Science.gov

Sample records for klamath river basin

  1. Drought in the Klamath River Basin

    NASA Technical Reports Server (NTRS)

    2002-01-01

    For more than 100 years groups in the western United States have fought over water. During the 1880s, sheep ranchers and cattle ranchers argued over drinking water for their livestock on the high plains. In 1913, the city of Los Angeles began to draw water away from small agricultural communities in the Owen Valley, leaving a dusty dry lake bed. In the late 1950s, construction of the Glen Canyon Dam catalyzed the American environmental movement. Today, farmers are fighting fishermen, environmentalists, and Native American tribes over the water in the Upper Klamath River Basin. A below-average winter snowpack and low rainfall throughout the year have caused an extreme drought in the area along the California/Oregon border. In April 2001 a U.S. District Court stopped water deliveries to farms in the Klamath Irrigation District to preserve adequate water levels in Upper Klamath Lake to protect two endangered species of Mullet fish (called suckers). Water was also reserved for the threatened Coho Salmon which need enough water to swim downstream from their spawning grounds to the ocean. In addition, several Native American tribes have rights to Klamath River water. Further complicating the situation are a handful of wildlife refuges which usually receive enough irrigation wastewater to support upwards of a million migratory birds and 900 Bald Eagles. This year, however, several of the refuges may not have enough water for the birds which begin arriving in early fall. The severity of this year's drought is underscored by the town of Bonanza, Oregon. Famous for its natural springs, and entirely dependent on wells for drinking water, the town's water supply is now contaminated with pesticides, fertilizer, and manure. The water quality is so bad it's not even safe to bathe in, much less drink. The problem stems from a very low water table. The drop in underground water levels is caused directly by the drought, and indirectly from the increased irrigation from underground

  2. Drought in the Klamath River Basin

    NASA Technical Reports Server (NTRS)

    2002-01-01

    For more than 100 years groups in the western United States have fought over water. During the 1880s, sheep ranchers and cattle ranchers argued over drinking water for their livestock on the high plains. In 1913, the city of Los Angeles began to draw water away from small agricultural communities in the Owen Valley, leaving a dusty dry lake bed. In the late 1950s, construction of the Glen Canyon Dam catalyzed the American environmental movement. Today, farmers are fighting fishermen, environmentalists, and Native American tribes over the water in the Upper Klamath River Basin. A below-average winter snowpack and low rainfall throughout the year have caused an extreme drought in the area along the California/Oregon border. In April 2001 a U.S. District Court stopped water deliveries to farms in the Klamath Irrigation District to preserve adequate water levels in Upper Klamath Lake to protect two endangered species of Mullet fish (called suckers). Water was also reserved for the threatened Coho Salmon which need enough water to swim downstream from their spawning grounds to the ocean. In addition, several Native American tribes have rights to Klamath River water. Further complicating the situation are a handful of wildlife refuges which usually receive enough irrigation wastewater to support upwards of a million migratory birds and 900 Bald Eagles. This year, however, several of the refuges may not have enough water for the birds which begin arriving in early fall. The severity of this year's drought is underscored by the town of Bonanza, Oregon. Famous for its natural springs, and entirely dependent on wells for drinking water, the town's water supply is now contaminated with pesticides, fertilizer, and manure. The water quality is so bad it's not even safe to bathe in, much less drink. The problem stems from a very low water table. The drop in underground water levels is caused directly by the drought, and indirectly from the increased irrigation from underground

  3. Sprague River geomorphology studies, Klamath Basin, Oregon

    NASA Astrophysics Data System (ADS)

    McDowell, P. F.; O'Connor, J. E.; Lind, P.

    2005-12-01

    The Sprague River drains 4050 square kilometers with a mean annual discharge of 16.3 m3/s before emptying into the Williamson River and then upper Klamath Lake in southcentral Oregon. The alternating wide alluvial segments and narrow canyon reaches of this 135-km-long westward flowing river provide for a variety of valued ecologic conditions and human uses along the river corridor, notably fisheries (including two endangered species of suckers, and formerly salmon), timber harvest, agriculture, and livestock grazing. The complex history of land ownership and landuse, water control and diversion structures, and fishery alterations, provides several targets for attributing historic changes to channel and floodplain conditions. Recently, evolving societal values (as well as much outside money) are inspiring efforts by many entities to 'restore' the Sprague River watershed. In cooperation with the U.S. Fish and Wildlife Service, the Klamath Tribes, and many local landowners, we are launching an analysis of Sprague River channel and floodplain processes. The overall objective is to guide restoration activities by providing sound understanding of local geomorphic processes and conditions. To do this we are identifying key floodplain and channel processes, and investigating how they have been affected by historic floodplain activites and changes to the watershed. This is being accomplished by analysis of historic aerial photographs and maps, stratigraphic analysis of floodplain soils and geologic units, mapping of riparian vegetation conditions and changes, and quantitative analysis of high resolution LiDAR topography acquired for the entire river course in December 2004. Preliminary results indicate (1) much of the coarser (and more erodible) floodplain soils are largely composed of pumice deposited in the basin by the 7700 year BP eruption of Mount Mazama; and (2) the LiDAR digital elevation models provide a ready means of subdividing the river into segments with

  4. Snow modeling in the Klamath River Basin: understanding the factors controlling snow distribution and melt

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Point and spatially distributed models have been applied to the 4053 km2 Sprague River Basin which is one of three main tributaries to the Upper Klamath Basin in Southern Oregon, USA. The simulations cover entire water years to understand the physics controlling snow distribution during the accumul...

  5. Modeling and management of water in the Klamath River Basin: overcoming politics and conflicts

    USGS Publications Warehouse

    Flug, Marshall; Scott, John F.

    1998-01-01

    The network flow model MODSIM, which was designed as a water quantity mass balance model for evaluating and selecting water management alternatives, has been applied to the Klamath River basin. A background of conflicting issues in the basin is presented. The complexity of water quantity model development, while satisfying the many stakeholders and involved special interest groups is discussed, as well as the efforts taken to have the technical model accepted and used, and overcome stakeholder criticism, skepticism, and mistrust of the government.

  6. Overview of Hydrologic Issues in the Upper Klamath River Basin, Oregon

    NASA Astrophysics Data System (ADS)

    Lynch, D. D.

    2005-12-01

    The geologic setting of the upper Klamath Basin makes it a naturally arid landscape with eutrophic water bodies. Anthropogenic alterations of the land and hydrology over the past 100 years have put large demands on water supplies and further enriched water bodies with nutrients. Major changes to the upper basin include diking and draining lakes and wetlands for agricultural and grazing land, modifying lakes to increase the supply of summer irrigation water, clearing land and harvesting timber, and installing hydropower dams on the mainstem Klamath River that has blocked salmon passage above Iron Gate Dam. These alterations have contributed to diminished populations of endangered shortnose and Lost River suckers in the upper basin and threatened Coho salmon in the lower Klamath River. Upper Klamath Lake (UKL), with an average depth of 2.5 meters and a surface area of 310 square kilometers, is the primary water-supply reservoir for the Bureau of Reclamation's Klamath Project, which services about half (97,000 ha) of the irrigated agriculture in the upper Klamath Basin. The lake is also the primary habitat for the two endangered suckers. Because of the nutrient enrichment of UKL, the development of large summer blooms of Aphanizomenon flos-aquae, and the periodic crash of these near monoculture blooms, the magnitude and frequency of large sucker die-offs from hypoxia have increased. The relation between management of the lake and surrounding wetlands and algal ecology is not well understood. It is clear, however, that runoff from drained wetlands upstream and around UKL have enriched the lake water and its bottom sediments with phosphorus for many decades. Internal loading from enriched bottom sediments triples the summer phosphorus concentration in UKL and fuels the problematic algal blooms from June through October. An ongoing pattern of below-average precipitation has increased demands from UKL and generated concern. Two recent Biological Opinions aimed at

  7. Uncertainty in applied tree-ring reconstructions: Klamath River basin streamflow

    NASA Astrophysics Data System (ADS)

    Malevich, S. B.; Woodhouse, C. A.

    2014-12-01

    Tree-ring based reconstructions of hydroclimatic variability are useful for water resource management. One of the challenges in generating reconstructions is assessing uncertainties and how they impact use in resource management. This project focuses on recent reconstructions of streamflow for the Upper Klamath River basin. The reconstructions provide several centuries of historical context to drought and hydroclimate variability found in the instrumental record of the past century. The quality of tree-ring reconstructions greatly depends on the quality and the availability of tree-ring data and the instrument records used for reconstruction calibration. This project focuses on the quality and potential uncertainty of instrumental records. A number of hydroclimate instrumental records are available in the Klamath River basin. Unfortunately these records have deficiencies. Complex basin hydrology and a long history of water use have made it difficult to estimate the river's natural flow. This project develops a methodology to combine uncertainty from the instrumental record with uncertainty from tree-ring reconstructions. The result is a Monte Carlo method which considers complex and potential non-linear interactions. Probability distributions are created for each observation in the instrumental record. An algorithm independently designs, trains, and tests a tree-ring reconstruction for potential outcomes of the instrumental record's distributions. Preliminary results give probability distributions for past streamflow events. These can be used for commonly applied drought analysis. This includes exceedance probabilities relative to instrumental record drought for single and multiple-year moving averages.

  8. Connecting science to managers in river restoration in the Upper Klamath Basin, Oregon and California

    NASA Astrophysics Data System (ADS)

    McDowell, P. F.

    2009-12-01

    The semi-arid Upper Klamath Basin is a complex landscape of agricultural land, pasture and forests, drained by rivers, lakes, and wetlands. Unique characteristics of the river systems include high natural nutrient loadings, large springs, low gradients, high sinuosity, fine sediment, herbaceous-dominated riparian vegetation, and habitat for salmonid and sucker fish. Following listing of several fish species under the Endangered Species Act in the 1980s to 90s, the Upper Klamath Basin has become a focal point of river management and restoration. Drought conditions in 2001 resulted in a cutoff of irrigation water and a political crisis. The crisis engendered a distrust of scientists by many residents of the basin. Political conflict over allocation of water resources and ecosystem management has continued since 2001. In this environment, multiple groups, including federal and state agencies and NGOs, have developed restoration assessments and agendas, and they have also implemented numerous restoration projects. These restoration guidance documents are typically based on input from local residents and landowners as well as the published scientific literature. The documents from different groups are generally consistent but priorities vary somewhat. Gaps in scientific understanding of the river systems are recognized as a handicap in restoration planning. The science knowledge base has been growing since 2001 but generally lags behind on-the-ground restoration activities. Research can help in addressing two critical questions important in restoration implementation. What restoration strategies are best suited to the processes and dynamics of this system? Are the specific restoration designs being employed effective at meeting restoration goals? In addition to following scientific standards of practice, scientific research needs to be framed with an awareness of how formal and informal knowledge is used in restoration implementation.

  9. Spatial, temporal and host factors structure the Ceratomyxa shasta (Myxozoa) population in the Klamath River basin.

    PubMed

    Atkinson, Stephen D; Bartholomew, Jerri L

    2010-10-01

    The myxozoan parasite Ceratomyxa shasta is a virulent pathogen of salmonid fish in the Klamath River, Oregon/California, USA. We previously defined four principal genotypes of the parasite (O, I, II, III) based on a trinucleotide repeat (ATC)(0-3) in Internal Transcribed Spacer region 1 sequences. Genotypes occur in sympatry and show marked host preference: I in Chinook salmon (Oncorhynchus tschawytscha) and II in non-native rainbow trout (O. mykiss). In the present study, we sequenced the parasite from river water samples collected in May, June and September at three localities below, above and between the Klamath's five dams. We also sampled adult and juvenile coho salmon (O. kisutch), steelhead trout (O. mykiss, anadromous form) and native redband rainbow trout (O. mykiss, freshwater form) and additional Chinook salmon and non-native rainbow trout. We found that the C. shasta population was highly structured spatially, temporally and with respect to fish host species. Genotype O was present in water throughout the basin but detected almost exclusively in steelhead and native rainbow trout. Genotype I was in water only below the dams and detected only in Chinook salmon. Genotype II was detected in coho salmon below the dams, and in non-native rainbow trout exposed both above and below the dams. The same genotypes were detected in adult and juvenile fish of the same species. These findings have major implications for the design of effective surveillance and control programs for this economically and ecologically important fish parasite. PMID:20601174

  10. Klamath River Basin Hydrologic Conditions Prior to the September 2002 Die-Off of Salmon and Steelhead

    USGS Publications Warehouse

    Lynch, Dennis D.; Risley, John C.

    2003-01-01

    This report characterizes streamflow and water temperature conditions during the period leading up to the die-off and compares them to historical conditions in the Klamath River. This report is not an exploration of the causative mechanism of the die-off; rather, it is intended to provide detailed documentation of these conditions to be used by those examining the cause(s) of the die-off and to provide information that can contribute to decisions about future water management in the Klamath Basin.

  11. Comparison of historical streamflows to 2013 Streamflows in the Williamson, Sprague, and Wood Rivers, Upper Klamath Lake Basin, Oregon

    USGS Publications Warehouse

    Hess, Glen W.; Stonewall, Adam J.

    2014-01-01

    In 2013, the Upper Klamath Lake Basin, Oregon, experienced a dry spring, resulting in an executive order declaring a state of drought emergency in Klamath County. The 2013 drought limited the water supply and led to a near-total cessation of surface-water diversions for irrigation above Upper Klamath Lake once regulation was implemented. These conditions presented a unique opportunity to understand the effects of water right regulation on streamflows. The effects of regulation of diversions were evaluated by comparing measured 2013 streamflow with data from hydrologically similar years. Years with spring streamflow similar to that in 2013 measured at the Sprague River gage at Chiloquin from water years 1973 to 2012 were used to define a Composite Index Year (CIY; with diversions) for comparison to measured 2013 streamflows (no diversions). The best-fit 6 years (1977, 1981, 1990, 1991, 1994, and 2001) were used to determine the CIY. Two streams account for most of the streamflow into Upper Klamath Lake: the Williamson and Wood Rivers. Most streamflow into the lake is from the Williamson River Basin, which includes the Sprague River. Because most of the diversion regulation affecting the streamflow of the Williamson River occurred in the Sprague River Basin, and because of uncertainties about historical flows in a major diversion above the Williamson River gage, streamflow data from the Sprague River were used to estimate the change in streamflow from regulation of diversions for the Williamson River Basin. Changes in streamflow outside of the Sprague River Basin were likely minor relative to total streamflow. The effect of diversion regulation was evaluated using the “Baseflow Method,” which compared 2013 baseflow to baseflow of the CIY. The Baseflow Method reduces the potential effects of summer precipitation events on the calculations. A similar method using streamflow produced similar results, however, despite at least one summer precipitation event. The

  12. Conservation Effects Assessment Project-Wetlands assessment in California's Central Valley and Upper Klamath River Basin

    USGS Publications Warehouse

    2011-01-01

    Executive Summary-Ecosystem Services Derived from Wetlands Reserve Program Conservation Practices in California's Central Valley and Oregon's Upper Klamath River Basin. The Wetlands Reserve Program (WRP) is one of several programs implemented by the U.S. Department of Agriculture (USDA). Since the WRP's inception in 1990, it has resulted in the restoration of approximately 29,000 hectares in California's Central Valley (CCV) and roughly 12,300 hectares in Oregon's Upper Klamath River Basin (UKRB). Both the CCV and UKRB are agricultural dominated landscapes that have experienced extensive wetland losses and hydrological alteration. Restored habitats in the CCV and UKRB are thought to provide a variety of ecosystem services, but little is known about the actual benefits afforded. The U.S. Geological Survey (USGS) California Cooperative Fish and Wildlife Unit in collaboration with the USDA Natural Resources Conservation Service surveyed 70 WRP sites and 12 National Wildlife Refuge sites in the CCV, and 11 sites in the UKRB to estimate ecosystem services provided. In the CCV, sites were selected along three primary gradients; (1) restoration age, (2) management intensity, and (3) latitude (climate). Sites in the UKRB were assessed along restoration age and management intensity gradients where possible. The management intensity gradient included information about the type and frequency of conservation practices applied at each site, which was then ranked into three categories that differentiated sites primarily along a hydrological gradient. Information collected was used to estimate the following ecosystem services: Soil and vegetation nutrient content, soil loss reduction, floodwater storage as well as avian, amphibian, fish, and pollinator use and habitat availability. Prior to this study, very little was known about WRP habitat morphology in the CCV and UKRB. Therefore in this study, we described these habitats and related them to ecosystem services provided. Our

  13. Estimation of stream temperature in support of fish production modeling under future climates in the Klamath River Basin

    USGS Publications Warehouse

    Flint, Lorraine E.; Flint, Alan L.

    2012-01-01

    Stream temperature estimates under future climatic conditions were needed in support of fish production modeling for evaluation of effects of dam removal in the Klamath River Basin. To allow for the persistence of the Klamath River salmon fishery, an upcoming Secretarial Determination in 2012 will review potential changes in water quality and stream temperature to assess alternative scenarios, including dam removal. Daily stream temperature models were developed by using a regression model approach with simulated net solar radiation, vapor density deficit calculated on the basis of air temperature, and mean daily air temperature. Models were calibrated for 6 streams in the Lower, and 18 streams in the Upper, Klamath Basin by using measured stream temperatures for 1999-2008. The standard error of the y-estimate for the estimation of stream temperature for the 24 streams ranged from 0.36 to 1.64°C, with an average error of 1.12°C for all streams. The regression models were then used with projected air temperatures to estimate future stream temperatures for 2010-99. Although the mean change from the baseline historical period of 1950-99 to the projected future period of 2070-99 is only 1.2°C, it ranges from 3.4°C for the Shasta River to no change for Fall Creek and Trout Creek. Variability is also evident in the future with a mean change in temperature for all streams from the baseline period to the projected period of 2070-99 of only 1°C, while the range in stream temperature change is from 0 to 2.1°C. The baseline period, 1950-99, to which the air temperature projections were corrected, established the starting point for the projected changes in air temperature. The average measured daily air temperature for the calibration period 1999-2008, however, was found to be as much as 2.3°C higher than baseline for some rivers, indicating that warming conditions have already occurred in many areas of the Klamath River Basin, and that the stream temperature

  14. Life history diversity in Klamath River steelhead

    USGS Publications Warehouse

    Hodge, Brian W.; Wilzbach, Peggy; Duffy, Walter G. G.; Quinones, Rebecca M.; Hobbs, James A.

    2016-01-01

    Oncorhynchus mykiss exhibits a vast array of life histories, which increases its likelihood of persistence by spreading risk of extirpation among different pathways. The Klamath River basin (California–Oregon) provides a particularly interesting backdrop for the study of life history diversity in O. mykiss, in part because the river is slated for a historic and potentially influential dam removal and habitat recolonization project. We used scale and otolith strontium isotope (87Sr/86Sr) analyses to characterize life history diversity in wildO. mykiss from the lower Klamath River basin. We also determined maternal origin (anadromous or nonanadromous) and migratory history (anadromous or nonanadromous) of O. mykiss and compared length and fecundity at age between anadromous (steelhead) and nonanadromous (Rainbow Trout) phenotypes of O. mykiss. We identified a total of 38 life history categories at maturity, which differed in duration of freshwater and ocean rearing, age at maturation, and incidence of repeat spawning. Approximately 10% of adult fish sampled were nonanadromous. Rainbow Trout generally grew faster in freshwater than juvenile steelhead; however, ocean growth afforded adult steelhead greater length and fecundity than adult Rainbow Trout. Although 75% of individuals followed the migratory path of their mother, steelhead produced nonanadromous progeny and Rainbow Trout produced anadromous progeny. Overall, we observed a highly diverse array of life histories among Klamath River O. mykiss. While this diversity should increase population resilience, recent declines in the abundance of Klamath River steelhead suggest that life history diversity alone is not sufficient to stabilize a population. Our finding that steelhead and Rainbow Trout give rise to progeny of the alternate form (1) suggests that dam removal might lead to a facultatively anadromous O. mykiss population in the upper basin and (2) raises the question of whether both forms of

  15. Application of LANDSAT Data for Field-Scale Comparisons and Basin-Scale Estimates of Evapotranspiration in the Wood River Valley, Upper Klamath Basin, Oregon.

    NASA Astrophysics Data System (ADS)

    Peterson, S. T.; Cuenca, R. H.

    2006-12-01

    30 meter resolution LANDSAT data were used to evaluate the effects of irrigation management decisions in the Wood River Valley, Upper Klamath Basin, Oregon. The Klamath Basin is well known as an over-allocated system that strains to provide adequate water for agriculture, recreational, and wildlife needs. In an effort to provide increased stream flows after the water shutoff to irrigators in 2001 and disastrous fish kills in 2002, a program was established with cooperative ranchers to withhold irrigation from their cattle pastures in the Wood River Valley, just above Upper Klamath Lake. From 2003 to 2006, ground-based measurements over one irrigated and one unirrigated pasture site were used to monitor the difference in evapotranspiration using the Bowen ratio energy balance method. These data sets represent point measurements of the response to irrigation, but do not allow for the spatial integration of effects of irrigated versus unirrigated lands. The SEBAL and later METRIC algorithms were developed to evaluate evapotranspiration on a field- or basin-wide scale using LANDSAT data. Four LANDSAT scenes of the Wood River basin during the 2004 growing season were evaluated using re-derived and updated METRIC algorithms. The Bowen ratio station micrometeorological data were utilized in the METRIC algorithms. Comparisons of METRIC algorithm output with ground-based data for all components of the energy balance, including net radiation, soil heat flux, sensible heat flux and evapotranspiration, were made for the four scenes. The excellent net radiation estimates, along with less accurate estimates of the other components, is demonstrated. The ability to integrate the effects of withholding irrigation on evapotranspiration and the water balance on irrigated and unirrigated lands within the basin is demonstrated. The results exhibit application of the METRIC algorithms to partition water balance components at the watershed scale.

  16. Water-quality data from 2002 to 2003 and analysis of data gaps for development of total maximum daily loads in the Lower Klamath River Basin, California

    USGS Publications Warehouse

    Flint, Lorraine E.; Flint, Alan L.; Curry, Debra S.; Rounds, Stewart A.; Doyle, Micelis C.

    2004-01-01

    The U.S. Geological Survey (USGS) collected water-quality data during 2002 and 2003 in the Lower Klamath River Basin, in northern California, to support studies of river conditions as they pertain to the viability of Chinook and Coho salmon and endangered suckers. To address the data needs of the North Coast Regional Water Quality Control Board for the development of Total Maximum Daily Loads (TMDLs), water temperature, dissolved oxygen, specific conductance, and pH were continuously monitored at sites on the Klamath, Trinity, Shasta, and Lost Rivers. Water-quality samples were collected and analyzed for selected nutrients, organic carbon, chlorophyll-a, pheophytin-a, and trace elements. Sediment oxygen demand was measured on the Shasta River. Results of analysis of the data collected were used to identify locations in the Lower Klamath River Basin and periods of time during 2002 and 2003 when river conditions were more likely to be detrimental to salmonid or sucker health because of occasional high water temperatures, low dissolved oxygen, and conditions that supported abundant populations of algae and aquatic plants. The results were also used to assess gaps in data by furthering the development of the conceptual model of water flow and quality in the Lower Klamath River Basin using available data and the current understanding of processes that affect water quality and by assessing needs for the develoment of mathematical models of the system. The most notable gap in information for the study area is in sufficient knowledge about the occurrence and productivity of algal communities. Other gaps in data include vertical water-quality profiles for the reservoirs in the study area, and in an adequate understanding of the chemical oxygen demands and the sediment oxygen demands in the rivers and of the influence of riparian shading on the rivers. Several mathematical models are discussed in this report for use in characterizing the river systems in the study area; also

  17. A basin-scale approach to estimating stream temperatures of tributaries to the lower Klamath River, California

    USGS Publications Warehouse

    Flint, L.E.; Flint, A.L.

    2008-01-01

    Stream temperature is an important component of salmonid habitat and is often above levels suitable for fish survival in the Lower Klamath River in northern California. The objective of this study was to provide boundary conditions for models that are assessing stream temperature on the main stem for the purpose of developing strategies to manage stream conditions using Total Maximum Daily Loads. For model input, hourly stream temperatures for 36 tributaries were estimated for 1 Jan. 2001 through 31 Oct. 2004. A basin-scale approach incorporating spatially distributed energy balance data was used to estimate the stream temperatures with measured air temperature and relative humidity data and simulated solar radiation, including topographic shading and corrections for cloudiness. Regression models were developed on the basis of available stream temperature data to predict temperatures for unmeasured periods of time and for unmeasured streams. The most significant factor in matching measured minimum and maximum stream temperatures was the seasonality of the estimate. Adding minimum and maximum air temperature to the regression model improved the estimate, and air temperature data over the region are available and easily distributed spatially. The addition of simulated solar radiation and vapor saturation deficit to the regression model significantly improved predictions of maximum stream temperature but was not required to predict minimum stream temperature. The average SE in estimated maximum daily stream temperature for the individual basins was 0.9 ?? 0.6??C at the 95% confidence interval. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  18. Geomorphology and flood-plain vegetation of the Sprague and lower Sycan Rivers, Klamath Basin, Oregon

    USGS Publications Warehouse

    O'Connor, James E.; McDowell, Patricia F.; Lind, Pollyanna; Rasmussen, Christine G.; Keith, Mackenzie K.

    2015-01-01

    Despite these effects of human disturbances, many of the fundamental physical processes forming the Sprague River fluvial systems over the last several thousand years still function. In particular, flows are unregulated, sediment transport processes are active, and overbank flooding allows for floodplain deposition and erosion. Therefore, restoration of many of the native physical conditions and processes is possible without substantial physical manipulation of current conditions for much of the Sprague River study area. An exception is the South Fork Sprague River, where historical trends are not likely to reverse until it attains a more natural channel and flood-plain geometry and the channel aggrades to the extent that overbank flow becomes common.

  19. Patterns of Larval Sucker Emigration from the Sprague and Lower Williamson Rivers of the Upper Klamath Basin, Oregon, Prior to the Removal of Chiloquin Dam - 2006 Annual Report

    USGS Publications Warehouse

    Ellsworth, Craig M.; Tyler, Torrey J.; VanderKooi, Scott P.; Markle, Douglas F.

    2009-01-01

    in larval drift at Chiloquin occurred approximately 1.5 to 2.0 hours after sunset. Nightly peak larval drift varied by location; larvae were captured earlier in the evening at sites closer to known spawning locations than sites farther away from these areas. The highest numerical catches of sucker-sized eggs were at Chiloquin indicating that this site is in close proximity to a spawning area. Numerical catches of older, more developed larval and juvenile suckers also were highest at Chiloquin. This may be due to the turbulent nature of this site, which could have swept larger fish into the drift. Proportional catches of older, more developed larval and juvenile suckers were highest at Sycan, Lone Pine, Power Station, and Fremont Bridge. This indicates these sites are located nearer to sucker nursery areas rather than spawning areas. Very few larval LRS were collected at Fremont Bridge at the south end of Upper Klamath Lake. Larval KLS-SNS densities at Fremont Bridge were the third highest of the seven sampling sites. Peak drift of larval KLS-SNS at Fremont Bridge occurred the week after peak drift of larval KLS-SNS at Williamson. Although inter-annual variation continues to appear in the larval drift data, our results continue to show consistent patterns of larval emigration in the drainage basin. In combination with data collected from the spawning movements and destinations of radio-tagged and PIT-tagged adult suckers, this larval drift data will provide a baseline standard by which to determine the effects of dam removal on the spawning distribution of endangered Klamath Basin suckers in the Sprague River.

  20. Overview of Endangered Suckers in the Klamath Basin: Does it Take One to Know One?

    NASA Astrophysics Data System (ADS)

    Shively, R. S.; Vanderkooi, S.

    2005-12-01

    Severe water quality problems in the Klamath Basin of Oregon and California have led to critical fisheries concerns for the region. In the Upper Klamath Basin, two fish species, the Lost River sucker (Deltistes luxatus) and shortnose sucker (Chasmistes brevirostris) were listed as federally endangered in 1988. These species are large, long-lived, lake-dwelling fishes endemic to the Upper Klamath Basin. Declining population trends for both species were noted as early as the mid 1960's, however, the severity of these declines were not evident until the mid 1980's. At the time of listing, population structures were dominated by older individuals with little evidence of recent significant recruitment into adult populations. In the early 1990s there was evidence of recruitment for Lost River suckers. Successive years of large fish kills in Upper Klamath Lake from 1995 to 1997, however, substantially reduced adult populations of both Lost River and shortnose suckers. Additionally, the 1995 and 1996 fish kills appeared to have been selective for larger-sized individuals and would have disproportionately affected females and resulted in an overall lower reproductive potential. Water quality and physical habitat limitations are considered to be the most limiting factors to species recovery. Life history patterns of Lost River and shortnose suckers in Upper Klamath Lake have been severely disrupted by recurrent periods of poor water quality that appear to be the root cause of fish kills and likely negatively influence the production of juvenile suckers. Habitat degradation around Upper Klamath Lake and in its tributaries likely contributes to water quality problems and also limits the physical habitat needed for successful adult sucker spawning as well as larval and juvenile rearing. Ultimately, a better understanding of the factors that influence water quality in Upper Klamath Lake as well as developing a sound strategy for habitat restoration is needed to promote recovery

  1. Ground-Water Hydrology of the Upper Klamath Basin, Oregon and California

    USGS Publications Warehouse

    Gannett, Marshall W.; Lite, Kenneth E., Jr.; La Marche, Jonathan L.; Fisher, Bruce J.; Polette, Danial J.

    2007-01-01

    The upper Klamath Basin spans the California-Oregon border from the flank of the Cascade Range eastward to the Basin and Range Province, and encompasses the Klamath River drainage basin above Iron Gate Dam. Most of the basin is semiarid, but the Cascade Range and uplands in the interior and eastern parts of the basin receive on average more than 30 inches of precipitation per year. The basin has several perennial streams with mean annual discharges of hundreds of cubic feet per second, and the Klamath River at Iron Gate Dam, which represents drainage from the entire upper basin, has a mean annual discharge of about 2,100 cubic feet per second. The basin once contained three large lakes: Upper and Lower Klamath Lakes and Tule Lake, each of which covered areas of 100 to 150 square miles, including extensive marginal wetlands. Lower Klamath Lake and Tule Lake have been mostly drained, and the former lake beds are now cultivated. Upper Klamath Lake remains, and is an important source of irrigation water. Much of the wetland surrounding Upper Klamath Lake has been diked and drained, although efforts are underway to restore large areas. Upper Klamath Lake and the remaining parts of Lower Klamath and Tule Lakes provide important wildlife habitat, and parts of each are included in the Klamath Basin National Wildlife Refuges Complex. The upper Klamath Basin has a substantial regional ground-water flow system. The late Tertiary to Quaternary volcanic rocks that underlie the region are generally permeable, with transmissivity estimates ranging from 1,000 to 100,000 feet squared per day, and compose a system of variously interconnected aquifers. Interbedded with the volcanic rocks are late Tertiary sedimentary rocks composed primarily of fine-grained lake sediments and basin-filling deposits. These sedimentary deposits have generally low permeability, are not good aquifers, and probably restrict ground-water movement in some areas. The regional ground-water system is underlain

  2. Hydrologic and Water-Quality Conditions During Restoration of the Wood River Wetland, Upper Klamath River Basin, Oregon, 2003-05

    USGS Publications Warehouse

    Carpenter, Kurt D.; Snyder, Daniel T.; Duff, John H.; Triska, Frank J.; Lee, Karl K.; Avanzino, Ronald J.; Sobieszczyk, Steven

    2009-01-01

    Restoring previously drained wetlands is a strategy currently being used to improve water quality and decrease nutrient loading into Upper Klamath Lake, Oregon. In this 2003-05 study, ground- and surface-water quality and hydrologic conditions were characterized in the Wood River Wetland. Nitrogen and phosphorus levels, primarily as dissolved organic nitrogen and ammonium (NH4) and soluble reactive phosphorus (SRP), were high in surface waters. Dissolved organic carbon concentrations also were elevated in surface water, with median concentrations of 44 and 99 milligrams of carbon per liter (mg-C/L) in the North and South Units of the Wood River Wetland, respectively, reaching a maximum of 270 mg-C/L in the South Unit in late autumn. Artesian well water produced NH4 and SRP concentrations of about 6,000 micrograms per liter (ug/L), and concentrations of 36,500 ug-N/L NH4 and 4,110 ug-P/L SRP in one 26-28 ft deep piezometer well. Despite the high ammonium concentrations, the nitrate levels were moderate to low in wetland surface and ground waters. The surface-water concentrations of NH4 and SRP increased in spring and summer, outpacing those for chloride (a conservative tracer), indicative of evapoconcentration. In-situ chamber experiments conducted in June and August 2005 indicated a positive flux of NH4 and SRP from the wetland sediments. Potential sources of NH4 and SRP include diffusion of nutrients from decomposed peat, decomposing aquatic vegetation, or upwelling ground water. In addition to these inputs, evapoconcentration raised surface-water solute concentrations to exceedingly high values by the end of summer. The increase was most pronounced in the South Unit, where specific conductance reached 2,500 uS/cm and median concentrations of total nitrogen and total phosphorus reached 18,000-36,500 ug-N/L and about 18,000-26,000 ug-P/L, respectively. Water-column SRP and total phosphorus levels decreased during autumn and winter following inputs of irrigation

  3. Klamath River Reconstruction: Strategies for Dealing with Uncertainty in Calibration Data

    NASA Astrophysics Data System (ADS)

    Woodhouse, C. A.; Malevich, S. B.; Meko, D. M.; Gangopadhyay, S.

    2013-12-01

    The upper Klamath Basin has been the center of conflict over competing water uses and values in recent years, exacerbated by drought conditions. Currently, water needs for irrigation, fish, and riparian environments are being addressed and plans for sharing limited water resources are being negotiated. In a number of major river basins in the western US, extended records of streamflow from tree rings have been found useful for planning by placing recent droughts in a long term context and characterizing the long-term hydrologic variability over past centuries. The focus of this research is the first reconstruction of the upper Klamath River and its potential use for management. One challenge in the reconstruction of Klamath River streamflow is the availability of high quality streamflow data for reconstruction model calibration. In the Klamath basin, a long history of diversions for irrigation along with complex wetland hydrology has made the accurate estimation of natural flows difficult. A number of sources of hydrology are available, but all show differences in magnitudes of high and low flows. While the uncertainties in the calibration streamflow data can be described and quantified, they cannot be overcome, and thus impart uncertainty to the resulting reconstruction. Thus, it is important to develop analysis strategies that highlight the most certain aspects of the reconstruction. In the case of the Klamath River records, the most robust information concerns the sequences of flow, and duration and frequency of wet and dry intervals. In the reconstruction, which extends from 1493-2010, analyses of frequency and distribution of extreme low flow years, runs of consecutive years of low flows, and the probability of transitions between wet and dry years all document long-term natural hydrologic variability, over which the impacts of climate change will be imposed. While not a perfect record of past flow, the Klamath reconstruction provides information that can be

  4. Hydrological information products for the Off-Project Water Program of the Klamath Basin Restoration Agreement

    USGS Publications Warehouse

    Snyder, Daniel T.; Risley, John C.; Haynes, Jonathan V.

    2012-01-01

    The Klamath Basin Restoration Agreement (KBRA) was developed by a diverse group of stakeholders, Federal and State resource management agencies, Tribal representatives, and interest groups to provide a comprehensive solution to ecological and water-supply issues in the Klamath Basin. The Off-Project Water Program (OPWP), one component of the KBRA, has as one of its purposes to permanently provide an additional 30,000 acre-feet of water per year on an average annual basis to Upper Klamath Lake through "voluntary retirement of water rights or water uses or other means as agreed to by the Klamath Tribes, to improve fisheries habitat and also provide for stability of irrigation water deliveries." The geographic area where the water rights could be retired encompasses approximately 1,900 square miles. The OPWP area is defined as including the Sprague River drainage, the Sycan River drainage downstream of Sycan Marsh, the Wood River drainage, and the Williamson River drainage from Kirk Reef at the southern end of Klamath Marsh downstream to the confluence with the Sprague River. Extensive, broad, flat, poorly drained uplands, valleys, and wetlands characterize much of the study area. Irrigation is almost entirely used for pasture. To assist parties involved with decisionmaking and implementation of the OPWP, the U.S. Geological Survey (USGS), in cooperation with the Klamath Tribes and other stakeholders, created five hydrological information products. These products include GIS digital maps and datasets containing spatial information on evapotranspiration, subirrigation indicators, water rights, subbasin streamflow statistics, and return-flow indicators. The evapotranspiration (ET) datasets were created under contract for this study by Evapotranspiration, Plus, LLC, of Twin Falls, Idaho. A high-resolution remote sensing technique known as Mapping Evapotranspiration at High Resolution and Internalized Calibration (METRIC) was used to create estimates of the spatial

  5. Effects of ambient water quality on the endangered Lost River sucker in Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    Martin, B.A.; Saiki, M.K.

    1999-01-01

    Populations of the Lost River sucker Deltistes luxatus have declined so precipitously in the Upper Klamath Basin of Oregon and California that this fish was recently listed for federal protection as an endangered species. Although Upper Klamath Lake is a major refuge for this species, fish in the lake occasionally experience mass mortalities during summer and early fall. This field study was implemented to determine if fish mortalities resulted from degraded water quality conditions associated with seasonal blooms of phytoplankton, especially Aphanizomenon flos-aquae. Our results indicated that fish mortality did not always increase as water temperature, pH, and un-ionized ammonia concentration increased in Upper Klamath Lake. Little or no mortality occurred when these water quality variables attained their maximum values. On the other hand, an inverse relation existed between fish mortality and dissolved oxygen concentration. High mortality (>90%) occurred whenever dissolved oxygen concentrations decreased to 1.05 mg/L, whereas mortality was usually low (< 10%) when dissolved oxygen concentrations equaled or exceeded 1.58 mg/L. Stepwise logistic regression also indicated that the minimum concentration of dissolved oxygen measured was the single most important determinant of fish mortality.

  6. Patterns of larval sucker emigration from the Sprague and lower Williamson Rivers of the Upper Klamath Basin, Oregon, after the removal of Chiloquin Dam - 2009-10 Annual Report

    USGS Publications Warehouse

    Ellsworth, Craig M.; Martin, Barbara A.

    2012-01-01

    Data presented in this report is a continuation of a research project that began in 2004. Larval drift parameters measured in 2009 and 2010 were similar to those measured from 2004 to 2008. Most larvae and eggs were collected at the two drift sites downstream of the former Chiloquin Dam (river kilometer 0.7 on the Sprague River and river kilometer 7.4 on the Williamson River). Mean and peak sample densities increased with proximity to Upper Klamath Lake. Peak larval densities continued to be collected between 1 and 3 hours after sunset at Chiloquin, which is the drift site nearest a known spawning area. Catch distribution of larvae and eggs in the lower Sprague and Williamson Rivers suggests that most SNS and LRS spawning continues to occur downstream of the site of the former Chiloquin Dam. The sizes and growth stages indicate that larval emigration from spawning areas resulting from drift occurs within a few days after swim-up. Larval suckers appear to move downstream quickly until they reach suitable rearing habitat.

  7. Dissolved oxygen analysis, TMDL model comparison, and particulate matter shunting—Preliminary results from three model scenarios for the Klamath River upstream of Keno Dam, Oregon

    USGS Publications Warehouse

    Sullivan, Annett B.; Rounds, Stewart A.; Deas, Michael L.; Sogutlugil, I. Ertugrul

    2012-01-01

    improvement from nutrient and organic matter reductions was downstream from point and nonpoint source inflows because time and distance are required for decay to occur and for oxygen demand to be exerted. * After assessing compliance with dissolved oxygen standards at all 102 model segments in the Link River to Keno Dam reach, it was determined that the seven locations used by ODEQ appear to be a representative subset of the reach for dissolved oxygen analysis. * The USGS and TMDL models were qualitatively compared by running both models for the 2006–09 period but preserving the essential characteristics of each, such as organic matter partitioning, bathymetric representation, and parameter rates. The analysis revealed that some constituents were not greatly affected by the differing algorithms, rates, and assumptions in the two models. Conversely, other constituents, especially organic matter, were simulated differently by the two models. Organic matter in this river system is best represented by a mixture of relatively labile particulate material and a substantial concentration of refractory dissolved material. In addition, the use of a first-order sediment oxygen demand, as in the USGS model, helps to capture the seasonal and dynamic effect of settled organic and algal material. * Simulation of shunting (diverting) particulate material away from the intake of four Klamath Project diversion canals, so that the material stayed in the river and out of the Project area, caused higher concentrations of particulate material to occur in the river. In all cases modeled, the increase in in-river particulate material also produced decreased dissolved oxygen concentrations and an increase in the number of days when dissolved oxygen standards were violated. * If particulate material were shunted back into the river at the Klamath Project diversion canals, less organic matter and nutrients would be taken into the Klamath Project area and the Lost River basin, resulting in return

  8. Proceedings of the Klamath Basin Science Conference, Medford, Oregon, February 1-5, 2010

    USGS Publications Warehouse

    Thorsteinson, Lyman, (Edited By); VanderKooi, Scott; Duffy, Walter

    2011-01-01

    This report presents the proceedings of the Klamath Basin Science Conference (February 2010). A primary purpose of the meeting was to inform and update Klamath Basin stakeholders about areas of scientific progress and accomplishment during the last 5 years. Secondary conference objectives focused on the identification of outstanding information needs and science priorities as they relate to whole watershed management, restoration ecology, and possible reintroduction of Pacific salmon associated with the Klamath Basin Restoration Agreement (KBRA). Information presented in plenary, technical, breakout, and poster sessions has been assembled into chapters that reflect the organization, major themes, and content of the conference. Chapter 1 reviews the major environmental issues and resource management and other stakeholder needs of the basin. Importantly, this assessment of information needs included the possibility of large-scale restoration projects in the future and lessons learned from a case study in South Florida. Other chapters (2-6) summarize information about key components of the Klamath Basin, support conceptual modeling of the aquatic ecosystem (Chapter 7), and synthesize our impressions of the most pressing science priorities for management and restoration. A wealth of information was presented at the conference and this has been captured in chapters addressing environmental setting and human development of the basin, hydrology, watershed processes, fishery resources, and potential effects from climate change. The final chapter (8) culminates in a discussion of many specific research priorities that relate to and bookend the broader management needs and restoration goals identified in Chapter 1. In many instances, the conferees emphasized long-term and process-oriented approaches to watershed science in the basin as planning moves forward.

  9. Predicting the thermal effects of dam removal on the Klamath River.

    PubMed

    Bartholow, John M; Campbell, Sharon G; Flug, Marshall

    2004-12-01

    The Klamath River once supported large runs of anadromous salmonids. Water temperature associated with multiple mainstem hydropower facilities might be one of many factors responsible for depressing Klamath salmon stocks. We combined a water quantity model and a water quality model to predict how removing the series of dams below Upper Klamath Lake might affect water temperatures, and ultimately fish survival, in the spawning and rearing portions of the mainstem Klamath. We calibrated the water quantity and quality models and applied them for the hydrometeorological conditions during a 40-year postdam period. Then, we hypothetically removed the dams and their impoundments from the models and reestimated the river's water temperatures. The principal thermal effect of dam and reservoir removal would be to restore the timing (phase) of the river's seasonal thermal signature by shifting it approximately 18 days earlier in the year, resulting in river temperatures that more rapidly track ambient air temperatures. Such a shift would likely cool thermal habitat conditions for adult fall chinook (Oncorhynchus tshawytscha) during upstream migration and benefit mainstem spawning. By contrast, spring and early summer temperatures could be warmer without dams, potentially harming chinook rearing and outmigration in the mainstem. Dam removal might affect the river's thermal regime during certain conditions for over 200 km of the mainstem. PMID:15726283

  10. The effects of habitat restoration on endangered fishes in the Upper Klamath Basin

    NASA Astrophysics Data System (ADS)

    Vanderkooi, S.; Burdick, S.; Ellsworth, C.

    2009-12-01

    The Klamath Basin has been prominent in the debate over the use of water in the arid west for nearly a decade. Principle competing demands include threatened and endangered species, agriculture, recreation, and Tribal rights. In an effort to recover two endangered fish species, the Lost River sucker and the shortnose sucker, several large-scale restoration projects have recently been undertaken in the basin. These include restoration of 7000 acres of drained wetlands in the Williamson River Delta in 2007 and 2008 and the removal of Chiloquin Dam on the Sprague River in 2008. The objectives of these projects include increasing amounts of usable aquatic habitats, restoring watershed function, improving water quality, and improving access to and connectivity among habitats. The U.S. Geological Survey is involved in a series of collaborative, interdisciplinary research efforts to evaluate the effectiveness of these restoration projects. Effectiveness is being evaluated by physical, biological and ecological metrics. Our focus is on the biology and ecology of endangered suckers. In the Williamson River Delta, we’re collecting data on the distribution, habitat use, relative abundance, and health and condition of early life-history stages of endangered suckers. Results to date indicate larval as well as age-0 and age-1 juvenile suckers are using newly created habitats in the delta. Preliminary results from comparisons of age-0 suckers captured within and outside of the delta suggest those using the restored habitats are in better condition. In the Sprague River, we’re studying the behavior, run timing, and distribution of adult suckers during spawning migrations as well as the relative abundance, species composition, and timing of emigrating larval suckers. Preliminary results indicate adult suckers migrated into the reach previously impounded by Chiloquin Dam in greater numbers than in the past. While these results indicate a positive response to dam removal

  11. Simulated effects of dam removal on water temperatures along the Klamath River, Oregon and California, using 2010 Biological Opinion flow requirements

    USGS Publications Warehouse

    Risley, John C.; Brewer, Scott J.; Perry, Russell W.

    2012-01-01

    Computer model simulations were run to determine the effects of dam removal on water temperatures along the Klamath River, located in south-central Oregon and northern California, using flow requirements defined in the 2010 Biological Opinion of the National Marine Fisheries Service. A one-dimensional, daily averaged water temperature model (River Basin Model-10) developed by the U.S. Environmental Protection Agency Region 10, Seattle, Washington, was used in the analysis. This model had earlier been configured and calibrated for the Klamath River by the U.S. Geological Survey for the U.S. Department of the Interior, Klamath Secretarial Determination to simulate the effects of dam removal on water temperatures for current (2011) and future climate change scenarios. The analysis for this report was performed outside of the scope of the Klamath Secretarial Determination process at the request of the Bureau of Reclamation Technical Services Office, Denver, Colorado.For this analysis, two dam scenarios were simulated: “dams in” and “dams out.” In the “dams in” scenario, existing dams in the Klamath River were kept in place. In the “dams out” scenario, the river was modeled as a natural stream, without the J.C. Boyle, Copco1, Copco2, and Iron Gate Dams, for the entire simulation period. Output from the two dam scenario simulations included daily water temperatures simulated at 29 locations for a 50-year period along the Klamath River between river mile 253 (downstream of Link River Dam) and the Pacific Ocean. Both simulations used identical flow requirements, formulated in the 2010 Biological Opinion, and identical climate conditions based on the period 1961–2009.Simulated water temperatures from January through June at almost all locations between J.C. Boyle Reservoir and the Pacific Ocean were higher for the “dams out” scenario than for the “dams in” scenario. The simulated mean monthly water temperature increase was highest [1.7–2

  12. Application of the Systems Impact Assessment Model (SIAM) to Fishery Resource Issues in the Klamath River, California

    USGS Publications Warehouse

    Campbell, Sharon G.; Bartholow, John M.; Heasley, John

    2010-01-01

    hydropower production, and inability to re-fill the reservoirs without causing shortages elsewhere in the system. Altering spawning and outmigration timing may be important management objectives for the salmon fishery, but difficult to implement. SIAM predicted benefits that might occur if water temperature was cooler in fall and spring emergence was advanced; however, model simulations were based on purely arbitrary thermal reductions. Spring flow variability did indicate that juvenile fall Chinook rearing habitat was the major biological 'bottleneck' for year class success. Rearing habitat is maximal in a range between 4,500 and 5,500 cfs below Iron Gate Dam. These flow levels are not typically provided by Klamath River system operations, except in very wet years. The incremental spring flow analysis provided insight into when and how long a pulse flow should occur to provide predicted fall Chinook salmon production increases. In general, March 15th - April 30th of any year was the period for pulse flows and 4000 cfs was the target flow release that provided near-optimal juvenile rearing habitat. Again, competition for water resources in the Klamath River Basin may make implementation of pulsed flows difficult.

  13. Geothermal exploration assessment and interpretation, Upper Klamah Lake Area, Klamath Basin, Oregon

    SciTech Connect

    Stark, M.; Goldstein, N.E.; Wollenberg, H.A.

    1980-09-01

    Data from public and private sources on the Klamath Basin geothermal resource are reviewed, synthesized, and reinterpreted. In this, the second and final phase of the work, geological, remote sensing, geochemical, temperature gradient, gravity, aeromagnetic, and electrical resistivity data sets are examined. These data were derived from surveys concentrated on the east and west shores of Upper Klamath Lake. The geological, remote sensing, and potential field data suggest a few northeast-trending discontinuities, which cross the regional north-westerly strike. The near-surface distribution of warm water appears to be related to the intersections of these lineaments and northwest-trending faults. The groundwater geochemical data are reviewed and the various reservoir temperature estimates compared. Particular attention is given to specific electrical conductivities of waters as an interpretational aid to the subsurface resistivity results. A clear trend emerges in the Klamath Falls/Olene Gap area; hotter waters are associated with higher specific conductivities. In the Nuss Lake/Stukel Mountain area the opposite trend prevails, although the relationship is somewhat equivocal.

  14. Earthquake-induced sediment failures on a 0.25o slope, Klamath River delta, California.

    USGS Publications Warehouse

    Field, M.E.; Gardner, J.V.; Jennings, A.E.; Edwards, B.D.

    1982-01-01

    On Nov. 8, 1980, a major earthquake (magnitude 6.5-7.2) occurred 60 km off the coast of N California. A survey of the area using high-resolution seismic-reflection and side-scan sonar equipment revealed the presence of extensive sediment failure and flows in a zone about 1 km wide and 20 km long that trends parallel to the shelf on the very gently sloping (less than 0.25o) Klamath River delta.-from Authors

  15. Application of a computer simulation model to migrating white-fronted geese in the Klamath Basin

    USGS Publications Warehouse

    Frederick, R.B.; Clark, W.R.; Takekawa, J.Y.

    1992-01-01

    The Pacific greater white-fronted goose (Anser albifrons) population has declined precipitously over the past 20 years. Loss of wetland habitat in California wintering areas has had a significant effect on the population, so recovery of the population may depend on innovative management of the few remaining wetlands. A computer simulation model, REFMOD, was applied to greater white-fronted geese in the Klamath Basin, northern California, to investigate the importance of food availability and hunting disturbance to migrating and wintering populations. Time spent flying and feeding was simulated during fall and early winter, and the resulting energy expenditure was compared with energy consumed to calculate an overall energy balance. This energy balance and the ease with which waterfowl acquired needed food affected emigration rate, and thus, the waterfowl population level was directly tied to availability and distribution of food. The model validly described distances moved by geese from their Tule Lake Refuge roosting site (core) to feeding sites within the surrounding Klamath Basin arena, and exhibited a capability to simulate observed time spent feeding. Based on 25 stochastic simulations, greater white-fronted goose population dynamics were validly simulated over the fall and early-winter (P>0.8). When food was removed from the Tule Lake Refuge, simulated geese had to fly farther (P0.05). The elimination did cause an increase in the distance traveled to feed (P0.05) on the distance traveled to feed or on goose numbers. A 10-fold increase in disturbance hastened emigration and reduced population levels (P<0.0001) during the season by about 30%; a 100-fold increase in disturbance reduced population levels (P<0.0001) by 85%. When goose immigration was increased to simulate an average peak population of approximately 500 000 geese, population levels remained high throughout the fall, indicating the Klamath Basin can sustain a population much larger than currently

  16. Past and future water conflicts in the Upper Klamath Basin: An economic appraisal

    NASA Astrophysics Data System (ADS)

    Boehlert, Brent B.; Jaeger, William K.

    2010-10-01

    The water conflict in the Upper Klamath Basin typifies the growing competition between agricultural and environmental water uses. In 2001, drought conditions triggered Endangered Species Act-related requirements that curtailed irrigation diversions to the Klamath Reclamation Project, costing irrigators tens of millions of dollars. Although this event has significantly elevated the perceived risk of future economic catastrophe in the basin (and therefore the level of conflict among water users), several key changes related to water availability have occurred since 2001. These changes include reduced ESA requirements and increased groundwater pumping capacity, which have lowered the actual risk and severity of future water shortages. In this paper, we use a mathematical programming model to evaluate how these changes alter the likelihood and economic consequences of future shortages. We also consider the effect of more flexible transfers among irrigators via water markets. Our analysis indicates that future drought conditions like those seen in 2001 would have more modest economic impacts than in 2001 and that when combined with contingent groundwater supplementation and water transfer mechanisms such as water markets, both the likelihood and magnitude of economic losses among irrigators would be greatly reduced.

  17. Agriculture and endangered species: An analysis of trade-offs in the Klamath Basin, Oregon

    NASA Astrophysics Data System (ADS)

    Adams, Richard M.; Cho, Seong Hoon

    1998-10-01

    In 1988 the U.S. Fish and Wildlife Service, under provisions of the Endangered Species Act (ESA), declared two fish species in the Klamath Basin as endangered and mandated minimum water levels in Upper Klamath Lake to protect habitat for these species. The lake is the key hydrological feature of the basin; inflows and lake storage provide irrigation water for over 220,000 acres (890.34 km2) in the area. The ESA lake level restrictions reduced both expected average irrigation water supplies and the capacity of the lake to stabilize water supplies during drought cycles. This research explores trade-offs between lake levels for fish protection and the profits of farmers under a range of lake level and farmer adaptations. The results indicate that farmers can adjust their irrigation decisions to offset some of the water supply reductions. However, there are costs to agriculture. The expected average cost of maintaining ESA lake levels (estimated over 73 water years) is approximately 2 million annually; for severe drought years, annual costs exceed 15 million or about 60% of average farm profits. The steeply increasing marginal cost curve shows an increasingly heavier economic burden to agriculture as lake level restrictions increase.

  18. Modeling hydrodynamics, water temperature, and water quality in the Klamath River upstream of Keno Dam, Oregon, 2006-09

    USGS Publications Warehouse

    Sullivan, Annett B.; Rounds, Stewart A.; Deas, Michael L.; Asbill, Jessica R.; Wellman, Roy E.; Stewart, Marc A.; Johnston, Matthew W.; Sogutlugil, I. Ertugrul

    2011-01-01

    A hydrodynamic, water temperature, and water-quality model was constructed for a 20-mile reach of the Klamath River downstream of Upper Klamath Lake, from Link River to Keno Dam, for calendar years 2006-09. The two-dimensional, laterally averaged model CE-QUAL-W2 was used to simulate water velocity, ice cover, water temperature, specific conductance, dissolved and suspended solids, dissolved oxygen, total nitrogen, ammonia, nitrate, total phosphorus, orthophosphate, dissolved and particulate organic matter, and three algal groups. The Link-Keno model successfully simulated the most important spatial and temporal patterns in the measured data for this 4-year time period. The model calibration process provided critical insights into water-quality processes and the nature of those inputs and processes that drive water quality in this reach. The model was used not only to reproduce and better understand water-quality conditions that occurred in 2006-09, but also to test several load-reduction scenarios that have implications for future water-resources management in the river basin. The model construction and calibration process provided results concerning water quality and transport in the Link-Keno reach of the Klamath River, ranging from interesting circulation patterns in the Lake Ewauna area to the nature and importance of organic matter and algae. These insights and results include: * Modeled segment-average water velocities ranged from near 0.0 to 3.0 ft/s in 2006 through 2009. Travel time through the model reach was about 4 days at 2,000 ft3/s and 12 days at 700 ft3/s flow. Flow direction was aligned with the upstream-downstream channel axis for most of the Link-Keno reach, except for Lake Ewauna. Wind effects were pronounced at Lake Ewauna during low-flow conditions, often with circulation in the form of a gyre that rotated in a clockwise direction when winds were towards the southeast and in a counterclockwise direction when winds were towards the northwest

  19. Dispersal of larval suckers at the Williamson River Delta, Upper Klamath Lake, Oregon, 2006-09

    USGS Publications Warehouse

    Wood, Tamara M.; Hendrixson, Heather A.; Markle, Douglas F.; Erdman, Charles S.; Burdick, Summer M.; Ellsworth, Craig M.; Buccola, Norman L.

    2012-01-01

    An advection/diffusion modeling approach was used to simulate the transport of larval suckers from spawning areas in the Williamson River, through the newly restored Williamson River Delta, to Upper Klamath Lake. The density simulations spanned the years of phased restoration, from 2006/2007 prior to any levee breaching, to 2008 when the northern part of the delta was reconnected to the lake, and 2009 when levees on both sides of the delta had been breached. Model simulation results from all four years were compared to field data using rank correlation. Spearman ρ correlation coefficients were usually significant and in the range 0.30 to 0.60, providing moderately strong validation of the model. The correlation coefficients varied with fish size class in a way that suggested that the model best described the distribution of smaller fish near the Williamson River channel, and larger fish away from the channel. When Lost River and shortnose/Klamath largescale suckers were simulated independently, the correlation results suggested that the model better described the transport and dispersal of the latter species. The incorporation of night-time-only drift behavior in the Williamson River channel neither improved nor degraded correlations with field data. The model showed that advection by currents is an important factor in larval dispersal.

  20. Georectification of historical aerial photos to track meander change in Wood River, Klamath County, Oregon

    NASA Astrophysics Data System (ADS)

    Nash, C.; Hughes, M. L.

    2010-12-01

    The Wood River in Oregon’s Upper Klamath Basin is a meandering channel draining the southeastern slopes of Crater Lake National Park. Its valley floor is heavily grazed and highly altered by a series of irrigation channels that have substantially affected the river’s spring-fed flow regime and morphology. Despite efforts to restore the river’s hydrology, very little information is available about the river’s geomorphology. Using high-resolution LIDAR data from 2004 and georectified aerial photos from 1940-2009, we analyzed meander changes along the Wood River in the geomorphic context of its valley floor and meander belt. Aerial photos were scanned to produce digital images with sub-meter pixels, then georectified with a second-order polynomial transformation. Nine or fewer ground-control points were used for each photo to achieve an overall root-mean-square error value of 0.6 - 0.7 m. The scarcity of buildings and changes in the road and fence networks over the study period required the partial use of “natural pattern matching” during photo rectification. Semi-permanent patterns of fan erosion on the upper valley floor and hydrogeomorphic wetland patterns in lower valley provided the primary bases for natural pattern matching, further aided by the use of transparency during photo overlaying. Six prototypes of meander change were identified: extension, compression, translation, rotation, compound heading, and cutoff. Of these types, extension of meanders was the most frequently occurring. However, the effects of extension were counteracted by numerous meander cutoffs, which nominally affected sinuosity, but actually shortened the channel by about 1 km, or about 3%. Cutoffs were most frequent in the upper reaches of the river, where valley slope is higher, the meander belt is wider, and accommodation space was adequate to promote relatively high initial sinuosity. In these reaches, some cutoffs appear to have initiated downstream transfers of bedload

  1. An assessment of flow data from Klamath River sites between Link River Dam and Keno Dam, south-central Oregon

    USGS Publications Warehouse

    Risley, John C.; Hess, Glen W.; Fisher, Bruce J.

    2006-01-01

    Records of diversion and return flows for water years 1961?2004 along a reach of the Klamath River between Link River and Keno Dams in south-central Oregon were evaluated to determine the cause of a water-balance inconsistency in the hydrologic data. The data indicated that the reach was losing flow in the 1960s and 1970s and gaining flow in the 1980s and 1990s. The absolute mean annual net water-balance difference in flows between the first and second half of the 44-year period (1961-2004) was approximately 103,000 acre-feet per year (acre-ft/yr). The quality of the diversion and return-flow records used in the water balance was evaluated using U.S. Geological Survey (USGS) criteria for accuracy. With the exception of the USGS Klamath River at Keno record, which was rated as 'good' or 'excellent,' the eight other flow records, all from non-USGS flow-measurement sites, were rated as 'poor' by USGS standards due to insufficient data-collection documentation and a lack of direct discharge measurements to verify the rating curves. The record for the Link River site, the most upstream in the study area, included both river and westside power canal flows. Because of rating curve biases, the river flows might have been overestimated by 25,000 acre-ft/yr on average from water years 1961 to 1982 and underestimated by 7,000 acre-ft/yr on average from water years 1983 to 2004. For water years 1984-2004, westside power canal flows might have been underestimated by 11,000 acre-ft/yr. Some diversion and return flows (for mostly agricultural, industrial, and urban use) along the Klamath River study reach, not measured continuously and not included in the water-balance equation, also were evaluated. However, the sum of these diversion and return flows was insufficient to explain the water-balance inconsistency. The possibility that ground-water levels in lands adjacent to the river rose during water years 1961-2004 and caused an increase in ground-water discharge to the river

  2. Channel Maintenance and Flushing Flows for the Klamath River Below Iron Gate Dam, California

    USGS Publications Warehouse

    Holmquist-Johnson, Cristopher L.; Milhous, Robert T.

    2010-01-01

    The Klamath River is a major river in northern California and southern Oregon. Iron Gate Dam divides the river into the two subunits where there is a significant change in utilization of the river. Downstream of Iron Gate Dam, the river is very important for the propagation of salmon. To address concerns relating to substrate conditions in the mainstem Klamath River below Iron Gate Dam, the Arcata, California, office of the U.S. Fish and Wildlife Service contracted with the U.S. Geological Survey (USGS) to determine flushing flows required to improve and maintain quality spawning and rearing habitats for salmon, and to reduce the abundance of preferred habitats of the polychaete worm suspected of being the intermediate host for Ceratomyxa shasta, a species of bacteria that infects fish. Historically, the river has had the capacity to move sediment just below Iron Gate Reservoir, but there have been periods when the capacity was very low. The results indicate that if the future is more like the pre-1961 period (low transport capacity) than the more recent period, there will be significant sediment issues in the Klamath River below Iron Gate Dam. It seems that during normal or wet years, winter months, and periods of high flow, sediments are flushed either downstream or deposited on higher surfaces. The recent drought conditions during 2000-2005 probably resulted in extensive fine-grained sedimentation along the river, which in turn may have caused increased establishment of aquatic vegetation and increased concentrations of C. shasta. It appears that releases from Iron Gate Dam as far downstream as Seiad Valley are important in maintaining flow conditions to flush the fines and clean the gravels in the river during summer months, or during drought years. Sediment transport studies indicate that supplemental flows during dry or drought conditions may provide some flushing flows in reaches downstream of the dam. For purposes of flushing fine sediments during drought

  3. Algal Toxins in Upper Klamath Lake, Oregon: Linking Water Quality to Juvenile Sucker Health

    USGS Publications Warehouse

    VanderKooi, S.P.; Burdick, S.M.; Echols, K.R.; Ottinger, C.A.; Rosen, B.H.; Wood, T.M.

    2010-01-01

    As the lead science agency for the Department of Interior, the U.S. Geological Survey is actively involved in resource issues in the Klamath River basin. Activities include research projects on endangered Lost River and shortnose suckers, threatened coho salmon, groundwater resources, seasonal runoff forecasting, water quality in Upper Klamath Lake and the Klamath River, nutrient cycling in wetlands, and assessment of land idling programs to reduce water consumption. Many of these studies are collaborations with various partners including Department of Interior agencies, Indian Tribes, and State agencies.

  4. Upper Klamath Basin Landsat Image for June 17, 2004: Path 45 Rows 30 and 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  5. Upper Klamath Basin Landsat Image for April 29, 2006: Path 44 Row 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  6. Upper Klamath Basin Landsat Image for October 29, 2006: Path 45 Rows 30 and 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  7. Upper Klamath Basin Landsat Image for October 7, 2004: Path 45 Rows 30 and 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  8. Upper Klamath Basin Landsat Image for July 11, 2004: Path 45 Rows 30 and 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This image is a mosaic of Landsat-7 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-7 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-7 on April 15, 1999 marks the addition of the latest satellite to the Landsat series. The Landsat-7 satellite carries the Enhanced Thematic Mapper Plus (ETM+) sensor. A mechanical failure of the ETM+ Scan Line Corrector (SLC) occurred on May 31, 2003, with the result that all Landsat 7 scenes acquired from July 14, 2003 to present have been collected in 'SLC-off' mode. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  9. Upper Klamath Basin Landsat Image for October 16, 2004: Path 44 Row 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  10. Upper Klamath Basin Landsat Image for September 21, 2004: Path 45 Rows 30 and 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  11. Upper Klamath Basin Landsat Image for September 30, 2004: Path 44 Row 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  12. Upper Klamath Basin Landsat Image for June 24, 2006: Path 44 Row 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This subset of a Landsat-7 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-7 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-7 on April 15, 1999 marks the addition of the latest satellite to the Landsat series. The Landsat-7 satellite carries the Enhanced Thematic Mapper Plus (ETM+) sensor. A mechanical failure of the ETM+ Scan Line Corrector (SLC) occurred on May 31, 2003, with the result that all Landsat 7 scenes acquired from July 14, 2003 to present have been collected in 'SLC-off' mode. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  13. Upper Klamath Basin Landsat Image for September 20, 2006: Path 44 Row 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  14. Upper Klamath Basin Landsat Image for July 12, 2004: Path 44 Row 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  15. Upper Klamath Basin Landsat Image for August 19, 2006: Path 44 Row 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  16. Upper Klamath Basin Landsat Image for July 2, 2006: Path 44 Row 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  17. Upper Klamath Basin Landsat Image for June 26, 2004: Path 44 Row 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  18. Upper Klamath Basin Landsat Image for November 8, 2004: Path 45 Rows 30 and 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  19. Upper Klamath Basin Landsat Image for July 28, 2004: Path 44 Row 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  20. Upper Klamath Basin Landsat Image for June 1, 2004: Path 45 Rows 30 and 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  1. Upper Klamath Basin Landsat Image for July 18, 2006: Path 44 Row 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  2. Upper Klamath Basin Landsat Image for October 22, 2006: Path 44 Row 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  3. Upper Klamath Basin Landsat Image for August 4, 2004: Path 45 Rows 30 and 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  4. Upper Klamath Basin Landsat Image for April 28, 2006: Path 45 Rows 30 and 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This image is a mosaic of Landsat-7 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-7 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-7 on April 15, 1999 marks the addition of the latest satellite to the Landsat series. The Landsat-7 satellite carries the Enhanced Thematic Mapper Plus (ETM+) sensor. A mechanical failure of the ETM+ Scan Line Corrector (SLC) occurred on May 31, 2003, with the result that all Landsat 7 scenes acquired from July 14, 2003 to present have been collected in 'SLC-off' mode. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  5. Upper Klamath Basin Landsat Image for June 16, 2006: Path 44 Row 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  6. Upper Klamath Basin Landsat Image for April 30, 2004: Path 45 Rows 30 and 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  7. Upper Klamath Basin Landsat Image for July 10, 2006: Path 44 Row 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This subset of a Landsat-7 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-7 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-7 on April 15, 1999 marks the addition of the latest satellite to the Landsat series. The Landsat-7 satellite carries the Enhanced Thematic Mapper Plus (ETM+) sensor. A mechanical failure of the ETM+ Scan Line Corrector (SLC) occurred on May 31, 2003, with the result that all Landsat 7 scenes acquired from July 14, 2003 to present have been collected in 'SLC-off' mode. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  8. Upper Klamath Basin Landsat Image for May 30, 2006: Path 45 Rows 30 and 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This image is a mosaic of Landsat-7 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-7 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-7 on April 15, 1999 marks the addition of the latest satellite to the Landsat series. The Landsat-7 satellite carries the Enhanced Thematic Mapper Plus (ETM+) sensor. A mechanical failure of the ETM+ Scan Line Corrector (SLC) occurred on May 31, 2003, with the result that all Landsat 7 scenes acquired from July 14, 2003 to present have been collected in 'SLC-off' mode. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  9. Upper Klamath Basin Landsat Image for August 29, 2004: Path 44 Row 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  10. Upper Klamath Basin Landsat Image for August 19, 2006: Path 44 Row 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  11. Upper Klamath Basin Landsat Image for July 9, 2006: Path 45 Rows 30 and 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  12. Upper Klamath Basin Landsat Image for June 23, 2006: Path 45 Rows 30 and 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  13. Upper Klamath Basin Landsat Image for May 6, 2006: Path 45 Rows 30 and 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  14. Upper Klamath Basin Landsat Image for September 27, 2006: Path 45 Rows 30 and 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  15. Upper Klamath Basin Landsat Image for May 25, 2004: Path 44 Row 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  16. Upper Klamath Basin Landsat Image for April 7, 2004: Path 44 Row 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This subset of a Landsat-5 image shows part of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  17. Upper Klamath Basin Landsat Image for July 25, 2006: Path 45 Rows 30 and 31

    USGS Publications Warehouse

    Snyder, Daniel T.

    2012-01-01

    This image is a mosaic of Landsat-5 images of the upper Klamath Basin. The original images were obtained from the U.S. Geological Survey Earth Resources Observation and Science Center (EROS). EROS is responsible for archive management and distribution of Landsat data products. The Landsat-5 satellite is part of an ongoing mission to provide quality remote sensing data in support of research and applications activities. The launch of Landsat-5 on March 1, 1984 marks the addition of the fifth satellite to the Landsat series. The Landsat-5 satellite carries the Thematic Mapper (TM) sensor. More information on the Landsat program can be found online at http://landsat.usgs.gov/.

  18. A selected bibliography of water-related research in the upper Klamath Basin, Oregon

    USGS Publications Warehouse

    Brownell, Dorie L.; Rinallo, Mia R.

    1995-01-01

    A bibliography containing 165 selected references was compiled to assist local, State, and Federal agencies that have ongoing water-related research interests in the Upper Klamath Basin. The report has two parts. Part 1 is a list of bibliographic citations alphabetized by author, and Part 2 is a subject index that references bibliographic entries. Categories of the subject index include chemistry, ecology, geology, hydrology, land use, and water management related reports. Maps, reports, proposals, theses, dissertations, and journal articles are referenced. Some of the environmental issues addressed by references in the bibliography are hypereutrophication, nuisance algal blooms, endangered fish species, water allocation questions, wetland and riparian habitat restoration, and pesticide and fertilizer utilization.

  19. River basin management

    SciTech Connect

    Newsome, D.H.; Edwards, A.M.C.

    1984-01-01

    The quality of water is of paramount importance in the management of water resources - including marine waters. A quantitative knowledge of water quality and the factors governing it is required to formulate and implement strategies requiring an inter-disciplinary approach. The overall purpose of this conference was to bring together the latest work on water quality aspects of river basin management. These proceedings are structured on the basis of five themes: problems in international river basins; the contribution of river systems to estuarial and marine pollution; the setting of standards; monitoring; and practical water quality management including use of mathematical models. They are followed by papers from the workshop on advances in the application of mathematical modelling to water quality management, which represent some of the current thinking on the problems and concepts of river basin management.

  20. Longevity of Ceratomyxa shasta and Parvicapsula minibicornis actinospore infectivity in the Klamath River.

    PubMed

    Foott, J Scott; Stone, R; Wiseman, E; True, K; Nichols, K

    2007-06-01

    Infectious Ceratomyxa shasta and Parvicapsula minibicornis actinospores were present in Klamath River samples collected in April, May, and June 2005. Juvenile Chinook salmon Oncorhynchus tshawytscha exposed to river water maintained at the ambient Klamath River temperature for 0, 4, 24, 72, and 168 h (7 d) developed asymptomatic infections from both parasites. Elevated water temperature (18 degrees C) in June may have reduced actinospore viability, as both C. shasta and P. minibicornis infection markedly declined in fish exposed for over 72 h. As judged by the prevalence of infection for both parasites, the number of infectious actinospores tended to increase or remain steady through the spring. Ceratomyxa shasta infections were characterized by the presence of a few trophozoites within granulomatous foci in mesentery adipose tissue and were consistently observed outside of the intestine. Similarly, low numbers of P. minibicornis were observed in kidney glomeruli and tubules but were not associated with inflammation. Parvicapsula minibicornis DNA was consistently detected by quantitative real-time polymerase chain reaction in filtered water samples collected each month and from each time posttransfer. These data and the high prevalence of infection observed in the exposed fish indicate that P. minibicornis actinospores were at a relatively high concentration in the river during the spring. In contrast, C. shasta DNA was only detected in half of the water sample sets and its detection did not correspond well to C. shasta infectivity. An approximately threefold increase in river flow from the April to the May water collection was not associated with a decline in either the detection of actinospores (particularly for P. minibicornis) or the prevalence of infection for both parasites. Actinospores of these myxosporean parasites have the potential to infect salmonids for at least 7 d after release from the alternate polychaete host. PMID:18201047

  1. Potential Factors Affecting Survival Differ by Run-Timing and Location: Linear Mixed-Effects Models of Pacific Salmonids (Oncorhynchus spp.) in the Klamath River, California

    PubMed Central

    Quiñones, Rebecca M.; Holyoak, Marcel; Johnson, Michael L.; Moyle, Peter B.

    2014-01-01

    Understanding factors influencing survival of Pacific salmonids (Oncorhynchus spp.) is essential to species conservation, because drivers of mortality can vary over multiple spatial and temporal scales. Although recent studies have evaluated the effects of climate, habitat quality, or resource management (e.g., hatchery operations) on salmonid recruitment and survival, a failure to look at multiple factors simultaneously leaves open questions about the relative importance of different factors. We analyzed the relationship between ten factors and survival (1980–2007) of four populations of salmonids with distinct life histories from two adjacent watersheds (Salmon and Scott rivers) in the Klamath River basin, California. The factors were ocean abundance, ocean harvest, hatchery releases, hatchery returns, Pacific Decadal Oscillation, North Pacific Gyre Oscillation, El Niño Southern Oscillation, snow depth, flow, and watershed disturbance. Permutation tests and linear mixed-effects models tested effects of factors on survival of each taxon. Potential factors affecting survival differed among taxa and between locations. Fall Chinook salmon O. tshawytscha survival trends appeared to be driven partially or entirely by hatchery practices. Trends in three taxa (Salmon River spring Chinook salmon, Scott River fall Chinook salmon; Salmon River summer steelhead trout O. mykiss) were also likely driven by factors subject to climatic forcing (ocean abundance, summer flow). Our findings underscore the importance of multiple factors in simultaneously driving population trends in widespread species such as anadromous salmonids. They also show that the suite of factors may differ among different taxa in the same location as well as among populations of the same taxa in different watersheds. In the Klamath basin, hatchery practices need to be reevaluated to protect wild salmonids. PMID:24866173

  2. Potential factors affecting survival differ by run-timing and location: linear mixed-effects models of Pacific salmonids (Oncorhynchus spp.) in the Klamath River, California.

    PubMed

    Quiñones, Rebecca M; Holyoak, Marcel; Johnson, Michael L; Moyle, Peter B

    2014-01-01

    Understanding factors influencing survival of Pacific salmonids (Oncorhynchus spp.) is essential to species conservation, because drivers of mortality can vary over multiple spatial and temporal scales. Although recent studies have evaluated the effects of climate, habitat quality, or resource management (e.g., hatchery operations) on salmonid recruitment and survival, a failure to look at multiple factors simultaneously leaves open questions about the relative importance of different factors. We analyzed the relationship between ten factors and survival (1980-2007) of four populations of salmonids with distinct life histories from two adjacent watersheds (Salmon and Scott rivers) in the Klamath River basin, California. The factors were ocean abundance, ocean harvest, hatchery releases, hatchery returns, Pacific Decadal Oscillation, North Pacific Gyre Oscillation, El Niño Southern Oscillation, snow depth, flow, and watershed disturbance. Permutation tests and linear mixed-effects models tested effects of factors on survival of each taxon. Potential factors affecting survival differed among taxa and between locations. Fall Chinook salmon O. tshawytscha survival trends appeared to be driven partially or entirely by hatchery practices. Trends in three taxa (Salmon River spring Chinook salmon, Scott River fall Chinook salmon; Salmon River summer steelhead trout O. mykiss) were also likely driven by factors subject to climatic forcing (ocean abundance, summer flow). Our findings underscore the importance of multiple factors in simultaneously driving population trends in widespread species such as anadromous salmonids. They also show that the suite of factors may differ among different taxa in the same location as well as among populations of the same taxa in different watersheds. In the Klamath basin, hatchery practices need to be reevaluated to protect wild salmonids. PMID:24866173

  3. Klamath River Water Quality Data from Link River Dam to Keno Dam, Oregon, 2008

    USGS Publications Warehouse

    Sullivan, Annett B.; Deas, Michael L.; Asbill, Jessica; Kirshtein, Julie D.; Butler, Kenna; Vaughn, Jennifer

    2009-01-01

    This report documents sampling and analytical methods and presents field data from a second year of an ongoing study on the Klamath River from Link River Dam to Keno Dam in south central Oregon; this dataset will form the basis of a hydrodynamic and water quality model. Water quality was sampled weekly at six mainstem and two tributary sites from early April through early November, 2008. Constituents reported herein include field-measured water-column parameters (water temperature, pH, dissolved oxygen concentration, specific conductance); total nitrogen and phosphorus; particulate carbon and nitrogen; total iron; filtered orthophosphate, nitrite, nitrite plus nitrate, ammonia, organic carbon, and iron; specific UV absorbance at 254 nanometers; chlorophyll a; phytoplankton and zooplankton enumeration and species identification; and bacterial abundance and morphological subgroups. Sampling program results indicated: *Most nutrient and carbon concentrations were lowest in spring, increased starting in mid-June, remained elevated in the summer, and decreased in fall. Dissolved nitrite plus nitrate had a different seasonal cycle and was below detection or at low concentration in summer. *Although total nitrogen and total phosphorus concentrations did not show large differences from upstream to downstream, filtered ammonia and orthophosphate concentrations increased in the downstream direction and particulate carbon and particulate nitrogen generally decreased in the downstream direction. *Large bacterial cells made up most of the bacteria biovolume, though cocci were the most numerous bacteria type. Cocci, with diameters of 0.1 to 0.2 micrometers, were smaller than the filter pore sizes used to separate dissolved from particulate matter. *Phytoplankton biovolumes were dominated by diatoms in spring and by the blue-green alga Aphanizomenon flos-aquae after mid-June. Another blue-green, Anabaena flos-aquae, was noted in samples from late May to late June. Phytoplankton

  4. Declining ring-necked pheasants in the Klamath Basin, California: II. Survival, productivity, and cover

    USGS Publications Warehouse

    Grove, Robert A.; Buhler, D.R.; Henny, Charles J.; Drew, A.D.

    2001-01-01

    Cover condition and its influence on nesting success, survival, and body condition of ring-necked pheasants (Phasianus colchicus) were evaluated at Tule Lake National Wildlife Refuge (TLNWR) and Lower Klamath National Wildlife Refuge (LKNWR). Inadequate nesting cover was responsible for extremely low nest success early in the nesting season at TLNWR. Later in the season at TLNWR, spring-planted crops provided cover to conceal nesting and renesting hens; however, only 0.07 young were produced (to 1 August) per hen during the study. The extremely low reproductive rates were well below those required to maintain a stable population. At TLNWR, most adult mortality during spring and early summer (before crops provided adequate cover) apparently resulted from predation by golden eagles (Aquila chrysaetos). This mortality occurred weeks before insecticide applications. Hard winters (cold temperatures and heavy snowfall) periodically reduce the pheasant population in the Klamath Basin and again greatly reduced numbers during the last year of this study. Unfortunately, pheasant populations declined under the conditions found during this study and were unable to recover from the hard winter of 1992 to 1993. Mean body mass and tarsal length of adult hen pheasants at TLNWR, which is intensively farmed, were less than those for hens at LKNWR, which is not intensively farmed. Results of our study suggest that TLNWR hens may have been nutritionally stressed, and that the amount and distribution of vegetative cover needs to be improved at TLNWR. Habitat management of edge cover along agricultural crops should feature perennial grasses and legumes with small tracts of land interspersed throughout the agricultural fields to provide alternative cover for wildlife in general including pheasants.

  5. Late Devonian to early carboniferous turbidite facies and basinal development of the Eastern Klamath Mountains, California

    NASA Astrophysics Data System (ADS)

    Watkins, Rodney

    1986-08-01

    The Late Devonian to Early Carboniferous Bragdon Formation, Eastern Klamath Mountains, California, is a thick turbidite sequence deposited as a submarine fan complex within an arc-related basin. Laminated mudstone and less abundant "classical" turbidites comprise most of the lower part of the Bragdon and represent a lower fan environment. Amalgamated beds of normally graded to massive sandstone and pebbly sandstone occur throughout the Bragdon but are most abundant in its upper half, where they are associated with very thick channel-fill beds of pebbly sandstone and conglomerate. The upper half of the Bragdon Formation represents a mid fan to upper fan environment, and it also includes closely interbedded "classical" turbidites interpreted as interchannel or levee deposits. An upper slope facies of bioturbated mudstone with an Early Carboniferous fauna occurs at the top of the formation. Clastic material in the Bragdon Formation indicates little contemporaneous vulcanism and was probably derived from Lower Paleozoic metasediments which were uplifted to the north. Deposition of the Bragdon was initiated by rifting and subsidence of an underlying Middle Devonian arc complex. Infilling of the resulting basin during the Late Devonian and Early Carboniferous is indicated by overlap of turbidite facies across Middle Devonian arc deposits and by an upward stratigraphic trend in the Bragdon from lower fan to upper fan and slope environments.

  6. Trinity river basin, Texas

    USGS Publications Warehouse

    Ulery, Randy L.; Van Metre, Peter C.; Crossfield, Allison S.

    1993-01-01

    In 1991 the Trinity River Basin National Water-Quality Assessment (NAWQA) will include assessments of surface-water and ground-water quality. Initial efforts have focused on identifying water-quality issues in the basin and on the environmental factors underlying those issues. Physical characteristics described include climate, geology, soils, vegetation, physiography, and hydrology. Cultural characteristics discussed include population distribution, land use and land cover, agricultural practices, water use, an reservoir operations. Major water-quality categories are identified and some of the implications of the environmental factors for water quality are presented.

  7. Flightless and post-molt survival and movements of female mallards molting in Klamath Basin

    USGS Publications Warehouse

    Fleskes, Joseph P.; Mauser, David M.; Yee, Julie L.; Blehert, David S.; Yarris, Gregory S.

    2010-01-01

    Flightless and post-molt survival and movements were studied during August-May, 2001-2002, 2002- 2003 and 2006-2007 for 181 adult female Mallards (Anas platyrhynchos). Birds were radiotagged just before or early in their flightless period on four wetlands that differed in size on Klamath Basin (KB) National Wildlife Refuge complex. Flightless survival varied among years but was higher on two larger than two smaller wetlands; 30-day survival ranged from 11% (SE = 6.5%) on a small wetland in 2006 to 93% (SE = 6.5%) on a large wetland in 2001, and averaged 76.8% (SE = 6.1%). Most flightless mortality was from avian botulism (64%) and predation (26%). Of the 81 radiotagged Mallards that did not die in KB, 80% moved to the Central Valley of California (CVCA) before 31 January, 16% wintered in unknown areas, and 4% remained in KB through 31 January. Mallards departed KB 21 August-13 January (average: 11 Nov 2001, 25 Oct 2002, 19 Nov 2006). Post-molt survival during August-March in KB (20.7%, SE = 6.3%) was lower than in CVCA during this (62.9%, SE = 10.1%) and an earlier study. Survival in KB was consistently high only for females that molted in large permanent marshes, and although the impact of poor survival of molting females on Mallard population dynamics is unknown, KB water management plans should be developed that maintain these habitats.

  8. Near-Shore and Off-Shore Habitat Use by Endangered Juvenile Lost River and Shortnose Suckers in Upper Klamath Lake, Oregon: 2006 Data Summary

    USGS Publications Warehouse

    Burdick, Summer M.; Wilkens, Alexander X.; VanderKooi, Scott P.

    2008-01-01

    evaluate multi-year trends in juvenile sucker relative abundance and habitat use. Data on the relative abundance of juvenile suckers and their habitat use patterns will provide valuable information to guide restoration and management decisions in the Upper Klamath Basin. Information on juvenile sucker catch rates may also be valuable for evaluating year class success, estimating early life stage survival rates, and predicting upper bounds of future recruitment to adult spawning populations. We continued sampling juvenile suckers in 2006 as part of an effort to develop bioenergetics models for juvenile Lost River and shortnose suckers. This study required us to collect fish to determine growth rates and energy content of juvenile suckers. We followed the sampling protocols and methods described by Hendrixson et al. (2007b) to maintain continuity and facilitate comparisons with data collected in recent years, but sampled at a reduced level of effort compared to previous years (approximately one-third) due to limited funding. Here we present a summary of catch data collected in 2006. Bioenergetics models will be reported separately.

  9. Detailed study of water quality, bottom sediment, and biota associated with irrigation drainage in the Klamath Basin, California and Oregon, 1990-92

    USGS Publications Warehouse

    Dileanis, P.D.; Schwarzbach, S.E.; Bennett, Jewel

    1996-01-01

    The effect of irrigation drainage on the water quality and wildlife of the Klamath Basin in California and Oregon was evaluated during 1990-92 as part of the National Irrigation Water Quality Program of the U.S. Department of the Interior. The study focused on land serviced by the Bureau of Reclamation Klamath Project, which supplies irrigation water to agricultural land in the Klamath Basin and the Lost River Basin. The Tule Lake and Lower Klamath National Wildlife Refuges, managed by the U.S. Fish and Wildlife Service, are in the study area. These refuges provide critical resting and breeding habitat for waterfowl on the Pacific flyway and are dependent on irrigation drainwater from upstream agriculture for most of their water supply. Water-quality characteristics throughout the study area were typical of highly eutrophic systems during the summer months of 1991 and 1992. Dissolved-oxygen concentrations and pH tended to fluctuate each day in response to diurnal patterns of photosynthesis, and frequently exceeded criteria for protection of aquatic organisms. Nitrogen and phosphorus concentrations were generally at or above threshold levels characteristic of eutrophic lakes and streams. At most sites the bulk of dissolved nitrogen was organically bound. Elevated ammonia concentrations were common in the study area, especially down- stream of drain inputs. High pH of water increased the toxicity of ammonia, and concentrations exceeded criteria at sites upstream and downstream of irrigated land. Concentrations of ammonia in samples from small drains on the Tule Lake refuge leaseland were higher than those measured in the larger, integrating drains at primary monitoring sites. The mean ammonia concentration in leaseland drains [1.21 milligrams per liter (mg/L)] was significantly higher than the mean concentration in canals delivering water to the leaseland fields (0.065 mg/L) and higher than concentrations reported to be lethal to Daphnia magna (median lethal

  10. The Geology of the Western Margin of the Upper Klamath Basin, Oregon

    NASA Astrophysics Data System (ADS)

    Mertzman, S. A.

    2005-12-01

    The aspect of my work and that of my students that will be of interest to this group is the bedrock geologic mapping that has been completed between Mt. Shasta-Medicine Lake Highland region to the south and the southern boundary of Crater Lake National Park to the north. Combining the mapping with lithologic, structural, and geochronology information provides the foundation on which a geologic history of an area can be constructed. Within this region Western Cascades volcanic rocks, ranging in age from 22 to 20 M. Y. old, are overlain by High Cascades volcanic rocks that are ? 7.6 M. Y. old. There is one anomalous area located on the Oregon-California border where volcanic rocks in the age range 14 to 12.5 M. Y. old are abundant. In general the older the volcanic rock the lower both the porosity and permeability will be and therefore affect groundwater flow characteristics. In three regions where the unconformity between the Western Cascades and the High Cascades is exposed near the Klamath Basin western margin, it does so at an elevation of approximately 4500 feet. The erosion surface suggests modest relief, which further indicates that the total thickness of volcanic rocks of High Cascades age is not great in a number of areas. The thickness or rather the thinness of these ? 7.6 M. Y. old volcanic rocks coupled with fault location information may help to constrain well recharge calculations. Also, the limited geographic extent of individual volcanic units and the large number of volcanic point sources with their attendant pyroclastic material will affect the regional hydrology; it makes for a heterogeneous scene when it comes to modeling a variety of hydrologic parameters.

  11. Demographic analysis of Lost River sucker and shortnose sucker populations in Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    Janney, E.C.; Shively, R.S.; Hayes, B.S.; Barry, P.M.; Perkins, D.

    2008-01-01

    We used 13 years (1995-2007) of capture-mark-recapture data to assess population dynamics of endangered Lost River suckers Deltistes luxatus and shortnose suckers Chasmistes brevirostris in Upper Klamath Lake, Oregon. The Cormack-Jolly-Seber method was used to estimate survival, and information theoretic modeling was used to assess variation due to time, gender, species, and spawning subpopulations. Length data were used to detect multiple year-class failures and events of high recruitment into adult spawning populations. Average annual survival probability was 0.88 for Lost River suckers and 0.76 for shortnose suckers. Mean life span estimates based on these survival rates indicated that Lost River suckers survived long enough on average to attempt reproduction eight times, whereas shortnose suckers only survived to spawn three to four times. Shortnose sucker survival was not only poor in years of fish kills (1995-1997) but also was low in years without fish kills (i.e., 2002 and 2004). This suggests that high mortality occurs in some years but is not necessarily associated with fish kills. Annual survival probabilities were not only different between the two species but also differed between two spawning subpopulations of Lost River suckers. Length composition data indicated that recruitment into spawning populations only occurred intermittently. Populations of both species transitioned from primarily old individuals with little size diversity and consistently poor recruitment in the late 1980s and early 1990s to mostly small, recruit-sized fish by the late 1990s. A better understanding of the factors influencing adult survival and recruitment into spawning populations is needed. Monitoring these vital parameters will provide a quantitative means to evaluate population status and assess the effectiveness of conservation and recovery efforts.

  12. Eruption-controlled epiclastic sedimentation in a Devonian trench-slope basin: Evidence from sandstone petrofacies, Klamath Mountains, California

    SciTech Connect

    Wallin, E.T.; Trabert, D.W. . Dept. of Geoscience)

    1994-04-01

    The Devonian Gazelle Formation comprises sparsely fossiliferous shale, siltstone, siliceous mudstone, volcaniclastic sandstone, and conglomerate whose cumulative thickness is at least 1.25 km. Two end-member sand compositions combined locally to form a third mixed'' petrofacies. The volcaniclastic petrofacies was derived from an undissected magmatic arc, whereas the chert-mudrock petrofacies reflects derivation from melange of the underlying accretionary prism. The stratigraphically restricted mixed petrofacies is compositionally discrete and records thorough mixing of these two compositional end members. Data from sandstone petrography are consistent with independent geologic evidence indicating that the Gazelle Formation represents the fill of a Devonian trench-slope basin that formed above an east-dipping subduction zone. The authors interpretation of the Balaklala Rhyolite as the source of the volcaniclastic petrofacies requires proximity of the Yreka and Eastern Klamath terranes during the Early Devonian, and indicates that the eastern Klamath province has behaved as a single crustal block (sensu lato) ever since. Field study and petrographic analysis indicate that the delivery of coarse terrigenous detritus to the basin was controlled principally by episodic eruptions of rhyolitic tephra in the arc source and also by one discernible episode of change in relative sea level. This study indicates that caution must be used when invoking changes in relative sea level to explain the stratigraphic distribution of epiclastic turbidites in island-arc settings.

  13. Modeling the Water - Quality Effects of Changes to the Klamath River Upstream of Keno Dam, Oregon

    USGS Publications Warehouse

    Sullivan, Annett B.; Sogutlugil, I. Ertugrul; Rounds, Stewart A.; Deas, Michael L.

    2013-01-01

    The Link River to Keno Dam (Link-Keno) reach of the Klamath River, Oregon, generally has periods of water-quality impairment during summer, including low dissolved oxygen, elevated concentrations of ammonia and algae, and high pH. Efforts are underway to improve water quality in this reach through a Total Maximum Daily Load (TMDL) program and other management and operational actions. To assist in planning, a hydrodynamic and water-quality model was used in this study to provide insight about how various actions could affect water quality in the reach. These model scenarios used a previously developed and calibrated CE-QUAL-W2 model of the Link-Keno reach developed by the U.S. Geological Survey (USGS), Watercourse Engineering Inc., and the Bureau of Reclamation for calendar years 2006-09 (referred to as the "USGS model" in this report). Another model of the same river reach was previously developed by Tetra Tech, Inc. and the Oregon Department of Environmental Quality for years 2000 and 2002 and was used in the TMDL process; that model is referred to as the "TMDL model" in this report. This report includes scenarios that (1) assess the effect of TMDL allocations on water quality, (2) provide insight on certain aspects of the TMDL model, (3) assess various methods to improve water quality in this reach, and (4) examine possible water-quality effects of a future warmer climate. Results presented in this report for the first 5 scenarios supersede or augment those that were previously published (scenarios 1 and 2 in Sullivan and others [2011], 3 through 5 in Sullivan and others [2012]); those previous results are still valid, but the results for those scenarios in this report are more current.

  14. 75 FR 54647 - Revision of Information Collection; Non-Use Valuation Survey, Klamath Basin; Correction and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-08

    ... Register (74 FR 27340) a request for public comments on this proposed survey. No comments were received... ``Klamath Non-use Valuation Survey,'' Office of Management and Budget (OMB) Control No. 1090-0010, and that... 1090-0010), Office of Information and Regulatory Affairs, OMB, by electronic mail at...

  15. Assessment of diel chemical and isotopic techniques to investigate biogeochemical cycles in the upper Klamath River, Oregon, USA

    USGS Publications Warehouse

    Poulson, S.R.; Sullivan, A.B.

    2009-01-01

    The upper Klamath River experiences a cyanobacterial algal bloom and poor water quality during the summer. Diel chemical and isotopic techniques have been employed in order to investigate the rates of biogeochemical processes. Four diel measurements of field parameters (temperature, pH, dissolved oxygen concentrations, and alkalinity) and stable isotope compositions (dissolved oxygen-??18O and dissolved inorganic carbon-??13C) have been performed between June 2007 and August 2008. Significant diel variations of pH, dissolved oxygen (DO) concentration, and DO-??18O were observed, due to varying rates of primary productivity vs. respiration vs. gas exchange with air. Diel cycles are generally similar to those previously observed in river systems, although there are also differences compared to previous studies. In large part, these different diel signatures are the result of the low turbulence of the upper Klamath River. Observed changes in the diel signatures vs. sampling date reflect the evolution of the status of the algal bloom over the course of the summer. Results indicate the potential utility of applying diel chemical and stable isotope techniques to investigate the rates of biogeochemical cycles in slow-moving rivers, lakes, and reservoirs, but also illustrate the increased complexity of stable isotope dynamics in these low-turbulence systems compared to well-mixed aquatic systems. ?? 2009 Elsevier B.V.

  16. Seasonal Distribution and Abundance of Larval and Juvenile Lost River and Shortnose Suckers in Hanks Marsh, Upper Klamath National Wildlife Refuge, Upper Klamath Lake, Oregon: 2007 Annual Report

    USGS Publications Warehouse

    Anderson, Greer O.; Wilkens, Alexander X.; Burdick, Summer M.; VanderKooi, Scott P.

    2009-01-01

    In the summer of 2007, we undertook an assessment of larval and juvenile sucker use of Hanks Marsh in Upper Klamath Lake, Oregon. This 1,200-acre marsh on the southeastern shoreline of the lake represents part of the last remaining natural emergent wetland habitat in the lake. Because of the suspected importance of this type of habitat to larval and juvenile endangered Lost River and shortnose suckers, it was thought that sucker abundance in the marsh might be comparatively greater than in other non-vegetated areas of the lake. It also was hoped that Hanks Marsh would serve as a reference site for wetland restoration projects occurring in other areas of the lake. Our study had four objectives: to (1) examine seasonal distribution and relative abundance of larval suckers in and adjacent to Hanks Marsh in relation to habitat features such as depth, vegetation, water quality, and relative abundance of non-sucker species; (2) determine the presence or absence and describe the distribution of juvenile suckers [35 to 80 mm standard length (SL)] along the periphery of Hanks Marsh; (3) assess spatial and temporal overlap between larval suckers and their potential predators; and (4) assess suitability of water quality throughout the summer for young-of-the-year suckers. Due to the low number of suckers found in the marsh and our inability to thoroughly sample all marsh habitats due to declining lake levels during the summer, we were unable to completely address these objectives in this pilot study. The results, however, do give some indication of the relative use of Hanks Marsh by sucker and non-sucker species. Through sampling of larval and juvenile suckers in various habitat types within the marsh, we determined that sucker use of Hanks Marsh may be very low in comparison with other areas of the lake. We caught only 42 larval and 19 juvenile suckers during 12 weeks of sampling throughout the marsh. Sucker catches were rare in Hanks Marsh, and were lower than catch rates

  17. Macrophyte and pH buffering updates to the Klamath River water-quality model upstream of Keno Dam, Oregon

    USGS Publications Warehouse

    Sullivan, Annett B.; Rounds, Stewart A.; Asbill-Case, Jessica R.; Deas, Michael L.

    2013-01-01

    A hydrodynamic, water temperature, and water-quality model of the Link River to Keno Dam reach of the upper Klamath River was updated to account for macrophytes and enhanced pH buffering from dissolved organic matter, ammonia, and orthophosphorus. Macrophytes had been observed in this reach by field personnel, so macrophyte field data were collected in summer and fall (June-October) 2011 to provide a dataset to guide the inclusion of macrophytes in the model. Three types of macrophytes were most common: pondweed (Potamogeton species), coontail (Ceratophyllum demersum), and common waterweed (Elodea canadensis). Pondweed was found throughout the Link River to Keno Dam reach in early summer with densities declining by mid-summer and fall. Coontail and common waterweed were more common in the lower reach near Keno Dam and were at highest density in summer. All species were most dense in shallow water (less than 2 meters deep) near shore. The highest estimated dry weight biomass for any sample during the study was 202 grams per square meter for coontail in August. Guided by field results, three macrophyte groups were incorporated into the CE-QUAL-W2 model for calendar years 2006-09. The CE-QUAL-W2 model code was adjusted to allow the user to initialize macrophyte populations spatially across the model grid. The default CE-QUAL-W2 model includes pH buffering by carbonates, but does not include pH buffering by organic matter, ammonia, or orthophosphorus. These three constituents, especially dissolved organic matter, are present in the upper Klamath River at concentrations that provide substantial pH buffering capacity. In this study, CE-QUAL-W2 was updated to include this enhanced buffering capacity in the simulation of pH. Acid dissociation constants for ammonium and phosphoric acid were taken from the literature. For dissolved organic matter, the number of organic acid groups and each group's acid dissociation constant (Ka) and site density (moles of sites per mole of

  18. 77 FR 45653 - Yakima River Basin Conservation Advisory Group; Yakima River Basin Water Enhancement Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-01

    ... Bureau of Reclamation Yakima River Basin Conservation Advisory Group; Yakima River Basin Water... on the structure, implementation, and oversight of the Yakima River Basin Water Conservation Program... of the Water Conservation Program, including the applicable water conservation guidelines of...

  19. Demographics and 2008 Run Timing of Adult Lost River (Deltistes luxatus) and Shortnose (Chasmistes brevirostris) Suckers in Upper Klamath Lake

    USGS Publications Warehouse

    Janney, Eric C.; Hayes, Brian S.; Hewitt, David A.; Barry, Patrick M.; Scott, Alta; Koller, Justin; Johnson, Mark; Blackwood, Greta

    2009-01-01

    We used capture-recapture data to assess population dynamics of endangered Lost River suckers (Deltistes luxatus) and shortnose suckers (Chasmistes brevirostris) in Upper Klamath Lake, Oregon. The Cormack-Jolly-Seber method was used to estimate apparent survival probabilities, and a temporal symmetry model was used to estimate annual seniority probabilities. Information theoretic modeling was used to assess variation in parameter estimates due to time, gender, and species. In addition, length data were used to detect multiple year-class failures and events of high recruitment into adult spawning populations. Survival of adult Lost River and shortnose suckers varied substantially across years. Relatively high annual mortality was observed for the lakeshore-spawning Lost River sucker subpopulation in 2002 and for the river spawning subpopulation in 2001. Shortnose suckers experienced high mortality in 2001 and 2004. This indicates that high mortality events are not only species specific, but also are specific to subpopulations for Lost River suckers. Seniority probability estimates and length composition data indicate that recruitment of new individuals into adult sucker populations has been sparse. The overall fitness of Upper Klamath Lake sucker populations are of concern given the low observed survival in some years and the paucity of recent recruitment. During most years, estimates of survival probabilities were lower than seniority probabilities, indicating net losses in adult sucker population abundances. The evidence for decline was more marked for shortnose suckers than for Lost River suckers. Our data indicated that sucker survival for both species, but especially shortnose suckers, was sometimes low in years without any observed fish kills. This indicates that high mortality can occur over a protracted period, resulting in poor annual survival, but will not necessarily be observed in association with a fish kill. A better understanding of the factors

  20. Distribution and condition of larval and juvenile Lost River and shortnose suckers in the Williamson River Delta restoration project and Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    Burdick, Summer M.; Brown, Daniel T.

    2010-01-01

    Federally endangered Lost River sucker (Deltistes luxatus) and shortnose sucker (Chasmistes brevirostris) were once abundant throughout their range but populations have declined. They were extirpated from several lakes in the 1920s and may no longer reproduce in others. Poor recruitment to the adult spawning populations is one of several reasons cited for the decline and lack of recovery of these species and may be the consequence of high mortality during juvenile life stages. High larval and juvenile sucker mortality may be exacerbated by an insufficient quantity of suitable or high quality rearing habitat. In addition, larval suckers may be swept downstream from suitable rearing areas in Upper Klamath Lake into Keno Reservoir, which is seasonally anoxic. The Nature Conservancy flooded about 3,600 acres (1,456 hectares) to the north of the Williamson River mouth (Tulana Unit) in October 2007 and about 1,400 acres (567 hectares) to the south and east of the Williamson River mouth (Goose Bay Unit) a year later to retain larval suckers in Upper Klamath Lake, create nursery habitat, and improve water quality. The U.S. Geological Survey joined a long-term research and monitoring program in collaboration with The Nature Conservancy, the Bureau of Reclamation, and Oregon State University in 2008 to assess the effects of the Williamson River Delta restoration on the early life-history stages of Lost River and shortnose suckers. The primary objectives of the research were to describe habitat colonization and use by larval and juvenile suckers and non-sucker fishes and to evaluate the effects of the restored habitat on the health and condition of juvenile suckers. This report summarizes data collected in 2009 by the U.S. Geological Survey as a part of this monitoring effort. The Williamson River Delta appeared to provide suitable rearing habitat for endangered larval Lost River and shortnose suckers in 2008 and 2009. Larval suckers captured in this delta typically were

  1. Isotopic characterization of three groundwater recharge sources and inferences for selected aquifers in the upper Klamath Basin of Oregon and California, USA

    USGS Publications Warehouse

    Palmer, P.C.; Gannett, M.W.; Hinkle, S.R.

    2007-01-01

    Stable isotope (??D and ??18O) signatures of three principal groundwater recharge areas in the 21,000-km2 upper Klamath Basin are used to infer recharge sources for aquifers in the interior parts of the basin. Two of the principal recharge areas, the Cascade Range on the western and southern margin of the basin and uplands along the eastern margin, are defined by mean annual precipitation that exceeds approximately 60 cm. A third recharge area coincides with the extensive irrigation canal system in the south central part of the basin. The stable isotope signature for Cascade Range groundwater falls near the global meteoric water line (GMWL). The stable isotope signature for the groundwater of the eastern basin uplands also falls near the GMWL, but is depleted in heavy isotopes relative to the Cascade Range groundwater. The stable isotope signature for water from the irrigation canal system deviates from the GMWL in a manner indicative of fractionation by evaporation. Groundwater provenance was previously unknown for two aquifers of interest: that supplying deep (225-792 m), large-capacity irrigation wells along the Oregon-California border, and that of the geothermal system near Klamath Falls. Groundwater produced by the deep irrigation wells along the Oregon-California border appears to be a mixture of eastern-basin groundwater and water with an evaporative isotopic signature. The component with an evaporative isotopic signature appears in some places to consist of infiltrated irrigation water. Chloride data suggest that much of the component with the evaporative isotopic signature may be coming from an adjacent subbasin. After accounting for the 18O shift common in geothermal waters, isotope data suggest that the geothermal groundwater in the upper Klamath Basin may emanate from the eastern basin uplands. Findings demonstrate that stable isotope and chloride data can illuminate certain details of a regional groundwater flow system in a complex geologic setting

  2. Statistical analysis of the water-quality monitoring program, Upper Klamath Lake, Oregon, and optimization of the program for 2013 and beyond

    USGS Publications Warehouse

    Eldridge, Sara L. Caldwell; Wherry, Susan A.; Wood, Tamara M.

    2014-01-01

    Upper Klamath Lake in south-central Oregon has become increasingly eutrophic over the past century and now experiences seasonal cyanobacteria-dominated and potentially toxic phytoplankton blooms. Growth and decline of these blooms create poor water-quality conditions that can be detrimental to fish, including two resident endangered sucker species. Upper Klamath Lake is the primary water supply to agricultural areas within the upper Klamath Basin. Water from the lake is also used to generate power and to enhance and sustain downstream flows in the Klamath River. Water quality in Upper Klamath Lake has been monitored by the Klamath Tribes since the early 1990s and by the U.S. Geological Survey (USGS) since 2002. Management agencies and other stakeholders have determined that a re-evaluation of the goals for water-quality monitoring is warranted to assess whether current data-collection activities will continue to adequately provide data for researchers to address questions of interest and to facilitate future natural resource management decisions. The purpose of this study was to (1) compile an updated list of the goals and objectives for long-term water-quality monitoring in Upper Klamath Lake with input from upper Klamath Basin stakeholders, (2) assess the current water-quality monitoring programs in Upper Klamath Lake to determine whether existing data-collection strategies can fulfill the updated goals and objectives for monitoring, and (3) identify potential modifications to future monitoring plans in accordance with the updated monitoring objectives and improve stakeholder cooperation and data-collection efficiency. Data collected by the Klamath Tribes and the USGS were evaluated to determine whether consistent long-term trends in water-quality variables can be described by the dataset and whether the number and distribution of currently monitored sites captures the full range of environmental conditions and the multi-scale variability of water

  3. Dependence of flow and transport through the Williamson River Delta, Upper Klamath Lake, Oregon, on wind, river inflow, and lake elevation

    USGS Publications Warehouse

    Wood, Tamara M.

    2012-01-01

    The hydrodynamic model of Upper Klamath and Agency Lakes, Oregon, was used to run 384 realizations of a numerical tracer experiment in order to understand the relative effects of wind, lake elevation, and Williamson River inflow on flow and transport (the movement of water and passively transported constituents) through the Williamson River Delta. Significant findings from this study include: * The replacement rate of water increased in Tulana and Goose Bay with increasing lake elevation, Williamson River inflow, and wind speed. * The fraction of Williamson River inflow passing through either side of the Delta increased with lake elevation and Williamson River inflow. * The partial replacement rate of water in Goose Bay with water from the Williamson River increased with wind speed. * The partial replacement rate of water in Tulana with water from the Williamson River decreased with wind speed. * Strong wind forcing at the water surface caused more of the Williamson River inflow to pass through Goose Bay than through Tulana. * Westerly to northwesterly winds result in more of the Williamson River inflow passing through the Goose Bay side of the Delta than through the Tulana side. * Regression models developed from the tracer experiments can be used to quantify the dependencies between transport and the independent variables to obtain rough estimates of useful quantities such as residence time and steady-state solute concentrations.

  4. Ecological River Basin Management.

    ERIC Educational Resources Information Center

    Smith, Anthony Wayne

    Addressing the Seventh American Water Resources Conference, Washington, D. C., October, 1971, Anthony Wayne Smith, President, National Parks and Conservation Association, presents an expose on how rivers should be managed by methods which restores and preserve the natural life balances of the localities and regions through which they flow. The…

  5. Klamath River Water Quality and Acoustic Doppler Current Profiler Data from Link River Dam to Keno Dam, 2007

    USGS Publications Warehouse

    Sullivan, Annett B.; Deas, Michael L.; Asbill, Jessica; Kirshtein, Julie D.; Butler, Kenna; Stewart, Marc A.; Wellman, Roy W.; Vaughn, Jennifer

    2008-01-01

    In 2007, the U.S. Geological Survey, Watercourse Engineering, and the Bureau of Reclamation began a project to construct and calibrate a water quality and hydrodynamic model of the 21-mile reach of the Klamath River from Link River Dam to Keno Dam. To provide a basis for this work, data collection and experimental work were planned for 2007 and 2008. This report documents sampling and analytical methods and presents data from the first year of work. To determine water velocities and discharge, a series of cross-sectional acoustic Doppler current profiler (ADCP) measurements were made on the mainstem and four canals on May 30 and September 19, 2007. Water quality was sampled weekly at five mainstem sites and five tributaries from early April through early November, 2007. Constituents reported here include field parameters (water temperature, pH, dissolved oxygen concentration, specific conductance); total nitrogen and phosphorus; particulate carbon and nitrogen; filtered orthophosphate, nitrite, nitrite plus nitrate, ammonia, organic carbon, iron, silica, and alkalinity; specific UV absorbance at 254 nm; phytoplankton and zooplankton enumeration and species identification; and bacterial abundance and morphological subgroups. The ADCP measurements conducted in good weather conditions in May showed that four major canals accounted for most changes in discharge along the mainstem on that day. Direction of velocity at measured locations was fairly homogeneous across the channel, while velocities were generally lowest near the bottom, and highest near surface, ranging from 0.0 to 0.8 ft/s. Measurements in September, made in windy conditions, raised questions about the effect of wind on flow. Most nutrient and carbon concentrations were lowest in spring, increased and remained elevated in summer, and decreased in fall. Dissolved nitrite plus nitrate and nitrite had a different seasonal cycle and were below detection or at low concentration in summer. Many nutrient and

  6. Evapotranspiration from a bulrush-dominated wetland in the Klamath Basin, Oregon

    USGS Publications Warehouse

    Bidlake, W.R.

    2000-01-01

    Growing-season evapotranspiration and surface energy and water balances were investigated for an extensive, bulrush-dominated wetland in the Upper Klamath National Wildlife Refuge of south-central Oregon, a semi-arid region with competing demands for scarce water resources. Turbulent fluxes of sensible and latent heat were measured by eddy covariance for 1.2 to 1.9 days during each of four site visits during late-May to mid-October 1997. Mean daytime latent heat flux and the Bowen ratio ranged from 148 to 178 W m-2 and from 0.38 to 0.51, respectively, during late May, mid-July, and late August site visits. By mid-October, when the plant canopy had senesced, daytime latent heat flux and the Bowen ratio averaged 46 W m-2 and 2.8, respectively. An hourly Penman-Monteith (PM) model that was fitted to the surface-flux data provided values for the surface resistance to water-vapor diffusion that ranged from 78 s m-1 during late August to 206 s m-1 during mid-October. Similarly, a Priestley-Taylor (PT) model provided values for the PT multiplier (??) that ranged from 0.96 during late August to 0.37 during mid-October. The PM and PT models predicted evapotranspiration totals of 560 and 480 mm, respectively, for May 28 to October 12, 1997.

  7. Volcanic signature of Basin and Range extension on the shrinking Cascade arc, Klamath Falls-Keno area, Oregon

    NASA Astrophysics Data System (ADS)

    Priest, George R.; Hladky, Frank R.; Mertzman, Stanley A.; Murray, Robert B.; Wiley, Thomas J.

    2013-08-01

    geologic mapping of the Klamath Falls-Keno area revealed the complex relationship between subduction, crustal extension, and magmatic composition of the southern Oregon Cascade volcanic arc. Volcanism in the study area at ~7-4 Ma consisted of calc-alkaline basaltic andesite and andesite lava flowing over a relatively flat landscape. Local angular unconformities are evidence that Basin and Range extension began at by at least ~4 Ma and continues today with fault blocks tilting at a long-term rate of ~2°/Ma to 3°/Ma. Minimum NW-SE extension is ~1.5 km over ~28 km (~5%). High-alumina olivine tholeiite (HAOT) or low-K, low-Ti transitional high-alumina olivine tholeiite (LKLT) erupted within and adjacent to the back edge of the calc-alkaline arc as the edge receded westward at a rate of ~10 km/Ma at 2.7-0.45 Ma. The volcanic front migrated east much slower than the back arc migrated west: ~0 km/Ma for 6-0.4 Ma calc-alkaline rocks; ~0.7 km/Ma, if ~6 Ma HAOT-LKLT is included; and ~1 km/Ma, if highly differentiated 17-30 Ma volcanic rocks of the early Western Cascades are included. Declining convergence probably decreased asthenospheric corner flow, decreasing width of calc-alkaline and HAOT-LKLT volcanism and the associated heat flow anomaly, the margins of which focused on Basin and Range extension and leakage of HAOT-LKLT magma to the surface. This declining corner flow combined with steepening slab dip shifted the back arc west. Compensation of extension by volcanic intrusion and extrusion allowed growth of imposing range-front fault scarps only behind the trailing edge of the shrinking arc.

  8. Temporal and Spatial Distribution of Endangered Juvenile Lost River and Shortnose Suckers in Relation to Environmental Variables in Upper Klamath Lake, Oregon: 2008 Annual Data Summary

    USGS Publications Warehouse

    Burdick, Summer M.; VanderKooi, Scott P.

    2010-01-01

    Lost River sucker (Deltistes luxatus) and shortnose sucker (Chasmistes brevirostris) were listed as endangered in 1988 for a variety of reasons including apparent recruitment failure. Upper Klamath Lake, Oregon, and its tributaries are considered the most critical remaining habitat for these two species. Age-0 suckers are often abundant in Upper Klamath Lake throughout the summer months, but catches decline dramatically between late August and early September each year and age-1 and older sub-adult suckers are rare. These rapid declines in catch rates and a lack of substantial recruitment into adult sucker populations in recent years suggests sucker populations experience high mortality between their first summer and first spawn. A lack of access to, or abundance of, optimal rearing habitat may exacerbate juvenile sucker mortality or restrict juvenile growth or development. Summer age-0 sucker habitat use and distribution has been studied extensively, but many uncertainties remain about age-1 and older juvenile habitat use, distribution, and movement patterns within Upper Klamath Lake. We designed a study to examine seasonal changes in distribution of age-1 suckers in Upper Klamath Lake as they relate to depth and water quality. In this document, which meets our annual data summary and reporting obligations, we discuss the results of our second annual spring and summer sampling effort. Catch data collected in 2007 and 2008 indicate seasonal changes in age-1 and older juvenile sucker habitat use coincident with changes in water quality, which were previously undocumented. In both years during April and May, age-1 and older juvenile suckers were found in shallow water environments. Then, as water temperatures began to warm throughout Upper Klamath Lake in June, age-1 and older juvenile suckers primarily were captured along the western shore in some of the deepest available environments. Following a dramatic decrease in dissolved oxygen concentrations in Eagle Ridge

  9. Salmonids, stream temperatures, and solar loading--modeling the shade provided to the Klamath River by vegetation and geomorphology

    USGS Publications Warehouse

    Forney, William M.; Soulard, Christopher E.; Chickadel, C. Christopher

    2013-01-01

    The U.S. Geological Survey is studying approaches to characterize the thermal regulation of water and the dynamics of cold water refugia. High temperatures have physiological impacts on anadromous fish species. Factors affecting the presence, variability, and quality of thermal refugia are known, such as riverine and watershed processes, hyporheic flows, deep pools and bathymetric factors, thermal stratification of reservoirs, and other broader climatic considerations. This research develops a conceptual model and methodological techniques to quantify the change in solar insolation load to the Klamath River caused by riparian and floodplain vegetation, the morphology of the river, and the orientation and topographic characteristics of its watersheds. Using multiple scales of input data from digital elevation models and airborne light detection and ranging (LiDAR) derivatives, different analysis methods yielded three different model results. These models are correlated with thermal infrared imagery for ground-truth information at the focal confluence with the Scott River. Results from nonparametric correlation tests, geostatistical cross-covariograms, and cross-correlograms indicate that statistical relationships between the insolation models and the thermal infrared imagery exist and are significant. Furthermore, the use of geostatistics provides insights to the spatial structure of the relationships that would not be apparent otherwise. To incorporate a more complete representation of the temperature dynamics in the river system, other variables including the factors mentioned above, and their influence on solar loading, are discussed. With similar datasets, these methods could be applied to any river in the United States—especially those listed as temperature impaired under Section 303(d) of the Clean Water Act—or international riverine systems. Considering the importance of thermal refugia for aquatic species, these methods can help investigate opportunities

  10. Declining ring-necked pheasants in the Klamath Basin, California: I. Insecticide exposure

    USGS Publications Warehouse

    Grove, Robert A.; Buhler, D.R.; Henny, Charles J.; Drew, A.D.

    1998-01-01

    A study of organophosphorus (OP) insecticide exposure was conducted on a declining population of ring-necked pheasants (Phasianus colchicus) associated with agricultural lands at Tule Lake National Wildlife Refuge (TLNWR) during the summers of 1990a??92. Findings at TLNWR were compared with a nearby pheasant population at Lower Klamath National Wildlife Refuge (LKNWR) not subjected to intensive farming or OP insecticide applications. Direct toxicity of anticholinesterase (antiChE) compounds (in this case methamidophos) killed 2 young pheasants (91 and 92% brain acetylcholinesterase [AChE] inhibition), but no deaths of adult radio-equipped hens were ascribed to direct insecticide intoxication. However, within 20 days postspray of OP insecticides, 68% (28 of 41) of the adult pheasants collected at TLNWR were exposed to antiChE insecticides, and exhibited brain AChE inhibition of 19a??62%, with 15% (6 of 41) showing >55% brain AChE inhibition. The lack of radio-equipped hens dying was unexpected because >50% brain AChE inhibition has been frequently used as a diagnostic tool for evaluating cause of death from antiChE insecticides. No young were radio-equipped, so the extent of the effects of insecticide exposure on the survivorship of young was unknown. It is concluded that insecticide exposure was not the major factor impacting the pheasant population (see Grove et al., in press), although some young were acutely intoxicated. However, the loss of insects killed by insecticide use may have contributed to food shortages of young pheasants, indirectly influencing survival.

  11. Effects of Chiloquin Dam on spawning distribution and larval emigration of Lost River, shortnose, and Klamath largescale suckers in the Williamson and Sprague Rivers, Oregon

    USGS Publications Warehouse

    Martin, Barbara A.; Hewitt, David A.; Ellsworth, Craig M.

    2013-01-01

    Chiloquin Dam was constructed in 1914 on the Sprague River near the town of Chiloquin, Oregon. The dam was identified as a barrier that potentially inhibited or prevented the upstream spawning migrations and other movements of endangered Lost River (Deltistes luxatusChasmistes brevirostris) suckers, as well as other fish species. In 2002, the Bureau of Reclamation led a working group that examined several alternatives to improve fish passage at Chiloquin Dam. Ultimately it was decided that dam removal was the best alternative and the dam was removed in the summer of 2008. The U.S. Geological Survey conducted a long-term study on the spawning ecology of Lost River, shortnose, and Klamath largescale suckers (Catostomus snyderi) in the Sprague and lower Williamson Rivers from 2004 to 2010. The objective of this study was to evaluate shifts in spawning distribution following the removal of Chiloquin Dam. Radio telemetry was used in conjunction with larval production data and detections of fish tagged with passive integrated transponders (PIT tags) to evaluate whether dam removal resulted in increased utilization of spawning habitat farther upstream in the Sprague River. Increased densities of drifting larvae were observed at a site in the lower Williamson River after the dam was removed, but no substantial changes occurred upstream of the former dam site. Adult spawning migrations primarily were influenced by water temperature and did not change with the removal of the dam. Emigration of larvae consistently occurred about 3-4 weeks after adults migrated into a section of river. Detections of PIT-tagged fish showed increases in the numbers of all three suckers that migrated upstream of the dam site following removal, but the increases for Lost River and shortnose suckers were relatively small compared to the total number of fish that made a spawning migration in a given season. Increases for Klamath largescale suckers were more substantial. Post-dam removal monitoring

  12. Distribution and condition of larval and juvenile Lost River and shortnose suckers in the Williamson River Delta restoration project and Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    Burdick, Summer M.

    2012-01-01

    Federally endangered Lost River sucker (Deltistes luxatus) and shortnose sucker (Chasmistes brevirostris) were once abundant throughout their range but populations have declined. They were extirpated from several lakes in the 1920s and may no longer reproduce in other lakes. Poor recruitment to the adult spawning populations is one of several reasons cited for the decline and lack of recovery of these species and may be the consequence of high mortality during juvenile life stages. High larval and juvenile sucker mortality may be exacerbated by an insufficient quantity of suitable or high-quality rearing habitat. In addition, larval suckers may be swept downstream from suitable rearing areas in Upper Klamath Lake into Keno Reservoir, where they are assumed lost to Upper Klamath Lake populations. The Nature Conservancy flooded about 3,600 acres (1,456 hectares) to the north of the Williamson River mouth (Tulana) in October 2007, and about 1,400 acres (567 hectares) to the south and east of the Williamson River mouth (Goose Bay Farms) in October 2008, in order to retain larval suckers in Upper Klamath Lake, create nursery habitat, and improve water quality. The U.S. Geological Survey joined a long-term research and monitoring program in collaboration with The Nature Conservancy, the Bureau of Reclamation, and Oregon State University in 2008 to assess the effects of the Williamson River Delta restoration on the early life-history stages of Lost River and shortnose suckers. The primary objectives of the research were to describe habitat colonization and use by larval and juvenile suckers and non-sucker fishes and to evaluate the effects of the restored habitat on the health and condition of juvenile suckers. This report summarizes data collected in 2010 by the U.S. Geological Survey as a part of this monitoring effort and follows two annual reports on data collected in 2008 and 2009. Restoration modifications made to the Williamson River Delta appeared to provide

  13. Survival, movement, and health of hatchery-raised juvenile Lost River suckers within a mesocosm in Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    Hereford, Danielle M.; Burdick, Summer M.; Elliott, Diane G.; Dolan-Caret, Amari; Conway, Carla M.; Harris, Alta C.

    2016-01-01

    The recovery of endangered Lost River suckers (Deltistes luxatus) in Upper Klamath Lake is limited by poor juvenile survival and failure to recruit into the adult population. Poor water quality, degradation of rearing habitat, and toxic levels of microcystin are hypothesized to contribute to low juvenile survival. Studies of wild juvenile suckers are limited in that capture rates are low and compromised individuals are rarely captured in passive nets. The goal of this study was to assess the use of a mesocosm for learning about juvenile survival, movement, and health. Hatchery-raised juvenile Lost River suckers were PIT (passive integrated transponder) tagged and monitored by three vertically stratified antennas. Fish locations within the mesocosm were recorded at least every 30 minutes and were assessed in relation to vertically stratified water-quality conditions. Vertical movement patterns were analyzed to identify the timing of mortality for each fish. Most mortality occurred from July 28 to August 16, 2014. Juvenile suckers spent daylight hours near the benthos and moved throughout the entire water column during dark hours. Diel movements were not in response to dissolved-oxygen concentrations, temperature, or pH. Furthermore, low dissolved-oxygen concentrations, high temperatures, high pH, high un-ionized ammonia, or high microcystin levels did not directly cause mortality, although indirect effects may have occurred. However, water-quality conditions known to be lethal to juvenile Lost River suckers did not occur during the study period. Histological assessment revealed severe gill hyperplasia and Ichthyobodo sp. infestations in most moribund fish. For these fish, Ichthyobodo sp. was likely the cause of mortality, although it is unclear if this parasite originated in the rearing facility because fish were not screened for this parasite prior to introduction. This study has demonstrated that we can effectively use a mesocosm equipped with antennas to learn

  14. Age-0 Lost River sucker and shortnose sucker nearshore habitat use in Upper Klamath Lake, Oregon: A patch occupancy approach

    USGS Publications Warehouse

    Burdick, S.M.; Hendrixson, H.A.; VanderKooi, S.P.

    2008-01-01

    We examined habitat use by age-0 Lost River suckers Deltistes luxatus and shortnose suckers Chasmistes brevirostris over six substrate classes and in vegetated and nonvegetated areas of Upper Klamath Lake, Oregon. We used a patch occupancy approach to model the effect of physical habitat and water quality conditions on habitat use. Our models accounted for potential inconsistencies in detection probability among sites and sampling occasions as a result of differences in fishing gear types and techniques, habitat characteristics, and age-0 fish size and abundance. Detection probability was greatest during mid- to late summer, when water temperatures were highest and age-0 suckers were the largest. The proportion of sites used by age-0 suckers was inversely related to depth (range = 0.4-3.0 m), particularly during late summer. Age-0 suckers were more likely to use habitats containing small substrate (64 mm) and habitats with vegetation than those without vegetation. Relatively narrow ranges in dissolved oxygen, temperature, and pH prevented us from detecting effects of these water quality features on age-0 sucker nearshore habitat use.

  15. Status and trends of adult Lost River (Deltistes luxatus) and shortnose (Chasmistes brevirostris) sucker populations in Upper Klamath Lake, Oregon, 2014

    USGS Publications Warehouse

    Hewitt, David A.; Janney, Eric C.; Hayes, Brian S.; Harris, Alta C.

    2015-01-01

    Despite relatively high survival in most years, we conclude that both species have experienced substantial decreases in the abundance of spawning adults because losses from mortality have not been balanced by recruitment of new individuals. Although capture-recapture data indicate substantial recruitment of new individuals into the spawning populations for SNS and river spawning LRS in some years, size data do not corroborate these estimates. As a result, the status of the endangered sucker populations in Upper Klamath Lake remains worrisome, especially for shortnose suckers. Our monitoring program provides a robust platform for estimating vital population parameters, evaluating the status of the populations, and assessing the effectiveness of conservation and recovery efforts.

  16. Physical, chemical, and biological data for detailed study of irrigation drainage in the Klamath Basin, California and Oregon, 1990-92

    USGS Publications Warehouse

    MacCoy, D.E.

    1994-01-01

    Physical, chemical, and biological data were collected between 1990 and 1992 as part of a detailed study by the U.S. Department of Interior of the effects of irrigation drainage on aquatic resources in the Klamath Basin of California and Oregon. Most of the sites for data collection were in and around the upper and lower sump of Tule Lake, in the Tule Lake National Wildlife Refuge, and along major drains in Lower Klamath National Wildlife Refuge. The physical and chemical data consist of particle-size determinations and concentrations of carbon, mercury, arsenic, chlorophenoxy acid, and organochlorine, organophosphate, and carbamate pesticides in bottom sediment; and concentrations of organophosphate, carbamate, and pyrethroid pesticides, major and trace inorganic constituents, nitrogen, phosphorus, and organic carbon in water. Continuous dissolved oxygen, pH, specific conduc- tance, and temperature data from selected sites in 1991 and 1992 are presented in graphical form to summarize the diel water-quality conditions. The biological data consists of concentrations of inorganic constituents and organochlorine pesticides in tissue, invertebrate and fish population surveys, fish health surveys, frog call surveys, egg shell thickness of avian eggs, and in situ and static toxicity bioassay data collected in 1991 and 1992 using aquatic bacteria, plants, invertebrates, fish, and bird species as test organisms.

  17. Klamath Basin: A Watershed Approach to Support Habitat Restoration, Species Recovery, and Water Resource Planning

    USGS Publications Warehouse

    Shipley, Frank

    2007-01-01

    Water allocation among human and natural resource uses in the American West is challenging. Western rivers have been largely managed for hydropower, irrigation, drinking water, and navigation. Today land and water use practices have gained importance, particularly as aging dams are faced with re-licensing requirements and provisions of the Endangered Species and Clean Water Acts. Rising demand for scarce water heightens the need for scientific research to predict consequences of management actions on habitats, human resource use, and fish and wildlife. Climate change, introduction of invasive species, or restoration of fish passage can have large, landscape-scaled consequences - research must expand to encompass the appropriate scale and by applying multiple scientific disciplines to complex ecosystem challenges improve the adaptive management framework for decision-making.

  18. River Basin Standards Interoperability Pilot

    NASA Astrophysics Data System (ADS)

    Pesquer, Lluís; Masó, Joan; Stasch, Christoph

    2016-04-01

    There is a lot of water information and tools in Europe to be applied in the river basin management but fragmentation and a lack of coordination between countries still exists. The European Commission and the member states have financed several research and innovation projects in support of the Water Framework Directive. Only a few of them are using the recently emerging hydrological standards, such as the OGC WaterML 2.0. WaterInnEU is a Horizon 2020 project focused on creating a marketplace to enhance the exploitation of EU funded ICT models, tools, protocols and policy briefs related to water and to establish suitable conditions for new market opportunities based on these offerings. One of WaterInnEU's main goals is to assess the level of standardization and interoperability of these outcomes as a mechanism to integrate ICT-based tools, incorporate open data platforms and generate a palette of interchangeable components that are able to use the water data emerging from the recently proposed open data sharing processes and data models stimulated by initiatives such as the INSPIRE directive. As part of the standardization and interoperability activities in the project, the authors are designing an experiment (RIBASE, the present work) to demonstrate how current ICT-based tools and water data can work in combination with geospatial web services in the Scheldt river basin. The main structure of this experiment, that is the core of the present work, is composed by the following steps: - Extraction of information from river gauges data in OGC WaterML 2.0 format using SOS services (preferably compliant to the OGC SOS 2.0 Hydrology Profile Best Practice). - Model floods using a WPS 2.0, WaterML 2.0 data and weather forecast models as input. - Evaluation of the applicability of Sensor Notification Services in water emergencies. - Open distribution of the input and output data as OGC web services WaterML, / WCS / WFS and with visualization utilities: WMS. The architecture

  19. Detection probability of an in-stream passive integrated transponder (PIT) tag detection system for juvenile salmonids in the Klamath River, northern California, 2011

    USGS Publications Warehouse

    Beeman, John W.; Hayes, Brian; Wright, Katrina

    2012-01-01

    A series of in-stream passive integrated transponder (PIT) detection antennas installed across the Klamath River in August 2010 were tested using tagged fish in the summer of 2011. Six pass-by antennas were constructed and anchored to the bottom of the Klamath River at a site between the Shasta and Scott Rivers. Two of the six antennas malfunctioned during the spring of 2011 and two pass-through antennas were installed near the opposite shoreline prior to system testing. The detection probability of the PIT tag detection system was evaluated using yearling coho salmon implanted with a PIT tag and a radio transmitter and then released into the Klamath River slightly downstream of Iron Gate Dam. Cormack-Jolly-Seber capture-recapture methods were used to estimate the detection probability of the PIT tag detection system based on detections of PIT tags there and detections of radio transmitters at radio-telemetry detection systems downstream. One of the 43 PIT- and radio-tagged fish released was detected by the PIT tag detection system and 23 were detected by the radio-telemetry detection systems. The estimated detection probability of the PIT tag detection system was 0.043 (standard error 0.042). Eight PIT-tagged fish from other studies also were detected. Detections at the PIT tag detection system were at the two pass-through antennas and the pass-by antenna adjacent to them. Above average river discharge likely was a factor in the low detection probability of the PIT tag detection system. High discharges dislodged two power cables leaving 12 meters of the river width unsampled for PIT detections and resulted in water depths greater than the read distance of the antennas, which allowed fish to pass over much of the system with little chance of being detected. Improvements in detection probability may be expected under river discharge conditions where water depth over the antennas is within maximum read distance of the antennas. Improvements also may be expected if

  20. Plan Could Protect Klamath Fish and Agriculture

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Klamath River basin fish and farms in Oregon and California both could be protected, according to a 21 October report by the U.S. National Research Council. The report, by a committee of the Council's Board on Environmental Studies and Toxicology, calls for protecting three imperiled fish species through the removal of some dams which serve as migration obstacles, habitat improvement, and measures to stem the loss of stream bank vegetation and to lower the summer water temperatures in tributaries. The committee found that maintaining water levels and flows higher than those of recent past years would not likely lead to the recovery of two endangered sucker species and a genetically distinct population of Coho salmon that is threatened.

  1. Tagging age-1 Lost River and shortnose suckers with passive integrated transponders, Upper Klamath Lake, Oregon–Summary of 2009–11 effort

    USGS Publications Warehouse

    Burdick, Summer M.

    2012-01-01

    A passive integrated transponder (PIT) tagging study was initiated in 2009 for age-1 endangered Lost River and shortnose suckers in Upper Klamath Lake, Oregon, for the purpose of examining causes of mortality, validating estimated age to maturity, and examining movement patterns. This study, which was done opportunistically in 2009 and 2010, received funding in 2011 for a directed tagging effort. Tags were redetected using an existing infrastructure of remote PIT tag readers and tag scanning surveys at American white pelican and double-crested cormorant breeding and loafing areas. Individual fish histories are used to describe the distance, direction, and timing of age-1 sucker movement. Sucker PIT tag detections in the Sprague and Williamson rivers in mid-summer and in autumn indicate age-1 suckers use these tributaries outside of the known spring spawning season. PIT tags detected in bird habitats indicate predation by birds may have been a cause of mortality in 2009. Field conditions prevented scanning bird breeding and loafing areas in Upper Klamath Wildlife National Refuge for tags in 2011, however, limiting our ability to make inferences about bird predation in those years.

  2. Hydroclimatic and landscape controls on phosphorus loads to hypereutrophic Upper Klamath Lake, Oregon, United States

    NASA Astrophysics Data System (ADS)

    Records, R.; Fassnacht, S. R.; Arabi, M.; Duffy, W. G.

    2014-12-01

    Elevated total phosphorus (P) loading into Upper Klamath Lake, southern Oregon, United States has caused hypereutrophic conditions impacting endangered lake fish species. Increases in P loading have been attributed to land use changes, such as timber harvest and wetland drainage. The contribution of P to Upper Klamath Lake has been estimated from each major tributary, yet little research has explored what land use or other variables have most influence on P loading within the tributaries. In addition, previous work has shown a range of potential hydroclimatic shifts by the 2040s, with potential to alter P loading mechanisms. In this study, we use statistical methods including principle component analysis and multiple linear regression to determine what hydroclimatic and landscape variables best explain flow-weighted P concentration in the Sprague River, one of three main tributaries to Upper Klamath Lake. Identification of key variables affecting P loading has direct implications for management decisions in the Upper Klamath River Basin. Increases in P loading related to sediment loading are due to bank and upslope erosion. The former is more prevalent in areas of historic channel alteration and cattle grazing, while the latter is more dominant in areas of heavy timber harvesting and more precipitation as rain.

  3. Tritium hydrology of the Mississippi River basin

    USGS Publications Warehouse

    Michel, R.L.

    2004-01-01

    In the early 1960s, the US Geological Survey began routinely analysing river water samples for tritium concentrations at locations within the Mississippi River basin. The sites included the main stem of the Mississippi River (at Luling Ferry, Louisiana), and three of its major tributaries, the Ohio River (at Markland Dam, Kentucky), the upper Missouri River (at Nebraska City, Nebraska) and the Arkansas River (near Van Buren, Arkansas). The measurements cover the period during the peak of the bomb-produced tritium transient when tritium concentrations in precipitation rose above natural levels by two to three orders of magnitude. Using measurements of tritium concentrations in precipitation, a tritium input function was established for the river basins above the Ohio River, Missouri River and Arkansas River sampling locations. Owing to the extent of the basin above the Luling Ferry site, no input function was developed for that location. The input functions for the Ohio and Missouri Rivers were then used in a two-component mixing model to estimate residence times of water within these two basins. (The Arkansas River was not modelled because of extremely large yearly variations in flow during the peak of the tritium transient.) The two components used were: (i) recent precipitation (prompt outflow) and (ii) waters derived from the long-term groundwater reservoir of the basin. The tritium concentration of the second component is a function of the atmospheric input and the residence times of the groundwaters within the basin. Using yearly time periods, the parameters of the model were varied until a best fit was obtained between modelled and measured tritium data. The results from the model indicate that about 40% of the flow in the Ohio River was from prompt outflow, as compared with 10% for the Missouri River. Mean residence times of 10 years were calculated for the groundwater component of the Ohio River versus 4 years for the Missouri River. The mass flux of

  4. Metabolic principles of river basin organization

    NASA Astrophysics Data System (ADS)

    Rodriguez-Iturbe, I.; Caylor, K. K.; Rinaldo, A.

    2011-12-01

    The metabolism of a river basin is defined as the set of processes through which the basin maintains its structure and responds to its environment. Green (or biotic) metabolism is measured via transpiration and blue (or abiotic) metabolism through runoff. A principle of equal metabolic rate per unit area throughout the basin structure is developed and tested in a river basin characterized by large heterogeneities in precipitation, vegetation, soil, and geomorphology. This principle is suggested to have profound implications for the spatial organization of river basin hydrologic dynamics, including the minimization of energy expenditure known to control the scale-invariant characteristics of river networks over several orders of magnitude. Empirically derived, remarkably constant rates of average transpiration per unit area through the basin structure lead to a power law for the probability distribution of transpiration from a randomly chosen subbasin. The average runoff per unit area, evaluated for subbasins of a wide range of topological magnitudes, is also shown to be remarkably constant independently of size. A similar result is found for the rainfall after accounting for canopy interception. Allometric scaling of metabolic rates with size, variously addressed in the biological literature and network theory under the label of Kleiber's law, is similarly derived. The empirical evidence suggests that river basin metabolic activity is linked with the spatial organization that takes place around the drainage network and therefore with the mechanisms responsible for the fractal geometry of the network, suggesting a new coevolutionary framework for biological, geomorphological, and hydrologic dynamics.

  5. Metabolic principles of river basin organization.

    PubMed

    Rodriguez-Iturbe, Ignacio; Caylor, Kelly K; Rinaldo, Andrea

    2011-07-19

    The metabolism of a river basin is defined as the set of processes through which the basin maintains its structure and responds to its environment. Green (or biotic) metabolism is measured via transpiration and blue (or abiotic) metabolism through runoff. A principle of equal metabolic rate per unit area throughout the basin structure is developed and tested in a river basin characterized by large heterogeneities in precipitation, vegetation, soil, and geomorphology. This principle is suggested to have profound implications for the spatial organization of river basin hydrologic dynamics, including the minimization of energy expenditure known to control the scale-invariant characteristics of river networks over several orders of magnitude. Empirically derived, remarkably constant rates of average transpiration per unit area through the basin structure lead to a power law for the probability distribution of transpiration from a randomly chosen subbasin. The average runoff per unit area, evaluated for subbasins of a wide range of topological magnitudes, is also shown to be remarkably constant independently of size. A similar result is found for the rainfall after accounting for canopy interception. Allometric scaling of metabolic rates with size, variously addressed in the biological literature and network theory under the label of Kleiber's law, is similarly derived. The empirical evidence suggests that river basin metabolic activity is linked with the spatial organization that takes place around the drainage network and therefore with the mechanisms responsible for the fractal geometry of the network, suggesting a new coevolutionary framework for biological, geomorphological, and hydrologic dynamics. PMID:21670259

  6. Rivers Run Through It: Discovering the Interior Columbia River Basin.

    ERIC Educational Resources Information Center

    Davis, Shelley; Wojtanik, Brenda Lincoln; Rieben, Elizabeth

    1998-01-01

    Explores the Columbia River Basin, its ecosystems, and challenges faced by natural resource managers. By studying the basin's complexity, students can learn about common scientific concepts such as the power of water and effects of rain shadows. Students can also explore social-scientific issues such as conflicts between protecting salmon runs and…

  7. RED RIVER BASIN BIOLOGICAL MONITORING WORKGROUP

    EPA Science Inventory

    The goal of this project is to improve coordination of biological monitoring efforts in the Red River Basin. This is to be accomplished through coordination of a study to develop sampling protocols for macroinvertebrates in the main stream and lower tributaries of the Red River....

  8. Drainage divides, Massachusetts-Hudson River basin

    USGS Publications Warehouse

    Wandle, S. William, Jr.

    1982-01-01

    Drainage boundaries for selected subbasins in northern Berkshire County, Massachusetts, are delineated on five topographic quadrangle maps at a scale of 1:24,000. Drainage basins are shown for all U.S. Geological Survey data-collection sites and for mouths of major rivers. Drainage basins are shown for the outlets of lakes or ponds and for rivers where the drainage area is greater than 3 square miles. Successive sites are indicated where the intervening area is at least 6 square miles on tributary streams and 10 square miles along the Hoosic or North Branch Noosic Rivers. (USGS)

  9. Paraguay river basin response to seasonal rainfall

    NASA Astrophysics Data System (ADS)

    Krepper, Carlos M.; García, Norberto O.; Jones, Phil D.

    2006-07-01

    The use of river flow as a surrogate to study climatic variability implies the assumption that changes in rainfall are mirrored and likely amplified in streamflow. This is probably not completely true in large basins, particularly those that encompass different climatic regions, like the Paraguay river basin. Not all the signals present in precipitation are reflected in river flow and vice versa. The complex relationship between precipitation and streamflow could filter some signals and introduce new oscillatory modes in the discharge series. In this study the whole basin (1 095 000 km2) was divided into two sub-basins. The upper basin is upstream of the confluence with the River Apa and the lower basin is between the Apa river confluence and the Puerto Bermejo measuring station. The rainfall contribution shows a clear wet season from October to March and a dry season from April to September. A singular spectrum analysis (SSA) shows that there are trends in rainfall contributions over the upper and lower basins. Meanwhile, the lower basin only presents a near-decadal cycle (T 10 years). To determine the flow response to seasonal rainfall contributions, an SSA was applied to seasonal flow discharges at Puerto Bermejo. The seasonal flows, Q(t)O-M and Q(t)A-S, present high significant modes in the low-frequency band, like positive trends. In addition, Q(t)O-M presents a near-decadal mode, but only significant at the 77% level for short window lengths (M ≤ 15 years). Really, the Paraguay river flow is not a good surrogate to study precipitation variation. The low-frequency signals play an important role in the flow behaviour, especially during extreme events from the second half of the last century onwards.

  10. IAHS Symposium on Large River Basins

    NASA Astrophysics Data System (ADS)

    Frick, David M.

    The flow regime of large rivers is significantly influenced by man's activities, such as land use or river development. In other cases, there is evidence that climate change is the reason for modified flow regime. When basins are shared by a number of countries, the problems of hydrologic change become even more critical. Therefore, the social and economic consequences of changes in the flow regime of large river basins is far reaching,To improve the understanding of hydrologic processes and to investigate the availability of tools and methods that can be used to analyze the hydrological impacts of changes in flow, the International Association of Hydrologic Sciences (IAHS) and International Commission on Surface Water (ICSW) devoted its symposium, held at the August 1991 XXth General Assembly of the International Union of Geodesy and Geophysics (IUGG) in Vienna, Austria, to the theme “Hydrology for Water Management of Large River Basins.” The theme was divided into the four subtopics of water management and cooperation in large and/or international river basin: flow regimes and water management in relation to changes in climate, river development, and land use; water quality and sediment transport management in a large river environment; and operational flow and water quality forecasting. Both the general problem and organizational and operational aspects were investigated.

  11. Sediment Transport during Drawdown of the Copco 1 Reservoir on the Klamath River under Dam Removal Scenarios

    NASA Astrophysics Data System (ADS)

    Lai, Y.; Greimann, B. P.

    2010-12-01

    Four dams, Iron Gate, Copco 1, Copco 2, and J.C. Boyle on the Klamath River in Oregon and California, are under consideration for possible removal. About 10 million cubic meters of deposits are stored within the four reservoirs. A proposed removal alternative consists of two stages. First, Copco 2 dam is removed as it contains negligible deposits. Second, a concurrent drawdown of the remaining three reservoirs (JC Boyle, Copco 1 and Iron Gate) would commence in late fall or early winter in preparation for the removal of the dams. The deposits have a high water content (~80% by volume) and the majority of the sediment particles are fine-grained (silt and clay). When the deposits are released downstream, high suspended sediment concentrations and their associated biological impacts will be the most likely major concern, while concerns for downstream sediment deposition should be minor. Therefore, a reasonable estimate of the amount of suspended sediment released downstream during drawdown is critical in determining the timing and duration of the drawdown, as well as the drawdown rate selection. There is also interest in determining the best strategies for re-vegetating the reservoir area and recovering a functional riparian corridor in the reservoir area. In this study, a two-dimensional (2D) flow and sediment transport model is developed to simulate the drawdown process of a reservoir in preparation for dam removal. The model is based on the depth-averaged St. Venant equations with the non-equilibrium and multi-size sediment transport equations. Both cohesive and non-cohesive sediments are modeled. The amount of sediment removed from the reservoir and released downstream during reservoir drawdown, as well as the reservoir erosion characteristics for re-vegetation planning, may be computed using the model. Specifically, the 2D model is applied to the Copco 1 reservoir in an attempt to understand the drawdown process and to determine sediment transport under various

  12. Status and understanding of groundwater quality in the Klamath Mountains study unit, 2010: California GAMA Priority Basin Project

    USGS Publications Warehouse

    Bennett, George Luther, V; Fram, Miranda S.; Belitz, Kenneth

    2014-01-01

    Groundwater quality in the Klamath Mountains (KLAM) study unit was investigated as part of the Priority Basin Project of the California Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in Del Norte, Humboldt, Shasta, Siskiyou, Tehama, and Trinity Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA Priority Basin Project was designed to provide a spatially unbiased, statistically robust assessment of the quality of untreated (raw) groundwater in the primary aquifer system. The assessment is based on water-quality data and explanatory factors for groundwater samples collected in 2010 by the USGS from 39 sites and on water-quality data from the California Department of Public Health (CDPH) water-quality database. The primary aquifer system was defined by the depth intervals of the wells listed in the CDPH water-quality database for the KLAM study unit. The quality of groundwater in the primary aquifer system may be different from that in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. This study included two types of assessments: (1) a status assessment, which characterized the status of the current quality of the groundwater resource by using data from samples analyzed for volatile organic compounds, pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements, and (2) an understanding assessment, which evaluated the natural and human factors potentially affecting the groundwater quality. The assessments were intended to characterize the quality of groundwater resources in the primary aquifer system of the KLAM study unit, not the quality of treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentrations

  13. Effects of Iron Gate Dam discharge and other factors on the survival and migration of juvenile coho salmon in the lower Klamath River, northern California, 2006-09

    USGS Publications Warehouse

    Beeman, John; Juhnke, Steven; Stutzer, Greg; Wright, Katrina

    2012-01-01

    Current management of the Klamath River includes prescribed minimum discharges intended partly to increase survival of juvenile coho salmon during their seaward migration in the spring. To determine if fish survival was related to river discharge, we estimated apparent survival and migration rates of yearling coho salmon in the Klamath River downstream of Iron Gate Dam. The primary goals were to determine if discharge at Iron Gate Dam affected coho salmon survival and if results from hatchery fish could be used as a surrogate for the limited supply of wild fish. Fish from hatchery and wild origins that had been surgically implanted with radio transmitters were released into the Klamath River slightly downstream of Iron Gate Dam at river kilometer 309. Tagged fish were used to estimate apparent survival between, and passage rates at, a series of detection sites as far downstream as river kilometer 33. Conclusions were based primarily on data from hatchery fish, because wild fish were only available in 2 of the 4 years of study. Based on an information-theoretic approach, apparent survival of hatchery and wild fish was similar, despite differences in passage rates and timing, and was lowest in the 54 kilometer (km) reach between release and the Scott River. Models representing the hypothesis that a short-term tagging- or handling-related mortality occurred following release were moderately supported by data from wild fish and weakly supported by data from hatchery fish. Estimates of apparent survival of hatchery fish through the 276 km study area ranged from 0.412 (standard error [SE] 0.048) to 0.648 (SE 0.070), depending on the year, and represented an average of 0.790 per 100 km traveled. Estimates of apparent survival of wild fish through the study area were 0.645 (SE 0.058) in 2006 and 0.630 (SE 0.059) in 2009 and were nearly identical to the results from hatchery fish released on the same dates. The data and models examined supported positive effects of water

  14. Water utilization in the White River Basin

    USGS Publications Warehouse

    Helland, R.O.

    1946-01-01

    This report presents briefly the results of an investigation of the water and power resources of the White river made in 1943 primarily for the purpose of classification of lands adjacent to the stream that have been withdrawn for power purposes. About three days were spent by the writer in field examination of the river basin during August and September. A survey of the river from its confluence with the Deschutes River to the Mt. Hood Loop Highway is published by the Survey. Nearly all of this map was surveyed in 1932. The entire basin is shown on quadrangle sheets. A record of discharge is available for the period 1917-43 at a station near the mouth of the river, and several short records are available at points upstream and on tributary streams.

  15. South Fork Holston River basin 1988 biomonitoring

    SciTech Connect

    Saylor, C.F.; Ahlstedt, S.A.

    1990-06-01

    There is concern over the effects of shifts in land use use practices on the aquatic fauna of streams in the South Fork Holston River basin in northwestern North Carolina and southwestern Virginia. Trout reproduction has noticeably declined in the Watauga River subbasin. The Watauga River and Elk River subbasins have been subjected to commercial and resort development. The Middle fork Holston River and the upper South Fork Holston River subbasins have been affected by agricultural and mining activities, respectively (Cox, 1986). To aid reclamation and management of the South Fork Holston basin, Tennessee Valley Authority (TVA) biologists conducted biomonitoring--including index of biotic integrity and macroinvertebrate sampling--on the Middle Fork Holston, South Fork Holston, Watauga, and Elk Rivers to assess cumulative impairment related to changes in habitat and pollutant loading in these subbasins. Biomonitoring can detect environmental degradation, help document problem areas, and assist in development of strategies for managing water quality. This report discusses the methods and materials and results of the biomonitoring of South Fork Holston River Basin. 13 refs., 5 figs., 12 tabs.

  16. Hotspots within the Transboundary Selenga River Basin

    NASA Astrophysics Data System (ADS)

    Kasimov, Nikolay; Lychagin, Mikhail; Chalov, Sergey

    2013-04-01

    Gathering the efficient information on water pollution of transboundary river systems remains the crucial task in international water management, environmental pollution control and prevention health problems. Countries, located in the low parts of the river basins, depend on the water strategy and water use in the adjacent countries, located upstream. Surface water pollution is considered to be the most serious problem, facing the above-mentioned countries. Large efforts in terms of field measurement campaigns and (numerical) transport modeling are then typically needed for relevant pollution prediction and prevention. Russian rivers take inflow from 8 neighboring countries. Among them there are 2 developing economies - People Republic of China and Mongolia, which are located in water-scarce areas and thus solve their water-related problems through the consumption of international water. Negative change of water runoff and water quality in the foreign part of transboundary river is appeared inside Russian territory with more or less delay. The transboundary river system of Selenga is particularly challenging, being the biggest tributary of Lake Baikal which is the largest freshwater reservoir in the world. Selenga River contributes about 50 % of the total inflow into Baikal. It originates in the mountainous part of Mongolia and then drains into Russia. There are numerous industries and agricultural activities within the Selenga drainage basin that affect the water quality of the river system. Absence of the single monitoring system and predictive tools for pollutants transport in river system requires large efforts in understanding sources of water pollution and implemented data on the relevant numerical systems for the pollution prediction and prevention. Special investigations in the Selenga river basin (Mongolia and Russia) were done to assess hot spots and understand state-of-the art in sediment load, water chemistry and hydrobiology of transboundary systems

  17. Modified Streamflows 1990 Level of Irrigation : Missouri, Colorado, Peace and Slave River Basin, 1928-1989.

    SciTech Connect

    A.G. Crook Company; United States. Bonneville Power Administration

    1993-07-01

    This report presents data for monthly mean streamflows adjusted for storage change, evaporation, and irrigation, for the years 1928-1990, for the Colorado River Basin, the Missouri River Basin, the Peace River Basin, and the Slave River Basin.

  18. RESERVES IN WESTERN BASINS PART IV: WIND RIVER BASIN

    SciTech Connect

    Robert Caldwell

    1998-04-01

    Vast quantities of natural gas are entrapped within various tight formations in the Rocky Mountain area. This report seeks to quantify what proportion of that resource can be considered recoverable under today's technological and economic conditions and discusses factors controlling recovery. The ultimate goal of this project is to encourage development of tight gas reserves by industry through reducing the technical and economic risks of locating, drilling and completing commercial tight gas wells. This report is the fourth in a series and focuses on the Wind River Basin located in west central Wyoming. The first three reports presented analyses of the tight gas reserves and resources in the Greater Green River Basin (Scotia, 1993), Piceance Basin (Scotia, 1995) and the Uinta Basin (Scotia, 1995). Since each report is a stand-alone document, duplication of language will exist where common aspects are discussed. This study, and the previous three, describe basin-centered gas deposits (Masters, 1979) which contain vast quantities of natural gas entrapped in low permeability (tight), overpressured sandstones occupying a central basin location. Such deposits are generally continuous and are not conventionally trapped by a structural or stratigraphic seal. Rather, the tight character of the reservoirs prevents rapid migration of the gas, and where rates of gas generation exceed rates of escape, an overpressured basin-centered gas deposit results (Spencer, 1987). Since the temperature is a primary controlling factor for the onset and rate of gas generation, these deposits exist in the deeper, central parts of a basin where temperatures generally exceed 200 F and drill depths exceed 8,000 feet. The abbreviation OPT (overpressured tight) is used when referring to sandstone reservoirs that comprise the basin-centered gas deposit. Because the gas resources trapped in this setting are so large, they represent an important source of future gas supply, prompting studies to

  19. The "normal" elongation of river basins

    NASA Astrophysics Data System (ADS)

    Castelltort, Sebastien

    2013-04-01

    The spacing between major transverse rivers at the front of Earth's linear mountain belts consistently scales with about half of the mountain half-width [1], despite strong differences in climate and rock uplift rates. Like other empirical measures describing drainage network geometry this result seems to indicate that the form of river basins, among other properties of landscapes, is invariant. Paradoxically, in many current landscape evolution models, the patterns of drainage network organization, as seen for example in drainage density and channel spacing, seem to depend on both climate [2-4] and tectonics [5]. Hovius' observation [1] is one of several unexplained "laws" in geomorphology that still sheds mystery on how water, and rivers in particular, shape the Earth's landscapes. This narrow range of drainage network shapes found in the Earth's orogens is classicaly regarded as an optimal catchment geometry that embodies a "most probable state" in the uplift-erosion system of a linear mountain belt. River basins currently having an aspect away from this geometry are usually considered unstable and expected to re-equilibrate over geological time-scales. Here I show that the Length/Width~2 aspect ratio of drainage basins in linear mountain belts is the natural expectation of sampling a uniform or normal distribution of basin shapes, and bears no information on the geomorphic processes responsible for landscape development. This finding also applies to Hack's [6] law of river basins areas and lengths, a close parent of Hovius' law. [1]Hovius, N. Basin Res. 8, 29-44 (1996) [2]Simpson, G. & Schlunegger, F. J. Geophys. Res. 108, 2300 (2003) [3]Tucker, G. & Bras, R. Water Resour. Res. 34, 2751-2764 (1998) [4]Tucker, G. & Slingerland, R. Water Resour. Res. 33, 2031-2047 (1997) [5]Tucker, G. E. & Whipple, K. X. J. Geophys. Res. 107, 1-1 (2002) [6]Hack, J. US Geol. Surv. Prof. Pap. 294-B (1957)

  20. 76 FR 61382 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-04

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. ] SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub....

  1. 75 FR 25877 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-10

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control ] Act of 1974...

  2. 75 FR 27360 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub....

  3. 77 FR 23508 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-19

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub....

  4. 75 FR 66389 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-28

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub....

  5. 76 FR 24515 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of... Committee Act, the Bureau of Reclamation announces that the Colorado River Basin Salinity Control Advisory...) 524-3826; e-mail at: kjacobson@usbr.gov . SUPPLEMENTARY INFORMATION: The Colorado River Basin...

  6. 78 FR 23784 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-22

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974...

  7. 78 FR 70574 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-26

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub....

  8. 77 FR 61784 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-11

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub....

  9. Physical habitat predictors of Manayunkia speciosa distribution in the Klamath River and implications for management of Ceratomyxa shasta, a parasite with a complex life cycle

    NASA Astrophysics Data System (ADS)

    Jordan, M. S.; Alexander, J. D.; Grant, G. E.; Bartholomew, J. L.

    2011-12-01

    Management strategies for parasites with complex life cycles may target not the parasite itself, but one of the alternate hosts. One approach is to decrease habitat for the alternate host, and in river systems flow manipulations may be employed. Two-dimensional hydraulic models can be powerful tools for predicting the relationship between flow alterations and changes in physical habit, however they require a rigorous definition of physical habitat for the organism of interest. We present habitat characterization data for the case of the alternate host of a salmonid parasite and introduce how it will be used in conjunction with a 2-dimensional hydraulic model. Ceratomyxa shasta is a myxozoan parasite of salmonids that requires a freshwater polychaete Manayunkia speciosa to complete its life cycle. Manayunkia speciosa is a small (3mm) benthic filter-feeding worm that attaches itself perpendicularly to substrate through construction of a flexible tube. In the Klamath River, CA/OR, C. shasta causes significant juvenile salmon mortality, imposing social and economic losses on commercial, sport and tribal fisheries. An interest in manipulating habitat for the polychaete host to decrease the abundance of C. shasta has therefore developed. Unfortunately, there are limited data on the habitat requirements of M. speciosa or the influence of streamflow regime and hydraulics on population dynamics and infection prevalence. This work aims to address these data needs by identifying physical habitat variables that influence the distribution of M. speciosa and determining the relationship between those variables, M. speciosa population density, and C. shasta infection prevalence. Biological samples were collected from nine sites representing three river features (runs, pools, and eddies) within the Klamath River during the summer and fall of 2010 and 2011. Environmental data including depth, velocity, and substrate, were collected at each polychaete sampling location. We tested

  10. Central Mississippi River Basin LTAR site overview

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Central Mississippi River Basin (CMRB) member of the Long-Term Agro-ecosystem Research (LTAR) network is representative of the southern Corn Belt, where subsoil clay content makes tile drainage challenging and make surface runoff and associated erosion problematic. Substantial research infrastru...

  11. OHIO RIVER BASIN ENERGY STUDY: HEALTH ASPECTS

    EPA Science Inventory

    This report was prepared as part of the Ohio River Basin Energy Study (ORBES), a multi-disciplinary program supported by the Environmental Protection Agency. It attempts to establish health damage functions for energy resource extraction, conversion (i.e., burning of coal to prod...

  12. Nutrient levels in the Yazoo River Basin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High nitrogen (N) and phosphorus (P) loadings to aquatic ecosystems are linked to environmental problems including harmful algal blooms and hypoxia. Presented is an assessment of accessible data on nutrient sources, sinks and inputs to streams within the Yazoo River Basin of northern Mississippi. Ac...

  13. Spring and Summer Spatial Distribution of Endangered Juvenile Lost River and Shortnose Suckers in Relation to Environmental Variables in Upper Klamath Lake, Oregon: 2007 Annual Report

    USGS Publications Warehouse

    Burdick, Summer M.; VanderKooi, Scott P.; Anderson, Greer O.

    2009-01-01

    Lost River sucker Deltistes luxatus and shortnose sucker Chasmistes brevirostris were listed as endangered in 1988 for a variety of reasons including apparent recruitment failure. Upper Klamath Lake, Oregon, and its tributaries are considered the most critical remaining habitat for these two species. Age-0 suckers are often abundant in Upper Klamath Lake throughout the summer months, but catches decline dramatically between late August and early September each year, and age-1 and older subadult suckers are rare. These rapid declines in catch rates and a lack of substantial recruitment into adult sucker populations in recent years suggests sucker populations experience high mortality between their first summer and first spawn. A lack of optimal rearing habitat may exacerbate juvenile sucker mortality or restrict juvenile growth or development. In 2007, we continued research on juvenile sucker habitat use begun by the U.S. Geological Survey (USGS) in 2001. Age-0 catch rates in 2006 were more than an order of magnitude greater than in previous years, which prompted us to refocus our research from age-0 suckers to age-1 sucker distributions and habitat use. We took a two-phased approach to our research in 2007 that included preliminary spring sampling and intense summer sampling components. Spring sampling was a pilot study designed to gather baseline data on the distribution of age-1 suckers as they emerge from winter in shoreline environments throughout Upper Klamath Lake (Chapter 1). Whereas, summer sampling was designed to quantitatively estimate the influence of environmental variables on age-0 and age-1 sucker distribution throughout Upper Klamath Lake, while accounting for imperfect detection (Chapter 2). In addition to these two components, we began a project to evaluate passive integrated transponder (PIT) tag loss and the effects of PIT tags on mortality of age-1 Lost River suckers (Chapter 3). The spring pilot study built the foundation for future research

  14. Hydrological Modelling of Ganga River basin.

    NASA Astrophysics Data System (ADS)

    Anand, J.; Gosain, A. K.; Khosa, R.

    2015-12-01

    Application of a hydrological model, Soil and Water Assessment Tool (SWAT) to the Ganga basin having a total drainage area of around 1.08 M sq. km extending over Tibet, Nepal, India and Bangladesh has been made. The model is calibrated to determine the spatial deviations in runoff at sub-basin level, and to capture the water balance of the river basin. Manual calibration approach was used for calibrating the SWAT model by following multi-step procedure to get to the realistic present situation as close as possible. Simulations were then further made with and without proposed future projects to obtain various scenarios. The various statistical parameters used for the evaluation of the monthly runoff simulation showed that SWAT performed well in mimicking the monthly stream flow for Ganga River basin. The model under predicted the flows in the non-perennial region during non-monsoon season, due to low rainfall and regulated flows and seepage taking place from the reservoirs. The impacts of the interventions, both existing as well as proposed, on the water balance of the basin were evaluated and quantified. The derived results suggest that there is a substantial reduction in overall water resources availability in the study basin on account of the current level of development and further, future developments, as are being proposed, may require a careful study of their potential impact on currently sanctioned water use. The present study showcases that efficacy of the model for simulating the stream flow is admirable.

  15. Sediment fluxes in transboundary Selenga river basin

    NASA Astrophysics Data System (ADS)

    Belozerova, Ekaterina

    2013-04-01

    Gathering reliable information on transboundary river systems remains a crucial task for international water management and environmental pollution control. Countries located in the lower parts of the river basins depend on water use and management strategies in adjacent upstream countries. One important issue in this context is sediment transport and associated contaminant fluxes across the state borders. The mass flows of dissolved ions, biogens, heavy metal concentrations, as far as suspended sediment concentration (SSC, mg/l) along upper Selenga river and its tributaries based on the literature review and results of field campaigns 2011-2012 were estimated. Based on the water discharges measurements Q, suspended load WR (t/day) and dissolved loads WL were calculated. In the Selenga basin the minimal WR (1,34-3,74 t/day) were found at small rivers. Maximal sediment loads (WR = 15 000 t/day) were found at the upper Orkhon river during flood event. The downstream point (Mongolia-Russia border) was characterized 2 220 t/day in 2011. Generally the prevalence of the accumulation is found through calculating sediment budget for all rivers (ΔW = WR (downstream) - WR (upstream) < 0). Downstream of Orkhon river (below confluence with Tuul) ΔW = - 1145 t/day. Below Selenga-Orkhon confluence sediment yield reached 2515 t/day, which is corresponded to transboundary sediment flux. Silt sediments (0,001 - 0,05 mm) form the main portion of the transported material. The maximal value of sand flux (302 t/day) was reported for middle stream station of Selenga river (upstream from confluence with Orkhon). The increase of human activities (mining and pastures) increases the portion of clay particles in total sediment load (e.g. at the downstream point of most polluted Orkhon river it reached 207,8 t/day). The existed estimates are compared with distribution of the main matter sources within basin: mining and industry, river-bank erosion and slope wash. The heaviest increase of

  16. Yazoo River Basin (Lower Mississippi River) Hydrologic Observatory

    NASA Astrophysics Data System (ADS)

    Cheng, A.; Davidson, G.; Altinakar, M.; Holt, R.

    2004-12-01

    The proposed Yazoo River Basin Hydrologic Observatory consists of the 34,000 square km Yazoo River watershed in northwestern Mississippi and a 320 km segment of the Mississippi River separated from the watershed by a manmade levee. Discharge from the basin flows from the Yazoo River into the Mississippi River north of Vicksburg, MS. Major streams within the basin include the Yazoo, Tallahatchie, Yalobusha, Coldwater, Yocona, and Big Sunflower Rivers. Four large flood control reservoirs (Arkabutla, Enid, Sardis, and Grenada) and two national forests (Delta and Holly Springs) are also located within the basin. The watershed is divided between upland forested hills and intensively cultivated lowlands. The lowland area, locally known as the "Delta", lies on the ancestral floodplain of the Mississippi River. Flooding by the Mississippi River was once a common event, but is now limited by the levee system. Abundant wetlands occupy abandoned stream channels throughout the Delta. The Yazoo River Basin has many unique features that make it an attractive site for an Hydrologic Observatory. Example features and issues of scientific interest include: 1) Extensive system of levees which have altered recharge to the regional aquifer, shifted population centers, and created backwater flooding areas. 2) Abundant wetlands with a century-long history of response to agricultural sediment and chemical fluxes. 3) Erosion of upland streams, and stream sediment loads that are the highest in the nation. 4) Groundwater mining in spite of abundant precipitation due to a regional surface clay layer that limits infiltration. 5) A history of agricultural Best Management Practices enabling evaluation of the effectiveness of such measures. 6) Large scale catfish farming with heavy reliance on groundwater. 7) Near enough to the Gulf coast to be impacted by hurricane events. 8) Already existing network of monitoring stations for stream flow, sediment-load, and weather, including complete coverage

  17. Flood tracking chart, Amite River basin, Louisiana

    USGS Publications Warehouse

    Callender, Lawrence; McCallum, Brian E.; Brazelton, Sebastian R.

    1996-01-01

    The Amite River Basin flood tracking chart is designed to assist emergency response officials and the local public in making informed decisions about the safety of life and property during floods along the Amite and Comite Rivers and Bayou Manchac in southeastern Louisiana. This chart is similar in concept to the charts used to track hurricanes; the user can record the latest river stage information at selected gaging stations and the latest flood crest predictions. The latest stage data can be compared to historical flood peaks as well as to the slab or pier elevation of a threatened property. The chart also discusses how to acquire the latest river stage data from the Internet and a recorded voice message.

  18. Flood tracking chart, Amite River Basin, Louisiana

    USGS Publications Warehouse

    Callender, Lawrence E.; McCallum, Brian E.; Brazelton, Sebastian R.; Anderson, Mary L.; Ensminger, Paul A.

    1998-01-01

    The Amite River Basin flood tracking chart is designed to assist emergency response officials and the local public in making informed decisions about the safety of life and property during floods along the Amite and Comite Rivers and Bayou Manchac in southeastern Louisiana. This chart is similar in concept to the charts used to track hurricanes; the user can record the latest river stage information at selected gaging stations and the latest flood crest predictions. The latest stage data can be compared to historical flood peaks as well as to the slab or pier elevation of a threatened property. The chart also discusses how to acquire the latest river stage data from the Internet and a recorded voice message.

  19. Distribution, Health, and Development of Larval and Juvenile Lost River and Shortnose Suckers in the Williamson River Delta Restoration Project and Upper Klamath Lake, Oregon: 2008 Annual Data Summary

    USGS Publications Warehouse

    Burdick, Summer M.; Ottinger, Christopher; Brown, Daniel T.; VanderKooi, Scott P.; Robertson, Laura; Iwanowicz, Deborah

    2009-01-01

    Federally endangered Lost River sucker Deltistes luxatus and shortnose sucker Chasmistes brevirostris were once abundant throughout their range but populations have declined; they have been extirpated from several lakes, and may no longer reproduce in others. Poor recruitment into the adult spawning populations is one of several reasons cited for the decline and lack of recovery of these species, and may be the consequence of high mortality during juvenile life stages. High larval and juvenile sucker mortality may be exacerbated by an insufficient quantity of suitable rearing habitat. Within Upper Klamath Lake, a lack of marshes also may allow larval suckers to be swept from suitable rearing areas downstream into the seasonally anoxic waters of the Keno Reservoir. The Nature Conservancy (TNC) flooded about 3,600 acres to the north of the Williamson River mouth (Tulana Unit) in October 2007, and about 1,400 acres to the south and east of the Williamson River mouth (Goose Bay Unit) a year later, to retain larval suckers in Upper Klamath Lake, create nursery habitat for suckers, and improve water quality. In collaboration with TNC, the Bureau of Reclamation, and Oregon State University, we began a long-term collaborative research and monitoring program in 2008 to assess the effects of the Williamson River Delta restoration on the early life-history stages of Lost River and shortnose suckers. Our approach includes two equally important aspects. One component is to describe habitat use and colonization processes by larval and juvenile suckers and non-sucker fish species. The second is to evaluate the effects of the restored habitat on the health and condition of juvenile suckers. This report contains a summary of the first year of data collected as a part of this monitoring effort.

  20. Mississippi River, Yazoo Basin, Memphis, TN

    NASA Technical Reports Server (NTRS)

    1973-01-01

    This section of the lower Mississippi River (34.0N, 90.0W) known as the Yazoo Basin, is characterized by a wide expanse of rich river bottomland with many oxbow lakes, the remains of the many changes in the riverbed over the course of many thousands of years. This soil is very fertile and productive but the region is prone to flooding. In this view, some of the back areas around the Delta National Forest show the effects of heavy spring rains.

  1. Beryllium isotope geochemistry in tropical river basins

    SciTech Connect

    Brown, E.T.; Edmond, J.M. ); Raisbeck, G.M.; Bourles, D.L.; Yiou, F. ); Measures, C.I. )

    1992-04-01

    The distributions of beryllium-9 and beryllium-10 in rivers within the Orinoco and Amazon basins have been examined to extend the understanding of their geochemical cycles and to develop their use both in geochronometry, and in studying erosional processes. Analyses of {sup 9}Be in dissolved and suspended material from rivers with a wide range of chemical compositions indicate that its geochemistry is primarily controlled by two major factors: (1) its abundance in the rocks of the watershed and (2) the extent of its adsorption onto particle surfaces. The relative importance of these parameters in individual rivers is determined by the extent of interaction with flood-plain sediments and the riverine pH. This understanding of {sup 9}Be geochemistry forms a basis for examination of the geochemical cycling of {sup 10}Be. In rivers which are dominated by interaction with sediments, the riverine concentration of dissolved {sup 10}Be is far lower than that in the incoming rainwater, indicating that a substantial proportion of it is retained within the soils of the basin or is adsorbed onto riverine particles. However, in acidic rivers in which the stable dissolved Be concentration is determined by the Be level in the rocks of the drainage basin, dissolved {sup 10}Be has essentially the same concentration as in precipitation. These observations imply that the soil column in such regions must be saturated with respect to {sup 10}Be, and that the ratio of the inventory to the flux does not represent an age, as may be the case in temperate latitudes, but rather a residence time.

  2. Sustainability Within the Great Monsoon River Basins

    NASA Astrophysics Data System (ADS)

    Webster, P. J.

    2014-12-01

    For over five millenia, the great monsoon river basins of the Ganges, Brahmaputra and Indus have provided for great and flourishing agrarian civilizations. However, rapid population growth and urbanization have placed stress on the rural sector causing the use of land that is more prone for flood and drought. In addition, increased population and farming have stressed the availability of fresh water both from rivers and aquifers. Additionally, rapid urbanization has severely reduced water quality within the great rivers. Added to these problems is delta subsidence from water withdrawal that, at the moment far surpasses sea level rise from both natural and anthropogenic effects. Finally, there appear to be great plans for river diversion that may reduce fresh water inflow into the Brahmaputra delta. All of these factors fall against a background of climate change, both anthropogenic and natural, of which there is great uncertainty. We an attempt a frank assessment assessment of the sustainability of society in the great basins and make some suggestions of factors that require attention in the short term.

  3. Health and condition of endangered juvenile Lost River and shortnose suckers relative to water quality and fish assemblages in Upper Klamath Lake, Oregon, and Clear Lake Reservoir, California

    USGS Publications Warehouse

    Burdick, Summer M.; Elliott, Diane G.; Ostberg, Carl O.; Conway, Carla M.; Dolan-Caret, Amari; Hoy, Marshal S.; Feltz, Kevin P.; Echols, Kathy R.

    2015-01-01

    Differences in sucker health and condition between lakes were considered the most promising clues to the causes of differential juvenile sucker morality between lakes. A low prevalence of petechial hemorrhaging of the skin (16 percent) and deformed opercula (8 percent) in Upper Klamath Lake suckers may indicate exposure to a toxin other than microcystin. Suckers grew slower in their first year of life, but had similar or greater triglyceride and glycogen levels in Upper Klamath Lake compared to Clear Lake Reservoir. These findings do not suggest a lack of prey quantity but may indicate lower prey quality in Upper Klamath Lake.

  4. Scaling issues in sustainable river basin management

    NASA Astrophysics Data System (ADS)

    Timmerman, Jos; Froebich, Jochen

    2014-05-01

    Sustainable river basin management implies considering the whole river basin when managing the water resources. Management measures target at dividing the water over different uses (nature, agriculture, industry, households) thereby avoiding calamities like having too much, too little or bad quality water. Water management measures are taken at the local level, usually considering the sub-national and sometimes national effects of such measures. A large part of the world's freshwater resources, however, is contained in river basins and groundwater systems that are shared by two or more countries. Sustainable river basin management consequently has to encompass local, regional, national and international scales. This requires coordination over and cooperation between these levels that is currently compressed into the term 'water governance' . Governance takes into account that a large number of stakeholders in different regimes (the principles, rules and procedures that steer management) contribute to policy and management of a resource. Governance includes the increasing importance of basically non-hierarchical modes of governing, where non-state actors (formal organizations like NGOs, private companies, consumer associations, etc.) participate in the formulation and implementation of public policy. Land use determines the run-off generation and use of irrigation water. Land use is increasingly determined by private sector initiatives at local scale. This is a complicating factor in the governance issue, as in comparison to former developments of large scale irrigation systems, planning institutions at state level have then less insight on actual water consumption. The water management regime of a basin consequently has to account for the different scales of water management and within these different scales with both state and non-state actors. The central elements of regimes include the policy setting (the policies and water management strategies), legal setting

  5. Institutional networks and adaptive water governance in the Klamath River Basin, USA.

    EPA Science Inventory

    Polycentric networks of formal organizations and informal stakeholder groups, as opposed to centralized institutional hierarchies, can be critically important for strengthening the capacity of governance systems to adapt to unexpected social and biophysical change. Adaptive gover...

  6. Outlet Works, from foreground: Deschutes River, Stilling Basin, Outlet Opening, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Outlet Works, from foreground: Deschutes River, Stilling Basin, Outlet Opening, Valve House, dam embankment, and Emergency Gates Control Tower, view to southwest - Wickiup Dam, Outlet Works, Deschutes River, La Pine, Deschutes County, OR

  7. Valve House, Stilling Basin, and Deschutes River with toe drain ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Valve House, Stilling Basin, and Deschutes River with toe drain visible as water fall on left bank, from top of dam embankment, view to north - Wickiup Dam, Outlet Works, Deschutes River, La Pine, Deschutes County, OR

  8. Simulation and validation of larval sucker dispersal and retention through the restored Williamson River Delta and Upper Klamath Lake system, Oregon

    USGS Publications Warehouse

    Wood, Tamara M.; Hendrixson, Heather A.; Markle, Douglas F.; Erdman, Charles S.; Burdick, Summer M.; Ellsworth, Craig M.

    2014-01-01

    A hydrodynamic model with particle tracking was used to create individual-based simulations to describe larval fish dispersal through the restored Williamson River Delta and into Upper Klamath Lake, Oregon. The model was verified by converting particle ages to larval lengths and comparing these lengths to lengths of larvae in net catches. Correlations of simulated lengths with field data were moderate and suggested a species-specific difference in model performance. Particle trajectories through the delta were affected by wind speed and direction, lake elevation, and shoreline configuration. Once particles entered the lake, transport was a function of current speed and whether behavior enhanced transport (swimming aligned with currents) or countered transport through greater dispersal (faster random swimming). We tested sensitivity to swim speed (higher speeds led to greater dispersal and more retention), shoreline configuration (restoration increased retention relative to pre-restoration conditions), and lake elevation (retention was maximized at an intermediate elevation). The simulations also highlight additional biological questions, such as the extent to which spatially heterogeneous mortality or fish behavior and environmental cues could interact with wind-driven currents and contribute to patterns of dispersal.

  9. Survival and Migration Behavior of Juvenile Coho Salmon in the Klamath River Relative to Discharge at Iron Gate Dam, Northern California, 2007

    USGS Publications Warehouse

    Beeman, John W.; Juhnke, Steve; Stutzer, Greg; Hetrick, Nicholas

    2008-01-01

    This report describes a study of survival and migration behavior of radio-tagged juvenile coho salmon (Oncorhynchus kisutch) in the Klamath River, northern California, in 2007. This was the third year of a multi-year study with the goal of determining the effects of discharge at Iron Gate Dam (IGD) on survival of juvenile coho salmon downstream. Survival and factors affecting survival were estimated in 2006 and 2007 after work in 2005 showed radio telemetry could be used effectively. The study has included collaborative efforts among U.S. Geological Survey (USGS), U.S. Fish and Wildlife Service (USFWS), the Karuk and Yurok Tribal Fisheries Departments, and the U.S. Bureau of Reclamation. The objectives of the study included: (1) estimating the survival of wild and hatchery juvenile coho salmon in the Klamath River downstream of Iron Gate Dam, determining the effects of discharge and other covariates on juvenile coho salmon survival (2) and migration (3), and (4) determining if fish from Iron Gate Hatchery (IGH) could be used as surrogates for the limited source of wild fish. We have been able to meet the first objective by estimating the survivals of hatchery and wild fish (when available) downstream of IGD. We have not yet met the second or third objectives, because we have been unable to separate effects of discharge from other environmental variables as they pertain to the survival or migration of juvenile coho salmon. This was foreseen when the study began, as it was known there would likely be no experimental discharges. A multi-year analysis will be conducted after the data for the third planned year are available. The fourth objective was initiated in 2006, but wild fish were not available in 2007. The next year wild fish may be available is in 2009, based on their 3-year cycle of abundance. River discharges during the 2007 study period (April 10 through July 28, 2007) were below average compared to the period of record beginning in 1962. Average daily

  10. ANCIENT EARTHWORK IMPLEMENTS AND LAND DEVELOPMENT ON ONGA RIVER BASIN

    NASA Astrophysics Data System (ADS)

    Matsuki, Hirotada; Esaki, Tetsuro; Mitani, Yasuhiro; Ikemi, Hiroaki

    Present land use in a river basin is consequence of all land development in the past. This study is an attempt to recognize land development of a river basin, focusing on Onga river basin in ancient days (until 6th century). After confirming geological and topographical characteristics, the study pays attention to earthwork capability in Jomon, Yayo i and Kofun era. Leading-edge impl ements in each era support us to make an interpretation of ancient monuments' location and archaeological findings. Especially wooden how/spades in Yayoi era and iron blade edges in Kofu n era had typical impact to expand ricefield towards uncultivated area. The conclution indicates that the a dvanced earthwork implements enabled people shift main paddy field from lower lagoon area to upper alluvial terrains on Onga river basin through ancient days. This ancient land development history has much suggestions for today's river/river basin management.

  11. Powder River Basin: new energy frontier

    SciTech Connect

    Richards, B.

    1981-02-01

    The Powder River Basin in Wyoming represents a new energy frontier, where traditional ranch styles are giving way to boomtown development around new coal mines. Plans for extensive strip mining, coal trains and pipelines, and synthetic fuels plants will transform a 12,000 square mile area. The environmental and social impacts of trailer villages and the influx of new mores and life styles are already following traditional patterns for newcomers and long-time residents alike. Some local residents, however, are optimistic about the opportunities energy development will have. (DCK)

  12. 76 FR 9046 - Non-Use Valuation Survey, Klamath Basin; Thirty-Day Notice Requesting Additional Public Comments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-16

    ... run Chinook salmon (Oncorhynchus tshawytscha), coho salmon (Oncorhynchus kisutch), steelhead trout... Basin tribes (e.g., salmon, sturgeon, lamprey, eulachon), and some are at low levels of abundance or... benefits of dam removal that may accrue to members of the U.S. public who value such...

  13. 75 FR 38543 - Klamath Hydroelectric Settlement Agreement, Including Secretarial Determination on Whether To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-02

    ...@usbr.gov . Correction In the Federal Register of June 14, 2010, (75 FR 33634), in column 2, correct the... Bureau of Reclamation Klamath Hydroelectric Settlement Agreement, Including Secretarial Determination on... locations. Dated: June 23, 2010. Dennis Lynch, Program Manager, Klamath Basin Secretarial...

  14. Developing a Science-based River Basin Management Plan for the Kharaa River Basin, Mongolia

    NASA Astrophysics Data System (ADS)

    Karthe, Daniel

    2013-04-01

    The Kharaa River Basin (KRB), which is located north of Mongolia's capital Ulaanbaatar and south of Lake Baikal, was chosen as a model region for the development and implementation of an integrated water resources management consisting of a monitoring concept, technical measures and a capacity development program (Karthe et al. 2012a). The basin of the Kharaa River covers an area of 14534 km² that is partly mountaineous and largely covered by taiga and steppe. At its outlet, the 362 km Kharaa River has a mean long-term annual discharge of 12.1 m³/s (MoMo Consortium 2009). A highly continental climate results in limited water resources, and rising water consumption coupled with the effects of climate and land use change may in the future exacerbate this water scarcity (Malsy et al. 2012; Karthe et al. 2013). Whereas the environment in the upper part of the catchment is in a relatively pristine state, the mid- and downstream sections of the river are characterized by nearby industry, mining activities and intensive agriculture (Menzel et al. 2011), resulting in declining water quality and ultimately a degradation of aquatic ecosystems (Hofmann et al. 2010; Hartwig et al. 2012). Moreover, it is a problem for the supply of major cities like Darkhan which largely rely on alluvial aquifers containing shallow-depth groundwater (Mun et al. 2008). Currently, there are alarming signs of water quality deterioration. With regard to water provision, a major problem is the poor state of distribution infrastructures which were often built in the 1960s and 70s (Scharaw & Westerhoff 2011). Rather little is currently known about the water quality supplied to end users; the latter is even more dubious in the city's informal ger districts (Karthe et al. 2012b). One important goal of the research and development project "Integrated Water Resources Management in Central Asia: Model Region Mongolia" lies in the implementation of a holistic concept for water resources monitoring and

  15. Controlling erosion in the Missouri River Basin

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-09-01

    The most pervasive conservation concern in the vast 510,000 square mile Missouri River basin in the western United States is excessive rates of wind erosion during dry periods, though conservation efforts can help control erosion, according to a 30 August report by the U.S. Department of Agriculture's (USDA) Conservation Effects Assessment Project. During some dry years, rates of wind erosion—which include nitrogen and phosphorus losses—can be higher than 4 tons per acre on 12% and higher than 2 tons per acre on 20% of the approximately 148,000 square miles of cultivated cropland, notes the report Assessment of the Effects of Conservation Practices on Cultivated Cropland in the Missouri River Basin. Between 2003 and 2006, conservation practices, including reducing tillage and building terraces, yielded about a 75% reduction in sediment runoff and phosphorus loss and a 68% reduction in nitrogen loss, according to the report. About 15 million acres in the region—18% of cultivated cropland—are considered to have either a high or moderate level of need for conservation treatment, and efforts in those areas in particular could result in additional reductions in sediment, phosphorus, and nitrogen loss, the report states.

  16. Drainage areas of streams in Arkansas, Ouachita River basin

    USGS Publications Warehouse

    Yanchosek, John J.; Hines, Marion S.

    1979-01-01

    Drainage areas, determined in accordance with procedure recommended by the Subcommittee on Hydrology of the Federal Inter-Agency River Basin Committee, are listed for points on streams in the Ouachita River basin in Arkansas. Points on the streams are identified by some topographic feature and by latitude and longitude. (USGS).

  17. COLUMBIA RIVER BASIN CONTAMINANT AQUATIC BIOTA AND SEDIMENT DATA

    EPA Science Inventory

    Numerous studies have been done to determine the levels of chemical contaminants in fish and sediment in the Columbia River Basin. These studies were done because of concern that releases of toxic Chemicals into the Columbia River Basin may be impacting health and the environment...

  18. New vitrinite reflectance data for the Wind River Basin, Wyoming

    USGS Publications Warehouse

    Pawlewicz, Mark J.; Finn, Thomas M.

    2013-01-01

    The Wind River Basin is a large Laramide (Late Cretaceous through Eocene) structural and sedimentary basin that encompasses about 7,400 square miles in central Wyoming. The basin is bounded by the Washakie Range and Owl Creek and southern Bighorn Mountains on the north, the Casper arch on the east and northeast, and the Granite Mountains on the south, and Wind River Range on the west. The purpose of this report is to present new vitrinite reflectance data collected mainly from Cretaceous marine shales in the Wind River Basin to better characterize their thermal maturity and hydrocarbon potential.

  19. Water - Essential Resource of the Southern Flint River Basin, Georgia

    USGS Publications Warehouse

    Warner, Debbie; Norton, Virgil

    2004-01-01

    Introduction Abundant water resources of the Flint River Basin have played a major role in the history and development of southwestern Georgia. The Flint River-along with its tributaries, wetlands, and swamps-and the productive aquifers of the river basin are essential components of the area's diverse ecosystems. These resources also are necessary for sustained agricultural, industrial, and municipal activities. Increasing, and in some cases conflicting, demand for water makes careful monitoring and wise planning and management of southwestern Georgia's water resources critical to the ecological and economic future of the area. This poster presents the major issues associated with increasing competition for water resources in the southern Flint River Basin.

  20. Quality of water, Quillayute River basin, Washington

    SciTech Connect

    Fretwell, M.O.

    1984-01-01

    Ground water in the Quillayute River basin is generally of the calcium bicarbonate type, although water from some wells is affected by seawater intrusion and is predominantly of the sodium chloride type. The water is generally of excellent quality for most uses, with the exception of water in two wells which had iron concentrations that potentially could be tasted in beverages and could cause staining of laundry and porcelain fixtures. A comparison of the chemical compositions of ground and surface waters showed a strong similarity over a wide geographic area. Proportions of the major chemical constituents in the rivers of the basin were nearly constant despite concentration fluctuations in response to dilution from precipitation and snowmelt. River-water quality was generally excellent, as evaluated against Washington State water use and water-quality criteria. Fecal-coliform bacteria counts generally were much lower than the total-coliform bacteria counts, indicating that most of the coliform bacteria were of nonfecal origin and probably originated in soils. Fecal coliform concentrations in all the major tributaries met State water-quality criteria. Water temperatures occasionally exceeded criteria maximum during periods of warm weather and low streamflow; dissolved-oxygen concentrations were occasionally less than criteria minimum because of increased water temperature. Both conditions occurred naturally. Nutrient concentrations were generally low to very low and about the same as in streams from virgin forestland in the Olympic National Park. However, some slight increases in nutrient concentrations were observed, particularly in the vicinity of Mill Creek and the town of Forks; due to dilution and biological assimilation, these slightly elevated concentrations decreased as the water moved downstream. 35 refs., 24 figs., 16 tabs.

  1. Reserves in western basins: Part 1, Greater Green River basin

    SciTech Connect

    Not Available

    1993-10-01

    This study characterizes an extremely large gas resource located in low permeability, overpressured sandstone reservoirs located below 8,000 feet drill depth in the Greater Green River basin, Wyoming. Total in place resource is estimated at 1,968 Tcf. Via application of geologic, engineering and economic criteria, the portion of this resource potentially recoverable as reserves is estimated. Those volumes estimated include probable, possible and potential categories and total 33 Tcf as a mean estimate of recoverable gas for all plays considered in the basin. Five plays (formations) were included in this study and each was separately analyzed in terms of its overpressured, tight gas resource, established productive characteristics and future reserves potential based on a constant $2/Mcf wellhead gas price scenario. A scheme has been developed to break the overall resource estimate down into components that can be considered as differing technical and economic challenges that must be overcome in order to exploit such resources: in other words, to convert those resources to economically recoverable reserves. Total recoverable reserves estimates of 33 Tcf do not include the existing production from overpressured tight reservoirs in the basin. These have estimated ultimate recovery of approximately 1.6 Tcf, or a per well average recovery of 2.3 Bcf. Due to the fact that considerable pay thicknesses can be present, wells can be economic despite limited drainage areas. It is typical for significant bypassed gas to be present at inter-well locations because drainage areas are commonly less than regulatory well spacing requirements.

  2. The water footprint of agricultural products in European river basins

    NASA Astrophysics Data System (ADS)

    Vanham, D.; Bidoglio, G.

    2014-05-01

    This work quantifies the agricultural water footprint (WF) of production (WFprod, agr) and consumption (WFcons, agr) and the resulting net virtual water import (netVWi, agr) of 365 European river basins for a reference period (REF, 1996-2005) and two diet scenarios (a healthy diet based upon food-based dietary guidelines (HEALTHY) and a vegetarian (VEG) diet). In addition to total (tot) amounts, a differentiation is also made between the green (gn), blue (bl) and grey (gy) components. River basins where the REF WFcons, agr, tot exceeds the WFprod, agr, tot (resulting in positive netVWi, agr, tot values), are found along the London-Milan axis. These include the Thames, Scheldt, Meuse, Seine, Rhine and Po basins. River basins where the WFprod, agr, tot exceeds the WFcons, agr, tot are found in Western France, the Iberian Peninsula and the Baltic region. These include the Loire, Ebro and Nemunas basins. Under the HEALTHY diet scenario, the WFcons, agr, tot of most river basins decreases (max -32%), although it was found to increase in some basins in northern and eastern Europe. This results in 22 river basins, including the Danube, shifting from being net VW importers to being net VW exporters. A reduction (max -46%) in WFcons, agr, tot is observed for all but one river basin under the VEG diet scenario. In total, 50 river basins shift from being net VW importers to being net exporters, including the Danube, Seine, Rhone and Elbe basins. Similar observations are made when only the gn + bl and gn components are assessed. When analysing only the bl component, a different river basin pattern is observed.

  3. Lake Murray, Fly and Strickland River Basins, Papua, New Guinea

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Lake Murray, a manmade reservoir, lies between the Fly and Strickland River Basins, Papua, New Guinea (7.0S, 141.5E). The region, photographed in sunglint, shows the water level in the reservoir and the full extent of the drainage basins of both river systems as the rivers meander through wide alluvial floodplains. Some forest clearing can be seen in places throughout the region, but most of the area remains in closed canopy forest.

  4. The agricultural water footprint of EU river basins

    NASA Astrophysics Data System (ADS)

    Vanham, Davy

    2014-05-01

    This work analyses the agricultural water footprint (WF) of production (WFprod,agr) and consumption (WFcons,agr) as well as the resulting net virtual water import (netVWi,agr) for 365 EU river basins with an area larger than 1000 km2. Apart from total amounts, also a differentiation between the green, blue and grey components is made. River basins where the WFcons,agr,tot exceeds WFprod,agr,tot values substantially (resulting in positive netVWi,agr,tot values), are found along the London-Milan axis. River basins where the WFprod,agr,totexceeds WFcons,agr,totare found in Western France, the Iberian Peninsula and the Baltic region. The effect of a healthy (HEALTHY) and vegetarian (VEG) diet on the WFcons,agr is assessed, as well as resulting changes in netVWi,agr. For HEALTHY, the WFcons,agr,tot of most river basins decreases (max 32%), although in the east some basins show an increase. For VEG, in all but one river basins a reduction (max 46%) in WFcons,agr,tot is observed. The effect of diets on the WFcons,agrof a river basin has not been carried out so far. River basins and not administrative borders are the key geographical entity for water management. Such a comprehensive analysis on the river basin scale is the first in its kind. Reduced river basin WFcons,agrcan contribute to sustainable water management both within the EU and outside its borders. They could help to reduce the dependency of EU consumption on domestic and foreign water resources.

  5. Floods in the Skagit River basin, Washington

    USGS Publications Warehouse

    Stewart, James E.; Bodhaine, George Lawrence

    1961-01-01

    According to Indian tradition, floods of unusually great magnitude harassed the Skagit River basin about 1815 and 1856. The heights of these floods were not recorded at the time; so they are called historical floods. Since the arrival of white men about 1863, a number of large and damaging floods have been witnessed and recorded. Data concerning and verifying the early floods, including those of 1815 and 1856, were collected prior to 1923 by James E. Stewart. He talked with many of the early settlers in the valley who had listened to Indians tell about the terrible floods. Some of these settlers had referenced the maximum stages of floods they had witnessed by cutting notches at or measuring to high-water marks on trees. In order to verify flood stages Stewart spent many weeks finding and levelling to high-water marks such as drift deposits, sand layers in coves, and silt in the bark of certain types of trees. Gaging stations have been in operation at various locations on the Skagit River and its tributaries since 1909, so recorded peak stages are available at certain sites for floods occurring since that date. All peak discharge data available for both historical and recorded floods have been listed in this report. The types of floods as to winter and summer, the duration of peaks, and the effect of reservoirs are discussed. In 1899 Sterling Dam was constructed at the head of Gages Slough near Sedro Woolley. This was the beginning of major diking in the lower reaches of the Skagit River. Maps included in the report show the location of most of the dike failures that have occurred during the last 73 years and the area probably inundated by major floods. The damage resulting from certain floods is briefly discussed. The report is concluded with a brief discussion of the U.S. Geological Survey method of computing flood-frequency curves as applied to the Skagit River basin. The treatment of single-station records and a means of combining these records for expressing

  6. Zinc and Its Isotopes in the Loire River Basin, France

    NASA Astrophysics Data System (ADS)

    Millot, R.; Desaulty, A. M.; Bourrain, X.

    2014-12-01

    The contribution of human activities such as industries, agriculture and domestic inputs, becomes more and more significant in the chemical composition of the dissolved load of rivers. Human factors act as a supplementary key process. Therefore the mass-balance for the budget of catchments and river basins include anthropogenic disturbances. The Loire River in central France is approximately 1010 km long and drains an area of 117,800 km2. In the upper basin, the bedrock is old plutonic rock overlain by much younger volcanic rocks. The intermediate basin includes three major tributaries flowing into the Loire River from the left bank: the Cher, the Indre and the Vienne rivers; the main stream flows westward and its valley stretches toward the Atlantic Ocean. Here, the Loire River drains the sedimentary series of the Paris Basin, mainly carbonate deposits. The lower Loire basin drains pre-Mesozoic basement of the Armorican Massif and its overlying Mesozoic to Cenozoic sedimentary deposits. The Loire River is one of the main European riverine inputs to the Atlantic ocean. Here we are reporting concentration and isotope data for Zn in river waters and suspended sediments from the Loire River Basin. In addition, we also report concentration and isotope data for the different industrial sources within the Loire Basin, as well as data for biota samples such as mussels and oysters from the Bay of Biscay and North Brittany. These organisms are known to be natural accumulators of metal pollutants. Zinc isotopic compositions are rather homogeneous in river waters with δ66Zn values ranging from 0.21 to 0.39‰. This range of variation is very different from anthropogenic signature (industrial and/or agriculture release) that displays δ66Zn values between 0.02 to 0.14‰. This result is in agreement with a geogenic origin and the low Zn concentrations in the Loire River Basin (from 0.8 to 6 µg/L).

  7. Resistivity sections, upper Arkansas River basin, Colorado

    USGS Publications Warehouse

    Zohdy, Adel A.R.; Hershey, Lloyd A.; Emery, Philip A.; Stanley, William D.

    1971-01-01

    A reconnaissance investigation of ground-water resources in the upper Arkansas River basin from Pueblo to Leadville is being made by the U.S. Geological Survey in cooperation with the Southeastern Colorado Water Conservancy District, and the Colorado Division of Water Resources, Colorado State Engineer. As part of the investigation, surface geophysical electrical resistivity surveys were made during the summer and fall of 1970 near Buena Vista and Westcliffe, Colo. (p1.1). The resistivity surveys were made to verify a previous gravity survey and to help locate areas where ground-water supplies might be developed. This report presents the results of the surveys in the form of two resistivity sections.

  8. Paleogeography of Paleocene Wind River basin

    SciTech Connect

    Flemings, P.B.; Jordan, T.E.

    1986-08-01

    The Paleocene Fort Union Formation in the Wind River basin was deposited in response to Laramide deformation between south-verging faults to the north (Owl Creek and Casper thrusts) and south (Wind River and Granite thrusts). Exposures in this asymmetric basin include a lower fluvial member overlain by the Waltman (lacustrine) and time-equivalent Shotgun (fluvial) members in the northeast and a single fluvial unit in the southeast. In the northeast, low sinuosity, ribbon channel sandstones (northwest paleoflow, about 40 m thick) are overlain by sheet-sand deposits interspersed with channel sandstones (southwest paleoflow, about 700 m thick), which are in turn overlain by the Waltman Member. The basal channel sands are wide (about 100 m perpendicular to flow), thick (5 to 10 m), and trough cross-bedded. The sheet-sand deposits consist of upward-fixing cycles 1 to 10 m thick. These facies are interpreted to be the product of longitudinal drainage flowing parallel to the Casper thrust, overlain by fan-delta sediments prograding perpendicular to the thrust. Palynology suggests a nearly complete Paleocene record for this sequence. To the south along the Rattlesnake Hills, trough cross-bedded sheet sandstones and gravel channel deposits (northward, 140 m thick) are overlain by layered mudstones and siltstones (180 m thick). The top of these high-energy braided-stream deposits and overlying low-energy delta-plain sediments are equivalent in age to the Waltman Member. A topographic low paralleled the Casper arch thrust during the earliest Paleocene. Prograding alluvial-fan sedimentation gradually shifted this topographic low away from the Casper thrust. Southern exposures record drainage toward, and ponding in, the topographic low.

  9. Evapotranspiration from Upper Klamath Lake: Reducing Uncertainty in the Water Balance

    NASA Astrophysics Data System (ADS)

    Stannard, D. I.; Gannett, M. W.; Polette, D.; Cameron, J. M.; Spears, J. M.

    2009-12-01

    The Klamath River basin is a large (~40,600 km2) watershed that straddles the border between southern Oregon and northern California, USA, and drains into the Pacific Ocean. A wide variety of interests has led to intense competition over water allocation in the upper, semi-arid parts of the basin in recent decades. Myriad water impoundments and diversions, wetland drainage, and recent wetland restoration, have complicated the development of resource-management and restoration strategies. An overarching question is how to provide enough water for irrigated agriculture and still preserve adequate stream-flow and wetland habitat for threatened (e.g. coho salmon) and endangered (e.g. Lost River and shortnose suckers) species. In the Upper Klamath Lake region, this hotly debated topic has raised questions about evaporative losses from Upper Klamath Lake, and its wetland marshes. Currently, surface-water outflow from the lake is gauged, but not all of the surface-water inflows are gauged, and net ground-water inflow is estimated. Lake-level management is based on a simplified water budget: NETin - SWout = ΔS, where NETin = SWin + GWnet - ET (called “net inflow”), SWout is measured surface-water outflow, ΔS is measured change in lake storage, SWin is surface-water inflow, GWnet is net ground-water inflow, and ET is evapotranspiration from the lake. Partitioning of NETin is not done routinely, so little is known about magnitudes of the un-gauged inflows, or ET (GWnet is a small term). To help partition NETin into its components, ET has been measured at three locations in Upper Klamath Lake since April, 2008. Two eddy covariance (EC) sites are located in Upper Klamath National Wildlife Refuge, an extensive wetland marsh in the northwest corner of the lake, and one Bowen-ratio energy-balance site is in open water. One EC station is situated in bulrush and the other is in a mixed bulrush, wocus, cattail community. Wetland marsh area is about 1/3 that of open water. The

  10. Hydrogeologic framework of sedimentary deposits in six structural basins, Yakima River basin, Washington

    USGS Publications Warehouse

    Jones, M.A.; Vaccaro, J.J.; Watkins, A.M.

    2006-01-01

    The hydrogeologic framework was delineated for the ground-water flow system of the sedimentary deposits in six structural basins in the Yakima River Basin, Washington. The six basins delineated, from north to south are: Roslyn, Kittitas, Selah, Yakima, Toppenish, and Benton. Extent and thicknesses of the hydrogeologic units and total basin sediment thickness were mapped for each basin. Interpretations were based on information from about 4,700 well records using geochemical, geophysical, geologist's or driller's logs, and from the surficial geology and previously constructed maps and well interpretations. The sedimentary deposits were thickest in the Kittitas Basin reaching a depth of greater than 2,000 ft, followed by successively thinner sedimentary deposits in the Selah basin with about 1,900 ft, Yakima Basin with about 1,800 ft, Toppenish Basin with about 1,200 ft, Benton basin with about 870 ft and Roslyn Basin with about 700 ft.

  11. Flexural analysis of two broken foreland basins; Late Cenozoic Bermejo basin and Early Cenozoic Green River basin

    SciTech Connect

    Flemings, P.B.; Jordan, T.E.; Reynolds, S.

    1986-05-01

    Lithospheric flexure that generates basin in a broke foreland setting (e.g., the Laramide foreland of Wyoming) is a three-dimensional system related to shortening along basin-bounding faults. The authors modeled the elastic flexure in three dimensions for two broken foreland basins: the early Cenozoic Green River basin and the analogous late Cenozoic Bermejo basin of Argentina. Each basin is located between a thrust belt and a reverse-fault-bounded basement uplift. Both basins are asymmetric toward the basement uplifts and have a central basement high: the Rock Springs uplift and the Pie de Palo uplift, respectively. The model applies loads generated by crustal thickening to an elastic lithosphere overlying a fluid mantle. Using the loading conditions of the Bermejo basin based on topography, limited drilling, and reflection and earthquake seismology, the model predicts the current Bermejo basin geometry. Similarly, flexure under the loading conditions in the Green River basin, which are constrained by stratigraphy, well logs, and seismic profiling and summed for Late Cretaceous (Lance Formation) through Eocene (Wasatch Formation), successfully models the observed geometry of the pre-Lance surface. Basin depocenters (> 4 km for the Green River basin; > 7 km for the Bermejo basin) and central uplifts are predicted to result from constructive interference of the nonparallel applied loads. Their Bermejo model implies that instantaneous basin geometry is successfully modeled by crustal loading, whereas the Green River basin analysis suggests that basin evolution can be modeled over large time steps (e.g., 20 Ma). This result links instantaneous basin geometry to overall basin evolution and is a first step in predicting stratigraphic development.

  12. Spatial design principles for sustainable hydropower development in river basins

    SciTech Connect

    Jager, Henriëtte I.; Efroymson, Rebecca A.; Opperman, Jeff J.; Kelly, Michael R.

    2015-02-27

    How can dams be arranged within a river basin such that they benefit society? Recent interest in this question has grown in response to the worldwide trend toward developing hydropower as a source of renewable energy in Asia and South America, and the movement toward removing unnecessary dams in the US. Environmental and energy sustainability are important practical concerns, and yet river development has rarely been planned with the goal of providing society with a portfolio of ecosystem services into the future. We organized a review and synthesis of the growing research in sustainable river basin design around four spatial decisions: Is it better to build fewer mainstem dams or more tributary dams? Should dams be clustered or distributed among distant subbasins? Where should dams be placed along a river? At what spatial scale should decisions be made? We came up with the following design principles for increasing ecological sustainability: (i) concentrate dams within a subset of tributary watersheds and avoid downstream mainstems of rivers, (ii) disperse freshwater reserves among the remaining tributary catchments, (iii) ensure that habitat provided between dams will support reproduction and retain offspring, and (iv) formulate spatial decision problems at the scale of large river basins. Based on our review, we discuss trade-offs between hydropower and ecological objectives when planning river basin development. We hope that future testing and refinement of principles extracted from our review will define a path toward sustainable river basin design.

  13. Spatial design principles for sustainable hydropower development in river basins

    DOE PAGESBeta

    Jager, Henriëtte I.; Efroymson, Rebecca A.; Opperman, Jeff J.; Kelly, Michael R.

    2015-02-27

    How can dams be arranged within a river basin such that they benefit society? Recent interest in this question has grown in response to the worldwide trend toward developing hydropower as a source of renewable energy in Asia and South America, and the movement toward removing unnecessary dams in the US. Environmental and energy sustainability are important practical concerns, and yet river development has rarely been planned with the goal of providing society with a portfolio of ecosystem services into the future. We organized a review and synthesis of the growing research in sustainable river basin design around four spatialmore » decisions: Is it better to build fewer mainstem dams or more tributary dams? Should dams be clustered or distributed among distant subbasins? Where should dams be placed along a river? At what spatial scale should decisions be made? We came up with the following design principles for increasing ecological sustainability: (i) concentrate dams within a subset of tributary watersheds and avoid downstream mainstems of rivers, (ii) disperse freshwater reserves among the remaining tributary catchments, (iii) ensure that habitat provided between dams will support reproduction and retain offspring, and (iv) formulate spatial decision problems at the scale of large river basins. Based on our review, we discuss trade-offs between hydropower and ecological objectives when planning river basin development. We hope that future testing and refinement of principles extracted from our review will define a path toward sustainable river basin design.« less

  14. LANDSCAPE ECOLOGY ASSESSMENT OF THE TENSAS RIVER BASIN, MISSISSIPPI RIVER DELTA REGION, AND GULF OF MEXICO

    EPA Science Inventory

    A group of landscape ecological indicators were applied to biophysical data masked to the Tensas River Basin. The indicators were use to identify and prioritize sources of nutrients in a
    Mississippi River System sub-basin. Remotely sensed data were used for change detection a...

  15. UPPER SNAKE RIVER BASIN WATER QUALITY ASSESSMENT, 1976

    EPA Science Inventory

    This package contains information for the Upper Snake River Basin, Idaho (170402, 17040104). The report contains a water quality assessment approach which will assist EPA planners, land agencies, and state and local agencies in identifying probably nonpoint sources and determini...

  16. 15. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN (MODEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN (MODEL SCALE: 1' = 26'). - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  17. Atmospheric circulation and snowpack in the Gunnison River Basin

    USGS Publications Warehouse

    McCabe, Gregory J.

    1994-01-01

    Winter mean 700-millibar height anomalies over the eastern North Pacific Ocean and the western United States are related to variability in snowpack accumulations measured on or about April 1 in the Gunnison River Basin in Colorado. Higher-than-average snowpack accumulations are associated with negative 700-millibar height anomalies (anomalous cyclonic circulation) over the western United States and over most of the eastern North Pacific Ocean. The anomalous cyclonic circulation enhances the movement of moisture from the eastern North Pacific Ocean into the southwestern United States. Variability in winter mean 700-millibar height anomalies explain over 50 percent of the variability in snowpack accumulations in the Gunnison River Basin. The statistically significant linear relations between 700-millibar height anomalies and snowpack accumulations in the Gunnison River Basin can be used with general-circulation-model simulations of future 700-millibar height anomalies to estimate changes in snowpack accumulations in the Gunnison River Basin for future climatic conditions.

  18. 18. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN. CIVIL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN. CIVIL ENGINEERING AIDE AT CONTROL BOX. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  19. 19. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN. ELECTRONICS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN. ELECTRONICS ENGINEER AT DATA COLLECTION COMPUTER ROOM. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  20. 17. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN. ENGINEERS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN. ENGINEERS EXAMINING MODEL PUMPS, VIEW FROM MODEL BED. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  1. 16. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN. MECHANICAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN. MECHANICAL AND HYDRAULIC ENGINEERS EXAMINING MODEL PUMPS. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  2. ALTERNATIVE FUTURES FOR THE WILLAMETTE RIVER BASIN, OREGON

    EPA Science Inventory

    Alternative futures analysis is an assessment approach designed to inform community decisions regarding land and water use. We conducted an alternative futures analysis in the Willamette River Basin in western Oregon. Based on detailed input from local stakeholders, three alter...

  3. A bibliography of Klamath Mountains geology, California and Oregon, listing authors from Aalto to Zucca for the years 1849 to Mid-2003

    USGS Publications Warehouse

    Irwin, William P., (compiler)

    2003-01-01

    This bibliography of Klamath Mountains geology was begun, although not in a systematic or comprehensive way, when, in 1953, I was assigned the task of preparing a report on the geology and mineral resources of the drainage basins of the Trinity, Klamath, and Eel Rivers in northwestern California. During the following 40 or more years, I maintained an active interest in the Klamath Mountains region and continued to collect bibliographic references to the various reports and maps of Klamath geology that came to my attention. When I retired in 1989 and became a Geologist Emeritus with the Geological Survey, I had a large amount of bibliographic material in my files. Believing that a comprehensive bibliography of a region is a valuable research tool, I have expended substantial effort to make this bibliography of the Klamath Mountains as complete as is reasonably feasible. My aim was to include all published reports and maps that pertain primarily to the Klamath Mountains, as well as all pertinent doctoral and master's theses. In addition, I included reports in which the Klamath Mountains are of significance but not the primary focus; these latter kinds are mostly reports that correlate the Klamath terranes with those of other provinces, that compare the genesis of Klamath rocks with those elsewhere, or that include the Klamath Mountains in a continental framework. Reports describing the geology of the overlap sequences such as the Great Valley sequence, Hornbrook Formation, and Tertiary sediments and volcanics are included where those rocks lie within the limits of the Klamath Mountains province, but are only selectively included where the overlap sequences are mainly peripheral to the province. The alphabetical part of the bibliography consists of approximately 1700 entries. The list of primary references probably is virtually complete through 1994 and includes some 1995 references. The earliest reference is to James Dwight Dana in 1849. In order to restrict the size

  4. Drainage divides, Massachusetts; Blackstone and Thames River basins

    USGS Publications Warehouse

    Krejmas, Bruce E.; Wandle, S. William

    1982-01-01

    Drainage boundaries for selected subbasins of the Blackstone and Thames River basins in eastern Hampden, eastern Hampshire, western Norfolk, southern Middlesex, and southern Worcester Counties, Massachusetts, are delineated on 12 topographic quadrangle maps at a scale of 1:24,000. Drainage basins are shown for all U.S. Geological Survey data-collection sites and for mouths of major rivers. Drainage basins are shown for the outlets of lakes or ponds and for streams where the drainage area is greater than 3 square miles. Successive sites along watercourses are indicated where the intervening area is at least 6 miles on tributary streams or 15 square miles along the Blackstone River, French River, or Quinebaug River. (USGS)

  5. Water resources of Wisconsin, Pecatonica-Sugar River basin

    USGS Publications Warehouse

    Hindall, S.M.; Skinner, Earl L.

    1973-01-01

    The purpose of this report is to describe the physical environment, availability, characteristics, distribution, movement, and quailty of water in the Pecatonica-Sugar River basin.  In addition, water use and water problems are summarized to give an understanding of man's management of water within the basin.

  6. Demographics and run timing of adult Lost River (Deltistes luxatus) and short nose (Chasmistes brevirostris) suckers in Upper Klamath Lake, Oregon, 2012

    USGS Publications Warehouse

    Hewitt, David A.; Janney, Eric C.; Hayes, Brian S.; Harris, Alta C.

    2014-01-01

    Data from a long-term capture-recapture program were used to assess the status and dynamics of populations of two long-lived, federally endangered catostomids in Upper Klamath Lake, Oregon. Lost River suckers (Deltistes luxatus) and shortnose suckers (Chasmistes brevirostris) have been captured and tagged with passive integrated transponder (PIT) tags during their spawning migrations in each year since 1995. In addition, beginning in 2005, individuals that had been previously PIT-tagged were re-encountered on remote underwater antennas deployed throughout sucker spawning areas. Captures and remote encounters during spring 2012 were used to describe the spawning migrations in that year and also were incorporated into capture-recapture analyses of population dynamics. Cormack-Jolly-Seber (CJS) open population capture-recapture models were used to estimate annual survival probabilities, and a reverse-time analog of the CJS model was used to estimate recruitment of new individuals into the spawning populations. In addition, data on the size composition of captured fish were examined to provide corroborating evidence of recruitment. Model estimates of survival and recruitment were used to derive estimates of changes in population size over time and to determine the status of the populations in 2011. Separate analyses were conducted for each species and also for each subpopulation of Lost River suckers (LRS). Shortnose suckers (SNS) and one subpopulation of LRS migrate into tributary rivers to spawn, whereas the other LRS subpopulation spawns at groundwater upwelling areas along the eastern shoreline of the lake. In 2012, we captured, tagged, and released 749 LRS at four lakeshore spawning areas and recaptured an additional 969 individuals that had been tagged in previous years. Across all four areas, the remote antennas detected 6,578 individual LRS during the spawning season. Spawning activity peaked in April and most individuals were encountered at Cinder Flats and

  7. Greater Green River Basin Production Improvement Project

    SciTech Connect

    DeJarnett, B.B.; Lim, F.H.; Calogero, D.

    1997-10-01

    The Greater Green River Basin (GGRB) of Wyoming has produced abundant oil and gas out of multiple reservoirs for over 60 years, and large quantities of gas remain untapped in tight gas sandstone reservoirs. Even though GGRB production has been established in formations from the Paleozoic to the Tertiary, recent activity has focused on several Cretaceous reservoirs. Two of these formations, the Ahnond and the Frontier Formations, have been classified as tight sands and are prolific producers in the GGRB. The formations typically naturally fractured and have been exploited using conventional well technology. In most cases, hydraulic fracture treatments must be performed when completing these wells to to increase gas production rates to economic levels. The objectives of the GGRB production improvement project were to apply the concept of horizontal and directional drilling to the Second Frontier Formation on the western flank of the Rock Springs Uplift and to compare production improvements by drilling, completing, and testing vertical, horizontal and directionally-drilled wellbores at a common site.

  8. Groundwater issues in the Potomac River Basin

    NASA Astrophysics Data System (ADS)

    Lehr, Jay

    Great strides have been made by the states of Maryland and Pennsylvania, along with the Commonwealth of Virginia and the District of Columbia, in protecting water quality in the Chesapeake Bay and its tributaries. Since these entities joined forces in a renewed effort to protect water quality in the Chesapeake Bay area, a number of useful programs have been established and public awareness has been raised.The Association of Ground Water Scientists and Engineers and several regional co-sponsors presented Ground Water Issues and Solutions in the Potomac River Basin/Chesapeake Bay Region Conference March 14 at George Washington University, Washington, D.C., to provide insight into groundwater-related issues. Attendance at the conference included 150 groundwater professionals from state, county and private agencies, along with a significant number of students from area universities. More than 30 papers were presented dealing with research projects and field studies. Topics included geohydrologic relationships, groundwater quality impacts, impact of industrial processes on groundwater quality, saltwater intrusion, groundwater protection in the Chesapeake Bay area, land-use impacts on groundwater quality, groundwater modeling, groundwater withdrawals, and policy issues. In addition to the technical sessions, a debate of “How clean is clean?” was held.

  9. Part I: Integrated water quality management: river basin approach. Geochemical techniques on contaminated sediments--river basin view.

    PubMed

    Förstner, Ulrich

    2003-01-01

    The big flood in the upper Elbe River catchment area has revealed a wide spectrum of problems with contaminated sediments. So far, an effective strategy for managing contaminated sediments on a river basin scale is still missing and it seems that not much has been learned from the lessons received during the last decade. In the following overview, special emphasis is given to the utilization of geochemically-based techniques for sediment remediation, which can be applied in different parts of a river basin. The examples presented here are mostly from the Elbe River catchment area. In general, new technical problem solutions need a set of practical process knowledge that uses a wide range of simulation techniques, as well as models in different spatial and temporal scales. The evaluation of recent flood events clearly demonstrates the importance of chemical expertise in the decision-making process for the sustainable development in river basins. PMID:12635960

  10. Drainage areas of the Kanawha River basin, West Virginia

    USGS Publications Warehouse

    Mathes, M.V.; Payne, D.D., Jr.; Shultz, R.A.; Kirby, J.R.

    1982-01-01

    Drainage areas for 1,493 drainage area divisions for the Kanawha River basin, West Virginia, are listed in the report. Also tabulated for each site are river miles, plus location identifiers: County, latitude and longitude, and the West Virginia District map number. (USGS)

  11. Drainage areas of the Potomac River basin, West Virginia

    USGS Publications Warehouse

    Wiley, Jeffrey B.; Hunt, Michelle L.; Stewart, Donald K.

    1996-01-01

    This report contains data for 776 drainage-area divisions of the Potomac River Basin, from the headwaters to the confluence of the Potomac River and the Shenandoah River. Data, compiled in downstream order, are listed for streams with a drainage area of approximately 2 square miles or larger within West Virginia and for U.S. Geological Survey streamflow-gaging stations. The data presented are the stream name, the geographical limits in river miles, the latitude and longitude of the point, the name of the county, and the 7 1/2-minute quadrangle in which the point lies, and the drainage area of that site. The total drainage area of the Potomac River Basin downstream of the confluence of the Shenandoah River at the State boundary is 9,367.29 square miles.

  12. 33 CFR 207.10 - Charles River, Mass.; dam of Charles River Basin Commission.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Charles River, Mass.; dam of Charles River Basin Commission. 207.10 Section 207.10 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.10 Charles River, Mass.; dam...

  13. 33 CFR 207.10 - Charles River, Mass.; dam of Charles River Basin Commission.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Charles River, Mass.; dam of Charles River Basin Commission. 207.10 Section 207.10 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.10 Charles River, Mass.; dam...

  14. 33 CFR 207.10 - Charles River, Mass.; dam of Charles River Basin Commission.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Charles River, Mass.; dam of Charles River Basin Commission. 207.10 Section 207.10 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.10 Charles River, Mass.; dam...

  15. 33 CFR 207.10 - Charles River, Mass.; dam of Charles River Basin Commission.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Charles River, Mass.; dam of Charles River Basin Commission. 207.10 Section 207.10 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.10 Charles River, Mass.; dam...

  16. 33 CFR 207.10 - Charles River, Mass.; dam of Charles River Basin Commission.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Charles River, Mass.; dam of Charles River Basin Commission. 207.10 Section 207.10 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.10 Charles River, Mass.; dam...

  17. Water loss in the Potomac River basin during droughts

    USGS Publications Warehouse

    Hagen, E.R.; Kiang, J.E.; Dillow, J.J.A.

    2004-01-01

    The water loss phenomena in the Washington DC metropoliton area's (WMA) Potomac River water supply basin during droughts was analyzed. Gage errors, permitted withdrawals, evaporation, and transpiration by trees along the river were investigated to account for loss. The Interstate Commission on the Potomac River Basin (ICPRB) calculated potential gage error and examined permits to determine permitted levels of consumption withdrawals from the Potomac. The result of a single slug test indicated that the soil transmissivity may not be adequate to allow passage of enough water to account for all of the calculated water loss.

  18. Water Allocation Modeling of Awash River Basin, Ethiopia

    NASA Astrophysics Data System (ADS)

    Asfaw, D. H.; Berhe, F.; Melesse, A. M.

    2012-12-01

    Awash River basin is one of the twelve basins of Ethiopia which is highly utilized and the first basin to be introduced to modern agriculture. A study was conducted on water allocation modeling of Awash River basin, Ethiopia using MODSIM, a river basin management decision support system (DSS) designed as a computer-aided tool for developing improved basin wide planning. This study was conducted to analyze the water balance of the Awash basin under different levels of irrigation development and also determine the water allocation in the Upper, Middle and Lower Valleys in the basin. Awash basin includes Koka Dam and two dams under completion: Kessem and Tendaho Reservoirs. Four scenarios were set: Scenario I-present withdrawal rate in the basin; Scenario II-Scenario I plus Downstream Tendaho Dam Operational; Scenario III-Scenario II plus expansion of middle valley farms and Kessem Dam Operational; and Scenario IV-Scenario III plus additional expansion in the middle valley. Analysis of flow records within the basin was done for a period of 1963-2003. Estimation of system losses, runoff from ungauged tributaries, and Gedebessa Swamp model parameters were considered in the flow process study. Simulation was conducted based on four scenarios. Consumptive and non-consumptive uses were considered in allocation modeling. The results of MODSIM model depict that there will be incremental release from Koka Dam from 2.8% to 5.7% in years 2018 and 2038, respectively. Due to increased diversions in Scenario III when compared to scenario I, losses in to Gedebessa Swamp will significantly decrease by an average of 27.6%. In the year 2038, owing to less capacity of upstream reservoirs due to sedimentation, water will be lost in the swamp complex causing slight decrease of inflow to Tendaho Dam. Additional storage at or upstream of Koka Dam will be mandatory in the future. Unaccounted water diversions upstream of Koka and water losses in Gedebessa Swamp should be considered in the

  19. Water and Benefit Sharing in Transboundary River Basins

    NASA Astrophysics Data System (ADS)

    Arjoon, D.; Tilmant, A.; Herrmann, M.

    2015-12-01

    Growing water scarcity underlies the importance of cooperation for the effective management of river basins, particularly in the context of international rivers in which unidirectional externalities can lead to asymmetric relationships between riparian countries. Studies have shown that significant economic benefits can be expected through basin-wide cooperation, however, the equitable partitioning of these benefits over the basin is less well studied and tends to overlook the importance of stakeholder input in the definition of equitability. In this study, an institutional arrangement to maximize welfare and then share the scarcity cost in a river basin is proposed. A river basin authority plays the role of a bulk water market operator, efficiently allocating bulk water to the users and collecting bulk water charges which are then equitably redistributed among water users. This highly regulated market restrains the behaviour of water users to control externalities and to ensure basin-wide coordination, enhanced efficiency, and the equitable redistribution of the scarcity cost. The institutional arrangement is implemented using the Eastern Nile River basin as a case study. The importance of this arrangement is that it can be adopted for application in negotiations to cooperate in trans-boundary river basins. The benefit sharing solution proposed is more likely to be perceived as equitable because water users help define the sharing rule. As a result, the definition of the sharing rule is not in question, as it would be if existing rules, such as bankruptcy rules or cooperative game theory solutions, are applied, with their inherent definitions of fairness. Results of the case study show that the sharing rule is predictable. Water users can expect to receive between 93.5% and 95% of their uncontested benefits (benefits that they expect to receive if water was not rationed), depending on the hydrologic scenario.

  20. M-Area basin closure, Savannah River Site

    SciTech Connect

    McMullin, S.R.; Horvath, J.G.

    1991-12-31

    M-Area, on the Savannah River Site, processes raw materials and manufactures fuel and target rods for reactor use. Effluent from these processes were discharged into the M-Area settling basin and Lost Lake, a natural wetland. The closure of this basin began in 1988 and included the removal and stabilization of basin fluids, excavation of all contaminated soils from affected areas and Lost Lake, and placement of all materials in the bottom of the emptied basin. These materials were covered with a RCRA style cap, employing redundant barriers of kaolin clay and geosynthetic material. Restoration of excavated uplands and wetlands is currently underway.

  1. M-Area basin closure, Savannah River Site

    SciTech Connect

    McMullin, S.R.; Horvath, J.G.

    1991-01-01

    M-Area, on the Savannah River Site, processes raw materials and manufactures fuel and target rods for reactor use. Effluent from these processes were discharged into the M-Area settling basin and Lost Lake, a natural wetland. The closure of this basin began in 1988 and included the removal and stabilization of basin fluids, excavation of all contaminated soils from affected areas and Lost Lake, and placement of all materials in the bottom of the emptied basin. These materials were covered with a RCRA style cap, employing redundant barriers of kaolin clay and geosynthetic material. Restoration of excavated uplands and wetlands is currently underway.

  2. Implication of drainage basin parameters of a tropical river basin of South India

    NASA Astrophysics Data System (ADS)

    Babu, K. J.; Sreekumar, S.; Aslam, Arish

    2016-03-01

    Drainage morphometry provides quantitative description of the drainage system which is an important aspect of the characterisation of watersheds. Chalakudi River is one of the important rivers of the South India which has attracted attention of many environmental scientists recently because of the proposed Athirapally Hydel Project across the river. SRTM (Shuttle Radar Topographic Mission) data were used for preparing DEM (Digital Elevation Model), Aspect Map and Slope Map. Geographical Information System (GIS) was used for the evaluation of linear, areal and relief aspects of morphometric parameters. The study reveals that the terrain exhibits dentritic and trellis pattern of drainage. The Chalakudi River Basin has a total area of 1,448.73 km2 and is designated as seventh-order basin. The drainage density of the basin is estimated as 2.54 and the lower-order streams mostly dominate the basin. The high basin relief indicates high runoff and sediment transport. The elongation ratio of the Chalakudi Basin is estimated as 0.48 and indicates that the shape of the basin is elongated. The development of stream segments in the basin area is more or less effected by rainfall. Relief ratio indicates that the discharge capability of watershed is very high and the groundwater potential is meagre. The low value of drainage density in spite of mountainous relief indicates that the area is covered by dense vegetation and resistant rocks permeated by fractures and joints. These studies are helpful in watershed development planning and wise utilization of natural resources.

  3. Operational river discharge forecasting in poorly gauged basins: the Kavango River Basin case study

    NASA Astrophysics Data System (ADS)

    Bauer-Gottwein, P.; Jensen, I. H.; Guzinski, R.; Bredtoft, G. K. T.; Hansen, S.; Michailovsky, C. I.

    2014-10-01

    Operational probabilistic forecasts of river discharge are essential for effective water resources management. Many studies have addressed this topic using different approaches ranging from purely statistical black-box approaches to physically-based and distributed modelling schemes employing data assimilation techniques. However, few studies have attempted to develop operational probabilistic forecasting approaches for large and poorly gauged river basins. This study is funded by the European Space Agency under the TIGER-NET project. The objective of TIGER-NET is to develop open-source software tools to support integrated water resources management in Africa and to facilitate the use of satellite earth observation data in water management. We present an operational probabilistic forecasting approach which uses public-domain climate forcing data and a hydrologic-hydrodynamic model which is entirely based on open-source software. Data assimilation techniques are used to inform the forecasts with the latest available observations. Forecasts are produced in real time for lead times of 0 to 7 days. The operational probabilistic forecasts are evaluated using a selection of performance statistics and indicators. The forecasting system delivers competitive forecasts for the Kavango River, which are reliable and sharp. Results indicate that the value of the forecasts is greatest for intermediate lead times between 4 and 7 days.

  4. Assessment of Anthropogenic Impacts in La Plata River Basin

    NASA Astrophysics Data System (ADS)

    Garcia, N. O.; Venencio, M.

    2006-12-01

    An assessment of the variability of the streamflows in La Plata Basin (LPB), particularly in its major tributaries Paraná and Uruguay, is presented in this work. The La Plata Basin, the fifth largest basin in the world and second only to the Amazon in South America, is 3.6 million km2 and covers portions of 5 countries: Argentina, Brazil, Bolivia, Paraguay, and Uruguay. Sub-basins include the Bermejo, Paraná, Paraguay, Pilcomayo, and Uruguay. Major rivers of the basin are the Paraguay, the Uruguay and the Paraná. Streamflows in the LPB have been above normal in the last decades, e.g. the mean flow in the Paraná river during the 1971-1994 period was 34% higher than the mean flow during the 1931-1970 period. A similar analysis carried out on the precipitation records for the La Plata basin showed only a 14% increase during the same periods for the Upper Paraná basin and a 20% increase for the Uruguay basin. In this paper it is postulated that the increase in the streamflows, not explained by precipitation increases, is due to the changes in cultivation patterns in the upper basins of the Paraná and Uruguay. Particularly, the substitution of coffee plantations for annual crops, mainly soybeans, has produced a change in the infiltration patterns that influenced the discharges.

  5. Quantifying the extent of river fragmentation by hydropower dams in the Sarapiqui River Basin, Costa Rica

    USGS Publications Warehouse

    Anderson, Elizabeth P.; Pringle, C.M.; Freeman, Mary C.

    2008-01-01

    1. Costa Rica has recently experienced a rapid proliferation of dams for hydropower on rivers draining its northern Caribbean slope. In the Sarapiqui River Basin, eight hydropower plants were built between 1990 and 1999 and more projects are either under construction or proposed. The majority of these dams are small (< 15 m tall) and operate as water diversion projects. 2. While the potential environmental effects of individual projects are evaluated prior to dam construction, there is a need for consideration of the basin-scale ecological consequences of hydropower development. This study was a first attempt to quantify the extent of river fragmentation by dams in the Sarapiqui River Basin. 3. Using simple spatial analyses, the length of river upstream from dams and the length of de-watered reaches downstream from dams was measured. Results indicated that there are currently 306.8 km of river (9.4% of the network) upstream from eight existing dams in the Sarapiqui River Basin and 30.6 km of rivers (0.9% of the network) with significantly reduced flow downstream from dams. Rivers upstream from dams primarily drain two life zones: Premontane Rain Forest (107.9km) and Lower Montane Rain Forest (168.2km). 4. Simple spatial analyses can be used as a predictive or planning tool for considering the effects of future dams in a basin-scale context. In the Sarapiqui River Basin, we recommend that future dam projects be constructed on already dammed rivers to minimize additional river fragmentation and to protect remaining riverine connectivity.

  6. River stage tomography: A new approach for characterizing groundwater basins

    NASA Astrophysics Data System (ADS)

    Yeh, Tian-Chyi J.; Xiang, Jianwei; Suribhatla, Raghavendra M.; Hsu, Kuo-Chin; Lee, Cheng-Haw; Wen, Jet-Chau

    2009-05-01

    Data from tomographic surveys make an inverse problem better posed in comparison to the data from a single excitation source. A tomographic survey provides different coverages and perspectives of subsurface heterogeneity: nonfully redundant information of the subsurface. Fusion of these pieces of information expands and enhances the capability of a conventional survey, provides cross validation of inverse solutions, and constrains inherently ill posed field-scale inverse problems. Basin-scale tomography requires energy sources of great strengths. Spatially and temporally varying natural stimuli are ideal energy sources for this purpose. In this study, we explore the possibility of using river stage variations for basin-scale subsurface tomographic surveys. Specifically, we use numerical models to simulate groundwater level changes in response to temporal and spatial variations of the river stage in a hypothetical groundwater basin. We then exploit the relation between temporal and spatial variations of well hydrographs and river stage to image subsurface heterogeneity of the basin. Results of the numerical exercises are encouraging and provide insights into the proposed river stage tomography. Using naturally recurrent stimuli such as river stage variations for characterizing groundwater basins could be the future of geohydrology. However, it calls for implementation of sensor networks that provide long-term and spatially distributed monitoring of excitation as well as response signals on the land surface and in the subsurface.

  7. Floods in the Raccoon River basin, Iowa

    USGS Publications Warehouse

    Heinitz, Albert J.

    1980-01-01

    Evaluation of flood hazards, and the planning, design, and operation of various facilities on flood plains requires information on floods. This report provides information on flood stages and discharges, flood magnitude and frequency, bench mark data, and flood profiles for the Raccoon River and some of its tributaries. Ir covers the Raccoon River, the North Raccoon River to the northern boundary of Sac County and the lower reaches of the Middle and South Raccoon Rivers.

  8. Feasible optimality of vegetation patterns in river basins

    NASA Astrophysics Data System (ADS)

    Caylor, K. K.; Scanlon, T. M.; Rodriguez-Iturbe, I.

    2004-05-01

    We examine the mechanisms leading to the maintenance of organized vegetation patterns within the network structure of a semiarid New Mexico river basin due to the controlling influence of water stress. A recently formulated analytical framework for the water balance at the daily level is used to link the distribution of climate, soils and vegetation within the basin to patterns growing season water stress. We compare the actual patterns of water stress within the basin to the distribution of water stress that results from vegetation patterns distributed according to two algorithms of local optimization. We demonstrate that a model which maintains local optimization within the network flow path exhibits a better agreement with the patterns of actual basin water stress than a model that allows for neutral local interactions that ignore the network structure of the river basin. These results suggest that the pattern of actual vegetation observed within the basin may correspond to a condition of feasible optimality in which large-scale organization is constrained by the stochastic nature of local interactions mediated by the network configuration. The principles of such organization have important consequences regarding the impact of land cover change on hydrological dynamics in river basins, as well as the geomorphological and biogeographical evolution of landscapes under varying climate and disturbance regimes.

  9. Floods in the English River basin, Iowa

    USGS Publications Warehouse

    Heinitz, A.J.; Riddle, D.E.

    1981-01-01

    Information describing floods is essential for proper planning, design, and operation of bridges and other structures on or over streams and their flood plains. This report provides information on flood stages and discharges, flood magnitude and frequency, bench mark data, and flood profiles for the English River and some of its tributaries. It covers the English River, the North English River to near Guernsey, the south Eaglish River to Barnes City and the lower reaches of the Biddle English and Deep Rivers

  10. Resolving the scale incompatibility dilemma in river basin management

    NASA Astrophysics Data System (ADS)

    Perry, Jim; Easter, K. William

    2004-08-01

    This study illustrates how integrated river basin management can conflict with our increased emphasis on decentralizing water resources decision making. For over a decade, water and environmental decision making in many countries has been shifting from national levels to state/province and local levels. At the same time we have increasingly found that it is critical to consider how individual water resource decisions impact the river basin. We provide detailed examples of this incompatibility dilemma from the United States and Turkey as well as smaller examples from Japan and Macedonia. We argue that new institutional models are required for effective river basin management and that implementation of such models can be evaluated through the use of transaction costs. This study concludes with examples of institutional arrangements that can help bridge the incompatibility gap.

  11. Challenges of river basin management: Current status of, and prospects for, the River Danube from a river engineering perspective.

    PubMed

    Habersack, Helmut; Hein, Thomas; Stanica, Adrian; Liska, Igor; Mair, Raimund; Jäger, Elisabeth; Hauer, Christoph; Bradley, Chris

    2016-02-01

    In the Danube River Basin multiple pressures affect the river system as a consequence of river engineering works, altering both the river hydrodynamics and morphodynamics. The main objective of this paper is to identify the effects of hydropower development, flood protection and engineering works for navigation on the Danube and to examine specific impacts of these developments on sediment transport and river morphology. Whereas impoundments are characterised by deposition and an excess of sediment with remobilisation of fine sediments during severe floods, the remaining five free flowing sections of the Danube are experiencing river bed erosion of the order of several centimetres per year. Besides the effect of interruption of the sediment continuum, river bed degradation is caused by an increase in the sediment transport capacity following an increase in slope, a reduction of river bed width due to canalisation, prohibition of bank erosion by riprap or regressive erosion following base level lowering by flood protection measures and sediment dredging. As a consequence, the groundwater table is lowered, side-arms are disconnected, instream structures are lost and habitat quality deteriorates affecting the ecological status of valuable floodplains. The lack of sediments, together with cutting off meanders, leads also to erosion of the bed of main arms in the Danube Delta and coastal erosion. This paper details the causes and effects of river engineering measures and hydromorphological changes for the Danube. It highlights the importance of adopting a basin-wide holistic approach to river management and demonstrates that past management in the basin has been characterised by a lack of integration. To-date insufficient attention has been paid to the wide-ranging impacts of river engineering works throughout the basin: from the basin headwaters to the Danube Delta, on the Black Sea coast. This highlights the importance of new initiatives that seek to advance knowledge

  12. Backwater effects in the Amazon River basin of Brazil

    USGS Publications Warehouse

    Meade, R.H.; Rayol, J.M.; Da Conceicao, S.C.; Natividade, J.R.G.

    1991-01-01

    The Amazon River mainstem of Brazil is so regulated by differences in the timing of tributary inputs and by seasonal storage of water on floodplains that maximum discharges exceed minimum discharges by a factor of only 3. Large tributaries that drain the southern Amazon River basin reach their peak discharges two months earlier than does the mainstem. The resulting backwater in the lowermost 800 km of two large southern tributaries, the Madeira and Puru??s rivers, causes falling river stages to be as much as 2-3 m higher than rising stages at any given discharge. Large tributaries that drain the northernmost Amazon River basin reach their annual minimum discharges three to four months later than does the mainstem. In the lowermost 300-400 km of the Negro River, the largest northern tributary and the fifth largest river in the world, the lowest stages of the year correspond to those of the Amazon River mainstem rather than to those in the upstream reaches of the Negro River. ?? 1991 Springer-Verlag New York Inc.

  13. Dynamic water accounting in heavily committed river basins

    NASA Astrophysics Data System (ADS)

    Tilmant, Amaury; Marques, Guilherme

    2014-05-01

    Many river basins throughout the world are increasingly under pressure as water demands keep rising due to population growth, industrialization, urbanization and rising living standards. In the past, the typical answer to meet those demands focused on the supply-side and involved the construction of hydraulic infrastructures to capture more water from surface water bodies and from aquifers. As river basins were being more and more developed, downstream water users and ecosystems have become increasingly dependant on the management actions taken by upstream users. The increased interconnectedness between water users, aquatic ecosystems and the built environment is further compounded by climate change and its impact on the water cycle. Those pressures mean that it has become increasingly important to measure and account for changes in water fluxes and their corresponding economic value as they progress throughout the river system. Such basin water accounting should provide policy makers with important information regarding the relative contribution of each water user, infrastructure and management decision to the overall economic value of the river basin. This paper presents a dynamic water accounting approach whereby the entire river basin is considered as a value chain with multiple services including production and storage. Water users and reservoirs operators are considered as economic agents who can exchange water with their hydraulic neighbors at a price corresponding to the marginal value of water. Effective water accounting is made possible by keeping track of all water fluxes and their corresponding transactions using the results of a hydro-economic model. The proposed approach is illustrated with the Eastern Nile River basin in Africa.

  14. Impact of GRACE signal leakage over the Congo River Basin

    NASA Astrophysics Data System (ADS)

    Lee, H.; Beighley, R. E.; Duan, J.; Shum, C.; Alsdorf, D. E.; Andreadis, K.

    2013-05-01

    The Congo Basin is the world's third largest in size, and second only to the Amazon River in discharge. The impact and connections of this hydrologic flux with the region's climate, biogeochemical cycling, and terrestrial water storage (TWS), especially in wetlands, is clearly of great importance. Yet, there is a great lack of published research documenting the Congo Basin terrestrial water balance. This lack of research is related in part to the limited amount of in-situ data; however, the abundance of spaceborne data suggests an opportunity for discovery. The Congo River is the only major river to cross the equator twice. In doing so, the basin lies in both the Northern and Southern Hemisphere such that it receives year-round rainfall from the migration of Inter-Tropical Convergence Zone (ITCZ). After the north has its wet season in the spring and summer, the ITCZ moves south and the remainder of the basin receives large amounts of rain. Consequently, the movement of ITCZ can also be observed from the Gravity Recovery and Climate Experiment (GRACE) TWS changes over the northern and southern boundaries over the Congo. This spatial pattern of the TWS variations are different from that over the Amazon Basin, where the strongest positive or negative annual water storage anomalies are observed to be centered inside the basin. In this study, we examine individual monthly geographical distribution of GRACE TWS changes from various RL05 products, and determine the leakage-contaminated monthly solutions by comparison with reproduced TWS variations from Hillslope River Routing (HRR) model in sub-basin scale. We also present a methodology to empirically remove the signal leakage, and consequently improve the GRACE TWS estimates over the entire Congo Basin.

  15. Drainage areas of the Guyandotte River basin, West Virginia

    USGS Publications Warehouse

    Mathes, M.V.

    1977-01-01

    This report, prepared in cooperation with the West Virginia Office of Federal-State Relations (now the Office of Economic and Community Development), lists in tabular form 435 drainage areas for basins within the Guyandotte River basin of West Virginia. Drainage areas are compiled for sites at the mouths of all streams having drainage areas of approximately five square miles or greater, for sites at U.S. Geological Survey gaging stations (past and present), and for other miscellaneous sites. (Woodard-USGS)

  16. Transport of diazinon in the San Joaquin River Basin, California

    USGS Publications Warehouse

    Kratzer, C.R.

    1999-01-01

    Most of the application of the organophosphate insecticide diazinon in the San Joaquin River Basin occurs in winter to control wood-boring insects in dormant almond orchards. A federal-state collaborative study found that diazinon accounted for most of the observed toxicity of San Joaquin River water in February 1993. Previous studies focused mainly on west-side inputs to the San Joaquin River. In this 1994 study, the three major east-side tributaries to the San Joaquin River - the Merced, Tuolumne, and Stanislaus rivers - and a downstream site on the San Joaquin River were sampled throughout the hydrographs of a late January and an early February storm. In both storms, the Tuolumne River had the highest concentrations of diazinon and transported the largest load of the three tributaries. The Stanislaus River was a small source in both storms. On the basis of previous storm sampling and estimated travel times, ephemeral west-side creeks probably were the main diazinon source early in the storms, whereas the Tuolumne and Merced rivers and east-side drainages directly to the San Joaquin River were the main sources later. Although 74 percent of diazinon transport in the San Joaquin River during 1991-1993 occurred in January and February, transport during each of the two 1994 storms was only 0.05 percent of the amount applied during preceding dry periods. Nevertheless, some of the diazinon concentrations in the San Joaquin River during the January storm exceeded 0.35 ??g/L, a concentration shown to be acutely toxic to water fleas. On the basis of this study and previous studies, diazinon concentrations and streamflow are highly variable during January and February storms, and frequent sampling is required to evaluate transport in the San Joaquin River Basin.

  17. Drainage divides, Massachusetts; Westfield and Farmington River basins

    USGS Publications Warehouse

    Gadoury, Russell A.; Wandle, S. William, Jr.

    1983-01-01

    Drainage boundaries for selected subbasins in western Hampshire, western Hampden, and southeastern Berkshire Counties, Massachusetts, are delineated on 15 topographic quadrangle maps at a scale of 1:24,000. Drainage basins are shown for all U.S. Geological Survey data-collection sites and for mouths of major rivers. Drainage basins are shown for the outlets of lakes or ponds and for streams where the drainage area is greater than 3 square miles. Successive sites along watercourses are indicated where the intervening area is at least 6 square miles on tributary streams or 10 square miles along the Westfield or Farmington Rivers. (USGS)

  18. Sediment Transport in Streams in the Umpqua River Basin, Oregon

    USGS Publications Warehouse

    Onions, C. A.

    1969-01-01

    This report presents tables of suspended-sediment data collected from 1956 to 1967 at 10 sites in the Umpqua River basin. Computations based on these data indicate that average annual suspended-sediment yields at these sites range from 137 to 822 tons per square mile. Because available data for the Umpqua River basin are generally inadequate for accurate determinations of sediment yield and for the definition of characteristics of fluvial sediments, recommendations are made for the collection and analysis of additional sediment data.

  19. N Budgets of the Piracicaba River Basin, Southeast Brazil

    NASA Astrophysics Data System (ADS)

    Filoso, S.; Williams, M.; Martinelli, L.

    2001-05-01

    Nitrogen budgets and the importance of the principal types of land use and other human activities as sources and sinks of N were determined for a meso-scale river basin (12 400 km2) in one of the most developed and economically important regions of South America. The Piracicaba River basin is located in southeastern Brazil and drains into a tributary of the Parana River. The basin supports about 2% of the population of Brazil with intensive agricultural and industrial activities. During two years from 1995 to 1997, biweekly samples were collected at 10 points along the Piracicaba River and its tributaries for analyses of dissolved and particulate N. The annual flux of N increased by a factor of about 20 times from the headwaters to the lower reaches of the main channel. Mass balances calculated for six linked sectors of the river system and for the entire basin had inputs that were generally slightly lower than outputs. These results are different from those observed in temperate regions, where low outputs in relation to inputs are common.

  20. Regionalization of flood hydrograph parameters in the Kolubara River Basin

    NASA Astrophysics Data System (ADS)

    Drobnjak, Aleksandar; Zlatanovic, Nikola; Bozovic, Nikola; Stojkovic, Milan; Orlic Momcilovic, Aleksandra; Jelovac, Milena; Prohaska, Stevan

    2016-04-01

    The Kolubara River basin is located in the western part of Serbia. There are several hydrological and rainfall gauging stations in the basin, while a large part of the basin is ungauged. In recent years in this area floods have been a common occurrence, so it is necessary to improve the system of flood protection. The research that is presented in this study represents a hydrological aspect to strengthening flood protection. This study presents the procedure of regionalization of basic flood hydrograph parameters in the Kolubara river basin. All significant observed flood waves in the basin over the past 50 years were collected, assimilated and analyzed. In this research, the method applied was based on the separation of flood hydrograph parameters, for each hydrological station: time to peak (time from the beginning of the hydrograph to its peak) (Tp), time of recession (time from the peak to the end of the recession limb) (Tr), retention time of rainfall in the catchment (tp) and time of concentration (Tc). Using these parameters and morphological characteristics of the basin, such as catchment area, the distance weighted channel slope, length of the main stream, the distance of the center of basin to the profile of each hydrological stations, regional dependencies were established. Parameters of flood hydrograph were analyzed as dependent variables, while the morphological characteristics of the basin represent independent variables. The final goal of this work is to use the obtained regional dependence for flood hydrograph parameter estimation at ungauged locations, with the end goal of improving flood protection in the Kolubara river basin.

  1. Selected streamflow data for the Delaware River basin

    USGS Publications Warehouse

    Schopp, Robert D.; Gillespie, Brian D.

    1979-01-01

    Selected streamflow data for the Delaware River basin include runoff-precipitation relationships for 28 selected subbasins for the period 1941-70; low-flow frequency curves for four mainstem Delaware River sites; monthly comparative duration curves and twenty year hydrographs at Montague and Trenton, New Jersey; and flow duration tables based on observed daily streamflow for gaging stations near 21 proposed dam sites. (Woodard-USGS)

  2. Demographics and run timing of adult Lost River (Deltistes luxatus) and shortnose (Chasmistes brevirostris) suckers in Upper Klamath Lake, Oregon, 2009

    USGS Publications Warehouse

    Hewitt, David A.; Hayes, Brian S.; Janney, Eric C.; Harris, Alta C.; Koller, Justin P.; Johnson, Mark A.

    2011-01-01

    Data from a long-term capture-recapture program were used to assess the status and dynamics of populations of two long-lived, federally endangered catostomids in Upper Klamath Lake, Oregon. Lost River suckers (Deltistes luxatus) and shortnose suckers (Chasmistes brevirostris) have been captured and tagged with passive integrated transponder (PIT) tags during their spawning migrations in each year since 1995. In addition, beginning in 2005, individuals that had been previously PIT-tagged were re-encountered on remote underwater antennas deployed throughout the spawning areas. Captures and remote encounters during spring 2009 were used to describe the spawning migrations in that year and also were incorporated into capture-recapture analyses of population dynamics over the last decade. Cormack-Jolly-Seber (CJS) open population capture-recapture models were used to estimate annual survival probabilities, and a reverse-time analog of the CJS model was used to estimate recruitment of new individuals into the spawning populations. In addition, data on the size composition of captured fish was examined for any additional evidence of recruitment. Survival and recruitment estimates were combined to estimate changes in population size over time and to determine the status of the populations through 2007. Separate analyses were conducted for each species and also for each subpopulation of Lost River suckers (LRS). One subpopulation of LRS migrates into tributaries to spawn, similar to shortnose suckers (SNS), whereas the other subpopulation spawns at upwelling areas along the eastern shoreline of the lake. In 2009, we captured and tagged 781 LRS at four shoreline areas and recaptured an additional 638 individuals that had been tagged in previous years. Across all four areas, the remote antennas detected 6,056 individual LRS during the spawning season. Spawning activity peaked in April and most individuals were encountered at Sucker Springs and Cinder Flats. In the Williamson

  3. Nitrogen Removal by Streams and Rivers of the Upper Mississippi River Basin

    EPA Science Inventory

    Our study, based on chemistry and channel dimensions data collected at 893 randomly-selected stream and river sites in the Mississippi River basin, demonstrated the interaction of stream chemistry, stream size, and NO3-N uptake metrics across a range of stream sizes and across re...

  4. An environmental streamflow assessment for the Santiam River basin, Oregon

    USGS Publications Warehouse

    Risley, John C.; Wallick, J. Rose; Mangano, Joseph F.; Jones, Krista L.

    2012-01-01

    The Santiam River is a tributary of the Willamette River in northwestern Oregon and drains an area of 1,810 square miles. The U.S. Army Corps of Engineers (USACE) operates four dams in the basin, which are used primarily for flood control, hydropower production, recreation, and water-quality improvement. The Detroit and Big Cliff Dams were constructed in 1953 on the North Santiam River. The Green Peter and Foster Dams were completed in 1967 on the South Santiam River. The impacts of the structures have included a decrease in the frequency and magnitude of floods and an increase in low flows. For three North Santiam River reaches, the median of annual 1-day maximum streamflows decreased 42–50 percent because of regulated streamflow conditions. Likewise, for three reaches in the South Santiam River basin, the median of annual 1-day maximum streamflows decreased 39–52 percent because of regulation. In contrast to their effect on high flows, the dams increased low flows. The median of annual 7-day minimum flows in six of the seven study reaches increased under regulated streamflow conditions between 60 and 334 percent. On a seasonal basis, median monthly streamflows decreased from February to May and increased from September to January in all the reaches. However, the magnitude of these impacts usually decreased farther downstream from dams because of cumulative inflow from unregulated tributaries and groundwater entering the North, South, and main-stem Santiam Rivers below the dams. A Wilcox rank-sum test of monthly precipitation data from Salem, Oregon, and Waterloo, Oregon, found no significant difference between the pre-and post-dam periods, which suggests that the construction and operation of the dams since the 1950s and 1960s are a primary cause of alterations to the Santiam River basin streamflow regime. In addition to the streamflow analysis, this report provides a geomorphic characterization of the Santiam River basin and the associated conceptual

  5. Grande Ronde Basin Supplementation Program; Lostine River, 2000 Annual Report.

    SciTech Connect

    Onjukka, Sam T.; Harbeck, Jim

    2003-03-01

    The Northwest Power Planning Council (NPPC) identified supplementation as a high priority to achieve its goal of increasing runs of anadromous fish in the Columbia Basin. Supplementation activities in the Lostine River and associated monitoring and evaluation conducted by the Nez Perce Tribe relate directly to the needs addressed in the Columbia River Basin Fish and Wildlife Program (NPPC 1994). Measure 7.4L.1 of the Program mandates that appropriate research accompany any proposed supplementation. In addition, measure 7.3B.2 of the Program stresses the need for evaluating supplementation projects to assess their ability to increase production. Finally, Section 7.4D.3 encourages the study of hatchery rearing and release strategies to improve survival and adaptation of cultured fish. In 1997, Oregon Department of Fisheries and Wildlife (ODFW) requested a modification of Permit 1011 to allow the take of adult spring chinook salmon. In 1998, the Nez Perce Tribe also requested a permit specific to activities on Lostine River. The permit was issued in 2000. A special condition in the permits required the development of a long term management plan for the spring chinook salmon of the Grande Ronde Basin. The Nez Perce Tribe, ODFW, and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) completed a formal long range plan entitled ''Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program''. The program proposes to increase the survival of spring chinook salmon in the Grand Ronde Basin through hatchery intervention. Adult salmon from the Lostine River, Catherine Creek, and the Upper Grande Ronde River are used for a conventional supplementation program in the basin. The Nez Perce program currently operates under the ESA Section 10 Permit 1149.

  6. Grande Ronde Basin Supplementation Program; Lostine River, 2001 Annual Report.

    SciTech Connect

    Onjukka, Sam T.; Harbeck, Jim

    2003-03-01

    The Northwest Power Planning Council (NPPC) identified supplementation as a high priority to achieve its goal of increasing runs of anadromous fish in the Columbia Basin. Supplementation activities in the Lostine River and associated monitoring and evaluation conducted by the Nez Perce Tribe relate directly to the needs addressed in the Columbia River Basin Fish and Wildlife Program (NPPC 1994). Measure 7.4L.1 of the Program mandates that appropriate research accompany any proposed supplementation. In addition, measure 7.3B.2 of the Program stresses the need for evaluating supplementation projects to assess their ability to increase production. Finally, Section 7.4D.3 encourages the study of hatchery rearing and release strategies to improve survival and adaptation of cultured fish. In 1997, Oregon Department of Fisheries and Wildlife (ODFW) requested a modification of Permit 1011 to allow the take of adult spring chinook salmon. In 1998, the Nez Perce Tribe also requested a permit specific to activities on Lostine River. The permit was issued in 2000. A special condition in the permits required the development of a long term management plan for the spring chinook salmon of the Grande Ronde Basin. The Nez Perce Tribe, ODFW, and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) completed a formal long range plan entitled ''Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program''. The program proposes to increase the survival of spring chinook salmon in the Grand Ronde Basin through hatchery intervention. Adult salmon from the Lostine River, Catherine Creek, and the Upper Grande Ronde River are used for a conventional supplementation program in the basin. The Nez Perce program currently operates under the ESA Section 10 Permit 1149.

  7. Effects of livestock wastes on small illinois streams: Lower Kaskaskia river basin and upper little wabash river basins, summer 1991

    SciTech Connect

    Hite, R.L.; Bickers, C.A.; King, M.M.; Brockamp, D.W.

    1992-07-01

    In early 1991, the Illinois Environmental Protection Agency (IEPA) initiated an investigation to evaluate livestock waste runoff in southern Illinois. The primary objectives of this survey were to document stream quality impairments caused by livestock waste runoff, and ultimately, the need for better waste management practices, waste management systems, and funding for such systems. Information provided by Soil Conservation Service (SCS) and IEPA Agricultural staff identified an area in Clinton and Bond Counties in the Kaskaskia River basin and several upper Little Wabash River basin tributaries in Effingham and Cumberland Counties as candidate project areas.

  8. 18 CFR 706.413 - Submission of statements by River Basin Commission Chairmen.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... statements by River Basin Commission Chairmen. 706.413 Section 706.413 Conservation of Power and Water... Financial Interests § 706.413 Submission of statements by River Basin Commission Chairmen. A statement of employment and financial interest is not required under this part from Chairmen of River Basin...

  9. 18 CFR 706.413 - Submission of statements by River Basin Commission Chairmen.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... statements by River Basin Commission Chairmen. 706.413 Section 706.413 Conservation of Power and Water... Financial Interests § 706.413 Submission of statements by River Basin Commission Chairmen. A statement of employment and financial interest is not required under this part from Chairmen of River Basin...

  10. 76 FR 13676 - Amended Columbia River Basin Fish and Wildlife Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ... POWER AND CONSERVATION PLANNING COUNCIL Amended Columbia River Basin Fish and Wildlife Program AGENCY... Council's Columbia River Basin Fish and Wildlife Program. SUMMARY: Pursuant to Section 4(h) of the Northwest Power Act, the Council has amended its Columbia River Basin Fish and Wildlife Program to add...