Science.gov

Sample records for kinetics mass transport

  1. Advances in Studies of Electrode Kinetics and Mass Transport in AMTEC Cells (abstract)

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; Kisor, A.; O'Connor, D.; Kikkert, S.

    1993-01-01

    Previous work reported from JPL has included characterization of electrode kinetics and alkali atom transport from electrodes including Mo, W, WRh(sub x), WPt(sub x)(Mn), in sodium AMTEC cells and vapor exposure cells, and Mo in potassium vapor exposure cells. These studies were generally performed in cells with small area electrodes (about 1 to 5 cm(sup 2)), and device geometry had little effect on transport. Alkali diffusion coefficients through these electrodes have been characterized, and approximate surface diffusion coefficients derived in cases of activated transport. A basic model of electrode kinetic at the alkali metal vapor/porous metal electrode/alkali beta'-alumina solid electrolyte three phase boundary has been proposed which accounts for electrochemical reaction rates with a collision frequency near the three phase boundary and tunneling from the porous electrode partially covered with adsorbed alkali metal atoms. The small electrode effect in AMTEC cells has been discussed in several papers, but quantitative investigations have described only the overall effect and the important contribution of electrolyte resistance. The quantitative characterization of transport losses in cells with large area electrodes has been limited to simulations of large area electrode effects, or characterization of transport losses from large area electrodes with significant longitudinal temperature gradients. This paper describes new investigations of electrochemical kinetics and transport, particularily with WPt(sub 3.5) electrodes, including the influence of electrode size on the mass transport loss in the AMTEC cell. These electrodes possess excellent sodium transport properties making verification of device limitations on transport much more readily attained.

  2. MASS TRANSPORT EFFECTS ON THE KINETICS OF NITROBENZENE REDUCTION BY IRON METAL. (R827117)

    EPA Science Inventory

    To evaluate the importance of external mass transport on the overall rates of
    contaminant reduction by iron metal (Fe0), we have compared measured
    rates of surface reaction for nitrobenzene (ArNO2) to estimated rates
    of external mass transport...

  3. Ozone-surface interactions: Investigations of mechanisms, kinetics, mass transport, and implications for indoor air quality

    SciTech Connect

    Morrison, Glenn C.

    1999-12-01

    In this dissertation, results are presented of laboratory investigations and mathematical modeling efforts designed to better understand the interactions of ozone with surfaces. In the laboratory, carpet and duct materials were exposed to ozone and measured ozone uptake kinetics and the ozone induced emissions of volatile organic compounds. To understand the results of the experiments, mathematical methods were developed to describe dynamic indoor aldehyde concentrations, mass transport of reactive species to smooth surfaces, the equivalent reaction probability of whole carpet due to the surface reactivity of fibers and carpet backing, and ozone aging of surfaces. Carpets, separated carpet fibers, and separated carpet backing all tended to release aldehydes when exposed to ozone. Secondary emissions were mostly n-nonanal and several other smaller aldehydes. The pattern of emissions suggested that vegetable oils may be precursors for these oxidized emissions. Several possible precursors and experiments in which linseed and tung oils were tested for their secondary emission potential were discussed. Dynamic emission rates of 2-nonenal from a residential carpet may indicate that intermediate species in the oxidation of conjugated olefins can significantly delay aldehyde emissions and act as reservoir for these compounds. The ozone induced emission rate of 2-nonenal, a very odorous compound, can result in odorous indoor concentrations for several years. Surface ozone reactivity is a key parameter in determining the flux of ozone to a surface, is parameterized by the reaction probability, which is simply the probability that an ozone molecule will be irreversibly consumed when it strikes a surface. In laboratory studies of two residential and two commercial carpets, the ozone reaction probability for carpet fibers, carpet backing and the equivalent reaction probability for whole carpet were determined. Typically reaction probability values for these materials were 10

  4. High energy efficiency and high power density proton exchange membrane fuel cells: Electrode kinetics and mass transport

    NASA Technical Reports Server (NTRS)

    Srinivasan, Supramaniam; Velev, Omourtag A.; Parthasathy, Arvind; Manko, David J.; Appleby, A. John

    1991-01-01

    The development of proton exchange membrane (PEM) fuel cell power plants with high energy efficiencies and high power densities is gaining momentum because of the vital need of such high levels of performance for extraterrestrial (space, underwater) and terrestrial (power source for electric vehicles) applications. Since 1987, considerable progress has been made in achieving energy efficiencies of about 60 percent at a current density of 200 mA/sq cm and high power densities (greater than 1 W/sq cm) in PEM fuel cells with high (4 mg/sq cm) or low (0.4 mg/sq cm) platinum loadings in electrodes. The following areas are discussed: (1) methods to obtain these high levels of performance with low Pt loading electrodes - by proton conductor impregnation into electrodes, localization of Pt near front surface; (2) a novel microelectrode technique which yields electrode kinetic parameters for oxygen reduction and mass transport parameters; (3) demonstration of lack of water transport from anode to cathode; (4) modeling analysis of PEM fuel cell for comparison with experimental results and predicting further improvements in performance; and (5) recommendations of needed research and development for achieving the above goals.

  5. Comparison of structural, thermodynamic, kinetic and mass transport properties of Mg2+ ion models commonly used in biomolecular simulations

    PubMed Central

    Panteva, Maria T.; GiambaȈsu, George M.; York, Darrin M.

    2015-01-01

    The prevalence of Mg2+ ions in biology and their essential role in nucleic acid structure and function has motivated the development of various Mg2+ ion models for use in molecular simulations. Currently the most widely used models in biomolecular simulations represent a non-bonded metal ion as an ion-centered point charge surrounded by a non-electrostatic pairwise potential that takes into account dispersion interactions and exchange effects that give rise to the ion's excluded volume. One strategy toward developing improved models for biomolecular simulations is to first identify a Mg2+ model that is consistent with the simulation force fields that closely reproduces a range of properties in aqueous solution, and then, in a second step, balance the ion-water and ion-solute interactions by tuning parameters in a pairwise fashion where necessary. The present work addresses the first step in which we compare 17 different non-bonded single-site Mg2+ ion models with respect to their ability to simultaneously reproduce structural, thermodynamic, kinetic and mass transport properties in aqueous solution. None of the models based on a 12-6 non-electrostatic non-bonded potential was able to reproduce the experimental radial distribution function, solvation free energy, exchange barrier and diffusion constant. The models based on a 12-6-4 potential offered improvement, and one model in particular, in conjunction with the SPC/E water model, performed exceptionally well for all properties. The results reported here establish useful benchmark calculations for Mg2+ ion models that provide insight into the origin of the behavior in aqueous solution, and may aid in the development of next-generation models that target specific binding sites in biomolecules. PMID:25736394

  6. Comparison of structural, thermodynamic, kinetic and mass transport properties of Mg(2+) ion models commonly used in biomolecular simulations.

    PubMed

    Panteva, Maria T; Giambaşu, George M; York, Darrin M

    2015-05-15

    The prevalence of Mg(2+) ions in biology and their essential role in nucleic acid structure and function has motivated the development of various Mg(2+) ion models for use in molecular simulations. Currently, the most widely used models in biomolecular simulations represent a nonbonded metal ion as an ion-centered point charge surrounded by a nonelectrostatic pairwise potential that takes into account dispersion interactions and exchange effects that give rise to the ion's excluded volume. One strategy toward developing improved models for biomolecular simulations is to first identify a Mg(2+) model that is consistent with the simulation force fields that closely reproduces a range of properties in aqueous solution, and then, in a second step, balance the ion-water and ion-solute interactions by tuning parameters in a pairwise fashion where necessary. The present work addresses the first step in which we compare 17 different nonbonded single-site Mg(2+) ion models with respect to their ability to simultaneously reproduce structural, thermodynamic, kinetic and mass transport properties in aqueous solution. None of the models based on a 12-6 nonelectrostatic nonbonded potential was able to reproduce the experimental radial distribution function, solvation free energy, exchange barrier and diffusion constant. The models based on a 12-6-4 potential offered improvement, and one model in particular, in conjunction with the SPC/E water model, performed exceptionally well for all properties. The results reported here establish useful benchmark calculations for Mg(2+) ion models that provide insight into the origin of the behavior in aqueous solution, and may aid in the development of next-generation models that target specific binding sites in biomolecules. PMID:25736394

  7. Pressure dependence of the oxygen reduction reaction at the platinum microelectrode/nafion interface - Electrode kinetics and mass transport

    NASA Technical Reports Server (NTRS)

    Parthasarathy, Arvind; Srinivasan, Supramaniam; Appleby, A. J.; Martin, Charles R.

    1992-01-01

    The investigation of oxygen reduction kinetics at the platinum/Nafion interface is of great importance in the advancement of proton-exchange-membrane (PEM) fuel-cell technology. This study focuses on the dependence of the oxygen reduction kinetics on oxygen pressure. Conventional Tafel analysis of the data shows that the reaction order with respect to oxygen is unity at both high and low current densities. Chronoamperometric measurements of the transport parameters for oxygen in Nafion show that oxygen dissolution follows Henry's isotherm. The diffusion coefficient of oxygen is invariant with pressure; however, the diffusion coefficient for oxygen is lower when air is used as the equilibrating gas as compared to when oxygen is used for equilibration. These results are of value in understanding the influence of O2 partial pressure on the performance of PEM fuel cells and also in elucidating the mechanism of oxygen reduction at the platinum/Nafion interface.

  8. Mass Conservation and Chemical Kinetics.

    ERIC Educational Resources Information Center

    Barbara, Thomas M.; Corio, P. L.

    1980-01-01

    Presents a method for obtaining all mass conservation conditions implied by a given mechanism in which the conditions are used to simplify integration of the rate equations and to derive stoichiometric relations. Discusses possibilities of faulty inference of kinetic information from a given stoichiometry. (CS)

  9. A high-fidelity multiphysics model for the new solid oxide iron-air redox battery. part I: Bridging mass transport and charge transfer with redox cycle kinetics

    NASA Astrophysics Data System (ADS)

    Jin, Xinfang; Zhao, Xuan; Huang, Kevin

    2015-04-01

    A high-fidelity two-dimensional axial symmetrical multi-physics model is described in this paper as an effort to simulate the cycle performance of a recently discovered solid oxide metal-air redox battery (SOMARB). The model collectively considers mass transport, charge transfer and chemical redox cycle kinetics occurring across the components of the battery, and is validated by experimental data obtained from independent research. In particular, the redox kinetics at the energy storage unit is well represented by Johnson-Mehl-Avrami-Kolmogorov (JMAK) and Shrinking Core models. The results explicitly show that the reduction of Fe3O4 during the charging cycle limits the overall performance. Distributions of electrode potential, overpotential, Nernst potential, and H2/H2O-concentration across various components of the battery are also systematically investigated.

  10. A high-fidelity multiphysics model for the new solid oxide iron-air redox battery part I: Bridging mass transport and charge transfer with redox cycle kinetics

    SciTech Connect

    Jin, XF; Zhao, X; Huang, K

    2015-04-15

    A high-fidelity two-dimensional axial symmetrical multi-physics model is described in this paper as an effort to simulate the cycle performance of a recently discovered solid oxide metal-air redox battery (SOMARB). The model collectively considers mass transport, charge transfer and chemical redox cycle kinetics occurring across the components of the battery, and is validated by experimental data obtained from independent research. In particular, the redox kinetics at the energy storage unit is well represented by Johnson-Mehl-Avrami-Kolmogorov (JIVIAK) and Shrinking Core models. The results explicitly show that the reduction of Fe3O4 during the charging cycle limits the overall performance. Distributions of electrode potential, overpotential, Nernst potential, and H-2/H2O-concentration across various components of the battery are also systematically investigated. (C) 2015 Elsevier B.V. All rights reserved.

  11. Subcontinuum mass transport of hydrocarbons in nanoporous media and long-time kinetics of recovery from unconventional reservoirs

    NASA Astrophysics Data System (ADS)

    Bocquet, Lyderic

    2015-11-01

    In this talk I will discuss the transport of hydrocarbons across nanoporous media and analyze how this transport impacts at larger scales the long-time kinetics of hydrocarbon recovery from unconventional reservoirs (the so-called shale gas). First I will establish, using molecular simulation and statistical mechanics, that the continuum description - the so-called Darcy law - fails to predict transport within a nanoscale organic matrix. The non-Darcy behavior arises from the strong adsorption of the alkanes in the nanoporous material and the breakdown of hydrodynamics at the nanoscale, which contradicts the assumption of viscous flow. Despite this complexity, all permeances collapse on a master curve with an unexpected dependence on alkane length, which can be described theoretically by a scaling law for the permeance. Then I will show that alkane recovery from such nanoporous reservoirs is dynamically retarded due to interfacial effects occuring at the material's interface. This occurs especially in the hydraulic fracking situation in which water is used to open fractures to reach the hydrocarbon reservoirs. Despite the pressure gradient used to trigger desorption, the alkanes remain trapped for long times until water desorbs from the external surface. The free energy barrier can be predicted in terms of an effective contact angle on the composite nanoporous surface. Using a statistical description of the alkane recovery, I will then demonstrate that this retarded dynamics leads to an overall slow - algebraic - decay of the hydrocarbon flux. Such a behavior is consistent with algebraic decays of shale gas flux from various wells reported in the literature. This work was performed in collaboration with B. Coasne, K. Falk, T. Lee, R. Pellenq and F. Ulm, at the UMI CNRS-MIT, Massachusetts Institute of Technology, Cambridge, USA.

  12. Bioreactor Mass Transport Studies

    NASA Technical Reports Server (NTRS)

    Kleis, Stanley J.; Begley, Cynthia M.

    1997-01-01

    The objectives of the proposed research efforts were to develop both a simulation tool and a series of experiments to provide a quantitative assessment of mass transport in the NASA rotating wall perfused vessel (RWPV) bioreactor to be flown on EDU#2. This effort consisted of a literature review of bioreactor mass transport studies, the extension of an existing scalar transport computer simulation to include production and utilization of the scalar, and the evaluation of experimental techniques for determining mass transport in these vessels. Since mass transport at the cell surface is determined primarily by the relative motion of the cell assemblage and the surrounding fluid, a detailed assessment of the relative motion was conducted. Results of the simulations of the motion of spheres in the RWPV under microgravity conditions are compared with flight data from EDU#1 flown on STS-70. The mass transport across the cell membrane depends upon the environment, the cell type, and the biological state of the cell. Results from a literature review of cell requirements of several scalars are presented. As a first approximation, a model with a uniform spatial distribution of utilization or production was developed and results from these simulations are presented. There were two candidate processes considered for the experimental mass transport evaluations. The first was to measure the dissolution rate of solid or gel beads. The second was to measure the induced fluorescence of beads as a stimulant (for example hydrogen peroxide) is infused into the vessel. Either technique would use video taped images of the process for recording the quantitative results. Results of preliminary tests of these techniques are discussed.

  13. Automated transportable mass spectrometer

    NASA Astrophysics Data System (ADS)

    Echo, M. W.

    1981-09-01

    The need was identified for a mass spectrometer (MS) which can be conveniently transported among several facilities for rapid verification of the isotopic composition of special nuclear material. This requirement for a light weight, transportable MS for U and Pu mass analysis was met by deleting the gas chromograph (GC) portions of a Hewlett-Packard Model 5992 Quadrupole GCMS and substituting a vacuum lock sample entry system. A programmable power supply and vacuum gauge were added and circuitry modifications were made to enable use of the supplied software.

  14. Mass Transport within Soils

    SciTech Connect

    McKone, Thomas E.

    2009-03-01

    Contaminants in soil can impact human health and the environment through a complex web of interactions. Soils exist where the atmosphere, hydrosphere, geosphere, and biosphere converge. Soil is the thin outer zone of the earth's crust that supports rooted plants and is the product of climate and living organisms acting on rock. A true soil is a mixture of air, water, mineral, and organic components. The relative proportions of these components determine the value of the soil for agricultural and for other human uses. These proportions also determine, to a large extent, how a substance added to soil is transported and/or transformed within the soil (Spositio, 2004). In mass-balance models, soil compartments play a major role, functioning both as reservoirs and as the principal media for transport among air, vegetation, surface water, deeper soil, and ground water (Mackay, 2001). Quantifying the mass transport of chemicals within soil and between soil and atmosphere is important for understanding the role soil plays in controlling fate, transport, and exposure to multimedia pollutants. Soils are characteristically heterogeneous. A trench dug into soil typically reveals several horizontal layers having different colors and textures. As illustrated in Figure 1, these multiple layers are often divided into three major horizons: (1) the A horizon, which encompasses the root zone and contains a high concentration of organic matter; (2) the B horizon, which is unsaturated, lies below the roots of most plants, and contains a much lower organic carbon content; and (3) the C horizon, which is the unsaturated zone of weathered parent rock consisting of bedrock, alluvial material, glacial material, and/or soil of an earlier geological period. Below these three horizons lies the saturated zone - a zone that encompasses the area below ground surface in which all interconnected openings within the geologic media are completely filled with water. Similarly to the unsaturated zone

  15. Ozone mass transfer and kinetics experiments

    SciTech Connect

    Bollyky, L.J.; Beary, M.M.

    1981-12-01

    Experiments were conducted at the Hanford Site to determine the most efficient pH and temperature levels for the destruction of complexants in Hanford high-level defense waste. These complexants enhance migration of radionuclides in the soil and inhibit the growth of crystals in the evaporator-crystallizer. Ozone mass transfer and kinetics tests have been outlined for the determination of critical mass transfer and kinetics parameters of the ozone-complexant reaction.

  16. Lean body mass estimation by creatinine kinetics.

    PubMed

    Keshaviah, P R; Nolph, K D; Moore, H L; Prowant, B; Emerson, P F; Meyer, M; Twardowski, Z J; Khanna, R; Ponferrada, L; Collins, A

    1994-01-01

    A new technique for estimating lean body mass (LBM) from creatinine kinetics has been developed. It is based on the principle that creatinine production is proportional to LBM and that, in the steady state, creatinine production is equal to the sum of creatinine excretion (urinary and dialytic) and metabolic degradation. This technique was applied to 17 normal subjects, 26 stable, chronic hemodialysis (HD) patients, and 71 stable, chronic peritoneal dialysis (PD) patients. In the HD group, LBM was also determined by bioimpedance in 11 patients and calculated from total body water, measured as the volume of urea distribution of a sterile urea infusion, in 15 patients. In normal subjects and in the PD group, LBM was assessed by creatinine kinetics as well as by bioimpedance, near infrared, and anthropometric techniques. In the HD patients, LBM by creatinine kinetics correlated significantly with LBM from total body water and the bioimpedance technique. There was no statistical difference between the total body water and creatinine kinetics techniques, but the bioimpedance values were systematically higher than those obtained by the kinetic technique. In the PD group and in normal volunteers, LBM values by creatinine kinetics correlated significantly with the other methods but were lower. Forty-seven percent of the HD patients and 66% of the PD patients had significantly lower LBM by creatinine kinetics than expected for their sex and age. Estimation of LBM by creatinine kinetics is proposed as a simple and convenient technique for the routine nutritional assessment of dialysis patients. PMID:8161729

  17. Mass partitioning effects in diffusion transport.

    PubMed

    Kojic, Milos; Milosevic, Miljan; Wu, Suhong; Blanco, Elvin; Ferrari, Mauro; Ziemys, Arturas

    2015-08-28

    Frequent mass exchange takes place in a heterogeneous environment among several phases, where mass partitioning may occur at the interface of phases. Analytical and computational methods for diffusion do not usually incorporate molecule partitioning masking the true picture of mass transport. Here we present a computational finite element methodology to calculate diffusion mass transport with a partitioning phenomenon included and the analysis of the effects of partitioning. Our numerical results showed that partitioning controls equilibrated mass distribution as expected from analytical solutions. The experimental validation of mass release from drug-loaded nanoparticles showed that partitioning might even dominate in some cases with respect to diffusion itself. The analysis of diffusion kinetics in the parameter space of partitioning and diffusivity showed that partitioning is an extremely important parameter in systems, where mass diffusivity is fast and that the concentration of nanoparticles can control payload retention inside nanoparticles. The computational and experimental results suggest that partitioning and physiochemical properties of phases play an important, if not crucial, role in diffusion transport and should be included in the studies of mass transport processes. PMID:26204522

  18. Kinetic transport simulation of energetic particles

    NASA Astrophysics Data System (ADS)

    Sheng, He; Waltz, R. E.

    2016-05-01

    A kinetic transport code (EPtran) is developed for the transport of the energetic particles (EPs). The EPtran code evolves the EP distribution function in radius, energy, and pitch angle phase space (r, E, λ) to steady state with classical slowing down, pitch angle scattering, as well as radial and energy transport of the injected EPs (neutral beam injection (NBI) or fusion alpha). The EPtran code is illustrated by treating the transport of NBI fast ions from high-n ITG/TEM micro-turbulence and EP driven unstable low-n Alfvén eigenmodes (AEs) in a well-studied DIII-D NBI heated discharge with significant AE central core loss. The kinetic transport code results for this discharge are compared with previous study using a simple EP density moment transport code ALPHA (R.E. Waltz and E.M. Bass 2014 Nucl. Fusion 54 104006). The dominant EP-AE transport is treated with a local stiff critical EP density (or equivalent pressure) gradient radial transport model modified to include energy-dependence and the nonlocal effects EP drift orbits. All previous EP transport models assume that the EP velocity space distribution function is not significantly distorted from the classical ‘no transport’ slowing down distribution. Important transport distortions away from the slowing down EP spectrum are illustrated by a focus on the coefficient of convection: EP energy flux divided by the product of EP average energy and EP particle flux.

  19. Transport and Growth Kinetics in Microgravity Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    Otalora, F.; Garcia-Ruiz, J. M.; Carotenuto, L.; Castagnolo, D.; Novella, M. L.; Chernov, A. A.

    2002-01-01

    The dynamic coupling between mass transport and incorporation of growth units into the surface of a crystal growing from solution in microgravity is used to derive quantitative information on the crystal growth kinetics. To this end, new procedures for experiment preparation, interferometric data processing and model fitting have been developed. The use of experimental data from the bulk diffusive maw transport together with a model for steady state stagnant crystal growth allows the detailed quantitative understanding of the kinetics of both the concentration depletion zone around the crystal and the growth of the crystal interface. The protein crystal used in the experiment is shown to be growing in the mixed kinetic regime (0.2 x 10(exp -6) centimeters per second less than beta R/D less than 0.9 x 10(exp -6) centimeters per second).

  20. Urban Mass Transportation.

    ERIC Educational Resources Information Center

    Mervine, K. E.

    This bibliography is part of a series of Environmental Resource Packets prepared under a grant from EXXON Education Foundation. The most authoritative and accessible references in the urban transportation field are reviewed. The authors, publisher, point of view, level, and summary are given for each reference. The references are categorized…

  1. Mass transport contamination study

    NASA Technical Reports Server (NTRS)

    Robertson, S. J.

    1972-01-01

    A theoretical analysis was performed to determine the effects of outgassing and waste dumping on the contamination field around an orbiting spacecraft. The spacecraft was assumed to be spherical in shape with the mass flow emitting uniformly from the spherical surface at a constant rate and in a D'Lambertian spatial distribution. The outflow of gases were assumed to be neutrally charged and of a single species with a molecular weight characteristic of a composite of the actual species involved in the mass flow. The theoretical analysis showed that, for outgassing only, less than 1.5 percent of the outgas products will return to the Skylab spacecraft as a result of intermolecular collisions. When the total mass flow from the spacecraft, including waste dumps and reaction control motor firings, was considered, it was estimated that about 30 percent will return to the spacecraft.

  2. Modeling anomalous radial transport in kinetic transport codes

    NASA Astrophysics Data System (ADS)

    Bodi, K.; Krasheninnikov, S. I.; Cohen, R. H.; Rognlien, T. D.

    2009-11-01

    Anomalous transport is typically the dominant component of the radial transport in magnetically confined plasmas, where the physical origin of this transport is believed to be plasma turbulence. A model is presented for anomalous transport that can be used in continuum kinetic edge codes like TEMPEST, NEO and the next-generation code being developed by the Edge Simulation Laboratory. The model can also be adapted to particle-based codes. It is demonstrated that the model with a velocity-dependent diffusion and convection terms can match a diagonal gradient-driven transport matrix as found in contemporary fluid codes, but can also include off-diagonal effects. The anomalous transport model is also combined with particle drifts and a particle/energy-conserving Krook collision operator to study possible synergistic effects with neoclassical transport. For the latter study, a velocity-independent anomalous diffusion coefficient is used to mimic the effect of long-wavelength ExB turbulence.

  3. Drift-Kinetic Simulations of Neoclassical Transport

    SciTech Connect

    Belli, E. A.; Candy, J.

    2008-11-01

    We present results from numerical studies of neoclassical transport for multi-species plasmas. The code, NEO, provides a first-principles based calculation of the neoclassical transport coefficients directly from solution of the distribution function by solving a hierarchy of equations derived by expanding the fundamental drift-kinetic equation in powers of {rho}{sub *i}, the ratio of the ion gyroradius to system size. It extends previous studies by including the self-consistent coupling of electrons and multiple ion species and strong toroidal rotation effects. Systematic calculations of the second-order particle and energy fluxes and first-order plasma flows and bootstrap current and comparisons with existing theories are given for multi-species plasmas. The ambipolar relation {sigma}{sub a}z{sub a}{gamma}{sub a} = 0, which can only be maintained with complete cross-species collisional coupling, is confirmed. The effects of plasma shaping are also explored.

  4. Temperature Dependent Kinetics DNA Charge Transport

    NASA Astrophysics Data System (ADS)

    Wohlgamuth, Chris; McWilliams, Marc; Slinker, Jason

    2012-10-01

    Charge transport (CT) through DNA has been extensively studied, and yet the mechanism of this process is still not yet fully understood. Besides the benefits of understanding charge transport through this fundamental molecule, further understanding of this process will elucidate the biological implications of DNA CT and advance sensing technology. Therefore, we have investigated the temperature dependence of DNA CT by measuring the electrochemistry of DNA monolayers modified with a redox-active probe. By using multiplexed electrodes on silicon chips, we compare square wave voltammetry of distinct DNA sequences under identical experimental conditions. We vary the probe length within the well matched DNA duplex in order to investigate distance dependent kinetics. This length dependent study is a necessary step to understanding the dominant mechanism behind DNA CT. Using a model put forth by O'Dea and Osteryoung and applying a nonlinear least squares analysis we are able to determine the charge transfer rates (k), transfer coefficients (α), and the total surface concentration (&*circ;) of the DNA monolayer. Arrhenius like behavior is observed for the multiple probe locations, and the results are viewed in light of and compared to the prominent charge transport mechanisms.

  5. Kinetic Energy Transport and the Amplitude Response of a Cylinder

    NASA Astrophysics Data System (ADS)

    Dong, P.; Wei, T.; Benaroya, H.

    1999-11-01

    The amplitude response of a low mass ratio cylinder has been examined from the perspective of integral kinetic energy tranposrt. This builds upon the work reported previously by Atsavapranee, et al. (1998) The objective of the work was to determine how energy is transferred to/from a cylinder as it vibrates in response to its own vortex shedding. The cylinder in this study was 2.54 cm in diameter and >100 cm long. It was attached at the bottom end by a leaf spring. Spatially and nearly temporally resolved DPIV measurements were used to compute terms in an integral form of the kinetic energy transport equation; this includes the rate of change of kinetic energy, flux terms, and the rate of viscous work done on the control volume boundaries. In this talk, the three different oscillation regimes will be revisited in light of the energy transport data. The modulation of the flow by the cylinder in the lock-in regime can be seen using this energy analysis. Similarly, one can also see how the cylinder's beating response can be understood in terms of energy transfer to/from the fluid.

  6. Kinetics and transport at AMTEC electrodes. I - The interfacial impedance model. [alkali metal thermoelectric converters

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Loveland, M. E.; Jeffries-Nakamura, B.; Underwood, M. L.; Bankston, C. P.; Leduc, H.; Kummer, J. T.

    1990-01-01

    Mixed mass-transport and kinetic control of sodium ion reduction at porous inert electrodes on sodium beta-double-prime alumina solid electrolyte (BASE) ceramic in a high-temperature electrochemical cell has been observed and modeled. The high ionic conductivity of BASE and the reversibility of the liquid sodium/BASE anodic half-cell led to assignment of potential-dependent (nonohmic) resistances to kinetic and mass-transport processes associated with the porous electrode. The morphology of these electrodes and typical sodium gas pressures are consistent with Knudsen, or free-molecular, flow through the electrode.

  7. Reactive Gas transport in soil: Kinetics versus Local Equilibrium Approach

    NASA Astrophysics Data System (ADS)

    Geistlinger, Helmut; Jia, Ruijan

    2010-05-01

    Gas transport through the unsaturated soil zone was studied using an analytical solution of the gas transport model that is mathematically equivalent to the Two-Region model. The gas transport model includes diffusive and convective gas fluxes, interphase mass transfer between the gas and water phase, and biodegradation. The influence of non-equilibrium phenomena, spatially variable initial conditions, and transient boundary conditions are studied. The objective of this paper is to compare the kinetic approach for interphase mass transfer with the standard local equilibrium approach and to find conditions and time-scales under which the local equilibrium approach is justified. The time-scale of investigation was limited to the day-scale, because this is the relevant scale for understanding gas emission from the soil zone with transient water saturation. For the first time a generalized mass transfer coefficient is proposed that justifies the often used steady-state Thin-Film mass transfer coefficient for small and medium water-saturated aggregates of about 10 mm. The main conclusion from this study is that non-equilibrium mass transfer depends strongly on the temporal and small-scale spatial distribution of water within the unsaturated soil zone. For regions with low water saturation and small water-saturated aggregates (radius about 1 mm) the local equilibrium approach can be used as a first approximation for diffusive gas transport. For higher water saturation and medium radii of water-saturated aggregates (radius about 10 mm) and for convective gas transport, the non-equilibrium effect becomes more and more important if the hydraulic residence time and the Damköhler number decrease. Relative errors can range up to 100% and more. While for medium radii the local equilibrium approach describes the main features both of the spatial concentration profile and the time-dependence of the emission rate, it fails completely for larger aggregates (radius about 100 mm

  8. Chemical Kinetic Modeling of Advanced Transportation Fuels

    SciTech Connect

    PItz, W J; Westbrook, C K; Herbinet, O

    2009-01-20

    Development of detailed chemical kinetic models for advanced petroleum-based and nonpetroleum based fuels is a difficult challenge because of the hundreds to thousands of different components in these fuels and because some of these fuels contain components that have not been considered in the past. It is important to develop detailed chemical kinetic models for these fuels since the models can be put into engine simulation codes used for optimizing engine design for maximum efficiency and minimal pollutant emissions. For example, these chemistry-enabled engine codes can be used to optimize combustion chamber shape and fuel injection timing. They also allow insight into how the composition of advanced petroleum-based and non-petroleum based fuels affect engine performance characteristics. Additionally, chemical kinetic models can be used separately to interpret important in-cylinder experimental data and gain insight into advanced engine combustion processes such as HCCI and lean burn engines. The objectives are: (1) Develop detailed chemical kinetic reaction models for components of advanced petroleum-based and non-petroleum based fuels. These fuels models include components from vegetable-oil-derived biodiesel, oil-sand derived fuel, alcohol fuels and other advanced bio-based and alternative fuels. (2) Develop detailed chemical kinetic reaction models for mixtures of non-petroleum and petroleum-based components to represent real fuels and lead to efficient reduced combustion models needed for engine modeling codes. (3) Characterize the role of fuel composition on efficiency and pollutant emissions from practical automotive engines.

  9. Determinants of cation transport selectivity: Equilibrium binding and transport kinetics

    PubMed Central

    2015-01-01

    The crystal structures of channels and transporters reveal the chemical nature of ion-binding sites and, thereby, constrain mechanistic models for their transport processes. However, these structures, in and of themselves, do not reveal equilibrium selectivity or transport preferences, which can be discerned only from various functional assays. In this Review, I explore the relationship between cation transport protein structures, equilibrium binding measurements, and ion transport selectivity. The primary focus is on K+-selective channels and nonselective cation channels because they have been extensively studied both functionally and structurally, but the principles discussed are relevant to other transport proteins and molecules. PMID:26078056

  10. Kinetics of Polar Auxin Transport 1

    PubMed Central

    de la Fuente, R. K.; Leopold, A. C.

    1966-01-01

    The movement of auxin in the basipetal and acropetal directions is compared for 4 types of tissue. It is observed that the transport may proceed in either a linear or a non-linear manner with time. The polarity of transport through any given type of tissue increases exponentially with increasing lengths of tissue traversed, suggesting that the polarity of transport is developed as a consequence of the repeated passage through cells. Using the mathematical model of Leopold and Hall, the extent of polarity for individual cells is estimated, and a very small polarity of individual cells is found to be capable of accounting for the marked polarity of whole tissues. It is suggested that transport polarity may be functionally a property of the multicellular structure, being amplified from very small differences in activities at the 2 ends of individual cells. PMID:16656428

  11. Efficient mass transport by optical advection

    NASA Astrophysics Data System (ADS)

    Kajorndejnukul, Veerachart; Sukhov, Sergey; Dogariu, Aristide

    2015-10-01

    Advection is critical for efficient mass transport. For instance, bare diffusion cannot explain the spatial and temporal scales of some of the cellular processes. The regulation of intracellular functions is strongly influenced by the transport of mass at low Reynolds numbers where viscous drag dominates inertia. Mimicking the efficacy and specificity of the cellular machinery has been a long time pursuit and, due to inherent flexibility, optical manipulation is of particular interest. However, optical forces are relatively small and cannot significantly modify diffusion properties. Here we show that the effectiveness of microparticle transport can be dramatically enhanced by recycling the optical energy through an effective optical advection process. We demonstrate theoretically and experimentally that this new advection mechanism permits an efficient control of collective and directional mass transport in colloidal systems. The cooperative long-range interaction between large numbers of particles can be optically manipulated to create complex flow patterns, enabling efficient and tunable transport in microfluidic lab-on-chip platforms.

  12. Kinetic and electromagnetic transport processes in toroidal devices

    SciTech Connect

    Moses, R.W.; Schoenberg, K.F.

    1990-01-01

    A brief review of transport processes in toroidal devices is presented. Particular attention is given to radial transport of power by the Poynting's vector and kinetic electron flow. This work is primarily focused on the Reversed Field Pinch (RFP) which holds the added complexity of a dynamo process that sustains poloidal current in the edge region, where the toroidal field is reversed. The experimental observation of superthermal unidirectional electrons in the plasma edge of ZT-40M and HBTX1C is noted, and the rapid, nonclassical ion heating in RFPs is taken account of. Radial transport parallel to fluctuating magnetic field lines is deemed a likely candidate for both electromagnetic and kinetic energy transport. Two models are discussed and compared. It is concluded that electromagnetic transport using a local Ohm's law best describes nonclassical ion heating, and the transport of kinetic energy by long mean free path electrons best represents the half-Maxwellian of electrons observed in the edge of several RFPs. A nonlocal Ohm's law is essential for the kinetic electron model. 18 refs.

  13. Impact of kinetic mass transfer on free convection in a porous medium

    NASA Astrophysics Data System (ADS)

    Lu, Chunhui; Shi, Liangsheng; Chen, Yiming; Xie, Yueqing; Simmons, Craig T.

    2016-05-01

    We investigate kinetic mass transfer effects on unstable density-driven flow and transport processes by numerical simulations of a modified Elder problem. The first-order dual-domain mass transfer model coupled with a variable-density-flow model is employed to describe transport behavior in porous media. Results show that in comparison to the no-mass-transfer case, a higher degree of instability and more unstable system is developed in the mass transfer case due to the reduced effective porosity and correspondingly a larger Rayleigh number (assuming permeability is independent on the mobile porosity). Given a constant total porosity, the magnitude of capacity ratio (i.e., immobile porosity/mobile porosity) controls the macroscopic plume profile in the mobile domain, while the magnitude of mass transfer timescale (i.e., the reciprocal of the mass transfer rate coefficient) dominates its evolution rate. The magnitude of capacity ratio plays an important role on the mechanism driving the mass flux into the aquifer system. Specifically, for a small capacity ratio, solute loading is dominated by the density-driven transport, while with increasing capacity ratio local mass transfer dominated solute loading may occur at later times. At significantly large times, however, both mechanisms contribute comparably to solute loading. Sherwood Number could be a nonmonotonic function of mass transfer timescale due to complicated interactions of solute between source zone, mobile zone and immobile zone in the top boundary layer, resulting in accordingly a similar behavior of the total mass. The initial assessment provides important insights into unstable density-driven flow and transport in the presence of kinetic mass transfer.

  14. Mass, Momentum and Kinetic Energy of a Relativistic Particle

    ERIC Educational Resources Information Center

    Zanchini, Enzo

    2010-01-01

    A rigorous definition of mass in special relativity, proposed in a recent paper, is recalled and employed to obtain simple and rigorous deductions of the expressions of momentum and kinetic energy for a relativistic particle. The whole logical framework appears as the natural extension of the classical one. Only the first, second and third laws of…

  15. Mass Transport in Global Geophysical Fluids

    NASA Technical Reports Server (NTRS)

    Chao, B. F.

    1999-01-01

    Mass transports occurring in the atmosphere-hydrosphere-solid Earth-core system (the "global geophysical fluids") are important geophysical phenomena. They occur on all temporal and spatial scales. Examples include air mass and ocean circulations, tides, hydrological water redistribution, mantle processes such as post-glacial rebound, earthquakes and tectonic motions, and core geodynamo activities. With only a few exceptions on the Earth surface, the temporal history and spatial pattern of such mass transport are often not amenable to direct observations. Space geodesy techniques, however, have the capability of monitoring certain direct consequences of the mass transport, including Earth's rotation variations, gravitational field variations, and the geocenter motion. These techniques include the very-long-baseline interferometry, satellite laser ranging and Doppler tracking, and the Global Positioning System, all entail global observational networks. While considerable advances have been made in observing and understanding of the dynamics of Earth's rotation, only the lowest-degree gravitational variations have been observed and limited knowledge of geocenter motion obtained. New space missions, projects and initiatives promise to further improve the measurements and hence our knowledge about the global mass transports. The latter contributes to our understanding and modeling capability of the geophysical processes that produce and regulate the mass transports, as well as the solid Earth's response to such changes in constraining the modeling of Earth's mechanical properties.

  16. Pedestal Fueling Simulations with a Coupled Kinetic-kinetic Plasma-neutral Transport Code

    SciTech Connect

    D.P. Stotler, C.S. Chang, S.H. Ku, J. Lang and G.Y. Park

    2012-08-29

    A Monte Carlo neutral transport routine, based on DEGAS2, has been coupled to the guiding center ion-electron-neutral neoclassical PIC code XGC0 to provide a realistic treatment of neutral atoms and molecules in the tokamak edge plasma. The DEGAS2 routine allows detailed atomic physics and plasma-material interaction processes to be incorporated into these simulations. The spatial pro le of the neutral particle source used in the DEGAS2 routine is determined from the uxes of XGC0 ions to the material surfaces. The kinetic-kinetic plasma-neutral transport capability is demonstrated with example pedestal fueling simulations.

  17. Energy Conservation Tests of a Coupled Kinetic-kinetic Plasma-neutral Transport Code

    SciTech Connect

    Stotler, D. P.; Chang, C. S.; Ku, S. H.; Lang, J.; Park, G.

    2012-08-29

    A Monte Carlo neutral transport routine, based on DEGAS2, has been coupled to the guiding center ion-electron-neutral neoclassical PIC code XGC0 to provide a realistic treatment of neutral atoms and molecules in the tokamak edge plasma. The DEGAS2 routine allows detailed atomic physics and plasma-material interaction processes to be incorporated into these simulations. The spatial pro le of the neutral particle source used in the DEGAS2 routine is determined from the uxes of XGC0 ions to the material surfaces. The kinetic-kinetic plasma-neutral transport capability is demonstrated with example pedestal fueling simulations.

  18. A Kinetic and Mass Transfer Model for Glycerol Hydrogenolysis in a Trickle-Bed Reactor

    SciTech Connect

    Xi, Yaoyan; Holladay, Johnathan E.; Frye, John G.; Oberg, Aaron A.; Jackson, James E.; Miller, Dennis J.

    2010-11-15

    A detailed model of glycerol hydrogenolysis in a trickle-bed reactor is presented that includes a mechanistically based kinetic rate expression, energy transport, mass transport across the gas-liquid and liquid-solid interfaces, intraparticle catalyst mass transfer, and partial wetting of the bed. Optimal kinetic parameters for the glycerol hydrogenolysis rate expression were determined via nonlinear regression analysis on the basis of experiments conducted in a laboratory-scale trickle-bed reactor over a broad range of operating conditions. Model predictions agree well with experimental data and accurately predict trends in reactor performance with liquid flow rate, temperature, hydrogen pressure, and base promoter concentration. The model is thus a useful tool for predicting laboratory reactor performance and for design of commercial-scale trickle-bed systems.

  19. Linear kinetic theory and particle transport in stochastic mixtures

    SciTech Connect

    Pomraning, G.C.

    1995-12-31

    We consider the formulation of linear transport and kinetic theory describing energy and particle flow in a random mixture of two or more immiscible materials. Following an introduction, we summarize early and fundamental work in this area, and we conclude with a brief discussion of recent results.

  20. Texture mapping via optimal mass transport.

    PubMed

    Dominitz, Ayelet; Tannenbaum, Allen

    2010-01-01

    In this paper, we present a novel method for texture mapping of closed surfaces. Our method is based on the technique of optimal mass transport (also known as the "earth-mover's metric"). This is a classical problem that concerns determining the optimal way, in the sense of minimal transportation cost, of moving a pile of soil from one site to another. In our context, the resulting mapping is area preserving and minimizes angle distortion in the optimal mass sense. Indeed, we first begin with an angle-preserving mapping (which may greatly distort area) and then correct it using the mass transport procedure derived via a certain gradient flow. In order to obtain fast convergence to the optimal mapping, we incorporate a multiresolution scheme into our flow. We also use ideas from discrete exterior calculus in our computations. PMID:20224137

  1. Radiotracers for Cardiac Sympathetic Innervation: Transport Kinetics and Binding Affinities for the Human Norepinephrine Transporter

    PubMed Central

    Raffel, David M.; Chen, Wei; Jung, Yong-Woon; Jang, Keun Sam; Gu, Guie; Cozzi, Nicholas V.

    2013-01-01

    Introduction Most radiotracers for imaging of cardiac sympathetic innervation are substrates of the norepinephrine transporter (NET). The goal of this study was to characterize the NET transport kinetics and binding affinities of several sympathetic nerve radiotracers, including [11C]-(−)-meta-hydroxyephedrine, [11C]-(−)-epinephrine, and a series of [11C]-labeled phenethylguanidines under development in our laboratory. For comparison, the NET transport kinetics and binding affinities of some [3H]-labeled biogenic amines were also determined. Methods Transport kinetics studies were performed using rat C6 glioma cells stably transfected with the human norepinephrine transporter (C6-hNET cells). For each radiolabeled NET substrate, saturation transport assays with C6-hNET cells measured the Michaelis-Menten transport constants Km and Vmax for NET transport. Competitive inhibition binding assays with homogenized C6-hNET cells and [3H]mazindol provided estimates of binding affinities (KI) for NET. Results Km, Vmax and KI values were determined for each NET substrate with a high degree of reproducibility. Interestingly, C6-hNET transport rates for ‘tracer concentrations’ of substrate, given by the ratio Vmax/Km, were found to be highly correlated with neuronal transport rates measured previously in isolated rat hearts (r2 = 0.96). This suggests that the transport constants Km and Vmax measured using the C6-hNET cells accurately reflect in vivo transport kinetics. Conclusion The results of these studies show how structural changes in NET substrates influence NET binding and transport constants, providing valuable insights that can be used in the design of new tracers with more optimal kinetics for quantifying regional sympathetic nerve density. PMID:23306137

  2. Oceanic mass transport by mesoscale eddies.

    PubMed

    Zhang, Zhengguang; Wang, Wei; Qiu, Bo

    2014-07-18

    Oceanic transports of heat, salt, fresh water, dissolved CO2, and other tracers regulate global climate change and the distribution of natural marine resources. The time-mean ocean circulation transports fluid as a conveyor belt, but fluid parcels can also be trapped and transported discretely by migrating mesoscale eddies. By combining available satellite altimetry and Argo profiling float data, we showed that the eddy-induced zonal mass transport can reach a total meridionally integrated value of up to 30 to 40 sverdrups (Sv) (1 Sv = 10(6) cubic meters per second), and it occurs mainly in subtropical regions, where the background flows are weak. This transport is comparable in magnitude to that of the large-scale wind- and thermohaline-driven circulation. PMID:25035491

  3. Dynamic determination of anaerobic acetate kinetics using membrane mass spectrometry

    PubMed

    Meyer; Heinzle

    1998-01-20

    A small, stirred, 14.4-mL tank reactor was designed to serve as a measurement cell for short-term investigation of microbial kinetics. A mass spectrometer membrane probe allowed the measurement of the dissolved gases of hydrogen, methane, oxygen, and carbon dioxide. pH was measured by an electrode and controlled by addition of acid or alkali. The highly sensitive measurement of gases with low solubility allowed rapid measurements at very low conversion. In kinetic experiments, a stepwise increase of substrate concentration (method A) and continuous feed of substrate (method B) were used, allowing quick estimation of substrate kinetics. Acetate conversion in mixed culture biofilms from a fluidized bed reactor was investigated. Substrate inhibition was found to be negligible in the concentration range studied. Experiments at various pH values showed that the undissociated acid form was the kinetic determinant. Kinetic parameters for Haldane kinetics of protons were KSH = 1.3 x 10(-5) mol m-3 and KIH = 8.1 x 10(-3) mol m-3. With free acid (HAc) as the rate determining species, the kinetic parameters for method A were KSHAc = 0.005 mol m-3 and KIHAc = 100 mol m-3 and for method B were KSHAc = 0.2 mol m-3 and KIHAc = 50 mol m-3. The maximum biomass activity occurred at around pH 6.5. Acetate was exclusively converted to methane and CO2 at pH > 6. Copyright 1998 John Wiley & Sons, Inc. PMID:10099187

  4. Kinetic theory of nonlinear transport phenomena in complex plasmas

    SciTech Connect

    Mishra, S. K.; Sodha, M. S.

    2013-03-15

    In contrast to the prevalent use of the phenomenological theory of transport phenomena, a number of transport properties of complex plasmas have been evaluated by using appropriate expressions, available from the kinetic theory, which are based on Boltzmann's transfer equation; in particular, the energy dependence of the electron collision frequency has been taken into account. Following the recent trend, the number and energy balance of all the constituents of the complex plasma and the charge balance on the particles is accounted for; the Ohmic loss has also been included in the energy balance of the electrons. The charging kinetics for the complex plasma comprising of uniformly dispersed dust particles, characterized by (i) uniform size and (ii) the Mathis, Rumpl, and Nordsieck power law of size distribution has been developed. Using appropriate expressions for the transport parameters based on the kinetic theory, the system of equations has been solved to investigate the parametric dependence of the complex plasma transport properties on the applied electric field and other plasma parameters; the results are graphically illustrated.

  5. Efficient mass transport by optical advection

    PubMed Central

    Kajorndejnukul, Veerachart; Sukhov, Sergey; Dogariu, Aristide

    2015-01-01

    Advection is critical for efficient mass transport. For instance, bare diffusion cannot explain the spatial and temporal scales of some of the cellular processes. The regulation of intracellular functions is strongly influenced by the transport of mass at low Reynolds numbers where viscous drag dominates inertia. Mimicking the efficacy and specificity of the cellular machinery has been a long time pursuit and, due to inherent flexibility, optical manipulation is of particular interest. However, optical forces are relatively small and cannot significantly modify diffusion properties. Here we show that the effectiveness of microparticle transport can be dramatically enhanced by recycling the optical energy through an effective optical advection process. We demonstrate theoretically and experimentally that this new advection mechanism permits an efficient control of collective and directional mass transport in colloidal systems. The cooperative long-range interaction between large numbers of particles can be optically manipulated to create complex flow patterns, enabling efficient and tunable transport in microfluidic lab-on-chip platforms. PMID:26440069

  6. Kinetic neoclassical transport in the H-mode pedestal

    SciTech Connect

    Battaglia, D. J.; Chang, C. S.; Ku, S.; Grierson, B. A.; Burrell, K. H.; Grassie, J. S. de

    2014-07-15

    Multi-species kinetic neoclassical transport through the QH-mode pedestal and scrape-off layer on DIII-D is calculated using XGC0, a 5D full-f particle-in-cell drift-kinetic solver with self-consistent neutral recycling and sheath potentials. Quantitative agreement between the flux-driven simulation and the experimental electron density, impurity density, and orthogonal measurements of impurity temperature and flow profiles is achieved by adding random-walk particle diffusion to the guiding-center drift motion. The radial electric field (E{sub r}) that maintains ambipolar transport across flux surfaces and to the wall is computed self-consistently on closed and open magnetic field lines and is in excellent agreement with experiment. The E{sub r} inside the separatrix is the unique solution that balances the outward flux of thermal tail deuterium ions against the outward neoclassical electron flux and inward pinch of impurity and colder deuterium ions. Particle transport in the pedestal is primarily due to anomalous transport, while the ion heat and momentum transport are primarily due to the neoclassical transport. The full-f treatment quantifies the non-Maxwellian energy distributions that describe a number of experimental observations in low-collisionallity pedestals on DIII-D, including intrinsic co-I{sub p} parallel flows in the pedestal, ion temperature anisotropy, and large impurity temperatures in the scrape-off layer.

  7. Delft Mass Transport model DMT-2

    NASA Astrophysics Data System (ADS)

    Ditmar, Pavel; Hashemi Farahani, Hassan; Inacio, Pedro; Klees, Roland; Zhao, Qile; Guo, Jing; Liu, Xianglin; Sun, Yu; Riva, Ricardo; Ran, Jiangjun

    2013-04-01

    Gravity Recovery And Climate Experiment (GRACE) satellite mission has enormously extended our knowledge of the Earth's system by allowing natural mass transport of various origin to be quantified. This concerns, in particular, the depletion and replenishment of continental water stocks; shrinking of polar ice sheets; deformation of the Earth's crust triggered by large earthquakes, and isostatic adjustment processes. A number of research centers compute models of temporal gravity field variations and mass transport, using GRACE data as input. One of such models - Delft Mass Transport model - is being produced at the Delft University of Technology in collaboration with the GNSS Research Center of Wuhan University. A new release of this model, DMT-2, has been produced on the basis of a new (second) release of GRACE level-1b data. This model consists of a time-series of monthly solutions spanning a time interval of more than 8 years, starting from Feb. 2003. Each solution consists of spherical harmonic coefficients up to degree 120. Both unconstrained and optimally filtered solutions are obtained. The most essential improvements of the DMT-2 model, as compared to its predecessors (DMT-1 and DMT-1b), are as follows: (i) improved estimation and elimination of low-frequency noise in GRACE data, so that strong mass transport signals are not damped; (ii) computation of accurate stochastic models of data noise for each month individually with a subsequent application of frequency-dependent data weighting, which allows statistically optimal solutions to be compiled even if data noise is colored and gradually changes in time; (iii) optimized estimation of accelerometer calibration parameters; (iv) incorporation of degree 1 coefficients estimated with independent techniques; (v) usage of state-of-the-art background models to de-alias GRACE data from rapid mass transport signals (this includes the EOT11a model of ocean tides and the latest release of the AOD1B product describing

  8. The negative role of turbulence in estuarine mass transport

    NASA Astrophysics Data System (ADS)

    Nunes Vaz, Richard A.; Lennon, Geoffrey W.; de Silva Samarasinghe, Jayantha R.

    1989-04-01

    It is competition between the various stratifying and mixing influences which determines the character of stratification in an estuary. Borrowing concepts which have been successfully applied to the discussion of stratification in shelf seas, a quantitative basis for determining the potential energy associated with vertical structure in estuaries is derived. The formulation, along similar lines to that of Bowden (1981), provides a simple but comprehensive method of incorporating many relevant stratifying and mixing influences in a given problem, and is also shown to be capable of rearrangement into forms akin to the estuarine Richardson number which is commonly found in discussions of estuarine statification. The paper argues, based on a survey of the literature, that in wide, relatively well-mixed estuaries, the greatest longitudinal mass flux occurs at times when stratification is most developed, that is, when the turbulent kinetic energy in the water column is at a minimum. Modulation of turbulence, principally at various tidal frequencies, causes a pulsing of the mass flux in which the contribution of each pulse increases non-linearly as the period of the modulation increases. Some, possibly significant, changes to the state of stratification and to the corresponding mass transport may occur in association with slack water periods. However, the spring-neap cycle is proposed to have a far greater influence on stratification, mass transport and the long-term mass balance in estuaries, and recent observational studies lend support to this position.

  9. Visualizing the kinetic power stroke that drives proton-coupled Zn(II) transport

    PubMed Central

    Gupta, Sayan; Chai, Jin; Cheng, Jie; D'Mello, Rhijuta; Chance, Mark R.; Fu, Dax

    2014-01-01

    The proton gradient is a principal energy source for respiration-dependent active transport, but the structural mechanisms of proton-coupled transport processes are poorly understood. YiiP is a proton-coupled zinc transporter found in the cytoplasmic membrane of E. coli, and the transport-site of YiiP receives protons from water molecules that gain access to its hydrophobic environment and transduces the energy of an inward proton gradient to drive Zn(II) efflux1,2. This membrane protein is a well characterized member3-7 of the protein family of cation diffusion facilitators (CDFs) that occurs at all phylogenetic levels8-10. X-ray mediated hydroxyl radical labeling of YiiP and mass spectrometric analysis showed that Zn(II) binding triggered a highly localized, all-or-none change of water accessibility to the transport-site and an adjacent hydrophobic gate. Millisecond time-resolved dynamics revealed a concerted and reciprocal pattern of accessibility changes along a transmembrane helix, suggesting a rigid-body helical reorientation linked to Zn(II) binding that triggers the closing of the hydrophobic gate. The gated water access to the transport-site enables a stationary proton gradient to facilitate the conversion of zinc binding energy to the kinetic power stroke of a vectorial zinc transport. The kinetic details provide energetic insights into a proton-coupled active transport reaction. PMID:25043033

  10. Microdroplet fusion mass spectrometry for fast reaction kinetics

    PubMed Central

    Lee, Jae Kyoo; Kim, Samuel; Nam, Hong Gil; Zare, Richard N.

    2015-01-01

    We investigated the fusion of high-speed liquid droplets as a way to record the kinetics of liquid-phase chemical reactions on the order of microseconds. Two streams of micrometer-size droplets collide with one another. The droplets that fused (13 μm in diameter) at the intersection of the two streams entered the heated capillary inlet of a mass spectrometer. The mass spectrum was recorded as a function of the distance x between the mass spectrometer inlet and the droplet fusion center. Fused droplet trajectories were imaged with a high-speed camera, revealing that the droplet fusion occurred approximately within a 500-μm radius from the droplet fusion center and both the size and the speed of the fused droplets remained relatively constant as they traveled from the droplet fusion center to the mass spectrometer inlet. Evidence is presented that the reaction effectively stops upon entering the heated inlet of the mass spectrometer. Thus, the reaction time was proportional to x and could be measured and manipulated by controlling the distance x. Kinetic studies were carried out in fused water droplets for acid-induced unfolding of cytochrome c and hydrogen–deuterium exchange in bradykinin. The kinetics of the former revealed the slowing of the unfolding rates at the early stage of the reaction within 50 μs. The hydrogen–deuterium exchange revealed the existence of two distinct populations with fast and slow exchange rates. These studies demonstrated the power of this technique to detect reaction intermediates in fused liquid droplets with microsecond temporal resolution. PMID:25775573

  11. Enzymatically Driven Transport: A Kinetic Theory for Nuclear Export

    PubMed Central

    Kim, Sanghyun; Elbaum, M.

    2013-01-01

    Nuclear import and export are often considered inverse processes whereby transport receptors ferry protein cargo through the nuclear pore. In contrast to import, where the reversible binding of receptor to nuclear RanGTP leads to a balanced bidirectional exchange, termination of export by physiologically irreversible hydrolysis of the Ran-bound GTP leads to unidirectional transport. We present a concise mathematical model that predicts protein distributions and kinetic rates for receptor-mediated nuclear export, which further exhibit an unexpected pseudolinear relation one to the other. Predictions of the model are verified with permeabilized and live cell measurements. PMID:24209844

  12. A velocity-dependent anomalous radial transport model for (2-D, 2-V) kinetic transport codes

    NASA Astrophysics Data System (ADS)

    Bodi, Kowsik; Krasheninnikov, Sergei; Cohen, Ron; Rognlien, Tom

    2008-11-01

    Plasma turbulence constitutes a significant part of radial plasma transport in magnetically confined plasmas. This turbulent transport is modeled in the form of anomalous convection and diffusion coefficients in fluid transport codes. There is a need to model the same in continuum kinetic edge codes [such as the (2-D, 2-V) transport version of TEMPEST, NEO, and the code being developed by the Edge Simulation Laboratory] with non-Maxwellian distributions. We present an anomalous transport model with velocity-dependent convection and diffusion coefficients leading to a diagonal transport matrix similar to that used in contemporary fluid transport models (e.g., UEDGE). Also presented are results of simulations corresponding to radial transport due to long-wavelength ExB turbulence using a velocity-independent diffusion coefficient. A BGK collision model is used to enable comparison with fluid transport codes.

  13. Mass independent kinetic energy reducing inlet system for vacuum environment

    DOEpatents

    Reilly, Peter T. A. [Knoxville, TN

    2010-12-14

    A particle inlet system comprises a first chamber having a limiting orifice for an incoming gas stream and a micrometer controlled expansion slit. Lateral components of the momentum of the particles are substantially cancelled due to symmetry of the configuration once the laminar flow converges at the expansion slit. The particles and flow into a second chamber, which is maintained at a lower pressure than the first chamber, and then moves into a third chamber including multipole guides for electromagnetically confining the particle. The vertical momentum of the particles descending through the center of the third chamber is minimized as an upward stream of gases reduces the downward momentum of the particles. The translational kinetic energy of the particles is near-zero irrespective of the mass of the particles at an exit opening of the third chamber, which may be advantageously employed to provide enhanced mass resolution in mass spectrometry.

  14. Mass independent kinetic energy reducing inlet system for vacuum environment

    DOEpatents

    Reilly, Peter T.A.

    2014-05-13

    A particle inlet system comprises a first chamber having a limiting orifice for an incoming gas stream and a micrometer controlled expansion slit. Lateral components of the momentum of the particles are substantially cancelled due to symmetry of the configuration once the laminar flow converges at the expansion slit. The particles and flow into a second chamber, which is maintained at a lower pressure than the first chamber, and then moves into a third chamber including multipole guides for electromagnetically confining the particle. The vertical momentum of the particles descending through the center of the third chamber is minimized as an upward stream of gases reduces the downward momentum of the particles. The translational kinetic energy of the particles is near-zero irrespective of the mass of the particles at an exit opening of the third chamber, which may be advantageously employed to provide enhanced mass resolution in mass spectrometry.

  15. Mass independent kinetic energy reducing inlet system for vacuum environment

    DOEpatents

    Reilly, Peter T.A.

    2013-12-03

    A particle inlet system comprises a first chamber having a limiting orifice for an incoming gas stream and a micrometer controlled expansion slit. Lateral components of the momentum of the particles are substantially cancelled due to symmetry of the configuration once the laminar flow converges at the expansion slit. The particles and flow into a second chamber, which is maintained at a lower pressure than the first chamber, and then moves into a third chamber including multipole guides for electromagnetically confining the particle. The vertical momentum of the particles descending through the center of the third chamber is minimized as an upward stream of gases reduces the downward momentum of the particles. The translational kinetic energy of the particles is near-zero irrespective of the mass of the particles at an exit opening of the third chamber, which may be advantageously employed to provide enhanced mass resolution in mass spectrometry.

  16. Kinetic modelling of molecular hydrogen transport in microporous carbon materials.

    SciTech Connect

    Hankel, M.; Zhang, H.; Nguyen, T. X.; Bhatia, S. K.; Gray, S. K.; Smith, S. C.

    2011-01-01

    The proposal of kinetic molecular sieving of hydrogen isotopes is explored by employing statistical rate theory methods to describe the kinetics of molecular hydrogen transport in model microporous carbon structures. A Lennard-Jones atom-atom interaction potential is utilized for the description of the interactions between H{sub 2}/D{sub 2} and the carbon framework, while the requisite partition functions describing the thermal flux of molecules through the transition state are calculated quantum mechanically in view of the low temperatures involved in the proposed kinetic molecular sieving application. Predicted kinetic isotope effects for initial passage from the gas phase into the first pore mouth are consistent with expectations from previous modeling studies, namely, that at sufficiently low temperatures and for sufficiently narrow pore mouths D{sub 2} transport is dramatically favored over H{sub 2}. However, in contrast to expectations from previous modeling, the absence of any potential barrier along the minimum energy pathway from the gas phase into the first pore mouth yields a negative temperature dependence in the predicted absolute rate coefficients - implying a negative activation energy. In pursuit of the effective activation barrier, we find that the minimum potential in the cavity is significantly higher than in the pore mouth for nanotube-shaped models, throwing into question the common assumption that passage through the pore mouths should be the rate-determining step. Our results suggest a new mechanism that, depending on the size and shape of the cavity, the thermal activation barrier may lie in the cavity rather than at the pore mouth. As a consequence, design strategies for achieving quantum-mediated kinetic molecular sieving of H{sub 2}/D{sub 2} in a microporous membrane will need, at the very least, to take careful account of cavity shape and size in addition to pore-mouth size in order to ensure that the selective step, namely passage

  17. Photoinduced mass transport in azo compounds

    NASA Astrophysics Data System (ADS)

    Klismeta, K.; Teteris, J.; Aleksejeva, J.

    2013-12-01

    The photoinduced changes of optical properties in azobenzene containing compound thin films were studied under influence of polarized and non-polarized 532 nm laser light. Under influence of light azo compounds experience trans-cis isomerisation process, that can be observed in the absorbance spectrum of the sample. If the light is linearly polarized, molecules align perpendicularly to the electric field vector and as a result photoinduced dichroism and birefringence is obtained. If a known lateral polarization modulation of the light beam is present, mass transport of the azobenzene containing compound occurs. By measuring the surface relief with a profilometer the direction of mass transport can be determined. The studies of this work show that direct holographic recording of surface relief gratings can be used in optoelectronics, telecommunications and data storage.

  18. Kinetic and transport theory near the tokamak edge

    SciTech Connect

    Hazeltine, R.D.; Catto, P.J.

    1996-06-01

    Conventional transport orderings employed in the core of a tokamak plasma allow large divergence-free flows in flux surfaces, but only weak radial flows. However, alternate orderings are required in the edge region where radial diffusion must balance the rapid loss due to free streaming to divertor plates or limiters. Kinetic equations commonly used to study the plasma core do not allow such a balance and are, therefore, inapplicable in the plasma edge. Similarly, core transport formulas cannot be extended to the edge region without major, qualitative alteration. Here the necessary changes are addressed. By deriving and solving a novel kinetic equation, distinctive collisional transport laws for the plasma edge are constructed. It is found that the new edge ordering retains the radial diffusion and parallel flow of particles, momentum, and heat to lowest order in the conservation equations. To higher order a surprising form for parallel transport in the scrape-off layer is found, in which the parallel flow of particles and heat are driven by a combination of the conventional gradients, viscosity, and new terms involving radial derivatives. The new terms are not relatively small, and could affect understanding of limiter and divertor operation. {copyright} {ital 1996 American Institute of Physics.}

  19. Modeling transportation of efavirenz: inference on possibility of mixed modes of transportation and kinetic solubility.

    PubMed

    Nemaura, Tafireyi

    2015-01-01

    Understanding drug transportation mechanisms in the human body is of paramount importance in modeling Pharmacokinetic-Pharmacodynamic relationships. This work gives a novel general model of efavirenz transportation projections based on concentrations simulated from patients on a dose of 600 mg. The work puts forward a proposition that transportation can wholly be modeled by concentration and time in a uniform volumetric space. Furthermore, movement entities are used to inform the state of "kinetic solubility" of a solution. There is use of Ricker's model, and forms of the Hill's equation in modeling transportation. Characterization on the movement rates of solution particle are suggested in relation to advection rate of solution particle. At turning points on the transportation rate of solution particle vs. concentration curve, a suggestion of possibly change of dominance in the mode of transportation and saturation is made. There are four movement rates postulated at primary micro-level transportation, that are attributed to convection, diffusion [passive transportation (EI )] and energy dependent system transportation (ED ) in relation to advection. Furthermore, a new parameter is introduced which is defined as an advection rate constant of solution particle. It is postulated to be dependent on two rate constants of solution particle, that is a convection rate constant of solution particle and a saturable transportation rate constant of solution particle. At secondary micro-level transportation, the results show convection as sum of advection and saturable transportation. The kinetics of dissolution of efavirenz in the solution space is postulated. Relatively, a good level of kinetics of dissolution is projected in the concentration region 0 - 32.82 μg/ml. PMID:26106329

  20. Modeling transportation of efavirenz: inference on possibility of mixed modes of transportation and kinetic solubility

    PubMed Central

    Nemaura, Tafireyi

    2015-01-01

    Understanding drug transportation mechanisms in the human body is of paramount importance in modeling Pharmacokinetic-Pharmacodynamic relationships. This work gives a novel general model of efavirenz transportation projections based on concentrations simulated from patients on a dose of 600 mg. The work puts forward a proposition that transportation can wholly be modeled by concentration and time in a uniform volumetric space. Furthermore, movement entities are used to inform the state of “kinetic solubility” of a solution. There is use of Ricker's model, and forms of the Hill's equation in modeling transportation. Characterization on the movement rates of solution particle are suggested in relation to advection rate of solution particle. At turning points on the transportation rate of solution particle vs. concentration curve, a suggestion of possibly change of dominance in the mode of transportation and saturation is made. There are four movement rates postulated at primary micro-level transportation, that are attributed to convection, diffusion [passive transportation (EI)] and energy dependent system transportation (ED) in relation to advection. Furthermore, a new parameter is introduced which is defined as an advection rate constant of solution particle. It is postulated to be dependent on two rate constants of solution particle, that is a convection rate constant of solution particle and a saturable transportation rate constant of solution particle. At secondary micro-level transportation, the results show convection as sum of advection and saturable transportation. The kinetics of dissolution of efavirenz in the solution space is postulated. Relatively, a good level of kinetics of dissolution is projected in the concentration region 0 − 32.82 μg/ml. PMID:26106329

  1. Modeling transport kinetics in clinoptilolite-phosphate rock systems

    NASA Technical Reports Server (NTRS)

    Allen, E. R.; Ming, D. W.; Hossner, L. R.; Henninger, D. L.

    1995-01-01

    Nutrient release in clinoptilolite-phosphate rock (Cp-PR) systems occurs through dissolution and cation-exchange reactions. Investigating the kinetics of these reactions expands our understanding of nutrient release processes. Research was conducted to model transport kinetics of nutrient release in Cp-PR systems. The objectives were to identify empirical models that best describe NH4, K, and P release and define diffusion-controlling processes. Materials included a Texas clinoptilolite (Cp) and North Carolina phosphate rock (PR). A continuous-flow thin-disk technique was used. Models evaluated included zero order, first order, second order, parabolic diffusion, simplified Elovich, Elovich, and power function. The power-function, Elovich, and parabolic-diffusion models adequately described NH4, K, and P release. The power-function model was preferred because of its simplicity. Models indicated nutrient release was diffusion controlled. Primary transport processes controlling nutrient release for the time span observed were probably the result of a combination of several interacting transport mechanisms.

  2. Role of Transport and Kinetics in Growth of Renal Stones

    NASA Technical Reports Server (NTRS)

    Kassemi, Mohammad; Iskovitz, Ilana

    2012-01-01

    Renal stone disease is not only a concern on earth but could conceivably pose as a serious risk to the astronauts health and safety in Space. In this paper, a combined transport-kinetics model for growth of calcium oxalate crystals is presented. The model is used to parametrically investigate the growth of renal calculi in urine with a focus on the coupled effects of transport and surface reaction on the ionic concentrations at the surface of the crystal and their impact on the resulting growth rates. It is shown that under nominal conditions of low solution supersaturation and low Damkohler number that typically exist on Earth, the surface concentrations of calcium and oxalate approach their bulk solution values in the urine and the growth rate is most likely limited by the surface reaction kinetics. But for higher solution supersaturations and larger Damkohler numbers that may be prevalent in the microgravity environment of Space, the calcium and oxalate surface concentrations tend to shift more towards their equilibrium or saturation values and thus the growth process may be limited by the transport through the medium. Furthermore, parametric numerical studies suggest that changes to the renal biochemistry of astronauts due in space may promote development of renal calculi during long duration space expeditions.

  3. Kinetic Analysis of Pasma Transport in a Hall Effect Thruster

    NASA Astrophysics Data System (ADS)

    Batishchev, O.; Martinez-Sanchez, M.

    2002-01-01

    Peculiarities of the plasma transport and oscillation phenomena in the Xe-gas discharge of the SPT and TAL Hall effect thruster were subject of many theoretical-numerical and experimental studies [1-4]. Despite this fact, the origin of a so-called anomalous transport is not understood to this date. As a result, in the theoretical and numerical models [5-6] researches assume ad-hoc cross-field diffusion coefficients, which may differ by several times from the classical Bohm result. To study the transport phenomenon we develop a specialized kinetic model. Our model is 2-dimensional in space (for axial and azimuthal directions), but 3-dimensional in velocity. A similar geometry was adopted in references [1,3]. However, we try to push the simulation to the realistic scale (several centimeters), while keeping the minimum spatial resolution on the order of the local Debye length. New transport results will be compared to the results from the 2D3V axisymmetrical model [6], which is a further development of the fully kinetic model for plasma and neutral gas [5]. The PIC [7] code is applied to the realistic SPT thruster geometry. We add new elementary plasma-chemistry reaction and modify boundary conditions to capture self-consistent dynamics of high ionization states of xenon atoms. It is hoped that the numerical results will provide a better understanding of the anomalous transport in a Hall effect thruster due to the collective modes, and shed light on the nature of the experimentally observed high-frequency oscillations. [1] M.Hirakawa and Y.Arakawa, Particle simulation of plasma phenomena in Hall thrusters, IEPC-95-164 technical paper, 1995. [2] V. I. Baranov et al, "New Conceptions of Oscillation Mechanisms in the Accelerator with Closed Drift of Electrons". IEPC-95-44, 24thInternational Electric Propulsion Conference, Moscow, 1995. [3] M.Hirakawa, Electron transport mechanism in a Hall thruster, IEPC-97-021 technical paper, 1997. [4] N.B.Meerzan, W.A.Hargus, M

  4. Energy and mass transport in the thermosphere

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Harris, I.; Spencer, N. W.

    1979-01-01

    Examples illustrating the effects of large scale energy and mass transport in the thermosphere discussed include: (1) The seasonal variations reveal temperature, composition, and ionospheric anomalies involving energy exchange between the thermosphere and mesosphere. (2) The midnight temperature maximum in the thermosphere is interpreted as a signature of tidal waves emanating from the mesosphere and momentum coupling associated with ion drag. (3) The ionospheric storm in the F region illustrates the intricate effects of large scale atmospheric winds driven by magnetospheric energization processes. (4) Atmospheric signatures of Joule heating and electric field momentum coupling are markedly different.

  5. Equilibrium, kinetic, and reactive transport models for plutonium

    NASA Astrophysics Data System (ADS)

    Schwantes, Jon Michael

    Equilibrium, kinetic, and reactive transport models for plutonium (Pu) have been developed to help meet environmental concerns posed by past war-related and present and future peacetime nuclear technologies. A thorough review of the literature identified several hurdles that needed to be overcome in order to develop capable predictive tools for Pu. These hurdles include: (1) missing or ill-defined chemical equilibrium and kinetic constants for environmentally important Pu species; (2) no adequate conceptual model describing the formation of Pu oxy/hydroxide colloids and solids; and (3) an inability of two-phase reactive transport models to adequately simulate Pu behavior in the presence of colloids. A computer program called INVRS K was developed that integrates the geochemical modeling software of PHREEQC with a nonlinear regression routine. This program provides a tool for estimating equilibrium and kinetic constants from experimental data. INVRS K was used to regress on binding constants for Pu sorbing onto various mineral and humic surfaces. These constants enhance the thermodynamic database for Pu and improve the capability of current predictive tools. Time and temperature studies of the Pu intrinsic colloid were also conducted and results of these studies were presented here. Formation constants for the fresh and aged Pu intrinsic colloid were regressed upon using INVRS K. From these results, it was possible to develop a cohesive diagenetic model that describes the formation of Pu oxy/hydroxide colloids and solids. This model provides for the first time a means of deciphering historically unexplained observations with respect to the Pu intrinsic colloid, as well as a basis for simulating the behavior within systems containing these solids. Discussion of the development and application of reactive transport models is also presented and includes: (1) the general application of a 1-D in flow, three-phase (i.e., dissolved, solid, and colloidal), reactive

  6. The Multiplexed Chemical Kinetic Photoionization Mass Spectrometer: A New Approach To Isomer-resolved Chemical Kinetics

    SciTech Connect

    Osborne, David L.; Zou, Peng; Johnsen, Howard; Hayden, Carl C.; Taatjes, Craig A.; Knyazev, Vadim D.; North, Simon W.; Peterka, Darcy S.; Ahmed, Musahid; Leone, Stephen R.

    2008-08-28

    We have developed a multiplexed time- and photon-energy?resolved photoionizationmass spectrometer for the study of the kinetics and isomeric product branching of gasphase, neutral chemical reactions. The instrument utilizes a side-sampled flow tubereactor, continuously tunable synchrotron radiation for photoionization, a multi-massdouble-focusing mass spectrometer with 100percent duty cycle, and a time- and positionsensitive detector for single ion counting. This approach enables multiplexed, universal detection of molecules with high sensitivity and selectivity. In addition to measurement of rate coefficients as a function of temperature and pressure, different structural isomers can be distinguished based on their photoionization efficiency curves, providing a more detailed probe of reaction mechanisms. The multiplexed 3-dimensional data structure (intensity as a function of molecular mass, reaction time, and photoionization energy) provides insights that might not be available in serial acquisition, as well as additional constraints on data interpretation.

  7. Microbially Mediated Kinetic Sulfur Isotope Fractionation: Reactive Transport Modeling Benchmark

    NASA Astrophysics Data System (ADS)

    Wanner, C.; Druhan, J. L.; Cheng, Y.; Amos, R. T.; Steefel, C. I.; Ajo Franklin, J. B.

    2014-12-01

    Microbially mediated sulfate reduction is a ubiquitous process in many subsurface systems. Isotopic fractionation is characteristic of this anaerobic process, since sulfate reducing bacteria (SRB) favor the reduction of the lighter sulfate isotopologue (S32O42-) over the heavier isotopologue (S34O42-). Detection of isotopic shifts have been utilized as a proxy for the onset of sulfate reduction in subsurface systems such as oil reservoirs and aquifers undergoing uranium bioremediation. Reactive transport modeling (RTM) of kinetic sulfur isotope fractionation has been applied to field and laboratory studies. These RTM approaches employ different mathematical formulations in the representation of kinetic sulfur isotope fractionation. In order to test the various formulations, we propose a benchmark problem set for the simulation of kinetic sulfur isotope fractionation during microbially mediated sulfate reduction. The benchmark problem set is comprised of four problem levels and is based on a recent laboratory column experimental study of sulfur isotope fractionation. Pertinent processes impacting sulfur isotopic composition such as microbial sulfate reduction and dispersion are included in the problem set. To date, participating RTM codes are: CRUNCHTOPE, TOUGHREACT, MIN3P and THE GEOCHEMIST'S WORKBENCH. Preliminary results from various codes show reasonable agreement for the problem levels simulating sulfur isotope fractionation in 1D.

  8. A kinetic study of mercury(II) transport through a membrane assisted by new transport reagent

    PubMed Central

    2011-01-01

    Background A new organodithiophosphorus derivative, namely O-(1,3-Bispiperidino-2-propyl)-4-methoxy phenyldithiophosphonate, was synthesized and then the kinetic behavior of the transport process as a function of concentration, temperature, stirring rate and solvents was investigated. Results The compound 1 was characterized by elemental analysis, IR, 1H and 31P NMR spectroscopies. The transport of mercury(II) ion by a zwitterionic dithiophosphonate 1 in the liquid membrane was studied and the kinetic behavior of the transport process as a function of concentration, temperature, stirring rate and solvents was investigated. The compound 1 is expected to serve as a model liquid membrane transport with mercury(II) ions. Conclusion A kinetic study of mercury(II) transport through a membrane assisted by O-(1,3-Bispiperidino-2-propyl)-4-methoxy phenyldithiophosphonate was performed. It can be concluded that the compound 1 can be provided a general and straightforward route to remove toxic metals ions such as mercury(II) ion from water or other solution. PMID:21762513

  9. Radiative and Kinetic Feedback by Low-Mass Primordial Stars

    NASA Astrophysics Data System (ADS)

    Whalen, Daniel; Hueckstaedt, Robert M.; McConkie, Thomas O.

    2010-03-01

    Ionizing UV radiation and supernova (SN) flows amidst clustered minihalos at high redshift regulated the rise of the first stellar populations in the universe. Previous studies have addressed the effects of very massive primordial stars on the collapse of nearby halos into new stars, but the absence of the odd-even nucleosynthetic signature of pair-instability SNe in ancient metal-poor stars suggests that Population III stars may have been less than 100 M sun. We extend our earlier survey of local UV feedback on star formation to 25-80 M sun stars and include kinetic feedback by SNe for 25-40 M sun stars. We find radiative feedback to be relatively uniform over this mass range, primarily because the larger fluxes of more massive stars are offset by their shorter lifetimes. Our models demonstrate that prior to the rise of global UV backgrounds, Lyman-Werner (LW) photons from nearby stars cannot prevent halos from forming new stars. These calculations also reveal that violent dynamical instabilities can erupt in the UV radiation front enveloping a primordial halo, but that they ultimately have no effect on the formation of a star. Finally, our simulations suggest that relic H II regions surrounding partially evaporated halos may expel LW backgrounds at lower redshifts, allowing stars to form that were previously suppressed. We provide fits to radiative and kinetic feedback on star formation for use in both semianalytic models and numerical simulations.

  10. Decomposition Kinetics for Mass Loss and Heat Released for HMX

    SciTech Connect

    Weese, R K; Burnham, A K

    2004-07-27

    Nucleation-growth kinetic expressions are derived for thermal decomposition of HMX from a variety of types of data, including mass loss for isothermal and constant rate heating in an open pan, and heat flow for isothermal and constant rate heating in open and closed pans. Conditions are identified in which thermal runaway is small to nonexistent, which typically means temperatures less than 255 C and heating rates less than 1 C/min. Activation energies are typically in the 140 to 150 kJ/mol regime for open pan experiments and about 160 kJ/mol for sealed pan experiments. The reaction clearly displays more than one process, and most likely three processes, which are most clearly evident in open pan experiments. The reaction is accelerated for closed pan experiments, and one global reaction appears to fit the data well.

  11. Plasma transport induced by kinetic Alfven wave turbulence

    SciTech Connect

    Izutsu, T.; Hasegawa, H.; Fujimoto, M.; Nakamura, T. K. M.

    2012-10-15

    At the Earth's magnetopause that separates the hot-tenuous magnetospheric plasma from the cold dense solar wind plasma, often seen is a boundary layer where plasmas of both origins coexist. Plasma diffusions of various forms have been considered as the cause of this plasma mixing. Here, we investigate the plasma transport induced by wave-particle interaction in kinetic Alfven wave (KAW) turbulence, which is one of the candidate processes. We clarify that the physical origin of the KAW-induced cross-field diffusion is the drift motions of those particles that are in Cerenkov resonance with the wave: E Multiplication-Sign B-like drift that emerges in the presence of non-zero parallel electric field component and grad-B drift due to compressional magnetic fluctuations. We find that KAW turbulence, which has a spectral breakpoint at which an MHD inertial range transits to a dissipation range, causes selective transport for particles whose parallel velocities are specified by the local Alfven velocity and the parallel phase velocity at the spectral breakpoint. This finding leads us to propose a new data analysis method for identifying whether or not a mixed plasma in the boundary layer is a consequence of KAW-induced transport across the magnetopause. The method refers to the velocity space distribution function data obtained by a spacecraft that performs in situ observations and, in principle, is applicable to currently available dataset such as that provided by the NASA's THEMIS mission.

  12. Mass accommodation of water: bridging the gap between molecular dynamics simulations and kinetic condensation models.

    PubMed

    Julin, Jan; Shiraiwa, Manabu; Miles, Rachael E H; Reid, Jonathan P; Pöschl, Ulrich; Riipinen, Ilona

    2013-01-17

    The condensational growth of submicrometer aerosol particles to climate relevant sizes is sensitive to their ability to accommodate vapor molecules, which is described by the mass accommodation coefficient. However, the underlying processes are not yet fully understood. We have simulated the mass accommodation and evaporation processes of water using molecular dynamics, and the results are compared to the condensation equations derived from the kinetic gas theory to shed light on the compatibility of the two. Molecular dynamics simulations were performed for a planar TIP4P-Ew water surface at four temperatures in the range 268-300 K as well as two droplets, with radii of 1.92 and 4.14 nm at T = 273.15 K. The evaporation flux from molecular dynamics was found to be in good qualitative agreement with that predicted by the simple kinetic condensation equations. Water droplet growth was also modeled with the kinetic multilayer model KM-GAP of Shiraiwa et al. [Atmos. Chem. Phys. 2012, 12, 2777]. It was found that, due to the fast transport across the interface, the growth of a pure water droplet is controlled by gas phase diffusion. These facts indicate that the simple kinetic treatment is sufficient in describing pure water condensation and evaporation. The droplet size was found to have minimal effect on the value of the mass accommodation coefficient. The mass accommodation coefficient was found to be unity (within 0.004) for all studied surfaces, which is in agreement with previous simulation work. Additionally, the simulated evaporation fluxes imply that the evaporation coefficient is also unity. Comparing the evaporation rates of the mass accommodation and evaporation simulations indicated that the high collision flux, corresponding to high supersaturation, present in typical molecular dynamics mass accommodation simulations can under certain conditions lead to an increase in the evaporation rate. Consequently, in such situations the mass accommodation coefficient

  13. Mass Accommodation of Water: Bridging the Gap Between Molecular Dynamics Simulations and Kinetic Condensation Models

    PubMed Central

    2012-01-01

    The condensational growth of submicrometer aerosol particles to climate relevant sizes is sensitive to their ability to accommodate vapor molecules, which is described by the mass accommodation coefficient. However, the underlying processes are not yet fully understood. We have simulated the mass accommodation and evaporation processes of water using molecular dynamics, and the results are compared to the condensation equations derived from the kinetic gas theory to shed light on the compatibility of the two. Molecular dynamics simulations were performed for a planar TIP4P-Ew water surface at four temperatures in the range 268–300 K as well as two droplets, with radii of 1.92 and 4.14 nm at T = 273.15 K. The evaporation flux from molecular dynamics was found to be in good qualitative agreement with that predicted by the simple kinetic condensation equations. Water droplet growth was also modeled with the kinetic multilayer model KM-GAP of Shiraiwa et al. [Atmos. Chem. Phys.2012, 117, 2777]. It was found that, due to the fast transport across the interface, the growth of a pure water droplet is controlled by gas phase diffusion. These facts indicate that the simple kinetic treatment is sufficient in describing pure water condensation and evaporation. The droplet size was found to have minimal effect on the value of the mass accommodation coefficient. The mass accommodation coefficient was found to be unity (within 0.004) for all studied surfaces, which is in agreement with previous simulation work. Additionally, the simulated evaporation fluxes imply that the evaporation coefficient is also unity. Comparing the evaporation rates of the mass accommodation and evaporation simulations indicated that the high collision flux, corresponding to high supersaturation, present in typical molecular dynamics mass accommodation simulations can under certain conditions lead to an increase in the evaporation rate. Consequently, in such situations the mass accommodation

  14. Spin Quantum Kinetics in Relaxation and Transport of Semiconductors

    NASA Astrophysics Data System (ADS)

    Lee, Han-Chieh; Mou, Chung-Yu; Lyon, Stephen A.

    2007-03-01

    Generalized Kadanoff-Baym Equation (GKBE) with spin degree of freedom is firstly presented and its theoretical framework of applications, which aims to semiconductor quantum kinetics in femtosecond and nanometer scales, demonstrated. The GKBE was constructed by Green functions thermally averaging Pauli equation of motion with using Langreth theorem. As applied for relaxation, Kadanoff-Baym ansatz was made and carrier-carrier scattering (CCS) with random-phase approximation considered. The derivation can simulate an evolution of excited carriers spreading via CCS, buildup of magnetic field by Rashba effect and formation of spin relaxation, where energy non-conserving event and memory effect are figured out. For transport, retarded Green functions were retrieved from spin Dyson equation as an input for GKBE with the presence of electron-phonon (impurity) interaction. The part is useful for spin Hall effect in precisely estimating spin current and accumulation in nanostructures or ballistic regime.

  15. Improved kinetic neoclassical transport calculation for a low-collisionality QH-mode pedestal

    NASA Astrophysics Data System (ADS)

    Battaglia, D. J.; Burrell, K. H.; Chang, C. S.; deGrassie, J. S.; Grierson, B. A.; Groebner, R. J.; Hager, R.

    2016-08-01

    The role of neoclassical, anomalous and neutral transport to the overall H-mode pedestal and scrape-off layer (SOL) structure in an ELM-free QH-mode discharge on DIII-D is explored using XGC0, a 5D full-f multi-species particle-in-cell drift-kinetic solver with self-consistent neutral recycling and sheath potentials. The work in this paper builds on previous work aimed at achieving quantitative agreement between the flux-driven simulation and the experimental electron density, impurity density and orthogonal measurements of impurity temperature and flow profiles. Improved quantitative agreement is achieved by performing the calculations with a more realistic electron mass, larger neutral density and including finite-Larmor-radius corrections self-consistently in the drift-kinetic motion of the particles. Consequently, the simulations provide stronger evidence that the radial electric field ({{E}\\text{r}} ) in the pedestal is primarily established by the required balance between the loss of high-energy tail main ions against a pinch of colder main ions and impurities. The kinetic loss of a small population of ions carrying a large proportion of energy and momentum leads to a separation of the particle and energy transport rates and introduces a source of intrinsic edge torque. Ion orbit loss and finite orbit width effects drive the energy distributions away from Maxwellian, and describe the anisotropy, poloidal asymmetry and local minimum near the separatrix observed in the {{T}i} profile.

  16. Collective transport of weakly interacting molecular motors with Langmuir kinetics

    NASA Astrophysics Data System (ADS)

    Chandel, Sameep; Chaudhuri, Abhishek; Muhuri, Sudipto

    2015-04-01

    Filament-based intracellular transport involves the collective action of molecular motor proteins. Experimental evidences suggest that microtubule (MT) filament bound motor proteins such as kinesins weakly interact among themselves during transport and with the surrounding cellular environment. Motivated by these observations we study a driven lattice gas model for collective unidirectional transport of molecular motors on open filament. This model incorporates short-range next-nearest-neighbour (NNN) interactions between the motors and couples the transport process on filament with surrounding cellular environment through adsorption-desorption Langmuir kinetics (LK) of the motors. We analyse this model within the framework of a mean-field (MF) theory in the limit of weak interactions between the motors. We point to the mapping of this model with the non-conserved version of the Katz-Lebowitz-Spohn (KLS) model. The system exhibits rich phase behavior with a variety of inhomogeneous phases including localized shocks in the bulk of the filament. We obtain the steady-state density and current profiles, analyse their variation as a function of the strength of interaction and construct the non-equilibrium MF phase diagram. We compare these MF results with Monte Carlo simulations and find that the MF analysis shows reasonably good agreement with simulation results as long as the motors are weakly interacting. For sufficently strong NNN interaction between the motors, the mean-field results deviate significantly, and for very strong NNN interaction in the absence of LK, the current in the lattice is determined solely by the NNN interaction parameter and it becomes independent of entry and exit rates of motors at the filament boundaries.

  17. Constraining kinetic rates of mineral reactions using reactive transport models

    NASA Astrophysics Data System (ADS)

    Bolton, E. W.; Wang, Z.; Ague, J.; Bercovici, D.; Cai, Z.; Karato, S.; Oristaglio, M. L.; Qiu, L.

    2012-12-01

    We use a reactive transport model to better understand results of experiments to obtain kinetic rates of mineral reactions in closed systems. Closed system experiments pose special challenges in that secondary minerals may form that modify the fluid composition evolution and may grow on the dissolving minerals thus armoring the surface. Even so, such closed system experiments provide critical data for what minerals would actually form in field applications and how coupled dissolution and precipitation mineral reactions are strongly linked. Comparing to experimental observations can test the reactive transport model, and the experimental observations can be better understood by comparing the results to the modeling. We apply a 0D end member of the model to understand the dissolution of single crystals of forsterite in a variety of settings (low pH, high pH, or NaHCO3 initial fluids, at 100 C and 1 bar, or 200 C and 150 bar). Depending on the initial conditions, we observe the precipitation of talc, brucite, amorphous silica, chrysotile, or magnesite, in various combinations. We compare simulation results to fluid compositions and the presence of secondary minerals experimentally sampled at various times. Insight from the simulations helped create an inverse model to extract the rates of forsterite dissolution and to create a simple forward model useful for exploring the influence of system size, secondary mineral surface areas, etc. Our reactive transport model allows secondary minerals to armor the forsterite surface, which can strongly decrease the dissolution rate as the system evolves. Tuning our model with experimentally derived rates and assuring relevant processes are included so as to reproduce experimental observations is necessary before upscaling to heterogeneous field conditions. The reactive transport model will be used for field-scale sequestration simulations and coupled with a geomechanical model that includes the influence of deformation.

  18. A kinetic concepto of lipid transport in ruminants.

    PubMed

    Palmquist, D L

    1976-03-01

    Summarization of the literature shows a strong correlation between dietary fatty acid intake and total lipid concentration in plasma in lactating cows whereas total milk fat secreted is related to neither of these. In the process of plasma triglyceride removal, chylomicra and very low density lipoproteins are converted to low density lipoproteins. Limited kinetic data indicate that the fractional removal rates for chulomicra and very low density lipoproteins are rapid in lactating cows whereas fractional removal of low density lipoproteins is slower, resulting in accumulation of the latter in plasma. Under such conditions, low density lipoprotein concentrations of plasma would not be expected to reflect quantitatively the transfer of plasma triglyceride fatty acids to milk fat. Quantitative analysis or triglyceride fatty acid turnover in density less than 1.006 lipoproteins should delineate the role of plasma lipid transport in milk fat synthesis. High fat diets protected from rumen biohydrogenation have proven to be a useful approach in studying ruminant fat metabolism and may be used more extensively to elucidate the role of cholesterol in plasma lipid transport and the metabolism of essential fatty acids in ruminants. PMID:4477

  19. Modification of the finite element heat and mass transfer code (FEHMN) to model multicomponent reactive transport

    SciTech Connect

    Viswanathan, H.S.

    1995-12-31

    The finite element code FEHMN is a three-dimensional finite element heat and mass transport simulator that can handle complex stratigraphy and nonlinear processes such as vadose zone flow, heat flow and solute transport. Scientists at LANL have been developed hydrologic flow and transport models of the Yucca Mountain site using FEHMN. Previous FEHMN simulations have used an equivalent K{sub d} model to model solute transport. In this thesis, FEHMN is modified making it possible to simulate the transport of a species with a rigorous chemical model. Including the rigorous chemical equations into FEHMN simulations should provide for more representative transport models for highly reactive chemical species. A fully kinetic formulation is chosen for the FEHMN reactive transport model. Several methods are available to computationally implement a fully kinetic formulation. Different numerical algorithms are investigated in order to optimize computational efficiency and memory requirements of the reactive transport model. The best algorithm of those investigated is then incorporated into FEHMN. The algorithm chosen requires for the user to place strongly coupled species into groups which are then solved for simultaneously using FEHMN. The complete reactive transport model is verified over a wide variety of problems and is shown to be working properly. The simulations demonstrate that gas flow and carbonate chemistry can significantly affect {sup 14}C transport at Yucca Mountain. The simulations also provide that the new capabilities of FEHMN can be used to refine and buttress already existing Yucca Mountain radionuclide transport studies.

  20. Biological conversion of synthesis gas. Mass transfer/kinetic studies

    SciTech Connect

    Klasson, K.T.; Basu, R.; Johnson, E.R.; Clausen, E.C.; Gaddy, J.L.

    1992-03-01

    Mass transfer and kinetic studies were carried out for the Rhodospirillum rubrum and Chlorobium thiosulfatophilum bacterial systems. R. rubrum is a photosynthetic anaerobic bacterium which catalyzes the biological water gas shift reaction: CO + H{sub 2}0 {yields} CO{sub 2} + H{sub 2}. C. thiosulfatophilum is also a H{sub 2}S and COS to elemental sulfur. The growth of R. rubrum may be satisfactorily carried out at 25{degree} and 30{degree}C, while CO uptake and thus the conversion of CO best occurs at temperatures of either 30{degree}, 32{degree} or 34{degree}C. The rate of conversion of COs and H{sub 2}O to CO{sub 2} and H{sub 2}S may be modeled by a first order rate expression. The rate constant at 30{degree}C was found to be 0.243 h{sup {minus}1}. The growth of C. thiosulfatophilum may be modeled in terms of incoming light intensity using a Monod equation: {mu} = {sub 351} + I{sub o}/{sup 0.152}I{sub o}. Comparisons of the growth of R. rubrum and C. thiosulfatophilum shows that the specific growth rate of C. thiosulfatophilum is much higher at a given light intensity.

  1. Mass transfer kinetics during osmotic dehydration of pomegranate arils.

    PubMed

    Mundada, Manoj; Hathan, Bahadur Singh; Maske, Swati

    2011-01-01

    The mass transfer kinetics during osmotic dehydration of pomegranate arils in osmotic solution of sucrose was studied to increase palatability and shelf life of arils. The freezing of the whole pomegranate at -18 °C was carried out prior to osmotic dehydration to increase the permeability of the outer cellular layer of the arils. The osmotic solution concentrations used were 40, 50, 60°Bx, osmotic solution temperatures were 35, 45, 55 °C. The fruit to solution ratio was kept 1:4 (w/w) during all the experiments and the process duration varied from 0 to 240 min. Azuara model and Peleg model were the best fitted as compared to other models for water loss and solute gain of pomegranate arils, respectively. Generalized Exponential Model had an excellent fit for water loss ratio and solute gain ratio of pomegranate arils. Effective moisture diffusivity of water as well as solute was estimated using the analytical solution of Fick's law of diffusion. For above conditions of osmotic dehydration, average effective diffusivity of water loss and solute gain varied from 2.718 × 10(-10) to 5.124 × 10(-10) m(2)/s and 1.471 × 10(-10) to 5.147 × 10(-10) m(2)/s, respectively. The final product was successfully utilized in some nutritional formulations such as ice cream and bakery products. PMID:21535673

  2. GROUNDWATER MASS TRANSPORT AND EQUILIBRIUM CHEMISTRY MODEL FOR MULTICOMPONENT SYSTEMS

    EPA Science Inventory

    A mass transport model, TRANQL, for a multicomponent solution system has been developed. The equilibrium interaction chemistry is posed independently of the mass transport equations which leads to a set of algebraic equations for the chemistry coupled to a set of differential equ...

  3. DIRECT COMPARISON OF KINETIC AND LOCAL EQUILIBRIUM FORMULATIONS FOR SOLUTE TRANSPORT AFFECTED BY SURFACE REACTIONS.

    USGS Publications Warehouse

    Bahr, Jean M.; Rubin, Jacob

    1987-01-01

    Modeling transport of reacting solutes in porous media often requires a choice between models based on the local equilibrium assumption (LEA) and models involving reaction kinetics. Direct comparison of the mathematical formulations for these two types of transport models can aid in this choice. For cases of transport affected by surface reaction, such a comparison is made possible by a new derivation procedure. This procedure yields a kinetics-based formulation that is the sum of the LEA formulation and one or more kinetically influenced terms. The dimensionless form of the new kinetics-based formulation facilitates identification of critical parameter groupings which control the approach to transport behavior consistent with LEA model predictions. Results of numerical experiments demonstrate that criteria for LEA applicability can be expressed conveniently in terms of these parameter groupings. The derivation procedure is demonstrated for examples of surface reactions including first-order reversible sorption, Langmuir-type kinetics and binary, homovalent ion exchange.

  4. Pore-Scale Investigation of Mass Transport and Electrochemistry in a Solid Oxide Fuel Cell Anode

    SciTech Connect

    Grew, Kyle N.; Joshi, Abhijit S.; Peracchio, Aldo A.; Chiu, Wilson K. S.

    2009-10-31

    The development and validation of a model for the study of pore-scale transport phenomena and electrochemistry in a Solid Oxide Fuel Cell (SOFC) anode are presented in this work. This model couples mass transport processes with a detailed reaction mechanism, which is used to model the electrochemical oxidation kinetics. Detailed electrochemical oxidation reaction kinetics, which is known to occur in the vicinity of the three-phase boundary (TPB) interfaces, is discretely considered in this work. The TPB regions connect percolating regions of electronic and ionic conducting phases of the anode, nickel (Ni) and yttria-stabilized zirconia (YSZ), respectively; with porous regions supporting mass transport of the fuel and product. A two-dimensional (2D), multi-species lattice Boltzmann method (LBM) is used to describe the diffusion process in complex pore structures that are representative of the SOFC anode. This diffusion model is discretely coupled to a kinetic electrochemical oxidation mechanism using localized flux boundary conditions. The details of the oxidation kinetics are prescribed as a function of applied activation overpotential and the localized hydrogen and water mole fractions. This development effort is aimed at understanding the effects of the anode microstructure within TPB regions. This work describes the methods used so that future studies can consider the details of SOFC anode microstructure.

  5. Computational methods for multiphase equilibrium and kinetics calculations for geochemical and reactive transport applications

    NASA Astrophysics Data System (ADS)

    Leal, Allan; Saar, Martin

    2016-04-01

    Computational methods for geochemical and reactive transport modeling are essential for the understanding of many natural and industrial processes. Most of these processes involve several phases and components, and quite often requires chemical equilibrium and kinetics calculations. We present an overview of novel methods for multiphase equilibrium calculations, based on both the Gibbs energy minimization (GEM) approach and on the solution of the law of mass-action (LMA) equations. We also employ kinetics calculations, assuming partial equilibrium (e.g., fluid species in equilibrium while minerals are in disequilibrium) using automatic time stepping to improve simulation efficiency and robustness. These methods are developed specifically for applications that are computationally expensive, such as reactive transport simulations. We show how efficient the new methods are, compared to other algorithms, and how easy it is to use them for geochemical modeling via a simple script language. All methods are available in Reaktoro, a unified open-source framework for modeling chemically reactive systems, which we also briefly describe.

  6. Kinetic Isotope Effect on Transport Mediated by Clc-Type H+/CL- Exchangers

    NASA Astrophysics Data System (ADS)

    Picollo, Alessandra; Malvezzi, Mattia; Accardi, Alessio

    2013-01-01

    CLC transporters mediate the stoichiometric exchange of 2 Cl- ions for 1 H+ across the membranes of cellular compartments, mostly endosomes and lysosomes. Despite intense biophysical, structural and electrophysiological scrutiny the H+ transfer mechanism of these exchangers remains largely unknown. Previous work showed that two conserved Glutamates define the extremities of the H+ pathway in CLC exchangers. However, we don't know whether H+ transfer between these residues takes place along a series of protonatable moieties, via a Grotthuss mechanism and by diffusion of an H3+O cation and if at any step H+ tunneling plays a role. To differentiate between these possible mechanisms we measured the deuterium kinetic isotope effect on the transport rate of CLC-ec1 and CLC-5, respectively a prokaryotic and a eukaryotic CLC exchanger. We found that transport mediated by both proteins is slowed by ˜20-40% when H2O is replaced by D2O. This result suggests that the rate limiting step for H+ transport takes place along a hydrogen-bonded pathway, possibly formed by water molecules. However, we found that the voltage dependence of CLC-5 inhibition by extracellular H+ is eliminated by this substitution. This suggests that the voltage dependence of this process arises from a mechanism that is exquisitely sensitive to particle mass such as proton tunneling.

  7. Density Functional Theory Calculations of Mass Transport in UO2

    SciTech Connect

    Andersson, Anders D.; Dorado, Boris; Uberuaga, Blas P.; Stanek, Christopher R.

    2012-06-26

    In this talk we present results of density functional theory (DFT) calculations of U, O and fission gas diffusion in UO{sub 2}. These processes all impact nuclear fuel performance. For example, the formation and retention of fission gas bubbles induce fuel swelling, which leads to mechanical interaction with the clad thereby increasing the probability for clad breach. Alternatively, fission gas can be released from the fuel to the plenum, which increases the pressure on the clad walls and decreases the gap thermal conductivity. The evolution of fuel microstructure features is strongly coupled to diffusion of U vacancies. Since both U and fission gas transport rates vary strongly with the O stoichiometry, it is also important to understand O diffusion. In order to better understand bulk Xe behavior in UO{sub 2{+-}x} we first calculate the relevant activation energies using DFT techniques. By analyzing a combination of Xe solution thermodynamics, migration barriers and the interaction of dissolved Xe atoms with U, we demonstrate that Xe diffusion predominantly occurs via a vacancy-mediated mechanism. Since Xe transport is closely related to diffusion of U vacancies, we have also studied the activation energy for this process. In order to explain the low value of 2.4 eV found for U migration from independent damage experiments (not thermal equilibrium) the presence of vacancy clusters must be included in the analysis. Next we investigate species transport on the (111) UO{sub 2} surface, which is motivated by the formation of small voids partially filled with fission gas atoms (bubbles) in UO{sub 2} under irradiation. Surface diffusion could be the rate-limiting step for diffusion of such bubbles, which is an alternative mechanism for mass transport in these materials. As expected, the activation energy for surface diffusion is significantly lower than for bulk transport. These results are further discussed in terms of engineering-scale fission gas release models

  8. Computational implementation of interfacial kinetic transport theory for water vapour transport in porous media

    PubMed Central

    Albaalbaki, Bashar; Hill, Reghan J.

    2014-01-01

    A computational framework is developed for applying interfacial kinetic transport theory to predict water vapour permeability of porous media. Modified conservation equations furnish spatially periodic disturbances from which the average flux and, thus, the effective diffusivity is obtained. The equations are solved exactly for a model porous medium comprising parallel layers of gas and solid with arbitrary solid volume fraction. From the microscale effective diffusivity, a two-point boundary-value problem is solved at the macroscale to furnish the water vapour transport rate in membranes subjected to a finite RH differential. Then, the microscale model is implemented using a computational framework (extended finite-element method) to examine the role of particle size, aspect ratio and positioning for periodic arrays of aligned super-ellipses (model particles that pack with high density). We show that the transverse water vapour permeability can be reduced by an order of magnitude only when fibres with a high-aspect ratio cross section are packed in a periodic staggered configuration. Maximum permeability is achieved at intermediate micro-structural length scales, where gas-phase diffusion is enhanced by surface diffusion, but not limited by interfacial-exchange kinetics. The two-dimensional computations demonstrated here are intended to motivate further efforts to develop efficient computational solutions for realistic three-dimensional microstructures. PMID:24399918

  9. Kinetic and thermodynamic assessment of binding of serotonin transporter inhibitors.

    PubMed

    Martin, Renee S; Henningsen, Robert A; Suen, Alexander; Apparsundaram, Subbu; Leung, Becky; Jia, Zhongjiang; Kondru, Rama K; Milla, Marcos E

    2008-12-01

    Several serotonin reuptake inhibitors are in clinical use for treatment of depression and anxiety disorders. However, to date, reported pharmacological differentiation of these ligands has focused mainly on their equilibrium binding affinities for the serotonin transporter. This study takes a new look at antidepressant binding modes using radioligand binding assays with [(3)H]S-citalopram to determine equilibrium and kinetic rate constants across multiple temperatures. The observed dissociation rate constants at 26 degrees C fall into a narrow range for all molecules. Conversely, association rate constants generally decreased with increasing equilibrium binding affinities. Consistent with this, the measured activation energy for S-citalopram association was relatively large (19.5 kcal . mol(-1)), suggesting conformational change upon ligand binding. For most of the drugs, including citalopram, the enthalpy (DeltaH(O)) and entropy (-TDeltaS(O)) contributions to reaction energetics were determined by van't Hoff analyses to be roughly equivalent (25-75% DeltaG(O)) and to correlate (positively for enthalpy) with the polar surface area of the drug. However, the binding of the drug fluvoxamine was predominantly entropically driven. When these data are considered in the context of the physicochemical properties of these ligands, two distinct binding modes can be proposed. The citalopram-type binding mode probably uses a polar binding pocket that allows charged or polar interactions between ligand and receptor with comparatively small loss in enthalpy due to dehydration. The fluvoxamine-type binding mode is fueled by energy released upon burying hydrophobic ligand moieties into a binding pocket that is flexible enough to suffer minimal loss in entropy from conformational constraint. PMID:18801948

  10. Improved kinetic neoclassical transport calculation for a low-collisionality QH-mode pedestal

    DOE PAGESBeta

    Battaglia, D. J.; Burrell, K. H.; Chang, C. S.; deGrassie, J. S.; Grierson, B. A.; Groebner, R. J.; Hager, R.

    2016-07-15

    The role of neoclassical, anomalous and neutral transport to the overall H-mode pedestal and scrape-off layer (SOL) structure in an ELM-free QH-mode discharge on DIII-D is explored using XGC0, a 5D full-f multi-species particle-in-cell drift-kinetic solver with self-consistent neutral recycling and sheath potentials. The work in this paper builds on previous work aimed at achieving quantitative agreement between the flux-driven simulation and the experimental electron density, impurity density and orthogonal measurements of impurity temperature and flow profiles. Improved quantitative agreement is achieved by performing the calculations with a more realistic electron mass, larger neutral density and including finite-Larmor-radius corrections self-consistentlymore » in the drift-kinetic motion of the particles. Consequently, the simulations provide stronger evidence that the radial electric field (E-r) in the pedestal is primarily established by the required balance between the loss of high-energy tail main ions against a pinch of colder main ions and impurities. The kinetic loss of a small population of ions carrying a large proportion of energy and momentum leads to a separation of the particle and energy transport rates and introduces a source of intrinsic edge torque. Ion orbit loss and finite orbit width effects drive the energy distributions away from Maxwellian, and describe the anisotropy, poloidal asymmetry and local minimum near the separatrix observed in the T-i profile.« less

  11. Microbial respiration and dissolution precipitation reactions of minerals: thermo-kinetics and reactive transport modelling

    NASA Astrophysics Data System (ADS)

    Azaroual, M. M.; Parmentier, M.; Andre, L.; Croiset, N.; Pettenati, M.; Kremer, S.

    2010-12-01

    Microbial processes interact closely with abiotic geochemical reactions and mineralogical transformations in several hydrogeochemical systems. Reactive transport models are aimed to analyze these complex mechanisms integrating as well as the degradation of organic matter as the redox reactions involving successive terminal electron acceptors (TEAPs) mediated by microbes through the continuum of unsaturated zone (soil) - saturated zone (aquifer). The involvement of microbial processes in reactive transport in soil and subsurface geologic greatly complicates the mastery of the major mechanisms and the numerical modelling of these systems. The introduction of kinetic constraints of redox reactions in aqueous phase requires the decoupling of equilibrium reactions and the redefinition of mass balance of chemical elements including the concept of basis species and secondary species of thermodynamic databases used in geochemical modelling tools. An integrated methodology for modelling the reactive transport has been developed and implemented to simulate the transfer of arsenic, denitrification processes and the role of metastable aqueous sulfur species with pyrite and organic matter as electron donors entities. A mechanistic rate law of microbial respiration in various geochemical environments was used to simulate reactive transport of arsenic, nitrate and organic matter combined to the generalized rate law of mineral dissolution - precipitation reactions derived from the transition state theory was used for dissolution - precipitation of silica, aluminosilicate, carbonate, oxyhydroxide, and sulphide minerals. The kinetic parameters are compiled from the literature measurements based on laboratory constrained experiments and field observations. Numerical simulations, using the geochemical software PHREEQC, were performed aiming to identify the key reactions mediated by microbes in the framework of in the first hand the concept of the unsaturated - saturated zones of an

  12. Transport in Halobacterium Halobium: Light-Induced Cation-Gradients, Amino Acid Transport Kinetics, and Properties of Transport Carriers

    NASA Technical Reports Server (NTRS)

    Lanyi, Janos K.

    1977-01-01

    Cell envelope vesicles prepared from H. halobium contain bacteriorhodopsin and upon illumination protons are ejected. Coupled to the proton motive force is the efflux of Na(+). Measurements of Na-22 flux, exterior pH change, and membrane potential, Delta(psi) (with the dye 3,3'-dipentyloxadicarbocyanine) indicate that the means of Na(+) transport is sodium/proton exchange. The kinetics of the pH changes and other evidence suggests that the antiport is electrogenic (H(+)/Na(++ greater than 1). The resulting large chemical gradient for Na(+) (outside much greater than inside), as well as the membrane potential, will drive the transport of 18 amino acids. The I9th, glutamate, is unique in that its accumulation is indifferent to Delta(psi): this amino acid is transported only when a chemical gradient for Na(+) is present. Thus, when more and more NaCl is included in the vesicles glutamate transport proceeds with longer and longer lags. After illumination the gradient of H+() collapses within 1 min, while the large Na(+) gradient and glutamate transporting activity persists for 10- 15 min, indicating that proton motive force is not necessary for transport. A chemical gradient of Na(+), arranged by suspending vesicles loaded with KCl in NaCl, drives glutamate transport in the dark without other sources of energy, with V(sub max) and K(sub m) comparable to light-induced transport. These and other lines of evidence suggest that the transport of glutamate is facilitated by symport with Na(+), in an electrically neutral fashion, so that only the chemical component of the Na(+) gradient is a driving force.

  13. Kinetic and mass transfer parameters of maltotriose hydrolysis catalyzed by glucoamylase immobilized on macroporous silica and wrapped in pectin gel.

    PubMed

    Gonçalves, L R; Suzuki, G S; Giordano, R C; Giordano, R L

    2001-01-01

    Kinetic and mass transport parameters were estimated for maltotriose hydrolysis using glucoamylase immobilized on macroporous silica and wrapped in pectin gel at 30 degrees C. Free enzyme assays were used to obtain the intrinsic kinetic parameters of a Michaelis-Menten equation, with product inhibition by glucose. The uptake method, based on transient experimental data, was employed in the estimation of mass transfer parameters. Effective diffusivities of maltotriose in pectin gel were estimated by fitting a classical diffusion model to experimental data of maltotriose diffusion into particles of pectin gel in the absence of silica. The effective diffusivities of maltotriose in silica were obtained after fitting a bidisperse model to experimental data of maltotriose hydrolysis using glucoamylase immobilized in silica and wrapped in pectin gel. PMID:11963897

  14. Estimation of moisture transport coefficients in porous materials using experimental drying kinetics

    NASA Astrophysics Data System (ADS)

    Zaknoune, A.; Glouannec, P.; Salagnac, P.

    2012-02-01

    From experimental drying kinetics, an inverse technique is used to evaluate the moisture transport coefficients in building hygroscopic porous materials. Based on the macroscopic approach developed by Whitaker, a one-dimensional mathematical model is developed to predict heat and mass transfers in porous material. The parameters identification is made by the minimisation of the square deviation between numerical and experimental values of the surface temperature and the average moisture content. Two parameters of an exponential function describing the liquid phase transfer and one parameter relative to the diffusion of the vapour phase are identified. To ensure the feasibility of the estimation method, it is initially validated with cellular concrete and applied to lime paste.

  15. Electric current induced forward and anomalous backward mass transport

    NASA Astrophysics Data System (ADS)

    Somaiah, Nalla; Sharma, Deepak; Kumar, Praveen

    2016-05-01

    Multilayered test samples were fabricated in form of standard Blech structure, where W was used as the interlayer between SiO2 substrate and Cu film. Electromigration test was performed at 250 °C by passing an electric current with a nominal density of 3.9  ×  1010 A m‑2. In addition to the regular electromigration induced mass transport ensuing from the cathode towards the anode, we also observed anomalous mass transport from the anode to the cathode, depleting Cu from the anode as well. We propose an electromigration-thermomigration coupling based reasoning to explain the observed mass transport.

  16. Enhancement of binding kinetics on affinity substrates by laser point heating induced transport.

    PubMed

    Wang, Bu; Cheng, Xuanhong

    2016-03-01

    Enhancing the time response and detection limit of affinity-binding based biosensors is an area of active research. For diffusion limited reactions, introducing active mass transport is an effective strategy to reduce the equilibration time and improve surface binding. Here, a laser is focused on the ceiling of a microchamber to generate point heating, which introduces natural advection and thermophoresis to promote mass transport to the reactive floor. We first used the COMSOL simulation to study how the kinetics of ligand binding is influenced by the optothermal effect. Afterwards, binding of biotinylated nanoparticles to NeutrAvidin-treated substrates is quantitatively measured with and without laser heating. It is discovered that laser induced point heating reduces the reaction half-life locally, and the reduction improves with the natural advection velocity. In addition, non-uniform ligand binding on the substrate is induced by the laser with predictable binding patterns. This optothermal strategy holds promise to improve the time-response and sensitivity of biosensors and microarrays. PMID:26898559

  17. A KINETIC MODEL FOR CELL DENSITY DEPENDENT BACTERIAL TRANSPORT IN POROUS MEDIA

    EPA Science Inventory

    A kinetic transport model with the ability to account for variations in cell density of the aqueous and solid phases was developed for bacteria in porous media. Sorption kinetics in the advective-dispersive-sorptive equation was described by assuming that adsorption was proportio...

  18. Modification of the finite element heat and mass transfer code (FEHM) to model multicomponent reactive transport

    SciTech Connect

    Viswanathan, H.S.

    1996-08-01

    The finite element code FEHMN, developed by scientists at Los Alamos National Laboratory (LANL), is a three-dimensional finite element heat and mass transport simulator that can handle complex stratigraphy and nonlinear processes such as vadose zone flow, heat flow and solute transport. Scientists at LANL have been developing hydrologic flow and transport models of the Yucca Mountain site using FEHMN. Previous FEHMN simulations have used an equivalent Kd model to model solute transport. In this thesis, FEHMN is modified making it possible to simulate the transport of a species with a rigorous chemical model. Including the rigorous chemical equations into FEHMN simulations should provide for more representative transport models for highly reactive chemical species. A fully kinetic formulation is chosen for the FEHMN reactive transport model. Several methods are available to computationally implement a fully kinetic formulation. Different numerical algorithms are investigated in order to optimize computational efficiency and memory requirements of the reactive transport model. The best algorithm of those investigated is then incorporated into FEHMN. The algorithm chosen requires for the user to place strongly coupled species into groups which are then solved for simultaneously using FEHMN. The complete reactive transport model is verified over a wide variety of problems and is shown to be working properly. The new chemical capabilities of FEHMN are illustrated by using Los Alamos National Laboratory`s site scale model of Yucca Mountain to model two-dimensional, vadose zone {sup 14}C transport. The simulations demonstrate that gas flow and carbonate chemistry can significantly affect {sup 14}C transport at Yucca Mountain. The simulations also prove that the new capabilities of FEHMN can be used to refine and buttress already existing Yucca Mountain radionuclide transport studies.

  19. Bilayer mass transport model for determining swelling and diffusion in coated, ultrathin membranes.

    PubMed

    Nadermann, Nichole K; Chan, Edwin P; Stafford, Christopher M

    2015-02-18

    Water transport and swelling properties of an ultrathin, selective polyamide layer with a hydrophilic polymer coating, i.e., a polymer bilayer, are studied using quartz crystal microbalance with dissipation (QCM-D). Specifically, QCM-D is used to measure the dynamic and equilibrium change in mass in a series of differential sorption experiments to determine the dependence of the apparent diffusion coefficient and equilibrium swelling of the bilayer as a function of the water vapor activity. To determine transport properties specific to the polyamide layer, sorption kinetics of the bilayer was modeled with a bilayer mass transport model. The swelling and water diffusion coefficients are interpreted according to the Painter-Shenoy polymer network swelling model and the solution-diffusion model, respectively. PMID:25597964

  20. Mass transport by mode-2 internal solitary-like waves

    NASA Astrophysics Data System (ADS)

    Deepwell, David; Stastna, Marek

    2016-05-01

    We present the first three-dimensional numerical simulations of the mass transport capabilities of mode-2 waves formed by a lock-release mechanism with both single and double pycnocline stratifications. Single pycnoclines and double pycnoclines with a small spacing between the pycnocline centres were found to exhibit large Lee instabilities which formed during the collapse of the intermediate density region. These instabilities led to the generation of vorticity dipoles across the mid-depth, and thereby contributed to the reduction in the mass transported by the wave. A double pycnocline with a separation of approximately 12% of the depth between the two pycnocline centres was found to transport a passive tracer optimally for the longest time-period. Increasing Schmidt number correlated with increasing mass transport, while decreasing the tracer diffusivity led to increasing mass transport, but only when a trapped core existed. Contrasted two-dimensional simulations reveal that in certain cases, most noticeably the optimal transport case, the mass transport is significantly different from the corresponding three-dimensional simulation.

  1. Implementation of an anomalous radial transport model for continuum kinetic edge codes

    NASA Astrophysics Data System (ADS)

    Bodi, K.; Krasheninnikov, S. I.; Cohen, R. H.; Rognlien, T. D.

    2007-11-01

    Radial plasma transport in magnetic fusion devices is often dominated by plasma turbulence compared to neoclassical collisional transport. Continuum kinetic edge codes [such as the (2d,2v) transport version of TEMPEST and also EGK] compute the collisional transport directly, but there is a need to model the anomalous transport from turbulence for long-time transport simulations. Such a model is presented and results are shown for its implementation in the TEMPEST gyrokinetic edge code. The model includes velocity-dependent convection and diffusion coefficients expressed as a Hermite polynominals in velocity. The specification of the Hermite coefficients can be set, e.g., by specifying the ratio of particle and energy transport as in fluid transport codes. The anomalous transport terms preserve the property of no particle flux into unphysical regions of velocity space. TEMPEST simulations are presented showing the separate control of particle and energy anomalous transport, and comparisons are made with neoclassical transport also included.

  2. MODELLING SEDIMENT TRANSPORT FOR THE LAKE MICHIGAN MASS BALANCE PROJECT

    EPA Science Inventory

    A sediment transport model is one component of the overall ensemble of models being developed for the Lake Michigan Mass Balance. The SEDZL model is being applied to simulate the fine-grained sediment transport in Lake Michigan for the 1982-1983 and 1994-1995 periods. Model perf...

  3. Mass Transportation Operators' Beliefs about Visual Impairment.

    ERIC Educational Resources Information Center

    Almon, Pamela A.

    2001-01-01

    A study investigated 171 mass transit operators' beliefs about blindness and the factors that may influence their beliefs. There were statistically significant differences among transit operators' beliefs on the basis of the operators' ethnicity. White participants had significantly fewer irrational beliefs about blindness than Hispanic and…

  4. Mass Distribution and Mass Transport in the Earth System: Recent Scientific Progress Due to Interdisciplinary Research

    NASA Astrophysics Data System (ADS)

    Kusche, Jürgen; Klemann, Volker; Sneeuw, Nico

    2014-11-01

    This Special Issue on "Mass Distribution and Mass Transport in the Earth System: Recent Scientific Progress due to Interdisciplinary Research" reports a number of findings resulting from a collaborative effort run from 2006 until 2013, in the framework of the DFG Priority Program 1257 "Mass Distribution and Mass Transport in the Earth System". Contributions have been arranged along five lines, i.e. (1) improvements in geodesy: satellite mass monitoring through gravimetry and altimetry, (2) applications in large-scale hydrology, (3) applications in solid Earth research, (4) applications in cryospheric research, (5) applications in ocean sciences.

  5. Mass-Transport Properties In Growth Of Crystals From Vapors

    NASA Technical Reports Server (NTRS)

    Wiedemeier, H.

    1992-01-01

    Brief report summarizes results of experimental and theoretical studies of mass-transport properties of GeSe/Gel4 and Hg0.8Cd0.2Te systems in connection with growth of crystals in closed ampoules. Primary emphasis in studies was on thermochemical analyses, on development of mathematical models to predict diffusion-limited mass transport, and on comparison of theoretically predicted with experimental fluxes. Results applied to design, preparation, performance, and analysis of crystal-growth experiments of semiconducting materials on Earth and in outer space. Model extended to predict mass flux and overall composition of transport products of Hg0.8Cd0.2Te transport system.

  6. Space Geodesy Monitoring Mass Transport in Global Geophysical Fluids

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.

    2004-01-01

    Mass transports occurring in the atmosphere-hydrosphere-cryosphere-solid Earth-core system (the 'global geophysical fluids') are important geophysical phenomena. They occur on all temporal and spatial scales. Examples include air mass and ocean circulations, oceanic and solid tides, hydrological water and idsnow redistribution, mantle processes such as post-glacial rebound, earthquakes and tectonic motions, and core geodynamo activities. The temporal history and spatial pattern of such mass transport are often not amenable to direct observations. Space geodesy techniques, however, have proven to be an effective tool in monitorihg certain direct consequences of the mass transport, including Earth's rotation variations, gravitational field variations, and the geocenter motion. Considerable advances have been made in recent years in observing and understanding of these geodynamic effects. This paper will use several prominent examples to illustrate the triumphs in research over the past years under a 'Moore's law' in space geodesy. New space missions and projects promise to further advance our knowledge about the global mass transports. The latter contributes to our understanding of the geophysical processes that produce and regulate the mass transports, as well as of the solid Earth's response to such changes in terms of Earth's mechanical properties.

  7. Kinetics of hot-gas desulfurization sorbents for transport reactors

    SciTech Connect

    K.C. Kwon

    2000-01-01

    Hot-gas desulfurization for the integrated gasification combined cycle (IGCC) process has been investigated by many researchers to remove effectively hydrogen sulfide with various metal oxide sorbents at elevated temperatures. Various metal oxide sorbents are formulated with metal oxides such as Fe, Co, Zn, and Ti. Initial reaction kinetics of formulated sorbents with hydrogen sulfide is studied in the presence of various amounts of moisture and hydrogen at various reaction temperatures. The objectives of this research are to study initial reaction kinetics for a sorbent-hydrogen sulfide heterogeneous reaction system, to investigate effects of concentrations of hydrogen sulfide, hydrogen, and moisture on dynamic absorption of H{sub 2}S into sorbents, to understand effects of space time of reaction gas mixtures on initial reaction kinetics of the sorbent-hydrogen sulfide system, and to evaluate effects of temperature and sorbent amounts on dynamic absorption of H{sub 2}S into sorbents. Experimental data on initial reaction kinetics of hydrogen sulfide with metal oxide sorbents were obtained with a 0.83-cm{sup 3} differential reactor. The reactivity of MCRH-67 sorbent and AHI-1 was examined. These sorbents were obtained from the Research Triangle Institute (RTI). The sorbents in the form of 70 {micro}m particles are reacted with 1,000--4,000 ppm hydrogen sulfide at 450--600 C. The range of space time of reaction gas mixtures is 0.03--0.09 s. The range of reaction duration is 4--14,400 s.

  8. Lithium mass transport in ceramic breeder materials

    SciTech Connect

    Blackburn, P.E.; Johnson, C.E.

    1990-01-01

    The objective of this activity is to measure the lithium vaporization from lithium oxide breeder material under differing temperature and moisture partial pressure conditions. Lithium ceramics are being investigated for use as tritium breeding materials. The lithium is readily converted to tritium after reacting with a neutron. With the addition of 1000 ppM H{sub 2} to the He purge gas, the bred tritium is readily recovered from the blanket as HT and HTO above 400{degree}C. Within the solid, tritium may also be found as LiOT which may transport lithium to cooler parts of the blanket. The pressure of LiOT(g), HTO(g), or T{sub 2}O(g) above Li{sub 2}O(s) is the same as that for reactions involving hydrogen. In our experiments we were limited to the use of hydrogen. The purpose of this work is to investigate the transport of LiOH(g) from the blanket material. 8 refs., 1 fig., 3 tabs.

  9. A First Principles Study of Mass Transport in the Dehydrogenation of Lithium Amides and Lithium Alanates

    NASA Astrophysics Data System (ADS)

    Rolih, Biljana

    The pursuit of competitive alternatives to energy derived from the combustion of fossil fuels, has led to a great variety of new technologies. Exceptional develop- ments in electrochemical storage and production promise to lead to clean burning passenger vehicles. The high chemical density of a hydrogen fuel cell enables it to meet current standards for driving range and weight required of vehicles, making it an excellent candidate for universal application in the automotive industry. One of the biggest obstacles the fuel cell industry has yet to overcome is the means of practical hydrogen storage. Solid state metal hydrides are a class of materials that show potential for both economic and practical hydrogen storage. The search for the ideal metal hydride is defined by thermodynamic and kinetic constraints, since the requirements for a viable system are a rapid release of hydrogen in the temperature range of -40°C, to 80°C. First-principles density functional theory is an excellent method for gaining insight into the kinetics and thermodynamics of metal hydride solid state reactions. In the work presented here, density functional theory is used to explore formation energies, concentrations and migration barriers of metal hydrides. In particular, the following systems were analyzed: • Li - N - H It is well known that the reactive hydride composite LiNH 2 + LiH reversibly releases a large amount of hydrogen gas, with more favorable thermodynamics than LiNH2 alone. Kinetics of mass transport during the dehydrogenation of LiNH2 + LiH are investigated. A model is developed for determining activation energies of native defects in bulk crystals. In order to establish whether mass transport is the rate-limiting step in the dehydrogenation reaction, results are compared to experimental values. • Li - Al - H Kinetics of mass transport during the dehydrogenation of the metal hydride LiAlH2 are investigated. It is known that LiAlH4 endothermically decomposes via a two

  10. Kinetically influenced terms for solute transport affected by heterogeneous and homogeneous classical reactions

    USGS Publications Warehouse

    Bahr, J.M.

    1990-01-01

    This paper extends a four-step derivation procedure, previously presented for cases of transport affected by surface reactions, to transport problems involving homogeneous reactions. Derivations for these classes of reactions are used to illustrate the manner in which mathematical differences between reaction classes are reflected in the mathematical derivation procedures required to identify kinetically influenced terms. Simulation results for a case of transport affected by a single solution phase complexation reaction and for a case of transport affected by a precipitation-dissolution reaction are used to demonstrate the nature of departures from equilibrium-controlled transport as well as the use of kinetically influenced terms in determining criteria for the applicability of the local equilibrium assumption. A final derivation for a multireaction problem demonstrates the application of the generalized procedure to a case of transport affected by reactions of several classes. -from Author

  11. NO sub x -char reactions: Kinetics and transport aspects

    SciTech Connect

    Calo, J.M.; Suuberg, E.M.

    1990-01-01

    The present project is motivated by the need to reduce NO{sub x} emissions from combustors, especially coal combustors. Reactions with carbon are known to be effective at reducing No to N{sub 2}, and remain interesting candidates in a wide variety of possible applications. These reactions are known to be important in reducing NO{sub x} emissions from fluidized bed coal combustors, in which the coal char itself serves as the reducing agent. The principal goal of this project is to develop a mechanistic understanding of the processes by which carbons reduce NO to N{sub 2}. The carbon was a char derived from phenol-formaldehyde resin. This material has been noted to be a reasonable model for coal chars in most respects, expect that its gasification behavior is not complicated by catalytic processes due to minerals. In the first phases of the project, the global kinetics of the process were established. In more recent work, attention has been turned to the individual steps in the mechanism. Recent quarterly reports have detailed the role of both chemisorption and desorption processes in determining the course and kinetics of the process. This report continues the reporting of results obtained along these lines, and draws an important new conclusion concerning the number of separate processes involved in determining the kinetics. 40 refs., 3 figs., 2 tabs.

  12. Coupling of kinetic Monte Carlo simulations of surface reactions to transport in a fluid for heterogeneous catalytic reactor modeling

    SciTech Connect

    Schaefer, C.; Jansen, A. P. J.

    2013-02-07

    We have developed a method to couple kinetic Monte Carlo simulations of surface reactions at a molecular scale to transport equations at a macroscopic scale. This method is applicable to steady state reactors. We use a finite difference upwinding scheme and a gap-tooth scheme to efficiently use a limited amount of kinetic Monte Carlo simulations. In general the stochastic kinetic Monte Carlo results do not obey mass conservation so that unphysical accumulation of mass could occur in the reactor. We have developed a method to perform mass balance corrections that is based on a stoichiometry matrix and a least-squares problem that is reduced to a non-singular set of linear equations that is applicable to any surface catalyzed reaction. The implementation of these methods is validated by comparing numerical results of a reactor simulation with a unimolecular reaction to an analytical solution. Furthermore, the method is applied to two reaction mechanisms. The first is the ZGB model for CO oxidation in which inevitable poisoning of the catalyst limits the performance of the reactor. The second is a model for the oxidation of NO on a Pt(111) surface, which becomes active due to lateral interaction at high coverages of oxygen. This reaction model is based on ab initio density functional theory calculations from literature.

  13. Coupling of kinetic Monte Carlo simulations of surface reactions to transport in a fluid for heterogeneous catalytic reactor modeling.

    PubMed

    Schaefer, C; Jansen, A P J

    2013-02-01

    We have developed a method to couple kinetic Monte Carlo simulations of surface reactions at a molecular scale to transport equations at a macroscopic scale. This method is applicable to steady state reactors. We use a finite difference upwinding scheme and a gap-tooth scheme to efficiently use a limited amount of kinetic Monte Carlo simulations. In general the stochastic kinetic Monte Carlo results do not obey mass conservation so that unphysical accumulation of mass could occur in the reactor. We have developed a method to perform mass balance corrections that is based on a stoichiometry matrix and a least-squares problem that is reduced to a non-singular set of linear equations that is applicable to any surface catalyzed reaction. The implementation of these methods is validated by comparing numerical results of a reactor simulation with a unimolecular reaction to an analytical solution. Furthermore, the method is applied to two reaction mechanisms. The first is the ZGB model for CO oxidation in which inevitable poisoning of the catalyst limits the performance of the reactor. The second is a model for the oxidation of NO on a Pt(111) surface, which becomes active due to lateral interaction at high coverages of oxygen. This reaction model is based on ab initio density functional theory calculations from literature. PMID:23406093

  14. Coupling of kinetic Monte Carlo simulations of surface reactions to transport in a fluid for heterogeneous catalytic reactor modeling

    NASA Astrophysics Data System (ADS)

    Schaefer, C.; Jansen, A. P. J.

    2013-02-01

    We have developed a method to couple kinetic Monte Carlo simulations of surface reactions at a molecular scale to transport equations at a macroscopic scale. This method is applicable to steady state reactors. We use a finite difference upwinding scheme and a gap-tooth scheme to efficiently use a limited amount of kinetic Monte Carlo simulations. In general the stochastic kinetic Monte Carlo results do not obey mass conservation so that unphysical accumulation of mass could occur in the reactor. We have developed a method to perform mass balance corrections that is based on a stoichiometry matrix and a least-squares problem that is reduced to a non-singular set of linear equations that is applicable to any surface catalyzed reaction. The implementation of these methods is validated by comparing numerical results of a reactor simulation with a unimolecular reaction to an analytical solution. Furthermore, the method is applied to two reaction mechanisms. The first is the ZGB model for CO oxidation in which inevitable poisoning of the catalyst limits the performance of the reactor. The second is a model for the oxidation of NO on a Pt(111) surface, which becomes active due to lateral interaction at high coverages of oxygen. This reaction model is based on ab initio density functional theory calculations from literature.

  15. Mass transport limitation in implantable defibrillator batteries

    NASA Astrophysics Data System (ADS)

    Schmidt, C.; Tam, G.; Scott, E.; Norton, J.; Chen, K.

    Using cells with lithium reference electrodes, the power-limiting behavior in the lithium-SVO cell was shown to be due to a rapid voltage transition at the anode. A novel test cell was developed to explore the influence of current density, bulk LiAsF 6 concentration, separator type and separator proximity to the anode on the time to onset ( τ) of the anode polarization. The results were found to follow a relationship, iτ1/2∝ Cbulk, consistent with the Sand equation. This relationship also predicts that the critical concentration of LiAsF 6, at which onset of the anode polarization occurs, is near the solubility limit of LiAsF 6 in our system (around 3.5-4.0 M). This general phenomenon was found to be quantitatively similar for two dissimilar separator types, and the anode polarization could also be induced in the absence of separator at high concentration and current density. However, it appears that τ decreases with closer proximity of the separator to the anode surface (i.e. cell stack pressure), suggesting that the effect of separator is to inhibit convective transport to and from the Li surface.

  16. Frontiers in Cancer Nanomedicine: Directing Mass Transport through Biological Barriers

    PubMed Central

    Ferrari, Mauro

    2010-01-01

    The physics of mass transport within body compartments and across biological barriers differentiates cancers from healthy tissues. Variants of nanoparticles can be manufactured in combinatorially large sets, varying only one transport-affecting design parameter at a time. Nanoparticles can also be used as building blocks for systems that perform sequences of coordinated actions, in accordance to a prescribed logic. These are referred to as Logic-Embedded Vectors “(LEV)” in the following. Nanoparticles and LEVs are ideal probes for the determination of mass transport laws in tumors, acting as imaging contrast enhancers, and can be employed for the lesion-selective delivery of therapy. Their size, shape, density and surface chemistry dominate convective transport in the blood stream, margination, cell adhesion, selective cellular uptake, as well as sub-cellular trafficking and localization. As argued here, the understanding of transport differentials in cancer, termed ‘transport oncophysics’ unveils a new promising frontier in oncology: the development of lesion-specific delivery particulates that exploit mass transport differentials to deploy treatment of greater efficacy and reduced side effects. PMID:20079548

  17. Thermodynamics and mass transfer kinetics of phenol in reversed phase liquid chromatography

    SciTech Connect

    Kaczmarski, Krzysztof; Gritti, Fabrice; Guiochon, Georges A

    2006-05-01

    The thermodynamics and the mass transfer kinetics of the chromatographic system made of phenol, in a water-acetonitrile mobile phase, on a C18 RPLC column, were studied in the temperature range from 21 to 77 C and the interstitial velocity range of 0.021 to 1.27 cm/s. The equilibrium isotherm was accurately approximated by a multilayer model assuming lateral interactions between adsorbed molecules. The parameters of the kinetics of the phenol mass transfer in this column were measured by the method of moments. These data were analyzed using the available models and correlations. It was proven that the parameters of the mass transfer kinetics measured under linear conditions could be successfully used for the prediction of the concentration profiles obtained under overloaded conditions.

  18. Investigating Mass Transport Limitations on Xylan Hydrolysis During Dilute Acid Pretreatment of Poplar

    SciTech Connect

    Mittal, Ashutosh; Pilath, Heid M.; Parent, Yves; Chatterjee, Siddharth G.; Donohoe, Bryon S.; Yarbrough, John M.; Himmel, Michael E.; Nimlos, Mark R.; Johnson, David K.

    2014-04-28

    Mass transport limitations could be an impediment to achieving high sugar yields during biomass pretreatment and thus be a critical factor in the economics of biofuels production. The objective of this work was to study the mass transfer restrictions imposed by the structure of biomass on the hydrolysis of xylan during dilute acid pretreatment of biomass. Mass transfer effects were studied by pretreating poplar wood at particle sizes ranging from 10 micrometers to 10 mm. This work showed a significant reduction in the rate of xylan hydrolysis in poplar when compared to the intrinsic rate of hydrolysis for isolated xylan that is possible in the absence of mass transfer. In poplar samples we observed no significant difference in the rates of xylan hydrolysis over more than two orders of magnitude in particle size. It appears that no additional mass transport restrictions are introduced by increasing particle size from 10 micrometers to 10 mm. This work suggests that the rates of xylan hydrolysis in biomass particles are limited primarily by the diffusion of hydrolysis products out of plant cell walls. A mathematical description is presented to describe the kinetics of xylan hydrolysis that includes transport of the hydrolysis products through biomass into the bulk solution. The modeling results show that the effective diffusion coefficient of the hydrolysis products in the cell wall is several orders of magnitude smaller than typical values in other applications signifying the role of plant cell walls in offering resistance to diffusion of the hydrolysis products.

  19. Experimental and theoretical study of the adsorption behavior and mass transfer kinetics of propranolol enantiomers on cellulase protein as the selector

    SciTech Connect

    Fornstedt, T.; Zhong, G.; Bensetiti, Z.; Guiochon, G. |

    1996-07-15

    The thermodynamics and mass transfer kinetics of the retention of the R and S enantiomers of propranolol were investigated on a system comprising an acetic acid buffer solution as mobile phase and the protein cellobiohydrolase I immobilized on silica as the stationary phase. The bi-Langmuir isotherm model fitted best to each set of single-component isotherm data. The monolayer capacity of the nonchiral type of adsorption sites was 22.9 mM. For the chiral type of sites, it was 0.24 mM for the R enantiomer and 0.64 nM for the S enantiomer. Peak tailing was observed, even at very low concentrations allowing operation of the low-capacity chiral sites under linear conditions. This tailing can be explained on the basis of heterogeneous mass transfer kinetics. At higher concentrations, which are often used in analytical applications, the isotherms on the chiral sites no longer have a linear behavior, and peak tailing is consequently more pronounced. Under those conditions, peak tailing originates from the combined effect of heterogeneous thermodynamics and heterogeneous mass transfer kinetics. These complex phenomena are explained and modeled using the transport-dispersive model with a solid film linear driving force model modified to account for heterogeneous mass transfer kinetics. The rate coefficient of the mass transfer kinetics was found to be concentration dependent. 36 refs., 5 figs., 1 tab.

  20. A finite element method for transient analysis of concurrent large deformation and mass transport in gels

    NASA Astrophysics Data System (ADS)

    Zhang, Jiaping; Zhao, Xuanhe; Suo, Zhigang; Jiang, Hanqing

    2009-05-01

    A gel is an aggregate of polymers and solvent molecules. The polymers crosslink into a three-dimensional network by strong chemical bonds and enable the gel to retain its shape after a large deformation. The solvent molecules, however, interact among themselves and with the network by weak physical bonds and enable the gel to be a conduit of mass transport. The time-dependent concurrent process of large deformation and mass transport is studied by developing a finite element method. We combine the kinematics of large deformation, the conservation of the solvent molecules, the conditions of local equilibrium, and the kinetics of migration to evolve simultaneously two fields: the displacement of the network and the chemical potential of the solvent. The finite element method is demonstrated by analyzing several phenomena, such as swelling, draining and buckling. This work builds a platform to study diverse phenomena in gels with spatial and temporal complexity.

  1. Kinetics of vertical transport and localization of electrons in strained semiconductor supperlattices

    SciTech Connect

    Gerchikov, L. G. Mamaev, Yu. A.; Yashin, Yu. P.

    2015-08-15

    The kinetics of vertical electron transport in a semiconductor superlattice is considered taking into account partial localization of electrons. The time dependences of photoemission currents from samples based on a strained semiconductor superlattice calculated by numerically solving the kinetic equation are in good agreement with experimental data. Comparison of the theory with experiment makes it possible to determine the characteristic electron localization and thermoactivation times, the diffusion length, and losses of photoelectrons in the superlattice.

  2. Theory of transport noise in membrane channels with open-closed kinetics.

    PubMed

    Frehland, E

    1979-03-21

    A theoretical approach to transport noise in kinetic systems, which has recently been developed, is applied to electric fluctuations around steady-states in membrane channels with different conductance states. The channel kinetics may be simple two state (open-closed) kinetics or more complicated. The membrane channel is considered as a sequence of binding sites separated by energy barriers over which the ions have to jump according to the usual single-file diffusion model. For simplicity the channels are assumed to act independently. In the special case of ionic movement fast compared with the channel open-closed kinetics the results agree with those derived from the usual Master equation approach to electric fluctuations in nerve membrane channels. For the simple model of channels with one binding site and two energy barries the coupling between the fluctuations coming from the open-closed kinetics and from the jump diffusion is investigated. PMID:427255

  3. Electrochemical kinetic and mass transfer model for direct ethanol alkaline fuel cell (DEAFC)

    NASA Astrophysics Data System (ADS)

    Abdullah, S.; Kamarudin, S. K.; Hasran, U. A.; Masdar, M. S.; Daud, W. R. W.

    2016-07-01

    A mathematical model is developed for a liquid-feed DEAFC incorporating an alkaline anion-exchange membrane. The one-dimensional mass transport of chemical species is modelled using isothermal, single-phase and steady-state assumptions. The anode and cathode electrochemical reactions use the Tafel kinetics approach, with two limiting cases, for the reaction order. The model fully accounts for the mixed potential effects of ethanol oxidation at the cathode due to ethanol crossover via an alkaline anion-exchange membrane. In contrast to a polymer electrolyte membrane model, the current model considers the flux of ethanol at the membrane as the difference between diffusive and electroosmotic effects. The model is used to investigate the effects of the ethanol and alkali inlet feed concentrations at the anode. The model predicts that the cell performance is almost identical for different ethanol concentrations at a low current density. Moreover, the model results show that feeding the DEAFC with 5 M NaOH and 3 M ethanol at specific operating conditions yields a better performance at a higher current density. Furthermore, the model indicates that crossover effects on the DEAFC performance are significant. The cell performance decrease from its theoretical value when a parasitic current is enabled in the model.

  4. Thermochemical conversion of biomass in smouldering combustion across scales: The roles of heterogeneous kinetics, oxygen and transport phenomena.

    PubMed

    Huang, Xinyan; Rein, Guillermo

    2016-05-01

    The thermochemical conversion of biomass in smouldering combustion is investigated here by combining experiments and modeling at two scales: matter (1mg) and bench (100g) scales. Emphasis is put on the effect of oxygen (0-33vol.%) and oxidation reactions because these are poorly studied in the literature in comparison to pyrolysis. The results are obtained for peat as a representative biomass for which there is high-quality experimental data published previously. Three kinetic schemes are explored, including various steps of drying, pyrolysis and oxidation. The kinetic parameters are found using the Kissinger-Genetic Algorithm method, and then implemented in a one-dimensional model of heat and mass transfer. The predictions are validated with thermogravimetric and bench-scale experiments and then analyzed to unravel the role of heterogeneous reaction. This is the first time that the influence of oxygen on biomass smouldering is explained in terms of both chemistry and transport phenomena across scales. PMID:26901090

  5. Diffusion mass transport in liquid phase epitaxial growth of semiconductors

    SciTech Connect

    Dost, S.; Qin, Z.; Kimura, M.

    1996-12-01

    A numerical simulation model for the mass transport occurring during the liquid phase epitaxial growth of AlGaAs is presented. The mass transport equations in the liquid and solid phases, and the relationships between concentrations and temperature obtained from the phase diagram constitute the governing equations. These equations together with appropriate interface and boundary conditions were solved numerically by the Finite Element Method. Numerical results show the importance of diffusion into the solid phase, affecting the composition of grown layers. Simulation results agree with experiments.

  6. Mass and Momentum Turbulent Transport Experiments with Confined Coaxial Jets

    NASA Technical Reports Server (NTRS)

    Johnson, B. V.; Bennett, J. C.

    1981-01-01

    Downstream mixing of coaxial jets discharging in an expanded duct was studied to obtain data for the evaluation and improvement of turbulent transport models currently used in a variety of computational procedures throughout the propulsion community for combustor flow modeling. Flow visualization studies showed four major shear regions occurring; a wake region immediately downstream of the inlet jet inlet duct; a shear region further downstream between the inner and annular jets; a recirculation zone; and a reattachment zone. A combination of turbulent momentum transport rate and two velocity component data were obtained from simultaneous measurements with a two color laser velocimeter (LV) system. Axial, radial and azimuthal velocities and turbulent momentum transport rate measurements in the r-z and r-theta planes were used to determine the mean value, second central moment (or rms fluctuation from mean), skewness and kurtosis for each data set probability density function (p.d.f.). A combination of turbulent mass transport rate, concentration and velocity data were obtained system. Velocity and mass transport in all three directions as well as concentration distributions were used to obtain the mean, second central moments, skewness and kurtosis for each p.d.f. These LV/LIF measurements also exposed the existence of a large region of countergradient turbulent axial mass transport in the region where the annular jet fluid was accelerating the inner jet fluid.

  7. Kinetic phenomena in charged particle transport in gases and plasmas

    SciTech Connect

    Petrovic, Zoran Lj.; Dujko, Sasa; Sasic, Olivera; Stojanovic, Vladimir; Malovic, Gordana

    2012-05-25

    The key difference between equilibrium (thermal) and non-equilibrium (low temperature - a.k.a. cold) plasmas is in the degree in which the shape of the cross sections influences the electron energy distribution function (EEDF). In this paper we will discuss the issue of kinetic phenomena from two different angles. The first will be how to take advantage of the strong influence and use low current data to obtain the cross sections. This is also known as the swarm technique and the product of a ''swarm analysis'' is a set of cross sections giving good number, momentum and energy balances of electrons or other charged particles. At the same time understanding the EEDF is based on the cross section data. Nevertheless sometimes the knowledge of the cross sections and even the behaviour of individual particles are insufficient to explain collective behaviour of the ensemble. The resulting ''kinetic'' effects may be used to favour certain properties of non-equilibrium plasmas and even may be used as the basis of some new plasma applications.

  8. A multi-resolution approach for optimal mass transport

    NASA Astrophysics Data System (ADS)

    Dominitz, Ayelet; Angenent, Sigurd; Tannenbaum, Allen

    2007-09-01

    Optimal mass transport is an important technique with numerous applications in econometrics, fluid dynamics, automatic control, statistical physics, shape optimization, expert systems, and meteorology. Motivated by certain problems in image registration and medical image visualization, in this note, we describe a simple gradient descent methodology for computing the optimal L2 transport mapping which may be easily implemented using a multiresolution scheme. We also indicate how the optimal transport map may be computed on the sphere. A numerical example is presented illustrating our ideas.

  9. Kinetic ballooning modes at the tokamak transport barrier with negative magnetic shear

    SciTech Connect

    Yamagiwa, M.; Hirose, A.; Elia, M.

    1997-11-01

    Stability of the kinetic ballooning modes is investigated for plasma parameters at the internal transport barrier in tokamak discharges with negative magnetic shear employing a kinetic shooting code with long shooting distance. It is found that the second stability regime with respect to the pressure gradient parameter, which was predicted for negative shear [A. Hirose and M. Elia, Phys. Rev. Lett. {bold 76}, 628 (1996)], can possibly disappear. The mode with comparatively low toroidal mode number and mode frequency below 100 kHz is found to be destabilized marginally only around the transport barrier characterized by steep pressure and density gradients. {copyright} {ital 1997 American Institute of Physics.}

  10. Degree-1 Surface Mass Transport and Geocenter Motion

    NASA Astrophysics Data System (ADS)

    Wu, X.

    2015-12-01

    The longest-wavelength and hemisphere asymmetric surface mass transport is characterized by three degree-one spherical harmonic components. Such mass transport modes cause geocenter motion between the center-of-mass of the total Earth system (CM) and the center-of-figure of the solid Earth surface (CF), and deforms the solid Earth. GRACE's K-band ranging data system is not sensitive to these three variation modes. For a complete spherical harmonic spectral coverage of mass transport, degree-1 surface mass changes estimated through geocenter motion or degree-1 mass/deformation signatures from other space geodetic techniques should be combined with GRACE's time-variable gravity data. The degree-1 coefficients are critically important for mass variation assessments over large regions. For example, 1 mm error in geocenter motion can result in an error of 190 gigatons of global oceanic water mass change or, equivalently, an error of 0.5 mm of global mean sea level change when the geocenter motion is converted to degree-1 mass and combined with GRACE data. Yet, several different methods of geocenter motion estimation differ in results by more than 1 mm in annual amplitude. These differences have to be resolved after 13 years of successful GRACE operation. Recently, the difference between results from direct satellite laser ranging (SLR) determination and from a global inversion of Global Navigation Satellite System (GNSS) deformation measurements, GRACE, and an ocean bottom pressure (OBP) model has been largely reconciled as due to SLR's sparse station distribution. This result and our current efforts to examine possible systematic errors in GNSS data and the OBP model will be discussed along with a future perspective.

  11. Specific features of defect and mass transport in concentrated fcc alloys

    DOE PAGESBeta

    Osetsky, Yuri N.; Béland, Laurent K.; Stoller, Roger E.

    2016-06-15

    We report that diffusion and mass transport are basic properties that control materials performance, such as phase stability, solute decomposition and radiation tolerance. While understanding diffusion in dilute alloys is a mature field, concentrated alloys are much less studied. Here, atomic-scale diffusion and mass transport via vacancies and interstitial atoms are compared in fcc Ni, Fe and equiatomic Ni-Fe alloy. High temperature properties were determined using conventional molecular dynamics on the microsecond timescale, whereas the kinetic activation-relaxation (k-ART) approach was applied at low temperatures. The k-ART was also used to calculate transition states in the alloy and defect transport coefficients.more » The calculations reveal several specific features. For example, vacancy and interstitial defects migrate via different alloy components, diffusion is more sluggish in the alloy and, notably, mass transport in the concentrated alloy cannot be predicted on the basis of diffusion in its pure metal counterparts. Lastly, the percolation threshold for the defect diffusion in the alloy is discussed and it is suggested that this phenomenon depends on the properties and diffusion mechanisms of specific defects.« less

  12. Specific features of defect and mass transport in concentrated fcc alloys

    SciTech Connect

    Osetskiy, Yury N; Stoller, Roger E

    2016-01-01

    Diffusion and mass transport are basic properties that control materials performance, such as phase stability, solute decomposition and radiation tolerance. While understanding diffusion in dilute alloys is a mature field, concentrated alloys are much less studied. Here, atomic-scale diffusion and mass transport via vacancies and interstitial atoms are compared in fcc Ni, Fe and equiatomic Ni-Fe alloy. High temperature properties were determined using conventional molecular dynamics on the microsecond timescale, whereas the kinetic activation-relaxation (k-ART) approach was applied at low temperatures. The k-ART was also used to calculate transition states in the alloy and defect transport coefficients. The calculations reveal several specific features. For example, vacancy and interstitial defects migrate via different alloy components, diffusion is more sluggish in the alloy and, notably, mass transport in the concentrated alloy cannot be predicted on the basis of diffusion in its pure metal counterparts. The percolation threshold for the defect diffusion in the alloy is discussed and it is suggested that this phenomenon depends on the properties and diffusion mechanisms of specific defects.

  13. Mass transfer and transport in a geologic environment

    SciTech Connect

    Chambre, P.L.; Pigford, T.H.; Lee, W.W.L.; Ahn, J.; Kajiwara, S.; Kim, C.L.; Kimura, H.; Lung, H.; Williams, W.J.; Zavoshy, S.J.

    1985-04-01

    This report is in a continuing series of reports that present analytic solutions for the dissolution and hydrogeologic transport of radionuclides from geologic repositories of nuclear waste. Previous reports have dealt mainly with radionuclide transport in the far-field, away from the effects of the repository. In the present report, the emphasis is on near-field processes, the transfer and transport of radionuclides in the vicinity of the waste packages. The primary tool used in these analyses is mass transfer theory from chemical engineering. The thrust of our work is to develop methods for predicting the performance of geologic repositories. The subjects treated in the present report are: radionuclide transport from a spherical-equivalent waste form through a backfill; analysis of radionuclide transport through a backfill using a non-linear sorption isotherm; radionuclide transport from a prolate spheroid-equivalent waste form with a backfill; radionuclide transport from a spherical-equivalent waste form through a backfill, where the solubility, diffusivity and retardation coefficients are temperature dependent; a coupled near-field, far-field analysis where dissolution and migration rates are temperature dependent; transport of radionuclides from a point source in a three-dimensional flow field; and a general solution for the transport of radioactive chains in geologic media. There are several important results from the numerical evaluations. First, radioactive decay, higher sorption in the rock and the backfill steepens the gradient for mass transfer, and lead to higher dissolution rates. This is contrary to what was expected by some other workers, but is shown clearly in the analytical solutions. Second, the backfill serves to provide sorption sites so that there is a delay in the arrival of radionuclides in the rock, although this effect is not so important for the steady-state transport of long-lived radionuclides.

  14. Kinetics of nucleotide transport in rat heart mitochondria studied by a rapid filtration technique

    SciTech Connect

    Brandolin, G.; Marty, I.; Vignais, P.V. )

    1990-10-01

    A rapid filtration technique has been used to measure at room temperature the kinetics of ADP and ATP transport in rat heart mitochondria in the millisecond time range. Transport was stopped by cessation of the nucleotide supply, without the use of a transport inhibitor, thus avoiding any quenching delay. The kinetics of ({sup 14}C)ADP transport in energized mitochondria were apparently monophasic. The rate of transport of ({sup 14}C)ATP in energized mitochondria was 5-10 times lower than that of ({sup 14}C)ADP. Upon uncoupling, the rate of ({sup 14}C)ATP uptake was enhanced, and that of ({sup 14}C)ADP uptake was decreased. However, the two rates did not equalize, indicating that transport was not exclusively electrogenic. Transport of ({sup 14}C)ADP and ({sup 14}C)ATP by resting mitochondria followed biphasic kinetics. Depletion of nucleotides in resting mitochondria resulted in a greater decrease in the extent of the slow phase than of the rapid one. In addition, about half of the nucleotides taken up at the end of the rapid phase were not discharged into the medium upon addition of carboxyatractyloside. This suggested that matricial nucleotides are compartmentalized in two pools which are exchangeable at different rates with external nucleotides.

  15. Kinetic Theory in Hot Plasmas and Neutral Gases Applications to the Computation of the transport coefficients

    SciTech Connect

    Bendib, A.

    2008-09-23

    The conference is devoted to the study of systems consisting of a large number of particles by using the kinetic theory. In a first part, we present a general overview of the kinetic theory. In particular, the role of the correlations between particles is shown and discussed through the main models reported in the literature. In a second part, we present three applications to the transport properties in plasmas and neutral gases. The first application is devoted to the transport in hot plasmas perturbed with respect to the global equilibrium. The quasi-static and collisionless distribution function and transport coefficients are established. The influence of relativistic effects is also discussed. The second application deals with strongly inhomogeneous magnetized plasmas. The transport coefficients of Braginskii are calculated numerically in the local and the weakly nonlocal approximations. New nonlocal transport coefficients are emphasized. Finally, we apply the kinetic theory to the neutral gases by calculating the semi-collisional dispersion relation of acoustic waves. In particular, the dispersion and the damping of these waves in rarefied gases are highlighted. The method used to solve the kinetic equations is compared with the conventional method of Chapman-Enskog.

  16. Comparisons of anomalous and collisional radial transport with a continuum kinetic edge code

    NASA Astrophysics Data System (ADS)

    Bodi, K.; Krasheninnikov, S.; Cohen, R.; Rognlien, T.

    2009-05-01

    Modeling of anomalous (turbulence-driven) radial transport in controlled-fusion plasmas is necessary for long-time transport simulations. Here the focus is continuum kinetic edge codes such as the (2-D, 2-V) transport version of TEMPEST, NEO, and the code being developed by the Edge Simulation Laboratory, but the model also has wider application. Our previously developed anomalous diagonal transport matrix model with velocity-dependent convection and diffusion coefficients allows contact with typical fluid transport models (e.g., UEDGE). Results are presented that combine the anomalous transport model and collisional transport owing to ion drift orbits utilizing a Krook collision operator that conserves density and energy. Comparison is made of the relative magnitudes and possible synergistic effects of the two processes for typical tokamak device parameters.

  17. Numerical simulation of mass transport in internal solitary waves

    NASA Astrophysics Data System (ADS)

    Salloum, Maher; Knio, Omar M.; Brandt, Alan

    2012-01-01

    A computational study of mass transport by large-amplitude, mode-2 internal solitary waves propagating on a pycnocline between two layers of different densities was conducted. The numerical model is based on the simulation of a vorticity-based formulation of the two-dimensional Navier-Stokes equations in the Boussinesq limit. Numerical experiments are conducted of the collapse of an initially mixed region, which leads to the generation of a train of internal solitary waves. The peak wave amplitude, a, is achieved by the leading wave, which encloses an intrusional bulge. The wave amplitude decays as it moves away from the collapsing mixing region. When the amplitude drops below a critical value, the wave is no longer able to transport mass and sharp-nosed intrusion is left behind. Mass transport by the leading wave, and by the trailing wave train and intrusion, is analyzed by tracking the motion of Lagrangian particles initially concentrated in the mixed region. Results indicate that for moderate wave amplitudes, a gradual decay in the wave amplitude occurs as the wave propagates, but the structure of the bulge is essentially maintained during this process. In contrast, for large-amplitude waves, the motion around the bulge is substantially more complex, exhibiting periodic shedding of vortex structures in the wake of the bulge and entrainment of external fluid into its core. It is shown that these motions have substantial impact on mass transport by the wave train, which is quantified through detailed analysis of the Lagrangian particle distributions.

  18. Mass Transport Through Carbon Nanotube-Polystyrene Bundles

    NASA Astrophysics Data System (ADS)

    Lin, Rongzhou; Tran, Tuan

    2016-05-01

    Carbon nanotubes have been widely used as test channels to study nanofluidic transport, which has been found to have distinctive properties compared to transport of fluids in macroscopic channels. A long-standing challenge in the study of mass transport through carbon nanotubes (CNTs) is the determination of flow enhancement. Various experimental investigations have been conducted to measure the flow rate through CNTs, mainly based on either vertically aligned CNT membranes or individual CNTs. Here, we proposed an alternative approach that can be used to quantify the mass transport through CNTs. This is a simple method relying on the use of carbon nanotube-polystyrene bundles, which are made of CNTs pulled out from a vertically aligned CNT array and glued together by polystyrene. We experimentally showed by using fluorescent tagging that the composite bundles allowed measureable and selective mass transport through CNTs. This type of composite bundle may be useful in various CNT research areas as they are simple to fabricate, less likely to form macroscopic cracks, and offer a high density of CNT pores while maintaining the aligned morphology of CNTs.

  19. Optimal mass transport for shape matching and comparison.

    PubMed

    Su, Zhengyu; Wang, Yalin; Shi, Rui; Zeng, Wei; Sun, Jian; Luo, Feng; Gu, Xianfeng

    2015-11-01

    Surface based 3D shape analysis plays a fundamental role in computer vision and medical imaging. This work proposes to use optimal mass transport map for shape matching and comparison, focusing on two important applications including surface registration and shape space. The computation of the optimal mass transport map is based on Monge-Brenier theory, in comparison to the conventional method based on Monge-Kantorovich theory, this method significantly improves the efficiency by reducing computational complexity from O(n(2)) to O(n) . For surface registration problem, one commonly used approach is to use conformal map to convert the shapes into some canonical space. Although conformal mappings have small angle distortions, they may introduce large area distortions which are likely to cause numerical instability thus resulting failures of shape analysis. This work proposes to compose the conformal map with the optimal mass transport map to get the unique area-preserving map, which is intrinsic to the Riemannian metric, unique, and diffeomorphic. For shape space study, this work introduces a novel Riemannian framework, Conformal Wasserstein Shape Space, by combing conformal geometry and optimal mass transport theory. In our work, all metric surfaces with the disk topology are mapped to the unit planar disk by a conformal mapping, which pushes the area element on the surface to a probability measure on the disk. The optimal mass transport provides a map from the shape space of all topological disks with metrics to the Wasserstein space of the disk and the pullback Wasserstein metric equips the shape space with a Riemannian metric. We validate our work by numerous experiments and comparisons with prior approaches and the experimental results demonstrate the efficiency and efficacy of our proposed approach. PMID:26440265

  20. Mass transport by buoyant bubbles in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Pope, Edward C. D.; Babul, Arif; Pavlovski, Georgi; Bower, Richard G.; Dotter, Aaron

    2010-08-01

    We investigate the effect of three important processes by which active galactic nuclei (AGN)-blown bubbles transport material: drift, wake transport and entrainment. The first of these, drift, occurs because a buoyant bubble pushes aside the adjacent material, giving rise to a net upward displacement of the fluid behind the bubble. For a spherical bubble, the mass of upwardly displaced material is roughly equal to half the mass displaced by the bubble and should be ~ 107-9 Msolar depending on the local intracluster medium (ICM) and bubble parameters. We show that in classical cool-core clusters, the upward displacement by drift may be a key process in explaining the presence of filaments behind bubbles. A bubble also carries a parcel of material in a region at its rear, known as the wake. The mass of the wake is comparable to the drift mass and increases the average density of the bubble, trapping it closer to the cluster centre and reducing the amount of heating it can do during its ascent. Moreover, material dropping out of the wake will also contribute to the trailing filaments. Mass transport by the bubble wake can effectively prevent the buildup of cool material in the central galaxy, even if AGN heating does not balance ICM cooling. Finally, we consider entrainment, the process by which ambient material is incorporated into the bubble. Studies of observed bubbles show that they subtend an opening angle much larger than predicted by simple adiabatic expansion. We show that bubbles that entrain ambient material as they rise will expand faster than the adiabatic prediction; however, the entrainment rate required to explain the observed opening angle is large enough that the density contrast between the bubble and its surroundings would disappear rapidly. We therefore conclude that entrainment is unlikely to be a dominant mass transport process. Additionally, this also suggests that the bubble surface is much more stable against instabilities that promote

  1. Particle transport and deposition: basic physics of particle kinetics

    PubMed Central

    Tsuda, Akira; Henry, Frank S.; Butler, James P.

    2015-01-01

    The human body interacts with the environment in many different ways. The lungs interact with the external environment through breathing. The enormously large surface area of the lung with its extremely thin air-blood barrier is exposed to particles suspended in the inhaled air. Whereas the particle-lung interaction may cause deleterious effects on health if the inhaled pollutant aerosols are toxic, this interaction can be beneficial for disease treatment if the inhaled particles are therapeutic aerosolized drug. In either case, an accurate estimation of dose and sites of deposition in the respiratory tract is fundamental to understanding subsequent biological response, and the basic physics of particle motion and engineering knowledge needed to understand these subjects is the topic of this chapter. A large portion of this chapter deals with three fundamental areas necessary to the understanding of particle transport and deposition in the respiratory tract. These are: 1) the physical characteristics of particles, 2) particle behavior in gas flow, and 3) gas flow patterns in the respiratory tract. Other areas, such as particle transport in the developing lung and in the diseased lung are also considered. The chapter concludes with a summary and a brief discussion of areas of future research. PMID:24265235

  2. Thermodynamically coupled mass transport processes in a saturated clay

    SciTech Connect

    Carnahan, C.L.

    1984-11-01

    Gradients of temperature, pressure, and fluid composition in saturated clays give rise to coupled transport processes (thermal and chemical osmosis, thermal diffusion, ultrafiltration) in addition to the direct processes (advection and diffusion). One-dimensional transport of water and a solute in a saturated clay subjected to mild gradients of temperature and pressure was simulated numerically. When full coupling was accounted for, volume flux (specific discharge) was controlled by thermal osmosis and chemical osmosis. The two coupled fluxes were oppositely directed, producing a point of stagnation within the clay column. Solute flows were dominated by diffusion, chemical osmosis, and thermal osmosis. Chemical osmosis produced a significant flux of solute directed against the gradient of solute concentration; this effect reduced solute concentrations relative to the case without coupling. Predictions of mass transport in clays at nuclear waste repositories could be significantly in error if coupled transport processes are not accounted for. 14 references, 8 figures, 1 table.

  3. A Computationally-Efficient Kinetic Approach for Gas/Particle Mass Transfer Treatments: Development, Testing, and 3-D Application

    NASA Astrophysics Data System (ADS)

    Hu, X.; Zhang, Y.

    2007-05-01

    to as kinetic/APC). In this study, WRF/Chem-MADRID with the kinetic/APC approach will be further evaluated along with the equilibrium and hybrid approaches using a 19-day NEAQS-2004 episode (July 3-21 2004) over eastern North America. The NEAQS- 2004 episode provides an excellent testbed for WRF/Chem-MADRID with different gas/particle mass transfer treatments for several reasons. First, this region typically suffers a poor air quality with high ozone PM2.5 episodes and large nitrogen deposition. Second, this region is characterized with complex topography (e.g., land vs. sea), meteorology (e.g., large-scale regional transport vs. local-scale sea-breeze), emissions (e.g., urban vs. natural), and co-existence of major PM species (e.g., sulfate/nitarte vs. sea-salt). Third, extensive gas and aerosol measurements are available from International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) field study. The model outputs will be evaluated using observations from ICARTT and other routine monitoring networks such as Aerometric Information Retrieval Now (AIRNow) and Speciation Trends Network (STN). The effect of different gas/particle mass transfer approaches on simulated gas and aerosol concentrations will be examined along with a comparison of their computational costs. The gas/particle mass transfer approach that provides the best compromise between numerical accuracy and computational efficiency will be recommended for 3-D research-grade and real-time forecasting applications.

  4. Coupled effects of temperature and mass transport on the isotope fractionation of zinc during electroplating

    NASA Astrophysics Data System (ADS)

    Black, Jay R.; John, Seth G.; Kavner, Abby

    2014-01-01

    The isotopic composition of zinc metal electrodeposited on a rotating disc electrode from a Zn-citrate aqueous solution was investigated as a function of overpotential (electrochemical driving force), temperature, and rotation rate. Zn metal was measured to be isotopically light with respect to Zn+2 in solution, with observed fractionations varying from Δ66/64Znmetal-aqueous = -1.0‰ to -3.9‰. Fractionation varies continuously as a function of a dimensionless parameter described by the ratio of observed deposition rate to calculated mass-transport limiting rate, where larger fractionations are observed at lower deposition rates, lower temperature, and at faster electrode rotation rates. Thus, the large fractionation and its rate dependence is interpreted as a competition between the two kinetic processes with different effective activation energies: mass-transport-limited (diffusion limited) kinetics with a large activation energy, which creates small fractionations close to the predicted diffusive fractionation; and electrochemical deposition kinetics, with a smaller effective activation energy, which creates large fractionations at low deposition rates and high hydrodynamic fluxes of solute to the electrode. The results provide a framework for predicting isotope fractionation in processes controlled by two competing reactions with different kinetic isotope effects. Light isotopes are electroplated. In all cases light stable isotopes of the metals are preferentially electroplated, with mass-dependent behavior evident where three or more isotopes are measured. Fractionation is time-independent, meaning that the fractionation factor does not vary with the extent of reaction. In most of our experiments, we have controlled the extent of reaction such that only a small amount of metal is deposited from the stock solution, thus avoiding significant evolution of the reservoir composition. In such experiments, the observed isotope fractionation is constant as a

  5. Summary of the LLNL one-dimensional transport-kinetics model of the troposphere and stratosphere: 1981

    SciTech Connect

    Wuebbles, D.J.

    1981-09-01

    Since the LLNL one-dimensional coupled transport and chemical kinetics model of the troposphere and stratosphere was originally developed in 1972 (Chang et al., 1974), there have been many changes to the model's representation of atmospheric physical and chemical processes. A brief description is given of the current LLNL one-dimensional coupled transport and chemical kinetics model of the troposphere and stratosphere.

  6. Characterizing saturated mass transport in fractured cementitious materials

    NASA Astrophysics Data System (ADS)

    Akhavan, Alireza

    Concrete, when designed and constructed properly, is a durable material. However in aggressive environments concrete is prone to gradual deterioration which is due to penetration of water and aggressive agents (e.g., chloride ions) into concrete. As such, the rate of mass transport is the primary factor, controlling the durability of cementitious materials. Some level of cracking is inevitable in concrete due to brittle nature of the material. While mass transport can occur through concrete’s porous matrix, cracks can significantly accelerate the rate of mass transport and effectively influence the service life of concrete structures. To allow concrete service life prediction models to correctly account for the effect of cracks on concrete durability, mass transport thru cracks must be characterized. In this study, transport properties of cracks are measured to quantify the saturated hydraulic permeability and diffusion coefficient of cracks as a function of crack geometry (i.e.; crack width, crack tortuosity and crack wall roughness). Saturated permeability and diffusion coefficient of cracks are measured by constant head permeability test, electrical migration test, and electrical impedance spectroscopy. Plain and fiber reinforced cement paste and mortar as well as simulated crack samples are tested. The results of permeability test showed that the permeability of a crack is a function of crack width squared and can be predicted using Louis formula when crack tortuosity and surface roughness of the crack walls are accounted for. The results of the migration and impedance tests showed that the diffusion coefficient of the crack is not dependent on the crack width, but is primarily a function of volume fraction of cracks. The only parameter that is changing with the crack width is the crack connectivity. Crack connectivity was found to be linearly dependent on crack width for small crack and constant for large cracks (i.e.; approximately larger than 80 µm). The

  7. The role of mass transport in protein crystallization.

    PubMed

    García-Ruiz, Juan Manuel; Otálora, Fermín; García-Caballero, Alfonso

    2016-02-01

    Mass transport takes place within the mesoscopic to macroscopic scale range and plays a key role in crystal growth that may affect the result of the crystallization experiment. The influence of mass transport is different depending on the crystallization technique employed, essentially because each technique reaches supersaturation in its own unique way. In the case of batch experiments, there are some complex phenomena that take place at the interface between solutions upon mixing. These transport instabilities may drastically affect the reproducibility of crystallization experiments, and different outcomes may be obtained depending on whether or not the drop is homogenized. In diffusion experiments with aqueous solutions, evaporation leads to fascinating transport phenomena. When a drop starts to evaporate, there is an increase in concentration near the interface between the drop and the air until a nucleation event eventually takes place. Upon growth, the weight of the floating crystal overcomes the surface tension and the crystal falls to the bottom of the drop. The very growth of the crystal then triggers convective flow and inhomogeneities in supersaturation values in the drop owing to buoyancy of the lighter concentration-depleted solution surrounding the crystal. Finally, the counter-diffusion technique works if, and only if, diffusive mass transport is assured. The technique relies on the propagation of a supersaturation wave that moves across the elongated protein chamber and is the result of the coupling of reaction (crystallization) and diffusion. The goal of this review is to convince protein crystal growers that in spite of the small volume of the typical protein crystallization setup, transport plays a key role in the crystal quality, size and phase in both screening and optimization experiments. PMID:26841759

  8. Measurement of mass transport and reaction parameters in bulk solution using photobleaching. Reaction limited binding regime.

    PubMed Central

    Kaufman, E N; Jain, R K

    1991-01-01

    Fluorescence recovery after photobleaching (FRAP) has been used previously to investigate the kinetics of binding to biological surfaces. The present study adapts and further develops this technique for the quantification of mass transport and reaction parameters in bulk media. The technique's ability to obtain the bulk diffusion coefficient, concentration of binding sites, and equilibrium binding constant for ligand/receptor interactions in the reaction limited binding regime is assessed using the B72.3/TAG-72 monoclonal antibody/tumor associated antigen interaction as a model in vitro system. Measurements were independently verified using fluorometry. The bulk diffusion coefficient, concentration of binding sites and equilibrium binding constant for the system investigated were 6.1 +/- 1.1 x 10(-7) cm2/s, 4.4 +/- 0.6 x 10(-7) M, and 2.5 +/- 1.6 x 10(7) M-1, respectively. Model robustness and the applicability of the technique for in vivo quantification of mass transport and reaction parameters are addressed. With a suitable animal model, it is believed that this technique is capable of quantifying mass transport and reaction parameters in vivo. PMID:1932550

  9. Role of Desorption Kinetics and Porous Medium Heterogeneity in Colloid-Facilitated Transport of Cesium and Strontium: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Dittrich, T. M.; Ryan, J. N.

    2008-12-01

    The presence of mobile colloids (particles between 1 nm and 1 μm in size) in natural soil and groundwater systems has been well established. Colloids generally have a high sorptive capacity resulting from their high surface area to mass ratio, which makes them effective sorbents of low solubility, strongly sorbing contaminants. Mobile colloids that sorb contaminants can increase the apparent solubility and rate of transport of the contaminants when desorption from the colloids is slow relative to the rate of flow. This process is known as colloid-facilitated transport (CFT). The additional transport of contaminants associated with mobile colloids should be accounted for to accurately predict transport rates of strongly-sorbing contaminants in the environment. Some examples of contaminants that have the potential for CFT are hydrophobic pesticides, polycyclic aromatic hydrocarbons (PAHs), actinide cations (e.g., Th, U, Pu, Am), and many metals (e.g, Pb, Cu, Hg). Many low solubility contaminants that have the potential for CFT are also harmful or toxic to humans, underscoring the importance of accurate modeling techniques to protect water sources from contamination. Contaminated Department of Energy (DOE) sites have been particularly valuable research opportunities for studying the transport of radionuclides in the natural environment. The DOE has conducted energy and weapons research and development in thirty-one states and Puerto Rico and has introduced many toxic and radioactive chemicals into surface waters, soils, and groundwater. Field experiments on DOE sites including the Nevada Test Site, the Hanford 200 Area tank farm, Rocky Flats CO, and Oak Ridge TN, have confirmed that metals and radionuclides have moved further than expected due to colloid-facilitated transport. The major goal of this research project is to identify and quantify the effects of sorption kinetics on colloid- facilitated transport in unsaturated porous media. This information will be used

  10. Kinetic Modelling of Parallel Electron Transport in TdeV.

    NASA Astrophysics Data System (ADS)

    Shoucri, M.; Shkarofsky, I.; Stansfield, B.; Batishchev, O.; Batishcheva, A.; Krasheninnikov, S.; Sigmar

    1996-11-01

    The 1D2V Fokker-Planck code ALLA [1] is used to model parallel electron transport in the SOL of TdeV. Our model uses detached and attached experimental data [2] given by Langmuir probes, Li ablation and He spectroscopy. We obtain the electron distribution function on a precise 257x65x60 non-uniform grid. Strong deviations of hydrogen and carbon excitation rates, and heat conduction coefficient from their Maxwellian values are shown. We compare the calculated variation of the effective temperature at the reciprocating probe position with experimental measurements. We also explain by non-local effects why different experimental techniques show differences in the electron temperature. altaffiltext [1] A.A.Batishcheva et al., Physics of Plasmas 3 (1996) 1634 altaffiltext [2] B.L.Stansfield et al., Proc. 22 Eur.Conf., Bornemouth, 19C pIII-101. *Supported by Government of Canada, Hydro-Québec and INRS. Work performed under USDoE contracts DE-FG02-91-ER-54109 at MIT and DE-FG02-88-ER-53263 at Lodestar.

  11. The kinetic model for slow photoinduced electron transport in the reaction centers of purple bacteria.

    PubMed

    Serdenko, T V; Barabash, Y M; Knox, P P; Seifullina, N Kh

    2016-12-01

    The present work is related to the investigation of slow kinetics of electron transport in the reaction centers (RCs) of Rhodobacter sphaeroides. Experimental data on the absorption kinetics of aqueous solutions of reaction centers at different modes of photoexcitation are given. It is shown that the kinetics of oxidation and reduction of RCs are well described by the sum of three exponential functions. This allows to suggest a two-level kinetic model for electron transport in the RC as a system of four electron-conformational states which correspond to three balance differential equations combined with state equation. The solution of inverse problem made it possible to obtain the rate constant values in kinetic equations for different times and intensities of exciting light. Analysis of rate constant values in different modes of RC excitation allowed to suggest that two mechanisms of structural changes are involved in RC photo-oxidation. One mechanism leads to the increment of the rate of electron return, another one-to its drop. Structural changes were found out to occur in the RCs under incident light. After light was turned off, the reduction of RCs was determined by the second mechanism. PMID:27271854

  12. The kinetic model for slow photoinduced electron transport in the reaction centers of purple bacteria

    NASA Astrophysics Data System (ADS)

    Serdenko, T. V.; Barabash, Y. M.; Knox, P. P.; Seifullina, N. Kh.

    2016-06-01

    The present work is related to the investigation of slow kinetics of electron transport in the reaction centers (RCs) of Rhodobacter sphaeroides. Experimental data on the absorption kinetics of aqueous solutions of reaction centers at different modes of photoexcitation are given. It is shown that the kinetics of oxidation and reduction of RCs are well described by the sum of three exponential functions. This allows to suggest a two-level kinetic model for electron transport in the RC as a system of four electron-conformational states which correspond to three balance differential equations combined with state equation. The solution of inverse problem made it possible to obtain the rate constant values in kinetic equations for different times and intensities of exciting light. Analysis of rate constant values in different modes of RC excitation allowed to suggest that two mechanisms of structural changes are involved in RC photo-oxidation. One mechanism leads to the increment of the rate of electron return, another one—to its drop. Structural changes were found out to occur in the RCs under incident light. After light was turned off, the reduction of RCs was determined by the second mechanism.

  13. Optimum periodicity of repeated contractile actions applied in mass transport

    NASA Astrophysics Data System (ADS)

    Ahn, Sungsook; Lee, Sang Joon

    2015-01-01

    Dynamically repeated periodic patterns are abundant in natural and artificial systems, such as tides, heart beats, stock prices, and the like. The characteristic repeatability and periodicity are expected to be optimized in effective system-specific functions. In this study, such optimum periodicity is experimentally evaluated in terms of effective mass transport using one-valve and multi-valve systems working in contractile fluid flows. A set of nanoscale gating functions is utilized, operating in nanocomposite networks through which permeates selectively pass under characteristic contractile actions. Optimized contractile periodicity exists for effective energy impartment to flow in a one-valve system. In the sequential contractile actions for a multi-valve system, synchronization with the fluid flow is critical for effective mass transport. This study provides fundamental understanding on the various repeated periodic patterns and dynamic repeatability occurring in nature and mechanical systems, which are useful for broad applications.

  14. Optimum periodicity of repeated contractile actions applied in mass transport

    PubMed Central

    Ahn, Sungsook; Lee, Sang Joon

    2015-01-01

    Dynamically repeated periodic patterns are abundant in natural and artificial systems, such as tides, heart beats, stock prices, and the like. The characteristic repeatability and periodicity are expected to be optimized in effective system-specific functions. In this study, such optimum periodicity is experimentally evaluated in terms of effective mass transport using one-valve and multi-valve systems working in contractile fluid flows. A set of nanoscale gating functions is utilized, operating in nanocomposite networks through which permeates selectively pass under characteristic contractile actions. Optimized contractile periodicity exists for effective energy impartment to flow in a one-valve system. In the sequential contractile actions for a multi-valve system, synchronization with the fluid flow is critical for effective mass transport. This study provides fundamental understanding on the various repeated periodic patterns and dynamic repeatability occurring in nature and mechanical systems, which are useful for broad applications. PMID:25622949

  15. Miocene mass-transport sediments, Troodos Massif, Cyprus

    USGS Publications Warehouse

    Lord, A.R.; Harrison, R.W.; BouDagher-Fadel, M.; Stone, B.D.; Varol, O.

    2009-01-01

    Sediment mass-transport layers of submarine origin on the northern and southern flanks of the Troodos ophiolitic massif are dated biostratigraphically as early Miocene and late Miocene, respectively and therefore represent different seismogenic events in the uplift and erosional history of the Troodos terrane. Analysis of such events has potential for documenting Miocene seismic and uplift events regionally in the context of changing stress field directions and plate vectors through time. ?? 2009 The Geologists' Association.

  16. Rotational hydrodynamic diffusion system to study mass transport across boundaries.

    PubMed

    Mamidi, Sai Sree; Meas, Bo; Farhat, Tarek R

    2008-11-01

    The design and operation of a new mass transport technique is presented. Rotational hydrodynamic diffusion system (RHDS) is a method that can be adapted for analytical laboratory analysis as well as industrial-scale separation and purification. Although RHDS is not an electrochemical technique, its concept is derived from hydrodynamic rotating disk electrode voltammetry. A diffusion advantage gained using the RHDS is higher flux of probe molecules across the boundary (e.g., membrane or porous media) with increased rotation rate compared to the static two-half-cell (THC) method. The separation concept of RHDS differs from pressurized, agitated, electrodialysis, and reversed osmosis systems in design and theory. The detection mechanism of the RHDS opens the possibility to study mass transport properties of a large variety of molecules using different types of ultrathin membranes. Therefore, the RHDS is a potential alternative to classical mass transport detection methods such as THC, impedance spectroscopy, and cyclic and rotating disk electrode voltammetry. Theoretical analysis on the rotational hydrodynamic flux is derived and compared to experimental flux measured using HCl, KCl, KNO 3, Ni(NO 3) 2, LiCl, camphor sulfonic acid, and K 3Fe(CN) 6 ionic solutions. Values of effective diffusion coefficients of salts across Nucleopore membranes of thickness 6.0 and 10 mum with pore size 0.1 and 0.2 mum, respectively, are presented and discussed. PMID:18844370

  17. Vortical ciliary flows actively enhance mass transport in reef corals

    PubMed Central

    Shapiro, Orr H.; Fernandez, Vicente I.; Garren, Melissa; Guasto, Jeffrey S.; Debaillon-Vesque, François P.; Kramarsky-Winter, Esti; Vardi, Assaf; Stocker, Roman

    2014-01-01

    The exchange of nutrients and dissolved gasses between corals and their environment is a critical determinant of the growth of coral colonies and the productivity of coral reefs. To date, this exchange has been assumed to be limited by molecular diffusion through an unstirred boundary layer extending 1–2 mm from the coral surface, with corals relying solely on external flow to overcome this limitation. Here, we present direct microscopic evidence that, instead, corals can actively enhance mass transport through strong vortical flows driven by motile epidermal cilia covering their entire surface. Ciliary beating produces quasi-steady arrays of counterrotating vortices that vigorously stir a layer of water extending up to 2 mm from the coral surface. We show that, under low ambient flow velocities, these vortices, rather than molecular diffusion, control the exchange of nutrients and oxygen between the coral and its environment, enhancing mass transfer rates by up to 400%. This ability of corals to stir their boundary layer changes the way that we perceive the microenvironment of coral surfaces, revealing an active mechanism complementing the passive enhancement of transport by ambient flow. These findings extend our understanding of mass transport processes in reef corals and may shed new light on the evolutionary success of corals and coral reefs. PMID:25192936

  18. Membranes for nanometer-scale mass fast transport

    DOEpatents

    Bakajin, Olgica; Holt, Jason; Noy, Aleksandr; Park, Hyung Gyu

    2011-10-18

    Nanoporous membranes comprising single walled, double walled, and multiwalled carbon nanotubes embedded in a matrix material were fabricated for fluid mechanics and mass transfer studies on the nanometer scale and commercial applications. Average pore size can be 2 nm to 20 nm, or seven nm or less, or two nanometers or less. The membrane can be free of large voids spanning the membrane such that transport of material such as gas or liquid occurs exclusively through the tubes. Fast fluid, vapor, and liquid transport are observed. Versatile micromachining methods can be used for membrane fabrication. A single chip can comprise multiple membranes. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.

  19. RWPV bioreactor mass transport: earth-based and in microgravity

    NASA Technical Reports Server (NTRS)

    Begley, Cynthia M.; Kleis, Stanley J.

    2002-01-01

    Mass transport and mixing of perfused scalar quantities in the NASA Rotating Wall Perfused Vessel bioreactor are studied using numerical models of the flow field and scalar concentration field. Operating conditions typical of both microgravity and ground-based cell cultures are studied to determine the expected vessel performance for both flight and ground-based control experiments. Results are presented for the transport of oxygen with cell densities and consumption rates typical of colon cancer cells cultured in the RWPV. The transport and mixing characteristics are first investigated with a step change in the perfusion inlet concentration by computing the time histories of the time to exceed 10% inlet concentration. The effects of a uniform cell utilization rate are then investigated with time histories of the outlet concentration, volume average concentration, and volume fraction starved. It is found that the operating conditions used in microgravity produce results that are quite different then those for ground-based conditions. Mixing times for microgravity conditions are significantly shorter than those for ground-based operation. Increasing the differential rotation rates (microgravity) increases the mixing and transport, while increasing the mean rotation rate (ground-based) suppresses both. Increasing perfusion rates enhances mass transport for both microgravity and ground-based cases, however, for the present range of operating conditions, above 5-10 cc/min there are diminishing returns as much of the inlet fluid is transported directly to the perfusion exit. The results show that exit concentration is not a good indicator of the concentration distributions in the vessel. In microgravity conditions, the NASA RWPV bioreactor with the viscous pump has been shown to provide an environment that is well mixed. Even when operated near the theoretical minimum perfusion rates, only a small fraction of the volume provides less than the required oxygen levels

  20. Variabilities and uncertainties in characterising water transport kinetics in glassy and ultraviscous aerosol.

    PubMed

    Rickards, Andrew M J; Song, Young-Chul; Miles, Rachael E H; Preston, Thomas C; Reid, Jonathan P

    2015-04-21

    We present a comprehensive evaluation of the variabilities and uncertainties present in determining the kinetics of water transport in ultraviscous aerosol droplets, alongside new measurements of the water transport timescale in sucrose aerosol. Measurements are performed on individual droplets captured using aerosol optical tweezers and the change in particle size during water evaporation or condensation is inferred from shifts in the wavelength of the whispering gallery mode peaks at which spontaneous Raman scattering is enhanced. The characteristic relaxation timescale (τ) for condensation or evaporation of water from viscous droplets following a change in gas phase relative humidity can be described by the Kohlrausch-Williams-Watts function. To adequately characterise the water transport kinetics and determine τ, sufficient time must be allowed for the particle to progress towards the final state. However, instabilities in the environmental conditions can prevent an accurate characterisation of the kinetics over such long time frames. Comparison with established thermodynamic and diffusional water transport models suggests the determination of τ is insensitive to the choice of thermodynamic treatment. We report excellent agreement between experimental and simulated evaporation timescales, and investigate the scaling of τ with droplet radius. A clear increase in τ is observed for condensation with increase in drying (wait) time. This trend is qualitatively supported by model simulations. PMID:25786190

  1. Time-resolved pulsed hydrogen/deuterium exchange mass spectrometry probes gaseous proteins structural kinetics.

    PubMed

    Rajabi, Khadijeh

    2015-01-01

    A pulsed hydrogen/deuterium exchange (HDX) method has been developed for rapid monitoring of the exchange kinetics of protein ions with D2O a few milliseconds after electrospray ionization (ESI). The stepwise gradual evolution of HDX of multiply charged protein ions was monitored using the pulsed HDX mass spectrometry technique. Upon introducing a very short pulse of D2O (in the μs to ms time scale) into the linear ion trap (LIT) of a time-of-flight (TOF) mass spectrometer, bimodal distributions were detected for the ions of cytochrome c and ubiquitin. Mechanistic details of HDX reactions for ubiquitin and cytochrome c in the gas phase were uncovered and the structural transitions were followed by analyzing the kinetics of HDX. PMID:25318698

  2. Time-Resolved Pulsed Hydrogen/Deuterium Exchange Mass Spectrometry Probes Gaseous Proteins Structural Kinetics

    NASA Astrophysics Data System (ADS)

    Rajabi, Khadijeh

    2015-01-01

    A pulsed hydrogen/deuterium exchange (HDX) method has been developed for rapid monitoring of the exchange kinetics of protein ions with D2O a few milliseconds after electrospray ionization (ESI). The stepwise gradual evolution of HDX of multiply charged protein ions was monitored using the pulsed HDX mass spectrometry technique. Upon introducing a very short pulse of D2O (in the μs to ms time scale) into the linear ion trap (LIT) of a time-of-flight (TOF) mass spectrometer, bimodal distributions were detected for the ions of cytochrome c and ubiquitin. Mechanistic details of HDX reactions for ubiquitin and cytochrome c in the gas phase were uncovered and the structural transitions were followed by analyzing the kinetics of HDX.

  3. A global assessment of accelerations in surface mass transport

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoping; Heflin, Michael B.

    2015-08-01

    Water mass transport in the Earth's dynamic surface layer of atmosphere, cryosphere, and hydrosphere driven by various global change processes has complex spatiotemporal patterns. Here we determine global patterns and regional mean values of accelerations in surface mass variations during the Gravity Recovery and Climate Experiment (GRACE) mission's data span from 2002.2 to 2015.0. GRACE gravity data are supplemented by surface deformation from 607 Global Navigation Satellite System stations, an ocean bottom pressure model, satellite laser ranging, and loose a priori knowledge on mass variation regimes incorporating high-resolution geographic boundaries. While Greenland and West Antarctica have strong negative accelerations, Alaska and the Arctic Ocean show significant positive accelerations. In addition, the accelerations are not constant in time with some regions showing considerable variability due to irregular interannual changes. No evidence of significant nonsteric mean sea level acceleration has been found, but the uncertainty is quite large.

  4. Trace metal transport by marine microorganisms: implications of metal coordination kinetics

    NASA Astrophysics Data System (ADS)

    Hudson, Robert J. M.; Morel, François M. M.

    1993-01-01

    Marine microorganisms have transport systems capable of accumulating essential trace metals present at low oceanic concentrations—1 pM to 1 nM. In marine phytoplankton, Fe, Mn, Zn and Ni transport has been shown to involve complexation by membrane carriers. By analysing the kinetics of the transport process and accounting for the inherently slow coordination reactions of some of these metals, we predict optimum properties and minimum numbers of sites for the transport systems. Limits to trace metal uptake, and thereby to growth rates, may arise from finite space for these transport sites in the membrane, competition from other metals and the rate of diffusion to the cell. These types of nutrient limitation should exhibit different size dependencies and therefore be important in determining ecosystem structure. The concentrations of inorganically complexed species of nutrient metals remaining in the surface ocean appear to be correlated with predicted rates of metal complexation by trace metal transport sites, suggesting that kinetic liability controls the bioavailability of these metals and their rate of removal from the surface ocean.

  5. Kinetics of mass transfer during deep fat frying of yellow fleshed cassava root slices

    NASA Astrophysics Data System (ADS)

    Oyedeji, A. B.; Sobukola, O. P.; Henshaw, F. O.; Adegunwa, M. O.; Sanni, L. O.; Tomlins, K. I.

    2016-05-01

    Kinetics of mass transfer [moisture content, oil uptake, total carotenoid (TC) and shrinkage] during frying of yellow fleshed cassava roots (TMS 01/1371) was investigated. Slices were divided into (i) fresh and (ii) pre-dried to 75 % moisture content before atmospheric frying and (iii) vacuum fried. Percentage TC and activation energies of vacuum, fresh and pre-dried fried samples were 76, 63 and 61 %; and 82, 469.7, 213.7 kJ/mol, respectively.

  6. Influence of Mass Transfer on Bioavailability and Kinetic Rate of Uranium(VI) Biotransformation

    SciTech Connect

    Chongxuan Liu; Zheming Wang; John M. Zachara; James K. Fredrickson

    2006-06-01

    This research is investigating the influence of mass transfer process on the rate and extent of microbial reduction of U(VI) associated with intragrain domains in the Hanford subsurface sediments. The project will develop instrumental techniques to characterize microscopic mass transfer process at the sediment grain scale and to develop kinetic data and process models that describe microbial reduction of intragrain U(VI). Scientific knowledge and process models developed from this research will enhance our understanding on the future behavior of in-ground U(VI) at Hanford and other DOE sites where sediments contain U(VI) in intragrain domains or fracture-matrix systems.

  7. On Matrix-Valued Monge–Kantorovich Optimal Mass Transport

    PubMed Central

    Ning, Lipeng; Georgiou, Tryphon T.; Tannenbaum, Allen

    2016-01-01

    We present a particular formulation of optimal transport for matrix-valued density functions. Our aim is to devise a geometry which is suitable for comparing power spectral densities of multivariable time series. More specifically, the value of a power spectral density at a given frequency, which in the matricial case encodes power as well as directionality, is thought of as a proxy for a “matrix-valued mass density.” Optimal transport aims at establishing a natural metric in the space of such matrix-valued densities which takes into account differences between power across frequencies as well as misalignment of the corresponding principle axes. Thus, our transportation cost includes a cost of transference of power between frequencies together with a cost of rotating the principle directions of matrix densities. The two endpoint matrix-valued densities can be thought of as marginals of a joint matrix-valued density on a tensor product space. This joint density, very much as in the classical Monge–Kantorovich setting, can be thought to specify the transportation plan. Contrary to the classical setting, the optimal transport plan for matrices is no longer supported on a thin zero-measure set. PMID:26997667

  8. Estimation of mass transfer and kinetics in operating biofilters for removal of VOCs

    SciTech Connect

    Barton, J.W.; Davison, B.H.; Gable, C.C.

    1997-11-18

    Long-term, stable operation of trickle-bed bioreactors remains desirable, but is difficult to achieve for industrial processes, which generate continuous streams of dilute gaseous hydrocarbons. Mass transfer and kinetic parameters are difficult to measure, complicating predictive estimates. Two methods are presented which were used to predict the importance of mass transfer versus kinetics limitations in operating trickle-bed biofilters. Both methods altered the overall kinetic activity of the biofilter and estimated the effective mass transfer coefficient (K{sub 1}a) by varying the VOC (volatile organic contaminant) loading rate and concentration. The first method, used with developing biofilters possessing low biomass, involved addition of cultured biomass to the recirculating liquid to effect an overall change in VOC removal capacity. The second method altered the total bed temperature of a well-established biofilter to effect a change. Results and modeling from these experiments are presented for a mixed culture biofilter which is capable of consuming sparingly soluble alkanes, such as pentane and isobutane. Methods to control overgrowth are discussed which were used to operate one reactor continuously for over 24 months with sustained degradation of VOC alkanes with a rate of 50 g/h/m{sup 3}.

  9. Coupled effects of temperature and mass transport on the isotope fractionation of zinc during electroplating

    NASA Astrophysics Data System (ADS)

    Black, Jay R.; John, Seth G.; Kavner, Abby

    2014-01-01

    The isotopic composition of zinc metal electrodeposited on a rotating disc electrode from a Zn-citrate aqueous solution was investigated as a function of overpotential (electrochemical driving force), temperature, and rotation rate. Zn metal was measured to be isotopically light with respect to Zn+2 in solution, with observed fractionations varying from Δ66/64Znmetal-aqueous = -1.0‰ to -3.9‰. Fractionation varies continuously as a function of a dimensionless parameter described by the ratio of observed deposition rate to calculated mass-transport limiting rate, where larger fractionations are observed at lower deposition rates, lower temperature, and at faster electrode rotation rates. Thus, the large fractionation and its rate dependence is interpreted as a competition between the two kinetic processes with different effective activation energies: mass-transport-limited (diffusion limited) kinetics with a large activation energy, which creates small fractionations close to the predicted diffusive fractionation; and electrochemical deposition kinetics, with a smaller effective activation energy, which creates large fractionations at low deposition rates and high hydrodynamic fluxes of solute to the electrode. The results provide a framework for predicting isotope fractionation in processes controlled by two competing reactions with different kinetic isotope effects. Light isotopes are electroplated. In all cases light stable isotopes of the metals are preferentially electroplated, with mass-dependent behavior evident where three or more isotopes are measured. Fractionation is time-independent, meaning that the fractionation factor does not vary with the extent of reaction. In most of our experiments, we have controlled the extent of reaction such that only a small amount of metal is deposited from the stock solution, thus avoiding significant evolution of the reservoir composition. In such experiments, the observed isotope fractionation is constant as a

  10. Simulations of 4D edge transport and dynamics using the TEMPEST gyro-kinetic code

    NASA Astrophysics Data System (ADS)

    Rognlien, T. D.; Cohen, B. I.; Cohen, R. H.; Dorr, M. R.; Hittinger, J. A. F.; Kerbel, G. D.; Nevins, W. M.; Xiong, Z.; Xu, X. Q.

    2006-10-01

    Simulation results are presented for tokamak edge plasmas with a focus on the 4D (2r,2v) option of the TEMPEST continuum gyro-kinetic code. A detailed description of a variety of kinetic simulations is reported, including neoclassical radial transport from Coulomb collisions, electric field generation, dynamic response to perturbations by geodesic acoustic modes, and parallel transport on open magnetic-field lines. Comparison is made between the characteristics of the plasma solutions on closed and open magnetic-field line regions separated by a magnetic separatrix, and simple physical models are used to qualitatively explain the differences observed in mean flow and electric-field generation. The status of extending the simulations to 5D turbulence will be summarized. The code structure used in this ongoing project is also briefly described, together with future plans.

  11. New Direction in Hydrogeochemical Transport Modeling: Incorporating Multiple Kinetic and Equilibrium Reaction Pathways

    SciTech Connect

    Steefel, C.I.

    2000-02-02

    At least two distinct kinds of hydrogeochemical models have evolved historically for use in analyzing contaminant transport, but each has important limitations. One kind, focusing on organic contaminants, treats biodegradation reactions as parts of relatively simple kinetic reaction networks with no or limited coupling to aqueous and surface complexation and mineral dissolution/precipitation reactions. A second kind, evolving out of the speciation and reaction path codes, is capable of handling a comprehensive suite of multicomponent complexation (aqueous and surface) and mineral precipitation and dissolution reactions, but has not been able to treat reaction networks characterized by partial redox disequilibrium and multiple kinetic pathways. More recently, various investigators have begun to consider biodegradation reactions in the context of comprehensive equilibrium and kinetic reaction networks (e.g. Hunter et al. 1998, Mayer 1999). Here we explore two examples of multiple equilibrium and kinetic reaction pathways using the reactive transport code GIMRT98 (Steefel, in prep.): (1) a computational example involving the generation of acid mine drainage due to oxidation of pyrite, and (2) a computational/field example where the rates of chlorinated VOC degradation are linked to the rates of major redox processes occurring in organic-rich wetland sediments overlying a contaminated aerobic aquifer.

  12. Thermodynamics and kinetics of inhibitor binding to human equilibrative nucleoside transporter subtype-1.

    PubMed

    Rehan, Shahid; Ashok, Yashwanth; Nanekar, Rahul; Jaakola, Veli-Pekka

    2015-12-15

    Many nucleoside transport inhibitors are in clinical use as anti-cancer, vasodilator and cardioprotective drugs. However, little is known about the binding energetics of these inhibitors to nucleoside transporters (NTs) due to their low endogenous expression levels and difficulties in the biophysical characterization of purified protein with ligands. Here, we present kinetics and thermodynamic analyses of inhibitor binding to the human equilibrative nucleoside transporter-1 (hENT1), also known as SLC29A1. Using a radioligand binding assay, we obtained equilibrium binding and kinetic rate constants of well-known NT inhibitors--[(3)H]nitrobenzylmercaptopurine ribonucleoside ([(3)H]NBMPR), dilazep, and dipyridamole--and the native permeant, adenosine, to hENT1. We observed that the equilibrium binding affinities for all inhibitors decreased whereas, the kinetic rate constants increased with increasing temperature. Furthermore, we found that binding is enthalpy driven and thus, an exothermic reaction, implying that the transporter does not discriminate between its inhibitors and substrates thermodynamically. This predominantly enthalpy-driven binding by four chemically distinct ligands suggests that the transporter may not tolerate diversity in the type of interactions that lead to high affinity binding. Consistent with this, the measured activation energy of [(3)H]NBMPR association was relatively large (20 kcal mol(-1)) suggesting a conformational change upon inhibitor binding. For all three inhibitors the enthalpy (ΔH°) and entropy (ΔS°) contributions to the reaction energetics were determined by van't Hoff analysis to be roughly similar (25-75% ΔG°). Gains in enthalpy with increasing polar surface area of inhibitors suggest that the binding is favored by electrostatic or polar interactions between the ligands and the transporter. PMID:26428002

  13. Kinetic theory of transport processes in partially ionized reactive plasma, I: General transport equations

    NASA Astrophysics Data System (ADS)

    Zhdanov, V. M.; Stepanenko, A. A.

    2016-03-01

    In this paper we derive the set of general transport equations for multicomponent partially ionized reactive plasma in the presence of electric and magnetic fields taking into account the internal degrees of freedom and electronic excitation of plasma particles. Our starting point is a generalized Boltzmann equation with the collision integral in the Wang-Chang and Uhlenbeck form and a reactive collision integral. We obtain a set of conservation equations for such plasma and employ a linearized variant of Grad's moment method to derive the system of moment (or transport) equations for the plasma species nonequilibrium parameters. Full and reduced transport equations, resulting from the linearized system of moment equations, are presented, which can be used to obtain transport relations and expressions for transport coefficients of electrons and heavy plasma particles (molecules, atoms and ions) in partially ionized reactive plasma.

  14. Updated Delft Mass Transport model DMT-2: computation and validation

    NASA Astrophysics Data System (ADS)

    Hashemi Farahani, Hassan; Ditmar, Pavel; Inacio, Pedro; Klees, Roland; Guo, Jing; Guo, Xiang; Liu, Xianglin; Zhao, Qile; Didova, Olga; Ran, Jiangjun; Sun, Yu; Tangdamrongsub, Natthachet; Gunter, Brian; Riva, Ricardo; Steele-Dunne, Susan

    2014-05-01

    A number of research centers compute models of mass transport in the Earth's system using primarily K-Band Ranging (KBR) data from the Gravity Recovery And Climate Experiment (GRACE) satellite mission. These models typically consist of a time series of monthly solutions, each of which is defined in terms of a set of spherical harmonic coefficients up to degree 60-120. One of such models, the Delft Mass Transport, release 2 (DMT-2), is computed at the Delft University of Technology (The Netherlands) in collaboration with Wuhan University. An updated variant of this model has been produced recently. A unique feature of the computational scheme designed to compute DMT-2 is the preparation of an accurate stochastic description of data noise in the frequency domain using an Auto-Regressive Moving-Average (ARMA) model, which is derived for each particular month. The benefits of such an approach are a proper frequency-dependent data weighting in the data inversion and an accurate variance-covariance matrix of noise in the estimated spherical harmonic coefficients. Furthermore, the data prior to the inversion are subject to an advanced high-pass filtering, which makes use of a spatially-dependent weighting scheme, so that noise is primarily estimated on the basis of data collected over areas with minor mass transport signals (e.g., oceans). On the one hand, this procedure efficiently suppresses noise, which are caused by inaccuracies in satellite orbits and, on the other hand, preserves mass transport signals in the data. Finally, the unconstrained monthly solutions are filtered using a Wiener filter, which is based on estimates of the signal and noise variance-covariance matrices. In combination with a proper data weighting, this noticeably improves the spatial resolution of the monthly gravity models and the associated mass transport models.. For instance, the computed solutions allow long-term negative trends to be clearly seen in sufficiently small regions notorious

  15. Effect of body mass and midsole hardness on kinetic and perceptual variables during basketball landing manoeuvres.

    PubMed

    Nin, Darren Z; Lam, Wing K; Kong, Pui W

    2016-01-01

    This study investigated the effects of body mass and shoe midsole hardness on kinetic and perceptual variables during the performance of three basketball movements: (1) the first and landing steps of layup, (2) shot-blocking landing and (3) drop landing. Thirty male basketball players, assigned into "heavy" (n = 15, mass 82.7 ± 4.3 kg) or "light" (n = 15, mass 63.1 ± 2.8 kg) groups, performed five trials of each movement in three identical shoes of varying midsole hardness (soft, medium, hard). Vertical ground reaction force (VGRF) during landing was sampled using multiple wooden-top force plates. Perceptual responses on five variables (forefoot cushioning, rearfoot cushioning, forefoot stability, rearfoot stability and overall comfort) were rated after each movement condition using a 150-mm Visual Analogue Scale (VAS). A mixed factorial analysis of variance (ANOVA) (Body Mass × Shoe) was applied to all kinetic and perceptual variables. During the first step of the layup, the loading rate associated with rearfoot contact was 40.7% higher in the "heavy" than "light" groups (P = .014) and 12.4% higher in hard compared with soft shoes (P = .011). Forefoot peak VGRF in a soft shoe was higher (P = .011) than in a hard shoe during shot-block landing. Both "heavy" and "light" groups preferred softer to harder shoes. Overall, body mass had little effect on kinetic or perceptual variables. PMID:26211423

  16. Transport Properties of a Kinetic Model for Chemical Reactions without Barriers

    SciTech Connect

    Alves, Giselle M.; Kremer, Gilberto M.; Soares, Ana Jacinta

    2011-05-20

    A kinetic model of the Boltzmann equation for chemical reactions without energy barrier is considered here with the aim of evaluating the reaction rate and characterizing the transport coefficient of shear viscosity for the reactive system. The Chapman-Enskog solution of the Boltzmann equation is used to compute the chemical reaction effects, in a flow regime for which the reaction process is close to the final equilibrium state. Some numerical results are provided illustrating that the considered chemical reaction without energy barrier can induce an appreciable influence on the reaction rate and on the transport coefficient of shear viscosity.

  17. Model development and verification for mass transport to Escherichia coli cells in a turbulent flow

    NASA Astrophysics Data System (ADS)

    Hondzo, Miki; Al-Homoud, Amer

    2007-08-01

    Theoretical studies imply that fluid motion does not significantly increase the molecular diffusive mass flux toward and away from microscopic organisms. This study presents experimental and theoretical evidence that small-scale turbulence modulates enhanced mass transport to Escherichia coli cells in a turbulent flow. Using the technique of inner region and outer region expansions, a model for dissolved oxygen and glucose uptake by E. coli was developed. The mass transport to the E. coli was modeled by the Sherwood (Sh)-Péclet (Pe) number relationship with redefined characteristic length and velocity scales. The model Sh = (1 + Pe1/2 + Pe) agreed with the laboratory measurements well. The Péclet number that quantifies the role and function of small-scale turbulence on E. coli metabolism is defined by Pe = (?) where Ezz is the root mean square of fluid extension in the direction of local vorticity, ηK is the Kolmogorov length scale, Lc is the length scale of E. coli, and D is the molecular diffusion coefficient. An alternative formulation for the redefined Pe is given by Pe = (?) where ? = 0.5(ɛν)1/4 is the Kolmogorov velocity averaged over the Kolmogorov length scale, ɛ is dissipation of turbulent kinetic energy, and ν is the kinematic viscosity of fluid. The dissipation of turbulent kinetic energy was estimated directly from measured velocity gradients and was within the reported range in engineered and natural aquatic ecosytems. The specific growth of E. coli was up to 5 times larger in a turbulent flow in comparison to the still water controls. Dissolved oxygen and glucose uptake were enhanced with increased ɛ in the turbulent flow.

  18. Estimation of kinetic rate coefficients for 2,4-D biodegradation during transport in soil columns

    SciTech Connect

    Maier, R.S.; Estrella, R.; Brusseau, M.L.

    1996-12-31

    The Monod model is used increasingly to simulate the kinetics of biodegradation in soil environments with distinctly different hydraulic properties than the well-mixed batch reactor environments for which the model is known to be appropriate. This paper investigates the use of a transport model with Monod kinetics to describe the fate of 2,4-D in soil columns. The research includes development of a mathematical model for the biodegradation of 2,4-D in the presence of an acclimated biological population and an optimization model to calibrate results of the mathematical model with experimental observations. The model is applied to experimental data from two independent soil column experiments to qualify the generality of the numerical results. Fitted kinetic parameters are compared with well-mixed batch reactor test data and goodness of fit is compared with a linear model of transport with first-order substrate decay. The fitted model is used to discuss strategies to minimize transport of 2,4-D into lower soil horizons and groundwater.

  19. Metal intercalation-induced selective adatom mass transport on graphene

    DOE PAGESBeta

    Liu, Xiaojie; Wang, Cai -Zhuang; Hupalo, Myron; Lin, Hai -Qing; Ho, Kai -Ming; Thiel, Patricia A.; Tringides, Michael C.

    2016-03-29

    Recent experiments indicate that metal intercalation is a very effective method to manipulate the graphene-adatom interaction and control metal nanostructure formation on graphene. A key question is mass transport, i.e., how atoms deposited uniformly on graphene populate different areas depending on the local intercalation. Using first-principles calculations, we show that partially intercalated graphene, with a mixture of intercalated and pristine areas, can induce an alternating electric field because of the spatial variations in electron doping, and thus, an oscillatory electrostatic potential. As a result, this alternating field can change normal stochastic adatom diffusion to biased diffusion, leading to selective massmore » transport and consequent nucleation, on either the intercalated or pristine areas, depending on the charge state of the adatoms.« less

  20. Coprecipitation in the barite isostructural family: 2. Numerical simulations of reactions and mass transport

    NASA Astrophysics Data System (ADS)

    Zhu, Chen

    2004-08-01

    Coprecipitation of barite with trace constituents was simulated with consideration of aqueous speciation and complexation, mixing properties for the binary solid solutions (Zhu, this issue), precipitation and dissolution kinetics, and advective-dispersive transport. Speciation-solubility modeling was used to reproduce BaSO 4-RaSO 4 coprecipitation experimental results, and to calculate CrO 42- aqueous concentrations in equilibrium with a Ba(SO 4,CrO 4) solid solution. Kinetic reaction path modeling was used to simulate the coprecipitation of barite with RaSO 4 to form an onion-like chemically zoned solid upon the cooling of oil field brine. A one-dimensional coupled reactive mass transport model shows a strikingly different transport pattern for the tracer Ra 2+, when the dominant attenuation reaction is with solid solution (Ba, Ra) SO 4 as compared to the case when it is controlled by pure RaSO 4 and barite solids under local equilibrium conditions. A self-enrichment of Ra 2+ in the groundwater and aquifer solid matrix—higher concentrations of Ra 2+ downstream from the reaction front—results from the coprecipitation reaction and advective-dispersive transport. This self-enrichment process generates a secondary tracer source, which has tracer concentrations higher than that of the original source. On the other hand, coprecipitation reactions can reduce Ra 2+ concentrations in groundwater to a much lower level (below ppb) than that of pure RaSO 4(c) solubility (near ppm), which has been used to establish the Ra 2+ concentration limits in groundwater, soil, and nuclear waste repositories.

  1. Flow field design and optimization based on the mass transport polarization regulation in a flow-through type vanadium flow battery

    NASA Astrophysics Data System (ADS)

    Zheng, Qiong; Xing, Feng; Li, Xianfeng; Ning, Guiling; Zhang, Huamin

    2016-08-01

    Vanadium flow battery holds great promise for use in large scale energy storage applications. However, the power density is relatively low, leading to significant increase in the system cost. Apart from the kinetic and electronic conductivity improvement, the mass transport enhancement is also necessary to further increase the power density and reduce the system cost. To better understand the mass transport limitations, in the research, the space-varying and time-varying characteristic of the mass transport polarization is investigated based on the analysis of the flow velocity and reactant concentration in the bulk electrolyte by modeling. The result demonstrates that the varying characteristic of mass transport polarization is more obvious at high SoC or high current densities. To soften the adverse impact of the mass transport polarization, a new rectangular plug flow battery with a plug flow and short flow path is designed and optimized based on the mass transport polarization regulation (reducing the mass transport polarization and improving its uniformity of distribution). The regulation strategy of mass transport polarization is practical for the performance improvement in VFBs, especially for high power density VFBs. The findings in the research are also applicable for other flow batteries and instructive for practical use.

  2. Mass transfer kinetics on heterogeneous binding sites of molecularly imprinted polymers

    SciTech Connect

    Kim, Hyunjung; Kaczmarski, Krzysztof; Guiochon, Georges A

    2005-07-01

    The mass transfer kinetics of the L- and D-Fmoc-Tryptophan (Fmoc-Trp) enantiomers on Fmoc-L-Trp imprinted polymer (MIP) and on its reference polymer (NIP), were measured using their elution peak profiles and the breakthrough curves recorded in frontal analysis for the determination of their equilibrium isotherms, at temperatures of 40, 50, 60, and 70 C. At all temperatures, the isotherm data of the Fmoc-Trp enantiomers on the MIP were best accounted for by the Tri-Langmuir isotherm model, while the isotherm data of Fmoc-Trp on the NIP were best accounted for by the Bi-Langmuir isotherm model. The profiles of the elution bands of various amounts of each enantiomer were acquired in the concentration range from 0.1 to 40 mM. These experimental profiles were compared with those calculated using the best values estimated for the isotherm parameters and the lumped pore diffusion model (POR), which made possible to calculate the intraparticle diffusion coefficients for each system. The results show that surface diffusion contributes predominantly to the overall mass transfer kinetics on both the MIP and the NIP, compared to external mass transfer and pore diffusion. The surface diffusion coefficients (D{sub s}) of Fmoc-L-Trp on the NIP does not depend on the amount bound (q) while the values of D{sub s} for the two Fmoc-Trp enantiomers on the MIP increase with increasing q at all temperatures. These positive dependencies of D{sub s} on q for Fmoc-Trp on the MIP were fairly well modeled by indirectly incorporating surface heterogeneity into the surface diffusion coefficient. The results obtained show that the mass transfer kinetics of the enantiomers on the imprinted polymers depend strongly on the surface heterogeneity.

  3. Impedance Analysis of Ion Transport Through Supported Lipid Membranes Doped with Ionophores: A New Kinetic Approach

    PubMed Central

    Alvarez, P. E.; Vallejo, A. E.

    2008-01-01

    Kinetics of facilitated ion transport through planar bilayer membranes are normally analyzed by electrical conductance methods. The additional use of electrical relaxation techniques, such as voltage jump, is necessary to evaluate individual rate constants. Although electrochemical impedance spectroscopy is recognized as the most powerful of the available electric relaxation techniques, it has rarely been used in connection with these kinetic studies. According to the new approach presented in this work, three steps were followed. First, a kinetic model was proposed that has the distinct quality of being general, i.e., it properly describes both carrier and channel mechanisms of ion transport. Second, the state equations for steady-state and for impedance experiments were derived, exhibiting the input–output representation pertaining to the model’s structure. With the application of a method based on the similarity transformation approach, it was possible to check that the proposed mechanism is distinguishable, i.e., no other model with a different structure exhibits the same input–output behavior for any input as the original. Additionally, the method allowed us to check whether the proposed model is globally identifiable (i.e., whether there is a single set of fit parameters for the model) when analyzed in terms of its impedance response. Thus, our model does not represent a theoretical interpretation of the experimental impedance but rather constitutes the prerequisite to select this type of experiment in order to obtain optimal kinetic identification of the system. Finally, impedance measurements were performed and the results were fitted to the proposed theoretical model in order to obtain the kinetic parameters of the system. The successful application of this approach is exemplified with results obtained for valinomycin–K+ in lipid bilayers supported onto gold substrates, i.e., an arrangement capable of emulating biological membranes. PMID:19669528

  4. Kinetic desorption and sorption of U(VI) during reactive transport in a contaminated Hanford sediment.

    PubMed

    Qafoku, Nikolla P; Zachara, John M; Liu, Chongxuan; Gassman, Paul L; Qafoku, Odeta S; Smith, Steven C

    2005-05-01

    Column experiments were conducted to investigate U(VI) desorption and sorption kinetics in a sand-textured, U(VI)-contaminated (22.7 micromol kg(-1)) capillary fringe sediment from the U.S. Department of Energy (DOE) Hanford site. Saturated column experiments were performed under mildly alkaline conditions representative of the Hanford site where uranyl-carbonate and calcium-uranyl-carbonate complexes dominate aqueous speciation. A U(VI)-free solution was used to study contaminant U(VI) desorption in columns where different flow rates were applied. Sorbed, contaminant U(VI) was partially labile (11.8%), and extended leaching times and water volumes were required for complete desorption of the labile fraction. Uranium-(VI) sorption was studied after the desorption of labile, contaminant U(VI) using different U(VI) concentrations in the leaching solution. Strong kinetic effects were observed for both U(VI) sorption and desorption, with half-life ranging from 8.5 to 48.5 h for sorption and from 39.3 to 150 h for desorption. Although U(VI) is semi-mobile in mildly alkaline, subsurface environments, we observed substantial U(VI) adsorption, significant retardation during transport, and atypical breakthrough curves with extended tailing. A distributed rate model was applied to describe the effluent data and to allow comparisons between the desorption rate of contaminant U(VI) with the rate of shortterm U(VI) sorption. Desorption was the slower process. We speculate that the kinetic behavior results from transport or chemical phenomena within the phyllosilicate-dominated fine fraction present in the sediment. Our results suggest that U(VI) release and transport in the vadose zone and aquifer system from which the sediment was obtained are kinetically controlled. PMID:15926566

  5. Drug Release Kinetics and Transport Mechanisms of Non-degradable and Degradable Polymeric Delivery Systems

    PubMed Central

    Fu, Yao; Kao, Weiyuan John

    2010-01-01

    Importance of the field The advancement in material design and engineering has led to the rapid development of novel materials with increasing complexity and functions. Both non-degradable and degradable polymers have found wide applications in the controlled delivery field. Studies on drug release kinetics provide important information into the function of material systems. To elucidate the detailed transport mechanism and the structure-function relationship of a material system, it is critical to bridge the gap between the macroscopic data and the transport behavior at the molecular level. Areas covered in this review The structure and function information of selected non-degradable and degradable polymers have been collected and summarized from literatures published after 1990s. The release kinetics of selected drug compounds from various material systems will be discussed in case studies. Recent progresses in the mathematical models based on different transport mechanisms will be highlighted. What the reader will gain This article aims to provide an overview of structure-function relationships of selected non-degradable and degradable polymers as drug delivery matrices. Take home message Understanding the structure-function relationship of the material system is key to the successful design of a delivery system for a particular application. Moreover, developing complex polymeric matrices requires more robust mathematical models to elucidate the solute transport mechanisms. PMID:20331353

  6. A Computer Program for the Calculation of Reactivity and Kinetic Parameters by Two-Dimensional Neutron Transport Perturbation Theory.

    Energy Science and Technology Software Center (ESTSC)

    1985-02-01

    Version 00 TP2 is a transport theory code, developed to determine reactivity effects and kinetic parameters such as effective delayed neutron fractions and mean generation time by applying the usual perturbation formalism for two-dimensional geometry.

  7. A Computer Code System for the Calculation of Reactivity and Kinetic Parameters by One-Dimensional Neutron Transport Perturbation Theory.

    Energy Science and Technology Software Center (ESTSC)

    1985-02-01

    Version 00 TP1 is a transport theory code, developed to determine reactivity effects and kinetic parameters such as effective delayed neutron fractions and mean generation time by applying the usual perturbation formalism for one-dimensional geometry.

  8. Kinetic modeling of pH-dependent antimony (V) sorption and transport in iron oxide-coated sand.

    PubMed

    Cai, Yongbing; Li, Lulu; Zhang, Hua

    2015-11-01

    Understanding the mechanisms and kinetics controlling the retention and transport of antimony (Sb) is prerequisite for evaluating the risk of groundwater contamination by the toxic element. In this study, kinetic batch and saturated miscible displacement experiments were performed to investigate effects of protonation-deprotonation reactions on sorption-desorption and transport of Sb(V) in iron oxide-coated sand (IOCS). Results clearly demonstrated that Sb(V) sorption was highly nonlinear and time dependent, where both sorption capacity and kinetic rates decreased with increasing solution pH. Breakthrough curves (BTCs) obtained at different solution pH exhibited that mobility of Sb(V) were higher under neutral to alkaline condition than under acidic condition. Because of the nonlinear and non-equilibrium nature of Sb(V) retention and transport, multi-reaction models (MRM) with equilibrium and kinetic sorption expressions were utilized successfully to simulate the experiment data. Equilibrium distribution coefficient (Ke) and reversible kinetic retention parameters (k1 and k2) of both kinetic sorption and transport experiment showed marked decrease as pH increased from 4.0 to 7.5. Surface complexation is suggested as the dominant mechanism for the observed pH-dependent phenomena, which need to be incorporated into the kinetic models to accurately simulate the reactive transport of Sb(V) in vadose zone and aquifers. PMID:26291756

  9. Angular momentum transport within evolved low-mass stars

    SciTech Connect

    Cantiello, Matteo; Bildsten, Lars; Paxton, Bill; Mankovich, Christopher; Christensen-Dalsgaard, Jørgen

    2014-06-10

    Asteroseismology of 1.0-2.0 M {sub ☉} red giants by the Kepler satellite has enabled the first definitive measurements of interior rotation in both first ascent red giant branch (RGB) stars and those on the helium burning clump. The inferred rotation rates are 10-30 days for the ≈0.2 M {sub ☉} He degenerate cores on the RGB and 30-100 days for the He burning core in a clump star. Using the Modules for Experiments in Stellar Evolution code, we calculate state-of-the-art stellar evolution models of low mass rotating stars from the zero-age main sequence to the cooling white dwarf (WD) stage. We include transport of angular momentum due to rotationally induced instabilities and circulations, as well as magnetic fields in radiative zones (generated by the Tayler-Spruit dynamo). We find that all models fail to predict core rotation as slow as observed on the RGB and during core He burning, implying that an unmodeled angular momentum transport process must be operating on the early RGB of low mass stars. Later evolution of the star from the He burning clump to the cooling WD phase appears to be at nearly constant core angular momentum. We also incorporate the adiabatic pulsation code, ADIPLS, to explicitly highlight this shortfall when applied to a specific Kepler asteroseismic target, KIC8366239.

  10. Mass Flux of ZnSe by Physical Vapor Transport

    NASA Technical Reports Server (NTRS)

    Sha, Yi-Gao; Su, Ching-Hua; Palosz, W.; Volz, M. P.; Gillies, D. C.; Szofran, F. R.; Lehoczky, S. L.; Liu, Hao-Chieh; Brebrick, R. F.

    1995-01-01

    Mass fluxes of ZnSe by physical vapor transport (PVT) were measured in the temperature range of 1050 to 1160 C using an in-situ dynamic technique. The starting materials were either baked out or distilled under vacuum to obtain near-congruently subliming compositions. Using an optical absorption technique Zn and Se, were found to be the dominant vapor species. Partial pressures of Zn and Se, over the starting materials at temperatures between 960 and 1140 C were obtained by measuring the optical densities of the vapor phase at the wavelengths of 2138, 3405, 3508, 3613, and 3792 A. The amount and composition of the residual gas inside the experimental ampoules were measured after the run using a total pressure gauge. For the first time, the experimentally determined partial pressures of Zn and Se, and the amount and composition of the residual gas were used in a one-dimensional diffusion limited analysis of the mass transport rates for a PVT system. Reasonable agreement between the experimental and theoretical results was observed.

  11. TiN surface dynamics: role of surface and bulk mass transport processes

    SciTech Connect

    Bareno, J.; Swiech, W.; Petrova, V.; Petrov, I.; Greene, J. E.; Kodambaka, S.; Khare, S. V.

    2007-02-09

    Transition-metal nitrides, such as TiN, have a wide variety of applications as hard, wear-resistant coatings, as diffusion barriers, and as scratch-resistant and anti-reflective coatings in optics. Understanding the surface morphological and microstructural evolution of these materials is crucial for improving the performance of devices. Studies of surface step dynamics enable determination of the rate-limiting mechanisms, corresponding surface mass transport parameters, and step energies. However, most models describing these phenomena are limited in application to simple elemental metal and semiconductor surfaces. Here, we summarize recent progress toward elucidating the interplay of surface and bulk diffusion processes on morphological evolution of compound surfaces. Specifically, we analyze the coarsening/decay kinetics of two- and three-dimensional TiN(111) islands and the effect of surface-terminated dislocations on TiN(111) steps.

  12. Reactive Transport in Porous Media: Pore-scale Mass Exchange between Aqueous Phase and Biofilms

    NASA Astrophysics Data System (ADS)

    Hassanizadeh, S.; Qin, C.

    2013-12-01

    and biofilms is empirically introduced which lacks somewhat physical fundamentals. Therefore, to better characterize the mass exchange between aqueous phase and biofilms, in this work we start with the local descriptions of solute transport in porous media with biofilms. Then, the upscaled average equations of solute transport in both aqueous phase and biofilms are obtained by averaging the local equations over a domain of interest, like a pore throat or a typical REV of porous media. Based on some assumptions, we can reach a general form of first-order kinetic mass exchange model. As a first attempt, we limit investigates of solute mass exchange to the pore scale. The dependence of pore-scale mass exchange coefficient on a number of pore-scale parameters (such as pore structure, Damköhler number and volume fraction of biofilms) is investigated. Our studies show that this coefficient strongly depends on pore geometry, volume fraction of biofilms, Damköhler number and diffusivity ratio. Particularly, our results can be key inputs to the pore-network modeling of bioclogging.

  13. Kinetics of exogenous induction of the hexose-6-phosphate transport system of Escherichia coli.

    PubMed

    Winkler, H H

    1971-07-01

    The kinetics of the exogenous induction of the hexose-phosphate transport system by glucose-6-phosphate (G6P) was investigated. The induction of this system by extracellular but not intracellular G6P was confirmed. The differential rate of synthesis was linear, a function of the extracellular concentration of G6P and independent of the previous induction history of the culture. Neither maintenance nor autocatalysis, phenomena described in the induction of the lac operon, were observed in the exogenous induction of hexose-phosphate transport. Fructose-6-phosphate, a potent competitive inhibitor of G6P influx, had no effect on the induction of the system by G6P, indicating that the transport of inducer was not involved in the induction process. PMID:4935331

  14. Predictive mathematical modeling of trickling bed biofilters for elucidating mass transfer and kinetic effects

    SciTech Connect

    Barton, J.W.; Zhang, X.S.; Klasson, K.T.; Davison, B.H.

    1998-03-01

    Mathematical models of varying complexity have been proposed in the open literature for describing uptake of volatile organics in trickling bed biofilters. Many simpler descriptions yield relatively accurate solutions, but are limited as predictive tools by numerous assumptions which decrease the utility of the model. Trickle bed operation on the boundary between mass transfer and kinetic limitation regimes serves as one example in which these models may be insufficient. One-dimensional models may also fail to consider important effects/relationships in multiple directions, limiting their usefulness. This paper discusses the use of a predictive, two-dimensional mathematical model to describe microbial uptake, diffusion through a biofilm, and mass transfer of VOCs from gas to liquid. The model is validated by experimental data collected from operating trickle-bed bioreactors designed for removing sparingly soluble gaseous contaminants. Axial and radial (biofilm) concentration profiles are presented, along with validation results. Operation in regimes in which both mass transfer and kinetic factors play significant roles are discussed, along with predictive modeling implications.

  15. Experimental Studies on Mass Transport of Cadmium-Zinc Telluride by Physical Vapor Transport

    NASA Technical Reports Server (NTRS)

    Palosz, W.; Szofran, F. R.; Lehoczky, S. L.

    1995-01-01

    Experimental studies on mass transport of ternary compound, Cd(1-x)Zn(x)Te by physical vapor transport (PVT) for source compositions up to X = 0.21 are presented. The effect of thermochemical (temperatures, vapor composition) and other factors (preparation of the source, crystal growth rate, temperature gradient) on composition and composition profiles of the grown crystals were investigated. A steep decrease in the mass flux with an increase in X(crystal) for X less than 0.1, and a difference in composition between the source and the deposited material have been observed. The composition profiles of the crystals were found to depend on the density and pretreatment of the source, and on the temperature gradient in the source zone. The homogeneity of the crystals improves at low undercoolings and/or when an appropriate excess of metal constituents is present in the vapor phase. The experimental results are in good agreement with our thermochemical model of this system.

  16. TICKET-UWM: a coupled kinetic, equilibrium, and transport screening model for metals in lakes.

    PubMed

    Farley, Kevin J; Carbonaro, Richard F; Fanelli, Christopher J; Costanzo, Robert; Rader, Kevin J; Di Toro, Dominic M

    2011-06-01

    The tableau input coupled kinetic equilibrium transport-unit world model (TICKET-UWM) has been developed as a screening model for assessing potential environmental risks associated with the release of metals into lakes. The model is based on a fully implicit, one-step solution algorithm that allows for simultaneous consideration of dissolved and particulate phase transport; metal complexation to organic matter and inorganic ligands; precipitation of metal hydroxides, carbonates, and sulfides; competitive interactions of metals and major cations with biotic ligands; a simplified description of biogeochemical cycling of organic carbon and sulfur; and dissolution kinetics for metal powders, massives, and other solid forms. Application of TICKET-UWM to a generalized lake in the Sudbury area of the Canadian Shield is presented to demonstrate the overall cycling of metals in lakes and the nonlinear effects of chemical speciation on metal responses. In addition, the model is used to calculate critical loads for metals, with acute toxicity of Daphnia magna as the final endpoint. Model results show that the critical loads for Cu, Ni, Pb, and Zn varied from 2.5 to 39.0 g metal/m(2) -year and were found to be one or more orders of magnitude higher than comparable loads for pesticides (lindane, 4,4'-DDT) and several polyaromatic hydrocarbon (PAH) compounds. In sensitivity calculations, critical metal-loading rates were found to vary significantly as a function of the hydraulic detention time, water hardness, and metal dissolution kinetic rates. PMID:21381089

  17. Kinetic Desorption and Sorption of U(VI) During Reactive Transport in a Contaminated Hanford Sediment

    SciTech Connect

    Qafoku, Nik; Zachara, John M.; Liu, Chongxuan; Gassman, Paul L.; Qafoku, Odeta; Smith, Steven C.

    2005-05-12

    Column experiments were conducted to investigate U(VI) desorption and sorption kinetics in a sand-textured, contaminated (22.7 µmol kg-1) capillary fringe sediment that had experienced long-term exposure to U(VI). The clay fraction mineralogy of the sediment was dominated by montmorillonite, muscovite, vermiculite, and chlorite. Saturated column experiments were performed under mildly alkaline/calcareous conditions representative of the Hanford site where uranyl–carbonate and calcium–uranyl–carbonate complexes dominate aqueous speciation. A U(VI) free solution was used to study U(VI) desorption in columns where different flow rates were applied. Uranium(VI) sorption was studied after the desorption of labile contaminant U(VI) using different U(VI) concentrations in the leaching solution. Strong kinetic behavior was observed for both U(VI) desorption and sorption. Although U(VI) is semi–mobile in mildly alkaline, calcareous subsurface environments, our results showed substantial U(VI) sorption, significant retardation during transport, and atypical breakthrough curves with extended tailing. A distributed rate model was applied to describe the effluent data and to allow comparisons between the desorption rate of contaminant U(VI) with the rate of short-term U(VI) sorption. Desorption was the slower process. Our results suggest that U(VI) release and transport in the vadose zone and aquifer system from which the sediment was obtained are kinetically controlled.

  18. A new dynamic fluid-kinetic model for plasma transport within the plasmaspheric plume

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Tu, J.; Song, P.

    2011-12-01

    A new dynamic fluid-kinetic (DyFk) model is proposed and developed for investigating the plasma transport from the plasmasphere to the dayside magnetopause through the plasmaspheric plume. This model treats a closed flux tube in a local sense, in contrast to the global sense. The flux tube is allowed to move both radially from near the Earth to the magnetopause, which may result in expansion in its volume, and azimuthally around the Earth. Plasma may flow along the flux tube. The numerical simulation model couples a truncated version of the field line interhemispheric plasma (FLIP) model at altitudes below 800 km and a generalized semi-kinetic (GSK) model above it with an overlapped boundary region in each of the hemispheres. A self-consistently treatment of the ionospheric losses and production with possible heat sinks couples to a kinetic treatment of the multiple ion species (O+/ H+/ He+) and electrons in the plasmasphere. This model includes the effects of the convection of the plasmaspheric flux tube, parallel electric field, magnetic mirror force, centrifugal force, changing ionospheric conditions, Coulomb and ion-neutral collisions, and anisotropic temperatures, as well as the wave-particle interaction. The preliminary simulation results of the multi-species ion transport within a plasmaspheric plume will be presented.

  19. Mass transfer kinetics during deep fat frying of wheat starch and gluten based snacks

    NASA Astrophysics Data System (ADS)

    Sobukola, O. P.; Bouchon, P.

    2014-06-01

    Mass transfer (moisture loss and oil uptake) kinetics during deep fat frying of wheat starch and gluten based snacks was investigated. Both followed a modified first order reaction. Activation energies, z-value, and highest values of D and k for moisture loss and oil uptake were 28.608 kJ/mol, 129.88 °C, 490 and 0.0080 s-1; and 60.398 kJ/mol, 61.79 °C, 1,354.71 and 0.0052 s-1, respectively.

  20. Improved Predictions of Carbon Tetrachloride Contaminant Flow and Transport: Implementation of Kinetic Volatilization and Multicomponent NAPL Behavior

    SciTech Connect

    Oostrom, Martinus; Zhang, Z. F.; Freedman, Vicky L.; Tartakovsky, Guzel D.

    2008-09-29

    Carbon tetrachloride (CT) was discharged to waste sites that are included in the 200-PW-1 Operable Unit in Hanford 200 West Area. Fluor Hanford, Inc. is conducting a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) remedial investigation/feasibility study (RI/FS) for the 200-PW-1 Operable Unit. The RI/FS process and remedial investigations for the 200-PW-1, 200 PW-3, and 200-PW-6 Operable Units are described in the Plutonium/Organic-Rich Process Condensate/Process Waste Groups Operable Unit RI/FS Work Plan. As part of this overall effort, Pacific Northwest National Laboratory (PNNL) was contracted to improve the STOMP simulator (White and Oostrom, 2006) by incorporating kinetic volatilization of nonaqueous phase liquids (NAPL) and multicomponent flow and transport. This work supports the U.S. Department of Energy's (DOE's) efforts to characterize the nature and distribution of CT in the 200 West Area and subsequently select an appropriate final remedy. Previous numerical simulation results with the STOMP simulator have overestimated the effect of soil vapor extraction (SVE) on subsurface CT, showing rapid removal of considerably more CT than has actually been recovered so far. These previous multiphase simulations modeled CT mass transfer between phases based on equilibrium partitioning. Equilibrium volatilization can overestimate volatilization because mass transfer limitations present in the field are not considered. Previous simulations were also conducted by modeling the NAPL as a single component, CT. In reality, however, the NAPL mixture disposed of at the Hanford site contained several non-volatile and nearly insoluble organic components, resulting in time-variant fluid properties as the CT component volatilized or dissolved over time. Simulation of CT removal from a DNAPL mixture using single-component DNAPL properties typically leads to an overestimation of CT removal. Other possible reasons for the discrepancy between

  1. Dusty air masses transport between Amazon Basin and Caribbean Islands

    NASA Astrophysics Data System (ADS)

    Euphrasie-Clotilde, Lovely; Molinie, Jack; Prospero, Joseph; Feuillard, Tony; Brute, Francenor; Jeannot, Alexis

    2015-04-01

    Depend on the month, African desert dust affect different parts of the North Atlantic Ocean. From December to April, Saharan dust outbreaks are often reported over the amazon basin and from May to November over the Caribbean islands and the southern regions of USA. This annual oscillation of Saharan dust presence, related to the ITCZ position, is perturbed some time, during March. Indeed, over Guadeloupe, the air quality network observed between 2007 and 2012 several dust events during March. In this paper, using HISPLIT back trajectories, we analyzed air masses trajectories for March dust events observed in Guadeloupe, from 2007 to 2012.We observed that the high pressure positions over the Atlantic Ocean allow the transport of dusty air masses from southern region of West Africa to the Caribbean Sea with a path crossing close to coastal region of French Guyana. Complementary investigations including the relationship between PM10 concentrations recorded in two sites Pointe-a-Pitre in the Caribbean, and Cayenne in French Guyana, have been done. Moreover we focus on the mean delay observed between the times arrival. All the results show a link between pathway of dusty air masses present over amazon basin and over the Caribbean region during several event of March. The next step will be the comparison of mineral dust composition for this particular month.

  2. Reaction kinetic parameters for ion transport from steady-state current-voltage curves.

    PubMed Central

    Gradmann, D; Klieber, H G; Hansen, U P

    1987-01-01

    This study demonstrates possible ways to estimate the rate constants of reaction kinetic models for ion transport from steady-state current-voltage data as measured at various substrate concentrations. This issue is treated theoretically by algebraic reduction and extension of a reaction kinetic four-state model for uniport. Furthermore, an example for application is given; current-voltage data from an open K+ selective channel (Schroeder, J.I., R. Hedrich, and J.M. Fernandez, 1984, Nature (Lond.), 312:361-362) supplemented by some new data have been evaluated. The analysis yields absolute numerical estimates of the 14 rate constants of a six-state model, which is discussed in a wider context. PMID:2437973

  3. Solvent-Induced Crystallization in Poly(Ethylene Terephthalate) during Mass Transport

    NASA Astrophysics Data System (ADS)

    Ouyang, Hao

    2001-03-01

    The solvent transport in poly(ethylene terephthalate) (PET) and related phase transformation were investigated. The data of mass sorption were analyzed according to Harmon¡¦s model for Case I (Fickian), Case II (swelling) and anomalous transport. This transport process in PET is accompanied by the induced crystallization of the original amorphous state. The transformation was studied by wide angle x-ray scattering (WAXS), small angle x-ray scattering (SAXS), Differential Scanning Calorimeter (DSC), density gradient column, and Fourier Transform Infra-Red (FTIR). During this process, the matrix is under a compressive strain that causes different kinetic path of crystallization as compared to that by thermal annealing. This state of strain will assist the development of the solvent-induced crystallization. It also can be explained in terms of the principle of Le Chatelier if the local equilibrium is assumed. The model regarding the crystallization was proposed in terms of the study of long period L, the crystal thickness lc and the thickness of amorphous layer la, obtained from the linear correlation function and interface distribution function.

  4. Platelet Transport Rates and Binding Kinetics at High Shear over a Thrombus

    PubMed Central

    Bark, David L.; Ku, David N.

    2013-01-01

    Thrombus formation over a ruptured atherosclerotic plaque cap can occlude an artery with fatal consequences. We describe a computational model of platelet transport and binding to interpret rate-limiting steps seen in experimental thrombus formation over a collagen-coated stenosis. The model is used to compute shear rates in stenoses with growing boundaries. In the model, moving erythrocytes influence platelet transport based on shear-dependent enhanced diffusivity and a nonuniform platelet distribution. Adhesion is modeled as platelet-platelet binding kinetics. The results indicate that observed thrombus growth rates are limited by platelet transport to the wall for shear rates up to 6000 s−1. Above 7000 s−1, the thrombus growth rate is likely limited by binding kinetics (10−4 m/s). Thrombus growth computed from these rate-limiting steps match the thrombus location and occlusion times for experimental conditions if a lag time for platelet activation is included. Using fitted parameters, the model is then used to predict thrombus size and shape at a higher Reynolds number flow consistent with coronary artery disease. PMID:23870271

  5. A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions

    SciTech Connect

    Zhang, Fan; Yeh, Gour-Tsyh; Parker, Jack C; Brooks, Scott C; Pace, Molly; Kim, Young Jin; Jardine, Philip M; Watson, David B

    2007-01-01

    This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing NE equilibrium reactions and a set of reactive transport equations of M-NE kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions.

  6. Infrared and Mass Analyzed Ion Kinetic Energy Spectroscopy of Cluster Ions

    NASA Astrophysics Data System (ADS)

    Feinberg, Thomas Neal

    A new method for obtaining mass analyzed kinetic energy spectroscopy for the study of cluster ions was tested. The experiments utilized an MS/MS instrument (Quadrupole/Electric Sector Analyzer) coupled to a cluster beam source. The ion source consisted of a molecular beam excited by high energy electron impact. Experiments were conducted using argon and argon/ethene gas mixtures in the ion source. Kinetic energy spectra of collision induced dissociation products and carbon dioxide laser photodissociation products were analyzed. The results for argon dimers showed a laser polarization effect on the measurement of the kinetic energy of the fragment argon ions in the infrared photodissociation event. When ionization occurred within the supersonic expansion zone, the polarization effects were no longer observed. Ethene gas in the ion source produced a variety of ions; some of these showed photodissociation efficiencies within the region of the monomer nu_7 vibrational mode. The spectroscopy and collision induced dissociation data are consistent with a structure consisting of a central core ion surrounded by one or more ethene molecules.

  7. Kinetic electron and ion instability of the lunar wake simulated at physical mass ratio

    NASA Astrophysics Data System (ADS)

    Haakonsen, Christian Bernt; Hutchinson, Ian H.; Zhou, Chuteng

    2015-03-01

    The solar wind wake behind the moon is studied with 1D electrostatic particle-in-cell (PIC) simulations using a physical ion to electron mass ratio (unlike prior investigations); the simulations also apply more generally to supersonic flow of dense magnetized plasma past non-magnetic objects. A hybrid electrostatic Boltzmann electron treatment is first used to investigate the ion stability in the absence of kinetic electron effects, showing that the ions are two-stream unstable for downstream wake distances (in lunar radii) greater than about three times the solar wind Mach number. Simulations with PIC electrons are then used to show that kinetic electron effects can lead to disruption of the ion beams at least three times closer to the moon than in the hybrid simulations. This disruption occurs as the result of a novel wake phenomenon: the non-linear growth of electron holes spawned from a narrow dimple in the electron velocity distribution. Most of the holes arising from the dimple are small and quickly leave the wake, approximately following the unperturbed electron phase-space trajectories, but some holes originating near the center of the wake remain and grow large enough to trigger disruption of the ion beams. Non-linear kinetic-electron effects are therefore essential to a comprehensive understanding of the 1D electrostatic stability of such wakes, and possible observational signatures in ARTEMIS data from the lunar wake are discussed.

  8. Kinetic electron and ion instability of the lunar wake simulated at physical mass ratio

    SciTech Connect

    Haakonsen, Christian Bernt Hutchinson, Ian H. Zhou, Chuteng

    2015-03-15

    The solar wind wake behind the moon is studied with 1D electrostatic particle-in-cell (PIC) simulations using a physical ion to electron mass ratio (unlike prior investigations); the simulations also apply more generally to supersonic flow of dense magnetized plasma past non-magnetic objects. A hybrid electrostatic Boltzmann electron treatment is first used to investigate the ion stability in the absence of kinetic electron effects, showing that the ions are two-stream unstable for downstream wake distances (in lunar radii) greater than about three times the solar wind Mach number. Simulations with PIC electrons are then used to show that kinetic electron effects can lead to disruption of the ion beams at least three times closer to the moon than in the hybrid simulations. This disruption occurs as the result of a novel wake phenomenon: the non-linear growth of electron holes spawned from a narrow dimple in the electron velocity distribution. Most of the holes arising from the dimple are small and quickly leave the wake, approximately following the unperturbed electron phase-space trajectories, but some holes originating near the center of the wake remain and grow large enough to trigger disruption of the ion beams. Non-linear kinetic-electron effects are therefore essential to a comprehensive understanding of the 1D electrostatic stability of such wakes, and possible observational signatures in ARTEMIS data from the lunar wake are discussed.

  9. Laboratory investigation of the role of desorption kinetics on americium transport associated with bentonite colloids.

    PubMed

    Dittrich, Timothy Mark; Boukhalfa, Hakim; Ware, Stuart Douglas; Reimus, Paul William

    2015-10-01

    Understanding the parameters that control colloid-mediated transport of radionuclides is important for the safe disposal of used nuclear fuel. We report an experimental and reactive transport modeling examination of americium transport in a groundwater-bentonite-fracture fill material system. A series of batch sorption and column transport experiments were conducted to determine the role of desorption kinetics from bentonite colloids in the transport of americium through fracture materials. We used fracture fill material from a shear zone in altered granodiorite collected from the Grimsel Test Site (GTS) in Switzerland and colloidal suspensions generated from FEBEX bentonite, a potential repository backfill material. The colloidal suspension (100 mg L(-1)) was prepared in synthetic groundwater that matched the natural water chemistry at GTS and was spiked with 5.5 × 10(-10) M (241)Am. Batch characterizations indicated that 97% of the americium in the stock suspension was adsorbed to the colloids. Breakthrough experiments conducted by injecting the americium colloidal suspension through three identical columns in series, each with mean residence times of 6 h, show that more than 95% of the bentonite colloids were transported through each of the columns, with modeled colloid filtration rates (k(f)) of 0.01-0.02 h(-1). Am recoveries in each column were 55-60%, and Am desorption rate constants from the colloids, determined from 1-D transport modeling, were 0.96, 0.98, and 0.91 h(-1) in the three columns, respectively. The consistency in Am recoveries and desorption rate constants in each column indicates that the Am was not associated with binding sites of widely-varying strengths on the colloids, as one binding site with fast kinetics represented the system accurately for all three sequential columns. Our data suggest that colloid-mediated transport of Am in a bentonite-fracture fill material system is unlikely to result in transport over long distance scales because

  10. Laboratory investigation of the role of desorption kinetics on americium transport associated with bentonite colloids

    DOE PAGESBeta

    Dittrich, Timothy Mark; Boukhalfa, Hakim; Ware, Stuart Douglas; Reimus, Paul William

    2015-07-13

    Understanding the parameters that control colloid-mediated transport of radionuclides is important for the safe disposal of used nuclear fuel. We report an experimental and reactive transport modeling examination of americium transport in a groundwater–bentonite–fracture fill material system. A series of batch sorption and column transport experiments were conducted to determine the role of desorption kinetics from bentonite colloids in the transport of americium through fracture materials. We used fracture fill material from a shear zone in altered granodiorite collected from the Grimsel Test Site (GTS) in Switzerland and colloidal suspensions generated from FEBEX bentonite, a potential repository backfill material. Themore » colloidal suspension (100 mg L–1) was prepared in synthetic groundwater that matched the natural water chemistry at GTS and was spiked with 5.5 × 10–10 M241Am. Batch characterizations indicated that 97% of the americium in the stock suspension was adsorbed to the colloids. Breakthrough experiments conducted by injecting the americium colloidal suspension through three identical columns in series, each with mean residence times of 6 h, show that more than 95% of the bentonite colloids were transported through each of the columns, with modeled colloid filtration rates (kf) of 0.01–0.02 h–1. Am recoveries in each column were 55–60%, and Am desorption rate constants from the colloids, determined from 1-D transport modeling, were 0.96, 0.98, and 0.91 h–1 in the three columns, respectively. The consistency in Am recoveries and desorption rate constants in each column indicates that the Am was not associated with binding sites of widely-varying strengths on the colloids, as one binding site with fast kinetics represented the system accurately for all three sequential columns. As a result, our data suggest that colloid-mediated transport of Am in a bentonite-fracture fill material system is unlikely to result in transport over long

  11. Laboratory investigation of the role of desorption kinetics on americium transport associated with bentonite colloids

    SciTech Connect

    Dittrich, Timothy Mark; Boukhalfa, Hakim; Ware, Stuart Douglas; Reimus, Paul William

    2015-07-13

    Understanding the parameters that control colloid-mediated transport of radionuclides is important for the safe disposal of used nuclear fuel. We report an experimental and reactive transport modeling examination of americium transport in a groundwater–bentonite–fracture fill material system. A series of batch sorption and column transport experiments were conducted to determine the role of desorption kinetics from bentonite colloids in the transport of americium through fracture materials. We used fracture fill material from a shear zone in altered granodiorite collected from the Grimsel Test Site (GTS) in Switzerland and colloidal suspensions generated from FEBEX bentonite, a potential repository backfill material. The colloidal suspension (100 mg L–1) was prepared in synthetic groundwater that matched the natural water chemistry at GTS and was spiked with 5.5 × 10–10 M241Am. Batch characterizations indicated that 97% of the americium in the stock suspension was adsorbed to the colloids. Breakthrough experiments conducted by injecting the americium colloidal suspension through three identical columns in series, each with mean residence times of 6 h, show that more than 95% of the bentonite colloids were transported through each of the columns, with modeled colloid filtration rates (kf) of 0.01–0.02 h–1. Am recoveries in each column were 55–60%, and Am desorption rate constants from the colloids, determined from 1-D transport modeling, were 0.96, 0.98, and 0.91 h–1 in the three columns, respectively. The consistency in Am recoveries and desorption rate constants in each column indicates that the Am was not associated with binding sites of widely-varying strengths on the colloids, as one binding site with fast kinetics represented the system accurately for all three sequential columns. As a result, our data suggest that colloid-mediated transport of Am in a bentonite-fracture fill

  12. A kinetic analysis of protein transport through the anthrax toxin channel

    PubMed Central

    Kienker, Paul K.; Briggs, Stephen W.; Finkelstein, Alan

    2011-01-01

    Anthrax toxin is composed of three proteins: a translocase heptameric channel, (PA63)7, formed from protective antigen (PA), which allows the other two proteins, lethal factor (LF) and edema factor (EF), to translocate across a host cell’s endosomal membrane, disrupting cellular homeostasis. (PA63)7 incorporated into planar phospholipid bilayer membranes forms a channel capable of transporting LF and EF. Protein translocation through the channel can be driven by voltage on a timescale of seconds. A characteristic of the translocation of LFN, the N-terminal 263 residues of LF, is its S-shaped kinetics. Because all of the translocation experiments reported in the literature have been performed with more than one LFN molecule bound to most of the channels, it is not clear whether the S-shaped kinetics are an intrinsic characteristic of translocation kinetics or are merely a consequence of the translocation in tandem of two or three LFNs. In this paper, we show both in macroscopic and single-channel experiments that even with only one LFN bound to the channel, the translocation kinetics are S shaped. As expected, the translocation rate is slower with more than one LFN bound. We also present a simple electrodiffusion model of translocation in which LFN is represented as a charged rod that moves subject to both Brownian motion and an applied electric field. The cumulative distribution of first-passage times of the rod past the end of the channel displays S-shaped kinetics with a voltage dependence in agreement with experimental data. PMID:21624946

  13. Microbial synthesis gas utilization and ways to resolve kinetic and mass-transfer limitations.

    PubMed

    Yasin, Muhammad; Jeong, Yeseul; Park, Shinyoung; Jeong, Jiyeong; Lee, Eun Yeol; Lovitt, Robert W; Kim, Byung Hong; Lee, Jinwon; Chang, In Seop

    2015-02-01

    Microbial conversion of syngas to energy-dense biofuels and valuable chemicals is a potential technology for the efficient utilization of fossils (e.g., coal) and renewable resources (e.g., lignocellulosic biomass) in an environmentally friendly manner. However, gas-liquid mass transfer and kinetic limitations are still major constraints that limit the widespread adoption and successful commercialization of the technology. This review paper provides rationales for syngas bioconversion and summarizes the reaction limited conditions along with the possible strategies to overcome these challenges. Mass transfer and economic performances of various reactor configurations are compared, and an ideal case for optimum bioreactor operation is presented. Overall, the challenges with the bioprocessing steps are highlighted, and potential solutions are suggested. Future research directions are provided and a conceptual design for a membrane-based syngas biorefinery is proposed. PMID:25443672

  14. Mass transport measurements and modeling for chemical vapor infiltration

    SciTech Connect

    Starr, T.L.; Chiang, D.Y.; Fiadzo, O.G.; Hablutzel, N.

    1997-12-01

    This project involves experimental and modeling investigation of densification behavior and mass transport in fiber preforms and partially densified composites, and application of these results to chemical vapor infiltration (CVI) process modeling. This supports work on-going at ORNL in process development for fabrication of ceramic matrix composite (CMC) tubes. Tube-shaped composite preforms are fabricated at ORNL with Nextel{trademark} 312 fiber (3M Corporation, St. Paul, MN) by placing and compressing several layers of braided sleeve on a tubular mandrel. In terms of fiber architecture these preforms are significantly different than those made previously with Nicalon{trademark} fiber (Nippon Carbon Corp., Tokyo, Japan) square weave cloth. The authors have made microstructure and permeability measurements on several of these preforms and a few partially densified composites so as to better understand their densification behavior during CVI.

  15. Distinct kinetics of synaptic structural plasticity, memory formation, and memory decay in massed and spaced learning

    PubMed Central

    Aziz, Wajeeha; Wang, Wen; Kesaf, Sebnem; Mohamed, Alsayed Abdelhamid; Fukazawa, Yugo; Shigemoto, Ryuichi

    2014-01-01

    Long-lasting memories are formed when the stimulus is temporally distributed (spacing effect). However, the synaptic mechanisms underlying this robust phenomenon and the precise time course of the synaptic modifications that occur during learning remain unclear. Here we examined the adaptation of horizontal optokinetic response in mice that underwent 1 h of massed and spaced training at varying intervals. Despite similar acquisition by all training protocols, 1 h of spacing produced the highest memory retention at 24 h, which lasted for 1 mo. The distinct kinetics of memory are strongly correlated with the reduction of floccular parallel fiber–Purkinje cell synapses but not with AMPA receptor (AMPAR) number and synapse size. After the spaced training, we observed 25%, 23%, and 12% reduction in AMPAR density, synapse size, and synapse number, respectively. Four hours after the spaced training, half of the synapses and Purkinje cell spines had been eliminated, whereas AMPAR density and synapse size were recovered in remaining synapses. Surprisingly, massed training also produced long-term memory and halving of synapses; however, this occurred slowly over days, and the memory lasted for only 1 wk. This distinct kinetics of structural plasticity may serve as a basis for unique temporal profiles in the formation and decay of memory with or without intervals. PMID:24367076

  16. Restricted mass transport effects on free radical reactions

    NASA Astrophysics Data System (ADS)

    Buchanan, A. C., III; Britt, P. F.; Thomas, K. B.

    Coal possesses a complex chemical and physical structure. The cross-linked, network structure can lead to alterations in normal thermally-induced, free-radical decay pathways as a consequence of restrictions on mass transport. Moreover, in coal liquefaction, access of an external hydrogen donor to a reactive radical site can be hindered by the substantial domains of microporosity present in coals. However, previous work indicates that diffusion effects do not appear to be playing an important role in this coal conversion chemistry. Several possible explanations for this phenomenon were advanced including the potential involvement of a hydrogen hopping/radical relay mechanism recently discovered model systems in the authors' laboratories. The authors have employed silica-anchored compounds to explore the effects of restricted mass transport on the pyrolysis mechanisms of coal model compounds. In studies of two-component systems, cases have been discovered where radical centers can be rapidly relocated in the diffusionally constrained environment as a consequence of rapid serial hydrogen atom transfers. This chemistry can have substantial effects on thermal decomposition rates and on product selectivities. In this study, the authors examine additional surfaces to systematically investigate the impact of molecular structure on the hydrogen atom transfer promoted radical relay mechanism. Silica-attached 1,3-diphenylpropane (approximately Ph(CH2)3Ph, or approximately DPP) was chosen as the thermally reactive component, since it can be considered prototypical of linkages in coal that do not contain weak bonds easily cleaved at coal liquefaction temperatures (ca. 4000 C), but which crack at reasonable rates if benzylic radicals can be generated by hydrogen abstraction. The rate of such hydrogen transfers under restricted diffusion will be highly dependent on the structure and proximity of neighboring molecules.

  17. Materials with engineered mesoporosity for programmed mass transport

    NASA Astrophysics Data System (ADS)

    Gough, Dara V.

    Transport in nanostructured materials is of great interest for scientists in various fields, including molecular sequestration, catalysis, artificial photosynthesis and energy storage. This thesis will present work on the transport of molecular and ionic species in mesoporous materials (materials with pore sizes between 2 and 50 nm). Initially, discussion will focus on the synthesis of mesoporous ZnS nanorattles and the size selected mass transport of small molecules through the mesopores. Discussion will then shift of exploration of cation exchange and electroless plating of metals to alter the mesoporous hollow sphere (MHS) materials and properties. The focus of discussion will then shift to the transport of ions into and out of a hierarchically structured gold electrode. Finally, a model gamma-bactiophage was developed to study the electromigration of charged molecules into and out of a confined geometry. A catalytically active biomolecular species was encapsulated within the central cavity of ZnS MHS. Both the activity of the encapsulated enzyme and the size-selective transport through the wall of the MHS were verified through the use of a common fluorogen, hydrogen peroxide, and sodium azide. Additionally, the protection of the enzyme was shown through size-selected blocking of a protease. The mesoporous hollow sphere system introduces size-selectivity to catalyzed chemical reactions; future work may include variations in pore sizes, and pore wall chemical functionalization. The pore size in ZnS mesoporous hollow spheres is controlled between 2.5 and 4.1 nm through swelling of the lyotropic liquid crystal template. The incorporation of a swelling agent is shown to linearly vary the hexagonal lyotropic liquid crystalline phase, which templates the mesopores, while allowing the high fidelity synthesis of mesoporous hollow spheres. Fluorescnently labeled ssDNA was utilized as a probe to explore the change in mesopore permeability afforded by the swollen template

  18. Multigrid optimal mass transport for image registration and morphing

    NASA Astrophysics Data System (ADS)

    Rehman, Tauseef ur; Tannenbaum, Allen

    2007-02-01

    In this paper we present a computationally efficient Optimal Mass Transport algorithm. This method is based on the Monge-Kantorovich theory and is used for computing elastic registration and warping maps in image registration and morphing applications. This is a parameter free method which utilizes all of the grayscale data in an image pair in a symmetric fashion. No landmarks need to be specified for correspondence. In our work, we demonstrate significant improvement in computation time when our algorithm is applied as compared to the originally proposed method by Haker et al [1]. The original algorithm was based on a gradient descent method for removing the curl from an initial mass preserving map regarded as 2D vector field. This involves inverting the Laplacian in each iteration which is now computed using full multigrid technique resulting in an improvement in computational time by a factor of two. Greater improvement is achieved by decimating the curl in a multi-resolutional framework. The algorithm was applied to 2D short axis cardiac MRI images and brain MRI images for testing and comparison.

  19. Dynamic characterization of external and internal mass transport in heterotrophic biofilms from microsensors measurements.

    PubMed

    Guimerà, Xavier; Dorado, Antonio David; Bonsfills, Anna; Gabriel, Gemma; Gabriel, David; Gamisans, Xavier

    2016-10-01

    Knowledge of mass transport mechanisms in biofilm-based technologies such as biofilters is essential to improve bioreactors performance by preventing mass transport limitation. External and internal mass transport in biofilms was characterized in heterotrophic biofilms grown on a flat plate bioreactor. Mass transport resistance through the liquid-biofilm interphase and diffusion within biofilms were quantified by in situ measurements using microsensors with a high spatial resolution (<50 μm). Experimental conditions were selected using a mathematical procedure based on the Fisher Information Matrix to increase the reliability of experimental data and minimize confidence intervals of estimated mass transport coefficients. The sensitivity of external and internal mass transport resistances to flow conditions within the range of typical fluid velocities over biofilms (Reynolds numbers between 0.5 and 7) was assessed. Estimated external mass transfer coefficients at different liquid phase flow velocities showed discrepancies with studies considering laminar conditions in the diffusive boundary layer near the liquid-biofilm interphase. The correlation of effective diffusivity with flow velocities showed that the heterogeneous structure of biofilms defines the transport mechanisms inside biofilms. Internal mass transport was driven by diffusion through cell clusters and aggregates at Re below 2.8. Conversely, mass transport was driven by advection within pores, voids and water channels at Re above 5.6. Between both flow velocities, mass transport occurred by a combination of advection and diffusion. Effective diffusivities estimated at different biofilm densities showed a linear increase of mass transport resistance due to a porosity decrease up to biofilm densities of 50 g VSS·L(-1). Mass transport was strongly limited at higher biofilm densities. Internal mass transport results were used to propose an empirical correlation to assess the effective diffusivity

  20. Kinetic Particle-In Simulations of Transport in a Tokamak Scrape-Off Layer.

    NASA Astrophysics Data System (ADS)

    Procassini, Richard Joseph

    1990-01-01

    The focus of this thesis is the application of particle-in-cell (PIC) simulation techniques to the study of particle and energy transport in the scrape-off layer (SOL) of a tokamak fusion device. The PIC computer code that is used in this endeavor provides a fully-kinetic, self-consistent description of plasma transport in one spatial dimension (along the open magnetic field lines in the SOL) and two velocity components (v_ {|} and v_{ |}). The diverted-tokamak SOL system was modeled with various levels of physical complexity. The most rudimentary system studied, a collisionless bounded plasma-sheath region, was used to investigate the dependence of the potential structure on the source distribution function used to inject plasma into the SOL. The results from this study were in reasonable agreement with the predictions of previously developed analytic theories. The next level of complexity included the effects of Coulomb collisions. Plasma transport in the SOL was modeled over the wide range of collisionality encountered in current and near-term devices. The electron heat conduction flux in these simulations was limited to 11-21% of the free-streaming thermal flux. Finally, the atomic physics processes of charge exchange and ionization were included in the collisional model. These interactions between the charged-plasma and recycled-neutral particles can significantly affect energy transport through the SOL. This complete version of the kinetic PIC model was used to simulate SOL transport for various values of neutral particle density between the low-and high-recycling limits. The electron and ion kinetic energy fluxes to the divertor plate exhibit a marked decrease as the level of neutral particle recycling increases. The performance of the direct implicit PIC code has been determined with regard to the size of the time step Delta t and grid spacing Delta z. Each of the physics packages incorporated into the PIC code has been benchmarked against either available

  1. Mass transport and element mobilisation during large-scale metasomatism

    NASA Astrophysics Data System (ADS)

    Putnis, C. V.; Austrheim, H.; Jamtveit, B.; Engvik, A. K.; Putnis, A.

    2009-04-01

    Replacement textures commonly occur in relation to fluid-driven large scale metasomatism and metamorphism and these processes are often related to mineralisation. For example, the albitisation of gabbroic rocks in the Bamble District, southern Norway is associated with ore deposits. Similar albitised rocks are also characteristic of the Curnamona Province, Australia, which includes large areas of mineralisation such as the Pb, Zn, Ag of the Broken Hill deposits as well as Cu, Au and U deposits. The main question addressed here is the mechanism of mass transport and hence element mobilisation. An indication of the former presence of fluids within a rock can be seen in mineral textures, such as porosity, replacement rims, replacement induced fracturing and crystallographic continuity across sharp compositional boundaries. Such textural observations from natural rocks as well as experimental products show that during mineral-fluid interaction, the crystallographic relations between parent and product phases control the nucleation of the product, and hence a coupling between dissolution and reprecipitation. If the rate of nucleation and growth of the product equals the dissolution rate, a pseudomorphic replacement takes place. The degree of epitaxy (or lattice misfit) at the interface, the relative solubility of parent and product phases and the molar volume changes control the microstructure of the product phase. The key observation is that these factors control the generation of porosity as well as reaction induced fracturing ahead of the main reaction interface. Porosity is generated whenever the amount of parent dissolved is greater than the amount of product reprecipitated, irrespective of the molar volume changes of the solid reactants and products. This porosity is occupied by the fluid phase during the reaction, and provides a mechanism of mass transport and fluid movement between reaction interface and the surrounding phases. The reaction-induced fracturing

  2. Turbulence and mass-transports in stratocumulus clouds

    NASA Astrophysics Data System (ADS)

    Ghate, Virendra P.

    Boundary layer (BL) stratocumulus clouds are an important factor in the earth's radiation budget due to their high albedo and low cloud top heights. Continental BL stratocumulus clouds are closely coupled to the diurnal cycle and the turbulence in the BL affecting the surface energy and moisture budgets. In this study the turbulence and mass-transport structures in continental BL stratocumulus clouds are studied using data from the Atmospheric Radiation Measurements (ARM)'s Southern Great Plains (SGP) observing facility located at Lamont, Oklahoma. High temporal (4 sec) and spatial (45 m) resolution observations from a vertically pointing 35 GHz cloud Doppler radar were used to obtain the in-cloud vertical velocity probability density function (pdf) in the absence of precipitation size hydrometeors. A total of 70 hours of radar data were analyzed to report half-hourly statistics of vertical velocity variance, skewness, updraft fraction, downdraft and velocity binned mass-flux at five cloud depth normalized levels. The variance showed a general decrease with increase in height in the cloud layer while the skewness is weakly positive in the cloud layer and negative near cloud top. The updraft fraction decreases with height with the decrease mainly occurring in the upper half of the cloud layer. The downdraft fraction increases with decrease in height with the increase being almost linear. The velocity of eddies responsible for maximum mass-transport decreases from of 0.4 ms-1 near cloud base to 0.2 ms-1 near cloud top. The half-hour periods were then classified based on the surface buoyancy flux as stable or unstable and it was found that the variance near cloud top is higher during the stable periods as compared to the unstable periods. Classification was also made based on the cloud depth to BL depth ratio (CBR) being greater or less than 0.3. The variance profile was similar for the classification while the skewness was almost zero during periods with CBR less 0

  3. Turbulence structure and turbulence kinetic energy transport in multiscale/fractal-generated turbulence

    NASA Astrophysics Data System (ADS)

    Nagata, Kouji; Sakai, Yasuhiko; Inaba, Takuto; Suzuki, Hiroki; Terashima, Osamu; Suzuki, Hiroyuki

    2013-06-01

    The turbulence structure and turbulence kinetic energy transport in multiscale/fractal-generated turbulence in a wind tunnel are investigated. A low-blockage, space-filling square-type (i.e., fractal elements with square shapes) fractal grid is placed at the inlet of the test section. On the basis of the thickness of the biggest grid bar, t0, and the inflow velocity U∞, the Reynolds numbers (Re0) are set to 5900 and 11 400; these values are the same as those considered in previous experiments [D. Hurst and J. C. Vassilicos, "Scalings and decay of fractal-generated turbulence," Phys. Fluids 19, 035103 (2007), 10.1063/1.2676448; N. Mazellier and J. C. Vassilicos, "Turbulence without Richardson-Kolmogorov cascade," Phys. Fluids 22, 075101 (2010), 10.1063/1.3453708]. The turbulence characteristics are measured using hot-wire anemometry with I- and X-type probes. Generally, good agreements are observed despite the difference in the size of the test sections used: The longitudinal integral length-scale Lu and the Taylor microscale λ, and their ratio Lu/λ, are approximately constant during decay and are independent of the turbulent Reynolds number Reλ. Centerline statistical results support the finding of Mazellier and Vassilicos, namely, that the classical scaling of Lu/λ ˜ Reλ and the Richardson-Kolmogorov cascade are not universal to all boundary-free weakly sheared/strained turbulence. The cross-sectional profiles show that in the entire cross section of the tunnel, Lu/λ hardly changes in the decay region of the rms velocity, which implies that the turbulent field is self-similar. The production and transport of turbulence kinetic energy K in fractal grid turbulence are also investigated from cross-sectional profiles of the advection A^*, production P^*, triple-correlation transport T^*, pressure transport Π*, viscous diffusion D^*, and dissipation ɛ terms in the K transport equation. In the upstream region, turbulence produced by the biggest grid bar is

  4. Mass transport analysis in the near field of geologic repository

    NASA Astrophysics Data System (ADS)

    Lim, Doo-Hyun

    A two-dimensional model for the groundwater flow and the contaminant transport has been developed. A water-saturated, deep geologic repository for high-level radioactive wastes (HLW) is considered. The region containing a waste canister, a backfill material around the canister, and the near-field rock (NFR) surrounding the backfill is considered. Discrete-Fracture Network (DFN) is generated in the NFR based on distribution functions of the fracture geometry parameters by random sampling. Flow-bearing fracture network is identified, and is transformed into an equivalent continuous porous medium in two different ways without calculating flow rates through individual fractures. The first transformation is applied locally, generating a heterogeneous porous medium. The second transformation is applied for the entire NFR, resulting in a homogeneous porous medium. While the heterogeneous porous medium is considered to represent characteristics of water flow in DFN better than the homogeneous porous medium, the homogeneous porous medium was often used in previous performance assessment studies for its simplicity. After these transformations, the spatial distribution of groundwater flow rate is calculated by a finite element method. The numerical results for the total discharge at the outer boundary of the homogenized NFR after the second transformation are benchmarked by analytical solutions with a relative difference smaller than 0.55%. The contaminant transport is simulated by a random-walk particle-tracking method, based on the obtained flow-rate distribution. Previous study for a step equation that determines the movement of contaminant particles has been critically reviewed. Numerical results obtained by the first and second transformations have been compared. The second transformation gives smaller mean values of the residence time of particles in the NFR and greater mean values of the mass absorption rate at the outer boundary of NFR than the first one does. Thus

  5. Towards a unified linear kinetic transport model with the trace ion module for EIRENE

    PubMed Central

    Seebacher, J.; Kendl, A.

    2012-01-01

    Linear kinetic Monte Carlo particle transport models are frequently employed in fusion plasma simulations to quantify atomic and surface effects on the main plasma flow dynamics. Separate codes are used for transport of neutral particles (incl. radiation) and charged particles (trace impurity ions). Integration of both modules into main plasma fluid solvers provides then self-consistent solutions, in principle. The required interfaces are far from trivial, because rapid atomic processes in particular in the edge region of fusion plasmas require either smoothing and resampling, or frequent transfer of particles from one into the other Monte Carlo code. We propose a different scheme here, in which despite the inherently different mathematical form of kinetic equations for ions and neutrals (e.g. Fokker–Planck vs. Boltzmann collision integrals) both types of particle orbits can be integrated into one single code. We show that the approximations and shortcomings of this “single sourcing” concept (e.g., restriction to explicit ion drift orbit integration) can be fully tolerable in a wide range of typical fusion edge plasma conditions, and be overcompensated by the code-system simplicity, as well as by inherently ensured consistency in geometry (one single numerical grid only) and (the common) atomic and surface process modules. PMID:22474397

  6. TOPICAL REVIEW: Kinetic phenomena in charged particle transport in gases, swarm parameters and cross section data

    NASA Astrophysics Data System (ADS)

    Petrovic, Z. Lj; Suvakov, M.; Nikitovic, Z.; Dujko, S.; Sasic, O.; Jovanovic, J.; Malovic, G.; Stojanovic, V.

    2007-02-01

    In this review we discuss the current status of the physics of charged particle swarms, mainly electrons. The whole field is analysed mainly through its relationship to plasma modelling and illustrated by some recent examples developed mainly by our group. The measurements of the swarm coefficients and the availability of the data are briefly discussed. More time is devoted to the development of complete electron molecule cross section sets along with recent examples such as NO, CF4 and HBr. We extend the discussion to the availability of ion and fast neutral data and how swarm experiments may serve to provide new data. As a point where new insight into the kinetics of charge particle transport is provided, the role of kinetic phenomena is discussed and recent examples are listed. We focus here on giving two examples on how non-conservative processes make dramatic effects in transport, the negative absolute mobility and the negative differential conductivity for positrons in argon. Finally we discuss the applicability of swarm data in plasma modelling and the relationship to other fields where swarm experiments and analysis make significant contributions. Based on the general invited lecture presented by the first author at ESCAMPIG 2006 at Lecce in Italy.

  7. Towards a unified linear kinetic transport model with the trace ion module for EIRENE

    NASA Astrophysics Data System (ADS)

    Seebacher, J.; Kendl, A.

    2012-04-01

    Linear kinetic Monte Carlo particle transport models are frequently employed in fusion plasma simulations to quantify atomic and surface effects on the main plasma flow dynamics. Separate codes are used for transport of neutral particles (incl. radiation) and charged particles (trace impurity ions). Integration of both modules into main plasma fluid solvers provides then self-consistent solutions, in principle. The required interfaces are far from trivial, because rapid atomic processes in particular in the edge region of fusion plasmas require either smoothing and resampling, or frequent transfer of particles from one into the other Monte Carlo code. We propose a different scheme here, in which despite the inherently different mathematical form of kinetic equations for ions and neutrals (e.g. Fokker-Planck vs. Boltzmann collision integrals) both types of particle orbits can be integrated into one single code. We show that the approximations and shortcomings of this “single sourcing” concept (e.g., restriction to explicit ion drift orbit integration) can be fully tolerable in a wide range of typical fusion edge plasma conditions, and be overcompensated by the code-system simplicity, as well as by inherently ensured consistency in geometry (one single numerical grid only) and (the common) atomic and surface process modules.

  8. A coupling kinetics model for pollutant release and transport in the process of landfill settlement.

    PubMed

    Zhao, Ying; Xue, Qiang; Liu, Lei

    2012-10-01

    A coupling kinetics model is developed to simulate the release and transport of landfill leachate pollutants in a deformable municipal solid waste landfill by taking into account of landfill settlement, seepage of leachate water, hydrolyse of insoluble and degradable organic pollutants in solid phase, biodegradation of soluble and degradable organic pollutants in solid phase and aqueous one, growth of aerobic and anaerobic microorganism, and consumption of dissolved oxygen. The release and transport of organic pollutants and microorganisms in landfills in the process of landfill settlement was simulated by considering no hydraulic effect. Simulation results demonstrated that the interaction between landfill settlement and the release, transport and biodegradation of landfill leachate pollutants was significant. Porosity and saturated hydraulic conductivity were not constants because of the landfill settlement, which affected the release, transport and biodegradation of landfill leachate pollutants, and furthermore acted on the landfill settlement. The simulation results accorded with the practical situation, which preliminarily verified the reliability of the mathematical model and the numerical program in this paper. PMID:23202755

  9. Study of electron transport in a Hall thruster by axial-radial fully kinetic particle simulation

    NASA Astrophysics Data System (ADS)

    Cho, Shinatora; Watanabe, Hiroki; Kubota, Kenichi; Iihara, Shigeyasu; Fuchigami, Kenji; Uematsu, Kazuo; Funaki, Ikkoh

    2015-10-01

    Electron transport across a magnetic field in a magnetic-layer-type Hall thruster was numerically investigated for the future predictive modeling of Hall thrusters. The discharge of a 1-kW-class magnetic-layer-type Hall thruster designed for high-specific-impulse operation was modeled using an r-z two-dimensional fully kinetic particle code with and without artificial electron-diffusion models. The thruster performance results showed that both electron transport models captured the experimental result within discrepancies less than 20% in thrust and discharge current for all the simulated operation conditions. The electron cross-field transport mechanism of the so-called anomalous diffusion was self-consistently observed in the simulation without artificial diffusion models; the effective electron mobility was two orders of magnitude higher than the value obtained using the classical diffusion theory. To account for the self-consistently observed anomalous transport, the oscillation of plasma properties was speculated. It was suggested that the enhanced random-walk diffusion due to the velocity oscillation of low-frequency electron flow could explain the observed anomalous diffusion within an order of magnitude. The dominant oscillation mode of the electron flow velocity was found to be 20 kHz, which was coupled to electrostatic oscillation excited by global ionization instability.

  10. Analytical investigations on the effects of substrate kinetics on macromolecular transport and hybridization through microfluidic channels.

    PubMed

    Das, Siddhartha; Subramanian, Kapil; Chakraborty, Suman

    2007-08-01

    In this paper, a generalized surface-kinetics based model is developed to analytically investigate the influences of the substrate types and the buffer compositions on the macromolecular transport and hybridization in microfluidic channels, under electrokinetic influences. For specific illustration, three typical microchannel substrates, namely silanized glass, polycarbonate and PDMS, are considered, in order to obtain analytical expressions for their zeta potentials as a function of the buffer pH and the substrate compositions. The expressions for the zeta potential are subsequently employed to derive the respective velocity distributions, under the application of electric fields of identical strengths in all cases. It is also taken into consideration that the charged macromolecules introduced into these channels are subjected to electrophoretic influences on account of the applied electric fields. Closed form expressions are derived to predict the transport behaviour of the macromolecules and their subsequent hybridization characteristics. From the analysis presented, it is shown that the modification of the channel surface with silane-treatment becomes useful for enhancing the macromolecular transport and surface hybridization, only if the buffer pH permits a large surface charge density. The analytical solutions are also compared with full-scale numerical solutions of the coupled problem of fluid dynamic and macromolecular transport in presence of the pertinent surface reactions, in order to justify the effectiveness of closed-form expressions derived in this study. PMID:17481862

  11. A Coupling Kinetics Model for Pollutant Release and Transport in the Process of Landfill Settlement

    PubMed Central

    Zhao, Ying; Xue, Qiang; Liu, Lei

    2012-01-01

    A coupling kinetics model is developed to simulate the release and transport of landfill leachate pollutants in a deformable municipal solid waste landfill by taking into account of landfill settlement, seepage of leachate water, hydrolyse of insoluble and degradable organic pollutants in solid phase, biodegradation of soluble and degradable organic pollutants in solid phase and aqueous one, growth of aerobic and anaerobic microorganism, and consumption of dissolved oxygen. The release and transport of organic pollutants and microorganisms in landfills in the process of landfill settlement was simulated by considering no hydraulic effect. Simulation results demonstrated that the interaction between landfill settlement and the release, transport and biodegradation of landfill leachate pollutants was significant. Porosity and saturated hydraulic conductivity were not constants because of the landfill settlement, which affected the release, transport and biodegradation of landfill leachate pollutants, and furthermore acted on the landfill settlement. The simulation results accorded with the practical situation, which preliminarily verified the reliability of the mathematical model and the numerical program in this paper. PMID:23202755

  12. Angular momentum transport and particle acceleration during magnetorotational instability in a kinetic accretion disk.

    PubMed

    Hoshino, Masahiro

    2015-02-13

    Angular momentum transport and particle acceleration during the magnetorotational instability (MRI) in a collisionless accretion disk are investigated using three-dimensional particle-in-cell simulation. We show that the kinetic MRI can provide not only high-energy particle acceleration but also enhancement of angular momentum transport. We find that the plasma pressure anisotropy inside the channel flow with p(∥)>p(⊥) induced by active magnetic reconnection suppresses the onset of subsequent reconnection, which, in turn, leads to high-magnetic-field saturation and enhancement of the Maxwell stress tensor of angular momentum transport. Meanwhile, during the quiescent stage of reconnection, the plasma isotropization progresses in the channel flow and the anisotropic plasma with p(⊥)>p(∥) due to the dynamo action of MRI outside the channel flow contribute to rapid reconnection and strong particle acceleration. This efficient particle acceleration and enhanced angular momentum transport in a collisionless accretion disk may explain the origin of high-energy particles observed around massive black holes. PMID:25723200

  13. Study of electron transport in a Hall thruster by axial–radial fully kinetic particle simulation

    SciTech Connect

    Cho, Shinatora Kubota, Kenichi; Funaki, Ikkoh; Watanabe, Hiroki; Iihara, Shigeyasu; Fuchigami, Kenji; Uematsu, Kazuo

    2015-10-15

    Electron transport across a magnetic field in a magnetic-layer-type Hall thruster was numerically investigated for the future predictive modeling of Hall thrusters. The discharge of a 1-kW-class magnetic-layer-type Hall thruster designed for high-specific-impulse operation was modeled using an r-z two-dimensional fully kinetic particle code with and without artificial electron-diffusion models. The thruster performance results showed that both electron transport models captured the experimental result within discrepancies less than 20% in thrust and discharge current for all the simulated operation conditions. The electron cross-field transport mechanism of the so-called anomalous diffusion was self-consistently observed in the simulation without artificial diffusion models; the effective electron mobility was two orders of magnitude higher than the value obtained using the classical diffusion theory. To account for the self-consistently observed anomalous transport, the oscillation of plasma properties was speculated. It was suggested that the enhanced random-walk diffusion due to the velocity oscillation of low-frequency electron flow could explain the observed anomalous diffusion within an order of magnitude. The dominant oscillation mode of the electron flow velocity was found to be 20 kHz, which was coupled to electrostatic oscillation excited by global ionization instability.

  14. A Mercury Transport and Fate Model for Mass Budget Assessment of Mercury Cycling in Lake Michigan

    EPA Science Inventory

    A mercury mass balance model was developed to describe and evaluate the fate, transport, and biogeochemical transformations of mercury in Lake Michigan. Coupling with total suspendable solids (TSS) and dissolved organic carbon (DOC), the mercury transport and fate model simulates...

  15. Mass transport, faceting and behavior of dislocations in GaN

    SciTech Connect

    Nitta, S.; Kashima, T.; Kariya, M.; Yukawa, Y.; Yamaguchi, S.; Amano, H.; Akasaki, I.

    2000-07-01

    The behavior of threading dislocations during mass transport of GaN was investigated in detail by transmission electron microscopy. Mass transport occurred at the surface. Therefore, growing species are supplied from the in-plane direction. The behavior of threading dislocations was found to be strongly affected by the mass transport process as well as the high crystallographic anisotropy of the surface energy of the facets particular to GaN.

  16. Conditions for critical effects in the mass action kinetics equations for water radiolysis

    SciTech Connect

    Wittman, Richard S.; Buck, Edgar C.; Mausolf, Edward J.; McNamara, Bruce K.; Smith, Frances N.; Soderquist, Chuck Z.

    2014-12-26

    We report on a subtle global feature of the mass action kinetics equations for water radiolysis that results in predictions of a critical behavior in H2O2 and associated radical concentrations. While radiolysis kinetics has been studied extensively in the past, it is only in recent years that high speed computing has allowed the rapid exploration of the solution over widely varying dose and compositional conditions. We explore the radiolytic production of H2O2 under various externally fixed conditions of molecular H2 and O2 that have been regarded as problematic in the literature – specifically, “jumps” in predicted concentrations, and inconsistencies between predictions and experiments have been reported for alpha radiolysis. We computationally map-out a critical concentration behavior for alpha radiolysis kinetics using a comprehensive set of reactions. We then show that all features of interest are accurately reproduced with 15 reactions. An analytical solution for steady-state concentrations of the 15 reactions reveals regions in [H2] and [O2] where the H2O2 concentration is not unique – both stable and unstable concentrations exist. The boundary of this region can be characterized analytically as a function of G-values and rate constants independent of dose rate. Physically, the boundary can be understood as separating a region where a steady-state H2O2 concentration exists, from one where it does not exist without a direct decomposition reaction. We show that this behavior is consistent with reported alpha radiolysis data and that no such behavior should occur for gamma radiolysis. We suggest experiments that could verify or discredit a critical concentration behavior for alpha radiolysis and could place more restrictive ranges on G-values from derived relationships between them.

  17. Conditions for critical effects in the mass action kinetics equations for water radiolysis

    SciTech Connect

    Wittman, Richard S.; Buck, Edgar C.; Mausolf, Edward J.; McNamara, Bruce K.; Smith, Frances N.; Soderquist, Chuck Z.

    2014-11-25

    We report on a subtle global feature of the mass action kinetics equations for water radiolysis that results in predictions of a critical behavior in H2O2 and associated radical concentrations. While radiolysis kinetics has been studied extensively in the past, it is only in recent years that high speed computing has allowed the rapid exploration of the solution over widely varying dose and compositional conditions. We explore the radiolytic production of H2O2 under various externally fixed conditions of molecular H2 and O2 that have been regarded as problematic in the literature – specifically, “jumps” in predicted concentrations, and inconsistencies between predictions and experiments have been reported for alpha radiolysis. We computationally map-out a critical concentration behavior for alpha radiolysis kinetics using a comprehensive set of reactions. We then show that all features of interest are accurately reproduced with 15 reactions. An analytical solution for steady-state concentrations of the 15 reactions reveals regions in [H2] and [O2] where the H2O2 concentration is not unique – both stable and unstable concentrations exist. The boundary of this region can be characterized analytically as a function of G-values and rate constants independent of dose rate. Physically, the boundary can be understood as separating a region where a steady-state H2O2 concentration exists, from one where it does not exist without a direct decomposition reaction. We show that this behavior is consistent with reported alpha radiolysis data and that no such behavior should occur for gamma radiolysis. We suggest experiments that could verify or discredit a critical concentration behavior for alpha radiolysis and could place more restrictive ranges on G-values from derived relationships between them.

  18. Convective kinetic energy equation under the mass-flux subgrid-scale parameterization

    NASA Astrophysics Data System (ADS)

    Yano, Jun-Ichi

    2015-03-01

    The present paper originally derives the convective kinetic energy equation under mass-flux subgrid-scale parameterization in a formal manner based on the segmentally-constant approximation (SCA). Though this equation is long since presented by Arakawa and Schubert (1974), a formal derivation is not known in the literature. The derivation of this formulation is of increasing interests in recent years due to the fact that it can explain basic aspects of the convective dynamics such as discharge-recharge and transition from shallow to deep convection. The derivation is presented in two manners: (i) for the case that only the vertical component of the velocity is considered and (ii) the case that both the horizontal and vertical components are considered. The equation reduces to the same form as originally presented by Arakwa and Schubert in both cases, but with the energy dissipation term defined differently. In both cases, nevertheless, the energy "dissipation" (loss) term consists of the three principal contributions: (i) entrainment-detrainment, (ii) outflow from top of convection, and (iii) pressure effects. Additionally, inflow from the bottom of convection contributing to a growth of convection is also formally counted as a part of the dissipation term. The eddy dissipation is also included for a completeness. The order-of-magnitude analysis shows that the convective kinetic energy "dissipation" is dominated by the pressure effects, and it may be approximately described by Rayleigh damping with a constant time scale of the order of 102-103 s. The conclusion is also supported by a supplementary analysis of a cloud-resolving model (CRM) simulation. The Appendix discusses how the loss term ("dissipation") of the convective kinetic energy is qualitatively different from the conventional eddy-dissipation process found in turbulent flows.

  19. The latent fingerprint in mass transport of polycrystalline materials

    NASA Astrophysics Data System (ADS)

    Thirunavukarasu, Gopinath; Kundu, Sukumar; Chatterjee, Subrata

    2016-02-01

    Herein, a systematic investigation was carried out to reach a rational understanding and to provide information concerning the possible causes for a significant influence of pressure variation in the underlying processes of mass transport in polycrystalline materials. The authors focused their research in solid-state diffusion, a part of the subject "Mass Transport in Solids". Theories on diffusion are the subject by itself which exists as a latent fingerprint in every text of higher learning in interdisciplinary science. In this research, authors prepared sandwich samples of titanium alloy and stainless steel using nickel as an intermediate metal. The samples were processed at three different levels of bonding pressure (3, 4 and 5 MPa) while bonding temperature and bonding time was maintained at 750 °C and 1 h, respectively, throughout the experiments. It was observed that the net flux of atomic diffusion of nickel atoms into Ti-alloy at TiA/Ni interface increased by ~63 % with the rise in the bonding pressure from 3 to 4 MPa, but decreased by ~40 % with the rise in the bonding pressure from 4 to 5 MPa. At the same time, the net flux of atomic diffusion of nickel atoms into stainless steel at Ni/SS interface increased by ~19 % with the rise in the bonding pressure from 3 to 4 MPa, but increased by ~17 % with the rise in the bonding pressure from 4 to 5 MPa. Here authors showed that the pressure variations have different effects at the TiA/Ni interface and Ni/SS interface, and tried to explain the explicit mechanisms operating behind them. In general for sandwich samples processed irrespective of bonding pressure chosen, the net flux of Ni-atoms diffused into SS is greater than that of the net flux of Ni-atoms diffused in Ti-alloy matrix by four orders of magnitude. The calculated diffusivity of Ni-atoms into Ti-alloy reaches its highest value of ~5.083 × 10-19 m2/s for the sandwich sample processed using 4-MPa bonding-pressure, whereas the diffusivity of Ni

  20. Sugarcane bagasse pretreatment using three imidazolium-based ionic liquids; mass balances and enzyme kinetics

    PubMed Central

    2012-01-01

    Background Effective pretreatment is key to achieving high enzymatic saccharification efficiency in processing lignocellulosic biomass to fermentable sugars, biofuels and value-added products. Ionic liquids (ILs), still relatively new class of solvents, are attractive for biomass pretreatment because some demonstrate the rare ability to dissolve all components of lignocellulosic biomass including highly ordered (crystalline) cellulose. In the present study, three ILs, 1-butyl-3-methylimidazolium chloride ([C4mim]Cl), 1-ethyl-3-methylimidazolium chloride ([C2mim]Cl), 1-ethyl-3-methylimidazolium acetate ([C2mim]OAc) are used to dissolve/pretreat and fractionate sugarcane bagasse. In these IL-based pretreatments the biomass is completely or partially dissolved in ILs at temperatures greater than 130°C and then precipitated by the addition of an antisolvent to the IL biomass mixture. For the first time mass balances of IL-based pretreatments are reported. Such mass balances, along with kinetics data, can be used in process modelling and design. Results Lignin removals of 10% mass of lignin in bagasse with [C4mim]Cl, 50% mass with [C2mim]Cl and 60% mass with [C2mim]OAc, are achieved by limiting the amount of water added as antisolvent to 0.5 water:IL mass ratio thus minimising lignin precipitation. Enzyme saccharification (24 h, 15FPU) yields (% cellulose mass in starting bagasse) from the recovered solids rank as: [C2mim]OAc(83%) > >[C2mim]Cl(53%) = [C4mim]Cl(53%). Composition of [C2mim]OAc-treated solids such as low lignin, low acetyl group content and preservation of arabinosyl groups are characteristic of aqueous alkali pretreatments while those of chloride IL-treated solids resemble aqueous acid pretreatments. All ILs are fully recovered after use (100% mass as determined by ion chromatography). Conclusions In all three ILs regulated addition of water as an antisolvent effected a polysaccharide enriched precipitate since some of the lignin remained dissolved

  1. Fluorimetric Methods for Analysis of Permeability, Drug Transport Kinetics, and Inhibition of the ABCB1 Membrane Transporter.

    PubMed

    Armada, Ana; Martins, Célia; Spengler, Gabriella; Molnar, Joseph; Amaral, Leonard; Rodrigues, António Sebastião; Viveiros, Miguel

    2016-01-01

    The cell membrane P-glycoprotein (P-gp; MDR1, ABCB1) is an energy-dependent efflux pump that belongs to the ATP-binding cassette (ABC) family of transporters, and has been associated with drug resistance in eukaryotic cells. Multidrug resistance (MDR) is related to an increased expression and function of the ABCB1 (P-gp) efflux pump that often causes chemotherapeutic failure in cancer. Modulators of this efflux pump, such as the calcium channel blocker verapamil (VP) and cyclosporine A (CypA), can reverse the MDR phenotype but in vivo studies have revealed disappointing results due to adverse side effects. Currently available methods are unable to visualize and assess in a real-time basis the effectiveness of ABCB1 inhibitors on the uptake and efflux of ABCB1 substrates. However, predicting and testing ABCB1 modulation activity using living cells during drug development are crucial. The use of ABCB1-transfected mouse T-lymphoma cell line to study the uptake/efflux of fluorescent probes like ethidium bromide (EB), rhodamine 123 (Rh-123), and carbocyanine dye DiOC2, in the presence and absence of potential inhibitors, is currently used in our laboratories to evaluate the ability of a drug to inhibit ABCB1-mediated drug accumulation and efflux. Here we describe and compare three in vitro methods, which evaluate the permeability, transport kinetics of fluorescent substrates, and inhibition of the ABCB1 efflux pump by drugs of chemical synthesis or extracted from natural sources, using model cancer cell lines overexpressing this transporter, namely (1) real-time fluorimetry that assesses the accumulation of ethidium bromide, (2) flow cytometry, and (3) fluorescent microscopy using rhodamine 123 and DiOC2. PMID:26910071

  2. Analysis of the apparent biphasic axonal transport kinetics of fucosylated glycoproteins

    SciTech Connect

    Goodrum, J.F.; Morell, P.

    1984-07-01

    Following intraocular injection of (/sup 3/H)fucose, the accumulation of transported radioactivity arriving at the superior colliculus peaks within a few hours and decays with a time course of hours. Then, over a period of several days, radioactivity again accumulates at the superior colliculus and then decays with a half-life of days. Such data have been interpreted as evidence for both a group of rapidly released, rapidly transported glycoproteins (first peak) and a group of slowly released but rapidly transported glycoproteins (second peak). This supposition was investigated by studying in more detail the metabolism of some individual fucosylated proteins in both the retina and superior colliculus. It was noted that much of the radioactivity incorporated in fucosylated glycoproteins at the retina was rapidly metabolized, while the remainder of the fucosylated moieties had a metabolic half-life on the order of days. In other experiments (/sup 35/S)methionine was injected intraocularly, the metabolism in the retina was examined and a study was made of the kinetics of transport to the superior colliculus of the peptide backbone of these same individual proteins. In contrast to the two waves of accumulation of radioactivity from (/sup 3/H)fucose, accumulation of radioactivity of the peptide backbone of the same glycoproteins was monophasic. The author's explanation of these data involves the presence of two types of fucose moieties on the peptides. One group of fucose moieties is labile and is lost from the peptide backbone over a period of hours. Other fucose moieties are approximately as metabolically stable as the peptide backbones to which they are attached. The actual peptide backbones of the glycoproteins are committed to rapid transport over a period of several days.

  3. Fundamental kinetics and innovative applications of nonequilibrium atomic vibration in thermal energy transport and conversion

    NASA Astrophysics Data System (ADS)

    Shin, Seungha

    All energy conversion inefficiencies begin with emission of resonant atomic motions, e.g., vibrations, and are declared as waste heat once these motions thermalize to equilibrium. The nonequilibrium energy occupancy of the vibrational modes can be targeted as a harvestable, low entropy energy source for direct conversion to electric energy. Since the lifetime of these resonant vibrations is short, special nanostructures are required with the appropriate tuning of the kinetics. These in turn require multiscale, multiphysics treatments. Atomic vibration is described with quasiparticle phonon in solid, and the optical phonon emission is dominant relaxation channel in semiconductors. These optical modes become over-occupied when their emission rate becomes larger than their decay rate, thus hindering energy relaxation and transport in devices. Effective removal of these phonons by drifting electrons is investigated by manipulating the electron distribution to have higher population in the low-energy states, thus allowing favorable phonon absorption. This is done through introduction, design and analysis of a heterobarrier conducting current, where the band gap is controlled by alloying, thus creating a spatial variation which is abrupt followed by a linear gradient (to ensure directed current). Self-consistent ensemble Monte Carlo simulations based on interaction kinetics between electron and phonon show that up to 19% of the phonon energy is converted to electric potential with an optimized GaAs/AlxGa1-xAs barrier structure over a range of current and electron densities, and this system is also verified through statistical entropy analysis. This direct energy conversion improves the device performance with lower operation temperature and enhances overall energy conversion efficiency. Through this study, the paradigm for harvesting the resonant atomic vibration is proposed, reversing the general role of phonon as only causing electric potential drop. Fundamentals

  4. (abstract) Fundamental Mechanisms of Electrode Kinetics and Alkali Metal Atom Transport at the Alkali Beta'-Alumina/Porous Electrode/Alkali Metal Vapor Three Phase Boundary

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; O'Connor, D.; Kisor, A.; Kikkert, S. K.

    1993-01-01

    The mechanisms of electrode kinetics and mass transport of alkali metal oxidation and alkali metal cation reduction at the solid electrolyte/porous electrode boundary as well as alkali metal transport through porous metal electrodes has important applications in optimizing device performance in alkali metal thermal to electric converter (AMTEC) cells which are high temperature, high current density electrochemical cells. Basic studies of these processes also affords the opportunity to investigate a very basic electrochemical reaction over a wide range of conditions; and a variety of mass transport modes at high temperatures via electrochemical techniques. The temperature range of these investigations covers 700K to 1240K; the alkali metal vapor pressures range from about 10(sup -2) to 10(sup 2) Pa; and electrodes studied have included Mo, W, Mo/Na(sub 2)MoO(sub 4), W/Na(sub 2)WO(sub 4), WPt(sub x), and WRh(sub x) (1.0 < x < 6.0 ) with Na at Na-beta'-alumina, and Mo with K at K-beta'-alumina. Both liquid metal/solid electrolyte/alkali metal vapor and alkali metal vapor/solid electrolyte/vapor cells have been used to characterize the reaction and transport processes. We have previously reported evidence of ionic, free molecular flow, and surface transport of sodium in several types of AMTEC electrodes.

  5. Theoretical monochromatic-wave-induced currents in intermediate water with viscosity and nonzero mass transport

    NASA Technical Reports Server (NTRS)

    Talay, T. A.

    1975-01-01

    Wave-induced mass-transport current theories with both zero and nonzero net mass (or volume) transport of the water column are reviewed. A relationship based on the Longuet-Higgens theory is derived for wave-induced, nonzero mass-transport currents in intermediate water depths for a viscous fluid. The relationship is in a form useful for experimental applications; therefore, some design criteria for experimental wave-tank tests are also presented. Sample parametric cases for typical wave-tank conditions and a typical ocean swell were assessed by using the relation in conjunction with an equation developed by Unluata and Mei for the maximum wave-induced volume transport. Calculations indicate that substantial changes in the wave-induced mass-transport current profiles may exist dependent upon the assumed net volume transport. A maximum volume transport, corresponding to an infinite channel or idealized ocean condition, produces the largest wave-induced mass-transport currents. These calculations suggest that wave-induced mass-transport currents may have considerable effects on pollution and suspended-sediments transport as well as buoy drift, the surface and midlayer water-column currents caused by waves increasing with increasing net volume transports. Some of these effects are discussed.

  6. Effects of Convective Transport of Solute and Impurities on Defect-Causing Kinetics Instabilities in Protein Crystallization

    NASA Technical Reports Server (NTRS)

    Vekilov, Peter G.

    2002-01-01

    The objective of the proposed research is to obtain further insight into the onset and development of the defect-causing instabilities that anise due to the coupling of the bulk transport and nonlinear-interfacial kinetics during growth in the mixed regime, utilizing the reduction of the convective contribution to the bulk transport under microgravity. These studies will build upon the data on the effects of quantitative variations of the forced convection velocity on the averaged and time-dependent kinetic behavior of protein crystal growth systems that have recently been obtained in our laboratory.

  7. Kinetic equations for hopping transport and spin relaxation in a random magnetic field

    NASA Astrophysics Data System (ADS)

    Shumilin, A. V.; Kabanov, V. V.

    2015-07-01

    We derive the kinetic equations for a hopping transport that take into account an electron spin and the possibility of double occupation. In the Ohmic regime, the equations are reduced to the generalized Miller-Abrahams resistor network. We apply these equations to the problem of the magnetic moment relaxation due to the interaction with the random hyperfine fields. It is shown that in a wide range of parameters the relaxation rate is governed by the hops with the similar rates as spin precession frequency. It is demonstrated that at the large time scale spin relaxation is nonexponential. We argue that the nonexponential relaxation of the magnetic moment is related to the spin of electrons in the slow-relaxing traps. Interestingly, the traps can significantly influence the spin relaxation in the infinite conducting cluster at large times.

  8. Constraints on transport and kinetics in hydrothermal systems from zoned garnet crystals.

    PubMed

    Jamtveit, B; Hervig, R L

    1994-01-28

    Zonation of oxygen isotope ratios, fluorine, and rare earth element abundances across garnet crystals from the Permian Oslo Rift reflect temporal variation of the hydrothermal system in which the garnets grew. A sharp rimward decrease in the (18)O/(16)O ratio (of 5 per mil) across the interface between aluminum-rich garnet cores and iron-rich rims indicates influx of meteoric fluids to a system initially dominated by magmatic fluids. This influx may record the transition from ductile to brittle deformation of the hydrothermally altered rocks. In contrast, fluorine and light rare earth element concentrations increase at the core-rim interface. These data may reflect enhanced advective transport and notable kinetic control on trace element uptake by the garnets during brittle deformation. PMID:17754883

  9. Kinetics of Chromium(III) Transport Through a Liquid Membrane Containing DNNSA as a Carrier

    PubMed Central

    Religa, Paweł; Gawroński, Roman; Gierycz, Paweł

    2009-01-01

    Kinetics of Cr(III) ions transport through a bulk liquid membrane containing dinonylnaphthalenesulfonic acid (DNNSA) as a carrier, flowing over aqueous phases, has been examined. Special attention has been paid to the effect of the membrane’s velocity flow on the chromium concentration decrease in a feed phase. For the description of relationships of chromium(III) concentration in particular phases with the time, a model based on the assumption of consecutive first-order reactions was proposed. Satisfactory compatibility of experiments and model results have been obtained both for the membrane flow velocities below 0.0034 m·s−1 when the interfaces begin to fluctuate slightly and for low initial Cr(III) concentration in the feed phase. PMID:19399232

  10. Theory for the anomalous electron transport in Hall effect thrusters. II. Kinetic model

    NASA Astrophysics Data System (ADS)

    Lafleur, T.; Baalrud, S. D.; Chabert, P.

    2016-05-01

    In Paper I [T. Lafleur et al., Phys. Plasmas 23, 053502 (2016)], we demonstrated (using particle-in-cell simulations) the definite correlation between an anomalously high cross-field electron transport in Hall effect thrusters (HETs), and the presence of azimuthal electrostatic instabilities leading to enhanced electron scattering. Here, we present a kinetic theory that predicts the enhanced scattering rate and provides an electron cross-field mobility that is in good agreement with experiment. The large azimuthal electron drift velocity in HETs drives a strong instability that quickly saturates due to a combination of ion-wave trapping and wave-convection, leading to an enhanced mobility many orders of magnitude larger than that expected from classical diffusion theory. In addition to the magnetic field strength, B0, this enhanced mobility is a strong function of the plasma properties (such as the plasma density) and therefore does not, in general, follow simple 1 /B02 or 1 /B0 scaling laws.

  11. DRIFT-KINETIC MODELING OF PARTICLE ACCELERATION AND TRANSPORT IN SOLAR FLARES

    SciTech Connect

    Minoshima, T.; Masuda, S.; Miyoshi, Y.

    2010-05-01

    Based on the drift-kinetic theory, we develop a model for particle acceleration and transport in solar flares. The model describes the evolution of the particle distribution function by means of a numerical simulation of the drift-kinetic Vlasov equation, which allows us to directly compare simulation results with observations within an actual parameter range of the solar corona. Using this model, we investigate the time evolution of the electron distribution in a flaring region. The simulation identifies two dominant mechanisms of electron acceleration. One is the betatron acceleration at the top of closed loops, which enhances the electron velocity perpendicular to the magnetic field line. The other is the inertia drift acceleration in open magnetic field lines, which produces antisunward electrons. The resulting velocity space distribution significantly deviates from an isotropic distribution. The former acceleration can be a generation mechanism of electrons that radiate loop-top nonthermal emissions, and the latter of escaping electrons from the Sun that should be observed by in situ measurements in interplanetary space and resulting radio bursts through plasma instabilities.

  12. Ultracentrifugal crystallization of proteins: transport-kinetic modelling, and experimental behavior of catalase

    NASA Astrophysics Data System (ADS)

    Lenhoff, A. M.; Pjura, P. E.; Dilmore, J. G.; Godlewski, T. S.

    1997-09-01

    Although ultracentrifugal crystallization (UC) of proteins has been demonstrated previously and its main advantages established, a clear quantitative understanding of the phenomena involved has not been presented. This issue is addressed here by development of a model accounting for the key transport (sedimentation, diffusion) and kinetic (nucleation, growth) effects in UC. Numerical solution of the governing equations shows how the protein concentration profile changes with time, and how it interacts with the crystallization kinetic phenomena near the bottom of the tube to give rise to protein crystals. It is shown that the centrifugal speed and the initial protein concentration represent the most convenient parameters to use in manipulating crystallization behavior. Some of the predicted features of UC behavior were explored experimentally using bovine liver catalase. Crystal size increased and optical activity improved as the initial protein concentration was reduced. Crystallization was very robust to the presence of appreciable quantities of impurities. UC appears to be an underused route to protein crystallization, and the availability of a quantitative model may aid in its application to novel protein systems.

  13. Molecular kinetic theory of strongly nonequilibrium processes of mass, momentum, and energy transfer: Local equilibrium criteria

    NASA Astrophysics Data System (ADS)

    Tovbin, Yu. K.

    2015-09-01

    Consequences of the complete system of transfer equations of the properties (momentum, energy, and mass) of particles and their pairs are considered under local equilibrium conditions with regard to the Bogoliubov hierarchy of relaxation times between the first and second distribution functions (DFs) and distinctions in the characteristic relaxation times of particle momentum, energy, and mass. It is found that even under the local equilibrium condition in the Bogoliubov hierarchy of relaxation times between the first and second DFs, pair correlations are maintained between all dynamic variables (velocity, temperature, and density) whose values are proportional to the gradients of transferable properties. A criterion is introduced requiring there be no local equilibrium condition upon reaching the critical value at which the description of the transfer process becomes incorrect in classical nonequilibrium thermodynamics. External forces are considered in the equations for strongly nonequilibrium processes. Along with allowing for intermolecular potentials, it becomes possible to discuss the concept of passive forces (introduced in thermodynamics by Gibbs) from the standpoint of the kinetic theory. It is shown that use of this concept does not reflect modern representations of real processes.

  14. Kinetics of laser-pulse vaporization of uranium carbide by mass spectrometry. [LMFBR

    SciTech Connect

    Tehranian, F.

    1983-06-01

    The kinetics of uranium carbide vaporization in the temperature range 3000 K to 5200 K was studied using a Nd-glass laser with peak power densities from 1.6 x 10/sup 5/ to 4.0 x 10/sup 5/ watts/cm/sup 2/. The vapor species U, UC/sub 2/, C/sub 1/ and C/sub 3/ were detected and analyzed by a quadrupole mass spectrometer. From the mass spectrometer signals number densities of the various species in the ionizer were obtained as functions of time. The surface of the irradiated uranium carbide was examined by scanning electron microscope and the depth profile of the crater was obtained. In order to aid analysis of the data, the heat conduction and species diffusion equations for the solid (or liquid) were solved numerically by a computer code to obtain the temperature and composition transients during laser heating. A sensitivity analysis was used to study the effect of uncertainties in the input parameters on the computed surface temperatures.

  15. Intraparticle mass transfer kinetics on molecularly imprinted polymers of structural analogues of a template

    SciTech Connect

    Kim, Hyunjung; Kaczmarski, Krzysztof; Guiochon, Georges A

    2005-09-01

    The intraparticle mass transfer kinetics of the structural analogues of a template on a Fmoc-L-Tryptophan (Fmoc-L-Trp) imprinted polymer (MIP) and on the corresponding non-imprinted polymer (NIP) were quantitatively studied using the lumped pore diffusion model (POR) of chromatography. The best equilibrium isotherm models of these compounds were used to calculate the high-concentration band profiles of different substrates on the MIP and the NIP with the POR model. These profiles were compared to experimental band profiles. The numerical values of the intraparticle pore and surface diffusion coefficients were adjusted to determine those that minimized the differences between calculated and experimental profiles. The results of this exercise show that surface diffusion is the dominant intraparticle mass transfer process for the substrates on the polymers and that the energetic heterogeneity of the surface should be considered in accounting for the surface diffusion of the L-enantiomers on the MIP. The surface diffusion coefficient increases with decreasing overall affinity of each substrate for the polymers.

  16. Coupled transport and reaction kinetics control the nitrate source-sink function of hyporheic zones

    NASA Astrophysics Data System (ADS)

    Zarnetske, Jay P.; Haggerty, Roy; Wondzell, Steven M.; Bokil, Vrushali A.; GonzáLez-Pinzón, Ricardo

    2012-11-01

    The fate of biologically available nitrogen (N) and carbon (C) in stream ecosystems is controlled by the coupling of physical transport and biogeochemical reaction kinetics. However, determining the relative role of physical and biogeochemical controls at different temporal and spatial scales is difficult. The hyporheic zone (HZ), where groundwater-stream water mix, can be an important location controlling N and C transformations because it creates strong gradients in both the physical and biogeochemical conditions that control redox biogeochemistry. We evaluated the coupling of physical transport and biogeochemical redox reactions by linking an advection, dispersion, and residence time model with a multiple Monod kinetics model simulating the concentrations of oxygen (O2), ammonium (NH4), nitrate (NO3), and dissolved organic carbon (DOC). We used global Monte Carlo sensitivity analyses with a nondimensional form of the model to examine coupled nitrification-denitrification dynamics across many scales of transport and reaction conditions. Results demonstrated that the residence time of water in the HZ and the uptake rate of O2 from either respiration and/or nitrification determined whether the HZ was a source or a sink of NO3 to the stream. We further show that whether the HZ is a net NO3 source or net NO3 sink is determined by the ratio of the characteristic transport time to the characteristic reaction time of O2 (i.e., the Damköhler number, DaO2), where HZs with DaO2 < 1 will be net nitrification environments and HZs with DaO2 ≪ 1 will be net denitrification environments. Our coupling of the hydrologic and biogeochemical limitations of N transformations across different temporal and spatial scales within the HZ allows us to explain the widely contrasting results of previous investigations of HZ N dynamics which variously identify the HZ as either a net source or sink of NO3. Our model results suggest that only estimates of residence times and O2uptake rates

  17. Transport dynamics of mass failures along weakly cohesive clinoform foresets

    NASA Astrophysics Data System (ADS)

    Abeyta, A.; Paola, C.

    2012-12-01

    The initiation mechanisms of sediment gravity flows are poorly understood. Previous studies have created sediment gravity flows by releasing dense water-sediment mixtures into ambient water. One limitation to these studies is that the slurries are premixed and are injected into the water column such that the initial properties of the flow - density, composition and momentum flux - are predetermined. This precludes observation of the processes that initiate the flows and set these initial conditions. As a result, there is a gap in our understanding of how submarine gravity flows initiate and what sets their initial conditions. Here we use a new experimental method that allows a range of gravity flows to self-generate. Building a clinoform using a cohesive mixture of walnut-shell sand and kaolinte, allows the foreset to build up and fail episodically, generating spontaneous sediment gravity flows. Slopes undergo a series of morphological changes prior to failure. The slope develops a concave shape that becomes exaggerated as deposition continues. This morphology leaves the slope in a metastable state. Either of two mechanisms triggers destabilization of the slope: slumping or bed-load transport. Once the slope is destabilized, failure is initiated. We also investigated the influence of clinoform progradation rates on failure size and frequency. We conducted experiments over a range of water and sediment discharge rates (0.007 to 0.036 liters of water per second, 0.50 to 1.28 g/s sediment). Neither failure size nor failure frequency changes with discharge rate; instead, increases in sediment supply are taken up by changes in the partitioning of sediment between the steep upper foreset and the more gradual delta-front apron below. Sediment is delivered to the delta-front apron by a form of semi-continuous slow creep along the foreset. This slow creep is a failure mode that has been under-appreciated in the submarine mass-flow literature. The independence of failure

  18. A diffusion-kinetic model for pulverized-coal combustion and heat-and-mass transfer in a gas stream

    SciTech Connect

    E.A. Boiko; S.V. Pachkovskii

    2008-12-15

    A diffusion-kinetic model for pulverized-coal combustion and heat-and-mass transfer in a gas stream is proposed, and the results of numerical simulation of the burnout dynamics of Kansk-Achinsk coals in the pulverized state at different treatment conditions and different model parameters are presented. The mathematical model describes the dynamics of thermochemical conversion of solid organic fuels with allowance for complex physicochemical phenomena of heat-and-mass exchange between coal particles and the gaseous environment.

  19. Incorporating Geochemical And Microbial Kinetics In Reactive Transport Models For Generation Of Acid Rock Drainage

    NASA Astrophysics Data System (ADS)

    Andre, B. J.; Rajaram, H.; Silverstein, J.

    2010-12-01

    Acid mine drainage, AMD, results from the oxidation of metal sulfide minerals (e.g. pyrite), producing ferrous iron and sulfuric acid. Acidophilic autotrophic bacteria such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans obtain energy by oxidizing ferrous iron back to ferric iron, using oxygen as the electron acceptor. Most existing models of AMD do not account for microbial kinetics or iron geochemistry rigorously. Instead they assume that oxygen limitation controls pyrite oxidation and thus focus on oxygen transport. These models have been successfully used for simulating conditions where oxygen availability is a limiting factor (e.g. source prevention by capping), but have not been shown to effectively model acid generation and effluent chemistry under a wider range of conditions. The key reactions, oxidation of pyrite and oxidation of ferrous iron, are both slow kinetic processes. Despite being extensively studied for the last thirty years, there is still not a consensus in the literature about the basic mechanisms, limiting factors or rate expressions for microbially enhanced oxidation of metal sulfides. An indirect leaching mechanism (chemical oxidation of pyrite by ferric iron to produce ferrous iron, with regeneration of ferric iron by microbial oxidation of ferrous iron) is used as the foundation of a conceptual model for microbially enhanced oxidation of pyrite. Using literature data, a rate expression for microbial consumption of ferrous iron is developed that accounts for oxygen, ferrous iron and pH limitation. Reaction rate expressions for oxidation of pyrite and chemical oxidation of ferrous iron are selected from the literature. A completely mixed stirred tank reactor (CSTR) model is implemented coupling the kinetic rate expressions, speciation calculations and flow. The model simulates generation of AMD and effluent chemistry that qualitatively agrees with column reactor and single rock experiments. A one dimensional reaction

  20. Kinetics of calcium dissociation from its high-affinity transport sites on sarcoplasmic reticulum ATPase.

    PubMed

    Orlowski, S; Champeil, P

    1991-01-15

    We investigated the kinetics of calcium dissociation from its high-affinity transport sites on sarcoplasmic reticulum Ca2(+)-ATPase by combining fast filtration with stopped-flow fluorescence measurements. At pH 6 and 20 degrees C, in the absence of potassium and in the presence of 20 mM MgCl2, isotopic exchange of bound calcium exhibited biphasic kinetics, with two phases of equal amplitude, regardless of the initial extent of binding site saturation. The rapidly exchangeable site, whose occupancy by calcium controlled the rate constant of the slow phase, had an apparent affinity for calcium of about 3-6 microM. A similar high affinity was also deduced from measurements of the calcium dependence of the rate constant for ATPase fluorescence changes. This affinity was higher than the overall affinity for calcium deduced from the equilibrium binding measurements (dissociation constant of 15-20 microM); this was consistent with the occurrence of cooperativity (Hill coefficient of 1.6-1.8). The drop in intrinsic fluorescence observed upon chelation of calcium was always slightly faster than the dissociation of calcium itself, although the rates for both this drop in fluorescence and calcium dissociation varied slightly from one preparation to the other. This fluorescence drop was therefore mainly due to dissociation of the bound ions, not to slow transconformation of the ATPase. Dissociation of the two bound calcium ions in a medium containing EGTA exhibited monophasic kinetics in the presence of a calcium ionophore, with a rate constant about half that of the fast phase of isotopic exchange. This particular pattern was observed over a wide range of experimental conditions, including the presence of KCl, dimethyl sulfoxide, 4-nonylphenol, or a nucleotide analogue, at pH 6 or 7, and at various temperatures. The kinetics of calcium dissociation under the above various conditions were not correlated with the ATPase affinity for calcium deduced from equilibrium

  1. HYDROBIOGEOCHEM: A coupled model of HYDROlogic transport and mixed BIOGEOCHEMical kinetic/equilibrium reactions in saturated-unsaturated media

    SciTech Connect

    Yeh, G.T.; Salvage, K.M.; Gwo, J.P.; Zachara, J.M.; Szecsody, J.E.

    1998-07-01

    The computer program HYDROBIOGEOCHEM is a coupled model of HYDROlogic transport and BIOGEOCHEMical kinetic and/or equilibrium reactions in saturated/unsaturated media. HYDROBIOGEOCHEM iteratively solves the two-dimensional transport equations and the ordinary differential and algebraic equations of mixed biogeochemical reactions. The transport equations are solved for all aqueous chemical components and kinetically controlled aqueous species. HYDROBIOGEOCHEM is designed for generic application to reactive transport problems affected by both microbiological and geochemical reactions in subsurface media. Input to the program includes the geometry of the system, the spatial distribution of finite elements and nodes, the properties of the media, the potential chemical and microbial reactions, and the initial and boundary conditions. Output includes the spatial distribution of chemical and microbial concentrations as a function of time and space, and the chemical speciation at user-specified nodes.

  2. Relative contribution of set cathode potential and external mass transport on TCE dechlorination in a continuous-flow bioelectrochemical reactor.

    PubMed

    Verdini, Roberta; Aulenta, Federico; de Tora, Francesca; Lai, Agnese; Majone, Mauro

    2015-10-01

    Microbial bioelectrochemical systems, which use solid-state cathodes to drive the reductive degradation of contaminants such as the chlorinated hydrocarbons, are recently attracting considerable attention for bioremediation applications. So far, most of the published research has focused on analyzing the influence of key (bio)electrochemical factors influencing contaminant degradation, such as the cathode potential, whereas only few studies have examined the potential impact of mass transport phenomena on process performance. Here we analyzed the performance of a flow-through bioelectrochemical reactor, continuously fed with a synthetic groundwater containing trichloroethene at three different linear fluid velocities (from 0.3 m d(-1) to 1.7 m d(-1)) and three different set cathode potentials (from -250 mV to -450 mV vs. the standard hydrogen electrode). The obtained results demonstrated that, in the range of fluid velocities which are characteristics for natural groundwater systems, mass transport phenomena may strongly influence the rate and extent of reductive dechlorination. Nonetheless, the relative importance of mass transport largely depends on the applied cathode potential which, in turn, controls the intrinsic kinetics of biological reactions and the underlying electron transfer mechanisms. PMID:25950501

  3. Neutron emission effects on fragment mass and kinetic energy distribution from fission of 239{sup Pu} induced by thermal neutrons

    SciTech Connect

    Montoya, M.; Rojas, J.; Lobato, I.

    2010-08-04

    The average of fragment kinetic energy (E-bar sign*) and the multiplicity of prompt neutrons ({nu}(bar sign)) as a function of fragment mass (m*), as well as the fragment mass yield (Y(m*)) from thermal neutron-induced fission of {sup 239}Pu have been measured by Tsuchiya et al.. In that work the mass and kinetic energy are calculated from the measured kinetic energy of one fragment and the difference of time of flight of the two complementary fragments. However they do not present their results about the standard deviation {sigma}{sub E}*(m*). In this work we have made a numerical simulation of that experiment which reproduces its results, assuming an initial distribution of the primary fragment kinetic energy (E(A)) with a constant value of the standard deviation as function of fragment mass ({sigma}{sub E}(A)). As a result of the simulation we obtain the dependence {sigma}{sub E}*(m*) which presents an enhancement between m* = 92 and m* = 110, and a peak at m* = 121.

  4. Surface transport kinetics in low-temperature silicon deposition determined from topography evolution

    NASA Astrophysics Data System (ADS)

    Bray, K. R.; Parsons, G. N.

    2002-01-01

    In this article, surface transport kinetics during low-temperature silicon thin film deposition are characterized using time dependent surface topography and dynamic scaling models. Analysis of surface morphology indicates that diffusion of adsorbed species dominates surface transport, with a characteristic diffusion length that increases with surface temperature. A diffusion activation barrier of ~0.2 eV is obtained, consistent with hydrogen-mediated adspecies diffusion on the growth silicon surface. Samples are compared over a range of deposition temperatures (25 to 350 °C) and film thickness (20 to 5000 Å) deposited using silane with helium or argon dilution, on glass and silicon substrates. Self-similar surface structure is found to depend on detailed film growth conditions, but is independent of film thickness after nuclei coalescence. For films deposited using helium dilution, static and dynamic scaling parameters are consistent with self-similar fractal geometry scaling, and the lateral correlation length increases from 45 to 150 nm as temperature increases from 25 to 150 °C. These results are discussed in relation to current silicon deposition models and with topography evolution observed during low temperature growth of other amorphous material systems.

  5. Integrated mass transportation system study/definition/implementation program definition

    NASA Technical Reports Server (NTRS)

    Ransone, R. K.; Deptula, D. A.; Yorke, G. G.

    1975-01-01

    Specific actions needed to plan and effect transportation system improvements are identified within the constraints of limited financial, energy and land use resources, and diverse community requirements. A specific program is described which would develop the necessary generalized methodology for devising improved transportation systems and evaluate them against specific criteria for intermodal and intramodal optimization. A consistent, generalized method is provided for study and evaluation of transportation system improvements.

  6. Hemoglobin mass and intravascular volume kinetics during and after exposure to 3,454-m altitude.

    PubMed

    Siebenmann, C; Cathomen, A; Hug, M; Keiser, S; Lundby, A K; Hilty, M P; Goetze, J P; Rasmussen, P; Lundby, C

    2015-11-15

    High altitude (HA) exposure facilitates a rapid contraction of plasma volume (PV) and a slower occurring expansion of hemoglobin mass (Hbmass). The kinetics of the Hbmass expansion has never been examined by multiple repeated measurements, and this was our primary study aim. The second aim was to investigate the mechanisms mediating the PV contraction. Nine healthy, normally trained sea-level (SL) residents (8 males, 1 female) sojourned for 28 days at 3,454 m. Hbmass was measured and PV was estimated by carbon monoxide rebreathing at SL, on every 4th day at HA, and 1 and 2 wk upon return to SL. Four weeks at HA increased Hbmass by 5.26% (range 2.5-11.1%; P < 0.001). The individual Hbmass increases commenced with up to 12 days of delay and reached a maximal rate of 4.04 ± 1.02 g/day after 14.9 ± 5.2 days. The probability for Hbmass to plateau increased steeply after 20-24 days. Upon return to SL Hbmass decayed by -2.46 ± 2.3 g/day, reaching values similar to baseline after 2 wk. PV, aldosterone concentration, and renin activity were reduced at HA (P < 0.001) while the total circulating protein mass remained unaffected. In summary, the Hbmass response to HA exposure followed a sigmoidal pattern with a delayed onset and a plateau after ∼3 wk. The decay rate of Hbmass upon descent to SL did not indicate major changes in the rate of erythrolysis. Moreover, our data support that PV contraction at HA is regulated by the renin-angiotensin-aldosterone axis and not by changes in oncotic pressure. PMID:25749449

  7. Fragment mass and kinetic energy distributions for the photofission of sup 234 U with 12-, 15-, and 20-MeV bremsstrahlung

    SciTech Connect

    Verboven, M.; Jacobs, E.; Piessens, M.; Pomme, S.; De Frenne, D.; De Clercq, A. )

    1990-07-01

    Energy correlation measurements were performed for the photofission of {sup 234}U with bremsstrahlung with endpoint energy 12, 15, and 20 MeV. Overall fragment provisional and postneutron masses, and postneutron and preneutron kinetic energies, are deduced. The behavior of the fragment mass and total kinetic energy with changing {sup 234}U compound nucleus excitation energy is studied.

  8. Shock tube/time-of-flight mass spectrometer for high temperature kinetic studies

    SciTech Connect

    Tranter, Robert S.; Giri, Binod R.; Kiefer, John H.

    2007-03-15

    A shock tube (ST) with online, time-of-flight mass spectrometric (TOF-MS) detection has been constructed for the study of elementary reactions at high temperature. The ST and TOF-MS are coupled by a differentially pumped molecular beam sampling interface, which ensures that the samples entering the TOF-MS are not contaminated by gases drawn from the cold end wall thermal boundary layer in the ST. Additionally, the interface allows a large range of postshock pressures to be used in the shock tube while maintaining high vacuum in the TOF-MS. The apparatus and the details of the sampling system are described along with an analysis in which cooling of the sampled gases and minimization of thermal boundary layer effects are discussed. The accuracy of kinetic measurements made with the apparatus has been tested by investigating the thermal unimolecular dissociation of cyclohexene to ethylene and 1,3-butadiene, a well characterized reaction for which considerable literature data that are in good agreement exist. The experiments were performed at nominal reflected shock wave pressures of 600 and 1300 Torr, and temperatures ranging from 1260 to 1430 K. The rate coefficients obtained are compared with the earlier shock tube studies and are found to be in very good agreement. As expected no significant difference is observed in the rate constant between pressures of 600 and 1300 Torr.

  9. Blood-brain barrier transport kinetics of the cyclic depsipeptide mycotoxins beauvericin and enniatins.

    PubMed

    Taevernier, Lien; Bracke, Nathalie; Veryser, Lieselotte; Wynendaele, Evelien; Gevaert, Bert; Peremans, Kathelijne; De Spiegeleer, Bart

    2016-09-01

    The cyclic depsipeptide mycotoxins beauvericin and enniatins are capable of reaching the systemic circulation through various routes of exposure and are hence capable of exerting central nervous system (CNS) effects, if they are able to pass the blood-brain barrier (BBB), which was the main objective of this study. Quantification of the mycotoxins was performed using an in-house developed and validated bio-analytical UHPLC-MS/MS method. Prior to the BBB experiments, the metabolic stability of the mycotoxins was evaluated in vitro in mouse serum and brain homogenate. The BBB permeation kinetics of beauvericin and enniatins were studied using an in vivo mice model, applying multiple time regression for studying the blood-to-brain influx. Additionally, capillary depletion was applied to obtain the fraction of the peptides really entering the brain parenchyma and the fraction loosely adhered to the brain capillary wall. Finally, also the brain-to-blood efflux transport kinetics was studied. Metabolic stability data indicated that the investigated mycotoxins were stable during the duration of the in vivo study. The brain influx study showed that beauvericin and enniatins are able to cross the blood-brain barrier in mice: using the Gjedde-Patlak biphasic model, it was shown that all investigated mycotoxins exert a high initial influx rate into the brain (K1 ranging from 11 to 53μL/(g×min)), rapidly reaching a plateau. After penetration, the mycotoxins reached the brain parenchyma (95%) with only a limited amount residing in the capillaries (5%). Negligible efflux (<0.005min(-1)) from the brain was observed in the 15min post-intracerebroventricular injection. PMID:27349679

  10. Modeling the sorption kinetic of metsulfuron-methyl on Andisols and Ultisols volcanic ash-derived soils: kinetics parameters and solute transport mechanisms.

    PubMed

    Cáceres, Lizethly; Escudey, Mauricio; Fuentes, Edwar; Báez, María E

    2010-07-15

    Metsulfuron-methyl sorption kinetic was studied in Andisol and Ultisol soils in view of their distinctive physical and chemical properties: acidic pH and variable surface charge. Different kinetic models were applied to the experimental results. The pseudo-second-order model fitted sorption kinetics data better than the pseudo-first-order model. The rate constant and the initial rate constant values obtained through this model demonstrated the different behavior of metsulfuron-methyl in both kinds of soils, both parameters being the highest for Andisol. The application of Elovich equation, intraparticle diffusion model and a two-site nonequilibrium model (TSNE) allowed to conclude that: (i) the high organic matter content is the governing factor for Andisols where mass transfer across the boundary layer, and in a lesser degree, intraparticle diffusion were the two processes controlling sorption kinetic and (ii) the mineral composition was more relevant in Ultisols where rate was controlled almost exclusively by intraparticle diffusion into macropores and micropores. The slower sorption rate on Ultisols, the mechanism involved and the lower sorption capacity of this kind of soils must be taken into account to assess leaching behavior of this herbicide. PMID:20399011

  11. Identification and characterization of EX1 kinetics in H/D exchange mass spectrometry by peak width analysis.

    PubMed

    Weis, David D; Wales, Thomas E; Engen, John R; Hotchko, Matthew; Ten Eyck, Lynn F

    2006-11-01

    Proteins that undergo cooperative unfolding events display EX1 kinetic signatures in hydrogen exchange mass spectra. The hallmark bimodal isotope pattern observed for EX1 kinetics is distinct from the binomial isotope pattern for uncorrelated exchange (EX2), the normal exchange regime for folded proteins. Detection and characterization of EX1 kinetics is simple when the cooperative unit is large enough that the isotopic envelopes in the bimodal pattern are resolved in the m/z scale but become complicated in cases where the unit is small or there is a mixture of EX1 and EX2 kinetics. Here we describe a data interpretation method involving peak width analysis that makes characterization of EX1 kinetics simple and rapid. The theoretical basis for EX1 and EX2 isotopic signatures and the effects each have on peak width are described. Modeling of EX2 widening and analysis of empirical data for proteins and peptides containing purely EX2 kinetics showed that the amount of widening attributable to stochastic forward- and back exchange in a typical experiment is small and can be quantified. Proteins and peptides with both obvious and less obvious EX1 kinetics were analyzed with the peak width method. Such analyses provide the half-life for the cooperative unfolding event and the relative number of residues involved. Automated analysis of peak width was performed with custom Excel macros and the DEX software package. Peak width analysis is robust, capable of automation, and provides quick interpretation of the key information contained in EX1 kinetic events. PMID:16875839

  12. Upscaling transport with mass transfer models: Mean behavior and propagation of uncertainty

    NASA Astrophysics Data System (ADS)

    Fernã Ndez-Garcia, D.; Llerar-Meza, G.; Gómez-HernáNdez, J. Jaime

    2009-10-01

    The choice of an adequate large-scale conceptual transport model constitutes a major challenge associated with the upscaling of solute transport. Among the different alternatives to the classical advection-dispersion model, the (multirate) mass transfer model has been proposed as a valuable and convenient alternative to model the large-scale behavior of solute transport. This paper evaluates the use of mass transfer models as a constitutive equation for upscaling solute transport. To achieve this, we compare Monte Carlo simulations of solute transport at two different support scales. Transport simulations performed at the smallest scale represent a set of reference transport solutions described at a high resolution, which are contrasted against transport simulations obtained using an upscaled model (low resolution). Several formulations of the multirate mass transfer model, which differ in the type of memory function (single rate, double rate, and truncated power law), are used as a constitutive transport equation. The large-scale scenario represents a simplified model obtained by partially homogenizing the reference solution. Results show that the double-rate and the truncated power law mass transfer models are capable of properly describing the ensemble average behavior of the main features associated with the integrated breakthrough curves. However, the uncertainty associated with the upscaled mass transfer models was substantially smaller than that attributed to the reference solution. Importantly, the cumulative distribution function of concentrations associated with the upscaled model follows a distribution similar to the reference solution but with smaller statistical dispersion. The reason is that while appropriate memory functions can be used to preserve the residence time distribution of mass particles during upscaling, the lack of memory in space prevents the model from reproducing mass fluxes in all directions. Specifically, the reproduction of mass

  13. A boundary element-Random walk model of mass transport in groundwater

    USGS Publications Warehouse

    Kemblowski, M.

    1986-01-01

    A boundary element solution to the convective mass transport in groundwater is presented. This solution produces a continuous velocity field and reduces the amount of data preparation time and bookkeeping. By combining this solution and the random walk procedure, a convective-dispersive mass transport model is obtained. This model may be easily used to simulate groundwater contamination problems. The accuracy of the boundary element model has been verified by reproducing the analytical solution to a two-dimensional convective mass transport problem. The method was also used to simulate a convective-dispersive problem. ?? 1986.

  14. Blood-brain barrier transport kinetics of the neuromedin peptides NMU, NMN, NMB and NT.

    PubMed

    Gevaert, Bert; Wynendaele, Evelien; Stalmans, Sofie; Bracke, Nathalie; D'Hondt, Matthias; Smolders, Ilse; van Eeckhaut, Ann; De Spiegeleer, Bart

    2016-08-01

    The neuromedin peptides are peripherally and centrally produced, but until now, it is generally believed that they only function as locally acting compounds without any quantitative knowledge about their blood-brain barrier (BBB) passage. Here, we characterize the transport kinetics of four neuromedins (NMU, NMN, NMB and NT) across the BBB, as well as their metabolization profile, and evaluate if they can act as endocrine hormones. Using the in vivo mouse model, multiple time regression (MTR), capillary depletion (CD) and brain efflux studies were performed. Data was fitted using linear (NMU, NT and NMB) or biphasic modeling (NMU and NMN). Three of the four investigated peptides, i.e. NMU, NT and NMN, showed a significant influx into the brain with unidirectional influx rate constants of 1.31 and 0.75 μL/(g × min) for NMU and NT respectively and initial influx constants (K1) of 72.14 and 7.55 μL/(g × min) and net influx constants (K) of 1.28 and 1.36 × 10(-16) μL/(g×min) for NMU and NMN respectively. The influx of NMB was negligible. Only NMN and NT showed a significant efflux out of the brain with an efflux constant (kout) of 0.042 min(-1) and 0.053 min(-1) respectively. Our results indicate that locally produced neuromedin peptides and/or fragments can be transported through the whole body, including passing the BBB, and taken up by different organs/tissues, supporting the idea that the neuromedins could have a much bigger role in the regulation of biological processes than currently assumed. PMID:27040796

  15. Comparative uptake kinetics and transport of cadmium and phosphate in Phleum pratense-Glomus deserticolum associations

    SciTech Connect

    Arnold, P.T.; Kapustka, L.A. )

    1993-01-01

    Mycorrhizal plants (timothy grass, Phleum pretense with Glomus deserticolum) were compared to nonmycorrhizal timothy grass to determine the effect of the mycorrhizal condition on the uptake and transport of cadmium. Companion experiments were conducted to ascertain phosphate uptake kinetics of mycorrhizal and nonmycorrhizal plants. Divalent cation competition experiments also were employed in this study. Comparisons of the high-affinity uptake mechanisms between mycorrhizal and nonmycorrhizal plants identified higher levels of phosphate uptake were due to an increase in the number of uptake sites rather than to differences in affinity. The respective values for K[sub m] for high-affinity phosphate uptake were 2.5 [plus minus] 1.3 [mu]MP (mycorrhizal) and 3.4 [plus minus] 1.3 [mu]MP (nonmycorrhizal), but these values were not statistically different at the [alpha] = 0.05 level. High-affinity Cd[sup 2+] uptake differed significantly between mycorrhizal (4.5 [plus minus] 2.8 [mu]M) and nonmycorrhizal (2.8 [plus minus] 1.1 [mu]M) plants. Presence of Ca[sup 2+] at 1.0mM concentration conferred considerable competitive protection in both the mycorrhizal and the nonmycorrhizal conditions. The effect of Ca[sup 2+] was an approximate fourfold increase in the respective K[sub m] values.

  16. Reactions and mass transport in high temperature co-electrolysis of steam/CO2 mixtures for syngas production

    NASA Astrophysics Data System (ADS)

    Kim, Si-Won; Kim, Hyoungchul; Yoon, Kyung Joong; Lee, Jong-Ho; Kim, Byung-Kook; Choi, Wonjoon; Lee, Jong-Heun; Hong, Jongsup

    2015-04-01

    High temperature co-electrolysis of steam/CO2 mixtures using solid oxide cells has been proposed as a promising technology to mitigate climate change and power fluctuation of renewable energy. To make it viable, it is essential to control the complex reacting environment in their fuel electrode. In this study, dominant reaction pathway and species transport taking place in the fuel electrode and their effect on the cell performance are elucidated. Results show that steam is a primary reactant in electrolysis, and CO2 contributes to the electrochemical performance subsequently in addition to the effect of steam. CO2 reduction is predominantly governed by thermochemical reactions, whose influence to the electrochemical performance is evident near limiting currents. Chemical kinetics and mass transport play a significant role in co-electrolysis, given that the reduction reactions and diffusion of steam/CO2 mixtures are slow. The characteristic time scales determined by the kinetics, diffusion and materials dictate the cell performance and product compositions. The fuel electrode design should account for microstructure and catalysts for steam electrolysis and thermochemical CO2 reduction in order to optimize syngas production and store electrical energy effectively and efficiently. Syngas yield and selectivity are discussed, showing that they are substantially influenced by operating conditions, fuel electrode materials and its microstructure.

  17. Subcontinuum mass transport of condensed hydrocarbons in nanoporous media

    NASA Astrophysics Data System (ADS)

    Falk, Kerstin; Coasne, Benoit; Pellenq, Roland; Ulm, Franz-Josef; Bocquet, Lydéric

    2015-04-01

    Although hydrocarbon production from unconventional reservoirs, the so-called shale gas, has exploded recently, reliable predictions of resource availability and extraction are missing because conventional tools fail to account for their ultra-low permeability and complexity. Here, we use molecular simulation and statistical mechanics to show that continuum description--Darcy's law--fails to predict transport in shales nanoporous matrix (kerogen). The non-Darcy behaviour arises from strong adsorption in kerogen and the breakdown of hydrodynamics at the nanoscale, which contradict the assumption of viscous flow. Despite this complexity, all permeances collapse on a master curve with an unexpected dependence on alkane length. We rationalize this non-hydrodynamic behaviour using a molecular description capturing the scaling of permeance with alkane length and density. These results, which stress the need for a change of paradigm from classical descriptions to nanofluidic transport, have implications for shale gas but more generally for transport in nanoporous media.

  18. Subcontinuum mass transport of condensed hydrocarbons in nanoporous media

    PubMed Central

    Falk, Kerstin; Coasne, Benoit; Pellenq, Roland; Ulm, Franz-Josef; Bocquet, Lydéric

    2015-01-01

    Although hydrocarbon production from unconventional reservoirs, the so-called shale gas, has exploded recently, reliable predictions of resource availability and extraction are missing because conventional tools fail to account for their ultra-low permeability and complexity. Here, we use molecular simulation and statistical mechanics to show that continuum description—Darcy's law—fails to predict transport in shales nanoporous matrix (kerogen). The non-Darcy behaviour arises from strong adsorption in kerogen and the breakdown of hydrodynamics at the nanoscale, which contradict the assumption of viscous flow. Despite this complexity, all permeances collapse on a master curve with an unexpected dependence on alkane length. We rationalize this non-hydrodynamic behaviour using a molecular description capturing the scaling of permeance with alkane length and density. These results, which stress the need for a change of paradigm from classical descriptions to nanofluidic transport, have implications for shale gas but more generally for transport in nanoporous media. PMID:25901931

  19. Subcontinuum mass transport of condensed hydrocarbons in nanoporous media.

    PubMed

    Falk, Kerstin; Coasne, Benoit; Pellenq, Roland; Ulm, Franz-Josef; Bocquet, Lydéric

    2015-01-01

    Although hydrocarbon production from unconventional reservoirs, the so-called shale gas, has exploded recently, reliable predictions of resource availability and extraction are missing because conventional tools fail to account for their ultra-low permeability and complexity. Here, we use molecular simulation and statistical mechanics to show that continuum description--Darcy's law--fails to predict transport in shales nanoporous matrix (kerogen). The non-Darcy behaviour arises from strong adsorption in kerogen and the breakdown of hydrodynamics at the nanoscale, which contradict the assumption of viscous flow. Despite this complexity, all permeances collapse on a master curve with an unexpected dependence on alkane length. We rationalize this non-hydrodynamic behaviour using a molecular description capturing the scaling of permeance with alkane length and density. These results, which stress the need for a change of paradigm from classical descriptions to nanofluidic transport, have implications for shale gas but more generally for transport in nanoporous media. PMID:25901931

  20. Kinetic folding mechanism of an integral membrane protein examined by pulsed oxidative labeling and mass spectrometry.

    PubMed

    Pan, Yan; Brown, Leonid; Konermann, Lars

    2011-07-01

    We report the application of pulsed oxidative labeling for deciphering the folding mechanism of a membrane protein. SDS-denatured bacteriorhodopsin (BR) was refolded by mixing with bicelles in the presence of free retinal. At various time points (20 ms to 1 day), the protein was exposed to a microsecond ·OH pulse that induces oxidative modifications at solvent-accessible methionine side chains. The extent of labeling was determined by mass spectrometry. These measurements were complemented by stopped-flow spectroscopy. Major time-dependent changes in solvent accessibility were detected for M20 (helix A) and M118 (helix D). Our kinetic data indicate a sequential folding mechanism, consistent with models previously suggested by others on the basis of optical data. Yet, ·OH labeling provides additional structural insights. An initial folding intermediate I(1) gets populated within 20 ms, concomitantly with formation of helix A. Subsequent structural consolidation leads to a transient species I(2). Noncovalent retinal binding to I(2) induces folding of helix D, thereby generating an intermediate I(R). In the absence of retinal, the latter transition does not take place. Hence, formation of helix D depends on retinal binding, whereas this is not the case for helix A. As the cofactor settles deeper into its binding pocket, a final transient species I(R) is generated. This intermediate converts into native BR within minutes by formation of the retinal-K216 Schiff base linkage. The combination of pulsed covalent labeling and optical spectroscopy employed here should also be suitable for exploring the folding mechanisms of other membrane proteins. PMID:21570983

  1. Modeling of anaerobic formate kinetics in mixed biofilm culture using dynamic membrane mass spectrometric measurement.

    PubMed

    Dornseiffer, P; Meyer, B; Heinzle, E

    1995-02-01

    The dynamics of the anaerobic conversion of formate in a microbial mixed culture taken from an anaerobic fluidized bed reactor was studied using a new stirred micro reactor equipped with a membrane mass spectrometer. The microreactor with a toroidally shaped bottom and pitched blade turbine and a cylindrical flow guide was thermostated and additionally equipped with a pH electrode and pH control. During fed-batch experiments using formate, the dissolved gases (methane, hydrogen, and carbon dioxide), as well as the acid consumption rates for pH control were monitored continuously. Initially and at the end of each experiment, organic acids were analyzed using ion chromatography (IC). It was found that about 50% of the formate was converted to methane via hydrogen and carbon dioxide, 40% gave methane either directly or via acetate. This was calculated from experiments using H(13)CO(3) (-) pulses and measurement of (12)CH(4) and (13)CH(4) production rates. About 10% of the formate was converted to lactate, acetate, and propionate, thereby increasing the measured CO(2)/CH(4) production ratio. The nondissociated formic acid was shown to be rate determining. From the relatively high K(s) value of 2.5 mmol m(-3), it was concluded that formate cannot play an important role in electron transfer. During dynamic feeding of formate, hydrogen concentration always increased to a maximum before decreasing again. This peak was found to be very discriminative during modeling. From the various models set up, only those with two-stage degradation and double Monod kinetics, both for CO(2) and hydrogen, were able to describe the experimental data adequately. Additional discrimination was possible with the IC measurement of organic acids. (c) 1995 John Wiley & Sons, Inc. PMID:18623141

  2. Measurements of the transport efficiency of the fragment mass analyzer

    SciTech Connect

    Back, B.B.; Blumenthal, D.J.; Davids, C.N.

    1995-08-01

    Extensive calculations of the transport of reaction products were carried out during the design phase of the instrument using the computer code GIOS. These show that the energy acceptance depends strongly on the angular deviation from the optical axis of the instrument. In order to reliably measure cross sections using this instrument it is therefore necessary to verify these calculations empirically.

  3. Universality of Poisson indicator and Fano factor of transport event statistics in ion channels and enzyme kinetics.

    PubMed

    Chaudhury, Srabanti; Cao, Jianshu; Sinitsyn, Nikolai A

    2013-01-17

    We consider a generic stochastic model of ion transport through a single channel with arbitrary internal structure and kinetic rates of transitions between internal states. This model is also applicable to describe kinetics of a class of enzymes in which turnover events correspond to conversion of substrate into product by a single enzyme molecule. We show that measurement of statistics of single molecule transition time through the channel contains only restricted information about internal structure of the channel. In particular, the most accessible flux fluctuation characteristics, such as the Poisson indicator (P) and the Fano factor (F) as function of solute concentration, depend only on three parameters in addition to the parameters of the Michaelis-Menten curve that characterizes average current through the channel. Nevertheless, measurement of Poisson indicator or Fano factor for such renewal processes can discriminate reactions with multiple intermediate steps as well as provide valuable information about the internal kinetic rates. PMID:23198705

  4. Cable Connected Spinning Spacecraft, 1. the Canonical Equations, 2. Urban Mass Transportation, 3

    NASA Technical Reports Server (NTRS)

    Sitchin, A.

    1972-01-01

    Work on the dynamics of cable-connected spinning spacecraft was completed by formulating the equations of motion by both the canonical equations and Lagrange's equations and programming them for numerical solution on a digital computer. These energy-based formulations will permit future addition of the effect of cable mass. Comparative runs indicate that the canonical formulation requires less computer time. Available literature on urban mass transportation was surveyed. Areas of the private rapid transit concept of urban transportation are also studied.

  5. Kinetic Monte Carlo Model of Charge Transport in Hematite (α-Fe2O3)

    SciTech Connect

    Kerisit, Sebastien N.; Rosso, Kevin M.

    2007-09-28

    The mobility of electrons injected into iron oxide minerals via abiotic and biotic electron-transfer processes is one of the key factors that control the reductive dissolution of such minerals. Building upon our previous work on the computational modeling of elementary electron transfer reactions in iron oxide minerals using ab initio electronic structure calculations and parameterized molecular dynamics simulations, we have developed and implemented a kinetic Monte Carlo model of charge transport in hematite that integrates previous findings. The model aims to simulate the interplay between electron transfer processes for extended periods of time in lattices of increasing complexity. The electron transfer reactions considered here involve the II/III valence interchange between nearest-neighbor iron atoms via a small polaron hopping mechanism. The temperature dependence and anisotropic behavior of the electrical conductivity as predicted by our model are in good agreement with experimental data on hematite single crystals. In addition, we characterize the effect of electron polaron concentration and that of a range of defects on the electron mobility. Interaction potentials between electron polarons and fixed defects (iron substitution by divalent, tetravalent, and isovalent ions and iron and oxygen vacancies) are determined from atomistic simulations, based on the same model used to derive the electron transfer parameters, and show little deviation from the Coulombic interaction energy. Integration of the interaction potentials in the kinetic Monte Carlo simulations allows the electron polaron diffusion coefficient and density and residence time around defect sites to be determined as a function of polaron concentration in the presence of repulsive and attractive defects. The decrease in diffusion coefficient with polaron concentration follows a logarithmic function up to the highest concentration considered, i.e., ~2% of iron(III) sites, whereas the presence of

  6. Mass transport in salt repositories: Steady-state transport through interbeds

    SciTech Connect

    Hwang, Y.; Lee, W.W.-L.; Chambre, P.L.; Pigford, T.H. . Dept. of Nuclear Engineering)

    1989-03-01

    Salt has long been a candidate for geologic disposal of nuclear waste. Because salt is extremely soluble in water, the existence of rock salt in the ground atest to the long-term stability of the salt. Both bedded salt and salt domes have been considered for nuclear waste disposal in the United States and Europe. While the salt is known to be quite pure in salt domes, bedded salt is interlaced with beds of sediments. Traditionally rock salt has not been considered water-conducting, but sediments layers would be classical porous media, capable of conducting water. Therefore there is interest in determining whether interbeds in bedded salt constitute pathway for radionuclide migration. In this report we consider steady-state migration of radionuclides from a single waste cylinder into a single interbed. Two approaches are used. In 1982 Neretnieks proposed an approach for calculating the steady-state transport of oxidants to a copper container. We have adapted that approach for calculating steady-state radionuclide migration away from the waste package, as a first approximation. We have also analyzed the problem of time-dependent radionuclide diffusion from a container through a backfill layer into a fracture, and we used the steady-state solution from that problem for comparison. Section 2 gives a brief summary of the geology of interbeds in bedded salt. Section 3 presents the mass transfer resistances approach of Neretnieks, summarizing the formulation and giving numerical illustrations of the steady-state two-dimensional diffusion analysis. Section 4 gives a brief statement of the steady-state result from a related analysis. Conclusions are stated in Section 5. 13 refs., 5 figs., 2 tabs.

  7. Determination of triacylglycerol regioisomers using electrospray ionization-quadrupole ion trap mass spectrometry with a kinetic method.

    PubMed

    Leveque, Nathalie L; Acheampong, Akwasi; Heron, Sylvie; Tchapla, Alain

    2012-04-13

    The kinetic method was applied to differentiate and quantify mixtures of regioisomeric triacylglycerols (TAGs) by generating and mass selecting alkali ion bound metal dimeric clusters with a TAG chosen as reference (ref) and examining their competitive dissociations in a quadrupole ion trap mass spectrometer. This methodology readily distinguished pairs of regioisomers (AAB/ABA) such as LLO/LOL, OOP/OPO and SSP/SPS and consequently distinguished sn-1/sn-3, sn-2 substituents on the glycerol backbone. The dimeric complex ions [ref, Li, TAG((AAB and/or ABA))](+) generated by electrospray ionization mass spectrometry were subjected to collision induced dissociation causing competitive loss of either the neutral TAG reference (ref) leading to [Li(AAB and/or ABA)](+) or the neutral TAG molecule (TAG((AAB and/or ABA))) leading to [ref, Li](+). The ratio of the two competitive dissociation rates, defined by the product ion branching ratio (R(iso)), was related via the kinetic method to the regioisomeric composition of the investigated TAG mixture. In this work, a linear correlation was established between composition of the mixture of each TAG regioisomer and the logarithm of the branching ratio for competitive fragmentation. Depending on the availability of at least one TAG regioisomer as standard, the kinetic method and the standard additions method led to the quantitative analysis of natural TAG mixtures. PMID:22444537

  8. Mass-transfer limitations for immobilized enzyme-catalyzed kinetic resolution of racemate in a fixed-bed reactor.

    PubMed

    Xiu, G H; Jiang, L; Li, P

    2001-07-01

    A mathematical model has been developed for immobilized enzyme-catalyzed kinetic resolution of racemate in a fixed-bed reactor in which the enzyme-catalyzed reaction (the irreversible uni-uni competitive Michaelis-Menten kinetics is chosen as an example) was coupled with intraparticle diffusion, external mass transfer, and axial dispersion. The effects of mass-transfer limitations, competitive inhibition of substrates, deactivation on the enzyme effective enantioselectivity, and the optical purity and yield of the desired product are examined quantitatively over a wide range of parameters using the orthogonal collocation method. For a first-order reaction, an analytical solution is derived from the mathematical model for slab-, cylindrical-, and spherical-enzyme supports. Based on the analytical solution for the steady-state resolution process, a new concise formulation is presented to predict quantitatively the mass-transfer limitations on enzyme effective enantioselectivity and optical purity and yield of the desired product for a continuous steady-state kinetic resolution process in a fixed-bed reactor. PMID:11353408

  9. Structural design of a double-layered porous hydrogel for effective mass transport

    PubMed Central

    Kim, Hyejeong; Kim, Hyeon Jeong; Huh, Hyung Kyu; Hwang, Hyung Ju; Lee, Sang Joon

    2015-01-01

    Mass transport in porous materials is universal in nature, and its worth attracts great attention in many engineering applications. Plant leaves, which work as natural hydraulic pumps for water uptake, have evolved to have the morphological structure for fast water transport to compensate large water loss by leaf transpiration. In this study, we tried to deduce the advantageous structural features of plant leaves for practical applications. Inspired by the tissue organization of the hydraulic pathways in plant leaves, analogous double-layered porous models were fabricated using agarose hydrogel. Solute transport through the hydrogel models with different thickness ratios of the two layers was experimentally observed. In addition, numerical simulation and theoretical analysis were carried out with varying porosity and thickness ratio to investigate the effect of structural factors on mass transport ability. A simple parametric study was also conducted to examine unveiled relations between structural factors. As a result, the porosity and thickness ratio of the two layers are found to govern the mass transport ability in double-layered porous materials. The hydrogel models with widely dispersed pores at a fixed porosity, i.e., close to a homogeneously porous structure, are mostly turned out to exhibit fast mass transport. The present results would provide a new framework for fundamental design of various porous structures for effective mass transport. PMID:25825619

  10. Effect of the racket mass and the rate of strokes on kinematics and kinetics in the table tennis topspin backhand.

    PubMed

    Iino, Yoichi; Kojima, Takeji

    2016-01-01

    The purpose of this study was to investigate the effect of the racket mass and the rate of strokes on the kinematics and kinetics of the trunk and the racket arm in the table tennis topspin backhand. Eight male Division I collegiate table tennis players hit topspin backhands against topspin balls projected at 75 balls · min(-1) and 35 balls · min(-1) using three rackets varying in mass of 153.5, 176 and 201.5 g. A motion capture system was used to obtain trunk and racket arm motion data. The joint torques of the racket arm were determined using inverse dynamics. The racket mass did not significantly affect all the trunk and racket arm kinematics and kinetics examined except for the wrist dorsiflexion torque, which was significantly larger for the large mass racket than for the small mass racket. The racket speed at impact was significantly lower for the high ball frequency than for the low ball frequency. This was probably because pelvis and upper trunk axial rotations tended to be more restricted for the high ball frequency. The result highlights one of the advantages of playing close to the table and making the rally speed fast. PMID:26208598

  11. Dynamics of heat and mass transport in a quantum insulator

    NASA Astrophysics Data System (ADS)

    Łącki, Mateusz; Delande, Dominique; Zakrzewski, Jakub

    2015-04-01

    The real-time evolution of two pieces of quantum insulators, initially at different temperatures, is studied when they are glued together. Specifically, each subsystem is taken as a Bose-Hubbard model in a Mott insulator state. The process of temperature equilibration via heat transfer is simulated in real time using the minimally entangled typical thermal states algorithm. The analytic theory based on quasiparticle transport is also given.

  12. Measurement of apo(a) kinetics in human subjects using a microfluidic device with tandem mass spectrometry

    PubMed Central

    Zhou, Haihong; Castro-Perez, Jose; Lassman, Michael E.; Thomas, Tiffany; Li, Wenyu; McLaughlin, Theresa; Dan, Xie; Jumes, Patricia; Wagner, John A.; Gutstein, David E.; Hubbard, Brian K.; Rader, Daniel J.; Millar, John S.; Ginsberg, Henry N.; Reyes-Soffer, Gissette; Cleary, Michele; Previs, Stephen F.; Roddy, Thomas P.

    2016-01-01

    RATIONALE Apolipoprotein(a) [apo(a)] is the defining protein component of lipoprotein(a) [Lp(a)], an independent risk factor for cardiovascular disease. The regulation of Lp(a) levels in blood is poorly understood in part due to technical challenges in measuring Lp(a) kinetics. Improvements in the ability to readily and reliably measure the kinetics of apo (a) using a stable isotope labeled tracer is expected to facilitate studies of the role of Lp(a) in cardiovascular disease. Since investigators typically determine the isotopic labeling of protein-bound amino acids following acid-catalyzed hydrolysis of a protein of interest [e.g., apo(a)], studies of protein synthesis require extensive protein purification which limits throughput and often requires large sample volumes. We aimed to develop a rapid and efficient method for studying apo(a) kinetics that is suitable for use in studies involving human subjects. METHODS Microfluidic device and tandem mass spectrometry were used to quantify the incorporation of [2H3]-leucine tracer into protein-derived peptides. RESULTS We demonstrated that it is feasible to quantify the incorporation of [2H3]-leucine tracer into a proteolytic peptide from the non-kringle repeat region of apo(a) in human subjects. Specific attention was directed toward optimizing the multiple reaction monitoring (MRM) transitions, mass spectrometer settings, and chromatography (i.e., critical parameters that affect the sensitivity and reproducibility of isotopic enrichment measurements). The results demonstrated significant advantages with the use of a microfluidic device technology for studying apo(a) kinetics, including enhanced sensitivity relative to conventional micro-flow chromatography, a virtually drift-free elution profile, and a stable and robust electrospray. CONCLUSIONS The technological advances described herein enabled the implementation of a novel method for studying the kinetics of apo(a) in human subjects infused with [2H3]-leucine

  13. Reaction of Human Cd7metallothionein and N-Ethylmaleimide: Kinetic and Structural Insights from Electrospray Ionization Mass Spectrometry.

    PubMed

    Chen, Shu-Hua; Russell, David H

    2015-10-01

    The reaction of cadmium-binding human metallothionein-2A (Cd₇MT) and N-ethylmaleimide (NEM) is investigated by electrospray ionization-ion mobility-mass spectrometry (ESI IM-MS). MS provides a direct measure of the distribution of the kinetic intermediates as the reaction proceeds and provides new insights into the relative kinetic stability of the individual metal-thiolate bonds in Cd₇MT. The rate constants for the various metal-retaining intermediates (Cd(i), intermediate with i Cd²⁺ ions attached) differ by >3 orders of magnitude: Cd₄< Cd₃< Cd₂< Cd₁∼ Cd₆ < Cd₇ < Cd5. The reaction is viewed as a two-component cooperative process, rapid loss of three Cd²⁺ ions followed by slow loss of the remaining four Cd²⁺ ions, and Cd₄NEM₁₀MT was observed as the least reactive intermediate during the entire displacement process. "MS-CID-IM-MS", a top-down approach that provides two-dimensional dispersion (size to charge by IM; mass to charge by MS) of the CID fragment ions, was used for direct analysis of the kinetic intermediate [Cd₄NEM₁₀MT]⁵⁺ ion. The results provide direct evidence that the four Cd²⁺ ions located in the α-domain are retained, indicative of the greater kinetic stability for the α-domain. Further, the mapping of the alkylation sites in the [Cd₄NEM₁₀MT]⁵⁺ ion reveals that not only the nine cysteines in the β-domain but Cys33 in the α-domain is selectively labeled. The kinetic lability of the Cd-Cys33 bond is unexpected. The structural and functional implications of these findings are discussed. PMID:26375382

  14. Comparison of gradient and flux driven gyro-kinetic turbulent transport

    NASA Astrophysics Data System (ADS)

    Rath, F.; Peeters, A. G.; Buchholz, R.; Grosshauser, S. R.; Migliano, P.; Weikl, A.; Strintzi, D.

    2016-05-01

    Flux and gradient driven ion temperature gradient turbulence in tokamak geometry and for Cyclone base case parameters are compared in the local limit using the same underlying gyro-kinetic turbulence model. The gradient driven turbulence described using the flux tube model with periodic boundary conditions has a finite ion heat flux Qi≈10 n0T0ρ*2vth , where n0 (T0) is the background density (temperature), ρ*=ρ/R is the normalized Larmor radius, R is the major radius of the device, and vth is the ion thermal velocity at the nonlinear threshold of the temperature gradient length for turbulence generation. Consequently, the gradient driven local transport model is unable to accurately describe heat fluxes below Qi<10 n0T0ρ*2vt h , since no stationary fully developed turbulent state can be obtained. The turbulence in the flux driven case shows intermittent behaviour and avalanches for Qi<10 n0T0ρ*2vth . Isolated avalanches disappear for Qi>10 n0T0ρ*2vt h , and at higher heat fluxes, the statistics of the turbulence is the same for the flux and gradient driven case. The nonlinear upshift of the temperature gradient length threshold for turbulence generation (known as the Dimits shift) is larger in the case of flux driven turbulence. This higher nonlinear upshift is attributed to the generation of structures in the radial temperature profile, known as staircases [Dif-Pradalier, Phys. Rev. E 82, 025401 (2010)]. Avalanches are initiated at specific locations and have roughly the same radial extent of 50-70 ion Larmor radii. The staircases are obtained at low heating rates, and become unstable and break up at higher heating rates. At the heat fluxes for which staircase formation is observed, no stationary gradient driven simulations can be obtained.

  15. Kinetics of methionine transport and metabolism by Trypanosoma brucei brucei and Trypanosoma brucei rhodesiense.

    PubMed

    Goldberg, B; Rattendi, D; Lloyd, D; Yarlett, N; Bacchi, C J

    2000-05-01

    Methionine is an essential amino acid for both prokaryotic and eukaryotic organisms; however, little is known concerning its utilization in African trypanosomes, protozoa of the Trypanosoma brucei group. This study explored the Michaelis-Menten kinetic constants for transport and pool formation as well as metabolic utilization of methionine by two divergent strains of African trypanosomes, Trypanosoma brucei brucei (a veterinary pathogen), highly sensitive to trypanocidal agents, and Trypanosoma brucei rhodesiense (a human pathogenic isolate), highly refractory to trypanocidal arsenicals. The Michaelis-Menten constants derived by Hanes-Woolf analysis for transport of methionine for T. b. brucei and T. b. rhodesiense, respectively, were as follows: K(M) values, 1. 15 and 1.75 mM; V(max) values, 3.97 x 10(-5) and 4.86 x 10(-5) mol/L/min. Very similar values were obtained by Lineweaver-Burk analysis (K(M), 0.25 and 1.0 mM; V(max), 1 x 10(-5) and 2.0 x 10(-5) mol/L/min, T. b. brucei and T. b. rhodesiense, respectively). Cooperativity analyses by Hill (log-log) plot gave Hill coefficients (n) of 6 and 2 for T. b. brucei and T. b. rhodesiense, respectively. Cytosolic accumulation of methionine after 10-min incubation with 25 mM exogenous methionine was 1.8-fold greater in T. b. rhodesiense than T. b. brucei (2.1 vs 1.1 mM, respectively). In African trypanosomes as in their mammalian host, S-adenosylmethionine (AdoMet) is the major product of methionine metabolism. Accumulation of AdoMet was measured by HPLC analysis of cytosolic extracts incubated in the presence of increasing cytosolic methionine. In trypanosomes incubated for 10 min with saturating methionine, both organisms accumulated similar amounts of AdoMet (approximately 23 microM), but the level of trans-sulfuration products (cystathionine and cysteine) in T. b. rhodesiense was double that of T. b. brucei. Methionine incorporation during protein synthesis in T. b. brucei was 2.5 times that of T. b. rhodesiense

  16. Mass spectrometer. [On Space Transportation System 2 Flight

    NASA Technical Reports Server (NTRS)

    Miller, E. R.; Carignan, G. R.

    1983-01-01

    The quadrupole Mass Spectrometer of the Induced Environment Contamination Monitor (IECM) operates in the range from 2 to 150 amu. It is pointed out that the Mass Spectrometer on STS-2 performed very well. It was found that the column density of H2O effluent from the Shuttle reached a maximum of 1 x 10 to the 13th per sq cm at 7 hr, 30 min and decreased by a factor of 7.5 during the subsequent 40 hrs. The count rate response of H2O could be correlated with mission-related events, taking into account the dumping of supply water, the operation of the Flash Evaporator System, and the firing of a primary reaction control system engine.

  17. Measurement and Visualization of Mass Transport for the Flowing Atmospheric Pressure Afterglow (FAPA) Ambient Mass-Spectrometry Source

    PubMed Central

    Pfeuffer, Kevin P.; Ray, Steven J.; Hieftje, Gary M.

    2014-01-01

    Ambient desorption/ionization mass spectrometry (ADI-MS) has developed into an important analytical field over the last nine years. The ability to analyze samples under ambient conditions while retaining the sensitivity and specificity of mass spectrometry has led to numerous applications and a corresponding jump in the popularity of this field. Despite the great potential of ADI-MS, problems remain in the areas of ion identification and quantification. Difficulties with ion identification can be solved through modified instrumentation, including accurate-mass or MS/MS capabilities for analyte identification. More difficult problems include quantification due to the ambient nature of the sampling process. To characterize and improve sample volatilization, ionization, and introduction into the mass-spectrometer interface, a method of visualizing mass transport into the mass spectrometer is needed. Schlieren imaging is a well-established technique that renders small changes in refractive index visible. Here, schlieren imaging was used to visualize helium flow from a plasma-based ADI-MS source into a mass spectrometer while ion signals were recorded. Optimal sample positions for melting-point capillary and transmission-mode (stainless steel mesh) introduction were found to be near (within 1 mm of) the mass spectrometer inlet. Additionally, the orientation of the sampled surface plays a significant role. More efficient mass transport resulted for analyte deposits directly facing the MS inlet. Different surfaces (glass slide and rough surface) were also examined; for both it was found that the optimal position is immediately beneath the MS inlet. PMID:24658804

  18. Modeling of diagenesis in relation to coupled mass and heat transport

    SciTech Connect

    Ondrak, R.

    1996-12-31

    Pore fluid flow is an important factor influencing the diagenetic evolution of rocks, as has been shown by various diagenetic studies, especially in connection with fluid inclusion measurements. A 3D- computer model is presented, which allows to simulate coupled mass and heat transport in porous rocks. The model is used to study the interaction of heat and mass transport with respect to the temporal and spatial evolution of sandstones. Mineral dissolution or precipitation change the mineralogical composition of rocks, and modify the physical properties at the same time. Altering the permeability of the rock affects the fluid flow system in the rock which determines the mass transport of the entire system. In addition to mass transport, fluid flow transports thermal energy, which may modify the temperature evolution of the rock. The model will be used to examine the effect of convective heat and mass transport on temperature and diagenetic evolution of clastic rocks. Although the model cannot claim to simulate nature, it can be used to study the effect of different mechanisms, and their interaction within the coupled system. For practical applications, the model may be used to determine possible flow rates, which are necessary to explain the observed diagenetic and thermal history of sandstones.

  19. Spatial correlations, additivity, and fluctuations in conserved-mass transport processes

    NASA Astrophysics Data System (ADS)

    Das, Arghya; Chatterjee, Sayani; Pradhan, Punyabrata

    2016-06-01

    We exactly calculate two-point spatial correlation functions in steady state in a broad class of conserved-mass transport processes, which are governed by chipping, diffusion, and coalescence of masses. We find that the spatial correlations are in general short-ranged and, consequently, on a large scale, these transport processes possess a remarkable thermodynamic structure in the steady state. That is, the processes have an equilibrium-like additivity property and, consequently, a fluctuation-response relation, which help us to obtain subsystem mass distributions in the limit of subsystem size large.

  20. On the optimum fields and bounds for heat and mass transport in two turbulent flows

    NASA Astrophysics Data System (ADS)

    Vitanov, Nikolay

    2011-12-01

    The optimum theory of turbulence is one of the few tools for obtaining analytical results for transport of heat, mass or momentum by turbulent flows. This is achieved by asymptotic theory which is valid for large values of the characteristic numbers of the investigated fluid system. For small and intermediate values of the Reynolds, Rayleigh or Taylor numbers we have to solve numerically the Euler-Lagrange equations of the corresponding variational problems. Below we discuss numerical results from the application of the Howard-Busse method of the optimum theory of turbulence to two problems: convective heat transport in non-rotating and rotating fluid layer and mass transport in pipe flow. We obtain profiles of the optimum fields and discuss the evolution of the thickness of the boundary layers as well as present our first results about the lower bound on the mass transport in a pipe flow.

  1. A Global Assessment of Accelerations in Mass Transport of Surface Geophysical Fluid

    NASA Astrophysics Data System (ADS)

    Wu, X.; Heflin, M. B.

    2015-12-01

    Mass transport in the Earth's surface geophysical fluid layer has complex spatiotemporal patterns. The GRACE gravity mission provides an unprecedented global capability to monitor this important process with high accuracy and resolution. Accurate assessments of global mass transport patterns and budget also depend critically on changes in degree-1 coefficients (geocenter motion) and in Earth's dynamic oblateness coefficient J2. We combine GRACE measurements, time series of GNSS data, JPL's ECCO ocean bottom pressure model, and high-resolution loose a priori models of mass variation regimes to derive complete spherical harmonic spectra of detrended mass variations up to degree and order 180. Mass accelerations are estimated along with linear, annual, semiannual, and the 161-day tidal aliasing components from coefficient time series. The appropriateness of a priori information and estimate uncertainties are further evaluated by variance component estimation and residual statistics of fitting the time series. During the GRACE data period of 2002.2-2015.0, accelerations in mass transport are geographically uneven with significant positive or negative accelerations in various parts of the world. While Greenland and West Antarctica show strong accelerated mass losses, Alaska and the Arctic Ocean have significant positive accelerations with reversals of earlier mass loss trends. No evidence of non-Arctic global mean sea level acceleration due to mass has been found. Depending on region, some estimated accelerations are also not steady over time due to large irregular and interannual variations.

  2. Transport of magnetic flux and mass in Saturn's inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Lai, H. R.; Russell, C. T.; Jia, Y. D.; Wei, H. Y.; Dougherty, M. K.

    2016-04-01

    It is well accepted that cold plasma sourced by Enceladus is ultimately lost to the solar wind, while the magnetic flux convecting outward with the plasma must return to the inner magnetosphere. However, whether the interchange or reconnection, or a combination of the two processes is the dominant mechanism in returning the magnetic flux is still under debate. Initial Cassini observations have shown that the magnetic flux returns in the form of flux tubes in the inner magnetosphere. Here we investigate those events with 10 year Cassini magnetometer data and confirm that their magnetic signatures are determined by the background plasma environments: inside (outside) the plasma disk, the returning magnetic field is enhanced (depressed) in strength. The distribution, temporal variation, shape, and transportation rate of the flux tubes are also characterized. The flux tubes break into smaller ones as they convect in. The shape of their cross section is closer to circular than fingerlike as produced in the simulations based on the interchange mechanism. In addition, no sudden changes in any flux tube properties can be found at the "boundary" which has been claimed to separate the reconnection and interchange-dominant regions. On the other hand, reasonable cold plasma loss rate and outflow velocity can be obtained if the transport rate of the magnetic flux matches the reconnection rate, which supports reconnection alone as the dominant mechanism in unloading the cold plasma from the inner magnetosphere and returning the magnetic flux from the tail.

  3. Lipid-assisted protein transport: A diffusion-reaction model supported by kinetic experiments and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    La Rosa, Carmelo; Scalisi, Silvia; Lolicato, Fabio; Pannuzzo, Martina; Raudino, Antonio

    2016-05-01

    The protein transport inside a cell is a complex phenomenon that goes through several difficult steps. The facilitated transport requires sophisticated machineries involving protein assemblies. In this work, we developed a diffusion-reaction model to simulate co-transport kinetics of proteins and lipids. We assume the following: (a) there is always a small lipid concentration of order of the Critical Micellar Concentration (CMC) in equilibrium with the membrane; (b) the binding of lipids to proteins modulates the hydrophobicity of the complexes and, therefore, their ability to interact and merge with the bilayer; and (c) some lipids leave the bilayer to replenish those bound to proteins. The model leads to a pair of integral equations for the time-evolution of the adsorbed proteins in the lipid bilayer. Relationships between transport kinetics, CMC, and lipid-protein binding constants were found. Under particular conditions, a perturbation analysis suggests the onset of kinks in the protein adsorption kinetics. To validate our model, we performed leakage measurements of vesicles composed by either high or low CMC lipids interacting with Islet Amyloid PolyPeptide (IAPP) and Aβ (1-40) used as sample proteins. Since the lipid-protein complex stoichiometry is not easily accessible, molecular dynamics simulations were performed using monomeric IAPP interacting with an increasing number of phospholipids. Main results are the following: (a) 1:1 lipid-protein complexes generally show a faster insertion rate proportional to the complex hydrophobicity and inversely related to lipid CMC; (b) on increasing the number of bound lipids, the protein insertion rate decreases; and (c) at slow lipids desorption rate, the lipid-assisted proteins transport might exhibit a discontinuous behavior and does non-linearly depend on protein concentration.

  4. Heat- and mass-transport in aqueous silica nanofluids

    NASA Astrophysics Data System (ADS)

    Turanov, A. N.; Tolmachev, Yuriy V.

    2009-10-01

    Using the transient hot wire and pulsed field gradient nuclear magnetic resonance methods we determined the thermal conductivity and the solvent self-diffusion coefficient (SDC) in aqueous suspensions of quasi-monodisperse spherical silica nanoparticles. The thermal conductivity was found to increase at higher volume fraction of nanoparticles in accordance with the effective medium theory albeit with a smaller slope. On the other hand, the SDC was found to decrease with nanoparticle volume fraction faster than predicted by the effective medium theory. These deviations can be explained by the presence of an interfacial heat-transfer resistance and water retention by the nanoparticles, respectively. We found no evidence for anomalous enhancement in the transport properties of nanofluids reported earlier by other groups.

  5. Isotherm parameters and intraparticle mass transfer kinetics on molecularly imprinted polymers in acetonitrile/buffer mobile phases

    SciTech Connect

    Kim, Hyunjung; Kaczmarski, Krzysztof; Guiochon, Georges A

    2006-03-01

    The equilibrium isotherm and the intraparticle mass transfer kinetics of the enantiomers of the template were investigated on an Fmoc-L-tryptophan (Fmoc-L-Trp) imprinted polymer at different pHs and water concentrations in acetonitrile/aqueous buffer mobile phases. The equilibrium isotherm data were measured using frontal analysis at 25 {+-} 2 C. The adsorption energy distribution was found to be trimodal, with narrow modes. Consistent with this distribution, the adsorption data were modeled using a tri-Langmuir isotherm equation and the best estimates of the isotherm parameters were determined. The intraparticle mass transfer parameters were derived by comparing the profiles of experimental overloaded bands and the profiles calculated using the isotherm model and the lumped pore diffusion (POR) model of chromatography. These results showed that different adsorption and mass transfer mechanisms exist in mobile phases made of acetonitrile/aqueous buffer and of acetonitrile/acetic acid solutions.

  6. Atmospheric pressure flow reactor / aerosol mass spectrometer studies of tropospheric aerosol nucleat and growth kinetics. Final report, June, 2001

    SciTech Connect

    Worsnop, Douglas R.

    2001-06-01

    The objective of this program was to determine the mechanisms and rates of growth and transformation and growth processes that control secondary aerosol particles in both the clear and polluted troposphere. The experimental plan coupled an aerosol mass spectrometer (AMS) with a chemical ionization mass spectrometer to provide simultaneous measurement of condensed and particle phases. The first task investigated the kinetics of tropospheric particle growth and transformation by measuring vapor accretion to particles (uptake coefficients, including mass accommodation coefficients and heterogeneous reaction rate coefficients). Other work initiated investigation of aerosol nucleation processes by monitoring the appearance of submicron particles with the AMS as a function of precursor gas concentrations. Three projects were investigated during the program: (1) Ozonolysis of oleic acid aerosols as model of chemical reactivity of secondary organic aerosol; (2) Activation of soot particles by measurement deliquescence in the presence of sulfuric acid and water vapor; (3) Controlled nucleation and growth of sulfuric acid aerosols.

  7. Impact of Deuteration on the Assembly Kinetics of Transthyretin Monitored by Native Mass Spectrometry and Implications for Amyloidoses.

    PubMed

    Yee, Ai Woon; Moulin, Martine; Breteau, Nina; Haertlein, Michael; Mitchell, Edward P; Cooper, Jonathan B; Boeri Erba, Elisabetta; Forsyth, V Trevor

    2016-08-01

    It is well established that the formation of transthyretin (TTR) amyloid fibrils is linked to the destabilization and dissociation of its tetrameric structure into insoluble aggregates. Isotope labeling is used for the study of TTR by NMR, neutron diffraction, and mass spectrometry (MS). Here MS, thioflavin T fluorescence, and crystallographic data demonstrate that while the X-ray structures of unlabeled and deuterium-labeled TTR are essentially identical, subunit exchange kinetics and amyloid formation are accelerated for the deuterated protein. However, a slower subunit exchange is noted in deuterated solvent, reflecting the poorer solubility of non-polar protein side chains in such an environment. These observations are important for the interpretation of kinetic studies involving deuteration. The destabilizing effects of TTR deuteration are rather similar in character to those observed for aggressive mutations of TTR such as L55P (associated with familial amyloid polyneuropathy). PMID:27311939

  8. Simulated kinetic effects of the corona and solar cycle on high altitude ion transport at Mars

    NASA Astrophysics Data System (ADS)

    Curry, S. M.; Liemohn, M.; Fang, X.; Brain, D.; Ma, Y.

    2013-06-01

    We present results from the Mars Test Particle (MTP) simulation as part of a community‒wide model comparison in order to quantify the role of different neutral atmospheric conditions in planetary ion transport and escape. This study examines the effects of individual ion motion by simulating particle trajectories for three cases: solar minimum without the neutral corona, solar minimum with the inclusion of the neutral corona, and solar maximum with the inclusion of the neutral corona. The MTP simulates 1.5 billion test particles through background electric and magnetic fields computed by a global magnetohydrodynamic model. By implementing virtual detectors in the simulation, the MTP has generated velocity space distributions of pickup ions and quantifies the ion acceleration at different spatial locations. The study found that the inclusion of a hot neutral corona greatly affects the total O+ production and subsequent loss, roughly doubling the total escape for solar minimum conditions and directly contributing to high energy sources above 10 keV. The solar cycle influences the amount of O+ flux observed by the virtual detectors, increasing the O+ flux and total escape by an order of magnitude from solar minimum to maximum. Additionally, solar maximum case induces greater mass loading of the magnetic fields, which decreases the gyroradius of the ions and redirects a significant ion population downtail to subsequently escape.

  9. Recent Advances in Detailed Chemical Kinetic Models for Large Hydrocarbon and Biodiesel Transportation Fuels

    SciTech Connect

    Westbrook, C K; Pitz, W J; Curran, H J; Herbinet, O; Mehl, M

    2009-03-30

    n-Hexadecane and 2,2,4,4,6,8,8-heptamethylnonane represent the primary reference fuels for diesel that are used to determine cetane number, a measure of the ignition property of diesel fuel. With the development of chemical kinetics models for these two primary reference fuels for diesel, a new capability is now available to model diesel fuel ignition. Also, we have developed chemical kinetic models for a whole series of large n-alkanes and a large iso-alkane to represent these chemical classes in fuel surrogates for conventional and future fuels. Methyl decanoate and methyl stearate are large methyl esters that are closely related to biodiesel fuels, and kinetic models for these molecules have also been developed. These chemical kinetic models are used to predict the effect of the fuel molecule size and structure on ignition characteristics under conditions found in internal combustion engines.

  10. Lipid-assisted protein transport: A diffusion-reaction model supported by kinetic experiments and molecular dynamics simulations.

    PubMed

    La Rosa, Carmelo; Scalisi, Silvia; Lolicato, Fabio; Pannuzzo, Martina; Raudino, Antonio

    2016-05-14

    The protein transport inside a cell is a complex phenomenon that goes through several difficult steps. The facilitated transport requires sophisticated machineries involving protein assemblies. In this work, we developed a diffusion-reaction model to simulate co-transport kinetics of proteins and lipids. We assume the following: (a) there is always a small lipid concentration of order of the Critical Micellar Concentration (CMC) in equilibrium with the membrane; (b) the binding of lipids to proteins modulates the hydrophobicity of the complexes and, therefore, their ability to interact and merge with the bilayer; and (c) some lipids leave the bilayer to replenish those bound to proteins. The model leads to a pair of integral equations for the time-evolution of the adsorbed proteins in the lipid bilayer. Relationships between transport kinetics, CMC, and lipid-protein binding constants were found. Under particular conditions, a perturbation analysis suggests the onset of kinks in the protein adsorption kinetics. To validate our model, we performed leakage measurements of vesicles composed by either high or low CMC lipids interacting with Islet Amyloid PolyPeptide (IAPP) and Aβ (1-40) used as sample proteins. Since the lipid-protein complex stoichiometry is not easily accessible, molecular dynamics simulations were performed using monomeric IAPP interacting with an increasing number of phospholipids. Main results are the following: (a) 1:1 lipid-protein complexes generally show a faster insertion rate proportional to the complex hydrophobicity and inversely related to lipid CMC; (b) on increasing the number of bound lipids, the protein insertion rate decreases; and PMID:27179503

  11. Mass-height profile and total mass transport of wind eroded aeolian sediments from rangelands of the Indian Thar Desert

    NASA Astrophysics Data System (ADS)

    Mertia, R. S.; Santra, Priyabrata; Kandpal, B. K.; Prasad, R.

    2010-11-01

    Wind erosion is an active land degradation process in the Indian Thar Desert and severe dust storm events during hot summer months in the region are very common. Assessment of soil loss due to dust storm events from major land use systems of the Indian Thar Desert is highly essential for proper environmental planning. Characterization of the mass-height profile of wind eroded aeolian sediment is an important step to compute soil loss/mass transport but was not previously studied in the region. In the present study, aeolian mass fluxes (kg m -2) at different heights from soil surface were measured at two major rangelands in the Indian Thar Desert: Overgrazing rangeland at Jaisalmer (26°55'N and 70°57'E), and controlled grazing rangeland at Chandan (27°01'N and 71°01'E). Evaluation of several mass-height profile models revealed that a power decay function [ q( z) = az-b, where q( z) is the measured mass flux at an height of z (m) from soil surface; a and b are parameters of the equation] was best to characterize the mass-height relationship of aeolian sediments from the Indian Thar Desert. The average mass transport rate (kg m -1 day -1) or the total soil loss during hot summer months was significantly higher at the overgrazed rangeland site than at the controlled grazing rangeland site. Therefore, protection of existing rangelands, which comprise about 80% geographical area of the Indian Thar Desert may check the land degradation process due to wind erosion.

  12. Mass Transport in Nanocomposite Materials for Membrane Separations

    NASA Astrophysics Data System (ADS)

    Galizia, Michele; Puccini, Ilaria; Messori, Massimo; Grazia De Angelis, Maria; Sarti, Giulio C.

    2010-06-01

    The vapor transport properties of nanocomposite materials obtained with different techniques and based on a high free volume glassy polymer suitable for membrane separations, poly[1-(trimethylsilyl)-1-propyne] (PTMSP), have been determined and modeled. The simple mixing in solution of hydrophobic fumed silica nanoparticles with PTMSP leads to mixed matrix membranes, which show higher free volume and higher values of diffusivity and permeability than the pure polymeric material. If a sol-gel route is followed, with PTMSP and Tetraethoxysylane (TEOS) as precursor of the silica phase, one obtains hybrid matrices characterized by lower vapor diffusion and sorption values with respect to the pure polymer. Although the trends observed are very regular functions of the silica content in the composite, none of the behavior observed obeys traditional models for composites permeability, such as the Maxwell's one. Both types of behaviors were modeled considering the variation of polymer fractional free volume induced by the inorganic phase: in the mixed matrices the poor interactions between silica and polymer chains favor the formation of nanovoids at the interface, increasing the free volume and the vapor diffusivity, while in the more interconnected hybrid matrices the inorganic domains act as constraints, reducing the volume occupied by the polymeric phase, which is naturally endowed with a very high excess free volume.

  13. Energetics, kinetics and dynamics of decaying metastable ions studied with a high-resolution three-sector field mass spectrometer

    NASA Astrophysics Data System (ADS)

    Matt-Leubner, S.; Feil, S.; Gluch, K.; Fedor, J.; Stamatovic, A.; Echt, O.; Scheier, P.; Becker, K.; Märk, T. D.

    2005-05-01

    Mass spectrometric analysis of metastable decay reactions is devoted to the measurements of the kinetic energy release distribution (KERD) for the decay of singly charged rare gas dimer ions Xe_{2}^{ + } and Kr_{2}^{ + } , the doubly charged acetylene parent ion C_{2}H_{2^{ 2+ }} and the singly and doubly charged SF6 fragment ions, like for example SF_{3}^{ + } , SF_{3}^{ 2 + } and SF_{4}^{ 2 + } . The KERDs are obtained either from high-resolution mass analysed ion kinetic energy spectra or the measurement of ion beam profiles using a specially improved mass spectrometric system. Due to the high energy resolution measurements and theoretical studies based on ab initio calculations of potential energy curves it is possible to assign the reaction products of the rare gas dimer decays to electronic transitions in the excited parent ion. The C_{2}H_{2^{ 2 + }} and also the SF_{4}^{ 2 + } ions are investigated because of obscurities in the production of their fragment ions. The unusual shape of the SF_{3}^{ + } ionization cross section indicates that at sufficiently high electron energies the fragmentation channel of doubly charged SF_{4}^{ 2 + } contributes significantly to the ion yield. Additional measurements of the corresponding appearance energies confirm the existence of this second production channel.

  14. Fram Strait and Greenland Sea transports, water masses, and water mass transformations 1999-2010 (and beyond)

    NASA Astrophysics Data System (ADS)

    Marnela, Marika; Rudels, Bert; Goszczko, Ilona; Beszczynska-Möller, Agnieszka; Schauer, Ursula

    2016-04-01

    The exchanges between the Nordic Seas and the Arctic Ocean are important for the ocean circulation and climate. Transports are here estimated using summer hydrographic data from the Greenland Sea and the Fram Strait. Geostrophic transports are computed from hydrographic sections at 75°N in the Greenland Sea and at about 79°N in the Fram Strait. Geostrophic velocities are adjusted with summer velocities derived from Argo floats, and four conservation constraints are applied to a box closed by the two sections. The estimated net volume transports are 0.8 ± 1.5 Sv southward. Net freshwater transports through the Greenland Sea section are estimated at 54 ± 20 mSv and through the Fram Strait section at 66 ± 9 mSv. Heat loss in the area between the two sections is estimated at 9 ± 12 TW. Convection depths in the Greenland Sea are estimated from observations and vary between about 200 and 2000 dbar showing no trend. Water mass properties in the Greenland Sea are affected both by convection and lateral mixing. Vertical mixing is estimated from hydrography and based on it about 1 Sv of diluted Arctic Ocean waters are estimated to enter the Greenland Sea. The properties of Atlantic, intermediate, and deep waters are studied. Deep water properties are defined using water mass triangles and are subject to decadal changes.

  15. Temporal variability of mass transport across Canary Islands Channels

    NASA Astrophysics Data System (ADS)

    Marrero-Díaz, Ángeles; Rodríguez-Santana, Ángel; José Machín, Francisco; García-Weil, Luis; Sangrà, Pablo; Vélez-Belchí, Pedro; Fraile-Nuez, Eugenio

    2014-05-01

    The equatorward flowing Canary Current (CC) is the main feature of the circulation in the Canary Islands region. The CC flow perturbation by the Canary Islands originate the Canary Eddy Corridor which is the major pathway for long lived eddies in the subtropical North Atlantic (Sangrà et al., 2009, DSR). Therefore the variability of the CC passing through the Canary Archipelago will have both local and regional importance. Past studies on the CC variability trough the Canary Islands point out a clearly seasonal variability (Fraile-Nuez et al, 2010 (JGR); Hernández-Guerra et al, 2002 (DSR)). However those studies where focused on the eastern islands channels missing the variability through the western island channels which are the main source of long lived eddies. In order to fill this gap from November 2012 until September 2013 we conducted trimonthly surveys crossing the whole islands channels using opportunity ships (Naviera Armas Ferries). XBT and XCTD where launched along the cross channels transects. Additionally a closed box circling the Archipelago was performed on October 2013 as part of the cruise RAPROCAN-2013 (IEO) using also XBT and XCTD. Dynamical variables where derived inferring salinity from S(T,p) analytical relationships for the region updated with new XCTD data. High resolution, vertical sections of temperature, potential density, geostrophic velocity and transport where obtained. Our preliminary results suggest that the CC suffer a noticeable acceleration in those islands channels where eddy shedding is more frequent. They also indicate a clearly seasonal variability of the flows passing the islands channels. With this regard we observed significant differences on the obtained seasonal variability with respect the cited past studies on the eastern islands channel (Lanzarote / Fuerteventura - Africa coast). This work was co-funded by Canary Government (TRAMIC project: PROID20100092) and the European Union (FEDER).

  16. Mass transport during step motion on the silicon(111) (1x1) surface studied by low energy electron microscopy

    NASA Astrophysics Data System (ADS)

    Pang, Angbo

    Atomic steps are common defects at surfaces that can play an important role in many physical phenomena. Step morphology will be affected, or even dictated, by the kinetic processes that mediate growth and its inverse, sublimation. At the same time, competing coarsening processes will occur that depend crucially upon the step line tension through the Gibbs-Thomson relation. A proper description of step morphological phenomena therefore requires accurate knowledge of step line tension, as well as step kinetic parameters. The complex interplay between step kinetic and coarsening effects was investigated on the Si(111) (1x1) surface by examining step motion during island decay using low energy electron microscopy. These investigations provide quantitative information on the step line tension, kinetic length and step permeability. It is shown that the line tension decreases linearly with increasing temperature between 1145 K and 1233 K with a temperature coefficient of .0.14 meV/A K. The kinetic length is determined to be 75a at 1163K, where a is the lattice constant. This locates step motion firmly in the diffusion-limited regime. Steps are also determined to be impermeable in the context of diffusion limited step kinetics. We also find that the role of desorption in island decay increases dramatically in the temperature range (1145--1380 K) that island decay is studied. Consequently, we generalize the current model of island decay to take account of desorption. Evaluation of the island decay time with this model referenced to the temperature-dependent line tension accurately determines activation energies that are central to mass transport and sublimation. Similar investigations of vacancy island decay were also carried out. Surprisingly, island decay and vacancy island decay behavior cannot be explained consistently using any form of model that treats mass transport exclusively in terms of the diffusion of adatoms that are generated at steps. An adatom-vacancy decay

  17. Recent Developments in Graphene-Based Membranes: Structure, Mass-Transport Mechanism and Potential Applications.

    PubMed

    Sun, Pengzhan; Wang, Kunlin; Zhu, Hongwei

    2016-03-01

    Significant achievements have been made on the development of next-generation filtration and separation membranes using graphene materials, as graphene-based membranes can afford numerous novel mass-transport properties that are not possible in state-of-art commercial membranes, making them promising in areas such as membrane separation, water desalination, proton conductors, energy storage and conversion, etc. The latest developments on understanding mass transport through graphene-based membranes, including perfect graphene lattice, nanoporous graphene and graphene oxide membranes are reviewed here in relation to their potential applications. A summary and outlook is further provided on the opportunities and challenges in this arising field. The aspects discussed may enable researchers to better understand the mass-transport mechanism and to optimize the synthesis of graphene-based membranes toward large-scale production for a wide range of applications. PMID:26797529

  18. Mass transport at infinite regular arrays of microband electrodes submitted to natural convection: theory and experiments.

    PubMed

    Pebay, Cécile; Sella, Catherine; Thouin, Laurent; Amatore, Christian

    2013-12-17

    Mass transport at infinite regular arrays of microband electrodes was investigated theoretically and experimentally in unstirred solutions. Even in the absence of forced hydrodynamics, natural convection limits the convection-free domain up to which diffusion layers may expand. Hence, several regimes of mass transport may take place according to the electrode size, gap between electrodes, time scale of the experiment, and amplitude of natural convection. They were identified through simulation by establishing zone diagrams that allowed all relative contributions to mass transport to be delineated. Dynamic and steady-state regimes were compared to those achieved at single microband electrodes. These results were validated experimentally by monitoring the chronoamperometric responses of arrays with different ratios of electrode width to gap distance and by mapping steady-state concentration profiles above their surface through scanning electrochemical microscopy. PMID:24283775

  19. A PERFECT MATCH CONDITION FOR POINT-SET MATCHING PROBLEMS USING THE OPTIMAL MASS TRANSPORT APPROACH

    PubMed Central

    CHEN, PENGWEN; LIN, CHING-LONG; CHERN, I-LIANG

    2013-01-01

    We study the performance of optimal mass transport-based methods applied to point-set matching problems. The present study, which is based on the L2 mass transport cost, states that perfect matches always occur when the product of the point-set cardinality and the norm of the curl of the non-rigid deformation field does not exceed some constant. This analytic result is justified by a numerical study of matching two sets of pulmonary vascular tree branch points whose displacement is caused by the lung volume changes in the same human subject. The nearly perfect match performance verifies the effectiveness of this mass transport-based approach. PMID:23687536

  20. Kinetics and product studies of the reaction ClO + BrO using discharge-flow mass spectrometry

    NASA Technical Reports Server (NTRS)

    Friedl, Randall R.; Sander, Stanley P.

    1989-01-01

    The kinetics and product branching ratios of the reaction between ClO and BrO were studied at 1 torr pressure over the temperature range 220-400 K, using the method of discharge-flow mass spectrometry. Three product channels were identified and quantified: Br + ClOO, Br + OClO, and BrCl + O2, indicating that the reaction mechanism of ClO + BrO involves metastable intermediates. The overall reaction rate coefficient and the rate coefficients for the three channel reactions are given.

  1. Concentration and mass dependence of transport coefficients and correlation functions in binary mixtures with high mass asymmetry.

    PubMed

    Fenz, W; Mryglod, I M; Prytula, O; Folk, R

    2009-08-01

    Correlation functions and transport coefficients of self-diffusion and shear viscosity of a binary Lennard-Jones mixture with components differing only in their particle mass are studied up to high values of the mass ratio mu, including the limiting case mu = infinity, for different mole fractions x. Within a large range of x and mu the product of the diffusion coefficient of the heavy species D(2) and the total shear viscosity of the mixture eta(m) is found to remain constant, obeying a generalized Stokes-Einstein relation. At high liquid density, large mass ratios lead to a pronounced cage effect that is observable in the mean square displacement, the velocity autocorrelation function, and the van Hove correlation function. PMID:19792112

  2. Concentration and mass dependence of transport coefficients and correlation functions in binary mixtures with high mass asymmetry

    NASA Astrophysics Data System (ADS)

    Fenz, W.; Mryglod, I. M.; Prytula, O.; Folk, R.

    2009-08-01

    Correlation functions and transport coefficients of self-diffusion and shear viscosity of a binary Lennard-Jones mixture with components differing only in their particle mass are studied up to high values of the mass ratio μ , including the limiting case μ=∞ , for different mole fractions x . Within a large range of x and μ the product of the diffusion coefficient of the heavy species D2 and the total shear viscosity of the mixture ηm is found to remain constant, obeying a generalized Stokes-Einstein relation. At high liquid density, large mass ratios lead to a pronounced cage effect that is observable in the mean square displacement, the velocity autocorrelation function, and the van Hove correlation function.

  3. Intra-tumoral heterogeneity of gemcitabine delivery and mass transport in human pancreatic cancer

    PubMed Central

    Koay, Eugene J.; Baio, Flavio E.; Ondari, Alexander; Truty, Mark J.; Cristini, Vittorio; Thomas, Ryan M.; Chen, Rong; Chatterjee, Deyali; Kang, Ya’an; Zhang, Joy; Court, Laurence; Bhosale, Priya R.; Tamm, Eric P.; Qayyum, Aliya; Crane, Christopher H.; Javle, Milind; Katz, Matthew H.; Gottumukkala, Vijaya N.; Rozner, Marc A.; Shen, Haifa; Lee, Jeffrey E.; Wang, Huamin; Chen, Yuling; Plunkett, William; Abbruzzese, James L.; Wolff, Robert A.; Maitra, Anirban; Ferrari, Mauro; Varadhachary, Gauri R.; Fleming, Jason B.

    2014-01-01

    There is substantial heterogeneity in the clinical behavior of pancreatic cancer and in its response to therapy. Some of this variation may be due to differences in delivery of cytotoxic therapies between patients and within individual tumors. Indeed, in 12 patients with resectable pancreatic cancer, we previously demonstrated wide inter-patient variability in the delivery of gemcitabine as well as in the mass transport properties of tumors as measured by computed tomography (CT) scans. However, the variability of drug delivery and transport properties within pancreatic tumors is currently unknown. Here, we analyzed regional measurements of gemcitabine DNA incorporation in the tumors of the same 12 patients to understand the degree of intra-tumoral heterogeneity of drug delivery. We also developed a volumetric segmentation approach to measure mass transport properties from the CT scans of these patients and tested inter-observer agreement with this new methodology. Our results demonstrate significant heterogeneity of gemcitabine delivery within individual pancreatic tumors and across the patient cohort, with gemcitabine DNA incorporation in the inner portion of the tumors ranging from 38 to 74% of the total. Similarly, the CT-derived mass transport properties of the tumors had a high degree of heterogeneity, ranging from minimal difference to almost 200% difference between inner and outer portions of the tumor. Our quantitative method to derive transport properties from CT scans demonstrated less than 5% difference in gemcitabine prediction at the average CT-derived transport value across observers. These data illustrate significant inter-patient and intra-tumoral heterogeneity in the delivery of gemcitabine, and highlight how this variability can be reproducibly accounted for using principles of mass transport. With further validation as a biophysical marker, transport properties of tumors may be useful in patient selection for therapy and prediction of

  4. Intra-tumoral heterogeneity of gemcitabine delivery and mass transport in human pancreatic cancer

    NASA Astrophysics Data System (ADS)

    Koay, Eugene J.; Baio, Flavio E.; Ondari, Alexander; Truty, Mark J.; Cristini, Vittorio; Thomas, Ryan M.; Chen, Rong; Chatterjee, Deyali; Kang, Ya'an; Zhang, Joy; Court, Laurence; Bhosale, Priya R.; Tamm, Eric P.; Qayyum, Aliya; Crane, Christopher H.; Javle, Milind; Katz, Matthew H.; Gottumukkala, Vijaya N.; Rozner, Marc A.; Shen, Haifa; Lee, Jeffrey E.; Wang, Huamin; Chen, Yuling; Plunkett, William; Abbruzzese, James L.; Wolff, Robert A.; Maitra, Anirban; Ferrari, Mauro; Varadhachary, Gauri R.; Fleming, Jason B.

    2014-12-01

    There is substantial heterogeneity in the clinical behavior of pancreatic cancer and in its response to therapy. Some of this variation may be due to differences in delivery of cytotoxic therapies between patients and within individual tumors. Indeed, in 12 patients with resectable pancreatic cancer, we previously demonstrated wide inter-patient variability in the delivery of gemcitabine as well as in the mass transport properties of tumors as measured by computed tomography (CT) scans. However, the variability of drug delivery and transport properties within pancreatic tumors is currently unknown. Here, we analyzed regional measurements of gemcitabine DNA incorporation in the tumors of the same 12 patients to understand the degree of intra-tumoral heterogeneity of drug delivery. We also developed a volumetric segmentation approach to measure mass transport properties from the CT scans of these patients and tested inter-observer agreement with this new methodology. Our results demonstrate significant heterogeneity of gemcitabine delivery within individual pancreatic tumors and across the patient cohort, with gemcitabine DNA incorporation in the inner portion of the tumors ranging from 38 to 74% of the total. Similarly, the CT-derived mass transport properties of the tumors had a high degree of heterogeneity, ranging from minimal difference to almost 200% difference between inner and outer portions of the tumor. Our quantitative method to derive transport properties from CT scans demonstrated less than 5% difference in gemcitabine prediction at the average CT-derived transport value across observers. These data illustrate significant inter-patient and intra-tumoral heterogeneity in the delivery of gemcitabine, and highlight how this variability can be reproducibly accounted for using principles of mass transport. With further validation as a biophysical marker, transport properties of tumors may be useful in patient selection for therapy and prediction of

  5. Intra-tumoral heterogeneity of gemcitabine delivery and mass transport in human pancreatic cancer.

    PubMed

    Koay, Eugene J; Baio, Flavio E; Ondari, Alexander; Truty, Mark J; Cristini, Vittorio; Thomas, Ryan M; Chen, Rong; Chatterjee, Deyali; Kang, Ya'an; Zhang, Joy; Court, Laurence; Bhosale, Priya R; Tamm, Eric P; Qayyum, Aliya; Crane, Christopher H; Javle, Milind; Katz, Matthew H; Gottumukkala, Vijaya N; Rozner, Marc A; Shen, Haifa; Lee, Jeffrey E; Wang, Huamin; Chen, Yuling; Plunkett, William; Abbruzzese, James L; Wolff, Robert A; Maitra, Anirban; Ferrari, Mauro; Varadhachary, Gauri R; Fleming, Jason B

    2014-01-01

    There is substantial heterogeneity in the clinical behavior of pancreatic cancer and in its response to therapy. Some of this variation may be due to differences in delivery of cytotoxic therapies between patients and within individual tumors. Indeed, in 12 patients with resectable pancreatic cancer, we previously demonstrated wide inter-patient variability in the delivery of gemcitabine as well as in the mass transport properties of tumors as measured by computed tomography (CT) scans. However, the variability of drug delivery and transport properties within pancreatic tumors is currently unknown. Here, we analyzed regional measurements of gemcitabine DNA incorporation in the tumors of the same 12 patients to understand the degree of intra-tumoral heterogeneity of drug delivery. We also developed a volumetric segmentation approach to measure mass transport properties from the CT scans of these patients and tested inter-observer agreement with this new methodology. Our results demonstrate significant heterogeneity of gemcitabine delivery within individual pancreatic tumors and across the patient cohort, with gemcitabine DNA incorporation in the inner portion of the tumors ranging from 38 to 74% of the total. Similarly, the CT-derived mass transport properties of the tumors had a high degree of heterogeneity, ranging from minimal difference to almost 200% difference between inner and outer portions of the tumor. Our quantitative method to derive transport properties from CT scans demonstrated less than 5% difference in gemcitabine prediction at the average CT-derived transport value across observers. These data illustrate significant inter-patient and intra-tumoral heterogeneity in the delivery of gemcitabine, and highlight how this variability can be reproducibly accounted for using principles of mass transport. With further validation as a biophysical marker, transport properties of tumors may be useful in patient selection for therapy and prediction of

  6. Fission of transactinide elements described in terms of generalized Cassinian ovals: Fragment mass and total kinetic energy distributions

    NASA Astrophysics Data System (ADS)

    Carjan, N.; Ivanyuk, F. A.; Oganessian, Yu.; Ter-Akopian, G.

    2015-10-01

    The total deformation energy at scission for Z = 100, 102, 104 and 106 isotopes is calculated using the Strutinsky's procedure and nuclear shapes described in terms of Cassinian ovals generalized by the inclusion of three additional shape parameters: α1, α4 and α6. The corresponding fragment-mass distributions are estimated supposing they are due to thermal fluctuations in the mass asymmetry degree of freedom. For these four series of isotopes the experimentally observed transition from asymmetric to symmetric fission, that happens with increasing mass number A, is qualitatively reproduced. In lighter isotopes (e.g. 254Fm and 254Rf) two mass-asymmetric fission modes are predicted to occur with comparable yields: one having relatively compact and the other relatively elongated scission configurations. On the other hand, in heavier isotopes (e.g. 264Fm and 264Rf) the fragment-mass distributions are predicted to be narrow single-peaked around A / 2 corresponding to essentially one mass-symmetric fission mode. The mass distributions are estimated separately for each fission mode, in the case of Fm and Rf isotopes, in order to display their inversion when A increases. Finally the distributions of the total kinetic energy of the fragments are calculated, for the same isotopes, in the point-charge approximation. Non-Gaussian shapes are obtained. With increasing mass number A, a transition from a distribution tailing towards higher energies to a distribution tailing towards lower energies and an increase of the difference in the peak positions of the two modes were observed; again in qualitative agreement with experimental data.

  7. Mass Transport and Turbulence in Gravitationally Unstable Disk Galaxies. II: The Effects of Star Formation Feedback

    NASA Astrophysics Data System (ADS)

    Goldbaum, Nathan J.; Krumholz, Mark R.; Forbes, John C.

    2016-08-01

    Self-gravity and stellar feedback are capable of driving turbulence and transporting mass and angular momentum in disk galaxies, but the balance between them is not well understood. In the previous paper in this series, we showed that gravity alone can drive turbulence in galactic disks, regulate their Toomre Q parameters to ∼1, and transport mass inwards at a rate sufficient to fuel star formation in the centers of present-day galaxies. In this paper we extend our models to include the effects of star formation feedback. We show that feedback suppresses galaxies’ star formation rates by a factor of ∼5 and leads to the formation of a multi-phase atomic and molecular interstellar medium. Both the star formation rate and the phase balance produced in our simulations agree well with observations of nearby spirals. After our galaxies reach steady state, we find that the inclusion of feedback actually lowers the gas velocity dispersion slightly compared to the case of pure self-gravity, and also slightly reduces the rate of inward mass transport. Nevertheless, we find that, even with feedback included, our galactic disks self-regulate to Q ∼ 1, and transport mass inwards at a rate sufficient to supply a substantial fraction of the inner disk star formation. We argue that gravitational instability is therefore likely to be the dominant source of turbulence and transport in galactic disks, and that it is responsible for fueling star formation in the inner parts of galactic disks over cosmological times.

  8. Geomorphological characteristics and variability of Holocene mass-transport complexes, St. Lawrence River Estuary, Canada

    NASA Astrophysics Data System (ADS)

    Pinet, Nicolas; Brake, Virginia; Campbell, Calvin; Duchesne, Mathieu J.

    2015-01-01

    Recently acquired multibeam bathymetry data are used to investigate seafloor instability features along a 310 km-long segment of the St. Lawrence River Estuary. The analysis of this dataset indicates that submarine slides occur over a much larger area than previously recognized and that Holocene sediments are reworked by mass-transport along significant portions of both the northwest and southeast margins of the Laurentian Channel. In the surveyed area, 96 individual mass-transport complexes (MTCs) were identified representing 13% of the seabed. MTCs vary in area from less than 1 km2 to more than 40 km2 and exhibit various geomorphological signatures. Qualitative observation reveals an apparent disparity between MTCs that remain coherent and those that disintegrate during downslope transport evolving into a blocky morphological signature. For all MTCs, morphological parameters have been measured (area, length, and height) or calculated (slope and roughness). This quantitative analysis provides a unique opportunity to study these parameters in a statistically significant and homogeneous dataset located in a relatively small area that experienced a similar Quaternary history. In many cases, mass transport events appear to initiate in the vicinity of steep bedrock walls located along some segments of the estuary. The timing of mass-transport events was not constrained during this study. However, the fact that the region hosts the Charlevoix seismic zone, the most tectonically active area in eastern Canada, strongly suggests that earthquakes acted as a trigger for submarine landsliding.

  9. Pesticide Transport with Runoff from Creeping Bentgrass Turf: Relationship of Pesticide Properties to Mass Transport

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The off-site transport of pesticides with runoff is both an agronomic and environmental concern resulting from reduced control of target pests in the area of application and contamination of surrounding ecosystems. Experiments were designed to measure the quantity of pesticides in runoff from creepi...

  10. The relationship between growth hormone kinetics and sarcopenia in postmenopausal women: the role of fat mass and leptin.

    PubMed

    Roubenoff, R; Rall, L C; Veldhuis, J D; Kehayias, J J; Rosen, C; Nicolson, M; Lundgren, N; Reichlin, S

    1998-05-01

    Sarcopenia, the decline in body cell mass (BCM) and especially in muscle mass with age, is an important age-related cause of frailty and loss of independence in the elderly. Because the decline in BCM with age parallels a decline in GH secretion from young adulthood to old age, loss of GH secretion has been considered an important contributory cause of sarcopenia in the elderly. To test this hypothesis in a group of healthy postmenopausal women (n = 15; mean +/- SD age, 66.9 +/- 7.8 yr), 24-h GH concentrations and secretory kinetics were correlated with BCM (measured by whole body counting of 40K) and percent body fat (measured by dual energy x-ray absorptiometry or neutron inelastic scattering). Serum leptin levels were determined as a measure of adipocyte mass. Contrary to prediction, GH secretion was lower in women with higher BCM (r = 0.50; P < 0.05), whereas their mean fat mass was higher (r = 0.51, P < 0.05). These data indicate that sarcopenia in postmenopausal women is not associated with reduced GH secretion and is inversely correlated with fat mass. Serum leptin levels were inversely associated with GH secretion (r = -0.67; P < 0.006). Although a causal relationship has not been demonstrated, these data suggest that leptin could modulate GH secretion through its action on the aging hypothalamic-pituitary axis, or that GH regulates leptin secretion. PMID:9589646

  11. A protocol for the measurement of all the parameters of the mass transfer kinetics in columns used in liquid chromatography

    SciTech Connect

    Gritti, Fabrice; Guiochon, Georges A

    2010-01-01

    Band broadening in chromatography results from the combination of the dispersive effects that are associated with the different steps involved in the migration of compound bands along the column. These steps include longitudinal diffusion, trans-particle mass transfer, external film mass transfer, overall eddy diffusion, including trans-column, short-range inter-channel, trans-channel eddy diffusion, and the possible, additional mass transfer contributions arising from heat friction and the thermal heterogeneity of the column. We describe a series of experiments that provide the data needed to determine the coefficients of the contributions to band broadening of each one of these individual mass transfer steps. This specifically designed protocol can provide key information regarding the kinetic performance of columns used in liquid chromatography and explain why different columns behave so differently. The limitations, accuracy and precision of these methods are discussed. Further avenues of research that could improve the characterization of the mass transfer mechanisms in chromatographic columns, possibly contributing to the development of better columns, are suggested.

  12. TACK—a program coupling chemical kinetics with a two-dimensional transport model in geochemical systems

    NASA Astrophysics Data System (ADS)

    Källvenius, Göran; Ekberg, Christian

    2003-05-01

    The Transport And Chemical Kinetics (TACK) program has been designed to make predictions of the chemistry in the vicinity of a planned repository for nuclear waste, i.e. SFL 3-5, where SFL is the Swedish abbreviation for "Swedish repository for long-lived waste". This implies modelling transport and chemistry in fractured rock. The system concerned in the modelling of SFL is leaching water from decommissioning waste in concrete. The concrete will raise the pH in the water to between 12 and 13.5. So far, only a few calculations have been made on such systems. Coupled transport and chemical reaction programs should be used, since the system is important for safety assessments of the repository. At least two of programs can be used for this kind of problem, for example OS3D/GIMRT and PHAST. As it is also important to consider the uncertainty of the model, the TACK program fills an important purpose here. A slightly different approach to the problem may give significantly different results. Because validation is generally not possible, using several programs is the only key to identifying conceptual uncertainties. To illustrate this point, comparative calculations have been made between TACK and the PHAST program. The calculations gave qualitatively similar result but quantitatively somewhat differing results. The TACK program couples the well known PHREEQC geochemical program with a two-dimensional transport model. The PHREEQC calculations include speciation of solutions and mineral reactions involving kinetics. The reasons for choosing this program are that it is quite a general one and is relatively stable at the high pH values present in the systems used. The transport phenomena taken into account in the model are advection, diffusion and dispersion in two dimensions.

  13. Mass and momentum turbulent transport experiments with confined swirling coaxial jets

    NASA Technical Reports Server (NTRS)

    Roback, R.; Johnson, B. V.

    1983-01-01

    Swirling coaxial jets mixing downstream, discharging into an expanded duct was conducted to obtain data for the evaluation and improvement of turbulent transport models currently used in a variety of computational procedures throughout the combustion community. A combination of laser velocimeter (LV) and laser induced fluorescence (LIF) techniques was employed to obtain mean and fluctuating velocity and concentration distributions which were used to derive mass and momentum turbulent transport parameters currently incorporated into various combustor flow models. Flow visualization techniques were also employed to determine qualitatively the time dependent characteristics of the flow and the scale of turbulence. The results of these measurements indicated that the largest momentum turbulent transport was in the r-z plane. Peak momentum turbulent transport rates were approximately the same as those for the nonswirling flow condition. The mass turbulent transport process for swirling flow was complicated. Mixing occurred in several steps of axial and radial mass transport and was coupled with a large radial mean convective flux. Mixing for swirling flow was completed in one-third the length required for nonswirling flow.

  14. Mass transport properties of Pu/DT mixtures from orbital free molecular dynamics simulations

    SciTech Connect

    Kress, Joel David; Ticknor, Christopher; Collins, Lee A.

    2015-09-16

    Mass transport properties (shear viscosity and diffusion coefficients) for Pu/DT mixtures were calculated with Orbital Free Molecular Dynamics (OFMD). The results were fitted to simple functions of mass density (for ρ=10.4 to 62.4 g/cm3) and temperature (for T=100 up to 3,000 eV) for Pu/DT mixtures consisting of 100/0, 25/75, 50/50, and 75/25 by number.

  15. Kinetic transport model for cellular regulation of pH and solute concentration in the renal proximal tubule.

    PubMed Central

    Verkman, A S; Alpern, R J

    1987-01-01

    An open circuit kinetic model was developed to calculate the time course of proximal tubule cell pH, solute concentrations, and volume in response to induced perturbations in luminal or peritubular fluid composition. Solute fluxes were calculated from electrokinetic equations containing terms for known carrier saturabilities, allosteric dependences, and ion coupling ratios. Apical and basolateral membrane potentials were determined iteratively from the requirements of cell electroneutrality and equal opposing transcellular and paracellular currents. The model converged to membrane potentials accurate to 0.05% in one to four iterations. Model variables included cell concentrations of Na, K, HCO3, glucose, pH (uniform CO2), volume, and apical and basolateral membrane potentials. The basic model contained passive apical membrane transport of Na/H, Na/glucose, H and K, basolateral transport of Na/3HCO3, K, H, and glucose, and paracellular transport of Na, K, Cl, and HCO3; apical H and basolateral 3Na/2K-ATPases were present. Apical Na/H and basolateral K transport were regulated allosterically by pH. Apical Na/H transport, basolateral Na/3HCO3 transport, and the 3Na/2K-ATPase were saturable. Model parameters were chosen from data in the rat proximal tubule. Model predictions for the magnitude and time course of cell pH, Na, and membrane potential in response to rapid changes in apical and peritubular Na and HCO3 were in excellent agreement with experiment. In addition, the model requires that there exist an apical H-ATPase, basolateral Na/3HCO3 transport saturable with HCO3, and electroneutral basolateral K transport. PMID:3580482

  16. Probing Intra- versus Interchain Kinetic Preferences of L-Thr Acylation on Dimeric VibF with Mass Spectrometry

    PubMed Central

    Hicks, Leslie M.; Balibar, Carl J.; Walsh, Christopher T.; Kelleher, Neil L.; Hillson, Nathan J.

    2006-01-01

    We present a method to probe intra- and interchain activities within dimeric nonribosomal peptide synthetases. Utilizing domain inactivation and analytical mass mutants in conjunction with rapid-quench, mass spectrometry, and a probabilistic kinetic model, we have elucidated the pre-steady-state intra- and interchain rates and the corresponding flux of the acylation of L-Thr onto VibF. Although the intra rate is significantly faster than the inter rate, the data are most consistent with an even flux of covalent substrate loading where neither pathway dominates. These pre-steady-state results confirm previous steady-state in vitro mutant complementation studies of VibF. Extension of this methodology to other dimeric nonribosomal peptide synthetases, and to the related fatty acid and polyketide synthases, will further our biophysical understanding of their acyl-intermediate-processing pathways. PMID:16815901

  17. Non-local approach to kinetic effects on parallel transport in fluid models of the scrape-off layer

    NASA Astrophysics Data System (ADS)

    Omotani, J. T.; Dudson, B. D.

    2013-05-01

    Using a non-local model, fluid simulations can capture kinetic effects in the parallel electron heat-flux better than is possible using flux limiters in the usual diffusive models. Non-local and diffusive models are compared using a test case representative of an edge-localized mode crash in the JET scrape-off layer (SOL), simulated in one dimension. The non-local model shows substantially enhanced electron temperature gradients, which cannot be achieved using a flux limiter. The performance of the implementation, in the BOUT++ framework, is also analysed to demonstrate its suitability for application in three-dimensional simulations of turbulent transport in the SOL.

  18. Distribution and transport kinetics of radionuclides sup 99 Mo and sup 131 I in a simulated aquatic ecosystem

    SciTech Connect

    Svadlenkova, M.; Konecny, J.; Obdrzalek, M.; Simanov, L. )

    1990-04-01

    Radioactive liquid wastes from nuclear power stations increase the activity not only of water but also of sediment, aquatic and shore plants, and animals. On average, the majority of the total radioactivity brought to the aquatic system is absorbed by the sediment; the remaining fraction is distributed between water and biomass. For us to be able to assess the influence of the nuclear power station at Temelin in South Bohemia on the nearby hydrosphere, the authors concentrated first on the experimental investigation of the distribution and transport kinetics of some radionuclides in a simulated aquatic system.

  19. Kinetic Analysis of [11C]McN5652: A Serotonin Transporter Radioligand

    PubMed Central

    Szabo, Zsolt; Scheffel, Ursula; Mathews, William B.; Ravert, Hayden T.; Szabo, Katalina; Kraut, Michael; Palmon, Sally; Ricaurte, George A.; Dannals, Robert F.

    2007-01-01

    Summary The impulse response function of a radioligand is the most fundamental way to describe its pharmacokinetics and to assess its tissue uptake and retention pattern. This study investigates the impulse response function of [11C](+)McN5652, a radioligand used for positron emission tomography (PET) imaging of the serotonin transporter (SERT) in the brain. Dynamic PET studies were performed in eight healthy volunteers injected with [11C](+)McN5652 and subsequently with its pharmacologically inactive enantiomer [11C](−)McN5652. The impulse response function was calculated by deconvolution analysis of regional time-activity curves, and its peak value (fmax), its retention value at 75 minutes (fT), and its normalized retention (frel = fr/fmax) were obtained. Alternatively, compartmental models were applied to calculate the apparent total distribution volume (DVT) and its specific binding component (DVS). Both the noncompartmental (fT, frel) and the compartmental parameters (DV) were investigated with and without correction for nonspecific binding by simple subtraction of the corresponding value obtained with [11C](−)McN5652. The impulse response function obtained by deconvolution analysis demonstrated high tracer extraction followed by a slow decline in the form of a monoexponential function. Statistical analysis revealed that the best compartmental model in terms of analysis of variance F and condition number of the parameter variance-covariance matrix was the one that was based on a single tissue compartment with parameters k1and k2 and that also included the parameter of regional cerebral blood volume (BV). The parameter frel demonstrated low between-subject variance (coefficient of variation [CV] = 19%), a midbrain to cerebellum ratio of 1.85, and high correlation with the known density of SERT (r = 0.787 where r is the coefficient of linear correlation between the parameter and the known density of SERT). After correction for nonspecific binding, frel

  20. Determination of O₂ Mass Transport at the Pt | PFSA Ionomer Interface under Reduced Relative Humidity.

    PubMed

    Novitski, David; Holdcroft, Steven

    2015-12-16

    Oxygen mass transport resistance through the ionomer component in the cathode catalyst layer is considered to contribute overpotential losses in polymer electrolyte membrane fuel cells. Whereas it is known that water uptake, water transport, and proton conductivity are reduced upon reducing relative humidity, the effect on oxygen mass transport remains unknown. We report a two-electrode approach to determine mass transport coefficients for the oxygen reduction reaction in air at the Pt/perfluorosulfonic acid ionomer membrane interface between 90 and 30% RH at 70 °C using a Pt microdisk in a solid state electrochemical cell. Potential-step chronoamperometry was performed at specific mass-transport limiting potentials to allow for the elucidation of the oxygen diffusion coefficient (D(bO2)) and oxygen concentration (c(bO2)). In our efforts, novel approaches in data acquisition, as well as analysis, were examined because of the dynamic nature of the membrane under lowered hydration conditions. Linear regression analysis reveals a decrease in oxygen permeability (D(bO2c(bO2)) by a factor of 1.7 and 3.4 from 90 to 30% RH for Nafion 211 membrane and membranes cast from Nafion DE2020 ionomer solutions, respectively. Additionally, nonlinear curve fitting by way of the Shoup-Szabo equation is employed to analyze the entire current transient during potential step controlled ORR. We also report on the presence of an RH dependence of our previously reported time-dependency measurements for O2 mass transport coefficients. PMID:26583742

  1. Mass transport and alloying during InN growth on GaN by molecular-beam epitaxy

    SciTech Connect

    Liu, Y.; Xie, M.H.; Wu, H.S.; Tong, S.Y.

    2006-05-29

    During Stranski-Krastanov (SK) growth of InN on GaN by molecular-beam epitaxy, a mass transport is noted from the two-dimensional wetting layer and/or the surface excess metal adlayers to the SK islands when the excess nitrogen flux is used for deposition. The extent of mass transport depends on the material coverage. For growth under the excess indium flux condition, no such mass transport is observed.

  2. Effect of ohmic, mass-transfer, and kinetic resistances on linear-sweep voltammetry in a cylindrical-pore electrode

    NASA Technical Reports Server (NTRS)

    Weidner, John W.; Fedkiw, Peter S.

    1991-01-01

    A means is presented to account for the effect of ohmic, mass-transfer, and kinetic resistances on linear-sweep voltammograms by modeling a pore in a porous matrix as a cylindrical-pore electrode, and solving the mass and charge conservation equations in the context of this geometry for the simply redox reaction O + ne(-) yield R where both O and R are soluble species. Both analytical and numerical techniques are used to solve the governing equations. The calculated peak currents and potentials are correlated by empirical formulas to the measurable parameters: sweep rate, concentration of the redox species, diffusion coefficient, conductivity of the electrolyte, and pore dimensions. Using the correlations, a methodology is established for determining if the redox reaction kinetics are irreversible or reversible (Nernstian). If the reaction is irreversible, it is shown how the standard rate constant and the transfer coefficient may be extracted from linear-sweep voltammetry data, or, if the reaction is reversible, how the number of electrons transferred may be deduced.

  3. Nature of turbulent transport across sheared zonal flows: insights from gyro-kinetic simulations

    SciTech Connect

    Sanchez, Raul; Newman, David E; Leboeuf, Jean-Noel; Decyk, Viktor

    2011-01-01

    The traditional view regarding the reduction of turbulence-induced transport across a stable sheared flow invokes a reduction of the characteristic length scale in the direction perpendicular to the flow as a result of the shearing and stretching of eddies caused by the differential pull exerted in the direction of the flow. A reduced effective transport coefficient then suffices to capture the reduction, that can then be readily incorporated into a transport model. However, recent evidence from gyrokinetic simulations of the toroidal ion-temperature-gradient mode suggests that the dynamics of turbulent transport across sheared flows changes in a more fundamental manner, and that the use of reduced effective transport coefficients fails to capture the full dynamics that may exhibit both subdiffusion and non-Gaussian statistics. In this contribution, after briefly reviewing these results, we propose some candidates for the physical mechanisms responsible for endowing transport with such non-diffusive characteristics, backing these proposals with new numerical gyrokinetic data

  4. Volatiles mass transport within particles of softened coal. Technical progress report, April 1-October 20, 1986

    SciTech Connect

    Howard, J.; Hsu, J.S.; Peters, W.A.

    1986-10-01

    A mathematical model is developed to describe the intraparticle effects of unsteady volatiles transport, chemical kinetics of metaplast formation and depletion, and transient plastic behavior in softening coal pyrolysis. In the pyrolysis process, coal is converted into metaplast and gases via chemical-bond breaking and physical melting. The viscous, fluid-like metaplast further decomposes to form gases, tar, and coke. The transports of gaseous species to the particle surface and to the bubbles which are originated from the sealed pores in the metaplast phase are related to the plastic behavior of coal. The bubbles may grow due to the influx of gaseous volatiles adn the decomposition of tar evaporated from the metaplast. Through the break-up of bubbles on the particle surface, the tar and the light gases in bubbles are released into the ambient. The main objectives of this model are to quantitatively simulate the coupled effects of transport and kinetics and to predict the independent effects of reaction temperature, pressure, particle size, and heating rate on the volatiles yields and the extent of swelling during pyrolysis.

  5. A coupled transport and solid mechanics formulation with improved reaction kinetics parameters for modeling oxidation and decomposition in a uranium hydride bed.

    SciTech Connect

    Salloum, Maher N.; Shugard, Andrew D.; Kanouff, Michael P.; Gharagozloo, Patricia E.

    2013-03-01

    Modeling of reacting flows in porous media has become particularly important with the increased interest in hydrogen solid-storage beds. An advanced type of storage bed has been proposed that utilizes oxidation of uranium hydride to heat and decompose the hydride, releasing the hydrogen. To reduce the cost and time required to develop these systems experimentally, a valid computational model is required that simulates the reaction of uranium hydride and oxygen gas in a hydrogen storage bed using multiphysics finite element modeling. This SAND report discusses the advancements made in FY12 (since our last SAND report SAND2011-6939) to the model developed as a part of an ASC-P&EM project to address the shortcomings of the previous model. The model considers chemical reactions, heat transport, and mass transport within a hydride bed. Previously, the time-varying permeability and porosity were considered uniform. This led to discrepancies between the simulated results and experimental measurements. In this work, the effects of non-uniform changes in permeability and porosity due to phase and thermal expansion are accounted for. These expansions result in mechanical stresses that lead to bed deformation. To describe this, a simplified solid mechanics model for the local variation of permeability and porosity as a function of the local bed deformation is developed. By using this solid mechanics model, the agreement between our reacting bed model and the experimental data is improved. Additionally, more accurate uranium hydride oxidation kinetics parameters are obtained by fitting the experimental results from a pure uranium hydride oxidation measurement to the ones obtained from the coupled transport-solid mechanics model. Finally, the coupled transport-solid mechanics model governing equations and boundary conditions are summarized and recommendations are made for further development of ARIA and other Sandia codes in order for them to sufficiently implement the model.

  6. Effects of Neutron Emission on Fragment Mass and Kinetic Energy Distribution from Thermal Neutron-Induced Fission of {sup 235}U

    SciTech Connect

    Montoya, M.; Rojas, J.; Saetone, E.

    2007-10-26

    The mass and kinetic energy distribution of nuclear fragments from thermal neutron-induced fission of {sup 235}U(n{sub th},f) have been studied using a Monte-Carlo simulation. Besides reproducing the pronounced broadening in the standard deviation of the kinetic energy at the final fragment mass number around m = 109, our simulation also produces a second broadening around m = 125. These results are in good agreement with the experimental data obtained by Belhafaf et al. and other results on yield of mass. We conclude that the obtained results are a consequence of the characteristics of the neutron emission, the sharp variation in the primary fragment kinetic energy and mass yield curves. We show that because neutron emission is hazardous to make any conclusion on primary quantities distribution of fragments from experimental results on final quantities distributions.

  7. Studies of Alkali Sorption Kinetics for Pressurized Fluidized Bed Combustion by High Pressure Mass Spectrometry

    SciTech Connect

    Wolf, K.J.; Willenborg, W.; Fricke, C.; Prikhodovsky, A.; Hilpert, K.; Singheiser, L.

    2002-09-20

    This work describes the first approach to use High Pressure Mass Spectrometry (HPMS) for the quantification and analysis of alkali species in a gas stream downstream a sorbent bed of different tested alumosilicates.

  8. Kinetic compartmental analysis of carnitine metabolism in the human carnitine deficiency syndromes. Evidence for alterations in tissue carnitine transport.

    PubMed Central

    Rebouche, C J; Engel, A G

    1984-01-01

    The human primary carnitine deficiency syndromes are potentially fatal disorders affecting children and adults. The molecular etiologies of these syndromes have not been determined. In this investigation, we considered the hypothesis that these syndromes result from defective transport of carnitine into tissues, particularly skeletal muscle. The problem was approached by mathematical modeling, by using the technique of kinetic compartmental analysis. A tracer dose of L-[methyl-3H]carnitine was administered intravenously to six normal subjects, one patient with primary muscle carnitine deficiency (MCD), and four patients with primary systemic carnitine deficiency (SCD). Specific radioactivity was followed in plasma for 28 d. A three-compartment model (extracellular fluid, muscle, and "other tissues") was adopted. Rate constants, fluxes, pool sizes, and turnover times were calculated. Results of these calculations indicated reduced transport of carnitine into muscle in both forms of primary carnitine deficiency. However, in SCD, the reduced rate of carnitine transport was attributed to reduced plasma carnitine concentration. In MCD, the results are consistent with an intrinsic defect in the transport process. Abnormal fluctuations of the plasma carnitine, but of a different form, occurred in MCD and SCD. The significance of these are unclear, but in SCD they suggest abnormal regulation of the muscle/plasma carnitine concentration gradient. In 8 of 11 subjects, carnitine excretion was less than dietary carnitine intake. Carnitine excretion rates calculated by kinetic compartmental analysis were higher than corresponding rates measured directly, indicating degradation of carnitine. However, we found no radioactive metabolites of L-[methyl-3H]carnitine in urine. These observations suggest that dietary carnitine was metabolized in the gastrointestinal tract. PMID:6707204

  9. Measurements of Combined Axial Mass and Heat Transport in He II.

    ERIC Educational Resources Information Center

    Johnson, Warren W.; Jones, Michael C.

    An experiment was performed that allowed measurements of both axial mass and heat transport of He-II (the superfluid phase of helium 4) in a long tube. The apparatus allowed the pressure difference and the temperature difference across the flow tube to each be independently adjusted, and the resulting steady-state values of net fluid velocity and…

  10. Mean Flow Velocities and Mass Transport for Equatorially-Trapped Water Waves with an Underlying Current

    NASA Astrophysics Data System (ADS)

    Henry, David; Sastre-Gomez, Silvia

    2016-04-01

    In this paper we present an analysis of the mean flow velocities, and related mass transport, which are induced by certain equatorially-trapped water waves. In particular, we examine a recently-derived exact and explicit solution to the geophysical governing equations in the {β} -plane approximation at the equator which incorporates a constant underlying current.

  11. Momentum and mass transport over a superhydrophobic bubble mattress: the influence of interface geometry

    NASA Astrophysics Data System (ADS)

    Tsai, Peichun Amy; Haase, A. Sander; Karatay, Elif; Lammertink, Rob; Soft Matter, Fluidics; Interfaces Group Team

    2013-11-01

    We numerically investigate the influence of interface geometry on momentum and mass transport on a partially slippery bubble mattress. The bubble mattress, forming a superhydrophobic substrate, consists of an array of slippery (shear-free) gas bubbles with (no-slip) solids walls in between. We consider steady pressure-driven laminar flow over the bubble mattress, with a solute being supplied from the gas bubbles. The results show that solute transport can be enhanced significantly due to effective slippage, compared to a fully saturated no-slip wall. The enhancement depends on the interface geometry of the bubble mattress, i.e. on the bubble size, protrusion angle, and surface porosity. In addition, we demonstrate that the mass transfer enhancement disappears below a critical bubble size. The effective slip vanishes for very small bubbles, whereby interfacial transport becomes diffusion dominated. For large bubbles, solute transport near the interface is greatly enhanced by convection. The results provide insight into the optimal design of ultra-hydrophobic bubble mattresses to enhance both momentum and mass transport.

  12. Analysis of the sodium chloride-dependent respiratory kinetics of wheat mitochondria reveals differential effects on phosphorylating and non-phosphorylating electron transport pathways.

    PubMed

    Jacoby, R P; Che-Othman, M H; Millar, A H; Taylor, N L

    2016-04-01

    A number of previous studies have documented the gross response of mitochondrial respiration to salinity treatment, but it is unclear how NaCl directly affects the kinetics of plant phosphorylating and non-phosphorylating electron transport pathways. This study investigates the direct effects of NaCl upon different respiratory pathways in wheat, by measuring rates of isolated mitochondrial oxygen consumption across different substrate oxidation pathways in saline media. We also profile the abundance of respiratory proteins by using targeted selected reaction monitoring (SRM) mass spectrometry of mitochondria isolated from control and salt-treated wheat plants. We show that all pathways of electron transport were inhibited by NaCl concentrations above 400 mM; however electron transfer chains showed divergent responses to NaCl concentrations between 0 and 200 mM. Stimulation of oxygen consumption was measured in response to NaCl in scenarios where exogenous NADH was provided as substrate and electron flow was coupled to the generation of a proton gradient across the inner membrane. Protein abundance measurements show that several enzymes with activities less affected by NaCl are induced by salinity, whereas enzymes with activities inhibited by NaCl are depleted. These data deepen our understanding of how plant respiration responds to NaCl, offering new mechanistic explanations for the divergent salinity responses of whole-plant respiratory rate in the literature. PMID:26470009

  13. Model simulation and experiments of flow and mass transport through a nano-material gas filter

    SciTech Connect

    Yang, Xiaofan; Zheng, Zhongquan C.; Winecki, Slawomir; Eckels, Steve

    2013-11-01

    A computational model for evaluating the performance of nano-material packed-bed filters was developed. The porous effects of the momentum and mass transport within the filter bed were simulated. For the momentum transport, an extended Ergun-type model was employed and the energy loss (pressure drop) along the packed-bed was simulated and compared with measurement. For the mass transport, a bulk dsorption model was developed to study the adsorption process (breakthrough behavior). Various types of porous materials and gas flows were tested in the filter system where the mathematical models used in the porous substrate were implemented and validated by comparing with experimental data and analytical solutions under similar conditions. Good agreements were obtained between experiments and model predictions.

  14. Focused transport of energetic particles along magnetic field lines draped around a coronal mass ejection

    NASA Technical Reports Server (NTRS)

    Tan, L. C.; Mason, G. M.; Lee, M. A.; Klecker, B.; Ipavich, F. M.

    1992-01-01

    Evidence is presented for focused transport of energetic particles along magnetic field lines draped around a coronal mass ejection. This evidence was obtained with the University of Maryland/Max-Planck-Institute experiment on the ISEE-3 spacecraft during the decay phase of the June 6, 1979, solar particle event. During the early portion of the decay phase of this event, interplanetary magnetic field lines were apparently draped around a coronal mass ejection, leading to a small focusing length on the western flank where ISEE 3 was located. A period of very slow decrease of particle intensity was observed, along with large sunward anisotropy in the solar wind frame, which is inconsistent with predictions of the standard Fokker-Planck equation models for diffusive transport. It was found possible to fit the observations, assuming that focused transport dominates and that the particle pitch angle scattering is isotropic.

  15. Biodegradation of gasoline: kinetics, mass balance and fate of individual hydrocarbons.

    PubMed

    Solano-Serena, F; Marchal, R; Ropars, M; Lebeault, J M; Vandecasteele, J P

    1999-06-01

    The degradation of gasoline by a microflora from an urban waste water activated sludge was investigated in detail. Degradation kinetics were studied in liquid cultures at 30 degrees C by determination of overall O2 consumption and CO2 production and by chromatographic analysis of all 83 identifiable compounds. In a first fast phase (2 d) of biodegradation, 74% of gasoline, involving mostly aromatic hydrocarbons, was consumed. A further 20%, involving other hydrocarbons, was consumed in a second slow phase (23 d). Undegraded compounds (6% of gasoline) were essentially some branched alkanes with a quaternary carbon or/and alkyl chains on consecutive carbons but cycloalkanes, alkenes and C10- and C11-alkylated benzenes were degraded. The degradation kinetics of individual hydrocarbons, determined in separate incubations, followed patterns similar to those observed in cultures on gasoline. Carbon balance experiments of gasoline degradation were performed. The carbon of degraded gasoline was mainly (61.7%) mineralized into CO2, the remaining carbon being essentially converted into biomass. PMID:10389248

  16. Kinetics and mass spectrometric measurements of myoglobin unfolding in aqueous ionic liquid solutions.

    PubMed

    Miller, Miranda C; Hanna, Sylvia L; DeFrates, Kelsey G; Fiebig, Olivia C; Vaden, Timothy D

    2016-04-01

    Recent studies have characterized the effects of aqueous ionic liquids on myoglobin unfolding for the broader purposes of understanding their effects on protein structures, stabilities, and ultimately biocompatibilities for future applications. Here, we investigated the effects of four different ionic liquids (ILs) on the thermal stability, unfolding kinetics, and tertiary shape of myoglobin. We compared results for four different ILs: 1-butyl-3-methyl imidazolium tetrafluoroborate (BMIBF4); 1-butyl-3-methyl pyrrolidinium tetrafluoroborate (PyrrBF4); 1-ethyl-3-methyl imidazolium acetate (EMIAc); and tetramethylguanidinium acetate (TMGAc). Results showed that ILs accelerate myoglobin unfolding kinetics both through aqueous solution ionic strength effects and ionic liquid-specific effects. Arrhenius plots of observed rate constants reveal that some ILs lower the energy barrier to unfolding, possibly by destabilizing the native protein state. The magnitude of these ionic liquid effects correlates with their effects on protein thermodynamic stabilities. Hydrogen-deuterium exchange (HDX) experiments using ESI-MS showed that myoglobin exhibits a more open, and presumably less stable, tertiary shape in aqueous IL solutions. Overall, BMIBF4 and TMGAc exhibit the strongest effect on the myoglobin stability, unfolding rate, and tertiary structure while PyrrBF4 and EMIAc have weaker effects under our experimental conditions. PMID:26751398

  17. Myosin VI as a transporter and an anchor: A model for kinetics of the motor under load

    NASA Astrophysics Data System (ADS)

    Chuan, Peiying; Spudich, James; Dunn, Alexander

    2010-03-01

    Myosin VI is an actin-based motor that is thought to function both as a transporter and an anchor in vivo. In an earlier study (Altman et al, Cell 2004), inhibition of myosin VI stepping kinetics by load applied using an optical trap was observed at saturating ATP and low ADP concentrations (< 2.5 μM). A simple mechanism whereby the rate of ADP binding increases exponentially with load was proposed. This model predicts that myosin VI functions primarily as an anchor at loads greater than ˜0.5 pN under physiological nucleotide conditions, which is potentially inconsistent with its roles in vivo. Here we present myosin VI stepping data taken at a variety of applied loads and ADP concentrations, and show that the Altman model only holds at low ADP concentrations. At higher, physiologically relevant ADP concentrations under load we observe dwell times that are an order of magnitude smaller than predicted by the Altman model. We present a modified model in which applied load alters the equilibrium between two myosin VI states with different nucleotide affinities. This new kinetic scheme accurately describes myosin VI behavior at various nucleotide conditions under a large range of loads, and explains how the motor is able to carry out its roles in vivo, both as a force-generating transporter and as an anchor.

  18. A mass-conserving advection scheme for offline simulation of scalar transport in coastal ocean models

    NASA Astrophysics Data System (ADS)

    Gillibrand, P. A.; Herzfeld, M.

    2016-05-01

    We present a flux-form semi-Lagrangian (FFSL) advection scheme designed for offline scalar transport simulation with coastal ocean models using curvilinear horizontal coordinates. The scheme conserves mass, overcoming problems of mass conservation typically experienced with offline transport models, and permits long time steps (relative to the Courant number) to be used by the offline model. These attributes make the method attractive for offline simulation of tracers in biogeochemical or sediment transport models using archived flow fields from hydrodynamic models. We describe the FFSL scheme, and test it on two idealised domains and one real domain, the Great Barrier Reef in Australia. For comparison, we also include simulations using a traditional semi-Lagrangian advection scheme for the offline simulations. We compare tracer distributions predicted by the offline FFSL transport scheme with those predicted by the original hydrodynamic model, assess the conservation of mass in all cases and contrast the computational efficiency of the schemes. We find that the FFSL scheme produced very good agreement with the distributions of tracer predicted by the hydrodynamic model, and conserved mass with an error of a fraction of one percent. In terms of computational speed, the FFSL scheme was comparable with the semi-Lagrangian method and an order of magnitude faster than the full hydrodynamic model, even when the latter ran in parallel on multiple cores. The FFSL scheme presented here therefore offers a viable mass-conserving and computationally-efficient alternative to traditional semi-Lagrangian schemes for offline scalar transport simulation in coastal models.

  19. Kinetic theory of passing energetic ion transport in presence of the resonant interactions with a rotating magnetic island

    NASA Astrophysics Data System (ADS)

    Cao, Jinjia; Wang, Aike; Gong, Xueyu; Xiang, Dong; Huang, Qianhong; Yu, Jun

    2016-01-01

    The enhanced transport of passing energetic ions (PEIs) in presence of the resonant interactions with a rotating magnetic island is investigated within the drift kinetic framework. When the island rotation plays a role in the resonant interaction, we find that the velocities of PEIs satisfy a constraint relation of resonant flux surface in phase space. The resonant flux surfaces overlap with the magnetic flux surfaces in real space. A new transport channel responsible for the PEIs moving across the magnetic flux surfaces, i.e., continuously overlapping, is found. Two kinds of radial motions can be induced by the surface overlapping: one arises from the coupling between the resonance and the collision with the background plasma and the other from not completely overlapping of the two surfaces. The two radial motions and the symmetry-breaking induced radial motion constitute the total radial motion. When the pitch-angle scattering rate is very weak, the surface-shear induced transport is dominant. Only a small increase in the collision rate can significantly influence the total transport.

  20. Mathematical modelling of oil spill fate and transport in the marine environment incorporating biodegradation kinetics of oil droplets

    NASA Astrophysics Data System (ADS)

    Spanoudaki, Katerina

    2016-04-01

    Oil biodegradation by native bacteria is one of the most important natural processes that can attenuate the environmental impacts of marine oil spills. However, very few numerical models of oil spill fate and transport include biodegradation kinetics of spilled oil. Furthermore, in models where biodegradation is included amongst the oil transformation processes simulated, it is mostly represented as a first order decay process neglecting the effect of several important parameters that can limit biodegradation rate, such as oil composition and oil droplets-water interface. To this end, the open source numerical model MEDSKIL-II, which simulates oil spill fate and transport in the marine environment, has been modified to include biodegradation kinetics of oil droplets dispersed in the water column. MEDSLIK-II predicts the transport and weathering of oil spills following a Lagrangian approach for the solution of the advection-diffusion equation. Transport is governed by the 3D sea currents and wave field provided by ocean circulation models. In addition to advective and diffusive displacements, the model simulates several physical and chemical processes that transform the oil (evaporation, emulsification, dispersion in the water column, adhesion to coast). The fate algorithms employed in MEDSLIK-II consider the oil as a uniform substance whose properties change as the slick weathers, an approach that can lead to reduced accuracy, especially in the estimation of oil evaporation and biodegradation. Therefore MEDSLIK-II has been modified by adopting the "pseudo-component" approach for simulating weathering processes. Spilled oil is modelled as a relatively small number of discrete, non-interacting components (pseudo-components). Chemicals in the oil mixture are grouped by physical-chemical properties and the resulting pseudo-component behaves as if it were a single substance with characteristics typical of the chemical group. The fate (evaporation, dispersion

  1. Kinetic properties of normal and perturbed axonal transport of serotonin in a single identified axon.

    PubMed Central

    Goldberg, D J; Schwartz, J H; Sherbany, A A

    1978-01-01

    1. The axonal transport of pulses of [3H]serotonin was studied in an axon of the serotonergic giant cerebral neurone (GCN) of Aplysia californica. 2. [3H]serotonin was transported as a discrete peak which was followed by a relatively low, smooth trail. 3. The peak broadened as it moved along the axon, sometimes skewing in the proximal direction. 4. The velocity of the transport was highly dependent on temperature, but the rate of peak broadening was not. The velocity was 130 mm per day at 23 degrees C and 48 mm per day at 14 degrees C. The rate of broadening was 143 micrometer per mm transport at 23 degrees C and 156 micrometer per mm transport at 14 degrees C. 5. In another series of experiments, almost the entire length of the lip nerve, which contained the axon of GCN, was maintained at 1--3 degrees C to block transport. The GCN's cell body and the proximal few millimetres of the nerve were maintained at 23 degrees C. As a result, the amount of [3H]serotonin in the proximal segment of the nerve increased manyfold during periods of up to 4 hr. The concentrated pulse of [3H]serotonin resulting from this treatment was transported more slowly than normal after the cooling was terminated. Sometimes, a minor peak split from the major peak of radioactivity and was transported a normal velocity. 6. Incubation of the cerebral ganglion and nerves for 16 hr in the presence of anisomycin, an inhibitor of protein synthesis, reduced by nearly fourfold the amount of [3H]serotonin subsequently exported into the axon of the GCN. The transport velocity at this reduced concentration was less than half the normal value. If the concentration of [3H]serotonin in the axon was restored to normal in the presence of anisomycin, the velocity of transport was also returned to normal. 7. We conclude that the velocity of transport of serotonergic vesicles in the axon of the GCN is positively dependent on the local concentration of vesicles, except at very high concentrations, where the

  2. Multiscale mass transport in z ˜6 galactic discs: fuelling black holes

    NASA Astrophysics Data System (ADS)

    Prieto, Joaquin; Escala, Andrés

    2016-08-01

    By using Adaptive Mesh Refinement cosmological hydrodynamic N-body zoom-in simulations, with the RAMSES code, we studied the mass transport processes on to galactic nuclei from high redshift up to z ˜6. Due to the large dynamical range of the simulations, we were able to study the mass accretion process on scales from ˜50 kpc to ˜few 1 pc. We studied the black hole (BH) growth on to the Galactic Centre in relation with the mass transport processes associated to both the Reynolds stress and the gravitational stress on the disc. Such methodology allowed us to identify the main mass transport process as a function of the scales of the problem. We found that in simulations that include radiative cooling and supernovae feedback, the supermassive black hole (SMBH) grows at the Eddington limit for some periods of time presenting ≈ 0.5 throughout its evolution. The α parameter is dominated by the Reynolds term, αR, with αR ≫ 1. The gravitational part of the α parameter, αG, has an increasing trend towards the Galactic Centre at higher redshifts, with values αG ˜1 at radii ≲ few 101 pc contributing to the BH fuelling. In terms of torques, we also found that gravity has an increasing contribution towards the Galactic Centre at earlier epochs with a mixed contribution above ˜100 pc. This complementary work between pressure gradients and gravitational potential gradients allows an efficient mass transport on the disc with average mass accretion rates of the order of ˜few 1 M⊙ yr-1. These levels of SMBH accretion rates found in our cosmological simulations are needed in all models of SMBH growth that attempt to explain the formation of redshift 6-7 quasars.

  3. Multiscale mass transport inz ˜6 galactic discs: fuelling black holes

    NASA Astrophysics Data System (ADS)

    Prieto, Joaquin; Escala, Andrés

    2016-08-01

    By using AMR cosmological hydrodynamic N-body zoom-in simulations, with the RAMSES code, we studied the mass transport processes onto galactic nuclei from high redshift up to $z\\sim6$. Due to the large dynamical range of the simulations we were able to study the mass accretion process on scales from $\\sim50[kpc]$ to $\\sim$ few $1[pc]$. We studied the BH growth on to the galactic center in relation with the mass transport processes associated to both the Reynolds stress and the gravitational stress on the disc. Such methodology allowed us to identify the main mass transport process as a function of the scales of the problem. We found that in simulations that include radiative cooling and SNe feedback, the SMBH grows at the Eddington limit for some periods of time presenting $\\langle f_{EDD}\\rangle\\approx 0.5$ throughout its evolution. The $\\alpha$ parameter is dominated by the Reynolds term, $\\alpha_R$, with $\\alpha_R\\gg 1$. The gravitational part of the $\\alpha$ parameter, $\\alpha_G$, has an increasing trend toward the galactic center at higher redshifts, with values $\\alpha_G\\sim 1$ at radii <$\\sim$ few $ 10^1[pc]$ contributing to the BH fueling. In terms of torques, we also found that gravity has an increasing contribution toward the galactic center at earlier epochs with a mixed contribution above $\\sim 100 [pc]$. This complementary work between pressure gradients and gravitational potential gradients allows an efficient mass transport on the disc with average mass accretion rates of the order $\\sim$ few $1 [M_{\\odot}/yr]$. These level of SMBH accretion rates found in our cosmological simulations are needed in all models of SMBH growth that attempt to explain the formation of redshift $6-7$ quasars.

  4. Multiscale mass transport in z˜6 galactic discs: fueling black holes.

    NASA Astrophysics Data System (ADS)

    Prieto, Joaquin; Escala, Andrés

    2016-05-01

    By using AMR cosmological hydrodynamic N-body zoom-in simulations, with the RAMSES code, we studied the mass transport processes onto galactic nuclei from high redshift up to z ˜ 6. Due to the large dynamical range of the simulations we were able to study the mass accretion process on scales from ˜50[kpc] to ˜ few 1[pc]. We studied the BH growth on to the galactic center in relation with the mass transport processes associated to both the Reynolds stress and the gravitational stress on the disc. Such methodology allowed us to identify the main mass transport process as a function of the scales of the problem. We found that in simulations that include radiative cooling and SNe feedback, the SMBH grows at the Eddington limit for some periods of time presenting ≈ 0.5 throughout its evolution. The α parameter is dominated by the Reynolds term, αR, with αR ≫ 1. The gravitational part of the α parameter, αG, has an increasing trend toward the galactic center at higher redshifts, with values αG ˜ 1 at radii ≲ few 101[pc] contributing to the BH fueling. In terms of torques, we also found that gravity has an increasing contribution toward the galactic center at earlier epochs with a mixed contribution above ˜100[pc]. This complementary work between pressure gradients and gravitational potential gradients allows an efficient mass transport on the disc with average mass accretion rates of the order ˜ few 1[M⊙/yr]. These level of SMBH accretion rates found in our cosmological simulations are needed in all models of SMBH growth that attempt to explain the formation of redshift 6 - 7 quasars.

  5. Iron transport across the skin and gut epithelia of Pacific hagfish: Kinetic characterisation and effect of hypoxia.

    PubMed

    Glover, Chris N; Niyogi, Som; Blewett, Tamzin A; Wood, Chris M

    2016-09-01

    In most animals, the acquisition of the essential trace metal iron (Fe) is achieved by the gut, but in hagfishes, the skin is a nutrient absorbing epithelium, and thus may also play a role in Fe uptake. In the current study, the absorption of Fe, as Fe(II), across the intestinal and cutaneous epithelia of Pacific hagfish (Eptatretus cirrhatus) was investigated. Both epithelia absorbed Fe, with saturation at lower tested concentrations, superseded by a diffusive component at higher Fe exposure concentrations. Affinity constants (Km) of 9.4 and 137μM, and maximal Fe transport rates (Jmax) of 0.81 and 0.57nmolcm(-2)h(-1) were determined for the skin and the gut, respectively. This characterises the skin as a relatively high-affinity Fe transport epithelium. The majority of the absorbed Fe in the skin remained in the tissue, whereas in the gut, most absorbed Fe was found in the serosal fluid, suggesting distinct mechanisms of Fe handling between the two epithelia. To determine if reduced dissolved oxygen altered Fe transport, hagfish were subjected to hypoxia for 24h, before Fe transport was again assessed. Hypoxia had no effect on Fe transport across gut or skin, likely owing to the relative lack of change in haematological variables, and thus an unaltered Fe demand under such conditions. These data are the first to kinetically characterise the absorption of a nutritive trace metal across the epithelia of hagfish and add to the growing understanding of the role of the skin in nutritive transport in this group. PMID:27112517

  6. A new continuum approach for nonlinear kinetic simulation and transport analysis

    SciTech Connect

    Dai, Zongliang Wang, Shaojie; Xu, Yingfeng; Ye, Lei; Xiao, Xiaotao

    2015-02-15

    A numerical code based on the I-transform approach is developed to solve the nonlinear Vlasov equation and carry out the transport analysis. The numerical results given by the I-transform approach agree with the conservative semi-Lagrangian approach in the Landau damping case and the bump-on-tail instability case. The diffusivities induced by the random fields and the quasilinear transport are also successfully demonstrated by using the new approach. It is found that the nonlinear transport in the one-dimensional Langmuir turbulence cannot be well-described by a simple diffusion model, due to the strong particle trapping at the nonlinear stage.

  7. Coupled reactive mass transport and fluid flow: Issues in model verification

    SciTech Connect

    Freedman, Vicky L.; Ibaraki, Motomu

    2003-01-03

    Model verification and validation are both important steps in the development of reactive transport models. In this paper, a distinction is made between verification and validation, and the focus is on codifying the issues of verification for a numerical, reactive transport flow model. First, the conceptual basis of model verification is reviewed, which shows that verification should be understood as a first step in model development, and be followed by a protocol that assures that the model accurately represents system behavior. Second, commonly used procedures and methods of model verification are presented. In the third part of this paper, an intercomparison of models is used to demonstrate that model verification can be performed despite differences in hydrogeochemical transport code formulations. Results of an example simulation of transport are presented in which the numerical model is tested against other hydrogeochemical codes. Different kinetic formulations between solid and aqueous phases used among numerical models complicates model verification. This test problem involves uranium transport under conditions of varying pH and oxidation potential, with reversible precipitation of calcium uranate and coffinite. Results between the different hydrogeochemical transport codes show differences in oxidation potentials, but similarities in mineral assemblages and aqueous transport patterns. Because model verification can be further complicated by differences in the approach for solving redox problems, a comparison of a fugacity approach to both the external approach (based on hypothetical electron activity) and effective internal approach (based on conservation of electrons) is performed. The comparison demonstrates that the oxygen fugacity approach produces different redox potentials and mineral assemblages than both the effective internal and external approaches.

  8. Converted charter plane for mass transport of patients after a tsunami.

    PubMed

    Björnsson, Hjalti Már; Kristjánsson, Már; Möller, Alma D

    2008-01-01

    After a tsunami in the Indian Ocean in December 2004, thousands of injured tourists were stranded far away from home. To transport injured Scandinavians and their relatives back to Sweden, a standard Icelandic charter plane was altered for the mission in 2 days. Orthopedic injuries and aspirations were the predominant injuries among patients transported, but all had received advanced care in Thailand. The transport to Sweden was uneventful. The possibility of including charter planes in plans for mass transport of injured patients in disaster preparedness is stressed. For a given incident, a detailed checklist can facilitate gathering vital information to ensure adequate equipment and patient care. The lessons from the preparation of the plane and the mission are reported. PMID:18992689

  9. Coupled effect of flow variability and mass transfer on contaminant transport and attenuation in groundwater

    NASA Astrophysics Data System (ADS)

    Cvetkovic, Vladimir; Fiori, Aldo; Dagan, Gedeon

    2016-04-01

    The driving mechanism of contaminant transport in aquifers is groundwater flow, which is controlled by boundary conditions and heterogeneity of hydraulic properties. In this work we show how hydrodynamics and mass transfer can be combined in a general analytical manner to derive a physically-based (or process-based) residence time distribution for a given integral scale of the hydraulic conductivity; the result can be applied for a broad class of linear mass transfer processes. The derived tracer residence time distribution is a transfer function with parameters to be inferred from combined field and laboratory measurements. It is scalable relative to the correlation length and applicable for an arbitrary statistical distribution of the hydraulic conductivity. Based on the derived residence time distribution, the coefficient of variation and skewness of contaminant residence time are illustrated assuming a log-normal hydraulic conductivity distribution and first-order mass transfer. We show that for a low Damkohler number the coefficient of variation is more strongly influenced by mass transfer than by heterogeneity, whereas skewness is more strongly influenced by heterogeneity. The derived physically-based residence time distribution for solute transport in heterogeneous aquifers is particularly useful for studying natural attenuation of contaminants. We illustrate the relative impacts of high heterogeneity and a generalised (non-Fickian) multi-rate mass transfer on natural attenuation defined as contaminant mass loss from injection to a downstream compliance boundary.

  10. Glucose kinetics and pregnancy outcome in Indian women with low and normal body mass indices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fetal energy demands are met from the oxidation of maternally supplied glucose and amino acids. During the fasted state, the glucose supply is thought to be met by gluconeogenesis. Underweight women with low body mass index (BMI) might be unable to adequately supply amino acids to satisfy the demand...

  11. Kinetic dissolution of carbonates and Mn oxides in acidic water: Measurement of in situ field rates and reactive transport modeling

    USGS Publications Warehouse

    Brown, J.G.; Glynn, P.D.

    2003-01-01

    The kinetics of carbonate and Mn oxide dissolution under acidic conditions were examined through the in situ exposure of pure phase samples to acidic ground water in Pinal Creek Basin, Arizona. The average long-term calculated in situ dissolution rates for calcite and dolomite were 1.65??10-7 and 3.64??10-10 mmol/(cm2 s), respectively, which were about 3 orders of magnitude slower than rates derived in laboratory experiments by other investigators. Application of both in situ and lab-derived calcite and dolomite dissolution rates to equilibrium reactive transport simulations of a column experiment did not improve the fit to measured outflow chemistry: at the spatial and temporal scales of the column experiment, the use of an equilibrium model adequately simulated carbonate dissolution in the column. Pyrolusite (MnO2) exposed to acidic ground water for 595 days increased slightly in weight despite thermodynamic conditions that favored dissolution. This result might be related to a recent finding by another investigator that the reductive dissolution of pyrolusite is accompanied by the precipitation of a mixed Mn-Fe oxide species. In PHREEQC reactive transport simulations, the incorporation of Mn kinetics improved the fit between observed and simulated behavior at the column and field scales, although the column-fitted rate for Mn-oxide dissolution was about 4 orders of magnitude greater than the field-fitted rate. Remaining differences between observed and simulated contaminant transport trends at the Pinal Creek site were likely related to factors other than the Mn oxide dissolution rate, such as the concentration of Fe oxide surface sites available for adsorption, the effects of competition among dissolved species for available surface sites, or reactions not included in the model.

  12. Mass Yields and Average Total Kinetic Energy Release in Fission for 235U, 238U, and 239Pu

    NASA Astrophysics Data System (ADS)

    Duke, Dana

    2015-10-01

    Mass yield distributions and average total kinetic energy (TKE) in neutron induced fission of 235U, 238U, and 239Pu targets were measured with a gridded ionization chamber. Despite decades of fission research, our understanding of how fragment mass yields and TKE depend on incident neutron energy is limited, especially at higher energies (above 5-10 MeV). Improved accuracy in these quantities is important for nuclear technology as it enhances our simulation capabilities and increases the confidence in diagnostic tools. The data can also guide and validate theoretical fission models where the correlation between the fragment mass and TKE is of particular value for constraining models. The Los Alamos Neutron Science Center - Weapons Neutron Research (LANSCE - WNR) provides a neutron beam with energies from thermal to hundreds of MeV, well-suited for filling in the gaps in existing data and exploring fission behavior in the fast neutron region. The results of the studies on target nuclei 235U, 238U, and 239Pu will be presented with a focus on exploring data trends as a function of neutron energy from thermal through 30 MeV. Results indicate clear evidence of structure due to multi-chance fission in the TKE . LA-UR-15-24761.

  13. Thermodynamic functions and intraparticle mass transfer kinetics of structural analogues of a template on molecularly imprinted polymers in liquid chromatography

    SciTech Connect

    Kim, Hyunjung; Guiochon, Georges A

    2005-08-01

    The parameters of the thermodynamics and mass transfer kinetics of the structural analogues (L-enantiomers) of the template were measured on an Fmoc-L-tryptophan (Fmoc-L-Trp) imprinted polymer, at different temperatures. The equilibrium isotherm data and the overloaded band profiles of these compounds were measured at temperatures of 298, 313, 323, and 333 K. The isotherm data were modeled. The thermodynamic functions of the different adsorption sites were derived from the isotherm parameters, using van't Hoff plots. The mass transfer parameters were derived by comparing the experimental peak profiles and profiles calculated using the lumped pore diffusion (POR) model for chromatography. These data show that (1) the strength between the substrate molecules and the MIP increases with increasing number of functional groups on the substrates; (2) enthalpy is the driving force for the affinity of the substrates for the MIP; (3) surface diffusion is the dominant mass transfer mechanism of the substrates through the porous MIP. For those substrate molecules that have the same stereochemistry as the template, the energetic surface heterogeneity needs to be incorporated into the surface diffusion coefficients. Heterogeneous surface diffusivities decrease with increasing affinity of the substrates for the MIP.

  14. Mass Transport and Shear Stress as Mediators of Flow Effects on Atherosclerotic Plaque Origin and Growth

    NASA Astrophysics Data System (ADS)

    Gorder, Riley; Aliseda, Alberto

    2009-11-01

    The carotid artery bifurcation (CAB) is one of the leading site for atherosclerosis, a major cause of mortality and morbidity in the developed world. The specific mechanisms by which perturbed flow at the bifurcation and in the carotid bulge promotes plaque formation and growth are not fully understood. Shear stress, mass transport, and flow residence times are considered dominant factors. Shear stress causes restructuring of endothelial cells at the arterial wall which changes the wall's permeability. Long residence times are associated with enhanced mass transport through increased diffusion of lipids and white blood cells into the arterial wall. Although momentum and mass transfer are traditionally coupled by correlations similar to Reynolds Analogy, the complex flow patterns present in this region due to the pulsatile, transitional, detached flow associated with the complex geometry makes the validity of commonly accepted assumptions uncertain. We create solid models of the CAB from MRI or ultrasound medical images, build flow phantoms on clear polyester resin and use an IOR matching, blood mimicking, working fluid. Using PIV and dye injection techniques the shear stress and scalar transport are experimentally investigated. Our goal is to establish a quantitative relationship between momentum and mass transfer under a wide range of physiologically normal and pathological conditions.

  15. Laboratory experiments of fine-scale mixing and mass transport within a coral canopy

    NASA Astrophysics Data System (ADS)

    Reidenbach, Matthew A.; Koseff, Jeffrey R.; Monismith, Stephen G.

    2007-07-01

    Laboratory experiments obtained fine scale measurements of turbulent shear stresses and rates of mixing and mass transfer over a nonliving bed of the coral, Porites compressa, the dominant species found in Kaneohe Bay, Hawaii. A reef canopy was placed in a recirculating wave-current flume and flow was generated that simulated the flow characteristics of the reef flat of Kaneohe Bay. Turbulence and velocity structure under both unidirectional and wave-dominated currents were measured using a two-dimensional laser Doppler anemometer. Mass transport measurements were made using a planar laser-induced fluorescence technique in which the scalar transport of Rhodamine 6G dye, fluxed from the surfaces of the coral, was quantified. Results show that the action of surface waves, interacting with the structure of the reef, can increase instantaneous shear and mixing up to six times compared to that of unidirectional currents. Maximum shear and mass transport events coincided with flow separation within the wave-current boundary layer and the ejection of vortices into the flow. Wave action also acted to increase the vertical flux of water from within the coral structure. The combined effects of increased turbulent stress and fluid exchange from the interior of the canopy increased mass flux due to wave action 2.3±0.5 times that measured for comparable unidirectional currents.

  16. Multicomponent mass transport model: a model for simulating migration of radionuclides in ground water

    SciTech Connect

    Washburn, J.F.; Kaszeta, F.E.; Simmons, C.S.; Cole, C.R.

    1980-07-01

    This report presents the results of the development of a one-dimensional radionuclide transport code, MMT2D (Multicomponent Mass Transport), for the AEGIS Program. Multicomponent Mass Transport is a numerical solution technique that uses the discrete-parcel-random-wald (DPRW) method to directly simulate the migration of radionuclides. MMT1D accounts for: convection;dispersion; sorption-desorption; first-order radioactive decay; and n-membered radioactive decay chains. Comparisons between MMT1D and an analytical solution for a similar problem show that: MMT1D agrees very closely with the analytical solution; MMT1D has no cumulative numerical dispersion like that associated with solution techniques such as finite differences and finite elements; for current AEGIS applications, relatively few parcels are required to produce adequate results; and the power of MMT1D is the flexibility of the code in being able to handle complex problems for which analytical solution cannot be obtained. Multicomponent Mass Transport (MMT1D) codes were developed at Pacific Northwest Laboratory to predict the movement of radiocontaminants in the saturated and unsaturated sediments of the Hanford Site. All MMT models require ground-water flow patterns that have been previously generated by a hydrologic model. This report documents the computer code and operating procedures of a third generation of the MMT series: the MMT differs from previous versions by simulating the mass transport processes in systems with radionuclide decay chains. Although MMT is a one-dimensional code, the user is referred to the documentation of the theoretical and numerical procedures of the three-dimensional MMT-DPRW code for discussion of expediency, verification, and error-sensitivity analysis.

  17. Affinity interactions of human immunoglobulin G with short peptides: role of ligand spacer on binding, kinetics, and mass transfer.

    PubMed

    Shen, Fei; Rojas, Orlando J; Genzer, Jan; Gurgel, Patrick V; Carbonell, Ruben G

    2016-03-01

    The interaction affinity between human IgG and a short peptide ligand (hexameric HWRGWV) was investigated by following the shifts in frequency and energy dissipation in a quartz crystal microbalance (QCM). HWRGWV was immobilized by means of poly(ethylene glycol) tethered on QCM sensors coated with silicon oxide, which enhanced the accessibility of the peptide to hIgG and also passivated the surface. Ellipsometry and ToF-SIMS were employed for surface characterization. The peptide ligand density was optimized to 0.88 chains nm(-2), which enabled the interaction of each hIgG molecule with at least one ligand. The maximum binding capacity was found to be 4.6 mg m(-2), corresponding to a monolayer of hIgG, similar to the values for chromatographic resins. Dissociation constants were lower than those obtained from resins, possibly due to overestimation of bound mass by QCM. Equilibrium thermodynamic and kinetic parameters were determined, shedding light on interfacial effects important for detection and bioseparation. Graphical Abstract The interaction affinity between human IgG and a short peptide ligand was investigated by using quartz crystal microgravimetry, ellipsometry and ToF-SIMS. Equilibrium thermodynamic and kinetics parameters were determined, shedding light on interfacial effects important for detection and bioseparation. PMID:26549116

  18. Dissolved gas transport in the presence of a trapped gas phase: Experimental evaluation of a two-dimensional kinetic model

    SciTech Connect

    Donaldson, J.H.; Istok, J.D.; O`Reilly, K.T.

    1998-01-01

    Quantitative information on dissolved gas transport in ground water aquifers is needed for a variety of site characterization and remedial design applications. The objective of this study was to gain further understanding of dissolved gas transport in the presence of trapped gas in the pore space of an otherwise water saturated porous medium, using a combination of laboratory experiments and numerical modeling. Transport experiments were conducted in a large-scale laboratory physical aquifer model containing a homogeneous sandpack. Tracer (Br{sup {minus}}) and dissolved gas (O{sub 2} or H{sub 2}) plumes were created using a two-well injection/extraction scheme and then were allowed to drift in a uniform flow field. Plume locations and shapes were monitored by measuring tracer and dissolved gas concentrations as a function of position within the sandpack and time. In all experiments, partitioning of the dissolved gases between the mobile ground water and stationary trapped gas phases resulted in substantial retardation and tailing of the dissolved O{sub 2} and H{sub 2} plumes relative to the Br{sup {minus}} plumes. Most observed plume features could be reproduced in simulations performed with a numerical model that combined the advection-dispersion equation with diffusion controlled mass transfer of dissolved gas between the mobile aqueous and stationary trapped gas phases. Fitted values of the volumetric trapped gas content and mass transfer coefficient ranged from 0.04 to 0.08 and from 10{sup {minus}6} to 10{sup {minus}5} sec{sup {minus}1}, respectively. Sensitivity analyses were used to examine how systematic variations in these parameters would be expected to affect dissolved gas transport under a range of potential field conditions. The experimental and modeling results indicate that diffusion controlled mass transfer should be considered when predicting dissolved gas transport in ground water aquifers in the presence of trapped gas.

  19. PREDICTION OF TYPE II SOLAR RADIO BURSTS BY THREE-DIMENSIONAL MHD CORONAL MASS EJECTION AND KINETIC RADIO EMISSION SIMULATIONS

    SciTech Connect

    Schmidt, J. M.; Cairns, Iver H.; Hillan, D. S.

    2013-08-20

    Type II solar radio bursts are the primary radio emissions generated by shocks and they are linked with impending space weather events at Earth. We simulate type II bursts by combining elaborate three-dimensional MHD simulations of realistic coronal mass ejections (CMEs) at the Sun with an analytic kinetic radiation theory developed recently. The modeling includes initialization with solar magnetic and active region fields reconstructed from magnetograms of the Sun, a flux rope of the initial CME dimensioned with STEREO spacecraft observations, and a solar wind driven with averaged empirical data. We demonstrate impressive accuracy in time, frequency, and intensity for the CME and type II burst observed on 2011 February 15. This implies real understanding of the physical processes involved regarding the radio emission excitation by shocks and supports the near-term development of a capability to predict and track these events for space weather prediction.

  20. Single Nanoparticle Mass Spectrometry as a High Temperature Kinetics Tool: Sublimation, Oxidation, and Emission Spectra of Hot Carbon Nanoparticles.

    PubMed

    Howder, Collin R; Long, Bryan A; Gerlich, Dieter; Alley, Rex N; Anderson, Scott L

    2015-12-17

    In single nanoparticle mass spectrometry, individual charged nanoparticles (NPs) are trapped in a quadrupole ion trap and detected optically, allowing their mass, charge, and optical properties to be monitored continuously. Previous experiments of this type probed NPs that were either fluorescent or large enough to detect by light scattering. Alternatively, small NPs can be heated to temperatures where thermally excited emission is strong enough to allow detection, and this approach should provide a new tool for measurements of sublimation and surface reaction kinetics of materials at high temperatures. As an initial test, we report a study of carbon NPs in the 20-50 nm range, heated by 10.6 μm, 532 nm, or 445 nm lasers. The kinetics for sublimation and oxidation of individual carbon NPs were studied, and a model is presented for the factors that control the NP temperature, including laser heating, and cooling by sublimation, buffer gas collisions, and radiation. The estimated NP temperatures were in the 1700-2000 K range, and the NP absorption cross sections ranged from ∼0.8 to 0.2% of the geometric cross sections for 532 nm and 10.6 μm excitation, respectively. Emission spectra of single NPs and small NP ensembles show a feature in the IR that appears to be the high energy tail of the thermal (blackbody-like) emission expected from hot particles but also a discrete feature peaking around 750 nm. Both the IR tail and 750 nm peak are observed for all particles and for both IR and visible laser excitation. No significant difference was observed between graphite and amorphous carbon NPs. PMID:26513667

  1. Determination of bacterial and viral transport parameters in a gravel aquifer assuming linear kinetic sorption and desorption

    NASA Astrophysics Data System (ADS)

    Mallén, G.; Maloszewski, P.; Flynn, R.; Rossi, P.; Engel, M.; Seiler, K.-P.

    2005-05-01

    The bacteria Escherichia coli and Pseudomonas putida, and the bacteriophage virus H40/1 are examined both for their transport behaviour relative to inert solute tracers and for their modelability under natural flow conditions in a gravel aquifer. The microbes are attenuated in the following sequence: H40/1≥ P. putida≫ E. coli. The latter is desorbed almost completely within a few days. Breakthrough and recovery curves of the simultaneously injected non-reactive tracers are simulated with the 2D and 1D dispersion equation, in order to ascertain longitudinal dispersivity ( αL) and mean flow time ( T0). Mathematical modelling is difficult due to the aquifer heterogeneity, which results in preferential flow paths between injection and observation wells. Therefore, any attempt of fitting the dispersion model (DM) to the entire inert-tracer breakthrough curve (BTC) fails. Adequate fitting of the model to measured data only succeeds using a DM consisting of a superposition of several BTCs, each representing another set of flow paths. This gives rise to a multimodal, rather than a Gaussian groundwater velocity distribution. Only hydraulic parameters derived from the fastest partial curve, which is fitted to the rising part of the Uranine BTC, are suitable to model microbial breakthroughs. The hydraulic parameters found using 2D and 1D models were nearly identical. Their values were put into an analytical solution of 1D advective-dispersive transport combined with two-site reaction model introduced by Cameron and Klute [Cameron, D.R., Klute, A., 1977. Convective-dispersive solute transport with a combined equilibrium and kinetic adsorption model. Water Resour. Res. 13, 183-189], in order to identify reactive transport parameters (sorption/desorption) and attenuation mechanisms for the microbes migration. This shows that the microbes are almost entirely transported through preferential flow paths, which are represented by the first partial curve. Inert tracers, however

  2. Kinetic Controls on the Desorption/Dissolution of Sorbed U(VI) and their Influence on Reactive Transport

    SciTech Connect

    Zachara, John M.; Chongxuan Liu; Qafoku, Nikolla P.; McKinley, James P.; Catalano, Jeffrey G.; Brown, Gordon E., Jr.; Davis, James A.

    2006-04-05

    A number of published studies have sought to understand geochemical kinetic process of uranium (U) that are relevant to nuclear waste sites and repositories by studying the weathering of U ore bodies and downgradient transport of weathering products. Such studies have provided important insights on processes operative over many thousand to millions of years. This project also seeks knowledge on the geochemical kinetics of U, but for shorter in-ground time periods (e.g., 20-50 years) relevant to DOE legacy waste sites. Several representative field sites were selected for intense study at Hanford as part of EMSP research to provide: (1) fundamental insights on intermediate duration geochemical events of U controlling fate and transport, and (2) key scientific information needed for remedial action assessment and informed decision making. The site discussed in this poster is the 300 A uranium plume. This plume is located at the south end of Hanford and discharges directly to the Columbia River. The plume resulted from the discharge of fuels fabrication wastes (nitric acid solutions containing U and Cu) and cladding dissolution wastes (basic sodium aluminate) to the North and South Process Ponds between 1943 and 1975 near the Columbia River. A Kd-based remedial action assessment fifteen years ago predicted that the plume would dissipate to concentrations below the DWS within 10 y. As a result of this assessment, an interim, MNA remedial decision was agreed to by DOE and state/federal regulators. It has been 15 y since the above assessment, and groundwater concentrations have not decreased (attenuated) as projected. Stakeholders are now demanding remedial intervention, and DOE seeks science-based conceptual and numeric models for more accurate future projections. The objectives are: (1) Identify the chemical speciation (e.g., adsorption complexes precipitates), mineral residence, and physical location of contaminant U in a depth sequence of sediments from the disposal

  3. Analysis of fission gas release kinetics by on-line mass spectrometry

    SciTech Connect

    Zerega, Y.; Reynard-Carette, C.; Parrat, D.; Carette, M.; Brkic, B.; Lyoussi, A.; Bignan, G.; Janulyte, A.; Andre, J.; Pontillon, Y.; Ducros, G.; Taylor, S.

    2011-07-01

    The release of fission gas (Xe and Kr) and helium out of nuclear fuel materials in normal operation of a nuclear power reactor can constitute a strong limitation of the fuel lifetime. Moreover, radioactive isotopes of Xe and Kr contribute significantly to the global radiological source term released in the primary coolant circuit in case of accidental situations accompanied by fuel rod loss of integrity. As a consequence, fission gas release investigation is of prime importance for the nuclear fuel cycle economy, and is the driven force of numerous R and D programs. In this domain, for solving current fuel behavior understanding issues, preparing the development of new fuels (e.g. for Gen IV power systems) and for improving the modeling prediction capability, there is a marked need for innovations in the instrumentation field, mainly for: . Quantification of very low fission gas concentrations, released from fuel sample and routed in sweeping lines. Monitoring of quick gas release variations by quantification of elementary release during a short period of time. Detection of a large range of atomic masses (e.g. H{sub 2}, HT, He, CO, CO{sub 2}, Ne, Ar, Kr, Xe), together with a performing separation of isotopes for Xe and Kr elements. Coupling measurement of stable and radioactive gas isotopes, by using in parallel mass spectrometry and gamma spectrometry techniques. To fulfill these challenging needs, a common strategy for analysis equipment implementation has been set up thanks to a recently launched collaboration between the CEA and the Univ. of Provence, with the technological support of the Liverpool Univ.. It aims at developing a chronological series of mass spectrometer devices based upon mass filter and 2D/3D ion traps with Fourier transform operating mode and having increasing levels of performances to match the previous challenges for out-of pile and in-pile experiments. The final objective is to install a high performance online mass spectrometer coupled to

  4. The dissociation kinetics of NO on Rh(111) as studied by temperature programmed static secondary ion mass spectrometry and desorption

    NASA Astrophysics Data System (ADS)

    Borg, H. J.; Reijerse, J. F. C.-J. M.; van Santen, R. A.; Niemantsverdriet, J. W.

    1994-12-01

    Temperature programmed static secondary ion mass spectrometry (TPSSIMS) and temperature programmed desorption (TPD) have been used to study the kinetics of adsorption, dissociation, and desorption of NO on Rh(111). At 100 K, NO adsorption is molecular and proceeds via mobile precursor state kinetics with a high initial sticking probability. SSIMS indicates the presence of two distinct NO adsorption states, indicative of threefold adsorption at low coverage, and occupation of bridge sites at higher coverages. Three characteristic coverage regimes appear with respect to NO dissociation. At low coverages θNO<0.25 ML, NO dissociates completely at temperatures between 275 and 340 K. If we neglect lateral interactions and assume pure first order dissociation kinetics, we find effective values for the activation barrier and preexponential factor of 40±6 kJ/mol and 106±1 s-1 for the dissociation of 0.15-0.20 ML NO. However, if we assume that a NO molecule needs an ensemble of three to four vacant sites in order to dissociate, the preexponential factor and activation energy are ˜1011 s-1 and 65 kJ/mol, in better agreement with transition state theory expectations. The Nads and Oads dissociation products desorb as N2 and O2, respectively, with desorption parameters Edes=118±10 kJ/mol and νdes=1010.1±1.0 s-1 for N2 in the zero coverage limit. At higher coverages, the desorption kinetics of N2 is strongly influenced by the presence of coadsorbed oxygen. In the medium coverage range 0.25<θNO<0.50 ML, part of the NO desorbs molecularly, with an estimated desorption barrier of 113±10 kJ/mol and a preexponential of 1013.5±1.0 s-1. Dissociation of NO becomes progressively inhibited due to site blocking, the onset shifting from 275 K at 0.25 ML to 400 K, coinciding with the NO desorption temperature, at a coverage of 0.50 ML. The accumulation of nitrogen and oxygen atoms on the highly covered surface causes a destabilization of the nitrogen atoms, which results in an

  5. Growth kinetics of physical vapor transport processes: Crystal growth of the optoelectronic material mercurous chloride

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Duval, W. M.

    1991-01-01

    Physical vapor transport processes were studied for the purpose of identifying the magnitude of convective effects on the crystal growth process. The effects of convection on crystal quality were were studied by varying the aspect ratio and those thermal conditions which ultimately affect thermal convection during physical vapor transport. An important outcome of the present study was the observation that the convection growth rate increased up to a certain value and then dropped to a constant value for high aspect ratios. This indicated that a very complex transport had occurred which could not be explained by linear stability theory. Better quality crystals grown at a low Rayleigh number confirmed that improved properties are possible in convectionless environments.

  6. Influence of hydrogen chemisorption kinetics on the interpretation of hydrogen transport through iron membranes

    NASA Technical Reports Server (NTRS)

    Shanabarger, M. R.; Taslami, A.; Nelson, H. G.

    1981-01-01

    The influence of a specific surface reaction on the transport of gas-phase hydrogen through iron membranes has been investigated on the basis of model calculations. The surface reaction involves an adsorbed molecular hydrogen precursor between the gas phase and the dissociated chemisorbed state. The calculations demonstrate that the surface reaction for the H2/Fe system makes significant contributions to the time delay associated with the transient hydrogen transport through iron membranes, even under conditions where the steady-state hydrogen transport is independent of the surface reaction. These contributions to the time delay are interpreted in terms of an effective diffusivity, which is a function of the pressure on the entrance side and the thickness of the membrane.

  7. Effects of reservoir heterogeneity on scaling of effective mass transfer coefficient for solute transport.

    PubMed

    Leung, Juliana Y; Srinivasan, Sanjay

    2016-09-01

    Modeling transport process at large scale requires proper scale-up of subsurface heterogeneity and an understanding of its interaction with the underlying transport mechanisms. A technique based on volume averaging is applied to quantitatively assess the scaling characteristics of effective mass transfer coefficient in heterogeneous reservoir models. The effective mass transfer coefficient represents the combined contribution from diffusion and dispersion to the transport of non-reactive solute particles within a fluid phase. Although treatment of transport problems with the volume averaging technique has been published in the past, application to geological systems exhibiting realistic spatial variability remains a challenge. Previously, the authors developed a new procedure where results from a fine-scale numerical flow simulation reflecting the full physics of the transport process albeit over a sub-volume of the reservoir are integrated with the volume averaging technique to provide effective description of transport properties. The procedure is extended such that spatial averaging is performed at the local-heterogeneity scale. In this paper, the transport of a passive (non-reactive) solute is simulated on multiple reservoir models exhibiting different patterns of heterogeneities, and the scaling behavior of effective mass transfer coefficient (Keff) is examined and compared. One such set of models exhibit power-law (fractal) characteristics, and the variability of dispersion and Keff with scale is in good agreement with analytical expressions described in the literature. This work offers an insight into the impacts of heterogeneity on the scaling of effective transport parameters. A key finding is that spatial heterogeneity models with similar univariate and bivariate statistics may exhibit different scaling characteristics because of the influence of higher order statistics. More mixing is observed in the channelized models with higher-order continuity. It

  8. Effects of reservoir heterogeneity on scaling of effective mass transfer coefficient for solute transport

    NASA Astrophysics Data System (ADS)

    Leung, Juliana Y.; Srinivasan, Sanjay

    2016-09-01

    Modeling transport process at large scale requires proper scale-up of subsurface heterogeneity and an understanding of its interaction with the underlying transport mechanisms. A technique based on volume averaging is applied to quantitatively assess the scaling characteristics of effective mass transfer coefficient in heterogeneous reservoir models. The effective mass transfer coefficient represents the combined contribution from diffusion and dispersion to the transport of non-reactive solute particles within a fluid phase. Although treatment of transport problems with the volume averaging technique has been published in the past, application to geological systems exhibiting realistic spatial variability remains a challenge. Previously, the authors developed a new procedure where results from a fine-scale numerical flow simulation reflecting the full physics of the transport process albeit over a sub-volume of the reservoir are integrated with the volume averaging technique to provide effective description of transport properties. The procedure is extended such that spatial averaging is performed at the local-heterogeneity scale. In this paper, the transport of a passive (non-reactive) solute is simulated on multiple reservoir models exhibiting different patterns of heterogeneities, and the scaling behavior of effective mass transfer coefficient (Keff) is examined and compared. One such set of models exhibit power-law (fractal) characteristics, and the variability of dispersion and Keff with scale is in good agreement with analytical expressions described in the literature. This work offers an insight into the impacts of heterogeneity on the scaling of effective transport parameters. A key finding is that spatial heterogeneity models with similar univariate and bivariate statistics may exhibit different scaling characteristics because of the influence of higher order statistics. More mixing is observed in the channelized models with higher-order continuity. It

  9. Gluon transport equation with effective mass and dynamical onset of Bose–Einstein condensation

    DOE PAGESBeta

    Blaizot, Jean-Paul; Jiang, Yin; Liao, Jinfeng

    2016-05-01

    In this paper we study the transport equation describing a dense system of gluons, in the small scattering angle approximation, taking into account medium-generated effective masses of the gluons. We focus on the case of overpopulated systems that are driven to Bose–Einstein condensation on their way to thermalization. Lastly, the presence of a mass modifies the dispersion relation of the gluon, as compared to the massless case, but it is shown that this does not change qualitatively the scaling behavior in the vicinity of the onset.

  10. Gluon transport equation with effective mass and dynamical onset of Bose-Einstein condensation

    NASA Astrophysics Data System (ADS)

    Blaizot, Jean-Paul; Jiang, Yin; Liao, Jinfeng

    2016-05-01

    We study the transport equation describing a dense system of gluons, in the small scattering angle approximation, taking into account medium-generated effective masses of the gluons. We focus on the case of overpopulated systems that are driven to Bose-Einstein condensation on their way to thermalization. The presence of a mass modifies the dispersion relation of the gluon, as compared to the massless case, but it is shown that this does not change qualitatively the scaling behavior in the vicinity of the onset.

  11. Non-Fickian transport and multiple-rate mass transfer in porous media

    NASA Astrophysics Data System (ADS)

    Berkowitz, Brian; Emmanuel, Simon; Scher, Harvey

    2008-03-01

    Non-Fickian behavior is due to a broad spectrum of rates limiting the solute transport. There are two generic mechanisms that can generate these spectra: the complex flow field of a highly heterogeneous medium and the mass exchange between a mobile phase and a distribution of immobile states. We have developed a physical model that incorporates both of these mechanisms into the continuous time random walk (CTRW) framework. We study their interacting dynamics as a function of the spectra of advective-diffusive transition times and exchange times and the relative separation of their respective time domains. Examples of interacting transport in a dispersive medium with immobile states include tracer migration in a random fracture network with matrix diffusion and transport in a porous medium with adsorption/desorption sites. To date, non-Fickian transport has been quantified effectively using the CTRW in a wide variety of porous and fractured geological formations. The basis of the CTRW framework is the portrayal of transport as a sequence of transition rates (e.g., between pore spaces, fracture intersections) and the incorporation of the full spectrum of these rates into the transport equations. The emphasis herein is on systems in which the time domains of the two different types of spectra are distinguishable, so that a more complete characterization of the transport can be obtained (i.e., rather than lumping all the rates together). Experimental data are analyzed from two of these systems: (1) tracer transport in a fractured shear zone and (2) sorbing species transported through a heterogeneous porous domain. The CTRW framework is found to produce excellent fits to and predictions from the experimental data.

  12. A computational study of turbulent kinetic energy transport in barotropic turbulence on the f-plane

    SciTech Connect

    Grooms, Ian

    2015-10-15

    Energy transport by eddies is diagnosed from a series of simulations of stochastically forced, inhomogeneous two-dimensional turbulence—barotropic dynamics on the f-plane. The divergence of the energy flux is compared to diffusive models, both fractional and harmonic, and the inferred diffusivity κ is compared to a mixing-length model κ ∝ Vℓ where V and ℓ are eddy velocity and length scales, respectively. The flux-divergence is found to be well approximated by Laplacian diffusion with a mixing-length approximation. This study provides some support for diffusive modeling of mesoscale eddy energy transport in ocean model parameterizations.

  13. Highly porous PEM fuel cell cathodes based on low density carbon aerogels as Pt-support: Experimental study of the mass-transport losses

    NASA Astrophysics Data System (ADS)

    Marie, Julien; Chenitz, Regis; Chatenet, Marian; Berthon-Fabry, Sandrine; Cornet, Nathalie; Achard, Patrick

    Carbon aerogels exhibiting high porous volumes and high surface areas, differentiated by their pore-size distributions were used as Pt-supports in the cathode catalytic layer of H 2/air-fed PEM fuel cell. The cathodes were tested as 50 cm 2 membrane electrode assemblies (MEAs). The porous structure of the synthesized catalytic layers was impacted by the nanostructure of the Pt-doped carbon aerogels (Pt/CAs). In this paper thus we present an experimental study aiming at establishing links between the porous structure of the cathode catalytic layers and the MEAs performances. For that purpose, the polarization curves of the MEAs were decomposed in 3 contributions: the kinetic loss, the ohmic loss and the mass-transport loss. We showed that the MEAs made with the different carbon aerogels had similar kinetic activities (low current density performance) but very different mass-transport voltage losses. It was found that the higher the pore-size of the initial carbon aerogel, the higher the mass-transport voltage losses. Supported by our porosimetry (N 2-adsorption and Hg-porosimetry) measurement, we interpret this apparent contradiction as the consequence of the more important Nafion penetration into the carbon aeorogel with larger pore-size. Indeed, the catalytic layers made from the larger pore-size carbon aerogel had lower porosities. We thus show in this work that carbon aerogels are materials with tailored nanostructured structure which can be used as model materials for experimentally testing the optimization of the PEM fuel cell catalytic layers.

  14. Thermally Accelerated Oxidative Degradation of Quercetin Using Continuous Flow Kinetic Electrospray-Ion Trap-Time of Flight Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Barnes, Jeremy S.; Foss, Frank W.; Schug, Kevin A.

    2013-10-01

    Thermally accelerated oxidative degradation of aqueous quercetin at pH 5.9 and 7.4 was kinetically measured using an in-house built online continuous flow device made of concentric capillary tubes, modified to fit to the inlet of an electrospray ionization-ion trap-time-of-flight-mass spectrometer (ESI-IT-TOF-MS). Time-resolved mass spectral measurements ranging from 2 to 21 min were performed in the negative mode to track intermediate degradation products and to evaluate the degradation rate of the deprotonated quercetin ion, [Q-H]-. Upon heating solutions in the presence of dissolved oxygen, degradation of [Q-H]- was observed and was accelerated by an increase in pH and temperature. Regardless of the condition, the same degradation pathways were observed. Degradation mechanisms and structures were determined using higher order tandem mass spectrometry (up to MS3) and high mass accuracy. The observed degradation mechanisms included oxidation, hydroxylation, and ring-cleavage by nucleophilic attack. A chalcan-trione structure formed by C-ring opening after hydroxylation at C2 was believed to be a precursor for other degradation products, formed by hydroxylation at the C2, C3, and C4 carbons from attack by nucleophilic species. This resulted in A-type and B-type ions after cross-ring cleavage of the C-ring. Based on time of appearance and signal intensity, nucleophilic attack at C3 was the preferred degradation pathway, which generated 2,4,6-trihydroxymandelate and 2,4,6-trihydroxyphenylglyoxylate ions. Overall, 23 quercetin-related ions were observed.

  15. Performance of intact and partially degraded concrete barriers in limiting mass transport

    SciTech Connect

    Walton, J.C. )

    1992-06-01

    Mass transport through concrete barriers and release rate from concrete vaults are quantitatively evaluated. The thorny issue of appropriate diffusion coefficients for use in performance assessment calculations is covered, with no ultimate solution found. Release from monolithic concrete vaults composed of concrete waste forms is estimated with a semi-analytical solution. A parametric study illustrates the importance of different parameters on release. A second situation of importance is the role of a concrete shell or vault placed around typical waste forms in limiting mass transport. In both situations, the primary factor controlling concrete performance is cracks. The implications of leaching behavior on likely groundwater concentrations is examined. Frequently, lower groundwater concentrations can be expected in the absence of engineered covers that reduce infiltration.

  16. An overview of polymer electrolyte membrane electrolyzer for hydrogen production: Modeling and mass transport

    NASA Astrophysics Data System (ADS)

    Abdol Rahim, A. H.; Tijani, Alhassan Salami; Kamarudin, S. K.; Hanapi, S.

    2016-03-01

    Polymer electrolyte membrane electrolyzer (PEME) is a candidate for advanced engineering technology. There are many polymer electrolyte membrane fuel cell (PEMFC) models that have been reported, but none regarding PEME. This paper presents state of the art mass transport models applied to PEME, a detailed literature review of these models and associate methods have been conducted. PEME models are typically developed using analytical, semi empirical and mechanistic techniques that are based on their state and spatial dimensions. Methods for developing the PEME models are introduced and briefly explained. Furthermore the model cell voltage of PEME, which consists of Nernst voltage, ohmic over potential, activation over potential, and diffusion over potential is discussed with focus on mass transport modeling. This paper also presents current issues encountered with PEME model.

  17. Heat and mass transport resistances in vacuum membrane distillation per drop

    SciTech Connect

    Bandini, S.; Sarti, G.C.

    1999-07-01

    Vacuum membrane distillation (VMD) is a separation process based on the use of microporous hydrophobic membranes. The membrane is located between an aqueous phase and a permeate, which is kept under vacuum at pressure values below the equilibrium vapor pressure of the feed. The liquid stream vaporizes at one side of the membrane, and the vapors diffuse through the gas phase inside the membrane pores. The process rate and performance are affected highly by the transport phenomena both in the liquid phase and through the membrane. Heat- and mass-transfer resistance in the liquid phase, as well as mass-transfer resistance through the membrane, play an important role in determining the process performance. Based on VMD experimental data for several binary aqueous mixtures containing volatile organic compounds, a simple criterion to investigate the role of each transport resistance on the separation efficiency is discussed.

  18. Mass-transport models to predict toxicity of inhaled gases in the upper respiratory tract

    SciTech Connect

    Hubal, E.A.C.; Fedkiw, P.S.; Kimbell, J.S.

    1996-04-01

    Mass-transport (the movement of a chemical species) plays an important role in determining toxic responses of the upper respiratory tract (URT) to inhaled chemicals. Mathematical dosimetry models incorporate physical characteristics of mass transport and are used to predict quantitative uptake (absorption rate) and distribution of inhaled gases and vapors in the respiratory tract. Because knowledge of dose is an essential component of quantitative risk assessment, dosimetry modeling plays an important role in extrapolation of animal study results to humans. A survey of existing mathematical dosimetry models for the URT is presented, limitations of current models are discussed, and adaptations of existing models to produce a generally applicable model are suggested. Reviewed URT dosimetry models are categorized as early, lumped-parameter, and distributed-parameter models. Specific examples of other relevant modeling work are also presented. 35 refs., 11 figs., 1 tab.

  19. Upscaling momentum and mass transport under Knudsen and binary diffusion gas slip conditions

    NASA Astrophysics Data System (ADS)

    Valdes-Parada, F. J.; Lasseux, D.

    2015-12-01

    Modeling of gas phase flow in porous media is relevant as it is present in a wide variety of applications ranging from nanofluidic systems to subsurface contaminant transport. In this work, we derive a macroscopic model to study slightly compressible gas flow in porous media for conditions in which the tangential fluid velocity undergoes a slip at the solid interface due to Knudsen effects and to mass diffusion in binary conditions. To this end, we use the method of volume averaging to derive the governing equations at the Darcy scale for both mass and momentum transport. The momentum transport model consists on a modification to Darcy's law due to mass dispersion and to total density gradients. For mass transport, the resulting model is the conventional convection-dispersion equation with two correction terms, one affecting convective transport and the second one affecting mass dispersion due to gas compressibility. The macroscopic model reduces to the one reported by Altevogt et al. (2003) for the case in which gas slip is only due to a concentration gradient and to the one by Lasseux et al. (2014) under Knudsen slip conditions. The model is written in terms of effective-medium coefficients that can be predicted from solving the associated closure problems in representative unit cells. For conditions in which the Péclet number is much greater than one and when the Knudsen number is not exceedingly small compared to the unity, our computations show that the predictions of the longitudinal dispersion may reach an error as high as 60% compared to the predictions obtained by ignoring gas slip. Altevogt A.S., Rolston D.E., Whitaker S. New equations for binary gas transport in porous media, Part 1: equation development. Advances in Water Resources, Vol. 26, 695-715, 2003. Lasseux D., Valdés-Parada F.J., Ochoa-Tapia J.A., Goyeau B. A macroscopic model for slightly compressible gas slip-flow in homogeneous porous media. Physics of Fluids, Vol. 26, 053102, 2014.

  20. Final Report - Ion Production and Transport in Atmospheric Pressure Ion Source Mass Spectrometers

    SciTech Connect

    Farnsworth, Paul B.; Spencer, Ross L.

    2014-05-14

    This document is the final report on a project that focused in the general theme of atmospheric-pressure ion production and transport for mass spectrometry. Within that general theme there were two main projects: the fundamental study of the transport of elemental ions through the vacuum interface of an inductively coupled plasma mass spectrometer (ICPMS), and fundamental studies of the ionization mechanisms in ambient desorption/ionization (ADI) sources for molecular mass spectrometry. In both cases the goal was to generate fundamental understanding of key instrumental processes that would lead to the development of instruments that were more sensitive and more consistent in their performance. The emphasis on consistency derives from the need for instruments that have the same sensitivity, regardless of sample type. In the jargon of analytical chemistry, such instruments are said to be free from matrix effects. In the ICPMS work each stage of ion production and of ion transport from the atmospheric pressure to the high-vacuum mass analyzer was studied. Factors controlling ion transport efficiency and consistency were identified at each stage of pressure reduction. In the ADI work the interactions between an electrospray plume and a fluorescent sample on a surface were examined microscopically. A new mechanism for analyte ion production in desorption electrospray ionization (DESI) was proposed. Optical spectroscopy was used to track the production of reactive species in plasmas used as ADI sources. Experiments with mixed-gas plasmas demonstrated that the addition of a small amount of hydrogen to a helium ADI plasma could boost the sensitivity for some analytes by over an order of magnitude.

  1. Tracer kinetic modeling of [(11)C]AFM, a new PET imaging agent for the serotonin transporter.

    PubMed

    Naganawa, Mika; Nabulsi, Nabeel; Planeta, Beata; Gallezot, Jean-Dominique; Lin, Shu-Fei; Najafzadeh, Soheila; Williams, Wendol; Ropchan, Jim; Labaree, David; Neumeister, Alexander; Huang, Yiyun; Carson, Richard E

    2013-12-01

    [(11)C]AFM, or [(11)C]2-[2-(dimethylaminomethyl)phenylthio]-5-fluoromethylphenylamine, is a new positron emission tomography (PET) radioligand with high affinity and selectivity for the serotonin transporter (SERT). The purpose of this study was to determine the most appropriate kinetic model to quantify [(11)C]AFM binding in the healthy human brain. Positron emission tomography data and arterial input functions were acquired from 10 subjects. Compartmental modeling and the multilinear analysis-1(MA1) method were tested using the arterial input functions. The one-tissue model showed a lack of fit in low-binding regions, and the two-tissue model failed to estimate parameters reliably. Regional time-activity curves were well described by MA1. The rank order of [(11)C]AFM binding potential (BPND) matched well with the known regional SERT densities. For routine use of [(11)C]AFM, several noninvasive methods for quantification of regional binding were evaluated, including simplified reference tissue models (SRTM and SRTM2), and multilinear reference tissue models (MRTM and MRTM2). The best methods for region of interest (ROI) analysis were MA1, MRTM2, and SRTM2, with fixed population kinetic values ( or b') for the reference methods. The MA1 and MRTM2 methods were best for parametric imaging. These results showed that [(11)C]AFM is a suitable PET radioligand to image and quantify SERT in humans. PMID:23921898

  2. Mixing it up: Corals take an active role in mass transport

    NASA Astrophysics Data System (ADS)

    Fernandez, Vicente; Shapiro, Orr; Brumley, Douglas; Garren, Melissa; Guasto, Jeffrey; Kramarski-Winter, Esti; Vardi, Assaf; Stocker, Roman

    2014-11-01

    The growth and health of reef-building corals are limited by corals' ability to exchange nutrients and oxygen with the surrounding, sometimes quiescent, seawater. Mass transport in coral systems has long been considered to occur passively as a result of molecular diffusion and the ambient fluid flow over the coral. Through a combination of microscale visualization experiments and numerical modeling, we demonstrate instead that motile cilia densely covering the coral surface - previously thought to serve cleaning and feeding purposes- actively stir the coral boundary layer by generating persistent vortices above the coral surface. This active mixing was observed over a variety of corals with differing surface geometries. We have quantified the contribution of ciliary surface vortices to mass transport, finding oxygen flux enhancements of 2 to 3 orders of magnitude under environmentally relevant ambient flow conditions. These results reveal a new, active role of the coral animal in regulating its mass transport by engineering its local hydrodynamic environment, an ability that may have an important role in the evolutionary success of reef corals.

  3. Automated analysis of non-mass-enhancing lesions in breast MRI based on morphological, kinetic, and spatio-temporal moments and joint segmentation-motion compensation technique

    NASA Astrophysics Data System (ADS)

    Hoffmann, Sebastian; Shutler, Jamie D.; Lobbes, Marc; Burgeth, Bernhard; Meyer-Bäse, Anke

    2013-12-01

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) represents an established method for the detection and diagnosis of breast lesions. While mass-like enhancing lesions can be easily categorized according to the Breast Imaging Reporting and Data System (BI-RADS) MRI lexicon, a majority of diagnostically challenging lesions, the so called non-mass-like enhancing lesions, remain both qualitatively as well as quantitatively difficult to analyze. Thus, the evaluation of kinetic and/or morphological characteristics of non-masses represents a challenging task for an automated analysis and is of crucial importance for advancing current computer-aided diagnosis (CAD) systems. Compared to the well-characterized mass-enhancing lesions, non-masses have no well-defined and blurred tumor borders and a kinetic behavior that is not easily generalizable and thus discriminative for malignant and benign non-masses. To overcome these difficulties and pave the way for novel CAD systems for non-masses, we will evaluate several kinetic and morphological descriptors separately and a novel technique, the Zernike velocity moments, to capture the joint spatio-temporal behavior of these lesions, and additionally consider the impact of non-rigid motion compensation on a correct diagnosis.

  4. Enzyme kinetics and transport in a system crowded by mobile macromolecules.

    PubMed

    Echeverria, Carlos; Kapral, Raymond

    2015-11-21

    The dynamics of an elastic network model for the enzyme 4-oxalocrotonate tautomerase is studied in a system crowded by mobile macromolecules, also modeled by elastic networks. The system includes a large number of solvent molecules, as well as substrate and product molecules which undergo catalytic reactions with this hexameric protein. The time evolution of the entire system takes place through a hybrid dynamics that combines molecular dynamics for solute species and multiparticle collision dynamics for the solvent. It is shown that crowding leads to subdiffusive dynamics for the protein, in accord with many studies of diffusion in crowded environments, and increases orientational relaxation times. The enzyme reaction kinetics is also modified by crowding. The effective Michaelis constant decreases with crowding volume fraction, and this decrease is attributed to excluded volume effects, which dominate over effects due to reduced substrate diffusion that would cause the Michaelis constant to increase. PMID:26465099

  5. Effect of grain boundary trapping kinetics on diffusion in polycrystalline materials: hydrogen transport in Ni

    NASA Astrophysics Data System (ADS)

    Ilin, Dmitrii N.; Kutsenko, Anton A.; Tanguy, Dome; Olive, Jean-Marc

    2016-03-01

    Due to experimental limitations, the solute distribution in polycrystalline materials is difficult to obtain directly, especially in the vicinity of grain boundaries. Using a newly developed computational method which mixes continuum diffusion equations and atomic scale jump rates, we study the interstitial diffusion in solids containing interfaces taking into account trapping kinetics. The model is applied to hydrogen diffusion in Ni in elementary configurations: fast intergranular diffusion with no segregation (in agreement with Fisher’s model), slow intergranular diffusion with trapping, diffusion through a triple junction and solute redistribution due to stress gradients across the interface. It is shown that the classical diffusion modes can be captured and a new diffusion regime with the effect of grain boundary trapping is revealed.

  6. Assessment of a Novel Algal Strain Chlamydomonas debaryana NIREMACC03 for Mass Cultivation, Biofuels Production and Kinetic Studies.

    PubMed

    Mishra, Sanjeev; Singh, Neetu; Sarma, Anil Kumar

    2015-08-01

    A novel microalgae strain Chlamydomonas debaryana (KJ210856) was isolated from a freshwater lake of Punjab, India, and cultivated considering climatic sustainability and inherent adaptability concern. C. debaryana was grown in a 30-L indoor photobioreactor to study the mass cultivation prospect and biofuel potential. Physicochemical characterization of biomass and the lipid was performed with effect to nitrogen stress. It showed a higher biomass yield (1.58 ± 0.02 g L(-1), dry weight) and twofold increase in lipid yield (552.78 ± 9 mg L(-1)) with 34.2 ± 0.19 % lipid content under nitrogen deficient condition. Strikingly, increase in triglycerides achieved with nitrogen depletion containing over 96 % of total fatty acids (C 14, C 16, and C 18). Proximate and ultimate analysis suggested the presence of relatively higher volatile matter and carbon-hydrogen ratio. Furthermore, lower moisture and ash content signified C. debaryana biomass has promising features towards biofuel applications. The pyrolytic behavior of the whole biomass was also studied using thermogravimetric analyzer (TGA) and kinetic parameters were estimated using different methods. Promising growth rate and lipid yield leading to feasible biofuel feed stock production in indoor photobioreactor along with autosediment potential of cells validates C. debaryana NIREMACC03, a potential strain for mass cultivation. PMID:26093613

  7. Influence of microwave irradiation on the mass-transfer kinetics of propylbenzene in reversed-phase liquid chromatography

    SciTech Connect

    Galinada, Wilmer; Kaczmarski, Krzysztof; Guiochon, Georges A

    2005-09-01

    The effect of microwave irradiation on the kinetics of mass transfer in reversed-phase liquid chromatography (RPLC) was studied by measuring its influence on the band profile of propylbenzene in a C{sub 18}-silica column eluted with an aqueous solution of methanol and placed inside a microwave oven. The elution peaks were measured by the pulse-response method, under linear conditions. The amount of microwave energy induced into the column was varied based on the microwave input power. The experimental data were analyzed using the conventional method of moment analysis and the lumped pore diffusion model. With input powers of 15 and 30 W, the effluent temperatures were 25 {+-} 1 and 30 {+-} 1 C, respectively. The effect of microwave irradiation on the mass transfer of the studied solute was determined by comparing the band profiles obtained under the same experimental conditions, at the same temperature, with and without irradiation. The values of the intraparticle diffusion coefficient, D{sub e}, measured with microwave irradiation were ca. 20% higher than those obtained without irradiation. Derived from the method of moments, the values of D{sub e} at 15 W (25 {+-} 1 C) and 0 W (25 {+-} 1 C) were 8.408 x 10{sup -6} cm{sup 2} s{sup -1} and 6.947 x 10{sup -6} cm{sup 2} s{sup -1}, respectively, while these values at 30 W (30 {+-} 1 C) and 0 W (30 {+-} 1 C) were 9.389 x 10{sup -6} cm{sup 2} s{sup -1} and 7.848 x 10{sup -6} cm{sup 2} s{sup -1}, respectively. The values of the surface diffusivity, D{sub S}, also increased with increasing power of the microwave irradiation. It is assumed that the increase in intraparticle diffusion for propylbenzene was caused by the molecular excitation of the organic modifier that has a higher dielectric loss than the solute. The values of D{sub e} were also analyzed and determined using the POR model. There was an excellent agreement between the results of the two independent methods. These preliminary results suggest that microwave

  8. Application of Paramagnetically Tagged Molecules for Magnetic Resonance Imaging of Biofilm Mass Transport Processes▿

    PubMed Central

    Ramanan, B.; Holmes, W. M.; Sloan, W. T.; Phoenix, V. R.

    2010-01-01

    Molecules become readily visible by magnetic resonance imaging (MRI) when labeled with a paramagnetic tag. Consequently, MRI can be used to image their transport through porous media. In this study, we demonstrated that this method could be applied to image mass transport processes in biofilms. The transport of a complex of gadolinium and diethylenetriamine pentaacetic acid (Gd-DTPA), a commercially available paramagnetic molecule, was imaged both in agar (as a homogeneous test system) and in a phototrophic biofilm. The images collected were T1 weighted, where T1 is an MRI property of the biofilm and is dependent on Gd-DTPA concentration. A calibration protocol was applied to convert T1 parameter maps into concentration maps, thus revealing the spatially resolved concentrations of this tracer at different time intervals. Comparing the data obtained from the agar experiment with data from a one-dimensional diffusion model revealed that transport of Gd-DTPA in agar was purely via diffusion, with a diffusion coefficient of 7.2 × 10−10 m2 s−1. In contrast, comparison of data from the phototrophic biofilm experiment with data from a two-dimensional diffusion model revealed that transport of Gd-DTPA inside the biofilm was by both diffusion and advection, equivalent to a diffusion coefficient of 1.04 × 10−9 m2 s−1. This technology can be used to further explore mass transport processes in biofilms, either by using the wide range of commercially available paramagnetically tagged molecules and nanoparticles or by using bespoke tagged molecules. PMID:20435773

  9. Structure and mass transportation model of slow-release organic carbon-source material for groundwater in situ denitrification.

    PubMed

    Zhang, Dayi; Zhou, Guizhong; Zhang, Xu; Wang, Yun; Li, Guanghe

    2015-01-01

    Based on the theories of organic polymer and chemical kinetics, the structure and mass transportation model of slow-release organic carbon-source (SOC) material was developed in this study to reveal and predict the carbon release mechanisms of polymer carbon source, which was feasible for in situ denitrification in nitrate-contaminated groundwater. Composed of polyvinyl alcohol (PVA) and starch, the SOC material formed the interlocking/disperse-phase structure. PVA performed as continuous phase and skeleton, whereas the starch or cellulose behaved as release component. Carbon release process was identified in two stages: solid-phase (inner) and interface (gel layer) diffusion. Solid-phase diffusion was affected by material porous medium parameters, for example, distance between the crosslinking points and starch free energy. The interface diffusion depended mostly on the groundwater dynamics and interface energy distribution. The interface diffusion was found as the limiting step of carbon release process, and the carbon release coefficient corresponded to kD,I as static coefficient and kC,I as dynamic coefficient. As the key indicator to evaluate carbon release capacity, kD,I and kC,I represented appropriate boundary conditions and interface properties. Sensitivity analysis showed that the key parameters of the carbon release model were the distance between the crosslinking points and the free energy of polymer, influenced by regulation of preparation technique, raw material composition and additive dosage. PMID:25342089

  10. Collisional Transport in a Low Aspect Ratio Tokamak -- Beyond the Drift Kinetic Formalism

    SciTech Connect

    D.A. Gates; R.B. White

    2004-01-28

    Calculations of collisional thermal and particle diffusivities in toroidal magnetic plasma confinement devices order the toroidal gyroradius to be small relative to the poloidal gyroradius. This ordering is central to what is usually referred to as neoclassical transport theory. This ordering is incorrect at low aspect ratio, where it can often be the case that the toroidal gyroradius is larger than the poloidal gyroradius. We calculate the correction to the particle and thermal diffusivities at low aspect ratio by comparing the diffusivities as determined by a full orbit code (which we refer to as omni-classical diffusion) with those from a gyroaveraged orbit code (neoclassical diffusion). In typical low aspect ratio devices the omni-classical diffusion can be up to 2.5 times the calculated neoclassical value. We discuss the implications of this work on the analysis of collisional transport in low aspect ratio magnetic confinement experiments.

  11. Statistical Performance Evaluation of Spatiotemporal Characteristics of Groundwater Flow and Contaminant Mass Transport

    NASA Astrophysics Data System (ADS)

    Matiatos, Ioannis; Papadopoulou, Maria P.; Varouchakis, Emmanouil A.

    2016-04-01

    As groundwater remains one of the most critical natural resources worldwide, numerical models of groundwater flow and contaminant mass transport provide a reliable tool for the efficient protection, planning and sustainable management of groundwater resources. This work focuses on the evaluation of the performance of different numerical models which have been developed to simulate spatiotemporal groundwater flow and contaminant mass transport in a coastal aquifer system. The evaluation of the models' performance has been based on 9 different statistical measures and indices of goodness of fit. Overall, the simulation of groundwater level and contaminant mass concentration delivered very good calibration and validation results in all cases, quite close to the desired values. Maps of aquifer water level and contaminant mass concentrations are provided for all cases in order the differences to be discussed and assessed. The selection of the appropriate model(s) is case oriented and it should be based on the problem's characteristics in order the spatiotemporal variability of the components under study to be optimally estimated.

  12. Estimation of kinetic parameters for glucose transport in human brain cortex

    SciTech Connect

    Vyska, K.; Machulla, H.J.; Mehdorn, H.M.; Notohamiprodjo, G.; Knapp, W.H.; Feinendegen, L.E.

    1985-05-01

    3-O-C-11-methyl-D-glucose (CMG), F-18-3-deoxy-3-fluoro D-glucose (3FDG), and dynamic positron-emission-tomography (dPET) were used to measure the rate constants for glucose transport across the blood brain barrier (BBB) in human cortex. The assay takes advantage of CMG or 3FDG being practically not metabolized in brain and being transported back from the tissue into the circulation. The simultaneous registration of tracer concentration in blood and tissue by dPET at 1 min intervals for 40 min yields time activity curves, which permit the in vivo determination of the rate constants for CMG or 3FDG transport across the BBB. In the present study, 4 healthy volunteers and 10 patients suffering from a single-sided ischemic brain disease were examined. In all cases the CMG/3FDG measurements were carried out at two different glucose plasma concentrations i.e. at normoglycemia and hyperglycemia after i.v. application of 10 g glucose. The determination of glucose plasma concentration was performed just before and immediately after the CMG/3FDG study. Using these data and a new mathematical model the Michaelis-Menten constant (K/sub M/) and maximal velocity (V/sub M/) for CMG, 3FDG and glucose transport across the BBB in normal and non-affected human cortex were determined. K/sub M CMG/ was 7.21 ..mu..mol/g; K/sub M 3FDG/ was 3.93 ..mu..mol/g and K/sub M gluc/ was 6.31 ..mu..mol/g. V/sub M/ was found in all cases to be 2.1 ..mu..mol/min g. The data obtained suggest that the CMG/3FDG method might provide a powerful tool for studying the mechanisms involved in the pathological alterations of glucose carrier system.

  13. Kinetic effects on the electron thermal transport in ignition target design

    SciTech Connect

    Honda, M.; Nishiguchi, A.; Takabe, H.; Azechi, H.; Mima, K.

    1996-09-01

    Preheating is one of the most critical issues in laser fusion, because of significant reduction of volume compression. The nonlocal heat transport in an ablative plasma is found to play an important role in the preheating under high intensity laser irradiation. Namely, the electron heat transport should be described by the Fokker{endash}Planck (FP) equation in the fluid implosion code. The Spitzer{endash}H{umlt a}rm (SH) thermal conduction model is not applicable because the electron mean free path is comparable to the temperature scale length. The numerical simulations of the implosion with the FP heat transport have been carried out for the fast (high entropy) implosion mode in which the implosion velocity reaches as high as 6{times}10{sup 7} cm/s. In the fast implosion, the required laser energy for ignition can be reduced. It is found in the simulation that the isentrope in the FP simulation code is higher by two to four times than that in the flux limited SH simulation. {copyright} {ital 1996 American Institute of Physics.}

  14. Local mass transport coefficients and local wall shear stresses at flow disturbances

    SciTech Connect

    Schmitt, G.; Gudde, T.

    1995-10-01

    Electrochemical measurements were performed with micro and ultramicro electrode arrays to evaluate local mass transfer rates with high lateral resolution in order to explain extreme corrosion rates during flow induced localized corrosion at leading edges of small flow disturbances. It was found that the mass transport coefficient close to the leading edge of a rectangular cavity in the wall of a rectangular flow channel is higher by a factor of 4--7 than at the plain channel wall. A parabolic correlation was found between wall shear stress and mass transfer rate at the plain channel wall. Assuming the validity of this correlation also in the high turbulent areas at leading edges of cavities enhancement factors in the order of 200 were assessed for the wall shear stress at the cavity compared to the plain channel wall.

  15. Estimation of water table level and nitrate pollution based on geostatistical and multiple mass transport models

    NASA Astrophysics Data System (ADS)

    Matiatos, Ioannis; Varouhakis, Emmanouil A.; Papadopoulou, Maria P.

    2015-04-01

    As the sustainable use of groundwater resources is a great challenge for many countries in the world, groundwater modeling has become a very useful and well established tool for studying groundwater management problems. Based on various methods used to numerically solve algebraic equations representing groundwater flow and contaminant mass transport, numerical models are mainly divided into Finite Difference-based and Finite Element-based models. The present study aims at evaluating the performance of a finite difference-based (MODFLOW-MT3DMS), a finite element-based (FEFLOW) and a hybrid finite element and finite difference (Princeton Transport Code-PTC) groundwater numerical models simulating groundwater flow and nitrate mass transport in the alluvial aquifer of Trizina region in NE Peloponnese, Greece. The calibration of groundwater flow in all models was performed using groundwater hydraulic head data from seven stress periods and the validation was based on a series of hydraulic head data for two stress periods in sufficient numbers of observation locations. The same periods were used for the calibration of nitrate mass transport. The calibration and validation of the three models revealed that the simulated values of hydraulic heads and nitrate mass concentrations coincide well with the observed ones. The models' performance was assessed by performing a statistical analysis of these different types of numerical algorithms. A number of metrics, such as Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Bias, Nash Sutcliffe Model Efficiency (NSE) and Reliability Index (RI) were used allowing the direct comparison of models' performance. Spatiotemporal Kriging (STRK) was also applied using separable and non-separable spatiotemporal variograms to predict water table level and nitrate concentration at each sampling station for two selected hydrological stress periods. The predictions were validated using the respective measured values. Maps of water table

  16. STOMP Subsurface Transport Over Multiple Phases Version 1.0 Addendum: ECKEChem Equilibrium-Conservation-Kinetic Equation Chemistry and Reactive Transport

    SciTech Connect

    White, Mark D.; McGrail, B. Peter

    2005-12-01

    flow and transport simulator, STOMP (Subsurface Transport Over Multiple Phases). Prior to these code development activities, the STOMP simulator included sequential and scalable implementations for numerically simulating the injection of supercritical CO2 into deep saline aquifers. Additionally, the sequential implementations included operational modes that considered nonisothermal conditions and kinetic dissolution of CO2 into the saline aqueous phase. This addendum documents the advancement of these numerical simulation capabilities to include reactive transport in the STOMP simulator through the inclusion of the recently PNNL developed batch geochemistry solution module ECKEChem (Equilibrium-Conservation-Kinetic Equation Chemistry). Potential geologic reservoirs for sequestering CO2 include deep saline aquifers, hydrate-bearing formations, depleted or partially depleted natural gas and petroleum reservoirs, and coal beds. The mechanisms for sequestering carbon dioxide in geologic reservoirs include physical trapping, dissolution in the reservoir fluids, hydraulic trapping (hysteretic entrapment of nonwetting fluids), and chemical reaction. This document and the associated code development and verification work are concerned with the chemistry of injecting CO2 into geologic reservoirs. As geologic sequestration of CO2 via chemical reaction, namely precipitation reactions, are most dominate in deep saline aquifers, the principal focus of this document is the numerical simulation of CO2 injection, migration, and geochemical reaction in deep saline aquifers. The ECKEChem batch chemistry module was developed in a fashion that would allow its implementation into all operational modes of the STOMP simulator, making it a more versatile chemistry component. Additionally, this approach allows for verification of the ECKEChem module against more classical reactive transport problems involving aqueous systems.

  17. Mechanistic and Kinetic Study of Singlet O2 Oxidation of Methionine by On-Line Electrospray Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Liu, Fangwei; Lu, Wenchao; Yin, Xunlong; Liu, Jianbo

    2016-01-01

    We report a reaction apparatus developed to monitor singlet oxygen (1O2) reactions in solution using on-line ESI mass spectrometry and spectroscopy measurements. 1O2 was generated in the gas phase by the reaction of H2O2 with Cl2, detected by its emission at 1270 nm, and bubbled into aqueous solution continuously. 1O2 concentrations in solution were linearly related to the emission intensities of airborne 1O2, and their absolute scales were established based on a calibration using 9,10-anthracene dipropionate dianion as an 1O2 trapping agent. Products from 1O2 oxidation were monitored by UV-Vis absorption and positive/negative ESI mass spectra, and product structures were elucidated using collision-induced dissociation-tandem mass spectrometry. To suppress electrical discharge in negative ESI of aqueous solution, methanol was added to electrospray via in-spray solution mixing using theta-glass ESI emitters. Capitalizing on this apparatus, the reaction of 1O2 with methionine was investigated. We have identified methionine oxidation intermediates and products at different pH, and measured reaction rate constants. 1O2 oxidation of methionine is mediated by persulfoxide in both acidic and basic solutions. Persulfoxide continues to react with another methionine, yielding methionine sulfoxide as end-product albeit with a much lower reaction rate in basic solution. Density functional theory was used to explore reaction potential energy surfaces and establish kinetic models, with solvation effects simulated using the polarized continuum model. Combined with our previous study of gas-phase methionine ions with 1O2, evolution of methionine oxidation pathways at different ionization states and in different media is described.

  18. Mechanistic and Kinetic Study of Singlet O2 Oxidation of Methionine by On-Line Electrospray Ionization Mass Spectrometry.

    PubMed

    Liu, Fangwei; Lu, Wenchao; Yin, Xunlong; Liu, Jianbo

    2016-01-01

    We report a reaction apparatus developed to monitor singlet oxygen ((1)O2) reactions in solution using on-line ESI mass spectrometry and spectroscopy measurements. (1)O2 was generated in the gas phase by the reaction of H2O2 with Cl2, detected by its emission at 1270 nm, and bubbled into aqueous solution continuously. (1)O2 concentrations in solution were linearly related to the emission intensities of airborne (1)O2, and their absolute scales were established based on a calibration using 9,10-anthracene dipropionate dianion as an (1)O2 trapping agent. Products from (1)O2 oxidation were monitored by UV-Vis absorption and positive/negative ESI mass spectra, and product structures were elucidated using collision-induced dissociation-tandem mass spectrometry. To suppress electrical discharge in negative ESI of aqueous solution, methanol was added to electrospray via in-spray solution mixing using theta-glass ESI emitters. Capitalizing on this apparatus, the reaction of (1)O2 with methionine was investigated. We have identified methionine oxidation intermediates and products at different pH, and measured reaction rate constants. (1)O2 oxidation of methionine is mediated by persulfoxide in both acidic and basic solutions. Persulfoxide continues to react with another methionine, yielding methionine sulfoxide as end-product albeit with a much lower reaction rate in basic solution. Density functional theory was used to explore reaction potential energy surfaces and establish kinetic models, with solvation effects simulated using the polarized continuum model. Combined with our previous study of gas-phase methionine ions with (1)O2, evolution of methionine oxidation pathways at different ionization states and in different media is described. PMID:26306590

  19. Pressure and kinetic energy transport across the cavity mouth in resonating cavities

    NASA Astrophysics Data System (ADS)

    Bailey, Peter Roger; Abbá, Antonella; Tordella, Daniela

    2013-01-01

    Basic properties of the incompressible fluid motion in a rectangular cavity located along one wall of a plane channel are considered. For Mach numbers of the order of 1×10-3 and using the incompressible formulation, we look for observable properties that can be associated with acoustic emission, which is normally observed in this kind of flow beyond a critical value of Reynolds number. The focus is put on the energy dynamics, in particular on the accumulation of energy in the cavity which takes place in the form of pressure and kinetic energy. By increasing the external forcing, we observe that the pressure flow into the cavity increases very rapidly, then peaks. However, the flow of kinetic energy, which is many orders of magnitude lower than that of the pressure, slowly but continuously grows. This leads to the pressure-kinetic energy flows ratio reaching an asymptotic state around the value 1000 for the channel bulk speed Reynolds number. It is interesting to note that beyond this threshold when the channel flow is highly unsteady—a sort of coarse turbulent flow—a sequence of high and low pressure spots is seen to depart from the downward cavity step in the statistically averaged field. The set of spots forms a steady spatial structure, a sort of damped standing wave stretching along the spanwise direction. The line joining the centers of the spots has an inclination similar to the normal to the fronts of density or pressure waves, which are observed to propagate from the downstream cavity edge in compressible cavity flows (at Mach numbers of 1×102 to 1×103, larger than those considered here). The wavelength of the standing wave is of the order of 1/8 the cavity depth and observed at the channel bulk Reynolds number, Re˜2900. In this condition, the measure of the maximum pressure differences in the cavity field shows values of the order of 1×10-1 Pa. We interpret the presence of this sort of wave as the fingerprint of the noise emission spots which

  20. Pressure and kinetic energy transport across the cavity mouth in resonating cavities.

    PubMed

    Bailey, Peter Roger; Abbá, Antonella; Tordella, Daniela

    2013-01-01

    Basic properties of the incompressible fluid motion in a rectangular cavity located along one wall of a plane channel are considered. For Mach numbers of the order of 1×10(-3) and using the incompressible formulation, we look for observable properties that can be associated with acoustic emission, which is normally observed in this kind of flow beyond a critical value of Reynolds number. The focus is put on the energy dynamics, in particular on the accumulation of energy in the cavity which takes place in the form of pressure and kinetic energy. By increasing the external forcing, we observe that the pressure flow into the cavity increases very rapidly, then peaks. However, the flow of kinetic energy, which is many orders of magnitude lower than that of the pressure, slowly but continuously grows. This leads to the pressure-kinetic energy flows ratio reaching an asymptotic state around the value 1000 for the channel bulk speed Reynolds number. It is interesting to note that beyond this threshold when the channel flow is highly unsteady-a sort of coarse turbulent flow-a sequence of high and low pressure spots is seen to depart from the downward cavity step in the statistically averaged field. The set of spots forms a steady spatial structure, a sort of damped standing wave stretching along the spanwise direction. The line joining the centers of the spots has an inclination similar to the normal to the fronts of density or pressure waves, which are observed to propagate from the downstream cavity edge in compressible cavity flows (at Mach numbers of 1×10(2) to 1×10(3), larger than those considered here). The wavelength of the standing wave is of the order of 1/8 the cavity depth and observed at the channel bulk Reynolds number, Re~2900. In this condition, the measure of the maximum pressure differences in the cavity field shows values of the order of 1×10(-1) Pa. We interpret the presence of this sort of wave as the fingerprint of the noise emission spots which

  1. Kinetic and mechanistic studies of the photolysis of metronidazole in simulated aqueous environmental matrices using a mass spectrometric approach.

    PubMed

    Tong, Lei; Pérez, Sandra; Gonçalves, Carlos; Alpendurada, Fátima; Wang, Yanxin; Barceló, Damià

    2011-01-01

    Metronidazole is a nitroimidazole antibiotic derivative used in humans against anaerobic bacteria and protozoa. In light of the recent detection of metronidazole in hospital wastes, sewage treatment plants, and surface waters, along with its known sensitivity toward photolytical degradation, this study aimed to model the photolysis in environmental waters by sunlight as a natural attenuation process. To this end, the degradation of metronidazole in a photoreactor simulating solar radiation (Suntest CPS) was compared in five different aqueous matrices: deionized water, artificial freshwater (AFW), AFW supplemented with nitrate (5 mg/L), AFW containing humic acids, and AFW with both nitrate and humic acids. Irrespective of the test medium, the degradation of the metronidazole solutions (10 and 0.02 mg/L) was found to follow pseudo-first-order kinetics. Degradation rates were dependant on the matrix, with humic acids causing a two to threefold decrease in the rate constants while the presence of nitrate had no marked effect on the kinetics. Therefore, the direct photolysis of metronidazole was apparently attenuated through a filter effect of humic acids. Screening of the irradiated water samples by ultra performance liquid chromatography/quadrupole time-of-flight mass spectrometry allowed separation and characterisation of four principal phototransformation products of the antibiotic. The high-resolution MS data pointed to the formation of two rearrangement products (C(6)H(10)N(3)O(3)) isobaric with metronidazole, a third product deriving from the elimination of NO from the nitro group (C(6)H(11)N(2)O(2)), and a fourth unidentified degradate with a likely elemental composition of C(5)H(10)N(3)O. PMID:20978747

  2. Kinetics of carboplatin-DNA binding in genomic DNA and bladder cancer cells as determined by accelerator mass spectrometry

    SciTech Connect

    Hah, S S; Stivers, K M; Vere White, R; Henderson, P T

    2005-12-29

    Cisplatin and carboplatin are platinum-based drugs that are widely used in cancer chemotherapy. The cytotoxicity of these drugs is mediated by platinum-DNA monoadducts and intra- and interstrand diadducts, which are formed following uptake of the drug into the nucleus of cells. The pharmacodynamics of carboplatin display fewer side effects than for cisplatin, albeit with less potency, which may be due to differences in rates of DNA adduct formation. We report the use of accelerator mass spectrometry (AMS), a sensitive detection method often used for radiocarbon quantitation, to measure both the kinetics of [{sup 14}C]carboplatin-DNA adduct formation with genomic DNA and drug uptake and DNA binding in T24 human bladder cancer cells. Only carboplatin-DNA monoadducts contain radiocarbon in the platinated DNA, which allowed for calculation of kinetic rates and concentrations within the system. The percent of radiocarbon bound to salmon sperm DNA in the form of monoadducts was measured by AMS over 24 h. Knowledge of both the starting concentration of the parent carboplatin and the concentration of radiocarbon in the DNA at a variety of time points allowed calculation of the rates of Pt-DNA monoadduct formation and conversion to toxic cross-links. Importantly, the rate of carboplatin-DNA monoadduct formation was approximately 100-fold slower than that reported for the more potent cisplatin analogue, which may explain the lower toxicity of carboplatin. T24 human bladder cancer cells were incubated with a subpharmacological dose of [{sup 14}C]carboplatin, and the rate of accumulation of radiocarbon in the cells and nuclear DNA was measured by AMS. The lowest concentration of radiocarbon measured was approximately 1 amol/10 {micro}g of DNA. This sensitivity may allow the method to be used for clinical applications.

  3. Multiple apolipoprotein kinetics measured in human HDL by high-resolution/accurate mass parallel reaction monitoring.

    PubMed

    Singh, Sasha A; Andraski, Allison B; Pieper, Brett; Goh, Wilson; Mendivil, Carlos O; Sacks, Frank M; Aikawa, Masanori

    2016-04-01

    Endogenous labeling with stable isotopes is used to study the metabolism of proteins in vivo. However, traditional detection methods such as GC/MS cannot measure tracer enrichment in multiple proteins simultaneously, and multiple reaction monitoring MS cannot measure precisely the low tracer enrichment in slowly turning-over proteins as in HDL. We exploited the versatility of the high-resolution/accurate mass (HR/AM) quadrupole Orbitrap for proteomic analysis of five HDL sizes. We identified 58 proteins in HDL that were shared among three humans and that were organized into five subproteomes according to HDL size. For seven of these proteins, apoA-I, apoA-II, apoA-IV, apoC-III, apoD, apoE, and apoM, we performed parallel reaction monitoring (PRM) to measure trideuterated leucine tracer enrichment between 0.03 to 1.0% in vivo, as required to study their metabolism. The results were suitable for multicompartmental modeling in all except apoD. These apolipoproteins in each HDL size mainly originated directly from the source compartment, presumably the liver and intestine. Flux of apolipoproteins from smaller to larger HDL or the reverse contributed only slightly to apolipoprotein metabolism. These novel findings on HDL apolipoprotein metabolism demonstrate the analytical breadth and scope of the HR/AM-PRM technology to perform metabolic research. PMID:26862155

  4. Kinetics of Beta-14[14C] Carotene in a Human Subject Using Accelerator Mass Spectrometry

    SciTech Connect

    Dueker, S.R.; Lin, Y.; Follett, J.R.; Clifford, A.J.; Buchholz, B.A.

    2000-01-31

    {beta}-Carotene is a tetraterpenoid distributed widely throughout the plant kingdom. It is a member of a group of pigments referred to as carotenoids that have the distinction of serving as metabolic precursors to vitamin A in humans and many animals [1,2]. We used Accelerator Mass Spectrometry (AMS) [3] to determine the metabolic behavior of a physiologic oral dose of {beta}-[{sup 14}C]carotene (200 nanoCuries; 0.57 {micro}mol) in a healthy human subject. Serial blood specimens were collected for 210-d and complete urine and feces were collected for 17 and 10-d, respectively. Balance data indicated that the dose was 42% bioavailable. The absorbed {beta}-carotene was lost slowly via urine in accord with the slow body turnover of {beta}-carotene and vitamin A [4]. HPLC fractionation of plasma taken at early time points (0-24-h) showed the label was distributed between {beta}-carotene and retinyl esters (vitamin A) derived from intestinal metabolism.

  5. Competitive ion kinetics in direct mass spectrometric organic speciation. 1994 Progress report

    SciTech Connect

    Sieck, L.W.

    1994-12-31

    The experimental work on the gas phase proton affinity (PA) scale, discussed in some detail in last year`s Progress Report, will be completed within the next few weeks. Basically this effort involves the development of a precise and accurate interlocking ladder of relative PA`s derived from the temperature dependence of proton transfer equilibria incorporating a variety of reactant pairs using the technique of pulsed high pressure mass spectrometry (NIST has the only US facility). The PA subset under investigation was expanded from the original list to cover the region between CH{sub 3}CHO and (CH{sub 3}){sub 2}CO, which spans a PA range of approximately 12 kcal/mol. More than 300 separate equilibrium measurements have been carried out to date over the temperature range 240--395 C. The thermochemical region under study creates a bridge between the so-called upper and lower PA scales, and includes two primary reference standards, CH{sub 3}CHO and i-C{sub 4}H{sub 8}, with PA`s independently defined elsewhere via photoionization techniques.

  6. Longitudinal changes in zinc transport kinetics, metallothionein, and zinc transporter expression in a blood-brain barrier model in response to a moderately excessive zinc environment$

    PubMed Central

    Gauthier, Nicole A.; Karki, Shakun; Olley, Bryony J.; Thomas, W. Kelly

    2008-01-01

    A blood-brain barrier (BBB) model composed of porcine brain capillary endothelial cells (BCEC) was exposed to a moderately excessive zinc environment (50 µmol Zn/L) in cell culture and longitudinal measurements were made of zinc transport kinetics, ZnT-1 (SLC30A1) expression, and changes in the protein concentration of metallothionein (MT), ZnT-1, ZnT-2 (SLC30A2), and Zip1 (SLC39A1). Zinc release by cells of the BBB model was significantly increased after 12–24 h of exposure, but decreased back to control levels after 48–96 h, as indicated by transport across the BBB from both the ablumenal (brain) and lumenal (blood) directions. Expression of ZnT-1, the zinc export protein, increased 169% within 12 h, but was no longer different from controls after 24 h. Likewise, ZnT-1 protein content increased transiently after 12 h of exposure but returned to control levels by 24 h. Capacity for zinc uptake and retention increased from both the lumenal and ablumenal directions within 12–24 h of exposure and remained elevated. MT and ZnT-2 were elevated within 12 h and remained elevated throughout the study. Zip1 was unchanged by the treatment. The BBB’s response to a moderately high zinc environment was dynamic and involved multiple mechanisms. The initial response was to increase the cell’s capacity to sequester zinc with additional MT and increase zinc export with the ZnT-1 protein. But, the longer term strategy involved increasing ZnT-2 transporters, presumably to sequester zinc into intracellular vesicles as a mechanism to protect the brain and maintain brain zinc homeostasis. PMID:18061429

  7. A micro-mapping strategy to investigate mechanical and chemical mass transport in migmatite

    NASA Astrophysics Data System (ADS)

    Lanari, Pierre; Riel, Nicolas

    2016-04-01

    Migmatites are fantastic objects to study both mechanical and chemical mass transport occurring at mm to cm-scale. However, migmatitic outcrops are the result of complex space and time interactions between (i) melt producing reactions, (ii) melt gain/loss and (iii) retrograde reactions. This succession of events is recorded in the minerals and microstructures of migmatites, and accounts for their apparent complexity. In order to explore the controlling parameters of these chemico-mechanical mass transport, it is thus necessary to characterize in great details the compositional changes between the different migmatitic domains, such as between leucosome and residuum. In this contribution we show how suitable local effective bulk (LEB) compositions can be derived by means of standardized microprobe X-ray images, using the program XMapTools. For chemically heterogeneous samples, such as migmatites, these LEB allow to forward model the stable mineral assemblages for each domain. Those thermodynamic models are used to investigate the conditions of leucosome-residuum separation. The studied sample is a metapelite embedded within a metasedimentary xenolith in the Marcabeli pluton, El Oro Complex, Ecuador. The sample exhibits complex mineral patterns due to local melt redistribution (at mm to cm-scale). Such physical mass transport involves major changes that affect the local chemical composition observed today. At the same time gradients in chemical potential can be established between adjacent domains such as residuum and leucosome, thus triggering chemical interaction. Diffusive transport between domains aims to reduce such chemical potential gradients. Along a modelled P-T path the chemical and mineralogical evolution of micro-domains can be reconstructed for (at least the reactive parts of) the crystallization history.

  8. Wave-induced mass transport affects daily Escherichia coli fluctuations in nearshore water

    USGS Publications Warehouse

    Ge, Zhongfu; Whitman, Richard L.; Nevers, Meredith B.; Phanikumar, Mantha S.

    2012-01-01

    Characterization of diel variability of fecal indicator bacteria concentration in nearshore waters is of particular importance for development of water sampling standards and protection of public health. Significant nighttime increase in Escherichia coli (E. coli) concentration in beach water, previously observed at marine sites, has also been identified in summer 2000 from fixed locations in waist- and knee-deep waters at Chicago 63rd Street Beach, an embayed, tideless, freshwater beach with low currents at night (approximately 0.015 m s–1). A theoretical model using wave-induced mass transport velocity for advection was developed to assess the contribution of surface waves to the observed nighttime E. coli replenishment in the nearshore water. Using average wave conditions for the summer season of year 2000, the model predicted an amount of E. coli transported from water of intermediate depth, where sediment resuspension occurred intermittently, that would be sufficient to have elevated E. coli concentration in the surf and swash zones as observed. The nighttime replenishment of E. coli in the surf and swash zones revealed here is an important phase in the cycle of diel variations of E. coli concentration in nearshore water. According to previous findings in Ge et al. (Environ. Sci. Technol. 2010, 44, 6731–6737), enhanced current circulation in the embayment during the day tends to displace and deposit material offshore, which partially sets up the system by the early evening for a new period of nighttime onshore movement. This wave-induced mass transport effect, although facilitating a significant base supply of material shoreward, can be perturbed or significantly influenced by high currents (orders of magnitude larger than a typical wave-induced mass transport velocity), current-induced turbulence, and tidal forcing.

  9. A Reynolds-averaged turbulence modeling approach using three transport equations for the turbulent viscosity, kinetic energy, and dissipation rate

    NASA Astrophysics Data System (ADS)

    Yoshizawa, Akira; Abe, Hiroyuki; Matsuo, Yuichi; Fujiwara, Hitoshi; Mizobuchi, Yasuhiro

    2012-07-01

    A Reynolds-averaged approach to turbulent shear flows is sought with resort to a three-equation method. Its novelty is the introduction of a turbulent-viscosity transport equation through the transport equation for the Reynolds stress in addition to those for the turbulent kinetic energy and the dissipation rate. The latter two equations are used for evaluating the dimensional coefficients in the former. The aim of this model is to enhance the capability to cope with nonstationary and advection effects in various turbulent flows. The adaptability to them is confirmed through the application to homogeneous-shear and supersonic free-shear flows. In particular, the reasonable prediction is obtained in the latter where the growth rate of the shear layer is suppressed with the increase in the convective Mach number. The present model is also applied to a three-dimensional flow past a wing tip as an instance of complex aeronautical flows, and the excessive diffusion of the trailing vortices is shown to be suppressed. The turbulent-viscosity representation for the Reynolds stress is systematically supplemented with nonlinear effects of mean-velocity gradient tensors, and its adequacy is verified in a channel flow.

  10. On flow induced kinetic diffusion and rotary kiln bed burden heat transport

    SciTech Connect

    Boateng, A.A.

    1997-07-01

    The cross-section of a partially-filled cylindrical kiln rotating on its horizontal axis and processing granular solids produces a shear zone (active layer) at the free surface which grows with the kiln's rotational rate. The active layer, although relatively thin, compared with the rest of the bed burden, drives all physical/chemical reactions. This is because of the high rate of surface renewal which, in turn, promotes heat exchange between the exposed surface and the higher temperature freeboard gas. Unlike packed beds, particulate diffusion induced by the flow of granules, adds a significant component to the overall heat transfer in the bed. Problem formulation and modeling of heat conduction using flow fields derived from experiments suggest that at slow kiln speeds the diffusion effect may not be recognized due to long term duration of particle contacts and hence packed-bed heat conduction models may provide adequate characterization. However, at moderate and high kiln speeds particle collisions are short-termed and kinetic diffusion contributes to the effective thermal conductivity by as much as tenfold thereby resulting in a well-mixed conditions and a homogeneous bed temperature. Industrial processing ramifications such as kiln speed control and product quality are discussed hereafter.

  11. From kinetic to collective behavior in thermal transport on semiconductors and semiconductor nanostructures

    SciTech Connect

    Tomas, C. de; Lopeandia, A. F.; Alvarez, F. X.; Cantarero, A.

    2014-04-28

    We present a model which deepens into the role that normal scattering has on the thermal conductivity in semiconductor bulk, micro, and nanoscale samples. Thermal conductivity as a function of the temperature undergoes a smooth transition from a kinetic to a collective regime that depends on the importance of normal scattering events. We demonstrate that in this transition, the key point to fit experimental data is changing the way to perform the average on the scattering rates. We apply the model to bulk Si with different isotopic compositions obtaining an accurate fit. Then we calculate the thermal conductivity of Si thin films and nanowires by only introducing the effective size as additional parameter. The model provides a better prediction of the thermal conductivity behavior valid for all temperatures and sizes above 30 nm with a single expression. Avoiding the introduction of confinement or quantum effects, the model permits to establish the limit of classical theories in the study of the thermal conductivity in nanoscopic systems.

  12. Mass-conservative reconstruction of Galerkin velocity fields for transport simulations

    NASA Astrophysics Data System (ADS)

    Scudeler, C.; Putti, M.; Paniconi, C.

    2016-08-01

    Accurate calculation of mass-conservative velocity fields from numerical solutions of Richards' equation is central to reliable surface-subsurface flow and transport modeling, for example in long-term tracer simulations to determine catchment residence time distributions. In this study we assess the performance of a local Larson-Niklasson (LN) post-processing procedure for reconstructing mass-conservative velocities from a linear (P1) Galerkin finite element solution of Richards' equation. This approach, originally proposed for a-posteriori error estimation, modifies the standard finite element velocities by imposing local conservation on element patches. The resulting reconstructed flow field is characterized by continuous fluxes on element edges that can be efficiently used to drive a second order finite volume advective transport model. Through a series of tests of increasing complexity that compare results from the LN scheme to those using velocity fields derived directly from the P1 Galerkin solution, we show that a locally mass-conservative velocity field is necessary to obtain accurate transport results. We also show that the accuracy of the LN reconstruction procedure is comparable to that of the inherently conservative mixed finite element approach, taken as a reference solution, but that the LN scheme has much lower computational costs. The numerical tests examine steady and unsteady, saturated and variably saturated, and homogeneous and heterogeneous cases along with initial and boundary conditions that include dry soil infiltration, alternating solute and water injection, and seepage face outflow. Typical problems that arise with velocities derived from P1 Galerkin solutions include outgoing solute flux from no-flow boundaries, solute entrapment in zones of low hydraulic conductivity, and occurrences of anomalous sources and sinks. In addition to inducing significant mass balance errors, such manifestations often lead to oscillations in concentration

  13. Coupled porohyperelastic mass transport (PHEXPT) finite element models for soft tissues using ABAQUS.

    PubMed

    Vande Geest, Jonathan P; Simon, B R; Rigby, Paul H; Newberg, Tyler P

    2011-04-01

    Finite element models (FEMs) including characteristic large deformations in highly nonlinear materials (hyperelasticity and coupled diffusive/convective transport of neutral mobile species) will allow quantitative study of in vivo tissues. Such FEMs will provide basic understanding of normal and pathological tissue responses and lead to optimization of local drug delivery strategies. We present a coupled porohyperelastic mass transport (PHEXPT) finite element approach developed using a commercially available ABAQUS finite element software. The PHEXPT transient simulations are based on sequential solution of the porohyperelastic (PHE) and mass transport (XPT) problems where an Eulerian PHE FEM is coupled to a Lagrangian XPT FEM using a custom-written FORTRAN program. The PHEXPT theoretical background is derived in the context of porous media transport theory and extended to ABAQUS finite element formulations. The essential assumptions needed in order to use ABAQUS are clearly identified in the derivation. Representative benchmark finite element simulations are provided along with analytical solutions (when appropriate). These simulations demonstrate the differences in transient and steady state responses including finite deformations, total stress, fluid pressure, relative fluid, and mobile species flux. A detailed description of important model considerations (e.g., material property functions and jump discontinuities at material interfaces) is also presented in the context of finite deformations. The ABAQUS-based PHEXPT approach enables the use of the available ABAQUS capabilities (interactive FEM mesh generation, finite element libraries, nonlinear material laws, pre- and postprocessing, etc.). PHEXPT FEMs can be used to simulate the transport of a relatively large neutral species (negligible osmotic fluid flux) in highly deformable hydrated soft tissues and tissue-engineered materials. PMID:21428686

  14. Experimental and numerical analysis of coupled interfacial kinetics and heat transport during the axial heat flux close to the phase interface growth of BGO single crystals

    NASA Astrophysics Data System (ADS)

    Bykova, S. V.; Golyshev, V. D.; Gonik, M. A.; Tsvetovsky, V. B.; Deshko, V. I.; Karvatskii, A. Ya.; Lenkin, A. V.; Brandon, S.; Weinstein, O.; Virozub, A.; Derby, J. J.; Yeckel, A.; Sonda, P.

    2004-05-01

    Combined experimental and numerical tools are used to analyze the effect of convective and radiative heat transport, faceting phenomena, and the optical thickness of the Bi 4Ge 3O 12 (BGO) crystal on the measurement and calculation of melt/crystal interface kinetics during the axial heat flux close to the phase interface growth of BGO single crystals. Results show that, in the general case, accurate determination of growth kinetic relations requires the application of models which account for all of the above phenomena (radiative and convective heat transport, faceting phenomena, etc.). Failure to take these into account may result not only in quantitative errors, but also even in qualitatively wrong determination of interfacial kinetic mechanisms.

  15. Kinetic effects on the electron thermal transport in ignition target design

    SciTech Connect

    Honda, M.; Nishiguchi, A.; Mima, K.; Takabe, H.; Azechi, H.; Nakai, S.

    1996-05-01

    The preheating is one of the most critical issues in laser fusion, because it causes significant reduction of volume compression. The nonlocal heat transport by the high energy tail electrons in ablative plasmas is found to be essential for the preheating under high intensity laser irradiation. In such a situation, electron heat transport is described by the Fokker-Planck (FP) equation in a fluid implosion code, since the Spitzer-H{umlt a}rm (SH) thermal conduction model is not applicable. The numerical simulations of the implosion have been carried out for the fast (high entropy) implosion mode in which the implosion velocity is as high as 6{times}10{sup 7}cm/sec in order to reduce the required laser energy for ignition. The control of preheating is essentially important for this type of implosion mode. The isentrope of an imploding shell is evaluated to see the preheating level. It is found in the fast implosion mode that the isentrope in the FP simulation code is higher by 2 to 4 times than that in the flux limited SH simulation. {copyright} {ital 1996 American Institute of Physics.}

  16. 1. Transport of Mass, Momentum and Energy in Planetary Magnetodisc Regions

    NASA Astrophysics Data System (ADS)

    Achilleos, Nicholas; André, Nicolas; Blanco-Cano, Xochitl; Brandt, Pontus C.; Delamere, Peter A.; Winglee, Robert

    2015-04-01

    The rapid rotation of the gas giant planets, Jupiter and Saturn, leads to the formation of magnetodisc regions in their magnetospheric environments. In these regions, relatively cold plasma is confined towards the equatorial regions, and the magnetic field generated by the azimuthal (ring) current adds to the planetary dipole, forming radially distended field lines near the equatorial plane. The ensuing force balance in the equatorial magnetodisc is strongly influenced by centrifugal stress and by the thermal pressure of hot ion populations, whose thermal energy is large compared to the magnitude of their centrifugal potential energy. The sources of plasma for the Jovian and Kronian magnetospheres are the respective satellites Io (a volcanic moon) and Enceladus (an icy moon). The plasma produced by these sources is globally transported outwards through the respective magnetosphere, and ultimately lost from the system. One of the most studied mechanisms for this transport is flux tube interchange, a plasma instability which displaces mass but does not displace magnetic flux—an important observational constraint for any transport process. Pressure anisotropy is likely to play a role in the loss of plasma from these magnetospheres. This is especially the case for the Jovian system, which can harbour strong parallel pressures at the equatorial segments of rotating, expanding flux tubes, leading to these regions becoming unstable, blowing open and releasing their plasma. Plasma mass loss is also associated with magnetic reconnection events in the magnetotail regions. In this overview, we summarise some important observational and theoretical concepts associated with the production and transport of plasma in giant planet magnetodiscs. We begin by considering aspects of force balance in these systems, and their coupling with the ionospheres of their parent planets. We then describe the role of the interaction between neutral and ionized species, and how it determines

  17. Kinetics of glucose transport by the perfused mid-gut of the freshwater prawn Macrobrachium rosenberg ii.

    PubMed Central

    Ahearn, G A; Maginniss, L A

    1977-01-01

    1. Mucosal influx of [3H]glucose was examined in the mid-gut of a freshwater prawn, Macrobrachium rosenbergii, using an in vitro perfusion technique. 2. [3H]glucose transfer across the apical cell membrane of the epithelium exhibited Michaelis-Menten kinetics (Jmax.in = 0-15 mumole glucose equiv/g. min, Kt = 0-17 mM). Under Na-free conditions, glucose influx was significantly reduced and a linear function of substrate concentration, indicative of either slow cellular diffusion (KD = 7-6 X 10(3) mumole glucose equiv/g. min. mM) or a facilitated process with a low carrier affinity for the sugar. 3. Phlorizin was a potent competitive inhibitor of glucose influx (K1 = 3-6 X10(-3) mM), galactose and 3-O-methylglucose (3-O-MG) were weak inhibitors, and fructose had no evident effect on glucose uptake. Azide, but not iodoacetate (IAA), significantly depressed influx. 4. Absorbed [3H]glucose was rapidly metabolized by the mid-gut. The majority of accumulated activity within the tissue was in the form of phosphorylated compounds and tritiated water (THO), while only 0-3% was recovered as a free-glucose. 5. Preliminary studies examining transmural [3-H]glucose transport, however, demonstrated a significant net mucosal to serosal free-glucose flux across the prawn mid-gut which was Na-dependent and IAA- and phlorizin-sensitive. Two alternative interpretations of the data are advanced as possible mechanisms for transepithelial glucose transport: (1) group translocation, or (2) the operation of an energized, high affinity, baso-lateral sugar transport carrier. Images Plate 1 PMID:925985

  18. Origin of the mass splitting of elliptic anisotropy in a multiphase transport model

    NASA Astrophysics Data System (ADS)

    Li, Hanlin; He, Liang; Lin, Zi-Wei; Molnar, Denes; Wang, Fuqiang; Xie, Wei

    2016-05-01

    The mass splitting of elliptic anisotropy (v2) at low transverse momentum is considered as a hallmark of hydrodynamic collective flow. We investigate a multiphase transport (AMPT) model where the v2 is mainly generated by an anisotropic escape mechanism, not of the hydrodynamic flow nature, and where mass splitting is also observed. We demonstrate that the v2 mass splitting in AMPT is small right after hadronization (especially when resonance decays are included); the mass splitting mainly comes from hadronic rescatterings, even though their contribution to the overall charged hadron v2 is small. These findings are qualitatively the same as those from hybrid models that combine hydrodynamics with a hadron cascade. We further show that there is no qualitative difference between heavy ion collisions and small system collisions. Our results indicate that the v2 mass splitting is not a unique signature of hydrodynamic collective flow and thus cannot distinguish whether the elliptic flow is generated mainly from hydrodynamics or the anisotropic parton escape.

  19. Modelling mass transport through a porous partition: Effect of pore size distribution

    NASA Astrophysics Data System (ADS)

    Khayet, Mohamed; Velázquez, Armando; Mengual, Juan I.

    2004-09-01

    Direct contact membrane distillation process has been studied using microporous polytetrafluoroethylene and polyvinylidene fluoride membranes. The membranes were characterized in terms of their non-wettability, pore size distribution and porosity. The mean pore sizes and pore size distributions were obtained by means of wet/dry flow method. The mean pore size and the effective porosity of the membranes were also determined from the gas permeation test. A theoretical model that considers the pore size distribution together with the gas transport mechanisms through the membrane pores was developed for this process. The contribution of each mass transport mechanism was analyzed. It was found that both membranes have pore size distributions in the Knudsen region and in the transition between Knudsen and ordinary diffusion region. The transition region was the major contribution to mass transport. The predicted water vapor permeability of the membranes were compared with the experimental ones. The effect of considering pore size distribution instead of mean pore size to predict the water vapor permeability of the membranes was investigated.

  20. Analysis of hemodynamic fluid phase mass transport in a separated flow region.

    PubMed

    Lutostansky, Elizabeth M; Karner, Gerhard; Rappitsch, Gerhard; Ku, David N; Perktold, Karl

    2003-04-01

    The mass transfer behavior in the recirculation region downstream of an axisymmetric sudden expansion was examined. The Reynolds number, 500, and Schmidt number, 3200, were selected to model the mass transfer of molecules, such as ADP, in the arterial system. In a first step the transient mass transport applying zero diffusive flux at the wall was analyzed using experiments and two computational codes. The two codes were FLUENT, a commercially available finite volume method, and FTSP, a finite element code developed at Graz University of Technology. The comparison of the transient wall concentration values determined by the three methods was excellent and provides a measure of confidence for computational mass transfer calculations in convection dominated, separated flows. In a second step the effect of the flow separation on the stationary mass transport applying a permeability boundary condition at the water-permeable wall was analyzed using the finite element code FTSP. The results show an increase of luminal ADP surface concentration in the upstream and in the downstream tube of the sudden expansion geometry in the range of six and twelve percent of the bulk flow concentration. The effect of flow separation in the downstream tube on the wall concentration is a decrease of about ten percent of the difference between wall concentration and bulk concentration occurring at nearly fully developed flow at the downstream region at a distance of 66 downstream tube diameters from the expansion. The decrease of ADP flux into the wall is in the range of three percent of the flux at the downstream region. PMID:12751280

  1. Transport and Manipulation of Immiscible Fluids using Electro-Kinetic Techniques

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Nolte, D. D.; Pyrak-Nolte, L. J.

    2015-12-01

    Applied electric fields modify the surface tension between a solid and a liquid and hence modify the wettability and contact angle on solid surfaces. Direct control over internal fluid distributions can be achieved by controlling contact angles that subsequently influence capillary pressures and drive motion of droplets across many millimeters. In this study, an Electro-Wetting on a Dielectric technique, EWOD, is used to: alter contact angles, merge and transport droplets on flat surfaces, and control the distribution of fluid phases. Liquid droplets were supported on flat glass substrates that had been evaporated with a 50 nm thick layer of silver (i.e., ground electrode) and then spin-coated with a ~5-10 μm thick layer of PDMS, a dielectric material. A platinum wire was inserted into 10 μL droplets of 1M KCl-H2O and connected to a 50 Hz AC voltage source. Measurements were made for a range of voltages (Vrms ~0-425V). CCD cameras were used to measure changes in areal extent, perimeter, and contact angles. For Vrms=0, the contact angle on PMDS was 118o. For the range of applied voltages, the contact angle of the droplets changed by over 60o. These experiments demonstrated that contact angle can be controlled over a wide range of values. Unsealed micro-models were used in experiments to merge and transport drops. In the merging experiments, three 50 nm thick electrodes were formed on the top plate separated by a gap of 0.69 mm, while the bottom plate contained a single large area silver electrode 50 nm thick. A 10 μL 1M KCl-H2O droplet was placed on the left electrode and another on the right electrode and merged when 424 V was applied to the middle electrode. The contact angle of the drops on the middle electrode decreased by 60 o relative to the portions of the drops on left and right electrodes. The resulting pressure difference translated and merged the two drops over a distance of ~1mm in ~13 seconds. These experiments demonstrate that EWOD techniques can be

  2. Mass-corrections for the conservative coupling of flow and transport on collocated meshes

    NASA Astrophysics Data System (ADS)

    Waluga, Christian; Wohlmuth, Barbara; Rüde, Ulrich

    2016-01-01

    Buoyancy-driven flow models demand a careful treatment of the mass-balance equation to avoid spurious source and sink terms in the non-linear coupling between flow and transport. In the context of finite-elements, it is therefore commonly proposed to employ sufficiently rich pressure spaces, containing piecewise constant shape functions to obtain local or even strong mass-conservation. In three-dimensional computations, this usually requires nonconforming approaches, special meshes or higher order velocities, which make these schemes prohibitively expensive for some applications and complicate the implementation into legacy code. In this paper, we therefore propose a lean and conservatively coupled scheme based on standard stabilized linear equal-order finite elements for the Stokes part and vertex-centered finite volumes for the energy equation. We show that in a weak mass-balance it is possible to recover exact conservation properties by a local flux-correction which can be computed efficiently on the control volume boundaries of the transport mesh. We discuss implementation aspects and demonstrate the effectiveness of the flux-correction by different two- and three-dimensional examples which are motivated by geophysical applications.

  3. Orbit-averaged drift kinetic equation for the study of alpha-particle transport in tokamaks

    SciTech Connect

    Sager, G.T.; Miley, G.H. . Fusion Studies Lab.); Burrell, K.H. )

    1990-11-01

    Neoclassical transport of minority suprathermal alpha particles is investigated. This paper departs from previous investigations in that (a) the banana-width ordering parameter {rho}{sub {theta}}/L is not formally restricted to be a small parameter and (b) a linearized collision operator that retains the effects of pitch-angle scattering, electron and ion drag, and speed diffusion is used. A step model approximation for the large-aspect-ratio, circular-cross-section tokamak magnetic field is adopted to simplify the orbit-averaging procedure. Assuming that the suprathermal alphas are in the banana regime, an asymptotic expansion in {tau}{sub B}/{tau}{sub S} {much lt} l is carried out.

  4. Kinetic Understanding of RMP Penetration and Pedestal Transport in Diverted Tokamak Geometry

    NASA Astrophysics Data System (ADS)

    Park, Gunyoung

    2011-10-01

    A new understanding of self-organized RMP penetration effects on the pedestal plasma response has emerged from the XGC0 particle code with the inclusion of Monte Carlo neutrals and heat/torque sources. XGC0 provides a self-consistent evolution of RMP fields, Er, plasma profiles, and toroidal current perturbation, which are essential in the RMP self-organization. Results are validated against DIII-D pedestal experiments, including n, T, Er, Ui, and Ue⊥ profiles. The coil-induced magnetic islands and stochasticity are substantially reduced in the outer part (``skin-depth layer'') of the pre-RMP pedestal. However, islands and stochasticity survive at the inner part of the pre-RMP pedestal and into the core. As a result, RMPs enhance electron heat transport Qe in the inner part of the pre-RMP pedestal and into the core, but preserve the Qe barrier at the outer pre-RMP pedestal, as seen in DIII-D. Particle transport is enhanced in both regions, albeit less in the skin-depth layer. Qe enhancement in the stochastic region is not as catastrophic as that predicted by Rechester-Rosenbluth, since the trapped electrons have limited contribution to parallel heat conduction. Experiments in DIII-D show the existence of a finite ELM suppression q-window. XGC0 finds that the stochasticity suppression by plasma response is noticeably weaker inside the window. Qe is thus sensitive to the q- window, but density pump-out is not, well matching experiment. This suggests that the ``vacuum Chirikov >1 in the whole edge'' is only a necessary condition for the plasma to be in the ELM suppression window. This work is a collaborative activity in the US SciDAC Center for Plasma Edge Simulation (CPES), supported by US DOE. G. Park is presently supported by Korean KSTAR program.

  5. Mechanistic and Kinetic Analysis of Na2SO4-Modified Laterite Decomposition by Thermogravimetry Coupled with Mass Spectrometry.

    PubMed

    Yang, Song; Du, Wenguang; Shi, Pengzheng; Shangguan, Ju; Liu, Shoujun; Zhou, Changhai; Chen, Peng; Zhang, Qian; Fan, Huiling

    2016-01-01

    Nickel laterites cannot be effectively used in physical methods because of their poor crystallinity and fine grain size. Na2SO4 is the most efficient additive for grade enrichment and Ni recovery. However, how Na2SO4 affects the selective reduction of laterite ores has not been clearly investigated. This study investigated the decomposition of laterite with and without the addition of Na2SO4 in an argon atmosphere using thermogravimetry coupled with mass spectrometry (TG-MS). Approximately 25 mg of samples with 20 wt% Na2SO4 was pyrolyzed under a 100 ml/min Ar flow at a heating rate of 10°C/min from room temperature to 1300°C. The kinetic study was based on derivative thermogravimetric (DTG) curves. The evolution of the pyrolysis gas composition was detected by mass spectrometry, and the decomposition products were analyzed by X-ray diffraction (XRD). The decomposition behavior of laterite with the addition of Na2SO4 was similar to that of pure laterite below 800°C during the first three stages. However, in the fourth stage, the dolomite decomposed at 897°C, which is approximately 200°C lower than the decomposition of pure laterite. In the last stage, the laterite decomposed and emitted SO2 in the presence of Na2SO4 with an activation energy of 91.37 kJ/mol. The decomposition of laterite with and without the addition of Na2SO4 can be described by one first-order reaction. Moreover, the use of Na2SO4 as the modification agent can reduce the activation energy of laterite decomposition; thus, the reaction rate can be accelerated, and the reaction temperature can be markedly reduced. PMID:27333072

  6. Mechanistic and Kinetic Analysis of Na2SO4-Modified Laterite Decomposition by Thermogravimetry Coupled with Mass Spectrometry

    PubMed Central

    Yang, Song; Du, Wenguang; Shi, Pengzheng; Shangguan, Ju; Liu, Shoujun; Zhou, Changhai; Chen, Peng; Zhang, Qian; Fan, Huiling

    2016-01-01

    Nickel laterites cannot be effectively used in physical methods because of their poor crystallinity and fine grain size. Na2SO4 is the most efficient additive for grade enrichment and Ni recovery. However, how Na2SO4 affects the selective reduction of laterite ores has not been clearly investigated. This study investigated the decomposition of laterite with and without the addition of Na2SO4 in an argon atmosphere using thermogravimetry coupled with mass spectrometry (TG-MS). Approximately 25 mg of samples with 20 wt% Na2SO4 was pyrolyzed under a 100 ml/min Ar flow at a heating rate of 10°C/min from room temperature to 1300°C. The kinetic study was based on derivative thermogravimetric (DTG) curves. The evolution of the pyrolysis gas composition was detected by mass spectrometry, and the decomposition products were analyzed by X-ray diffraction (XRD). The decomposition behavior of laterite with the addition of Na2SO4 was similar to that of pure laterite below 800°C during the first three stages. However, in the fourth stage, the dolomite decomposed at 897°C, which is approximately 200°C lower than the decomposition of pure laterite. In the last stage, the laterite decomposed and emitted SO2 in the presence of Na2SO4 with an activation energy of 91.37 kJ/mol. The decomposition of laterite with and without the addition of Na2SO4 can be described by one first-order reaction. Moreover, the use of Na2SO4 as the modification agent can reduce the activation energy of laterite decomposition; thus, the reaction rate can be accelerated, and the reaction temperature can be markedly reduced. PMID:27333072

  7. Synchrotron Photoionization Mass Spectrometry Measurements of Kinetics and Product Formation in the Allyl Radical (H2CCHCH2)Self Reaction

    NASA Technical Reports Server (NTRS)

    Selby, Talitha M.; Melini, giovanni; Goulay, Fabien; Leone, Stephen R.; Fahr, Askar; Taatjes, Craig A.; Osborn, David L.

    2008-01-01

    Product channels for the self-reaction of the resonance-stabilized allyl radical, C3H5 + C3H5, have been studied with isomeric specificity at temperatures from 300-600 K and pressures from 1-6 Torr using time-resolved multiplexed photoionization mass spectrometry. Under these conditions 1,5-hexadiene was the only C6H10 product isomer detected. The lack of isomerization of the C6H10 product is in marked contrast to the C6H6 product in the related C3H3 + C3H3 reaction, and is due to the more saturated electronic structure of the C6H10 system. The disproportionation product channel, yielding allene + propene, was also detected, with an upper limit on the branching fraction relative to recombination of 0.03. Analysis of the allyl radical decay at 298 K yielded a total rate coefficient of (2.7 +/- 0.8) x 10(exp -11) cu cm/molecule/s, in good agreement with pre.vious experimental measurements using ultraviolet kinetic absorption spectroscopy and a recent theoretical determination using variable reaction coordinate transition state theory. This result provides independent indirect support for the literature value of the allyl radical ultraviolet absorption cross-section near 223 nm.

  8. Oscillatory Mass Transport in Vapor-Liquid-Solid Growth of Sapphire Nanowires

    NASA Astrophysics Data System (ADS)

    Oh, Sang Ho; Chisholm, Matthew F.; Kauffmann, Yaron; Kaplan, Wayne D.; Luo, Weidong; Rühle, Manfred; Scheu, Christina

    2010-10-01

    In vapor-liquid-solid (VLS) growth, the liquid phase plays a pivotal role in mediating mass transport from the vapor source to the growth front of a nanowire. Such transport often takes place through the liquid phase. However, we observed by in situ transmission electron microscopy a different behavior for self-catalytic VLS growth of sapphire nanowires. The growth occurs in a layer-by-layer fashion and is accomplished by interfacial diffusion of oxygen through the ordered liquid aluminum atoms. Oscillatory growth and dissolution reactions at the top rim of the nanowires occur and supply the oxygen required to grow a new (0006) sapphire layer. A periodic modulation of the VLS triple-junction configuration accompanies these oscillatory reactions.

  9. Oscillatory Mass Transport in Vapor-Liquid-Solid Growth of Sapphire Nanowires

    SciTech Connect

    Oh, Sang Ho; Chisholm, Matthew F; Kauffmann, Yaron; Kaplan, Prof. Wayne D.; Luo, Weidong; Ruhle, M.; Scheu, Christina

    2010-01-01

    In vapor-liquid-solid (VLS) growth, the liquid phase plays a pivotal role in mediating mass transport from the vapor source to the growth front of a nanowire. Such transport often takes place through the liquid phase. However, we observed by in situ transmission electron microscopy a different behavior for self-catalytic VLS growth of sapphire nanowires. The growth occurs in a layer-by-layer fashion and is accomplished by interfacial diffusion of oxygen through the ordered liquid aluminum atoms. Oscillatory growth and dissolution reactions at the top rim of the nanowires occur and supply the oxygen required to grow a new (0006) sapphire layer. A periodic modulation of the VLS triple-junction configuration accompanies these oscillatory reactions.

  10. Anomalous reaction-transport processes: The dynamics beyond the law of mass action

    NASA Astrophysics Data System (ADS)

    Campos, Daniel; Fedotov, Sergei; Méndez, Vicenç

    2008-06-01

    In this paper we reconsider the mass action law (MAL) for the anomalous reversible reaction A⇄B with diffusion. We provide a mesoscopic description of this reaction when the transitions between two states A and B are governed by anomalous (heavy-tailed) waiting-time distributions. We derive the set of mesoscopic integro-differential equations for the mean densities of reacting and diffusing particles in both states. We show that the effective reaction rate memory kernels in these equations and the uniform asymptotic states depend on transport characteristics such as jumping rates. This is in contradiction with the classical picture of MAL. We find that transport can even induce an extinction of the particles such that the density of particles A or B tends asymptotically to zero. We verify analytical results by Monte Carlo simulations and show that the mesoscopic densities exhibit a transient growth before decay.

  11. Analysis of mass transport in an atmospheric pressure remote plasma-enhanced chemical vapor deposition process

    SciTech Connect

    Cardoso, R. P.; Belmonte, T.; Henrion, G.; Gries, T.; Tixhon, E.

    2010-01-15

    In remote microwave plasma enhanced chemical vapor deposition processes operated at atmospheric pressure, high deposition rates are associated with the localization of precursors on the treated surface. We show that mass transport can be advantageously ensured by convection for the heavier precursor, the lighter being driven by turbulent diffusion toward the surface. Transport by laminar diffusion is negligible. The use of high flow rates is mandatory to have a good mixing of species. The use of an injection nozzle with micrometer-sized hole enables us to define accurately the reaction area between the reactive species. The localization of the flow leads to high deposition rates by confining the reactive species over a small area, the deposition yield being therefore very high. Increasing the temperature modifies nonlinearly the deposition rates and the coating properties.

  12. Lagrangian analysis of mixing and transport of water masses in the marine bays

    NASA Astrophysics Data System (ADS)

    Prants, S. V.; Ponomarev, V. I.; Budyansky, M. V.; Uleysky, M. Yu.; Fayman, P. A.

    2013-01-01

    The Lagrangian approach to studying the mixing and transport of a passive admixture in marine bays and gulfs based on the methods of a theory of dynamic systems is developed. This approach is employed to investigate the lateral mixing and transport of waters in the Peter the Great Bay, Japan Sea, using a velocity field of the predictive numerical hydrodynamic circulation model of a synoptic scale. It is shown that the Lagrangian characteristics, such as the maximum accumulated Lyapunov exponent, the time of particle stay in the bay, particle relative displacements, and the number of cyclonic and anticyclonic rotations, allow us to describe the movement of water masses, the character of mixing, and chaos in the Bay. In integrating the advection equations forward and backward in time, maps showing a number of particle arrivals to different regions of the Bay make it possible to establish corridors through which particles leave and enter the Bay.

  13. Characteristics, generation and mass transport of nonlinear internal waves on the Washington continental shelf

    NASA Astrophysics Data System (ADS)

    Zhang, Shuang; Alford, Matthew H.; Mickett, John B.

    2015-02-01

    As a step toward better understanding the generation of nonlinear internal waves (NLIWs) on continental shelves and the factors determining their morphology, amplitude and propagation, we analyze more than 1500 NLIWs detected on the Washington (WA) continental shelf using four summer/fall time series of temperature and velocity measurements from a surface mooring deployed in 100 m of water. Propagating onshore toward the northeast, these NLIWs take a variety of forms, including internal solitary waves, solitary wave trains and bores. Nearly all are mode-1 depression waves that arrive semidiurnally along with the internal tide. The NLIW energy flux is correlated with the internal tide energy flux but not the local barotropic forcing, implying that the observed NLIWs arise primarily from shoaling remotely generated internal tides rather than local generation. Estimated onshore transport by the waves can equal or exceed offshore Ekman transport, suggesting the waves may play an important role in the mass balance on the continental shelf.

  14. Comparison of Flamelet Models with the Transported Mass Fraction Approach for Supersonic Combustion

    NASA Astrophysics Data System (ADS)

    Li, Wenhai; Alabi, Ken; Ladeinde, Foluso

    2015-11-01

    In this study, two fully compressible RANS, LES, and combined RANS/LES flow solvers - AEROFLO and VULCAN, both of which were originally developed by the United States Department of Defense but have since been significantly enhanced and commercialized by our organization, are used to investigate the accuracy of flamelet-based approach when employed to model supersonic combustion. The flamelet results from both codes are assessed relative to solutions obtained by solving the transport equations for the mass fractions - which is also supported by one of the codes, and making familiar assumptions about the closure of the reaction rate. The studies are carried out in the flamelet regime, and the numerical procedures are based on high-order schemes, which are also used to solve the level-set and mixture fraction transport equations used to study, respectively, premixed and non-premixed combustion. The effects of supersonic Mach numbers on the results are discussed.

  15. A mercury transport and fate model (LM2-mercury) for mass budget assessment of mercury cycling in Lake Michigan

    EPA Science Inventory

    LM2-Mercury, a mercury mass balance model, was developed to simulate and evaluate the transport, fate, and biogeochemical transformations of mercury in Lake Michigan. The model simulates total suspended solids (TSS), disolved organic carbon (DOC), and total, elemental, divalent, ...

  16. Mass transport and crystal growth of the mixed ZrS2-ZrSe2 system

    NASA Technical Reports Server (NTRS)

    Wiedemeier, Heribert; Goldman, Howard

    1986-01-01

    The solid solubility of the ZrS2-ZrSe2 system was reinvestigated by annealing techniques to establish the relationship between composition and lattice parameters. Mixed crystals of ZrS(2x)Se2(1-x) for selected compositions of the source material were grown by chemical vapor transport and characterized by X-ray diffraction and microscopic methods. The mass transport rates and crystal growth of ZrSSe were investigated and compared with those of other compositions. The mass fluxes of the mixed system showed an increase with increasing selenium content. The transport products were richer in ZrSe2 than the residual source materials when the ZrSe2 content of the starting materials was greater than 50 mol.-pct. The mass transport rates revealed an increasing mass flux with pressure.

  17. Evaluation and optimization of mass transport of redox species in silicon microwire-array photoelectrodes

    PubMed Central

    Xiang, Chengxiang; Meng, Andrew C.; Lewis, Nathan S.

    2012-01-01

    Physical integration of a Ag electrical contact internally into a metal/substrate/microstructured Si wire array/oxide/Ag/electrolyte photoelectrochemical solar cell has produced structures that display relatively low ohmic resistance losses, as well as highly efficient mass transport of redox species in the absence of forced convection. Even with front-side illumination, such wire-array based photoelectrochemical solar cells do not require a transparent conducting oxide top contact. In contact with a test electrolyte that contained 50 mM/5.0 mM of the cobaltocenium+/0 redox species in CH3CN–1.0 M LiClO4, when the counterelectrode was placed in the solution and separated from the photoelectrode, mass transport restrictions of redox species in the internal volume of the Si wire array photoelectrode produced low fill factors and limited the obtainable current densities to 17.6 mA cm-2 even under high illumination. In contrast, when the physically integrated internal Ag film served as the counter electrode, the redox couple species were regenerated inside the internal volume of the photoelectrode, especially in regions where depletion of the redox species due to mass transport limitations would have otherwise occurred. This behavior allowed the integrated assembly to operate as a two-terminal, stand-alone, photoelectrochemical solar cell. The current density vs. voltage behavior of the integrated photoelectrochemical solar cell produced short-circuit current densities in excess of 80 mA cm-2 at high light intensities, and resulted in relatively low losses due to concentration overpotentials at 1 Sun illumination. The integrated wire array-based device architecture also provides design guidance for tandem photoelectrochemical cells for solar-driven water splitting. PMID:22904185

  18. CONVERGENCE STUDIES OF MASS TRANSPORT IN DISKS WITH GRAVITATIONAL INSTABILITIES. II. THE RADIATIVE COOLING CASE

    SciTech Connect

    Steiman-Cameron, Thomas Y.; Durisen, Richard H.; Michael, Scott; McConnell, Caitlin R.; Boley, Aaron C. E-mail: durisen@astro.indiana.edu E-mail: carmccon@indiana.edu

    2013-05-10

    We conduct a convergence study of a protoplanetary disk subject to gravitational instabilities (GIs) at a time of approximate balance between heating produced by the GIs and radiative cooling governed by realistic dust opacities. We examine cooling times, characterize GI-driven spiral waves and their resultant gravitational torques, and evaluate how accurately mass transport can be represented by an {alpha}-disk formulation. Four simulations, identical except for azimuthal resolution, are conducted with a grid-based three-dimensional hydrodynamics code. There are two regions in which behaviors differ as resolution increases. The inner region, which contains 75% of the disk mass and is optically thick, has long cooling times and is well converged in terms of various measures of structure and mass transport for the three highest resolutions. The longest cooling times coincide with radii where the Toomre Q has its minimum value. Torques are dominated in this region by two- and three-armed spirals. The effective {alpha} arising from gravitational stresses is typically a few Multiplication-Sign 10{sup -3} and is only roughly consistent with local balance of heating and cooling when time-averaged over many dynamic times and a wide range of radii. On the other hand, the outer disk region, which is mostly optically thin, has relatively short cooling times and does not show convergence as resolution increases. Treatment of unstable disks with optical depths near unity with realistic radiative transport is a difficult numerical problem requiring further study. We discuss possible implications of our results for numerical convergence of fragmentation criteria in disk simulations.

  19. Transport-controlled kinetics of dissolution and precipitation in the sediments under alkaline and saline conditions

    NASA Astrophysics Data System (ADS)

    Qafoku, Nikolla P.; Ainsworth, Calvin C.; Szecsody, James E.; Qafoku, Odeta S.

    2004-07-01

    Over 1.6 million liters of radioactive, high-temperature, Al-rich, alkaline and saline high-level waste (HLW) fluids were accidentally discharged from tank leaks onto the sediments at the Hanford Site, Washington. In order to better understand processes that might occur during the migration of HLW through sediments and to estimate their extents, we studied the effects of Al-rich, alkaline and saline solutions on soil mineral dissolution and precipitation during reactive transport. Metal- and glass-free systems were used to conduct miscible-displacement experiments at 50 °C under CO 2 and O 2 free conditions. Results showed significant release of Si, K, Al, Fe, Ca, Mg, and Ba into the aqueous phase. The transport-controlled release of these elements was time dependent as evidenced by its extent varying with the fluid residence time. Silica initial dissolution rates (6.08 × 10 -11 and 5.38 × 10 -13 mol m -2 s -1) increased with base concentration, decreased with Al concentration, and decreased with fluid residence time. Aluminum precipitation rates varied in the range from 0.44 to 1.07 × 10 -6 mol s -1 and were faster in these column experiments than in previous batch studies. The initial rate constant of Al precipitation reaction was 0.07 h -1 (half-life of 9.9 h at about 3 PV); it increased up to 0.137 h -1 (half-life of 5.1 h at about 20 PV). The precipitates identified with SEM and suggested from the modeling results were mainly NO 3-cancrinite. SEM analyses also indicated the formation of sodalite when Al was not present in the leaching solution. In addition, results from modeling suggested the precipitation of brucite, goethite and gibbsite; the latter may precipitate in the presence of high Al concentrations. Aqueous and solid phase transformations caused by base-induced dissolution and subsequent secondary phases precipitation should be important determinants of the fate of contaminants and radionuclides in the vadose zone under alkaline and saline

  20. Angular momentum transport efficiency in post-main sequence low-mass stars

    NASA Astrophysics Data System (ADS)

    Spada, F.; Gellert, M.; Arlt, R.; Deheuvels, S.

    2016-05-01

    Context. Using asteroseismic techniques, it has recently become possible to probe the internal rotation profile of low-mass (≈1.1-1.5 M⊙) subgiant and red giant stars. Under the assumption of local angular momentum conservation, the core contraction and envelope expansion occurring at the end of the main sequence would result in a much larger internal differential rotation than observed. This suggests that angular momentum redistribution must be taking place in the interior of these stars. Aims: We investigate the physical nature of the angular momentum redistribution mechanisms operating in stellar interiors by constraining the efficiency of post-main sequence rotational coupling. Methods: We model the rotational evolution of a 1.25M⊙ star using the Yale Rotational stellar Evolution Code. Our models take into account the magnetic wind braking occurring at the surface of the star and the angular momentum transport in the interior, with an efficiency dependent on the degree of internal differential rotation. Results: We find that models including a dependence of the angular momentum transport efficiency on the radial rotational shear reproduce very well the observations. The best fit of the data is obtained with an angular momentum transport coefficient scaling with the ratio of the rotation rate of the radiative interior over that of the convective envelope of the star as a power law of exponent ≈3. This scaling is consistent with the predictions of recent numerical simulations of the Azimuthal Magneto-Rotational Instability. Conclusions: We show that an angular momentum transport process whose efficiency varies during the stellar evolution through a dependence on the level of internal differential rotation is required to explain the observed post-main sequence rotational evolution of low-mass stars.

  1. Clarke Stations and mercurian mass-drivers: energy for large-scale transportation systems

    SciTech Connect

    Jones, E.M.

    1985-01-01

    Three-week voyages across 1 AU could be made in large sailing craft propelled by microwaves generated at power stations operating at 0.1 AU from the sun. The power stations could be built of mercurian materials launched by mass driver to building sites in solar orbit. A Clarke Station 28 km in radius could generate 64 TW of microwaves and support the operation of a 1000-tonne, 1000-passenger vessel. The ability to build near-sun power stations of mercurian materials would not only support high-speed transport but solar system development in general.

  2. Periodic solutions for a 1D-model with nonlocal velocity via mass transport

    NASA Astrophysics Data System (ADS)

    Ferreira, Lucas C. F.; Valencia-Guevara, Julio C.

    2016-05-01

    This paper concerns periodic solutions for a 1D-model with nonlocal velocity given by the periodic Hilbert transform. There is a rich literature showing, via numerics and rigorous analysis, that this model presents singular behavior of solutions. For instance, they can blow up by forming mass-concentration. We develop a global well-posedness theory for periodic measure initial data that allows, in particular, to analyze how the model evolves from those singularities. Our results are based on periodic mass transport theory and the abstract gradient flow theory in metric spaces developed by Ambrosio et al. (2005). A viscous version of the model is also analyzed and inviscid limit properties are obtained.

  3. Kinetic Energy Transport in a Vertical-Axis Wind Turbine Array

    NASA Astrophysics Data System (ADS)

    Kinzel, Matthias; Araya, Daniel; Dabiri, John

    2013-11-01

    We present experimental results from a full scale array of vertical-axis wind turbines (VAWTs) under natural wind conditions. The wind velocities throughout the turbine array are measured using a portable meteorological tower with seven, vertically-staggered, three-component ultrasonic anemometers. These measurements yield detailed insight into the turbine wakes and the recovery of the flow velocity behind the turbines. Quadrant hole analysis is employed to gain a better understanding of the energy transport at the top and the bottom of the VAWT array. The results are compared to the flow in horizontal-axis wind farms as well as urban and plant canopies. Emphasis is given to the flow physics in the adjustment region of the canopy, i.e. the region where the flow transitions from an atmospheric boundary layer to a canopy flow. The authors gratefully acknowledge funding from the Gordon and Betty Moore Foundation through Grant 2645, the National Science Foundation Energy for Sustainability program (Grant No. CBET-0725164) and the Office of Naval Research (Grant No. N000141211047).

  4. Kinetics of Ion Transport in Perovskite Active Layers and Its Implications for Active Layer Stability.

    PubMed

    Bag, Monojit; Renna, Lawrence A; Adhikari, Ramesh Y; Karak, Supravat; Liu, Feng; Lahti, Paul M; Russell, Thomas P; Tuominen, Mark T; Venkataraman, D

    2015-10-14

    Solar cells fabricated using alkyl ammonium metal halides as light absorbers have the right combination of high power conversion efficiency and ease of fabrication to realize inexpensive but efficient thin film solar cells. However, they degrade under prolonged exposure to sunlight. Herein, we show that this degradation is quasi-reversible, and that it can be greatly lessened by simple modifications of the solar cell operating conditions. We studied perovskite devices using electrochemical impedance spectroscopy (EIS) with methylammonium (MA)-, formamidinium (FA)-, and MA(x)FA(1-x) lead triiodide as active layers. From variable temperature EIS studies, we found that the diffusion coefficient using MA ions was greater than when using FA ions. Structural studies using powder X-ray diffraction (PXRD) show that for MAPbI3 a structural change and lattice expansion occurs at device operating temperatures. On the basis of EIS and PXRD studies, we postulate that in MAPbI3 the predominant mechanism of accelerated device degradation under sunlight involves thermally activated fast ion transport coupled with a lattice-expanding phase transition, both of which are facilitated by absorption of the infrared component of the solar spectrum. Using these findings, we show that the devices show greatly improved operation lifetimes and stability under white-light emitting diodes, or under a solar simulator with an infrared cutoff filter or with cooling. PMID:26414066

  5. Kinetics of bicarbonate and chloride transport in human red cell membranes

    PubMed Central

    1991-01-01

    Unidirectional [14C]HCO3- and 36Cl- efflux from human red cells and ghosts was studied under self-exchange conditions at pH 7.8 and 0 degrees C by means of the Millipore-Swinnex filtering technique. Control bicarbonate experiments showed that 14CO2 loss from the cells to the efflux medium was insignificant. The anion flux was determined under (a) symmetric variations of the anion concentration (C(i) = C(o) = 5-700 mM), and (b) asymmetric conditions with CAn constant on one side and varied on the other side of the membrane. Simple Michaelis- Menten-like kinetics (MM fit: J(eff) = J(eff)max.C/(K1/2 + C)) was used to describe anion flux dependence on C for (a) C(i) = C(o) = 5-100 mM, (b) C(i) = 6-100 mM, C(o) = constant, and (c) C(i) = constant, C(o) = 1- 25 mM. At higher cellular concentrations noncompetitive self-inhibition by anion binding (inhibition constant Ki mM) to an intracellular site was included in the model (MS fit): J(eff) = J(eff)max.C(i)/[(K1/2 + C(i)).(1 + C(i)/Ki)]. The MM fits show that the external half- saturation constant, Ko1/2 ( = C(o)An for J(eff,o) = 1/2.j(eff,o)max) at C(o) = 1-25 mM is 1.5-2.4 mM (HCO3-) and 1.8-2.6 mM (Cl-). At C(o) = 1-260 mM Ko1/2 is 1.2-1.5 mM (HCO3-) and 1.4-1.8 mM (Cl-). The respective maximum flux, J(eff,o)max (nmol/[cm2.s]), for C(o) = 1-25 mM is 0.41-0.51 (HCO3-) and 0.28-0.38 (Cl-), and for C(o) = 1-260 mM 0.39- 0.44 (HCO3-) and 0.27-0.31 (Cl-). The internal half-saturation constant, Ki1/2 mM is: MM fit (C(i) = 6-100 mM, C(o) = 50 mM), 18.0 mM (HCO3-) and 23.8 mM (Cl-); MS fit (C(i) = 6-920 mM, C(o) = 50 mM), 32.0 mM (HCO3-) and 45.1 mM (Cl-). The maximum flux, J(eff,i)max (nmol/[cm2.s]) is: MM fit; 0.50 (HCO3-) and 0.34 (Cl-); MS fit, 0.70 (HCO-3) and 0.50 (Cl-). The half-inhibition constants of the MS fit, Ki, are 393 mM (HCO3-) and 544 mM (Cl-). The MM fit shows that the symmetric half-saturation constant, Ks1/2, is 20.2 (HCO-3) and 23.9 (Cl- ) mM, and J(eff,s)max is 0.51 (HCO3-) and 0.32 (Cl-) nmol/(cm2.s

  6. Submarine Landslides and Mass-Transport Deposition in the Nankai fore-arc

    NASA Astrophysics Data System (ADS)

    Strasser, M.; Henry, P.; Kanamatsu, T.; Moe, K.; Moore, G. F.; IODP Expedition 333 Scientists

    2011-12-01

    Multiple lines of evidence exist for a range of sediment mass movement processes within the shallow megasplay fault zone (MSFZ) area and the adjacent slope basin in the outer fore-arc of the Nankai subduction zone, Japan. Diagnostic features observed in 3-D reflection seismic data and in cores from Integrated Ocean Drilling Program (IODP) Expedition 316 document a complex mass movement history spanning at least ˜2.87 million years. Various modes and scales of sediment remobilization can be related to the different morphotectonic settings in which they occurred and allow integration of knowledge on the spatial and temporal distribution of submarine landslides into a holistic reconstruction of the tectonostratigraphic evolution. New data from the most-recent Nankai IODP Expedition 333, which drilled and cored a Pleistocene-to-Holocene succession of the slope-basin seaward of the MSFZ, provides unprecedented details on submarine landslide processes occurring over the last Million year. The slope-basin represents the depocentre for downslope sediment transport and is characterized in 3-D reflection seismic data by several mass-transport deposits (MTDs), including an up to 180 m thick MTD. Here we present D/V Chikyu shipboard results and first post cruise results from Site C0018, including litho- bio- magneto- tephra- and stable isotope-stratigraphy, X-ray computed tomography analysis and physical properties data. Six MTDs were identified from visual core description and X-ray CT-scans. The thickest MTD is also the oldest (emplaced between 0.85 and 1.05 Ma) and it coincides with a lithological transition between a sandy turbidite sequence below, and ash-bearing hemipelagites comprising several MTDs above. Deformation styles within the MTD are heterogeneous: intervals of disturbed sediments are interbedded within intervals inferred to retain original, coherent bedding. In three occurrences the base of the MTD is defined by a shear zone within fine-grained sediments

  7. The uptake of NO3-, NO2-, and NH4+ by intact wheat (Triticum aestivum) seedlings. I. Induction and kinetics of transport systems

    NASA Technical Reports Server (NTRS)

    Goyal, S. S.; Huffaker, R. C.

    1986-01-01

    The inducibility and kinetics of the NO3-, NO2-, and NH4+ transporters in roots of wheat seedlings (Triticum aestivum cv Yercora Rojo) were characterized using precise methods approaching constant analysis of the substrate solutions. A microcomputer-controlled automated high performance liquid chromatography system was used to determine the depletion of each N species (initially at 1 millimolar) from complete nutrient solutions. Uptake rate analyses were performed using computerized curve-fitting techniques. More precise estimates were obtained for the time required for the extent of the induction of each transporter. Up to 10 and 6 hours, respectively, were required to achieve apparent full induction of the NO3- and NO2- transporters. Evidence for substrate inducibility of the NH4+ transporters requiring 5 hours is presented. The transport of NO3- was mediated by a dual system (or dual phasic), whereas only single systems were found for transport of NO2- and NH4+. The Km values for NO3-, NO2-, and NH4+ were, respectively, 0.027, 0.054, and 0.05 millimolar. The Km for mechanism II of NO3- transport could not be defined in this study as it exhibited only apparent first order kinetics up to 1 millimolar.

  8. Ballistic thermal transport in monolayer transition-metal dichalcogenides: Role of atomic mass

    NASA Astrophysics Data System (ADS)

    Ma, Jinlong; Li, Wu; Luo, Xiaobing

    2016-02-01

    We investigate the ballistic thermal transport of monolayer transition-metal dichalcogenides (TMDs), which is crucial for the thermal management of their potential applications in nanoelectronics. We find the thermal conductance is mainly affected by the atomic masses of TMDs. As a consequence, the temperature dependences of thermal conductances of different TMDs cross: At low temperatures below ˜50 K, the thermal conductance increases with the atomic mass, while it exhibits the opposite trend at high temperatures. The crossing behavior of temperature dependent thermal conductance is characteristic of the atomic mass effect, and TMDs provide a model system demonstrating that the thermal conductance can be effectively manipulated via the atomic mass by selecting appropriate atom. In addition, we clarify that in any two dimensional system such as monolayer TMDs and graphene, due to quadratic dispersion of the out-of-plane modes, the thermal conductance and specific heat in the low temperature limit are proportional to T3/2 and T, respectively. Mainly because of much smaller group velocities of in-plane acoustic phonons, the high temperature thermal conductances of monolayer TMDs are much smaller than graphene. However, due to comparable group velocities of out-of-plane acoustic phonons, below 100 K thermal conductances of monolayer TMDs are rather comparable to graphene if taking the same layer thickness for comparison.

  9. Fuel processing for PEM fuel cells: transport and kinetic issues of system design

    NASA Astrophysics Data System (ADS)

    Zalc, J. M.; Löffler, D. G.

    In light of the distribution and storage issues associated with hydrogen, efficient on-board fuel processing will be a significant factor in the implementation of PEM fuel cells for automotive applications. Here, we apply basic chemical engineering principles to gain insight into the factors that limit performance in each component of a fuel processor. A system consisting of a plate reactor steam reformer, water-gas shift unit, and preferential oxidation reactor is used as a case study. It is found that for a steam reformer based on catalyst-coated foils, mass transfer from the bulk gas to the catalyst surface is the limiting process. The water-gas shift reactor is expected to be the largest component of the fuel processor and is limited by intrinsic catalyst activity, while a successful preferential oxidation unit depends on strict temperature control in order to minimize parasitic hydrogen oxidation. This stepwise approach of sequentially eliminating rate-limiting processes can be used to identify possible means of performance enhancement in a broad range of applications.

  10. Rapid kinetics of liver microsomal glucose-6-phosphatase. Evidence for tight-coupling between glucose-6-phosphate transport and phosphohydrolase activity

    SciTech Connect

    Berteloot, A.; Vidal, H.; van de Werve, G. )

    1991-03-25

    Rapid kinetics of both glucose-6-P uptake and hydrolysis in fasted rat liver microsomes were investigated with a recently developed fast-sampling, rapid-filtration apparatus. Experiments were confronted with both the substrate transport and conformational models currently proposed for the glucose-6-phosphatase system. Accumulation in microsomes of 14C products from (U-14C)glucose-6-P followed biexponential kinetics. From the inside to outside product concentrations, it could be inferred that mostly glucose should accumulate inside the vesicles. While biexponential kinetics are compatible with the mathematical predictions of a simplified substrate transport model, the latter fails in explaining the burst in total glucose production over a similar time scale to that used for the uptake measurements. Since the initial rate of the burst phase in untreated microsomes exactly matched the steady-state rate of glucose production in detergent-treated vesicles, it can be definitely concluded that the substrate transport model does not describe adequately our results. While the conformational model accounts for both the burst of glucose production and the kinetics of glucose accumulation into the vesicles, it cannot explain the burst in 32Pi production from (32P)glucose-6-P measured under the same conditions. Since the amplitude of the observed bursts is not compatible with a presteady state in enzyme activity, we propose that a hysteretic transition best explains our results in both untreated and permeabilized microsomes, thus providing a new rationale to understand the molecular mechanism of the glucose-6-phosphatase system.

  11. Mass transport at the interface between a highly permeable porous medium and an open channel flow

    NASA Astrophysics Data System (ADS)

    Moretto, C.; Pokrajac, D.

    2012-04-01

    Hyporheic exchange has been extensively studied in the literature. The majority of papers present the results of field studies and the associated engineering simulation models. The number of laboratory studies is smaller. Most of them are focused on the bulk scale effects, since the measurements within the bed at the grain scale are difficult and therefore rare. Measurement within the pores of a permeable bed becomes possible for some idealized pore configurations. Pokrajac and Manes (2009) and Manes et al. (2009) use constant diameter spheres packed in a cubic pattern, which form straight pores (with variable cross-sectional area) in three orthogonal directions. Their results include detailed velocity measurements and the characteristics of turbulence at the fluid/porous interface, but not the mass transport. The experimental study reported here uses the same porous medium and extends this work by including grain-scale mass transport measurements. The results presented involve the hydrodynamics and the mass transport at the fluid/pore interface and within the first pore under the surface of the medium. The experiments are carried out in a 11m long and 40cm wide tilting flume. The porous medium, placed on the flume bed, is composed of 5 layers of 12mm diameter plastic spheres packed in a cubic pattern. This arrangement was chosen in order to have a regular matrix, thereby allowing measurements of the velocities and solute concentration within a pore. The measurement window covers a central section of a longitudinal pore which is visible through a lateral pore. The velocity field is measured by means of the Particle Image Velocimetry (PIV), and the concentration field is measured using the Laser Induced Fluorescence (LIF). These two techniques allow simultaneous non-intrusive measurements within a single pore. The experiments involved uniform, fully developed turbulent flow. The experimental conditions were: bed slope = 0.01, water depth = 45mm, depth

  12. Determination of the mass-transport properties of vanadium ions through the porous electrodes of vanadium redox flow batteries.

    PubMed

    Xu, Qian; Zhao, T S

    2013-07-14

    This work is concerned with the determination of two critical constitutive properties for mass transport of ions through porous electrodes saturated with a liquid electrolyte solution. One is the effective diffusivity that is required to model the mass transport at the representative element volume (REV) level of porous electrodes in the framework of Darcy's law, while the other is the pore-level mass-transfer coefficient for modeling the mass transport from the REV level to the solid surfaces of pores induced by redox reactions. Based on the theoretical framework of mass transport through the electrodes of vanadium redox flow batteries (VRFBs), unique experimental setups for electrochemically determining the two transport properties by measuring limiting current densities are devised. The effective diffusivity and the pore-level mass-transfer coefficient through the porous electrode made of graphite felt, a typical material for VRFB electrodes, are measured at different electrolyte flow rates. The correlation equations, respectively, for the effective diffusivity and the pore-level mass-transfer coefficient are finally proposed based on the experimental data. PMID:23698744

  13. Understanding of relationship between the average mass transport rate and the moments of permeability

    SciTech Connect

    Niibori, Y.; Tochiyama, O.; Chida, T.

    1999-07-01

    To estimate the transport rate of radionuclides in the geosphere, one must consider the spatial variability of permeability. However, the borehole data of permeability are limited and one can not determine the type of probability density function, though the measurement data reflect the most significant hydraulic properties about geologic media including innumerable cracks or fast flow paths. While the recent models describing radioactive nuclide transport in near/far-field have assumed a certain probability density function (typically a lognormal distribution) as a permeability distribution, one cannot always obtain sufficient measurement data to define the function. However, the available data of permeability at give one the moments such as the arithmetic mean, the standard deviation and the skewness for the distribution. The purpose of this paper is to get an understanding of the general relationship between the average mass transport rates and the moments. Using various types of probability density functions and pseudo random-numbers, hypothetical permeability distributions are generated. With these distributions, this paper obtains the average transport rates described as the numerical impulse-response based on the advection-dispersion model for a two-dimensional region. The calculated results show that, for the dimensionless standard deviation up to around 1, the three moments are enough to characterize the permeability distribution for the purposes of the nuclide transport prediction. In this work, for five specified probability density functions, the upper and lower bounds of skewness are derived as a function of the dimensionless arithmetic mean and standard deviation. The obtained upper and lower bounds explicitly show that the Bernoulli trials (a discrete probability density function) yield the widest range in the skewness against the standard deviation. since the response has lower peak and longer tail as the skewness goes to the lower bound value, the

  14. Mode conversion and anomalous transport in Kelvin-Helmholtz vortices and kinetic Alfvén waves at the Earth's magnetopause.

    PubMed

    Chaston, C C; Wilber, M; Mozer, F S; Fujimoto, M; Goldstein, M L; Acuna, M; Reme, H; Fazakerley, A

    2007-10-26

    Observations at the Earth's magnetopause identify mode conversion from surface to kinetic Alfvén waves at the Alfvén resonance. Kinetic Alfvén waves radiate into the magnetosphere from the resonance with parallel scales up to the order of the geomagnetic field-line length and spectral energy densities obeying a k(perpendicular)(-2.4) power law. Amplitudes at the Alfvén resonance are sufficient to both demagnetize ions across the magnetopause and provide field-aligned electron bursts. These waves provide diffusive transport across the magnetopause sufficient for boundary layer formation. PMID:17995342

  15. Influence of power ultrasound application on mass transport and microstructure of orange peel during hot air drying

    NASA Astrophysics Data System (ADS)

    Ortuño, Carmen; Pérez-Munuera, Isabel; Puig, Ana; Riera, Enrique; Garcia-Perez, J. V.

    2010-01-01

    Power ultrasound application on convective drying of foodstuffs may be considered an emergent technology. This work deals with the influence of power ultrasound on drying of natural materials addressing the kinetic as well as the product's microstructure. Convective drying kinetics of orange peel slabs (thickness 5.95±0.41 mm) were carried out at 40 ∘C and 1 m/s with (US) and without (AIR) power ultrasound application. A diffusion model considering external resistance to mass transfer was considered to describe drying kinetics. Fresh, US and AIR dried samples were analyzed using Cryo-SEM. Results showed that drying kinetics of orange peel were significantly improved by the application of power ultrasound. From modeling, it was observed a significant (p¡0.05) increase in both mass transfer coefficient and effective moisture diffusivity. The effects on mass transfer properties were confirmed from microestructural observations. In the cuticle surface, the pores were obstructed by wax components scattering, which evidence the ultrasonic effects on the interfaces. The cells of the flavedo were compressed and large intercellular air spaces were generated in the albedo facilitating water transfer through it.

  16. Kinetic modeling of microbially-driven redox chemistry of radionuclides in subsurface environments: Coupling transport, microbial metabolism and geochemistry

    SciTech Connect

    WANG,YIFENG; PAPENGUTH,HANS W.

    2000-05-04

    Microbial degradation of organic matter is a driving force in many subsurface geochemical systems, and therefore may have significant impacts on the fate of radionuclides released into subsurface environments. In this paper, the authors present a general reaction-transport model for microbial metabolism, redox chemistry, and radionuclide migration in subsurface systems. The model explicitly accounts for biomass accumulation and the coupling of radionuclide redox reactions with major biogeochemical processes. Based on the consideration that the biomass accumulation in subsurface environments is likely to achieve a quasi-steady state, they have accordingly modified the traditional microbial growth kinetic equation. They justified the use of the biogeochemical models without the explicit representation of biomass accumulation, if the interest of modeling is in the net impact of microbial reactions on geochemical processes. They then applied their model to a scenario in which an oxic water flow containing both uranium and completing organic ligands is recharged into an oxic aquifer in a carbonate formation. The model simulation shows that uranium can be reduced and therefore immobilized in the anoxic zone created by microbial degradation.

  17. BiOI/TiO2-nanorod array heterojunction solar cell: Growth, charge transport kinetics and photoelectrochemical properties

    NASA Astrophysics Data System (ADS)

    Wang, Lingyun; Daoud, Walid A.

    2015-01-01

    A series of BiOI/TiO2-nanorod array photoanodes were grown on fluorine-doped tin oxide (FTO) glass using a simple two-step solvothermal/hydrothermal method. The effects of the hydrothermal process, such as TiO2 nanorod growth time, BiOI concentration and the role of surfactant, polyvinylpyrrolidone (PVP), on the growth of BiOI, were investigated. The heterojunctions were characterized by X-ray diffraction, UV-vis absorbance spectroscopy and scanning electron microscopy. The photoelectrochemical properties of the as-grown junctions, such as linear sweep voltammetry (LSV) behavior, photocurrent response and incident photon-to-electron conversion efficiency (IPCE) under Xenon lamp illumination, are presented. The cell with BiOI/TiO2 (PVP) as photoanode can reach a short current density (Jsc) of 0.13 mA/cm2 and open circuit voltage (Voc) of 0.46 V vs. Ag/AgCl under the irradiation of a 300 W Xenon lamp. Compared to bare TiO2, the IPCE of BiOI/TiO2 (PVP) increased 4-5 times at 380 nm. Furthermore, the charge transport kinetics within the heterojunction is also discussed.

  18. Reactive transport in 3D models of irregularly fractured rock masses

    NASA Astrophysics Data System (ADS)

    Driesner, T.; Mindel, J. E.

    2014-12-01

    Reactive transport through irregularly fractured rock masses is a key phenomenon in ore-forming hydrothermal systems, geothermal systems, and many other geological processes and will affect the mechanical properties and hydraulic apertures of fractures. Realistic representations of such systems have so far been hampered by technical limitations of most hydrothermal reactive transport codes, namely the ability to represent discrete fracture networks in a porous rock matrix. We present the first three-dimensional simulation results obtained from coupling a