Science.gov

Sample records for kinetics long-time annealing

  1. Tritium release from neutron irradiated beryllium: Kinetics, long-time annealing and effect or crack formation

    SciTech Connect

    Scaffidi-Argentina, F.; Werle, H.

    1995-09-01

    Since beryllium is considered as one of the best neutron multiplier materials in the blanket of the next generation fusion reactors, several studies have been started to evaluate its behaviour under irradiation during both operating and accidental conditions. Based on safety considerations, tritium produced in beryllium during neutron irradiation represents one important issue, therefore it is necessary to investigate tritium transport processes by using a comprehensive mathematical model and comparing its predictions with well characterized experimental tests. Because of the difficulties in extrapolating the short-time tritium release tests to a longer time scale, also long-time annealing experiments with beryllium samples from the SIBELIUS irradiation. have been carried out at the Forschungszentrum Karlsruhe. Samples were annealed up to 12 months at temperatures up to 650{degrees}C. The inventory after annealing was determined by heating the samples up to 1050{degrees}C with a He+0.1 vo1% H{sub 2} purge gas. Furthermore, in order to investigate the likely effects of cracks formation eventually causing a faster tritium release from beryllium, the behaviour of samples irradiated at low temperature (40-50{degrees}C) but up to very high fast neutron fluences (0.8-3.9{center_dot}10{sup 22} cm{sup -2}, E{sub n}{ge}1 MeV) in the BR2 reactor has been investigated. Tritium was released by heating the beryllium samples up to 1050{degrees}C and purging them with He+0.1 vo1% H{sub 2}. Tritium release from high-irradiated beryllium samples showed a much faster kinetics than from the low-irradiated ones, probably because of crack formation caused by thermal stresses in the brittle material and/or by helium bubbles migration. The obtained experimental data have been compared with predictions of the code ANFIBE with the goal to better understand the physical mechanisms governing tritium behaviour in beryllium and to assess the prediction capabilities of the code.

  2. OBJECT KINETIC MONTE CARLO SIMULATIONS OF CASCADE ANNEALING IN TUNGSTEN

    SciTech Connect

    Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard L.; Roche, Kenneth J.; Kurtz, Richard J.; Wirth, Brian D.

    2014-03-31

    The objective of this work is to study the annealing of primary cascade damage created by primary knock-on atoms (PKAs) of various energies, at various temperatures in bulk tungsten using the object kinetic Monte Carlo (OKMC) method.

  3. Understanding long-time vacancy aggregation in iron: A kinetic activation-relaxation technique study

    NASA Astrophysics Data System (ADS)

    Brommer, Peter; Béland, Laurent Karim; Joly, Jean-François; Mousseau, Normand

    2014-10-01

    Vacancy diffusion and clustering processes in body-centered-cubic (bcc) Fe are studied using the kinetic activation-relaxation technique (k-ART), an off-lattice kinetic Monte Carlo method with on-the-fly catalog building capabilities. For monovacancies and divacancies, k-ART recovers previously published results while clustering in a 50-vacancy simulation box agrees with experimental estimates. Applying k-ART to the study of clustering pathways for systems containing from one to six vacancies, we find a rich set of diffusion mechanisms. In particular, we show that the path followed to reach a hexavacancy cluster influences greatly the associated mean-square displacement. Aggregation in a 50-vacancy box also shows a notable dispersion in relaxation time associated with effective barriers varying from 0.84 to 1.1 eV depending on the exact pathway selected. We isolate the effects of long-range elastic interactions between defects by comparing to simulations where those effects are deliberately suppressed. This allows us to demonstrate that in bcc Fe, suppressing long-range interactions mainly influences kinetics in the first 0.3 ms, slowing down quick energy release cascades seen more frequently in full simulations, whereas long-term behavior and final state are not significantly affected.

  4. Progress on long-time kinetic simulation of tokamak turbulence with very weak dissipation

    NASA Astrophysics Data System (ADS)

    Parker, Scott; Chen, Yang; Kahut, Jason

    2006-04-01

    Recent progress on convergence studies of long-time simulations for both electron-temperature-gradient (ETG) and ion-temperature-gradient driven microturbulence will be reported. It was surprising to us to find that low-noise ETG turbulence simulations are well-converged with rather modest particle number (30-70 million particles). Progress on the particle-continuum method [Vadlamani et al., Comp. Phys. Comm., 209 164 (2004)] will also be reported. The particle-continuum method is really a general class of a variety of methods and has been shown to solve the so-called ``growing weight problem" in two-dimensional simulations. The method is implemented in four-dimensions with the μ∇B force neglected. In this case, v is a constant of motion and resetting of the particle δf on a four-dimensional grid is more reasonable. Discussion of issues related to applying particle continuum method in five dimensions will also be presented. Work supported by DOE SciDAC Gyrokinetic Particle Simulation Center and Center for Plasma Edge Simulation.

  5. Activated desorption at heterogeneous interfaces and long-time kinetics of hydrocarbon recovery from nanoporous media.

    PubMed

    Lee, Thomas; Bocquet, Lydéric; Coasne, Benoit

    2016-01-01

    Hydrocarbon recovery from unconventional reservoirs (shale gas) is debated due to its environmental impact and uncertainties on its predictability. But a lack of scientific knowledge impedes the proposal of reliable alternatives. The requirement of hydrofracking, fast recovery decay and ultra-low permeability-inherent to their nanoporosity-are specificities of these reservoirs, which challenge existing frameworks. Here we use molecular simulation and statistical models to show that recovery is hampered by interfacial effects at the wet kerogen surface. Recovery is shown to be thermally activated with an energy barrier modelled from the interface wetting properties. We build a statistical model of the recovery kinetics with a two-regime decline that is consistent with published data: a short time decay, consistent with Darcy description, followed by a fast algebraic decay resulting from increasingly unreachable energy barriers. Replacing water by CO2 or propane eliminates the barriers, therefore raising hopes for clean/efficient recovery. PMID:27327254

  6. Activated desorption at heterogeneous interfaces and long-time kinetics of hydrocarbon recovery from nanoporous media

    NASA Astrophysics Data System (ADS)

    Lee, Thomas; Bocquet, Lydéric; Coasne, Benoit

    2016-06-01

    Hydrocarbon recovery from unconventional reservoirs (shale gas) is debated due to its environmental impact and uncertainties on its predictability. But a lack of scientific knowledge impedes the proposal of reliable alternatives. The requirement of hydrofracking, fast recovery decay and ultra-low permeability--inherent to their nanoporosity--are specificities of these reservoirs, which challenge existing frameworks. Here we use molecular simulation and statistical models to show that recovery is hampered by interfacial effects at the wet kerogen surface. Recovery is shown to be thermally activated with an energy barrier modelled from the interface wetting properties. We build a statistical model of the recovery kinetics with a two-regime decline that is consistent with published data: a short time decay, consistent with Darcy description, followed by a fast algebraic decay resulting from increasingly unreachable energy barriers. Replacing water by CO2 or propane eliminates the barriers, therefore raising hopes for clean/efficient recovery.

  7. Activated desorption at heterogeneous interfaces and long-time kinetics of hydrocarbon recovery from nanoporous media

    PubMed Central

    Lee, Thomas; Bocquet, Lydéric; Coasne, Benoit

    2016-01-01

    Hydrocarbon recovery from unconventional reservoirs (shale gas) is debated due to its environmental impact and uncertainties on its predictability. But a lack of scientific knowledge impedes the proposal of reliable alternatives. The requirement of hydrofracking, fast recovery decay and ultra-low permeability—inherent to their nanoporosity—are specificities of these reservoirs, which challenge existing frameworks. Here we use molecular simulation and statistical models to show that recovery is hampered by interfacial effects at the wet kerogen surface. Recovery is shown to be thermally activated with an energy barrier modelled from the interface wetting properties. We build a statistical model of the recovery kinetics with a two-regime decline that is consistent with published data: a short time decay, consistent with Darcy description, followed by a fast algebraic decay resulting from increasingly unreachable energy barriers. Replacing water by CO2 or propane eliminates the barriers, therefore raising hopes for clean/efficient recovery. PMID:27327254

  8. Long-time atomistic evolution of grain boundary in nickel using the kinetic activation-relaxation technique

    NASA Astrophysics Data System (ADS)

    Mahmoud, Sami; Trochet, Mickaël; Restrepo, Oscar; Mousseau, Normand

    The microscopic mechanisms associated with the evolution of metallic materials are still a matter of debate as both experimental and numerical approaches fail to provide a detailed atomic picture of their time evolution. Here, we use the kinetic activation-relaxation technique (k-ART), an unbiased off-lattice kinetic Monte Carlo method with on-the-fly catalog building to overcome these limitations and follow the atomistic evolution of a 10.000-atom grain boundary Ni system over macroscopic time scales. We first characterize the kinetic properties of four different empirical potentials, the embedded atom method (EAM), the first and second modified embedded atom method (MEAM1NN and MEAM2NN respectively) and the Reax force field (ReaxFF) potentials. Comparing the energetics, the elastic effects and the diffusion mechanisms for systems with one to three vacancies and one to three self-interstitials in nickel simulated over second time scale, we conclude that ReaxFF and EAM potentials are closest to experimental values. We then proceed to study the long-time evolution of a grain boundary with the Reax forcefield and to offer a detailed description of its energy landscape, including the exact description of short and long-range effects on self-diffusion along the interface

  9. Annealing kinetics of electrodeposited lithium dendrites.

    PubMed

    Aryanfar, Asghar; Cheng, Tao; Colussi, Agustin J; Merinov, Boris V; Goddard, William A; Hoffmann, Michael R

    2015-10-01

    The densifying kinetics of lithium dendrites is characterized with effective activation energy of Ea ≈ 6 - 7 kcal mol(-1) in our experiments and molecular dynamics computations. We show that heating lithium dendrites for 55 °C reduces the representative dendrites length λ¯(T,t) up to 36%. NVT reactive force field simulations on three-dimensional glass phase dendrites produced by our coarse grained Monte Carlo method reveal that for any given initial dendrite morphology, there is a unique stable atomic arrangement for a certain range of temperature, combined with rapid morphological transition (∼10 ps) within quasi-stable states involving concurrent bulk and surface diffusions. Our results are useful for predicting the inherent structural characteristics of lithium dendrites such as dominant coordination number. PMID:26450322

  10. Subcontinuum mass transport of hydrocarbons in nanoporous media and long-time kinetics of recovery from unconventional reservoirs

    NASA Astrophysics Data System (ADS)

    Bocquet, Lyderic

    2015-11-01

    In this talk I will discuss the transport of hydrocarbons across nanoporous media and analyze how this transport impacts at larger scales the long-time kinetics of hydrocarbon recovery from unconventional reservoirs (the so-called shale gas). First I will establish, using molecular simulation and statistical mechanics, that the continuum description - the so-called Darcy law - fails to predict transport within a nanoscale organic matrix. The non-Darcy behavior arises from the strong adsorption of the alkanes in the nanoporous material and the breakdown of hydrodynamics at the nanoscale, which contradicts the assumption of viscous flow. Despite this complexity, all permeances collapse on a master curve with an unexpected dependence on alkane length, which can be described theoretically by a scaling law for the permeance. Then I will show that alkane recovery from such nanoporous reservoirs is dynamically retarded due to interfacial effects occuring at the material's interface. This occurs especially in the hydraulic fracking situation in which water is used to open fractures to reach the hydrocarbon reservoirs. Despite the pressure gradient used to trigger desorption, the alkanes remain trapped for long times until water desorbs from the external surface. The free energy barrier can be predicted in terms of an effective contact angle on the composite nanoporous surface. Using a statistical description of the alkane recovery, I will then demonstrate that this retarded dynamics leads to an overall slow - algebraic - decay of the hydrocarbon flux. Such a behavior is consistent with algebraic decays of shale gas flux from various wells reported in the literature. This work was performed in collaboration with B. Coasne, K. Falk, T. Lee, R. Pellenq and F. Ulm, at the UMI CNRS-MIT, Massachusetts Institute of Technology, Cambridge, USA.

  11. Front propagation versus bulk relaxation in the annealing dynamics of a kinetically constrained model of ultrastable glasses

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Ricardo; Garrahan, Juan P.

    2016-07-01

    Glasses prepared by physical vapour deposition have been shown to be remarkably more stable than those prepared by standard cooling protocols, with properties that appear to be similar to systems aged for extremely long times. When subjected to a rapid rise in temperature, ultrastable glasses anneal towards the liquid in a qualitatively different manner than ordinary glasses, with the seeming competition of different time and length scales. We numerically reproduce the phenomenology of ultrastable glass annealing with a kinetically constrained model, a three dimensional East model with soft constraints, in a setting where the bulk is in an ultrastable configuration and a free surface is permanently excited. Annealing towards the liquid state is given by the competition between the ballistic propagation of a front from the free surface and a much slower nucleation-like relaxation in the bulk. The crossover between these mechanisms also explains the change in behaviour with film thickness seen experimentally.

  12. Defect production and annealing kinetics in elemental metals and semiconductors

    NASA Astrophysics Data System (ADS)

    de la Rubia, T. Diaz; Soneda, N.; Caturla, M. J.; Alonso, E. A.

    1997-11-01

    We present a review of recent results of molecular dynamics (MD) and kinetic Monte Carlo (KMC) simulations of defect production and annealing in irradiated metals and semiconductors. The MD simulations describe the primary damage state in elemental metals Fe, V and Au, and in an elemental semiconductor Si. We describe the production of interstitial and vacancy clusters in the cascades and highlight the differences among the various materials. In particular, we discuss how covalent bonding in Si affects defect production and amorphization resulting in a very different primary damage state from the metals. We also use MD simulations to extract prefactors and activation energies for migration of point defects, as well as to investigate the energetics, geometry and diffusivity of small vacancy and interstitial clusters. We show that, in the metals, small interstitial clusters are highly mobile and glide in one dimension along the direction of the Burger's vector. In silicon, we show that, in contrast to the metals, the neutral vacancy diffuses faster than the neutral self-interstitial. The results for the primary damage state and for the defect energetics and kinetics are then combined and used in a kinetic Monte Carlo simulation to investigate the escape efficiency of defects from their nascent cascade in metals, and the effect of dose rate on damage accumulation and amorphization in silicon. We show that in fee metals Au and Pb at or above stage V the escape probability is approximately 40% for 30 keV recoils so that the freely migrating defect fraction is approximately 10% of the dpa standard. In silicon, we show that damage accumulation at room temperature during light ion implantation can be significantly reduced by decreasing the dose rate. The results are compared to scanning tunneling microscopy experiments.

  13. Remarkable changes in interface O vacancy and metal-oxide bonds in amorphous indium-gallium-zinc-oxide thin-film transistors by long time annealing at 250 °C

    SciTech Connect

    Chowdhury, Md Delwar Hossain; Um, Jae Gwang; Jang, Jin

    2014-12-08

    We have studied the effect of long time post-fabrication annealing on negative bias illumination stress (NBIS) of amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film-transistors. Annealing for 100 h at 250 °C increased the field effect mobility from 14.7 cm{sup 2}/V s to 17.9 cm{sup 2}/V s and reduced the NBIS instability remarkably. Using X-ray photoelectron spectroscopy, the oxygen vacancy and OH were found to exist at the interfaces of a-IGZO with top and bottom SiO{sub 2}. Long time annealing helps to decrease the vacancy concentration and increase the metal-oxygen bonds at the interfaces; this leads to increase in the free carrier concentrations in a-IGZO and field-effect mobility. X-ray reflectivity measurement indicated the increment of a-IGZO film density of 5.63 g cm{sup −3} to 5.83 g cm{sup −3} (3.4% increase) by 100 h annealing at 250 °C. The increase in film density reveals the decrease of O vacancy concentration and reduction of weak metal-oxygen bonds in a-IGZO, which substantially helps to improve the NBIS stability.

  14. Magnetization kinetics in tension and field annealed Fe-based amorphous alloys

    NASA Astrophysics Data System (ADS)

    Hasegawa, Ryusuke; Takahashi, Kengo; Francoeur, Bruno; Couture, Pierre

    2013-05-01

    Magnetization kinetics in tension-annealed and field-annealed amorphous magnetic materials indicates that strain and magnetic fields are equally effective in inducing and relaxing local structural and magnetic anisotropy changes. This observation is based on the thermomagnetic aging of the magnetic properties obtained in the materials studied.

  15. Growth of Ni2Si by rapid thermal annealing: Kinetics and moving species

    NASA Astrophysics Data System (ADS)

    Ma, E.; Lim, B. S.; Nicolet, M.-A.; Natan, M.

    1987-10-01

    The growth kinetics is characterized and the moving species is identified for the formation of Ni2Si by Rapid Thermal Annealing (RTA) of sequentially deposited Si and Ni films on a <100> Si substrate. The interfacial Ni2Si layer grows as the square root of time, indicating that the suicide growth process is diffusion-limited. The activation energy is 1.25±0.2 eV in the RTA temperature range of 350 450° C. The results extend those of conventional steady-state furnace annealing quite fittingly, and a common activation energy of 1.3±0.2 eV is deduced from 225° to 450° C. The marker experiment shows that Ni is the dominant moving species during Ni2Si formation by RTA, as is the case for furnace annealing. It is concluded that the two annealing techniques induce the same growth mechanisms in Ni2Si formation.

  16. Interrogating the Effects of Radiation Damage Annealing on Helium Diffusion Kinetics in Apatite

    NASA Astrophysics Data System (ADS)

    Willett, C. D.; Fox, M.; Shuster, D. L.

    2015-12-01

    Apatite (U-Th)/He thermochronology is commonly used to study landscape evolution and potential links between climate, erosion and tectonics. The technique relies on a quantitative understanding of (i) helium diffusion kinetics in apatite, (ii) an evolving 4He concentration, (iii) accumulating damage to the crystal lattice caused by radioactive decay[1], and (iv) the thermal annealing of such damage[2],[3], which are each functions of both time and temperature. Uncertainty in existing models of helium diffusion kinetics has resulted in conflicting conclusions, especially in settings involving burial heating through geologic time. The effects of alpha recoil damage annealing are currently assumed to follow the kinetics of fission track annealing (e.g., reference [3]), although this assumption is difficult to fully validate. Here, we present results of modeling exercises and a suite of experiments designed to interrogate the effects of damage annealing on He diffusivity in apatite that are independent of empirical calibrations of fission track annealing. We use the existing experimental results for Durango apatite[2] to develop and calibrate a new function that predicts the effects of annealing temperature and duration on measured diffusivity. We also present a suite of experiments conducted on apatite from Sierra Nevada, CA granite to establish whether apatites with different chemical compositions have the same behavior as Durango apatite. Crystals were heated under vacuum to temperatures between 250 and 500°C for 1, 10, or 100 hours. The samples were then irradiated with ~220 MeV protons to produce spallogenic 3He, the diffusant then used in step-heating diffusion experiments. We compare the results of these experiments and model calibrations to existing models. Citations: [1]Shuster, D., Flowers R., and Farley K., (2006), EPSL 249(3-4), 148-161; [2]Shuster, D. and Farley, K., (2009), GCA 73 (1), 6183-6196; [3]Flowers, R., Ketcham, R., Shuster, D. and Farley, K

  17. Kinetic investigation of sulfidizing annealing of scorodite in processing of refractory oxidized gold-containing ores

    NASA Astrophysics Data System (ADS)

    Boboev, I. R.; Strizhko, L. S.; Bobozoda, Sh.; Gorbunov, E. P.

    2016-03-01

    The results of kinetic studies on the removal of arsenic from scorodite using sulfidizing annealing are presented. The reaction order with respect to the reactant and the activation energy are established from the experimental data. The rate-determining step of the sulfidizing annealing process is determined. The main reactions that occur during the sulfidizing of arsenic in scorodite are proposed on the basis of the obtained results and confirmed by thermodynamic calculations and chemical analyses. The major results of testing this technology, as applied to the refractory oxidized ores in which arsenic is mainly concentrated in scorodite, are presented. Arsenic removal from this ore is confirmed by chemical and quantitative X-ray diffraction analyses and by qualitative phase analysis. Industrial use of this technology provides safe and efficient processing of refractory gold-containing ores, where arsenic is mainly concentrated in scorodite.

  18. Kinetics of F center annealing and colloid formation in Al2O3

    NASA Astrophysics Data System (ADS)

    Kotomin, E. A.; Kuzovkov, V. N.; Popov, A. I.; Vila, R.

    2016-05-01

    The diffusion-controlled kinetics of the F center annealing in Al2O3 (sapphire, corundum) is simulated theoretically for the two regimes: after neutron irradiation when the immobile F centers are annihilated with complementary defects - mobile interstitial oxygen ions, and in thermochemically reduced (additively colored) crystals where mobile F centers aggregate and create the metal colloids. A comparison of the experimental and theoretical kinetics allowed us to estimate the migration energies for the F centers and interstitial oxygen ions. It is obtained that the pre-exponents in diffusion coefficients for defects in different neutron irradiated samples can vary by two orders of magnitude which is attributed by presence of numerous traps for mobile interstitial oxygen ions.

  19. Kinetics modeling of precipitation with characteristic shape during post-implantation annealing

    NASA Astrophysics Data System (ADS)

    Li, Kun-Dar; Chen, Kwanyu

    2015-11-01

    In this study, we investigated the precipitation with characteristic shape in the microstructure during post-implantation annealing via a theoretical modeling approach. The processes of precipitates formation and evolution during phase separation were based on a nucleation and growth mechanism of atomic diffusion. Different stages of the precipitation, including the nucleation, growth and coalescence, were distinctly revealed in the numerical simulations. In addition, the influences of ion dose, temperature and crystallographic symmetry on the processes of faceted precipitation were also demonstrated. To comprehend the kinetic mechanism, the simulation results were further analyzed quantitatively by the Kolmogorov-Johnson-Mehl-Avrami (KJMA) equation. The Avrami exponents obtained from the regression curves varied from 1.47 to 0.52 for different conditions. With the increase of ion dose and temperature, the nucleation and growth of precipitations were expedited in accordance with the shortened incubation time and the raised coefficient of growth rate. A miscellaneous shape of precipitates in various crystallographic symmetry systems could be simulated through this anisotropic model. From the analyses of the kinetics, more fundamental information about the nucleation and growth mechanism of faceted precipitation during post-implantation annealing was acquired for future application.

  20. Kinetics modeling of precipitation with characteristic shape during post-implantation annealing

    SciTech Connect

    Li, Kun-Dar Chen, Kwanyu

    2015-11-15

    In this study, we investigated the precipitation with characteristic shape in the microstructure during post-implantation annealing via a theoretical modeling approach. The processes of precipitates formation and evolution during phase separation were based on a nucleation and growth mechanism of atomic diffusion. Different stages of the precipitation, including the nucleation, growth and coalescence, were distinctly revealed in the numerical simulations. In addition, the influences of ion dose, temperature and crystallographic symmetry on the processes of faceted precipitation were also demonstrated. To comprehend the kinetic mechanism, the simulation results were further analyzed quantitatively by the Kolmogorov-Johnson-Mehl-Avrami (KJMA) equation. The Avrami exponents obtained from the regression curves varied from 1.47 to 0.52 for different conditions. With the increase of ion dose and temperature, the nucleation and growth of precipitations were expedited in accordance with the shortened incubation time and the raised coefficient of growth rate. A miscellaneous shape of precipitates in various crystallographic symmetry systems could be simulated through this anisotropic model. From the analyses of the kinetics, more fundamental information about the nucleation and growth mechanism of faceted precipitation during post-implantation annealing was acquired for future application.

  1. Growth kinetics of Al–Fe intermetallic compounds during annealing treatment of friction stir lap welds

    SciTech Connect

    Movahedi, M.; Kokabi, A.H.; Seyed Reihani, S.M.; Najafi, H.; Farzadfar, S.A.; Cheng, W.J.; Wang, C.J.

    2014-04-01

    In this study, we explored the growth kinetics of the Al–Fe intermetallic (IM) layer at the joint interface of the St-12/Al-5083 friction stir lap welds during post-weld annealing treatment at 350, 400 and 450 °C for 30 to 180 min. Optical microscope (OM), field emission gun scanning electron microscope (FEG-SEM) and transmission electron microscope (TEM) were employed to investigate the structure of the weld zone. The thickness and composition of the IM layers were evaluated using image analysis system and electron back-scatter diffraction (EBSD), respectively. Moreover, kernel average misorientation (KAM) analysis was performed to evaluate the level of stored energy in the as-welded state. The results showed that the growth kinetics of the IM layer was not governed by a parabolic diffusion law. Presence of the IM compounds as well as high stored energy near the joint interface of the as-welded sample was recognized to be the origin of the observed deviation from the parabolic diffusion law. - Highlights: • This work provided a new insight into growth kinetics of Al–Fe IM thickness. • The growth kinetics of IM layer was not governed by a parabolic diffusion law. • IM near the joint interface was the origin of deviation from the parabolic law. • High stored energy at joint interface was origin of deviation from parabolic law.

  2. Displacement cascades and defect annealing in tungsten, Part II: Object kinetic Monte Carlo simulation of tungsten cascade aging

    NASA Astrophysics Data System (ADS)

    Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard L.; Roche, Kenneth J.; Kurtz, Richard J.; Wirth, Brian D.

    2015-07-01

    The results of object kinetic Monte Carlo (OKMC) simulations of the annealing of primary cascade damage in bulk tungsten using a comprehensive database of cascades obtained from molecular dynamics (Setyawan et al.) are described as a function of primary knock-on atom (PKA) energy at temperatures of 300, 1025 and 2050 K. An increase in SIA clustering coupled with a decrease in vacancy clustering with increasing temperature, in addition to the disparate mobilities of SIAs versus vacancies, causes an interesting effect of temperature on cascade annealing. The annealing efficiency (the ratio of the number of defects after and before annealing) exhibits an inverse U-shape curve as a function of temperature. The capabilities of the newly developed OKMC code KSOME (kinetic simulations of microstructure evolution) used to carry out these simulations are described.

  3. Displacement cascades and defect annealing in tungsten, Part II: Object kinetic Monte Carlo Simulation of Tungsten Cascade Aging

    SciTech Connect

    Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard L.; Roche, Kenneth J.; Kurtz, Richard J.; Wirth, Brian D.

    2015-07-01

    The results of object kinetic Monte Carlo (OKMC) simulations of the annealing of primary cascade damage in bulk tungsten using a comprehensive database of cascades obtained from molecular dynamics (Setyawan et al.) are described as a function of primary knock-on atom (PKA) energy at temperatures of 300, 1025 and 2050 K. An increase in SIA clustering coupled with a decrease in vacancy clustering with increasing temperature, in addition to the disparate mobilities of SIAs versus vacancies, causes an interesting effect of temperature on cascade annealing. The annealing efficiency (the ratio of the number of defects after and before annealing) exhibits an inverse U-shape curve as a function of temperature. The capabilities of the newly developed OKMC code KSOME (kinetic simulations of microstructure evolution) used to carry out these simulations are described.

  4. Displacement cascades and defect annealing in tungsten, Part III: The sensitivity of cascade annealing in tungsten to the values of kinetic parameters

    SciTech Connect

    Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard L.; Roche, Kenneth J.; Kurtz, Richard J.; Wirth, Brian D.

    2015-07-01

    Object kinetic Monte Carlo (OKMC) simulations have been performed to investigate various aspects of cascade aging in bulk tungsten and to determine the sensitivity of the results to the kinetic parameters. The primary focus is on how the kinetic parameters affect the initial recombination of defects in the first few ns of a simulation. The simulations were carried out using the object kinetic Monte Carlo (OKMC) code KSOME (kinetic simulations of microstructure evolution), using a database of cascades obtained from results of molecular dynamics (MD) simulations at various primary knock-on atom (PKA) energies and directions at temperatures of 300, 1025 and 2050 K. The OKMC model was parameterized using defect migration barriers and binding energies from ab initio calculations. Results indicate that, due to the disparate mobilities of SIA and vacancy clusters in tungsten, annealing is dominated by SIA migration even at temperatures as high as 2050 K. For 100 keV cascades initiated at 300 K recombination is dominated by annihilation of large defect clusters. But for all other PKA energies and temperatures most of the recombination is due to the migration and rotation of small SIA clusters, while all the large SIA clusters escape the cubic simulation cell. The inverse U-shape behavior exhibited by the annealing efficiency as a function of temperature curve, especially for cascades of large PKA energies, is due to asymmetry in SIA and vacancy clustering assisted by the large difference in mobilities of SIAs and vacancies. This annealing behavior is unaffected by the dimensionality of SIA migration persists over a broad range of relative mobilities of SIAs and vacancies.

  5. Kinetics and dynamics of annealing during sub-gel phase formation in phospholipid bilayers

    PubMed Central

    Páli, Tibor; Bartucci, Rosa; Horváth, László I.; Marsh, Derek

    1993-01-01

    The saturation transfer electron spin resonance (STESR) spectra of spin-labeled phosphatidylcholine have been used to follow the kinetics of conversion from the gel phase to the sub-gel phase in aqueous bilayers of dipalmitoyl phosphatidylcholine. This is a simple, well-defined model system for lipid domain formation in membranes. The integrated intensity of the STESR spectrum from the chain-labeled lipid first increases and then decreases with time of incubation in the gel phase at 0°C. The first, more rapid phase of the kinetics is attributed to the conversion of germ nuclei to growth nuclei of the sub-gel phase. The increase in STESR intensity corresponds to the reduction in chain mobility of spin labels located in the gel phase at the boundaries of the growth nuclei and correlates with the increase in the diagnostic STESR line height ratios over this time range. The second, slower phase of the kinetics is attributed to growth of the domains of the sub-gel phase. The decrease in STESR intensity over this time regime corresponds to exclusion of the spin-labeled lipids from the tightly packed sub-gel phase and correlates quantitatively with calibrations of the spin label concentration dependence of the STESR intensity in the gel phase. The kinetics of formation of the sub-gel phase are consistent with the classical model for domain formation and growth. At 0°C, the half-time for conversion of germ nuclei to growth nuclei is ∼7.7 h and domain growth of the sub-gel phase is characterized by a rate constant of 0.025 h-1. The temperature dependence of the STESR spectra from samples annealed at 0°C suggests that the subtransition takes place via dissolution of sub-gel phase domains, possibly accompanied by domain fission. PMID:19431899

  6. Kinetics of Ferrite Recrystallization and Austenite Formation During Intercritical Annealing of the Cold-Rolled Ferrite/Martensite Duplex Structures

    NASA Astrophysics Data System (ADS)

    Mazaheri, Y.; Kermanpur, A.; Najafizadeh, A.; Kalashami, A. Ghatei

    2016-03-01

    Ultrafine-grained, dual-phase (UFG DP) steels were produced by a new route using an uncommon cold-rolling and subsequent intercritical annealing of ferrite/martensite duplex starting microstructures. The effects of processing parameters such as rolling reduction, intercritical annealing temperature, and time on the microstructural evaluations have been studied. UFG DP steels with an average grain size of about 1 to 2 μm were achieved by short intercritical annealing of the 80 pct cold-rolled duplex microstructures. The kinetics of ferrite recrystallization and austenite formation were studied based on the Johnson-Mehl-Avrami-Kolmogorov (JMAK) model. The proposed model for describing the isothermal austenite formation kinetics was applied successfully to the nonisothermal conditions. It was found that complete recrystallization of ferrite before the austenite formation led to the formation of a large extent randomly distributed austenite in the ferrite matrix and a chain-networked structure.

  7. Influence of Oxygen Ion Implantation on the Damage and Annealing Kinetics of Iron-Implanted Sapphire

    SciTech Connect

    Hunn, J.D.; McHargue, C.J.

    1999-11-14

    The effects of implanted oxygen on the damage accumulation in sapphire which was previously implanted with iron was studied for (0001) sapphire implanted with iron and then with oxygen. The energies were chosen to give similar projected ranges. One series was implanted with a 1:l ratio (4x10{sup 16} ions/cm{sup 2} each) and another with a ratio of 2:3 (4x10{sup 16} fe{sup +}/cm{sup 2}; 6x10{sup 16} O{sup +}/cm{sup 2}). Retained damage, X, in the Al-sublattice, was compared to that produced by implantation of iron alone. The observed disorder was less for the dual implantations suggesting that implantation of oxygen enhanced dynamic recovery during implantation. Samples were annealed for one hour at 800 and 1200 C in an oxidizing and in a reducing atmosphere. No difference was found in the kinetics of recovery in the Al-sublattice between the two dual implant conditions. However, the rate of recovery was different for each from samples implanted with iron alone.

  8. Influence of film structure on the dewetting kinetics of thin polymer films in the solvent annealing process.

    PubMed

    Zhang, Huanhuan; Xu, Lin; Lai, Yuqing; Shi, Tongfei

    2016-06-28

    On a non-wetting solid substrate, the solvent annealing process of a thin polymer film includes the swelling process and the dewetting process. Owing to difficulties in the in situ analysis of the two processes simultaneously, a quantitative study on the solvent annealing process of thin polymer films on the non-wetting solid substrate is extremely rare. In this paper, we design an experimental method by combining spectroscopic ellipsometry with optical microscopy to achieve the simultaneous in situ study. Using this method, we investigate the influence of the structure of swollen film on its dewetting kinetics during the solvent annealing process. The results show that for a thin PS film with low Mw (Mw = 4.1 kg mol(-1)), acetone molecules can form an ultrathin enriched layer between the PS film and the solid substrate during the swelling process. The presence of the acetone enriched layer accounts for the exponential kinetic behavior in the case of a thin PS film with low Mw. However, the acetone enriched layer is not observed in the case of a thin PS film with high Mw (Mw = 400 kg mol(-1)) and the slippage effect of polymer chains is valid during the dewetting process. PMID:27254136

  9. μ-Rainbow: CdSe Nanocrystal Photoluminescence Gradients via Laser Spike Annealing for Kinetic Investigations and Tunable Device Design.

    PubMed

    Treml, Benjamin E; Jacobs, Alan G; Bell, Robert T; Thompson, Michael O; Hanrath, Tobias

    2016-02-10

    Much of the promise of nanomaterials derives from their size-dependent, and hence tunable, properties. Impressive advances have been made in the synthesis of nanoscale building blocks with precisely tailored size, shape and composition. Significant attention is now turning toward creating thin film structures in which size-dependent properties can be spatially programmed with high fidelity. Nonequilibrium processing techniques present exciting opportunities to create nanostructured thin films with unprecedented spatial control over their optical and electronic properties. Here, we demonstrate single scan laser spike annealing (ssLSA) on CdSe nanocrystal (NC) thin films as an experimental test bed to illustrate how the size-dependent photoluminescence (PL) emission can be tuned throughout the visible range and in spatially defined profiles during a single annealing step. Through control of the annealing temperature and time, we discovered that NC fusion is a kinetically limited process with a constant activation energy in over 2 orders of magnitude of NC growth rate. To underscore the broader technological implications of this work, we demonstrate the scalability of LSA to process large area NC films with periodically modulated PL emission, resulting in tunable emission properties of a large area film. New insights into the processing-structure-property relationships presented here offer significant advances in our fundamental understanding of kinetics of nanomaterials as well as technological implications for the production of nanomaterial films. PMID:26536402

  10. Kinetics of hardness evolution during annealing of gamma-irradiated polycarbonate

    SciTech Connect

    Yeh, S. H.; Chen, P. Y.; Lee, Sanboh; Harmon, Julie

    2012-12-01

    This study focuses on the evolution in microhardness values that accompany isothermal annealing in gamma-irradiated polycarbonate (PC). Hardness increases with increasing annealing time, temperature, and gamma radiation dose. A model composed of a mixture of first and zero order structure relaxation is proposed to interpret the hardness data. The rate constant data fit the Arrhenius equation, and the corresponding activation energy decreases with increasing dose. The extent of structural relaxation that controls the hardness in post-annealed PC increases with increasing annealing temperature and dose. The model demonstrates that hardness evolution in PC is an endothermic process. By contrast, when the model is applied to irradiated poly(methyl methacrylate) and hydroxyethyl methacrylate copolymer, hardness evolution is an exothermic process.

  11. Kinetics of Solute Partitioning During Intercritical Annealing of a Medium-Mn Steel

    NASA Astrophysics Data System (ADS)

    Kamoutsi, H.; Gioti, E.; Haidemenopoulos, Gregory N.; Cai, Z.; Ding, H.

    2015-11-01

    The evolution of austenite fraction and solute partitioning (Mn, Al, and C) during intercritical annealing was calculated for a medium-Mn steel containing 11 pct Mn. Austenite growth takes place in three stages. The first stage is growth under non-partitioning local equilibrium (NPLE) controlled by carbon diffusion in ferrite. The second stage is growth under partitioning local equilibrium (PLE) controlled by diffusion of Mn in ferrite. The third stage is shrinkage of austenite under PLE controlled by diffusion of Mn in austenite. During PLE growth, the austenite is progressively enriched in Mn. Compositional spikes evolve early during NPLE growth and broaden with annealing temperature and time.

  12. A kinetic model of single-strand annealing for the repair of DNA double-strand breaks.

    PubMed

    Taleei, Reza; Weinfeld, Michael; Nikjoo, Hooshang

    2011-02-01

    Ionising radiation induces different types of DNA damage, including single-strand breaks, double-strand breaks (DSB) and base damages. DSB are considered to be the most critical lesion to be repaired. The three main competitive pathways in the repair of DSB are non-homologous end joining (NHEJ), homologous recombination (HR) and single-strand annealing (SSA). SSA is a non-conservative repair pathway requiring direct repeat sequences for the repair process. In this work, a biochemical kinetic model is presented to describe the SSA repair pathway. The model consists of a system of non-linear ordinary differential equations describing the steps in the repair pathway. The reaction rates were estimated by comparing the model results with the experimental data for chicken DT40 cells exposed to 20 Gy of X-rays. The model successfully predicts the repair of the DT40 cells with the reaction rates derived from the 20-Gy X-ray experiment. The experimental data and the kinetic model show fast and slow DSB repair components. The half time and fractions of the slow and the fast components of the repair were compared for the model and the experiments. Mathematical and computational modelling in biology has played an important role in predicting biological mechanisms and stimulating future experimentation. The present model of SSA adds to the modelling of NHEJ and HR to provide a more complete description of DSB repair pathways. PMID:21183536

  13. Decarburization and grain growth kinetics during the annealing of electrical steels

    SciTech Connect

    Oldani, C.R.

    1996-12-01

    Electrical steels are generally described as thin steel sheets of variable thickness (from 0.27 to 0.76 mm), whose function is to efficiently transport the magnetic flux in electrical equipments. The electromagnetic properties expected from these materials are low magnetic losses and a high permeability. It can be said that a cyclically magnetized-demagnetized material is not free of energy losses because a portion of the power, the loss, is irreversibly transformed into heat. These steels are usually produced in a partially processed condition and they reach their maximum magnetic potential during the final steps of manufacture at the user`s plant. Efficient control of the operations by which the sheets are submitted is essential to obtain the optimum steel yield in the magnetic circuit they are made for. In these operations a decarburization annealing heat treatment produces important effects such as removing punching residual tensions, decarburization to very low carbon content, ferritic grain growth and a favorable magnetic crystallographic texture.

  14. Coarse-grained molecular dynamics modeling of the kinetics of lamellar block copolymer defect annealing

    NASA Astrophysics Data System (ADS)

    Peters, Andrew J.; Lawson, Richard A.; Nation, Benjamin D.; Ludovice, Peter J.; Henderson, Clifford L.

    2016-01-01

    State-of-the-art block copolymer (BCP)-directed self-assembly (DSA) methods still yield defect densities orders of magnitude higher than is necessary in semiconductor fabrication despite free-energy calculations that suggest equilibrium defect densities are much lower than is necessary for economic fabrication. This disparity suggests that the main problem may lie in the kinetics of defect removal. This work uses a coarse-grained model to study the rates, pathways, and dependencies of healing a common defect to give insight into the fundamental processes that control defect healing and give guidance on optimal process conditions for BCP-DSA. It is found that bulk simulations yield an exponential drop in defect heal rate above χN˜30. Thin films show no change in rate associated with the energy barrier below χN˜50, significantly higher than the χN values found previously for self-consistent field theory studies that neglect fluctuations. Above χN˜50, the simulations show an increase in energy barrier scaling with 1/2 to 1/3 of the bulk systems. This is because thin films always begin healing at the free interface or the BCP-underlayer interface, where the increased A-B contact area associated with the transition state is minimized, while the infinitely thick films cannot begin healing at an interface.

  15. Coarse-grained molecular dynamics modeling of the kinetics of lamellar BCP defect annealing

    NASA Astrophysics Data System (ADS)

    Peters, Andrew J.; Lawson, Richard A.; Nation, Benjamin D.; Ludovice, Peter J.; Henderson, Clifford L.

    2015-03-01

    Directed self-assembly of block copolymers (BCPs) is a process that has received great interest in the field of nanomanufacturing in the past decade, and great strides towards forming high quality aligned patterns have been made. But state of the art methods still yield defectivities orders of magnitude higher than is necessary in semi-conductor fabrication even though free energy calculations suggest that equilibrium defectivities are much lower than is necessary for economic semi-conductor fabrication. This disparity suggests that the main problem may lie in the kinetics of defect removal. This work uses a coarse-grained model to study the rates, pathways, and dependencies of healing a common defect to give insight into the fundamental processes that control defect healing and give guidance on optimal process conditions for BCP-DSA. It is found that infinitely thick films yield an exponential drop in defect heal rate above χN ~ 30. Below χN ~ 30, the rate of transport was similar to the rate at which the transition state was reached so that the overall rate changed only slightly. The energy barrier in periodic simulations increased with 0.31 χN on average. Thin film simulations show no change in rate associated with the energy barrier below χN ~ 50, and then show an increase in energy barrier scaling with 0.16χN. Thin film simulations always begin to heal at either the free interface or the BCP-underlayer interface where the increased A-B contact area associated with the transition state will be minimized, while the infinitely thick films must start healing in the bulk where the A-B contact area is increased. It is also found that cooperative chain movement is required for the defect to start healing.

  16. Defect kinetics in spinels: Long-time simulations of MgAl{sub 2}O{sub 4}, MgGa{sub 2}O{sub 4}, and MgIn{sub 2}O{sub 4}

    SciTech Connect

    Uberuaga, B. P.; Voter, A. F.; Sickafus, K. E.; Bacorisen, D.; Smith, Roger; Ball, J. A.; Grimes, R. W.

    2007-03-01

    Building upon work in which we examined defect production and stability in spinels, we now turn to defect kinetics. Using temperature accelerated dynamics (TAD), we characterize the kinetics of defects in three spinel oxides: magnesium aluminate MgAl{sub 2}O{sub 4}, magnesium gallate MgGa{sub 2}O{sub 4}, and magnesium indate MgIn{sub 2}O{sub 4}. These materials have varying tendencies to disorder on the cation sublattices. In order to understand chemical composition effects, we first examine defect kinetics in perfectly ordered, or normal, spinels, focusing on point defects on each sublattice. We then examine the role that cation disorder has on defect mobility. Using TAD, we find that disorder creates local environments which strongly trap point defects, effectively reducing their mobility. We explore the consequences of this trapping via kinetic Monte Carlo (KMC) simulations on the oxygen vacancy (V{sub O}) in MgGa{sub 2}O{sub 4}, finding that V{sub O} mobility is directly related to the degree of inversion in the system.

  17. Effects of Annealing, Thermomigration, and Electromigration on the Intermetallic Compounds Growth Kinetics of Cu/Sn-2.5Ag Microbump.

    PubMed

    Kim, Seung-Hyun; Park, Gyu-Tae; Park, Jong-Jin; Park, Young-Bae

    2015-11-01

    The effects of annealing, thermomigration (TM), and electromigration (EM) on the intermetallic com- pound (IMC) growth kinetics of Cu/Sn-2.5Ag microbumps were investigated using in-situ scanning electron microscopy at 120-165 degrees C with a current density of 1.5 x 10(5) A/cm2. The IMC growth kinetics was controlled by a diffusion-dominant mechanism and a chemical-reaction-dominant mechanism with annealing and current-stressing conditions, respectively. Before all of the Sn was fully transformed into IMCs, the activation energies of the Cu3Sn IMCs were 0.54 eV, 0.50 eV, and 0.40 eV for annealing, TM, and EM, respectively, which is closely related to the acceleration effect of the interfacial reaction by electron wind force under current stressing. After all of the Sn was fully transformed into IMCs by reacting with Cu, the Cu3Sn IMC growth rates of the three structures became similar due to the reduced and similar diffusion rates inside the IMCs with and without current stressing. PMID:26726558

  18. Long-time limit of correlation functions

    NASA Astrophysics Data System (ADS)

    Franosch, Thomas

    2014-08-01

    Auto-correlation functions in an equilibrium stochastic process are well-characterized by Bochner's theorem as Fourier transforms of a finite symmetric Borel measure. The existence of a long-time limit of these correlation functions depends on the spectral properties of the measure. Here we provide conditions applicable to a wide class of dynamical theories guaranteeing the existence of the long-time limit. We discuss the implications in the context of the mode-coupling theory of the glass transition where a non-trivial long-time limit signals an idealized glass state.

  19. Microstructural Evolution and Recrystallization Kinetics of a Cold-Rolled, Ferrite-Martensite Structure During Intercritical Annealing

    NASA Astrophysics Data System (ADS)

    Etesami, S. A.; Enayati, M. H.

    2016-05-01

    The recrystallization behavior of 80 pct, cold-rolled, low-carbon, dual-phase steel during intercritical annealing for different times was studied. The annealed microstructures showed that the recrystallization initially occurred in the deformed martensitic regions. The values of Avrami exponent for recrystallization varied from 3.8 to 4 with an activation energy of 46.9 kJ/mol. This study also introduced a novel method for the production of bimodal grain structures in low-carbon, ferrite-martensite steel.

  20. Microstructural Evolution and Recrystallization Kinetics of a Cold-Rolled, Ferrite-Martensite Structure During Intercritical Annealing

    NASA Astrophysics Data System (ADS)

    Etesami, S. A.; Enayati, M. H.

    2016-07-01

    The recrystallization behavior of 80 pct, cold-rolled, low-carbon, dual-phase steel during intercritical annealing for different times was studied. The annealed microstructures showed that the recrystallization initially occurred in the deformed martensitic regions. The values of Avrami exponent for recrystallization varied from 3.8 to 4 with an activation energy of 46.9 kJ/mol. This study also introduced a novel method for the production of bimodal grain structures in low-carbon, ferrite-martensite steel.

  1. Identification of a kinetic length scale which dictates alloy phase composition in Ni-Al interfaces on annealing at low temperatures

    SciTech Connect

    Swain, Mitali Singh, Surendra; Basu, Saibal; Bhattacharya, Debarati; Gupta, Mukul

    2014-12-14

    Ni-aluminides are an important class of intermetallics from technological point of view. Ni-Al phase diagram has been studied in detail experimentally as well as theoretically. It is known that if annealed at low temperature, the first alloy phase is usually NiAl{sub 3} according to Bené's rule. It is also understood that heat of formation may get modified by local densities of the constituents forming the alloy. In this regard, it is important to identify a kinetic length scale for defining “local density” in a system. We have deposited ultrathin multilayers of Ni and Al of layer thickness in tens of nanometres with Ni:Al stoichiometric ratio as 3:1 and 1:3, respectively. Considering these stoichiometry, Ni{sub 3}Al and NiAl{sub 3} are the thermodynamically favoured alloy phases in these samples. We used x-ray reflectivity, polarized neutron reflectivity, x-ray diffraction, and secondary ion mass spectroscopy to follow the alloy formation after annealing and identified the alloy phases at interfaces with nanometre resolution. Diffusion length of Ni and Al was obtained using Darken's law. Our results predict that ‘diffusion length’ is the unique length scale that connects kinetics to local density. In another interesting observation, using “virtual Kirkendall markers” at the interfaces, we showed asymmetry in consumption of Al for alloy formation, at Al on Ni (Al/Ni) and Ni on Al (Ni/Al) interfaces by comparing as-deposited and annealed states with respect to the markers.

  2. Identification of a kinetic length scale which dictates alloy phase composition in Ni-Al interfaces on annealing at low temperatures

    NASA Astrophysics Data System (ADS)

    Swain, Mitali; Singh, Surendra; Basu, Saibal; Bhattacharya, Debarati; Gupta, Mukul

    2014-12-01

    Ni-aluminides are an important class of intermetallics from technological point of view. Ni-Al phase diagram has been studied in detail experimentally as well as theoretically. It is known that if annealed at low temperature, the first alloy phase is usually NiAl3 according to Bené's rule. It is also understood that heat of formation may get modified by local densities of the constituents forming the alloy. In this regard, it is important to identify a kinetic length scale for defining "local density" in a system. We have deposited ultrathin multilayers of Ni and Al of layer thickness in tens of nanometres with Ni:Al stoichiometric ratio as 3:1 and 1:3, respectively. Considering these stoichiometry, Ni3Al and NiAl3 are the thermodynamically favoured alloy phases in these samples. We used x-ray reflectivity, polarized neutron reflectivity, x-ray diffraction, and secondary ion mass spectroscopy to follow the alloy formation after annealing and identified the alloy phases at interfaces with nanometre resolution. Diffusion length of Ni and Al was obtained using Darken's law. Our results predict that `diffusion length' is the unique length scale that connects kinetics to local density. In another interesting observation, using "virtual Kirkendall markers" at the interfaces, we showed asymmetry in consumption of Al for alloy formation, at Al on Ni (Al/Ni) and Ni on Al (Ni/Al) interfaces by comparing as-deposited and annealed states with respect to the markers.

  3. Effect of thermal annealing on the kinetics of rehydroxylation of Eu3+:La2O3 nanocrystals.

    PubMed

    Méndez, Maria; Cesteros, Yolanda; Marsal, Lluís Francesc; Giguère, Alexandre; Drouin, Dominique; Salagre, Pilar; Formentín, Pilar; Pallarès, Josep; Aguiló, Magdalena; Díaz, Francesc; Carvajal, Joan Josep

    2012-06-01

    Europium-doped lanthanum oxide (5 mol % Eu(3+):La(2)O(3)) was prepared by calcining europium-doped lanthanum hydroxide (5 mol % Eu(3+):La(OH)(3)) previously synthesized by a simple hydrothermal method. Interestingly, we observed different emission Eu(3+) signatures depending on the phase of the host (lanthanum oxide or hydroxide) by cathodoluminescence. Taking into account that lanthanum oxide easily rehydroxylates in air, for the first time, we report the use of cathodoluminiscence as a novel characterization technique to follow the lanthanum oxide rehydroxylation reaction versus time according to different annealing procedures. Additionally, differential thermal-thermogravimetric analysis, infrared spectroscopy, and X-ray diffraction techniques were used to identify the phases formed from the Eu(3+):La(OH)(3) depending on temperature and to study the evolution of La(2)O(3) to La(OH)(3) versus time. The results showed that the higher the temperature and the longer the annealing time, the higher the resistance to rehydroxylation of the Eu(3+):La(2)O(3) sample. PMID:22621467

  4. Dissolution kinetics of small amounts of oxygen in tantalum alloy T-111 and internal oxide displacement reactions during annealing

    NASA Technical Reports Server (NTRS)

    Stecura, S.

    1976-01-01

    Oxygen was added to T-111 (Ta-8W-2Hf, wt. %) at 820 and 990 C at an oxygen pressure of about 0.0003 torr. The technique employed permitted predetermined and reproducible doping of T-111 up to 3.0 at. % oxygen. Based on the temperature dependence of the doping reaction, it is concluded that the initial rates of oxygen pickup are probably controlled by solution of oxygen into the T-111 lattice. Although hafnium oxides are more stable than those of tantalum or tungsten, analyses of extracted residues indicate that the latter oxides predominate in the as-doped specimens, presumably because of the higher concentrations of tantalum and tungsten in the alloy. However, high-temperature annealing promotes gettering of dissolved oxygen and of other oxides to form hafnium oxides. Small amounts of tantalum and tungsten oxides were still present after high-temperature annealing. Tungsten oxide (WO3) volatilizes slightly from the surface of T-111 at 990 C. The vaporization of WO3 has no apparent affect on the doping reaction.

  5. Long time behaviour of a stochastic nanoparticle

    NASA Astrophysics Data System (ADS)

    Étoré, Pierre; Labbé, Stéphane; Lelong, Jérôme

    2014-09-01

    In this article, we are interested in the behaviour of a single ferromagnetic mono-domain particle submitted to an external field with a stochastic perturbation. This model is the first step toward the mathematical understanding of thermal effects on a ferromagnet. In a first part, we present the stochastic model and prove that the associated stochastic differential equation is well defined. The second part is dedicated to the study of the long time behaviour of the magnetic moment and in the third part we prove that the stochastic perturbation induces a non-reversibility phenomenon. Last, we illustrate these results through numerical simulations of our stochastic model. The main results presented in this article are on the one hand the rate of convergence of the magnetization toward the unique stable equilibrium of the deterministic model and on the other hand a sharp estimate of the hysteresis phenomenon induced by the stochastic perturbation (remember that with no perturbation, the magnetic moment remains constant).

  6. Long-time Correlations in Electromyography Signals

    NASA Astrophysics Data System (ADS)

    Zurcher, Ulrich; Maynard, Rachel

    2006-10-01

    We have previously reported that the mean-square displacement calculated from electromyography time series of low back muscles exhibit a plateau-like behavior for intermediate times [50 ,ms < t < 0.5 ,s], so that < [xt- x0]^2 > ˜t^0. This behavior is unexpected, and indicates the presence of long-time correlations in the signal. For fractal Brownian motion, the Hurst exponent calculated from the mean-square displacement and the exponent from the spectral density P ( f) ˜1/f^α, α= 2 H + 1. For the EMG time series y^0i= xi, we have generated iterated time series, yi^n+1 = [y2 i ^n + y2i+1]/2, and have calculated the corresponding time correlation functions, C^n ( t) = < xi+ t^n xi^n>/<(xi^n)^2 >. We find that the correlation functions converge to a simple limit, C(0) = 1, C(1) = -0.5 and C(n) =0 for n >=2. This limit is consistent with the plateau behavior of the mean- square displacement. We discuss the connection between the behavior of the iterated correlation functions and the properties of the spectrum.

  7. Long time behavior of unsteady flow computations

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.

    1992-01-01

    This paper addresses a specific issue of time accuracy in the calculation of external aerodynamic problems. The class of problems discussed consists of inviscid compressible subsonic flows. These problems are governed by a convective equation. A key issue that is not understood is the long time behavior of the solution. This is important if one desires transient calculations of problems governed by the Euler equations or its derivatives such as the small disturbance equations or the potential formulations for the gust problem. Difficulties arise for two dimensional problems where the time rate decay solutions of the wave equation is slow. In concert with the above mentioned problem, exterior flows require proper modeling of the boundary conditions. In particular, this requires the truncation of infinite regions into finite regions with the aid of artificial boundaries. These boundary conditions must be consistent with the physics of the unbounded problem as well as consistent in time and space. Our treatment of the problem is discussed in detail and examples are given to verify the results.

  8. Spectral and kinetic characterization of CaS:Pr 3+ phosphor synthesized through chemical co-precipitation route and post annealing process

    NASA Astrophysics Data System (ADS)

    Pitale, Shreyas S.; Sharma, Suchinder K.; Dubey, R. N.; Qureshi, M. S.; Malik, M. M.

    2010-01-01

    Synthesis of Pr 3+ doped CaS phosphor has been reported through chemical co-precipitation route and post annealing in the presence of NaCl, KCl and NH 4Cl flux. Good crystallinity and cubic CaS phase is achieved after post-precipitation calcinations of powder at 900 °C for 1 h duration. Pseudo-spherical morphostructural features of micron-size particles are observed for phosphor prepared via chemical route. Phosphor samples are also prepared via solid-state carbothermal reduction technique for comparative studies and exhibit dendrite like structures. Prominent excitation bands at 276, 320 nm are observed for the present phosphor samples. The emission spectra show a duo-band feature at 495 and 580 nm where a spectral overlap of host lattice emission due to intrinsic defects and characteristic spectral features of Pr ion due to 3P 0- 1H 4, 3P 1- 1H 5, 1D 2- 3H 4 and 3P 0- 3F 2 transitions can be observed. The carbothermal route synthesized CaS:Pr shows spectral features of Pr ion due to 3P 0- 1H 4 and 3P 0- 3F j transitions. Electron spin resonance investigations reveal the presence of unintentional Mn 2+ through a sextet signature. F + electron trapping center is detected having g = 2.0034. Thermoluminescence glow curves possess a broad duo-band feature between room temperature -100 °C and >125 °C under host UV irradiation. Kinetic characterization using glow curve deconvolution reveals quasicontinuous distribution of traps having energy between 0.56 and 1.15 eV and frequency factors between 10 7 and 10 11/sec.

  9. Simulated annealing versus quantum annealing

    NASA Astrophysics Data System (ADS)

    Troyer, Matthias

    Based on simulated classical annealing and simulated quantum annealing using quantum Monte Carlo (QMC) simulations I will explore the question where physical or simulated quantum annealers may outperform classical optimization algorithms. Although the stochastic dynamics of QMC simulations is not the same as the unitary dynamics of a quantum system, I will first show that for the problem of quantum tunneling between two local minima both QMC simulations and a physical system exhibit the same scaling of tunneling times with barrier height. The scaling in both cases is O (Δ2) , where Δ is the tunneling splitting. An important consequence is that QMC simulations can be used to predict the performance of a quantum annealer for tunneling through a barrier. Furthermore, by using open instead of periodic boundary conditions in imaginary time, equivalent to a projector QMC algorithm, one obtains a quadratic speedup for QMC, and achieve linear scaling in Δ. I will then address the apparent contradiction between experiments on a D-Wave 2 system that failed to see evidence of quantum speedup and previous QMC results that indicated an advantage of quantum annealing over classical annealing for spin glasses. We find that this contradiction is resolved by taking the continuous time limit in the QMC simulations which then agree with the experimentally observed behavior and show no speedup for 2D spin glasses. However, QMC simulations with large time steps gain further advantage: they ``cheat'' by ignoring what happens during a (large) time step, and can thus outperform both simulated quantum annealers and classical annealers. I will then address the question how to optimally run a simulated or physical quantum annealer. Investigating the behavior of the tails of the distribution of runtimes for very hard instances we find that adiabatically slow annealing is far from optimal. On the contrary, many repeated relatively fast annealing runs can be orders of magnitude faster for

  10. EON: software for long time simulations of atomic scale systems

    NASA Astrophysics Data System (ADS)

    Chill, Samuel T.; Welborn, Matthew; Terrell, Rye; Zhang, Liang; Berthet, Jean-Claude; Pedersen, Andreas; Jónsson, Hannes; Henkelman, Graeme

    2014-07-01

    The EON software is designed for simulations of the state-to-state evolution of atomic scale systems over timescales greatly exceeding that of direct classical dynamics. States are defined as collections of atomic configurations from which a minimization of the potential energy gives the same inherent structure. The time evolution is assumed to be governed by rare events, where transitions between states are uncorrelated and infrequent compared with the timescale of atomic vibrations. Several methods for calculating the state-to-state evolution have been implemented in EON, including parallel replica dynamics, hyperdynamics and adaptive kinetic Monte Carlo. Global optimization methods, including simulated annealing, basin hopping and minima hopping are also implemented. The software has a client/server architecture where the computationally intensive evaluations of the interatomic interactions are calculated on the client-side and the state-to-state evolution is managed by the server. The client supports optimization for different computer architectures to maximize computational efficiency. The server is written in Python so that developers have access to the high-level functionality without delving into the computationally intensive components. Communication between the server and clients is abstracted so that calculations can be deployed on a single machine, clusters using a queuing system, large parallel computers using a message passing interface, or within a distributed computing environment. A generic interface to the evaluation of the interatomic interactions is defined so that empirical potentials, such as in LAMMPS, and density functional theory as implemented in VASP and GPAW can be used interchangeably. Examples are given to demonstrate the range of systems that can be modeled, including surface diffusion and island ripening of adsorbed atoms on metal surfaces, molecular diffusion on the surface of ice and global structural optimization of nanoparticles.

  11. Numerical techniques for the study of long-time correlations

    SciTech Connect

    Karney, C.F.F.

    1985-05-01

    In the study of long-time correlations extremely long orbits must be calculated. This may be accomplished much more reliably using fixed-point arithmetic. Use of this arithmetic on the Cray-1 computer is illustrated.

  12. Change of the kinetics of shock-wave deformation and fracture of VT1-0 titanium as a result of annealing

    NASA Astrophysics Data System (ADS)

    Kanel, G. I.; Razorenov, S. V.; Garkushin, G. V.; Pavlenko, A. V.; Malyugina, S. N.

    2016-06-01

    The paper presents the results of measurements of shock-wave compression profiles of VT1-0 titanium samples after rolling and in the annealed state. In the experiments, the pressure of shock compression and distance passed by the wave before emerging to the sample surface were varied. From measurements of the elastic precursor decay and compression rate in a plastic shock wave of different amplitudes, the plastic strain and the corresponding shear stresses in the initial and subsequent stages of high-rate deformation in an elastoplastic shock wave are determined. It is found that the reduction in the dislocation density as a result of annealing reduces the hardness of the material but significantly increases its dynamic yield strengh, corresponding to the strain rate above 104 s-1. With a reduction in the strain rate, this anomalous difference in the flow stresses is leveled off.

  13. Growth kinetic on the optical properties of the Pb(1-x)Mn(x)Se nanocrystals embedded in a glass matrix: thermal annealing and Mn2+ concentration.

    PubMed

    Lourenço, Sidney A; Dantas, Noelio O; Silva, Ricardo S

    2012-08-21

    Semimagnetic Pb(1-x)Mn(x)Se nanocrystals were synthesized by a fusion method in a glass matrix and characterized by optical absorption (OA), atomic/magnetic force microscopy (AFM/MFM), and photoluminescence techniques. MFM images strongly indicated the formation of Pb(1-x)Mn(x)Se magnetic phases in the glass system. Quantum dot size was manipulated by tuning annealing time. It was shown that Mn(2+) impurity affects nucleation, where Mn(2+)-doped samples present a redshift of the OA peak after a short annealing time and a blueshift after long annealing time compared to undoped PbSe NCs. This behavior was linked to the dependence of band-gap energy and the absorption selection rule on Mn(2+) concentration. Photoluminescence in the Pb(1-x)Mn(x)Se nanocrystals increases as the temperature rises up to a point and then decreases at higher temperatures. Anomalous increases in emission efficiency were analyzed by considering temperature induced carrier-transfer in semimagnetic Pb(1-x)Mn(x)Se quantum dots nanocrystals of different sizes. PMID:22766762

  14. Effect of annealing on the kinetic properties and band parameters of Hg{sub 1−x−y}Cd{sub x}Eu{sub y}Se semiconductor crystals

    SciTech Connect

    Kovalyuk, T. T. Maistruk, E. V.; Maryanchuk, P. D.

    2014-12-15

    The results of studies of the kinetic properties of Hg{sub 1−x−y}Cd{sub x}Eu{sub y}Se semiconductor crystals in the ranges of temperatures T = 77–300 K and magnetic fields H = 0.5–5 kOe before and after heat treatment of the samples in Se vapors are reported. It is established that annealing of the samples in Se vapors induces a decrease in the electron concentration. From the concentration dependence of the electron effective mass at the Fermi level, the band gap, the matrix element of interband interaction, and the electron effective mass at the bottom of the conduction band are determined.

  15. Spectra of thermoprogrammed annealing of photoinduced color centers

    NASA Astrophysics Data System (ADS)

    Glazkova, N. I.; Mikhaylov, R. V.; Kuznetsov, V. N.

    2015-04-01

    The kinetics of photoinduced formation and thermoprogrammed annealing of color centers in photochromic rutile ceramics has been studied in situ with the aid of a specially designed attachment for a spectrofluorimeter. Using a regime of constant heating rate, the spectra of color center annealing have been measured and the energy depths of hole traps responsible for the annealing of these centers have been determined.

  16. The kinetics of point defects in low-power pulsed laser annealing of ion-implanted CdTe/CdMnTe double quantum well structures

    SciTech Connect

    Sands, D.; Howari, H.

    2005-10-15

    Double quantum wells of CdTe in CdMnTe were implanted with argon ions to create vacancies and interstitials. This destroyed the photoluminescence (PL) emission from the top well and reduced the intensity from the bottom well. Pulsed radiation from an excimer laser emitting at 308 nm, with a full width at half maximum pulse lengths of 26 ns, was used to anneal the implantation damage and restore the luminescence. An optimum fluence close to 50 mJ cm{sup -2} exists for laser annealing, with the best results being obtained if single pulses are employed. Prior irradiation at lower fluences prevents full recovery of the luminescence when the higher fluence pulse is applied, and irradiation at lower fluences on unimplanted material causes a reduction in the luminescence from the top well. These results are interpreted in terms of vacancy creation and annihilation during the laser pulse. Calculations of the total number of vacancies created suggest that annihilation of the Te vacancies is the limiting step in the recovery of the PL in implanted material. It is proposed that loss of material from the surface, amounting to less than a monolayer, leads to the effective diffusion of vacancies into the solid.

  17. Space Charge Models for Particle Tracking on Long Time Scales

    SciTech Connect

    Holmes, Jeffrey A; Cousineau, Sarah M; Shishlo, Andrei P; Potts III, Robert E

    2013-01-01

    In order to efficiently track charged particles over long times, most tracking codes use either analytic charge distributions or particle-in-cell (PIC) methods based on fast Fourier transforms (FFTs). While useful for theoretical studies, analytic distribution models do not allow accurate simulation of real machines. PIC calculations can utilize realistic space charge distributions, but these methods suffer from the presence of discretization errors. We examine the situation for particle tracking with space charge over long times, and consider possible ideas to improve the accuracy of such calculations.

  18. Long-time tails of correlation and memory functions

    NASA Astrophysics Data System (ADS)

    Sawada, Isao

    2002-11-01

    We review the generalized Langevin equation, which is a transformation and reformulation of equation of motion, from the two viewpoints: the projection operator method developed by Mori and the recurrence relations method developed by Lee. The fluctuating forces acting on the Bloch electrons’ current are clarified the strongly colored quantum fluctuations with the spontaneous interband transitions leading to a long-time tail of 1/ t for the envelope of the memory function. The velocity autocorrelation functions in the coupled harmonic oscillator on the Bethe lattice have a long-time tail of 1/t t. The oscillation and the form of decay found in correlation functions affect transport coefficients given by the integrated intensity up to infinity. We also study the force-force correlation functions often used as an approximation to the memory function.

  19. Finite difference schemes for long-time integration

    NASA Technical Reports Server (NTRS)

    Haras, Zigo; Taasan, Shlomo

    1993-01-01

    Finite difference schemes for the evaluation of first and second derivatives are presented. These second order compact schemes were designed for long-time integration of evolution equations by solving a quadratic constrained minimization problem. The quadratic cost function measures the global truncation error while taking into account the initial data. The resulting schemes are applicable for integration times fourfold, or more, longer than similar previously studied schemes. A similar approach was used to obtain improved integration schemes.

  20. Long-time behavior of many-particle quantum decay

    SciTech Connect

    Campo, A. del

    2011-07-15

    While exponential decay is ubiquitous in nature, deviations at both short and long times are dictated by quantum mechanics. Nonexponential decay is known to arise due to the possibility of reconstructing the initial state from the decaying products. We discuss the quantum decay dynamics by tunneling of a many-particle system, characterizing the long-time nonexponential behavior of the nonescape and survival probabilities. The effects of contact interactions and quantum statistics are described. It is found that, whereas for noninteracting bosons the long-time decay follows a power law with an exponent linear in the number of particles N, the exponent becomes quadratic in N in the fermionic case. The same results apply to strongly interacting many-body systems related by the generalized Bose-Fermi duality. The faster fermionic decay can be traced back to the effective hard-core interactions between particles, which are as well the decaying products, and exhibit spatial antibunching which hinders the reconstruction of the initial unstable state. The results are illustrated with a paradigmatic model of quantum decay from a trap allowing leaks by tunneling, whose dynamics is described exactly by means of an expansion in resonant states.

  1. Fast computation of recurrences in long time series

    NASA Astrophysics Data System (ADS)

    Rawald, Tobias; Sips, Mike; Marwan, Norbert; Dransch, Doris

    2014-05-01

    The quadratic time complexity of calculating basic RQA measures, doubling the size of the input time series leads to a quadrupling in operations, impairs the fast computation of RQA in many application scenarios. As an example, we analyze the Potsdamer Reihe, an ongoing non-interrupted hourly temperature profile since 1893, consisting of 1,043,112 data points. Using an optimized single-threaded CPU implementation this analysis requires about six hours. Our approach conducts RQA for the Potsdamer Reihe in five minutes. We automatically split a long time series into smaller chunks (Divide) and distribute the computation of RQA measures across multiple GPU devices. To guarantee valid RQA results, we employ carryover buffers that allow sharing information between pairs of chunks (Recombine). We demonstrate the capabilities of our Divide and Recombine approach to process long time series by comparing the runtime of our implementation to existing RQA tools. We support a variety of platforms by employing the computing framework OpenCL. Our current implementation supports the computation of standard RQA measures (recurrence rate, determinism, laminarity, ratio, average diagonal line length, trapping time, longest diagonal line, longest vertical line, divergence, entropy, trend) and also calculates recurrence times. To utilize the potential of our approach for a number of applications, we plan to release our implementation under an Open Source software license. It will be available at http://www.gfz-potsdam.de/fast-rqa/. Since our approach allows to compute RQA measures for a long time series fast, we plan to extend our implementation to support multi-scale RQA.

  2. Storage life of parachutes -- long time material degradation

    SciTech Connect

    Ericksen, R.H.; Whinery, L.D.

    1995-04-01

    This study considers the long-time storage of single-use nylon and Kevlar{reg_sign} parachutes. The authors present data from a 29-year-old nylon parachute, and nylon and Kevlar{reg_sign} test samples stored 14 years under ambient conditions in the absence of sunlight. They compare the results with existing predictions of parachute material degradation and other aging data. X-ray photoelectron spectroscopy analyses were preformed on Nylon and Kevlar{reg_sign} fabrics that were degraded by elevated temperature aging. The results suggest that this technique should be further examined as a {open_quotes}non-destructive{close_quotes} method of detecting degradation.

  3. Long-time dynamics through parallel trajectory splicing

    SciTech Connect

    Perez, Danny; Cubuk, Ekin D.; Waterland, Amos; Kaxiras, Efthimios; Voter, Arthur F.

    2015-11-24

    Simulating the atomistic evolution of materials over long time scales is a longstanding challenge, especially for complex systems where the distribution of barrier heights is very heterogeneous. Such systems are difficult to investigate using conventional long-time scale techniques, and the fact that they tend to remain trapped in small regions of configuration space for extended periods of time strongly limits the physical insights gained from short simulations. We introduce a novel simulation technique, Parallel Trajectory Splicing (ParSplice), that aims at addressing this problem through the timewise parallelization of long trajectories. The computational efficiency of ParSplice stems from a speculation strategy whereby predictions of the future evolution of the system are leveraged to increase the amount of work that can be concurrently performed at any one time, hence improving the scalability of the method. ParSplice is also able to accurately account for, and potentially reuse, a substantial fraction of the computational work invested in the simulation. We validate the method on a simple Ag surface system and demonstrate substantial increases in efficiency compared to previous methods. As a result, we then demonstrate the power of ParSplice through the study of topology changes in Ag42Cu13 core–shell nanoparticles.

  4. Long-time dynamics through parallel trajectory splicing

    DOE PAGESBeta

    Perez, Danny; Cubuk, Ekin D.; Waterland, Amos; Kaxiras, Efthimios; Voter, Arthur F.

    2015-11-24

    Simulating the atomistic evolution of materials over long time scales is a longstanding challenge, especially for complex systems where the distribution of barrier heights is very heterogeneous. Such systems are difficult to investigate using conventional long-time scale techniques, and the fact that they tend to remain trapped in small regions of configuration space for extended periods of time strongly limits the physical insights gained from short simulations. We introduce a novel simulation technique, Parallel Trajectory Splicing (ParSplice), that aims at addressing this problem through the timewise parallelization of long trajectories. The computational efficiency of ParSplice stems from a speculation strategymore » whereby predictions of the future evolution of the system are leveraged to increase the amount of work that can be concurrently performed at any one time, hence improving the scalability of the method. ParSplice is also able to accurately account for, and potentially reuse, a substantial fraction of the computational work invested in the simulation. We validate the method on a simple Ag surface system and demonstrate substantial increases in efficiency compared to previous methods. As a result, we then demonstrate the power of ParSplice through the study of topology changes in Ag42Cu13 core–shell nanoparticles.« less

  5. Differential force microscope for long time-scale biophysical measurements

    PubMed Central

    Choy, Jason L.; Parekh, Sapun H.; Chaudhuri, Ovijit; Liu, Allen P.; Bustamante, Carlos; Footer, Matthew J.; Theriot, Julie A.; Fletcher, Daniel A.

    2011-01-01

    Force microscopy techniques including optical trapping, magnetic tweezers, and atomic force microscopy (AFM) have facilitated quantification of forces and distances on the molecular scale. However, sensitivity and stability limitations have prevented the application of these techniques to biophysical systems that generate large forces over long times, such as actin filament networks. Growth of actin networks drives cellular shape change and generates nano-Newtons of force over time scales of minutes to hours, and consequently network growth properties have been difficult to study. Here, we present an AFM-based differential force microscope with integrated epifluorescence imaging in which two adjacent cantilevers on the same rigid support are used to provide increased measurement stability. We demonstrate 14 nm displacement control over measurement times of 3 hours and apply the instrument to quantify actin network growth in vitro under controlled loads. By measuring both network length and total network fluorescence simultaneously, we show that the average cross-sectional density of the growing network remains constant under static loads. The differential force microscope presented here provides a sensitive method for quantifying force and displacement with long time-scale stability that is useful for measurements of slow biophysical processes in whole cells or in reconstituted molecular systems in vitro. PMID:17477674

  6. A method for detecting changes in long time series

    SciTech Connect

    Downing, D.J.; Lawkins, W.F.; Morris, M.D.; Ostrouchov, G.

    1995-09-01

    Modern scientific activities, both physical and computational, can result in time series of many thousands or even millions of data values. Here the authors describe a statistically motivated algorithm for quick screening of very long time series data for the presence of potentially interesting but arbitrary changes. The basic data model is a stationary Gaussian stochastic process, and the approach to detecting a change is the comparison of two predictions of the series at a time point or contiguous collection of time points. One prediction is a ``forecast``, i.e. based on data from earlier times, while the other a ``backcast``, i.e. based on data from later times. The statistic is the absolute value of the log-likelihood ratio for these two predictions, evaluated at the observed data. A conservative procedure is suggested for specifying critical values for the statistic under the null hypothesis of ``no change``.

  7. Long Time Convergence of the Bose-Einstein Condensation

    NASA Astrophysics Data System (ADS)

    Lu, Xuguang

    2016-02-01

    We study long time behavior of the Bose-Einstein condensation of measure-valued solutions F_t of the space homogeneous and velocity isotropic Boltzmann equation for Bose-Einstein particles at low temperature. We prove that if F_0≥ 0 is a non-singular Borel measure on R_{≥ 0} satisfying a very low temperature condition and that the ratio F_0([0,\\varepsilon ])/\\varepsilon ^{α } is sufficiently large for all \\varepsilon in (0, R] for some constants 0<α <1, R>0, then there exists a solution F_t of the equation on [0,+∞) with the initial datum F_0 such that F_t({0}) converges to the expected Bose-Einstein condensation as t→ +∞. We also show that such initial data F_0 exist extensively.

  8. Valproic Acid Induced Hyperammonemia in a Long Time Treated Patient

    PubMed Central

    Seide, Margaret; Stern, Robert G.

    2016-01-01

    We report a case of a patient who had been on long time valproic acid for treatment of bipolar affective disorder. While being an inpatient, serology ammonia level testing revealed a very high ammonia level despite being asymptomatic. Dual therapy of carnitine and lactulose was provided to the patient for treatment of the hyperammonemia. It should also be noted that, during this treatment, valproic acid was not stopped. Consequently, this case illustrates that patients can present asymptomatically despite very high ammonia levels and hyperammonemia can occur in chronic valproic acid despite not increasing the dose of the medication and psychiatrists do not need to discontinue valproic acid in the presence of elevated levels of ammonia if the patient shows no signs of encephalopathy or delirium. PMID:27516916

  9. Relaxation Characteristics of 828 DGEBA Epoxy Over Long Time Periods

    NASA Astrophysics Data System (ADS)

    Hoo, Jasmine; Reprogle, Riley C.; Wisler, Brian; Arechederra, Gabriel K.; McCoy, John D.; Kropka, Jamie M.; Long, Kevin N.

    The mechanical relaxation response in uniaxial compression of a diglycidyl ether of bisphenol-A epoxy was studied over long time periods. The epoxy, 828DEA, was Epon 828 cured with diethanolamine (DEA). A sample was compressed at constant strain rate and held at various strain levels for days to allow the sample to relax. The sample was then compressed further and held once more. The relaxation curves were fit with a stretched exponential function. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  10. Valproic Acid Induced Hyperammonemia in a Long Time Treated Patient.

    PubMed

    Aiyer, Rohit; Seide, Margaret; Stern, Robert G

    2016-01-01

    We report a case of a patient who had been on long time valproic acid for treatment of bipolar affective disorder. While being an inpatient, serology ammonia level testing revealed a very high ammonia level despite being asymptomatic. Dual therapy of carnitine and lactulose was provided to the patient for treatment of the hyperammonemia. It should also be noted that, during this treatment, valproic acid was not stopped. Consequently, this case illustrates that patients can present asymptomatically despite very high ammonia levels and hyperammonemia can occur in chronic valproic acid despite not increasing the dose of the medication and psychiatrists do not need to discontinue valproic acid in the presence of elevated levels of ammonia if the patient shows no signs of encephalopathy or delirium. PMID:27516916

  11. Long time dynamical evolution of highly elliptical satellites orbits

    NASA Astrophysics Data System (ADS)

    Kuznetsov, E.; Zakharova, P.

    2015-08-01

    Dynamical evolution of objects near Molniya-type orbits is considered. Initial conditions correspond to highly elliptical satellite orbits with eccentricities 0.65 and a critical inclination 63.4°. Semi-major axis is varied near resonant value 26560 km in an interval 500 km. Variations were analyzed for positional orbital elements, an ascending node longitude and an argument of pericenter. Initial conditions determined when orbital elements variations are minimal. These regions can be used as orbits for safe stationing satellites which finish work on Molniya-type orbits. The study of dynamical evolution on long time intervals was performed on the basis of the results of numerical simulation. The model of disturbing forces taken into account the main perturbing factors. Time interval was up to 24 yr. Area-to-mass ratio varied from small values corresponding to satellites to big ones corresponding to space debris.

  12. Locally activated Monte Carlo method for long-time-scale simulations

    NASA Astrophysics Data System (ADS)

    Kaukonen, M.; Peräjoki, J.; Nieminen, R. M.; Jungnickel, G.; Frauenheim, Th.

    2000-01-01

    We present a technique for the structural optimization of atom models to study long time relaxation processes involving different time scales. The method takes advantage of the benefits of both the kinetic Monte Carlo (KMC) and the molecular dynamics simulation techniques. In contrast to ordinary KMC, our method allows for an estimation of a true lower limit for the time scale of a relaxation process. The scheme is fairly general in that neither the typical pathways nor the typical metastable states need to be known prior to the simulation. It is independent of the lattice type and the potential which describes the atomic interactions. It is adopted to study systems with structural and/or chemical inhomogeneity which makes it particularly useful for studying growth and diffusion processes in a variety of physical systems, including crystalline bulk, amorphous systems, surfaces with adsorbates, fluids, and interfaces. As a simple illustration we apply the locally activated Monte Carlo to study hydrogen diffusion in diamond.

  13. Thermal annealing of GaAs concentrator solar cells

    NASA Technical Reports Server (NTRS)

    Curtis, H. B.; Brinker, David J.

    1991-01-01

    Isochronal and isothermal annealing tests were performed on GaAs concentrator cells which were irradiated with electrons of various energies to fluences up to 1 x 10(exp 16) e/sq cm. The results include: (1) For cells irradiated with electrons from 0.7 to 2.3 MeV, recovery decreases with increasing electron energy. (2) As determined by the un-annealed fractions, isothermal and isochronal annealing produce the same recovery. Also, cells irradiated to 3 x 10(exp 15) or 1 x 10(exp 16) e/sq cm recover to similar un-annealed fractions. (3) Some significant annealing is being seen at 150 C although very long times are required.

  14. Attractors and Long Time Behavior of von Karman Thermoelastic Plates

    SciTech Connect

    Chueshov, Igor Lasiecka, Irena

    2008-10-15

    This paper undertakes a study of asymptotic behavior of solutions corresponding to von Karman thermoelastic plates. A distinct feature of the work is that the model considered has no added dissipation-particularly mechanical dissipation typically added to plate equation when long time-behavior is considered. Thus, the model consists of undamped oscillatory plate equation strongly coupled with heat equation. Nevertheless we are able to show that the ultimate (asymptotic) behavior of the von Karman evolution is described by finite dimensional global attractor. In addition, the obtained estimate for the dimension and the size of the attractor are independent of the rotational inertia parameter {gamma} and heat/thermal capacity {kappa}, where the former is known to change the character of dynamics from hyperbolic ({gamma}>0) to parabolic like ({gamma}=0). Other properties of attractors such as additional smoothness and upper-semicontinuity with respect to parameters {gamma} and {kappa} are also established. The main ingredients of the proofs are (i) sharp regularity of Airy's stress function, and (ii) newly developed (Chueshov and Lasiecka in Memoirs of AMS, in press) 'compensated' compactness methods applicable to non-compact dynamics.

  15. Long-time observation of meteor induced layers with ionosonde

    NASA Astrophysics Data System (ADS)

    Yusupov, Kamil; Akchurin, Adel

    2016-07-01

    It is considered that the main theory explaining appearance of sporadic E is the theory of wind shear, which means (includes) the presence and movement of nodes converging tidal wind through the height region of the most frequent occurrence Es (120-140km) [Mathew et. all, 1998]. However, the appearance of intense layers, following its name, are sporadic, and such variability cannot to explain by the influence of tidal waves only. Another indication inconsistency theory of wind shear is the appearance of so-called transient Es layers [Maruiama, 2003]. The distinctive feature of this trace is the high critical frequency (> 5 MHz), a constant height, weak amplitude, all trace semitransparent and short lifetime [Maruiama et. all, 2003 and 2008 and references there]. Because of duration, such layer is opposite to the traditional persistent Es layer, which we do not consider in this paper. Various researchers have used different terms for such spontaneous Es, it is meteor echo, meteor induced Es, spontaneously formed sporadic Es patches resulting of the Fresnel scattering from a region of enhanced plasma density along the meteor trail, transitory Es and transient Es. Since the term transient Es is unstable, to avoid confusion, we will stick to this term. Since meteor echo is not fully satisfy this term by some parameter, we will describe the properties of transient Es based on the ionogram properties and not from physics of its origin. We used data from our ionosonde with one-minute ionogram repetition rate for 2010-2014 years. For processing performed a method are using to select beatings and the ionosphere reflectivity of the layers by means A-, H-and AΣ-map [Akchurin, 2011; Yusupov, 2014]. This maps allow to collect transient Es appearance over a long-time. Such statistics comparison with meteor showers activity showed good agreement. It shows the presence of the transient Es formation mechanism, which coupling with meteors.

  16. Optimizing the search for transiting planets in long time series

    NASA Astrophysics Data System (ADS)

    Ofir, Aviv

    2014-01-01

    Context. Transit surveys, both ground- and space-based, have already accumulated a large number of light curves that span several years. Aims: The search for transiting planets in these long time series is computationally intensive. We wish to optimize the search for both detection and computational efficiencies. Methods: We assume that the searched systems can be described well by Keplerian orbits. We then propagate the effects of different system parameters to the detection parameters. Results: We show that the frequency information content of the light curve is primarily determined by the duty cycle of the transit signal, and thus the optimal frequency sampling is found to be cubic and not linear. Further optimization is achieved by considering duty-cycle dependent binning of the phased light curve. By using the (standard) BLS, one is either fairly insensitive to long-period planets or less sensitive to short-period planets and computationally slower by a significant factor of ~330 (for a 3 yr long dataset). We also show how the physical system parameters, such as the host star's size and mass, directly affect transit detection. This understanding can then be used to optimize the search for every star individually. Conclusions: By considering Keplerian dynamics explicitly rather than implicitly one can optimally search the BLS parameter space. The presented Optimal BLS enhances the detectability of both very short and very long period planets, while allowing such searches to be done with much reduced resources and time. The Matlab/Octave source code for Optimal BLS is made available. The MATLAB code is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/561/A138

  17. Long time black hole evaporation with bounded Hawking flux

    NASA Astrophysics Data System (ADS)

    Grumiller, D.

    2004-05-01

    The long time behaviour of an evaporating black hole presents a challenge to theoretical physics and touches relevant conceptual issues of quantum gravity, such as the information paradox. There are basically two strategies: top-down, i.e., constructing first a full quantum theory of gravity and discussing black hole evaporation as a particular application thereof, and bottom-up, i.e., sidestepping the difficulties inherent to the former approach by invoking `reasonable' ad hoc assumptions. Exploiting the fact that the Schwarzschild black hole can be described by means of an effective theory in 2D, a particular dilaton gravity model, the latter route is pursued. A crucial technical ingredient is Izawa's result on consistent deformations of 2D BF theory, while the most relevant physical assumption is boundedness of the asymptotic matter flux during the whole evaporation process. Together with making technical assumptions which can be relaxed, the dynamics of the evaporating black hole is described by means of consistent deformations of the underlying gauge symmetries with only one important deformation parameter. An attractor solution, the end-point of the evaporation process, is found. Its metric is flat. However, the behaviour of the dilaton field (which corresponds to the surface area) is non-trivial: it is argued that during the final flicker a first-order phase transition occurs from a linear to a constant dilaton vacuum. Consequently, a shock wave is emitted as a final `thunderbolt' with a total energy of a fraction of the Planck mass. Relations to ultrarelativistic boosts are pointed out. Another fraction of the Planck mass may reside in a cold remnant. The physical discussion addresses the lifetime, the specific heat, the Carter Penrose diagram, the information paradox and cosmological implications. The phenomenon of `dilaton evaporation' to a constant dilaton vacuum might be of relevance also for higher dimensional scalar tensor theories. Based on an

  18. Improved zircon fission-track annealing model based on reevaluation of annealing data

    SciTech Connect

    Guedes, S.; Moreira, Pedro; Devanathan, Ramaswami; Weber, William J.; Hadler, J. C.

    2012-11-10

    The thermal recovery (annealing) of mineral structure modified by the passage of fission fragments has long been studied by the etching technique. In minerals like apatite and zircon, the annealing kinetics are fairly well constrained from the hour to the million-year timescale and have been described by empirical and semi-empirical equations. On the other hand, laboratory experiments, in which ion beams interact with minerals and synthetic ceramics, have shown that there is a threshold temperature beyond which thermal recovery impedes ion-induced amorphization. In this work, it is assumed that this behavior can be extended to the annealing of fission tracks in minerals. It is proposed that there is a threshold temperature, T 0, beyond which fission tracks are erased within a time t 0, which is independent of the current state of lattice deformation. This implies that iso-annealing curves should converge to a fanning point in the Arrhenius pseudo-space (ln t vs. 1/T). Based on the proposed hypothesis, and laboratory and geological data, annealing equations are reevaluated. The geological timescale estimations of a model arising from this study are discussed through the calculation of partial annealing zone and closure temperature, and comparison with geological sample constraints found in literature. It is shown that the predictions given by this model are closer to field data on closure temperature and partial annealing zone than predictions given by previous models.

  19. Improved zircon fission-track annealing model based on reevaluation of annealing data

    SciTech Connect

    Guedes, Sandro; Moreira, Pedro A.F.P.; Devanathan, Ram; Weber, William J; Hadler, Julio C

    2013-01-01

    The thermal recovery (annealing) of mineral structure modified by the passage of fission fragments has long been studied by the etching technique. In minerals like apatite and zircon, the annealing kinetics are fairly well constrained from the hour to the million-year timescale and have been described by empirical and semi-empirical equations. On the other hand, laboratory experiments, in which ion beams interact with minerals and synthetic ceramics, have shown that there is a threshold temperature beyond which thermal recovery impedes ion-induced amorphization. In this work, it is assumed that this behavior can be extended to the annealing of fission tracks in minerals. It is proposed that there is a threshold temperature, T0, beyond which fission tracks are erased within a time t0, which is independent of the current state of lattice deformation. This implies that iso-annealing curves should converge to a fanning point in the Arrhenius pseudo-space (ln t vs. 1/T). Based on the proposed hypothesis, and laboratory and geological data, annealing equations are reevaluated. The geological timescale estimations of a model arising from this study are discussed through the calculation of partial annealing zone and closure temperature, and comparison with geological sample constraints found in literature. It is shown that the predictions given by this model are closer to field data on closure temperature and partial annealing zone than predictions given by previous models.

  20. Composition dependent thermal annealing behaviour of ion tracks in apatite

    NASA Astrophysics Data System (ADS)

    Nadzri, A.; Schauries, D.; Mota-Santiago, P.; Muradoglu, S.; Trautmann, C.; Gleadow, A. J. W.; Hawley, A.; Kluth, P.

    2016-07-01

    Natural apatite samples with different F/Cl content from a variety of geological locations (Durango, Mexico; Mud Tank, Australia; and Snarum, Norway) were irradiated with swift heavy ions to simulate fission tracks. The annealing kinetics of the resulting ion tracks was investigated using synchrotron-based small-angle X-ray scattering (SAXS) combined with ex situ annealing. The activation energies for track recrystallization were extracted and consistent with previous studies using track-etching, tracks in the chlorine-rich Snarum apatite are more resistant to annealing than in the other compositions.

  1. Recent progress of quantum annealing

    SciTech Connect

    Suzuki, Sei

    2015-03-10

    We review the recent progress of quantum annealing. Quantum annealing was proposed as a method to solve generic optimization problems. Recently a Canadian company has drawn a great deal of attention, as it has commercialized a quantum computer based on quantum annealing. Although the performance of quantum annealing is not sufficiently understood, it is likely that quantum annealing will be a practical method both on a conventional computer and on a quantum computer.

  2. GenAnneal: Genetically modified Simulated Annealing

    NASA Astrophysics Data System (ADS)

    Tsoulos, Ioannis G.; Lagaris, Isaac E.

    2006-05-01

    A modification of the standard Simulated Annealing (SA) algorithm is presented for finding the global minimum of a continuous multidimensional, multimodal function. We report results of computational experiments with a set of test functions and we compare to methods of similar structure. The accompanying software accepts objective functions coded both in Fortran 77 and C++. Program summaryTitle of program:GenAnneal Catalogue identifier:ADXI_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXI_v1_0 Program available from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer for which the program is designed and others on which it has been tested: The tool is designed to be portable in all systems running the GNU C++ compiler Installation: University of Ioannina, Greece on Linux based machines Programming language used:GNU-C++, GNU-C, GNU Fortran 77 Memory required to execute with typical data: 200 KB No. of bits in a word: 32 No. of processors used: 1 Has the code been vectorized or parallelized?: No No. of bytes in distributed program, including test data, etc.:84 885 No. of lines in distributed program, including test data, etc.:14 896 Distribution format: tar.gz Nature of physical problem: A multitude of problems in science and engineering are often reduced to minimizing a function of many variables. There are instances that a local optimum does not correspond to the desired physical solution and hence the search for a better solution is required. Local optimization techniques are frequently trapped in local minima. Global optimization is hence the appropriate tool. For example, solving a non-linear system of equations via optimization, employing a "least squares" type of objective, one may encounter many local minima that do not correspond to solutions (i.e. they are far from zero). Typical running time: Depending on the objective function. Method of solution: We modified the process of step selection that the traditional Simulated

  3. Long-Time Performance of a Stainless Steel Crossflow Filter with Simulated Hanford Tank Waste

    SciTech Connect

    Schonewill, Philip P.; Daniel, Richard C.; Shimskey, Rick W.; Burns, Carolyn A.; Billing, Justin M.; Peterson, Reid A.

    2015-10-01

    The long-time (>100 hours of operation) flux was measured for a set of tests where slurry waste simulant was separated and continuously recycled in a stainless steel crossflow filter. The tests were conducted at various constant axial velocities and transmembrane pressures. In all five tests, the flux continued to decay at long times and did not reach a steady-state. The long-time slope of the decay was unaffected by the axial velocity, and larger transmembrane pressure resulted in a larger slope. The experimental results are compared to theoretical predictions of the time to initiate cake formation and the time to reach steady-state, both of which do not imply long-time phenomena would be expected. A more reasonable match between theory and experiment was achieved using a model based on the principles of dead-end filtration.

  4. [Detection of N-acetylneuraminic acid with long-time application of hormonal contraceptives (author's transl)].

    PubMed

    Klinger, G; Kunstmann, F W; Stelzner, A

    1981-01-01

    The total level of N-acetylneuraminic acid in serum was found to be affected by long-time application of hormonal contraceptives. That effect appeared to depend on oestrogen. The problem of reversibility is discussed. PMID:7053175

  5. Learning quantum annealing

    NASA Astrophysics Data System (ADS)

    Behrman, Elizabeth; Steck, James

    We propose and develop a new quantum algorithm, whereby a quantum system can learn to anneal to a desired ground state. We demonstrate successful learning of entanglement for a two-qubit system, then bootstrap to larger systems. We also show that the method is robust to noise and decoherence.

  6. Quo Vadis quantum annealing?

    NASA Astrophysics Data System (ADS)

    Das, Arnab; Suzuki, Sei

    2015-02-01

    In this article we sketch a broad outline of quantum annealing as a framework for realizing analog quantum computation. We provide a short review of the basic ideas and discuss some issues relevant to the current scenario of condensed matter physics and quantum computation.

  7. Resonant-state expansions and the long-time behavior of quantum decay

    SciTech Connect

    Garcia-Calderon, Gaston; Maldonado, Irene; Villavicencio, Jorge

    2007-07-15

    It is shown that a representation of the decaying wave function as a resonant sum plus a nonexponential integral term may be written as a purely discrete resonant sum by evaluating at long times the integral term by the steepest descents method, and then expanding the resulting expression in terms of resonant states. This leads to a representation that is valid along the exponential and the inverse power in time regimes. A model calculation using the {delta} potential allows us to make a comparison of the expansion with numerical integrations in terms of continuum wave functions and, in the long time regime, with an exact analytic expression of the integral term obtained using the steepest descents method. The results demonstrate that resonant states give a correct description of the long-time behavior of decay.

  8. Universal Long-Time Behavior of Nuclear Spin Decays in a Solid

    NASA Astrophysics Data System (ADS)

    Morgan, S. W.; Fine, B. V.; Saam, B.

    2008-08-01

    Magnetic resonance studies of nuclear spins in solids are exceptionally well suited to probe the limits of statistical physics. We report experimental results indicating that isolated macroscopic systems of interacting nuclear spins possess the following fundamental property: spin decays that start from different initial configurations quickly evolve towards the same long-time behavior. This long-time behavior is characterized by the shortest ballistic microscopic time scale of the system and therefore falls outside of the validity range for conventional approximations of statistical physics. We find that the nuclear free-induction decay and different solid echoes in hyperpolarized solid xenon all exhibit sinusoidally modulated exponential long-time behavior characterized by identical time constants. This universality was previously predicted on the basis of analogy with resonances in classical chaotic systems.

  9. Photophysicals and photochemicals studies of zinc(II) phthalocyanine in long time circulation micelles for photodynamic therapy use.

    PubMed

    Sibata, M N; Tedesco, A C; Marchetti, J M

    2004-10-01

    Long time circulation systems, such as polymeric micelles, represent a growing area in biomedical research. These microparticles can be used in many biological systems to provide appropriate drug levels with a specific biodistribution. Long time circulation micelles (LTCM) were routinely prepared using PEG-5000-DSPE (polyethyleneglycol-5000-distearoil-phosphatidyl-ethanolamine) and zinc(II) phthalocyanine (ZnPc) as a photosensitizer and fluorescent probe. This compound belongs to a second generation of photoactive agents, mainly used in photodynamic therapy (PDT) of neoplasic tissues. Their high selectivity for tumoral target tissues as well as high phototoxicity based on singlet oxygen generation renders the utilization of these compounds feasible as an alternative therapy for cancer treatment. LTCM were characterized by classical spectroscopic techniques. Absorbance measurements indicated that the drug was s completely loaded into LTCM (epsilon = 2.41 x 10(5) cm(-1)). This was also verified by steady state and time-resolved fluorescence measurements. The lifetime profiles of ZnPc decay curves were fitted according to biexponential function (tau1 = 3.9 ns and tau2 = 15.5 ns) indicating different locations for ZnPc into LTCM. The time-resolved spectroscopy measurements for ZnPc triplet excited state lifetimes (tauT) were calculated from the kinetic analysis of transient decays at the absorption maximum (480 nm), by using laser flash photolysis technique. All the spectroscopy measurements performed allowed us to conclude that, ZnPc in LTCM is a promising drug delivery system (DDS) for PDT. PMID:15451001

  10. Bridging Home: Building Relationships between Immigrant and Long-Time Resident Youth

    ERIC Educational Resources Information Center

    Dryden-Peterson, Sarah

    2010-01-01

    Background: There is rising evidence that relationships that bridge between immigrants and long-time residents are critical to immigrant integration and to the overall heath of communities. The processes by which this bridging social capital is built are not well understood. Schools in new immigrant destinations, as spaces in which diverse youth…

  11. Using time filtering to control the long-time instability in seismic wave simulation

    NASA Astrophysics Data System (ADS)

    Gao, L.; Brossier, R.; Virieux, J.

    2016-03-01

    Long-time instabilities have been observed in various scenarios of numerical simulation for seismic wave propagation. They appear as slowly magnifying spurious oscillations in the seismograms at the late stage of the simulation. Their magnifying speed is typically much slower than the magnifying speed observed when the Courant-Friedrichs-Lewy condition is violated. The simulations can therefore continue to proceed for a relatively long period without floating-point overflow. The impact of the long-time instabilities on the simulation accuracy at the early stage can be negligible in some cases. In existing literatures, spatial-filtering techniques that, in principle, average the solution within certain spatial range at the same time level are typically utilized to control the long-time instability. In this paper, we present an alternative time-filtering approach that, in principle, averages the solution at different time levels of the same spatial location to control the long-time instability. Comparing with the spatial filtering, the advantages of this time-filtering approach lie in its flexibility, particularly when boundaries or interfaces are involved, its simplicity and low additional arithmetic operations, at the expense of extra memory cost. When application of the time filtering is localized to regions where long-time instabilities are emitted from, for example, a boundary or an interface layer, the additional cost is negligible when compared with the cost of wave simulation. For linear wave equations, this time-filtering approach can be understood as the introduction of artificial diffusion. Its application has impact on the accuracy of the solution and the restriction of the time step size. We present an indicator-based approach to adjust the filtering parameters both spatially and temporally, in order to provide the best trade-off between accuracy and stability. The indicator is calculated heuristically by monitoring the spurious oscillation as the

  12. A Study of the Batch Annealing of Cold-Rolled HSLA Steels Containing Niobium or Titanium

    NASA Astrophysics Data System (ADS)

    Fang, Chao; Garcia, C. Isaac; Choi, Shi-Hoon; DeArdo, Anthony J.

    2015-08-01

    The batch annealing behavior of two cold-rolled, microalloyed HSLA steels has been studied in this program. One steel was microalloyed with niobium while the other with titanium. A successfully batch annealed steel will exhibit minimum variation in properties along the length of the coil, even though the inner and outer wraps experience faster heating and cooling rates and lower soaking temperatures, i.e., the so-called "cold spot" areas, than the mid-length portion of the coil, i.e., the so-called "hot spot" areas. The variation in strength and ductility is caused by differences in the extent of annealing in the different areas. It has been known for 30 years that titanium-bearing HSLA steels show more variability after batch annealing than do the niobium-bearing steels. One of the goals of this study was to try to explain this observation. In this study, the annealing kinetics of the surface and center layers of the cold-rolled sheet were compared. The surface and center layers of the niobium steel and the surface layer of the titanium steel all showed similar annealing kinetics, while the center layer of the titanium steel exhibited much slower kinetics. Metallographic results indicate that the stored energy of the cold-rolled condition, as revealed by grain center sub-grain boundary density, appeared to strongly influence the annealing kinetics. The kinetics were followed by the Kernel Average Misorientation reconstruction of the microstructure at different stages on annealing. Possible pinning effects caused by microalloy precipitates were also considered. Methods of improving uniformity and increasing kinetics, involving optimizing both hot-rolled and cold-rolled microstructure, are suggested.

  13. Long-time dynamic compatibility of two ethylene propylene elastomers with hydrazine

    NASA Technical Reports Server (NTRS)

    Coulbert, C. D.; Cuddihy, E. F.; Fedors, R. F.

    1984-01-01

    A test method is described for predicting the long-time survivability of elastomers in hydrazine under dynamic stressing conditions. The method selected is based upon the existence and approximate invariance of a 'physical property surface' relating the mechanical response of the elastomer in terms of stress, strain, time, and temperature. The property surface was generated for two selected elastomers (EPT-10 and AF-E-332). A novel carousel testing tank was designed to allow sequential testing of eight tensile specimens immersed in liquid hydrazine within a constant-temperature water bath. The test procedure and data reduction methods used to generate the property surface are described. The utility and validity of these results applied to fatigue and flexure loading to these elastomeric materials over long-time periods are discussed.

  14. Long-time asymptotic behavior of the solutions of the Korteweg-De Vries equations

    SciTech Connect

    Buslaev, V.S.; Sukhanov, V.V.

    1987-05-20

    The complete asymptotic expansion of the dispersion tail in the long-time limit is described for the KdV equation and generalized wave operators are introduced. The long-time asymptotic behavior of the Schroedinger spectral equation is studied assuming a potential of the type of the KdV solution. It is shown that the KdV equation is specifically related with the asymptotic structure of the solutions of the spectral equation. As a corollary, they derive the well-known explicit formulas for the leading asymptotic terms of the KdV solutions in terms of the spectral values corresponding to the initial conditions. A sketch of a proof for the various results is suggested.

  15. Exploring long-time response to radiation damage in MgO

    NASA Astrophysics Data System (ADS)

    Uberuaga, B. P.; Smith, R.; Cleave, A. R.; Henkelman, G.; Grimes, R. W.; Voter, A. F.; Sickafus, K. E.

    2005-01-01

    Using a variety of computational modeling and simulation methods, we examine the production and long-time evolution of damage created in irradiated MgO. We find that the damage produced in low energy (order 1 keV) collision cascades typically consists of point defects and small defect clusters. Over long times, interstitials annihilate with vacancies and aggregate with other interstitials, forming larger clusters that exhibit surprising behavior. For example, a six-atom interstitial cluster is found to have extremely high mobility. The implications of highly-mobile large clusters are explored via a rate theory model and comparison to other materials. We conclude that successful modeling of radiation damage evolution in MgO requires explicit treatment of large interstitial clusters.

  16. High-speed and long-time FBG interrogation system using wavelength swept laser

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tatsuya; Shinoda, Yukitaka

    2015-05-01

    The purpose of this research is the development of a system for fabricating high-speed and long-time measurements of wide-band vibration using fiber Bragg gratings (FBGs) to determine the health of structures. We developed a real-time FBG interrogation system using wavelength swept laser. This system can perform real-time measurement of reflected wavelength from a multiple FBG at a temporal resolution of 0.1 ms. The authors also constructed a database system for managing the data obtained from high-speed and long-time measurement. This database system manages data using a relational database and transfers information on FBG reflected wavelengths obtained from this measurement system via the local network. We have demonstrated that this system is able to measure reflected wavelengths from a multipoint FBG at a temporal resolution of 0.1 ms over 24 hours, it was shown that this system could also monitor instantaneously applied high-speed vibrations.

  17. Strainrange partitioning life predictions of the long time metal properties council creep-fatigue tests

    NASA Technical Reports Server (NTRS)

    Saltsman, J. F.; Halford, G. R.

    1979-01-01

    The method of strainrange partitioning is used to predict the cyclic lives of the Metal Properties Council's long time creep-fatigue interspersion tests of several steel alloys. Comparisons are made with predictions based upon the time- and cycle-fraction approach. The method of strainrange partitioning is shown to give consistently more accurate predictions of cyclic life than is given by the time- and cycle-fraction approach.

  18. Long-time diffusivity of DNA chains in nanochannels: A Brownian dynamics study

    NASA Astrophysics Data System (ADS)

    Jain, Aashish; Dorfman, Kevin

    2015-03-01

    The simplest approach to calculate the diffusivity of any polymer chain is to use the double sum Kirkwood formula, which is based on preaveraging approximation of diffusion tensor. The error due to the preaveraging approximation has been reported by a number of researchers in the context of free solution by computing both Kirkwood diffusivity D (K) (also known as short-time diffusivity) and long-time diffusivity DL. In nanochannels, the main approach to compute the diffusivity is the Kirkwood formula. However, the error due to the preaveraging approximation is not known in a confined system. We use Brownian dynamics simulation algorithm with excluded volume and hydrodynamic interactions to calculate both short-time and long-time diffusivities of DNA chains in nanochannels, and compare them for a range of channel sizes and DNA chain sizes. Our results indicate that the long-time diffusivity is always smaller than the short-time diffusivity, which is consistent with the result obtained in free solution using linear response theory DL

  19. Long-time behavior of material-surface curvature in isotropic turbulence

    NASA Technical Reports Server (NTRS)

    Girimaji, S. S.

    1992-01-01

    The behavior at large times of the curvature of material elements in turbulence is investigated using Lagrangian velocity-gradient time series obtained from direct numerical simulations of isotropic turbulence. The main objectives are: to study the asymptotic behavior of the pdf curvature as a function of initial curvature and shape; and to establish whether the curvature of an initially plane material element goes to a stationary probability distribution. The evidence available in the literature about the asymptotic curvature-pdf of initially flat surfaces is ambiguous, and the conjecture is that it is quasi-stationary. In this work several material-element ensembles of different initial curvatures and shapes are studied. It is found that, at long times the moments of the logarithm of curvature are independent of the initial pdf of curvature. This, it is argued, supports the view that the curvature attains a stationary distribution at long times. It is also shown that, irrespective of initial shape or curvature, the shape of any material element at long times is cylindrical with a high probability.

  20. Direct Immersion Annealing of Block Copolymer Thin Films

    NASA Astrophysics Data System (ADS)

    Karim, Alamgir

    We demonstrate ordering of thin block copolymer (BCP) films via direct immersion annealing (DIA) at enhanced rate leading to stable morphologies. The BCP films are immersed in carefully selected mixtures of good and marginal solvents that can impart enhanced polymer mobility, while inhibiting film dissolution. DIA is compatible with roll-to-roll assembly manufacturing and has distinct advantages over conventional thermal annealing and batch processing solvent-vapor annealing methods. We identify three solvent composition-dependent BCP film ordering regimes in DIA for the weakly interacting polystyrene -poly(methyl methacrylate) (PS -PMMA) system: rapid short range order, optimal long-range order, and a film instability regime. Kinetic studies in the ``optimal long-range order'' processing regime as a function of temperature indicate a significant reduction of activation energy for BCP grain growth compared to oven annealing at conventional temperatures. An attractive feature of DIA is its robustness to ordering other BCP (e.g. PS-P2VP) and PS-PMMA systems exhibiting spherical, lamellar and cylindrical ordering. Inclusion of nanoparticles in these films at high concentrations and fast ordering kinetics study with neutron reflectivity and SANS will be discussed. This is (late) Contributed Talk Abstract for Dillon Medal Symposium at DPOLY - discussed with DPOLY Chair Dvora Perahia.

  1. Fullerene formation and annealing

    SciTech Connect

    Mintmire, J.W.

    1996-04-05

    Why does the highly symmetric carbon cluster C{sub 60} form in such profusion under the right conditions? This question was first asked in 1985, when Kroto suggested that the predominance of the C{sub 60} carbon clusters observed in the molecular beam experiments could be explained by the truncated icosahedral (or soccer ball) form. The name given to this cluster, buckminsterfullerene, led to the use of the term fullerenes for the family of hollow-cage carbon clusters made up of even numbers of triply coordinated carbons arranged with 12 pentagonal rings and an almost arbitrary number of hexagonal rings. More than a decade later, we still lack a completely satisfying understanding of the fundamental chemistry that takes place during fullerene formation. Most current models for fullerene formation require a facile mechanism for ring rearrangement in the fullerene structure, but the simplest proposed mechanisms are believed to have unrealistically high activation barriers. In recent research calculations have suggested that atomic carbon in the reaction mixture could act as a catalyst and allow substantially lower activation barriers for fullerene annealing. This article discusses the background for this research and other adjunct research. 14 refs.

  2. Reactor vessel annealing system

    DOEpatents

    Miller, Phillip E.; Katz, Leonoard R.; Nath, Raymond J.; Blaushild, Ronald M.; Tatch, Michael D.; Kordalski, Frank J.; Wykstra, Donald T.; Kavalkovich, William M.

    1991-01-01

    A system for annealing a vessel (14) in situ by heating the vessel (14) to a defined temperature, composed of: an electrically operated heater assembly (10) insertable into the vessel (14) for heating the vessel (14) to the defined temperature; temperature monitoring components positioned relative to the heater assembly (10) for monitoring the temperature of the vessel (14); a controllable electric power supply unit (32-60) for supplying electric power required by the heater assembly (10); a control unit (80-86) for controlling the power supplied by the power supply unit (32-60); a first vehicle (2) containing the power supply unit (32-60); a second vehicle (4) containing the control unit (80-86); power conductors (18,22) connectable between the power supply unit (32-60) and the heater unit (10) for delivering the power supplied by the power supply unit (32-60) to the heater assembly (10); signal conductors (20,24) connectable between the temperature monitoring components and the control unit (80-86) for delivering temperature indicating signals from the temperature monitoring components to the control unit (80-86); and control conductors (8) connectable between the control unit (80-86) and the power supply unit (32-60) for delivering to the power supply unit (32-60) control signals for controlling the level of power supplied by the power supply unit (32-60) to the heater assembly (10).

  3. Long-Time Stability of Ni-Ti-Shape Memory Alloys for Automotive Safety Systems

    NASA Astrophysics Data System (ADS)

    Strittmatter, Joachim; Gümpel, Paul

    2011-07-01

    In automotive a lot of electromagnetically, pyrotechnically or mechanically driven actuators are integrated to run comfort systems and to control safety systems in modern passenger cars. Using shape memory alloys (SMA) the existing systems could be simplified, performing the same function through new mechanisms with reduced size, weight, and costs. A drawback for the use of SMA in safety systems is the lack of materials knowledge concerning the durability of the switching function (long-time stability of the shape memory effect). Pedestrian safety systems play a significant role to reduce injuries and fatal casualties caused by accidents. One automotive safety system for pedestrian protection is the bonnet lifting system. Based on such an application, this article gives an introduction to existing bonnet lifting systems for pedestrian protection, describes the use of quick changing shape memory actuators and the results of the study concerning the long-time stability of the tested NiTi-wires. These wires were trained, exposed up to 4 years at elevated temperatures (up to 140 °C) and tested regarding their phase change temperatures, times, and strokes. For example, it was found that A P-temperature is shifted toward higher temperatures with longer exposing periods and higher temperatures. However, in the functional testing plant a delay in the switching time could not be detected. This article gives some answers concerning the long-time stability of NiTi-wires that were missing till now. With this knowledge, the number of future automotive applications using SMA can be increased. It can be concluded, that the use of quick changing shape memory actuators in safety systems could simplify the mechanism, reduce maintenance and manufacturing costs and should be insertable also for other automotive applications.

  4. On some long time dynamical features of the Trojan asteroids of Jupiter

    NASA Astrophysics Data System (ADS)

    Érdi, Bálint; Forgács-Dajka, Emese; Süli, Áron

    2013-09-01

    The equation of motion of long periodic libration around the Lagrangian point in the restricted three-body problem is investigated. The range of validity of an approximate analytical solution in the tadpole region is determined by numerical integration. The predictions of the model of libration are tested on the Trojan asteroids of Jupiter. The long time evolution of the orbital eccentricity and the longitude of the perihelion of the Trojan asteroids, under the effect of the four giant planets, is also investigated and a slight dynamical asymmetry is shown between the two groups of Trojans at and.

  5. Long-time Stability in Systems of Conservation Laws, Using Relative Entropy/Energy

    NASA Astrophysics Data System (ADS)

    Serre, Denis

    2016-02-01

    We study the long-time stability of shock-free solutions of hyperbolic systems of conservation laws, under an arbitrarily large initial disturbance in L 2∩ L ∞. We use the relative entropy method, a robust tool which allows us to consider rough and large disturbances. We display practical examples in several space dimensions, for scalar equations as well as isentropic gas dynamics. For full gas dynamics, we use a trick from C hen [1], in which the estimate is made in terms of the relative mechanical energy instead of the relative mathematical entropy.

  6. Crossover between short- and long-time behavior of stress fluctuations and viscoelasticity of liquids.

    PubMed

    Hess, Siegfried; Kröger, Martin; Evans, Denis

    2003-04-01

    An effective viscosity coefficient is introduced based on definite time averages of equilibrium stress fluctuations rather than stress correlations. Analysis of this quantity via molecular dynamics of a simple model liquid reveals a crossover between the expected short-time elastic and the long-time viscous behavior with increasing averaging time. The procedure allows us to extract the zero-rate shear viscosity when the averaging time becomes one order of magnitude larger than the relevant relaxation time. A relationship between this effective viscosity and the dynamic viscosities is established. PMID:12786406

  7. Long-time alcohol intake modifies resistin secretion and expression of resistin gene in adipose tissue.

    PubMed

    Pravdová, E; Macho, L; Hlavácová, N; Ficková, M

    2007-09-01

    Elevated serum resistin is implicated in insulin resistance associated with obesity and type 2 diabetes mellitus. Alcohol consumption interferes with the nutritional status, metabolic and hormonal activity of the drinker. Impact of ethanol intake on resistin level and resistin metabolic effects is unknown. Effect of long-time (28 days) ad libitum moderate alcohol (6% ethanol solution) intake on serum resistin and resistin mRNA level in adipose tissue of rats (A) was compared to control (C) and pair-fed (PF) animals. PF rats were fed the same caloric amount as A rats on previous day. Alcohol consumption resulted in reduction of food and energy intake, decreased body mass gain, epididymal fat pads mass and smaller adipocytes (vs. C rats). Alcohol intake significantly increased serum resistin and glucose, insulinemia remained unchanged. Systemic insulin resistance was not proved by HOMA, QUICKI and McAuley indexes, but impaired insulin effect on glucose transport in isolated adipocytes was present. Elevated serum resistin was positively correlated with glycemia (r = 0.88, p < 0.01) and negatively with fat cell size (r = -0.73, p < 0.05). High resistin level as the consequence of long-time alcohol intake could contribute to smaller adipocytes, higher glycemia, attenuation of insulin-stimulated glucose transport in adipocytes. Diminished resistin gene expression in adipose tissue of A and PF rats was present. PMID:18063850

  8. Correlation analysis for long time series by robustly estimated autoregressive stochastic processes

    NASA Astrophysics Data System (ADS)

    Schuh, Wolf-Dieter; Brockmann, Jan-Martin; Kargoll, Boris

    2015-04-01

    Modern sensors and satellite missions deliver huge data sets and long time series of observations. These data sets have to be handled with care because of changing correlations, conspicuous data and possible outliers. Tailored concepts for data selection and robust techniques to estimate the correlation characteristics allow for a better/optimal exploitation of the information of these measurements. In this presentation we give an overview of standard techniques for estimating correlations occurring in long time series in the time domain as well as in the frequency domain. We discuss the pros and cons especially with the focus on the intensified occurrence of conspicuous data and outliers. We present a concept to classify the measurements and isolate conspicuous data. We propose to describe the varying correlation behavior of the measurement series by an autoregressive stochastic process and give some hints how to construct adaptive filters to decorrelate the measurement series and to handle the huge covariance matrices. As study object we use time series from gravity gradient data collected during the GOCE low orbit operation campaign (LOOC). Due to the low orbit these data from 13-Jun-2014 to 21-Oct-2014 have more or less the same potential to recover the Earth gravity field with the same accuracy than all the data from the rest of the entire mission. Therefore these data are extraordinarily valuable but hard to handle, because of conspicuous data due to maneuvers during the orbit lowering phases, overall increase in drag, saturation of ion thrusters and other (currently) unexplained effects.

  9. [Improving data warehouse environments for efficient analysis of long time-series data].

    PubMed

    Kataoka, Hiromi; Hatakeyama, Yutaka; Okuhara, Yoshiyasu; Sugiura, Tetsuro

    2012-07-01

    Medical records contain enormous amounts of data. It is important to extract useful evidence from such data and feedback to clinical medicine. Evidence-based medicine (EBM) was introduced in the 1990s and has been widely used for more than 20 years, however, hospital information system environments that take advantage of the ideas of EBM have not yet been established. Recently, the numbers of medical institutions with multilateral search systems for the medical records stored in data warehouses (DWHs) have been increasing, but these institutions' systems cannot deal fully with issues such as data reliability and high-dimensional, high-speed searches. DWHs can control long time-series data. Although, the measurement methods and analytical equipment used have been modified and improved with advances in testing techniques, this may have induced shifting and/or fragmentation of these types of data. Furthermore, database design has to be flexible to satisfy the various demands of information retrieval; systems must therefore have the structures to deal with such demands. We report here our new system infrastructure, which exchanges data in order to absorb the data shifting associated with changes in the testing methods. The system enables the preparation of DWH environments that can be used to seamlessly analyze long time-series data, record in knowledge databases the results of comprehensive analyses of institutions' characteristics of laboratory diagnoses, and use the data in education, research and clinical practice. PMID:22973733

  10. Long-time dynamics of Met-enkephalin: comparison of theory with Brownian dynamics simulations.

    PubMed Central

    Kostov, K S; Freed, K F

    1999-01-01

    A recent theory for the long time dynamics of flexible chain molecules is applied for the first time to a peptide of biological importance, the neurotransmitter met-enkephalin. The dynamics of met-enkephalin is considerably more complicated than that of the previously studied glycine oligomers; met-enkephalin contains the interesting motions of phenyl groups and of side chains relative to the backbone, motions that are present in general flexible peptides. The theory extends the generalized Rouse (GR) model used to study the dynamics of polymers by providing a systematic procedure for including the contributions from the memory function matrices neglected in the GR theory. The new method describes the dynamics by time correlation functions instead of individual trajectories. These correlation functions are analytically expressed in terms of a set of equilibrium averages and the eigenvalues and eigenfunctions of the diffusion operator. The predictions of the theory are compared with Brownian dynamics (BD) simulations, so that both theory and simulation use identical potential functions and solvent models. The theory thus contains no adjustable parameters. Inclusion of the memory function contributions profoundly affects the dynamics. The theory produces very good agreement with the BD simulations for the global motions of met-enkephalin. It also correctly predicts the long-time relaxation rate for local motions. PMID:9876130

  11. Long-time uncertainty propagation using generalized polynomial chaos and flow map composition

    SciTech Connect

    Luchtenburg, Dirk M.; Brunton, Steven L.; Rowley, Clarence W.

    2014-10-01

    We present an efficient and accurate method for long-time uncertainty propagation in dynamical systems. Uncertain initial conditions and parameters are both addressed. The method approximates the intermediate short-time flow maps by spectral polynomial bases, as in the generalized polynomial chaos (gPC) method, and uses flow map composition to construct the long-time flow map. In contrast to the gPC method, this approach has spectral error convergence for both short and long integration times. The short-time flow map is characterized by small stretching and folding of the associated trajectories and hence can be well represented by a relatively low-degree basis. The composition of these low-degree polynomial bases then accurately describes the uncertainty behavior for long integration times. The key to the method is that the degree of the resulting polynomial approximation increases exponentially in the number of time intervals, while the number of polynomial coefficients either remains constant (for an autonomous system) or increases linearly in the number of time intervals (for a non-autonomous system). The findings are illustrated on several numerical examples including a nonlinear ordinary differential equation (ODE) with an uncertain initial condition, a linear ODE with an uncertain model parameter, and a two-dimensional, non-autonomous double gyre flow.

  12. Mathematical foundation of quantum annealing

    SciTech Connect

    Morita, Satoshi; Nishimori, Hidetoshi

    2008-12-15

    Quantum annealing is a generic name of quantum algorithms that use quantum-mechanical fluctuations to search for the solution of an optimization problem. It shares the basic idea with quantum adiabatic evolution studied actively in quantum computation. The present paper reviews the mathematical and theoretical foundations of quantum annealing. In particular, theorems are presented for convergence conditions of quantum annealing to the target optimal state after an infinite-time evolution following the Schroedinger or stochastic (Monte Carlo) dynamics. It is proved that the same asymptotic behavior of the control parameter guarantees convergence for both the Schroedinger dynamics and the stochastic dynamics in spite of the essential difference of these two types of dynamics. Also described are the prescriptions to reduce errors in the final approximate solution obtained after a long but finite dynamical evolution of quantum annealing. It is shown there that we can reduce errors significantly by an ingenious choice of annealing schedule (time dependence of the control parameter) without compromising computational complexity qualitatively. A review is given on the derivation of the convergence condition for classical simulated annealing from the view point of quantum adiabaticity using a classical-quantum mapping.

  13. Energy dependence of defects in a-Si:H solar cells during degradation and annealing processes

    SciTech Connect

    Caputo, D.; Lemmi, F.; Palma, F.

    1997-07-01

    In this work the authors report on the effect of current-induced degradation and annealing on p-i-n amorphous silicon solar cells. Current-voltage curves and capacitance measurements under forward bias have been used to monitor the current-induced changes as a function of time. They found that the recovery rate increases with the annealing current, while the stabilized value of efficiency decreases. Comparison of short circuit current and capacitance evolution suggests that defect kinetics in the electronic gap occurs in a different way during degradation and annealing. This behavior can be modeled assuming a faster annealing of defects closest to the extended band and a slower annealing of mid-gap defects.

  14. Quantum annealing speedup over simulated annealing on random Ising chains

    NASA Astrophysics Data System (ADS)

    Zanca, Tommaso; Santoro, Giuseppe E.

    2016-06-01

    We show clear evidence of a quadratic speedup of a quantum annealing (QA) Schrödinger dynamics over a Glauber master equation simulated annealing (SA) for a random Ising model in one dimension, via an equal-footing exact deterministic dynamics of the Jordan-Wigner fermionized problems. This is remarkable, in view of the arguments of H. G. Katzgraber et al. [Phys. Rev. X 4, 021008 (2014), 10.1103/PhysRevX.4.021008], since SA does not encounter any phase transition, while QA does. We also find a second remarkable result: that a "quantum-inspired" imaginary-time Schrödinger QA provides a further exponential speedup, i.e., an asymptotic residual error decreasing as a power law τ-μ of the annealing time τ .

  15. Long-time behavior of a finite volume discretization for a fourth order diffusion equation

    NASA Astrophysics Data System (ADS)

    Maas, Jan; Matthes, Daniel

    2016-07-01

    We consider a non-standard finite-volume discretization of a strongly non-linear fourth order diffusion equation on the d-dimensional cube, for arbitrary d≥slant 1 . The scheme preserves two important structural properties of the equation: the first is the interpretation as a gradient flow in a mass transportation metric, and the second is an intimate relation to a linear Fokker–Planck equation. Thanks to these structural properties, the scheme possesses two discrete Lyapunov functionals. These functionals approximate the entropy and the Fisher information, respectively, and their dissipation rates converge to the optimal ones in the discrete-to-continuous limit. Using the dissipation, we derive estimates on the long-time asymptotics of the discrete solutions. Finally, we present results from numerical experiments which indicate that our discretization is able to capture significant features of the complex original dynamics, even with a rather coarse spatial resolution.

  16. Dynamics of spatial Fourier modes in turbulence. Sweeping effect, long-time correlations and temporal intermittency

    NASA Astrophysics Data System (ADS)

    Poulain, C.; Mazellier, N.; Chevillard, L.; Gagne, Y.; Baudet, C.

    2006-09-01

    We present the results of an experimental study of the spatial Fourier modes of the vorticity in a turbulent jet flow. By means of an acoustic scattering setup we have recorded the evolution in time of Fourier modes of the vorticity field, characterized by well defined wavevectors k. By computing the auto-correlation of the amplitude of the Fourier modes we evidence that, whatever the length scale (or equivalently k), the dynamic evolution of the vorticity field involves two well separated time scales. We have also performed the simultaneous acquisitions of pairs of Fourier modes with two wavevectors k and k'. Whatever the spectral gap k- k', any pair of Fourier modes exhibits a significant cross-correlation over long time delays, indicating a strong statistical dependence between scales.

  17. Hybrid resonance and long-time asymptotic of the solution to Maxwell's equations

    NASA Astrophysics Data System (ADS)

    Després, Bruno; Weder, Ricardo

    2016-03-01

    We study the long-time asymptotic of the solutions to Maxwell's equation in the case of an upper-hybrid resonance in the cold plasma model. We base our analysis in the transfer to the time domain of the recent results of B. Després, L.M. Imbert-Gérard and R. Weder (2014) [15], where the singular solutions to Maxwell's equations in the frequency domain were constructed by means of a limiting absorption principle and a formula for the heating of the plasma in the limit of vanishing collision frequency was obtained. Currently there is considerable interest in these problems, in particular, because upper-hybrid resonances are a possible scenario for the heating of plasmas, and since they can be a model for the diagnostics involving wave scattering in plasmas.

  18. Long-Time Autocorrelation Function of ECG Signal for Healthy versus Diseased Human Heart

    NASA Astrophysics Data System (ADS)

    Kulessa, B.; Srokowski, T.; Drozdz, S.

    2003-01-01

    Long-time ECG time series for healthy subjects and diseased patients are analysed. In the first case, the power spectrum has the 1/f shape in a broad frequency range. However, its behaviour for very low and very high frequency is different and the entire spectrum is integrable. For patients with post-ictal heart rate oscillation in partial epilepsy the 1/f noise is not present. We determine the power spectrum by evaluating the Fourier transform of the signal in both cases and calculate the signal autocorrelation function. It falls with time faster for diseased patients then for healthy people. The presented method can serve as a diagnostic tool of some heart diseases.

  19. Long-time behavior of solution for the compressible nematic liquid crystal flows in R3

    NASA Astrophysics Data System (ADS)

    Gao, Jincheng; Tao, Qiang; Yao, Zheng-an

    2016-08-01

    In this paper, we investigate the global existence and long-time behavior of classical solution for the compressible nematic liquid crystal flows in three-dimensional whole space. First of all, the global existence of classical solution is established under the condition that the initial data are close to the constant equilibrium state in HN (R3) (N ≥ 3)-framework. Then, one establishes algebraic time decay for the classical solution by weighted energy method. Finally, the algebraic decay rate of classical solution in Lp (R3)-norm with 2 ≤ p ≤ ∞ and optimal decay rate of their spatial derivative in L2 (R3)-norm are obtained if the initial perturbation belong to L1 (R3) additionally.

  20. Short- and long-time dynamics of isolated many-body quantum systems

    NASA Astrophysics Data System (ADS)

    Tavora, Marco; Torres-Herrera, Jonathan; Ferreira Dos Santos, Lea

    We show our results for the relaxation process of isolated interacting quantum spin chains in the integrable and chaotic regimes. The dynamics of the survival probability (the probability for finding the system still in its initial state at later times) and of few-body observables are analyzed. Different time scales are considered. While the short-time evolution is determined by the shape of the weighted energy distribution of the initial state, the long-time behavior depends on the bounds of the spectrum. Both numerical and analytical results are presented as well as comparisons with existing rigorous mathematical derivations. We consider initial states that can be prepared in experiments with cold atoms in optical lattices. Nsf Grant No. DMR-1147430.

  1. Long-Time Sustainability of Rossby Wave Instability in Protoplanetary Disks with Dead Zone

    NASA Astrophysics Data System (ADS)

    Li, S.; Li, H.

    2015-10-01

    We have run 2D simulations to investigate the generation and sustainability of Rossby wave instability (RWI) in proto-planetary disks with constant viscosity and for disks with low viscosity regions (dead zone). For the constant viscosity case, the development of RWI requires a low viscosity and life time of the RWI is short. We also find that the vortex, when it migrates, does so much faster than the disk's viscous drift rate. For disks with dead zone case, a much larger viscosity can be used and the RWI vortex can be sustained for a long time, even the life time of the disk, depending on the width and depth of the dead zone. For a narrow dead zone, the vortex depicts a periodic pattern with a period inversely proportional to the viscosity. If the dead-zone width exceeds some threshold, the periodicity of the RWI disappears.

  2. Phase-field model of long-time glasslike relaxation in binary fluid mixtures.

    PubMed

    Benzi, R; Sbragaglia, M; Bernaschi, M; Succi, S

    2011-04-22

    We present a new phase-field model for binary fluids, exhibiting typical signatures of soft-glassy behavior, such as long-time relaxation, aging, and long-term dynamical arrest. The present model allows the cost of building an interface to vanish locally within the interface, while preserving positivity of the overall surface tension. A crucial consequence of this property, which we prove analytically, is the emergence of free-energy minimizing density configurations, hereafter named "compactons," to denote their property of being localized to a finite-size region of space and strictly zero elsewhere (no tails). Thanks to compactness, any arbitrary superposition of compactons still is a free-energy minimizer, which provides a direct link between the complexity of the free-energy landscape and the morphological complexity of configurational space. PMID:21599369

  3. Population dynamics under selection and mutation: Long-time behavior for differential equations in measure spaces

    NASA Astrophysics Data System (ADS)

    Ackleh, Azmy S.; Cleveland, John; Thieme, Horst R.

    2016-07-01

    We study the long-time behavior of solutions to a measure-valued selection-mutation model that we formulated in [14]. We establish permanence results for the full model, and we study the limiting behavior even when there is more than one strategy of a given fitness; a case that arises in applications. We show that for the pure selection case the solution of the dynamical system converges to a Dirac measure centered at the fittest strategy class provided that the support of the initial measure contains a fittest strategy; thus we term this Dirac measure an Asymptotically Stable Strategy. We also show that when the strategy space is discrete, the selection-mutation model with small mutation has a locally asymptotically stable equilibrium that attracts all initial conditions that are positive at the fittest strategy.

  4. Grain growth of gold nanowires through laser zone annealing and rapid thermal annealing

    NASA Astrophysics Data System (ADS)

    Kim, Jung Yun

    The grain boundary density in metals plays an increasingly important role as structures are shrinking down to dimensions comparable to the electronic mean free path. Metal nanowires prepared through electron beam lithography, electrodeposition and many other methods are nanocrystalline with an average grain diameter in the range of 2--50 nm. For these nanocrystalline metal nanowires with a lateral dimensions larger than the mean grain diameter, the electrical resistance is dominated by electron scattering at the grain boundaries as opposed to the external surfaces and the background. The deleterious effect of grain boundaries on the electrical properties provides strong motivation to develop post-processing methods for increasing the mean grain diameter. Thermal annealing has typically been used to induce grain growth. However, for metal nanowires patterned on a planar surface, a classic Rayleigh instability is observed resulting in decomposition of the nanowire to a periodic series of nanoparticles. In principle, grain growth requires short range motion of atoms while shape change requires mass displacement across large distances. Laser zone annealing was used to test whether the latter could be suppressed by rapidly heating a highly localized section of the wire followed by rapidly cooling. A piezoelectric motor was used to translate the wire at nanoscale steps over a 532 nm confocal laser source at range of power levels (2.5--10 mW) and translation rates (7--128 nm/s). Annealing at a laser power of 10 mW resulted in grain growth of nearly 300% from 27 nm to 85 nm. A second approach to inhibit shape change while allowing for grain growth was to encapsulate the nanowire with an alumina layer to constrict large scale atomic diffusion during isothermal annealing. The alumina coating maintained the shape of the nanowire up to a temperature of ˜669 K and grain growth approaching the limiting size was observed. To study the grain growth kinetics, in situ electrical

  5. Processing-Structure-Property Relationships in Laser-Annealed PbSe Nanocrystal Thin Films.

    PubMed

    Treml, Benjamin E; Robbins, Andrew B; Whitham, Kevin; Smilgies, Detlef-M; Thompson, Michael O; Hanrath, Tobias

    2015-01-01

    As nanocrystal (NC) synthesis techniques and device architectures advance, it becomes increasingly apparent that new ways of connecting NCs with each other and their external environment are required to realize their considerable potential. Enhancing inter-NC coupling by thermal annealing has been a long-standing challenge. Conventional thermal annealing approaches are limited by the challenge of annealing the NC at sufficiently high temperatures to remove surface-bound ligands while at the same time limiting the thermal budget to prevent large-scale aggregation. Here we investigate nonequilibrium laser annealing of NC thin films that enables separation of the kinetic and thermodynamic aspects of nanocrystal fusion. We show that laser annealing of NC assemblies on nano- to microsecond time scales can transform initially isolated NCs in a thin film into an interconnected structure in which proximate dots "just touch". We investigate both pulsed laser annealing and laser spike annealing and show that both annealing methods can produce "confined-but-connected" nanocrystal films. We develop a thermal transport model to rationalize the differences in resulting film morphologies. Finally we show that the insights gained from study of nanocrystal mono- and bilayers can be extended to three-dimensional NC films. The basic processing-structure-property relationships established in this work provide guidance to future advances in creating functional thin films in which constituent NCs can purposefully interact. PMID:25787088

  6. Direct Immersion Annealing of Thin Block Copolymer Films.

    PubMed

    Modi, Arvind; Bhaway, Sarang M; Vogt, Bryan D; Douglas, Jack F; Al-Enizi, Abdullah; Elzatahry, Ahmed; Sharma, Ashutosh; Karim, Alamgir

    2015-10-01

    We demonstrate ordering of thin block copolymer (BCP) films via direct immersion annealing (DIA) at enhanced rate leading to stable morphologies. The BCP films are immersed in carefully selected mixtures of good and marginal solvents that can impart enhanced polymer mobility, while inhibiting film dissolution. DIA is compatible with roll-to-roll assembly manufacturing and has distinct advantages over conventional thermal annealing and batch processing solvent-vapor annealing methods. We identify three solvent composition-dependent BCP film ordering regimes in DIA for the weakly interacting polystyrene-poly(methyl methacrylate) (PS-PMMA) system: rapid short-range order, optimal long-range order, and a film instability regime. Kinetic studies in the "optimal long-range order" processing regime as a function of temperature indicate a significant reduction of activation energy for BCP grain growth compared to oven annealing at conventional temperatures. An attractive feature of DIA is its robustness to ordering other BCP (e.g. PS-P2VP) and PS-PMMA systems exhibiting spherical, lamellar and cylindrical ordering. PMID:26351823

  7. LAI, FAPAR and FCOVER products derived from AVHRR long time series: principles and evaluation

    NASA Astrophysics Data System (ADS)

    Verger, A.; Baret, F.; Weiss, M.; Lacaze, R.; Makhmara, H.; Pacholczyk, P.; Smets, B.; Kandasamy, S.; Vermote, E.

    2012-04-01

    Continuous and long term global monitoring of the terrestrial biosphere has draught an intense interest in the recent years in the context of climate and global change. Developing methodologies for generating historical data records from data collected with different satellite sensors over the past three decades by taking benefits from the improvements identified in the processing of the new generation sensors is a new central issue in remote sensing community. In this context, the Bio-geophysical Parameters (BioPar) service within Geoland2 project (http://www.geoland2.eu) aims at developing pre-operational infrastructures for providing global land products both in near real time and off-line mode with long time series. In this contribution, we describe the principles of the GEOLAND algorithm for generating long term datasets of three key biophysical variables, leaf area index (LAI), Fraction of Absorbed Photosynthetic Active Radiation (FAPAR) and cover fraction (FCOVER), that play a key role in several processes, including photosynthesis, respiration and transpiration. LAI, FAPAR and FCOVER are produced globally from AVHRR Long Term Data Record (LTDR) for the 1981-2000 period at 0.05° spatial resolution and 10 days temporal sampling frequency. The proposed algorithm aims to ensure robustness of the derived long time series and consistency with the ones developed in the recent years, and particularly with GEOLAND products derived from VEGETATION sensor. The approach is based on the capacity of neural networks to learn a particular biophysical product (GEOLAND) from reflectances from another sensor (AVHRR normalized reflectances in the red and near infrared bands). Outliers due to possible cloud contamination or residual atmospheric correction are iteratively eliminated. Prior information based on the climatology is used to get more robust estimates. A specific gap filing and smoothing procedure was applied to generate continuous and smooth time series of decadal

  8. A method for automatic validation of long time series of data in urban hydrology.

    PubMed

    Mourad, M; Bertrand-Krajewski, J L

    2002-01-01

    Modelling in urban hydrology is largely based on the analysis of long time series of data. The quality of the results strongly depends on the quality of the data used. Doubtful or wrong data must be detected and eventually substituted by reliable ones when it is feasible before any further exploitation. This paper deals with the development of an automatic pre-validation procedure that detects doubtful and not reliable data, in order to facilitate their interpretation. This procedure consists in applying a set of seven tests based on the following criteria: the functioning state of the sensor, the physical range of the quantity, the locally realistic range, the duration since the last maintenance of the sensor, the signal's gradient, material redundancy and analytical redundancy. The results of the tests are coded with the letter A for reliable values, B for doubtful values and C for wrong values. After this automatic prevalidation, the ultimate validation of values marked B and C is carried out manually by the operator, with the assistance of specifically developed visual and graphical tools. PMID:11936642

  9. Building a minimum frustration framework for brain functions over long time scales.

    PubMed

    Tozzi, Arturo; Flå, Tor; Peters, James F

    2016-08-01

    The minimum frustration principle (MFP) is a computational approach stating that, over the long time scales of evolution, proteins' free energy decreases more than expected by thermodynamical constraints as their amino acids assume conformations progressively closer to the lowest energetic state. This Review shows that this general principle, borrowed from protein folding dynamics, can also be fruitfully applied to nervous function. Highlighting the foremost role of energetic requirements, macromolecular dynamics, and above all intertwined time scales in brain activity, the MFP elucidates a wide range of mental processes from sensations to memory retrieval. Brain functions are compared with trajectories that, over long nervous time scales, are attracted toward the low-energy bottom of funnel-like structures characterized by both robustness and plasticity. We discuss how the principle, derived explicitly from evolution and selection of a funneling structure from microdynamics of contacts, is unlike other brain models equipped with energy landscapes, such as the Bayesian and free energy principles and the Hopfield networks. In summary, we make available a novel approach to brain function cast in a biologically informed fashion, with the potential to be operationalized and assessed empirically. © 2016 Wiley Periodicals, Inc. PMID:27114266

  10. Long time-series of turbid coastal water using AVHRR: An example from Florida Bay, USA

    USGS Publications Warehouse

    Stumpf, R.P.; Frayer, M.L.

    1997-01-01

    The AVHRR can provide information on the reflectance of turbid case II water, permitting examination of large estuaries and plumes from major rivers. The AVHRR has been onboard several NOAA satellites, with afternoon overpasses since 1981, offering a long time-series to examine changes in coastal water. We are using AVHRR data starting in December 1989, to examine water clarity in Florida Bay, which has undergone a decline since the late 1980's. The processing involves obtaining a nominal reflectance for red light with standard corrections including those for Rayleigh and aerosol path radiances. Established relationships between reflectance and the water properties being measured in the Bay provide estimates of diffuse attenuation and light limitation for phytoplankton and seagrass productivity studies. Processing also includes monthly averages of reflectance and attenuation. The AVHRR data set describes spatial and temporal patterns, including resuspension of bottom sediments in the winter, and changes in water clarity. The AVHRR also indicates that Florida Bay has much higher reflectivity relative to attenuation than other southeastern US estuaries. ??2005 Copyright SPIE - The International Society for Optical Engineering.

  11. Dynamical decoupling sequences for multi-qubit dephasing suppression and long-time quantum memory

    NASA Astrophysics Data System (ADS)

    Paz-Silva, Gerardo A.; Lee, Seung-Woo; Green, Todd J.; Viola, Lorenza

    2016-07-01

    We consider a class of multi-qubit dephasing models that combine classical noise sources and linear coupling to a bosonic environment, and are controlled by arbitrary sequences of dynamical decoupling pulses. Building on a general transfer filter-function framework for open-loop control, we provide an exact representation of the controlled dynamics for arbitrary stationary non-Gaussian classical and quantum noise statistics, with analytical expressions emerging when all dephasing sources are Gaussian. This exact characterization is used to establish two main results. First, we construct multi-qubit sequences that ensure maximum high-order error suppression in both the time and frequency domain and that can be exponentially more efficient than existing ones in terms of total pulse number. Next, we show how long-time multi-qubit storage may be achieved by meeting appropriate conditions for the emergence of a fidelity plateau under sequence repetition, thereby generalizing recent results for single-qubit memory under Gaussian dephasing. In both scenarios, the key step is to endow multi-qubit sequences with a suitable displacement anti-symmetry property, which is of independent interest for applications ranging from environment-assisted entanglement generation to multi-qubit noise spectroscopy protocols.

  12. Improving long time behavior of Poisson bracket mapping equation: A non-Hamiltonian approach

    SciTech Connect

    Kim, Hyun Woo; Rhee, Young Min

    2014-05-14

    Understanding nonadiabatic dynamics in complex systems is a challenging subject. A series of semiclassical approaches have been proposed to tackle the problem in various settings. The Poisson bracket mapping equation (PBME) utilizes a partial Wigner transform and a mapping representation for its formulation, and has been developed to describe nonadiabatic processes in an efficient manner. Operationally, it is expressed as a set of Hamilton's equations of motion, similar to more conventional classical molecular dynamics. However, this original Hamiltonian PBME sometimes suffers from a large deviation in accuracy especially in the long time limit. Here, we propose a non-Hamiltonian variant of PBME to improve its behavior especially in that limit. As a benchmark, we simulate spin-boson and photosynthetic model systems and find that it consistently outperforms the original PBME and its Ehrenfest style variant. We explain the source of this improvement by decomposing the components of the mapping Hamiltonian and by assessing the energy flow between the system and the bath. We discuss strengths and weaknesses of our scheme with a viewpoint of offering future prospects.

  13. Long-time scale nonlinear simulation of RSAE/TAE instabilities

    NASA Astrophysics Data System (ADS)

    Spong, Don

    2013-10-01

    Both frequency sweeping and constant frequency fast ion driven Alfvén instabilities are often observed to persist for a few times 100,000 Alven times. Simulations for these time intervals are challenging both due to computational issues (numerical stability, error accumulation) and physics considerations (source/sink balancing, avoiding bursting/decay, resolution of nonlinear energy cascades, etc.). The usually invoked quasilinear saturation mechanisms do not allow maintenance of such long-lived turbulence; some form of self-organization due to effects such as zonal flows/currents is necessary to nonlinearly sustain Alfvén instabilities over these time intervals. The global mode structures of RSAE and TAE instabilities naturally drive such effects through the Reynold's and Maxwell stress terms. The TAEFL gyrofluid model is a useful tool for exploring such effects since it has the computational stability/efficiency and nonlinear Reynold's/Maxwell stress effects to follow long-time scale nonlinear Alfvénic turbulence. Since the evolving nonlinear mode structure can be quite different from linear mode structure, such effects can be of importance in evaluating fast ion losses and wall heating caused by the nonlocal wave-induced fast ion transport. This research has been supported by the US DOE SciDAC GSEP Center and by the US Department of Energy under Contract DE AC05 00OR22725 with UT-Battelle, LLC.

  14. Respiratory function impairment and cardiopulmonary consequences in long-time residents of the Canadian Arctic.

    PubMed Central

    Schaefer, O; Eaton, R D; Timmermans, F J; Hildes, J A

    1980-01-01

    Spirometry, roentgenography and electrocardiography were performed during community health surveys in 1976-78 in 176 Inuit and other long-time residents of the northeastern (Arctic Bay) and western (Inuvik) Canadian Arctic, and the results were related to age, ethnic origin, occupation and history of climatic exposure, smoking and hospitalization for tuberculosis. In Arctic Bay the young men showed excellent respiratory function, normal-sized pulmonary arteries and normal electrocardiograms, but abnormalities of all three types were increasingly frequent and severe after age 25. The forced mid-expiratory flow (FMF) fell to less than 50% of the norm by age 40, and dilatation of the pulmonary artery, hypertrophy of the right ventricle, right bundle branch block and a pseudoinfarction pattern on the ECG were frequently associated. In contrast, the men in Inuvik, an urbanized centre, maintained above normal respiratory function until age 40, and the FMF and pulmonary artery diameter remained normal in the older men except for Inuit and white trappers over 60 years old who had run fox trap lines along the Arctic coast in the 1920s and 30s. These data suggest that inhalation of extremely cold air at maximum ventilation may be a prime factor in the chronic obstructive lung disease of Inuit hunters, whereas smoking has only a minor role and hospitalization for tuberculosis appears to protect from rather than contribute to this disorder. PMID:7448675

  15. Compression stress relaxation apparatus for the long-time monitoring of the incremental modulus

    NASA Astrophysics Data System (ADS)

    Horst, Roland H.; Stephens, Thomas S.; Coons, James E.; Winter, H. Henning

    2003-11-01

    A compression apparatus for aging experiments on soft rubbers and foams is presented. The sample is compressed between two parallel surfaces and held there for long-time relaxation studies. The specific purpose of the test is twofold: possible exposure of the sample to aggressive environment under compression during aging and measurement of sample modulus without unloading, i.e., while leaving the sample under constant compression at all times. To determine the restoring force in the compressed sample, the compression strain is modulated with an incremental strain while measuring the force response. The total force gives the compression modulus, and the slope of the force-strain curve allows the determination of the incremental modulus. Stress relaxation data for silicon foam, Dow Corning S-5370 RTV, with 68% void fraction are shown. The modulus of the compressed sample decays over long experimental times of several days. The decay can be described by two relaxation modes, a short mode at 1500 s and a long mode at about 105 s. The incremental modulus changes sharply in the first 1000 s (first mode) and then levels off. The apparatus consists of two self-contained components, the removable sample holder (compression jig) and the stationary test station, which performs the modulation of the strain and all measurements (restoring force and incremental modulus). This allows separation of functions. The apparatus design specifically focused on the control of the incremental strain modulation.

  16. The Clodia database: a long time series of fishery data from the Adriatic Sea

    PubMed Central

    Mazzoldi, Carlotta; Sambo, Andrea; Riginella, Emilio

    2014-01-01

    Long-term time series of species abundances can depict population declines and changes in communities in response to anthropogenic activities, climate changes, alterations of trophic relationships. Here we present a database of historical marine fishery landing data, covering a remarkably long time series (1945–2013) and referring to one of the most exploited areas of the Mediterranean Sea, the Adriatic Sea. The database includes two time series of landing data, 1945–2013 and 1997–2013, from the official statistics of the fish market of Chioggia, where the major fishing fleet of the area operates. Comparisons between the landing data of the database and landing data from other fisheries or data from scientific surveys support the reliability of the time series in depicting changes in species abundances. The database is expected to be used by fishery biologists and ecologists interested in depicting and understanding temporal variations in species abundances and community composition, in relation to environmental and anthropogenic factors. PMID:25977775

  17. Annealing properties of rice starch.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal properties of starch can be modified by annealing, i.e., a pre-treatment in excessive amounts of water at temperatures below the gelatinization temperatures. This treatment is known to improve the crystalline properties, and is a useful tool to gain a better control of the functional proper...

  18. An Introduction to Simulated Annealing

    ERIC Educational Resources Information Center

    Albright, Brian

    2007-01-01

    An attempt to model the physical process of annealing lead to the development of a type of combinatorial optimization algorithm that takes on the problem of getting trapped in a local minimum. The author presents a Microsoft Excel spreadsheet that illustrates how this works.

  19. Kinetic Demonstration.

    ERIC Educational Resources Information Center

    Burgardt, Erik D.; Ryan, Hank

    1996-01-01

    Presents a unit on chemical reaction kinetics that consists of a predemonstration activity, the demonstration, and a set of postdemonstration activities that help students transfer the concepts to actual chemical reactions. Simulates various aspects of chemical reaction kinetics. (JRH)

  20. Kinetic Atom.

    ERIC Educational Resources Information Center

    Wilson, David B.

    1981-01-01

    Surveys the research of scientists like Joule, Kelvin, Maxwell, Clausius, and Boltzmann as it comments on the basic conceptual issues involved in the development of a more precise kinetic theory and the idea of a kinetic atom. (Author/SK)

  1. HPGe detectors long time behaviour in high-resolution γ spectrometry

    NASA Astrophysics Data System (ADS)

    Sajo-Bohus, L.; Rosso, D.; Sajo Castelli, A. M.; Napoli, D. R.; Fioretto, E.; Menegazzo, R.; Barros, H.; Ur, C. A.; Palacios, D.; Liendo, J.

    2011-08-01

    A large set of data on long term performance of n-type HPGe detectors used in GASP, EUROBALL and CLARA γ spectrometers, as well as environmental measurements have been collected over two decades. In this paper a detailed statistical analysis of this data is given and detector long term behaviour is provided to the scientific community. We include failure, failure mode, repair frequency, repair outcome and its influence in the energy efficiency and energy resolution. A remarkable result is that the life span distribution is exponential. A detector's failure is a memory-less process, where a previous failure does not influence the upcoming one. Repaired spectrometers result in high reliability with deep implications in the management of large scale high-resolution gamma spectrometry related projects. Findings show that on average, detectors initial counting efficiency is slightly lower (∼2%) than that reported by the manufacturers and the repair process (including annealing) does not affect significantly the energy efficiency, even after a long period of use. Repaired detector energy resolution statistics show that the probability, that a repaired detector will be at least as good as it was originally, is more than 3/4.

  2. Applying Tep Measurements to Assess the Response of Hastelloy to Long Time Aging

    NASA Astrophysics Data System (ADS)

    Ifergane, S.; Gelbstein, Y.; Dahan, I.; Pinkas, M.; Landau, A.

    2009-03-01

    Hastelloy C-276 service temperature is restricted due to precipitation of the intermetallic compound μ. Time-temperature curves indicate that the highest precipitation rate is obtained at about 870° C. Thermoelectric Power (TEP) measurements were applied to monitor the precipitation kinetics during aging at 870° C. The TEP was found to be well correlated with the amount of μ phase formed during aging and with the reduction in impact energy and ductility. It was demonstrated that TEP measurements could be used to monitor aging of Hastelloy C-276.

  3. Enzyme Kinetics.

    ERIC Educational Resources Information Center

    Moe, Owen; Cornelius, Richard

    1988-01-01

    Conveys an appreciation of enzyme kinetic analysis by using a practical and intuitive approach. Discusses enzyme assays, kinetic models and rate laws, the kinetic constants (V, velocity, and Km, Michaels constant), evaluation of V and Km from experimental data, and enzyme inhibition. (CW)

  4. On the causes of major Baltic inflows —an analysis of long time series

    NASA Astrophysics Data System (ADS)

    Schinke, Holger; Matthäus, Wolfgang

    1998-01-01

    Conditions for life in the deep water of the Baltic Sea are strongly influenced by inflows of highly saline and oxygenated water from the North Sea. These events - termed major Baltic inflows (MBI) - have episodic character, and are the only mechanisms by which the central Baltic deep water is renewed. Although the cycle of water renewal is well documented, certain meteorological and oceanographic processes determining it are either not very well understood or even partly unknown. Based on the data set of major inflows during the present century, long time series of relevant variables from the Baltic Sea itself (salinity, sea level), its drainage area (river runoff, precipitation), the whole Baltic region (air temperature) and from the North Atlantic and Europe (sea level pressure) are analyzed using statistical methods. Characteristic variations in the relevant meteorological, hydrological and oceanographic variables before and during major events are calculated in order to identify conditions favouring or preventing such events. Major Baltic inflows are characterized by two phases: (1) high pressure over the Baltic region with easterly winds followed by (2) several weeks of strong zonal wind and pressure fields over the North Atlantic and Europe. Major events may occur when only one of these is well developed, the probability of strong events is high if both phases are well developed and closely spaced in time. Variations in river runoff to the Baltic obviously have a greater impact on the occurrence of major events then hitherto supposed. The decreasing frequency and intensity of major inflows since the mid-1970s and the complete absence of such events from February 1983 to the beginning of 1993 is explained by increased zonal circulation linked with intensified precipitation in the Baltic region and increased river runoff to the Baltic. Possible anthropogenic impacts on changes in occurrence of major inflows due to river runoff regulations are indicated. The

  5. Inertial stochastic dynamics. I. Long-time-step methods for Langevin dynamics

    NASA Astrophysics Data System (ADS)

    Beard, Daniel A.; Schlick, Tamar

    2000-05-01

    Two algorithms are presented for integrating the Langevin dynamics equation with long numerical time steps while treating the mass terms as finite. The development of these methods is motivated by the need for accurate methods for simulating slow processes in polymer systems such as two-site intermolecular distances in supercoiled DNA, which evolve over the time scale of milliseconds. Our new approaches refine the common Brownian dynamics (BD) scheme, which approximates the Langevin equation in the highly damped diffusive limit. Our LTID ("long-time-step inertial dynamics") method is based on an eigenmode decomposition of the friction tensor. The less costly integrator IBD ("inertial Brownian dynamics") modifies the usual BD algorithm by the addition of a mass-dependent correction term. To validate the methods, we evaluate the accuracy of LTID and IBD and compare their behavior to that of BD for the simple example of a harmonic oscillator. We find that the LTID method produces the expected correlation structure for Langevin dynamics regardless of the level of damping. In fact, LTID is the only consistent method among the three, with error vanishing as the time step approaches zero. In contrast, BD is accurate only for highly overdamped systems. For cases of moderate overdamping, and for the appropriate choice of time step, IBD is significantly more accurate than BD. IBD is also less computationally expensive than LTID (though both are the same order of complexity as BD), and thus can be applied to simulate systems of size and time scale ranges previously accessible to only the usual BD approach. Such simulations are discussed in our companion paper, for long DNA molecules modeled as wormlike chains.

  6. Ecotonal Control on Vadose-Zone Fluxes in Arid Regions Over Very Long Time Scales

    NASA Astrophysics Data System (ADS)

    Phillips, F. M.; Walvoord, M. A.; Sandvig, R.

    2003-12-01

    Recent studies indicate that vegetation plays an important role in regulating recharge in semiarid and arid basins over very long time scales. Several lines of evidence from desert floor environments in the southwestern United States suggest that vegetation has established essentially permanent upward hydraulic gradients, effectively precluding diffuse recharge since the transition from woodland to xeric scrub in the early Holocene. However, less xeric vegetation (such as the pygmy piñon and juniper forest) may support significant diffuse recharge. We show comparative water potential and porewater chemistry profiles collected from various vegetation communities in the Chihuahuan Desert of west Texas. The modeled soil water (vapor and liquid) flux regimes illustrate a conversion from substantial downward fluxes under the mixed woodland to upward fluxes under grassland and xeric scrub. Model results also indicated a trend in increasing drying front propagation depth from the grassland to recently-encroached xeric scrub to well-established xeric scrub. Drying fronts are the result of upward soil water fluxes initiated up to 16 thousand years ago in the xeric scrub community. In contrast, the nearby woodland community supports active, and likely episodic, recharge on the order of 5 to 15 mm yr-1. The mechanism by which some vegetation takes up essentially all seasonally available moisture within the root zone, preventing downward soil water fluxes for periods of thousands of years, but adjacent vegetation communities regularly permit downward fluxes, remains to be determined. Nevertheless, these results suggest that understanding the relation between vegetation community and vadose-zone hydrological processes may be the most profitable avenue toward quantifying diffuse groundwater recharge. We hypothesize that vegetation type may be a reasonable proxy for estimating recharge in semiarid and arid basins. Ongoing research is intended to test the hypothesis of ecotonal

  7. Designing Adaptive Low-Dissipative High Order Schemes for Long-Time Integrations. Chapter 1

    NASA Technical Reports Server (NTRS)

    Yee, Helen C.; Sjoegreen, B.; Mansour, Nagi N. (Technical Monitor)

    2001-01-01

    A general framework for the design of adaptive low-dissipative high order schemes is presented. It encompasses a rather complete treatment of the numerical approach based on four integrated design criteria: (1) For stability considerations, condition the governing equations before the application of the appropriate numerical scheme whenever it is possible; (2) For consistency, compatible schemes that possess stability properties, including physical and numerical boundary condition treatments, similar to those of the discrete analogue of the continuum are preferred; (3) For the minimization of numerical dissipation contamination, efficient and adaptive numerical dissipation control to further improve nonlinear stability and accuracy should be used; and (4) For practical considerations, the numerical approach should be efficient and applicable to general geometries, and an efficient and reliable dynamic grid adaptation should be used if necessary. These design criteria are, in general, very useful to a wide spectrum of flow simulations. However, the demand on the overall numerical approach for nonlinear stability and accuracy is much more stringent for long-time integration of complex multiscale viscous shock/shear/turbulence/acoustics interactions and numerical combustion. Robust classical numerical methods for less complex flow physics are not suitable or practical for such applications. The present approach is designed expressly to address such flow problems, especially unsteady flows. The minimization of employing very fine grids to overcome the production of spurious numerical solutions and/or instability due to under-resolved grids is also sought. The incremental studies to illustrate the performance of the approach are summarized. Extensive testing and full implementation of the approach is forthcoming. The results shown so far are very encouraging.

  8. Platinum-assisted post deposition annealing of the n-Ge/Y2O3 interface

    NASA Astrophysics Data System (ADS)

    Zimmermann, C.; Bethge, O.; Lutzer, B.; Bertagnolli, E.

    2016-07-01

    The impact of annealing temperature and annealing duration on the interface properties of n-Ge/Y2O3/Pt MOS-capacitors is investigated employing an ultrathin catalytically acting Pt-layer. X-ray photoelectron spectroscopy analysis has been used to verify an enhanced growth of GeO2 and thermally stabilizing yttrium germanate at the n-Ge/Y2O3 interface induced by an oxygen post deposition annealing (PDA). Especially at 500 °C and 550 °C high quality Ge/Y2O3 interfaces have been achieved resulting in very low interface trap density of 7.41*1010 eV‑1 cm‑2. It is shown that either a short oxygen annealing at higher temperatures (550 °C) or a long time annealing at lower temperatures (450 °C) are appropriate to realize low interface trap density (D it). It turns out that a Pt-assisted PDA in combination with a final PMA are needed to reduce hysteresis width significantly and to bring flat band voltages toward ideal values.

  9. Porous silicon strain during in situ ultrahigh vacuum thermal annealing

    NASA Astrophysics Data System (ADS)

    Buttard, D.; Dolino, G.; Faivre, C.; Halimaoui, A.; Comin, F.; Formoso, V.; Ortega, L.

    1999-05-01

    In situ synchrotron radiation measurements of porous silicon (PS) strain have been performed during ultrahigh vacuum (UHV) thermal annealing. For a p+ sample, the initial lattice expansion shifts toward a contraction above 270 °C in relation with hydrogen desorption. For a p- sample, the strain variation is similar to that of a p+ one, but with effects five times larger: after hydrogen desorption, the contraction strain is large (>1.5%) and inhomogeneous. In both cases, most of these strains are elastic as an HF etch re-establishes the initial expansion with a narrow diffraction peak. For p+ samples, the lattice constant exhibited a slow variation during subsequent exposure to air due to a slow oxidation of the annealed porous samples. The origin of these strain variations is discussed in relation with the presence of hydrogen or oxide coverage. The observation of similar variations in other PS properties is also discussed. Finally, the absence of a strain effect during the introduction of water vapor in UHV is discussed as possibly due to a contamination of the PS sample by residual water during the long time passed under UHV at high temperature.

  10. Quantum Annealing for Constrained Optimization

    NASA Astrophysics Data System (ADS)

    Hen, Itay; Spedalieri, Federico M.

    2016-03-01

    Recent advances in quantum technology have led to the development and manufacturing of experimental programmable quantum annealers that promise to solve certain combinatorial optimization problems of practical relevance faster than their classical analogues. The applicability of such devices for many theoretical and real-world optimization problems, which are often constrained, is severely limited by the sparse, rigid layout of the devices' quantum bits. Traditionally, constraints are addressed by the addition of penalty terms to the Hamiltonian of the problem, which, in turn, requires prohibitively increasing physical resources while also restricting the dynamical range of the interactions. Here, we propose a method for encoding constrained optimization problems on quantum annealers that eliminates the need for penalty terms and thereby reduces the number of required couplers and removes the need for minor embedding, greatly reducing the number of required physical qubits. We argue the advantages of the proposed technique and illustrate its effectiveness. We conclude by discussing the experimental feasibility of the suggested method as well as its potential to appreciably reduce the resource requirements for implementing optimization problems on quantum annealers and its significance in the field of quantum computing.

  11. Simulated annealing model of acupuncture

    NASA Astrophysics Data System (ADS)

    Shang, Charles; Szu, Harold

    2015-05-01

    The growth control singularity model suggests that acupuncture points (acupoints) originate from organizers in embryogenesis. Organizers are singular points in growth control. Acupuncture can cause perturbation of a system with effects similar to simulated annealing. In clinical trial, the goal of a treatment is to relieve certain disorder which corresponds to reaching certain local optimum in simulated annealing. The self-organizing effect of the system is limited and related to the person's general health and age. Perturbation at acupoints can lead a stronger local excitation (analogous to higher annealing temperature) compared to perturbation at non-singular points (placebo control points). Such difference diminishes as the number of perturbed points increases due to the wider distribution of the limited self-organizing activity. This model explains the following facts from systematic reviews of acupuncture trials: 1. Properly chosen single acupoint treatment for certain disorder can lead to highly repeatable efficacy above placebo 2. When multiple acupoints are used, the result can be highly repeatable if the patients are relatively healthy and young but are usually mixed if the patients are old, frail and have multiple disorders at the same time as the number of local optima or comorbidities increases. 3. As number of acupoints used increases, the efficacy difference between sham and real acupuncture often diminishes. It predicted that the efficacy of acupuncture is negatively correlated to the disease chronicity, severity and patient's age. This is the first biological - physical model of acupuncture which can predict and guide clinical acupuncture research.

  12. Determining long time-scale hyporheic zone flow paths in Antarctic streams

    USGS Publications Warehouse

    Gooseff, M.N.; McKnight, Diane M.; Runkel, R.L.; Vaughn, B.H.

    2003-01-01

    In the McMurdo Dry Valleys of Antarctica, glaciers are the source of meltwater during the austral summer, and the streams and adjacent hyporheic zones constitute the entire physical watershed; there are no hillslope processes in these systems. Hyporheic zones can extend several metres from each side of the stream, and are up to 70 cm deep, corresponding to a lateral cross-section as large as 12 m2, and water resides in the subsurface year around. In this study, we differentiate between the near-stream hyporheic zone, which can be characterized with stream tracer experiments, and the extended hyporheic zone, which has a longer time-scale of exchange. We sampled stream water from Green Creek and from the adjacent saturated alluvium for stable isotopes of D and 18O to assess the significance and extent of stream-water exchange between the streams and extended hyporheic zones over long time-scales (days to weeks). Our results show that water residing in the extended hyporheic zone is much more isotopically enriched (up to 11??? D and 2.2??? 18O) than stream water. This result suggests a long residence time within the extended hyporheic zone, during which fractionation has occured owing to summer evaporation and winter sublimation of hyporheic water. We found less enriched water in the extended hyporheic zone later in the flow season, suggesting that stream water may be exchanged into and out of this zone, on the time-scale of weeks to months. The transient storage model OTIS was used to characterize the exchange of stream water with the extended hyporheic zone. Model results yield exchange rates (??) generally an order magnitude lower (10-5 s-1) than those determined using stream-tracer techniques on the same stream. In light of previous studies in these streams, these results suggest that the hyporheic zones in Antarctic streams have near-stream zones of rapid stream-water exchange, where 'fast' biogeochemical reactions may influence water chemistry, and extended

  13. A webgis supported snow information system with long time satellite data for Turkey

    NASA Astrophysics Data System (ADS)

    Surer, S.; Bolat, K.; Akyurek, Z.

    2012-04-01

    products have been produced for around 12 years from 2000 to 2012 and it is being produced daily as the data is available. 72% overall accuracy was obtained from the validation analysis. Our website will be available to give service to our users to make analysis on snow extent with a long time series database for free. By the help of WEBGIS interface it is going to be possible to produce time series of snow cover areas, and produce graphs and summary statistics for a better management of information on snow cover in various fields from flood forecast integration, energy production planning of hydropower plants which are fed from snow melting, and producing input for climate models.

  14. Determining long time-scale hyporheic zone flow paths in Antarctic streams

    NASA Astrophysics Data System (ADS)

    Gooseff, Michael N.; McKnight, Diane M.; Runkel, Robert L.; Vaughn, Bruce H.

    2003-06-01

    In the McMurdo Dry Valleys of Antarctica, glaciers are the source of meltwater during the austral summer, and the streams and adjacent hyporheic zones constitute the entire physical watershed; there are no hillslope processes in these systems. Hyporheic zones can extend several metres from each side of the stream, and are up to 70 cm deep, corresponding to a lateral cross-section as large as 12 m2, and water resides in the subsurface year around. In this study, we differentiate between the near-stream hyporheic zone, which can be characterized with stream tracer experiments, and the extended hyporheic zone, which has a longer time-scale of exchange. We sampled stream water from Green Creek and from the adjacent saturated alluvium for stable isotopes of D and 18O to assess the significance and extent of stream-water exchange between the streams and extended hyporheic zones over long time-scales (days to weeks). Our results show that water residing in the extended hyporheic zone is much more isotopically enriched (up to 11 D and 2·2 18O) than stream water. This result suggests a long residence time within the extended hyporheic zone, during which fractionation has occurred owing to summer evaporation and winter sublimation of hyporheic water. We found less enriched water in the extended hyporheic zone later in the flow season, suggesting that stream water may be exchanged into and out of this zone, on the time-scale of weeks to months. The transient storage model OTIS was used to characterize the exchange of stream water with the extended hyporheic zone. Model results yield exchange rates () generally an order magnitude lower (10-5 s-1) than those determined using stream-tracer techniques on the same stream. In light of previous studies in these streams, these results suggest that the hyporheic zones in Antarctic streams have near-stream zones of rapid stream-water exchange, where fast biogeochemical reactions may influence water chemistry, and extended hyporheic

  15. Numerical study of long-time dynamics and ergodic-nonergodic transitions in dense simple fluids

    NASA Astrophysics Data System (ADS)

    McCowan, David D.

    2015-08-01

    Since the mid-1980s, mode-coupling theory (MCT) has been the de facto theoretic description of dense fluids and the transition from the fluid state to the glassy state. MCT, however, is limited by the approximations used in its construction and lacks an unambiguous mechanism to institute corrections. We use recent results from a new theoretical framework—developed from first principles via a self-consistent perturbation expansion in terms of an effective two-body potential—to numerically explore the kinetics of systems of classical particles, specifically hard spheres governed by Smoluchowski dynamics. We present here a full solution for such a system to the kinetic equation governing the density-density time correlation function and show that the function exhibits the characteristic two-step decay of supercooled fluids and an ergodic-nonergodic transition to a dynamically arrested state. Unlike many previous numerical studies—and in stark contrast to experiment—we have access to the full time and wave-number range of the correlation function with great precision and are able to track the solution unprecedentedly close to the transition, covering nearly 15 decades in scaled time. Using asymptotic approximation techniques analogous to those developed for MCT, we fit the solution to predicted forms and extract critical parameters. We find complete qualitative agreement with known glassy behavior (e.g. power-law divergence of the α -relaxation time scale in the ergodic phase and square-root growth of the glass form factors in the nonergodic phase), as well as some limited quantitative agreement [e.g. the transition at packing fraction η*=0.60149761 (10 ) ] , consistent with previous static solutions under this theory and with comparable colloidal suspension experiments. However, most importantly, we establish that this new theory is able to reproduce the salient features seen in other theories, experiments, and simulations but has the advantages of being

  16. Assessment of phase-field-crystal concepts using long-time molecular dynamics

    NASA Astrophysics Data System (ADS)

    Baker, K. L.; Curtin, W. A.

    2015-01-01

    The ability of the phase-field-crystal (PFC) model to quantitatively predict atomistic defect structures in crystalline solids is addressed. First, general aspects of the PFC model are discussed within the context of obtaining quantitative results in solid materials. Then a specific example is used to illustrate major points. Specifically, accelerated molecular dynamics is used to compute the one-particle probability density ρ(1 )(r ) in a complex atomistic defect consisting of a Lomer dislocation with an equilibrium distribution of vacancies in the core, and the results are considered within the general framework of the PFC model. As expected, ρ(1 )(r ) shows numerous spatially localized peaks with integrated densities smaller than unity, as would arise in a PFC computation. However, the ρ(1 )(r ) actually corresponds to a time-averaged superposition of a few well-defined atomic configurations each having a well-defined energy. The deconvolution of ρ(1 )(r ) to obtain the actual distinct atomic configurations is not feasible. Using a potential energy functional that accurately computes the energies of distinct configurations, the potential energy computed using ρ(1 )(r ) differs from the actual average atomistic energy by ˜50 eV divided among approximately 46 atoms in the core of the defect. Attempts to rectify this deviation by introducing correlations cannot significantly reduce this error. The simulations show energy barriers between distinct configurations varying by up to 0.5 eV, indicating that the simple kinetic evolution law used in PFC cannot accurately capture the true time evolution in this problem. Overall, these results demonstrate, in one nontrivial case, that the PFC model is probably unable to predict atomistic defect structures, energies, or kinetic barriers at the quantitative levels needed for application to problems in materials science.

  17. Study on the vegetation dynamic change using long time series of remote sensing data

    NASA Astrophysics Data System (ADS)

    Fan, Jinlong; Zhang, Xiaoyu

    2010-10-01

    The vegetation covering land surface is main component of biosphere which is one of five significant spheres on the earth. The vegetation plays a very important role on the natural environment conservation and improvement to keep human being's living environment evergreen while the vegetation supplies many natural resources to human living and development continuously. Under the background of global warming, vegetation is changing as climate changes. It is not doubt that human activities have great effects on the vegetation dynamic. In general, there are two aspects of the interaction between vegetation and climate, the climatic adaptation of vegetation and the vegetation feedback on climate. On the base of the research on the long term vegetation growth dynamics, it can be found out the vegetation adaptation to climate change. The dynamic change of vegetation is the direct indicator of the ecological environment changes. Therefore, study on the dynamic change of vegetation will be very interest and useful. In this paper, the vegetation change in special region of China will be described in detail. In addition to the methods of the long term in-situ observation of vegetation, remote sensing technologies can also be used to study the long time series vegetation dynamic. The widely used NDVI was often employed to monitor the status of vegetation growth. Actually, NDVI can indicate the vigor and the fractional cover of vegetation effectively. So the long time series of NDVI datasets are a very valuable data source supporting the study on the long term vegetation dynamics. Since 1980, a series of NOAA satellites have been launched successfully, which have already supplied more than 20 years NOAA/AVHRR satellites data. In this paper, we selected Ningxia Hui autonomic region of China as the case study area and used 20 years pathfinder AVHRR NDVI data to carry out the case study on the vegetation dynamics in order to further understand the phenomena of 20 years vegetation

  18. Recursive Branching Simulated Annealing Algorithm

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew; Smith, J. Scott; Aronstein, David

    2012-01-01

    This innovation is a variation of a simulated-annealing optimization algorithm that uses a recursive-branching structure to parallelize the search of a parameter space for the globally optimal solution to an objective. The algorithm has been demonstrated to be more effective at searching a parameter space than traditional simulated-annealing methods for a particular problem of interest, and it can readily be applied to a wide variety of optimization problems, including those with a parameter space having both discrete-value parameters (combinatorial) and continuous-variable parameters. It can take the place of a conventional simulated- annealing, Monte-Carlo, or random- walk algorithm. In a conventional simulated-annealing (SA) algorithm, a starting configuration is randomly selected within the parameter space. The algorithm randomly selects another configuration from the parameter space and evaluates the objective function for that configuration. If the objective function value is better than the previous value, the new configuration is adopted as the new point of interest in the parameter space. If the objective function value is worse than the previous value, the new configuration may be adopted, with a probability determined by a temperature parameter, used in analogy to annealing in metals. As the optimization continues, the region of the parameter space from which new configurations can be selected shrinks, and in conjunction with lowering the annealing temperature (and thus lowering the probability for adopting configurations in parameter space with worse objective functions), the algorithm can converge on the globally optimal configuration. The Recursive Branching Simulated Annealing (RBSA) algorithm shares some features with the SA algorithm, notably including the basic principles that a starting configuration is randomly selected from within the parameter space, the algorithm tests other configurations with the goal of finding the globally optimal

  19. Modeling of sediment flux at short, middle and long time scale in alpine torrents

    NASA Astrophysics Data System (ADS)

    Mazotti, Benoît.; Jaboyedoff, Michel; Loye, Alexandre; Bardou, Eric

    2010-05-01

    Sediments management has become an important issue in the alpine regions since all deposits of material must be removed from sediment traps to keep their efficiency. However, this is not sustainable to evacuate those deposits over long distances. The goals of this work is to quantify the sediment supply of alpine torrents and active gullies in order to make suatinable management over the long term. From a case study situated in the region of Zinal, Valais, Switzerland, we will try to give general recommendation. Several approaches are tested to create a model able to estimate the sediment budget at short, middle and long time scale. After a general analysis of the catchment rendering a geomorphological map (process and location), a quantitative assessment of sediment production is performed. Besides, a qualitative representation of sediment transport processes is created that enable the modelling of sediment cascade. Several new methods are tested combining field work and remote sensing data (DEM, Lidar acquisition and aerial photos). The torrent activity (maximum erosion volume) is estimated with the Slope Local Base Level (SLBL) constrained with field observations (e.g. presence of outcrop). Downstream and cross-sectional topographic profiles along the streams enable to determine their overall dynamics. The model is then composed of homogeneous sections of the torrent. Erosion rates are defined according to the activity observed on time series of aerial photos, historical data, etc. The climate forcing is also considered for assessing torrential dynamics in the prospective sediment balances. The preliminary conclusion is that 6 sets of information implemented in the model enable estimating the quantity of sediments transport by the torrents ((1) the geomorphologic map, (2) the division of the torrent in homogeneous sections, (3) the longitudinal profile of the torrent, (4) the calculation of the maximum volume mobilized by the torrent (with the SLBL), (5) the

  20. Correlation of annealing with chemical stability in lyophilized pharmaceutical glasses.

    PubMed

    Luthra, Suman A; Hodge, Ian M; Utz, Marcel; Pikal, Michael J

    2008-12-01

    This research constitutes a thorough study of the relationship between the chemical stability, aging state and global molecular motion on the one hand, and microscopic local mobility in multi-component systems on the other hand. The objective of the present work was to determine whether annealing a glass below T(g) affects its chemical stability and determine if the rate of chemical degradation couples with global relaxation times determined using calorimetery, and/or with T(1) and T(1rho) relaxation times measured using ssNMR. Model compounds chosen for this research were lyophilized aspartame/sucrose and aspartame/trehalose (1:10 w/w) formulations. The chemical degradation was assessed at various temperatures using high-performance liquid chromatography (HPLC) to determine the impact of annealing on chemical stability. The rate constant for chemical degradation was estimated using stretched time kinetics. The results support the hypothesis that thermal history affects the molecular mobility required for structural relaxation and such effect is critical for chemical stability, that is, a stabilization effect upon annealing is observed. PMID:18481306

  1. Defect behavior, carrier removal and predicted in-space injection annealing of InP solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Drevinsky, P. J.

    1992-01-01

    Defect behavior, observed by deep level transient spectroscopy (DLTS), is used to predict carrier removal and the effects of simultaneous electron irradiation and injection annealing of the performance of InP solar cells. For carrier removal, the number of holes trapped per defect is obtained from measurements of both carrier concentrations and defect concentrations during an isochronal anneal. In addition, from kinetic considerations, the behavior of the dominant defect during injection annealing is used to estimate the degradation expected from exposure to the ambient electron environment in geostationary orbit.

  2. Effects of hydrogen annealing, sulfur segregation and diffusion on the cyclic oxidation resistance of superalloys: A review

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.; Jayne, D. T.; Schaeffer, J. C.; Murphy, W. H.

    1994-01-01

    This review is based on the phenomenon of improved oxide scale adhesion for desulfurized superalloys. The proposed adhesion mechanism involves sulfur interfacial segregation and scale-metal bond weakening. Sulfur surface segregation on superalloys is examined as a function of temperature and sulfur content, and is related to the classical behavior predicted by the McLean isotherm. Effective desulfurization to less than 1 ppmw can be accomplished by hydrogen annealing and is described by sulfur diffusion kinetics in nickel. Hydrogen annealing results in excellent cyclic oxidation resistance for a number of advanced superalloys. The concept of a critical sulfur content is discussed in terms of practical annealing conditions and section thicknesses.

  3. Effects of Hydrogen Annealing, Sulfur Segregation and Diffusion on the Cyclic Oxidation Resistance of Superalloys: a Review

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.; Jayne, D. T.; Schaeffer, J. C.; Murphy, W. H.

    1994-01-01

    This review is based on the phenomenon of improved oxide scale adhesion for desulfurized superalloys. The proposed adhesion mechanism involves sulfur interfacial segregation and scale-metal bond weakening. Sulfur surface segregation on superalloys is examined as a function of temperature and sulfur content and related to classical behavior predicted by the McLean isotherm. Effective desulfurization to less than 1 ppmw can be accomplished by hydrogen annealing and is governed by sulfur diffusion kinetics in nickel. Hydrogen annealing results in excellent cyclic oxidation resistance for a number of advanced superalloys. The concept of a critical sulfur content is discussed in terms of practical annealing conditions and section thicknesses.

  4. Long-time atomistic simulations with the Parallel Replica Dynamics method

    NASA Astrophysics Data System (ADS)

    Perez, Danny

    Molecular Dynamics (MD) -- the numerical integration of atomistic equations of motion -- is a workhorse of computational materials science. Indeed, MD can in principle be used to obtain any thermodynamic or kinetic quantity, without introducing any approximation or assumptions beyond the adequacy of the interaction potential. It is therefore an extremely powerful and flexible tool to study materials with atomistic spatio-temporal resolution. These enviable qualities however come at a steep computational price, hence limiting the system sizes and simulation times that can be achieved in practice. While the size limitation can be efficiently addressed with massively parallel implementations of MD based on spatial decomposition strategies, allowing for the simulation of trillions of atoms, the same approach usually cannot extend the timescales much beyond microseconds. In this article, we discuss an alternative parallel-in-time approach, the Parallel Replica Dynamics (ParRep) method, that aims at addressing the timescale limitation of MD for systems that evolve through rare state-to-state transitions. We review the formal underpinnings of the method and demonstrate that it can provide arbitrarily accurate results for any definition of the states. When an adequate definition of the states is available, ParRep can simulate trajectories with a parallel speedup approaching the number of replicas used. We demonstrate the usefulness of ParRep by presenting different examples of materials simulations where access to long timescales was essential to access the physical regime of interest and discuss practical considerations that must be addressed to carry out these simulations. Work supported by the United States Department of Energy (U.S. DOE), Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division.

  5. Long-time-scale interaction dynamics between a model antimicrobial peptide and giant unilamellar vesicles.

    PubMed

    Burton, Matthew G; Huang, Qi M; Hossain, Mohammed A; Wade, John D; Clayton, Andrew H A; Gee, Michelle L

    2013-11-26

    The interaction dynamics between a lytic peptide and a biomembrane was studied using time-lapse fluorescence lifetime imaging microscopy. The model membrane was 1,2-dipalmitoyl-sn-glycero-3-phosphochloine giant unilamellar vesicles (GUVs), and the peptide was the K14 derivative of melittin, to which the polarity-sensitive fluorescent probe AlexaFluor 430 was grafted. The interaction of the peptide with the GUVs resulted in a progressive quenching of the fluorescence lifetime over a period of minutes. From previous photophysics characterization of the peptide, we were able to deconvolve the contribution of three distinct peptide states to the lifetime trajectory and use this data to develop a kinetics model for the interaction process. It was found that the peptide-membrane interaction was well described by a two-step mechanism: peptide monomer adsorption followed by membrane surface migration, assembly, and insertion to form membrane pores. There was an equilibrium exchange between pore and surface monomers at all lipid/peptide (L/P) concentration ratios, suggesting that the fully inserted phase was reached, even at low peptide concentrations. In contrast to previous studies, there was no evidence of critical behavior; irrespective of L/P ratio, lytic pores were the dominant peptide state at equilibrium and were formed even at very low peptide concentrations. We suggest that this behavior is seen in GUVs because their low curvature means low Laplace pressure. Membrane elasticity is therefore relatively ineffective at damping the thermal fluctuations of lipid molecules that lead to random molecular-level lipid protrusions and membrane undulations. The transient local membrane deformations that result from these thermal fluctuations create the conditions necessary for facile peptide insertion. PMID:24168523

  6. Effects of annealing and additions on dynamic mechanical properties of SnSb quenched alloy

    NASA Astrophysics Data System (ADS)

    El-Bediwi, A. B.

    2004-08-01

    The elastic modulus, internal friction and stiffness values of quenched SnSb bearing alloy have been evaluated using the dynamic resonance technique. Annealing for 2 and 4 h at 120, 140 and 160degreesC caused variations in the elastic modulus. internal friction and stiffness values. This is due to structural changes in the SnSb matrix during isothermal annealing such as coarsening in the phases (Sn, Sb or intermetallic compounds), recrystallization and stress relief. In addition, adding a small amount (1 wt.%) of Cu or Ag improved the bearing mechanical properties of the SnSb bearing alloy. The SnSbCu1 alloy has the best bearing mechanical properties with thermo-mechanical stability for long time at high temperature.

  7. Comparing codes for error corrected quantum annealing

    NASA Astrophysics Data System (ADS)

    Mishra, Anurag; Albash, Tameem; Paz, Gerardo; Lidar, Daniel

    2015-03-01

    Previous work on the D-Wave Two (DW2) device has demonstrated the effectiveness of using error correction and suppression for quantum annealers. As the size of a quantum annealer increases, error correction becomes crucial for improved performance. We introduce a new type of code for error correction tailored to the hardware graph of the DW2, discuss the result of benchmarking this code on qubit chains, discuss various new decoding methods, and compare the performance to previous quantum annealing correction schemes.

  8. Quantum Annealing for Constrained Optimization

    NASA Astrophysics Data System (ADS)

    Hen, Itay; Spedalieri, Federico

    Recent advances in quantum technology have led to the development and manufacturing of experimental programmable quantum annealers that could potentially solve certain quadratic unconstrained binary optimization problems faster than their classical analogues. The applicability of such devices for many theoretical and practical optimization problems, which are often constrained, is severely limited by the sparse, rigid layout of the devices' quantum bits. Traditionally, constraints are addressed by the addition of penalty terms to the Hamiltonian of the problem, which in turn requires prohibitively increasing physical resources while also restricting the dynamical range of the interactions. Here we propose a method for encoding constrained optimization problems on quantum annealers that eliminates the need for penalty terms and thereby removes many of the obstacles associated with the implementation of these. We argue the advantages of the proposed technique and illustrate its effectiveness. We then conclude by discussing the experimental feasibility of the suggested method as well as its potential to boost the encodability of other optimization problems.

  9. Annealing of aromatic polyimide precursors

    NASA Technical Reports Server (NTRS)

    Wakelyn, N. T.

    1975-01-01

    A study has been made of the thermal behavior of polyimide precursors: an isomeric pair of crystals of the complex formed by p-phenylenediamine with the separated isomers of the di-isopropyl ester of pyromellitic acid. Specimens of this material were isothermally annealed in the temperature range 120 C to 170 C for periods of time up to 1 week. Although this temperature range is well below that customarily used for imidizations, the working hypothesis was that it would be more likely that a polymer embodying at least part of the precursor structure could be formed if the molecular motion was minimized to that actually required for the formation of the imide linkage. The progress of the annealing was followed by: infrared spectroscopy, differential thermal analysis, powder X-ray diffraction, and thermal gravimetric analysis. Single crystal X-ray analysis of the meta monomer yields a structure of chains of alternating acid and base and suggests that this monomer is amenable to polymerization with a minimum of geometrical disruption.

  10. Thermally activated switching at long time scales in exchange-coupled magnetic grains

    NASA Astrophysics Data System (ADS)

    Almudallal, Ahmad M.; Mercer, J. I.; Whitehead, J. P.; Plumer, M. L.; van Ek, J.; Fal, T. J.

    2015-10-01

    Rate coefficients of the Arrhenius-Néel form are calculated for thermally activated magnetic moment reversal for dual layer exchange-coupled composite (ECC) media based on the Langer formalism and are applied to study the sweep rate dependence of M H hysteresis loops as a function of the exchange coupling I between the layers. The individual grains are modeled as two exchange-coupled Stoner-Wohlfarth particles from which the minimum energy paths connecting the minimum energy states are calculated using a variant of the string method and the energy barriers and attempt frequencies calculated as a function of the applied field. The resultant rate equations describing the evolution of an ensemble of noninteracting ECC grains are then integrated numerically in an applied field with constant sweep rate R =-d H /d t and the magnetization calculated as a function of the applied field H . M H hysteresis loops are presented for a range of values I for sweep rates 105Oe /s ≤R ≤1010Oe /s and a figure of merit that quantifies the advantages of ECC media is proposed. M H hysteresis loops are also calculated based on the stochastic Landau-Lifshitz-Gilbert equations for 108Oe /s ≤R ≤1010Oe /s and are shown to be in good agreement with those obtained from the direct integration of rate equations. The results are also used to examine the accuracy of certain approximate models that reduce the complexity associated with the Langer-based formalism and which provide some useful insight into the reversal process and its dependence on the coupling strength and sweep rate. Of particular interest is the clustering of minimum energy states that are separated by relatively low-energy barriers into "metastates." It is shown that while approximating the reversal process in terms of "metastates" results in little loss of accuracy, it can reduce the run time of a kinetic Monte Carlo (KMC) simulation of the magnetic decay of an ensemble of dual layer ECC media by 2 -3 orders of magnitude

  11. Mosaic Structure Evolution in GaN Films with Annealing Time Grown by Metalorganic Chemical Vapour Deposition

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Tao; Xu, Ke; Guo, Li-Ping; Yang, Zhi-Jian; Pan, Yao-Bo; Su, Yue-Yong; Zhang, Han; Shen, Bo; Zhang, Guo-Yi

    2006-05-01

    We investigate mosaic structure evolution of GaN films annealed for a long time at 800°C grown on sapphire substrates by metalorganic chemical vapour deposition by high-resolution x-ray diffraction. The result show that residual stress in GaN films is relaxed by generating edge-type threading dislocations (TDs) instead of screw-type TDs. Compared to as-grown GaN films, the annealed ones have larger mean twist angles corresponding to higher density of edge-type TDs but smaller mean tilt angles corresponding to lower density of screw-type TDs films. Due to the increased edge-type TD density, the lateral coherence lengths of the annealed GaN films also decrease. The results obtained from chemical etching experiment and grazing-incidence x-ray diffraction (GIXRD) also support the proposed structure evolution.

  12. Rapid Annealing Of Amorphous Hydrogenated Carbon

    NASA Technical Reports Server (NTRS)

    Alterovitz, Samuel A.; Pouch, John J.; Warner, Joseph D.

    1989-01-01

    Report describes experiments to determine effects of rapid annealing on films of amorphous hydrogenated carbon. Study represents first efforts to provide information for applications of a-C:H films where rapid thermal processing required. Major finding, annealing causes abrupt increase in absorption and concomitant decrease in optical band gap. Most of change occurs during first 20 s, continues during longer annealing times. Extend of change increases with annealing temperature. Researchers hypothesize abrupt initial change caused by loss of hydrogen, while gradual subsequent change due to polymerization of remaining carbon into crystallites or sheets of graphite. Optical band gaps of unannealed specimens on silicon substrates lower than those of specimens on quartz substrates.

  13. Classical Simulated Annealing Using Quantum Analogues

    NASA Astrophysics Data System (ADS)

    La Cour, Brian R.; Troupe, James E.; Mark, Hans M.

    2016-08-01

    In this paper we consider the use of certain classical analogues to quantum tunneling behavior to improve the performance of simulated annealing on a discrete spin system of the general Ising form. Specifically, we consider the use of multiple simultaneous spin flips at each annealing step as an analogue to quantum spin coherence as well as modifications of the Boltzmann acceptance probability to mimic quantum tunneling. We find that the use of multiple spin flips can indeed be advantageous under certain annealing schedules, but only for long anneal times.

  14. Classical Simulated Annealing Using Quantum Analogues

    NASA Astrophysics Data System (ADS)

    La Cour, Brian R.; Troupe, James E.; Mark, Hans M.

    2016-06-01

    In this paper we consider the use of certain classical analogues to quantum tunneling behavior to improve the performance of simulated annealing on a discrete spin system of the general Ising form. Specifically, we consider the use of multiple simultaneous spin flips at each annealing step as an analogue to quantum spin coherence as well as modifications of the Boltzmann acceptance probability to mimic quantum tunneling. We find that the use of multiple spin flips can indeed be advantageous under certain annealing schedules, but only for long anneal times.

  15. Rapid microwave annealing for perpendicular oriented cylinders in PS- b-PMMA thin films

    NASA Astrophysics Data System (ADS)

    Qiang, Zhe; Cavicchi, Kevin; Vogt, Bryan; University of Akron Team

    Self-assembly of block copolymer (BCP) has been extensively studied for decades due to their wide range of potential applications such as lithography. Direct microwave annealing provides rapid ordering kinetics. However, the knowledge regarding the structural and orientation evolution of morphology during microwave annealing without solvents remains sparse. Herein, we report on how microwave-annealing conditions impact the morphology developed in cylinder forming PS-b-PMMA films on unmodified silicon wafers. The fraction of perpendicular cylinders developed during microwave annealing is primarily determined by temperature ramp from microwave heating itself. The heating of the substrate during microwave annealing is varied from 0.5 °C/s to 2.8 °C/s by two factors: (1) the microwave output energy and (2) the local heating position of BCP film in the microwave reaction vessel. A maximum in the fraction of perpendicular cylinders (97 %) occurs at 1.83 °C/s and appears independent of the microwave power used. This work demonstrates the importance of controlling conditions of microwave annealing in the morphology developed.

  16. Evolution of subsurface nanocavities in copper under argon bombardment and annealing

    NASA Astrophysics Data System (ADS)

    Kulikov, D. V.; Kurnosikov, O.; Kharlamov, V. S.; Trushin, Yu. V.

    2013-02-01

    The experimental and theoretical studies of evolution of nanocavities in argon-irradiated copper under annealing are presented. The subsurface argon-filled nanocavities are formed during a short annealing at a temperature around 1000 K by migration and interaction of complexes of the simplest defects created by argon irradiation at room temperature. A long-time annealing at a temperature above 1075 K leads to decomposition of nanocavities and desorption of argon from the sample. Using the X-ray photoelectron spectroscopy and scanning tunneling microscopy and spectroscopy, valuable data sets including the density of nanocavities and their size and depth distribution are obtained. A theoretical model describing the nucleation and evolution of nanocavities is developed. Computer simulations based on this model show that the nanocavities grow at elevated temperatures by absorption of argon-vacancy complexes formed during the ion irradiation. By comparison the calculations with experimental results, the migration energy of these complexes is estimated to be around 2.5-2.75 eV. Also, the value of dissociation energy of a complex, consisting of two vacancies and two argon atoms, is found to be equal to approximately 1.10-1.18 eV. The calculation of concentration of nanocavities at different annealing conditions reveals a satisfactory agreement with the experimental observations.

  17. DOE`s annealing prototype demonstration projects

    SciTech Connect

    Warren, J.; Nakos, J.; Rochau, G.

    1997-02-01

    One of the challenges U.S. utilities face in addressing technical issues associated with the aging of nuclear power plants is the long-term effect of plant operation on reactor pressure vessels (RPVs). As a nuclear plant operates, its RPV is exposed to neutrons. For certain plants, this neutron exposure can cause embrittlement of some of the RPV welds which can shorten the useful life of the RPV. This RPV embrittlement issue has the potential to affect the continued operation of a number of operating U.S. pressurized water reactor (PWR) plants. However, RPV material properties affected by long-term irradiation are recoverable through a thermal annealing treatment of the RPV. Although a dozen Russian-designed RPVs and several U.S. military vessels have been successfully annealed, U.S. utilities have stated that a successful annealing demonstration of a U.S. RPV is a prerequisite for annealing a licensed U.S. nuclear power plant. In May 1995, the Department of Energy`s Sandia National Laboratories awarded two cost-shared contracts to evaluate the feasibility of annealing U.S. licensed plants by conducting an anneal of an installed RPV using two different heating technologies. The contracts were awarded to the American Society of Mechanical Engineers (ASME) Center for Research and Technology Development (CRTD) and MPR Associates (MPR). The ASME team completed its annealing prototype demonstration in July 1996, using an indirect gas furnace at the uncompleted Public Service of Indiana`s Marble Hill nuclear power plant. The MPR team`s annealing prototype demonstration was scheduled to be completed in early 1997, using a direct heat electrical furnace at the uncompleted Consumers Power Company`s nuclear power plant at Midland, Michigan. This paper describes the Department`s annealing prototype demonstration goals and objectives; the tasks, deliverables, and results to date for each annealing prototype demonstration; and the remaining annealing technology challenges.

  18. Ion implantation and laser annealing

    NASA Astrophysics Data System (ADS)

    Three ion implantation and laser annealing projects have been performed by ORNL through the DOE sponsored Seed Money Program. The research has contributed toward improving the characteristics of wear, hardness, and corrosion resistance of some metals and ceramics, as well as the electrical properties of semiconductors. The work has helped to spawn related research, at ORNL and elsewhere, concerning the relationships between microstructure and materials properties. ORNL research has resulted in major advances in extended life and non-corrosive artificial joints (hip and knee), high performance semiconductors, failure resistant ceramics (with potential energy applications), and solar cells. The success of the seed money projects was instrumental in the formation of ORNL's Surface Modification and Characterization Facility (SMAC). More than 60 universities and companies have participated in SMAC programs.

  19. Inverse Kinetics

    Energy Science and Technology Software Center (ESTSC)

    2000-03-20

    Given the space-independent, one energy group reactor kinetics equations and the initial conditions, this prgram determines the time variation of reactivity required to produce the given input of flux-time data.

  20. Crystal growth and annealing method and apparatus

    DOEpatents

    Gianoulakis, Steven E.; Sparrow, Robert

    2001-01-01

    A method and apparatus for producing crystals that minimizes birefringence even at large crystal sizes, and is suitable for production of CaF.sub.2 crystals. The method of the present invention comprises annealing a crystal by maintaining a minimal temperature gradient in the crystal while slowly reducing the bulk temperature of the crystal. An apparatus according to the present invention includes a thermal control system added to a crystal growth and annealing apparatus, wherein the thermal control system allows a temperature gradient during crystal growth but minimizes the temperature gradient during crystal annealing. An embodiment of the present invention comprises a secondary heater incorporated into a conventional crystal growth and annealing apparatus. The secondary heater supplies heat to minimize the temperature gradients in the crystal during the annealing process. The secondary heater can mount near the bottom of the crucible to effectively maintain appropriate temperature gradients.

  1. Influence of interface mobility on the evolution of Austenite-Martensite grain assemblies during annealing

    SciTech Connect

    Clarke, Amy J; Santofimia, Maria J; Speer, John G; Zhao, L; Sietsma, Jilt

    2009-01-01

    The quenching and partitioning (Q&P) process is a new heat treatment for the creation of advanced high-strength steels. This treatment consists of an initial partial or full austenitization, followed by a quench to form a controlled amount of martensite and an annealing step to partition carbon atoms from the martensite to the austenite. In this work, the microstructural evolution during annealing of martensite-austenite grain assemblies has been analyzed by means of a modeling approach that considers the influence of martensite-austenite interface migration on the kinetics of carbon partitioning. Carbide precipitation is precluded in the model, and three different assumptions about interface mobility are considered, ranging from a completely immobile interface to the relatively high mobility of an incoherent ferrite-austenite interface. Simulations indicate that different interface mobilities lead to profound differences in the evolution of microstructure that is predicted during annealing.

  2. From an unconstrained model with quenched interactions to a constrained model with annealed interactions

    NASA Astrophysics Data System (ADS)

    Fierro, Annalisa; de Candia, Antonio; Coniglio, Antonio

    2002-02-01

    The frustrated lattice gas model is studied in the quenched version where the interactions are quenched random variables, and in the annealed version where the interactions are allowed to evolve in time with a suitable kinetic constraint. The dynamical nonlinear susceptibility, recently introduced by Donati et al, is evaluated. In the annealed version we observe a behaviour very similar to the results for the p-spin models in mean field, and those for a Lennard-Jones mixture as found by Donati et al. In the quenched version we observe a substantially different behaviour of the dynamical susceptibility. The results suggest that the behaviour of the dynamical susceptibility in the annealed model can be interpreted as the imprint of the thermodynamic transition present in the quenched model and signalled by the divergence of the static nonlinear susceptibility. A similar mechanism might also be present in glassy systems.

  3. Influence of deformation behavior, oxydation, and temperature on the long time cyclic stress behavior of high temperature steels

    NASA Technical Reports Server (NTRS)

    Maile, K.

    1982-01-01

    The influence of different parameters on the creep-fatigue behavior of several steel alloys was investigated. The higher the temperature the lower the crack initiation value. Pauses during the cycle reduce the damage. Oxidation reduces and protective gas increases the lifetime. Prior loading and prior deformation reduce the lifetime. Short annealing slightly affects the cycle stress behavior. The test results do not satisfactorily agree with methods of extrapolation and damage accumulation.

  4. Renormalizing SMD: The Renormalization Approach and Its Use in Long Time Simulations and Accelerated PMF Calculations of Macromolecules

    PubMed Central

    Dryga, Anatoly; Warshel, Arieh

    2010-01-01

    Simulations of long time process in condensed phases in general and in biomolecules in particular, presents a major challenge that cannot be overcome at present by brute force molecular dynamics (MD) approaches. This work takes the renormalization method, intruded by us sometime ago, and establishes its reliability and potential in extending the time scale of molecular simulations. The validation involves a truncated gramicidin system in the gas phase that is small enough to allow very long explicit simulation and sufficiently complex to present the physics of realistic ion channels. The renormalization approach is found to be reliable and arguably presents the first approach that allows one to exploit the otherwise problematic steered molecular dynamics (SMD) treatments in quantitative and meaningful studies. It is established that we can reproduce the long time behavior of large systems by using Langevin dynamics (LD) simulations of a renormalized implicit model. This is done without spending the enormous time needed to obtain such trajectories in the explicit system. The present study also provides a promising advance in accelerated evaluation of free energy barriers. This is done by adjusting the effective potential in the implicit model to reproduce the same passage time as that obtained in the explicit model, under the influence of an external force. Here having a reasonable effective friction provides a way to extract the potential of mean force (PMF) without investing the time needed for regular PMF calculations. The renormalization approach, which is illustrated here in realistic calculations, is expected to provide a major help in studies of complex landscapes and in exploring long time dynamics of biomolecules. PMID:20836533

  5. Precision Laser Annealing of Focal Plane Arrays

    SciTech Connect

    Bender, Daniel A.; DeRose, Christopher; Starbuck, Andrew Lea; Verley, Jason C.; Jenkins, Mark W.

    2015-09-01

    We present results from laser annealing experiments in Si using a passively Q-switched Nd:YAG microlaser. Exposure with laser at fluence values above the damage threshold of commercially available photodiodes results in electrical damage (as measured by an increase in photodiode dark current). We show that increasing the laser fluence to values in excess of the damage threshold can result in annealing of a damage site and a reduction in detector dark current by as much as 100x in some cases. A still further increase in fluence results in irreparable damage. Thus we demonstrate the presence of a laser annealing window over which performance of damaged detectors can be at least partially reconstituted. Moreover dark current reduction is observed over the entire operating range of the diode indicating that device performance has been improved for all values of reverse bias voltage. Additionally, we will present results of laser annealing in Si waveguides. By exposing a small (<10 um) length of a Si waveguide to an annealing laser pulse, the longitudinal phase of light acquired in propagating through the waveguide can be modified with high precision, <15 milliradian per laser pulse. Phase tuning by 180 degrees is exhibited with multiple exposures to one arm of a Mach-Zehnder interferometer at fluence values below the morphological damage threshold of an etched Si waveguide. No reduction in optical transmission at 1550 nm was found after 220 annealing laser shots. Modeling results for laser annealing in Si are also presented.

  6. [Behaviour of Butanol-extractable iodine in serum, during and after long-time application of hormonal contraceptives (author's transl)].

    PubMed

    Klinger, G; Bonow, A; Hempel, E

    1981-01-01

    The behaviour of butanol-extractable iodine in serum was tested, during and on completion of administration of Non-Ovlon, Ovosiston, Gravistat, and Deposiston, the latter being a longacting contraceptive. Action of synthetic sexual steroids led to an increase in butanol-extractable iodine. However, this change proved to be easily reversible, soon after the end of medication, even after long-time application. Yet, complete normalisation should not be expected to occur before the second cycle without contraceptives, which applies, in particular, to women who had been on long-acting contraceptives. PMID:7223166

  7. Embedding parameters for Quantum Annealing

    NASA Astrophysics Data System (ADS)

    Venturelli, Davide

    Many optimization problems are defined on highly connected graphs and many interesting physical spin-glass systems are featuring long-range interactions. One method to solve for the optimum/ground state is quantum annealing (QA). Most architectures for QA devices, manufactured or proposed, are based on optimizing Hamiltonians having spins connected in a non-complete graph, with nodes with a small maximum degree, compared to the requirements. To overcome this limitation 'embedding' is employed: the native graph is 'tiled' with ferromagnetic chains of spins that now are meant to represent the logical binary variables. While it is known how the strength of the ferromagnetic bonds can ensure that the classical Ising ground state of the embedded system can be univocally mapped to the ground state of the original system, there is very little study on the impact of these parameters on QA. Programmers have taken conservative choices for the parameters and the common practices can be improved. Starting from the physics of connected ferromagnetic Ising chains, we will review several parameter choices and discuss previous and new results obtained on the D-Wave 2X machine, on carefully designed problems that allow to isolate and evaluate the role of connectivity in embedded systems.

  8. Reduction of Cu2O Islands Grown on a Cu(100) Surface through Vacuum Annealing

    NASA Astrophysics Data System (ADS)

    Zhou, Guangwen; Yang, Judith C.

    2004-11-01

    The reduction of Cu2O islands grown on Cu(100) surfaces through vacuum annealing was visualized by an in situ ultrahigh vacuum transmission electron microscope. The shrinkage of the island followed a linear decay behavior. The complete reduction of the oxide islands leads to the formation of nanoindentations on the Cu surfaces. A simple phenomenological kinetic model based on the dissociation along the island perimeter suitably describes the reduction behavior of the surface oxide islands.

  9. Boron activation and diffusion in silicon and strained silicon-on-insulator by rapid thermal and flash lamp annealings

    NASA Astrophysics Data System (ADS)

    Lanzerath, F.; Buca, D.; Trinkaus, H.; Goryll, M.; Mantl, S.; Knoch, J.; Breuer, U.; Skorupa, W.; Ghyselen, B.

    2008-08-01

    We present experimental results on the activation and diffusion behaviors of boron in silicon-on-insulator and strained silicon-on-insulator using standard rapid thermal processing treatments as well as flash lamp annealing. After boron implantation at different doses and at a low energy of 1 keV, samples were annealed to activate the dopants, and secondary ion mass spectrometry and Hall measurements were carried out to determine boron diffusion and the amount of activated dopants, respectively. In contrast to rapid thermal annealing, flash lamp annealing enables the activation without significant diffusion of dopants. In addition, we investigated the effect of coating the samples with antireflection layers to increase the absorbed energy during flash annealing. As a result, the activation was increased significantly to values comparable with the activation obtained with standard annealing. Furthermore, the relation between the observed boron diffusion and activation as a function of the implantation and annealing parameters is discussed in terms of the kinetics of the defects involved in these processes.

  10. Experimental evidence regarding the pressure dependence of fission track annealing in apatite

    NASA Astrophysics Data System (ADS)

    Schmidt, J. S.; Lelarge, M. L. M. V.; Conceicao, R. V.; Balzaretti, N. M.

    2014-03-01

    The main purposes of fission track thermochronology are unravelling the thermal histories of sedimentary basins, determining uplift and denudation rates, identifying the structural evolution of orogenic belts, determining sedimentary provenance, and dating volcanic rocks. The effect of temperature on fission tracks is well known and is used to determine the thermal history; however, the effect of pressure on the stability of tracks is still under debate. The present work aims to understand the role of pressure on the annealing kinetics of apatite fission tracks. The samples of Durango apatite used in our experiments were chosen for their international recognition as a calibration standard for geological dating. Neutron irradiation of the samples, after total annealing of their spontaneous tracks, produced induced tracks with homogeneous densities and lengths. The effect of pressure associated with temperature on fission track annealing was verified by experimental procedures using a hydraulic press of 1000 t with a toroidal chamber profile. The experiments consisted of a combination of applying 2 and 4 GPa with 20,150,190,235, and 290 °C for 1 and 10 h. The annealing rate was analysed by measuring the lengths of the fission tracks after each experiment using optical microscopy. The results demonstrate that the annealing of apatite fission tracks has a pressure dependence for samples subjected to 2 and 4 GPa. However, when extrapolated to pressures of ⩽150 MPa, compatible with the normal geological context in which apatite fission track methodology is broadly used, this dependence becomes insignificant compared to the temperature effect.

  11. Long-time electron spin storage via dynamical suppression of hyperfine-induced decoherence in a quantum dot

    SciTech Connect

    Zhang, W.; Konstantinidis, N.; Dobrovitski, V.; Harmon, B.; Santos, L.; Viola, L.

    2008-03-27

    The coherence time of an electron spin decohered by the nuclear spin environment in a quantum dot can be substantially increased by subjecting the electron to suitable dynamical decoupling sequences. We analyze the performance of high-level decoupling protocols by using a combination of analytical and exact numerical methods, and by paying special attention to the regimes of large interpulse delays and long-time dynamics, which are outside the reach of standard average Hamiltonian theory descriptions. We demonstrate that dynamical decoupling can remain efficient far beyond its formal domain of applicability, and find that a protocol exploiting concatenated design provides best performance for this system in the relevant parameter range. In situations where the initial electron state is known, protocols able to completely freeze decoherence at long times are constructed and characterized. The impact of system and control nonidealities is also assessed, including the effect of intrabath dipolar interaction, magnetic field bias and bath polarization, as well as systematic pulse imperfections. While small bias field and small bath polarization degrade the decoupling fidelity, enhanced performance and temporal modulation result from strong applied fields and high polarizations. Overall, we find that if the relative errors of the control pulse flip angles do not exceed 3%, decoupling protocols can still prolong the coherence time by up to 2 orders of magnitude.

  12. Dopant activation in ion implanted silicon by microwave annealing

    SciTech Connect

    Alford, T. L.; Thompson, D. C.; Mayer, J. W.; Theodore, N. David

    2009-12-01

    Microwaves are used as a processing alternative for the electrical activation of ion implanted dopants and the repair of ion implant damage within silicon. Rutherford backscattering spectra demonstrate that microwave heating reduces the damage resulting from ion implantation of boron or arsenic into silicon. Cross-section transmission electron microscopy and selective area electron diffraction patterns demonstrate that the silicon lattice regains nearly all of its crystallinity after microwave processing of arsenic implanted silicon. Sheet resistance readings indicate the time required for boron or arsenic electrical activation within implanted silicon. Hall measurements demonstrate the extent of dopant activation after microwave heating of implanted silicon. Physical and electrical characterization determined that the mechanism of recrystallization in arsenic implanted silicon is solid phase epitaxial regrowth. The boron implanted silicon samples did not result in enough lattice damage to amorphize the silicon lattice and resulted in low boron activation during microwave annealing even though recrystallization of the Si lattice damage did take place. Despite low boron activation levels, the level of boron activation in this work was higher than that expected from traditional annealing techniques. The kinetics of microwave heating and its effects on implanted Si are also discussed.

  13. Annealing behavior of high permeability amorphous alloys

    SciTech Connect

    Rabenberg, L.

    1980-06-01

    Effects of low temperature annealing on the magnetic properties of the amorphous alloy Co/sub 71/ /sub 4/Fe/sub 4/ /sub 6/Si/sub 9/ /sub 6/B/sub 14/ /sub 4/ were investigated. Annealing this alloy below 400/sup 0/C results in magnetic hardening; annealing above 400/sup 0/C but below the crystallization temperature results in magnetic softening. Above the crystallization temperature the alloy hardens drastically and irreversibly. Conventional and high resolution transmission electron microscopy were used to show that the magnetic property changes at low temperatures occur while the alloy is truly amorphous. By imaging the magnetic microstructures, Lorentz electron microscopy has been able to detect the presence of microscopic inhomogeneities in this alloy. The low temperature annealing behavior of this alloy has been explained in terms of atomic pair ordering in the presence of the internal molecular field. Lorentz electron microscopy has been used to confirm this explanation.

  14. Kinetic theory and long range correlations in moderately dense gases

    SciTech Connect

    Petrosky, T.; Prigogine, I.

    1997-01-01

    The complex spectral representation of the Liouville operator is applied to moderately dense gases interacting through hard-core potentials in arbitrary d-dimensional spaces. It is shown that Markovian kinetic equations exist for all d. This provides an answer to the long standing question do kinetic equations exist in two dimensional systems. The non-Markovian effects, such as the long-time tails for arbitrary n-mode coupling, are estimated by superposition of the Markovian evolutions in each subspace as introduced in our spectral decomposition. The long-time tail effects invalidate the traditional kinetic theory based on a truncation of BBGKY hierarchy for d < 4, as well as the Green-Kubo formalism, as there appear contributions of order t{sup -1}, t{sup -{1/2}},... coming from multiple mode-mode couplings even for d = 3.

  15. Annealed CVD molybdenum thin film surface

    DOEpatents

    Carver, Gary E.; Seraphin, Bernhard O.

    1984-01-01

    Molybdenum thin films deposited by pyrolytic decomposition of Mo(CO).sub.6 attain, after anneal in a reducing atmosphere at temperatures greater than 700.degree. C., infrared reflectance values greater than reflectance of supersmooth bulk molybdenum. Black molybdenum films deposited under oxidizing conditions and annealed, when covered with an anti-reflecting coating, approach the ideal solar collector characteristic of visible light absorber and infrared energy reflector.

  16. Magnetic induced heating for ferritic metal annealing

    SciTech Connect

    De Witt, G.L.; Huber, D.J.

    1987-03-24

    A method is described for annealing the wall of a nuclear reactor vessel, including, positioning an electromagnet within a vertically positioned nuclear reactor vessel by lowering the electromagnet into the vessel, supplying power to the electromagnet to generate substantially uniform heat in the vessel wall, maintaining the power to the electromagnet for a predetermined length of time which will anneal the vessel wall, and removing the electromagnet.

  17. Error suppression and correction for quantum annealing

    NASA Astrophysics Data System (ADS)

    Lidar, Daniel

    While adiabatic quantum computing and quantum annealing enjoy a certain degree of inherent robustness against excitations and control errors, there is no escaping the need for error correction or suppression. In this talk I will give an overview of our work on the development of such error correction and suppression methods. We have experimentally tested one such method combining encoding, energy penalties and decoding, on a D-Wave Two processor, with encouraging results. Mean field theory shows that this can be explained in terms of a softening of the closing of the gap due to the energy penalty, resulting in protection against excitations that occur near the quantum critical point. Decoding recovers population from excited states and enhances the success probability of quantum annealing. Moreover, we have demonstrated that using repetition codes with increasing code distance can lower the effective temperature of the annealer. References: K.L. Pudenz, T. Albash, D.A. Lidar, ``Error corrected quantum annealing with hundreds of qubits'', Nature Commun. 5, 3243 (2014). K.L. Pudenz, T. Albash, D.A. Lidar, ``Quantum annealing correction for random Ising problems'', Phys. Rev. A. 91, 042302 (2015). S. Matsuura, H. Nishimori, T. Albash, D.A. Lidar, ``Mean Field Analysis of Quantum Annealing Correction''. arXiv:1510.07709. W. Vinci et al., in preparation.

  18. Length dependent folding kinetics of phenylacetylene oligomers: Structural characterization of a kinetic trap

    NASA Astrophysics Data System (ADS)

    Elmer, Sidney P.; Pande, Vijay S.

    2005-03-01

    Using simulation to study the folding kinetics of 20-mer poly-phenylacetylene (pPA) oligomers, we find a long time scale trapped kinetic phase in the cumulative folding time distribution. This is demonstrated using molecular dynamics to simulate an ensemble of over 100 folding trajectories. The simulation data are fit to a four-state kinetic model which includes the typical folded and unfolded states, along with an intermediate state, and most surprisingly, a kinetically trapped state. Topologically diverse conformations reminiscent of α helices, β turns, and sheets in proteins are observed, along with unique structures in the form of knots. The nonhelical conformations are implicated, on the basis of structural correlations to kinetic parameters, to contribute to the trapped kinetic behavior. The strong solvophobic forces which mediate the folding process and produce a stable helical folded state also serve to overstabilize the nonhelical conformations, ultimately trapping them. From our simulations, the folding time is predicted to be on the order of 2.5-12.5 μs in the presence of the trapped kinetic phase. The folding mechanism for these 20-mer chains is compared with the previously reported folding mechanism for the pPA 12-mer chains. A linear scaling relationship between the chain length and the mean first passage time is predicted in the absence of the trapped kinetic phase. We discuss the major implications of this discovery in the design of self-assembling nanostructures.

  19. An implicit difference scheme for the long-time evolution of localized solutions of a generalized Boussinesq system

    SciTech Connect

    Christov, C.I.; Maugin, G.A.

    1995-01-01

    We consider the nonlinear system of equations built up from a generalized Boussinesq equation coupled with a wave equation which is a model for the one-dimensional dynamics of phases in martensitic alloys. The strongly implicit scheme employing Newton`s quasilinearisation allows us to track the long time evolution of the localized solutions of the system. Two distinct classes of solutions are encountered for the pure Boussinesq equation. The first class consists of oscillatory pulses whose envelopes are localized waves. The second class consists of smoother solutions whose shapes are either heteroclinic (kinks) or homoclinic (bumps). The homoclinics decrease in amplitude with time while their support increases. An appropriate self-similar scaling is found analytically and confirmed by the direct numerical simulations to high accuracy. The rich phenomenology resulting from the coupling with the wave equation is also investigated. 11 refs., 12 figs., 2 tabs.

  20. Long-time dynamics of quantum chains: Transfer-matrix renormalization group and entanglement of the maximal eigenvector

    NASA Astrophysics Data System (ADS)

    Huang, Yu-Kun; Chen, Pochung; Kao, Ying-Jer; Xiang, Tao

    2014-05-01

    By using a different quantum-to-classical mapping from the Trotter-Suzuki decomposition, we identify the entanglement structure of the maximal eigenvectors for the associated quantum transfer matrix. This observation provides a deeper insight into the problem of linear growth of the entanglement entropy in time evolution using conventional methods. Based on this observation, we propose a general method for arbitrary temperatures using the biorthonormal transfer-matrix renormalization group. Our method exhibits a competitive accuracy with a much cheaper computational cost in comparison with two recently proposed methods for long-time dynamics based on a folding algorithm [Phys. Rev. Lett. 102, 240603 (2009), 10.1103/PhysRevLett.102.240603] and a modified time-dependent density-matrix renormalization group [Phys. Rev. Lett. 108, 227206 (2012), 10.1103/PhysRevLett.108.227206].

  1. Theoretical analysis of impurity precipitation in nanopores in crystals. II: Kinetics of impurity cluster growth in pores

    NASA Astrophysics Data System (ADS)

    Lubov, M. N.; Kulikov, D. V.; Trushin, Yu. V.; Kurnosikov, O.

    2013-03-01

    The kinetics of the formation of impurity clusters in subsurface nanopores in crystals is studied theoretically. A physical model of precipitation of the impurity phase in nanopores in a sample with sinks of various types is developed. This model forms the basis for the calculation of the annealing kinetics of copper containing subsurface pores and cobalt impurity atoms. The optimal annealing conditions are determined in which cobalt atoms diffuse predominantly into pores and form impurity clusters in them.

  2. Enhanced annealing of GaAs solar cell radiation damage

    NASA Technical Reports Server (NTRS)

    Loo, R.; Knechtli, R. C.; Kamath, G. S.

    1981-01-01

    Solar cells are degraded by radiation damage in space. Investigations have been conducted concerning possibilities for annealing this radiation damage in GaAs solar cells, taking into account the conditions favoring such annealing. It has been found that continuous annealing as well as the combination of injection annealing with thermal annealing can lead to recovery from radiation damage under particularly favorable conditions in GaAs solar cells. The damage caused by both electrons and protons in GaAs solar cells can be substantially reduced by annealing at temperatures as low as 150 C, under appropriate conditions. This possibility makes the GaAs solar cells especially attractive for long space missions, or for missions in severe radiation environments. Attention is given to results concerning periodic thermal annealing, continuous annealing, and injection annealing combined with thermal annealing.

  3. Multiple Interconversions of the E' and Oxygen-Hole Defect Centers in High-Purity Amorphous Silica during Anneal-Interrupted x Irradiation

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Mashkov, V. A.; Leisure, R. G.

    1995-02-01

    Multiple interconversions of E' centers and peroxy radicals have been observed for the first time by means of anneal-interrupted x-irradiation experiments. It is shown that each of these defects can serve as the precursor of the other; under thermal anneal an E' center can convert to a peroxy radical due to the capture of an oxygen molecule, and under irradiation the peroxy radical can covert to an E' center due to irradiation-induced release of oxygen. The results for the defect production and anneal behavior are well described in terms of simple stretched-exponential defect-reaction kinetics.

  4. Origin of reverse annealing effect in hydrogen-implanted silicon

    SciTech Connect

    Di, Zengfeng; Nastasi, Michael A; Wang, Yongqiang

    2009-01-01

    In contradiction to conventional damage annealing, thermally annealed H-implanted Si exhibits an increase in damage or reverse annealing behavior, whose mechanism has remained elusive. On the basis of quantitative high resolution transmission electron microscopy combined with channeling Rutherford backscattering analysis, we conclusively elucidate that the reverse annealing effect is due to the nucleation and growth of hydrogen-induce platelets. Platelets are responsible for an increase in the height and width the channeling damage peak following increased isochronal anneals.

  5. Origin of reverse annealing effect in hydrogen-implanted silicon

    SciTech Connect

    Di, Z. F.; Wang, Y. Q.; Nastasi, M.; Theodore, N. David

    2010-04-12

    In contradiction to conventional damage annealing, thermally annealed H-implanted Si exhibits an increase in damage or reverse annealing behavior, whose mechanism has remained elusive. In this work, we conclusively elucidate that the reverse annealing effect is due to the nucleation and growth of hydrogen-induced platelets. Platelets are responsible for an increase in the height and width of the channeling damage peak following increased isochronal anneals.

  6. Annealing of ion implanted gallium nitride

    SciTech Connect

    Tan, H.H.; Williams, J.S.; Zou, J.; Cockayne, D.J.; Pearton, S.J.; Zolper, J.C.; Stall, R.A.

    1998-03-01

    In this paper, we examine Si and Te ion implant damage removal in GaN as a function of implantation dose, and implantation and annealing temperature. Transmission electron microscopy shows that amorphous layers, which can result from high-dose implantation, recrystallize between 800 and 1100{degree}C to very defective polycrystalline material. Lower-dose implants (down to 5{times}10{sup 13}cm{sup {minus}2}), which are not amorphous but defective after implantation, also anneal poorly up to 1100{degree}C, leaving a coarse network of extended defects. Despite such disorder, a high fraction of Te is found to be substitutional in GaN both following implantation and after annealing. Furthermore, although elevated-temperature implants result in less disorder after implantation, this damage is also impossible to anneal out completely by 1100{degree}C. The implications of this study are that considerably higher annealing temperatures will be needed to remove damage for optimum electrical properties. {copyright} {ital 1998 American Institute of Physics.}

  7. The annealing robust backpropagation (ARBP) learning algorithm.

    PubMed

    Chuang, C C; Su, S F; Hsiao, C C

    2000-01-01

    Multilayer feedforward neural networks are often referred to as universal approximators. Nevertheless, if the used training data are corrupted by large noise, such as outliers, traditional backpropagation learning schemes may not always come up with acceptable performance. Even though various robust learning algorithms have been proposed in the literature, those approaches still suffer from the initialization problem. In those robust learning algorithms, the so-called M-estimator is employed. For the M-estimation type of learning algorithms, the loss function is used to play the role in discriminating against outliers from the majority by degrading the effects of those outliers in learning. However, the loss function used in those algorithms may not correctly discriminate against those outliers. In this paper, the annealing robust backpropagation learning algorithm (ARBP) that adopts the annealing concept into the robust learning algorithms is proposed to deal with the problem of modeling under the existence of outliers. The proposed algorithm has been employed in various examples. Those results all demonstrated the superiority over other robust learning algorithms independent of outliers. In the paper, not only is the annealing concept adopted into the robust learning algorithms but also the annealing schedule k/t was found experimentally to achieve the best performance among other annealing schedules, where k is a constant and is the epoch number. PMID:18249835

  8. Magnetic age hardening of cold-deformed bulk equiatomic Fe-Pd intermetallics during isothermal annealing

    NASA Astrophysics Data System (ADS)

    Deshpande, A. R.; Wiezorek, J. M. K.

    2004-03-01

    The interplay between the ordering reaction with recovery and recrystallization of the as-deformed state leads to combined reactions (CRs) during annealing of cold-deformed disordered Fe-Pd intermetallics at temperatures below the critical ordering temperature. CRs can be exploited to control the scale and morphology of the Fe-Pd alloy microstructures in order to optimize alloy properties. Here, the magnetic age hardening behavior and microstructural evolution of cold-deformed (cold rolled to 97% reduction in thickness) binary equiatomic Fe-Pd has been studied for isothermal annealing at temperatures of 400°C, 500°C, and 600°C. The evolution of the microstructure during the annealing treatments has been characterized by a combination of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The magnetic age hardening behavior, the evolution of the coercivity as a function of annealing time, has been determined using a vibrating sample magnetometer (VSM). The microstructures of the transforming material have been characterized quantitatively using computer assisted image analysis methods. The CR transformed microstructures are morphologically equiaxed with average grain sizes in the sub-micron range and show coercivity up to five-fold larger than for conventionally processed equiatomic bulk Fe-Pd. During annealing the coercivity increases up to a maximum peak value and has been correlated with the increasing fraction of ordered material. The maximum coercivity obtains, as the ordering phase transformation is complete. With respect to conventionally processed material the ordering transformation in the cold-deformed material exhibits accelerated kinetics and is facilitated by a CR, which involves heterogeneous nucleation and growth processes akin to a 'massive ordering' reaction. Further annealing leads to decreasing coercivity, which has been attributed to the onset of grain growth in the population of CR-transformed grains. The characteristic magnetic

  9. Busulfan kinetics.

    PubMed

    Ehrsson, H; Hassan, M; Ehrnebo, M; Beran, M

    1983-07-01

    Busulfan kinetics were studied in patients with chronic myelocytic leukemia after oral doses of 2, 4, and 6 mg. The plasma concentration-time data could be fitted to a zero-order absorption one-compartment open model. The elimination rate constant averaged 0.27 +/- 0.05 hr-1 (SD). The plasma AUC was linearly related to the dose. The lag time for the start of absorption, the time absorption ends, and the absorption rate constant showed some interindividual variations. About 1% of busulfan is excreted unchanged in urine over 24 hr. PMID:6574831

  10. High temperature annealing of fission tracks in fluorapatite, Santa Fe Springs oil field, Los Angeles Basin, California

    USGS Publications Warehouse

    Naeser, Nancy D.; Crowley, Kevin D.; McCulloh, Thane H.; Reaves, Chris M.

    1990-01-01

    Annealing of fission tracks is a kinetic process dependent primarily on temperature and to a laser extent on time. Several kinetic models of apatite annealing have been proposed. The predictive capabilities of these models for long-term geologic annealing have been limited to qualitative or semiquantitative at best, because of uncertainties associated with (1) the extrapolation of laboratory observations to geologic conditions, (2) the thermal histories of field samples, and (3) to some extent, the effect of apatite composition on reported annealing temperatures. Thermal history in the Santa Fe Springs oil field, Los Angeles Basin, California, is constrained by an exceptionally well known burial history and present-day temperature gradient. Sediment burial histories are continuous and tightly constrained from about 9 Ma to present, with an important tie at 3.4 Ma. No surface erosion and virtually no uplift were recorded during or since deposition of these sediments, so the burial history is simple and uniquely defined. Temperature gradient (???40??C km-1) is well established from oil-field operations. Fission-track data from the Santa Fe Springs area should thus provide one critical field test of kinetic annealing models for apatite. Fission-track analysis has been performed on apatites from sandstones of Pliocene to Miocene age from a deep drill hole at Santa Fe Springs. Apatite composition, determined by electron microprobe, is fluorapatite [average composition (F1.78Cl0.01OH0.21)] with very low chlorine content [less than Durango apatite; sample means range from 0.0 to 0.04 Cl atoms, calculated on the basis of 26(O, F, Cl, OH)], suggesting that the apatite is not unusually resistant to annealing. Fission tracks are preserved in these apatites at exceptionally high present-day temperatures. Track loss is not complete until temperatures reach the extreme of 167-178??C (at 3795-4090 m depth). The temperature-time annealing relationships indicated by the new data

  11. Influence of radiation damage and isochronal annealing on the magnetic susceptibility of Pu(1-x)Am(x) alloys

    SciTech Connect

    McCall, S; Fluss, M; Chung, B; Haire, R

    2008-05-02

    Results of radiation damage in Pu and Pu{sub 1-x}Am{sub x} alloys studied with magnetic susceptibility, {chi}(T), and resistivity are presented. Damage accumulated at low temperatures increases {chi}(T) for all measured alloys, with the trend generally enhanced as the lattice expands. There is a trend towards saturation observable in the damage induced magnetic susceptibility data, that is not evident in similar damage induced resistivity data taken on the same specimen. A comparison of isochronal annealing curves measured by both resistivity and magnetic susceptibility on a 4.3at% Ga stabilized {delta}-Pu specimen show that Stage I annealing, where interstitials begin to move, is largely transparent to the magnetic measurement. This indicates that interstitials have little impact on the damage induced increase in the magnetic susceptibility. The isochronal annealing curves of the Pu{sub 1-x}Am{sub x} alloys do not show distinct annealing stages as expected for alloys. However, samples near 20% Am concentration show an unexpected increase in magnetization beginning when specimens are annealed to 35K. This behavior is also reflected in a time dependent increase in the magnetic susceptibility of damaged specimens indicative of first order kinetics. These results suggest there may be a metastable phase induced by radiation damage and annealing in Pu{sub 1-x}Am{sub x} alloys.

  12. Black anneal marking with pulsed fiber lasers

    NASA Astrophysics Data System (ADS)

    Murphy, T.; Harrison, P.; Norman, S.

    2015-07-01

    High contrast marking of metals is used in a wide range of industries. Fiber laser marking of these metals provides non-contact marking with no consumables, offering many advantages over traditional methods of metal marking. The laser creates a permanent mark on the material surface combining heat and oxygen with no noticeable ablation. The focussed beam of the fiber laser in combination with precision control of the heat input is able to treat small areas of the material surface evenly and consistently, which is critical for producing black anneal marks. The marks are highly legible which is ideal for marking serial numbers or small data matrices where traceability is required. This paper reports the experimental study for producing black anneal marks on various grades of stainless steel using fiber lasers. The influence of metal surface finish, beam quality, spot size diameter and pulse duration are investigated for producing both smooth and decorative anneal marks.

  13. Hydrogen Annealing Of Single-Crystal Superalloys

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Schaeffer, John C.; Murphy, Wendy

    1995-01-01

    Annealing at temperature equal to or greater than 2,200 degrees F in atmosphere of hydrogen found to increase ability of single-crystal superalloys to resist oxidation when subsequently exposed to oxidizing atmospheres at temperatures almost as high. Supperalloys in question are principal constituents of hot-stage airfoils (blades) in aircraft and ground-based turbine engines; also used in other high-temperature applications like chemical-processing plants, coal-gasification plants, petrochemical refineries, and boilers. Hydrogen anneal provides resistance to oxidation without decreasing fatigue strength and without need for coating or reactive sulfur-gettering constituents. In comparison with coating, hydrogen annealing costs less. Benefits extend to stainless steels, nickel/chromium, and nickel-base alloys, subject to same scale-adhesion and oxidation-resistance considerations, except that scale is chromia instead of alumina.

  14. Computational multiqubit tunnelling in programmable quantum annealers.

    PubMed

    Boixo, Sergio; Smelyanskiy, Vadim N; Shabani, Alireza; Isakov, Sergei V; Dykman, Mark; Denchev, Vasil S; Amin, Mohammad H; Smirnov, Anatoly Yu; Mohseni, Masoud; Neven, Hartmut

    2016-01-01

    Quantum tunnelling is a phenomenon in which a quantum state traverses energy barriers higher than the energy of the state itself. Quantum tunnelling has been hypothesized as an advantageous physical resource for optimization in quantum annealing. However, computational multiqubit tunnelling has not yet been observed, and a theory of co-tunnelling under high- and low-frequency noises is lacking. Here we show that 8-qubit tunnelling plays a computational role in a currently available programmable quantum annealer. We devise a probe for tunnelling, a computational primitive where classical paths are trapped in a false minimum. In support of the design of quantum annealers we develop a nonperturbative theory of open quantum dynamics under realistic noise characteristics. This theory accurately predicts the rate of many-body dissipative quantum tunnelling subject to the polaron effect. Furthermore, we experimentally demonstrate that quantum tunnelling outperforms thermal hopping along classical paths for problems with up to 200 qubits containing the computational primitive. PMID:26739797

  15. Simulation of Storm Occurrences Using Simulated Annealing.

    NASA Astrophysics Data System (ADS)

    Lokupitiya, Ravindra S.; Borgman, Leon E.; Anderson-Sprecher, Richard

    2005-11-01

    Modeling storm occurrences has become a vital part of hurricane prediction. In this paper, a method for simulating event occurrences using a simulated annealing algorithm is described. The method is illustrated using annual counts of hurricanes and of tropical storms in the Atlantic Ocean and Gulf of Mexico. Simulations closely match distributional properties, including possible correlations, in the historical data. For hurricanes, traditionally used Poisson and negative binomial processes also predict univariate properties well, but for tropical storms parametric methods are less successful. The authors determined that simulated annealing replicates properties of both series. Simulated annealing can be designed so that simulations mimic historical distributional properties to whatever degree is desired, including occurrence of extreme events and temporal patterning.

  16. Stochastic annealing simulation of cascades in metals

    SciTech Connect

    Heinisch, H.L.

    1996-04-01

    The stochastic annealing simulation code ALSOME is used to investigate quantitatively the differential production of mobile vacancy and SIA defects as a function of temperature for isolated 25 KeV cascades in copper generated by MD simulations. The ALSOME code and cascade annealing simulations are described. The annealing simulations indicate that the above Stage V, where the cascade vacancy clusters are unstable,m nearly 80% of the post-quench vacancies escape the cascade volume, while about half of the post-quench SIAs remain in clusters. The results are sensitive to the relative fractions of SIAs that occur in small, highly mobile clusters and large stable clusters, respectively, which may be dependent on the cascade energy.

  17. Computational multiqubit tunnelling in programmable quantum annealers

    PubMed Central

    Boixo, Sergio; Smelyanskiy, Vadim N.; Shabani, Alireza; Isakov, Sergei V.; Dykman, Mark; Denchev, Vasil S.; Amin, Mohammad H.; Smirnov, Anatoly Yu; Mohseni, Masoud; Neven, Hartmut

    2016-01-01

    Quantum tunnelling is a phenomenon in which a quantum state traverses energy barriers higher than the energy of the state itself. Quantum tunnelling has been hypothesized as an advantageous physical resource for optimization in quantum annealing. However, computational multiqubit tunnelling has not yet been observed, and a theory of co-tunnelling under high- and low-frequency noises is lacking. Here we show that 8-qubit tunnelling plays a computational role in a currently available programmable quantum annealer. We devise a probe for tunnelling, a computational primitive where classical paths are trapped in a false minimum. In support of the design of quantum annealers we develop a nonperturbative theory of open quantum dynamics under realistic noise characteristics. This theory accurately predicts the rate of many-body dissipative quantum tunnelling subject to the polaron effect. Furthermore, we experimentally demonstrate that quantum tunnelling outperforms thermal hopping along classical paths for problems with up to 200 qubits containing the computational primitive. PMID:26739797

  18. Quantum annealing correction for random Ising problems

    NASA Astrophysics Data System (ADS)

    Pudenz, Kristen L.; Albash, Tameem; Lidar, Daniel A.

    2015-04-01

    We demonstrate that the performance of a quantum annealer on hard random Ising optimization problems can be substantially improved using quantum annealing correction (QAC). Our error correction strategy is tailored to the D-Wave Two device. We find that QAC provides a statistically significant enhancement in the performance of the device over a classical repetition code, improving as a function of problem size as well as hardness. Moreover, QAC provides a mechanism for overcoming the precision limit of the device, in addition to correcting calibration errors. Performance is robust even to missing qubits. We present evidence for a constructive role played by quantum effects in our experiments by contrasting the experimental results with the predictions of a classical model of the device. Our work demonstrates the importance of error correction in appropriately determining the performance of quantum annealers.

  19. Spectrophotometric analysis of tomato plants produced from seeds exposed under space flight conditions for a long time

    NASA Astrophysics Data System (ADS)

    Nechitailo, Galina S.; Yurov, S.; Cojocaru, A.; Revin, A.

    The analysis of the lycopene and other carotenoids in tomatoes produced from seeds exposed under space flight conditions at the orbital station MIR for six years is presented in this work. Our previous experiments with tomato plants showed the germination of seeds to be 32%Genetic investigations revealed 18%in the experiment and 8%experiments were conducted to study the capacity of various stimulating factors to increase germination of seeds exposed for a long time to the action of space flight factors. An increase of 20%achieved but at the same time mutants having no analogues in the control variants were detected. For the present investigations of the third generation of plants produced from seeds stored for a long time under space flight conditions 80 tomatoes from forty plants were selected. The concentration of lycopene in the experimental specimens was 2.5-3 times higher than in the control variants. The spectrophotometric analysis of ripe tomatoes revealed typical three-peaked carotenoid spectra with a high maximum of lycopene (a medium maximum at 474 nm), a moderate maximum of its predecessor, phytoin, (a medium maximum at 267 nm) and a low maximum of carotenes. In green tomatoes, on the contrary, a high maximum of phytoin, a moderate maximum of lycopene and a low maximum of carotenes were observed. The results of the spectral analysis point to the retardation of biosynthesis of carotenes while the production of lycopene is increased and to the synthesis of lycopene from phytoin. Electric conduction of tomato juice in the experimental samples is increased thus suggesting higher amounts of carotenoids, including lycopene and electrolytes. The higher is the value of electric conduction of a specimen, the higher are the spectral maxima of lycopene. The hydrogen ion exponent of the juice of ripe tomatoes increases due to which the efficiency of ATP biosynthesis in cell mitochondria is likely to increase, too. The results demonstrating an increase in the content

  20. Improving the creep resistance and tensile property of UHMWPE sheet by radiation cross-linking and annealing

    NASA Astrophysics Data System (ADS)

    Wang, Honglong; Xu, Lu; Li, Rong; Hu, Jiangtao; Wang, Mouhua; Wu, Guozhong

    2016-08-01

    Ultra-high molecular weight polyethylene (UHMWPE) sheet was cross-linked by γ irradiation in air with a dose of up to 300 kGy at a dose rate of 5 kGy/h and further treated by post-annealing at 120 °C for 4 h in vacuum. Variations in chemical structure, thermostability, crystallinity, creep resistance, and tensile properties were investigated and compared mainly by gel content, TGA, DSC, and creep and tensile measurements. Gel content measurements indicated that cross-linking was predominant over chain scission during irradiation and post-annealing. Radiation cross-linking resulted in an obvious improvement in the creep resistance and tensile properties of UHMWPE. Through cross-linking, the operational temperature and yield strength of the irradiated and subsequently annealed UHMWPE sheet were improved by more than 100 °C and 14%, respectively, at a dose of 300 kGy. Simultaneously, Young's modulus was increased to 1413 MPa, compared with 398 MPa of pristine UHMWPE. Annealing after irradiation further improved the creep resistance and Young's modulus. Highly cross-linked UHMWPE can even be maintained at 250 °C for a long time without any obvious deformation.

  1. Quantum annealing correction with minor embedding

    NASA Astrophysics Data System (ADS)

    Vinci, Walter; Albash, Tameem; Paz-Silva, Gerardo; Hen, Itay; Lidar, Daniel A.

    2015-10-01

    Quantum annealing provides a promising route for the development of quantum optimization devices, but the usefulness of such devices will be limited in part by the range of implementable problems as dictated by hardware constraints. To overcome constraints imposed by restricted connectivity between qubits, a larger set of interactions can be approximated using minor embedding techniques whereby several physical qubits are used to represent a single logical qubit. However, minor embedding introduces new types of errors due to its approximate nature. We introduce and study quantum annealing correction schemes designed to improve the performance of quantum annealers in conjunction with minor embedding, thus leading to a hybrid scheme defined over an encoded graph. We argue that this scheme can be efficiently decoded using an energy minimization technique provided the density of errors does not exceed the per-site percolation threshold of the encoded graph. We test the hybrid scheme using a D-Wave Two processor on problems for which the encoded graph is a two-level grid and the Ising model is known to be NP-hard. The problems we consider are frustrated Ising model problem instances with "planted" (a priori known) solutions. Applied in conjunction with optimized energy penalties and decoding techniques, we find that this approach enables the quantum annealer to solve minor embedded instances with significantly higher success probability than it would without error correction. Our work demonstrates that quantum annealing correction can and should be used to improve the robustness of quantum annealing not only for natively embeddable problems but also when minor embedding is used to extend the connectivity of physical devices.

  2. Tolrestat kinetics

    SciTech Connect

    Hicks, D.R.; Kraml, M.; Cayen, M.N.; Dubuc, J.; Ryder, S.; Dvornik, D.

    1984-10-01

    The kinetics of tolrestat, a potent inhibitor of aldose reductase, were examined. Serum concentrations of tolrestat and of total /sup 14/C were measured after dosing normal subjects and subjects with diabetes with /sup 14/C-labeled tolrestat. In normal subjects, tolrestat was rapidly absorbed and disappearance from serum was biphasic. Distribution and elimination t 1/2s were approximately 2 and 10 to 12 hr, respectively, after single and multiple doses. Unchanged tolrestat accounted for the major portion of /sup 14/C in serum. Radioactivity was rapidly and completely excreted in urine and feces in an approximate ratio of 2:1. Findings were much the same in subjects with diabetes. In normal subjects, the kinetics of oral tolrestat were independent of dose in the 10 to 800 mg range. Repetitive dosing did not result in unexpected cumulation. Tolrestat was more than 99% bound to serum protein; it did not compete with warfarin for binding sites but was displaced to some extent by high concentrations of tolbutamide or salicylate.

  3. Performance of quantum annealing in solving optimization problems: A review

    NASA Astrophysics Data System (ADS)

    Suzuki, S.

    2015-02-01

    Quantum annealing is one of the optimization method for generic optimization problems. It uses quantum mechanics and is implemented by a quantum computer ideally. At the earlier stage, several numerical experiments using conventional computers have provided results showing that quantum annealing produces an answer faster than simulated annealing, a classical counterpart of quantum annealing. Later, theoretical and numerical studies have shown that there are drawbacks in quantum annealing. The power of quantum annealing is still an open problem. What makes quantum annealing a hot topic now is that a quantum computer based on quantum annealing is manufactured and commercialized by a Canadian company named D-Wave Systems. In the present article, we review the study of quantum annealing, focusing mainly on its power.

  4. The importance of annealing 316 LVM stents.

    PubMed

    Meyer-Kobbe, C; Hinrichs, B H

    2003-01-01

    The annealing process is an important key step in the manufacture of high quality and reliable 316 LVM stents. [figure: see text] The methods commonly applied for verifying the outcome of the annealing process such as microhardness testing are inappropriate and should not be used. The tension testing of tubes, processed together with stents, provides reliable results of the final material properties of stents. During the course of the investigation the grain size was reduced significantly and the break elongation improved. The surface of the strain-tested material shows substantial improvements. All results are particularly important for thin-wall stents with filigree struts. PMID:12974121

  5. Rock melting tool with annealer section

    DOEpatents

    Bussod, Gilles Y.; Dick, Aaron J.; Cort, George E.

    1998-01-01

    A rock melting penetrator is provided with an afterbody that rapidly cools a molten geological structure formed around the melting tip of the penetrator to the glass transition temperature for the surrounding molten glass-like material. An annealing afterbody then cools the glass slowly from the glass transition temperature through the annealing temperature range to form a solid self-supporting glass casing. This allows thermally induced strains to relax by viscous deformations as the molten glass cools and prevents fracturing of the resulting glass liner. The quality of the glass lining is improved, along with its ability to provide a rigid impermeable casing in unstable rock formations.

  6. Thermal annealing of tilted fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    González-Vila, Á.; Rodríguez-Cobo, L.; Mégret, P.; Caucheteur, C.; López-Higuera, J. M.

    2016-05-01

    We report a practical study of the thermal decay of cladding mode resonances in tilted fiber Bragg gratings, establishing an analogy with the "power law" evolution previously observed on uniform gratings. We examine how this process contributes to a great thermal stability, even improving it by means of a second cycle slightly increasing the annealing temperature. In addition, we show an improvement of the grating spectrum after annealing, with respect to the one just after inscription, which suggests the application of this method to be employed to improve saturation issues during the photo-inscription process.

  7. Annealing Increases Stability Of Iridium Thermocouples

    NASA Technical Reports Server (NTRS)

    Germain, Edward F.; Daryabeigi, Kamran; Alderfer, David W.; Wright, Robert E.; Ahmed, Shaffiq

    1989-01-01

    Metallurgical studies carried out on samples of iridium versus iridium/40-percent rhodium thermocouples in condition received from manufacturer. Metallurgical studies included x-ray, macroscopic, resistance, and metallographic studies. Revealed large amount of internal stress caused by cold-working during manufacturing, and large number of segregations and inhomogeneities. Samples annealed in furnace at temperatures from 1,000 to 2,000 degree C for intervals up to 1 h to study effects of heat treatment. Wire annealed by this procedure found to be ductile.

  8. Towards ultra-fast solvent evaporation, the development of a computer controlled solvent vapor annealing chamber

    NASA Astrophysics Data System (ADS)

    Nelson, Gunnar; Wong, J.; Drapes, C.; Grant, M.; Baruth, A.

    Despite the promise of cheap and fast nanoscale ordering of block polymer thin films via solvent vapor annealing, a standardized, scalable production scheme remains elusive. Solvent vapor annealing exposes a nano-thin film to the vapors of one or more solvents with the goal of forming a swollen and mobile state to direct the self-assembly process by tuning surface energies and mediating unfavorable chain interactions. We have shown that optimized annealing conditions, where kinetic and thermal properties for crystal growth are extremely fast (<1s), exist at solvent concentrations just below the order-disorder transition of the film. However, when investigating the propagation of a given morphology into the bulk of a film during drying, the role of solvent evaporation comes under great scrutiny. During this process, the film undergoes a competition between two fronts; phase separation and kinetic trapping. Recent results in both theory and experiment point toward this critical element in controlling the resultant morphologies; however, no current method includes a controllable solvent evaporation rate at ultra-fast time scales. We report on a computer-controlled, pneumatically actuated chamber that provides control over solvent evaporation down to 15 ms. Furthermore, in situ spectral reflectance monitors solvent concentration with 10 ms temporal resolution and reveals several possible evaporation trajectories, ranging from linear to exponential to logarithmic. Funded by Dr. Randolph Ferlic Summer Research Scholarship and NASA Nebraska Space Grant.

  9. Optimization of a Stochastically Simulated Gene Network Model via Simulated Annealing

    PubMed Central

    Tomshine, Jonathan; Kaznessis, Yiannis N.

    2006-01-01

    By rearranging naturally occurring genetic components, gene networks can be created that display novel functions. When designing these networks, the kinetic parameters describing DNA/protein binding are of great importance, as these parameters strongly influence the behavior of the resulting gene network. This article presents an optimization method based on simulated annealing to locate combinations of kinetic parameters that produce a desired behavior in a genetic network. Since gene expression is an inherently stochastic process, the simulation component of simulated annealing optimization is conducted using an accurate multiscale simulation algorithm to calculate an ensemble of network trajectories at each iteration of the simulated annealing algorithm. Using the three-gene repressilator of Elowitz and Leibler as an example, we show that gene network optimizations can be conducted using a mechanistically realistic model integrated stochastically. The repressilator is optimized to give oscillations of an arbitrary specified period. These optimized designs may then provide a starting-point for the selection of genetic components needed to realize an in vivo system. PMID:16920827

  10. Correlation-steered scanning for scanning probe microscopes to overcome thermal drift for ultra-long time scanning.

    PubMed

    Zhang, Liansheng; Long, Qian; Liu, Yongbin; Zhang, Jie; Feng, Zhihua

    2016-07-01

    The thermal effect is one of the most important factors that influence the accuracy of nanoscale measurement and the surface topography of samples in scanning probe microscopes (SPMs). We propose a method called correlation-steered scanning, which is capable of overcoming three-dimensional thermal drifts in real time for ultra-long time scanned images. The image is scanned band by band with overlapping parts between adjacent bands. The vertical drift can be considered as linear and can thus be eliminated together with the tilt of the sample by applying the flattening method. Each band is artificially divided into several blocks for conveniently calculating lateral drifts on the basis of the overlapping area of adjacent bands through digital image correlation. The calculated lateral drifts are compensated to steer the scanning of the subsequent blocks, thus ensuring that all bands are parallel to one another. Experimental results proved that images scanned by the proposed method exhibited less distortions than those obtained from the traditional raster scanning method. The nanoscale measurement results based on the image obtained by the proposed method also showed high accuracy, with an error of less than 1.5%. By scanning as many bands as needed, the correlation-steered scanning method can obtain a highly precise SPM image of an ultra-large area. PMID:27107628

  11. Dark Current Characterization of SW HgCdTe IRFPAs Detectors on Si Substrate with Long Time Integration

    NASA Astrophysics Data System (ADS)

    Song, P. Y.; Ye, Z. H.; Huang, A. B.; Chen, H. L.; Hu, X. N.; Ding, R. J.; He, L.

    2016-05-01

    The dark currents of two short wave (SW) HgCdTe infrared focal plane arrays (IRFPA) detectors hybridized with direct injection (DI) readout and capacitance transimpedance amplifier (CTIA) with long time integration were investigated. The cutoff wavelength of the two SW IRFPAs is about 2.6 μm at 84 K. The dark current densities of DI and CTIA samples are approximately 8.0 × 10-12 A/cm2 and 7.2 × 10-10 A/cm2 at 110 K, respectively. The large divergence of the dark current density might arise from the injection efficiency difference of the two readouts. The low injection efficiency of the DI readout, compared with the high injection efficiency of the CTIA readout at low temperature, makes the dark current density of the DI sample much lower than that of the CTIA sample. The experimental value of injection efficiency of the DI sample was evaluated as 1.1% which is consistent with its theoretical value.

  12. Long-Time Numerical Integration of the Three-Dimensional Wave Equation in the Vicinity of a Moving Source

    NASA Technical Reports Server (NTRS)

    Ryabenkii, V. S.; Turchaninov, V. I.; Tsynkov, S. V.

    1999-01-01

    We propose a family of algorithms for solving numerically a Cauchy problem for the three-dimensional wave equation. The sources that drive the equation (i.e., the right-hand side) are compactly supported in space for any given time; they, however, may actually move in space with a subsonic speed. The solution is calculated inside a finite domain (e.g., sphere) that also moves with a subsonic speed and always contains the support of the right-hand side. The algorithms employ a standard consistent and stable explicit finite-difference scheme for the wave equation. They allow one to calculate tile solution for arbitrarily long time intervals without error accumulation and with the fixed non-growing amount of tile CPU time and memory required for advancing one time step. The algorithms are inherently three-dimensional; they rely on the presence of lacunae in the solutions of the wave equation in oddly dimensional spaces. The methodology presented in the paper is, in fact, a building block for constructing the nonlocal highly accurate unsteady artificial boundary conditions to be used for the numerical simulation of waves propagating with finite speed over unbounded domains.

  13. Long-time averaged dynamics of a Bose-Einstein condensate in a bichromatic optical lattice with external harmonic confinement

    NASA Astrophysics Data System (ADS)

    Sakhel, Asaad R.

    2016-07-01

    The dynamics of a Bose-Einstein condensate are examined numerically in the presence of a one-dimensional bichromatic optical lattice (BCOL) with external harmonic confinement in the strongly interacting regime. The condensate is excited by a focusing stirring red laser. Two realizations of the BCOL are considered, one with a rational and the other with an irrational ratio of the two constituting wave lengths. The system is simulated by the time-dependent Gross Pitaevskii equation that is solved using the Crank Nicolson method in real time. It is found that for a weak BCOL, the long-time averaged physical observables of the condensate respond only very weakly (or not at all) to changes in the secondary OL depth V1 showing that under these conditions the harmonic trap plays a dominant role in governing the dynamics. However, for a much larger strength of the BCOL, the response is stronger as it begins to compete with the external harmonic trap, such that the frequency of Bloch oscillations of the bosons rises with V1 yielding higher time-averages. Qualitatively there is no difference between the dynamics of the condensate resulting from the use of a rational or irrational ratio of the wavelengths since the external harmonic trap washes it out. It is further found that in the presence of an external harmonic trap, the BCOL acts in favor of superflow.

  14. Biological effects and biochemical studies of tomato plants grown from seeds exposed for a long time at the MIR station

    NASA Astrophysics Data System (ADS)

    Nechitailo, G.; Yurov, S.; Kuznetsov, A.; Kapitanov, A.

    Experiments at orbital space stations were carried out with seeds of various plants -- welsh onion arabidopsis wheat pea maize barley tomato etc The results of these experiments showed some discrepancy concerning germinating capacity presence of chromosome aberrations and other parameters After short-term space flights most of plants did not exhibit any irreversible changes But prolongation of space flights to over one year leads to practically complete loss of the germinating capacity in for example Arabidopsis thaliana and Crepis capillaries The level of recessive mutations increased more than 3-fold as compared to the control variants after exposure of seeds during 840 days The objects studied in the experiments described here are tomato plants obtained from seeds carried for 6 years at the station MIR According to the results of the experiments the germinating capacity of the seeds was 32 versus 60 in the control The germination of the seeds began only on the 14-15 th days in the control -- on the 5 th day In the process of ontogenesis the level of mutations revealed in the experimental variants made up to 18 as compared to the 8 in the control After 6 years of exposure under space flight conditions practically all seeds lost their germinating capacity Most viable were seeds of wheat and tomato Biochemical analysis of tomato plants of the second generation produced from seeds exposed for a long time under space flight conditions was carried out The results of the analysis demonstrated an increased

  15. Dark Current Characterization of SW HgCdTe IRFPAs Detectors on Si Substrate with Long Time Integration

    NASA Astrophysics Data System (ADS)

    Song, P. Y.; Ye, Z. H.; Huang, A. B.; Chen, H. L.; Hu, X. N.; Ding, R. J.; He, L.

    2016-09-01

    The dark currents of two short wave (SW) HgCdTe infrared focal plane arrays (IRFPA) detectors hybridized with direct injection (DI) readout and capacitance transimpedance amplifier (CTIA) with long time integration were investigated. The cutoff wavelength of the two SW IRFPAs is about 2.6 μm at 84 K. The dark current densities of DI and CTIA samples are approximately 8.0 × 10-12 A/cm2 and 7.2 × 10-10 A/cm2 at 110 K, respectively. The large divergence of the dark current density might arise from the injection efficiency difference of the two readouts. The low injection efficiency of the DI readout, compared with the high injection efficiency of the CTIA readout at low temperature, makes the dark current density of the DI sample much lower than that of the CTIA sample. The experimental value of injection efficiency of the DI sample was evaluated as 1.1% which is consistent with its theoretical value.

  16. High-temperature annealing of proton irradiated beryllium - A dilatometry-based study

    NASA Astrophysics Data System (ADS)

    Simos, Nikolaos; Elbakhshwan, Mohamed; Zhong, Zhong; Ghose, Sanjit; Savkliyildiz, Ilyas

    2016-08-01

    Ssbnd 200 F grade beryllium has been irradiated with 160 MeV protons up to 1.2 1020 cm-2 peak fluence and irradiation temperatures in the range of 100-200 °C. To address the effect of proton irradiation on dimensional stability, an important parameter in its consideration in fusion reactor applications, and to simulate high temperature irradiation conditions, multi-stage annealing using high precision dilatometry to temperatures up to 740 °C were conducted in air. X-ray diffraction studies were also performed to compliment the macroscopic thermal study and offer a microscopic view of the irradiation effects on the crystal lattice. The primary objective was to qualify the competing dimensional change processes occurring at elevated temperatures namely manufacturing defect annealing, lattice parameter recovery, transmutation 4He and 3H diffusion and swelling and oxidation kinetics. Further, quantification of the effect of irradiation dose and annealing temperature and duration on dimensional changes is sought. The study revealed the presence of manufacturing porosity in the beryllium grade, the oxidation acceleration effect of irradiation including the discontinuous character of oxidation advancement, the effect of annealing duration on the recovery of lattice parameters recovery and the triggering temperature for transmutation gas diffusion leading to swelling.

  17. GPU-Accelerated Population Annealing Algorithm: Frustrated Ising Antiferromagnet on the Stacked Triangular Lattice

    NASA Astrophysics Data System (ADS)

    Borovský, Michal; Weigel, Martin; Barash, Lev Yu.; Žukovič, Milan

    2016-02-01

    The population annealing algorithm is a novel approach to study systems with rough free-energy landscapes, such as spin glasses. It combines the power of simulated annealing, Boltzmann weighted differential reproduction and sequential Monte Carlo process to bring the population of replicas to the equilibrium even in the low-temperature region. Moreover, it provides a very good estimate of the free energy. The fact that population annealing algorithm is performed over a large number of replicas with many spin updates, makes it a good candidate for massive parallelism. We chose the GPU programming using a CUDA implementation to create a highly optimized simulation. It has been previously shown for the frustrated Ising antiferromagnet on the stacked triangular lattice with a ferromagnetic interlayer coupling, that standard Markov Chain Monte Carlo simulations fail to equilibrate at low temperatures due to the effect of kinetic freezing of the ferromagnetically ordered chains. We applied the population annealing to study the case with the isotropic intra- and interlayer antiferromagnetic coupling (J2/|J1| = -1). The reached ground states correspond to non-magnetic degenerate states, where chains are antiferromagnetically ordered, but there is no long-range ordering between them, which is analogical with Wannier phase of the 2D triangular Ising antiferromagnet.

  18. Following atomistic kinetics on experimental timescales with the kinetic Activation Relaxation Technique

    DOE PAGESBeta

    Mousseau, Normand; Beland, Laurent K; Brommer, Peter; El-Mellouhi, Fedwa; Joly, Jean-Francois; N'Tsouaglo, Gawonou Kokou; Restrepo, Oscar; Trochet, Mickael

    2015-01-01

    The properties of materials, even at the atomic level, evolve on macroscopic time scales. Following this evolution through simulation has been a challenge for many years. For lattice-based activated diffusion, kinetic Monte Carlo has turned out to be an almost perfect solution. Various accelerated molecular dynamical schemes, for their part, have allowed the study on long time scale of relatively simple systems. There is still a need, however, for methods able to handle complex materials such as alloys and disordered systems. Here, we review the kinetic Activation Relaxation Technique (k-ART), one of a handful of off-lattice kinetic Monte Carlo methods,more » with on-the-fly cataloging, that have been proposed in the last few years.« less

  19. Following atomistic kinetics on experimental timescales with the kinetic Activation–Relaxation Technique

    SciTech Connect

    Mousseau, Normand; Béland, Laurent Karim; Brommer, Peter; El-Mellouhi, Fedwa; Joly, Jean-François; N’Tsouaglo, Gawonou Kokou; Restrepo, Oscar; Trochet, Mickaël

    2014-12-24

    The properties of materials, even at the atomic level, evolve on macroscopic time scales. Following this evolution through simulation has been a challenge for many years. For lattice-based activated diffusion, kinetic Monte Carlo has turned out to be an almost perfect solution. Various accelerated molecular dynamical schemes, for their part, have allowed the study on long time scale of relatively simple systems. There is still a desire and need, however, for methods able to handle complex materials such as alloys and disordered systems. In this paper, we review the kinetic Activation–Relaxation Technique (k-ART), one of a handful of off-lattice kinetic Monte Carlo methods, with on-the-fly cataloging, that have been proposed in the last few years.

  20. Unraveling Quantum Annealers using Classical Hardness.

    PubMed

    Martin-Mayor, Victor; Hen, Itay

    2015-01-01

    Recent advances in quantum technology have led to the development and manufacturing of experimental programmable quantum annealing optimizers that contain hundreds of quantum bits. These optimizers, commonly referred to as 'D-Wave' chips, promise to solve practical optimization problems potentially faster than conventional 'classical' computers. Attempts to quantify the quantum nature of these chips have been met with both excitement and skepticism but have also brought up numerous fundamental questions pertaining to the distinguishability of experimental quantum annealers from their classical thermal counterparts. Inspired by recent results in spin-glass theory that recognize 'temperature chaos' as the underlying mechanism responsible for the computational intractability of hard optimization problems, we devise a general method to quantify the performance of quantum annealers on optimization problems suffering from varying degrees of temperature chaos: A superior performance of quantum annealers over classical algorithms on these may allude to the role that quantum effects play in providing speedup. We utilize our method to experimentally study the D-Wave Two chip on different temperature-chaotic problems and find, surprisingly, that its performance scales unfavorably as compared to several analogous classical algorithms. We detect, quantify and discuss several purely classical effects that possibly mask the quantum behavior of the chip. PMID:26483257

  1. High temperature annealing of ion irradiated tungsten

    DOE PAGESBeta

    Ferroni, Francesco; Yi, Xiaoou; Arakawa, Kazuto; Fitzgerald, Steven P.; Edmondson, Philip D.; Roberts, Steve G.

    2015-03-21

    In this study, transmission electron microscopy of high temperature annealing of pure tungsten irradiated by self-ions was conducted to elucidate microstructural and defect evolution in temperature ranges relevant to fusion reactor applications (500–1200°C). Bulk isochronal and isothermal annealing of ion irradiated pure tungsten (2 MeV W+ ions, 500°C, 1014 W+/cm2) with temperatures of 800, 950, 1100 and 1400°C, from 0.5 to 8 h, was followed by ex situ characterization of defect size, number density, Burgers vector and nature. Loops with diameters larger than 2–3 nm were considered for detailed analysis, among which all loops had View the MathML source andmore » were predominantly of interstitial nature. In situ annealing experiments from 300 up to 1200°C were also carried out, including dynamic temperature ramp-ups. These confirmed an acceleration of loop loss above 900°C. At different temperatures within this range, dislocations exhibited behaviour such as initial isolated loop hopping followed by large-scale rearrangements into loop chains, coalescence and finally line–loop interactions and widespread absorption by free-surfaces at increasing temperatures. An activation energy for the annealing of dislocation length was obtained, finding Ea=1.34±0.2 eV for the 700–1100°C range.« less

  2. High temperature annealing of ion irradiated tungsten

    SciTech Connect

    Ferroni, Francesco; Yi, Xiaoou; Fitzgerald, Steven P.; Edmondson, Philip D.; Roberts, Steve G.

    2015-03-21

    In this study, transmission electron microscopy of high temperature annealing of pure tungsten irradiated by self-ions was conducted to elucidate microstructural and defect evolution in temperature ranges relevant to fusion reactor applications (500–1200°C). Bulk isochronal and isothermal annealing of ion irradiated pure tungsten (2 MeV W+ ions, 500°C, 1014 W+/cm2) with temperatures of 800, 950, 1100 and 1400°C, from 0.5 to 8 h, was followed by ex situ characterization of defect size, number density, Burgers vector and nature. Loops with diameters larger than 2–3 nm were considered for detailed analysis, among which all loops had View the MathML source and were predominantly of interstitial nature. In situ annealing experiments from 300 up to 1200°C were also carried out, including dynamic temperature ramp-ups. These confirmed an acceleration of loop loss above 900°C. At different temperatures within this range, dislocations exhibited behaviour such as initial isolated loop hopping followed by large-scale rearrangements into loop chains, coalescence and finally line–loop interactions and widespread absorption by free-surfaces at increasing temperatures. An activation energy for the annealing of dislocation length was obtained, finding Ea=1.34±0.2 eV for the 700–1100°C range.

  3. Thin-film designs by simulated annealing

    NASA Astrophysics Data System (ADS)

    Boudet, T.; Chaton, P.; Herault, L.; Gonon, G.; Jouanet, L.; Keller, P.

    1996-11-01

    With the increasing power of computers, new methods in synthesis of optical multilayer systems have appeared. Among these, the simulated-annealing algorithm has proved its efficiency in several fields of physics. We propose to show its performances in the field of optical multilayer systems through different filter designs.

  4. Unraveling Quantum Annealers using Classical Hardness

    PubMed Central

    Martin-Mayor, Victor; Hen, Itay

    2015-01-01

    Recent advances in quantum technology have led to the development and manufacturing of experimental programmable quantum annealing optimizers that contain hundreds of quantum bits. These optimizers, commonly referred to as ‘D-Wave’ chips, promise to solve practical optimization problems potentially faster than conventional ‘classical’ computers. Attempts to quantify the quantum nature of these chips have been met with both excitement and skepticism but have also brought up numerous fundamental questions pertaining to the distinguishability of experimental quantum annealers from their classical thermal counterparts. Inspired by recent results in spin-glass theory that recognize ‘temperature chaos’ as the underlying mechanism responsible for the computational intractability of hard optimization problems, we devise a general method to quantify the performance of quantum annealers on optimization problems suffering from varying degrees of temperature chaos: A superior performance of quantum annealers over classical algorithms on these may allude to the role that quantum effects play in providing speedup. We utilize our method to experimentally study the D-Wave Two chip on different temperature-chaotic problems and find, surprisingly, that its performance scales unfavorably as compared to several analogous classical algorithms. We detect, quantify and discuss several purely classical effects that possibly mask the quantum behavior of the chip. PMID:26483257

  5. Annealing of gold nanostructures sputtered on polytetrafluoroethylene

    NASA Astrophysics Data System (ADS)

    Siegel, Jakub; Krajcar, Robert; Kolská, Zdeňka; Hnatowicz, Vladimír; Švorčík, Václav

    2011-11-01

    Gold nanolayers sputtered on polytetrafluoroethylene (PTFE) surface and their changes induced by post-deposition annealing at 100°C to 300°C are studied. Changes in surface morphology and roughness are examined by atomic force microscopy, electrical sheet resistance by two point technique, zeta potential by electrokinetic analysis and chemical composition by X-ray photoelectron spectroscopy (XPS) in dependence on the gold layer thickness. Transition from discontinuous to continuous gold coverage takes place at the layer thicknesses 10 to 15 nm and this threshold remains practically unchanged after the annealing at the temperatures below 200°C. The annealing at 300°C, however, leads to significant rearrangement of the gold layer and the transition threshold increases to 70 nm. Significant carbon contamination and the presence of oxidized structures on gold-coated samples are observed in XPS spectra. Gold coating leads to a decrease in the sample surface roughness. Annealing at 300°C of pristine PTFE and gold-coated PTFE results in significant increase of the sample surface roughness.

  6. Annealing of gold nanostructures sputtered on polytetrafluoroethylene

    PubMed Central

    2011-01-01

    Gold nanolayers sputtered on polytetrafluoroethylene (PTFE) surface and their changes induced by post-deposition annealing at 100°C to 300°C are studied. Changes in surface morphology and roughness are examined by atomic force microscopy, electrical sheet resistance by two point technique, zeta potential by electrokinetic analysis and chemical composition by X-ray photoelectron spectroscopy (XPS) in dependence on the gold layer thickness. Transition from discontinuous to continuous gold coverage takes place at the layer thicknesses 10 to 15 nm and this threshold remains practically unchanged after the annealing at the temperatures below 200°C. The annealing at 300°C, however, leads to significant rearrangement of the gold layer and the transition threshold increases to 70 nm. Significant carbon contamination and the presence of oxidized structures on gold-coated samples are observed in XPS spectra. Gold coating leads to a decrease in the sample surface roughness. Annealing at 300°C of pristine PTFE and gold-coated PTFE results in significant increase of the sample surface roughness. PMID:22078024

  7. High mobility annealing of Transparent Conductive Oxides

    NASA Astrophysics Data System (ADS)

    Warzecha, M.; Owen, J. I.; Wimmer, M.; Ruske, F.; Hotovy, J.; Hüpkes, J.

    2012-04-01

    To improve electrical properties a high temperature annealing treatment was applied to several transparent conductive oxides (TCO), namely tin doped indium oxide (ITO), Ga- or Al- doped ZnO (ZnO:Al/Ga), ion beam assisted deposited (IBAD) ZnO:Ga and Ga doped zinc magnesium oxide (ZnMgO:Ga). All these films were grown by magnetron sputtering. During the annealing process all TCO films were capped with 50 nm of amorphous silicon in order to protect the films from environmental impact. Increase in mobility up to 72 cm2/Vs and low resistivity of 1.6 × 10-4 Ωcm was achieved for ZnO:Al after annealing at 650°C for 24 h. Independent of the deposition conditions and doping or alloying material almost all ZnO based films show a consistent improvement in mobility. Also for ITO films a decrease in resistivity with partially improved mobility was found after annealing. However, not all ITO films show consistent improvement, but carrier density above 1021 cm-3 while ZnO films show no clear trend for carrier density but a remarkable increase in mobility. Thus we propose the healing of defects and the activation of donors to be most significant effects for ZnO and ITO films, respectively.

  8. The geochemical continuous monitoring network of Vulcano Island (Italy): Long-time variations of SO2 and CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Inguaggiato, Salvatore; Vita, Fabio; Calderone, Lorenzo; Sollami, Aldo

    2015-04-01

    Vulcano Island, located in the Aeolian Archipelago, is an active volcano that has been in state of solphataric activity, since the last eruption (1888-1890). At present, the main exhalative activity is in the northern part of the island, it is revealed by a wide fumaroles field, on the active edifice of "La Fossa" crater, (100°C <450°C). As part of the volcanic monitoring programs, the extensive parameters have a determining role in the evaluation of the mass-output involved. For this reason, in the last years the Vulcano continuous monitoring network was implemented with equipments to measure the fluxes of SO2 "plume" and CO2 soil emitted from the summit crater. In particular, in the 2007 a station to measure the soil CO2 degassing (VCS) was installed in the summit area outside of the fumarolic field. Moreover, inside of the NOVAC project program, an UV-scanning DOAS was installed in the Palizzi area to measure the total SO2 flux emitted from the entire degassing crater area. Here we present the long time variations recorded in the 2007-2014 period. The CO2 soil degassing showed an average flux of 1600 ± 250 g m-2 d-1 representing the background value during "normal" solphataric activity at the permanent station. In the investigated period anomalous values up to 16,000 g m-2 d-1 was recorded in the last months of 2009. The SO2 "plume" degassing showed an average flux of 12 t d-1 with an anomalous degassing process also recorded at the end of 2009 with values up to 100 t d-1. Moreover, a slight increasing trend of SO2 fluxes was recorded in the last years. In the monitoring of active volcanoes, the recorded contemporaneous variations of independent geochemical parameters highlights the importance of the extensive parameters, able to provide information about deeper changes driving the solphataric activity.

  9. Architecture for space habitats. Role of architectural design in planning artificial environment for long time manned space missions

    NASA Astrophysics Data System (ADS)

    Martinez, Vera

    2007-02-01

    The paper discusses concepts about the role of architecture in the design of space habitats and the development of a general evaluation criteria of architectural design contribution. Besides the existing feasibility studies, the general requisites, the development studies, and the critical design review which are mainly based on the experience of human space missions and the standards of the NASA-STD-3000 manual and which analyze and evaluate the relation between man and environment and between man and machine mainly in its functionality, there is very few material about design of comfort and wellbeing of man in space habitat. Architecture for space habitat means the design of an artificial environment with much comfort in an "atmosphere" of wellbeing. These are mainly psychological effects of human factors which are very important in the case of a long time space mission. How can the degree of comfort and "wellbeing atmosphere" in an artificial environment be measured? How can the quality of the architectural contribution in space design be quantified? Definition of a criteria catalogue to reach a larger objectivity in architectural design evaluation. Definition of constant parameters as a result of project necessities to quantify the quality of the design. Architectural design analysis due the application and verification within the parameters and consequently overlapping and evaluating results. Interdisciplinary work between architects, astronautics, engineers, psychologists, etc. All the disciplines needed for planning a high quality habitat for humans in space. Analysis of the principles of well designed artificial environment. Good quality design for space architecture is the result of the interaction and interrelation between many different project necessities (technological, environmental, human factors, transportation, costs, etc.). Each of this necessities is interrelated in the design project and cannot be evaluated on its own. Therefore, the design

  10. A mode coupling theory description of the short- and long-time dynamics of nematogens in the isotropic phase

    NASA Astrophysics Data System (ADS)

    Li, Jie; Cang, Hu; Andersen, Hans C.; Fayer, M. D.

    2006-01-01

    Optical heterodyne-detected optical Kerr effect (OHD-OKE) experimental data are pre-sented on nematogens 4-(trans-4'-n-octylcyclohexyl)isothiocyanatobenzene (8-CHBT), and 4-(4'-pentyl-cyclohexyl)-benzonitrile (5-PCH) in the isotropic phase. The 8-CHBT and 5-PCH data and previously published data on 4'-pentyl-4-biphenylcarbonitrile (5-CB) are analyzed using a modification of a schematic mode coupling theory (MCT) that has been successful in describing the dynamics of supercooled liquids. At long time, the OHD-OKE data (orientational relaxation) are well described with the standard Landau-de Gennes (LdG) theory. The data decay as a single exponential. The decay time diverges as the isotropic to nematic phase transition is approached from above. Previously there has been no theory that can describe the complex dynamics that occur at times short compared to the LdG exponential decay. Earlier, it has been noted that the short-time nematogen dynamics, which consist of several power laws, have a functional form identical to that observed for the short time behavior of the orientational relaxation of supercooled liquids. The temperature-dependent orientational dynamics of supercooled liquids have recently been successfully described using a schematic mode coupling theory. The schematic MCT theory that fits the supercooled liquid data does not reproduce the nematogen data within experimental error. The similarities of the nematogen data to the supercooled liquid data are the motivation for applying a modification of the successful MCT theory to nematogen dynamics in the isotropic phase. The results presented below show that the new schematic MCT theory does an excellent job of reproducing the nematogen isotropic phase OHD-OKE data on all time scales and at all temperatures.

  11. In Situ Observation of High Temperature Creep Behavior During Annealing of Steel

    NASA Astrophysics Data System (ADS)

    Zhang, X. F.; Terasaki, H.; Komizo, Y.; Murakami, Y.; Yasuda, K.

    2012-12-01

    Previous studies on creep suggested a close relationship between polycrystal grain size, substructure, and creep rate. At present, however, our understanding of the influence of polycrystal grain size, substructure, and thermal stress on creep deformation behavior seems rather insufficient, especially as there is a general lack of in situ data on structural changes during creep. In this study, the effects of thermal stress, austenite grain size, and cooling rate on slip deformations in C-Mn-Al steel during annealing were investigated systematically on the basis of in situ observations using high temperature laser scanning confocal microscopy. Finally, a kinetics model based on thermal expansion anisotropy and temperature difference was developed to explain these interesting experimental results. The in situ investigation of slip deformation during annealing greatly contributes to the understanding of high temperature creep behavior.

  12. Consideration on Isochronal Anneal Technique: From Measurement to Physics

    SciTech Connect

    Flament, O.; Fleetwood, D.M.; Leray, J.L.; Paillet, P.

    1999-03-09

    The isochronal anneal technique used to predict isothermal anneal behavior of MOS devices is analyzed as a function of experimental parameters. The effects of detrapping of trapped holes and compensating electrons are discussed.

  13. AUTOMATED MALLEABLE ANNEALING OVENS SLOWLY HEAT AND COOL CASTINGS AS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AUTOMATED MALLEABLE ANNEALING OVENS SLOWLY HEAT AND COOL CASTINGS AS THEY MOVE IN BINS ALONG TRACKS IN THE OVEN BOTTOM IN THE MALLEABLE ANNEALING BUILDING. THIS PROCESS TRANSFORMS BRITTLE WHITE IRON CASTINGS INTO SOFTER, STRONGER MALLEABLE IRON. - Stockham Pipe & Fittings Company, Malleable Annealing Building, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  14. Long-Time Cooling before Cryopreservation Decreased Translocation of Phosphatidylserine (Ptd-L-Ser) in Human Ovarian Tissue

    PubMed Central

    2015-01-01

    -cooling of frozen tissue (46.3% and 33.6% in Groups 2 and 4, respectively), in contrast with tissue frozen without pre-cooling (77.1% and 60.2 % in Groups 1 and 3, respectively, P1, 3-2, 4 <0.05). Conclusions Long time (24 h) cooling of ovarian tissue to 5°C before cryopreservation decreased translocation of phosphatidylserine that evidences about increases the viability of the cells in the tissue after thawing. PMID:26083026

  15. Geophysical investigation for the evaluation of the long-time safety of repositories and underground disposals in deep geological formations

    NASA Astrophysics Data System (ADS)

    Just, A.; Salinar Group

    2003-04-01

    The performance assessment of underground disposal facilities is an indispensable premise to ensure that repositories fulfil the requirements for permanent and safe disposal of hazardous waste. The geological barrier is supposed to be a virtually impermeable host formation like rock salt. The efficiency of the barrier is endangered by the presence of risk zones such as faults or fractures particularly with regard to water-bearing host rocks. Thus the evaluation of the long-time safety of the geological barrier has to be carried out with a minimum of invasion of the future host formation and a maximum of spatial coverage and resolution. Especially geophysical methods are suitable to investigate the geological barrier due to their non-destructive character and spatial information content. Three research projects supported by the German Federal Ministry of Education and Research (BMBF) are engaged in the design and enhancement of a complex geophysical measuring and evaluation system for the investigation of problem zones of the geological barrier in rock salt. The benefit of the combination of high-performance geophysical measuring techniques as seismics, DC-geoelectrics, ground penetrating radar (GPR), electromagnetics and sonar together with strong knowledge of regional salt geology is to increase essentially the reliability of the interpretation of underground measurements. The measuring methods and interpretation tools for host rock characterisation were applied, developed and improved in a flat salt seam structure of an inoperative salt mine in the Lower Harz region. The joint interpretation of the underground geophysical measurements revealed a by-then unknown wet zone, which was tectonically affected. With the scope of refining the complex geophysical measuring and evaluation system and transferring the precedingly acquired experiences to another type of host formation, an operating potassium salt mine in the vicinity of Hannover/Germany was chosen as a new

  16. Fast combinatorial optimization using generalized deterministic annealing

    NASA Astrophysics Data System (ADS)

    Acton, Scott T.; Ghosh, Joydeep; Bovik, Alan C.

    1993-08-01

    Generalized Deterministic Annealing (GDA) is a useful new tool for computing fast multi-state combinatorial optimization of difficult non-convex problems. By estimating the stationary distribution of simulated annealing (SA), GDA yields equivalent solutions to practical SA algorithms while providing a significant speed improvement. Using the standard GDA, the computational time of SA may be reduced by an order of magnitude, and, with a new implementation improvement, Windowed GDA, the time improvements reach two orders of magnitude with a trivial compromise in solution quality. The fast optimization of GDA has enabled expeditious computation of complex nonlinear image enhancement paradigms, such as the Piecewise Constant (PICO) regression examples used in this paper. To validate our analytical results, we apply GDA to the PICO regression problem and compare the results to other optimization methods. Several full image examples are provided that show successful PICO image enhancement using GDA in the presence of both Laplacian and Gaussian additive noise.

  17. Annealing Vs. Invasion in Phage λ Recombination

    PubMed Central

    Stahl, M. M.; Thomason, L.; Poteete, A. R.; Tarkowski, T.; Kuzminov, A.; Stahl, F. W.

    1997-01-01

    Genetic recombination catalyzed by λ's Red pathway was studied in rec(+) and recA mutant bacteria by examining both intracellular λ DNA and mature progeny particles. Recombination of nonreplicating phage chromosomes was induced by double-strand breaks delivered at unique sites in vivo. In rec(+) cells, cutting only one chromosome gave nearly maximal stimulation of recombination; the recombinants formed contained relatively short hybrid regions, suggesting strand invasion. In contrast, in recA mutant cells, cutting the two parental chromosomes at non-allelic sites was required for maximal stimulation; the recombinants formed tended to be hybrid over the entire region between the two cuts, implying strand annealing. We conclude that, in the absence of RecA and the presence of non-allelic DNA ends, the Red pathway of λ catalyzes recombination primarily by annealing. PMID:9383045

  18. A guided simulated annealing method for crystallography.

    PubMed

    Chou, C I; Lee, T K

    2002-01-01

    A new optimization algorithm, the guided simulated annealing method, for use in X-ray crystallographic studies is presented. In the traditional simulated annealing method, the search for the global minimum of a cost function is only determined by the ratio of energy change to the temperature. This method designs a new quality function to guide the search for a minimum. Using a multiresolution process, the method is much more efficient in finding the global minimum than the traditional method. Results for two large molecules, isoleucinomycin (C(60)H(102)N(6)O(18)) and an alkyl calix (C(72)H(112)O(8). 4C(2)H(6)O), with different space groups are reported. PMID:11752762

  19. Shock, Post-Shock Annealing, and Post-Annealing Shock in Ureilites

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.

    2006-01-01

    The thermal and shock histories of ureilites can be divided into four periods: 1) formation, 2) initial shock, 3) post-shock annealing, and 4) post-annealing shock. Period 1 occurred approx.4.55 Ga ago when ureilites formed by melting chondritic material. Impact events during period 2 caused silicate darkening, undulose to mosaic extinction in olivines, and the formation of diamond, lonsdaleite, and chaoite from indigenous carbonaceous material. Alkali-rich fine-grained silicates may have been introduced by impact injection into ureilites during this period. About 57% of the ureilites were unchanged after period 2. During period 3 events, impact-induced annealing caused previously mosaicized olivine grains to become aggregates of small unstrained crystals. Some ureilites experienced reduction as FeO at the edges of olivine grains reacted with C from the matrix. Annealing may also be responsible for coarsening of graphite in a few ureilites, forming euhedral-appearing, idioblastic crystals. Orthopyroxene in Meteorite Hills (MET) 78008 may have formed from pigeonite by annealing during this period. The Rb-Sr internal isochron age of approx.4.0 Ga for MET 78008 probably dates the annealing event. At this late date, impacts are the only viable heat source. About 36% of ureilites experienced period 3 events, but remained unchanged afterwards. During period 4, approx.7% of the ureilites were shocked again, as is evident in the polymict breccia, Elephant Moraine (EET) 83309. This rock contains annealed mosaicized olivine aggregates composed of small individual olivine crystals that exhibit undulose extinction. Ureilites may have formed by impact-melting chondritic material on a primitive body with heterogeneous O isotopes. Plagioclase was preferentially lost from the system due to its low impedance to shock compression. Brief melting and rapid burial minimized the escape of planetary-type noble gases from the ureilitic melts. Incomplete separation of metal from silicates

  20. Annealing of paramagnetic centres in electron- and ion-irradiated yttria-stabilized zirconia: effect of yttria content

    SciTech Connect

    Costantini, Jean-Marc; Beuneu, Francois; Weber, William J

    2014-01-01

    We have studied the effect of the yttria content on the recovery of paramagnetic centres in electron-irradiated yttria-stabilized zirconia (ZrO2: Y3+). Single crystals with 9.5 mol% or 18 mol% Y2O3 were irradiated with electrons of 1.0, 1.5, 2.0 and 2.5 MeV. Paramagnetic centre thermal annealing was studied by X-band EPR spectroscopy. Hole-centres are found to be annealed more quickly, or at a lower temperature, for 18 mol% than for 9.5 mol% Y2O3. At long annealing times, a non-zero asymptotic behaviour is observed in the isothermal annealing curves of hole-centres and F+-type centres between 300 and 500 K. The normalized asymptotic concentration of both defects has a maximum value of about 0.5 for annealing temperatures near 375 K, below the onset of the (isochronal) recovery stage, regardless of the yttria content. Such an uncommon behaviour is analyzed on the basis of either kinetic rate equations of charge transfer or equilibria between point defects with different charge states.

  1. Molecular dynamics evidences of the full graphitization of a nanodiamond annealed at 1500 K

    NASA Astrophysics Data System (ADS)

    Leyssale, J.-M.; Vignoles, G. L.

    2008-03-01

    The annealing of a small nanodiamond cluster at 1500 K is studied by molecular dynamics. The transformation of the particle in an almost fully graphitized carbon onion is observed. The remaining 17% of sp 3 atoms are delocalized on the whole particle, both under the form of isolated point defects and of small diamond-like clusters separating large graphite-like domains. It is also shown, that the Berendsen thermostat, previously used to fix temperature in such simulations, transfers kinetic energy from internal to global motions of the cluster. This can lead to severe artifacts like the freezing of the graphitization process.

  2. Defect diffusion during annealing of low-energy ion-implanted silicon

    SciTech Connect

    Bedrossian, P J; Caturla, M-J; Diaz de la Rubia, T

    2000-03-08

    We present a new approach for investigating the kinetics of defect migration during annealing of low-energy, ion-implanted silicon, employing a combination of computer simulations and atomic-resolution tunneling microscopy. Using atomically-clean Si(111)-7x7 as a sink for bulk point defects created by 5 keV Xe and Ar irradiation, we observe distinct, temperature-dependent surface arrival rates for vacancies and interstitials. A combination of simulation tools provides a detailed description of the processes that underly the observed temperature-dependence of defect segregation, and the predictions of the simulations agree closely with the experimental observations.

  3. Annealing of Solar Cells and Other Thin Film Devices

    NASA Technical Reports Server (NTRS)

    Escobar, Hector; Kuhlman, Franz; Dils, D. W.; Lush, G. B.; Mackey, Willie R. (Technical Monitor)

    2001-01-01

    Annealing is a key step in most semiconductor fabrication processes, especially for thin films where annealing enhances performance by healing defects and increasing grain sizes. We have employed a new annealing oven for the annealing of CdTe-based solar cells and have been using this system in an attempt to grow US on top of CdTe by annealing in the presence of H2S gas. Preliminary results of this process on CdTe solar cells and other thin-film devices will be presented.

  4. Flame annealing of ion implanted silicon

    SciTech Connect

    Narayan, J.; Young, R.T.

    1983-01-01

    The authors investigated flame annealing of ion implantation damage (consisting of amorphous layers and dislocation loops) in (100) and (111) silicon substrates. The temperature of a hydrogen flame was varied from 1050 to 1200/sup 0/C and the interaction time from 5 to 10 seconds. Detailed TEM results showed that a defect-free annealing of amorphous layers by solid-phase-epitaxial growth could be achieved up to a certain concentration. However, dislocation loops in the region below the amorphous layer exhibited coarsening, i.e., the average loop size increased while the number density of loops decreased. Above a critical loop density, which was found to be a function of ion implantation variables and substrate temperature, formation of 90/sup 0/ dislocations (a cross-grid of dislocation in (100) and a triangular grid in (111) specimens) were observed. Electrical (Van der Pauw) measurements indicated nearly a complete electrical activation of dopants with mobility comparable to pulsed laser annealed specimens. The characteristics of p-n junction diodes showed a good diode perfection factor of 1.20-1.25 and low reverse bias currents.

  5. Effects of annealing temperature on shape transformation and optical properties of germanium quantum dots

    NASA Astrophysics Data System (ADS)

    Alireza, Samavati; Othaman, Z.; K. Ghoshal, S.; K. Mustafa, M.

    2015-02-01

    The influences of thermal annealing on the structural and optical features of radio frequency (rf) magnetron sputtered self-assembled Ge quantum dots (QDs) on Si (100) are investigated. Preferentially oriented structures of Ge along the (220) and (111) directions together with peak shift and reduced strain (4.9% to 2.7%) due to post-annealing at 650 °C are discerned from x-ray differaction (XRD) measurement. Atomic force microscopy (AFM) images for both pre-annealed and post-annealed (650 °C) samples reveal pyramidal-shaped QDs (density ˜ 0.26× 1011 cm-2) and dome-shape morphologies with relatively high density ˜ 0.92 × 1011 cm-2, respectively. This shape transformation is attributed to the mechanism of inter-diffusion of Si in Ge interfacial intermixing and strain non-uniformity. The annealing temperature assisted QDs structural evolution is explained using the theory of nucleation and growth kinetics where free energy minimization plays a pivotal role. The observed red-shift ˜ 0.05 eV in addition to the narrowing of the photoluminescence peaks results from thermal annealing, and is related to the effect of quantum confinement. Furthermore, the appearance of a blue-violet emission peak is ascribed to the recombination of the localized electrons in the Ge-QDs/SiO2 or GeOx and holes in the ground state of Ge dots. Raman spectra of both samples exhibit an intense Ge-Ge optical phonon mode which shifts towards higher frequency compared with those of the bulk counterpart. An experimental Raman profile is fitted to the models of phonon confinement and size distribution combined with phonon confinement to estimate the mean dot sizes. A correlation between thermal annealing and modifications of the structural and optical behavior of Ge QDs is established. Tunable growth of Ge QDs with superior properties suitable for optoelectronic applications is demonstrated. Project supported by Ibnu Sina Institute for Fundamental Science Study, Universiti Teknologi Malaysia

  6. Study of millisecond laser annealing on ion implanted soi and application to scaled finfet technology

    NASA Astrophysics Data System (ADS)

    Michalak, Tyler J.

    The fabrication of metal-oxide-semiconductor field effect transistors (MOSFET) requires the engineering of low resistance, low leakage, and extremely precise p-n junctions. The introduction of finFET technology has introduced new challenges for traditional ion implantation and annealing techniques in junction design as the fin widths continue to decrease for improved short channel control. This work investigates the use of millisecond scanning laser annealing in the formation of n-type source/drain junctions in next generation MOSFET. We present a model to approximate the true thermal profile for a commercial laser annealing process which allows us to represent more precisely specific thermal steps using Technology Computer Aided Design (TCAD). Sheet resistance and Hall Effect measurements for blanket films are used to correlate dopant activation and mobility with the regrowth process during laser anneal. We show the onset of high conductivity associated with completion of solid phase epitaxial regrowth (SPER) in the films. The Lattice Kinetic Monte Carlo (LKMC) model shows excellent agreement with cross section transmission electron microscopy (TEM), correlating the increase of conductivity with completion of crystal regrowth, increased activation, and crystal quality at various temperatures. As scaled devices move into the non-planar geometries and possibly adopt silicon-on-insulator (SOI) substrates, the crystal regrowth and dopant activation of amorphizing implants becomes more complicated and doping methods must adapt accordingly. Following the concept of the more recently proposed hot ion implantation and the benefits of laser anneal, we investigate a possible process flow for a 10/14 nm node SOI finFET by utilizing process and device TCAD. Device simulation parameters for the 10/14 nm node device are taken from a calibrated model based on fabricated non-planar 40 nm gate length device finFET. The implications on device performance are considered for the

  7. Dewetting of Epitaxial Silver Film on Silicon by Thermal Annealing

    NASA Astrophysics Data System (ADS)

    Sanders, Charlotte E.; Kellogg, Gary L.; Shih, C.-K.

    2013-03-01

    It has been shown that noble metals can grow epitaxially on semiconducting and insulating substrates, despite being a non-wetting system: low temperature deposition followed by room temperature annealing leads to atomically flat film morphology. However, the resulting metastable films are vulnerable to dewetting, which has limited their utility for applications under ambient conditions. The physics of this dewetting is of great interest but little explored. We report on an investigation of the dewetting of epitaxial Ag(111) films on Si(111) and (100). Low energy electron microscopy (LEEM) shows intriguing evolution in film morphology and crystallinity, even at temperatures below 100oC. On the basis of these findings, we can begin to draw compelling inferences about film-substrate interaction and the kinetics of dewetting. Financial support is from NSF, DGE-0549417 and DMR-0906025. This work was performed, in part, at the Center for Integrated Nanotechnologies, User Facility operated for the U.S. DOE Office of Science. Sandia National Lab is managed and operated by Sandia Corp., a subsidiary of Lockheed Martin Corp., for the U.S. DOE's National Nuclear Security Administration under DE-AC04-94AL85000.

  8. Optimization through quantum annealing: theory and some applications

    NASA Astrophysics Data System (ADS)

    Battaglia, D. A.; Stella, L.

    2006-08-01

    Quantum annealing is a promising tool for solving optimization problems, similar in some ways to the traditional (classical) simulated annealing of Kirkpatrick et al. Simulated annealing takes advantage of thermal fluctuations in order to explore the optimization landscape of the problem at hand, whereas quantum annealing employs quantum fluctuations. Intriguingly, quantum annealing has been proved to be more effective than its classical counterpart in many applications. We illustrate the theory and the practical implementation of both classical and quantum annealing highlighting the crucial differences between these two methods by means of results recently obtained in experiments, in simple toy-models, and more challenging combinatorial optimization problems (namely, Random Ising model and Travelling Salesman Problem). The techniques used to implement quantum and classical annealing are either deterministic evolutions, for the simplest models, or Monte Carlo approaches, for harder optimization tasks. We discuss the pro and cons of these approaches and their possible connections to the landscape of the problem addressed.

  9. Simulated annealing with probabilistic analysis for solving traveling salesman problems

    NASA Astrophysics Data System (ADS)

    Hong, Pei-Yee; Lim, Yai-Fung; Ramli, Razamin; Khalid, Ruzelan

    2013-09-01

    Simulated Annealing (SA) is a widely used meta-heuristic that was inspired from the annealing process of recrystallization of metals. Therefore, the efficiency of SA is highly affected by the annealing schedule. As a result, in this paper, we presented an empirical work to provide a comparable annealing schedule to solve symmetric traveling salesman problems (TSP). Randomized complete block design is also used in this study. The results show that different parameters do affect the efficiency of SA and thus, we propose the best found annealing schedule based on the Post Hoc test. SA was tested on seven selected benchmarked problems of symmetric TSP with the proposed annealing schedule. The performance of SA was evaluated empirically alongside with benchmark solutions and simple analysis to validate the quality of solutions. Computational results show that the proposed annealing schedule provides a good quality of solution.

  10. Application of laser annealing to solar cell junction formation

    NASA Technical Reports Server (NTRS)

    Katzeff, J. S.; Lopez, M.; Josephs, R. H.

    1981-01-01

    The possibility of using high-energy Q-switched Nd:glass lasers to form pn junctions in solar cells by annealing ion-implanted substrates is investigated. The properties of laser annealed cells are analyzed by electrical, transmission electron microscopy, Rutherford backscattering and secondary ion mass spectrometry techniques. Tests indicate the laser annealed substrates to be damage-free and electrically active. Similar reference analysis of ion-implanted furnace-annealed substrates reveals the presence of residual defects in the form of dislocation lines and loops with substantial impurity redistribution evident for some anneal temperature/time regimes. Fabricated laser annealed cells exhibit excellent conversion efficiency. It is noted that additional improvements are anticipated once the anneal parameters for a back surface field are optimized.

  11. Long time series of soil moisture obtained using neural networks: application to AMSR-E and SMOS

    NASA Astrophysics Data System (ADS)

    Rodriguez-Fernandez, Nemesio J.; Kerr, Yann H.; de Jeu, Rcihard A. M.; van der Schalie, Robin; Wigneron, Jean Pierre; Ayaari, Amen al; Dolman, Han; Drusch, Matthias; Mecklenburg, Sussane

    2015-04-01

    The Soil Moisture and Ocean Salinity (SMOS) satellite is the first mission specifically designed to measure soil moisture (hereafter SM) from space. The instrument on-board SMOS is a L-band aperture synthesis radiometer, with full-polarization and multi-angular capabilities (Mecklenburg et al. 2012). The operational SM retrieval algorithm is based on a physical model (Kerr et al. 2012). In addition, Rodriguez-Fernandez et al. (2014) have recently implemented an inverse model based in neural networks using the approach of Aires & Prigent (2006), which consists in training the neural networks with numerical weather prediction models (ECMWF, Balsamo et al. 2009). In the context of an ESA funded project (de Jeu et al, this conference, session CL 5.7), we have studied this neural network approach to create a consistent soil moisture dataset from 2003 to 2014 using NASA/JAXA Advanced Scanning Microwave Radiometer (AMSR-E) and ESA SMOS radiometers as input data. Two neural networks algorithms have been defined and optimized using AMSR-E or SMOS as input data in the periods 2003-Oct 2011 and 2010-2014, respectively. The two missions overlapping period has been used to demonstrate the consistency of the SM dataset produced with both algorithms by comparing monthly averages of SM and by comparing with time series of in situ measurements at selected locations and other SM products such as the SMOS operational SM, ECMWF model SM, and AMSR-E LPRM SM (Owe et al. 2008). Finally, the long time series of SM obtained with neural networks will be compared to in-situ measurements and ECMWF ERA-Interim SM at selected locations. This long-term soil moisture dataset can be used for hydrological and climate applications and it is the first step towards a longer dataset which will include additional sensors. References Aires, F. & Prigent, C. Toward a new generation of satellite surface products? Journal of Geophysical Research: Atmospheres (1984--2012), Wiley Online Library, 2006, 11

  12. Predicting outgrowth and inactivation of Clostridium perfringens in meat products during low temperature long time heat treatment.

    PubMed

    Duan, Zhi; Hansen, Terese Holst; Hansen, Tina Beck; Dalgaard, Paw; Knøchel, Susanne

    2016-08-01

    With low temperature long time (LTLT) cooking it can take hours for meat to reach a final core temperature above 53°C and germination followed by growth of Clostridium perfringens is a concern. Available and new growth data in meats including 154 lag times (tlag), 224 maximum specific growth rates (μmax) and 25 maximum population densities (Nmax) were used to developed a model to predict growth of C. perfringens during the coming-up time of LTLT cooking. New data were generate in 26 challenge tests with chicken (pH6.8) and pork (pH5.6) at two different slowly increasing temperature (SIT) profiles (10°C to 53°C) followed by 53°C in up to 30h in total. Three inoculum types were studied including vegetative cells, non-heated spores and heat activated (75°C, 20min) spores of C. perfringens strain 790-94. Concentrations of vegetative cells in chicken increased 2 to 3logCFU/g during the SIT profiles. Similar results were found for non-heated and heated spores in chicken, whereas in pork C. perfringens 790-94 increased less than 1logCFU/g. At 53°C C. perfringens 790-94 was log-linearly inactivated. Observed and predicted concentrations of C. perfringens, at the time when 53°C (log(N53)) was reached, were used to evaluate the new growth model and three available predictive models previously published for C. perfringens growth during cooling rather than during SIT profiles. Model performance was evaluated by using mean deviation (MD), mean absolute deviation (MAD) and the acceptable simulation zone (ASZ) approach with a zone of ±0.5logCFU/g. The new model showed best performance with MD=0.27logCFU/g, MAD=0.66logCFU/g and ASZ=67%. The two growth models that performed best, were used together with a log-linear inactivation model and D53-values from the present study to simulate the behaviour of C. perfringens under the fast and slow SIT profiles investigated in the present study. Observed and predicted concentrations were compared using a new fail-safe acceptable

  13. Gamma-irradiated dry fruits. An example of a wide variety of long-time dependent EPR spectra.

    PubMed

    Yordanov, Nicola D; Pachova, Zdravka

    2006-03-13

    EPR spectra of dry, sugar containing fruits--raisins, sultanas, figs, dates, peaches, blue plums and chokeberry recorded before and after irradiation with gamma-rays, are reported. It is shown that weak singlet EPR line with 2.0031+/-0.0005 can be recorded before irradiation of seeds, stones or skin of chokeberry, figs and raisins as well as flesh of blue plum, raisins and peaches. EPR signals of various shape are distinguished after irradiation in different parts of the fruits, as well as in randomly cut pieces of them: As a result, randomly cut pieces of dry fruits suitable for EPR studies, containing various constituents, exhibit different in shape and intensity EPR spectra. Kinetic studies followed for 1 year on the time stability of all reported EPR signals indicate that intensity ratio between the simultaneously appearing EPR signals in particular fruit varies from 1:20 immediately after irradiation to 1:0.5 at the end of the period. These observations open a new possibility for identification of irradiated fruits - using the magnitude of the intensity ratio to find the approximate date of radiation processing in the first ca. 30-100 days. PMID:16497546

  14. A multiaxial perfectly matched layer (M-PML) for the long-time simulation of elastic wave propagation in the second-order equations

    NASA Astrophysics Data System (ADS)

    Ping, Ping; Zhang, Yu; Xu, Yixian

    2014-02-01

    In order to conquer the spurious reflections from the truncated edges and maintain the stability in the long-time simulation of elastic wave propagation, several perfectly matched layer (PML) methods have been proposed in the first-order (e.g., velocity-stress equations) and the second-order (e.g., energy equation with displacement unknown only) formulations. The multiaxial perfectly matched layer (M-PML) holds the excellent stability for the long-time simulation of wave propagation, even though it is not perfectly matched in the discretized M-PML equation system. This absorbing boundary approach can offer an alternative way to solve the problem of the late-time instability, especially for anisotropic media, which is also suffered by the convolutional perfectly matched layer (C-PML) that is supposed to be competent to handle most stable problems. The M-PML termination implementation in the first-order formulations is well proposed. The common drawback of the implementation of the first-order M-PML formulations is that it necessitates fundamental reconstruction of the existing codes of the second-order spectral element method (SEM) or finite element method (FEM). Therefore, we propose a nonconvolutional second-order M-PML absorbing boundary condition approach for the wave propagation simulation in elastic media that has not yet been developed before. Two-dimensional numerical simulation validations demonstrate that the proposed second-order M-PML has good performances: 1) superior efficiency and stability of absorbing the spurious elastic wavefields, both the surface waves and body waves, reflected on the boundaries; 2) superior stability in the long-time simulation even in the isotropic medium with a high Poisson's ratio; 3) superior efficiency and stability in the long-time simulation for anisotropic media. This method hence makes the SEM and FEM in the second-order wave equation formulation more efficient and stable for the long-time simulation.

  15. RESIDENCE TIMES OF PARTICLES IN DIFFUSIVE PROTOPLANETARY DISK ENVIRONMENTS. II. RADIAL MOTIONS AND APPLICATIONS TO DUST ANNEALING

    SciTech Connect

    Ciesla, F. J.

    2011-10-10

    The origin of crystalline grains in comets and the outer regions of protoplanetary disks remains a mystery. It has been suggested that such grains form via annealing of amorphous precursors in the hot, inner region of a protoplanetary disk, where the temperatures needed for such transformations were found, and were then transported outward by some dynamical means. Here we develop a means of tracking the paths that dust grains would have taken through a diffusive protoplanetary disk and examine the types and ranges of environments that particles would have seen over a 10{sup 6} yr time period in the dynamic disk. We then combine this model with three annealing laws to examine how the dynamic evolution of amorphous grains would have led to their physical restructuring and their delivery to various regions of the disk. It is found that 'sibling particles' - those particles that reside at the same location at a given period of time-take a wide range of unique and independent paths through the disk to arrive there. While high temperatures can persist in the disk for very long time periods, we find that those grains that are delivered to the cold outer regions of the disk are largely annealed in the first few x10{sup 5} yr of disk history. This suggests that the crystallinity of grains in the outer disk would be determined early and remain unchanged for much of disk history, in agreement with recent astronomical observations.

  16. Use of a simulated annealing algorithm to fit compartmental models with an application to fractal pharmacokinetics.

    PubMed

    Marsh, Rebeccah E; Riauka, Terence A; McQuarrie, Steve A

    2007-01-01

    Increasingly, fractals are being incorporated into pharmacokinetic models to describe transport and chemical kinetic processes occurring in confined and heterogeneous spaces. However, fractal compartmental models lead to differential equations with power-law time-dependent kinetic rate coefficients that currently are not accommodated by common commercial software programs. This paper describes a parameter optimization method for fitting individual pharmacokinetic curves based on a simulated annealing (SA) algorithm, which always converged towards the global minimum and was independent of the initial parameter values and parameter bounds. In a comparison using a classical compartmental model, similar fits by the Gauss-Newton and Nelder-Mead simplex algorithms required stringent initial estimates and ranges for the model parameters. The SA algorithm is ideal for fitting a wide variety of pharmacokinetic models to clinical data, especially those for which there is weak prior knowledge of the parameter values, such as the fractal models. PMID:17706176

  17. Gamma-irradiated dry fruits. An example of a wide variety of long-time dependent EPR spectra

    NASA Astrophysics Data System (ADS)

    Yordanov, Nicola D.; Pachova, Zdravka

    2006-03-01

    EPR spectra of dry, sugar containing fruits—raisins, sultanas, figs, dates, peaches, blue plums and chokeberry recorded before and after irradiation with gamma-rays, are reported. It is shown that weak singlet EPR line with 2.0031 ± 0.0005 can be recorded before irradiation of seeds, stones or skin of chokeberry, figs and raisins as well as flesh of blue plum, raisins and peaches. EPR signals of various shape are distinguished after irradiation in different parts of the fruits, as well as in randomly cut pieces of them: Seeds of raisins, chokeberry and figs give a singlet line. Stones from blue plums and peaches exhibit typical "cellulose-like" EPR signal consisting of an intense singlet line with g = 2.0033 ± 0.0005 and 2 week satellite lines situated ca. 30 G left and right to it. Stones of dates are the only sample in which "sugar-like" spectrum is recorded. Skin of raisins and figs exhibits "sugar-like" EPR spectrum whereas that of dates and chokeberry—a singlet line. Under the same experimental conditions skin of sultanas, peaches and blue plums are EPR silent. Flesh of raisins, sultanas, figs, dates and peaches exhibits "sugar-like" EPR spectrum, flesh of blue plums gives a singlet EPR line and that of chokeberry is EPR silent. As a result, randomly cut pieces of dry fruits suitable for EPR studies, containing various constituents, exhibit different in shape and intensity EPR spectra. Kinetic studies followed for 1 year on the time stability of all reported EPR signals indicate that intensity ratio between the simultaneously appearing EPR signals in particular fruit varies from 1:20 immediately after irradiation to 1:0.5 at the end of the period. These observations open a new possibility for identification of irradiated fruits - using the magnitude of the intensity ratio to find the approximate date of radiation processing in the first ca. 30-100 days.

  18. Block Copolymer Nanocomposites in Electric Fields: Kinetics of Alignment

    SciTech Connect

    Liedel, Clemens; Pester, Christian; Ruppel, Markus A; Lewin, Christian; Pavan, Mariela J.; Urban, Volker S; Shenhar, Roy; Bosecke, Peter; Boker, Alexander

    2013-01-01

    We investigate the kinetics of block copolymer/nanoparticle composite alignment in an electric field using in situ transmission small-angle X-ray scattering. As a model system, we employ a lamellae forming polystyrene-block-poly(2-vinyl pyridine) block copolymer with different contents of gold nanoparticles in thick films under solvent vapor annealing. While the alignment improves with increasing nanoparticle fraction, the kinetics slows down. This is explained by changes in the degree of phase separation and viscosity. Our findings provide extended insights into the basics of nanocomposite alignment.

  19. DNA strand annealing is promoted by the yeast Rad52 protein.

    PubMed Central

    Mortensen, U H; Bendixen, C; Sunjevaric, I; Rothstein, R

    1996-01-01

    The Saccharomyces cerevisiae RAD52 gene plays a pivotal role in genetic recombination. Here we demonstrate that yeast Rad52 is a DNA binding protein. To show that the interaction between Rad52 and DNA is direct and not mediated by other yeast proteins and to facilitate protein purification, a recombinant expression system was developed. The recombinant protein can bind both single- and double-stranded DNA and the addition of either Mg2+ or ATP does not enhance the binding of single-stranded DNA. Furthermore, a DNA binding domain was found in the evolutionary conserved N terminus of the protein. More importantly, we show that the protein stimulates DNA annealing even in the presence of a large excess of nonhomologous DNA. Rad52-promoted annealing follows second-order kinetics and the rate is 3500-fold faster than that of the spontaneous reaction. How this annealing activity relates to the genetic phenotype associated with rad52 mutant cells is discussed. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8855248

  20. Crystallinity and properties of C60 nanotubes improved by annealing and alcohol-soaking

    NASA Astrophysics Data System (ADS)

    Naito, K.; Matsuishi, K.

    2009-04-01

    Well-uniformed C60 nanotubes were grown at -20 °C with irradiation of red light using C60-saturated pyridine solution and isopropyl alcohol by a liquid-liquid interfacial precipitation method without ultrasonic pulverization. We attempted to improve their crystallinity by two post-treatments; thermal annealing and alcohol-soaking. The crystallinity of as-grown and dried C60 nanotubes, which was poor due to the evaporation of solvent molecules from crystals in the drying process, was improved by annealing around 220 °C for 5 hours in vacuum. Dramatic improvement of crystallinity of as-grown samples was achieved by soaking into methanol and then drying in air. Raman, infrared and X-ray diffraction results suggest that the methanol-soaked samples exhibit a solvated tetragonal structure. The crystallinity improved by methanol-soaking did not degrade after removal of methanol molecules from samples by thermal annealing. Photo-polymerization of the structurally-improved C60 nanotubes was examined to investigate an effect of crystallinity on the polymerization kinetics.

  1. Following atomistic kinetics on experimental timescales with the kinetic Activation–Relaxation Technique

    DOE PAGESBeta

    Mousseau, Normand; Béland, Laurent Karim; Brommer, Peter; El-Mellouhi, Fedwa; Joly, Jean-François; N’Tsouaglo, Gawonou Kokou; Restrepo, Oscar; Trochet, Mickaël

    2014-12-24

    The properties of materials, even at the atomic level, evolve on macroscopic time scales. Following this evolution through simulation has been a challenge for many years. For lattice-based activated diffusion, kinetic Monte Carlo has turned out to be an almost perfect solution. Various accelerated molecular dynamical schemes, for their part, have allowed the study on long time scale of relatively simple systems. There is still a desire and need, however, for methods able to handle complex materials such as alloys and disordered systems. In this paper, we review the kinetic Activation–Relaxation Technique (k-ART), one of a handful of off-lattice kineticmore » Monte Carlo methods, with on-the-fly cataloging, that have been proposed in the last few years.« less

  2. Annealing texture of nanostructured IF steel

    SciTech Connect

    Jamaati, Roohollah

    2015-08-15

    In the present work, the evolution of annealing texture in nanostructured interstitial free steel fabricated via accumulative roll bonding (ARB) process was investigated. Textural evolution after post-annealing of ARB-processed samples was evaluated using X-ray diffraction. There were several texture transitions in the γ-fiber and ζ-fiber during ARB and post-annealing treatment. It was found that with increasing the number of ARB cycles, the volume fraction of the low angle grain boundary decreased and the high angle grain boundary fraction increased. Also, the shear texture was dominant after the first cycle, while for other samples, the rolling texture was dominant. The one-cycle sample clearly indicated a weak α-fiber and γ-fiber and a relatively strong ζ-fiber. In addition, during the recrystallization and before the grain growth, the intensity of α-fiber and γ-fiber decreased, the intensity of ζ-fiber increased, and the intensity of (011)〈100〉 orientation in the ε-fiber and η-fiber increased. Moreover, it was concluded that the transition from the rolling texture to the shear one was a sign of occurrence of the recrystallization (before the grain growth). Finally, with increasing the number of ARB cycles, the intensity of rolling and shear textures saturated and a stable texture formed. - Highlights: • There were texture transitions in the γ-fiber and ζ-fiber. • When the number of cycles increased, the low angle grain boundaries decreased. • The shear texture was dominant after the first cycle. • Transition from rolling texture to shear one was a sign of recrystallization. • With increasing the number of ARB cycles, a stable texture formed.

  3. Annealing relaxation of ultrasmall gold nanostructures

    NASA Astrophysics Data System (ADS)

    Chaban, Vitaly

    2015-01-01

    Except serving as an excellent gift on proper occasions, gold finds applications in life sciences, particularly in diagnostics and therapeutics. These applications were made possible by gold nanoparticles, which differ drastically from macroscopic gold. Versatile surface chemistry of gold nanoparticles allows coating with small molecules, polymers, biological recognition molecules. Theoretical investigation of nanoscale gold is not trivial, because of numerous metastable states in these systems. Unlike elsewhere, this work obtains equilibrium structures using annealing simulations within the recently introduced PM7-MD method. Geometries of the ultrasmall gold nanostructures with chalcogen coverage are described at finite temperature, for the first time.

  4. Study on thermal annealing of cadmium zinc telluride (CZT) crystals

    SciTech Connect

    Yang, G.; Bolotnikov, A.E.; Fochuk, P.M.; Camarda, G.S.; Cui, Y.; Hossain, A.; Kim, K.; Horace, J.; McCall, B.; Gul, R.; Xu, L.; Kopach, O.V.; and James, R.B.

    2010-08-01

    Cadmium Zinc Telluride (CZT) has attracted increasing interest with its promising potential as a room-temperature nuclear-radiation-detector material. However, different defects in CZT crystals, especially Te inclusions and dislocations, can degrade the performance of CZT detectors. Post-growth annealing is a good approach potentially to eliminate the deleterious influence of these defects. At Brookhaven National Laboratory (BNL), we built up different facilities for investigating post-growth annealing of CZT. Here, we report our latest experimental results. Cd-vapor annealing reduces the density of Te inclusions, while large temperature gradient promotes the migration of small-size Te inclusions. Simultaneously, the annealing lowers the density of dislocations. However, only-Cd-vapor annealing decreases the resistivity, possibly reflecting the introduction of extra Cd in the lattice. Subsequent Te-vapor annealing is needed to ensure the recovery of the resistivity after removing the Te inclusions.

  5. Effect of annealing history on free volume in thermoplastics

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; St.clair, T. L.

    1986-01-01

    Two different types of thermoplastic glassy polymers have been investigated for the effects of thermal annealing on their free volumes. It has been observed that free volumes in glassy polymers decrease asymptotically to a steady level after about four thermal anneals lasting for 24 hours at a temperature about 50 C below their glass transition temperatures. These results indicate that composites incorporating properly annealed thermoplastic matrices may not experience any additional internal stresses due to subsequent thermal excursions experienced while in service.

  6. Mean Field Analysis of Quantum Annealing Correction

    NASA Astrophysics Data System (ADS)

    Matsuura, Shunji; Nishimori, Hidetoshi; Albash, Tameem; Lidar, Daniel A.

    2016-06-01

    Quantum annealing correction (QAC) is a method that combines encoding with energy penalties and decoding to suppress and correct errors that degrade the performance of quantum annealers in solving optimization problems. While QAC has been experimentally demonstrated to successfully error correct a range of optimization problems, a clear understanding of its operating mechanism has been lacking. Here we bridge this gap using tools from quantum statistical mechanics. We study analytically tractable models using a mean-field analysis, specifically the p -body ferromagnetic infinite-range transverse-field Ising model as well as the quantum Hopfield model. We demonstrate that for p =2 , where the phase transition is of second order, QAC pushes the transition to increasingly larger transverse field strengths. For p ≥3 , where the phase transition is of first order, QAC softens the closing of the gap for small energy penalty values and prevents its closure for sufficiently large energy penalty values. Thus QAC provides protection from excitations that occur near the quantum critical point. We find similar results for the Hopfield model, thus demonstrating that our conclusions hold in the presence of disorder.

  7. Coping with noise in programmable quantum annealers

    NASA Astrophysics Data System (ADS)

    Perdomo-Ortiz, Alejandro

    Solving real-world applications with quantum annealing algorithms requires overcoming several challenges, ranging from translating the computational problem at hand to the quantum-machine language, to tuning several other parameters of the quantum algorithm that have a significant impact on performance of the device. In this talk, we discuss these challenges, strategies developed to enhance performance, and also a more efficient implementation of several applications. For example, in http://arxiv.org/abs/1503.05679 we proposed an method to measure residual systematic biases in the programmable parameters of large-scale quantum annealers. Although the method described there works from a practical point of view, a few questions were left unanswered. One of these puzzles was the observation of a broad distribution in the estimated effective qubit temperatures throughout the device . In this talk, we will present our progress in understanding these puzzles and how these new insights allow for a more effective bias correction protocol. We will present the impact of these new parameter setting and bias correction protocols in the performance of hard discrete optimization problems and in the successful implementation of quantum-assisted machine-learning algorithms.

  8. Dielectric Signatures of Annealing in Glacier Ice

    NASA Astrophysics Data System (ADS)

    Grimm, R. E.; Stillman, D. E.; MacGregor, J. A.

    2015-12-01

    We analyzed the dielectric spectra of 49 firn and ice samples from ice sheets and glaciers to better understand how differing ice formation and evolution affect electrical properties. The dielectric relaxation of ice is well known and its characteristic frequency increases with the concentration of soluble impurities in the ice lattice. We found that meteoric ice and firn generally possess two such relaxations, indicating distinct crystal populations or zonation. Typically, one population is consistent with that of relatively pure ice, and the other is significantly more impure. However, high temperatures (e.g., temperate ice), long residence times (e.g., ancient ice from Mullins Glacier, Antarctica), or anomalously high impurity concentrations favor the development of a single relaxation. These relationships suggest that annealing causes two dielectrically distinct populations to merge into one population. The dielectric response of temperate ice samples indicates increasing purity with increasing depth, suggesting final rejection of impurities from the lattice. Separately, subglacially frozen samples from the Vostok 5G ice core possess a single relaxation whose variable characteristic frequency likely reflects the composition of the source water. Multi-frequency electrical measurements on cores and in the field can track annealing of glacier ice.

  9. Annealing conditions for intrinsic CdTe

    NASA Astrophysics Data System (ADS)

    Berding, M. A.

    1999-01-01

    Equilibrium native defect densities in CdTe are calculated from ab initio methods, and compared with experimental results. We find that CdTe is highly compensated p type under tellurium-saturated conditions, with the cadmium vacancy as the dominant acceptor and the tellurium antisite as the compensating donor. This finding is in agreement with recent experiments that find a much larger deviation from stoichiometry than would be predicted by the electrically active defects. Under cadmium-saturated conditions, cadmium interstitials are predicted to dominate and the material is found to be n type. Native defect concentrations and the corresponding carrier concentrations are predicted as a function of processing conditions, and can serve as a guide to postgrowth anneals to manipulate the conductivity of undoped material for applications in x- and γ-ray spectrometers. Furthermore, we show that by choosing appropriate annealing conditions and extrinsic dopants, one can increase the operating efficiency of nuclear spectrometers by reducing the density of specific native defects that produce midgap trapping states.

  10. Annealing Would Improve beta" - Alumina Solid Electrolyte

    NASA Technical Reports Server (NTRS)

    Williams, Roger; Homer, Margie; Ryan, Margaret; Cortez, Roger; Shields, Virgil; Kisor, Adam

    2003-01-01

    A pre-operational annealing process is under investigation as a potential means of preventing a sudden reduction of ionic conductivity in a Beta"-alumina solid electrolyte (BASE) during use. On the basis of tests, the sudden reduction of ionic conductivity, followed by a slow recovery, has been found to occur during testing of the solid electrolyte and electrode components of an alkali metal thermal-to-electric converter (AMTEC) cell. At this time, high-temperature tests of limited duration have indicated the superiority of the treated BASE, but reproducible tests over thousands of hours are necessary to confirm that microcracking has been eliminated. The ionic conductivity of the treated BASE is also measured to be higher than untreated BASE at 1,073 K in low-pressure sodium vapor. Microcracking resulting in loss of conductivity was not observed with treated BASE in one high-temperature experiment, but this result must be duplicated over very long testing times to be sure of the effect. Shorter annealing times (10 to 20 hours) were found to result in significantly less loss of mass; it may be necessary for the packed powder mixture to evolve some Na2O before the Na2O can leave the ceramic.

  11. Mean Field Analysis of Quantum Annealing Correction.

    PubMed

    Matsuura, Shunji; Nishimori, Hidetoshi; Albash, Tameem; Lidar, Daniel A

    2016-06-01

    Quantum annealing correction (QAC) is a method that combines encoding with energy penalties and decoding to suppress and correct errors that degrade the performance of quantum annealers in solving optimization problems. While QAC has been experimentally demonstrated to successfully error correct a range of optimization problems, a clear understanding of its operating mechanism has been lacking. Here we bridge this gap using tools from quantum statistical mechanics. We study analytically tractable models using a mean-field analysis, specifically the p-body ferromagnetic infinite-range transverse-field Ising model as well as the quantum Hopfield model. We demonstrate that for p=2, where the phase transition is of second order, QAC pushes the transition to increasingly larger transverse field strengths. For p≥3, where the phase transition is of first order, QAC softens the closing of the gap for small energy penalty values and prevents its closure for sufficiently large energy penalty values. Thus QAC provides protection from excitations that occur near the quantum critical point. We find similar results for the Hopfield model, thus demonstrating that our conclusions hold in the presence of disorder. PMID:27314705

  12. Multiresolution simulated annealing for brain image analysis

    NASA Astrophysics Data System (ADS)

    Loncaric, Sven; Majcenic, Zoran

    1999-05-01

    Analysis of biomedical images is an important step in quantification of various diseases such as human spontaneous intracerebral brain hemorrhage (ICH). In particular, the study of outcome in patients having ICH requires measurements of various ICH parameters such as hemorrhage volume and their change over time. A multiresolution probabilistic approach for segmentation of CT head images is presented in this work. This method views the segmentation problem as a pixel labeling problem. In this application the labels are: background, skull, brain tissue, and ICH. The proposed method is based on the Maximum A-Posteriori (MAP) estimation of the unknown pixel labels. The MAP method maximizes the a-posterior probability of segmented image given the observed (input) image. Markov random field (MRF) model has been used for the posterior distribution. The MAP estimation of the segmented image has been determined using the simulated annealing (SA) algorithm. The SA algorithm is used to minimize the energy function associated with MRF posterior distribution function. A multiresolution SA (MSA) has been developed to speed up the annealing process. MSA is presented in detail in this work. A knowledge-based classification based on the brightness, size, shape and relative position toward other regions is performed at the end of the procedure. The regions are identified as background, skull, brain, ICH and calcifications.

  13. Magnetic field annealing for improved creep resistance

    SciTech Connect

    Brady, Michael P.; Ludtka, Gail M.; Ludtka, Gerard M.; Muralidharan, Govindarajan; Nicholson, Don M.; Rios, Orlando; Yamamoto, Yukinori

    2015-12-22

    The method provides heat-resistant chromia- or alumina-forming Fe-, Fe(Ni), Ni(Fe), or Ni-based alloys having improved creep resistance. A precursor is provided containing preselected constituents of a chromia- or alumina-forming Fe-, Fe(Ni), Ni(Fe), or Ni-based alloy, at least one of the constituents for forming a nanoscale precipitate MaXb where M is Cr, Nb, Ti, V, Zr, or Hf, individually and in combination, and X is C, N, O, B, individually and in combination, a=1 to 23 and b=1 to 6. The precursor is annealed at a temperature of 1000-1500.degree. C. for 1-48 h in the presence of a magnetic field of at least 5 Tesla to enhance supersaturation of the M.sub.aX.sub.b constituents in the annealed precursor. This forms nanoscale M.sub.aX.sub.b precipitates for improved creep resistance when the alloy is used at service temperatures of 500-1000.degree. C. Alloys having improved creep resistance are also disclosed.

  14. Isothermal annealing of a 620 nm optical absorption band in Brazilian topaz crystals

    NASA Astrophysics Data System (ADS)

    Isotani, Sadao; Matsuoka, Masao; Albuquerque, Antonio Roberto Pereira Leite

    2013-04-01

    Isothermal decay behaviors, observed at 515, 523, 562, and 693 K, for an optical absorption band at 620 nm in gamma-irradiated Brazilian blue topaz were analyzed using a kinetic model consisting of O- bound small polarons adjacent to recombination centers (electron traps). The kinetic equations obtained on the basis of this model were solved using the method of Runge-Kutta and the fit parameters describing these defects were determined with a grid optimization method. Two activation energies of 0.52±0.08 and 0.88±0.13 eV, corresponding to two different structural configurations of the O- polarons, explained well the isothermal decay curves using first-order kinetics expected from the kinetic model. On the other hand, thermoluminescence (TL) emission spectra measured at various temperatures showed a single band at 400 nm in the temperature range of 373-553 K in which the 620 nm optical absorption band decreased in intensity. Monochromatic TL glow curve data at 400 nm extracted from the TL emission spectra observed were found to be explained reasonably by using the knowledge obtained from the isothermal decay analysis. This suggests that two different structural configurations of O- polarons are responsible for the 620 nm optical absorption band and that the thermal annealing of the polarons causes the 400 nm TL emission band.

  15. Σ3 CSL boundary distributions in an austenitic stainless steel subjected to multidirectional forging followed by annealing

    NASA Astrophysics Data System (ADS)

    Tikhonova, Marina; Kuzminova, Yuliya; Fang, Xiaoying; Wang, Weiguo; Kaibyshev, Rustam; Belyakov, Andrey

    2014-12-01

    The effect of processing and annealing temperatures on the grain boundary characters in the ultrafine-grained structure of a 304-type austenitic stainless steel was studied. An S304H steel was subjected to multidirectional forging (MDF) at 500-800°C to total strains of ~4, followed by annealing at 800-1,000°C for 30 min. The MDF resulted in the formation of ultrafine-grained microstructures with mean grain sizes of 0.28-0.85 μm depending on the processing temperature. The annealing behaviour of the ultrafine-grained steel was characterized by the development of continuous post-dynamic recrystallization including a rapid recovery followed by a gradual grain growth. The post-dynamically recrystallized grain size depended on both the deformation temperature and the annealing temperature. The recrystallization kinetics was reduced with an increase in the temperature of the preceding deformation. The grain growth during post-dynamic recrystallization was accompanied by an increase in the fraction of Σ3n CSL boundaries, which was defined by a relative change in the grain size, i.e. a ratio of the annealed grain size to that evolved by preceding warm working (D/D0). The fraction of Σ3n CSL boundaries sharply rose to approximately 0.5 in the range of D/D0 from 1 to 5, which can be considered as early stage of continuous post-dynamic recrystallization. Then, the rate of increase in the fraction of Σ3n CSL boundaries slowed down significantly in the range of D/D0 > 5. A fivefold increase in the grain size by annealing is a necessary condition to obtain approximately 50% Σ3n CSL boundaries in the recrystallized microstructure.

  16. Recovery and recrystallisation in mechanically alloyed and annealed, legacy, FeCrAlY ODS alloy precursor powders

    NASA Astrophysics Data System (ADS)

    Dawson, K.; Rao, A.; Tatlock, G. J.; Jones, A. R.

    2015-08-01

    This study presents findings related to the recrystallisation behaviour in Mechanically Alloyed (MA) and annealed powders of legacy commercial Oxide Dispersion Strengthened (ODS) FeCrAl alloys PM2000, MA956 and ODM751. Annealing of as-MA ODS alloy powders at temperatures ≥ 800 °C induced primary recrystallisation. The volume fraction (Vf) recrystallised increased with higher annealing temperatures in the range studied (∼800-1050 °C). However, low temperature (650 °C) recovery reduced the subsequent kinetics of recrystallisation in PM2000 alloy. Transmission Electron Microscopy (TEM) analysis of annealed PM2000 and MA956 alloy powders indicates that precipitation of nano-particulate Y-Al-O phases begins at temperatures as low as 650 °C and microstructural changes during annealing of ODS powders involved interactions between nano-particle formation and recovery/recrystallisation processes. High number densities (NV > 1023 m-3) of coherent nano-precipitates were identified in both recovered and recrystallised regions of powder particles. These formed over a range of temperatures used in the consolidation processing of ODS alloys. The orientation relationship between nano-particles and the matrix was identical in both recovered and recrystallised grains, indicating that particles were dissolved at recrystallising interfaces and subsequently reprecipitated. Examination and comparison of as-MA and annealed powder specimens suggests that nuances in the manufacturing of these three, nominally similar, alloys leads to differences in recovery/recrystallisation behaviour, which may influence microstructure and, ultimately, properties in the final product form.

  17. Flame annealing of arsenic and boron implanted silicon

    SciTech Connect

    Narayan, J.; Young, R.T.

    1983-03-01

    We have investigated the characteristics of flame annealing of ion implantation damage in (100) and (111) silicon substrates using transmission electron microscopy and Van der Pauw measurements. The temperature of the hydrogen flame ranged from 1050 to 1200 /sup 0/C and the interaction time from 5 to 10 s. Transmission electron microscopy studies showed that a ''defect-free'' annealing could be achieved with concomitant full electrical activation of dopants. The Hall mobility of flame annealed specimens was found to be comparable to pulsed laser annealed specimens.

  18. Application of Simulated Annealing and Related Algorithms to TWTA Design

    NASA Technical Reports Server (NTRS)

    Radke, Eric M.

    2004-01-01

    decremented and the process repeats. Eventually (and hopefully), a near-globally optimal solution is attained as T approaches zero. Several exciting variants of SA have recently emerged, including Discrete-State Simulated Annealing (DSSA) and Simulated Tempering (ST). The DSSA algorithm takes the thermodynamic analogy one step further by categorizing objective function evaluations into discrete states. In doing so, many of the case-specific problems associated with fine-tuning the SA algorithm can be avoided; for example, theoretical approximations for the initial and final temperature can be derived independently of the case. In this manner, DSSA provides a scheme that is more robust with respect to widely differing design surfaces. ST differs from SA in that the temperature T becomes an additional random variable in the optimization. The system is also kept in equilibrium as the temperature changes, as opposed to the system being driven out of equilibrium as temperature changes in SA. ST is designed to overcome obstacles in design surfaces where numerous local minima are separated by high barriers. These algorithms are incorporated into the optimal design of the traveling-wave tube amplifier (TWTA). The area under scrutiny is the collector, in which it would be ideal to use negative potential to decelerate the spent electron beam to zero kinetic energy just as it reaches the collector surface. In reality this is not plausible due to a number of physical limitations, including repulsion and differing levels of kinetic energy among individual electrons. Instead, the collector is designed with multiple stages depressed below ground potential. The design of this multiple-stage collector is the optimization problem of interest. One remaining problem in SA and DSSA is the difficulty in determining when equilibrium has been reached so that the current Markov chain can be terminated. It has been suggested in recent literature that simulating the thermodynamic properties opecific

  19. Phase transition kinetics and surface binding states of methylammonium lead iodide perovskite.

    PubMed

    Rajendra Kumar, G; Dennyson Savariraj, A; Karthick, S N; Selvam, S; Balamuralitharan, B; Kim, Hee-Je; Viswanathan, K K; Vijaykumar, M; Prabakar, Kandasamy

    2016-03-01

    We have presented a detailed analysis of the phase transition kinetics and binding energy states of solution processed methylammonium lead iodide (MAPbI3) thin films prepared at ambient conditions and annealed at different elevated temperatures. It is the processing temperature and environmental conditions that predominantly control the crystal structure and surface morphology of MAPbI3 thin films. The structural transformation from tetragonal to cubic occurs at 60 °C with a 30 minute annealing time while the 10 minute annealed films posses a tetragonal crystal structure. The transformed phase is greatly intact even at the higher annealing temperature of 150 °C and after a time of 2 hours. The charge transfer interaction between the Pb 4f and I 3d oxidation states is quantified using XPS. PMID:26894928

  20. Fundamental electrode kinetics

    NASA Technical Reports Server (NTRS)

    Elder, J. P.

    1968-01-01

    Report presents the fundamentals of electrode kinetics and the methods used in evaluating the characteristic parameters of rapid-charge transfer processes at electrode-electrolyte interfaces. The concept of electrode kinetics is outlined, followed by the principles underlying the experimental techniques for the investigation of electrode kinetics.

  1. CW Laser Annealing of Polycrystalline Silicon on SiO2 and Effects of Successive Furnace Annealing

    NASA Astrophysics Data System (ADS)

    Kugimiya, Koichi; Fuse, Genshu; Inoue, Kaoru

    1982-01-01

    CW Ar laser annealing was carried out to reduce the resistivity of polycrystalline silicon implanted with light doses of 1× 1012-5× 1014B+/cm2. Laser annealing, actually laser melting, and successive furnace annealing effectively reduced the resistivity to almost that of single crystal silicon. TEM, OM and stress observations revealed that the reduction was due primarily to the grain growth of polycrystalline silicon and secondarily to stress relief, from 9× 109 dyne/cm2 to 5× 109 dyne/cm2, caused by annealing. Grain growth of up to about 3× 100 μm and bamboo-joint-like growth were observed.

  2. Annealing study of a bistable defect in proton-implanted n-type 4H-SiC

    NASA Astrophysics Data System (ADS)

    Nielsen, H. Kortegaard; Martin, D. M.; Lévêque, P.; Hallén, A.; Svensson, B. G.

    2003-12-01

    The thermal stability and annealing kinetics of a bistable defect, recently reported by Martin (Master Thesis, KTH/ELE/FTE/2003-1) employing deep level transient spectroscopy and labelled the M-centre, has been studied using n-type epitaxially grown 4H-SiC layers implanted with 2.5 MeV protons to a dose of 1×1012 cm-2. One configuration of the bistable defect leads to two levels in the band gap, 0.42 eV (M1) and 0.7-0.8 eV (M3) below the conduction band edge (EC), and another leads to one level (M2) at EC-0.7 eV. The defect can be switched back and forth between the two configurations by varying the applied bias and the sample temperature. Isochronal and isothermal annealing shows that the defect anneals out between 310°C and 370°C with a first-order kinetics process. The origin of the defect is not known but it is implantation-induced and a low-order complex.

  3. The lateral In2O3 nanowires and pyramid networks manipulation by controlled substrate surface energy in annealing evolution

    NASA Astrophysics Data System (ADS)

    Shariati, Mohsen; Darjani, Mojtaba

    2016-02-01

    The continuous laterally aligned growth of In2O3 nanocrystal networks extended with nanowire and pyramid connections under annealing influence has been reported. These nanostructures have been grown on Si substrate by using oxygen-assisted annealing process through PVD growth technique. The formation of In2O3 nanocrystals has been achieved by the successive growth of critical self-nucleated condensation in three orientations. The preferred direction was the route between two pyramids especially in the smallest surface energy. The effects of substrate temperature in annealing process on the morphological properties of the as-grown nanostructures were investigated. The annealing technique showed that by controlling the surface energy, the morphology of structures was changed from unregulated array to defined nanostructures; especially nanowires 50 nm in width. The obtained nanostructures also were investigated by the (transmission electron microscopy) TEM, Raman spectrum and the (X-ray diffraction) XRD patterns. They indicated that the self-assembled In2O3 nanocrystal networks have been fabricated by the vapor-solid (VS) growth mechanism. The growth mechanism process was prompted to attribute the relationship among the kinetics parameters, surface diffusion and morphology of nanostructures.

  4. Annealing a magnetic cactus into phyllotaxis

    NASA Astrophysics Data System (ADS)

    Nisoli, Cristiano; Gabor, Nathaniel M.; Lammert, Paul E.; Maynard, J. D.; Crespi, Vincent H.

    2010-04-01

    The appearance of mathematical regularities in the disposition of leaves on a stem, scales on a pine-cone, and spines on a cactus has puzzled scholars for millennia; similar so-called phyllotactic patterns are seen in self-organized growth, polypeptides, convection, magnetic flux lattices and ion beams. Levitov showed that a cylindrical lattice of repulsive particles can reproduce phyllotaxis under the (unproved) assumption that minimum of energy would be achieved by two-dimensional Bravais lattices. Here we provide experimental and numerical evidence that the Phyllotactic lattice is actually a ground state. When mechanically annealed, our experimental “magnetic cactus” precisely reproduces botanical phyllotaxis, along with domain boundaries (called transitions in Botany) between different phyllotactic patterns. We employ a structural genetic algorithm to explore the more general axially unconstrained case, which reveals multijugate (multiple spirals) as well as monojugate (single-spiral) phyllotaxis.

  5. Remediation tradeoffs addressed with simulated annealing optimization

    SciTech Connect

    Rogers, L. L., LLNL

    1998-02-01

    Escalation of groundwater remediation costs has encouraged both advances in optimization techniques to balance remediation objectives and economics and development of innovative technologies to expedite source region clean-ups. We present an optimization application building on a pump-and-treat model, yet assuming a prior removal of different portions of the source area to address the evolving management issue of more aggressive source remediation. Separate economic estimates of in-situ thermal remediation are combined with the economic estimates of the subsequent optimal pump-and-treat remediation to observe tradeoff relationships of cost vs. highest remaining contamination levels (hot spot). The simulated annealing algorithm calls the flow and transport model to evaluate the success of a proposed remediation scenario at a U.S.A. Superfund site contaminated with volatile organic compounds (VOCs).

  6. Coupled Quantum Fluctuations and Quantum Annealing

    NASA Astrophysics Data System (ADS)

    Hormozi, Layla; Kerman, Jamie

    We study the relative effectiveness of coupled quantum fluctuations, compared to single spin fluctuations, in the performance of quantum annealing. We focus on problem Hamiltonians resembling the the Sherrington-Kirkpatrick model of Ising spin glass and compare the effectiveness of different types of fluctuations by numerically calculating the relative success probabilities and residual energies in fully-connected spin systems. We find that for a small class of instances coupled fluctuations can provide improvement over single spin fluctuations and analyze the properties of the corresponding class. Disclaimer: This research was funded by ODNI, IARPA via MIT Lincoln Laboratory under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.

  7. The Annealing Process in Solid 4He

    NASA Astrophysics Data System (ADS)

    Rittner, Ann Sophie C.; Reppy, John D.

    2007-09-01

    We have used a torsional oscillator with square cross section and a resonance frequency of 185 Hz to confirm the nonclassical rotational inertia (NCRI) discovered by Kim and Chan (Nature 427:225, 2004; Science 305:1941, 2004). We have also found a strong correlation between the NCRI signal and a high dissipation Q -1 of 4×10-6 of the oscillation above the transition temperature. Here, we present preliminary results of the annealing process in 4He at a pressure of 26 bar. When holding the temperature constant above 1 K we have observed a immediate rise in the period and a slow decay of the dissipation. The equilibrium value of Q -1 decreases with increasing temperature.

  8. Annealed Importance Sampling for Neural Mass Models

    PubMed Central

    Penny, Will; Sengupta, Biswa

    2016-01-01

    Neural Mass Models provide a compact description of the dynamical activity of cell populations in neocortical regions. Moreover, models of regional activity can be connected together into networks, and inferences made about the strength of connections, using M/EEG data and Bayesian inference. To date, however, Bayesian methods have been largely restricted to the Variational Laplace (VL) algorithm which assumes that the posterior distribution is Gaussian and finds model parameters that are only locally optimal. This paper explores the use of Annealed Importance Sampling (AIS) to address these restrictions. We implement AIS using proposals derived from Langevin Monte Carlo (LMC) which uses local gradient and curvature information for efficient exploration of parameter space. In terms of the estimation of Bayes factors, VL and AIS agree about which model is best but report different degrees of belief. Additionally, AIS finds better model parameters and we find evidence of non-Gaussianity in their posterior distribution. PMID:26942606

  9. Annealed Importance Sampling for Neural Mass Models.

    PubMed

    Penny, Will; Sengupta, Biswa

    2016-03-01

    Neural Mass Models provide a compact description of the dynamical activity of cell populations in neocortical regions. Moreover, models of regional activity can be connected together into networks, and inferences made about the strength of connections, using M/EEG data and Bayesian inference. To date, however, Bayesian methods have been largely restricted to the Variational Laplace (VL) algorithm which assumes that the posterior distribution is Gaussian and finds model parameters that are only locally optimal. This paper explores the use of Annealed Importance Sampling (AIS) to address these restrictions. We implement AIS using proposals derived from Langevin Monte Carlo (LMC) which uses local gradient and curvature information for efficient exploration of parameter space. In terms of the estimation of Bayes factors, VL and AIS agree about which model is best but report different degrees of belief. Additionally, AIS finds better model parameters and we find evidence of non-Gaussianity in their posterior distribution. PMID:26942606

  10. Thermoelectric properties by high temperature annealing

    NASA Technical Reports Server (NTRS)

    Ren, Zhifeng (Inventor); Chen, Gang (Inventor); Kumar, Shankar (Inventor); Lee, Hohyun (Inventor)

    2009-01-01

    The present invention generally provides methods of improving thermoelectric properties of alloys by subjecting them to one or more high temperature annealing steps, performed at temperatures at which the alloys exhibit a mixed solid/liquid phase, followed by cooling steps. For example, in one aspect, such a method of the invention can include subjecting an alloy sample to a temperature that is sufficiently elevated to cause partial melting of at least some of the grains. The sample can then be cooled so as to solidify the melted grain portions such that each solidified grain portion exhibits an average chemical composition, characterized by a relative concentration of elements forming the alloy, that is different than that of the remainder of the grain.

  11. Annealed Importance Sampling Reversible Jump MCMC algorithms

    SciTech Connect

    Karagiannis, Georgios; Andrieu, Christophe

    2013-03-20

    It will soon be 20 years since reversible jump Markov chain Monte Carlo (RJ-MCMC) algorithms have been proposed. They have significantly extended the scope of Markov chain Monte Carlo simulation methods, offering the promise to be able to routinely tackle transdimensional sampling problems, as encountered in Bayesian model selection problems for example, in a principled and flexible fashion. Their practical efficient implementation, however, still remains a challenge. A particular difficulty encountered in practice is in the choice of the dimension matching variables (both their nature and their distribution) and the reversible transformations which allow one to define the one-to-one mappings underpinning the design of these algorithms. Indeed, even seemingly sensible choices can lead to algorithms with very poor performance. The focus of this paper is the development and performance evaluation of a method, annealed importance sampling RJ-MCMC (aisRJ), which addresses this problem by mitigating the sensitivity of RJ-MCMC algorithms to the aforementioned poor design. As we shall see the algorithm can be understood as being an “exact approximation” of an idealized MCMC algorithm that would sample from the model probabilities directly in a model selection set-up. Such an idealized algorithm may have good theoretical convergence properties, but typically cannot be implemented, and our algorithms can approximate the performance of such idealized algorithms to an arbitrary degree while not introducing any bias for any degree of approximation. Our approach combines the dimension matching ideas of RJ-MCMC with annealed importance sampling and its Markov chain Monte Carlo implementation. We illustrate the performance of the algorithm with numerical simulations which indicate that, although the approach may at first appear computationally involved, it is in fact competitive.

  12. Formation of silicides in annealed periodic multilayers

    NASA Astrophysics Data System (ADS)

    Maury, H.; Jonnard, P.; Le Guen, K.; André, J.-M.

    2009-05-01

    Periodic multilayers of nanometric period are widely used as optical components for the X-ray and extreme UV (EUV) ranges, in X-ray space telescopes, X-ray microscopes, EUV photolithography or synchrotron beamlines for example. Their optical performances depend on the quality of the interfaces between the various layers: chemical interdiffusion or mechanical roughness shifts the application wavelength and can drastically decrease the reflectance. Since under high thermal charge interdiffusion is known to get enhanced, the study of the thermal stability of such structures is essential to understand how interfacial compounds develop. We have characterized X-ray and EUV siliconcontaining multilayers (Mo/Si, Sc/Si and Mg/SiC) as a function of the annealing temperature (up to 600°C) using two non-destructive methods. X-ray emission from the silicon atoms, describing the Si valence states, is used to determine the chemical nature of the compounds present in the interphases while X-ray reflectivity in the hard and soft X-ray ranges can be related to the optical properties. In the three cases, interfacial metallic (Mo, Sc, Mg) silicides are evidenced and the thickness of the interphase increases with the annealing temperature. For Mo/Si and Sc/Si multilayers, silicides are even present in the as-prepared multilayers. Characteristic parameters of the stacks are determined: composition of the interphases, thickness and roughness of the layers and interphases if any. Finally, we have evidenced the maximum temperature of application of these multilayers to minimize interdiffusion.

  13. Deformation and annealing response of TD-nickel chromium sheet

    NASA Technical Reports Server (NTRS)

    Kane, R. D.; Ebert, L. J.

    1973-01-01

    The deformation and annealing response of TD-nickel chromium (TD-NiCr) 0.1 inch thick sheet was examined using various cold-rolling and annealing treatments. Upon annealing (above 816 C (1500 F), the as-received material was converted from an initially ultra-fine grain size (average grain dimension 0.51 micron) to a large grain structure. Increases in grain size by a factor of 100 to 200 were observed for this transformation. However, in those material states where the large grain transformation was absent, a fine grain recrystallized structure formed upon annealing (above 732 C (1350 F)). The deformation and annealing response of TD-NiCr sheet was evaluated with respect to the processing related variables as mode and severity of deformation and annealing temperature. Results indicate that the large grain transformation, classical primary recrystallization occurs. Using selected materials produced during the deformation and annealing study, the elevated temperature tensile properties of TD-NiCr sheet were examined in the temperature range 593 C (1100 F) to 1093 C (2000 F). It was observed that the elevated temperature tensile properties of TD-NiCr sheet could be optimized by the stabilization of a large grain size in this material using the cold working and/or annealing treatments developed during the present investigation.

  14. BELL ANNEALING FURNACES, SHOWING EMPLOYEEDESIGN CENTER POST WITH THREE RADIAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BELL ANNEALING FURNACES, SHOWING EMPLOYEE-DESIGN CENTER POST WITH THREE RADIAL ARMS FOR HANGING COILS. ANNEALING SOFTENS BATCHES OF COILS WHICH HAVE BEEN HARDENED BY ROLLING SO THAT THEY WILL BE SUITABLE FOR FURTHER PROCESSING. - American Brass Foundry, 70 Sayre Street, Buffalo, Erie County, NY

  15. Infrared studies of the evolution of the CiOi(SiI) defect in irradiated Si upon isothermal anneals

    NASA Astrophysics Data System (ADS)

    Angeletos, T.; Chroneos, A.; Londos, C. A.

    2016-03-01

    Carbon-oxygen-self-interstitial complexes were investigated in silicon by means of Fourier transform infrared spectroscopy. Upon irradiation, the CiOi defect (C3) forms which for high doses attract self-interstitials (SiIs) leading to the formation of the CiOi(SiI) defect (C4) with two well-known related bands at 939.6 and 1024 cm-1. The bands are detectable in the spectra both in room temperature (RT) and liquid helium (LH) temperature. Upon annealing at 150 °C, these bands were transformed to three bands at 725, 952, and 973 cm-1, detectable only at LH temperatures. Upon annealing at 220 °C, these bands were transformed to three bands at 951, 969.5, and 977 cm-1, detectable both at RT and LH temperatures. Annealing at 280 °C resulted in the transformation of these bands to two new bands at 973 and 1024 cm-1. The latter bands disappear from the spectra upon annealing at 315 °C without the emergence of other bands in the spectra. Considering reaction kinetics and defect metastability, we developed a model to describe the experimental results. Annealing at 150 °C triggers the capturing of SiIs by the C4 defect leading to the formation of the CiOi(SiI)2 complex. The latter structure appears to be bistable: measuring at LH, the defect is in configuration CiOi(SiI)2 giving rise to the bands at 725, 952, and 973 cm-1, whereas on measurements at RT, the defect converts to another configuration CiOi(SiI)2* without detectable bands in the spectra. Possible structures of the two CiOi(SiI)2 configurations are considered and discussed. Upon annealing at 220 °C, additional SiIs are captured by the CiOi(SiI)2 defect leading to the formation of the CiOi(SiI)3 complex, which in turn on annealing at 280 °C converts to the CiOi(SiI)4 complex. The latter defect anneals out at 315 °C, without being accompanied in the spectra by the growth of new bands.

  16. Evolution of perpendicular magnetized tunnel junctions upon annealing

    NASA Astrophysics Data System (ADS)

    Devolder, Thibaut; Couet, S.; Swerts, J.; Furnemont, A.

    2016-04-01

    We study the evolution of perpendicularly magnetized tunnel junctions under 300 to 400 °C annealing. The hysteresis loops do not evolve much during annealing and they are not informative of the underlying structural evolutions. These evolutions are better revealed by the frequencies of the ferromagnetic resonance eigenmodes of the tunnel junction. Their modeling provides the exchange couplings and the layers' anisotropies within the stack which can serve as a diagnosis of the tunnel junction state after each annealing step. The anisotropies of the two CoFeB-based parts and the two Co/Pt-based parts of the tunnel junction decay at different rates during annealing. The ferromagnet exchange coupling through the texture-breaking Ta layer fails above 375 °C. The Ru spacer meant to promote a synthetic antiferromagnet behavior is also insufficiently robust to annealing. Based on these evolutions we propose optimization routes for the next generation tunnel junctions.

  17. On the Debossing, Annealing and Mounting of Bells

    NASA Astrophysics Data System (ADS)

    PERRIN, R.; SWALLOWE, G. M.; CHARNLEY, T.; MARSHALL, C.

    1999-10-01

    Changes in the frequencies of the musical partials of various types of bells following debossing dismounting/mounting and annealing/quench annealing are reported. Debossing, dismounting and quench annealing lead to frequency drops, while mounting gives rises. Annealing can lead to frequency increases or decreases depending upon the maximum temperature employed and the initial residual stress. Qualitative explanations of these phenomena are given in terms of changes in crown stiffness, internal stress and alloy phase structure. These are supported by the results of X-ray diffraction measurements. Although the effects are all small they can be large enough to be detected by a reasonably musical car. This, together with the fact that the effects cannot be controlled, gives a plausible explanation of why modern bellfounders use vertical lathes for tuning, even with small carillon bells, and do not anneal bells when trying to control warble.

  18. Anomalous Behavior Observed upon Annealing and Photodetachment of Anionic Copper Carbonyl Clusters in Argon Matrices

    NASA Astrophysics Data System (ADS)

    Ludwig, Ryan M.; Moore, David T.

    2014-06-01

    Using matrix isolation FTIR, we have observed the formation of anionic copper carbonyl complexes [Cu(CO)n]- (n=1-3) following co-deposition of Cu- and counter-cations (Ar+ or Kr+) into argon matrices doped with CO. When the deposition is carried out at 20 K, weak bands corresponding to the neutral copper carbonyl complexes Cu(CO)n (n=1-3) are also observed, and these grow in steadily as the matrix is annealed up to 30 K. This is in contrast to what is observed at 10 K (c.f. ISMS 2014 abstract #P631), where no appreciable neutral bands are observed, and indicates that some neutralization occurs during the formation of the complexes in the 20 K matrix. In addition, sharp peaks not previously observed grow in around the anionic bands upon annealing to 30 K; this is somewhat odd, since annealing typically simplifies the spectra of matrix samples as kinetically trapped metastable species relax to more stable forms. In this case, higher-resolution (0.125 wn) spectra reveal considerable new fine structure, with 5 and 20 peaks appearing in the regions of the mono- and tricarbonyl anions, respectively, each of which nominally has but a single IR-active CO-stretching mode. These new features are tentatively assigned (at least in part) to electric-field-induced splitting arising from long-range interactions with cationic species in the matrix. A second anomalous feature of these spectra is that, upon photodetachment, several new bands are observed in the region of the neutral copper carbonyl species. Upon annealing these bands then disappear, with concomitant growth of the expected neutral bands. This behavior raises the exciting possibility that these transient bands represent metastable "vertical detachment products", where the neutral species has been kinetically trapped by the matrix in the geometry of the anion. Evidence supporting this interpretation will be presented. Funding support from NSF CAREER Award CHE-0955637 is gratefully acknowledged Ryan M. Ludwig and David

  19. Microstructure Changes and Phase Growth Occurring at the Interface of the Al/Ti Explosively Welded and Annealed Joints

    NASA Astrophysics Data System (ADS)

    Fronczek, D. M.; Chulist, R.; Litynska-Dobrzynska, L.; Szulc, Z.; Zieba, P.; Wojewoda-Budka, J.

    2016-03-01

    The manuscript presents a close examination of the titanium and aluminum platters manufactured by explosive welding method. In particular, the microstructure changes of the Al/Ti wavy shape interface after annealing at 773 and 903 K were studied. Three stable TiAl3, TiAl, and Ti3Al and a metastable TiAl2 intermetallic phases have been formed in the state directly after explosive welding. The orientation map and TEM images obtained after explosive welding process showed very fine grains of aluminum mixed with intermetallics in the interface region between the peninsulas or islands. After annealing for 100 h the TiAl3 continuous layer was obtained; however, the layer achieved at 903 K was much wider than that obtained at 773 K. An examination of the growth kinetics at 903 K revealed that incubation time was less than 5 min. After this period, the growth was solely governed by chemical reaction.

  20. Modeling of long-term defect evolution in heavy-ion irradiated 3C-SiC: Mechanism for thermal annealing and influences of spatial correlation

    SciTech Connect

    Guo, Daxi; He, Chaohui E-mail: hechaohui@mail.xjtu.edu.cn; Zang, Hang; Zhang, Peng; Martin-Bragado, Ignacio E-mail: hechaohui@mail.xjtu.edu.cn

    2014-11-28

    Based on the parameters from published ab-initio theoretical and experimental studies, and combining molecular dynamics and kinetic Monte Carlo simulations, a framework of multi-scale modeling is developed to investigate the long-term evolution of displacement damage induced by heavy-ion irradiation in cubic silicon carbide. The isochronal annealing after heavy ion irradiation is simulated, and the annealing behaviors of total interstitials are found consistent with previous experiments. Two annealing stages below 600 K and one stage above 900 K are identified. The mechanisms for those recovery stages are interpreted by the evolution of defects. The influence of the spatial correlation in primary damage on defect recovery has been studied and found insignificant when the damage dose is high enough, which sheds light on the applicability of approaches with mean-field approximation to the long-term evolution of damage by heavy ions in SiC.

  1. EFFECTS OF LONG-TIME COMMUTING AND LONG-HOUR WORKING ON LIFESTYLE AND MENTAL HEALTH AMONG SCHOOL TEACHERS IN TOKYO, JAPAN.

    PubMed

    Nomoto, Marino; Hara, Akiko; Kikuchi, Kimiyo

    2015-06-01

    The objective of this study was to investigate the effects of long-time commuting and long-hour working on lifestyle including sleeping, physical exercise, breakfast, smoking, alcohol intake and mental health. In this cross-sectional study, data were collected from 146 school teachers in Tokyo. The binary associations of commuting time and working hours with lifestyle, mental stress measured by the General Health Questionnaire (GHQ) and stress coping measured by the Sense of Coherence (SOC) scores were examined. The Chi-square test was used for statistical analyses. Our results indicated that the mean commuting time and working hours per week of the respondents were 42.1 (SD 22.5) minutes and 50.4 (SD 8.6) hours, respectively. Longer commuting time was significantly associated with shorter working hours (p = 0.023), less physical exercise (p < 0.001) and shorter sleeping hours (p = 0.001). Longer working hours were significantly associated with more frequent working on holidays (p = 0.001), higher SOC scores (p = 0.001) and more smoking (p = 0.028). The negative association between GHQ and SOC scores was also significant (p < 0.001). Our findings revealed that long-time commuters were more likely to sleep less, exercise less and work less long. Long-hour workers were more likely to commute shorter, work on holidays more frequently, smoke more and their stress coping potentials were higher. Some kinds of strategies are required to improve the healthy lifestyle for long-time com- muters or long-hour workers. Key words: stress; stress coping; general health questionnaire; sense of coherence PMID:27281916

  2. Long-Time Variation in Magnetic Structure of CeIr3Si2: Observation of a Nucleation-and-Growth Process of Magnetic Domains

    NASA Astrophysics Data System (ADS)

    Motoya, Kiyoichiro; Hagihala, Masato; Takabatake, Toshiro; Matsuda, Masaaki

    2016-03-01

    CeIr3Si2 is the first three-dimensional uniform magnet in which the long-time variation in magnetic structure was observed. To clarify the microscopic mechanism of this magnetic structural change, time-resolved neutron scattering measurements have been reinvestigated. Clear time variations in the line widths as well as the amplitudes of magnetic Bragg diffractions have been observed in this improved instrumentation. On the basis of this observation, a nucleation-and-growth model of magnetic structural change has been presented. The numerical calculation with this model reproduces well the observation.

  3. Variational Symplectic Integrator for Long-Time Simulations of the Guiding-Center Motion of Charged Particles in General Magnetic Fields

    SciTech Connect

    H. Qin and X. Guan

    2008-02-11

    A variational symplectic integrator for the guiding-center motion of charged particles in general magnetic fields is developed for long-time simulation studies of magnetized plasmas. Instead of discretizing the differential equations of the guiding-center motion, the action of the guiding-center motion is discretized and minimized to obtain the iteration rules for advancing the dynamics. The variational symplectic integrator conserves exactly a discrete Lagrangian symplectic structure, and has better numerical properties over long integration time, compared with standard integrators, such as the standard and variable time-step fourth order Runge-Kutta methods.

  4. Program for establishing long-time flight service performance of composite materials in the center wing structure of C-130 aircraft. Phase 1: Advanced development

    NASA Technical Reports Server (NTRS)

    Harvill, W. E.; Kays, A. O.; Young, E. C.; Mcgee, W. M.

    1972-01-01

    Areas where selective reinforcement of conventional metallic structure can improve static strength/fatigue endurance at lower weight than would be possible if metal reinforcement were used are discussed. These advantages are now being demonstrated by design, fabrication, and tests of three boron-epoxy reinforced C-130E center wing boxes. This structural component was previously redesigned using an aluminum build-up to meet increased severity of fatigue loadings. Direct comparisons of relative structural weights, manufacturing costs, and producibility can therefore be obtained, and the long-time flight service performance of the composite reinforced structure can be evaluated against the wide background of metal reinforced structure.

  5. Variational symplectic integrator for long-time simulations of the guiding-center motion of charged particles in general magnetic fields.

    PubMed

    Qin, Hong; Guan, Xiaoyin

    2008-01-25

    A variational symplectic integrator for the guiding-center motion of charged particles in general magnetic fields is developed for long-time simulation studies of magnetized plasmas. Instead of discretizing the differential equations of the guiding-center motion, the action of the guiding-center motion is discretized and minimized to obtain the iteration rules for advancing the dynamics. The variational symplectic integrator conserves exactly a discrete Lagrangian symplectic structure, and has better numerical properties over long integration time, compared with standard integrators, such as the standard and variable time-step fourth order Runge-Kutta methods. PMID:18232993

  6. Long-time variation in magnetic structure of CeIr3Si2: Observation of a nucleation-and-growth process of magnetic domains

    DOE PAGESBeta

    Motoya, Kiyoichiro; Hagihala, Masato; Takabatake, Toshiro; Matsuda, Masaaki

    2016-02-29

    CeIr3Si2 is the first three-dimensional uniform magnet in which the long-time variation in magnetic structure was observed. To clarify the microscopic mechanism of this magnetic structural change, time-resolved neutron scattering measurements have been reinvestigated. Clear time variations in the line widths as well as the amplitudes of magnetic Bragg diffractions have been observed in this improved instrumentation. On the notion of this observation, a nucleation-and-growth model of magnetic structural change has been presented. The numerical calculation with this model reproduces well the observation.

  7. Annealed Scaling for a Charged Polymer

    NASA Astrophysics Data System (ADS)

    Caravenna, F.; den Hollander, F.; Pétrélis, N.; Poisat, J.

    2016-03-01

    This paper studies an undirected polymer chain living on the one-dimensional integer lattice and carrying i.i.d. random charges. Each self-intersection of the polymer chain contributes to the interaction Hamiltonian an energy that is equal to the product of the charges of the two monomers that meet. The joint probability distribution for the polymer chain and the charges is given by the Gibbs distribution associated with the interaction Hamiltonian. The focus is on the annealed free energy per monomer in the limit as the length of the polymer chain tends to infinity. We derive a spectral representation for the free energy and use this to prove that there is a critical curve in the parameter plane of charge bias versus inverse temperature separating a ballistic phase from a subballistic phase. We show that the phase transition is first order. We prove large deviation principles for the laws of the empirical speed and the empirical charge, and derive a spectral representation for the associated rate functions. Interestingly, in both phases both rate functions exhibit flat pieces, which correspond to an inhomogeneous strategy for the polymer to realise a large deviation. The large deviation principles in turn lead to laws of large numbers and central limit theorems. We identify the scaling behaviour of the critical curve for small and for large charge bias. In addition, we identify the scaling behaviour of the free energy for small charge bias and small inverse temperature. Both are linked to an associated Sturm-Liouville eigenvalue problem. A key tool in our analysis is the Ray-Knight formula for the local times of the one-dimensional simple random walk. This formula is exploited to derive a closed form expression for the generating function of the annealed partition function, and for several related quantities. This expression in turn serves as the starting point for the derivation of the spectral representation for the free energy, and for the scaling theorems

  8. A study of the non-isothermal crystallization kinetic of Zn10Se90 glass

    NASA Astrophysics Data System (ADS)

    Abdel-Rahim, M. A.; Hafiz, M. M.; Abdel-Latief, A. Y.; Abd-Elnaiem, Alaa M.; Alwany, A. Elwhab. B.

    2015-06-01

    The glass transition and the crystallization kinetics of Zn10Se90 glass by differential thermal analysis (DTA) technique under non-isothermal conduction were studied. The effective activation energies of the glass transition and the crystallization have been evaluated on the basses of the Kissinger and Matusita et al. approximations. Kinetic parameters of the crystallization process are significantly influenced by the heating rate. We have compared the experimental DTA with the calculated data curves for Zn10Se90 system using the Johanson-Mehl-Avrami (JMA) and Sestak-Berggren SB( M, N) models. Simulation results indicated that the SB( M, N) model is more suitable for describing the crystallization kinetics for the studied composition. Furthermore, the crystalline phases of annealed Zn10Se90 were characterized by X-ray diffraction. The surface morphology of the annealed samples was examined using scanning electron microscopy.

  9. Pre-Steady-State Kinetic Analysis of Single-Nucleotide Incorporation by DNA Polymerases.

    PubMed

    Su, Yan; Peter Guengerich, F

    2016-01-01

    Pre-steady-state kinetic analysis is a powerful and widely used method to obtain multiple kinetic parameters. This protocol provides a step-by-step procedure for pre-steady-state kinetic analysis of single-nucleotide incorporation by a DNA polymerase. It describes the experimental details of DNA substrate annealing, reaction mixture preparation, handling of the RQF-3 rapid quench-flow instrument, denaturing polyacrylamide DNA gel preparation, electrophoresis, quantitation, and data analysis. The core and unique part of this protocol is the rationale for preparation of the reaction mixture (the ratio of the polymerase to the DNA substrate) and methods for conducting pre-steady-state assays on an RQF-3 rapid quench-flow instrument, as well as data interpretation after analysis. In addition, the methods for the DNA substrate annealing and DNA polyacrylamide gel preparation, electrophoresis, quantitation and analysis are suitable for use in other studies. © 2016 by John Wiley & Sons, Inc. PMID:27248785

  10. Birefringence simulation of annealed ingot of calcium fluoride single crystal

    NASA Astrophysics Data System (ADS)

    Ogino, H.; Miyazaki, N.; Mabuchi, T.; Nawata, T.

    2008-01-01

    We developed a method for simulating birefringence of an annealed ingot of calcium fluoride single crystal caused by the residual stress after annealing process. The method comprises the heat conduction analysis that provides the temperature distribution during the ingot annealing, the elastic thermal stress analysis using the assumption of the stress-free temperature that provides the residual stress after annealing, and the birefringence analysis of an annealed ingot induced by the residual stress. The finite element method was applied to the heat conduction analysis and the elastic thermal stress analysis. In these analyses, the temperature dependence of material properties and the crystal anisotropy were taken into account. In the birefringence analysis, the photoelastic effect gives the change of refractive indices, from which the optical path difference in the annealed ingot is calculated by the Jones calculus. The relation between the Jones calculus and the approximate method using the stress components averaged along the optical path is discussed theoretically. It is found that the result of the approximate method agrees very well with that of the Jones calculus in birefringence analysis. The distribution pattern of the optical path difference in the annealed ingot obtained from the present birefringence calculation methods agrees reasonably well with that of the experiment. The calculated values also agree reasonably well with those of the experiment, when a stress-free temperature is adequately selected.

  11. Effect of annealing on the growth dynamics of ZnPc LB thin film and its surface morphology

    NASA Astrophysics Data System (ADS)

    Roy, Dhrubojyoti; Das, Nayan Mani; Gupta, P. S.

    2014-07-01

    The ZnPc molecules in the thin film prepared by Langmuir-Blodgett (LB) process in asdeposited state has been found to have an edge on orientation with average tilt angle of 64.3 ° as confirmed from the Pressure-Area (π-A) isotherm and X-ray diffraction (XRD) study. The ZnPc LB thin film has been observed to have abnormal growth mode at higher annealing temperature and it is mainly driven by minimization of surface free energy which lead to large increase in crystallinity of the film. Kinetically favored orientational and structural transitions of ZnPc thin film during annealing and their effect on the surface morphology of the thin film has been studied using scaling concepts. The scaling exponents 1) root mean square (RMS) roughness σ, 2) roughness exponent α and, 3) in plane correlation length ξ are calculated from the HDCF g(r) and ACF C(r). The RMS surface roughness σ is found to be dependent on the as defined short wavelength undulations (ρ) and long wavelength undulations (χ). Both ρ and χ are the function of all the three scaling exponents. σ has been observed to be maximum for the ZnPc thin film annealed at 290 °C, since the χ shoot to maximum value at this temperature due to the formation of small domains of ZnPc nanorods. The self affinity of the ZnPc thin film is found to decrease on annealing as obtained from both power spectral density (PSD) and HDCF g(R) & ACF C(R) study, which confirms that the dimension of surface morphology of the ZnPc LB thin film transform towards 2D with increase in annealing temperature.

  12. Effect of annealing on the growth dynamics of ZnPc LB thin film and its surface morphology

    SciTech Connect

    Roy, Dhrubojyoti Das, Nayan Mani; Gupta, P. S.

    2014-07-15

    The ZnPc molecules in the thin film prepared by Langmuir-Blodgett (LB) process in asdeposited state has been found to have an edge on orientation with average tilt angle of 64.3 ° as confirmed from the Pressure-Area (π-A) isotherm and X-ray diffraction (XRD) study. The ZnPc LB thin film has been observed to have abnormal growth mode at higher annealing temperature and it is mainly driven by minimization of surface free energy which lead to large increase in crystallinity of the film. Kinetically favored orientational and structural transitions of ZnPc thin film during annealing and their effect on the surface morphology of the thin film has been studied using scaling concepts. The scaling exponents 1) root mean square (RMS) roughness σ, 2) roughness exponent α and, 3) in plane correlation length ξ are calculated from the HDCF g(r) and ACF C(r). The RMS surface roughness σ is found to be dependent on the as defined short wavelength undulations (ρ) and long wavelength undulations (χ). Both ρ and χ are the function of all the three scaling exponents. σ has been observed to be maximum for the ZnPc thin film annealed at 290 °C, since the χ shoot to maximum value at this temperature due to the formation of small domains of ZnPc nanorods. The self affinity of the ZnPc thin film is found to decrease on annealing as obtained from both power spectral density (PSD) and HDCF g(R) and ACF C(R) study, which confirms that the dimension of surface morphology of the ZnPc LB thin film transform towards 2D with increase in annealing temperature.

  13. Evolution of weld metals nanostructure and properties under irradiation and recovery annealing of VVER-type reactors

    NASA Astrophysics Data System (ADS)

    Gurovich, B.; Kuleshova, E.; Shtrombakh, Ya.; Fedotova, S.; Zabusov, O.; Prikhodko, K.; Zhurko, D.

    2013-03-01

    The results of VVER-440 steel Sv-10KhMFT and VVER-1000 steel SV-10KhGNMAA investigations by transmission electron microscopy, scanning electron microscopy, Auger-electron spectroscopy and mechanical tests are presented in this paper. The both types of weld metals with different content of impurities and alloying elements were studied after irradiations to fast neutron (E > 0.5 MeV) fluences in the wide range below and beyond the design values, after recovery annealing procedures and after re-irradiation following the annealing. The distinctive features of embrittlement kinetics of VVER-440 and VVER-1000 RPV weld metals conditioned by their chemical composition differences were investigated. It is shown that the main contribution into radiation strengthening within the design fluence can be attributed to radiation-induced precipitates, on reaching the design or beyond design values of fast neutron fluencies the main contribution into VVER-440 welds strengthening is made by radiation-induced dislocation loops, and in case of VVER-1000 welds - radiation-induced precipitates and grain-boundary phosphorous segregations. Recovery annealing of VVER-440 welds at 475 °C during 100 h causes irradiation-induced defects disappearance, transformation of copper enriched precipitates into bigger copper-rich precipitates with lower number density and leads to almost full recovery of mechanical properties followed by comparatively slow re-embrittlement rate. The recovery annealing temperature of VVER-1000 welds was higher - 565 °C during 100 h - to avoid temper brittleness. The annealing of VVER-1000 welds leads to almost full recovery of mechanical properties due to irradiation-induced defects disappearance and decrease in precipitates number density and grain-boundary segregation of phosphorus. The re-embrittlement rate of VVER-1000 weld during subsequent re-irradiation is at least not higher than the initial rate.

  14. Real-time and long-time in vivo imaging in the shortwave infrared window of perforator vessels for more precise evaluation of flap perfusion.

    PubMed

    Feng, Shaoqing; Chen, Jun; Wo, Yan; Li, Yunxia; Chen, Shiyi; Zhang, Yixin; Zhang, Wenjie

    2016-10-01

    Effective real-time and long-time in vivo imaging for flap perfusion requires bright and stable imaging agents whose emissions can effectively penetrate live tissues without photobleaching. Compared to the standard imaging agent today - intraoperative indocyanine green (ICG), quantum dots (QDs) is a more attractive alternative due to its excellent optical properties including broad emission spectrum and stability against photobleaching. Recent studies have confirmed that the shortwave infrared window (SWIR) between 1000 and 2300 nm is the most sensitive spectral range for in vivo imaging due to its extremely low tissue absorption and autofluorescence. Here, we, for the first time, report a novel approach of flap perfusion assessment that provides real-time and long-time in vivo imaging using lead sulfide (PbS) QDs. Our results show that PbS QDs, as an imaging agent, can improve the stability of in vivo high-resolution images in a sustained manner, thus facilitating the precise evaluation of flap perfusion. In summary, compared to current imaging reporters, SWIR QDs have high photostability and deep tissue penetration, which makes them as promising in vivo imaging agents for more precise evaluation of flap perfusion. PMID:27394040

  15. Embrittlement recovery due to annealing of reactor pressure vessel steels

    SciTech Connect

    Eason, E.D.; Wright, J.E.; Nelson, E.E.; Odette, G.R.; Mader, E.V.

    1996-03-01

    Embrittlement of reactor pressure vessels (RPVs) can be reduced by thermal annealing at temperatures higher than the normal operating conditions. Although such an annealing process has not been applied to any commercial plants in the United States, one US Army reactor, the BR3 plant in Belgium, and several plants in eastern Europe have been successfully annealed. All available Charpy annealing data were collected and analyzed in this project to develop quantitative models for estimating the recovery in 30 ft-lb (41 J) Charpy transition temperature and Charpy upper shelf energy over a range of potential annealing conditions. Pattern recognition, transformation analysis, residual studies, and the current understanding of the mechanisms involved in the annealing process were used to guide the selection of the most sensitive variables and correlating parameters and to determine the optimal functional forms for fitting the data. The resulting models were fitted by nonlinear least squares. The use of advanced tools, the larger data base now available, and insight from surrogate hardness data produced improved models for quantitative evaluation of the effects of annealing. The quality of models fitted in this project was evaluated by considering both the Charpy annealing data used for fitting and the surrogate hardness data base. The standard errors of the resulting recovery models relative to calibration data are comparable to the uncertainty in unirradiated Charpy data. This work also demonstrates that microhardness recovery is a good surrogate for transition temperature shift recovery and that there is a high level of consistency between the observed annealing trends and fundamental models of embrittlement and recovery processes.

  16. Modeling of protein loops by simulated annealing.

    PubMed Central

    Collura, V.; Higo, J.; Garnier, J.

    1993-01-01

    A method is presented to model loops of protein to be used in homology modeling of proteins. This method employs the ESAP program of Higo et al. (Higo, J., Collura, V., & Garnier, J., 1992, Biopolymers 32, 33-43) and is based on a fast Monte Carlo simulation and a simulated annealing algorithm. The method is tested on different loops or peptide segments from immunoglobulin, bovine pancreatic trypsin inhibitor, and bovine trypsin. The predicted structure is obtained from the ensemble average of the coordinates of the Monte Carlo simulation at 300 K, which exhibits the lowest internal energy. The starting conformation of the loop prior to modeling is chosen to be completely extended, and a closing harmonic potential is applied to N, CA, C, and O atoms of the terminal residues. A rigid geometry potential of Robson and Platt (1986, J. Mol. Biol. 188, 259-281) with a united atom representation is used. This we demonstrate to yield a loop structure with good hydrogen bonding and torsion angles in the allowed regions of the Ramachandran map. The average accuracy of the modeling evaluated on the eight modeled loops is 1 A root mean square deviation (rmsd) for the backbone atoms and 2.3 A rmsd for all heavy atoms. PMID:8401234

  17. Tailoring of domain wall dynamics in amorphous microwires by annealing

    NASA Astrophysics Data System (ADS)

    Chichay, K.; Zhukova, V.; Rodionova, V.; Ipatov, M.; Talaat, A.; Blanco, J. M.; Gonzalez, J.; Zhukov, A.

    2013-05-01

    We studied the effect of annealing on the magnetic properties and domain wall (DW) dynamics of magnetically bistable, Fe-based, glass-covered microwires with two different compositions, and different diameters. We observed the correlation of the domain wall dynamics with the distribution of the nucleation fields, measured in as-prepared samples, and after annealing for up to 150 min at temperatures of 250 and 300 °C. We found that both DW velocity and the range of the field limiting the single DW dynamics changed after annealing.

  18. Searching for quantum speedup in quasistatic quantum annealers

    NASA Astrophysics Data System (ADS)

    Amin, Mohammad H.

    2015-11-01

    We argue that a quantum annealer at very long annealing times is likely to experience a quasistatic evolution, returning a final population that is close to a Boltzmann distribution of the Hamiltonian at a single (freeze-out) point during the annealing. Such a system is expected to correlate with classical algorithms that return the same equilibrium distribution. These correlations do not mean that the evolution of the system is classical or can be simulated by these algorithms. The computation time extracted from such a distribution reflects the equilibrium behavior with no information about the underlying quantum dynamics. This makes the search for quantum speedup problematic.

  19. Microwave annealing of ion implanted 6H-SiC

    SciTech Connect

    Gardner, J.A.; Rao, M.V.; Tian, Y.L.; Holland, O.W.; Kelner, G.; Freitas, J.A. Jr.; Ahmad, I.

    1996-12-31

    Microwave rapid thermal annealing has been utilized to remove the lattice damage caused by nitrogen(N) ion-implantation as well as to activate the dopant in 6H-SiC. Samples were annealed at temperatures as high as 1,400 C, for 10 min. Van der Pauw Hall measurements indicate an implant activation of 36%, which is similar to the value obtained for the conventional furnace annealing at 1,600 C. Good lattice quality restoration was observed in the Rutherford backscattering and photoluminescence spectra.

  20. Microwave annealing of ion implanted 6H-SiC

    SciTech Connect

    Gardner, J.A.; Rao, M.V.; Tian, Y.L.; Holland, O.W.; Kelner, G.; Freitas, J.A. Jr.; Ahmad, I.

    1996-05-01

    Microwave rapid thermal annealing has been utilized to remove the lattice damage caused by nitrogen (N) ion-implantation as well as to activate the dopant in 6H-SiC. Samples were annealed at temperatures as high as 1,400 C, for 10 min. Van der Pauw Hall measurements indicate an implant activation of 36%, which is similar to the value obtained for the conventional furnace annealing at 1,600 C. Good lattice quality restoration was observed in the Rutherford backscattering and photoluminescence spectra.

  1. Annealing effects on the optical properties of semiconducting boron carbide

    SciTech Connect

    Billa, R. B.; Robertson, B. W.; Hofmann, T.; Schubert, M.

    2009-08-01

    Infrared vibrations of as-deposited and annealed semiconducting boron carbide thin films were investigated by midinfrared spectroscopic ellipsometry. The strong boron-hydrogen resonance at approx2560 cm{sup -1} in as-deposited films reveals considerable hydrogen incorporation during plasma-enhanced chemical vapor deposition. Extended annealing at 600 deg. C caused significant reduction in film thickness, substantial reduction of boron-hydrogen bond resonance absorption, and development of distinct blue-shifted boron-carbon and icosahedral vibration mode resonances. Our findings suggest that annealing results in substantial loss of hydrogen and in development of icosahedral structure, accompanied by strain relaxation and densification.

  2. Excimer laser annealing for low-voltage power MOSFET

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Okada, Tatsuya; Noguchi, Takashi; Mazzamuto, Fulvio; Huet, Karim

    2016-08-01

    Excimer laser annealing of lumped beam was performed to form the P-base junction for high-performance low-voltage-power MOSFET. An equivalent shallow-junction structure for the P-base junction with a uniform impurity distribution is realized by adopting excimer laser annealing (ELA). The impurity distribution in the P-base junction can be controlled precisely by the irradiated pulse energy density and the number of shots of excimer laser. High impurity activation for the shallow junction has been confirmed in the melted phase. The application of the laser annealing technology in the fabrication process of a practical low-voltage trench gate MOSFET was also examined.

  3. Crystal growth and annealing for minimized residual stress

    DOEpatents

    Gianoulakis, Steven E.

    2002-01-01

    A method and apparatus for producing crystals that minimizes birefringence even at large crystal sizes, and is suitable for production of CaF.sub.2 crystals. The method of the present invention comprises annealing a crystal by maintaining a minimal temperature gradient in the crystal while slowly reducing the bulk temperature of the crystal. An apparatus according to the present invention includes a thermal control system added to a crystal growth and annealing apparatus, wherein the thermal control system allows a temperature gradient during crystal growth but minimizes the temperature gradient during crystal annealing.

  4. Phase separation in SiGe nanocrystals embedded in SiO{sub 2} matrix during high temperature annealing

    SciTech Connect

    Mogaddam, N. A. P.; Turan, R.; Alagoz, A. S.; Yerci, S.; Foss, S.; Finstad, T. G.

    2008-12-15

    SiGe nanocrystals have been formed in SiO{sub 2} matrix by cosputtering Si, Ge, and SiO{sub 2} independently on Si substrate. Effects of the annealing time and temperature on structural and compositional properties are studied by transmission electron microscopy, x-ray diffraction (XRD), and Raman spectroscopy measurements. It is observed that Ge-rich Si{sub (1-x)}Ge{sub x} nanocrystals do not hold their compositional uniformity when annealed at high temperatures for enough long time. A segregation process leading to separation of Ge and Si atoms from each other takes place. This process has been evidenced by a double peak formation in the XRD and Raman spectra. We attributed this phase separation to the differences in atomic size, surface energy, and surface diffusion disparity between Si and Ge atoms leading to the formation of nonhomogenous structure consist of a Si-rich SiGe core covered by a Ge-rich SiGe shell. This experimental observation is consistent with the result of reported theoretical and simulation methods.

  5. Microstructural evolution of nanocrystalline Fe–Zr alloys upon annealing treatment

    SciTech Connect

    Shi, X.H.; Chen, Y.Z.; Ma, X.Y.; Wang, H.T.; Liu, F.

    2015-05-15

    Nanocrystalline Fe–Zr alloys exhibit an extraordinary thermal stability at elevated temperatures, which enables their potential applications in various fields. However, there remain concerns regarding the controlling stabilization mechanisms responsible for their thermal stability. In this work, two nanocrystalline Fe–Zr alloys containing 1 at.% Zr and 5 at.% Zr were annealed at various temperatures (T{sub ann}) up to 900 °C. Microstructural evolution of the alloys upon annealing was investigated by means of an X-ray diffractometer equipped with a 2-dimensional detector and transmission electron microscopy. Below 600 °C, microstructures of the two alloys consist of single nanocrystalline ferrite whose grain size is rather stable upon annealing treatments. Above 600 °C, accompanying the precipitation of Fe{sub 3}Zr phase, an apparent grain coarsening of ferrite is observed, whereas the thermal stability of the alloys is still considerably higher than that of nanocrystalline pure Fe. Based on the experimental results, it was claimed that stabilization of the nanocrystalline Fe–Zr alloys should not be totally ascribed to the thermodynamic stabilization mechanism due to the reduction in grain boundary energy as suggested in earlier investigations [K.A. Darling et al., Scr. Mater. 59 (2008) 530 and K.A. Darling et al., Mater. Sci. Eng. A527 (2010) 3572]; when T{sub ann} is higher than 600 °C, along with the precipitation of Fe{sub 3}Zr, the effect of thermodynamic stabilization is weakened, the kinetic effect arising from Zener pinning of Fe{sub 3}Zr precipitates turns to be an important mechanism contributing to the stabilization of the nanoscale grain size. - Highlights: • We show clear evidence of precipitation of Fe{sub 3}Zr phase above 600 °C. • Stabilization of nanostructure is not solely controlled by thermodynamic mechanism. • Above 600 °C, Zener pinning plays an important role in stabilizing nanostructure.

  6. Tin surface segregation, desorption, and island formation during post-growth annealing of strained epitaxial Ge1-xSnx layer on Ge(0 0 1) substrate

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Li, Lingzi; Zhou, Qian; Pan, Jisheng; Zhang, Zheng; Tok, Eng Soon; Yeo, Yee-Chia

    2014-12-01

    Annealing of strained Ge1-xSnx epitaxial layers grown on Ge(0 0 1) substrate results in two distinctive regimes marked by changes in composition and morphology. Annealing at low temperatures (200-300 °C or Regime-I) leads to surface enrichment of Sn due to Sn segregation, as indicated by X-ray photoelectron spectroscopy (XPS) results, while the bulk Sn composition (from X-ray diffraction (XRD)) and the surface morphology (from atomic force microscopy (AFM)) do not show discernible changes as compared to the as-grown sample. Annealing at temperatures ranging from 300 °C to 500 °C (Regime-II) leads to a decrease in the surface Sn composition. While the Ge1-xSnx layer remains fully strained, a reduction in the bulk Sn composition is observed when the annealing temperature reaches 500 °C. At this stage, surface roughening also occurs with formation of 3D islands. The island size increases as the annealing temperature is raised to 600 °C. The decrease in the Sn composition at the surface and in the bulk in Regime-II is attributed to additional thermally activated kinetic processes associated with Sn desorption and formation of Sn-rich 3D islands on the surface.

  7. Sintering Characteristics of Multilayered Thermal Barrier Coatings Under Thermal Gradient and Isothermal High Temperature Annealing Conditions

    NASA Technical Reports Server (NTRS)

    Rai, Amarendra K.; Schmitt, Michael P.; Bhattacharya, Rabi; Zhu, Dongming; Wolfe, Douglas E.

    2014-01-01

    Pyrochlore oxides have most of the relevant attributes for use as next generation thermal barrier coatings such as phase stability, low sintering kinetics and low thermal conductivity. One of the issues with the pyrochlore oxides is their lower toughness and therefore higher erosion rate compared to the current state-of-the-art TBC material, yttria (6 to 8 wt%) stabilized zirconia (YSZ). In this work, sintering characteristics were investigated for novel multilayered coating consisted of alternating layers of pyrochlore oxide viz Gd2Zr2O7 and t' low k (rare earth oxide doped YSZ). Thermal gradient and isothermal high temperature (1316 C) annealing conditions were used to investigate sintering and cracking in these coatings. The results are then compared with that of relevant monolayered coatings and a baseline YSZ coating.

  8. Glass transition in the quenched and annealed version of the frustrated lattice gas model

    NASA Astrophysics Data System (ADS)

    Fierro, Annalisa; de Candia, Antonio; Coniglio, Antonio

    2000-12-01

    In this paper we study the three-dimensional frustrated lattice gas model in the annealed version, where the disorder is allowed to evolve in time with a suitable kinetic constraint. Although the model does not exhibit any thermodynamic transition it shows a diverging peak at some characteristic time in the dynamical nonlinear susceptibility, similar to the results on the p-spin model in mean field and the Lennard-Jones mixture recently found by Donati et al. (e-print cond-mat/9905433). Comparing these results to those obtained in the model with quenched interactions, we conclude that the critical behavior of the dynamical susceptibility is reminiscent of the thermodynamic transition present in the quenched model, and signaled by the divergence of the static nonlinear susceptibility, suggesting therefore a similar mechanism also in supercooled glass-forming liquids.

  9. In situ observation of structural change of nanostructured tungsten during annealing

    NASA Astrophysics Data System (ADS)

    Yajima, Miyuki; Yoshida, Naoaki; Kajita, Shin; Tokitani, Masayuki; Baba, Tomotsugu; Ohno, Noriyasu

    2014-06-01

    Deformation of fiberform nanostructure and the dynamic behavior of helium (He) bubbles in fuzz tungsten (W) during annealing have been investigated by means of in situ cross-section observation using transmission electron microscopy and He desorption rate observation using thermal desorption spectroscopy (TDS). Thermal recovery of the nanostructure, such as shrinkage and coalescence of fine structure, annihilation of He bubbles, and large desorption of He gas, occurred around 1073-1173 K. The activation energy of He was estimated from a TDS peak that appeared around 300-400 K by using the Kissinger-Akahira-Sunose model-free-kinetics method. In addition, the TDS results of fiberform nanostructured tungsten were compared with those of tungsten samples irradiated with a high-energy He ion beam.

  10. Prediction and Validation of the Austenite Phase Fraction upon Intercritical Annealing of Medium Mn Steels

    NASA Astrophysics Data System (ADS)

    Farahani, Hussein; Xu, Wei; van der Zwaag, Sybrand

    2015-11-01

    In this research, the effects of Mn and Si concentration and that of the isothermal intercritical holding temperature on the austenite-to-ferrite ( γ → α) and the martensite-to-austenite ( α' → γ) phase transformations are studied for a series of Fe-C-Mn-Si steels with up to 7 wt pct Mn. The model is based on the local equilibrium (LE) concept. The model predictions are compared to experimental observations. It is found that the austenite volume fraction at the end of intercritical annealing depends significantly on the initial microstructure. For Mn concentrations between 3 and 7 wt pct, the LE model is qualitatively correct. However, at higher Mn levels the discrepancy between the predicted austenite fractions and the experimental values increases, in particular for the α' → γ transformation. Intragrain nucleation is held responsible for the higher austenite fractions observed experimentally. Silicon is found have a much smaller effect on the kinetics of the intercritical annealing than Mn.

  11. Pharmacokinetic modeling of dynamic MR images using a simulated annealing-based optimization

    NASA Astrophysics Data System (ADS)

    Sawant, Amit R.; Reece, John H.; Reddick, Wilburn E.

    2000-04-01

    The aim of this work was to use dynamic contrast enhanced MR image (DEMRI) data to generate 'parameter images' which provide functional information about contrast agent access, in bone sarcoma. A simulated annealing based technique was applied to optimize the parameters of a pharmacokinetic model used to describe the kinetics of the tissue response during and after intravenous infusion of a paramagnetic contrast medium, Gd-DTPA. Optimization was performed on a pixel by pixel basis so as to minimize the sum of square deviations of the calculated values from the values obtained experimentally during dynamic contrast enhanced MR imaging. A cost function based on a priori information was introduced during the annealing procedure to ensure that the values obtained were within the expected ranges. The optimized parameters were used in the model to generate parameter images, which reveal functional information that is normally not visible in conventional Gd-DTPA enhanced MR images. This functional information, during and upon completion of pre-operative chemotherapy, is useful in predicting the probability of disease free survival.

  12. Regulation of multispanning membrane protein topology via post-translational annealing

    PubMed Central

    Van Lehn, Reid C; Zhang, Bin; Miller, Thomas F

    2015-01-01

    The canonical mechanism for multispanning membrane protein topogenesis suggests that protein topology is established during cotranslational membrane integration. However, this mechanism is inconsistent with the behavior of EmrE, a dual-topology protein for which the mutation of positively charged loop residues, even close to the C-terminus, leads to dramatic shifts in its topology. We use coarse-grained simulations to investigate the Sec-facilitated membrane integration of EmrE and its mutants on realistic biological timescales. This work reveals a mechanism for regulating membrane-protein topogenesis, in which initially misintegrated configurations of the proteins undergo post-translational annealing to reach fully integrated multispanning topologies. The energetic barriers associated with this post-translational annealing process enforce kinetic pathways that dictate the topology of the fully integrated proteins. The proposed mechanism agrees well with the experimentally observed features of EmrE topogenesis and provides a range of experimentally testable predictions regarding the effect of translocon mutations on membrane protein topogenesis. DOI: http://dx.doi.org/10.7554/eLife.08697.001 PMID:26408961

  13. Formation of titanium nitride by annealing Ag/Ti structures in ammonia ambient

    NASA Astrophysics Data System (ADS)

    Zou, Y. L.; Alford, T. L.; Zeng, Yuxiao; Deng, F.; Lau, S. S.; Laursen, T.; Amali, A. I.; Ullrich, B. M.

    1997-10-01

    Titanium nitride thin films have been formed in the temperature range of 400-600 °C by annealing Ag/Ti bilayer films on oxidized Si substrates in an ammonia ambient. Rutherford backscattering spectrometry and Auger depth profiling have shown the segregation of Ti at the surface and at interface. Ti diffused out through the silver layer and reacted with ammonia to form a TiN layer that self-encapsulated the silver film. A near-bamboo structure in the encapsulated Ag films was observed using cross-sectional transmission electron microscopy. Such a structure is expected to improve the electromigration resistance of the silver metallization. The kinetics of the Ti-nitride growth was studied by investigating its dependence on time, temperature, and Ag/Ti bilayer thicknesses. We also found that two processes govern the nitridation reaction. A dominant nitridation process takes place initially at fast growth rates. After 15 min anneals the nitride growth can be described by x2=B t, where B is a parabolic rate constant for the growing nitride phase. The parabolic rate constants follow an Arrhenius behavior with an apparent activation energy of ˜0.4 eV. These observations led to further discussion regarding the diffusion mechanism as well as the rate-limiting step.

  14. Direct Immersion Solvent Annealing of Nano-filled Block Copolymer Films

    NASA Astrophysics Data System (ADS)

    Longanecker, Melanie; Modi, Arvind; Yuan, Guangcui; Satija, Sushil; Bang, Joona; Karim, Alamgir; University of Akron Team; National Institute of Technology Collaboration; Korea University Collaboration

    The addition of nanoparticles to polymer films is a strategic approach to enhance film properties such as optical, thermal, hardness, conductivity, permeability etc. with inorganic components while maintaining an easily processable polymer matrix. To this end, the ``annealing'' of block copolymers while immersed directly in a chamber of solvent is examined to determine its efficacy in ordering nano-filled block copolymer films. Previously we have shown that it is possible to order neat block copolymer films in a mixture of solvents, and this research follows up that work. Specifically, we observe and utilize the effects of direct immersion solvent annealing (DIA) on lamellar poly(styrene-b-methyl methacrylate) thin films with loadings of gold nanoparticles as high as 25 percent by mass. Neutron reflection confirms that DIA is a viable technique applicable to ordering these highly loaded, nano-filled block copolymer systems. Some notable differences exist with respect to results on conservation of domain spacing that may be beneficial to film barrier properties, accomplished with minimal disruption of order and fast kinetics that is compatible with roll-to-roll techniques.

  15. Synthesis of boron nitride nanotubes by boron ink annealing.

    PubMed

    Li, Lu Hua; Chen, Ying; Glushenkov, Alexey M

    2010-03-12

    Ball-milling and annealing is one effective method for the mass production of boron nitride nanotubes (BNNTs). We report that the method has been modified to a boron (B) ink annealing method. In this new process, the nanosize ball-milled B particles are mixed with metal nitrate in ethanol to form an ink-like solution, and then the ink is annealed in nitrogen-containing gas to form nanotubes. The new method greatly enhances the yield of BNNTs, giving a higher density of nanotubes. These improvements are caused by the addition of metal nitrate and ethanol, both of which can strongly boost the nitriding reaction, as revealed by thermogravimetric analysis. The size and structure of BNNTs can be controlled by varying the annealing conditions. This high-yield production of BNNTs in large quantities enables the large-scale application of BNNTs. PMID:20154372

  16. Molecular dynamic simulation of non-melt laser annealing process

    NASA Astrophysics Data System (ADS)

    Liren, Yan; Dai, Li; Wei, Zhang; Zhihong, Liu; Wei, Zhou; Quan, Wang

    2016-03-01

    Molecular dynamic simulation is performed to study the process of material annealing caused by a 266 nm pulsed laser. A micro-mechanism describing behaviors of silicon and impurity atoms during the laser annealing at a non-melt regime is proposed. After ion implantation, the surface of the Si wafer is acted by a high energy laser pulse, which loosens the material and partially frees both Si and impurity atoms. While the residual laser energy is absorbed by valence electrons, these atoms are recoiled and relocated to finally form a crystal. Energy-related movement behavior is observed by using the molecular dynamic method. The non-melt laser anneal appears to be quite sensitive to the energy density of the laser, as a small excess energy may causes a significant impurity diffusion. Such a result is also supported by our laser anneal experiment.

  17. VIEW NORTHON MOTT STREETBUILDING 62 ANNEALING HOUSE EXTENSION John ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW NORTH-ON MOTT STREET-BUILDING 62 ANNEALING HOUSE EXTENSION - John A. Roebling's Sons Company & American Steel & Wire Company, South Broad, Clark, Elmer, Mott & Hudson Streets, Trenton, Mercer County, NJ

  18. In-Situ Measurements of Graphene Mechanics During Annealing

    NASA Astrophysics Data System (ADS)

    Hui, Aaron; de Alba, Roberto; Sebastian, Abhilash; Parpia, Jeevak

    Graphene shows great potential as a material for a new generation of mechanical nanodevices. However, current methodologies used for fabricating graphene structures involve polymer resists for transfer and patterning, which degrades mechanical performance. To improve surface quality, high current or high temperature annealing of graphene is commonly employed. Previous studies of graphene mechanics have focused on performance after annealing or temperature-dependent behavior from 4K-300K. Here we present real-time, in-situ measurements of graphene mechanical resonance during high temperature annealing from 300K-600K. Upon heating, reversible changes in mechanical frequency are indicative of graphene thermal contraction. Discontinuous and irreversible changes are also seen, corresponding to graphene slipping and mass desorption. Both reversible and irreversible changes in quality factor are also observed. Characterizing the effects of annealing on the structural properties of graphene will enable more precise engineering for particular applications, such as mass sensing.

  19. Quantitative Characterization of Mechanical Property of Annealed Monolayer Colloidal Crystal.

    PubMed

    Zhang, Lijing; Wang, Weiqi; Zheng, Lu; Wang, Xiuyu; Yan, Qingfeng

    2016-01-19

    Quantitative characterization of the mechanical properties of a polystyrene (PS) monolayer colloidal crystal (MCC) annealed with solvent vapor has been performed for the first time by means of atomic force microscopy nanoindentation. The results showed that both the compressive and bending elastic modulus of PS MCC increased with the prolongation of annealing time from initial to 13 min. When the annealing time reached 15 min or even more, the PS MCC almost deformed to a planar film, and the elastic modulus of the PS MCC presented a drastic increase. These results provide a basis for tailoring the mechanical properties of a polymer colloidal monolayer via solvent vapor annealing. Such self-supported and high-mechanical-strength colloidal monolayers can be transferred to other surfaces for potential and promising applications in the bottom-up fabrication of highly ordered nanostructured materials such as nano dot arrays, photonic crystals, and many others. PMID:26700374

  20. Structural changes during annealing of GaInAsN

    SciTech Connect

    Kurtz, Sarah; Webb, J.; Gedvilas, L.; Friedman, D.; Geisz, J.; Olson, J.; King, R.; Joslin, D.; Karam, N.

    2001-02-05

    The alloy GaInAsN has great potential as a lower-band-gap material lattice matched to GaAs, but there is little understanding of what causes its poor optoelectronic properties and why these improve with annealing. This study provides information about the structural changes that occur when GaInAsN is annealed. The Fourier transform infrared spectra exhibit two primary features: a triplet at {approx}470 cm-1 (Ga--N stretch) and two or three bands at {approx}3100 cm-1 (N--H stretch). The change in the Ga--N stretch absorption can be explained if the nitrogen environment is converted from NGa{sub 4} to NInGa{sub 3} after annealing. The N--H stretch is also changed after annealing, implying a second, and unrelated, structural change.

  1. Simulated quantum annealing of double-well and multiwell potentials.

    PubMed

    Inack, E M; Pilati, S

    2015-11-01

    We analyze the performance of quantum annealing as a heuristic optimization method to find the absolute minimum of various continuous models, including landscapes with only two wells and also models with many competing minima and with disorder. The simulations performed using a projective quantum Monte Carlo (QMC) algorithm are compared with those based on the finite-temperature path-integral QMC technique and with classical annealing. We show that the projective QMC algorithm is more efficient than the finite-temperature QMC technique, and that both are inferior to classical annealing if this is performed with appropriate long-range moves. However, as the difficulty of the optimization problem increases, classical annealing loses efficiency, while the projective QMC algorithm keeps stable performance and is finally the most effective optimization tool. We discuss the implications of our results for the outstanding problem of testing the efficiency of adiabatic quantum computers using stochastic simulations performed on classical computers. PMID:26651813

  2. Annealing effects on microstrain of cobalt oxide nanoparticles

    SciTech Connect

    Deotale, Anjali Jain Nandedkar, R. V.; Sinha, A. K.; Singh, M. N.; Upadhyay, Anuj

    2014-04-24

    Cobalt oxide nanoparticles in different phases have been synthesized using ash supported method. The effect of isochronal annealing on micro-strain of cobalt oxide nanoparticles has been studied. The lattice strain contribution to the x-ray diffraction line broadening in the nanoparticles was analyzed using Williamson Hall (W-H) plot. It is observed that micro-strain was released at higher annealing temperature.

  3. Method and apparatus for selectively annealing heterostructures using microwave

    NASA Technical Reports Server (NTRS)

    Atwater, Harry A. (Inventor); Brain, Ruth A. (Inventor); Barmatz, Martin B. (Inventor)

    1998-01-01

    The present invention discloses a process for selectively annealing heterostructures using microwaves. A heterostructure, comprised of a material having higher microwave absorption and a material having lower microwave absorption, is exposed to microwaves in the cavity. The higher microwave absorbing material absorbs the microwaves and selectively heats while the lower microwave absorbing material absorbs small amounts of microwaves and minimally heats. The higher microwave absorbing material is thereby annealed onto the less absorbing material which is thermally isolated.

  4. Method and apparatus for selectively annealing heterostructures using microwaves

    NASA Technical Reports Server (NTRS)

    Atwater, Harry A. (Inventor); Brain, Ruth A. (Inventor); Barmatz, Martin B. (Inventor)

    1998-01-01

    The present invention discloses a process for selectively annealing heterostructures using microwaves. A heterostructure, comprised of a material having higher microwave absorption and a material having lower microwave absorption, is exposed to microwaves in the cavity. The higher microwave absorbing material absorbs the microwaves and selectively heats while the lower microwave absorbing material absorbs small amounts of microwaves and minimally heats. The higher microwave absorbing material is thereby annealed onto the less absorbing material which is thermally isolated.

  5. Forming an age hardenable aluminum alloy with intermediate annealing

    NASA Astrophysics Data System (ADS)

    Wang, Kaifeng; Carsley, John E.; Stoughton, Thomas B.; Li, Jingjing; Zhang, Lianhong; He, Baiyan

    2013-12-01

    A method to improve formability of aluminum sheet alloys by a two-stage stamping process with intermediate annealing was developed for a non-age hardenable Al-Mg alloy where the annealing heat treatment provided recovery of cold work from the initial stamping and recrystallization of the microstructure to enhance the forming limits of the material. This method was extended to an age hardenable, Al-Mg-Si alloy, which is complicated by the competing metallurgical effects during heat treatment including recovery (softening effect) vs. precipitation (hardening effect). An annealing heat treatment process condition was discovered wherein the stored strain energy from an initial plastic deformation can be sufficiently recovered to enhance formability in a second deformation; however, there is a deleterious effect on subsequent precipitation hardening. The improvement in formability was quantified with uniaxial tensile tests as well as with the forming limit diagram. Since strain-based forming limit curves (FLC) are sensitive to pre-strain history, both stress-based FLCs and polar-effective-plastic-strain (PEPS) FLCs, which are path-independent, were used to evaluate the forming limits after preform annealing. A technique was developed to calculate the stress-based FLC in which a residual-effective-plastic-strain (REPS) was determined by overlapping the hardening curve of the pre-strained and annealed material with that of the simply-annealed- material. After converting the strain-based FLCs using the constant REPS method, it was found that the stress-based FLCs and the PEPS FLCs of the post-annealed materials were quite similar and both tools are applicable for evaluating the forming limits of Al-Mg-Si alloys for a two-step stamping process with intermediate annealing.

  6. Precise annealing of focal plane arrays for optical detection

    SciTech Connect

    Bender, Daniel A.

    2015-09-22

    Precise annealing of identified defective regions of a Focal Plane Array ("FPA") (e.g., exclusive of non-defective regions of the FPA) facilitates removal of defects from an FPA that has been hybridized and/or packaged with readout electronics. Radiation is optionally applied under operating conditions, such as under cryogenic temperatures, such that performance of an FPA can be evaluated before, during, and after annealing without requiring thermal cycling.

  7. Stochastic search in structural optimization - Genetic algorithms and simulated annealing

    NASA Technical Reports Server (NTRS)

    Hajela, Prabhat

    1993-01-01

    An account is given of illustrative applications of genetic algorithms and simulated annealing methods in structural optimization. The advantages of such stochastic search methods over traditional mathematical programming strategies are emphasized; it is noted that these methods offer a significantly higher probability of locating the global optimum in a multimodal design space. Both genetic-search and simulated annealing can be effectively used in problems with a mix of continuous, discrete, and integer design variables.

  8. Effect of the industrial steaming on the toxicity, estimated by LC-MS/MS, of mussels exposed for a long time to diarrhetic shellfish poisoning (DSP) toxins.

    PubMed

    Blanco, Juan; Arévalo, Fabiola; Correa, Jorge; Porro, M Corina; Cabado, Ana G; Vieites, Juan M; Moroño, Angeles

    2015-06-15

    The effect of industrial steaming on mussels that had been naturally exposed to DSP toxins for a long time was studied using LC-MS/MS. The estimated toxicity increased with steaming by a percentage that cannot be explained by weight loss. The estimated toxin content per mussel increased substantially with the treatment, which can only be explained by an incorrect estimation by the technique (at the extraction or analytical level) or by the presence of unknown derivatives or analogues. Direct alkaline hydrolysis of the mussel meat yielded more toxin than the standard hydrolysis (hydrolysis of the methanolic extracts), suggesting that extraction was, at least in part, responsible for the increase of toxin content. In situations as the one described in this work, it can be expected that mussels with toxicities well below the regulatory limit could easily surpass that level after industrial steaming, thus producing important losses for food processors. PMID:25660882

  9. Long-time solution of the time-dependent Schroedinger equation for an atom in an electromagnetic field using complex coordinate contours

    SciTech Connect

    Tao, Liang; Vanroose, Wim; Reps, Brian; Rescigno, Thomas N.; McCurdy, C. William

    2009-09-08

    We demonstrate that exterior complex scaling (ECS) can be used to impose outgoing wave boundary conditions exactly on solutions of the time-dependent Schrodinger equation for atoms in intense electromagnetic pulses using finite grid methods. The procedure is formally exact when applied in the appropriate gauge and is demonstrated in a calculation of high harmonic generation in which multiphoton resonances are seen for long pulse durations. However, we also demonstrate that while the application of ECS in this way is formally exact, numerical error can appear for long time propagations that can only be controlled by extending the finite grid. A mathematical analysis of the origins of that numerical error, illustrated with an analytically solvable model, is also given.

  10. Global Regularity and Long-time Behavior of the Solutions to the 2D Boussinesq Equations without Diffusivity in a Bounded Domain

    NASA Astrophysics Data System (ADS)

    Ju, Ning

    2016-07-01

    New results are obtained for global regularity and long-time behavior of the solutions to the 2D Boussinesq equations for the flow of an incompressible fluid with positive viscosity and zero diffusivity in a smooth bounded domain. Our first result for global boundedness of the solution {(u, θ)} in {D(A)× H^1} improves considerably the main result of the recent article (Hu et al. in J Math Phys 54(8):081507, 2013). Our second result on global boundedness of the solution {(u, θ)} in {V× H^1} for both bounded domain and the whole space {{R}2} is a new one. It has been open and also seems much more challenging than the first result. Global regularity of the solution {(u, θ)} in {D(A)× H2} is also proved.

  11. Degeneracy, degree, and heavy tails in quantum annealing

    NASA Astrophysics Data System (ADS)

    King, Andrew D.; Hoskinson, Emile; Lanting, Trevor; Andriyash, Evgeny; Amin, Mohammad H.

    2016-05-01

    Both simulated quantum annealing and physical quantum annealing have shown the emergence of "heavy tails" in their performance as optimizers: The total time needed to solve a set of random input instances is dominated by a small number of very hard instances. Classical simulated annealing, in contrast, does not show such heavy tails. Here we explore the origin of these heavy tails, which appear for inputs with high local degeneracy—large isoenergetic clusters of states in Hamming space. This category includes the low-precision Chimera-structured problems studied in recent benchmarking work comparing the D-Wave Two quantum annealing processor with simulated annealing. On similar inputs designed to suppress local degeneracy, performance of a quantum annealing processor on hard instances improves by orders of magnitude at the 512-qubit scale, while classical performance remains relatively unchanged. Simulations indicate that perturbative crossings are the primary factor contributing to these heavy tails, while sensitivity to Hamiltonian misspecification error plays a less significant role in this particular setting.

  12. Spall Response of Annealed Copper to Direct Explosive Loading

    NASA Astrophysics Data System (ADS)

    Finnegan, Simon; Burns, Malcolm; Whiteman, Glenn

    2015-06-01

    Taylor wave spall experiments were conducted on annealed copper targets using direct explosive loading. The targets were mounted on the back of an explosive which was initiated using a gas gun plate impact. The explosive and target were separated by a layer of foam in order to reduce the peak amplitude and strain rate of the Taylor wave pulse. This technique creates a high stress state, with a lower strain rate than an equivalent plate impact experiment, within the target. An advantage of using a gas gun is that the explosive run to detonation following impact can be studied separately. Four shots were performed on two differently annealed batches of copper to investigate the effect of annealing on the spall response. One pair of targets was annealed at 1123 K for 4 hours and the other pair was annealed at 723 K for 1 hour. The free surface velocity profiles were recorded using a heterodyne velocimetry (HetV) probe, focussed on the centre of the target. To quantify the effect of the annealing the pullback shapes in the free surface velocity profiles and the calculated spall strengths were compared for the four targets.

  13. Annealing characteristics of irradiated hydrogenated amorphous silicon solar cells

    NASA Technical Reports Server (NTRS)

    Payson, J. S.; Abdulaziz, S.; Li, Y.; Woodyard, J. R.

    1991-01-01

    It was shown that 1 MeV proton irradiation with fluences of 1.25E14 and 1.25E15/sq cm reduces the normalized I(sub SC) of a-Si:H solar cell. Solar cells recently fabricated showed superior radiation tolerance compared with cells fabricated four years ago; the improvement is probably due to the fact that the new cells are thinner and fabricated from improved materials. Room temperature annealing was observed for the first time in both new and old cells. New cells anneal at a faster rate than old cells for the same fluence. From the annealing work it is apparent that there are at least two types of defects and/or annealing mechanisms. One cell had improved I-V characteristics following irradiation as compared to the virgin cell. The work shows that the photothermal deflection spectroscopy (PDS) and annealing measurements may be used to predict the qualitative behavior of a-Si:H solar cells. It was anticipated that the modeling work will quantitatively link thin film measurements with solar cell properties. Quantitative predictions of the operation of a-Si:H solar cells in a space environment will require a knowledge of the defect creation mechanisms, defect structures, role of defects on degradation, and defect passivation and annealing mechanisms. The engineering data and knowledge base for justifying space flight testing of a-Si:H alloy based solar cells is being developed.

  14. Annealing effects in low upper-shelf welds (series 9)

    SciTech Connect

    Iskander, S.K.; Nanstad, R.K.

    1995-10-01

    The purpose of the Ninth Irradiation Series is to evaluate the correlation between fracture toughness and CVN impact energy during irradiation, annealing, and reirradiation (IAR). Results of annealing CVN specimens from the low-USE welds from the Midland beltline and nozzle course welds, as well as HSST plate 02 and HSSI weld 73W are given. Also presented is the effect of annealing on the initiation fracture toughness of annealed material from Midland beltline weld and HSST plate 02. The results from capsule 10-5 specimens of weld 73W confirm those previously obtained on the so-called undersize specimens that were irradiated in the Fifth Irradiation Series, namely that the recovery due to annealing at 343{degrees}C (650{degrees}F) for 1 week is insignificant. The fabrication of major components for the IAR facility for two positions on the east side of the FNR at the University of Michigan has begun. Fabrication of two reusable capsules (one for temperature verification and the other for dosimetry verification), as well as two capsules for IAR, studies is also under way. The design of a reusable capsule capable of reirradiating previously irradiated and annealed CVN and 1T C(T) specimens is also progressing. The data acquisition and control (DAC) instrumentation for the first two IAR facilities is essentially complete and awaiting completion of the IAR facilities and temperature test capsule for checkout and control algorithm development.

  15. Quantum versus simulated annealing in wireless interference network optimization

    PubMed Central

    Wang, Chi; Chen, Huo; Jonckheere, Edmond

    2016-01-01

    Quantum annealing (QA) serves as a specialized optimizer that is able to solve many NP-hard problems and that is believed to have a theoretical advantage over simulated annealing (SA) via quantum tunneling. With the introduction of the D-Wave programmable quantum annealer, a considerable amount of effort has been devoted to detect and quantify quantum speedup. While the debate over speedup remains inconclusive as of now, instead of attempting to show general quantum advantage, here, we focus on a novel real-world application of D-Wave in wireless networking—more specifically, the scheduling of the activation of the air-links for maximum throughput subject to interference avoidance near network nodes. In addition, D-Wave implementation is made error insensitive by a novel Hamiltonian extra penalty weight adjustment that enlarges the gap and substantially reduces the occurrence of interference violations resulting from inevitable spin bias and coupling errors. The major result of this paper is that quantum annealing benefits more than simulated annealing from this gap expansion process, both in terms of ST99 speedup and network queue occupancy. It is the hope that this could become a real-word application niche where potential benefits of quantum annealing could be objectively assessed. PMID:27181056

  16. Quantum versus simulated annealing in wireless interference network optimization

    NASA Astrophysics Data System (ADS)

    Wang, Chi; Chen, Huo; Jonckheere, Edmond

    2016-05-01

    Quantum annealing (QA) serves as a specialized optimizer that is able to solve many NP-hard problems and that is believed to have a theoretical advantage over simulated annealing (SA) via quantum tunneling. With the introduction of the D-Wave programmable quantum annealer, a considerable amount of effort has been devoted to detect and quantify quantum speedup. While the debate over speedup remains inconclusive as of now, instead of attempting to show general quantum advantage, here, we focus on a novel real-world application of D-Wave in wireless networking—more specifically, the scheduling of the activation of the air-links for maximum throughput subject to interference avoidance near network nodes. In addition, D-Wave implementation is made error insensitive by a novel Hamiltonian extra penalty weight adjustment that enlarges the gap and substantially reduces the occurrence of interference violations resulting from inevitable spin bias and coupling errors. The major result of this paper is that quantum annealing benefits more than simulated annealing from this gap expansion process, both in terms of ST99 speedup and network queue occupancy. It is the hope that this could become a real-word application niche where potential benefits of quantum annealing could be objectively assessed.

  17. Quantum versus simulated annealing in wireless interference network optimization.

    PubMed

    Wang, Chi; Chen, Huo; Jonckheere, Edmond

    2016-01-01

    Quantum annealing (QA) serves as a specialized optimizer that is able to solve many NP-hard problems and that is believed to have a theoretical advantage over simulated annealing (SA) via quantum tunneling. With the introduction of the D-Wave programmable quantum annealer, a considerable amount of effort has been devoted to detect and quantify quantum speedup. While the debate over speedup remains inconclusive as of now, instead of attempting to show general quantum advantage, here, we focus on a novel real-world application of D-Wave in wireless networking-more specifically, the scheduling of the activation of the air-links for maximum throughput subject to interference avoidance near network nodes. In addition, D-Wave implementation is made error insensitive by a novel Hamiltonian extra penalty weight adjustment that enlarges the gap and substantially reduces the occurrence of interference violations resulting from inevitable spin bias and coupling errors. The major result of this paper is that quantum annealing benefits more than simulated annealing from this gap expansion process, both in terms of ST99 speedup and network queue occupancy. It is the hope that this could become a real-word application niche where potential benefits of quantum annealing could be objectively assessed. PMID:27181056

  18. Thermal Conductivity Changes in Titanium-Graphene Composite upon Annealing

    NASA Astrophysics Data System (ADS)

    Jagannadham, Kasichainula

    2016-02-01

    Ti-graphene composite films were prepared on polished Ti substrates by deposition of graphene platelets from suspension followed by deposition of Ti by magnetron sputtering. The films were annealed at different temperatures up to 1073 K (800 °C) and different time periods in argon atmosphere. The annealed films were characterized by X-ray diffraction for phase identification, scanning electron microscopy for microstructure, energy-dispersive spectrometry for chemical analysis, atomic force microscopy for surface roughness, and transient thermoreflectance for thermal conductivity and interface thermal conductance. The results showed that the interface between the composite film and Ti substrate remained continuous with the absence of voids. Oxygen concentration in the composite films has increased for higher temperature and time of annealing. TiO2 and TiC phases are formed only in the film annealed at 1073 K (800 °C). The thermal conductivity of the composite film decreased with increasing oxygen concentration. The effective thermal conductance of the film annealed at 1073 K (800 °C) was significantly lower. The interface thermal conductance between the composite film and the Ti substrate is also reduced for higher oxygen concentration. Formation of microscopic TiO2 phase bound by interface boundaries and oxygen incorporation is considered responsible for the lower thermal conductance of the Ti-graphene composite annealed at 1073 K (800 °C).

  19. Plasmonic molecules via glass annealing in hydrogen

    PubMed Central

    2014-01-01

    Growth of self-assembled metal nanoislands on the surface of silver ion-exchanged glasses via their thermal processing in hydrogen followed by out-diffusion of neutral silver is studied. The combination of thermal poling of the ion-exchanged glass with structured electrode and silver out-diffusion was used for simple formation of separated groups of several metal nanoislands presenting plasmonic molecules. The kinetics of nanoisland formation and temporal evolution of their size distribution on the surface of poled and unpoled glass are modeled. PACS 78.67.Sc (nanoaggregates; nanocomposites); 81.16.Dn (self-assembly); 68.35.bj (surface structure of glasses); 64.60.Qb (Nucleation); 81.16.Nd (micro- and nanolithography) PMID:25404875

  20. Persistent subplasma-frequency kinetic electrostatic electron nonlinear waves

    SciTech Connect

    Johnston, T. W.; Tyshetskiy, Y.; Ghizzo, A.; Bertrand, P.

    2009-04-15

    Driving a one-dimensional collisionless Maxwellian (Vlasov) plasma with a sufficiently strong longitudinal ponderomotive driver for a sufficiently long time results in a self-sustaining nonsinusoidal wave train with well-trapped electrons even for frequencies well below the plasma frequency, i.e., in the plasma wave spectral gap. Typical phase velocities of these waves are somewhat above the electron thermal velocity. This new nonlinear wave is being termed a kinetic electrostatic electron nonlinear (KEEN) wave. The drive duration must exceed the bounce period {tau}{sub B} of the trapped electrons subject to the drive, as calculated from the drive force and the linear plasma response to the drive. For a given wavenumber a wide range of KEEN wave frequencies can be readily excited. The basic KEEN structure is essentially kinetic, with the trapped electron density variation being almost completely shielded by the free electrons, leaving just enough net charge to support the wave.

  1. Cationic cure kinetics of a polyoxometalate loaded epoxy nanocomposite

    SciTech Connect

    Anderson, Benjamin J.

    2012-08-06

    The reaction cure kinetics of a novel polyoxometalate (POM) loaded epoxy nanocomposite is described. The POM is dispersed in the epoxy resin up to volume fractions of 0.1. Differential scanning calorimetry measurements show the cure of the epoxy resin to be sensitive to the POM loading. A kinetics study of the cure exotherm confirms that POM acts as a catalyst promoting cationic homopolymerization of the epoxy resin. The cure reaction is shown to propagate through two cure regimes. A fast cure at short time is shown to be propagation by the activated chain end (ACE) mechanism. A slow cure at long time is shown to be propagation by the activated monomer (AM) mechanism. The activation energies for the fast and slow cure regimes agree well with other epoxy based systems that have been confirmed to propagate by the ACE and AM mechanisms.

  2. Phase-field simulations of intragranular fission gas bubble evolution in UO2 under post-irradiation thermal annealing

    SciTech Connect

    Li, Yulan; Hu, Shenyang Y.; Montgomery, Robert O.; Gao, Fei; Sun, Xin

    2013-05-15

    Fission gas bubble is one of evolving microstructures, which affect thermal mechanical properties such as thermo-conductivity, gas release, volume swelling, and cracking, in operating nuclear fuels. Therefore, fundamental understanding of gas bubble evolution kinetics is essential to predict the thermodynamic property and performance changes of fuels. In this work, a generic phasefield model was developed to describe the evolution kinetics of intra-granular fission gas bubbles in UO2 fuels under post-irradiation thermal annealing conditions. Free energy functional and model parameters are evaluated from atomistic simulations and experiments. Critical nuclei size of the gas bubble and gas bubble evolution were simulated. A linear relationship between logarithmic bubble number density and logarithmic mean bubble diameter is predicted which is in a good agreement with experimental data.

  3. Implantation and post-annealing characteristics when impinging small B n clusters into silicon at low fluence

    NASA Astrophysics Data System (ADS)

    Liang, J. H.; Han, H. M.

    2005-01-01

    This study investigated the similarities and differences between B1 monomer and Bn cluster ion implantation into silicon. Small polyatomic boron ions ( Bn- , n = 1-4) with the same atomic boron kinetic energy (20 keV/atom) and atomic fluence (5 × 1013 atoms/cm2) were used. In the simulation, the widely-used SRIM computer code was employed to calculate the as-implanted boron and damage depth profiles of B1 monomer ion implantation in order to make comparisons with experimental results. In the experimental one, the B1 monomer and Bn cluster ions extracted from a tandem accelerator were used to perform ion implantation. Post-annealing methods included one-step (RTA) and two-step (FA + RTA) treatments, where RTA denoted high-temperature rapid thermal annealing at 1050 °C for 10 s and FA represented low-temperature furnace annealing at 550 °C for 1 h. The results revealed that all four as-implanted range parameters (average range, longitudinal range straggling, skewness, kurtosis) increase and tend to saturate as the cluster size increases when compared to those of SRIM-calculated results for the B1 implant. Furthermore, the peculiar damage structures produced by different Bn cluster ions lead to various behaviors in both diffusing and activating boron atoms.

  4. Widely Tunable Morphologies in Block Copolymer Thin Films Through Solvent Vapor Annealing Using Mixtures of Selective Solvents

    PubMed Central

    Chavis, Michelle A.; Smilgies, Detlef-M.; Wiesner, Ulrich B.; Ober, Christopher K.

    2015-01-01

    Thin films of block copolymers are extremely attractive for nanofabrication because of their ability to form uniform and periodic nanoscale structures by microphase separation. One shortcoming of this approach is that to date the design of a desired equilibrium structure requires synthesis of a block copolymer de novo within the corresponding volume ratio of the blocks. In this work, we investigated solvent vapor annealing in supported thin films of poly(2-hydroxyethyl methacrylate)-block-poly(methyl methacrylate) [PHEMA-b-PMMA] by means of grazing incidence small angle X–ray scattering (GISAXS). A spin-coated thin film of lamellar block copolymer was solvent vapor annealed to induce microphase separation and improve the long-range order of the self-assembled pattern. Annealing in a mixture of solvent vapors using a controlled volume ratio of solvents (methanol, MeOH, and tetrahydrofuran, THF), which are chosen to be preferential for each block, enabled selective formation of ordered lamellae, gyroid, hexagonal or spherical morphologies from a single block copolymer with a fixed volume fraction. The selected microstructure was then kinetically trapped in the dry film by rapid drying. To our knowledge, this paper describes the first reported case where in-situ methods are used to study the transition of block copolymer films from one initial disordered morphology to four different ordered morphologies, covering much of the theoretical diblock copolymer phase diagram. PMID:26819574

  5. Dynamics of a lamellar system with diffusion and reaction: Scaling analysis and global kinetics

    NASA Astrophysics Data System (ADS)

    Muzzio, F. J.; Ottino, J. M.

    1989-12-01

    The evolution of a one-dimensional array of reactive lamellae with distributed striation thickness is studied by means of simulations, scaling analysis, and space-averaged kinetics. An infinitely fast, diffusion-controlled reaction A+B-->2P occurs at the interfaces between striations. As time increases, thin striations are eaten by thicker neighbors resulting in a modification of the striation thickness distribution (STD). Scaling analysis suggests that the STD evolves into a universal form and that the behavior of the system at short and long times is characterized by two different kinetic regimes. These predictions are confirmed by means of a novel numerical algorithm.

  6. Note: Improving long-term stability of hot-wire anemometer sensors by means of annealing

    SciTech Connect

    Lundström, H.

    2015-08-15

    Annealing procedures for hot-wire sensors of platinum and platinum-plated tungsten have been investigated experimentally. It was discovered that the two investigated sensor metals behave quite differently during the annealing process, but for both types annealing may improve long-term stability considerably. Measured drift of sensors both without and with prior annealing is presented. Suggestions for suitable annealing temperatures and times are given.

  7. Chemical Kinetics Database

    National Institute of Standards and Technology Data Gateway

    SRD 17 NIST Chemical Kinetics Database (Web, free access)   The NIST Chemical Kinetics Database includes essentially all reported kinetics results for thermal gas-phase chemical reactions. The database is designed to be searched for kinetics data based on the specific reactants involved, for reactions resulting in specified products, for all the reactions of a particular species, or for various combinations of these. In addition, the bibliography can be searched by author name or combination of names. The database contains in excess of 38,000 separate reaction records for over 11,700 distinct reactant pairs. These data have been abstracted from over 12,000 papers with literature coverage through early 2000.

  8. A "Stationery" Kinetics Experiment.

    ERIC Educational Resources Information Center

    Hall, L.; Goberdhansingh, A.

    1988-01-01

    Describes a simple redox reaction that occurs between potassium permanganate and oxalic acid that can be used to prepare an interesting disappearing ink for demonstrating kinetics for introductory chemistry. Discusses laboratory procedures and factors that influence disappearance times. (CW)

  9. Enzyme Kinetics in Microgravity

    NASA Astrophysics Data System (ADS)

    Liu, C. C.; Licata, V. J.

    2010-04-01

    The kinetics of some enzymes have been found to be enhanced by the microgravity environment. This is a relatively small effect, but is sufficient to have physiological effects and to impact pharmaceutical therapy in microgravity.

  10. The Change in the hardness of LCAC. TZM, and ODS molybdenum in the post-irradiated and annealed conditions

    SciTech Connect

    Cockeram, Brian V; Smith, Richard W; Byun, Thak Sang; Snead, Lance Lewis

    2009-01-01

    Hardness measurements were performed on wrought Low Carbon Arc Cast (LCAC), TZM, and Oxide Dispersion Strengthened (ODS) molybdenum in the post-irradiated and post-irradiated + annealed condition to determine the recovery kinetics. Irradiations performed in the High Flux Isotope Reactor (HFIR) at nominally 300 C and 600 C to neutron fluence levels that range from 10.5 to 246 x 10{sup 24} n/m{sup 2} (E > 0.1 MeV) resulted in relatively large increases in hardness (77-109%), while small increases in hardness (<18%) were observed for irradiations at 870-1100 C. The hardness recovery for ODS and LCAC irradiated at 300 C and 600 C were shown to be complete at 980 C and {approx} 1100-1250 C, respectively. Isothermal annealing at 700 C was used to determine the activation energy for recovery of LCAC and ODS (3.70-4.88 eV {+-} 0.28-0.77 eV), which is comparable to values reported in the literature for molybdenum vacancy self-diffusion. This suggests that recovery of LCAC and ODS is controlled by the solid-state diffusion of vacancies in the bulk, and that the finer grain size and particle size ODS does not affect this mechanism. TZM exhibited slower recovery kinetics, which can be explained by the solute atoms (titanium and zirconium) inhibiting vacancy diffusion.

  11. Complex Boron Redistribution in P+ Doped-polysilicon / Nitrogen Doped Silicon Bi-layers during Activation Annealing

    NASA Astrophysics Data System (ADS)

    Abadli, S.; Mansour, F.; Perrera, E. Bedel

    We have investigated and modeled the complex phenomenon of boron (B) redistribution process in strongly doped silicon bilayers structure. A one-dimensional two stream transfer model well adapted to the particular structure of bi- layers and to the effects of strong-concentrations has been developed. This model takes into account the instantaneous kinetics of B transfer, trapping, clustering and segregation during the thermal B activation annealing. The used silicon bi-layers have been obtained by low pressure chemical vapor deposition (LPCVD) method, using in-situ nitrogen- doped-silicon (NiDoS) layer and strongly B doped polycrystalline-silicon (P+) layer. To avoid long redistributions, thermal annealing was carried out at relatively lowtemperatures (600 °C and 700 °C) for various times ranging between 30 minutes and 2 hours. The good adjustment of the simulated profiles with the experimental secondary ion mass spectroscopy (SIMS) profiles allowed a fundamental understanding about the instantaneous physical phenomena giving and disturbing the complex B redistribution profiles-shoulders kinetics.

  12. Microstructural evolution during ultra-rapid annealing of severely deformed low-carbon steel: strain, temperature, and heating rate effects

    NASA Astrophysics Data System (ADS)

    Mostafaei, M. A.; Kazeminezhad, M.

    2016-07-01

    An interaction between ferrite recrystallization and austenite transformation in low-carbon steel occurs when recrystallization is delayed until the intercritical temperature range by employing high heating rate. The kinetics of recrystallization and transformation is affected by high heating rate and such an interaction. In this study, different levels of strain are applied to low-carbon steel using a severe plastic deformation method. Then, ultra-rapid annealing is performed at different heating rates of 200-1100°C/s and peak temperatures of near critical temperature. Five regimes are proposed to investigate the effects of heating rate, strain, and temperature on the interaction between recrystallization and transformation. The microstructural evolution of severely deformed low-carbon steel after ultra-rapid annealing is investigated based on the proposed regimes. Regarding the intensity and start temperature of the interaction, different microstructures consisting of ferrite and pearlite/martensite are formed. It is found that when the interaction is strong, the microstructure is refined because of the high kinetics of transformation and recrystallization. Moreover, strain shifts an interaction zone to a relatively higher heating rate. Therefore, severely deformed steel should be heated at relatively higher heating rates for it to undergo a strong interaction.

  13. Laboratory simulations of thermal annealing in proto-planetary discs - II. Crystallization of enstatite from amorphous thin films

    NASA Astrophysics Data System (ADS)

    Droeger, J.; Burchard, M.; Lattard, D.

    2011-12-01

    Amorphous silicates of olivine and pyroxene composition are thought to be common constituents of circumstellar, interstellar, and interplanetary dust. In proto-planetary discs amorphous dust crystallize essentially as a result of thermal annealing. The present project aims at deciphering the kinetics of crystallization pyroxene in proto-planetary dust on the basis of experiments on amorphous thin films. The thin films are deposited on Si-wafers (111) by pulsed laser deposition (PLD). The thin films are completely amorphous, chemically homogeneous (on the MgSiO3 composition) and with a continuous and flat surface. They are subsequently annealed for 1 to 216 h at 1073K and 1098K in a vertical quench furnace and drop-quenched on a copper block. To monitor the progress of crystallization, the samples are characterized by AFM and SEM imaging and IR spectroscopy. After short annealing durations (1 to 12 h) AFM and SE imaging reveal small shallow polygonal features (diameter 0.5-1 μm; height 2-3 nm) evenly distributed at the otherwise flat surface of the thin films. These shallow features are no longer visible after about 3 h at 1098 K, resp. >12 h at 1073 K. Meanwhile, two further types of features appear small protruding pyramids and slightly depressed spherolites. The orders of appearance of these features depend on temperature, but both persist and steadily grow with increasing annealing duration. Their sizes can reach about 12 μm. From TEM investigations on annealed thin films on the Mg2SiO4 composition we know that these features represent crystalline sites, which can be surrounded by a still amorphous matrix (Oehm et al. 2010). A quantitative evaluation of the size of the features will give insights on the progress of crystallization. IR spectra of the unprocessed thin films show only broad bands. In contrast, bands characteristic of crystalline enstatite are clearly recognizable in annealed samples, e.g. after 12 h at 1078 K. Small bands can also be assigned to

  14. Experimental quantum annealing: case study involving the graph isomorphism problem

    PubMed Central

    Zick, Kenneth M.; Shehab, Omar; French, Matthew

    2015-01-01

    Quantum annealing is a proposed combinatorial optimization technique meant to exploit quantum mechanical effects such as tunneling and entanglement. Real-world quantum annealing-based solvers require a combination of annealing and classical pre- and post-processing; at this early stage, little is known about how to partition and optimize the processing. This article presents an experimental case study of quantum annealing and some of the factors involved in real-world solvers, using a 504-qubit D-Wave Two machine and the graph isomorphism problem. To illustrate the role of classical pre-processing, a compact Hamiltonian is presented that enables a reduced Ising model for each problem instance. On random N-vertex graphs, the median number of variables is reduced from N2 to fewer than N log2 N and solvable graph sizes increase from N = 5 to N = 13. Additionally, error correction via classical post-processing majority voting is evaluated. While the solution times are not competitive with classical approaches to graph isomorphism, the enhanced solver ultimately classified correctly every problem that was mapped to the processor and demonstrated clear advantages over the baseline approach. The results shed some light on the nature of real-world quantum annealing and the associated hybrid classical-quantum solvers. PMID:26053973

  15. On simulated annealing phase transitions in phylogeny reconstruction.

    PubMed

    Strobl, Maximilian A R; Barker, Daniel

    2016-08-01

    Phylogeny reconstruction with global criteria is NP-complete or NP-hard, hence in general requires a heuristic search. We investigate the powerful, physically inspired, general-purpose heuristic simulated annealing, applied to phylogeny reconstruction. Simulated annealing mimics the physical process of annealing, where a liquid is gently cooled to form a crystal. During the search, periods of elevated specific heat occur, analogous to physical phase transitions. These simulated annealing phase transitions play a crucial role in the outcome of the search. Nevertheless, they have received comparably little attention, for phylogeny or other optimisation problems. We analyse simulated annealing phase transitions during searches for the optimal phylogenetic tree for 34 real-world multiple alignments. In the same way in which melting temperatures differ between materials, we observe distinct specific heat profiles for each input file. We propose this reflects differences in the search landscape and can serve as a measure for problem difficulty and for suitability of the algorithm's parameters. We discuss application in algorithmic optimisation and as a diagnostic to assess parameterisation before computationally costly, large phylogeny reconstructions are launched. Whilst the focus here lies on phylogeny reconstruction under maximum parsimony, it is plausible that our results are more widely applicable to optimisation procedures in science and industry. PMID:27150349

  16. Experimental quantum annealing: case study involving the graph isomorphism problem

    NASA Astrophysics Data System (ADS)

    Zick, Kenneth M.; Shehab, Omar; French, Matthew

    2015-06-01

    Quantum annealing is a proposed combinatorial optimization technique meant to exploit quantum mechanical effects such as tunneling and entanglement. Real-world quantum annealing-based solvers require a combination of annealing and classical pre- and post-processing; at this early stage, little is known about how to partition and optimize the processing. This article presents an experimental case study of quantum annealing and some of the factors involved in real-world solvers, using a 504-qubit D-Wave Two machine and the graph isomorphism problem. To illustrate the role of classical pre-processing, a compact Hamiltonian is presented that enables a reduced Ising model for each problem instance. On random N-vertex graphs, the median number of variables is reduced from N2 to fewer than N log2 N and solvable graph sizes increase from N = 5 to N = 13. Additionally, error correction via classical post-processing majority voting is evaluated. While the solution times are not competitive with classical approaches to graph isomorphism, the enhanced solver ultimately classified correctly every problem that was mapped to the processor and demonstrated clear advantages over the baseline approach. The results shed some light on the nature of real-world quantum annealing and the associated hybrid classical-quantum solvers.

  17. Annealing effects on optical properties of natural alexandrite

    NASA Astrophysics Data System (ADS)

    Fernandes Scalvi, Rosa M.; Li, Máximo Siu; Scalvi, Luis V. A.

    2003-11-01

    Natural alexandrite (BeAl2O4:Cr3+) crystals are investigated as regards the effects of annealing on their optical properties. Optical absorption spectra are measured from the ultraviolet (190 nm) to the near infrared (900 nm), for a sample subjected to consecutive annealing processes, where time and temperature are varied. Besides this, luminescence spectra are simultaneously obtained for this sample, excited with a Kr+ laser source, tuned on an ultraviolet multi-line mode (337.5, 350.7 and 356.4 nm). We observe from absorption as well as from emission data that annealing mainly influences the distribution of Cr3+ and Fe3+ ions, located on sites of a mirror plane (Cs symmetry), which are responsible for the optical properties of alexandrite. The results obtained lead to the conclusion that annealing induces a modification of the population of Cr3+ on Cs sites as well as on sites located on an inversion plane (Ci). Annealing could improve the optical properties of this material, as regards its application as a tunable laser.

  18. The Effect of Solution Annealing on Alloy 22 Weld Properties

    SciTech Connect

    El-Dasher, B S; Torres, S G

    2005-11-08

    The effect of solution annealing temperature on the microstructure and observed corrosion attack mode in Alloy 22 welds was assessed. Specimens were examined in the as-welded state as well as solution annealed for 20 minutes at temperatures ranging from 1075 C to 1300 C. The microstructures of the specimens were first mapped using electron backscatter diffraction to determine the grain structure evolution due to solution annealing. Full recrystallization of the fusion zone was only observed in the 1200 C and 1300 C specimens, although the 1300 C specimen showed abnormal grain growth. As-welded, 1121 C and 1200 C specimens were also subjected to electrochemical testing in a 6 molal NaCl + 0.9 molal KNO{sub 3} environment to initiate crevice corrosion. Examination of the specimen surfaces after corrosion testing showed that in the as-welded specimen, corrosion was present in both the weld dendrites as well as around the secondary phases. However, the specimen solution annealed at 1121 C showed corrosion only at secondary phases and the specimen annealed at 1200 C showed pitting corrosion only in a handful of grains.

  19. Effect of Annealing on Thermal & Optical Properties of Polypyrrole

    NASA Astrophysics Data System (ADS)

    Saxena, Rashmi; Dixit, Manasvi; Sharma, Kananbala; Saxena, Narendra S.; Sharma, Thaneshwar P.

    2008-04-01

    Pure polypyrrole sample (S1) was synthesized by chemical oxidation method using NaOH as reducing agent in aqueous HCl medium. The polypyrrole pellet sample (S2) was then annealed at 200 °C for 4 hrs. The amorphous nature of both annealed and as- prepared polypyrrole samples was confirmed by XRD. FTIR spectra of both samples were taken, which indicate the significant change in annealed sample (S2) compared to as prepared sample. Temperature dependence of effective thermal conductivity of both samples (S1, S2) was studied by Transient plane source (TPS) technique. The effective thermal conductivity (λe) obtained for S1 & S2 exhibits a variation with temperature and a peak was observed for the two samples at 150 °C & 120 °C with a value 0.17 W/mK & 0.18 W/mK respectively. The shift of thermal conductivity peak of annealed sample towards the lower temperature side is explained on the basis of removal of voids and defects on annealing. The absorption spectra of these samples were recorded by USB-2000 spectrophotometer at room temperature in the wavelength range 300-800 nm. From the analysis of absorption spectra, optical band gap of S1 & S2 were determined. It was found that the values of optical band gap for sample S1 & S2 are 2.39 eV&2.24 eV respectively.

  20. Effect of annealing treatment on structure and electrochemical properties of La 0.67Mg 0.33Ni 2.5Co 0.5 alloy electrodes

    NASA Astrophysics Data System (ADS)

    Zhang, Faliang; Luo, Yongchun; Chen, Jiangping; Yan, Ruxu; Kang, Long; Chen, Jianhong

    La 0.67Mg 0.33Ni 2.5Co 0.5 alloys were prepared by induction melting followed by different annealing treatments (1023, 1073, 1123 and 1173 K) for 24 h. Alloy structure and electrochemical properties of different annealed alloys have been studied systematically by X-ray diffraction (XRD), scanning electron microscope (SEM) and electrochemical experiments. Alloy structure analyses show that all of the alloys consisted of complex phases such as (La, Mg)(Ni, Co) 3 phase (PuNi 3-type, SG: R-3 m), (La, Mg) 2(Ni, Co) 7 phase (Ce 2Ni 7-type, SG: P6 3/mmc), LaMg(Ni, Co) 4 phase (MgCu 4Sn-type, SG: F-4 3 m) and La(Ni, Co) 5 phase (CaCu 5-type, SG:P6/mmm). One thousand one hundred and twenty-three kelvin benefited formation of (La, Mg)(Ni, Co) 3 phase best. Main phase in alloy became (La, Mg) 2(Ni, Co) 7 phase at 1173 K annealing treatment. Electrochemical experiments show that absorption/desorption plateau became flatter and wider after annealing treatment, that all of the alloy electrodes exhibited good activation characteristics, that annealing treatment improved discharge capacities of alloy electrodes from 315 mAh g -1 (as-cast) to 402.5 mAh g -1 (1173 K). At the same time, cyclic stability of alloy electrodes was also improved with rise of annealing temperature, especially for alloy electrode (S 70 = 92.9%) with main phase (La, Mg) 2(Ni, Co) 7 at 1173 K. As (La, Mg)(Ni, Co) 3 phase in alloys increased, high rate dischargeability characteristics were deteriorated. However, alloy electrode with main phase (La, Mg) 2(Ni, Co) 7 exhibited the best kinetic characteristics. All experiments imply that alloy electrode with main phase (La, Mg) 2(Ni, Co) 7 possessed excellent overall electrochemical properties.

  1. An efficient chemical kinetics solver using high dimensional model representation

    SciTech Connect

    Shorter, J.A.; Ip, P.C.; Rabitz, H.A.

    1999-09-09

    A high dimensional model representation (HDMR) technique is introduced to capture the input-output behavior of chemical kinetic models. The HDMR expresses the output chemical species concentrations as a rapidly convergent hierarchical correlated function expansion in the input variables. In this paper, the input variables are taken as the species concentrations at time t{sub i} and the output is the concentrations at time t{sub i} + {delta}, where {delta} can be much larger than conventional integration time steps. A specially designed set of model runs is performed to determine the correlated functions making up the HDMR. The resultant HDMR can be used to (1) identify the key input variables acting independently or cooperatively on the output, and (2) create a high speed fully equivalent operational model (FEOM) serving to replace the original kinetic model and its differential equation solver. A demonstration of the HDMR technique is presented for stratospheric chemical kinetics. The FEOM proved to give accurate and stable chemical concentrations out to long times of many years. In addition, the FEOM was found to be orders of magnitude faster than a conventional stiff equation solver. This computational acceleration should have significance in many chemical kinetic applications.

  2. Effects of long-time elevated temperature exposures on hot-isostatically-pressed power-metallurgy Udimet 700 alloys with reduced cobalt contents

    NASA Technical Reports Server (NTRS)

    Hart, F. H.

    1984-01-01

    Because almost the entire U.S. consumption of cobalt depends on imports, this metal has been designated "strategic'. The role and effectiveness of cobalt is being evaluated in commercial nickel-base superalloys. Udiment 700 type alloys in which the cobalt content was reduced from the normal 17% down to 12.7%, 8.5%, 4.3%, and 0% were prepared by standard powder metallurgy techniques and hot isostatically pressed into billets. Mechanical testing and microstructural investigations were performed. The mechanical properties of alloys with reduced cobalt contents which were heat-treated identically were equal or better than those of the standard alloy, except that creep rates tended to increase as cobalt was reduced. The effects of long time exposures at 760 C on mechanical properties and at 760 C and 845 C on microstructures were determined. Decreased tensile properties and shorter rupture lives with increased creep rates were observed in alloy modifications. The exposures caused gamma prime particle coarsening and formation of sigma phase in the alloys with higher cobalt contents. Exposure at 845 C also reduced the amount of MC carbides.

  3. Effects of thermomechanical processing on tensile and long-time creep behavior of Nb-1 percent Zr-0.1 percent C sheet

    NASA Technical Reports Server (NTRS)

    Titran, Robert H.; Uz, Mehmet

    1994-01-01

    Effects of thermomechanical processing on the mechanical properties of Nb-1 wt. percent Zr-0.1 wt. percent C, a candidate alloy for use in advanced space power systems, were investigated. Sheet bars were cold rolled into 1-mm thick sheets following single, double, or triple extrusion operations at 1900 K. All the creep and tensile specimens were given a two-step heat treatment 1 hr at 1755 K + 2 hr 1475 K prior to testing. Tensile properties were determined at 300 as well as at 1350 K. Microhardness measurements were made on cold rolled, heat treated, and crept samples. Creep tests were carried out at 1350 K and 34.5 MPa for times of about 10,000 to 19,000 hr. The results show that the number of extrusions had some effects on both the microhardness and tensile properties. However, the long-time creep behavior of the samples were comparable, and all were found to have adequate properties to meet the design requirements of advanced power systems regardless of thermomechanical history. The results are discussed in correlation with processing and microstructure, and further compared to the results obtained from the testing of Nb-1 wt. percent Zr and Nb-1 wt. percent Zr-0.06 wt. percent C alloys.

  4. Long-time behavior of macroscopic quantum systems. Commentary accompanying the English translation of John von Neumann's 1929 article on the quantum ergodic theorem

    NASA Astrophysics Data System (ADS)

    Goldstein, S.; Lebowitz, J. L.; Tumulka, R.; Zanghì, N.

    2010-11-01

    The renewed interest in the foundations of quantum statistical mechanics in recent years has led us to study John von Neumann’s 1929 article on the quantum ergodic theorem. We have found this almost forgotten article, which until now has been available only in German, to be a treasure chest, and to be much misunderstood. In it, von Neumann studied the long-time behavior of macroscopic quantum systems. While one of the two theorems announced in his title, the one he calls the “quantum H-theorem”, is actually a much weaker statement than Boltzmann’s classical H-theorem, the other theorem, which he calls the “quantum ergodic theorem”, is a beautiful and very non-trivial result. It expresses a fact we call “normal typicality” and can be summarized as follows: for a “typical” finite family of commuting macroscopic observables, every initial wave function ψ0 from a micro-canonical energy shell so evolves that for most times t in the long run, the joint probability distribution of these observables obtained from ψt is close to their micro-canonical distribution.

  5. Population cycles are highly correlated over long time series and large spatial scales in two unrelated species: Greater sage-grouse and cottontail rabbits

    USGS Publications Warehouse

    Fedy, B.C.; Doherty, K.E.

    2011-01-01

    Animal species across multiple taxa demonstrate multi-annual population cycles, which have long been of interest to ecologists. Correlated population cycles between species that do not share a predator-prey relationship are particularly intriguing and challenging to explain. We investigated annual population trends of greater sage-grouse (Centrocercus urophasianus) and cottontail rabbits (Sylvilagus sp.) across Wyoming to explore the possibility of correlations between unrelated species, over multiple cycles, very large spatial areas, and relatively southern latitudes in terms of cycling species. We analyzed sage-grouse lek counts and annual hunter harvest indices from 1982 to 2007. We show that greater sage-grouse, currently listed as warranted but precluded under the US Endangered Species Act, and cottontails have highly correlated cycles (r = 0. 77). We explore possible mechanistic hypotheses to explain the synchronous population cycles. Our research highlights the importance of control populations in both adaptive management and impact studies. Furthermore, we demonstrate the functional value of these indices (lek counts and hunter harvest) for tracking broad-scale fluctuations in the species. This level of highly correlated long-term cycling has not previously been documented between two non-related species, over a long time-series, very large spatial scale, and within more southern latitudes. ?? 2010 US Government.

  6. Reduction of Annealing Times for Energy Conservation in Aluminum

    SciTech Connect

    Anthony D. Rollett; Hasso Weiland; Mohammed Alvi; Abhijit Brahme

    2005-08-31

    Carnegie Mellon University was teamed with the Alcoa Technical Center with support from the US Dept. of Energy (Office of Industrial Technology) and the Pennsylvania Technology Investment Authority (PTIA) to make processing of aluminum less costly and more energy efficient. Researchers in the Department of Materials Science and Engineering have investigated how annealing processes in the early stages of aluminum processing affect the structure and properties of the material. Annealing at high temperatures consumes significant amounts of time and energy. By making detailed measurements of the crystallography and morphology of internal structural changes they have generated new information that will provide a scientific basis for shortening processing times and consuming less energy during annealing.

  7. Toward understanding dynamic annealing processes in irradiated ceramics

    SciTech Connect

    Myers, Michael Thomas

    2013-05-01

    High energy particle irradiation inevitably generates defects in solids. The ballistic formation and thermalization of the defect creation process occur rapidly, and are believed to be reasonably well understood. However, knowledge of the evolution of defects after damage cascade thermalization, referred to as dynamic annealing, is quite limited. Unraveling the mechanisms associated with dynamic annealing is crucial since such processes play an important role in the formation of stable postirradiation disorder in ion-beam-processing of semiconductors, and determines the “radiation tolerance” of many nuclear materials. The purpose of this dissertation is to further our understanding of the processes involved in dynamic annealing. In order to achieve this, two main tasks are undertaken.

  8. NRC assessment of the Department of Energy annealing demonstration project

    SciTech Connect

    Jackson, D.A.; Malik, S.N.

    1997-02-01

    Thermal annealing is the only known method for mitigating the effects of neutron irradiation embrittlement in reactor pressure vessel (RPV) steels. In May 1996, the US Department of Energy (DOE) in conjunction with the American Society of Mechanical Engineers, Westinghouse, Cooperheat, Electric Power Research Institute (with participating utilities), Westinghouse Owner`s Group, Consumers Power, Electricite` de France, Duquesne Light and the Central Research Institute of the Electric Power Industry (Japan) sponsored an annealing demonstration project (ADP) at Marble Hill. The Marble Hill Plant, located in Madison, Indiana, is a Westinghouse 4 loop design. The plant was nearly 70% completed when the project was canceled. Hence, the RPV was never irradiated. The paper will present highlights from the NRCs independent evaluation of the Marble Hill Annealing Demonstration Project.

  9. Thermally induced native defect transform in annealed GaSb

    NASA Astrophysics Data System (ADS)

    Jie, Su; Tong, Liu; Jing-Ming, Liu; Jun, Yang; Yong-Biao, Bai; Gui-Ying, Shen; Zhi-Yuan, Dong; Fang-Fang, Wang; You-Wen, Zhao

    2016-07-01

    Undoped p-type GaSb single crystals were annealed at 550–600 °C for 100 h in ambient antimony. The annealed GaSb samples were investigated by Hall effect measurement, glow discharge mass spectroscopy (GDMS), infrared (IR) optical transmission and photoluminescence (PL) spectroscopy. Compared with the as-grown GaSb single crystal, the annealed GaSb samples have lower hole concentrations and weak native acceptor related PL peaks, indicating the reduction of the concentration of gallium antisite related native acceptor defects. Consequently, the below gap infrared transmission of the GaSb samples is enhanced after the thermal treatment. The mechanism about the reduction of the native defect concentration and its influence on the material property were discussed. Project supported by the National Natural Science Foundation of China (Grant Nos. 61474104 and 61504131).

  10. Influence of laser annealing on SiOx films properties

    NASA Astrophysics Data System (ADS)

    Gavrylyuk, O. O.; Semchuk, O. Yu.; Steblova, O. V.; Evtukh, A. A.; Fedorenko, L. L.; Bratus, O. L.; Zlobin, S. O.; Karlsteen, M.

    2015-05-01

    The interaction of laser irradiation with SiOx films, and the process of decomposition of SiOx on SiO2 and Si nanocrystals under the influence of laser irradiation are investigated. The mathematical modeling of temperature distribution in a c-Si wafer as well as on its surface is carried out. It is shown that laser pulses can efficiently heat up the samples of crystalline silicon. Using multi-pulse procedure, the temperature necessary for annealing can be achieved with lower intensity of laser irradiation. Experimental investigations of laser-annealed SiOx films allowed determining their transformation with the formation of nanoislands. It was concluded that the surface topology, dielectric matrix structure, and electrical conductivity depend on laser beam intensity during the annealing process.

  11. Molecular dynamics simulation of annealed ZnO surfaces

    SciTech Connect

    Min, Tjun Kit; Yoon, Tiem Leong; Lim, Thong Leng

    2015-04-24

    The effect of thermally annealing a slab of wurtzite ZnO, terminated by two surfaces, (0001) (which is oxygen-terminated) and (0001{sup ¯}) (which is Zn-terminated), is investigated via molecular dynamics simulation by using reactive force field (ReaxFF). We found that upon heating beyond a threshold temperature of ∼700 K, surface oxygen atoms begin to sublimate from the (0001) surface. The ratio of oxygen leaving the surface at a given temperature increases as the heating temperature increases. A range of phenomena occurring at the atomic level on the (0001) surface has also been explored, such as formation of oxygen dimers on the surface and evolution of partial charge distribution in the slab during the annealing process. It was found that the partial charge distribution as a function of the depth from the surface undergoes a qualitative change when the annealing temperature is above the threshold temperature.

  12. Pressure Gradients and Annealing Effects in Solid Helium-4

    NASA Astrophysics Data System (ADS)

    Suhel, Md. Abdul Halim

    The Kim and Chan experiment in 2004 gave the first experimental evidence of a possible supersolid state. Even though the origin of this state is not clear yet, several experimental and theoretical investigations suggest defects are responsible for this curious phase. We have used heat pulses and thermal quenching to study pressure gradients and annealing mechanisms in solid 4He crystals. Large pressure gradients exist in crystals grown at constant volume. These can be enhanced by phase transitions, thermal quenching or by partial melting. Annealing reduces defect densities and hence pressure gradients in crystals. Our measurements show that the pressure at different points in a crystal can behave differently, even if there is little change in the crystal's average pressure. We measured the activation energy that is associated with the annealing process.

  13. Solving the Optimal Trading Trajectory Problem Using a Quantum Annealer

    NASA Astrophysics Data System (ADS)

    Rosenberg, Gili; Haghnegahdar, Poya; Goddard, Phil; Carr, Peter; Wu, Kesheng; de Prado, Marcos Lopez

    2016-09-01

    We solve a multi-period portfolio optimization problem using D-Wave Systems' quantum annealer. We derive a formulation of the problem, discuss several possible integer encoding schemes, and present numerical examples that show high success rates. The formulation incorporates transaction costs (including permanent and temporary market impact), and, significantly, the solution does not require the inversion of a covariance matrix. The discrete multi-period portfolio optimization problem we solve is significantly harder than the continuous variable problem. We present insight into how results may be improved using suitable software enhancements, and why current quantum annealing technology limits the size of problem that can be successfully solved today. The formulation presented is specifically designed to be scalable, with the expectation that as quantum annealing technology improves, larger problems will be solvable using the same techniques.

  14. Coordination Hydrothermal Interconnection Java-Bali Using Simulated Annealing

    NASA Astrophysics Data System (ADS)

    Wicaksono, B.; Abdullah, A. G.; Saputra, W. S.

    2016-04-01

    Hydrothermal power plant coordination aims to minimize the total cost of operating system that is represented by fuel costand constraints during optimization. To perform the optimization, there are several methods that can be used. Simulated Annealing (SA) is a method that can be used to solve the optimization problems. This method was inspired by annealing or cooling process in the manufacture of materials composed of crystals. The basic principle of hydrothermal power plant coordination includes the use of hydro power plants to support basic load while thermal power plants were used to support the remaining load. This study used two hydro power plant units and six thermal power plant units with 25 buses by calculating transmission losses and considering power limits in each power plant unit aided by MATLAB software during the process. Hydrothermal power plant coordination using simulated annealing plants showed that a total cost of generation for 24 hours is 13,288,508.01.

  15. The isochronal annealing of irradiated n-channel power VDMOSFETs

    NASA Astrophysics Data System (ADS)

    Ristić, Goran S.; Andjelković, Marko; Savović, Svetislav

    2016-01-01

    The threshold voltage, VT , as well as threshold voltage shift, ΔVT , and its components, the component of threshold voltage shift due to radiation-induced fixed traps in the oxide, ΔVft , and the component of threshold voltage shift due to radiation-induced switching traps near and at gate oxide/substrate interface, ΔVst , are investigated, and fitted very well. The behavior of unannealed fraction of fixed traps during isochronal annealing is also considered. The proposed model describes unannealed fraction very well, and allows the prediction of fixed traps behavior at higher temperature. The number of defect types that are observably active during an isochronal temperature range could be found by this model, showing that isochronal annealing is competitive with isothermal annealing, which is widely used, but much more time consuming.

  16. Five-fold twin formation during annealing of nanocrystalline Cu

    SciTech Connect

    Bringa, E M; Farkas, D; Caro, A; Wang, Y M; McNaney, J; Smith, R

    2009-05-20

    Contrary to the common belief that many-fold twins, or star twins, in nanophase materials are due to the action of significant external stresses, we report molecular dynamics simulations of annealing in 5 nm grain size samples annealed at 800 K for nearly 0.5 nsec at 0 external pressure showing the formation of five-fold star twins during annealing under the action of the large internal stresses responsible for grain growth and microstructural evolution. The structure of the many-fold twins is remarkably similar to those we have found to occur under uniaxial shock loading, of samples of nanocrystalline NiW with a grain size of {approx}5-30 nm. The mechanism of formation of the many-fold twins is discussed in the light of the simulations and experiments.

  17. Adsorption of annealed branched polymers on curved surfaces

    NASA Astrophysics Data System (ADS)

    Wagner, Jef; Erdemci-Tandogan, Gonca; Zandi, Roya

    Annealed branched polymers play important roles in many biological and industrial systems, notable among them single stranded RNA (ssRNA) that in solution takes on a branched secondary structure. Using a mean field theory, we both perturbatively and numerically examine the adsorption of annealed branched polymers on surfaces of several different geometries in a good solvent. Independent of the geometry of the wall, we observe that as branching density increases, surface tension decreases. However, we find a coupling between the branching density and curvature in that a further lowering of surface tension occurs when the wall curves towards the polymer, but the amount of lowering of surface tension decreases when the wall curves away from the polymer. This work was inspired by the idea of using functionalized gold nano-particles to bind RNA for gene delivery. Understanding the mechanisms involved with the adsorption of annealed branched polymers onto different surfaces will play a critical role in many biomedical technologies.

  18. Thermal annealing-induced electric dipole relaxation in natural alexandrite

    NASA Astrophysics Data System (ADS)

    Scalvi, Rosa M. Fernandes; Li, Maximo Siu; Scalvi, Luis V. A.

    2005-02-01

    Electrical properties of natural alexandrite (BeAl2O4:Cr3+) are investigated by the thermally stimulated depolarization current (TSDC) technique. Samples are submitted to consecutive annealing processes and TSDC is carried out after each annealing, yielding bands with different parameters. These bands are fitted by a continuous distribution of relaxation parameters: activation energy and pre-exponential factor of the Arrhenius equation. It has been observed that annealing influences the dipole relaxation behavior, since it promotes a modification of Fe3+ and Cr3+ impurity distributions on sites of distinct symmetry: Al1 and Al2. In order to have a reference for comparison, TSDC is also carried out on a synthetic alexandrite sample, where the only impurity present is Cr3+ ion.

  19. Solvent Annealing Thin Films of Poly(isoprene-b-lactide)

    SciTech Connect

    Cavicchi,K.; Berthiaume, K.; Russell, T.

    2005-01-01

    The use of solvent annealing to control the microdomain orientation and long-range ordering in poly(isoprene-b-{sub D, L}-lactide) thin films was investigated using scanning force microscopy and grazing incidence small angle X-ray scattering (GISAXS). Benzene and chloroform were used as annealing solvents. Both were found to improve the long-range order in the films. Additionally, at high concentrations of chloroform in the film, a perpendicular orientation of cylinders was observed where the solvent was able to mediate interfacial interactions sufficiently to prevent a preferential segregation of one of the blocks to the surface. In situ GISAXS measurements made during solvent swelling and evaporation allowed an examination of the film morphology over a wide range of solvent concentrations providing a efficient route to optimize conditions for morphology control by solvent annealing.

  20. Error-corrected quantum annealing with hundreds of qubits

    NASA Astrophysics Data System (ADS)

    Pudenz, Kristen L.; Albash, Tameem; Lidar, Daniel A.

    2014-02-01

    Quantum information processing offers dramatic speedups, yet is susceptible to decoherence, whereby quantum superpositions decay into mutually exclusive classical alternatives, thus robbing quantum computers of their power. This makes the development of quantum error correction an essential aspect of quantum computing. So far, little is known about protection against decoherence for quantum annealing, a computational paradigm aiming to exploit ground-state quantum dynamics to solve optimization problems more rapidly than is possible classically. Here we develop error correction for quantum annealing and experimentally demonstrate it using antiferromagnetic chains with up to 344 superconducting flux qubits in processors that have recently been shown to physically implement programmable quantum annealing. We demonstrate a substantial improvement over the performance of the processors in the absence of error correction. These results pave the way towards large-scale noise-protected adiabatic quantum optimization devices, although a threshold theorem such as has been established in the circuit model of quantum computing remains elusive.

  1. Laser annealing of neutron irradiated boron-10 isotope doped diamond

    SciTech Connect

    Jagannadham, K.; Butler, J. E.

    2011-01-01

    10B isotope doped p-type diamond epilayer grown by chemical vapor deposition on (110) oriented type IIa diamond single crystal substrate was subjected to neutron transmutation at a fluence of 2.4 9 1020 thermal and 2.4 9 1020 fast neutrons. After neutron irradiation, the epilayer and the diamond substrate were laser annealed using Nd YAG laser irradiation with wave length, 266 nm and energy, 150 mJ per pulse. The neutron irradiated diamond epilayer and the substrate were characterized before and after laser annealing using different techniques. The characterization techniques include optical microscopy, secondary ion mass spectrometry, X-ray diffraction, Raman, photoluminescence and Fourier Transform Infrared spectroscopy, and electrical sheet conductance measurement. The results indicate that the structure of the irradiation induced amorphous epilayer changes to disordered graphite upon laser annealing. The irradiated substrate retains the (110) crystalline structure with neutron irradiation induced defects.

  2. Isothermal Solid-State Transformation Kinetics Applied to Pd/Cu Alloy Membrane Fabrication

    SciTech Connect

    Pomerantz, Natalie L; Payzant, E Andrew; Ma, Yi Hua

    2010-01-01

    In this work, time-resolved, in situ high-temperature X-ray diffraction (HT-XRD) was used to study the solid-state transformation kinetics of the formation of the fcc Pd/Cu alloy from Pd/Cu bi-layers for the purpose of fabricating sulfur tolerant Pd/Cu membranes for H2 separation. Thin layers of Pd and Cu (total ~15 wt% Cu) were deposited on porous stainless steel (PSS) with the electroless deposition method and annealed in H2 at 500, 550 and 600 C. The kinetics of the annealing process were successfully described by the Avrami nucleation and growth model showing that the annealing process was diffusion controlled and one dimensional. The activation energy for the solid-state transformation was 175 kJ/mol, which was similar to the activation energy of Pd-Cu bulk interdiffusion. Furthermore, the Avrami model was able to successfully describe the changes in permeance and activation energy observed in Pd/Cu alloy membranes during characterization as they were annealed at high temperatures.

  3. Growth kinetics of gamma-prime precipitates in a directionally solidified eutectic, gamma/gamma-prime-delta

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.

    1976-01-01

    A directionally solidified eutectic alloy (DSEA), of those viewed as potential candidates for the next generation of aircraft gas turbine blade materials, is studied for the gamma-prime growth kinetics, in the system Ni-Nb-Cr-Al, specifically: Ni-20 w/o Nb-6 w/o Cr-2.5 w/o Al gamma/gamma-prime-delta DSEA. Heat treatment, polishing and etching, and preparation for electron micrography are described, and the size distribution of gamma-prime phase following various anneals is plotted, along with gamma-prime growth kinetics in this specific DSEA, and the cube of gamma-prime particle size vs anneal time. Activation energies and coarsening kinetics are studied.

  4. Fracture toughness of metallic glasses: annealing-induced embrittlement.

    PubMed

    Rycroft, Chris H; Bouchbinder, Eran

    2012-11-01

    Quantitative understanding of the fracture toughness of metallic glasses, including the associated ductile-to-brittle (embrittlement) transitions, is not yet available. Here, we use a simple model of plastic deformation in glasses, coupled to an advanced Eulerian level set formulation for solving complex free-boundary problems, to calculate the fracture toughness of metallic glasses as a function of the degree of structural relaxation corresponding to different annealing times near the glass temperature. Our main result indicates the existence of an elastoplastic crack tip instability for sufficiently relaxed glasses, resulting in a marked drop in the toughness, which we interpret as annealing-induced embrittlement transition similar to experimental observations. PMID:23215386

  5. Annealing Effect for Supersolid Fraction in 4He

    NASA Astrophysics Data System (ADS)

    Penzev, Andrey; Yasuta, Yoshinori; Kubota, Minoru

    2007-09-01

    We report on experimental confirmation of the non-classical rotational inertia (NCRI) in solid helium samples originally reported by Kim and Chan. The onset of NCRI was observed at temperatures below ≈400 mK. The ac velocity for initiation of the NCRI suppression is estimated to be ≈10 μm/sec. After an additional annealing of the sample at T=1.8 K for 12 hours, ˜10% relative increase of NCRI fraction was observed. Then after repeated annealing with the same conditions, the NCRI fraction was saturated. It differs from Reppy’s observation on a low pressure solid sample.

  6. Parameter tuning patterns for random graph coloring with quantum annealing.

    PubMed

    Titiloye, Olawale; Crispin, Alan

    2012-01-01

    Quantum annealing is a combinatorial optimization technique inspired by quantum mechanics. Here we show that a spin model for the k-coloring of large dense random graphs can be field tuned so that its acceptance ratio diverges during Monte Carlo quantum annealing, until a ground state is reached. We also find that simulations exhibiting such a diverging acceptance ratio are generally more effective than those tuned to the more conventional pattern of a declining and/or stagnating acceptance ratio. This observation facilitates the discovery of solutions to several well-known benchmark k-coloring instances, some of which have been open for almost two decades. PMID:23166818

  7. Coplanar waveguide flux qubit suitable for quantum annealing

    NASA Astrophysics Data System (ADS)

    Quintana, Chris; Chen, Yu; Sank, D.; Kafri, D.; Megrant, A.; White, T. C.; Shabani, A.; Barends, R.; Campbell, B.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Fowler, A.; Jeffrey, E.; Kelly, J.; Lucero, E.; Mutus, J. Y.; Neeley, M.; Neill, C.; O'Malley, P. J. J.; Roushan, P.; Vainsencher, A.; Wenner, J.; Martinis, J. M.

    We introduce the ''fluxmon'' flux qubit, designed with the goal of practical quantum annealing. The qubit's capacitance and linear inductance are provided by a coplanar waveguide on a low loss substrate, minimizing dielectric dissipation and in principle allowing for GHz-scale inter-qubit coupling in a highly connected tunable architecture. Utilizing a dispersive microwave readout scheme, we characterize single-qubit noise and dissipation, and present a simple tunable inter-qubit coupler. We discuss tradeoffs between coherence and coupling in a quantum annealing architecture. This work was supported by Google Inc. and by the NSF GRFP.

  8. Pulsed-electron-beam annealing of ion-implantation damage

    NASA Technical Reports Server (NTRS)

    Greenwald, A. C.; Kirkpatrick, A. R.; Little, R. G.; Minnucci, J. A.

    1979-01-01

    Short-duration high-intensity pulsed electron beams have been used to anneal ion-implantation damage in silicon and to electrically activate the dopant species. Lattice regrowth and dopant activation were determined using He(+)-4 backscattering, SEM, TEM, and device performance characteristics as diagnostic techniques. The annealing mechanism is believed to be liquid-phase epitaxial regrowth initiating from the substrate. The high-temperature transient pulse produced by the electron beam causes the dopant to diffuse rapidly in the region where the liquid state is achieved.

  9. Characteristics of a direct flame-fired annealing furnace

    SciTech Connect

    Kojima, Toshio

    1997-04-01

    The No. 3 continuous annealing and pickling line with a direct flame vertical furnace, incorporating a flexible furnace control, has been designed to achieve improvement in product quality, operating cost and productivity. The actual capability index indicates a smooth operation: the productivity with ferritic type steel is higher than with austenitic. The development and introduction of the new large vertical furnace, coupled with the development of the flexible furnace control, has contributed to the technique of operating annealing furnaces at high temperatures of more than 1,000 C. It has enhanced the production of stainless steel together with a reduction in cost.

  10. Multiple alternative substrate kinetics.

    PubMed

    Anderson, Vernon E

    2015-11-01

    The specificity of enzymes for their respective substrates has been a focal point of enzyme kinetics since the initial characterization of metabolic chemistry. Various processes to quantify an enzyme's specificity using kinetics have been utilized over the decades. Fersht's definition of the ratio kcat/Km for two different substrates as the "specificity constant" (ref [7]), based on the premise that the important specificity existed when the substrates were competing in the same reaction, has become a consensus standard for enzymes obeying Michaelis-Menten kinetics. The expansion of the theory for the determination of the relative specificity constants for a very large number of competing substrates, e.g. those present in a combinatorial library, in a single reaction mixture has been developed in this contribution. The ratio of kcat/Km for isotopologs has also become a standard in mechanistic enzymology where kinetic isotope effects have been measured by the development of internal competition experiments with extreme precision. This contribution extends the theory of kinetic isotope effects to internal competition between three isotopologs present at non-tracer concentrations in the same reaction mix. This article is part of a special issue titled: Enzyme Transition States from Theory and Experiment. PMID:26051088

  11. Near infrared laser annealing of CdTe and in-situ measurement of the evolution of structural and optical properties

    NASA Astrophysics Data System (ADS)

    Simonds, Brian J.; Misra, Sudhajit; Paudel, Naba; Vandewal, Koen; Salleo, Alberto; Ferekides, Christos; Scarpulla, Michael A.

    2016-04-01

    The high performance of polycrystalline CdTe thin film solar cells is enabled by annealing in the presence of Cl. This process is typically carried out for tens of minutes resulting in reduction of defect states within the bandgap among other beneficial effects. In this work, we investigate laser annealing as a means of rapidly annealing CdTe using a continuous wave sub-bandgap 1064 nm laser. The partial transmission of the beam allows us to monitor the annealing process in-situ and in real time. We find that optoelectronic and structural changes occur through two distinct kinetic processes resulting in the removal of deep defects and twinned regions, respectively. A multilayer optical model including surface roughness is used to interpret both the in-situ transmission as well as ex-situ reflectivity measurements. These experiments demonstrate beneficial material changes resulting from sub-bandgap laser-driven CdCl2 treatment of CdTe in minutes, which is an important step towards accelerating the processing of the CdTe absorber layer.

  12. Influence of recrystallization on phase separation kinetics of oxide dispersion strengthened Fe Cr Al alloy

    SciTech Connect

    Capdevila, C.; Miller, Michael K; Pimentel, G.; Chao, J.

    2012-01-01

    The effect of different starting microstructures on the kinetics of Fe-rich ({alpha}) and Cr-rich ({alpha}') phase separation during aging of Fe-Cr-Al oxide dispersion strengthened (ODS) alloys has been analyzed with a combination of atom probe tomography and thermoelectric power measurements. The results revealed that the high recrystallization temperature necessary to produce a coarse grained microstructure in Fe-base ODS alloys affects the randomness of Cr-atom distributions and defect density, which consequently affect the phase separation kinetics at low annealing temperatures.

  13. Erbium hydride decomposition kinetics.

    SciTech Connect

    Ferrizz, Robert Matthew

    2006-11-01

    Thermal desorption spectroscopy (TDS) is used to study the decomposition kinetics of erbium hydride thin films. The TDS results presented in this report are analyzed quantitatively using Redhead's method to yield kinetic parameters (E{sub A} {approx} 54.2 kcal/mol), which are then utilized to predict hydrogen outgassing in vacuum for a variety of thermal treatments. Interestingly, it was found that the activation energy for desorption can vary by more than 7 kcal/mol (0.30 eV) for seemingly similar samples. In addition, small amounts of less-stable hydrogen were observed for all erbium dihydride films. A detailed explanation of several approaches for analyzing thermal desorption spectra to obtain kinetic information is included as an appendix.

  14. Planar Be-implanted GaAs junction formation using swept-line electron beam annealing

    SciTech Connect

    Banerjee, S.K.; De Jule, R.Y.; Soda, K.J.

    1983-12-01

    Comparative studies of swept-line electron beam annealing and furnace annealing of Be implanted in n-GaAs doped with Si are presented. Electron beam annealing causes less Be redistribution and results in fewer traps than furnace annealing, but causes site mixing of amphoteric Si. Planar Be-implanted junctions result in a p(+)-nu-n structure for the electron beam annealed samples, similar to thermally quenched samples. It is believed that this is caused by the incorporation of amphoteric Si on Ga and As sites during transient annealing, which produces results similar to thermal quenching. 14 references.

  15. Litter decomposition over broad spatial and long time scales investigated by advanced solid-state NMR: insight into effects of climate, litter quality, and time

    NASA Astrophysics Data System (ADS)

    Mao, J.; Chen, N.; Harmon, M. E.; Li, Y.; Cao, X.; Chappell, M.

    2012-12-01

    Advanced 13C solid-state NMR techniques were employed to study the chemical structural changes of litter decomposition across broad spatial and long time scales. The fresh and decomposed litter samples of four species (Acer saccharum (ACSA), Drypetes glauca (DRGL), Pinus resinosa (PIRE), and Thuja plicata (THPL)) incubated for up to 10 years at four sites under different climatic conditions (from Arctic to tropical forest) were examined. Decomposition generally led to an enrichment of cutin and surface wax materials, and a depletion of carbohydrates causing overall composition to become more similar compared with original litters. However, the changes of main constituents in the four litters were inconsistent with the four litters following different pathways of decomposition at the same site. As decomposition proceeded, waxy materials decreased at the early stage and then gradually increased in PIRE; DRGL showed a significant depletion of lignin and tannin while the changes of lignin and tannin were relative small and inconsistent for ACSA and THPL. In addition, the NCH groups, which could be associated with either fungal cell wall chitin or bacterial wall petidoglycan, were enriched in all litters except THPL. Contrary to the classic lignin-enrichment hypothesis, DRGL with low-quality C substrate had the highest degree of composition changes. Furthermore, some samples had more "advanced" compositional changes in the intermediate stage of decomposition than in the highly-decomposed stage. This pattern might be attributed to the formation of new cross-linking structures, that rendered substrates more complex and difficult for enzymes to attack. Finally, litter quality overrode climate and time factors as a control of long-term changes of chemical composition.

  16. Kinetic theory viscosity

    NASA Astrophysics Data System (ADS)

    Clarke, C. J.; Pringle, J. E.

    2004-07-01

    We show how the viscous evolution of Keplerian accretion discs can be understood in terms of simple kinetic theory. Although standard physics texts give a simple derivation of momentum transfer in a linear shear flow using kinetic theory, many authors, as detailed by Hayashi & Matsuda, have had difficulties applying the same considerations to a circular shear flow. We show here how this may be done, and note that the essential ingredients are to take proper account of, first, isotropy locally in the frame of the fluid and, secondly, the geometry of the mean flow.

  17. Enhanced Generic Phase-field Model of Irradiation Materials: Fission Gas Bubble Growth Kinetics in Polycrystalline UO2

    SciTech Connect

    Li, Yulan; Hu, Shenyang Y.; Montgomery, Robert O.; Gao, Fei; Sun, Xin

    2012-05-30

    Experiments show that inter-granular and intra-granular gas bubbles have different growth kinetics which results in heterogeneous gas bubble microstructures in irradiated nuclear fuels. A science-based model predicting the heterogeneous microstructure evolution kinetics is desired, which enables one to study the effect of thermodynamic and kinetic properties of the system on gas bubble microstructure evolution kinetics and morphology, improve the understanding of the formation mechanisms of heterogeneous gas bubble microstructure, and provide the microstructure to macroscale approaches to study their impact on thermo-mechanical properties such as thermo-conductivity, gas release, volume swelling, and cracking. In our previous report 'Mesoscale Benchmark Demonstration, Problem 1: Mesoscale Simulations of Intra-granular Fission Gas Bubbles in UO2 under Post-irradiation Thermal Annealing', we developed a phase-field model to simulate the intra-granular gas bubble evolution in a single crystal during post-irradiation thermal annealing. In this work, we enhanced the model by incorporating thermodynamic and kinetic properties at grain boundaries, which can be obtained from atomistic simulations, to simulate fission gas bubble growth kinetics in polycrystalline UO2 fuels. The model takes into account of gas atom and vacancy diffusion, vacancy trapping and emission at defects, gas atom absorption and resolution at gas bubbles, internal pressure in gas bubbles, elastic interaction between defects and gas bubbles, and the difference of thermodynamic and kinetic properties in matrix and grain boundaries. We applied the model to simulate gas atom segregation at grain boundaries and the effect of interfacial energy and gas mobility on gas bubble morphology and growth kinetics in a bi-crystal UO2 during post-irradiation thermal annealing. The preliminary results demonstrate that the model can produce the equilibrium thermodynamic properties and the morphology of gas bubbles at

  18. The influence of thermal annealing on oxygen uptake and combustion rates of a bituminous coal char

    SciTech Connect

    Osvalda Senneca; Piero Salatino; Daniela Menghini

    2007-07-01

    The effect of thermal annealing on the combustion reactivity of a bituminous coal char has been investigated with a focus on the role of the formation of surface oxides by oxygen chemisorption. The combined use of thermogravimetric analysis and of analysis of the off-gas during isothermal combustion of char samples enabled the determination of the rate and extent of oxygen uptake along burn-off. Combustion was carried out at temperatures between 350 and 510{sup o}C. Char samples were prepared by controlled isothermal heat treatment of coal for different times (in the range between 1 s and 30 min) at different temperatures (in the range 900-2000{sup o}C). Results indicate that oxygen uptake is extensive along burn-off of chars prepared under mild heat treatment conditions. The maximum oxygen uptake is barely affected by the combustion temperature within the range of combustion conditions investigated. The severity of heat treatment has a pronounced effect on char combustion rate as well as on the extent and rate at which surface oxides are built up by oxygen chemisorption. Chars prepared under severe heat treatment conditions show negligible oxygen uptake and strongly reduced combustion rates. Altogether it appears that a close correlation can be established between the extent and the accessibility of active sites on the carbon surface and the combustion rate. Despite the investigation has been carried out at temperatures well below those of practical interest, results provide useful insight into the relationship existing between thermal annealing, formation of surface oxide and combustion reactivity which is relevant to the proper formulation of detailed kinetic models of char combustion. 31 refs., 6 figs., 1 tab.

  19. Ion implantation and annealing studies in III-V nitrides

    SciTech Connect

    Zolper, J.C.; Pearton, S.J.; Williams, J.S.; Tan, H.H.; Karlicek, R.J. Jr.; Stall, R.A.

    1996-12-31

    Ion implantation doping and isolation is expected to play an enabling role for the realization of advanced III-Nitride based devices. In fact, implantation has already been used to demonstrate n- and p-type doping of GaN with Si and Mg or Ca, respectively, as well as to fabricate the first GaN junction field effect transistor. Although these initial implantation studies demonstrated the feasibility of this technique for the III-Nitride materials, further work is needed to realize its full potential. After reviewing some of the initial studies in this field, the authors present new results for improved annealing sequences and defect studies in GaN. First, sputtered AlN is shown by electrical characterization of Schottky and Ohmic contacts to be an effect encapsulant of GaN during the 1,100 C implant activation anneal. The AlN suppresses N-loss from the GaN surface and the formation of a degenerate n{sup +}-surface region that would prohibit Schottky barrier formation after the implant activation anneal. Second, they examine the nature of the defect generation and annealing sequence following implantation using both Rutherford Backscattering (RBS) and Hall characterization. They show that for a Si-dose of 1 x 10{sup 16} cm{sup {minus}2} 50% electrical donor activation is achieved despite a significant amount of residual implantation-induced damage in the material.

  20. Electrochemically induced annealing of stainless-steel surfaces.

    PubMed

    Burstein, G T; Hutchings, I M; Sasaki, K

    2000-10-19

    Modification of the surface properties of metals without affecting their bulk properties is of technological interest in demanding applications where surface stability and hardness are important. When austenitic stainless steel is heavily plastically deformed by grinding or rolling, a martensitic phase transformation occurs that causes significant changes in the bulk and surface mechanical properties of the alloy. This martensitic phase can also be generated in stainless-steel surfaces by cathodic charging, as a consequence of lattice strain generated by absorbed hydrogen. Heat treatment of the steel to temperatures of several hundred degrees can result in loss of the martensitic structure, but this alters the bulk properties of the alloy. Here we show that martensitic structures in stainless steel can be removed by appropriate electrochemical treatment in aqueous solutions at much lower temperature than conventional annealing treatments. This electrochemically induced annealing process allows the hardness of cold-worked stainless steels to be maintained, while eliminating the brittle martensitic phase from the surface. Using this approach, we are able to anneal the surface and near-surface regions of specimens that contain rolling-induced martensite throughout their bulk, as well as those containing surface martensite induced by grinding. Although the origin of the electrochemical annealing process still needs further clarification, we expect that this treatment will lead to further development in enhancing the surface properties of metals. PMID:11057662

  1. Quantum Annealing at Google: Recent Learnings and Next Steps

    NASA Astrophysics Data System (ADS)

    Neven, Hartmut

    Recently we studied optimization problems with rugged energy landscapes that featured tall and narrow energy barriers separating energy minima. We found that for a crafted problem of this kind, called the weak-strong cluster glass, the D-Wave 2X processor achieves a significant advantage in runtime scaling relative to Simulated Annealing (SA). For instances with 945 variables this results in a time-to-99%-success-probability 109 times shorter than SA running on a single core. When comparing to the Quantum Monte Carlo (QMC) algorithm we only observe a pre-factor advantage but the pre-factor is large, about 106 for an implementation on a single core. We should note that we expect QMC to scale like physical quantum annealing only for problems for which the tunneling transitions can be described by a dominant purely imaginary instanton. We expect these findings to carry over to other problems with similar energy landscapes. A class of practical interest are k-th order binary optimization problems. We studied 4-spin problems using numerical methods and found again that simulated quantum annealing has better scaling than SA. This leaves us with a final step to achieve a wall clock speedup of practical relevance. We need to develop an annealing architecture that supports embedding of k-th order binary optimization in a manner that preserves the runtime advantage seen prior to embedding.

  2. Pulsed laser annealing of Be-implanted GaN

    SciTech Connect

    Wang, H.T.; Tan, L.S.; Chor, E.F.

    2005-11-01

    Postimplantation thermal processing of Be in molecular-beam-epitaxy-grown GaN by rapid thermal annealing (RTA) and pulsed laser annealing (PLA) was investigated. It has been found that the activation of Be dopants and the repair of implantation-induced defects in GaN films cannot be achieved efficiently by conventional RTA alone. On the other hand, good dopant activation and surface morphology and quality were obtained when the Be-implanted GaN film was annealed by PLA with a 248 nm KrF excimer laser. However, observations of off-resonant micro-Raman and high-resolution x-ray-diffraction spectra indicated that crystal defects and strain resulting from Be implantation were still existent after PLA, which probably degraded the carrier mobility and limited the activation efficiency to some extent. This can be attributed to the shallow penetration depth of the 248 nm laser in GaN, which only repaired the crystal defects in a thin near-surface layer, while the deeper defects were not annealed out well. This situation was significantly improved when the Be-implanted GaN was subjected to a combined process of PLA followed by RTA, which produced good activation of the dopants, good surface morphology, and repaired bulk and surface defects well.

  3. In-place nuclear reactor vessel annealing demonstration project

    SciTech Connect

    Howell, D.

    1994-09-01

    The objective of this paper was a discussion of the proposed annealing demonstration project at the canceled Marble Hill-1 reactor. The discussion, which was a compilation of transparencies on the noted subject, included overall objectives, scope of work, staging of equipment, and analytical objectives. Current status, including funding was summarized.

  4. Application of Simulated Annealing to Clustering Tuples in Databases.

    ERIC Educational Resources Information Center

    Bell, D. A.; And Others

    1990-01-01

    Investigates the value of applying principles derived from simulated annealing to clustering tuples in database design, and compares this technique with a graph-collapsing clustering method. It is concluded that, while the new method does give superior results, the expense involved in algorithm run time is prohibitive. (24 references) (CLB)

  5. Raman scattering from rapid thermally annealed tungsten silicide

    NASA Technical Reports Server (NTRS)

    Kumar, Sandeep; Dasgupta, Samhita; Jackson, Howard E.; Boyd, Joseph T.

    1987-01-01

    Raman scattering as a technique for studying the formation of tungsten silicide is presented. The tungsten silicide films have been formed by rapid thermal annealing of thin tungsten films sputter deposited on silicon substrates. The Raman data are interpreted by using data from resistivity measurements, Auger and Rutherford backscattering measurements, and scanning electron microscopy.

  6. Ferrite-Martensite Band Formation During the Intercritical Annealing

    NASA Astrophysics Data System (ADS)

    Etesami, S. A.; Enayati, M. H.

    2016-02-01

    Microstructural evolution during the intercritical annealing at 740 and 770 °C for 120-900 s in a low-carbon low-alloy steel from the initial martensitic matrix was studied by electron microscopy equipped with energy dispersive x-ray spectroscopy and x-ray diffraction. It was seen that during the intercritical annealing, the martensitic structure changes to the tempered martensite with carbides. The results depicted that the temperature and time of intercritical annealing influence significantly the distribution and amount of the formed carbides. Two types of austenite morphology were identified to grow simultaneously, i.e., globular and acicular. A longer annealing time led to the coarse globular and thick acicular austenite morphology. The austenite with globular morphology nucleated preferably at prior austenite grain boundary triple and quadruple junctions. The austenite with globular and acicular morphology was developed in Mn-rich and -poor regions, respectively. The globular austenite morphology intensified the banded microstructure of ferrite-martensite dual-phase steel, whereas the acicular austenite morphology led to a more isotropic microstructure. The experimental results illustrated that the intercritical temperature is a significant factor which can contribute to intensify the banded ferrite-martensite microstructure. The volume fractions of austenite with globular and acicular morphology were quantitatively measured. The volume fraction of globular to acicular morphology of austenite was high and low at 770 and 740 °C, respectively.

  7. Thermally assisted quantum annealing of a 16-qubit problem

    NASA Astrophysics Data System (ADS)

    Dickson, N. G.; Johnson, M. W.; Amin, M. H.; Harris, R.; Altomare, F.; Berkley, A. J.; Bunyk, P.; Cai, J.; Chapple, E. M.; Chavez, P.; Cioata, F.; Cirip, T.; Debuen, P.; Drew-Brook, M.; Enderud, C.; Gildert, S.; Hamze, F.; Hilton, J. P.; Hoskinson, E.; Karimi, K.; Ladizinsky, E.; Ladizinsky, N.; Lanting, T.; Mahon, T.; Neufeld, R.; Oh, T.; Perminov, I.; Petroff, C.; Przybysz, A.; Rich, C.; Spear, P.; Tcaciuc, A.; Thom, M. C.; Tolkacheva, E.; Uchaikin, S.; Wang, J.; Wilson, A. B.; Merali, Z.; Rose, G.

    2013-05-01

    Efforts to develop useful quantum computers have been blocked primarily by environmental noise. Quantum annealing is a scheme of quantum computation that is predicted to be more robust against noise, because despite the thermal environment mixing the system's state in the energy basis, the system partially retains coherence in the computational basis, and hence is able to establish well-defined eigenstates. Here we examine the environment's effect on quantum annealing using 16 qubits of a superconducting quantum processor. For a problem instance with an isolated small-gap anticrossing between the lowest two energy levels, we experimentally demonstrate that, even with annealing times eight orders of magnitude longer than the predicted single-qubit decoherence time, the probabilities of performing a successful computation are similar to those expected for a fully coherent system. Moreover, for the problem studied, we show that quantum annealing can take advantage of a thermal environment to achieve a speedup factor of up to 1,000 over a closed system.

  8. Model for nonequilibrium segregation during pulsed laser annealing

    SciTech Connect

    Wood, R.F.

    1980-08-01

    Highly nonequilibrium thermodynamic processes occur during the ultrarapid recrystallization characteristic of pulsed laser annealing. Values of interface segregation coefficients are observed to differ from equilibrium values by as much as three orders of magnitude and equilibrium solubility limits may be exceeded by similar magnitudes. In this letter, a model is developed which accounts quantitatively for these effects.

  9. Burst annealing of electron damage in silicon solar cells

    NASA Technical Reports Server (NTRS)

    Day, A. C.; Horne, W. E.; Thompson, M. A.; Lancaster, C. A.

    1985-01-01

    A study has been performed of burst annealing of electron damage in silicon solar cells. Three groups of cells consisting of 3 and 0.3 ohm-cm silicon were exposed to fluences of 2 x 10 to the 14th power, 4 x 10 to the 14th power, and 8 x 10 to the 14th power 1-MeV electrons/sq cm, respectively. They were subsequently subjected to 1-minute bursts of annealing at 500 C. The 3 ohm-cm cells showed complete recovery from each fluence level. The 0.3 ohm-cm cells showed complete recovery from the 2 x 10 to the 14th power e/sq cm fluence; however, some of the 0.3 ohm-cm cells did not recover completely from the higher influences. From an analysis of the results it is concluded that burst annealing of moderate to high resistivity silicon cell arrays in space is feasible and that with more complete understanding, even the potentially higher efficiency low resistivity cells may be usable in annealable arrays in space.

  10. Birefringence enhancement in annealed TiO2 thin films

    NASA Astrophysics Data System (ADS)

    van Popta, Andy C.; Cheng, June; Sit, Jeremy C.; Brett, Michael J.

    2007-07-01

    Postdeposition thermal annealing is used to enhance the form birefringence of nanostructured TiO2 thin films grown by electron-beam evaporation using the serial bideposition technique. Thin films were grown on fused silica substrates using oblique deposition angles between 60° and 75° and repetitive 180° substrate rotations to produce birefringent thin films that are structurally anisotropic. Postdeposition annealing in air, between 200 and 900°C, was used to increase the form birefringence of the films by changing the TiO2 phase from the as-deposited amorphous state to a polycrystalline state that exhibits a greater inherent density and larger bulk refractive index. The optical properties, microstructure, and crystallinity were characterized by Mueller matrix ellipsometry, scanning electron microscopy, atomic force microscopy, and x-ray diffraction. It was found that the in-plane birefringence increased significantly upon thermal annealing, in some cases yielding birefringence values that doubled in magnitude, from 0.11 to 0.22 at a wavelength of 550nm for films annealed at 400°C.

  11. Investigation of a pulsed current annealing method in reusing MOSFET dosimeters for in vivo IMRT dosimetry

    SciTech Connect

    Luo, Guang-Wen; Qi, Zhen-Yu Deng, Xiao-Wu; Rosenfeld, Anatoly

    2014-05-15

    Purpose: To explore the feasibility of pulsed current annealing in reusing metal oxide semiconductor field-effect transistor (MOSFET) dosimeters forin vivo intensity modulated radiation therapy (IMRT) dosimetry. Methods: Several MOSFETs were irradiated atd{sub max} using a 6 MV x-ray beam with 5 V on the gate and annealed with zero bias at room temperature. The percentage recovery of threshold voltage shift during multiple irradiation-annealing cycles was evaluated. Key dosimetry characteristics of the annealed MOSFET such as the dosimeter's sensitivity, reproducibility, dose linearity, and linearity of response within the dynamic range were investigated. The initial results of using the annealed MOSFETs for IMRT dosimetry practice were also presented. Results: More than 95% of threshold voltage shift can be recovered after 24-pulse current continuous annealing in 16 min. The mean sensitivity degradation was found to be 1.28%, ranging from 1.17% to 1.52%, during multiple annealing procedures. Other important characteristics of the annealed MOSFET remained nearly consistent before and after annealing. Our results showed there was no statistically significant difference between the annealed MOSFETs and their control samples in absolute dose measurements for IMRT QA (p = 0.99). The MOSFET measurements agreed with the ion chamber results on an average of 0.16% ± 0.64%. Conclusions: Pulsed current annealing provides a practical option for reusing MOSFETs to extend their operational lifetime. The current annealing circuit can be integrated into the reader, making the annealing procedure fully automatic.

  12. Kinetics of wealth and the Pareto law

    NASA Astrophysics Data System (ADS)

    Boghosian, Bruce M.

    2014-04-01

    An important class of economic models involve agents whose wealth changes due to transactions with other agents. Several authors have pointed out an analogy with kinetic theory, which describes molecules whose momentum and energy change due to interactions with other molecules. We pursue this analogy and derive a Boltzmann equation for the time evolution of the wealth distribution of a population of agents for the so-called Yard-Sale Model of wealth exchange. We examine the solutions to this equation by a combination of analytical and numerical methods and investigate its long-time limit. We study an important limit of this equation for small transaction sizes and derive a partial integrodifferential equation governing the evolution of the wealth distribution in a closed economy. We then describe how this model can be extended to include features such as inflation, production, and taxation. In particular, we show that the model with taxation exhibits the basic features of the Pareto law, namely, a lower cutoff to the wealth density at small values of wealth, and approximate power-law behavior at large values of wealth.

  13. Kinetic tetrazolium microtiter assay

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L. (Inventor); Stowe, Raymond P. (Inventor); Koeing, David W. (Inventor)

    1992-01-01

    A method for conducting an in vitro cell assay using a tetrazolium indicator is disclosed. The indicator includes a nonionic detergent which solubilizes a tetrazolium reduction product in vitro and has low toxicity for the cells. The incubation of test cells in the presence of zolium bromide and octoxynol (TRITON X-100) permits kinetics of the cell metabolism to be determined.

  14. Kinetics and Catalysis Demonstrations.

    ERIC Educational Resources Information Center

    Falconer, John L.; Britten, Jerald A.

    1984-01-01

    Eleven videotaped kinetics and catalysis demonstrations are described. Demonstrations include the clock reaction, oscillating reaction, hydrogen oxidation in air, hydrogen-oxygen explosion, acid-base properties of solids, high- and low-temperature zeolite reactivity, copper catalysis of ammonia oxidation and sodium peroxide decomposition, ammonia…

  15. Radiation and annealing response of WWER 440 beltline welding seams

    NASA Astrophysics Data System (ADS)

    Viehrig, Hans-Werner; Houska, Mario; Altstadt, Eberhard

    2015-01-01

    The focus of this paper is on the irradiation response and the effect of thermal annealing in weld materials extracted from decommissioned WWER 440 reactor pressure vessels of the nuclear power plant Greifswald. The characterisation is based on the measurement of the hardness, the yield stress, the Master Curve reference temperature, T0, and the Charpy-V transition temperature through the thickness of multi-layer beltline welding seams in the irradiated and the thermally annealed condition. Additionally, the weld bead structure was characterised by light microscopic studies. We observed a large variation in the through thickness T0 values in the irradiated as well as in thermally annealed condition. The T0 values measured with the T-S-oriented Charpy size SE(B) specimens cut from different thickness locations of the multilayer welding seams strongly depend on the intrinsic weld bead structure along the crack tip. The Master Curve, T0, and Charpy-V, TT47J, based ductile-to-brittle transition temperature progressions through the thickness of the multi-layer welding seam do not correspond to the forecast according to the Russian code. In general, the fracture toughness values at cleavage failure, KJc, measured on SE(B) specimens from the irradiated and large-scale thermally annealed beltline welding seams follow the Master Curve description, but more than the expected number lie outside the curves for 2% and 98% fracture probability. In this case the test standard ASTM E1921 indicates the investigated multi-layer weld metal as not uniform. The multi modal Master Curve based approach describes the temperature dependence of the specimen size adjusted KJc-1T values well. Thermal annealing at 475 °C for 152 h results in the expected decrease of the hardness and tensile strength and the shift of Master Curve and Charpy-V based ductile-to-brittle transition temperatures to lower values.

  16. Two-Step Annealing Leading to Refined Bi2Te3-In2Te3 Lamellar Structures for Tuning of Thermoelectric Properties

    NASA Astrophysics Data System (ADS)

    Liu, Dongmei; Li, Xinzhong; Schmechel, Roland; Rettenmayr, Markus

    2016-03-01

    A two-step annealing process was applied to control the morphology of Bi2Te3-In2Te3 composite materials via precipitation of In2Te3 from supersaturated (Bi,In)2Te3. Finer lamellae were obtained via two-step as compared with single-step isothermal annealing. The microstructure was optimized by exploiting thermodynamic and kinetic effects during nucleation and growth of In2Te3. The relationship between the morphologies and thermoelectric properties was analyzed. With preannealing at a lower temperature, refined morphologies lead to an enhanced power factor and zT in the temperature range from room temperature to ˜100°C. The enhancement is mainly caused by an increased Seebeck coefficient, most probably due to energy-dependent scattering processes. However, the thermal conductivity is dominated by bipolar thermal transport that compensates the low lattice thermal conductivity completely.

  17. Surface precipitates formed on annealed LSAT (001) single crystal.

    PubMed

    Ohashi, Kazuki; Okada, Shunsuke; Sasaki, Katsuhiro; Tokunaga, Tomoharu; Kobayashi, Shunsuke; Yamamoto, Takahisa

    2014-11-01

    LSAT (La0.3Sr0.7)(Al0.65Ta0.35)O3, which has a complex perovskite structure of (A'A'')(B'B'')O3, is expected as an attracting substrates for GaN and high temperature superconductivity oxides solid thin films from a viewpoint of the suitable lattice matching. To grow high quality thin film, it is very important to prepare step-terrace structure on substrates used for thin film growth. For this purpose, a technique of annealing substrates with mirror surface is often used. However, surface precipitates, called surface mounts, are reported to appear after annealing LSAT substrates [1]. In this study, we investigated the surface precipitates formed on annealed LSAT surfaces by TEM/STEM. Further, we directly confirmed the terminated atomic layers at the annealed LSAT surfaces in the area without surface precipitates.Commercially available LSAT single crystal substrates with (001) surfaces (SHINKOSHA CO.,LTD) were used for TEM/STEM observation. After annealing at 1300°C for 30 min in air, the (001) surface structures were observed from [110] direction using cross sectional thin foils. The thin foils were prepared by joining two annealed LSAT (001) surfaces with glue, grinding, polishing and finally Ar ion milling. TEM/STEM observation was conducted by JEOL ARM-200F (a double Cs-corrector type for TEM/STEM) operated at 200kV.Surface mounds were confirmed to appear on LSAT crystal surface after annealing at the annealing condition used in this study. A typical example is shown in Fig. 1. shows TEM bright field image taken from the surface area of LSAT (001) after annealing. The observation direction of the image is [110], which is parallel to the annealed surface. Cross sectional images of surface mounts with 300nm was clearly seen as indicated by the arrows in the image. The height of the mounts is around 20nm, and it is noted that the interfaces between the mounts and LSAT surfaces are hollowed into LSAT crystal with the depth about 10nm. Nano diffractometric and EDS

  18. Critical kinetic control of non-stoichiometric intermediate phase transformation for efficient perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Rong, Yaoguang; Venkatesan, Swaminathan; Guo, Rui; Wang, Yanan; Bao, Jiming; Li, Wenzhi; Fan, Zhiyong; Yao, Yan

    2016-06-01

    Organometal trihalide perovskites (OTP) have attracted significant attention as a low-cost and high-efficiency solar cell material. Due to the strong coordination between lead iodide (PbI2) and dimethyl sulfoxide (DMSO) solvent, a non-stoichiometric intermediate phase of MA2Pb3I8(DMSO)2 (MA = CH3NH3+) usually forms in the one-step deposition method that plays a critical role in attaining high power conversion efficiency. However, the kinetic understanding of how the non-stoichiometric intermediate phase transforms during thermal annealing is currently absent. In this work, we investigated such a phase transformation and provided a clear picture of three phase transition pathways as a function of annealing conditions. The interdiffusion of MAI and DMSO varies strongly with the annealing temperature and time, thus determining the final film composition and morphology. A surprising finding reveals that the best performing cells contain ~18% of the non-stoichiometric intermediate phase, instead of pure phase OTP. The presence of such an intermediate phase enables smooth surface morphology and enhances the charge carrier lifetime. Our results highlight the importance of the intermediate phase growth kinetics that could lead to large-scale production of efficient solution processed perovskite solar cells.Organometal trihalide perovskites (OTP) have attracted significant attention as a low-cost and high-efficiency solar cell material. Due to the strong coordination between lead iodide (PbI2) and dimethyl sulfoxide (DMSO) solvent, a non-stoichiometric intermediate phase of MA2Pb3I8(DMSO)2 (MA = CH3NH3+) usually forms in the one-step deposition method that plays a critical role in attaining high power conversion efficiency. However, the kinetic understanding of how the non-stoichiometric intermediate phase transforms during thermal annealing is currently absent. In this work, we investigated such a phase transformation and provided a clear picture of three phase transition

  19. Multidimensional reactor kinetics modeling

    SciTech Connect

    Diamond, D.J.

    1996-11-01

    There is general agreement that for many light water reactor transient calculations, it is-necessary to use a multidimensional neutron kinetics model coupled to a thermal-hydraulics model for satisfactory results. These calculations are needed for a variety of applications for licensing safety analysis, probabilistic risk assessment (PRA), operational support, and training. The latter three applications have always required best-estimate models, but in the past applications for licensing could be satisfied with relatively simple models. By using more sophisticated best-estimate models, the consequences of these calculations are better understood, and the potential for gaining relief from restrictive operating limits increases. Hence, for all of the aforementioned applications, it is important to have the ability to do best-estimate calculations with multidimensional neutron kinetics models. coupled to sophisticated thermal-hydraulic models. Specifically, this paper reviews the status of multidimensional neutron kinetics modeling which would be used in conjunction with thermal-hydraulic models to do core dynamics calculations, either coupled to a complete NSSS representation or in isolation. In addition, the paper makes recommendations as to what should be the state-of-the-art for the next ten years. The review is an update to a previous review of the status as of ten years ago. The general requirements for a core dynamics code and the modeling available for such a code, discussed in that review, are still applicable. The emphasis in the current review is on the neutron kinetics assuming that the necessary thermal-hydraulic capability exists. In addition to discussing the basic neutron kinetics, discussion is given of related modeling (other than thermal- hydraulics). The capabilities and limitations of current computer codes are presented to understand the state-of-the-art and to help clarify the future direction of model development in this area.

  20. Performance enhancement of amorphous indium-zinc-oxide thin film transistors by microwave annealing

    NASA Astrophysics Data System (ADS)

    Xu, Rui; He, Jian; Li, Wei; Paine, David C.

    2015-12-01

    The effect of microwave annealing on the field effect mobility and threshold voltage of amorphous indium zinc oxide (a-IZO) thin film transistors (TFTs) is reported. A control device with traditional hotplate annealing at 200 °C for 1 h was applied for comparison. The results show that both microwave annealing and low-temperature hotplate annealing increase the field effect mobility from 12.3 cm2/V s in as-deposited state to ∼19 cm2/V s in annealed state. However, the negative shift in threshold voltage with microwave annealing (from 0.23 V to -2.86 V) is smaller than that with low-temperature hotplate annealing (to -9 V). A mechanism related with the electrical properties of a-IZO material is proposed. This rapid low-temperature annealing technology makes a-IZO TFTs promising for use in flexible, transparent electronics.

  1. Laser annealing of ion implanted CZ silicon for solar cell junction formation

    NASA Technical Reports Server (NTRS)

    Katzeff, J. S.

    1981-01-01

    The merits of large spot size pulsed laser annealing of phosphorus implanted, Czochralski grown silicon for function formation of solar cells are evaluated. The feasibility and requirements are also determined to scale-up a laser system to anneal 7.62 cm diameter wafers at a rate of one wafer/second. Results show that laser annealing yields active, defect-free, shallow junction devices. Functional cells with AM 1 conversion efficiencies up to 15.4% for 2 x 2 cm and 2 x 4 cm sizes were attained. For larger cells, 7.62 cm dia., conversion efficiencies ranged up to 14.5%. Experiments showed that texture etched surfaces are not compatible with pulsed laser annealing due to the surface melting caused by the laser energy. When compared with furnace annealed cells, the laser annealed cells generally exhibited conversion efficiencies which were equal to or better than those furnace annealed. In addition, laser annealing has greater throughput potential.

  2. Learning Chemical Kinetics with Spreadsheets.

    ERIC Educational Resources Information Center

    Blickensderfer, Roger

    1990-01-01

    Presented are several simple kinetic systems together with the spreadsheets used to solve them. A set of exercises in chemical kinetics appropriate for an introductory course in physical chemistry is given. Error propagation calculations with experimental data are illustrated. (CW)

  3. Discrepancy between ambient annealing and H+ implantation in optical absorption of ZnO

    NASA Astrophysics Data System (ADS)

    Lv, Jinpeng; Li, Chundong

    2016-05-01

    The discrepancy between sub-bandgap absorption in ZnO induced by thermal annealing and H+ implantation is investigated in this study for the first time. Results indicate that nonreductive annealing-induced optical absorption is independent of annealing ambient, and can be assigned to VO, whereas the absorption centers caused by H+ implantation and H2 annealing are primarily associated with VO and ionized Zni.

  4. Experimental studies of annealing of etched fission tracks in fluorapatite

    NASA Astrophysics Data System (ADS)

    Crowley, K. d.; Cameron, M.; Schaefer, R. l.

    1991-05-01

    Annealing of etchable fission-track damage in fluorapatite (Ca 4.96Fe 0.01Na 0.02Sr 0.01REE 0.01) 5.01-(P 2.98Si 0.02) 3.00O 12(F 1.00Cl 0.02) 1.02 and Sr fluorapatite (Ca 4.68Na 0.04Sr 0.02REE 0.03) 4.97(P 2.98Si 0.03) 3.01O 12F 1.03was investigated in laboratory heating experiments at 1, 10, 100, and 1000 h at temperatures ranging from 40 to 360°C. For each of the approximately 105 heating experiments, annealing was characterized by measuring the lengths of confined tracks in mineral sections oriented parallel to the c axis and the acute angles between azimuths of the tracks and the c axis. Annealing is characterized by the monotonic decrease in etched track length with increasing temperature or heating time. Track shortening is anisotropic at all stages of fading: tracks parallel to c are most resistant to shortening, tracks perpendicular to c are at least resistant to shortening, and tracks at intermediate angles have intermediate annealing resistances. The relationship between mean track length and track length parallel or perpendicular to c is approximately linear. The decrease in normalized mean track length ( r) with increasing temperature ( T) or heating time ( t) for the fluorapatite and Sr fluorapatite data presented here, as well as the annealing data of GREEN et al. (1986) from Durango apatite, is best described by the equation g(r; α, β) = C 0 + [C 1 ln t + C 2] /[( {1/T} ) - C 3] , where g( r; α, β) is a power transform of r, and α, β, C0, C1, C2, and C3 are parameters. On the Arrhenius diagram, the fading contours (contours of constant r) for this model equation plot as a series of straight lines that intersect at a single point termed the "crossover point." For the fluorapatite and Sr-fluorapatite data presented here, the crossover points occur within the interval 523° C ≤ T≤957° C, 10 -5≤ t ≤ 10 -2s. This point is interpreted to represent the limit of stability of tracks in apatite. Activation energies, which are proportional to

  5. The choice of optimal Discrete Interaction Approximation to the kinetic integral for ocean waves

    NASA Astrophysics Data System (ADS)

    Polnikov, V. G.

    A lot of discrete configurations for the four-wave nonlinear interaction processes have been calculated and tested by the method proposed earlier in the frame of the concept of Fast Discrete Interaction Approximation to the Hasselmann's kinetic integral (Polnikov and Farina, 2002). It was found that there are several simple configurations, which are more efficient than the one proposed originally in Hasselmann et al. (1985). Finally, the optimal multiple Discrete Interaction Approximation (DIA) to the kinetic integral for deep-water waves was found. Wave spectrum features have been intercompared for a number of different configurations of DIA, applied to a long-time solution of kinetic equation. On the basis of this intercomparison the better efficiency of the configurations proposed was confirmed. Certain recommendations were given for implementation of new approximations to the wave forecast practice.

  6. LLNL Chemical Kinetics Modeling Group

    SciTech Connect

    Pitz, W J; Westbrook, C K; Mehl, M; Herbinet, O; Curran, H J; Silke, E J

    2008-09-24

    The LLNL chemical kinetics modeling group has been responsible for much progress in the development of chemical kinetic models for practical fuels. The group began its work in the early 1970s, developing chemical kinetic models for methane, ethane, ethanol and halogenated inhibitors. Most recently, it has been developing chemical kinetic models for large n-alkanes, cycloalkanes, hexenes, and large methyl esters. These component models are needed to represent gasoline, diesel, jet, and oil-sand-derived fuels.

  7. Influence of Microwave and Conventional Annealing Processes in Improving an Electrodeposited Nickel Interlayer Characteristics

    NASA Astrophysics Data System (ADS)

    Hassan, Abdelkarim; Noordin, Mohd Yusof; Izman, Sudin; Denni, Kurniawan

    2016-07-01

    Nickel interlayer was coated on tungsten carbide substrate by electrodeposition process for the purpose of diamond deposition. Conventional and microwave annealing processes were used to improve the adhesion strength and modify the surface composition of the electroplated nickel interlayer. The conventional annealing was conducted in a high-temperature tube furnace at 1323.15 K (1050 °C) for 20 and 60 minutes annealing durations. The microwave annealing was carried out in 2.45 GHz microwave furnace at 1303.15 K (1030 °C) for the same annealing durations as the conventional process. The annealed specimens were characterized by electron microscopy, Energy dispersive X-ray spectroscopy, and X-ray diffraction technique. Adhesion of the annealed nickel interlayer was assessed by the scratch test. The results revealed significant changes in the nickel coating composition, adhesion, and appearance. The adhesion strength of nickel interlayer annealed for the longer duration of the two processes is similar. For shorter annealing duration, the microwave-annealed coating showed better adhesion. The surface composition of the nickel interlayer was modified by the diffusion of carbon and tungsten during the microwave and conventional annealing, respectively. The microwave annealing is a promising process for producing good quality treated nickel-coated tungsten carbide specimens.

  8. First application of quantum annealing to IMRT beamlet intensity optimization

    NASA Astrophysics Data System (ADS)

    Nazareth, Daryl P.; Spaans, Jason D.

    2015-05-01

    Optimization methods are critical to radiation therapy. A new technology, quantum annealing (QA), employs novel hardware and software techniques to address various discrete optimization problems in many fields. We report on the first application of quantum annealing to the process of beamlet intensity optimization for IMRT. We apply recently-developed hardware which natively exploits quantum mechanical effects for improved optimization. The new algorithm, called QA, is most similar to simulated annealing, but relies on natural processes to directly minimize a system’s free energy. A simple quantum system is slowly evolved into a classical system representing the objective function. If the evolution is sufficiently slow, there are probabilistic guarantees that a global minimum will be located. To apply QA to IMRT-type optimization, two prostate cases were considered. A reduced number of beamlets were employed, due to the current QA hardware limitations. The beamlet dose matrices were computed using CERR and an objective function was defined based on typical clinical constraints, including dose-volume objectives, which result in a complex non-convex search space. The objective function was discretized and the QA method was compared to two standard optimization methods, simulated annealing and Tabu search, run on a conventional computing cluster. Based on several runs, the average final objective function value achieved by the QA was 16.9 for the first patient, compared with 10.0 for Tabu and 6.7 for the simulated annealing (SA) method. For the second patient, the values were 70.7 for the QA, 120.0 for Tabu and 22.9 for the SA. The QA algorithm required 27-38% of the time required by the other two methods. In this first application of hardware-enabled QA to IMRT optimization, its performance is comparable to Tabu search, but less effective than the SA in terms of final objective function values. However, its speed was 3-4 times faster than the other two methods

  9. First application of quantum annealing to IMRT beamlet intensity optimization.

    PubMed

    Nazareth, Daryl P; Spaans, Jason D

    2015-05-21

    Optimization methods are critical to radiation therapy. A new technology, quantum annealing (QA), employs novel hardware and software techniques to address various discrete optimization problems in many fields. We report on the first application of quantum annealing to the process of beamlet intensity optimization for IMRT. We apply recently-developed hardware which natively exploits quantum mechanical effects for improved optimization. The new algorithm, called QA, is most similar to simulated annealing, but relies on natural processes to directly minimize a system's free energy. A simple quantum system is slowly evolved into a classical system representing the objective function. If the evolution is sufficiently slow, there are probabilistic guarantees that a global minimum will be located. To apply QA to IMRT-type optimization, two prostate cases were considered. A reduced number of beamlets were employed, due to the current QA hardware limitations. The beamlet dose matrices were computed using CERR and an objective function was defined based on typical clinical constraints, including dose-volume objectives, which result in a complex non-convex search space. The objective function was discretized and the QA method was compared to two standard optimization methods, simulated annealing and Tabu search, run on a conventional computing cluster. Based on several runs, the average final objective function value achieved by the QA was 16.9 for the first patient, compared with 10.0 for Tabu and 6.7 for the simulated annealing (SA) method. For the second patient, the values were 70.7 for the QA, 120.0 for Tabu and 22.9 for the SA. The QA algorithm required 27-38% of the time required by the other two methods. In this first application of hardware-enabled QA to IMRT optimization, its performance is comparable to Tabu search, but less effective than the SA in terms of final objective function values. However, its speed was 3-4 times faster than the other two methods. This

  10. An Introductory Level Kinetics Investigation.

    ERIC Educational Resources Information Center

    McGarvey, J. E. B.; Knipe, A. C.

    1980-01-01

    Provides a list of the reactions commonly used for introductory kinetics studies. These reactions illustrate the kinetics concepts of rate law, rate constant, and reaction order. Describes a kinetic study of the hydrolysis of 3-bromo-3-phenylpropanoic acid which offers many educational advantages. (CS)

  11. Kinetic Tetrazolium Microtiter Assay

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.; Stowe, Raymond; Koenig, David

    1993-01-01

    Kinetic tetrazolium microtiter assay (KTMA) involves use of tetrazolium salts and Triton X-100 (or equivalent), nontoxic, in vitro color developer solubilizing colored metabolite formazan without injuring or killing metabolizing cells. Provides for continuous measurement of metabolism and makes possible to determine rate of action of antimicrobial agent in real time as well as determines effective inhibitory concentrations. Used to monitor growth after addition of stimulatory compounds. Provides for kinetic determination of efficacy of biocide, greatly increasing reliability and precision of results. Also used to determine relative effectiveness of antimicrobial agent as function of time. Capability of generating results on day of test extremely important in treatment of water and waste, disinfection of hospital rooms, and in pharmaceutical, agricultural, and food-processing industries. Assay also used in many aspects of cell biology.

  12. Rapid mixing kinetic techniques.

    PubMed

    Martin, Stephen R; Schilstra, Maria J

    2013-01-01

    Almost all of the elementary steps in a biochemical reaction scheme are either unimolecular or bimolecular processes that frequently occur on sub-second, often sub-millisecond, time scales. The traditional approach in kinetic studies is to mix two or more reagents and monitor the changes in concentrations with time. Conventional spectrophotometers cannot generally be used to study reactions that are complete within less than about 20 s, as it takes that amount of time to manually mix the reagents and activate the instrument. Rapid mixing techniques, which generally achieve mixing in less than 2 ms, overcome this limitation. This chapter is concerned with the use of these techniques in the study of reactions which reach equilibrium; the application of these methods to the study of enzyme kinetics is described in several excellent texts (Cornish-Bowden, Fundamentals of enzyme kinetics. Portland Press, 1995; Gutfreund, Kinetics for the life sciences. Receptors, transmitters and catalysis. Cambridge University Press, 1995).There are various ways to monitor changes in concentration of reactants, intermediates and products after mixing, but the most common way is to use changes in optical signals (absorbance or fluorescence) which often accompany reactions. Although absorbance can sometimes be used, fluorescence is often preferred because of its greater sensitivity, particularly in monitoring conformational changes. Such methods are continuous with good time resolution but they seldom permit the direct determination of the concentrations of individual species. Alternatively, samples may be taken from the reaction volume, mixed with a chemical quenching agent to stop the reaction, and their contents assessed by techniques such as HPLC. These methods can directly determine the concentrations of different species, but are discontinuous and have a limited time resolution. PMID:23729251

  13. Kinetic theory of a two-dimensional magnetized plasma. II - Balescu-Lenard limit.

    NASA Technical Reports Server (NTRS)

    Vahala, G.

    1972-01-01

    The kinetic theory of a two-dimensional one-species plasma in a uniform dc magnetic field is investigated in the small plasma parameter limit. The plasma consists of charged rods interacting through the logarithmic Coulomb potential. Vahala and Montgomery earlier (1971) derived a Fokker-Planck equation for this system, but it contained a divergent integral, which had to be cut off on physical grounds. This cutoff is compared to the standard cutoff introduced in the two-dimensional unmagnetized Fokker-Planck equation. In the small plasma parameter limit, it is shown that the Balescu-Lenard collision term is zero in the long time average limit if only two-body interactions are considered. The energy transfer from a test particle to an equilibrium plasma is discussed and is also shown to be zero in the long time average limit. This supports the unexpected result of zero Balescu-Lenard collision term.

  14. Annealing free, clean graphene transfer using alternative polymer scaffolds

    NASA Astrophysics Data System (ADS)

    Wood, Joshua D.; Doidge, Gregory P.; Carrion, Enrique A.; Koepke, Justin C.; Kaitz, Joshua A.; Datye, Isha; Behnam, Ashkan; Hewaparakrama, Jayan; Aruin, Basil; Chen, Yaofeng; Dong, Hefei; Haasch, Richard T.; Lyding, Joseph W.; Pop, Eric

    2015-02-01

    We examine the transfer of graphene grown by chemical vapor deposition (CVD) with polymer scaffolds of poly(methyl methacrylate) (PMMA), poly(lactic acid) (PLA), poly(phthalaldehyde) (PPA), and poly(bisphenol A carbonate) (PC). We find that optimally reactive PC scaffolds provide the cleanest graphene transfers without any annealing, after extensive comparison with optical microscopy, x-ray photoelectron spectroscopy, atomic force microscopy, and scanning tunneling microscopy. Comparatively, films transferred with PLA, PPA, PMMA/PC, and PMMA have a two-fold higher roughness and a five-fold higher chemical doping. Using PC scaffolds, we demonstrate the clean transfer of CVD multilayer graphene, fluorinated graphene, and hexagonal boron nitride. Our annealing free, PC transfers enable the use of atomically-clean nanomaterials in biomolecule encapsulation and flexible electronic applications.

  15. Effect of dopants on annealing performance of silicon solar cells

    NASA Technical Reports Server (NTRS)

    Scott-Monck, J. A.; Anspaugh, B. E.

    1979-01-01

    The optimum annealing parameters of time and temperature for producing cell output recovery were established. Devices made from gallium doped and boron doped silicon were investigated. The cells ranged in resistivity from 0.1 to 20 ohm-cm and in thickness from 50 to 250 micrometers. The observations can be explained in a qualitative manner by postulating a pair of competing mechanisms to account for the low temperature reverse annealing seen in most boron and gallium doped silicon solar cells. Still another mechanism dominates at higher temperatures (350 C and greater) to complete this model. One of the mechanisms, defined as B, allows migrators to couple with radiation induced recombination sites thus increasing or enhancing their capture cross sections. This would tend to reduce minority carrier diffusion length. The new recombination complex is postulated to be thermally stable up to temperatures of approximately 350 C.

  16. Multigrid hierarchical simulated annealing method for reconstructing heterogeneous media.

    PubMed

    Pant, Lalit M; Mitra, Sushanta K; Secanell, Marc

    2015-12-01

    A reconstruction methodology based on different-phase-neighbor (DPN) pixel swapping and multigrid hierarchical annealing is presented. The method performs reconstructions by starting at a coarse image and successively refining it. The DPN information is used at each refinement stage to freeze interior pixels of preformed structures. This preserves the large-scale structures in refined images and also reduces the number of pixels to be swapped, thereby resulting in a decrease in the necessary computational time to reach a solution. Compared to conventional single-grid simulated annealing, this method was found to reduce the required computation time to achieve a reconstruction by around a factor of 70-90, with the potential of even higher speedups for larger reconstructions. The method is able to perform medium sized (up to 300(3) voxels) three-dimensional reconstructions with multiple correlation functions in 36-47 h. PMID:26764849

  17. Determination and correction of persistent biases in quantum annealers

    NASA Astrophysics Data System (ADS)

    Perdomo-Ortiz, Alejandro; O'Gorman, Bryan; Fluegemann, Joseph; Biswas, Rupak; Smelyanskiy, Vadim N.

    2016-01-01

    Calibration of quantum computers is essential to the effective utilisation of their quantum resources. Specifically, the performance of quantum annealers is likely to be significantly impaired by noise in their programmable parameters, effectively misspecification of the computational problem to be solved, often resulting in spurious suboptimal solutions. We developed a strategy to determine and correct persistent, systematic biases between the actual values of the programmable parameters and their user-specified values. We applied the recalibration strategy to two D-Wave Two quantum annealers, one at NASA Ames Research Center in Moffett Field, California, and another at D-Wave Systems in Burnaby, Canada. We show that the recalibration procedure not only reduces the magnitudes of the biases in the programmable parameters but also enhances the performance of the device on a set of random benchmark instances.

  18. Determination and correction of persistent biases in quantum annealers

    PubMed Central

    Perdomo-Ortiz, Alejandro; O’Gorman, Bryan; Fluegemann, Joseph; Biswas, Rupak; Smelyanskiy, Vadim N.

    2016-01-01

    Calibration of quantum computers is essential to the effective utilisation of their quantum resources. Specifically, the performance of quantum annealers is likely to be significantly impaired by noise in their programmable parameters, effectively misspecification of the computational problem to be solved, often resulting in spurious suboptimal solutions. We developed a strategy to determine and correct persistent, systematic biases between the actual values of the programmable parameters and their user-specified values. We applied the recalibration strategy to two D-Wave Two quantum annealers, one at NASA Ames Research Center in Moffett Field, California, and another at D-Wave Systems in Burnaby, Canada. We show that the recalibration procedure not only reduces the magnitudes of the biases in the programmable parameters but also enhances the performance of the device on a set of random benchmark instances. PMID:26783120

  19. [Photoluminescence of nano-SiC annealed by pulse laser].

    PubMed

    Yu, Wei; He, Jie; Sun, Yun-tao; Han, Li; Fu, Guang-sheng

    2005-04-01

    Nanocrystalline silicon carbon (nc-SiC) from amorphous silicon carbon films was obtained through XeCl excimer laser annealing. The photoluminescence (PL) of the nc-SiC was analyzed at different annealing laser energy density. It was observed that PL presented a wide luminescence band from 300-600 nm in the nc-SiC films. The two main luminescence bands, situated at 398 and 470 nm respectively, are attributed to band to band and defect recombination in the 6H-SiC based on the structure changes of the nc-SiC films. The relative PL intensity of these two bands was determined by the surface state density in the nc-SiC films and their irradiative life PMID:16097671

  20. Annealing of color centers in LiBaF3

    NASA Astrophysics Data System (ADS)

    Kulis, P.; Springis, M.; Tale, I.

    Results of the glow rate technique to analyze the activation energy of thermostimulated annealing of X-ray created F -type color centers in LiBaF3 crystals are presented, showing pure and containing oxygen centers. It is shown that depending on the impurity composition two alternative mechanisms are involved in the annealing of color centers. It is proposed that either the anion vacancy governed migration of F -centers resulting in recombination with complementary defects, or the thermal delocalization of radiation created fluorine (F-i) interstitials captured by anti-structure defects followed by recombination with all kinds of complementary F -type centers are responsible for the recombination of radiation defects above RT.

  1. Thermal Performance of an Annealed Pyrolytic Graphite Solar Collector

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Hornacek, Jennifer

    2002-01-01

    A solar collector having the combined properties of high solar absorptance, low infrared emittance, and high thermal conductivity is needed for applications where solar energy is to be absorbed and transported for use in minisatellites. Such a solar collector may be used with a low temperature differential heat engine to provide power or with a thermal bus for thermal switching applications. One concept being considered for the solar collector is an Al2O3 cermet coating applied to a thermal conductivity enhanced polished aluminum substrate. The cermet coating provides high solar absorptance and the polished aluminum provides low infrared emittance. Annealed pyrolytic graphite embedded in the aluminum substrate provides enhanced thermal conductivity. The as-measured thermal performance of an annealed pyrolytic graphite thermal conductivity enhanced polished aluminum solar collector, coated with a cermet coating, will be presented.

  2. Determination and correction of persistent biases in quantum annealers.

    PubMed

    Perdomo-Ortiz, Alejandro; O'Gorman, Bryan; Fluegemann, Joseph; Biswas, Rupak; Smelyanskiy, Vadim N

    2016-01-01

    Calibration of quantum computers is essential to the effective utilisation of their quantum resources. Specifically, the performance of quantum annealers is likely to be significantly impaired by noise in their programmable parameters, effectively misspecification of the computational problem to be solved, often resulting in spurious suboptimal solutions. We developed a strategy to determine and correct persistent, systematic biases between the actual values of the programmable parameters and their user-specified values. We applied the recalibration strategy to two D-Wave Two quantum annealers, one at NASA Ames Research Center in Moffett Field, California, and another at D-Wave Systems in Burnaby, Canada. We show that the recalibration procedure not only reduces the magnitudes of the biases in the programmable parameters but also enhances the performance of the device on a set of random benchmark instances. PMID:26783120

  3. Size effect on order-disorder transition kinetics of FePt nanoparticles.

    PubMed

    Zhang, Shuaidi; Qi, Weihong; Huang, Baiyun

    2014-01-28

    The kinetics of order-disorder transition of FePt nanoparticles during high temperature annealing is theoretically investigated. A model is developed to address the influence of large surface to volume ratio of nanoparticles on both the thermodynamic and kinetic aspect of the ordering process; specifically, the nucleation and growth of L10 ordered domain within disordered nanoparticles. The size- and shape-dependence of transition kinetics are quantitatively addressed by a revised Johnson-Mehl-Avrami equation that included corrections for deviations caused by the domination of surface nucleation in nanoscale systems and the non-negligible size of the ordered nuclei. Calculation results based on the model suggested that smaller nanoparticles are kinetically more active but thermodynamically less transformable. The major obstacle in obtaining completely ordered nanoparticles is the elimination of antiphase boundaries. The results also quantitatively confirmed the existence of a size-limit in ordering, beyond which, inducing order-disorder transitions through annealing is impossible. A good agreement is observed between theory, experiment, and computer simulation results. PMID:25669544

  4. Size effect on order-disorder transition kinetics of FePt nanoparticles

    SciTech Connect

    Zhang, Shuaidi; Qi, Weihong; Huang, Baiyun

    2014-01-28

    The kinetics of order-disorder transition of FePt nanoparticles during high temperature annealing is theoretically investigated. A model is developed to address the influence of large surface to volume ratio of nanoparticles on both the thermodynamic and kinetic aspect of the ordering process; specifically, the nucleation and growth of L1{sub 0} ordered domain within disordered nanoparticles. The size- and shape-dependence of transition kinetics are quantitatively addressed by a revised Johnson-Mehl-Avrami equation that included corrections for deviations caused by the domination of surface nucleation in nanoscale systems and the non-negligible size of the ordered nuclei. Calculation results based on the model suggested that smaller nanoparticles are kinetically more active but thermodynamically less transformable. The major obstacle in obtaining completely ordered nanoparticles is the elimination of antiphase boundaries. The results also quantitatively confirmed the existence of a size-limit in ordering, beyond which, inducing order-disorder transitions through annealing is impossible. A good agreement is observed between theory, experiment, and computer simulation results.

  5. P-type conductivity in annealed strontium titanate

    DOE PAGESBeta

    Poole, Violet M.; Corolewski, Caleb D.; McCluskey, Matthew D.

    2015-12-17

    In this study, Hall-effect measurements indicate p-type conductivity in bulk, single-crystal strontium titanate (SrTiO3, or STO) samples that were annealed at 1200°C. Room temperature mobilities above 100 cm2/Vs were measured, an order of magnitude higher than those for electrons (5-10 cm2/Vs). Average hole densities were in the 109-1010 cm-3 range, consistent with a deep acceptor.

  6. Reverse degradation of nickel graphene junction by hydrogen annealing

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenjun; Yang, Fan; Agnihotri, Pratik; Lee, Ji Ung; Lloyd, J. R.

    2016-02-01

    Metal contacts are fundamental building components for graphene based electronic devices and their properties are greatly influenced by interface quality during device fabrication, leading to resistance variation. Here we show that nickel graphene junction degrades after air exposure, due to interfacial oxidation, thus creating a tunneling barrier. Most importantly, we demonstrate that hydrogen annealing at moderate temperature (300 0C) is an effective technique to reverse the degradation.

  7. Thermal annealing of laser damage precursors on fused silica surfaces

    SciTech Connect

    Shen, N; Miller, P E; Bude, J D; Laurence, T A; Suratwala, T I; Steele, W A; Feit, M D; Wang, L L

    2012-03-19

    Previous studies have identified two significant precursors of laser damage on fused silica surfaces at fluenes below {approx} 35 J/cm{sup 2}, photoactive impurities in the polishing layer and surface fractures. In the present work, isothermal heating is studied as a means of remediating the highly absorptive, defect structure associated with surface fractures. A series of Vickers indentations were applied to silica surfaces at loads between 0.5N and 10N creating fracture networks between {approx} 10{micro}m and {approx} 50{micro}m in diameter. The indentations were characterized prior to and following thermal annealing under various times and temperature conditions using confocal time-resolved photo-luminescence (CTP) imaging, and R/1 optical damage testing with 3ns, 355nm laser pulses. Significant improvements in the damage thresholds, together with corresponding reductions in CTP intensity, were observed at temperatures well below the glass transition temperature (T{sub g}). For example, the damage threshold on 05.N indentations which typically initiates at fluences <8 J/cm{sup 2} could be improved >35 J/cm{sup 2} through the use of a {approx} 750 C thermal treatment. Larger fracture networks required longer or higher temperature treatment to achieve similar results. At an annealing temperature > 1100 C, optical microscopy indicates morphological changes in some of the fracture structure of indentations, although remnants of the original fracture and significant deformation was still observed after thermal annealing. This study demonstrates the potential of using isothermal annealing as a means of improving the laser damage resistance of fused silica optical components. Similarly, it provides a means of further understanding the physics associated with optical damage and related mitigation processes.

  8. Colour annealing - a toy model of colour reconnections

    SciTech Connect

    Sandhoff, Marisa; Skands, Peter; /Fermilab

    2005-12-01

    We present a simple toy model for colour reconnections at the nonperturbative level. The model resembles an annealing-type algorithm and is applicable to any collider and process type, though we argue for a possible enhancement of the effect in hadron-hadron collisions. We present a simple application and study of the consequences for semileptonic t{bar t} events at the Tevatron.

  9. Metallic glass composition. [That does not embrittle upon annealing

    DOEpatents

    Kroeger, D.M.; Koch, C.C.

    1984-09-14

    This patent pertains to a metallic glass alloy that is either iron-based or nickel-based or based on a mixture of iron and nickel, containing lesser amounts of elements selected from the group boron, silicon, carbon and phosphorous to which is added an amount of a ductility-enhancing element selected from the group cerium, lanthanum, praseodymium and neodymium sufficient to increase ductility of the metallic glass upon annealing.

  10. Radiation hardness and annealing tests of a custom VLSI device

    SciTech Connect

    Breakstone, A.; Parker, S.; Adolphsen, C.; Litke, A.; Schwarz, A.; Turala, M.; Lueth, V.; California Univ., Santa Cruz, CA . Inst. for Particle Physics; Stanford Linear Accelerator Center, Menlo Park, CA )

    1986-10-01

    Several NMOS custom VLSI ( Microplex'') circuits have been irradiated with a 500 rad/hr {sup 60}Co source. With power off three of four chips tested have survived doses exceeding 1 Mrad. With power on at a 25% duty cycle, all chips tested failed at doses ranging from 10 to 130 krad. Annealing at 200{degree}C was only partially successful in restoring the chips to useful operating conditions. 10 refs., 4 figs., 1 tab.

  11. Dating thermal events at Cerro Prieto using fission track annealing

    SciTech Connect

    Sanford, S.J.; Elders, W..

    1981-01-01

    Data from laboratory experiments and geologic fading studies were compiled from published sources to produce lines of iso-annealing for apatite in time-temperature space. Fission track ages were calculated for samples from two wells at Cerro Prieto, one with an apparently simple and one with an apparently complex thermal history. Temperatures were estimated by empirical vitrinite reflectance geothermometry, fluid inclusion homogenization and oxygen isotope equilibrium. These estimates were compared with logs of measured borehole temperatures.

  12. Photoluminescence of polycrystalline ZnO under different annealing conditions

    NASA Astrophysics Data System (ADS)

    Hur, Tae-Bong; Jeen, Gwang Soo; Hwang, Yoon-Hwae; Kim, Hyung-Kook

    2003-11-01

    We investigated polycrystalline zinc oxide (ZnO) with different annealing conditions in air by x-ray photoelectron spectroscopy and photoluminescence. We found that the concentration of antisite oxide (OZn) increases when ZnO ceramics were in an O-rich condition. As the concentration of antisite oxide (OZn) increased, the photoluminescence intensity of the green band emission increased. The crossover temperature of the free and bound excitons was roughly estimated as 100 K.

  13. Rapid annealing using the water-wall arc lamp

    NASA Astrophysics Data System (ADS)

    Gelpey, Jeffrey C.; Stump, Paul O.

    1985-01-01

    Rapid annealing techniques using graphite strip heaters [1], tungsten-halogen lamps [2], and conventional arc lamps [3] have been gaining favor to provide controllable activation of ion implants while minimizing the diffusion of the implanted dopant. These conventional heat sources have given good results, but they all suffer from limitations in power output and/or the ability to change power levels rapidly. The water-wall d.c. arc lamp overcomes these limitations and allows precise control and excellent reproducability of the anneal cycle. The high power output and excellent optical coupling of the water-wall lamp allows ilumination from one side of the sample. The wafer temperature can then be directly monitored with a pyrometer and the fast response time of the lamp allows the pyrometer output to control the lamp power and, hence, provide direct feedback control of the wafer temperature. Direct control is important to overcome variations caused by different doping levels or dielectric coatings on the wafers. Annealing experiments using the water-wall lamp have shown that good activation and essentially complete removal of implant damage can be achieved while moving the junction only minimally [4,5]. The degree of dopant diffusion (generally on the order of 1000 Å) is small compared to device dimensions but is somewhat more than would be expected from classical diffusion theory using published diffusion coefficients. The differences depend on the implanted species and models are being developed to explain the discrepancies. The vary rapid heating and cooling rates obtainable with the water-wall lamp offer a great deal of flexibility in the time/temperature cycles used for annealing (or other rapid thermal processes). There are indications that the ability to achieve a rapid cooling rate allows more complete activation of high dose implants and rapid heating rates may reduce the residual damage and amount of diffusion.

  14. Kinetics of Reactive Wetting

    SciTech Connect

    YOST, FREDERICK G.

    1999-09-09

    The importance of interfacial processes in materials joining has a long history. A significant amount of work has suggested that processes collateral to wetting can affect the extent of wetting and moderate or retard wetting rate. Even very small additions of a constituent, known to react with the substrate, cause pronounced improvement in wetting and are exploited in braze alloys, especially those used for joining to ceramics. The wide diversity of processes, such as diffusion, chemical reaction, and fluxing, and their possible combinations suggest that various rate laws should be expected for wetting kinetics depending on the controlling processes. These rate laws are expected to differ crucially from the standard fluid controlled wetting models found in the literature. Voitovitch et al. and Mortensen et al. have shown data that suggests diffusion control for some systems and reaction control for others. They also presented a model of wetting kinetics controlled by the diffusion of a constituent contained by the wetting fluid. In the following a model will be constructed for the wetting kinetics of a small droplet of metal containing a constituent that diffuses to the wetting line and chemically reacts with a flat, smooth substrate. The model is similar to that of Voitovitch et al. and Mortensen et al. but incorporates chemical reaction kinetics such that the result contains both diffusion and reaction kinetics. The model is constructed in the circular cylinder coordinate system, satisfies the diffusion equation under conditions of slow flow, and considers diffusion and reaction at the wetting line to be processes in series. This is done by solving the diffusion equation with proper initial and boundary conditions, computing the diffusive flux at the wetting line and equating this to both the convective flux and reaction flux. This procedure is similar to equating the current flowing in components of a series circuit. The wetting rate will be computed versus time

  15. Effects of high magnetic field annealing on the initial recrystallized texture in pure copper

    NASA Astrophysics Data System (ADS)

    He, Tong; Wang, Yan; Sun, Wei; Zhao, Xiang

    2015-03-01

    The cold-rolled pure copper sheets were annealed with and without a high magnetic field of 12 T. The results showed that the magnetic annealing could promote the formation of the initial recrystallized cube texture. The magnetic annealing did not dramatically change the final annealing textures, but the intensity of the recrystallized cube texture is obviously different. The differences of the recrystallized cube orientation intensity between the specimens with and without the field annealing may be attributed to the effects of the magnetic field on the mobility of grain boundaries.

  16. In situ annealing and high-rate silicon epitaxy on porous silicon by mesoplasma process

    NASA Astrophysics Data System (ADS)

    Zhang, Sheng; Lu, Ziyu; Sheng, Jiang; Gao, Pingqi; Yang, Xi; Wu, Sudong; Ye, Jichun; Kambara, Makoto

    2016-05-01

    By a mesoplasma process, a double-layer porous Si is annealed for a few seconds, by which an annealing effect similar to that of a prolonged conventional annealing process is obtained. The basic annealing process is considered to follow the classical sintering theory. However, the surface of the annealed porous Si is rough with large open voids because of H etching. The epitaxial Si films deposited on such a rough surface at a rate of 350 nm/s show a smooth surface with a low defect density compared with those deposited on a polished Si wafer, which clearly demonstrates the advantages of the cluster-assisted mesoplasma process.

  17. Thin film poly-crystalline silicon fabrication based on Rapid Thermal Annealing (RTA) process

    NASA Astrophysics Data System (ADS)

    Qian, Jun; Li, Jirong; Liao, Yang; Shi, Weimin; Kuang, Huahui; Ming, Xiuchun; Liu, Jin; Jin, Jing; Qin, Juan

    2013-12-01

    Rapid Thermal Annealing (RTA) process was introduced to the experiment of Aluminum-induced crystallization of a-Si, based on sputtering method, on low cost glass substrate. A stack of glass/Al (150 nm)/Si (220 nm) was deposited by sputtering sequentially. Samples were annealed under RTA process, then annealed in the tube annealing furnace at 400 °C for 5 h. The grain crystallization was inspected by optical microscopy (OM), ,Raman spectroscopy, X-ray diffraction (XRD),and energy dispersive spectroscopy (EDS). The preferential orientation (111) was observed, with a Raman Peak at 520.8cm-1, Different annealing periods were discussed.

  18. Structure and texture in Ni-30% Co alloy ribbons subjected to annealing in high magnetic field

    NASA Astrophysics Data System (ADS)

    Gervas'eva, I. V.; Milyutin, V. A.; Beaugnon, E.; Khlebnikova, Yu. V.; Rodionov, D. P.

    2016-05-01

    The structure and texture in the Ni-30% Co alloy subjected to cold rolling and annealings in strong dc magnetic field at the temperatures of above and below the Curie point are studied. It has been shown that, at all annealing temperatures, the average grain size after magnetic annealing is smaller than after annealing without filed. After the magnetic annealing of the alloy in the ferromagnetic state, the volume fraction of grains with cube orientation decreases and the volume fraction of the components of deformationinduced texture increases.

  19. Dynamical SCFT Simulations of Solvent Annealed Thin Films

    NASA Astrophysics Data System (ADS)

    Paradiso, Sean; Delaney, Kris; Ceniceros, Hector; Garcia-Cervera, Carlos; Fredrickson, Glenn

    2014-03-01

    Block copolymer thin films are ideal candidates for a broad range of technologies including rejection layers for ultrafiltration membranes, proton-exchange membranes in solar cells, optically active coatings, and lithographic masks for bit patterning storage media. Optimizing the performance of these materials often hinges on tuning the orientation and long-range order of the film's internal nanostructure. In response, solvent annealing techniques have been developed for their promise to afford additional flexibility in tuning thin film morphology, but pronounced processing history dependence and a dizzying parameter space have resulted in slow progress towards developing clear design rules for solvent annealing systems. In this talk, we will report recent theoretical progress in understanding the self assembly dynamics relevant to solvent-annealed and solution-cast block copolymer films. Emphasis will be placed on evaporation-induced ordering trends in both the slow and fast drying regimes for cylinder-forming block copolymers from initially ordered and disordered films, along with the role solvent selectivity plays in the ordering dynamics.

  20. Excimer laser annealing to fabricate low cost solar cells

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The objective is to show whether or not pulsed excimer laser annealing (PELA) of ion-implanted junctions is a cost effective replacement for diffused junctions in fabricating crystalline silicon solar cells. The preliminary economic analysis completed shows that the use of PELA to fabricate both the front junction and back surface field (BSF) would cost approximately 35 cents per peak watt (Wp), compared to a cost of 15 cents/Wp for diffusion, aluminum BSF and an extra cleaning step in the baseline process. The cost advantage of the PELA process depends on improving the average cell efficiency from 14% to 16%, which would lower the overall cost of the module by about 15 cents/Wp. An optimized PELA process compatible with commercial production is to be developed, and increased cell efficiency with sufficient product for adequate statistical analysis demonstrated. An excimer laser annealing station was set-up and made operational. The first experiment used 248 nm radiation to anneal phosphorus implants in polished and texture-etched silicon.