direct sensing of pO2 during radiotherapy. PMID:23644902

  3. Oxygen tomography by Čerenkov-excited phosphorescence during external beam irradiation

    NASA Astrophysics Data System (ADS)

    Zhang, Rongxiao; Davis, Scott C.; Demers, Jennifer-Lynn H.; Glaser, Adam K.; Gladstone, David J.; Esipova, Tatiana V.; Vinogradov, Sergei A.; Pogue, Brian W.

    2013-05-01

    The efficacy of radiation therapy depends strongly on tumor oxygenation during irradiation. However, current techniques to measure this parameter in vivo do not facilitate routine monitoring in patients. Herein, we demonstrate a noninvasive method for tomographic imaging of oxygen partial pressure (pO) in deep tissue using the phosphorescence decay of an oxygen-sensitive probe excited by Čerenkov radiation induced by external beam radiotherapy. Tissue-simulating scattering phantoms (60 mm diameter with a 20 mm anomaly) containing platinum(II)-G4 (PtG4), a dendritic porphyrin-based phosphor, whose phosphorescence is quenched in the presence of oxygen, were irradiated with a clinical linear accelerator. The emitted phosphorescence was measured at various positions on the phantom boundary using a spectrograph coupled to an intensified charge-coupled device (ICCD). At each position, PtG4 phosphorescence decay curves were measured by synchronizing the ICCD to the linear accelerator pulses. Tomographic images of phosphorescence yield and lifetime were recovered for phantoms with homogenous PtG4 concentrations and heterogeneous pO2. Since PtG4 lifetime is strongly and predictably dependent on pO through the Stern-Volmer relationship, tomographic images of pO were also reported, and showed excellent agreement with independent oxygenation measurements. Translating this approach to the clinic could facilitate direct sensing of pO during radiotherapy.

  4. Synthesis and Calibration of Phosphorescent Nanoprobes for Oxygen Imaging in Biological Systems

    PubMed Central

    Sinks, Louise E.; Roussakis, Emmanuel; Esipova, Tatiana V.; Vinogradov, Sergei A.

    2010-01-01

    Oxygen measurement by phosphorescence quenching [1, 2] consists of the following steps: 1) the probe is delivered into the medium of interest (e.g. blood or interstitial fluid); 2) the object is illuminated with light of appropriate wavelength in order to excite the probe into its triplet state; 3) the emitted phosphorescence is collected, and its time course is analyzed to yield the phosphorescence lifetime, which is converted into the oxygen concentration (or partial pressure, pO2). The probe must not interact with the biological environment and in some cases to be 4) excreted from the medium upon the measurement completion. Each of these steps imposes requirements on the molecular design of the phosphorescent probes, which constitute the only invasive component of the measurement protocol. Here we review the design of dendritic phosphorescent nanosensors for oxygen measurements in biological systems. The probes consist of Pt or Pd porphyrin-based polyarylglycine (AG) dendrimers, modified peripherally with polyethylene glycol (PEG's) residues. For effective two-photon excitation, termini of the dendrimers may be modified with two-photon antenna chromophores, which capture the excitation energy and channel it to the triplet cores of the probes via intramolecular FRET (Förster Resonance Energy Transfer). We describe the key photophysical properties of the probes and present detailed calibration protocols. PMID:20200497

  5. Synthesis and calibration of phosphorescent nanoprobes for oxygen imaging in biological systems.

    PubMed

    Sinks, Louise E; Roussakis, Emmanuel; Esipova, Tatiana V; Vinogradov, Sergei A

    2010-01-01

    Oxygen measurement by phosphorescence quenching [1, 2] consists of the following steps: 1) the probe is delivered into the medium of interest (e.g. blood or interstitial fluid); 2) the object is illuminated with light of appropriate wavelength in order to excite the probe into its triplet state; 3) the emitted phosphorescence is collected, and its time course is analyzed to yield the phosphorescence lifetime, which is converted into the oxygen concentration (or partial pressure, pO(2;)). The probe must not interact with the biological environment and in some cases to be 4) excreted from the medium upon the measurement completion. Each of these steps imposes requirements on the molecular design of the phosphorescent probes, which constitute the only invasive component of the measurement protocol. Here we review the design of dendritic phosphorescent nanosensors for oxygen measurements in biological systems. The probes consist of Pt or Pd porphyrin-based polyarylglycine (AG) dendrimers, modified peripherally with polyethylene glycol (PEG's) residues. For effective two-photon excitation, termini of the dendrimers may be modified with two-photon antenna chromophores, which capture the excitation energy and channel it to the triplet cores of the probes via intramolecular FRET (Förster Resonance Energy Transfer). We describe the key photophysical properties of the probes and present detailed calibration protocols. PMID:20200497

  6. Glass Stability and Kinetic Analysis of Iron-Metalloid Bulk Metallic Glass

    NASA Astrophysics Data System (ADS)

    Santhaweesuk, Charuayporn

    Multicomponent Fe-based bulk metallic glasses (BMGs) with a combination of excellent properties such as good soft magnetic properties, high strength, high hardness, and high corrosion resistance have attracted increasing attention both from a basic science research standpoint and due to their industrial application potential. However, many of the elemental additions which lead to the easiest glass formation are expensive. The identification of alloys composed of abundant and inexpensive elements that still retain excellent properties would promote applications for engineering and industry. In short, the development of the Fe-based BMG without any glass-forming metal elements and with high glass forming ability is desired. This study shows that the thermal stability of the Fe-based alloys can be improved beyond a simple rule of mixtures prediction by utilizing a well-balance multi-metalloid approach. The kinetics aspect of glass-forming ability is studied experimentally for Fe-B-Si-P alloys. The systematic variation in alloy composition gives access to differences in phase selection and the final dimensions of glass formation. Two alloys, representing the best glass-forming composition and the poorest glass-forming composition, were studied in terms of their stability to crystallization, solidification microstructure evolution and thermal history. The utility of the wedge-casting technique is developed to examine bulk glass-forming alloys by combining multiple temperature profiles of the quenching melt with a measurement-based kinetic analysis of the phase selection competition and critical cooling rate conditions. Based upon direct thermal measurement, microstructural analysis and kinetic modeling, it was found that both representative alloys show a board spectrum of solidification microstructures which include a critical cooling rate range. The kinetic competition in the formation of certain phases can enhance or detract from the final dimension of bulk glass

  7. Study on the paper substrate room temperature phosphorescence of theobromine, caffeine and theophylline and analytical application

    NASA Astrophysics Data System (ADS)

    Chuan, Dong; Yan-Li, Wei; Shao-Min, Shuang

    2003-05-01

    Paper substrate room temperature phosphorescence (RTP) of theobromine (TB), caffeine (CF) and theophylline (TP) were investigated. The method is based on fast speed quantitative filter paper as substrate and KI-NaAc as heavy atom perturber. Various factors affecting their RTP were discussed in detail. Under the optimum experimental conditions, the linear dynamic range, limit of detection (LOD), and relative standard deviation (R.S.D.) were 14.41˜576.54 ng per spot, 1.14 ng per spot, 4.8% for TB, 5.44˜699.08 ng per spot, 0.78 ng per spot, 1.56% for CF, 7.21˜360.34 ng per spot, 1.80 ng per spot, 3.80% for TP, respectively. The first analytical application for the determination of these compounds was developed. The recovery of standard samples added to commercial products chocolate, tea, coffee and aminophylline is in the range 92.80-106.08%. The proposed method was successfully applied to real sample analysis without separation.

  8. [Effect of mixed interface on the performance of solution-processed phosphorescent OLEDs].

    PubMed

    Song, Dan-Dan; Zhao, Su-Ling; Xu, Zheng; Zhang, Fu-Jun; Lu, Li-Fang; Zhang, Yan-Fei; Kong, Chao; Yan, Guang

    2011-06-01

    In the present work, in order to improve electron injection and transport at the interface of the hole blocking layer (HBL) and the electron transport layer (ETL) in the hole-domain solution processed phosphorescent organic light emitting devices (PhOLEDs), the mixed interface layer (MIL) was fabricated by partially co-doping hole blocking material 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) and electron transport material tris(8-quinolinolato) aluminum (Alq3) between HBL/ ETL. The MIL thickness was kept at 10nm, while the doping ratio of these two materials varied. Under a given electric field, the devices with the MIL at any mixed ratios all show much higher luminance and current density than those with a typical interface. For example, the luminance power and current density at 10 V for a typical device are 1.03 microW and 5.13 mA x cm(-2), while in case of mixed interface are 3.64 microW and 18.1 mA x cm(-2), respectively. From data results and theoretical analysis, the possible derivation of these improvements is considered to be the reduced electron accumulation at the interface resulting from the reduced electron injection energy barrier and lowered transport mobility by BCP material, which leads to an increase in electron amount in the emission layer and therefore the higher luminance and current density. PMID:21847908

  9. Selective phosphorescence chemosensor for homocysteine based on an iridium(III) complex.

    PubMed

    Chen, Huili; Zhao, Qiang; Wu, Yanbo; Li, Fuyou; Yang, Hong; Yi, Tao; Huang, Chunhui

    2007-12-24

    A new homocysteine-selective sensor based on the iridium(III) complex Ir(pba)2(acac) (Hpba = 4-(2-pyridyl)benzaldehyde; acac = acetylacetone) was synthesized, and its' photophysical properties were studied. Upon the addition of homocysteine (Hcy) to a semi-aqueous solution of Ir(pba)2(acac), a color change from orange to yellow and a luminescent variation from deep red to green were evident to the naked eye. The blue-shift of the absorption spectrum and enhancement of the phosphorescence emission upon the addition of Hcy can be attributed to the formation of a thiazinane group by selective reaction of the aldehyde group of Ir(pba)2(acac) with Hcy, which was confirmed by 1H NMR studies. Importantly, Ir(pba)2(acac) shows uniquely luminescent recognition of Hcy over other amino acids (including cysteine) and thiol-related peptides (reduced glutathione), in agreement with the higher luminescent quantum yield of the adduct of Ir(pba)2(acac) with Hcy (0.038) compared with that of the adduct with Cys (~0.002). Both surface charge analysis and the electrochemical measurement indicated that a photoinduced electron-transfer process for Ir(pba)2(acac)-Cys might be responsible for the high specificity of Ir(pba)2(acac) toward Hcy over Cys. PMID:18044954

  10. Highly efficient and stable organic light-emitting diodes with a greatly reduced amount of phosphorescent emitter.

    PubMed

    Fukagawa, Hirohiko; Shimizu, Takahisa; Kamada, Taisuke; Yui, Shota; Hasegawa, Munehiro; Morii, Katsuyuki; Yamamoto, Toshihiro

    2015-01-01

    Organic light-emitting diodes (OLEDs) have been intensively studied as a key technology for next-generation displays and lighting. The efficiency of OLEDs has improved markedly in the last 15 years by employing phosphorescent emitters. However, there are two main issues in the practical application of phosphorescent OLEDs (PHOLEDs): the relatively short operational lifetime and the relatively high cost owing to the costly emitter with a concentration of about 10% in the emitting layer. Here, we report on our success in resolving these issues by the utilization of thermally activated delayed fluorescent materials, which have been developed in the past few years, as the host material for the phosphorescent emitter. Our newly developed PHOLED employing only 1 wt% phosphorescent emitter exhibits an external quantum efficiency of over 20% and a long operational lifetime of about 20 times that of an OLED consisting of a conventional host material and 1 wt% phosphorescent emitter. PMID:25985084

  11. Highly efficient and stable organic light-emitting diodes with a greatly reduced amount of phosphorescent emitter

    PubMed Central

    Fukagawa, Hirohiko; Shimizu, Takahisa; Kamada, Taisuke; Yui, Shota; Hasegawa, Munehiro; Morii, Katsuyuki; Yamamoto, Toshihiro

    2015-01-01

    Organic light-emitting diodes (OLEDs) have been intensively studied as a key technology for next-generation displays and lighting. The efficiency of OLEDs has improved markedly in the last 15 years by employing phosphorescent emitters. However, there are two main issues in the practical application of phosphorescent OLEDs (PHOLEDs): the relatively short operational lifetime and the relatively high cost owing to the costly emitter with a concentration of about 10% in the emitting layer. Here, we report on our success in resolving these issues by the utilization of thermally activated delayed fluorescent materials, which have been developed in the past few years, as the host material for the phosphorescent emitter. Our newly developed PHOLED employing only 1 wt% phosphorescent emitter exhibits an external quantum efficiency of over 20% and a long operational lifetime of about 20 times that of an OLED consisting of a conventional host material and 1 wt% phosphorescent emitter. PMID:25985084

  12. Multi-State Transition Kinetics of Intracellular Signaling Molecules by Single-Molecule Imaging Analysis.

    PubMed

    Matsuoka, Satomi; Miyanaga, Yukihiro; Ueda, Masahiro

    2016-01-01

    The chemotactic signaling of eukaryotic cells is based on a chain of interactions between signaling molecules diffusing on the cell membrane and those shuttling between the membrane and cytoplasm. In this chapter, we describe methods to quantify lateral diffusion and reaction kinetics on the cell membrane. By the direct visualization and statistic analyses of molecular Brownian movement achieved by single-molecule imaging techniques, multiple states of membrane-bound molecules are successfully revealed with state transition kinetics. Using PTEN, a phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5)P3) 3'-phosphatase, in Dictyostelium discoideum undergoing chemotaxis as a model, each process of the analysis is described in detail. The identified multiple state kinetics provides an essential clue to elucidating the molecular mechanism of chemoattractant-induced dynamic redistribution of the signaling molecule asymmetrically on the cell membrane. Quantitative parameters for molecular reactions and diffusion complement a conventional view of the chemotactic signaling system, where changing a static network of molecules connected by causal relationships into a spatiotemporally dynamic one permits a mathematical description of stochastic migration of the cell along a shallow chemoattractant gradient. PMID:27271914

  13. Single-Channel Kinetic Analysis for Activation and Desensitization of Homomeric 5-HT3A Receptors

    PubMed Central

    Corradi, Jeremías; Gumilar, Fernanda; Bouzat, Cecilia

    2009-01-01

    Abstract The 5-HT3A receptor is a member of the Cys-loop family of ligand-gated ion channels. To perform kinetic analysis, we mutated the 5-HT3A subunit to obtain a high-conductance form so that single-channel currents can be detected. At all 5-HT concentrations (>0.1 μM), channel activity appears as openings in quick succession that form bursts, which coalesce into clusters. By combining single-channel and macroscopic data, we generated a kinetic model that perfectly describes activation, deactivation, and desensitization. The model shows that full activation arises from receptors with three molecules of agonist bound. It reveals an earlier conformational change of the fully liganded receptor that occurs while the channel is still closed. From this pre-open closed state, the receptor enters into an open-closed cycle involving three open states, which form the cluster whose duration parallels the time constant of desensitization. A similar model lacking the pre-open closed state can describe the data only if the opening rates are fixed to account for the slow activation rate. The application of the model to M4 mutant receptors shows that position 10′ contributes to channel opening and closing rates. Thus, our kinetic model provides a foundation for understanding structural bases of activation and drug action. PMID:19720021

  14. Computer-assisted nonlinear regression analysis of the multicomponent glucose uptake kinetics of Saccharomyces cerevisiae.

    PubMed Central

    Coons, D M; Boulton, R B; Bisson, L F

    1995-01-01

    The kinetics of glucose uptake in Saccharomyces cerevisiae are complex. An Eadie-Hofstee (rate of uptake versus rate of uptake over substrate concentration) plot of glucose uptake shows a nonlinear form typical of a multicomponent system. The nature of the constituent components is a subject of debate. It has recently been suggested that this nonlinearity is due to either a single saturable component together with free diffusion of glucose or a single constitutive component with a variable Km, rather than the action of multiple hexose transporters. Genetic data support the existence of a family of differentially regulated glucose transporters, encoded by the HXT genes. In this work, kinetic expressions and nonlinear regression analysis, based on an improved zero trans-influx assay, were used to address the nature of the components of the transport system. The results indicate that neither one component with free diffusion nor a single permease with a variable Km can explain the observed uptake rates. Results of uptake experiments, including the use of putative alternative substrates as inhibitory compounds, support the model derived from genetic analyses of a multicomponent system with at least two components, one a high-affinity carrier and the other a low-affinity carrier. This approach was extended to characterize the activity of the SNF3 protein and identify its role in the depression of high-affinity uptake. The kinetic data support a role of SNF3 as a regulatory protein that may not itself be a transporter. PMID:7768825

  15. Demon voltammetry and analysis software: Analysis of cocaine-induced alterations in dopamine signaling using multiple kinetic measures

    PubMed Central

    Yorgason, Jordan T.; España, Rodrigo A.; Jones, Sara R.

    2011-01-01

    The fast sampling rates of fast scan cyclic voltammetry make it a favorable method for measuring changes in brain monoamine release and uptake kinetics in slice, anesthetized, and freely moving preparations. The most common analysis technique for evaluating changes in dopamine signaling uses well-established Michaelis-Menten kinetic methods that can accurately model dopamine release and uptake parameters across multiple experimental conditions. Nevertheless, over the years, many researchers have turned to other measures to estimate changes in dopamine release and uptake, yet to our knowledge no systematic comparison amongst these measures has been conducted. To address this lack of uniformity in kinetic analyses, we have created the Demon Voltammetry and Analysis software suite, which is freely available to academic and non-profit institutions. Here we present an explanation of the Demon Acquisition and Analysis features, and demonstrate its utility for acquiring voltammetric data under in vitro, in vivo anesthetized, and freely moving conditions. Additionally, the software was used to compare the sensitivity of multiple kinetic measures of release and uptake to cocaine-induced changes in electrically evoked dopamine efflux in nucleus accumbens core slices. Specifically, we examined and compared tau, full width at half height, half-life, T20, T80, slope, peak height, calibrated peak dopamine concentration, and area under the curve to the well-characterized Michaelis-Menten parameters, dopamine per pulse, maximal uptake rate, and apparent affinity. Based on observed results we recommend tau for measuring dopamine uptake and calibrated peak dopamine concentration for measuring dopamine release. PMID:21392532

  16. Analysis of the kinetics of diffraction efficiency during the holographic grating recording in azobenzene functionalized polymers.

    PubMed

    Sobolewska, Anna; Miniewicz, Andrzej

    2007-02-22

    The laser-assisted holographic grating recording process in films of azobenzene functionalized polymers is usually studied by observation of the efficiency of light scattering on a developing in time diffraction grating. Various possible mechanisms contributing to grating formation as well as the bulk or surface origin (bulk refractive index and/or relief grating) of light scattering make the analysis of kinetics of grating recording, from the light scattering data only, difficult and ambiguous. To fully explain experimentally observed various and complex (frequently nonexponential) kinetics of the first-order light diffraction intensity, we considered a simple single-exponential growth of the two phase gratings in the same polymer film. In modeling we assumed that the bulk refractive index grating Deltan(t) and the surface relief grating Deltad(t) differ considerably in their growth rates and we allowed for a nonstationary phase shift Deltaphi(t) between them which was experimentally observed during the recording process. The origin of the nonstationary phase shift is a result of a slow shift of interference pattern due to delicate symmetry breaking in illumination conditions (e.g., difference in beam intensities and deviation of exact symmetrical beam incidence angles on the sample). Changing only such parameters as stationary amplitudes of refractive index and relief gratings for a span of phase shifts (0-pi) between them, we obtained a series of kinetic responses which we discuss and interpret. The various examples of temporal evolution of diffraction efficiency for the same grating formation kinetics, modeled in our work, supply evidence that great care must be taken to properly interpret the experimental results. PMID:17263574

  17. Lifetime enhanced phosphorescent organic light emitting diode using an electron scavenger layer

    NASA Astrophysics Data System (ADS)

    Hong, Seokhwan; Kim, Ji Whan; Lee, Sangyeob

    2015-07-01

    We demonstrate a method to improve lifetime of a phosphorescent organic light emitting diode (OLED) using an electron scavenger layer (ESL) in a hole transporting layer (HTL) of the device. We use a bis(1-(phenyl)isoquinoline)iridium(III)acetylacetonate [Ir(piq)2(acac)] doped HTL to stimulate radiative decay, preventing thermal degradation in HTL. The ESL effectively prevented non-radiative decay of leakage electron in HTL by converting non-radiative decay to radiative decay via a phosphorescent red emitter, Ir(piq)2(acac). The lifetime of device (t95: time after 5% decrease of luminance) has been increased from 75 h to 120 h by using the ESL in a phosphorescent green-emitting OLED.

  18. Phosphorescent metalloporphyrins as labels in time-resolved luminescence microscopy: effect of mounting on emission intensity.

    PubMed

    Soini, Aleksi E; Seveus, Lahja; Meltola, Niko J; Papkovsky, Dmitri B; Soini, Erkki

    2002-07-15

    In this study, we present an investigation of the effects of mounting media on the phosphorescence of metalloporphyrin stained microscopy samples. The samples were: (1) Platinum(II) coproporphyrin (=PtCP) stained porous Sephadex beads; (2) compact polystyrene microspheres coated with IgG-PtCP conjugate; and (3) immunocytochemically labeled human peripheral blood neutrophils. The human neutrophils in a mixed leukocyte population were fixed, permeabilized, and then immunolabeled with PtCP conjugate of monoclonal mouse IgG directed to the intracellular antigen myeloperoxidase. The samples were mounted in twelve different mounting media and studied with quantitative time-resolved luminescence imaging microscopy with respect to the intensity and stability of the phosphorescence signal. The results indicate that microscopy samples stained with PtCP exhibit the brightest phosphorescence emission in non-mounted form or when mounted in non-aqueous permanent mounting media. PMID:12203714

  19. Lifetime enhanced phosphorescent organic light emitting diode using an electron scavenger layer

    SciTech Connect

    Hong, Seokhwan; Kim, Ji Whan; Lee, Sangyeob

    2015-07-27

    We demonstrate a method to improve lifetime of a phosphorescent organic light emitting diode (OLED) using an electron scavenger layer (ESL) in a hole transporting layer (HTL) of the device. We use a bis(1-(phenyl)isoquinoline)iridium(III)acetylacetonate [Ir(piq){sub 2}(acac)] doped HTL to stimulate radiative decay, preventing thermal degradation in HTL. The ESL effectively prevented non-radiative decay of leakage electron in HTL by converting non-radiative decay to radiative decay via a phosphorescent red emitter, Ir(piq){sub 2}(acac). The lifetime of device (t{sub 95}: time after 5% decrease of luminance) has been increased from 75 h to 120 h by using the ESL in a phosphorescent green-emitting OLED.

  20. FAST TRACK COMMUNICATION Host-free, yellow phosphorescent material in white organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Lee, Meng-Ting; Chu, Miao-Tsai; Lin, Jin-Sheng; Tseng, Mei-Rurng

    2010-11-01

    A white organic light-emitting diode (WOLED) with a high power efficiency has been demonstrated by dispersing a host-free, yellow phosphorescent material in between double blue phosphorescent emitters. The device performance achieved a comparable value to that of using a complicated host-guest doping system to form the yellow emitter in WOLEDs. Based on this device concept as well as the molecular engineering of blue phosphorescent host material and light-extraction film, a WOLED with a power efficiency of 65 lm W-1 at a practical brightness of 1000 cd m-2 with Commission Internationale d'Echariage coordinates (CIEx,y) of (0.37, 0.47) was achieved.

  1. Oxadiazole-containing material with intense blue phosphorescence emission for organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Liang, Fushun; Wang, Lixiang; Ma, Dongge; Jing, Xiabin; Wang, Fosong

    2002-07-01

    2-(2-hydroxyphenyl)-5-phenyl-1, 3, 4-oxadiazole (HOXD), characteristic of excited state intramolecular proton-transfer (ESIPT), was synthesized and found to emit strong blue phosphorescence in the solid state at room temperature and at low temperature (77 K). The photoluminescent spectrum measurement in solution showed that there are two kinds of emission: fluorescence originated from the singlet state and phosphorescence derived from the triplet state in HOXD formed by ESIPT. For the photoluminescent spectrum in the solid state, only phosphorescence emission with the lifetime of 66 mus was observed. Multiple-layer light-emitting diodes with the configuration of ITO/NPB/HOXD/BCP/Alq3/Mg:Ag were fabricated using HOXD as emitter and the maximum brightness of 656 cd/m2 and the luminous efficiency of 0.14 lm/W was obtained.

  2. Triplet diffusion leads to triplet-triplet annihilation in organic phosphorescent emitters

    NASA Astrophysics Data System (ADS)

    Zhang, Yifan; Forrest, Stephen R.

    2013-12-01

    In organic materials, triplet-triplet annihilation (TTA) can be dominated by triplet diffusion or triplet-to-triplet energy transfer. Here, we discuss the diffusion and transfer dominated mechanisms in the context of photoluminescence (PL) transient measurements from thin films of archetype phosphorescent organic light emitters based on Ir and Pt complexes. We find that TTA in these emitters is controlled by diffusion due to a Dexter-type exchange interaction, suggesting triplet radiative decay and TTA are independent processes. Minimizing the PL and absorption spectral overlap in phosphorescent emitters can lead to a significantly decreased TTA rate, and thus suppressed efficiency roll-off in phosphorescent organic light emitting diodes at high brightness.

  3. Analysis by kinetic modeling of the temperature dependence of thermal electron attachment to CF3Br.

    PubMed

    Troe, Jürgen; Miller, Thomas M; Shuman, Nicholas S; Viggiano, Albert A

    2012-07-14

    Experimental data from the literature for cross sections and rate constants for dissociative electron attachment to CF(3)Br, with separately varied electron and gas temperatures, are analyzed by a kinetic modeling approach. The analysis suggests that electronic and nuclear contributions to the rate constants can be roughly separated, the former leading to a negative temperature coefficient, the latter to a positive temperature coefficient. The nuclear factor in the rate constant is found to be of Arrhenius form with an activation energy which is close to the energy of crossing of the CF(3)Br and CF(3)Br(-) potential curves along the CBr bond. PMID:22803532

  4. A kinetic and equilibrium analysis of silicon carbide chemical vapor deposition on monofilaments

    NASA Technical Reports Server (NTRS)

    Gokoglu, S. A.; Kuczmarski, M. A.

    1993-01-01

    Chemical kinetics of atmospheric pressure silicon carbide (SiC) chemical vapor deposition (CVD) from dilute silane and propane source gases in hydrogen is numerically analyzed in a cylindrical upflow reactor designed for CVD on monofilaments. The chemical composition of the SiC deposit is assessed both from the calculated total fluxes of carbon and silicon and from chemical equilibrium considerations for the prevailing temperatures and species concentrations at and along the filament surface. The effects of gas and surface chemistry on the evolution of major gas phase species are considered in the analysis.

  5. Interaction and kinetic analysis for coal and biomass co-gasification by TG-FTIR.

    PubMed

    Xu, Chaofen; Hu, Song; Xiang, Jun; Zhang, Liqi; Sun, Lushi; Shuai, Chao; Chen, Qindong; He, Limo; Edreis, Elbager M A

    2014-02-01

    This study aims to investigate the interaction and kinetic behavior of CO2 gasification of coal, biomass and their blends by thermogravimetry analysis (TG). The gas products evolved from gasification were measured online with Fourier Transform Infrared Spectroscopy (FTIR) coupled with TG. Firstly, TG experiments indicated that interaction between the coals and biomasses mainly occurred during co-gasification process. The most significant synergistic interaction occurred for LN with SD at the blending mass ratio 4:1. Furthermore, thermal kinetic analysis indicated that the activation energy involved in co-gasification decreased as the SD content increased until the blending ratio of SD with coal reached 4:1. The rise of the frequency factor indicated that the increase of SD content favored their synergistic interaction. Finally, FTIR analysis of co-gasification of SD with LN indicated that except for CO, most gases including CH3COOH, C6H5OH, H2O, etc., were detected at around 50-700°C. PMID:24412857

  6. The effect of salinity on waste activated sludge alkaline fermentation and kinetic analysis.

    PubMed

    Jin, Baodan; Wang, Shuying; Xing, Liqun; Li, Baikun; Peng, Yongzhen

    2016-05-01

    The effect of salinity on sludge alkaline fermentation at low temperature (20°C) was investigated, and a kinetic analysis was performed. Different doses of sodium chloride (NaCl, 0-25g/L) were added into the fermentation system. The batch-mode results showed that the soluble chemical oxygen demand (SCOD) increased with salinity. The hydrolysate (soluble protein, polysaccharide) and the acidification products (short chain fatty acids (SCFAs), NH4(+)-N, and PO4(3-)-P) increased with salinity initially, but slightly declined respectively at higher level salinity (20g/L or 20-25g/L). However, the hydrolytic acidification performance increased in the presence of salt compared to that without salt. Furthermore, the results of Haldane inhibition kinetics analysis showed that the salt enhanced the hydrolysis rate of particulate organic matter from sludge particulate and the specific utilization of hydrolysate, and decreased the specific utilization of SCFAs. Pearson correlation coefficient analysis indicated that the importance of polysaccharide on the accumulation of SCFAs was reduced with salt addition, but the importance of protein and NH4(+)-N on SCFA accumulation was increased. PMID:27155412

  7. Phosphorescence quenching by mechanical stimulus in CaZnOS:Cu

    SciTech Connect

    Tu, Dong; Kamimura, Sunao; Xu, Chao-Nan; Fujio, Yuki; Sakata, Yoshitaro; Ueno, Naohiro

    2014-07-07

    We have found that phosphorescence intensity of CaZnOS:Cu decreased visibly under an applied load. This mechanical quenching (MQ) of phosphorescence in CaZnOS:Cu corresponded to the mechanical stimuli. We have thus demonstrated that the MQ of CaZnOS:Cu could be used for visualizing stress distributions in practical applications. We propose that MQ arises from non-radiative recombination due to electron-transfer from trap levels to non-radiative centers as a result of the mechanical load.

  8. Gram Scale Synthesis of Benzophenanthroline and Its Blue Phosphorescent Platinum Complex.

    PubMed

    Saris, Patrick J G; Thompson, Mark E

    2016-08-19

    The design, synthesis, and characterization of 12-phenylbenzo[f][1,7]phenanthroline, Bzp, is reported. Its use as a fluorine-free ligand for sky blue phosphorescence is demonstrated in a cyclometalated platinum complex, BzpPtDpm. BzpPtDpm phosphoresces at the same wavelength as its analogous 4,6-difluorophenylpyridine complex at both room temperature (466 nm) and 77 K (458 nm). Finally, production of a conformationally restricted derivative of BzpPtDpm with greatly increased quantum yield (46%) validates the versatility of the synthetic route. PMID:27490703

  9. Texture analysis as a tool to study the kinetics of wet agglomeration processes.

    PubMed

    Nalesso, Silvia; Codemo, Carlo; Franceschinis, Erica; Realdon, Nicola; Artoni, Riccardo; Santomaso, Andrea C

    2015-05-15

    In this work wet granulation experiments were carried out in a planetary mixer with the aim to develop a novel analytical tool based on surface texture analysis. The evolution of a simple formulation (300g of microcrystalline cellulose with a solid binders pre-dispersed in water) was monitored from the very beginning up to the end point and information on the kinetics of granulation as well as on the effect of liquid binder amount were collected. Agreement between texture analysis and granules particle size distribution obtained by sieving analysis was always found. The method proved to be robust enough to easily monitor the process and its use for more refined analyses on the different rate processes occurring during granulation is also suggested. PMID:25746734

  10. Hydrogen micro-kinetics in titanium under mechanical stress studied by ion beam analysis

    NASA Astrophysics Data System (ADS)

    Wang, T. S.; Lv, H. Y.; Grambole, D.; Yang, Z.; Peng, H. B.; Han, Y. C.

    2009-04-01

    Hydrogen (H) is continuously produced by the large dose fast neutron irradiation on fusion reactor material. The concentration, diffusion and evolution of H in the structure material may cause H-embrittlement. Ion beam analysis is one of the most useful methods for studying the micro-kinetics of H in solids. In this work, the H-distribution in titanium (Ti) has been studied by resonance nuclear reaction analysis (resonance-NRA) and micro-elastic recoil detection analysis (micro-ERDA). The evolution of H-depth-profile in titanium samples has been studied versus the change of normal stress. Evident H diffusion has been observed, while a normal stress is changed in the range of 107-963 MPa. The H diffusion is related to the concentration of H in samples.

  11. A Fractal Analysis Approach for the Evaluation of Hybridization Kinetics in Biosensors.

    PubMed

    Sadana, Ajit; Ramakrishnan, Anand

    2001-02-01

    The diffusion-limited hybridization kinetics of analyte in solution to a receptor immobilized on a biosensor or immunosensor surface is analyzed within a fractal framework. The data may be analyzed by a single- or a dual-fractal analysis. This was indicated by the regression analysis provided by Sigmaplot (Sigmaplot, Scientific Graphing Software, User's Manual, Jandel Scientific, CA, 1993). It is of interest to note that the binding rate coefficient and the fractal dimension both exhibit changes, in general, in the same direction for both the single-fractal and the dual-fractal analysis examples presented. The binding rate coefficient expression developed as a function of the analyte concentration in solution and the fractal dimension is of particular value since it provides a means to better control biosensor or immunosensor performance. Copyright 2001 Academic Press. PMID:11161484

  12. In situ X-ray pair distribution function analysis of geopolymer gel nanostructure formation kinetics.

    PubMed

    White, Claire E; Provis, John L; Bloomer, Breaunnah; Henson, Neil J; Page, Katharine

    2013-06-14

    With the ever-increasing environmentally-driven demand for technologically advanced structural materials, geopolymer cement is fast becoming a viable alternative to traditional cements due to its proven engineering characteristics and the reduction in CO2 emitted during manufacturing (as much as 80% less CO2 emitted in manufacture, compared to ordinary Portland cement). Nevertheless, much remains unknown regarding the kinetics of reaction responsible for nanostructural evolution during the geopolymerisation process. Here, in situ X-ray total scattering measurements and pair distribution function (PDF) analysis are used to quantify the extent of reaction as a function of time for alkali-activated metakaolin/slag geopolymer binders, including the impact of various activators (alkali hydroxide/silicate) on the kinetics of the geopolymerisation reaction. Quantifying the reaction process in situ from X-ray PDF data collected during the initial ten hours can provide an estimate of the total reaction extent, but when combined with data obtained at longer times (128 days here) enables more accurate determination of the overall rate of reaction. To further assess the initial stages of the geopolymerisation reaction process, a pseudo-single step first order rate equation is fitted to the extent of reaction data, which reveals important mechanistic information regarding the role of free silica in the activators in the evolution of the binder systems. Hence, it is shown that in situ X-ray PDF analysis is an ideal experimental local structure tool to probe the reaction kinetics of complex reacting systems involving transitions between disordered/amorphous phases, of which geopolymerisation is an important example. PMID:23450172

  13. High Efficancy Integrated Under-Cabinet Phosphorescent OLED

    SciTech Connect

    Michael Hack

    2001-10-31

    In this two year program Universal Display Corporation (UDC) together with the University of Michigan, Teknokon, developed and delivered an energy efficient phosphorescent OLED under cabinet illumination system. Specifically the UDC team goal was in 2011 to deliver five (5) Beta level OLED under cabinet lighting fixtures each consisting of five 6-inch x 6-inch OLED lighting panels, delivering over 420 lumens, at an overall system efficacy of >60 lm/W, a CRI of >85, and a projected lifetime to 70% of initial luminance to exceed 20,000 hours. During the course of this program, the Team pursued the commercialization of these OLED based under cabinet lighting fixtures, to enable the launch of commercial OLED lighting products. The UDC team was ideally suited to develop these novel and efficient solid state lighting fixtures, having both the technical experience and commercial distribution mechanisms to leverage work performed under this contract. UDC's business strategy is to non-exclusively license its PHOLED technology to lighting manufacturers, and also supply them with our proprietary PHOLED materials. UDC is currently working with several licensees who are manufacturing OLED lighting panels using our technology. During this 2 year program, we further developed our high efficiency white Phosphorescent OLEDs from the first milestone, achieving a 80 lm/W single pixel to the final milestone, achieving an under-cabinet PHOLED lighting system that operates at 56 lm/W at 420 lumens. Each luminaire was comprised of ten 15cm x 7.5cm lighting modules mounted in outcoupling enhancement lenses and a control module. The lamps modules are connected together using either plugs or wires with plugs on each end, allowing for unlimited configurations. The lamps are driven by an OLED driver mounted in an enclosure which includes the AC plug. As a result of advancements gained under this program, the path to move OLED lighting panels from development into manufacturing has been

  14. Identification and characterization of EX1 kinetics in H/D exchange mass spectrometry by peak width analysis.

    PubMed

    Weis, David D; Wales, Thomas E; Engen, John R; Hotchko, Matthew; Ten Eyck, Lynn F

    2006-11-01

    Proteins that undergo cooperative unfolding events display EX1 kinetic signatures in hydrogen exchange mass spectra. The hallmark bimodal isotope pattern observed for EX1 kinetics is distinct from the binomial isotope pattern for uncorrelated exchange (EX2), the normal exchange regime for folded proteins. Detection and characterization of EX1 kinetics is simple when the cooperative unit is large enough that the isotopic envelopes in the bimodal pattern are resolved in the m/z scale but become complicated in cases where the unit is small or there is a mixture of EX1 and EX2 kinetics. Here we describe a data interpretation method involving peak width analysis that makes characterization of EX1 kinetics simple and rapid. The theoretical basis for EX1 and EX2 isotopic signatures and the effects each have on peak width are described. Modeling of EX2 widening and analysis of empirical data for proteins and peptides containing purely EX2 kinetics showed that the amount of widening attributable to stochastic forward- and back exchange in a typical experiment is small and can be quantified. Proteins and peptides with both obvious and less obvious EX1 kinetics were analyzed with the peak width method. Such analyses provide the half-life for the cooperative unfolding event and the relative number of residues involved. Automated analysis of peak width was performed with custom Excel macros and the DEX software package. Peak width analysis is robust, capable of automation, and provides quick interpretation of the key information contained in EX1 kinetic events. PMID:16875839

  15. A common neighbor analysis of crystallization kinetics and excess entropy of charged spherical colloids.

    PubMed

    Urrutia Bañuelos, Efraín; Contreras Aburto, Claudio; Maldonado Arce, Amir

    2016-03-01

    The topological analysis tool known as the common neighbor analysis (CNA) is used for the first time in this work to analyze crystallization kinetics and excess entropy of charge-stabilized colloidal suspensions. For this purpose, Brownian dynamics computer simulations are implemented to investigate the crystallization kinetics of homogeneously melted colloidal crystals that are composed of hard-core-screened-Coulomb interacting particles. The results are in agreement with recent static structure factor measurements that could indicate the presence of icosahedral units in the metastable melt, and with the fact that weakly screened charged colloids crystallize into body-centered-cubic (bcc) ordering. A two-step crystallization pathway is found, in which the population of bcc-subunit CNA-pairs satisfactorily obeys a Verhulst model. Moreover, the CNA helped to unveil that the excess entropy obeys a quasi-universal functional form, relating the behavior of colloidal, molecular, and metallic liquid systems. The work contributes to the scientific understanding of the crystallization pathway of charged colloids, and to the development of new ways to assess the degree of crystalline order, starting from the excess entropy. PMID:26957168

  16. A common neighbor analysis of crystallization kinetics and excess entropy of charged spherical colloids

    NASA Astrophysics Data System (ADS)

    Urrutia Bañuelos, Efraín; Contreras Aburto, Claudio; Maldonado Arce, Amir

    2016-03-01

    The topological analysis tool known as the common neighbor analysis (CNA) is used for the first time in this work to analyze crystallization kinetics and excess entropy of charge-stabilized colloidal suspensions. For this purpose, Brownian dynamics computer simulations are implemented to investigate the crystallization kinetics of homogeneously melted colloidal crystals that are composed of hard-core-screened-Coulomb interacting particles. The results are in agreement with recent static structure factor measurements that could indicate the presence of icosahedral units in the metastable melt, and with the fact that weakly screened charged colloids crystallize into body-centered-cubic (bcc) ordering. A two-step crystallization pathway is found, in which the population of bcc-subunit CNA-pairs satisfactorily obeys a Verhulst model. Moreover, the CNA helped to unveil that the excess entropy obeys a quasi-universal functional form, relating the behavior of colloidal, molecular, and metallic liquid systems. The work contributes to the scientific understanding of the crystallization pathway of charged colloids, and to the development of new ways to assess the degree of crystalline order, starting from the excess entropy.

  17. Pathway and kinetic analysis on the propyl radical + 02 reaction system

    SciTech Connect

    Bozzelli, J.W.; Pitz, W.J.

    1997-05-01

    In this study of the reaction of alkyl radicals with molecular oxygen, we analyze the propyl + 02 reaction system using thermochemical kinetics, Transition State Theory (TST), molecular thermodynamic properties, quantum Kassel analysis (quantum RRK) for k(E) and modified strong collision analysis for fall off. Cyclic transition states for both hydrogen transfer and the H02 concerted elimination from propylperoxy are calculated using semi-empirical (MOPAC PM3) calculations [8] in addition to transition states for H02 elimination and epoxide formation from hydroperoxy-isopropyl. Computed rate constants for propyl + 02 are compared to the values of Gulati and Walker who measured the rate constants at 50 torr and over a temperature range of 653 to 773 K. Computed rate constants are also used in a detailed chemical kinetic mechanism and compared to the n- propyl + 02 data of Slagle. They measured the rate of disappearance of n-propyl by reaction with 02 over a temperature range of 297 to 635 K and a pressure range of 0.4 to 7 Torr, as well as the fall off data of the Kaiser and Wallington.

  18. Structure and Kinetic Analysis of H2S Production by Human Mercaptopyruvate Sulfurtransferase*

    PubMed Central

    Yadav, Pramod Kumar; Yamada, Kazuhiro; Chiku, Taurai; Koutmos, Markos; Banerjee, Ruma

    2013-01-01

    Mercaptopyruvate sulfurtransferase (MST) is a source of endogenous H2S, a gaseous signaling molecule implicated in a wide range of physiological processes. The contribution of MST versus the other two H2S generators, cystathionine β-synthase and γ-cystathionase, has been difficult to evaluate because many studies on MST have been conducted at high pH and have used varied reaction conditions. In this study, we have expressed, purified, and crystallized human MST in the presence of the substrate 3-mercaptopyruvate (3-MP). The kinetics of H2S production by MST from 3-MP was studied at pH 7.4 in the presence of various physiological persulfide acceptors: cysteine, dihydrolipoic acid, glutathione, homocysteine, and thioredoxin, and in the presence of cyanide. The crystal structure of MST reveals a mixture of the product complex containing pyruvate and an active site cysteine persulfide (Cys248-SSH) and a nonproductive intermediate in which 3-MP is covalently linked via a disulfide bond to an active site cysteine. The crystal structure analysis allows us to propose a detailed mechanism for MST in which an Asp-His-Ser catalytic triad is positioned to activate the nucleophilic cysteine residue and participate in general acid-base chemistry, whereas our kinetic analysis indicates that thioredoxin is likely to be the major physiological persulfide acceptor for MST. PMID:23698001

  19. Crystallization kinetics of a solid oxide fuel cell seal glass by differential thermal analysis

    NASA Astrophysics Data System (ADS)

    Bansal, Narottam P.; Gamble, Eleanor A.

    Crystallization kinetics of a barium-calcium aluminosilicate glass (BCAS), a sealant material for planar solid oxide fuel cells (SOFC), have been investigated by differential thermal analysis (DTA). From variation of DTA peak maximum temperature with heating rate, the activation energy for glass crystallization was calculated to be 259 kJ/mol using a kinetic model. Development of crystalline phases on thermal treatments of the glass at various temperatures has been followed by powder X-ray diffraction. Microstructure and chemical composition of the crystalline phases were investigated by scanning electron microscopy and energy dispersive spectroscopic (EDS) analysis. BaSiO 3 and hexacelsian (BaAl 2Si 2O 8) were the primary crystalline phases whereas monoclinic celsian (BaAl 2Si 2O 8) and (Ba xCa y)SiO 4 were also detected as minor phases. Needle-shaped BaSiO 3 crystals are formed first, followed by the formation of other phases at longer times of heat treatments. The glass does not fully crystallize even after long-term heat treatments at 750-900 °C. Devitrification of the glass seal over a long period of time during operation of the SOFC would generate thermal stresses in the seal and may have adverse effects on its mechanical performance. This may lead to cracking of the seal, resulting in mixing of the fuel and the oxidant gases.

  20. Kinetic and Kinematic Analysis for Assessing the Differences in Countermovement Jump Performance in Rugby Players.

    PubMed

    Floría, Pablo; Gómez-Landero, Luis A; Suárez-Arrones, Luis; Harrison, Andrew J

    2016-09-01

    Floría, P, Gómez-Landero, LA, Suárez-Arrones, L, and Harrison, AJ. Kinetic and kinematic analysis for assessing the differences in countermovement jump performance in rugby players. J Strength Cond Res 30(9): 2533-2539, 2016-The aim of this study was to ascertain the differences in kinetic and kinematic profiles between better and poorer performers of the vertical jump within a homogeneous group of trained adults. Fifty rugby players were divided into low scoring (LOW) and high scoring (HIGH) groups based on their performance in the vertical jump. The force, velocity, displacement, and rate of force development (RFD)-time curves were analyzed to determine the differences between groups. The analysis of the data showed differences in all the patterns of the ensemble mean curves of the HIGH and LOW groups. During the eccentric phase, the differences in the HIGH group with respect to the LOW group were lower crouch position, higher downward velocity, and higher force and RFD during the braking of the downward movement. During the concentric phase, the HIGH group achieved higher upward velocity, higher force at the end of phase, and a higher position at takeoff. The higher jump performances seem to be related to a more effective stretch-shortening cycle function that is characterized by a deeper and faster countermovement with higher eccentric forces being applied to decelerate the downward movement leading to enhanced force generation during the concentric phase. PMID:24736772

  1. Comment on "Single-point kinetic energy density functionals: A pointwise kinetic energy density analysis and numerical convergence investigation"

    NASA Astrophysics Data System (ADS)

    Trickey, S. B.; Karasiev, Valentin V.; Chakraborty, Debajit

    2015-09-01

    We suggest a more nuanced view of the merit and utility of generalized gradient approximations (GGAs) for the noninteracting kinetic energy (KE) than the critique of Xia and Carter (XC) [Phys. Rev. B 91, 045124 (2015), 10.1103/PhysRevB.91.045124]. Specifically, the multiple valuedness of the Pauli term enhancement factor (denoted G [n ] by XC) with respect to the inhomogeneity variable s can be excluded by enforcement of a bound on the Kohn-Sham KE to achieve universality of the functional along with enforcement of proper large-s behavior. This is physically sensible in that the excluded G values occur for s values that correspond to low densities. The behavior is exacerbated by peculiarities of pseudodensities. The VT84F KE GGA, constructed with these constraints, does not have the numerical instability in our older PBE2 functional analyzed by XC.

  2. CHEMKIN-III: A FORTRAN chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics

    SciTech Connect

    Kee, R.J.; Rupley, F.M.; Meeks, E.; Miller, J.A.

    1996-05-01

    This document is the user`s manual for the third-generation CHEMKIN package. CHEMKIN is a software package whose purpose is to facilitate the formation, solution, and interpretation of problems involving elementary gas-phase chemical kinetics. It provides a flexible and powerful tool for incorporating complex chemical kinetics into simulations of fluid dynamics. The package consists of two major software components: an Interpreter and a Gas-Phase Subroutine Library. The Interpreter is a program that reads a symbolic description of an elementary, user-specified chemical reaction mechanism. One output from the Interpreter is a data file that forms a link to the Gas-Phase Subroutine Library. This library is a collection of about 100 highly modular FORTRAN subroutines that may be called to return information on equations of state, thermodynamic properties, and chemical production rates. CHEMKIN-III includes capabilities for treating multi-fluid plasma systems, that are not in thermal equilibrium. These new capabilities allow researchers to describe chemistry systems that are characterized by more than one temperature, in which reactions may depend on temperatures associated with different species; i.e. reactions may be driven by collisions with electrons, ions, or charge-neutral species. These new features have been implemented in such a way as to require little or no changes to CHEMKIN implementation for systems in thermal equilibrium, where all species share the same gas temperature. CHEMKIN-III now has the capability to handle weakly ionized plasma chemistry, especially for application related to advanced semiconductor processing.

  3. Sensitivity Analysis of Intracellular Signaling Pathway Kinetics Predicts Targets for Stem Cell Fate Control

    PubMed Central

    Mahdavi, Alborz; Davey, Ryan E; Bhola, Patrick; Yin, Ting; Zandstra, Peter W

    2007-01-01

    Directing stem cell fate requires knowledge of how signaling networks integrate temporally and spatially segregated stimuli. We developed and validated a computational model of signal transducer and activator of transcription-3 (Stat3) pathway kinetics, a signaling network involved in embryonic stem cell (ESC) self-renewal. Our analysis identified novel pathway responses; for example, overexpression of the receptor glycoprotein-130 results in reduced pathway activation and increased ESC differentiation. We used a systematic in silico screen to identify novel targets and protein interactions involved in Stat3 activation. Our analysis demonstrates that signaling activation and desensitization (the inability to respond to ligand restimulation) is regulated by balancing the activation state of a distributed set of parameters including nuclear export of Stat3, nuclear phosphatase activity, inhibition by suppressor of cytokine signaling, and receptor trafficking. This knowledge was used to devise a temporally modulated ligand delivery strategy that maximizes signaling activation and leads to enhanced ESC self-renewal. PMID:17616983

  4. An evaluation of hybridization kinetics in biosensors using a single-fractal analysis.

    PubMed

    Vontel, S; Ramakrishnan, A; Sadana, A

    2000-04-01

    The diffusion-limited hybridization kinetics of analyte in solution to receptor immobilized on a biosensor or immunosensor surface is analysed within a fractal framework. The data may be analysed by a single-fractal analysis. This was indicated by the regression analysis provided by Sigmaplot [Sigmaplot Users Manual (1993) Jandel Scientific, San Rafael, CA]. It is of interest to note that the binding-rate coefficient and the fractal dimension both exhibit changes in the same and in the opposite directions for the single example presented in each case. The binding-rate coefficient(s) expressions developed as a function of the analyte (DNA) concentration in solution and the fractal dimension are of particular value, since they provide a means to better control biosensor or immunosensor performance and provide physical insights into the hybridization process. PMID:10744961

  5. Goal-oriented sensitivity analysis for lattice kinetic Monte Carlo simulations.

    PubMed

    Arampatzis, Georgios; Katsoulakis, Markos A

    2014-03-28

    In this paper we propose a new class of coupling methods for the sensitivity analysis of high dimensional stochastic systems and in particular for lattice Kinetic Monte Carlo (KMC). Sensitivity analysis for stochastic systems is typically based on approximating continuous derivatives with respect to model parameters by the mean value of samples from a finite difference scheme. Instead of using independent samples the proposed algorithm reduces the variance of the estimator by developing a strongly correlated-"coupled"- stochastic process for both the perturbed and unperturbed stochastic processes, defined in a common state space. The novelty of our construction is that the new coupled process depends on the targeted observables, e.g., coverage, Hamiltonian, spatial correlations, surface roughness, etc., hence we refer to the proposed method as goal-oriented sensitivity analysis. In particular, the rates of the coupled Continuous Time Markov Chain are obtained as solutions to a goal-oriented optimization problem, depending on the observable of interest, by considering the minimization functional of the corresponding variance. We show that this functional can be used as a diagnostic tool for the design and evaluation of different classes of couplings. Furthermore, the resulting KMC sensitivity algorithm has an easy implementation that is based on the Bortz-Kalos-Lebowitz algorithm's philosophy, where events are divided in classes depending on level sets of the observable of interest. Finally, we demonstrate in several examples including adsorption, desorption, and diffusion Kinetic Monte Carlo that for the same confidence interval and observable, the proposed goal-oriented algorithm can be two orders of magnitude faster than existing coupling algorithms for spatial KMC such as the Common Random Number approach. We also provide a complete implementation of the proposed sensitivity analysis algorithms, including various spatial KMC examples, in a supplementary MATLAB

  6. Goal-oriented sensitivity analysis for lattice kinetic Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Arampatzis, Georgios; Katsoulakis, Markos A.

    2014-03-01

    In this paper we propose a new class of coupling methods for the sensitivity analysis of high dimensional stochastic systems and in particular for lattice Kinetic Monte Carlo (KMC). Sensitivity analysis for stochastic systems is typically based on approximating continuous derivatives with respect to model parameters by the mean value of samples from a finite difference scheme. Instead of using independent samples the proposed algorithm reduces the variance of the estimator by developing a strongly correlated-"coupled"- stochastic process for both the perturbed and unperturbed stochastic processes, defined in a common state space. The novelty of our construction is that the new coupled process depends on the targeted observables, e.g., coverage, Hamiltonian, spatial correlations, surface roughness, etc., hence we refer to the proposed method as goal-oriented sensitivity analysis. In particular, the rates of the coupled Continuous Time Markov Chain are obtained as solutions to a goal-oriented optimization problem, depending on the observable of interest, by considering the minimization functional of the corresponding variance. We show that this functional can be used as a diagnostic tool for the design and evaluation of different classes of couplings. Furthermore, the resulting KMC sensitivity algorithm has an easy implementation that is based on the Bortz-Kalos-Lebowitz algorithm's philosophy, where events are divided in classes depending on level sets of the observable of interest. Finally, we demonstrate in several examples including adsorption, desorption, and diffusion Kinetic Monte Carlo that for the same confidence interval and observable, the proposed goal-oriented algorithm can be two orders of magnitude faster than existing coupling algorithms for spatial KMC such as the Common Random Number approach. We also provide a complete implementation of the proposed sensitivity analysis algorithms, including various spatial KMC examples, in a supplementary MATLAB

  7. Goal-oriented sensitivity analysis for lattice kinetic Monte Carlo simulations

    SciTech Connect

    Arampatzis, Georgios; Katsoulakis, Markos A.

    2014-03-28

    In this paper we propose a new class of coupling methods for the sensitivity analysis of high dimensional stochastic systems and in particular for lattice Kinetic Monte Carlo (KMC). Sensitivity analysis for stochastic systems is typically based on approximating continuous derivatives with respect to model parameters by the mean value of samples from a finite difference scheme. Instead of using independent samples the proposed algorithm reduces the variance of the estimator by developing a strongly correlated-“coupled”- stochastic process for both the perturbed and unperturbed stochastic processes, defined in a common state space. The novelty of our construction is that the new coupled process depends on the targeted observables, e.g., coverage, Hamiltonian, spatial correlations, surface roughness, etc., hence we refer to the proposed method as goal-oriented sensitivity analysis. In particular, the rates of the coupled Continuous Time Markov Chain are obtained as solutions to a goal-oriented optimization problem, depending on the observable of interest, by considering the minimization functional of the corresponding variance. We show that this functional can be used as a diagnostic tool for the design and evaluation of different classes of couplings. Furthermore, the resulting KMC sensitivity algorithm has an easy implementation that is based on the Bortz–Kalos–Lebowitz algorithm's philosophy, where events are divided in classes depending on level sets of the observable of interest. Finally, we demonstrate in several examples including adsorption, desorption, and diffusion Kinetic Monte Carlo that for the same confidence interval and observable, the proposed goal-oriented algorithm can be two orders of magnitude faster than existing coupling algorithms for spatial KMC such as the Common Random Number approach. We also provide a complete implementation of the proposed sensitivity analysis algorithms, including various spatial KMC examples, in a supplementary

  8. Inhibition of acetylcholinesterase by two genistein derivatives: kinetic analysis, molecular docking and molecular dynamics simulation.

    PubMed

    Fang, Jiansong; Wu, Ping; Yang, Ranyao; Gao, Li; Li, Chao; Wang, Dongmei; Wu, Song; Liu, Ai-Lin; Du, Guan-Hua

    2014-12-01

    In this study two genistein derivatives (G1 and G2) are reported as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), and differences in the inhibition of AChE are described. Although they differ in structure by a single methyl group, the inhibitory effect of G1 (IC50=264 nmol/L) on AChE was 80 times stronger than that of G2 (IC50=21,210 nmol/L). Enzyme-kinetic analysis, molecular docking and molecular dynamics (MD) simulations were conducted to better understand the molecular basis for this difference. The results obtained by kinetic analysis demonstrated that G1 can interact with both the catalytic active site and peripheral anionic site of AChE. The predicted binding free energies of two complexes calculated by the molecular mechanics/generalized born surface area (MM/GBSA) method were consistent with the experimental data. The analysis of the individual energy terms suggested that a difference between the net electrostatic contributions (ΔE ele+ΔG GB) was responsible for the binding affinities of these two inhibitors. Additionally, analysis of the molecular mechanics and MM/GBSA free energy decomposition revealed that the difference between G1 and G2 originated from interactions with Tyr124, Glu292, Val294 and Phe338 of AChE. In conclusion, the results reveal significant differences at the molecular level in the mechanism of inhibition of AChE by these structurally related compounds. PMID:26579414

  9. A critical analysis of the accuracy of several numerical techniques for combustion kinetic rate equations

    NASA Technical Reports Server (NTRS)

    Radhadrishnan, Krishnan

    1993-01-01

    A detailed analysis of the accuracy of several techniques recently developed for integrating stiff ordinary differential equations is presented. The techniques include two general-purpose codes EPISODE and LSODE developed for an arbitrary system of ordinary differential equations, and three specialized codes CHEMEQ, CREK1D, and GCKP4 developed specifically to solve chemical kinetic rate equations. The accuracy study is made by application of these codes to two practical combustion kinetics problems. Both problems describe adiabatic, homogeneous, gas-phase chemical reactions at constant pressure, and include all three combustion regimes: induction, heat release, and equilibration. To illustrate the error variation in the different combustion regimes the species are divided into three types (reactants, intermediates, and products), and error versus time plots are presented for each species type and the temperature. These plots show that CHEMEQ is the most accurate code during induction and early heat release. During late heat release and equilibration, however, the other codes are more accurate. A single global quantity, a mean integrated root-mean-square error, that measures the average error incurred in solving the complete problem is used to compare the accuracy of the codes. Among the codes examined, LSODE is the most accurate for solving chemical kinetics problems. It is also the most efficient code, in the sense that it requires the least computational work to attain a specified accuracy level. An important finding is that use of the algebraic enthalpy conservation equation to compute the temperature can be more accurate and efficient than integrating the temperature differential equation.

  10. Room-temperature phosphorescence logic gates developed from nucleic acid functionalized carbon dots and graphene oxide.

    PubMed

    Gui, Rijun; Jin, Hui; Wang, Zonghua; Zhang, Feifei; Xia, Jianfei; Yang, Min; Bi, Sai; Xia, Yanzhi

    2015-05-14

    Room-temperature phosphorescence (RTP) logic gates were developed using capture ssDNA (cDNA) modified carbon dots and graphene oxide (GO). The experimental results suggested the feasibility of these developed RTP-based "OR", "INHIBIT" and "OR-INHIBIT" logic gate operations, using Hg(2+), target ssDNA (tDNA) and doxorubicin (DOX) as inputs. PMID:25882250