Science.gov

Sample records for klickitat river washington

  1. Bull Trout Population Assessment in the White Salmon and Klickitat Rivers, Columbia River Gorge, Washington, 2001 Annual Report.

    SciTech Connect

    Thiesfeld, Steven L.; McPeak, Ronald H.; McNamara, Brian S.; Honanie, Isadore

    2002-01-01

    We utilized night snorkeling and single pass electroshocking to determine the presence or absence of bull trout Salvelinus confluentus in 26 stream reaches (3,415 m) in the White Salmon basin and in 71 stream reaches (9,005 m) in the Klickitat River basin during summer and fall 2001. We did not find any bull trout in the White Salmon River basin. In the Klickitat River basin, bull trout were found only in the West Fork Klickitat River drainage. We found bull trout in two streams not previously reported: Two Lakes Stream and an unnamed tributary to Fish Lake Stream (WRIA code number 30-0550). We attempted to capture downstream migrant bull trout in the West Fork Klickitat River by fishing a 1.5-m rotary screw trap at RM 4.3 from July 23 through October 17. Although we caught other salmonids, no bull trout were captured. The greatest limiting factor for bull trout in the West Fork Klickitat River is likely the small amount of available habitat resulting in a low total abundance, and the isolation of the population. Many of the streams are fragmented by natural falls, which are partial or complete barriers to upstream fish movement. To date, we have not been able to confirm that the occasional bull trout observed in the mainstem Klickitat River are migrating upstream into the West Fork Klickitat River.

  2. Determination of Swimming Speeds and Energetic Demands of Upriver Migrating Fall Chinook Salmon (Oncorhynchus tshawytscha) in the Klickitat River, Washington

    SciTech Connect

    Brown, Richard S.; Geist, David R.

    2002-07-01

    This report describes a field study by PNNL for Bonneville Power Administration in fall 2001 to study the migration and energy use of adult fall chinook salmon traveling up the Klickitat River to spawn. The salmon were tagged with surgically implanted electromyogram transmitters or gastrically implanted coded transmitters. Swim speed and aerobic and anaerobic energy use were determined for the fish as they attempted to pass three waterfalls on the lower Klickitat and as they traversed free-flowing stretches between and below the falls. Of the 35 EMG-tagged fish released near the mouth of the Klickitat, 40% passed the first falls, 36% passed the second falls, and 20% reached Lyle Falls but were unable to leap over. Mean swimming speeds ranged from as low as 52.6 cm/sec between falls to as high as 158.1 cm/sec at falls passage. Fish exhibited a higher percentage of occurrences of burst swimming while passing the falls than while between falls (58.9% versus 1.7%). However, fish expended more energy swimming the stretches between the falls than during actual falls passage (52.3-236.2 kcals versus 0.3-1.1 kcals). Male-female and day-night differences in falls passage success were noted. PNNL also examined energy costs and swimming speeds for fish released above Lyle Falls as they migrated to upstream spawning areas. This journey averaged 15.93 days at a mean rate of 2.36 km/day to travel a mean maximum of 37.6 km upstream at a total energy cost of approx 4,492 kcals (32% anaerobic/68% aerobic). When the salmon have expended the estimated 968 kcals needed to get through Bonneville Dam and the three falls on the Lower Klickitat, plus this 4,492 kcals to reach the spawning grounds, they are left with approximately 8 to 12% (480 to 742 kcals) of their energy reserves for spawning. A delay of 4 to 7 days along the lower Klickitat River could deplete their remaining energy reserves (at a rate of about 103 kcals/day), resulting in death before spawning would occur.

  3. Determination of Swimming Speeds and Energetic Demands of Upriver Migrating Fall Chinook Salmon (Oncorhynchus Tshawytscha) in the Klickitat River, Washington.

    SciTech Connect

    Brown, Richard S.; Geist, David R.; Confederated Tribes and Bands of the Yakama Nation, Washington

    2002-08-30

    This report describes a study conducted by Pacific Northwest National Laboratory for the Bonneville Power Administration's Columbia Basin Fish and Wildlife Program during the fall of 2001. The objective was to study the migration and energy use of adult fall chinook salmon (Oncorhynchus tshawytscha) traveling up the Klickitat River to spawn. The salmon were tagged with either surgically implanted electromyogram (EMG) transmitters or gastrically implanted coded transmitters and were monitored with mobile and stationary receivers. Swim speed and aerobic and anaerobic energy use were determined for the fish as they attempted passage of three waterfalls on the lower Klickitat River and as they traversed free-flowing stretches between, below, and above the falls. Of the 35 EMG-tagged fish released near the mouth of the Klickitat River, 40% passed the first falls, 24% passed the second falls, and 20% made it to Lyle Falls. None of the EMG-tagged fish were able to pass Lyle Falls, either over the falls or via a fishway at Lyle Falls. Mean swimming speeds ranged from as low as 52.6 centimeters per second (cm s{sup -1}) between falls to as high as 189 (cm s{sup -1}) at falls passage. Fish swam above critical swimming speeds while passing the falls more often than while swimming between the falls (58.9% versus 1.7% of the transmitter signals). However, fish expended more energy swimming the stretches between the falls than during actual falls passage (100.7 to 128.2 kilocalories [kcals] to traverse areas between or below falls versus 0.3 to 1.0 kcals to pass falls). Relationships between sex, length, and time of day on the success of falls passage were also examined. Average swimming speeds were highest during the day in all areas except at some waterfalls. There was no apparent relationship between either fish condition or length and successful passage of waterfalls in the lower Klickitat River. Female fall chinook salmon, however, had a much lower likelihood of passing

  4. Reconnaissance of water resources of the Upper Klickitat River Basin, Yakima Indian Reservation, Washington

    USGS Publications Warehouse

    Cline, Denzel R.

    1975-01-01

    Large quantities of ground water and surface water are available in Washington County. Major sources of ground water are the Gosport Sand and Lisbon Formation undifferentiated, the Miocene Series undifferentiated, and alluvium and low terrace deposits. The Miocene, the most productive source of ground water, will yield 0.5 to 1.0 mgd (million gallons per day) per well and is a potential source of larger supplies in most of the county. The quantity of potable water available is governed largely by geologic structures. Average flows of the Tombigbee and Mobile Rivers in the southeast corner of the county are 18,200 and 39,400 mgd. Average runoff originating in the county is about 1,100 mgd or 1 mgd per square mile. Water in aquifers tapped by wells generally contains less than 500 mg/l (milligrams per liter) dissolved solids. The water generally is soft to moderately hard. Water in streams is soft to moderately hard and low in dissolved solids. Estimated water use in 1966 was 43.5 mgd of which 10.9 mgd was ground water and 32.6 mgd was surface water. Lava flows underlie the entire basin, and unconsolidated sedimentary deposits overlie the lavas in the Camas Prairie-Glenwood area and in small areas elsewhere. A spring supplies water to much of the Camas Prairie-Glenwood area through a public system, so not many wells are used now. About 56 million gallons (110 acre-feet) of ground water was used in 1974. The unconsolidated deposits yield from 1 to 500 gallons per minute of water to wells, and the basalt can yield more than 100 gallons per minute and possibly several thousand gallons per minute to deep wells. Ground-water recharge and discharge on the reservation is estimated to average 550,000 acre-feet per year.

  5. 77 FR 32631 - Public Utility District No. 1 of Klickitat County, Washington; Notice of Preliminary Permit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-01

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Public Utility District No. 1 of Klickitat County, Washington; Notice of Preliminary Permit Application Accepted for Filing and Soliciting Comments, Motions to Intervene, and Competing Applications On May 1, 2012,...

  6. Baseline avian use and behavior at the CARES wind plant site, Klickitat County, Washington

    SciTech Connect

    Erickson, W.P.; Johnson, G.D.; Strickland, M.D.; Kronner, K.; Becker, P.S.; Orloff, S.

    2000-01-03

    This report presents a literature review on avian-wind turbine interactions and the results of a one-year avian baseline study conducted in 1998 at the proposed Conservation and Renewable Energy System (CARES) wind development site in Klickitat County, Washington. Avian use of the site ranged from 1.11/survey in the winter to 5.69/survey in the spring. Average use by passerines in the study plots ranged from 1.15 minutes/survey in the winter to 40.98 minutes/survey in the spring. Raptors spent much less time within plots than other groups, ranging from 0.05 minutes/survey in the winter to 0.77 minutes/survey during the fall. Thirteen percent of all flying birds were within the rotor-swept height (25 to 75 m); 41.6% of all raptors were flying at this height. Raptors with the greatest potential turbine exposure are red-tailed hawks and golden eagles. Passerines with the highest turbine exposure are common ravens, American robins, and horned larks. Spatial use data for the site indicate that avian use tends to be concentrated near the rim, indicating that placing turbines away from the rim may reduce risk. Avian use data at the CARES site indicate that if a wind plant is constructed in the future, avian mortality would likely be relatively low.

  7. Yakima/Klickitat Fisheries Project - Klickitat Monitoring and Evaluation, 2007 Annual Report.

    SciTech Connect

    Zendt, Joe; Babcock, Mike

    2006-04-02

    This report describes the results of monitoring and evaluation (M&E) activities for salmonid fish populations and habitat in the Klickitat River subbasin in south-central Washington. The M&E activities described here were conducted as a part of the Bonneville Power Administration (BPA)-funded Yakima/Klickitat Fisheries Project (YKFP) and were designed by consensus of the scientists with the Yakama Nation (YN) Fisheries Program. YKFP is a joint project between YN and Washington Department of Fish and Wildlife (WDFW). Overall YKFP goals are to increase natural production of and opportunity to harvest salmon and steelhead in the Yakima and Klickitat subbasins using hatchery supplementation, harvest augmentation and habitat improvements. Klickitat subbasin M&E activities have been subjected to scientific and technical review by members of the YKFP Science/Technical Advisory Committee (STAC) as part of the YKFP's overall M&E proposal. Yakama Nation YKFP biologists have transformed the conceptual design into the tasks described. YKFP biologists have also been involved with the Collaborative Systemwide Monitoring and Evaluation Project (CSMEP - a project aimed at improving the quality, consistency, and focus of fish population and habitat data to answer key M&E questions relevant to major decisions in the Columbia Basin) and are working towards keeping Klickitat M&E activities consistent with CSMEP recommendations. This report summarizes progress and results for the following major categories of YN-managed tasks under this contract: (1) Monitoring and Evaluation - to gather baseline information in order to characterize habitat and salmonid populations pre- and post-habitat restoration and pre-supplementation. (2) Ecological Interactions - to determine presence of pathogens in wild and naturally produced salmonids in the Klickitat Basin and develop supplementation strategies using this information. (3) Genetics - to develop YKFP supplementation broodstock collection

  8. Yakima/Klickitat Fisheries Project; Washington Department of Fish and Wildlife Policy/Technical Involvement and Planning, 2001-2002 Annual Report.

    SciTech Connect

    Easterbrooks, John A.; Pearsons, Todd N.

    2003-03-01

    The Yakima/Klickitat Fisheries Project (YKFP) is a supplementation project sponsored by the Northwest Power Planning Council (Columbia River Basin Fish and Wildlife Program 1994, Measure 7.4K). The objectives of the YKFP are: (1) to test the hypothesis that new supplementation techniques can be used in the Yakima River Basin to increase natural production and to improve harvest opportunities while maintaining the long-term genetic fitness of the wild and native salmonid populations and keeping adverse ecological interactions within acceptable limits (Yakima Fisheries Project Final Environment Impact Statement, 1996); (2) provide knowledge about the use of supplementation, so that it may be used to mitigate effects on anadromous fisheries throughout the Columbia River Basin; (3) to maintain and improve the quantity and productivity of salmon and steelhead habitat, including those areas made accessible by habitat improvements; (4) to ensure that Project implementation remains consistent with the Council's Fish and Wildlife Program; and (5) to implement the Project in a prudent and environmentally sound manner. Current YKFP operations have been designed to test the principles of supplementation (Busack et al. 1997). The Project's experimental design has focused on the following critical uncertainties affecting supplementation: (1) The survival and reproductive success of hatchery fish after release from the hatchery; (2) The impacts of hatchery fish as they interact with non-target species and stocks; and, (3) The effects of supplementation on the long-term genetic fitness of fish stocks. The YKFP endorses an adaptive management policy applied through a project management framework as described in the Yakima/Klickitat Fisheries Project Planning Status Report (1995), Fast and Craig (1997), Clune and Dauble 1991. The project is managed by a Policy Group consisting of a representative of the Yakama Nation (YN, lead agency) and a representative of the Washington

  9. Influences of Stocking Salmon Carcass Analogs on Salmonids in Klickitat River Tributaries, 2001-2005 Completion Report.

    SciTech Connect

    Zendt, Joe; Sharp, Bill

    2006-09-01

    This report describes the work completed by the Yakama Nation Fisheries Program (YNFP) in the Klickitat subbasin in south-central Washington under BPA innovative project No.200105500--Influences of stocking salmon carcass analogs on salmonids in Columbia River Tributaries. Salmon carcasses historically provided a significant source of marine-derived nutrients to many stream systems in the Columbia basin, and decreased run sizes have led to a loss of this nutrient source in many streams. Partners in this project developed a pathogen-free carcass analog and stocked the analogs in streams with the following objectives: restoring food availability to streams with reduced anadromous salmon returns; mimicking the natural pathways and timing of food acquisition by salmonids; minimizing unintended negative ecological effects; and increasing the growth and survival of salmonids. In the Klickitat subbasin, carcass analogs were stocked in two streams in 2002 and 2003; a third stream was used as a control. Salmonid fish abundance, growth, and stomach contents were monitored in all three streams before and after carcass analog placement. Fish, invertebrate, and periphyton samples were also collected for stable isotope analysis (to determine if nutrients from carcass analogs were incorporated into the stream food web). Water quality samples were also collected to determine if nutrient overloading occurred in streams. Significant differences in growth were found between fish in treated and untreated stream reaches. Fish in treatment reaches exhibited higher instantaneous growth rates approximately one month after the first carcass analog stocking. Stomach contents sampling indicated that salmonid fish routinely consumed the carcass analog material directly, and that stomach fullness of fish in treatment reaches was higher than in untreated reaches in the first few weeks following carcass analog stockings. No significant differences were detected in fish abundance between

  10. Reproductive Ecology of Yakima River Hatchery and Wild Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2001-2002 Annual Report.

    SciTech Connect

    Knudsen, Curtis M.

    2003-05-01

    This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from Oncorh Consulting to the Washington Department of Fish and Wildlife (WDFW), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning, and (2) summarize results of research that have broader scientific relevance. This is the second in a series of reports that address reproductive ecological research and monitoring of spring chinook in the Yakima River basin. In addition to within-year comparisons, between-year comparisons will be made to determine if traits of the wild Naches basin control population, the naturally spawning population in the upper Yakima River and the hatchery control population are diverging over time. This annual report summarizes data collected between April 1, 2002 and March 31, 2003. In the future, these data will be compared to previous years to identify general trends and make preliminary comparisons. Supplementation success in the Yakima Klickitat Fishery Project's (YKFP) spring chinook (Oncorhynchus tshawytscha) program is defined as increasing natural production and harvest opportunities, while keeping adverse ecological interactions and genetic impacts within acceptable bounds (Busack et al. 1997). Within this context demographics, phenotypic traits, and reproductive ecology have significance because they directly affect natural productivity. In addition, significant changes in locally adapted traits due to hatchery influence, i.e. domestication, would likely be maladaptive resulting in reduced population productivity and fitness (Taylor 1991; Hard 1995). Thus, there is a need to study demographic and phenotypic traits in the YKFP in order to understand hatchery and wild population productivity, reproductive ecology, and the effects of domestication (Busack et al. 1997). Tracking trends in these traits over time is also a critical aspect of domestication monitoring (Busack et al

  11. Reproductive Ecology of Yakima River Hatchery and Wild Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report.

    SciTech Connect

    Knudsen, Curtis M.; Schroder, Steven L.; Johnston, Mark V.

    2005-05-01

    This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from Oncorh Consulting to the Washington Department of Fish and Wildlife (WDFW), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning and (2) summarize results of research that have broader scientific relevance. This is the fourth in a series of reports that address reproductive ecological research and monitoring of spring chinook populations in the Yakima River basin. This annual report summarizes data collected between April 1, 2004 and March 31, 2005 and includes analyses of historical baseline data, as well. Supplementation success in the Yakima Klickitat Fishery Project's (YKFP) spring chinook (Oncorhynchus tshawytscha) program is defined as increasing natural production and harvest opportunities, while keeping adverse ecological interactions and genetic impacts within acceptable bounds (Busack et al. 1997). Within this context demographics, phenotypic traits, and reproductive ecology have significance because they directly affect natural productivity. In addition, significant changes in locally adapted traits due to hatchery influence, i.e. domestication, would likely be maladaptive resulting in reduced population productivity and fitness (Taylor 1991; Hard 1995). Thus, there is a need to study demographic and phenotypic traits in the YKFP in order to understand hatchery and wild population productivity, reproductive ecology, and the effects of domestication (Busack et al. 1997). Tracking trends in these traits over time is also a critical aspect of domestication monitoring (Busack et al. 2004) to determine whether trait changes have a genetic component and, if so, are they within acceptable limits. The first chapter of this report compares first generation hatchery and wild upper Yakima River spring chinook returns over a suite of life-history, phenotypic and demographic traits. The second chapter

  12. Yakima/Klickitat Fisheries Project; Washington Department of Fish and Wildlife Policy/Technical Involvement and Planning, 2002-2003 Annual Report.

    SciTech Connect

    Pearsons, Todd N.; Easterbrooks, John A.

    2003-09-01

    The Yakima/Klickitat Fisheries Project (YKFP) is a supplementation project sponsored by the Northwest Power Planning Council and funded by the Bonneville Power Administration. The YKFP has adopted the definition of supplementation described by Regional Assessment of Supplementation Program (1992), which is ''the use of artificial propagation in an attempt to maintain or increase natural production while maintaining the long-term fitness of the target population, and keeping the ecological and genetic impacts on nontarget populations within specified biological limits''. Recent scientific reviews of hatchery supplementation continue to highlight the experimental nature and risk of supplementation (Independent Scientific Group 1996; National Research Council 1996; Lichatowich 1999; Independent Multidisciplinary Science Team 2000; Independent Scientific Advisory Board 2003; Hatchery Scientific Review Group 2003). In addition, many of these reviews included recommendations about the best ways to operate a supplementation program. Most of these recommendations were already being done or have been incorporated into the YKFP. The objectives of the YKFP are: (1) to test the hypothesis that new supplementation techniques can be used in the Yakima River Basin to increase natural production and to improve harvest opportunities while maintaining the long-term genetic fitness of the wild and native salmonid populations and keeping adverse ecological interactions within acceptable limits (Yakima Fisheries Project Final Environment Impact Statement, 1996); (2) provide knowledge about the use of supplementation, so that it may be used to mitigate effects on anadromous fisheries throughout the Columbia River Basin; (3) to maintain and improve the quantity and productivity of salmon and steelhead habitat, including those areas made accessible by habitat improvements; (4) to ensure that Project implementation remains consistent with the Council's Fish and Wildlife Program; and (5) to

  13. Reproductive Ecology of Yakima River Hatchery and Wild Spring Chinook and Juvenile-to-Adult PIT-tag Retention; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2001 Annual Report.

    SciTech Connect

    Knudsen, Curtis M.

    2002-11-01

    This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from Oncorh Consulting to the Washington Department of Fish and Wildlife (WDFW), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning, and (2) summarize results of research that have broader scientific relevance. This is the first in an anticipated series of reports that address reproductive ecological research and monitoring of spring chinook in the Yakima River basin. In addition to within-year comparisons, between-year comparisons will be made to determine if traits of the wild Naches basin control population, the naturally spawning population in the upper Yakima River and the hatchery control population are diverging over time. This annual report summarizes data collected between April 1, 2001 and March 31, 2002. In the future, these data will be compared to previous years to identify general trends and make preliminary comparisons.

  14. Yakima River Species Interactions Studies; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report.

    SciTech Connect

    Pearsons, Todd N.; Temple, Gabriel M.; Fritts, Anthony L.

    2005-05-01

    This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from the Washington Department of Fish and Wildlife (WDFW) to the Bonneville Power Administration (BPA), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning, and (2) summarize results of research that have broader scientific relevance. This is the thirteenth of a series of progress reports that address species interactions research and supplementation monitoring of fishes in response to supplementation of salmon and steelhead in the upper Yakima River basin (Hindman et al. 1991; McMichael et al. 1992; Pearsons et al. 1993; Pearsons et al. 1994; Pearsons et al. 1996; Pearsons et al. 1998, Pearsons et al. 1999, Pearsons et al. 2001a, Pearsons et al. 2001b, Pearsons et al. 2002, Pearsons et al. 2003, Pearsons et al. 2004). Journal articles and book chapters have also been published from our work (McMichael 1993; Martin et al. 1995; McMichael et al. 1997; McMichael and Pearsons 1998; McMichael et al. 1998; Pearsons and Fritts 1999; McMichael et al. 1999; McMichael et al. 1999; Pearsons and Hopley 1999; Ham and Pearsons 2000; Ham and Pearsons 2001; Amaral et al. 2001; McMichael and Pearsons 2001; Pearsons 2002, Fritts and Pearsons 2004, Pearsons et al. in press, Major et al. in press). This progress report summarizes data collected between January 1, 2004 and December 31, 2004. These data were compared to findings from previous years to identify general trends and make preliminary comparisons. Interactions between fish produced as part of the YKFP, termed target species or stocks, and other species or stocks (non-target taxa) may alter the population status of non-target species or stocks. This may occur through a variety of mechanisms, such as competition, predation, and interbreeding (Pearsons et al. 1994; Busack et al. 1997; Pearsons and Hopley 1999). Furthermore, the success of a supplementation program may

  15. Reproductive Ecology of Yakima River Hatchery and Wild Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2005-2006 Annual Report.

    SciTech Connect

    Knedsen, Curtis M.; Schroder, Steven L.; Johnston, Mark V.

    2006-05-01

    This report covers three of many topics under the Yakima/Klickitat Fisheries Project's Monitoring and Evaluation Program (YKFPME) and was completed by Oncorh Consulting as a contract deliverable to the Yakama Nation and Washington Department of Fish and Wildlife. The YKFPME (Project Number 1995-063-25) is funded under two BPA contracts, one for the Yakama Nation (Contract No. 00022449) and the other for the Washington Department of Fish and Wildlife (Contract No. 22370). A comprehensive summary report for all of the monitoring and evaluation topics will be submitted after all of the topical reports are completed. This approach to reporting enhances the ability of people to get the information they want, enhances timely reporting of results, and provides a condensed synthesis of the whole YKFPME.

  16. Yakima/Klickitat Fisheries Project: Management, Data and Habitat, Annual Report 2001-2002.

    SciTech Connect

    Sampson, Melvin R.

    2002-03-01

    The Yakima/Klickitat Fisheries Project (YKFP or Project) is an all stock initiative that is responding to the need for scientific knowledge for rebuilding and maintaining naturally spawning anadromous fish stocks in both basins. The Yakama Nation, as the Lead Agency, in coordination with the co-managers, Washington Department of Fish and Wildlife and in cooperation with the Bonneville Power Administration, the funding agency, is pursuing this. We are testing the principles of supplementation as a means to rebuild fish populations through the use of locally adapted broodstock in an artificial production program. This concept is being utilized on the Spring Chinook within the Yakima River Basin. The coho and fall chinook programs were approved and implemented in the Yakima Basin. The coho programs principle objective is to determine if naturally spawning coho populations can be reintroduced throughout their biological range in the basin. The objective of the fall chinook program is to determine if supplementation is a viable strategy to increase fall chinook populations in the Yakima subbasin. The coho and fall chinook programs are under the three step process that was established by the Northwest Power Planning Council. The Klickitat subbasin management program is combined with the Yakima subbasin program. This contract includes the Klickitat Basin Coordinator and operational costs for the basin. The Klickitat Subbasin has separate contracts for Monitoring & Evaluation, Construction, and ultimately, Operation and Maintenance. In the Klickitat subbasin, we propose to use supplementation to increase populations of spring chinook and steelhead. This program is still in the developmental stages consistent with the three step process.

  17. Yakima/Klickitat Fisheries Project : Management, Data and Habitat, Annual Report 2002-2003.

    SciTech Connect

    Sampson, Melvin R.

    2002-03-01

    The Yakima/Klickitat Fisheries Project (YKFP or Project) is an all stock initiative that is responding to the need for scientific knowledge for rebuilding and maintaining naturally spawning anadromous fish stocks in both basins. The Yakama Nation, as the Lead Agency, in coordination with the co-managers, Washington Department of Fish and Wildlife and in cooperation with the Bonneville Power Administration, the funding agency, is pursuing this. We are testing the principles of supplementation as a means to rebuild fish populations through the use of locally adapted broodstock in an artificial production program. This concept is being utilized on the Spring Chinook within the Yakima River Basin. The coho and fall chinook programs were approved and implemented in the Yakima Basin. The coho programs principle objective is to determine if naturally spawning coho populations can be reintroduced throughout their biological range in the basin. The objective of the fall chinook program is to determine if supplementation is a viable strategy to increase fall chinook populations in the Yakima subbasin. The coho and fall chinook programs are under the three step process that was established by the Northwest Power Planning Council. The Klickitat subbasin management program is combined with the Yakima subbasin program. This contract includes the Klickitat Basin Coordinator and operational costs for the basin. The Klickitat Subbasin has separate contracts for Monitoring and Evaluation, Construction, and ultimately, Operation and Maintenance. In the Klickitat subbasin, we propose to use supplementation to increase populations of spring chinook and steelhead. This program is still in the developmental stages consistent with the three step process.

  18. 75 FR 20776 - Security Zone; Potomac River, Washington Channel, Washington, DC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-21

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA87 Security Zone; Potomac River, Washington Channel... establishing a temporary security zone in certain waters of Washington Channel on the Potomac River. The... (NPRM) entitled ``Security Zone; Potomac River, Washington Channel, Washington, DC'' in the...

  19. Reproductive Ecology of Yakima River Hatchery and Wild Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 3 of 7, 2003-2004 Annual Report.

    SciTech Connect

    Knudsen, Curtis

    2004-05-01

    This is the third in a series of annual reports that address reproductive ecological research and comparisons of hatchery and wild origin spring chinook in the Yakima River basin. Data have been collected prior to supplementation to characterize the baseline reproductive ecology, demographics and phenotypic traits of the unsupplemented upper Yakima population, however this report focuses on data collected on hatchery and wild spring chinook returning in 2003; the third year of hatchery adult returns. This report is organized into three chapters, with a general introduction preceding the first chapter and summarizes data collected between April 1, 2003 and March 31, 2004 in the Yakima basin. Summaries of each of the chapters in this report are included below. A major component of determining supplementation success in the Yakima Klickitat Fishery Project's spring chinook (Oncorhynchus tshawytscha) program is an increase in natural production. Within this context, comparing upper Yakima River hatchery and wild origin fish across traits such as sex ratio, age composition, size-at-age, fecundity, run timing and gamete quality is important because these traits directly affect population productivity and individual fish fitness which determine a population's productivity.

  20. Yakima River Species Interactions Study; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 7 of 7, 2003-2004 Annual Report.

    SciTech Connect

    Pearsons, Todd N.; Fritts, Anthony L.; Temple, Gabriel M.

    2004-05-01

    This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from the Washington Department of Fish and Wildlife (WDFW) to the Bonneville Power Administration (BPA), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning, and (2) summarize results of research that have broader scientific relevance. This is the twelfth of a series of progress reports that address species interactions research and supplementation monitoring of fishes in response to supplementation of salmon and steelhead in the upper Yakima River basin (Hindman et al. 1991; McMichael et al. 1992; Pearsons et al. 1993; Pearsons et al. 1994; Pearsons et al. 1996; Pearsons et al. 1998, Pearsons et al. 1999, Pearsons et al. 2001a, Pearsons et al. 2001b, Pearsons et al. 2002, Pearsons et al. 2003). Journal articles and book chapters have also been published from our work (McMichael 1993; Martin et al. 1995; McMichael et al. 1997; McMichael and Pearsons 1998; McMichael et al. 1998; Pearsons and Fritts 1999; McMichael et al. 1999; McMichael et al. 1999; Pearsons and Hopley 1999; Ham and Pearsons 2000; Ham and Pearsons 2001; Amaral et al. 2001; McMichael and Pearsons 2001; Pearsons 2002, Fritts and Pearsons 2004, Pearsons et al. in press, Major et al. in press). This progress report summarizes data collected between January 1, 2003 and December 31, 2003. These data were compared to findings from previous years to identify general trends and make preliminary comparisons. Interactions between fish produced as part of the YKFP, termed target species or stocks, and other species or stocks (non-target taxa) may alter the population status of non-target species or stocks. This may occur through a variety of mechanisms, such as competition, predation, and interbreeding (Pearsons et al. 1994; Busack et al. 1997; Pearsons and Hopley 1999). Furthermore, the success of a supplementation program may be limited by strong

  1. Lower Klickitat Riparian and In-channel Habitat Restoration Project; Klickitat Watershed Enhancement, Annual Report 2002-2003.

    SciTech Connect

    Conley, Will

    2004-01-01

    assessment in the White Creek watershed (Task A4.2). Significant milestones associated with restoration projects during the reporting period included: (1) Completion of the Surveyors Fish Creek Passage Enhancement project (Task B2.3); (2) Completion of interagency agreements for the Klickitat Meadows (Task B2.4) and Klickitat Mill (Task B2.10) projects; (3) Completion of topographic surveys for the Klickitat Meadows (Task B2.4), Klickitat River Meadows (Task B2.5), Trout Creek and Bear Creek culvert replacements (Task B2.7), and Snyder Swale II (Task B2.13) projects; (4) Completion of the Snyder Swale II - Phase 1 project (Task B2.13); (5) Completion of design, planning, and permitting for the Klickitat Mill project (Task B2.10) and initiation of construction; (6) Design for the Trout and Bear Creek culverts (B2.7) were brought to the 60% level; and (7) Completion of design work for the for the Klickitat Meadows (Task B2.4) and Klickitat River Meadows (Task B2.5) projects.

  2. Washington Water Power Spokane River Upper Falls Hydroelectric Development, Gate ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Washington Water Power Spokane River Upper Falls Hydroelectric Development, Gate House, Spokane River, approximately 0.5 mile northeast of intersection of Spokane Falls Boulevard & Post Street, Spokane, Spokane County, WA

  3. Washington Water Power Spokane River Upper Falls Hydroelectric Development, Gates ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Washington Water Power Spokane River Upper Falls Hydroelectric Development, Gates & Gate-Lifting Mechanisms, Spokane River, approximately 0.5 mile northeast of intersection of Spokane Falls Boulevard & Post Street, Spokane, Spokane County, WA

  4. Quality of water, Quillayute River basin, Washington

    SciTech Connect

    Fretwell, M.O.

    1984-01-01

    Ground water in the Quillayute River basin is generally of the calcium bicarbonate type, although water from some wells is affected by seawater intrusion and is predominantly of the sodium chloride type. The water is generally of excellent quality for most uses, with the exception of water in two wells which had iron concentrations that potentially could be tasted in beverages and could cause staining of laundry and porcelain fixtures. A comparison of the chemical compositions of ground and surface waters showed a strong similarity over a wide geographic area. Proportions of the major chemical constituents in the rivers of the basin were nearly constant despite concentration fluctuations in response to dilution from precipitation and snowmelt. River-water quality was generally excellent, as evaluated against Washington State water use and water-quality criteria. Fecal-coliform bacteria counts generally were much lower than the total-coliform bacteria counts, indicating that most of the coliform bacteria were of nonfecal origin and probably originated in soils. Fecal coliform concentrations in all the major tributaries met State water-quality criteria. Water temperatures occasionally exceeded criteria maximum during periods of warm weather and low streamflow; dissolved-oxygen concentrations were occasionally less than criteria minimum because of increased water temperature. Both conditions occurred naturally. Nutrient concentrations were generally low to very low and about the same as in streams from virgin forestland in the Olympic National Park. However, some slight increases in nutrient concentrations were observed, particularly in the vicinity of Mill Creek and the town of Forks; due to dilution and biological assimilation, these slightly elevated concentrations decreased as the water moved downstream. 35 refs., 24 figs., 16 tabs.

  5. 78 FR 41691 - Safety Zone; Pamlico River and Tar River; Washington, NC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-11

    ...) 366-9826. SUPPLEMENTARY INFORMATION: ] Table of Acronyms DHS Department of Homeland Security FR... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Pamlico River and Tar River; Washington, NC... zone on the navigable waters of the Pamlico and Tar Rivers in Washington, NC in support of a...

  6. 76 FR 52566 - Drawbridge Operation Regulations; Anacostia River, Washington, DC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-23

    ... Federal Register (73 FR 3316). Public Meeting We do not now plan to hold a public meeting. But you may... SECURITY Coast Guard 33 CFR Part 117 Drawbridge Operation Regulations; Anacostia River, Washington, DC... governing the operation of the CSX Railroad Vertical Lift Bridge across the Anacostia River, mile 3.4,...

  7. 76 FR 52602 - Drawbridge Operation Regulation; Anacostia River, Washington, DC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-23

    ... public dockets in the January 17, 2008, issue of the Federal Register (73 FR 3316). Public Meeting We do... SECURITY Coast Guard 33 CFR Part 117 RIN 1625-AA09 Drawbridge Operation Regulation; Anacostia River... the Anacostia River, mile 3.4 at Washington, DC. The proposed change will alter the eight hour...

  8. Yakima/Klickitat Fisheries Project Phase II Fish Screen Operation and Maintenance; Washington Department of Fish and Wildlife, 2005-2006 Annual Report.

    SciTech Connect

    Schille, Patrick C.

    2006-05-01

    The goal of this project is to assure that the benefits of BPA's capital investment in Yakima Basin Phase II fish screen facilities are realized by performing operations that assure optimal fish protection and long facility life through a rigorous preventative maintenance program, while helping to restore ESA listed fish stocks in the Yakima River Basin.

  9. Yakima/Klickitat Fisheries Project Phase II Fish Screen Operation and Maintenance; Washington Department of Fish and Wildlife, 2003-2004 Annual Report.

    SciTech Connect

    Schille, Patrick C.

    2004-04-01

    The goal of this project is to assure that the benefits of BPA's capital investment in Yakima Basin Phase II fish screen facilities are realized by performing operations that assure optimal fish protection and long facility life through a rigorous preventative maintenance program, while helping to restore ESA listed fish stocks in the Yakima River Basin.

  10. 77 FR 14968 - Drawbridge Operation Regulation; Anacostia River, Washington, DC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-14

    ..., Washington, DC in the Federal Register (76 FR 163). We did not receive public comments on the proposed rule... SECURITY Coast Guard 33 CFR Part 117 RIN 1625-AA09 Drawbridge Operation Regulation; Anacostia River... regulation that governs the operation of the CSX Railroad Vertical Lift Bridge across the Anacostia...

  11. WEISER RIVER STUDY, ADAMS AND WASHINGTON COUNTIES, IDAHO, 1979

    EPA Science Inventory

    During the 1979 water year, a water quality study was conducted on the Weiser and Little Weiser Rivers (17050124) in Washington and Adams Counties, Idaho. The study was completed to obtain background information on effluent limitations for the cities of Cambridge and Council and...

  12. 185. WASHINGTON SKYLINE ACROSS POTOMAC RIVER FROM L.B.J. MEMORIAL PARK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    185. WASHINGTON SKYLINE ACROSS POTOMAC RIVER FROM L.B.J. MEMORIAL PARK LOOKING NORTH EAST. - George Washington Memorial Parkway, Along Potomac River from McLean to Mount Vernon, VA, Mount Vernon, Fairfax County, VA

  13. Pathogen Screening of Naturally Produced Yakima River Spring Chinook Smolts; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report.

    SciTech Connect

    Thomas, Joan B.

    2005-05-01

    In the spring of 2004 naturally produced smolts outmigrating from the Yakima River Basin were collected for the sixth year of pathogen screening. This component of the evaluation is to monitor whether introduction of hatchery produced smolts would impact the prevalence of specific pathogens in the naturally produced spring chinook smolts. Increases in prevalence of any of these pathogens could negatively impact the survival of these fish. Since 1999 the Cle Elum Hatchery has been releasing spring chinook salmon smolts into the upper Yakima River to increase natural production. In 1998 and 2000 through 2004 naturally produced smolts were collected for monitoring at the Chandler smolt collection facility on the lower Yakima River. Smolts were collected from mid to late outmigration, with a target of 200 fish each year. The pathogens monitored were infectious hematopoeitic necrosis virus, infectious pancreatic necrosis virus, viral hemorrhagic septicemia virus, Flavobacterium psychrophilum, Flavobacterium columnare, Aeromonas salmonicida, Yersinia ruckeri, Edwardsiella ictaluri, Renibacterium salmoninarum and Myxobolus cerebralis. Of these pathogens, only R. salmoninarum was detected in very low levels in the naturally produced smolts outmigrating in 2004. To date, only bacterial pathogens have been detected and prevalences have been low. There have been small variations each year and these changes are attributed to normal fluctuations in prevalence. All of the pathogens detected are widely distributed in Washington State.

  14. Floods in the Skagit River basin, Washington

    USGS Publications Warehouse

    Stewart, James E.; Bodhaine, George Lawrence

    1961-01-01

    According to Indian tradition, floods of unusually great magnitude harassed the Skagit River basin about 1815 and 1856. The heights of these floods were not recorded at the time; so they are called historical floods. Since the arrival of white men about 1863, a number of large and damaging floods have been witnessed and recorded. Data concerning and verifying the early floods, including those of 1815 and 1856, were collected prior to 1923 by James E. Stewart. He talked with many of the early settlers in the valley who had listened to Indians tell about the terrible floods. Some of these settlers had referenced the maximum stages of floods they had witnessed by cutting notches at or measuring to high-water marks on trees. In order to verify flood stages Stewart spent many weeks finding and levelling to high-water marks such as drift deposits, sand layers in coves, and silt in the bark of certain types of trees. Gaging stations have been in operation at various locations on the Skagit River and its tributaries since 1909, so recorded peak stages are available at certain sites for floods occurring since that date. All peak discharge data available for both historical and recorded floods have been listed in this report. The types of floods as to winter and summer, the duration of peaks, and the effect of reservoirs are discussed. In 1899 Sterling Dam was constructed at the head of Gages Slough near Sedro Woolley. This was the beginning of major diking in the lower reaches of the Skagit River. Maps included in the report show the location of most of the dike failures that have occurred during the last 73 years and the area probably inundated by major floods. The damage resulting from certain floods is briefly discussed. The report is concluded with a brief discussion of the U.S. Geological Survey method of computing flood-frequency curves as applied to the Skagit River basin. The treatment of single-station records and a means of combining these records for expressing

  15. Pathogen Screening of Naturally Produced Yakima River Spring Chinook Smolts; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 6 of 7, 2003-2004 Annual Report.

    SciTech Connect

    Thomas, Joan B.

    2004-05-01

    In 1999 the Cle Elum Hatchery began releasing spring chinook salmon smolts into the upper Yakima River to increase natural production. Part of the evaluation of this program is to monitor whether introduction of hatchery produced smolts would impact the prevalence of specific pathogens in the naturally produced spring chinook smolts. Increases in prevalence of any of these pathogens could negatively impact the survival of these fish. In 1998 and 2000 through 2003 naturally produced smolts were collected for monitoring at the Chandler smolt collection facility on the lower Yakima River. Smolts were collected from mid to late outmigration, with a target of 200 fish each year. The pathogens monitored were infectious hematopoeitic necrosis virus, infectious pancreatic necrosis virus, viral hemorrhagic septicemia virus, Flavobacterium psychrophilum, Flavobacterium columnare, Aeromonas salmonicida, Yersinia ruckeri, Edwardsiella ictaluri, Renibacterium salmoninarum and Myxobolus cerebralis. To date, only the bacterial pathogens have been detected and prevalences have been low. Prevalences have varied each year and these changes are attributed to normal fluctuation of prevalence. All of the pathogens detected are widely distributed in Washington State.

  16. Channel evolution on the dammed Elwha River, Washington, USA

    USGS Publications Warehouse

    Draut, A.E.; Logan, J.B.; Mastin, M.C.

    2011-01-01

    Like many rivers in the western U.S., the Elwha River, Washington, has changed substantially over the past century in response to natural and human forcing. The lower river is affected by two upstream dams that are slated for removal as part of a major river restoration effort. In preparation for studying the effects of dam removal, we present a comprehensive field and aerial photographic analysis of dam influence on an anabranching, gravel-bed river. Over the past century with the dams in place, loss of the upstream sediment supply has caused spatial variations in the sedimentary and geomorphic character of the lower Elwha River channel. Bed sediment is armored and better sorted than on the naturally evolving bed upstream of the dams. On time scales of flood seasons, the channel immediately below the lower dam is fairly stable, but progresses toward greater mobility downstream such that the lowermost portion of the river responded to a recent 40-year flood with bank erosion and bed-elevation changes on a scale approaching that of the natural channel above the dams. In general, channel mobility in the lowest 4 km of the Elwha River has not decreased substantially with time. Enough fine sediment remains in the floodplain that – given sufficient flood forcing – the channel position, sinuosity, and braiding index change substantially. The processes by which this river accesses new fine sediment below the dams (rapid migration into noncohesive banks and avulsion of new channels) allow it to compensate for loss of upstream sediment supply more readily than would a dammed river with cohesive banks or a more limited supply of alluvium. The planned dam removal will provide a valuable opportunity to evaluate channel response to the future restoration of natural upstream sediment supply.

  17. 33 CFR 165.508 - Security Zone; Georgetown Channel, Potomac River, Washington, DC.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., Potomac River, Washington, DC. 165.508 Section 165.508 Navigation and Navigable Waters COAST GUARD... § 165.508 Security Zone; Georgetown Channel, Potomac River, Washington, DC. (a) Definitions. (1) The... zone: All waters of the Georgetown Channel of the Potomac River, from the surface to the bottom,...

  18. Riparian vegetation of the Snake River in Washington State

    SciTech Connect

    Phillips, R.C.; Mettler, L.

    1994-06-01

    In January 1992, the US Army Corps of Engineers selected reservoir drawdown and lowered pool elevation as the preferred alternative in the Columbia River Salmon Flow Measured Options Analysis/Environmental Impact Statement (EIS). During March 1992, reservoirs upstream from Lower Granite and Little Goose Dams on the Snake River were drawn down below the minimum operating pool (MOP), which is 5 vertical feet below ordinary high water level (0@) level. The reservoir upstream from Lower Granite Dam was drawn down to approximately 37 ft below 0 while that upstream of Little Goose Dam was drawn down to approximately 15 ft (4.5 m) below MOP. Following the drawdown (March 1--31, 1992), the reservoirs of all four dams in the Snake River of Washington State (Lower Granite, Little Goose, Lower Monumental, Ice Harbor) were maintained at MOP (April 1--July 31,1992). This allowed a defined portion of shoreline to be exposed for an extended period. The objectives of the study were to monitor impacts to the associated upland, riparian/wetland, and aquatic vegetation and newly exposed shorelines of four reservoirs of the Snake River during the flow measures study; and monitor the newly exposed shorelines for invasion of pioneering species during the entire period of the wildlife monitoring study.

  19. Yakima/Klickitat Fisheries Project Genetic Studies; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2005-2006 Annual Report.

    SciTech Connect

    Busack, Craig A.; Fritts, Anthony L.; Kassler, Todd

    2006-05-01

    This report covers one of many topics under the Yakima/Klickitat Fisheries Project's Monitoring and Evaluation Program (YKFPME). The YKFPME is funded under two BPA contracts, one for the Yakama Nation and the other for the Washington Department of Fish and Wildlife (Contract number 22370, Project Number 1995-063-25). A comprehensive summary report for all of the monitoring and evaluation topics will be submitted after all of the topical reports are completed. This approach to reporting enhances the ability of people to get the information they want, enhances timely reporting of results, and provides a condensed synthesis of the whole YKFPME. The current report was completed by the Washington Department of Fish and Wildlife.

  20. Nearshore substrate and morphology offshore of the Elwha River, Washington

    USGS Publications Warehouse

    Warrick, J.A.; Cochrane, G.R.; Sagy, Y.; Gelfenbaum, G.

    2008-01-01

    The planned removal of two dams on the Elwha River, Washington, will likely increase river sediment flux to the coast, which may alter coastal habitats through sedimentation and turbidity. It is therefore important to characterize the current habitat conditions near the river mouth, so that future changes can be identified. Here we provide combined sonar and video mapping results of approximately 20 km2 of seafloor offshore of the Elwha River collected with the purpose to characterize nearshore substrate type and distribution prior to dam removal. These combined data suggest that the nearshore of the western delta and Freshwater Bay are dominated by coarse sediment (sand, gravel, cobble, and boulders) and bedrock outcrops; no fine-grained sediment (mud or silt) was identified within the survey limits. The substrate is generally coarser in Freshwater Bay and on the western flank of the delta, where boulders and bedrock outcrops occur, than directly offshore and east of the river mouth. High variation in substrate was observed within much of the study area, however, and distinct boulder fields, gravel beds and sand waves were observed with spatial scales of 10-100 m. Gravel beds and sand waves suggest that sediment transport is active in the study area, presumably in response to tidal currents and waves. Both historic (1912) and recent (1989-2004) distributions of Bull Kelp (Nereocystis sp.) beds were preferentially located along the boulder and bedrock substrates of Freshwater Bay. Although kelp has also been mapped in areas dominated by gravel and sand substrate, it typically has smaller canopy areas and lower temporal persistence in these regions.

  1. Identification of Most Probable Stressors to Aquatic Life in the Touchet River, Washington (Final)

    EPA Science Inventory

    This screening causal assessment of the Touchet River, a sub-watershed of the Walla Walla River in eastern Washington State, is the first application of the United States Environmental Protection Agency (USEPA) Stressor Identification (SI) process to a long stretch of river or to...

  2. Pathogen Screening of Naturally Produced Yakima River Spring Chinook Smolts; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2002 Annual Report.

    SciTech Connect

    Thomas, Joan B.

    2003-05-01

    In 1999 the Cle Elem Hatchery began releasing spring chinook smolts into the upper Yakima River for restoration and supplementation. This project was designed to evaluate whether introduction of intensively reared hatchery produced smolts would impact the prevalence of specific pathogens in the naturally produced spring chinook smolts. Increases in prevalence of any of these pathogens could negatively impact the survival of these fish. Approximately 200 smolts were collected at the Chandler smolt collection facility on the lower Yakima River during 1998, 2000 and 2001 and 130 smolts were collected in 2002 for monitoring for specific pathogens. The pathogens monitored were infectious hematopoeitic necrosis virus, infectious pancreatic necrosis virus, viral hemorrhagic septicemia, Flavobacterium psychrophilum, Flavobacterium columnare, Aeromonas salmonicida, Yersinia ruckeri, Edwardsiella ictaluri, Renibacterium salmoninarum and Myxobolus cerebralis. In addition the fish were tested for Ceratomyxa shasta spores in 2000 and 2001 (a correction from the 2001 report). To date, the only changes have been in the levels the bacterial pathogens in the naturally produced smolts and they have been minimal. These changes are attributed to normal fluctuation of prevalence.

  3. Comparing the Reproductive Success of Yakima River Hatchery-and Wild-Origin Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2000-2001 Annual Report.

    SciTech Connect

    Schroder, S.L.; Knudsen, C.M.; Rau, J.A.

    2003-01-01

    In the Yakima Spring Chinook supplementation program, wild fish are brought into the Cle Elum Hatchery, artificially crossed, reared, transferred to acclimation sites, and released into the upper Yakima River as smolts. When these fish mature and return to the Yakima River most of them will be allowed to spawn naturally; a few, however, will be brought back to the hatchery and used for research purposes. In order for this supplementation approach to be successful, hatchery-origin fish must be able to spawn and produce offspring under natural conditions. Recent investigations on salmonid fishes have indicated that exposure to hatchery environments during juvenile life may cause significant behavioral, physiological, and morphological changes in adult fish. These changes appear to reduce the reproductive competence of hatchery fish. In general, males are more affected than females; species with prolonged freshwater rearing periods are more strongly impacted than those with shorter rearing periods; and stocks that have been exposed to artificial culture for multiple generations are more impaired than those with a relatively short exposure history to hatchery conditions.

  4. Pathogen Screening of Naturally Produced Yakima River Spring Chinook Smolts; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2001 Annual Report.

    SciTech Connect

    Pearsons, Todd N.; Thomas, Joan B.

    2003-01-01

    The change in pathogens prevalence to wild fish is probably the least studied ecological interaction associated with hatchery operations. In 1999, the Cle Elum Hatchery began releasing spring chinook smolts into the upper Yakima River to increase natural production. Part of the evaluation of this program is to evaluate whether introduction of hatchery produced smolts would impact the prevalence of specific pathogens in the naturally produced spring chinook smolts. Increases in prevalence of any of these pathogens could negatively impact the survival of these fish. Approximately 200 smolts were collected at the Chandler smolt collection facility on the lower Yakima River during 1998, 2000 and 2001 and monitored for specific pathogens. The pathogens monitored were infectious hematopoeitic necrosis virus, infectious pancreatic necrosis virus, viral hemorrhagic septicemia, Flavobacterium psychrophilum, Flavobacterium columnare, Aeromonas salmonicida, Yersinia ruckeri, Edwardsiella ictaluri, Renibacterium salmoninarum and Myxobolus cerebralis. In addition, the fish were tested for Ceratomyxa shasta spores in 2001. Not all testing has been completed for every year, but to date, there have only been minimal changes in levels of the bacterial pathogens in the naturally produced smolts. At this point, due to the limited testing so far, these changes are attributed to normal fluctuation of prevalence.

  5. Yakima/Klickitat Fisheries Project: Short Project Overview of Spring Chinook Salmon Supplementation in the Upper Yakima Basin; Washington Department of Fish and Wildlife Policy/Technical Involvement and Planning, 2004-2005 Annual Report.

    SciTech Connect

    Fast, David E.; Bosch, William J.

    2005-09-01

    The Yakima/Klickitat Fisheries Project (YKFP) is on schedule to ascertain whether new artificial production techniques can be used to increase harvest and natural production of spring Chinook salmon while maintaining the long-term genetic fitness of the fish population being supplemented and keeping adverse genetic and ecological interactions with non-target species or stocks within acceptable limits. The Cle Elum Supplementation and Research Facility (CESRF) collected its first spring chinook brood stock in 1997, released its first fish in 1999, and age-4 adults have been returning since 2001. In these initial years of CESRF operation, recruitment of hatchery origin fish has exceeded that of fish spawning in the natural environment, but early indications are that hatchery origin fish are not as successful at spawning in the natural environment as natural origin fish when competition is relatively high. When competition is reduced, hatchery fish produced similar numbers of progeny as their wild counterparts. Most demographic variables are similar between natural and hatchery origin fish, however hatchery origin fish were smaller-at-age than natural origin fish. Long-term fitness of the target population is being evaluated by a large-scale test of domestication. Slight changes in predation vulnerability and competitive dominance, caused by domestication, were documented. Distribution of spawners has increased as a result of acclimation site location and salmon homing fidelity. Semi-natural rearing and predator avoidance training have not resulted in significant increases in survival of hatchery fish. However, growth manipulations in the hatchery appear to be reducing the number of precocious males produced by the YKFP and consequently increasing the number of migrants. Genetic impacts to non-target populations appear to be low because of the low stray rates of YKFP fish. Ecological impacts to valued non-target taxa were within containment objectives or impacts that

  6. Comparing the Reproductive Success of Yakima River Hatchery- and Wild-Origin Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report.

    SciTech Connect

    Schroder, S.L.; Pearsons, T.N.; Knudsen, C.M.

    2005-05-01

    originated from wild fish returning to the upper Yakima River. When they return as adults, almost all of them will spawn naturally in the Yakima River. The offspring they produce are expected to augment the Yakima spring Chinook population. Whether such an increase will occur or how great it may be depends on two factors, the ability of hatchery fish to reproduce under natural conditions and the capacity of their offspring to survive to maturity. One of the objectives of the Yakima Fisheries Project is to determine whether the hatchery-origin adults produced by the project have experienced any reduction in their ability to reproduce under natural conditions. To accomplish that objective an observation stream was built in 2000 on the grounds of the Cle Elum Supplementation and Research Facility. Beginning in 2001 hatchery and wild spring Chinook from the upper Yakima River stock have been introduced into the stream and allowed to reproduce. Microsatellite DNA is used to establish the genetic relationships between the adults placed into the stream and fry that are produced by each population. Six populations consisting of mixtures of wild and hatchery fish have been placed into the stream. Pedigree assessments have been completed on five of them. These assessments have shown that the reproductive success in males is often twice as variable as that experienced by females. In the five populations so far examined; wild males (age 4 and 5) produced the most offspring. The success of comparable hatchery males relative to wild males ranged from 37% to 113%. Hatchery and wild males maturing as 3-yr-olds (jacks) and as 1- and 0-yr-olds (precocious males) were also used in the study populations. They were not as successful at producing offspring as the larger hatchery and wild males. During 2001 and 2002 two populations of hatchery and wild fish were placed into the observation stream each year. Each one occupied about half of the structure. In these populations wild females exhibited

  7. LIMNOLOGY OF THE LOWER SNAKE RIVER RESERVOIRS IN IDAHO AND WASHINGTON

    EPA Science Inventory

    This interim report highlights research completed in 1975 and 1976 on the joint Washington State University-University of Idaho limnological study on the lower Snake River (17050201, 170601). The objective of this study was to describe the aquatic ecology of the Snake River just...

  8. WATER QUALITY STATUS REPORT, LOWER WEISER RIVER, WASHINGTON COUNTY, IDAHO, 1983 - 1984

    EPA Science Inventory

    The Lower Weiser River, Crane Creek to the mouth at Weiser (17050124), Washington County, Idaho and its tributaries and selected irrigation inflows were the subject of a water quality survey for one year during 1983-84. The Weiser River contributes nearly 260,000 tons of annual ...

  9. Yakima/Klickitat Fisheries Project; Klickitat Only Monitoring and Evaluation, 2002-2003 Annual Report.

    SciTech Connect

    Sampson, Melvin; Evenson, Rolf

    2003-12-01

    The monitoring and evaluation activities described in this report were determined by consensus of the scientists from the Yakama Nation (YN). Klickitat Subbasin Monitoring and Evaluation (M&E) activities have been subjected to scientific and technical review by members of YKFP's Science/Technical Advisory Committee (STAC) as part of the YKFP's overall M&E proposal. Yakama Nation YKFP project biologists have transformed the conceptual design into the tasks described. This report summarizes progress and results for the following major categories of YN-managed tasks under this contract: (1) Monitoring and Evaluation - Accurately characterize baseline available habitat and salmonid populations pre-habitat restoration and pre-supplementation. (2) EDT Modeling - Identify and evaluate habitat and artificial production enhancement options. (3) Genetics - Characterize the genetic profile of wild steelhead in the Klickitat Basin. (4) Ecological Interactions - Determine the presence of pathogens in wild and naturally produced salmonids in the Klickitat Basin and develop supplementation strategies using this information.

  10. Bull Trout Population Assessment in the Columbia River Gorge : Annual Report 2000.

    SciTech Connect

    Byrne, Jim; McPeak, Ron

    2001-02-01

    We summarized existing knowledge regarding the known distribution of bull trout (Salvelinus confluentus) across four sub-basins in the Columbia River Gorge in Washington. The Wind River, Little White Salmon River, White Salmon River, and the Klickitat River sub-basins were analyzed. Cold water is essential to the survival, spawning, and rearing of bull trout. We analyzed existing temperature data, installed Onset temperature loggers in the areas of the four sub-basins where data was not available, and determined that mean daily water temperatures were <15 C and appropriate for spawning and rearing of bull trout. We snorkel surveyed more than 74 km (46.25 mi.) of rivers and streams in the four sub-basins (13.8 km at night and 60.2 km during the day) and found that night snorkeling was superior to day snorkeling for locating bull trout. Surveys incorporated the Draft Interim Protocol for Determining Bull Trout Presence (Peterson et al. In Press). However, due to access and safety issues, we were unable to randomly select sample sites nor use block nets as recommended. Additionally, we also implemented the Bull Trout/Dolly Varden sampling methodology described in Bonar et al. (1997). No bull trout were found in the Wind River, Little White Salmon, or White Salmon River sub-basins. We found bull trout in the West Fork Klickitat drainage of the Klickitat River Sub-basin. Bull trout averaged 6.7 fish/100m{sup 2} in Trappers Creek, 2.6 fish/100m{sup 2} on Clearwater Creek, and 0.4 fish/100m{sup 2} in Little Muddy Creek. Bull trout was the only species of salmonid encountered in Trappers Creek and dominated in Clearwater Creek. Little Muddy Creek was the only creek where bull trout and introduced brook trout occurred together. We found bull trout only at night and typically in low flow regimes. A single fish, believed to be a bull trout x brook trout hybrid, was observed in the Little Muddy Creek. Additional surveys are needed in the West Fork Klickitat and mainstem

  11. An Economic Impact Analysis of the Proposed Yakima/Klickitat Fishery Enhancement Project; Preliminary Design Report, Appendix D.

    SciTech Connect

    Mack, Richard S.; Cocheba, Donald J.; Green, Daniel; Hedrick, David W.

    1989-12-27

    The objective of this study is to estimate the economic impact of the proposed Yakima/Klickitat Production Project on the local economies of the Yakima and Klickitat subbasins. The project, when operating at planned maximum production, will augment the total number of salmon and steelhead returning to the subbasins by 77,600 and will increase the sustainable terminal harvest by 55,160. These estimates do not include fish harvested in the ocean or in the mainstem Columbia. In addition to evaluating the impacts of the construction, operations and maintenance, experimentation and monitoring, and harvest activities described in the Draft Environmental Assessment (Bonneville Power Administration, 1989), our analysis also evaluates some passageway improvements and Phase II screening of irrigation structures. Both of these augmentations are required In order for the project to reach maximum planned harvest levels. The study area includes the Yakima Subbasin economy (Yakima and Kittitas counties), the mid-Columbia Basin/Klickitat Subbasin economies (Klickitat, Hood River, and Wasco counties), and the Tri-Cities economy (Benton and Franklin counties). The study period extends from 1990 through 2015: from preconstruction planning activities through reaching maximum production.

  12. Hydrogeologic Framework of the Yakima River Basin Aquifer System, Washington

    USGS Publications Warehouse

    Vaccaro, J.J.; Jones, M.A.; Ely, D.M.; Keys, M.E.; Olsen, T.D.; Welch, W.B.; Cox, S.E.

    2009-01-01

    The Yakima River basin aquifer system underlies about 6,200 square miles in south-central Washington. The aquifer system consists of basin-fill deposits occurring in six structural-sedimentary basins, the Columbia River Basalt Group (CRBG), and generally older bedrock. The basin-fill deposits were divided into 19 hydrogeologic units, the CRBG was divided into three units separated by two interbed units, and the bedrock was divided into four units (the Paleozoic, the Mesozoic, the Tertiary, and the Quaternary bedrock units). The thickness of the basin-fill units and the depth to the top of each unit and interbed of the CRBG were mapped. Only the surficial extent of the bedrock units was mapped due to insufficient data. Average mapped thickness of the different units ranged from 10 to 600 feet. Lateral hydraulic conductivity (Kh) of the units varies widely indicating the heterogeneity of the aquifer system. Average or effective Kh values of the water-producing zones of the basin-fill units are on the order of 1 to 800 ft/d and are about 1 to 10 ft/d for the CRBG units as a whole. Effective or average Kh values for the different rock types of the Paleozoic, Mesozoic, and Tertiary units appear to be about 0.0001 to 3 ft/d. The more permeable Quaternary bedrock unit may have Kh values that range from 1 to 7,000 ft/d. Vertical hydraulic conductivity (Kv) of the units is largely unknown. Kv values have been estimated to range from about 0.009 to 2 ft/d for the basin-fill units and Kv values for the clay-to-shale parts of the units may be as small as 10-10 to 10-7 ft/d. Reported Kv values for the CRBG units ranged from 4x10-7 to 4 ft/d. Variations in the concentrations of geochemical solutes and the concentrations and ratios of the isotopes of hydrogen, oxygen, and carbon in groundwater provided information on the hydrogeologic framework and groundwater movement. Stable isotope ratios of water (deuterium and oxygen-18) indicated dispersed sources of groundwater recharge to

  13. PCBs in tissue of fish from the Spokane River, Washington, 1999

    USGS Publications Warehouse

    MacCoy, Dorene E.

    2001-01-01

    Several studies over the past 6 years have indicated that elevated concentrations of polychlorinated biphenyls (PCBs) in the Spokane River, Washington, are a potential hazard to human and aquatic health. To help address these concerns, fish were collected from the Spokane River in 1999 and analyzed for PCBs for a cooperative study by the U.S. Geological Survey (as part of the National Water-Quality Assessment Program) and the Washington State Department of Ecology. This Fact Sheet summarizes comparisons of PCB concentrations in fish tissue recommended by national criteria with concentrations in fish tissue analyzed for this 1999 cooperative study and for previous studies.

  14. Tidally dominated sediment dispersal offshore of a small mountainous river: Elwha River, Washington State

    NASA Astrophysics Data System (ADS)

    Eidam, E. F.; Ogston, A. S.; Nittrouer, C. A.; Warrick, J. A.

    2016-03-01

    Sediment supplied by small mountainous rivers (SMRs) represents a major fraction of the global ocean sediment budget. Studies from the past two decades have shown that much of this sediment is dispersed by episodic wind and wave energy along storm-dominated coasts. In tidally dominated environments, however, different transport styles and deposits may result from persistent tidal dispersal. This study investigates episodic sediment releases generated by dam removal from a SMR in Washington State, in order to evaluate the mechanics of tidally dominated sediment dispersal in an energetic marine environment. The results indicate that asymmetric tidal currents with peak magnitudes of ∼50 to >80 cm/s produce daily sediment export in the direction of the dominant tidal phase (i.e., the semi-diurnal phase with faster currents and longer duration), resulting in dispersal of fluvially derived fine sediment to distal sinks. These effects are observed throughout all seasons in the presence or absence of wave events. During the first two years of dam removal, more than 8 million tonnes of sediment were discharged to the coast. The net result was little to no change in grain size at 10-60 m water depth across >70% of the seabed offshore of the river mouth. Over the remaining ∼2 to 3 km2 of the subaqueous delta, several cm of mud and sand accumulated in a sheltered coastal embayment adjacent to the river mouth. These results demonstrate that SMR discharge events may form patchy, isolated deposits-or even no deposits-along coastlines with strong tidal currents, in contrast to the mid-shelf mud belts formed on storm-dominated shelves. Over longer timescales, knowledge of the erosional capacity of local and regional tidal currents may be key to interpreting the terrestrial event record preserved in (or possibly excluded from) marine SMR deposits.

  15. Geomorphic and hydrologic study of peak-flow management on the Cedar River, Washington

    USGS Publications Warehouse

    Magirl, Christopher S.; Gendaszek, Andrew S.; Czuba, Christiana R.; Konrad, Christopher P.; Marineau, Mathieu D.

    2012-01-01

    Assessing the linkages between high-flow events, geomorphic response, and effects on stream ecology is critical to river management. High flows on the gravel-bedded Cedar River in Washington are important to the geomorphic function of the river; however, high flows can deleteriously affect salmon embryos incubating in streambed gravels. A geomorphic analysis of the Cedar River showed evidence of historical changes in river form over time and quantified the effects of anthropogenic alterations to the river corridor. Field measurements with accelerometer scour monitors buried in the streambed provided insight into the depth and timing of streambed scour during high-flow events. Combined with a two-dimensional hydrodynamic model, the recorded accelerometer disturbances allowed the prediction of streambed disturbance at the burial depth of Chinook and sockeye salmon egg pockets for different peak discharges. Insight gained from these analyses led to the development of suggested monitoring metrics for an ongoing geomorphic monitoring program on the Cedar River.

  16. WATER QUALITY REPORT, PALOUSE RIVER, WASHINGTON, 1970-1971

    EPA Science Inventory

    Accumulated water quality monitoring data indicates that Palouse River mainstem and south fork waters (17060108) suffer severe pollution problems throughout the year. South fork stations were more seriously affected. Coliform levels were generally far in excess of water quality...

  17. USING THE SEDIMENT QUALITY TRIAD (SQT) APPROACH TO ASSESS SEDIMENTARY CONTAMINATION IN THE ANACOSTIA RIVER, WASHINGTON

    EPA Science Inventory

    Using the Sediment Quality Triad (SQT) Approach to Assess Sedimentary Contamination in the Anacostia River, Washington, D.C. Velinsky, DJ*1, Ashley, JTF1,2, Pinkney, F.3, McGee, BL3 and Norberg-King, TJ.4 1Academy of Natural Sciences-PCER, Philadelphia, PA. 2Philadelphia Universi...

  18. 33 CFR 165.1314 - Safety Zone; Fort Vancouver Fireworks Display, Columbia River, Vancouver, Washington.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Safety Zone; Fort Vancouver Fireworks Display, Columbia River, Vancouver, Washington. 165.1314 Section 165.1314 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY REGULATED NAVIGATION AREAS AND LIMITED ACCESS...

  19. Supplemental Groundwater Remediation Technologies to Protect the Columbia River at the Hanford Site, Washington - An Update

    SciTech Connect

    Thompson, K. M.; Rowley, R. B.; Petersen, Scott W.; Fruchter, Jonathan S.

    2008-06-02

    This paper provides an update on supplemental groundwater remediation technologies to protect the Columbia River at the Hanford Site in Washington State. Major groundwater contaminants at the Hanford Site are described, along with the technologies and remedial activities that will address these environmental challenges.

  20. Installation of Impact Plates to Continuously Measure Bed Load: Elwha River, Washington, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2008 and 2009, a series of bed load impact plates was installed across a channel spanning weir on the Elwha River, Washington. This is the first permanent installation of its kind in North America and one of the largest anywhere. The purpose of this system is to measure coarse bed load during and...

  1. Bank Topography, Bathymetry, and Current Velocity of the Lower Elwha River, Clallam County, Washington, May 2006

    USGS Publications Warehouse

    Curran, Christopher A.; Konrad, Christopher P.; Dinehart, Randal L.; Moran, Edward H.

    2008-01-01

    The removal of two dams from the mainstem of the Elwha River is expected to cause a broad range of changes to the river and nearby coastal ecosystem. The U.S. Geological Survey has documented aspects of the condition of the river to allow analysis of ecological responses to dam removal. This report documents the bank topography, river bathymetry, and current velocity data collected along the lower 0.5 kilometer of the Elwha River, May 15-17, 2006. This information supplements nearshore and beach surveys done in 2006 as part of the U.S. Geological Survey Coastal Habitats in Puget Sound program near the Elwha River delta in the Strait of Juan de Fuca, Washington.

  2. Navigability Potential of Washington Rivers and Streams Determined with Hydraulic Geometry and a Geographic Information System

    USGS Publications Warehouse

    Magirl, Christopher S.; Olsen, Theresa D.

    2009-01-01

    Using discharge and channel geometry measurements from U.S. Geological Survey streamflow-gaging stations and data from a geographic information system, regression relations were derived to predict river depth, top width, and bottom width as a function of mean annual discharge for rivers in the State of Washington. A new technique also was proposed to determine bottom width in channels, a parameter that has received relatively little attention in the geomorphology literature. These regression equations, when combined with estimates of mean annual discharge available in the National Hydrography Dataset, enabled the prediction of hydraulic geometry for any stream or river in the State of Washington. Predictions of hydraulic geometry can then be compared to thresholds established by the Washington State Department of Natural Resources to determine navigability potential of rivers. Rivers with a mean annual discharge of 1,660 cubic feet per second or greater are 'probably navigable' and rivers with a mean annual discharge of 360 cubic feet per second or less are 'probably not navigable'. Variance in the dataset, however, leads to a relatively wide range of prediction intervals. For example, although the predicted hydraulic depth at a mean annual discharge of 1,660 cubic feet per second is 3.5 feet, 90-percent prediction intervals indicate that the actual hydraulic depth may range from 1.8 to 7.0 feet. This methodology does not determine navigability - a legal concept determined by federal common law - instead, this methodology is a tool for predicting channel depth, top width, and bottom width for rivers and streams in Washington.

  3. Time of travel of water in the Potomac River, Cumberland to Washington

    USGS Publications Warehouse

    Searcy, James K.; Davis, Luther C.

    1961-01-01

    This report introduces a graphical procedure for estimating the time required for water to travel down the Potomac River in the reach extending from Cumberland, Md., to Washington, D.C. The time of travel varies with the flow of the river; so the stage of the river at the lower end of the reach--the gaging station on the Potomac River near Washington, D.C.--is used as an index of flow. To develop the procedure, the reach between Cumberland and Washington was divided into five subreaches, delineated by six gaging stations. The average of the mean velocities of the river at adjacent gaging stations was used as the mean velocity in .the intervening subreach, and a unit mass of water was assumed to travel at a rate equal to the mean velocity of the river. A statistical analysis of possible variations in travel time between Cumberland and Washington indicated that the shortest travel time corresponding to a given stage near Washington would be about 80 percent of the most probable travel time. The report includes a flow-duration curve and a flow-frequency chart for use in estimating discharge at the gaging station near Washington and subsequently the travel time of Potomac River water without knowledge of stage. The flow-duration curve shows the percentage of time during which specified discharges were equaled or exceeded in the past, and it can be used to predict future flow in connection with long-range planning. The flow-frequency chart shows the time distribution of flow by months and can be used to make a more nearly accurate estimate of discharge in any given month than could be made from the flow-duration curve. The method used to develop the time-of-travel charts is described in sufficient detail to make it usable as a guide for similar studies on other rivers, where the velocity of flow is relatively unaffected by dams and pools in the reach being studied.

  4. Geological and geothermal investigation of the lower Wind River valley, southwestern Washington Cascade Range

    SciTech Connect

    Berri, D.A.; Korosec, M.A.

    1983-01-01

    The detailed geology of the lower Wind River valley is presented with emphasis on those factors that bear significantly on development of a geothermal resource. The lower Wind River drainage consists primarily of the Ohanapecosh Formation, an Oligocene unit that is recognized across the entire southern Washington Cascade Range. The formation is at least 300 m thick in the Wind River valley area. It consists largely of volcaniclastic sediments, with minor massive pyroclastic flows, volcanic breccias and lava flows. Low grade zeolite facies metamorphism during the Miocene led to formation of hydrothermal minerals in Ohanapecosh strata. Metamorphism probably occurred at less than 180{sup 0}C.

  5. Contaminants of emerging concern in the lower Stillaguamish River Basin, Washington, 2008-11

    USGS Publications Warehouse

    Wagner, Richard J.; Moran, Patrick W.; Zaugg, Steven D.; Sevigny, Jennifer M.; Pope, Judy M.

    2014-01-01

    A series of discrete water-quality samples were collected in the lower Stillaguamish River Basin near the city of Arlington, Washington, through a partnership with the Stillaguamish Tribe of Indians. These samples included surface waters of the Stillaguamish River, adjacent tributary streams, and paired inflow and outflow sampling at three wastewater treatment plants in the lower river basin. Chemical analysis of these samples focused on chemicals of emerging concern, including wastewater compounds, human-health pharmaceuticals, steroidal hormones, and halogenated organic compounds on solids and sediment. This report presents the methods used and data results from the chemical analysis of these samples

  6. New insights into the origin of late Neogene sediments in the Umatilla Basin, north-central Oregon and south-central Washington

    SciTech Connect

    Lindsey, K.A. ); Tolan, T.L. . Dept. of Geology); Reidel, S.P. )

    1993-04-01

    The study of late Miocene-aged terrigenous clastic sediments in the Umatilla Basin of north-central Oregon and adjacent Klickitat Valley of southern Washington reveal important, previously unrecognized stratigraphic and lithologic trends. These sediments, comprising the upper Ellensburg and the Alkali Canyon Formations (14 to 8.5 Ma) previously have been characterized as basaltic gravels deposited in localized alluvial fans and minor air fall tuffs produced by Cascade volcanism. A minor extrabasinal (exotic) component to these sediments has been noted in some previous studies. The authors' data challenges these interpretations. Pebble counts reveal a variety of exotic clast types, including metavolcanics, laminated metasediments, quartzites, and intermediate to silicic volcanics. This assemblage of lithologies is different than those that characterize the ancestral Columbia and Salmon-Clearwater Rivers. Sedimentologic trends suggest fluvial rather than alluvial fan deposition dominated. They interpret that a major fluvial system flowed from SE to NW across the western third of the Umatilla Basin. This river exited the Umatilla Basin via the Rock Creek water gap in the Columbia Hills, flowed across the Klickitat Valley and the Horse Heaven Hills, and then intersected the ancestral Columbia River. The abundance and stratigraphic distribution of exotic clast types suggests that this river drained terranes south and east of the Blue Mountains and persisted for a significant period of time, from approximately 14.5 to 8.5 Ma.

  7. Geology and ground-water resources of the Walla Walla River basin Washington-Oregon

    USGS Publications Warehouse

    Newcomb, R.C.

    1965-01-01

    The Walla Walla River, whose drainage basin of about 1,330 square miles lies astride the Washington-Oregon boundary, drains westward to empty into the Columbia River. The basin slopes from the 5,000-foot crest of the Blue Mountains through a structural and topographic basin to the terraced lands adjoining the Columbia River at an altitude of about 340 feet. The main unit of the topographic basin is the valley plain, commonly called the Walla Walla Valley, which descends from about 1,500 feet at the foot of the mountain slopes to about 500 feet in altitude where the river cuts through the bedrock ridge near Divide. In the Blue Mountains the streams flow in rockbound canyons. Beyond the canyons, near Milton-Freewater and Walla Walla, they pass onto the broad alluvial fans and the terrace lands of the valley.

  8. Water resources appraisal for hydroelectric licensing: Elwha River Basin, Washington. Appraisal report

    SciTech Connect

    Not Available

    1981-03-01

    The water resources of the Elwha River Basin, a 321 sq. mile area on the Olympic Peninsula in Washington state are evaluated for potential hydropower development. Information is included on the climate, topography, economy, demography, and existing water and related land resources development in the Basin, on the Glines Canyon and Elwha hydroelectric projects, and future development and uses of water resources in the area. (LCL)

  9. Lower Klickitat Riparian and In-channel Habitat Restoration Project, Annual Report 2001-2002.

    SciTech Connect

    Conley, Will

    2003-10-01

    This project focuses on the lower Klickitat River and its tributaries that provide or affect salmonid habitat. The overall goal is to restore watershed health to aid recovery of salmonid stocks in the Klickitat subbasin. An emphasis is placed on restoration and protection of watersheds supporting anadromous fish production, particularly steelhead (Oncorhyncus mykiss) which are listed as 'Threatened' within the Mid-Columbia ESU. Restoration activities are aimed at restoring stream processes by removing or mitigating watershed perturbances and improving habitat conditions and water quality. In addition to steelhead, habitat improvements benefit Chinook (O. tshawytscha) and coho (O. kisutch) salmon, resident rainbow trout, and enhance habitat for many terrestrial and amphibian wildlife species. Protection activities compliment restoration efforts within the subbasin by securing refugia and preventing degradation. Since 90% of the project area is in private ownership, maximum effectiveness will be accomplished via cooperation with state, federal, tribal, and private entities. The project addresses goals and objectives presented in the Klickitat Subbasin Summary and the 1994 NWPPC Fish and Wildlife Program. Feedback from the 2000 Provincial Review process indicated a need for better information management to aid development of geographic priorities. Thus, an emphasis has been placed on database development and a review of existing information prior to pursuing more extensive implementation. Planning and design was initiated on several restoration projects. These priorities will be refined in future reports as the additional data is collected and analyzed. Tasks listed are for the April 1, 2001 to August 31, 2002 contract cycle, for which work was delayed during the summer of 2001 because the contract was not finalized until mid-August 2001. Accomplishments are provided for the September 1, 2001 to August 31, 2002 reporting period. During this reporting period

  10. Klickitat Cogeneration Project : Final Environmental Assessment.

    SciTech Connect

    United States. Bonneville Power Administration; Klickitat Energy Partners

    1994-09-01

    To meet BPA`s contractual obligation to supply electrical power to its customers, BPA proposes to acquire power generated by Klickitat Cogeneration Project. BPA has prepared an environmental assessment evaluating the proposed project. Based on the EA analysis, BPA`s proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 for the following reasons: (1)it will not have a significant impact land use, upland vegetation, wetlands, water quality, geology, soils, public health and safety, visual quality, historical and cultural resources, recreation and socioeconomics, and (2) impacts to fisheries, wildlife resources, air quality, and noise will be temporary, minor, or sufficiently offset by mitigation. Therefore, the preparation of an environmental impact statement is not required and BPA is issuing this FONSI (Finding of No Significant Impact).

  11. Large-scale dam removal on the Elwha River, Washington, USA: Coastal geomorphic change

    NASA Astrophysics Data System (ADS)

    Gelfenbaum, Guy; Stevens, Andrew W.; Miller, Ian; Warrick, Jonathan A.; Ogston, Andrea S.; Eidam, Emily

    2015-10-01

    Two dams on the Elwha River, Washington State, USA trapped over 20 million m3 of mud, sand, and gravel since 1927, reducing downstream sediment fluxes and contributing to erosion of the river's coastal delta. The removal of the Elwha and Glines Canyon dams, initiated in September 2011, induced massive increases in river sediment supply and provided an unprecedented opportunity to examine the geomorphic response of a coastal delta to these increases. Detailed measurements of beach topography and nearshore bathymetry show that ~ 2.5 million m3 of sediment was deposited during the first two years of dam removal, which is ~ 100 times greater than deposition rates measured prior to dam removal. The majority of the deposit was located in the intertidal and shallow subtidal region immediately offshore of the river mouth and was composed of sand and gravel. Additional areas of deposition include a secondary sandy deposit to the east of the river mouth and a muddy deposit west of the mouth. A comparison with fluvial sediment fluxes suggests that ~ 70% of the sand and gravel and ~ 6% of the mud supplied by the river was found in the survey area (within about 2 km of the mouth). A hydrodynamic and sediment transport model, validated with in-situ measurements, shows that tidal currents interacting with the larger relict submarine delta help disperse fine sediment large distances east and west of the river mouth. The model also suggests that waves and currents erode the primary deposit located near the river mouth and transport sandy sediment eastward to form the secondary deposit. Though most of the substrate of the larger relict submarine delta was unchanged during the first two years of dam removal, portions of the seafloor close to the river mouth became finer, modifying habitats for biological communities. These results show that river restoration, like natural changes in river sediment supply, can result in rapid and substantial coastal geomorphological responses.

  12. Aquatic Trophic Productivity model: A decision support model for river restoration planning in the Methow River, Washington

    USGS Publications Warehouse

    Benjamin, Joseph R.; Bellmore, J. Ryan

    2016-01-01

    In this report, we outline the structure of a stream food-web model constructed to explore how alternative river restoration strategies may affect stream fish populations. We have termed this model the “Aquatic Trophic Productivity model” (ATP). We present the model structure, followed by three case study applications of the model to segments of the Methow River watershed in northern Washington. For two case studies (middle Methow River and lower Twisp River floodplain), we ran a series of simulations to explore how food-web dynamics respond to four distinctly different, but applied, strategies in the Methow River watershed: (1) reconnection of floodplain aquatic habitats, (2) riparian vegetation planting, (3) nutrient augmentation (that is, salmon carcass addition), and (4) enhancement of habitat suitability for fish. For the third case study, we conducted simulations to explore the potential fish and food-web response to habitat improvements conducted in 2012 at the Whitefish Island Side Channel, located in the middle Methow River.

  13. Long-term UHF RiverSonde river velocity observations at Castle Rock, Washington and Threemile Slough, California

    USGS Publications Warehouse

    Teague, C.C.; Barrick, D.E.; Lilleboe, P.M.; Cheng, R.T.; Ruhl, C.A.

    2005-01-01

    Long-term, non-contact river velocity measurements have been made using a UHF RiverSonde system for several months at each of two locations having quite different flow characteristics. Observations were made on the Cowlitz River at Castle Rock, Washington from October 2003 to June 2004, where the unidirectional flow of the river ranged from about 1.0 to 3.5 m/s. The radar velocity was highly correlated with the stage height which was continually measured by the U. S. Geological Survey. The profile of the along-channel velocity across the water channel also compared favorably with in-situ measurements performed by the Survey. The RiverSonde was moved to Threemile Slough, in central California, in September 2004 and has been operating there for several months. At Threemile Slough, which connects the Sacramento and San Joaquin Rivers, the flow is dominated by tidal effects and reverses direction four times per day, with a maximum speed of about 0.8 m/s in each direction. Water level and water velocity are continually measured by the Survey at the Threemile Slough site, with velocity recorded every 15 minutes from measurements made by an ultrasonic velocity meter (UVM). Over a period of several months, the radar and UVM velocity measurements have been highly correlated, with a coefficient of determination R2 of 0.976. ??2005 IEEE.

  14. Sediment transport in the lower Snake and Clearwater River Basins, Idaho and Washington, 2008–11

    USGS Publications Warehouse

    Clark, Gregory M.; Fosness, Ryan L.; Wood, Molly S.

    2013-01-01

    Sedimentation is an ongoing maintenance problem for reservoirs, limiting reservoir storage capacity and navigation. Because Lower Granite Reservoir in Washington is the most upstream of the four U.S. Army Corps of Engineers reservoirs on the lower Snake River, it receives and retains the largest amount of sediment. In 2008, in cooperation with the U.S. Army Corps of Engineers, the U.S. Geological Survey began a study to quantify sediment transport to Lower Granite Reservoir. Samples of suspended sediment and bedload were collected from streamgaging stations on the Snake River near Anatone, Washington, and the Clearwater River at Spalding, Idaho. Both streamgages were equipped with an acoustic Doppler velocity meter to evaluate the efficacy of acoustic backscatter for estimating suspended-sediment concentrations and transport. In 2009, sediment sampling was extended to 10 additional locations in tributary watersheds to help identify the dominant source areas for sediment delivery to Lower Granite Reservoir. Suspended-sediment samples were collected 9–15 times per year at each location to encompass a range of streamflow conditions and to capture significant hydrologic events such as peak snowmelt runoff and rain-on-snow. Bedload samples were collected at a subset of stations where the stream conditions were conducive for sampling, and when streamflow was sufficiently high for bedload transport. At most sampling locations, the concentration of suspended sediment varied by 3–5 orders of magnitude with concentrations directly correlated to streamflow. The largest median concentrations of suspended sediment (100 and 94 mg/L) were in samples collected from stations on the Palouse River at Hooper, Washington, and the Salmon River at White Bird, Idaho, respectively. The smallest median concentrations were in samples collected from the Selway River near Lowell, Idaho (11 mg/L), the Lochsa River near Lowell, Idaho (11 mg/L), the Clearwater River at Orofino, Idaho (13 mg

  15. Potential Effects of Sediment Erosion on Chum Salmon Redds in the Grays River, Washington

    SciTech Connect

    Murray, Katie

    2007-11-01

    Riverbed scour can negatively impact buried salmon eggs, especially during strong flood events. An analysis of predicted scour depth was conducted so that it could be compared with known chum spawning areas and depths in the Grays River, Southwest Washington. Field data and hydraulic models were analyzed for several variables used in calculating scour depth. The resulting model predicted that only 2.6% of the Grays River watershed should be scoured at the 90th percentile flows. The maximum scour depth estimated by the calculations was 49.6 mm. This is not deep enough to affect chum salmon eggs that are usually buried at depths of 150-350 mm. Predicted scour locations were also compared with known spawning locations and scour did not occur in the same areas as chum spawning. Thus, scour during the 90th percentile flows in the Grays River should not have any impact on chum salmon eggs.

  16. Correlative estimates of discharge for three sites in the upper Lewis River Basin, Washington

    USGS Publications Warehouse

    Bodhaine, G.L.

    1957-01-01

    In response to increased interest in the power possibilities of tributary streams in the headwater of Lewis River stream-gaging stations were reestablished in 1955 at three sites in the upper Lewis River basin, Washington. The one year of recent record now available and the four years of record obtained during water years 1928-31 provide a reasonable basis for estimates of monthly discharge during the intervening years. In view of the current interest in the discharge of these streams estimates of monthly discharge have been made in the Tacoma district office of the Surface Water Branch of the U.S. Geological Survey. These estimates and a description of the method of correlation are attached. The three stations and the period covered by the correlative estimates are as follows: Big Creek below Skookum Meadow near Trout Lake, Washington: Oct. 1931 to Sept. 1955 Meadow Creek below Lone Butte Meadow near Trout Lake, Washington: Oct. to Dec. 1928; Oct. 1931 to Sept. 1955 Rush Creek above falls, near Cougar, Wash.: Oct. to Dec. 1928; Dec. 1931 to Sept. 1955 Published records for water years 1928-31 and 1956 are included in the tabulation to provide discharge for the full period Oct. 1927 to Sept. 1956.

  17. Downstream effects of reservoir releases to the Potomac River from Luke, Maryland, to Washington, DC

    USGS Publications Warehouse

    Trombley, T.J.

    1982-01-01

    A digital computer flow-routing model was developed for the Potomac River in order to determine the downstream effects of flow releases from the Bloomington and Savage River Reservoirs. Both reservoirs are located above Luke, Maryland approximately 230 miles upstream from Washington, D. C. The downstream effects of reservoir releases were determined by using the unit-response method of flow routing implemented by a diffusion analogy. Results are in the form of unit response coefficients which are used to route flows downstream from Luke. A 24-hour sustained reservoir release input at Luke will result in 35 percent of the flow arriving at Washington, D.C., during the 4th day after the beginning of the release, followed by 61 percent and 4 percent arriving on the 5th and 6th days, respectively. For a 7-day sustained reservoir release, 47 percent of the flow will arrive during the 1st week, and 53 percent will arrive the 2d week. Two methods were used to estimate the amount of water that goes into channel storage between Luke and Washington, D.C., during sustained reservoir releases. Analysis of the flow-routing results indicates channel storage is equivalent to the volume of water releases over a 3.7-day period. Using channel geometry relationships, that volume is equal to 3.2 days ' release. (USGS)

  18. Geological and Geothermal Investigation of the Lower Wind River Valley, Southwestern Washington Cascade Range

    SciTech Connect

    Berri, Dulcy A.; Korosec, Michael A.

    1983-01-01

    The Wind River Valley, on the west slope of the Cascade Range, is a northwest-trending drainage that joins the Columbia River near Carson, Washington. The region has been heavily dissected by fluvial and glacial erosion. Ridges have sharp crests and deep subsidiary valleys typical of a mature topography, with a total relief of as much as 900 m. The region is vegetated by fir and hemlock, as well as dense, brushy ground-cover and undergrowth. The lower 8 km of the valley is privately owned and moderately populated. The upper reaches lies within the Gifford Pinchot National Forest, and include several campgrounds and day parks, the Carson National Fish Hatchery, and the Wind River Ranger Station and Wind River Nursery of the US Forest Service. Logging activity is light due to the rugged terrain, and consequently, most valley slopes are not accessible by vehicle. The realization that a potential for significant geothermal resources exists in the Wind River area was brought about by earlier exploration activities. Geologic mapping and interpretation was needed to facilitate further exploration of the resource by providing a knowledge of possible geologic controls on the geothermal system. This report presents the detailed geology of the lower Wind River valley with emphasis on those factors that bear significantly on development of a geothermal resource.

  19. Geomorphic response of rivers to glacial retreat and increasing peak flows downstream from Mount Rainier, Washington

    NASA Astrophysics Data System (ADS)

    Czuba, J. A.; Barnas, C. R.; Magirl, C. S.; Voss, F. D.

    2010-12-01

    On Mount Rainier, Washington, the National Park Service has documented widespread aggradation of as much as 10 m since the early 20th century, of rivers draining the glaciated stratovolcano. This rapid sedimentation appears to be related to glacial retreat and also may be a function of the increased magnitude and timing of peak flows that mobilize and transport sediment. We are conducting an assessment of the Puget Lowland rivers that drain Mount Rainier, 25-100 km downstream from the park boundary, to document the geomorphic response of the downstream reaches given the widespread aggradation upstream. These downstream reaches provide critical aquatic habitat for spawning and rearing of several species of salmonids, including endangered Chinook salmon and steelhead. Fluvial sedimentation can have both deleterious and beneficial effects on aquatic habitat depending on sediment particle size, river slope and width, and river management. To date, our work shows sedimentation of as much as 2 m between 1984 and 2009 in these lowland rivers. Aggradation rates that were calculated by comparing channel change at 156 cross sections, ranged between 4.8 and 9.1 cm/yr in reaches where rivers exit the mountain front and enter the lowland. Analysis of streamflow-gaging station data from throughout the watersheds draining Mount Rainier show rapid incision and aggradation, suggesting pulses of coarse-grained bedload may be moving down the mountainous rivers as kinetic waves. Preliminary results, however, seem to indicate that the rivers in the Puget Lowland have not yet experienced significant widespread sedimentation directly related to glacial retreat. Estimating the time of arrival of mobilized alluvium is a critical need for resource managers given the potential effects of sedimentation on river flood-conveyance capacity, fish habitat, and estuarine wetlands.

  20. Yakima/Klickitat Production Preliminary Design Report, Appendix B: Water Supply Analysis.

    SciTech Connect

    United States. Bureau of Reclamation.

    1990-03-01

    From May 1988 to January 1990 the Bureau of Reclamation, under an interagency agreement with the Bonneville Power Administration, conducted the water supply analysis required by Task II of the Northwest Power Planning Council's (Council) approval of predesign work on the Yakima/Klickitat Production Project. The purposes of the analysis were to (1) document the adequacy of water supplies (quantity and quality) for the proposed artificial production facilities, and for anadromous fish spawning, incubation, rearing, and migration in the Yakima and Klickitat Rivers and their tributaries; (2) determine the availability and quality of existing anadromous fish habitat in both basins; (3) document existing constraints to achieving anadromous fish production potentials in both basins; and (4) develop a listing of streams in both basins where existing water supplies, access, and habitat are adequate for anadromous fish production; where water supplies, access, and habitat would be adequate if improvements were made and agreements reached with existing water users; and where existing water supplies, access, and habitat are inadequate or unattainable in the near term (

  1. Reprint of: Large-scale dam removal on the Elwha River, Washington, USA: River channel and floodplain geomorphic change

    NASA Astrophysics Data System (ADS)

    East, Amy E.; Pess, George R.; Bountry, Jennifer A.; Magirl, Christopher S.; Ritchie, Andrew C.; Logan, Joshua B.; Randle, Timothy J.; Mastin, Mark C.; Minear, Justin T.; Duda, Jeffrey J.; Liermann, Martin C.; McHenry, Michael L.; Beechie, Timothy J.; Shafroth, Patrick B.

    2015-10-01

    A substantial increase in fluvial sediment supply relative to transport capacity causes complex, large-magnitude changes in river and floodplain morphology downstream. Although sedimentary and geomorphic responses to sediment pulses are a fundamental part of landscape evolution, few opportunities exist to quantify those processes over field scales. We investigated the downstream effects of sediment released during the largest dam removal in history, on the Elwha River, Washington, USA, by measuring changes in riverbed elevation and topography, bed sediment grain size, and channel planform as two dams were removed in stages over two years. As 10.5 million t (7.1 million m3) of sediment was released from two former reservoirs, downstream dispersion of a sediment wave caused widespread bed aggradation of ~ 1 m (greater where pools filled), changed the river from pool-riffle to braided morphology, and decreased the slope of the lowermost river. The newly deposited sediment, which was finer than most of the pre-dam-removal bed, formed new bars (largely pebble, granule, and sand material), prompting aggradational channel avulsion that increased the channel braiding index by almost 50%. As a result of mainstem bed aggradation, floodplain channels received flow and accumulated new sediment even during low to moderate flow conditions. The river system showed a two- to tenfold greater geomorphic response to dam removal (in terms of bed elevation change magnitude) than it had to a 40-year flood event four years before dam removal. Two years after dam removal began, as the river had started to incise through deposits of the initial sediment wave, ~ 1.2 million t of new sediment (~ 10% of the amount released from the two reservoirs) was stored along 18 river km of the mainstem channel and 25 km of floodplain channels. The Elwha River thus was able to transport most of the released sediment to the river mouth. The geomorphic alterations and changing bed sediment grain size along

  2. Late Pleistocene and Holocene-Age Columbia River Sediments and Bedforms: Hanford Reach Area, Washington - Part 2

    SciTech Connect

    K.R. Fecht, T.E. Marceau

    2006-03-28

    This report presents the results of a geologic study conducted on the lower slopes of the Columbia River Valley in south-central Washington. The study was designed to investigate glaciofluvial and fluvial sediments and bedforms that are present in the river valley and formed subsequent to Pleistocene large-scale cataclysmic flooding of the region.

  3. Geomorphic analysis of the river response to sedimentation downstream of Mount Rainier, Washington

    USGS Publications Warehouse

    Czuba, Jonathan A.; Magirl, Christopher S.; Czuba, Christiana R.; Curran, Christopher A.; Johnson, Kenneth H.; Olsen, Theresa D.; Kimball, Halley K.; Gish, Casey C.

    2012-01-01

    A study of the geomorphology of rivers draining Mount Rainier, Washington, was completed to identify sources of sediment to the river network; to identify important processes in the sediment delivery system; to assess current sediment loads in rivers draining Mount Rainier; to evaluate if there were trends in streamflow or sediment load since the early 20th century; and to assess how rates of sedimentation might continue into the future using published climate-change scenarios. Rivers draining Mount Rainier carry heavy sediment loads sourced primarily from the volcano that cause acute aggradation in deposition reaches as far away as the Puget Lowland. Calculated yields ranged from 2,000 tonnes per square kilometer per year [(tonnes/km2)/yr] on the upper Nisqually River to 350 (tonnes/km2)/yr on the lower Puyallup River, notably larger than sediment yields of 50–200 (tonnes/km2)/yr typical for other Cascade Range rivers. These rivers can be assumed to be in a general state of sediment surplus. As a result, future aggradation rates will be largely influenced by the underlying hydrology carrying sediment downstream. The active-channel width of rivers directly draining Mount Rainier in 2009, used as a proxy for sediment released from Mount Rainier, changed little between 1965 and 1994 reflecting a climatic period that was relatively quiet hydrogeomorphically. From 1994 to 2009, a marked increase in geomorphic disturbance caused the active channels in many river reaches to widen. Comparing active-channel widths of glacier-draining rivers in 2009 to the distance of glacier retreat between 1913 and 1994 showed no correlation, suggesting that geomorphic disturbance in river reaches directly downstream of glaciers is not strongly governed by the degree of glacial retreat. In contrast, there was a correlation between active-channel width and the percentage of superglacier debris mantling the glacier, as measured in 1971. A conceptual model of sediment delivery processes

  4. Hydrogeologic framework and groundwater/surface-water interactions of the Chehalis River basin, Washington

    USGS Publications Warehouse

    Gendaszek, Andrew S.

    2011-01-01

    The Chehalis River has the largest drainage basin of any river entirely contained within the State of Washington with a watershed of approximately 2,700 mi2 and has correspondingly diverse geology and land use. Demands for water resources have prompted the local citizens and governments of the Chehalis River basin to coordinate with Federal, State and Tribal agencies through the Chehalis Basin Partnership to develop a long-term watershed management plan. The recognition of the interdependence of groundwater and surface-water resources of the Chehalis River basin became the impetus for this study, the purpose of which is to describe the hydrogeologic framework and groundwater/surface-water interactions of the Chehalis River basin. Surficial geologic maps and 372 drillers' lithostratigraphic logs were used to generalize the basin-wide hydrogeologic framework. Five hydrogeologic units that include aquifers within unconsolidated glacial and alluvial sediments separated by discontinuous confining units were identified. These five units are bounded by a low permeability unit comprised of Tertiary bedrock. A water table map, and generalized groundwater-flow directions in the surficial aquifers, were delineated from water levels measured in wells between July and September 2009. Groundwater generally follows landsurface-topography from the uplands to the alluvial valley of the Chehalis River. Groundwater gradients are highest in tributary valleys such as the Newaukum River valley (approximately 23 cubic feet per mile), relatively flat in the central Chehalis River valley (approximately 6 cubic feet per mile), and become tidally influenced near the outlet of the Chehalis River to Grays Harbor. The dynamic interaction between groundwater and surface-water was observed through the synoptic streamflow measurements, termed a seepage run, made during August 2010, and monitoring of water levels in wells during the 2010 Water Year. The seepage run revealed an overall gain of 56

  5. Environmental contaminants in male river otters from Oregon and Washington, USA, 1994-1999.

    PubMed

    Grove, Robert A; Henny, Charles J

    2008-10-01

    This study reports hepatic concentrations and distribution patterns of select metals, organochlorine pesticides (OCs), polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) in 180 male river otters (Lontra canadensis) collected from Oregon and Washington, 1994-1999. Seven regional locations of western Oregon and Washington were delineated based on associations with major population centers, industry or agriculture. Cadmium (Cd) was not found above 0.5 microg g(-1), dry weight (dw) in juveniles, but increased with age in adults though concentrations were generally low (nd-1.18 microg g(-1), dw). Regional geometric means for total mercury (THg) ranged from 3.63 to 8.05 microg g(-1), dw in juveniles and 3.46-12.6 microg g(-1) (dw) in adults. The highest THg concentration was 148 microg g(-1), dw from an apparently healthy adult male from the Olympic Peninsula of Washington. Although THg increased with age in adult otters, the occurrence of the more toxic form methylmercury (MeHg) was not evaluated. Mean OC and PCB concentrations reported in this study declined dramatically from those reported in 1978-1979 from the lower Columbia River. Organochlorine pesticide and metabolite means for both juvenile and adult river otter males were all below 100 microg kg(-1), wet weight (ww), with only DDE, DDD and HCB having individual concentrations exceeding 500 microg kg(-1), ww. Mean SigmaPCB concentrations in both juvenile and adult male otters were below 1 microg g(-1) for all regional locations. Mean juvenile and adult concentrations of non-ortho substituted PCBs, PCDDs and PCDFs were in the low ng kg(-1) for all locations studied. PMID:18058253

  6. Channel Evolution on the Lower Elwha River, Washington, 1939-2006

    USGS Publications Warehouse

    Draut, Amy E.; Logan, Joshua B.; McCoy, Randall E.; McHenry, Michael; Warrick, Jonathan A.

    2008-01-01

    Analyses of historical aerial photographs of the lower Elwha River, Clallam County, Washington, reveal rates and patterns of channel change in this dammed, anabranching river between 1939 and 2006. Absolute positional changes of the active-floodplain margins, which commonly exceeded 50 m over that interval, have exceeded 400 m locally. Annualized rates of channel movement were typically ~2 to 10 m/yr; higher annualized rates over some time intervals are attributable to the formation of new channels by episodic avulsion. Channel movement by more gradual lateral meander migration was also common. Anthropogenic modification of the floodplain between the 1940s and 1980s substantially altered channel form and position. This analysis of rates and patterns of channel change over nearly 70 years on the lower Elwha River is intended to characterize the evolution of the river throughout most of the time interval when two large dams have been in place upstream. Channel morphology and rates of channel movement are expected to change significantly in response to removal of the dams and re-establishment of the upstream sediment supply during a major river-restoration project.

  7. Hydrologic data: south branch Casselman River, Garrett County, and Marsh Run, Washington County, Maryland

    USGS Publications Warehouse

    Hilleary, John T.

    1984-01-01

    This report is a compilation of well construction data, lithologic and geophysical logs, and water level and water quality data for selected wells and springs in the South Branch Casselman River and Marsh Run drainage basins, Garrett and Washington Counties, Maryland. The report contains, for the two areas combined, records of 202 wells and 57 springs; periodic water level measurements and field determinations of specific conductance, pH, and water temperature for 33 wells and 7 springs; geophysical logs for 1 well and lithologic logs for 113 wells; and multi-year water-level data for 9 observation wells. (USGS)

  8. Large-scale dam removal on the Elwha River, Washington, USA: coastal geomorphic change

    USGS Publications Warehouse

    Gelfenbaum, Guy R.; Stevens, Andrew W.; Miller, Ian M.; Warrick, Jonathan A.; Ogston, Andrea S.; Eidam, Emily

    2015-01-01

    Two dams on the Elwha River, Washington State, USA trapped over 20 million m3 of mud, sand, and gravel since 1927, reducing downstream sediment fluxes and contributing to erosion of the river's coastal delta. The removal of the Elwha and Glines Canyon dams, initiated in September 2011, induced massive increases in river sediment supply and provided an unprecedented opportunity to examine the geomorphic response of a coastal delta to these increases. Detailed measurements of beach topography and nearshore bathymetry show that ~ 2.5 million m3 of sediment was deposited during the first two years of dam removal, which is ~ 100 times greater than deposition rates measured prior to dam removal. The majority of the deposit was located in the intertidal and shallow subtidal region immediately offshore of the river mouth and was composed of sand and gravel. Additional areas of deposition include a secondary sandy deposit to the east of the river mouth and a muddy deposit west of the mouth. A comparison with fluvial sediment fluxes suggests that ~ 70% of the sand and gravel and ~ 6% of the mud supplied by the river was found in the survey area (within about 2 km of the mouth). A hydrodynamic and sediment transport model, validated with in-situ measurements, shows that tidal currents interacting with the larger relict submarine delta help disperse fine sediment large distances east and west of the river mouth. The model also suggests that waves and currents erode the primary deposit located near the river mouth and transport sandy sediment eastward to form the secondary deposit. Though most of the substrate of the larger relict submarine delta was unchanged during the first two years of dam removal, portions of the seafloor close to the river mouth became finer, modifying habitats for biological communities. These results show that river restoration, like natural changes in river sediment supply, can result in rapid and substantial coastal geomorphological

  9. Influence of dams on river-floodplain dynamics in the Elwha River, Washington

    USGS Publications Warehouse

    Kloehn, K.K.; Beechie, T.J.; Morley, S.A.; Coe, H.J.; Duda, J.J.

    2008-01-01

    The Elwha dam removal project presents an ideal opportunity to study how historic reduction and subsequent restoration of sediment supply alter river-floodplain dynamics in a large, forested river floodplain. We used remote sensing and onsite data collection to establish a historical record of floodplain dynamics and a baseline of current conditions. Analysis was based on four river reaches, three from the Elwha River and the fourth from the East Fork of the Quinault River. We found that the percentage of floodplain surfaces between 25 and 75 years old decreased and the percentage of surfaces >75 years increased in reaches below the Elwha dams. We also found that particle size decreased as downstream distance from dams increased. This trend was evident in both mainstem and side channels. Previous studies have found that removal of the two Elwha dams will initially release fine sediment stored in the reservoirs, then in subsequent decades gravel bed load supply will increase and gradually return to natural levels, aggrading river beds up to 1 m in some areas. We predict the release of fine sediments will initially create bi-modal grain size distributions in reaches downstream of the dams, and eventual recovery of natural sediment supply will significantly increase lateral channel migration and erosion of floodplain surfaces, gradually shifting floodplain age distributions towards younger age classes.

  10. Assessing the Impact of Climate Change on Stream Temperatures in the Methow River Basin, Washington

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, S.; Caldwell, R. J.; Lai, Y.; Bountry, J.

    2011-12-01

    The Methow River in Washington offers prime spawning habitat for salmon and other cold-water fishes. During the summer months, low streamflows on the Methow result in cutoff side channels that limit the habitat available to these fishes. Future climate scenarios of increasing air temperature and decreasing precipitation suggest the potential for increasing loss of habitat and fish mortality as stream temperatures rise in response to lower flows and additional heating. To assess the impacts of climate change on stream temperature in the Methow River, the US Bureau of Reclamation is developing an hourly time-step, two-dimensional hydraulic model of the confluence of the Methow and Chewuch Rivers above Winthrop. The model will be coupled with a physical stream temperature model to generate spatial representations of stream conditions conducive for fish habitat. In this study, we develop a statistical framework for generating stream temperature time series from global climate model (GCM) and hydrologic model outputs. Regional observations of stream temperature and hydrometeorological conditions are used to develop statistical models of daily mean stream temperature for the Methow River at Winthrop, WA. Temperature and precipitation projections from 10 global climate models (GCMs) are coupled with the streamflow generated using the University of Washington Variable Infiltration Capacity model. The projections serve as input to the statistical models to generate daily time series of mean daily stream temperature. Since the output from the GCM, VIC, and statistical models offer only daily data, a k-nearest neighbor (k-nn) resampling technique is employed to select appropriate proportion vectors for disaggregating the Winthrop daily flow and temperature to an upstream location on each of the rivers above the confluence. Hourly proportion vectors are then used to disaggregate the daily flow and temperature to hourly values to be used in the hydraulic model. Historical

  11. River bed Elevation Changes and Increasing Flood Hazards in the Nisqually River at Mount Rainier National Park, Washington

    NASA Astrophysics Data System (ADS)

    Halmon, S.; Kennard, P.; Beason, S.; Beaulieu, E.; Mitchell, L.

    2006-12-01

    Mount Rainier, located in Southwestern Washington, is the most heavily glaciated volcano of the Cascade Mountain Range. Due to the large quantities of glaciers, Mount Rainier also has a large number of braided rivers, which are formed by a heavy sediment load being released from the glaciers. As sediment builds in the river, its bed increases, or aggrades,its floodplain changes. Some contributions to a river's increased sediment load are debris flows, erosion, and runoff, which tend to carry trees, boulders, and sediment downstream. Over a period of time, the increased sediment load will result in the river's rise in elevation. The purpose of this study is to monitor aggradation rates, which is an increase in height of the river bed, in one of Mount Rainier's major rivers, the Nisqually. The studied location is near employee offices and visitor attractions in Longmire. The results of this study will also provide support to decision makers regarding geological hazard reduction in the area. The Nisqually glacier is located on the southern side of the volcano, which receives a lot of sunlight, thus releasing large amounts of snowmelt and sediment in the summer. Historical data indicate that several current features which may contribute to future flooding, such as the unnatural uphill slope to the river, which is due to a major depositional event in the late 1700s where 15 ft of material was deposited in this area. Other current features are the glaciers surrounding the Nisqually glacier, such as the Van Trump and Kaultz glaciers that produced large outbursts, affecting the Nisqually River and the Longmire area in 2001, 2003, and 2005. In an effort to further explore these areas, the research team used a surveying device, total station, in the Nisqually River to measure elevation change and angles of various positions within ten cross sections along the Longmire area. This data was then put into GIS for analyzation of its current sediment level and for comparison to

  12. Marine Habitat Use by Anadromous Bull Trout from the Skagit River, Washington

    USGS Publications Warehouse

    Hayes, Michael C.; Rubin, Steve P.; Reisenbichler, Reginald; Goetz, Fred A.; Jeanes, Eric; McBride, Aundrea

    2011-01-01

    Acoustic telemetry was used to describe fish positions and marine habitat use by tagged bull trout Salvelinus confluentus from the Skagit River, Washington. In March and April 2006, 20 fish were captured and tagged in the lower Skagit River, while 15 fish from the Swinomish Channel were tagged during May and June. Sixteen fish tagged in 2004 and 2005 were also detected during the study. Fish entered Skagit Bay from March to May and returned to the river from May to August. The saltwater residency for the 13 fish detected during the out-migration and return migration ranged from 36 to 133 d (mean ± SD, 75 ± 22 d). Most bull trout were detected less than 14 km (8.5 ± 4.4 km) from the Skagit River, and several bay residents used the Swinomish Channel while migrating. The bull trout detected in the bay were associated with the shoreline (distance from shore, 0.32 ± 0.27 km) and occupied shallow-water habitats (mean water column depth, Zostera sp.) vegetation classes made up more than 70% of the area used by bull trout. Our results will help managers identify specific nearshore areas that may require further protection to sustain the unique anadromous life history of bull trout.

  13. The Influence of Salmon Recolonization on Riparian Communities in the Cedar River, Washington, USA

    NASA Astrophysics Data System (ADS)

    Moravek, J.; Clipp, H.; Kiffney, P.

    2015-12-01

    Salmon are a valuable cultural and economic resource throughout the Pacific Northwest, but increasing human activity is degrading coastal ecosystems and threatening local salmon populations. Salmon conservation efforts often focus on habitat restoration, including the re-colonization of salmon into historically obstructed areas such as the Cedar River in Washington, USA. However, to assess the implications of salmon re-colonization on a landscape scale, it is critical to consider not only the river ecosystem but also the surrounding riparian habitat. Although prior studies suggest that salmon alter riparian food web dynamics, the riparian community on the Cedar River has not yet been characterized. To investigate possible connections between salmon and the riparian habitat, we surveyed riparian spider communities along a gradient of salmon inputs (g/m2). In 10-m transects along the banks of the river, we identified spiders and spider webs, collected prey from webs, and characterized nearby aquatic macroinvertebrate communities. We found that the density of aquatic macroinvertebrates, as well as the density of spider prey, both had significant positive relationships with salmon inputs, supporting the hypothesis that salmon provide energy and nutrients for both aquatic and riparian food webs. We also found that spider diversity significantly decreased with salmon inputs, potentially due to confounding factors such as stream gradient or vegetation structure. Although additional information is needed to fully understand this relationship, the significant connection between salmon inputs and spider diversity is compelling motivation for further studies regarding the link between aquatic and riparian systems on the Cedar River. Understanding the connections between salmon and the riparian community is critical to characterizing the landscape-scale implications of sustainable salmon management in the Pacific Northwest.

  14. Biogeochemical snapshot of an urban water system: The Anacostia River, Washington DC

    NASA Astrophysics Data System (ADS)

    Macavoy, S.; Ewers, E.; Bushaw-Newton, K.

    2007-12-01

    Highly urbanized and contaminated with PAHs, heavy metals, and sewage, the Anacostia River flows through Maryland and Washington, DC into the tidal Potomac River. Efforts have been underway to assess the river's ecological integrity and to determine the extent of anthropogenic influences. This study examines the nutrients, bacterial biomarkers, organic material, and carbon, nitrogen and sulfur sources in the Anacostia. High biological oxygen demand and low nitrogen (0.33-0.56 mg /L)/phosphorus (0.014 - 0.021 mg/L) concentrations were observed in three areas of the river. Bacterial activity based on carbon source utilization was higher in sediment samples than in water column samples. While bacterial abundances were decreased in downstream areas of sediment; abundances increased in downstream areas in the water column. Downstream sites had higher nutrient concentrations and dissolved organic carbon (up to 13.7 mg/L). Odd-chain length and branched fatty acids (FAs) in the sediments indicated bacterial sources, but long chain FAs indicative of terrestrial primary production were also abundant in some sediments. Also dominant among methyl esters and ketones in some sediment and water column samples was methyl isobutyl ketone, a common industrial solvent and combustion by-product. Sediment carbon stable isotope analyses show a mix of autochthonous and allochthonous derived materials, but most carbon was derived from terrestrial sources (-23.3 to -31.7°). Sediment nitrogen stable isotopes ranged from -5.4 to. 5.6, showing nitrate uptake by plants and also recycling of nitrogen within the river. Sulfur sources were generally between 3 and -5, reflecting local sulfate sources and anaerobic sulfate reduction.

  15. Restoration of Hydrodynamic and Hydrologic Processes in the Chinook River Estuary, Washington – Feasibility Assessment

    SciTech Connect

    Khangaonkar, Tarang P.; Breithaupt, Stephen A.; Kristanovich, Felix C.

    2006-01-01

    A hydrodynamic and hydrologic modeling analysis was conducted to evaluate the feasibility of restoring natural estuarine functions and tidal marine wetlands habitat in the Chinook River estuary, located near the mouth of the Columbia River in Washington. The reduction in salmonid populations is attributable primarily to the construction of a Highway 101 overpass across the mouth of the Chinook River in the early 1920s with a tide gate under the overpass. This construction, which was designed to eliminate tidal action in the estuary, has impeded the upstream passage of salmonids. The goal of the Chinook River Restoration Project is to restore tidal functions through the estuary, by removing the tide gate at the mouth of the river, filling drainage ditches, restoring tidal swales, and reforesting riparian areas. The hydrologic model (HEC-HMS) was used to compute Chinook River and tributary inflows for use as input to the hydrodynamic model at the project area boundary. The hydrodynamic model (RMA-10) was used to generate information on water levels, velocities, salinity, and inundation during both normal tides and 100-year storm conditions under existing conditions and under the restoration alternatives. The RMA-10 model was extended well upstream of the normal tidal flats into the watershed domain to correctly simulate flooding anddrainage with tidal effects included, using the wetting and drying schemes. The major conclusion of the hydrologic and hydrodynamic modeling study was that restoration of the tidal functions in the Chinook River estuary would be feasible through opening or removal of the tide gate. Implementation of the preferred alternative (removal of the tide gate, restoration of the channel under Hwy 101 to a 200-foot width, and construction of an internal levee inside the project area) would provide the required restorations benefits (inundation, habitat, velocities, and salinity penetration, etc.) and meet flood protection requirements. The

  16. Restoration of Hydrodynamic and Hydrologic Processes in the Chinook River Estuary, Washington – Feasibility Assessment

    SciTech Connect

    Khangaonkar, Tarang P.; Breithaupt, Stephen A.; Kristanovich, Felix C.

    2006-08-03

    A hydrodynamic and hydrologic modeling analysis was conducted to evaluate the feasibility of restoring natural estuarine functions and tidal marine wetlands habitat in the Chinook River estuary, located near the mouth of the Columbia River in Washington. The reduction in salmonid populations is attributable primarily to the construction of a Highway 101 overpass across the mouth of the Chinook River in the early 1920s with a tide gate under the overpass. This construction, which was designed to eliminate tidal action in the estuary, has impeded the upstream passage of salmonids. The goal of the Chinook River Restoration Project is to restore tidal functions through the estuary, by removing the tide gate at the mouth of the river, filling drainage ditches, restoring tidal swales, and reforesting riparian areas. The hydrologic model (HEC-HMS) was used to compute Chinook River and tributary inflows for use as input to the hydrodynamic model at the project area boundary. The hydrodynamic model (RMA-10) was used to generate information on water levels, velocities, salinity, and inundation during both normal tides and 100-year storm conditions under existing conditions and under the restoration alternatives. The RMA-10 model was extended well upstream of the normal tidal flats into the watershed domain to correctly simulate flooding and drainage with tidal effects included, using the wetting and drying schemes. The major conclusion of the hydrologic and hydrodynamic modeling study was that restoration of the tidal functions in the Chinook River estuary would be feasible through opening or removal of the tide gate. Implementation of the preferred alternative (removal of the tide gate, restoration of the channel under Hwy 101 to a 200-foot width, and construction of an internal levee inside the project area) would provide the required restorations benefits (inundation, habitat, velocities, and salinity penetration, etc.) and meet flood protection requirements. The

  17. Shallow stratigraphy of the Skagit River Delta, Washington, derived from sediment cores

    USGS Publications Warehouse

    Grossman, Eric E.; George, Douglas A.; Lam, Angela

    2011-01-01

    Sedimentologic analyses of 21 sediment cores, ranging from 0.4 to 9.6 m in length, reveal that the shallow geologic framework of the Skagit River Delta, western Washington, United States, has changed significantly since 1850. The cores collected from elevations of 3.94 to -2.41 m (relative to mean lower low water) along four cross-shore transects between the emergent marsh and delta front show relatively similar environmental changes across an area spanning ~75 km2. Offshore of the present North Fork Skagit River and South Fork Skagit River mouths where river discharge is focused by diked channels through the delta, the entire 5–7-km-wide tidal flats are covered with 1–2 m of cross-bedded medium-to-coarse sands. The bottoms of cores, collected in these areas are composed of mud. A sharp transition from mud to a cross-bedded sand unit indicates that the tidal flats changed abruptly from a calm environment to an energetic one. This is in stark contrast to the Martha's Bay tidal flats north of the Skagit Bay jetty that was completed in the 1940s to protect the newly constructed Swinomish Channel from flooding and sedimentation. North of the jetty, mud ranging from 1 to 2 m thick drapes a previously silt- and sand-rich tidal flat. The silty sand is a sediment facies that would be expected there where North Fork Skagit River sedimentation occurred prior to jetty emplacement. This report describes the compositional and textural properties of the sediment cores by using geophysical, photographic, x-radiography, and standard sediment grain-size and carbon-analytical methods. The findings help to characterize benthic habitat structure and sediment transport processes and the environmental changes that have occurred across the nearshore of the Skagit River Delta. The findings will be useful for quantifying changes to nearshore marine resources, including impacts resulting from diking, river-delta channelization, shoreline development, and natural variations in fluvial

  18. Changes in sediment volume in Alder Lake, Nisqually River Basin, Washington, 1945-2011

    USGS Publications Warehouse

    Czuba, Jonathan A.; Olsen, Theresa D.; Czuba, Christiana R.; Magirl, Christopher S.; Gish, Casey C.

    2012-01-01

    The Nisqually River drains the southwest slopes of Mount Rainier, a glaciated stratovolcano in the Cascade Range of western Washington. The Nisqually River was impounded behind Alder Dam when the dam was completed in 1945 and formed Alder Lake. This report quantifies the volume of sediment deposited by the Nisqually and Little Nisqually Rivers in their respective deltas in Alder Lake since 1945. Four digital elevation surfaces were generated from historical contour maps from 1945, 1956, and 1985, and a bathymetric survey from 2011. These surfaces were used to compute changes in sediment volume since 1945. Estimates of the volume of sediment deposited in Alder Lake between 1945 and 2011 were focused in three areas: (1) the Nisqually River delta, (2) the main body of Alder Lake, along a 40-meter wide corridor of the pre-dam Nisqually River, and (3) the Little Nisqually River delta. In each of these areas the net deposition over the 66-year period was 42,000,000 ± 4,000,000 cubic meters (m3), 2,000,000 ± 600,000 m3, and 310,000 ± 110,000 m3, respectively. These volumes correspond to annual rates of accumulation of 630,000 ± 60,000 m3/yr, 33,000 ± 9,000 m3/yr, and 4,700 ± 1,600 m3/yr, respectively. The annual sediment yield of the Nisqually (1,100 ± 100 cubic meters per year per square kilometer [(m3/yr)/km2]) and Little Nisqually River basins [70 ± 24 (m3/yr)/km2] provides insight into the yield of two basins with different land cover and geomorphic processes. These estimates suggest that a basin draining a glaciated stratovolcano yields approximately 15 times more sediment than a basin draining forested uplands in the Cascade Range. Given the cumulative net change in sediment volume in the Nisqually River delta in Alder Lake, the total capacity of Alder Lake since 1945 decreased about 3 percent by 1956, 8 percent by 1985, and 15 percent by 2011.

  19. Statistical modeling of daily and subdaily stream temperatures: Application to the Methow River Basin, Washington

    NASA Astrophysics Data System (ADS)

    Caldwell, R. J.; Gangopadhyay, S.; Bountry, J.; Lai, Y.; Elsner, M. M.

    2013-07-01

    Management of water temperatures in the Columbia River Basin (Washington) is critical because water projects have substantially altered the habitat of Endangered Species Act listed species, such as salmon, throughout the basin. This is most important in tributaries to the Columbia, such as the Methow River, where the spawning and rearing life stages of these cold water fishes occurs. Climate change projections generally predict increasing air temperatures across the western United States, with less confidence regarding shifts in precipitation. As air temperatures rise, we anticipate a corresponding increase in water temperatures, which may alter the timing and availability of habitat for fish reproduction and growth. To assess the impact of future climate change in the Methow River, we couple historical climate and future climate projections with a statistical modeling framework to predict daily mean stream temperatures. A K-nearest neighbor algorithm is also employed to: (i) adjust the climate projections for biases compared to the observed record and (ii) provide a reference for performing spatiotemporal disaggregation in future hydraulic modeling of stream habitat. The statistical models indicate the primary drivers of stream temperature are maximum and minimum air temperature and stream flow and show reasonable skill in predictability. When compared to the historical reference time period of 1916-2006, we conclude that increases in stream temperature are expected to occur at each subsequent time horizon representative of the year 2020, 2040, and 2080, with an increase of 0.8 ± 1.9°C by the year 2080.

  20. Hydrogeologic framework of sedimentary deposits in six structural basins, Yakima River basin, Washington

    USGS Publications Warehouse

    Jones, M.A.; Vaccaro, J.J.; Watkins, A.M.

    2006-01-01

    The hydrogeologic framework was delineated for the ground-water flow system of the sedimentary deposits in six structural basins in the Yakima River Basin, Washington. The six basins delineated, from north to south are: Roslyn, Kittitas, Selah, Yakima, Toppenish, and Benton. Extent and thicknesses of the hydrogeologic units and total basin sediment thickness were mapped for each basin. Interpretations were based on information from about 4,700 well records using geochemical, geophysical, geologist's or driller's logs, and from the surficial geology and previously constructed maps and well interpretations. The sedimentary deposits were thickest in the Kittitas Basin reaching a depth of greater than 2,000 ft, followed by successively thinner sedimentary deposits in the Selah basin with about 1,900 ft, Yakima Basin with about 1,800 ft, Toppenish Basin with about 1,200 ft, Benton basin with about 870 ft and Roslyn Basin with about 700 ft.

  1. Assessment of Eutrophication in the Lower Yakima River Basin, Washington, 2004-07

    USGS Publications Warehouse

    Wise, Daniel R.; Zuroske, Marie L.; Carpenter, Kurt D.; Kiesling, Richard L.

    2009-01-01

    In response to concerns that excessive plant growth in the lower Yakima River in south-central Washington was degrading water quality and affecting recreational use, the U.S. Geological Survey and the South Yakima Conservation District conducted an assessment of eutrophication in the lower 116 miles of the river during the 2004-07 irrigation seasons (March - October). The lower Yakima River was divided into three distinct reaches based on geomorphology, habitat, aquatic plant and water-quality conditions. The Zillah reach extended from the upstream edge of the study area at river mile (RM) 116 to RM 72, and had abundant periphyton growth and sparse macrophyte growth, the lowest nutrient concentrations, and moderately severe summer dissolved oxygen and pH conditions in 2005. The Mabton reach extended from RM 72 to RM 47, and had sparse periphyton and macrophyte growth, the highest nutrient conditions, but the least severe summer dissolved oxygen and pH conditions in 2005. The Kiona reach extended from RM 47 to RM 4, and had abundant macrophyte and epiphytic algae growth, relatively high nutrient concentrations, and the most severe summer dissolved oxygen and pH conditions in 2005. Nutrient concentrations in the lower Yakima River were high enough at certain times and locations during the irrigation seasons during 2004-07 to support the abundant growth of periphytic algae and macrophytes. The metabolism associated with this aquatic plant growth caused large daily fluctuations in dissolved oxygen concentrations and pH levels that exceeded the Washington State water-quality standards for these parameters between July and September during all 4 years, but also during other months when streamflow was unusually low. The daily minimum dissolved oxygen concentration was strongly and negatively related to the preceding day's maximum water temperature - information that could prove useful if a dissolved oxygen predictive model is developed for the lower Yakima River

  2. Differential uplift and incision of the Yakima River terraces, central Washington State

    NASA Astrophysics Data System (ADS)

    Bender, Adrian M.; Amos, Colin B.; Bierman, Paul; Rood, Dylan H.; Staisch, Lydia; Kelsey, Harvey; Sherrod, Brian

    2016-01-01

    The fault-related Yakima folds deform Miocene basalts and younger deposits of the Columbia Plateau in central Washington State. Geodesy implies ~2 mm/yr of NNE directed shortening across the folds, but until now the distribution and rates of Quaternary deformation among individual structures has been unclear. South of Ellensburg, Washington, the Yakima River cuts a ~600 m deep canyon across several Yakima folds, preserving gravel-mantled strath terraces that record progressive bedrock incision and related rock uplift. Here we integrate cosmogenic isochron burial dating of the strath terrace gravels with lidar analysis and field mapping to quantify rates of Quaternary differential incision and rock uplift across two folds transected by the Yakima River: Manastash and Umtanum Ridge. Isochron burial ages from in situ produced 26Al and 10Be at seven sites across the folds date episodes of strath terrace formation over the past ~2.9 Ma. Average bedrock incision rates across the Manastash (~88 m/Myr) and Umtanum Ridge (~46 m/Myr) anticlines are roughly 4 to 8 times higher than rates in the intervening syncline (~14 m/Myr) and outside the canyon (~10 m/Myr). These contrasting rates demonstrate differential bedrock incision driven by ongoing Quaternary rock uplift across the folds at rates corresponding to ~0.13 and ~0.06 mm/yr shortening across postulated master faults dipping 30 ± 10°S beneath the Manastash and Umtanum Ridge anticlines, respectively. The reported Quaternary shortening across the anticlines accounts for ~10% of the ~2 mm/yr geodetic budget, suggesting that other Yakima structures actively accommodate the remaining contemporary deformation.

  3. Differential uplift and incision of the Yakima River terraces, central Washington State

    USGS Publications Warehouse

    Bender, Adrian M; Amos, Colin B.; Bierman, Paul R.; Rood, Dylan; Staisch, Lydia; Kelsey, Harvey M.; Sherrod, Brian

    2016-01-01

    The fault-related Yakima folds deform Miocene basalts and younger deposits of the Columbia Plateau in central Washington State. Geodesy implies ~2 mm/yr of NNE directed shortening across the folds, but until now the distribution and rates of Quaternary deformation among individual structures has been unclear. South of Ellensburg, Washington, the Yakima River cuts a ~600 m deep canyon across several Yakima folds, preserving gravel-mantled strath terraces that record progressive bedrock incision and related rock uplift. Here we integrate cosmogenic isochron burial dating of the strath terrace gravels with lidar analysis and field mapping to quantify rates of Quaternary differential incision and rock uplift across two folds transected by the Yakima River: Manastash and Umtanum Ridge. Isochron burial ages from in situ produced 26Al and 10Be at seven sites across the folds date episodes of strath terrace formation over the past ~2.9 Ma. Average bedrock incision rates across the Manastash (~88 m/Myr) and Umtanum Ridge (~46 m/Myr) anticlines are roughly 4 to 8 times higher than rates in the intervening syncline (~14 m/Myr) and outside the canyon (~10 m/Myr). These contrasting rates demonstrate differential bedrock incision driven by ongoing Quaternary rock uplift across the folds at rates corresponding to ~0.13 and ~0.06 mm/yr shortening across postulated master faults dipping 30 ± 10°S beneath the Manastash and Umtanum Ridge anticlines, respectively. The reported Quaternary shortening across the anticlines accounts for ~10% of the ~2 mm/yr geodetic budget, suggesting that other Yakima structures actively accommodate the remaining contemporary deformation.

  4. Effects of hydraulic and geologic factors on streamflow of the Yakima River Basin, Washington

    USGS Publications Warehouse

    Kinnison, Hallard B.; Sceva, Jack E.

    1963-01-01

    The Yakima River basin, in south-central Washington, is the largest single river system entirely within the confines of the State. Its waters are the most extensively utilized of all the rivers in Washington. The river heads high on the eastern slope of the Cascade Mountains, flows for 180 miles in a generally southeast direction, and discharges into the Columbia River. The western part of the basin is a mountainous area formed by sedimentary, volcanic, and metamorphic rocks, which generally have a low capacity for storing and transmitting water. The eastern part of the basin is. formed by a thick sequence of lava flows that have folded into long ridges and troughs. Downwarped structural basins between many of the ridges are partly filled with younger sedimentary deposits, which at some places are many hundreds of feet thick. The Yakima River flows from structural basin to structural basin through narrow water gaps that have been eroded through the anticlinal ridges. Each basin is also a topographic basin and a ground-water subbasin. A gaging station will measure the total outflow of a drainage area only if it is located at the surface outlet of a ground-water subbasin and then only if the stream basin is nearly coextensive with the ground-water subbasin. Many gaging stations in the Yakima basin are so located. The geology, hydrology, size. and location of 25 ground-water subbasins are described. Since the settlement of the valley began, the development of the land and water resources have caused progressive changes in the natural regimen of the basin's runoff. These changes have resulted from diversion of water from the streams, the application of water on the land for irrigation, the storage and release of flood waters, the pumping of ground water, and other factors Irrigation in the Yakima basin is reported 'to have begun about 1864. In 1955 about 425,000 acres were under irrigation. During the past 60-odd years many gaging stations have been operated at

  5. Natural Propagation and Habitat improvement, Volume 2B, Washington, Similkameen River Habitat Inventory, 1983 Final Report.

    SciTech Connect

    Unknown Author

    1984-04-01

    During the summer low flow period, a habitat assessment of the Similkameen, Tulameen, Ashnola and Pasayten rivers in British Columbia and Washington State was conducted between August 10 and October 10, 1983. The biophysical survey assessed 400 km (250 mi) of stream at 77 stations. Fish sampling was conducted at each station to assess the resident fish populations and standing crop. Rainbow trout populations and standing crops were found to be very low. Large populations of mountain whitefish and bridgelip suckers were present in the manstem Similkameen River below Similkameen Falls. High densities of sculpins and longnose dace were found throughout the system except for sculpins above the falls, where none were captured. Approximately 961,000 m/sup 2/ (1,150,000 yd/sup 2/) of spawnable area for steelhead trout were estimated for the entire system which could accommodate 98,000 spawners. Nearly 367,000 m/sup 2/ (439,000 yd/sup 2/) of chinook salmon spawnable area was also estimated, capable of accommodating 55,000 chinook. Rearing area for steelhead trout smolts was estimated for the whole system at 1.8 million m/sup 2/ (2.2 million yd/sup 2/). Chinook salmon smolt rearing area was estimated at 700,000 m/sup 2/ (837,000 yd/sup 2/). Rearing area was found to be a limiting factor to anadromous production in a Similkameen River system. Smolt production from the system was estimated 610,000 steelhead trout and between 1.6 million and 4.8 million chinook salmon. No water quality, temperature or flow problems for anadromous salmonids were evident from the available data and the habitat inventory. In addition to an impassable falls on the Tulameen River at river mile 32.5, only two other areas of difficult passage exist in the system, Similkameen Falls (a series of chutes) and the steep, narrow lower section of the Ashnola River. 51 references, 18 figures, 25 tables.

  6. Benthic macroinvertebrate populations of urban freshwater tidal wetlands in the Anacostia River, Washington D.C.

    NASA Astrophysics Data System (ADS)

    Brittingham, K. D.

    2005-05-01

    This study characterizes the benthic communities establishing themselves on recently reconstructed urban freshwater tidal wetlands along the Anacostia River in Washington, D.C. in comparison to a similar relic wetland as well as to a reference wetland in the adjacent Patuxent River watershed. The study's focus is the two main areas of Kingman Marsh, which were reconstructed from Anacostia dredge material by the U.S. Army Corps of Engineers in 2000. Populations from this 'new' marsh are compared to those of similarly reconstructed Kenilworth Marsh (1993), as well as to the relic Dueling Creek Marsh on the Anacostia and the outside reference Patuxent Marsh in an adjacent watershed. Benthic organisms were collected using selected techniques including the Ekman bottom grab sampler, sediment corer, D-net and Hester-Dendy sampler. Samples were collected seasonally from tidal channels, tidal mudflats, three vegetation zones (low, middle and high marsh), and pools. Data collected from this study can provide valuable information on the extent that benthic macroinvertebrate communities can serve as an indicator of the relative success of freshwater tidal marsh reconstruction.

  7. Contaminant removal by wastewater treatment plants in the Stillaguamish River Basin, Washington

    USGS Publications Warehouse

    Barbash, Jack E.; Moran, Patrick W.; Wagner, Richard J.; Wolanek, Michael

    2015-01-01

    Human activities in most areas of the developed world typically release nutrients, pharmaceuticals, personal care products, pesticides, and other contaminants into the environment, many of which reach freshwater ecosystems. In urbanized areas, wastewater treatment plants (WWTPs) are critical facilities for collecting and reducing the amounts of wastewater contaminants (WWCs) that ultimately discharge to rivers, coastal areas, and groundwater. Most WWTPs use multiple methods to remove contaminants from wastewater. These include physical methods to remove solid materials (primary treatment), biological and chemical methods to remove most organic matter (secondary treatment), advanced methods to reduce the concentrations of various contaminants such as nitrogen, phosphorus and (or) synthetic organic compounds (tertiary treatment), and disinfection prior to discharge (Metcalf and Eddy, Inc., 1979). This study examined the extent to which 114 organic WWCs were removed by each of three WWTPs, prior to discharge to freshwater and marine ecosystems, in a rapidly developing area in northwestern Washington State. Removal percentages for each WWC were estimated by comparing the concentrations measured in the WWTP influents with those measured in the effluents. The investigation was carried out in the 700-mi2Stillaguamish River Basin, the fifth largest watershed that discharges to Puget Sound (fig. 1).

  8. Traveltime and dispersion in the Potomac River, Cumberland, Maryland, to Washington, D.C.

    USGS Publications Warehouse

    Taylor, K.R.; James, R.W.; Helinsky, B.M.

    1984-01-01

    Data from two traveltime and dispersion studies, using rhodamine dye, are used to develop a generalized procedure for predicting traveltime and downstream concentrations resulting from spillage of water-soluble substances at any point along the Potomac River from Cumberland, Maryland, to Washington, D.C. The procedure will allow the approximate solution to almost any spillage problem concerning traveltime and concentration during periods of relatively steady flow between 50- and 95-percent flow duration. A new procedure for calculating unit peak concentration is derived. The new procedure, based on the similarity in shape of a time-concentration curve and a scalene triangle, allows unit peak concentration to be expressed in terms of the length of the dye cloud. This approach facilitates the linking of peak-concentration attenuation curves for long reaches of rivers which are divided into subreaches for study. An example problem is solved for a hypothetical spill of 20,000 pounds of contaminant at Magnolia, West Virginia. The predicted traveltime of the leading edge, peak concentration, and trailing edge to Point of Rocks, Maryland (110 miles downstream), are 295 , 375, and 540 hours, respectively, for a flow duration of 80 percent. The predicted maximum concentration is 340 micrograms/L. (USGS)

  9. Velocity Measurements at Six Fish Screening Facilities in the Yakima River Basin, Washington, Summer 1988 : Annual Report.

    SciTech Connect

    Abernethy, C. Scott; Neitzel, Duane A.; Lusty, E. William

    1989-11-01

    The Bonneville Power Administration (BPA), the United States Bureau of Reclamation (USSR), and the Washington State Department of Ecology (WDOE) are funding the construction and evaluation of fish passage facilities and fish protection facilities at irrigation and hydroelectric diversions in the Yakima River Basin, Washington State. The program provides offsite enhancement to compensate for fish and wildlife losses caused by hydroelectric development throughout the Columbia River Basin, and addresses natural propagation of salmon to help mitigate the impact of irrigation in the Yakima River Basin. This report evaluates the flow characteristics of the screening facilities. Studies consisted of velocity measurements taken in front of the rotary drum screens and within the fish bypass systems during peak flows. Measurements of approach velocity and sweep velocity were emphasized in these studies; however, vertical velocity was also measured. 5 refs., 18 figs., 15 tabs.

  10. Assessment of Contaminant Exposure and Effects on Ospreys Nesting along the Lower Duwamish River, Washington, 2006-07

    USGS Publications Warehouse

    Johnson, Branden L.; Henny, Charles J.; Kaiser, James L.; Davis, Jay W.; Schulz, Edmund P.

    2009-01-01

    We evaluated the effects of contaminants on osprey (Pandion haliaetus) nesting along the lower Duwamish River (LDR), Washington, and used the upper reach of the Willamette River (WR), Oregon, as a reference site. Osprey eggs and nestling blood (plasma) were collected at nests along the LDR (11 eggs, 7 plasmas) and WR (10 eggs, 6 plasmas) in 2006-07 and analyzed for contaminants. Additionally, hematology and serum chemistries were determined in the blood/plasma samples of nestlings (about 35-45 days old) and were used as potential indicators of stress induced by contaminant exposure. Detailed foraging information for ospreys nesting along the LDR was collected and evaluated to better understand contaminant profiles observed in the eggs and plasma. Additional residue data from 26 osprey eggs collected and analyzed in 2002-03 from nests along the LDR, Snohomish River Estuary (SRE) and Lake Washington (LW) in the Puget Sound (PS) region also were evaluated.

  11. Preliminary Design Report for the Yakima/Klickitat Production Project.

    SciTech Connect

    US Bonneville Power Administration

    1990-04-01

    A master plan for the Yakima/Klickitat Production Project (YKPP) was developed by the Northwest Power Planning Council (Council) on October 15, 1987, as a reasonable basis upon which the Bonneville Power Administration (BPA) could proceed to fund predesign work on the project. The Council approved the predesign work on the condition that eight preliminary tasks were completed. These tasks are: Task 1. Agreement on a refined statement of project goals. Task 2. Completion of a technical analysis of water supplies. Task 3. Completion of an experimental design plan. Task 4. Development of a harvest management plan. Task 5. Assessment of potential genetic risks. Task 6. Project coordination with all other affected parties. Task 7. Submission of a preliminary design report to the Council. Task 8. Develop a project management structure. The preliminary design report summarizes the work completed on these tasks. It provides a description of the preliminary design, engineering, and construction phases of project development, and gives an estimate of project costs. Also included is a description of other studies that were conducted to support YKPP planning. The results of studies conducted during the last 30 months indicate that hatchery facilities can be built in the Yakima and Klickitat subbasins to provide harvest benefits and to supplement natural production. Planning for the Yakima subbasin is at a more advanced stage of development than for the Klickitat subbasin because of greater availability of basic resource information. The information needed to proceed with final design and construction for the Klickitat subbasin will be available by 1992, as ongoing predesign work continues. This schedule is consistent with the anticipated phased completion of the YKPP by 1997.

  12. Ecology of nonnative Siberian prawn (Palaemon modestus) in the lower Snake River, Washington, USA

    USGS Publications Warehouse

    Erhardt, John M.; Tiffan, Kenneth F.

    2016-01-01

    We assessed the abundance, distribution, and ecology of the nonnative Siberian prawn Palaemon modestus in the lower Snake River, Washington, USA. Analysis of prawn passage abundance at three Snake River dams showed that populations are growing at exponential rates, especially at Little Goose Dam where over 464,000 prawns were collected in 2015. Monthly beam trawling during 2011–2013 provided information on prawn abundance and distribution in Lower Granite and Little Goose Reservoirs. Zero-inflated regression predicted that the probability of prawn presence increased with decreasing water velocity and increasing depth. Negative binomial models predicted higher catch rates of prawns in deeper water and in closer proximity to dams. Temporally, prawn densities decreased slightly in the summer, likely due to the mortality of older individuals, and then increased in autumn and winter with the emergence and recruitment of young of the year. Seasonal length frequencies showed that distinct juvenile and adult size classes exist throughout the year, suggesting prawns live from 1 to 2 years and may be able to reproduce multiple times during their life. Most juvenile prawns become reproductive adults in 1 year, and peak reproduction occurs from late July through October. Mean fecundity (189 eggs) and reproductive output (11.9 %) are similar to that in their native range. The current use of deep habitats by prawns likely makes them unavailable to most predators in the reservoirs. The distribution and role of Siberian prawns in the lower Snake River food web will probably continue to change as the population grows and warrants continued monitoring and investigation.

  13. Biological and chemical characterization of metal bioavailability in sediments from Lake Roosevelt, Columbia River, Washington, USA

    USGS Publications Warehouse

    Besser, J.M.; Brumbaugh, W.G.; Ivey, C.D.; Ingersoll, C.G.; Moran, P.W.

    2008-01-01

    We studied the bioavailability and toxicity of copper, zinc, arsenic, cadmium, and lead in sediments from Lake Roosevelt (LR), a reservoir on the Columbia River in Washington, USA that receives inputs of metals from an upstream smelter facility. We characterized chronic sediment toxicity, metal bioaccumulation, and metal concentrations in sediment and pore water from eight study sites: one site upstream in the Columbia River, six sites in the reservoir, and a reference site in an uncontaminated tributary. Total recoverable metal concentrations in LR sediments generally decreased from upstream to downstream in the study area, but sediments from two sites in the reservoir had metal concentrations much lower than adjacent reservoir sites and similar to the reference site, apparently due to erosion of uncontaminated bank soils. Concentrations of acid-volatile sulfide in LR sediments were too low to provide strong controls on metal bioavailability, and selective sediment extractions indicated that metals in most LR sediments were primarily associated with iron and manganese oxides. Oligochaetes (Lumbriculus variegatus) accumulated greatest concentrations of copper from the river sediment, and greatest concentrations of arsenic, cadmium, and lead from reservoir sediments. Chronic toxic effects on amphipods (Hyalella azteca; reduced survival) and midge larvae (Chironomus dilutus; reduced growth) in whole-sediment exposures were generally consistent with predictions of metal toxicity based on empirical and equilibrium partitioning-based sediment quality guidelines. Elevated metal concentrations in pore waters of some LR sediments suggested that metals released from iron and manganese oxides under anoxic conditions contributed to metal bioaccumulation and toxicity. Results of both chemical and biological assays indicate that metals in sediments from both riverine and reservoir habitats of Lake Roosevelt are available to benthic invertebrates. These findings will be used as

  14. Traveltime and dispersion in the Potomac River, Cumberland, Maryland, to Washington, D.C.

    USGS Publications Warehouse

    Taylor, Kenneth R.; James, Robert W., Jr.; Helinsky, Bernard M.

    1985-01-01

    A travel-time and dispersion study using rhodamine dye was conducted on the Potomac River between Cumberland, Maryland, and Washington, D.C., a distance of 189 miles. The flow during the study was at approximately the 90-percent flow-duration level. A similar study was conducted by Wilson and Forrest in 1964 at a flow duration of approximately 60 percent. The two sets of data were used to develop a generalized procedure for predicting travel-times and downstream concentrations resulting from spillage of water-soluble substances at any point along the river. The procedure will allow the user to calculate travel-time and concentration data for almost any spillage problem that occurs during periods of relatively steady flow between 50- and 95-percent flow duration. A new procedure for calculating unit peak concentration was derived. The new procedure depends on an analogy between a time-concentration curve and a scalene triangle. As a result of this analogy, the unit peak concentration can be expressed in terms of the length of the _lye or contaminant cloud. The new procedure facilitates the calculation of unit peak concentration for long reaches of river. Previously, there was no way to link unit peak concentration curves for studies in which the river was divided into subreaches for study. Variable dispersive characteristics caused mainly by low-head dams precluded useful extrapolation of the unit peak-concentration attenuation curves, as has been done in previous studies. The procedure is applied to a hypothetical situation in which 20,000 pounds of contaminant is spilled at a railroad crossing at Magnolia, West Virginia. The times required for the leading edge, the peak concentration, and the trailing edge of the contaminant cloud to reach Point of Rocks, Maryland (110 river miles downstream), are 295, 375, and 540 hours respectively, during a period when flow is at the 80-percent flow-duration level. The peak conservative concentration would be approximately 340

  15. Tidal river sediments in the Washington, D.C. area. 11. Distribution and sources of organic containmants

    SciTech Connect

    Wade, T.L.; Velinsky, D.J.; Reinharz, E.; Schlekat, C.E.

    1994-06-01

    Concentrations of aliphatic, aromatic, and chlorinated hydrocarbons were determined from 33 surface-sediment samples taken from the Tidal Basin, Washington Ship Channel, and the Anacostia and Potomac rivers in Washington, D.C. In conjunction with these samples, selected storm sewers and outfalls also were sampled to help elucidate general sources of contamination to the area. All of the sediments contained detectable concentrations of aliphatic and aromatic hydrocarbons, DDT (total dichlorodiphenytrichloroethande), DDE (dichlorodiphenyldichloroethene), DDD (dichlorodiphenyldichloroethane), PCBx (total polychlorinated biphenyls) and total chlordanes (oxy-, {alpha}-, and {gamma}-chlordane and cis + trans-nonachlor). Sediment concentrations of most contaminants were highest in the Anacostia River just downstream of the Washington Navy Yard, except for total chlordane, which appeared to have upstream sources in addition to storm and combined sewer runoff. This area has the highest number of storm and combined sewer outfalls in the river. Potomac River stations had lower concentrations than other stations. Polycyclic aromatic hydrocarbons, saturated hydrocarbons, and the unresolved complex mixture (UCM) distributions reflect mixtures of combustion products and direct discharges of petroleum products. Sources of PCBs appear to be related to specific outfalls, while hydrocarbon inputs, especially PAHs, are diffuse, and may be related to street runoff. This study indicates that in large urban areas, nonpoint sources deliver substantial amounts of contaminants to ecosystems through storm and combined sewer systems, and control of these inputs must be addressed. 33 refs., 6 figs., 3 tabs.

  16. Determination of Columbia River flow times from Pasco, Washington using radioactive tracers introduced by the Hanford reactors

    USGS Publications Warehouse

    Nelson, Jack L.; Perkins, R.W.; Haushild, W.L.

    1966-01-01

    Radioactive tracers introduced into the Columbia River in cooling water from the Hanford reactors were used to measure flow times downstream from Pasco, Washington, as far as Astoria, Oregon. The use of two tracer methods was investigated. One method used the decay of a steady release of Na24 (15-hour half-life) to determine flow times to various downstream locations, and flow times were also determined from the time required for peak concentration of instantaneous releases of I131 (8-day half-life) to reach these locations. Flow times determined from the simultaneous use of the two methods agreed closely. The measured flow times for the 224 miles from Pasco to Vancouver, Washington, ranged from 14.6 to 3.6 days, respectively, for discharges of 108,000 and 630,000 ft3/sec at Vancouver, Washington. A graphic relation for estimating flow times at discharges other than those measured and for several locations between Pasco and Vancouver was prepared from the data of tests made at four river discharges. Some limited data are also presented on the characteristics of dispersion of I131 in the Columbia River. (Keywords: Radioactivity; time of flow; Columbia River.)

  17. Transportation infrastructure, river confinement, and impacts on floodplain and channel habitat, Yakima and Chehalis rivers, Washington, U.S.A.

    NASA Astrophysics Data System (ADS)

    Blanton, Paul; Marcus, W. Andrew

    2013-05-01

    Although floodplain roads and railroads are recognized as confining features with potentially large environmental impacts, few studies have explored the linkages between these structures and the natural disturbance regime that creates and maintains channel and riparian habitat. This study compares paired floodplain reaches with or without transportation infrastructure confining the riparian zone along the Yakima and Chehalis rivers in Washington State. Channel and floodplain habitat were degraded in the artificially confined reaches. Confined channels were narrower, simpler in planform, and relatively devoid of depositional surfaces such as bars and islands. Floodplains adjacent to confined channels exhibited degraded riparian forest and less refugium habitat such as side channels, ponds, and alcoves important for endangered salmonids and other biota. The results support hypotheses about how human modification of the floodplain landscape disrupts the flow regime and connectivity along riparian corridors. Neither simple buffer zones nor metrics such as valley width index adequately capture the disturbance-based landscape processes that drive riparian and channel habitat integrity. Future studies and indices of valley confinement, a critical driver of fluvial geomorphic processes, need to pay closer attention to artificial confinement of the channel, the riparian zone, and the active floodplain surfaces in order to portray the true constraints on fluvial processes.

  18. Transport and deposition of asbestos-rich sediment in the Sumas River, Whatcom County, Washington

    USGS Publications Warehouse

    Curran, Christopher A.; Anderson, Scott W.; Barbash, Jack E.; Magirl, Christopher S.; Cox, Stephen E.; Norton, Katherine K.; Gendaszek, Andrew S.; Spanjer, Andrew R.; Foreman, James R.

    2015-01-01

    Heavy sediment loads in the Sumas River of Whatcom County, Washington, increase seasonal turbidity and cause locally acute sedimentation. Most sediment in the Sumas River is derived from a deep-seated landslide of serpentinite that is located on Sumas Mountain and drained by Swift Creek, a tributary to the Sumas River. This mafic sediment contains high amounts of naturally occurring asbestiform chrysotile. A known human-health hazard, asbestiform chrysotile comprises 0.25–37 percent, by mass, of the total suspended sediment sampled from the Sumas River as part of this study, which included part of water year 2011 and all of water years 2012 and 2013. The suspended-sediment load in the Sumas River at South Pass Road, 0.6 kilometers (km) downstream of the confluence with Swift Creek, was 22,000 tonnes (t) in water year 2012 and 49,000 t in water year 2013. The suspended‑sediment load at Telegraph Road, 18.8 km downstream of the Swift Creek confluence, was 22,000 t in water year 2012 and 27,000 t in water year 2013. Although hydrologic conditions during the study were wetter than normal overall, the 2-year flood peak was only modestly exceeded in water years 2011 and 2013; runoff‑driven geomorphic disturbance to the watershed, which might have involved mass wasting from the landslide, seemed unexceptional. In water year 2012, flood peaks were modest, and the annual streamflow was normal. The fact that suspended-sediment loads in water year 2012 were equivalent at sites 0.6 and 18.8 km downstream of the sediment source indicates that the conservation of suspended‑sediment load can occur under normal hydrologic conditions. The substantial decrease in suspended-sediment load in the downstream direction in water year 2013 was attributed to either sedimentation in the intervening river reach, transfer to bedload as an alternate mode of sediment transport, or both.The sediment in the Sumas River is distinct from sediment in most other river systems because of the

  19. Evidence for liquefaction identified in peeled slices of Holocene deposits along the Lower Columbia River, Washington

    USGS Publications Warehouse

    Takada, K.; Atwater, B.F.

    2004-01-01

    Peels made from 10 geoslices beneath a riverbank at Washington's Hunting Island, 45 km inland from the Pacific coast, aid in identifying sand that liquefied during prehistoric earthquakes of estimated magnitude 8-9 at the Cascadia subduction zone. Each slice was obtained by driving sheetpile and a shutter plate to depths of 6-8 m. The resulting sample, as long as 8 m, had a trapezoidal cross section 42-55 cm by 8 cm. The slicing created few artifacts other than bending and smearing at slice edges. Each slice is dominated by well-stratified sand and mud deposited by the tidal Columbia River. Nearly 90% of the sand is distinctly laminated. The sand contains mud beds as thick as 0.5 m and at least 20 m long, and it is capped by a mud bed that contains a buried soil that marks the 1700 Cascadia earthquake of estimated magnitude 9. Every slice intersected sills and dikes of fluidized sand, and many slices show folds and faults as well. Sills, which outnumber dikes, mostly follow and locally invade the undersides of mud beds. The mud beds probably impeded diffuse upward flow of water expelled from liquefied sand. Trapped beneath mud beds, this water flowed laterally, destroyed bedding by entraining (fluidizing) sand, and locally scoured the overlying mud. Horizontal zones of folded sand extend at least 10 or 20 m, and some contain low-angle faults. Many of the folds probably formed while sand was weakened by liquefaction. The low-angle faults may mark the soles of river-bottom slumps or lateral spreads. As many as four great Cascadia earthquakes in the past 2000 yr contributed to the intrusions, folds, and faults. This subsurface evidence for fluid escape and deformation casts doubt on maximum accelerations that were previously inferred from local absence of liquefaction features at the ground surface along the Columbia River. The geosliced evidence for liquefaction abounds not only beneath banks riddled with dikes but also beneath banks in which dikes are absent. Such

  20. Coastal and lower Elwha River, Washington, prior to dam removal--history, status, and defining characteristics: Chapter 1 in Coastal habitats of the Elwha River, Washington--biological and physical patterns and processes prior to dam removal

    USGS Publications Warehouse

    Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.

    2011-01-01

    Characterizing the physical and biological characteristics of the lower Elwha River, its estuary, and adjacent nearshore habitats prior to dam removal is essential to monitor changes to these areas during and following the historic dam-removal project set to begin in September 2011. Based on the size of the two hydroelectric projects and the amount of sediment that will be released, the Elwha River in Washington State will be home to the largest river restoration through dam removal attempted in the United States. Built in 1912 and 1927, respectively, the Elwha and Glines Canyon Dams have altered key physical and biological characteristics of the Elwha River. Once abundant salmon populations, consisting of all five species of Pacific salmon, are restricted to the lower 7.8 river kilometers downstream of Elwha Dam and are currently in low numbers. Dam removal will reopen access to more than 140 km of mainstem, flood plain, and tributary habitat, most of which is protected within Olympic National Park. The high capture rate of river-borne sediments by the two reservoirs has changed the geomorphology of the riverbed downstream of the dams. Mobilization and downstream transport of these accumulated reservoir sediments during and following dam removal will significantly change downstream river reaches, the estuary complex, and the nearshore environment. To introduce the more detailed studies that follow in this report, we summarize many of the key aspects of the Elwha River ecosystem including a regional and historical context for this unprecedented project.

  1. 76 FR 63841 - Security Zone; Potomac River, Georgetown Channel, Washington, DC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-14

    ..., Washington, DC AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is... Washington, DC, in order to safeguard high-ranking public officials from terrorist acts and incidents. This... Avenue, SE., Washington, DC 20590, between 9 a.m. and 5 p.m., Monday through Friday, except...

  2. 76 FR 51255 - Security Zone; Potomac River, Georgetown Channel, Washington, DC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-18

    ..., Washington, DC AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is... Washington, DC, in order to safeguard high-ranking public officials from terrorist acts and incidents. This... Avenue, SE., Washington, DC 20590, between 9 a.m. and 5 p.m., Monday through Friday, except...

  3. Morphological evolution of the North Fork Toutle River following the eruption of Mount St. Helens, Washington

    NASA Astrophysics Data System (ADS)

    Zheng, Shan; Wu, Baosheng; Thorne, Colin R.; Simon, Andrew

    2014-03-01

    The North Fork Toutle River (NFTR) has undergone extensive morphological changes following the catastrophic eruption of Mount St. Helens, Washington, in 1980, especially the upper reaches affected by a 2.5-km3 debris-avalanche deposit caused by the eruption. This paper reports analysis and interpretation of vertical adjustments to the thalweg long-profile at some 33 km river reaches redeveloped on the debris-avalanche deposit during the 30-year period since the eruption. The results confirm that adjustments in the upper part of the study reaches have generally been led by degradation, while that in the lower reaches have been led by aggradation, with the middle reaches acting as a hinge zone. Trends of change in the thalweg long profile and bedslope reveal that channel gradients have decreased nonlinearly through time and with distance downstream from the volcano. Values of stream power have decreased with time commensurately owing to reductions in slope and channel widening (while the bed has coarsened) so that rates of erosion of the debris-avalanche deposit in the upper NFTR have slowed to the point that the long profile, now perched and slightly steeper, is relaxing toward a new equilibrium or graded condition. Thirty-year relaxation paths for thalweg elevation were simulated at seven key cross sections using newly developed, comprehensive rate law models based on nonlinear decay in rates of morphological response to perturbation. The results indicate that both single- and multistep rate law models can simulate the observed records. Consequently, the rate law approach provides an effective method for studying and simulating morphological response of the fluvial system to a major, instantaneous disturbance, such as a volcanic eruption.

  4. Evaluating greenhouse gas emissions from hydropower complexes on large rivers in Eastern Washington

    NASA Astrophysics Data System (ADS)

    Arntzen, E. V.; Miller, B.

    2012-12-01

    Water bodies, such as freshwater lakes, are known to be net emitters of nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4). In recent years, significant greenhouse gas (GHG) emissions from tropical, boreal, and mid-latitude reservoirs have been reported. At a time when hydropower is increasing worldwide, better understanding of seasonal and regional variation in GHG emissions is needed in order to develop a predictive understanding of such fluxes within man-made impoundments. We examined power-producing dam complexes in Eastern Washington on the Snake and Columbia Rivers by sampling tributary, mainstem, embayment, forebay, and tailrace areas for N2O, CH4, and CO2 during winter and summer, 2012. At each sampling location, GHG measurement pathways included surface gas flux, dissolved gases within the surface water column, ebullition within shallow embayments, and direct sampling of hyporheic pore-water. Measurements were also carried out in a free-flowing reach of the Columbia River to estimate net GHG emissions from hydropower. Emissions of N2O and CH4 were greatest within embayments, ranging up to 6.8 mg/l and 78 mg/l, respectively. Carbon dioxide tended to be greater in embayments and in forebay environments of the hydroelectric projects, exceeding 1800 mg/l and 5,900 mg/l in these areas, respectively. Concentrations of N2O and CH4 tended to be greatest in samples that were collected directly from hyporheic pore-water, while CO2 was most prevalent within the surface water column.

  5. Spatial consistency of Chinook salmon redd distribution within and among years in the Cowlitz River, Washington

    SciTech Connect

    Klett, Katherine J.; Torgersen, Christian; Henning, Julie; Murray, Christopher J.

    2013-04-28

    We investigated the spawning patterns of Chinook salmon Oncorhynchus tshawytscha on the lower Cowlitz River, Washington (USA) using a unique set of fine- and coarse-scale 35 temporal and spatial data collected during bi-weekly aerial surveys conducted in 1991-2009 (500 m to 28 km resolution) and 2008-2009 (100-500 m resolution). Redd locations were mapped from a helicopter during 2008 and 2009 with a hand-held global positioning system (GPS) synchronized with in-flight audio recordings. We examined spatial patterns of Chinook salmon redd reoccupation among and within years in relation to segment-scale geomorphic features. Chinook salmon spawned in the same sections each year with little variation among years. On a coarse scale, five years (1993, 1998, 2000, 2002, and 2009) were compared for reoccupation. Redd locations were highly correlated among years resulting in a minimum correlation coefficient of 0.90 (adjusted P = 0.002). Comparisons on a fine scale (500 m) between 2008 and 2009 also revealed a high degree of consistency among redd locations (P < 0.001). On a finer temporal scale, we observed that salmon spawned in the same sections during the first and last week (2008: P < 0.02; and 2009: P < 0.001). Redds were clustered in both 2008 and 2009 (P < 0.001). Regression analysis with a generalized linear model at the 500-m scale indicated that river kilometer and channel bifurcation were positively associated with redd density, whereas sinuosity was negatively associated with redd density. Collecting data on specific redd locations with a GPS during aerial surveys was logistically feasible and cost effective and greatly enhanced the spatial precision of Chinook salmon spawning surveys.

  6. Assessment of Present Anadromous Fish Production Facilities in the Columbia River Basin, Washington Department of Wildlife Hatcheries, Final Report.

    SciTech Connect

    Delarm, Michael R.; Smith, Robert Z.

    1990-07-01

    The goal of this report is to document current production practices for hatcheries which rear anadromous fish in the Columbia River Basin and to identify those facilities where production can be increased. A total of 85 hatchery and satellite facilities operated by the Idaho Department of Fish and Game, Oregon Department of Fish and Game, US Fish and Wildlife Service, Washington Department of Wildlife, Washington Department of Wildlife, and Washington Department of Fisheries were evaluated. The years 1985 to 1987 were used in this evaluation. During those years, releases averaged 143,306,596 smolts weighing 7,693,589 pounds. A total of 48 hatchery or satellite facilities were identified as having expansion capability. They were estimated to have the potential for increasing production by an 84,448,000 smolts weighing 4,853,306 pounds. 2 refs., 25 tabs.

  7. Hydrogeology along the southern boundary of the Hanford Site between the Yakima and Columbia Rivers, Washington

    SciTech Connect

    Liikala, T.L.

    1994-09-01

    US Department of Energy (DOE) operations at the Hanford Site, located in southeastern Washington, have generated large volumes of hazardous and radioactive wastes since 1944. Some of the hazardous wastes were discharged to the ground in the 1100 and 3000 Areas, near the city of Richland. The specific waste types and quantities are unknown; however, they probably include battery acid, antifreeze, hydraulic fluids, waste oils, solvents, degreasers, paints, and paint thinners. Between the Yakima and Columbia rivers in support of future hazardous waste site investigations and ground-water and land-use management. The specific objectives were to collect and review existing hydrogeologic data for the study area and establish a water-level monitoring network; describe the regional and study area hydrogeology; develop a hydrogeologic conceptual model of the unconfined ground-water flow system beneath the study area, based on available data; describe the flow characteristics of the unconfined aquifer based on the spatial and temporal distribution of hydraulic head within the aquifer; use the results of this study to delineate additional data needs in support of future Remedial Investigation/Feasibility Studies (RI/FS), Fate and Transport modeling, Baseline Risk Assessments (BRA), and ground-water and land-use management.

  8. Bathymetry and Near-River Topography of the Naches and Yakima Rivers at Union Gap and Selah Gap, Yakima County, Washington, August 2008

    USGS Publications Warehouse

    Mastin, M.C.; Fosness, R.L.

    2009-01-01

    Yakima County is collaborating with the Bureau of Reclamation on a study of the hydraulics and sediment-transport in the lower Naches River and in the Yakima River between Union Gap and Selah Gap in Washington. River bathymetry and topographic data of the river channels are needed for the study to construct hydraulic models. River survey data were available for most of the study area, but river bathymetry and near-river topography were not available for Selah Gap, near the confluence of the Naches and Yakima Rivers, and for Union Gap. In August 2008, the U.S. Geological Survey surveyed the areas where data were not available. If possible, the surveys were made with a boat-mounted, single-beam echo sounder attached to a survey-grade Real-Time Kinematic (RTK) global positioning system (GPS). An RTK GPS rover was used on a walking survey of the river banks, shallow river areas, and river bed areas that were impenetrable to the echo sounder because of high densities of macrophytes. After the data were edited, 95,654 bathymetric points from the boat survey with the echo sounder and 1,069 points from the walking survey with the GPS rover were used in the study. The points covered 4.6 kilometers on the Yakima River and 0.6 kilometers on the Naches River. GPS-surveyed points checked within 0.014 to 0.047 meters in the horizontal direction and -0.036 to 0.078 meters in the vertical direction compared to previously established survey control points

  9. Water Temperature, Specific Conductance, pH, and Dissolved-Oxygen Concentrations in the Lower White River and the Puyallup River Estuary, Washington, August-October 2002

    USGS Publications Warehouse

    Ebbert, James C.

    2003-01-01

    The U.S. Geological Survey, Washington State Department of Ecology, and Puyallup Tribe of Indians monitored water temperature, specific conductance, pH, and dissolved-oxygen concentrations in the White River at river miles 4.9 and 1.8 from August until mid-October 2002. Water diverted from the White River upstream from the monitoring sites into Lake Tapps is returned to the river at river mile 3.6 between the two sites. The same characteristics were measured in a cross section of the Puyallup River estuary at river mile 1.5 during high and low tides in September 2002. In late August, maximum daily water temperatures in the White River of 21.1oC (degrees Celsius) at river mile 4.9 and 19.6oC at river mile 1.8 exceeded the water-quality standard of 18oC at both monitoring sites. In mid-September, maximum daily water temperatures at river mile 4.9 exceeded the standard on 5 days. From August 2-25, water temperatures at both monitoring sites were similar and little or no water was discharged from Lake Tapps to the White River. Increases in water temperature at river mile 1.8 in late September and early October were caused by the mixing of warmer water discharged from Lake Tapps with cooler water in the White River. Specific conductance in the White River usually was lower at river mile 1.8 than at river mile 4.9 because of mixing with water from Lake Tapps, which has a lower specific conductance. Maximum values of pH in the White River at river mile 4.9 often exceeded the upper limit of the water-quality standard, 8.5 pH units, from early September until mid-October, when turbidity decreased. The pH standard was not exceeded at river mile 1.8. Dissolved-oxygen concentrations in the White River were often lower at river mile 1.8 than at river mile 4.9 because of mixing with water discharged from Lake Tapps, which has lower dissolved-oxygen concentrations. The lowest concentration of dissolved oxygen observed was 7.9 mg/L (milligrams per liter) at river mile 1.8. The

  10. Re-Evaluation of the 1921 Peak Discharge at Skagit River near Concrete, Washington

    USGS Publications Warehouse

    Mastin, M.C.

    2007-01-01

    The peak discharge record at the U.S. Geological Survey (USGS) gaging station at Skagit River near Concrete, Washington, is a key record that has come under intense scrutiny by the scientific and lay person communities in the last 4 years. A peak discharge of 240,000 cubic feet per second for the flood on December 13, 1921, was determined in 1923 by USGS hydrologist James Stewart by means of a slope-area measurement. USGS then determined the peak discharges of three other large floods on the Skagit River (1897, 1909, and 1917) by extending the stage-discharge rating through the 1921 flood measurement. The 1921 estimate of peak discharge was recalculated by Flynn and Benson of the USGS after a channel roughness verification was completed based on the 1949 flood on the Skagit River. The 1949 recalculation indicated that the peak discharge probably was 6.2 percent lower than Stewart's original estimate but the USGS did not officially change the peak discharge from Stewart's estimate because it was not more than a 10-percent change (which is the USGS guideline for revising peak flows) and the estimate already had error bands of 15 percent. All these flood peaks are now being used by the U.S. Army Corps of Engineers to determine the 100-year flood discharge for the Skagit River Flood Study so any method to confirm or improve the 1921 peak discharge estimate is warranted. During the last 4 years, two floods have occurred on the Skagit River (2003, 2006) that has enabled the USGS to collect additional data, do further analysis, and yet again re-evaluate the 1921 peak discharge estimate. Since 1949, an island/bar in the study reach has reforested itself. This has complicated the flow hydraulics and made the most recent recalculation of the 1921 flood based on channel roughness verification that used 2003 and 2006 flood data less reliable. However, this recent recalculation did indicate that the original peak-discharge calculation by Stewart may be high, and it added to a

  11. Large-scale dam removal on the Elwha River, Washington, USA: fluvial sediment load

    USGS Publications Warehouse

    Magirl, Christopher S.; Hilldale, Robert C.; Curran, Christopher A.; Duda, Jeffrey J.; Straub, Timothy D.; Domanski, Marian M.; Foreman, James R.

    2015-01-01

    The Elwha River restoration project, in Washington State, includes the largest dam-removal project in United States history to date. Starting September 2011, two nearly century-old dams that collectively contained 21 ± 3 million m3 of sediment were removed over the course of three years with a top-down deconstruction strategy designed to meter the release of a portion of the dam-trapped sediment. Gauging with sediment-surrogate technologies during the first two years downstream from the project measured 8,200,000 ± 3,400,000 tonnes of transported sediment, with 1,100,000 and 7,100,000 t moving in years 1 and 2, respectively, representing 3 and 20 times the Elwha River annual sediment load of 340,000 ± 80,000 t/y. During the study period, the discharge in the Elwha River was greater than normal (107% in year 1 and 108% in year 2); however, the magnitudes of the peak-flow events during the study period were relatively benign with the largest discharge of 292 m3/s (73% of the 2-year annual peak-flow event) early in the project when both extant reservoirs still retained sediment. Despite the muted peak flows, sediment transport was large, with measured suspended-sediment concentrations during the study period ranging from 44 to 16,300 mg/L and gauged bedload transport as large as 24,700 t/d. Five distinct sediment-release periods were identified when sediment loads were notably increased (when lateral erosion in the former reservoirs was active) or reduced (when reservoir retention or seasonal low flows and cessation of lateral erosion reduced sediment transport). Total suspended-sediment load was 930,000 t in year 1 and 5,400,000 t in year 2. Of the total 6,300,000 ± 3,200,000 t of suspended-sediment load, 3,400,000 t consisted of silt and clay and 2,900,000 t was sand. Gauged bedload on the lower Elwha River in year 2 of the project was 450,000 ± 360,000 t. Bedload was not quantified in year 1, but qualitative observations using bedload

  12. Operation Plans for Anadromous Fish Production Facilities in the Columbia River Basin : Annual Report 1995 : Volume III - Washington.

    SciTech Connect

    Colville Confederated Tribes; US Fish and Wildlife Service; Washington Department of Fish and Wildlife; Yakama Indian Nation

    1996-06-01

    Beaver Creek Hatchery is located on the Elochoman River about 10 miles upstream from the river mouth. The Elochoman River is a north bank tributary of the lower Columbia River, just downstream of Cathlamet, Washington. The facility consists of 10 intermediate raceways, 20 raceways, (1) earthen rearing pond, (2) adult holding ponds, and a hatchery building with 60 troughs. It is staffed with 4 FTE`s. Water rights total 16,013 gpm from three sources: Elochoman River, Beaver Creek and a well. Beaver Creek water is gravity flow while the other two sources are pumped. The Elochoman River is used in summer and fall while Beaver Creek water is used from mid-November through mid-May. Filtered well water (1 cfs) is used to incubate eggs and for early rearing of fry. Water use in summer is about 5,800 gpm. Gobar Pond, a 0.93-acre earthen rearing pond located on Gobar Creek (Kalama River tributary), is operated as a satellite facility.

  13. Floristic Development Patterns in a Restored Elk River Estuarine Marsh, Grays Harbor, Washington

    SciTech Connect

    Thom, Ronald M. ); Zeigler, Robert; Borde, Amy B. )

    2002-09-15

    We describe the changes in the floral assemblage in a salt marsh after reconnection to estuarine tidal inundation. The Elk River marsh in Grays Harbor, Washington, was opened to tidal flushing in 1987 after being diked for approximately 70 years. The freshwater pasture assemblage dominated by Phalarais arundinacea (reed canary grass) converted to low salt marsh vegetation within 5 years, with the major flux in species occurring between years 1 and 4. The system continued to develop through the 11-year post-breach monitoring period, although change after year 6 was slower than in previous years. The assemblage resembles a low salt marsh community dominated by Distichlis spicata (salt grass) and Salicornia virginica (pickleweed). Because of subsidence of the system during the period of breaching, the restored system remains substantially different from the Deschamsia cespitosa (tufted hairgrass)-dominated reference march. Use of a similarity index to compare between years and also between reference and restored marshes in the same year revealed that similarity in floral composition between year 0 and subsequent years decreased with time. However, there was a period of dramatic dissimilarity during years 1 to 3 when the system was rapidly changing from a freshwater to estuarine condition. Similarity values between the reference and restored system generally increased with time. Somewhat surprisingly, the reference marsh showed considerable between-year variation in similarity, which indicated substantial year-to-year variability in species composition. Based on accretion rate date from previous studies we predict that full recovery of the system would take between 75 and 150 years.

  14. Channel-conveyance capacity, channel change, and sediment transport in the lower Puyallup, White, and Carbon Rivers, western Washington

    USGS Publications Warehouse

    Czuba, Jonathan A.; Czuba, Christiana R.; Magirl, Chistopher S.; Voss, Frank D.

    2010-01-01

    Draining the volcanic, glaciated terrain of Mount Rainier, Washington, the Puyallup, White, and Carbon Rivers convey copious volumes of water and sediment down to Commencement Bay in Puget Sound. Recent flooding in the lowland river system has renewed interest in understanding sediment transport and its effects on flow conveyance throughout the lower drainage basin. Bathymetric and topographic data for 156 cross sections were surveyed in the lower Puyallup River system by the U.S. Geological Survey (USGS) and were compared with similar datasets collected in 1984. Regions of significant aggradation were measured along the Puyallup and White Rivers. Between 1984 and 2009, aggradation totals as measured by changes in average channel elevation were as much as 7.5, 6.5, and 2 feet on the Puyallup, White, and Carbon Rivers, respectively. These aggrading river sections correlated with decreasing slopes in riverbeds where the rivers exit relatively confined sections in the upper drainage and enter the relatively unconstricted valleys of the low-gradient Puget Lowland. Measured grain-size distributions from each riverbed showed a progressive fining downstream. Analysis of stage-discharge relations at streamflow-gaging stations along rivers draining Mount Rainier demonstrated the dynamic nature of channel morphology on river courses influenced by glaciated, volcanic terrain. The greatest rates of aggradation since the 1980s were in the Nisqually River near National (5.0 inches per year) and the White River near Auburn (1.8 inches per year). Less pronounced aggradation was measured on the Puyallup River and the White River just downstream of Mud Mountain Dam. The largest measured rate of incision was measured in the Cowlitz River at Packwood (5.0 inches per year). Channel-conveyance capacity estimated using a one-dimensional hydraulic model decreased in some river reaches since 1984. The reach exhibiting the largest decrease (about 20-50 percent) in channel

  15. Concentrations of dissolved oxygen in the lower Puyallup and White rivers, Washington, August and September 2000 and 2001

    USGS Publications Warehouse

    Ebbert, J.C.

    2002-01-01

    The U.S. Geological Survey, Washington State Department of Ecology, and Puyallup Tribe of Indians conducted a study in August and September 2001 to assess factors affecting concentrations of dissolved oxygen in the lower Puyallup and White Rivers, Washington. The study was initiated because observed concentrations of dissolved oxygen in the lower Puyallup River fell to levels ranging from less than 1 milligram per liter (mg/L) to about 6 mg/L on several occasions in September 2000. The water quality standard for the concentration of dissolved oxygen in the Puyallup River is 8 mg/L.This study concluded that inundation of the sensors with sediment was the most likely cause of the low concentrations of dissolved oxygen observed in September 2000. The conclusion was based on (1) knowledge gained when a dissolved-oxygen sensor became covered with sediment in August 2001, (2) the fact that, with few exceptions, concentrations of dissolved oxygen in the lower Puyallup and White Rivers did not fall below 8 mg/L in August and September 2001, and (3) an analysis of other mechanisms affecting concentrations of dissolved oxygen.The analysis of other mechanisms indicated that they are unlikely to cause steep declines in concentrations of dissolved oxygen like those observed in September 2000. Five-day biochemical oxygen demand ranged from 0.22 to 1.78 mg/L (mean of 0.55 mg/L), and river water takes only about 24 hours to flow through the study reach. Photosynthesis and respiration cause concentrations of dissolved oxygen in the lower Puyallup River to fluctuate as much as about 1 mg/L over a 24-hour period in August and September. Release of water from Lake Tapps for the purpose of hydropower generation often lowered concentrations of dissolved oxygen downstream in the White River by about 1 mg/L. The effect was smaller farther downstream in the Puyallup River at river mile 5.8, but was still observable as a slight decrease in concentrations of dissolved oxygen caused by

  16. Map showing ground-water levels in the Columbia River Basalt Group and overlying materials, spring 1983, southeastern Washington State

    USGS Publications Warehouse

    Bauer, H.H.; Vaccaro, John J.; Lane, R.C.

    1985-01-01

    A 2 1/2-year study of the Columbia Plateau in Washington was begun in March 1982 to define spatial and temporal variations in dissolved sodium in aquifers of the Columbia River Basalt Group and to relate these variations to the groundwater system and its geologic framework. This report is part of that study and describes groundwater level contours for four major geohydrologic units in southeastern Washington, constructed from water-level data collected from approximately 1,100 wells during the spring of 1983, data from U.S. Geological Survey studies in the area, and other indirect methods. Configuration of the groundwater level contours is controlled by: (1) extent of a geohydrologic unit and geologic structure, (2) recharge from precipitation and surface water bodies, (3) rivers, lakes, and coulees that drain the groundwater system, and (4) hydraulic conductivities of each unit. Upgradient flexures of water level contours north of Connel, Washington, show effects of prolonged irrigation while downgradient flexures in an area south of Potholes Reservoir, in the vicinity of the East Low Irrigation Canal, show the effects of increased man-induced recharge. (USGS)

  17. Washington Department of Fish and Wildlife Smolt Monitoring Program; Lower Granite Dam on the Snake River, Washington, 1996 Annual Report.

    SciTech Connect

    Verhey, Peter; Ross, Doug; Morrill, Charles

    1996-10-01

    The 1996 fish collection season at Lower Granite was characterized by high spring flows, spill, cool spring and early summer water temperatures and comparatively low numbers of fish, particularly yearling chinook, collected and transported. A total of 5,227,672 juvenile salmonids were collected at Lower Granite, the fewest since 1986. Of these, 5,117,685 were transported to release sites below Bonneville Dam, 4,990,798 by barge and 126,887 by truck. An additional 102,430 fish were bypassed back to the river, most of these being part of the National Marine Fisheries Service transportation evaluation study. New extended length submersible bar screens (ESBS) and new vertical barrier screens were installed in all units and a prototype surface collector was installed in front of units 4, 5 and 6 and operated from 23 April through 3 June. Smolt Monitoring Program and National Biologic Survey biologists examined 4,581 fish, collected at the separator, for symptoms of Gas Bubble Disease.

  18. Changes in Salmon Spawning Habitat Distributions Following Rapid and Gradual Channel Adjustments in the Cedar River, Washington

    NASA Astrophysics Data System (ADS)

    Timm, R. K.; Wissmar, R. C.; Berge, H.; Foley, S.

    2005-05-01

    Anthropogenic controls on rivers such as dams, hardened banks, and land uses limit the interactions between main river channel and floodplain ecosystems and contribute to decreased habitat diversity. These system controls dampen the frequency and magnitude of natural disturbances that contibute to physical habitat structure and variability. Under natural and altered disturbance regimes river systems are expected to exhibit resiliency. However, in some cases, disturbances cause fluctuations in the trajectory of the mean system state that can have implications for river recovery in the short- and long-term by changing the spatial and temporal dimensions of available habitat relative to specific biological requirements. Historic and contemporary salmon spawning data are analyzed in the context of changing disturbance regimes in the Cedar River, Washington. Historic data are presented for active channel conditions and spawning fish distributions. Contemporary data are presented for an intensively studied reach that received a landslide that deposited approximately 50,000 m3 of sediment in the main channel, temporarily damming the river. Biologically, the spatio-temporal spawning distributions of Chinook (Oncorhynchus tshawytcha) and sockeye (O. nerka) salmon responded to modifications of physical habitat.

  19. Data compilation for assessing sediment and toxic chemical loads from the Green River to the lower Duwamish Waterway, Washington

    USGS Publications Warehouse

    Conn, Kathleen E.; Black, Robert W.

    2014-01-01

    Between February and June 2013, the U.S. Geological Survey collected representative samples of whole water, suspended sediment, and (or) bed sediment from a single strategically located site on the Duwamish River, Washington, during seven periods of different flow conditions. Samples were analyzed by Washington-State-accredited laboratories for a large suite of compounds, including polycyclic aromatic hydrocarbons and other semivolatile compounds, polychlorinated biphenyl Aroclors and the 209 congeners, metals, dioxins/furans, volatile organic compounds, pesticides, butyltins, hexavalent chromium, and total organic carbon. Chemical concentrations associated with bulk bed sediment (<2 mm) and fine bed sediment (<62.5 μm) fractions were compared to chemical concentrations associated with suspended sediment. Bulk bed sediment concentrations generally were lower than fine bed sediment and suspended-sediment concentrations. Concurrent with the chemistry sampling, additional parameters were measured, including instantaneous river discharge, suspended-sediment concentration, sediment particle-size distribution, and general water-quality parameters. From these data, estimates of instantaneous sediment and chemical loads from the Green River to the Lower Duwamish Waterway were calculated.

  20. The Washington and Oregon mid-shelf silt deposit and its relation to the late Holocene Columbia River sediment budget

    USGS Publications Warehouse

    Wolf, Stephen C.; Nelson, Hans; Hamer, Michael R.; Dunhill, Gita; Phillips, R. Lawrence

    1999-01-01

    The purpose of this report is to compile and analyze existing data which lend support to the development of a sediment budget for the Columbia River, coastal, and offshore regions of southwest Washington. This will contribute to the construction of a sediment budget model which will reflect sediment sources, depocenters, and the sediment contribution to each region. The Columbia River is the source of modern sediment for the beaches of southwest Washington. Development of the sediment budget is necessary to understand the long term effects that reduction in sediment supply has on present day areas of sediment erosion and accumulation in the region. Figure 1 describes the origin, distribution, and thickness of the Mid-Shelf Silt Deposit (MSSD) based on analysis of seismic data acquired between 1976-1980 (Wolf et al., 1997). Sediment volumes deposited during the past 5000 years were calculated for each of the physiographic areal compartments shown in Figure 2. Table 1 organizes the data from Figures 1 and 2 into tabular form. This table provides a representation of the percent volume and weight of sediment types which contribute to the estimated Columbia River sediment budget. The compartments shown in Figure 2 are color coordinated with Table 1.

  1. Geomorphic Framework to assess changes to aquatic habitat due to flow regulation and channel and floodplain alteration, Cedar River, Washington

    USGS Publications Warehouse

    Gendaszek, Andrew S.; Magirl, Christopher S.; Czuba, Christiana R.; Konrad, Christopher P.; Little, Rand

    2010-01-01

    Flow regulation, bank armoring, and floodplain alteration since the early 20th century have contributed to significant changes in the hydrologic regime and geomorphic processes of the Cedar River in Washington State. The Cedar River originates in the Cascade Range, provides drinking water to the Seattle metropolitan area, and supports several populations of anadromous salmonids. Flow regulation currently has limited influence on the magnitude, duration, and timing of high-flow events, which affect the incubation of salmonids as well as the production and maintenance of their habitat. Unlike structural changes to the channel and floodplain, flow regulation may be modified in the short-term to improve the viability of salmon populations. An understanding of the effects of flow regulation on those populations must be discerned over a range of scales from individual floods that affect the size of individual year classes to decadal high flow regime that influences the amount and quality of channel and off-channel habitat available for spawning and rearing. We present estimates of reach-scale sediment budgets and changes to channel morphology derived from historical orthoimagery, specific gage analyses at four long-term streamflow-gaging stations to quantify trends in aggradation, and hydrologic statistics of the magnitude and duration of peak streamflows. These data suggest a gradient of channel types from unconfined, sediment-rich segments to confined, sediment-poor segments that are likely to have distinct responses to high flows. Particle-size distribution data and longitudinal water surface and streambed profiles for the 56 km downstream of Chester Morse Lake measured in 2010 show the spatial extent of preferred salmonid habitat along the Cedar River. These historical and current data constitute a geomorphic framework to help assess different river management scenarios for salmonid habitat and population viability. PDF version of a presentation on changes to aquatic

  2. Geomorphic response to flow regulation and channel and floodplain alteration in the gravel-bedded Cedar River, Washington, USA

    NASA Astrophysics Data System (ADS)

    Gendaszek, Andrew S.; Magirl, Christopher S.; Czuba, Christiana R.

    2012-12-01

    Decadal- to annual-scale analyses of changes to the fluvial form and processes of the Cedar River in Washington State, USA, reveal the effects of flow regulation, bank stabilization, and log-jam removal on a gravel-bedded river in a temperate climate. During the twentieth century, revetments were built along ~ 60% of the lower Cedar River's length and the 2-year return period flow decreased by 47% following flow regulation beginning in 1914. The formerly wide, anastomosing channel narrowed by over 50% from an average of 47 m in 1936 to 23 m in 1989 and became progressively single threaded. Subsequent high flows and localized revetment removal contributed to an increase in mean channel width to about 34 m by 2011. Channel migration rates between 1936 and 2011 were up to 8 m/year in reaches not confined by revetments or valley walls and less than analysis uncertainty throughout most of the Cedar River's length where bank armoring restricted channel movement. In unconfined reaches where large wood and sediment can be recruited, contemporary high flows, though smaller in magnitude than preregulation high flows, form and maintain geomorphic features such as pools, gravel bars, and side channels. Reaches confined by revetments remain mostly unmodified in the regulated flow regime. While high flows are important for maintaining channel dynamics in the Cedar River, their effectiveness is currently reduced by revetments, limited sediment supply, the lack of large wood available for recruitment to the channel, and decreased magnitude since flow regulation.

  3. Geomorphic response to flow regulation and channel and floodplain alteration in the gravel-bedded Cedar River, Washington, USA

    USGS Publications Warehouse

    Gendaszek, Andrew S.; Magirl, Christopher S.; Czuba, Christiana R.

    2012-01-01

    Decadal- to annual-scale analyses of changes to the fluvial form and processes of the Cedar River in Washington State, USA, reveal the effects of flow regulation, bank stabilization, and log-jam removal on a gravel-bedded river in a temperate climate. During the twentieth century, revetments were built along ~ 60% of the lower Cedar River's length and the 2-year return period flow decreased by 47% following flow regulation beginning in 1914. The formerly wide, anastomosing channel narrowed by over 50% from an average of 47 m in 1936 to 23 m in 1989 and became progressively single threaded. Subsequent high flows and localized revetment removal contributed to an increase in mean channel width to about 34 m by 2011. Channel migration rates between 1936 and 2011 were up to 8 m/year in reaches not confined by revetments or valley walls and less than analysis uncertainty throughout most of the Cedar River's length where bank armoring restricted channel movement. In unconfined reaches where large wood and sediment can be recruited, contemporary high flows, though smaller in magnitude than preregulation high flows, form and maintain geomorphic features such as pools, gravel bars, and side channels. Reaches confined by revetments remain mostly unmodified in the regulated flow regime. While high flows are important for maintaining channel dynamics in the Cedar River, their effectiveness is currently reduced by revetments, limited sediment supply, the lack of large wood available for recruitment to the channel, and decreased magnitude since flow regulation.

  4. Estimation of total nitrogen and total phosphorus in streams of the Middle Columbia River Basin (Oregon, Washington, and Idaho) using SPARROW models, with emphasis on the Yakima River Basin, Washington

    USGS Publications Warehouse

    Johnson, Henry M.; Black, Robert W.; Wise, Daniel R.

    2013-01-01

    The watershed model SPARROW (Spatially Related Regressions on Watershed attributes) was used to predict total nitrogen (TN) and total phosphorus (TP) loads and yields for the Middle Columbia River Basin in Idaho, Oregon, and Washington. The new models build on recently published models for the entire Pacific Northwest, and provide revised load predictions for the arid interior of the region by restricting the modeling domain and recalibrating the models. Results from the new TN and TP models are provided for the entire region, and discussed with special emphasis on the Yakima River Basin, Washington. In most catchments of the Yakima River Basin, the TN and TP in streams is from natural sources, specifically nitrogen fixation in forests (TN) and weathering and erosion of geologic materials (TP). The natural nutrient sources are overshadowed by anthropogenic sources of TN and TP in highly agricultural and urbanized catchments; downstream of the city of Yakima, most of the load in the Yakima River is derived from anthropogenic sources. Yields of TN and TP from catchments with nearly uniform land use were compared with other yield values and export coefficients published in the scientific literature, and generally were in agreement. The median yield of TN was greatest in catchments dominated by agricultural land and smallest in catchments dominated by grass and scrub land. The median yield of TP was greatest in catchments dominated by forest land, but the largest yields (90th percentile) of TP were from agricultural catchments. As with TN, the smallest TP yields were from catchments dominated by grass and scrub land.

  5. Ecological health of river basins in forested regions of eastern Washington and Oregon. Forest Service general technical report

    SciTech Connect

    Wissmar, R.C.; Smith, J.E.; McIntosh, B.A.; Li, H.W.; Reeves, G.H.

    1994-02-01

    A retrospective examination of the history of the cumulative influences of past land water uses on the ecological health of select river basins in forest regions of eastern Washington and Oregon indicates the loss of fish and riparian habitat diversity and quality since the 19th century. The study focuses on impacts of timber harvest, fire management, live stock grazing, mining and irrigation management practices on stream and riparian ecosystems. An examination of past environmental management approaches for assessing stream, riparian, and watershed conditions in forest regions shows numerous advantages and shortcomings. Rcommendations for ecosystem management with emphasis on monitoring and restoration activities are provided.

  6. Sedimentology of new fluvial deposits on the Elwha River, Washington, USA, formed during large-scale dam removal

    USGS Publications Warehouse

    Draut, Amy; Ritchie, Andrew C.

    2015-01-01

    Removal of two dams 32 m and 64 m high on the Elwha River, Washington, USA, provided the first opportunity to examine river response to a dam removal and controlled sediment influx on such a large scale. Although many recent river-restoration efforts have included dam removal, large dam removals have been rare enough that their physical and ecological effects remain poorly understood. New sedimentary deposits that formed during this multi-stage dam removal result from a unique, artificially created imbalance between fluvial sediment supply and transport capacity. River flows during dam removal were essentially natural and included no large floods in the first two years, while draining of the two reservoirs greatly increased the sediment supply available for fluvial transport. The resulting sedimentary deposits exhibited substantial spatial heterogeneity in thickness, stratal-formation patterns, grain size and organic content. Initial mud deposition in the first year of dam removal filled pore spaces in the pre-dam-removal cobble bed, potentially causing ecological disturbance but not aggrading the bed substantially at first. During the second winter of dam removal, thicker and in some cases coarser deposits replaced the early mud deposits. By 18 months into dam removal, channel-margin and floodplain deposits were commonly >0.5 m thick and, contrary to pre-dam-removal predictions that silt and clay would bypass the river system, included average mud content around 20%. Large wood and lenses of smaller organic particles were common in the new deposits, presumably contributing additional carbon and nutrients to the ecosystem downstream of the dam sites. Understanding initial sedimentary response to the Elwha River dam removals will inform subsequent analyses of longer-term sedimentary, geomorphic and ecosystem changes in this fluvial and coastal system, and will provide important lessons for other river-restoration efforts where large dam removal is planned or

  7. Crustal controls on magmatic-hydrothermal systems: A geophysical comparison of White River, Washington, with Goldfield, Nevada

    USGS Publications Warehouse

    Blakely, R.J.; John, D.A.; Box, S.E.; Berger, B.R.; Fleck, R.J.; Ashley, R.P.; Newport, G.R.; Heinemeyer, G.R.

    2007-01-01

    The White River altered area, Washington, and the Goldfield mining district, Nevada, are nearly contemporaneous Tertiary (ca.20 Ma) calc-alkaline igneous centers with large exposures of shallow (<1 km depth) magmatic-hydrothermal, acid-sulfate alteration. Goldfield is the largest known high-sulfidation gold deposit in North America. At White River, silica is the only commodity exploited to date, but, based on its similarities with Goldfield, White River may have potential for concealed precious and/or base metal deposits at shallow depth. Both areas are products of the ancestral Cascade arc Goldfield lies within the Great Basin physiographic province in an area of middle Miocene and younger Basin and Range and Walker Lane faulting, whereas White River is largely unaffected by young faults. However, west-northwest-striking magnetic anomalies at White River do correspond with mapped faults synchronous with magmatism, and other linear anomalies may reflect contemporaneous concealed faults. The White River altered area lies immediately south of the west-northwest-striking White River fault zone and north of a postulated fault with similar orientation. Structural data from the White River altered area indicate that alteration developed synchronously with an anomalous stress field conducive to left-lateral, strike-slip displacement on west-north-west-striking faults. Thus, the White River alteration may have developed in a transient transtensional region between the two strike-slip faults, analogous to models proposed for Goldfield and other mineral deposits in transverse deformational zones. Gravity and magnetic anomalies provide evidence for a pluton beneath the White River altered area that may have provided heat and fluids to overlying volcanic rocks. East- to east- northeast-striking extensional faults and/or fracture zones in the step-over region, also expressed in magnetic anomalies, may have tapped this intrusion and provided vertical and lateral transport of

  8. Characterization of Surface-Water/Ground-Water Interaction Along the Spokane River, Idaho and Washington

    NASA Astrophysics Data System (ADS)

    Caldwell, R. R.; Bowers, C. L.; Hein, K. L.

    2002-12-01

    Historical mining in the Coeur d'Alene River basin of northern Idaho has resulted in elevated concentrations of some trace metals (particularly Cd, Pb, and Zn) in water and sediments of Coeur d'Alene Lake and downstream in the Spokane River. On average during 1999 and 2000, about 20,000 kg/yr of whole-water lead (particulate plus dissolved), 2,100 kg/yr of whole-water cadmium, and 450,000 kg/yr of whole-water zinc flowed out of Coeur d'Alene Lake into the Spokane River. These elevated trace-metal concentrations in the Spokane River have raised concerns about potential contamination of ground water in the underlying Spokane Valley/Rathdrum Prairie aquifer, the primary source of drinking water for the city of Spokane and surrounding areas. A study conducted as part of the U.S. Geological Survey's National Water-Quality Assessment Program examined the interaction of the river and aquifer using hydrologic and chemical data along a losing reach of the Spokane River. The river and ground water were extensively monitored over a range of hydrologic conditions at 3 stream gages and 25 monitoring wells (including 18 wells installed for this study) ranging from 8 to 1,000 m from the river. River stage, ground-water level, water temperature, and specific conductance were measured hourly to biweekly, and water samples were collected 8 times. Additional regional ground-water data were collected from more than 190 wells within 5 km of the study reach. Hydrologic and chemical data indicate that the Spokane River recharges the Spokane Valley/Rathdrum Prairie aquifer along a 35-km reach between Coeur d'Alene Lake and Spokane. Ground-water levels in near-river (<125 m from the river) wells responded rapidly to variations in river stage and indicated the presence of an unsaturated zone beneath the river and a ground-water flow gradient away from the river. Chemical data indicated that river recharge may influence ground-water chemistry as far as 900 m from the river. The chemistry and

  9. Tidal river sediments in the Washington, D.C. area. 1. Distribution and sources of trace metals

    SciTech Connect

    Velinsky, D.J.; Wade, T.L.; Schlekat, C.E.

    1994-06-01

    Thirty-three bottom sediments were collected from the Potomac and Anacostia rivers, Tidal Basin, and Washington Ship Channel in June 1991 to define the extent of trace metal contamination and to elucidate source areas of sediment contaminants. In addition, twenty-three sediment samples were collected directly in front of and within major storm and combined sewers that discharge directly to these areas. Trace metals (e.g., Cu, Crk Cd, Hg, Pb, and Zn) exhibited a wide range in values in the study area. Sediment concentrations of Pb ranged from 32.0{mu}g Pb g {sup -1} to 3,630 {mu}g Pb g{sup -1}, Cd from 0.24 {mu}g Cd g{sup -1} to 4.1 {mu}g Cd g{sup -1}, and Hg from 0.13 {mu}g g{sup -1} to 9.2 {mu}g Hg g{sup -1}, with generally higher concentrations in either outfall or sewer sediments compared to river bottom-sediments. In the Anacostia River measurements indicate that numerous storm and combined sewers are major sources of trace metals. Similar results were observed in both the Tidal Basin and Washington Ship Channel. Cadmium and Pb concentrations are higher in specific sewers and outfalls, whereas the distribution of other metals suggests a more diffuse source to the rivers and basins of the area. Cadmium and Pb also exhibited the greatest enrichment throughout the study area, with peak values in the Anacostia River, near the Washington Navy Yard. Enrichment factors decrease in the order: Cd>Pb>Zn>Hg>Cu>Cr. Between 70% and 96% of sediment-bound Pb and Cd was released from a N{sub 2}-purged 1N HCI leach. On average, {le}40% of total sedimentary Cu was liberated, possibly due to the partial attack of organic components of the sediment. Sediments of the tidal freshwater portion of the Potomac estuary reflect moderate to highly contaminated area with substantial enrichments of sedimentary Pb, Cd, and Zn. The sediment phase containing these metals indicates potential mobility of the sediment-bound metals during either storm events or dredging. 39 refs., 5 figs., 6 tabs.

  10. Distribution of trace metals in the vicinity of a wastewater treatment plant on the Potomac River, Washington, DC, USA

    NASA Astrophysics Data System (ADS)

    Smith, J. P.; Muller, A. C.

    2013-05-01

    Predicting the fate and distribution of anthropogenic-sourced trace metals in riverine and estuarine systems is challenging due to multiple and varying source functions and dynamic physiochemical conditions. Between July 2011 and November 2012, sediment and water column samples were collected from over 20 sites in the tidal-fresh Potomac River estuary, Washington, DC near the outfall of the Blue Plains Advanced Wastewater Treatment Plant (BPWTP) for measurement of select trace metals. Field observations of water column parameters (conductivity, temperature, pH, turbidity) were also made at each sampling site. Trace metal concentrations were normalized to the "background" composition of the river determined from control sites in order to investigate the distribution BPWTP-sourced in local Potomac River receiving waters. Temporal differences in the observed distribution of trace metals were attributed to changes in the relative contribution of metals from different sources (wastewater, riverine, other) coupled with differences in the physiochemical conditions of the water column. Results show that normalizing near-source concentrations to the background composition of the water body and also to key environmental parameters can aid in predicting the fate and distribution of anthropogenic-sourced trace metals in dynamic riverine and estuarine systems like the tidal-fresh Potomac River.

  11. Surface-water-quality assessment of the Yakima River Basin in Washington: Overview of major findings, 1987-91

    USGS Publications Warehouse

    Morace, Jennifer L.; Fuhrer, Gregory J.; Rinella, Joseph F.; McKenzie, Stuart W.; Gannett, Marshall W.; Bramblett, Karen L.; Pogue, Ted R., Jr.; Skach, Kenneth A.; Embrey, Sandra S.; Cuffney, Thomas F.; Meador, Michael R.; Porter, Stephen D.; Gurtz, Martin E.

    1999-01-01

    The Mid and Lower Valleys had similar water-quality conditions, governed by the intensive agricultural and irrigation activities, highly erosive landscapes, and flow regulation. Most of the failures to meet the Washington State standards for dissolved oxygen and exceedances of the standards for water temperature and pH occurred in the Mid and Lower Valleys. Agricultural drains in the Mid and Lower Valleys were found to be significant sources of nutrients, suspended sediment, pesticides, and fecal indicator bacteria. Downstream from the irrigation diversions near Union Gap, summertime streamflow in the Yakima River was drastically reduced to only a few hundred cubic feet per second. In the lower Yakima River, agricultural return flow typically accounts for as much as 80 percent of the main stem summertime flow near the downstream terminus of the basin. Therefore, the water-quality characteristics of the lower Yakima River resemble those of the agricultural drains. The highest fecal bacteria concentrations (35,000 colonies of Escherichia coli per 100 milliliters of water) were measured in the Granger/Sunnyside area, the location of most of the livestock in the basin. The east side area of the Lower Valley (area east of the Yakima River) was the predominant source area for suspended sediment and pesticides in the basin. This area had the large

  12. Large-scale dam removal on the Elwha River, Washington, USA: river channel and floodplain geomorphic change

    USGS Publications Warehouse

    East, Amy E.; Pess, George R.; Bountry, Jennifer A.; Magirl, Christopher S.; Ritchie, Andrew C.; Logan, Joshua; Randle, Timothy J.; Mastin, Mark C.; Minear, Justin T.; Duda, Jeffrey J.; Liermann, Martin C.; McHenry, Michael L.; Beechie, Timothy J.; Shafroth, Patrick B.

    2015-01-01

    As 10.5 million t (7.1 million m3) of sediment was released from two former reservoirs, downstream dispersion of a sediment wave caused widespread bed aggradation of ~ 1 m (greater where pools filled), changed the river from pool–riffle to braided morphology, and decreased the slope of the lowermost river. The newly deposited sediment, which was finer than most of the pre-dam-removal bed, formed new bars (largely pebble, granule, and sand material), prompting aggradational channel avulsion that increased the channel braiding index by almost 50%. As a result of mainstem bed aggradation, floodplain channels received flow and accumulated new sediment even during low to moderate flow conditions. The river system showed a two- to tenfold greater geomorphic response to dam removal (in terms of bed elevation change magnitude) than it had to a 40-year flood event four years before dam removal. Two years after dam removal began, as the river had started to incise through deposits of the initial sediment wave, ~ 1.2 million t of new sediment (~ 10% of the amount released from the two reservoirs) was stored along 18 river km of the mainstem channel and 25 km of floodplain channels. The Elwha River thus was able to transport most of the released sediment to the river mouth. The geomorphic alterations and changing bed sediment grain size along the Elwha River have important ecological implications, affecting aquatic habitat structure, benthic fauna, salmonid fish spawning and rearing potential, and riparian vegetation. The response of the river to dam removal represents a unique opportunity to observe and quantify fundamental geomorphic processes associated with a massive sediment influx, and also provides important lessons for future river-restoration endeavors.

  13. Quality of the ground water in basalt of the Columbia River group, Washington, Oregon, and Idaho

    USGS Publications Warehouse

    Newcomb, Reuben Clair

    1972-01-01

    The ground water within the 50,000-square-mile area of the layered basalt of the Columbia River Group is a generally uniform bicarbonate water having calcium and sodium in nearly equal amounts as the principal cations. water contains a relatively large amount of silica. The 525 chemical analyses indicate that the prevalent ground water is of two related kinds--a calcium and a sodium water. The sodium water is more common beneath the floors of the main synclinal valleys; the calcium water, elsewhere. In addition to the prevalent type, five special types form a small part of the ground water; four of these are natural and one is artificial. The four natural special types are: (1) calcium sodium chloride waters that rise from underlying sedimentary rocks west of the Cascade Range, (2) mineralized water at or near warm or hot springs, (3) water having unusual ion concentrations, especially of chloride, near sedimentary rocks intercalated at the edges of the basalt, and (4) more mineralized water near one locality of excess carbon dioxide. The one artificial kind of special ground water has resulted from unintentional artificial recharge incidental to irrigation in parts of central Washington. The solids dissolved in the ground water have been picked up on the surface, within the overburden, and from minerals and glasses within the basalt. Evidence for the removal of ions from solution is confined to calcium and magnesium, only small amounts of which are present in some of the sodium-rich water. Minor constituents, such as the heavy metals, alkali metals, and alkali earths, occur in the ground water in trace, or small, amounts. The natural radioactivity of the ground waters is very low. Except for a few of the saline calcium sodium chloride waters and a few occurrences of excessive nitrate, the ground water generally meets the common standards of water good for most ordinary uses, but some of it can be improved by treatment. The water is clear and colorless and has a

  14. Tidal river sediments in the Washington, D.C. area. 111 Biological effects associated with sediment contamination

    SciTech Connect

    Schlekat, C.E.; McGee, B.L.; Boward, D.M.

    1994-06-01

    Sediment toxicity and benthic marcroinvertebrate community structure were measured as one component of a study conceived to determine the distribution and effect of sediment contamination in tidal freshwater portions of the Potomac and Anacostia rivers in the Washington, D.C., area. Samples were collected at 15 sites. Analyses included a partial life cycle (28 d) whole sediment test using the amphipod Hyalella azteca (Talitridae) and an assessment of benthic community structure. Survival and growth (as estimated by amphipod length) were experimental endpoints for the toxicity test. Significant mortality was observed in 5 to 10 sites in the lower Anacostia River basin and at the main channel Potomac River site. Sublethal toxicity, as measured by inhibition of amphipod growth, was not observed. Toxicity test results were in general agreement with synoptically measured sediment contaminant concentrations. Porewater total ammonia (NH{sub 3} + NH{sub 4}{sup +}) appears to be responsible for the toxicity of sediments from the Potomac River, while correlation analysis and simultaneously extracted metals: acid volatile sulfide (SEM:AVA) results suggest that the toxicity associated with Anacostia River sediments was due to organic compounds. Twenty-eight macroinvertebrate taxa were identified among all sites, with richness varying from 5 to 17 taxa per site. Groups of benthic assemblages identified by group-average cluster analysis exhibited variable agreement with sediment chemical and sediment toxicity results. Integration of toxicological, chemical, and ecological components suggests that adverse environmental effects manifest in lower Anacostia River benthos result from chemical contamination of sediment. 37 refs., 2 figs., 7 tabs.

  15. Hydrogeologic framework and groundwater/surface-water interactions of the South Fork Nooksack River Basin, northwestern Washington

    USGS Publications Warehouse

    Gendaszek, Andrew S.

    2014-01-01

    A hydrogeologic framework of the South Fork (SF) Nooksack River Basin in northwestern Washington was developed and hydrologic data were collected to characterize the groundwater-flow system and its interaction with surface‑water features. In addition to domestic, agricultural, and commercial uses of groundwater within the SF Nooksack River Basin, groundwater has the potential to provide ecological benefits by maintaining late-summer streamflows and buffering stream temperatures. Cold-water refugia, created and maintained in part by groundwater, have been identified by water-resource managers as key elements to restore the health and viability of threatened salmonids in the SF Nooksack River. The SF Nooksack River drains a 183-square mile area of the North Cascades and the Puget Lowland underlain by unconsolidated glacial and alluvial sediments deposited over older sedimentary, metamorphic, and igneous bedrock. The primary aquifer that interacts with the SF Nooksack River was mapped within unconsolidated glacial outwash and alluvial sediment. The lower extent of this unit is bounded by bedrock and fine-grained, poorly sorted unconsolidated glaciomarine and glaciolacustrine sediments. In places, these deposits overlie and confine an aquifer within older glacial sediments. The extent and thickness of the hydrogeologic units were assembled from mapped geologic units and lithostratigraphic logs of field-inventoried wells. Generalized groundwater-flow directions within the surficial aquifer were interpreted from groundwater levels measured in August 2012; and groundwater seepage gains and losses to the SF Nooksack River were calculated from synoptic streamflow measurements made in the SF Nooksack River and its tributaries in September 2012. A subset of the field-inventoried wells was measured at a monthly interval to determine seasonal fluctuations in groundwater levels during water year 2013. Taken together, these data provide the foundation for a future groundwater

  16. 77 FR 68718 - Safety Zone for Fireworks Display, Upper Potomac River, Alexandria Channel; Washington, DC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-16

    .... SUPPLEMENTARY INFORMATION: Table of Acronyms DHS Department of Homeland Security FR Federal Register NPRM Notice... public dockets in the January 17, 2008, issue of the Federal Register (73 FR 3316). ] 4. Public Meeting..., Alexandria Channel; Washington, DC AGENCY: Coast Guard, DHS. ACTION: Notice of proposed rulemaking....

  17. TOWARDS AN INDEX OF AQUATIC VERTEBRATE ASSEMBLAGE INTEGRITY FOR STREAMS AND RIVERS IN OREGON AND WASHINGTON

    EPA Science Inventory

    This research expands upon earlier Indices of Biotic Integrity (IBI) efforts that have been developed for the Northwest including the Willamette Valley IBI and the Coast Range coldwater IBI. This Oregon/Washington IBI presently being developed encompasses a broader geographic sca...

  18. Large-scale dam removal on the Elwha River, Washington, USA: source-to-sink sediment budget and synthesis

    USGS Publications Warehouse

    Warrick, Jonathan A.; Bountry, Jennifer A.; East, Amy E.; Magirl, Christopher S.; Randle, Timothy J.; Gelfenbaum, Guy R.; Ritchie, Andrew C.; Pess, George R.; Leung, Vivian; Duda, Jeff J.

    2015-01-01

    Understanding landscape responses to sediment supply changes constitutes a fundamental part of many problems in geomorphology, but opportunities to study such processes at field scales are rare. The phased removal of two large dams on the Elwha River, Washington, exposed 21 ± 3 million m3, or ~ 30 million tonnes (t), of sediment that had been deposited in the two former reservoirs, allowing a comprehensive investigation of watershed and coastal responses to a substantial increase in sediment supply. Here we provide a source-to-sink sediment budget of this sediment release during the first two years of the project (September 2011–September 2013) and synthesize the geomorphic changes that occurred to downstream fluvial and coastal landforms. Owing to the phased removal of each dam, the release of sediment to the river was a function of the amount of dam structure removed, the progradation of reservoir delta sediments, exposure of more cohesive lakebed sediment, and the hydrologic conditions of the river. The greatest downstream geomorphic effects were observed after water bodies of both reservoirs were fully drained and fine (silt and clay) and coarse (sand and gravel) sediments were spilling past the former dam sites. After both dams were spilling fine and coarse sediments, river suspended-sediment concentrations were commonly several thousand mg/L with ~ 50% sand during moderate and high river flow. At the same time, a sand and gravel sediment wave dispersed down the river channel, filling channel pools and floodplain channels, aggrading much of the river channel by ~ 1 m, reducing river channel sediment grain sizes by ~ 16-fold, and depositing ~ 2.2 million m3 of sand and gravel on the seafloor offshore of the river mouth. The total sediment budget during the first two years revealed that the vast majority (~ 90%) of the sediment released from the former reservoirs to the river passed through the fluvial system and was discharged to the coastal

  19. Large-scale dam removal on the Elwha River, Washington, USA: Source-to-sink sediment budget and synthesis

    NASA Astrophysics Data System (ADS)

    Warrick, Jonathan A.; Bountry, Jennifer A.; East, Amy E.; Magirl, Christopher S.; Randle, Timothy J.; Gelfenbaum, Guy; Ritchie, Andrew C.; Pess, George R.; Leung, Vivian; Duda, Jeffrey J.

    2015-10-01

    Understanding landscape responses to sediment supply changes constitutes a fundamental part of many problems in geomorphology, but opportunities to study such processes at field scales are rare. The phased removal of two large dams on the Elwha River, Washington, exposed 21 ± 3 million m3, or ~ 30 million tonnes (t), of sediment that had been deposited in the two former reservoirs, allowing a comprehensive investigation of watershed and coastal responses to a substantial increase in sediment supply. Here we provide a source-to-sink sediment budget of this sediment release during the first two years of the project (September 2011-September 2013) and synthesize the geomorphic changes that occurred to downstream fluvial and coastal landforms. Owing to the phased removal of each dam, the release of sediment to the river was a function of the amount of dam structure removed, the progradation of reservoir delta sediments, exposure of more cohesive lakebed sediment, and the hydrologic conditions of the river. The greatest downstream geomorphic effects were observed after water bodies of both reservoirs were fully drained and fine (silt and clay) and coarse (sand and gravel) sediments were spilling past the former dam sites. After both dams were spilling fine and coarse sediments, river suspended-sediment concentrations were commonly several thousand mg/L with ~ 50% sand during moderate and high river flow. At the same time, a sand and gravel sediment wave dispersed down the river channel, filling channel pools and floodplain channels, aggrading much of the river channel by ~ 1 m, reducing river channel sediment grain sizes by ~ 16-fold, and depositing ~ 2.2 million m3 of sand and gravel on the seafloor offshore of the river mouth. The total sediment budget during the first two years revealed that the vast majority (~ 90%) of the sediment released from the former reservoirs to the river passed through the fluvial system and was discharged to the coastal waters, where

  20. Washington Phase II Fish Diversion Screen Evaluations in the Yakima River Basin, 1998.

    SciTech Connect

    Blanton, S.L.; McMichael, Geoffrey A.; Neitzel, D.A.

    1999-12-01

    Pacific Northwest National Laboratory (PNNL) evaluated 19 Phase II screen sites in the Yakima River Basin as part of a multi-year study for the Bonneville Power Administration (BPA) on the effectiveness of fish screening devices. The sites were examined to determine if they were being effectively operated and maintained to provide fish a safe, efficient return to the Yakima River.

  1. 78 FR 1753 - Security Zone, Potomac and Anacostia Rivers; Washington, DC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-09

    ...The Coast Guard is establishing a temporary security zone encompassing certain waters of the Potomac River and Anacostia River. This action is necessary to safeguard persons and property, and prevent terrorist acts or incidents. This rule prohibits vessels and people from entering the security zone and requires vessels and persons in the security zone to depart the security zone, unless......

  2. 78 FR 4790 - Security Zone, Potomac and Anacostia Rivers; Washington, DC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-23

    ...The Coast Guard is establishing a temporary security zone encompassing certain waters of the Potomac River and Anacostia River. This action is necessary to safeguard persons and property, and prevent terrorist acts or incidents. This rule prohibits vessels and people from entering the security zone and requires vessels and persons in the security zone to depart the security zone, unless......

  3. River water intrusion and uranium capture from the vadose zone near the Columbia River at the Hanford Site, Washington

    NASA Astrophysics Data System (ADS)

    McKinley, J. P.; Resch, C. T.; Kaluzny, R. M.; Miller, M.; Vermeul, V.; Zachara, J. M.

    2011-12-01

    We investigated the effects of river water intrusion into the 300 Area Interdisciplinary Field Research Challenge (IFRC) site, approximately 200 m west of the Columbia River. The IFRC consists of 36 wells in a triangular array, pointing to the east, with wells on 10 m spacing. The site experiences seasonal changes in water table elevation of 2 m due to the influence of the river during the increase in river stage at spring snow melt. Shorter-term (daily to weekly) fluctuations result from river-stage management for power generation at upstream dams. The IFRC wells were screened over the uppermost 3 m of the aquifer, and were sampled daily by pumps central to the screened interval, from May 12 to July 30. Samples were analyzed for anion, cation, carbon, and uranium concentrations, and the elevation of the aquifer was measured across the site. River water arrival was determined by a negative inflection in chloride concentrations, and occurred 6 days after significant coupled river water and water table rises. The influx of river water progressed to a maximum after 18 days, reaching a maximum on June 29: river water comprised a maximum of 75% of the groundwater at the eastern edge of the IFRC, with a gradient in concentration across the 60 m-wide site down to 0% in the west. Tracer solutions were introduced just prior to the river water influx, and showed a rapid movement of water off the site to the west during the influx, against the regional hydraulic gradient, and returning to the western edge of the site as the river water retreated, approximately 25 m south of the point of injection. Uranium concentrations were uniform at approximately 30-50 μg/L before river water intrusion. As the water table rose, the uranium concentration increased within 7 days to 330 μg/L at the south corner of the site. Uranium was contributed heterogeneously: none was contributed at the east corner, and uranium concentration increased to 160 μg/L at the north corner only during the

  4. Angler harvest, hatchery return, and tributary stray rates of recycled adult summer steelhead Oncorhynchus mykiss in the Cowlitz River, Washington

    USGS Publications Warehouse

    Kock, Tobias J.; Perry, Russell W.; Gleizes, Chris; Dammers, Wolf; Liedtke, Theresa L.

    2016-01-01

    Hatchery ‘recycling’ programs have been used to increase angling opportunities by re-releasing fish into a river after they returned to a hatchery or fish trap. Recycling is intended to increase opportunities for fishermen, but this strategy could affect wild fish populations if some recycled fish remain in the river and interact with wild fish populations. To quantify hatchery return and angler harvest rates of recycled steelhead, we conducted a 2-year study on the Cowlitz River, Washington. A total of 1051 steelhead were recycled, including 218 fish that were radio-tagged. Fates of recycled steelhead were similar between years: 48.4% returned to the hatchery, 19.2% were reported captured by anglers, and 32.4% remained in the river. A multistate model quantified the effects of covariates on hatchery return and angler harvest rates, which were positively affected by river discharge and negatively affected by time since release. However, hatchery return rates increased and angler harvest rates decreased during periods of increasing discharge. A total of 21.1% (46 fish) of the radio-tagged steelhead failed to return to the hatchery or be reported by anglers, but nearly half of those fish (20 fish) appeared to be harvested and not reported. The remaining tagged fish (11.9% of the radio-tagged population) were monitored into the spawning period, but only five fish (2.3% of the radio-tagged population) entered tributaries where wild steelhead spawning occurs. Future research focused on straying behaviour, and spawning success of recycled steelhead may further advance the understanding of the effects of recycling as a management strategy.

  5. Quantifying Channel Morphology Changes in Response to the Removal of the Glines Canyon Dam, Elwha River, Washington

    NASA Astrophysics Data System (ADS)

    Free, B. J.; Ely, L. L.; Hickey, R.; Flake, R.; Baumgartner, S.

    2014-12-01

    The removal of two dams on the Elwha River, Washington, is the largest dam-removal project in history. Our research documents the sediment deposition, erosion, and channel changes between the dams following the initial sediment release from the removal of the upstream Glines Canyon Dam. Within the first year following the dam removal, the pulse of coarse sediment and large woody debris propagated downstream well over 6 km below the dam. The sediment deposition and altered channel hydraulics caused lateral channel migration where anabranching channels merge around new mid-channel bars and at large bends in the river channel. Documenting the river channel response to this exceptional sediment pulse could improve models of the impacts of future dam removals on similar gravel-bed rivers. We quantified the sediment flux and channel changes at four field sites 2-6 km downstream of Glines Canyon Dam. Topographic changes were surveyed with a terrestrial laser scanner (TLS) on an annual basis from August 2012 - August 2014 and the surface sediment distribution was quantified with bimonthly sediment counts. Differencing the annual TLS data yielded an overall increase in sediment throughout the study reach, with a minimum of 20,000 m3 of deposition on bars and banks exposed above the water surface in each 700-m-long TLS survey reach. The surface sediment distribution decreased from ~18 cm to < 1 mm. Large woody debris transported downstream from the former reservoir contributed to the formation of new sand and gravel bars along the channel margin at two sites as well as the longitudinal growth of several bars throughout the study area. The new bar formations have continued to propagate downstream as new sediment and woody debris have been added and remobilized, increasing the complexity of the river channel. By spring 2013, channel features that were present before the dam removal began to re-emerge due to the remobilizing of sediment through the system.

  6. Water movement in the zone of interaction between groundwater and the Columbia River, Hanford Site, Washington

    SciTech Connect

    Peterson, Robert E.; Connelly, Michael P.

    2004-03-01

    A two-dimensional model that simulates flow pathlines in a vertical cross section oriented perpendicular to the Columbia River has been developed for a location on the Hanford Site. Hydraulic head data from wells and the adjacent river were available to calculate flow direction and velocity in hourly increments for an entire seasonal cycle. The computer code Subsurface Transport Over Multiple Phases was used for flow calculations. River stage cycles extend through a range of several meters, thus exerting a strong influence on water motion in the zone of interaction. Flow pathlines from the aquifer are deflected downward beneath the bank storage zone. Discharge upward into the river channel is focused relatively close to shore and the region immediately beneath the shoreline appears to be dominated by river water. If the model is run assuming a constant, average river stage, these features are not represented, thus demonstrating the need to include transient boundary conditions when a fluctuating river stage influences the interface between ground and surface water. The model provides information that supports a variety of applications, including monitoring strategies, contaminant transport models, risk assessments, remedial action design, and compliance requirements for remedial actions.

  7. The River Corridor Closure Contract How Washington Closure Hanford is Closing A Unique Department of Energy Project - 12425

    SciTech Connect

    Feist, E.T.

    2012-07-01

    Cleanup of the Hanford River Corridor has been one of Hanford Site's top priorities since the early 1990's. This urgency is due to the proximity of hundreds of waste sites to the Columbia River and the groundwater that continues to threaten the Columbia River. In April 2005, the U.S. Department of Energy, Richland Operations Office (DOE-RL) awarded the Hanford River Corridor Closure Contract (RCCC), a cost-plus incentive-fee closure contract with a 2015 end date and first of its kind at Hanford Site, to Washington Closure Hanford (WCH), a limited-liability company owned by URS, Bechtel National, and CH2M HILL. WCH is a single-purpose company whose goal is to safely, compliantly, and efficiently accelerate cleanup in the Hanford River Corridor and reduce or eliminate future obligations to DOE-RL for maintaining long-term stewardship over the site. Accelerated performance of the work-scope while keeping a perspective on contract completion presents challenges that require proactive strategies to support the remaining work-scope through the end of the RCCC. This paper outlines the processes to address the challenges of completing work-scope while planning for contract termination. WCH is responsible for cleanup of the River Corridor 569.8 km{sup 2} (220 mi{sup 2}) of the 1,517.7 km{sup 2} (586 mi{sup 2}) Hanford Site's footprint reduction. At the end of calendar year 2011, WCH's closure implementation is well underway. Fieldwork is complete in three of the largest areas within the RCCC scope (Segments 1, 2, and 3), approximately 44.5% of the River Corridor (Figure 3). Working together, DOE-RL and WCH are in the process of completing the 'paper work' that will document the completion of the work-scope and allow DOE-RL to relieve WCH of contractual responsibilities and transition the completed areas to the Long-Term Stewardship Program, pending final action RODs. Within the next 4 years, WCH will continue to complete cleanup of the River Corridor following the

  8. Analyses of elutriates, native water, and bottom material in selected rivers and estuaries in western Oregon and Washington

    USGS Publications Warehouse

    Fuhrer, Gregory J.; Rinella, Frank A.

    1983-01-01

    Chemical analyses of elutriates, bottom sediment and water samples for selected metals, nutrients and organic compounds including insecticides and herbicides have been made to provide data to determine short-term water quality conditions associated with dredging operations in rivers and estuaries. Between May and December 1980 data were collected as far south as the Coos River in Western Oregon, as far north as Baker Bay in Southwestern Washington and as far inland as Bonneville Dam on the Columbia River. In an elutriation test, bottom material from a dredging site is mixed with native water and the filtrate is analysed. Elutriation test results showed variability in concentrates of dissolved chemicals as follows: in micrograms per liter (micro g/l), manganese ranged from 0 to 10,000, iron from 10 to 4300, zinc from 1 to 90, and phenols from 9 to 420; in milligrams per liter (mg/l), ammonia as nitrogen ranged from 0.03 to 46 and organic carbon from 0.5 to 45. (USGS)

  9. Assessment of Salmonids and their Habitat Conditions in the Walla Walla River Basin within Washington, 2001 Annual Report.

    SciTech Connect

    Mendel, Glen Wesley; Trump, Jeremy; Karl, David

    2002-12-01

    Concerns about the decline of native salmon and trout populations have increased among natural resource managers and the public in recent years. As a result, a multitude of initiatives have been implemented at the local, state, and federal government levels. These initiatives include management plans and actions intended to protect and restore salmonid fishes and their habitats. In 1998 bull trout (Salvelinus confluentus) were listed under the Endangered Species Act (ESA), as ''Threatened'', for the Walla Walla River and its tributaries. Steelhead (Oncorhynchus mykiss) were listed as ''Threatened'' in 1999 for the mid-Columbia River and its tributaries. These ESA listings emphasize the need for information about these threatened salmonid populations and their habitats. The Washington Department of Fish and Wildlife (WDFW) is entrusted with ''the preservation, protection, and perpetuation of fish and wildlife....[and to] maximize public recreational or commercial opportunities without impairing the supply of fish and wildlife (WAC 77.12.010).'' In consideration of this mandate, the WDFW submitted a proposal in December 1997 to the Bonneville Power Administration (BPA) for a study to assess salmonid distribution, relative abundance, genetics, and the condition of salmonid habitats in the Walla Walla River basin. The primary purposes of this project are to collect baseline biological and habitat data, to identify major data gaps, and to draw conclusions whenever possible. The study reported herein details the findings of the 2001 field season (March to November, 2001).

  10. Assessment of Salmonids and their Habitat Conditions in the Walla Walla River Basin of Washington : 2000 Annual Report.

    SciTech Connect

    Mendel, Glen Wesley; Karl, David; Coyle, Terrence

    2001-11-01

    Concerns about the decline of native salmon and trout populations have increased among natural resource managers and the public in recent years. As a result, a multitude of initiatives have been implemented at the local, state, and federal government levels. These initiatives include management plans and actions intended to protect and restore salmonid fishes and their habitats. In 1998 bull trout were listed under the Endangered Species Act (ESA), as ''Threatened'', for the Walla Walla River and its tributaries. Steelhead were listed as ''Threatened'' in 1999 for the mid-Columbia River and its tributaries. These ESA listings emphasize the need for information about the threatened salmonid populations and their habitats. The Washington Department of Fish and Wildlife (WDFW) is entrusted with ''the preservation, protection, and perpetuation of fish and wildlife....[and to] maximize public recreational or commercial opportunities without impairing the supply of fish and wildlife (WAC 77. 12.010).'' In consideration of this mandate, the WDFW submitted a proposal in December 1997 to the Bonneville Power Administration (BPA) for a study to assess salmonid distribution, relative abundance, genetics, and the condition of their habitats in the Walla Walla River basin. The primary purposes of this project are to collect baseline biological and habitat data, to identify major data gaps, and to draw conclusions whenever possible. The study reported herein details the findings of the 2000 field season (March to November, 2000).

  11. Low-temperature geothermal assessment of the Santa Clara and Virgin River Valleys, Washington County, Utah

    SciTech Connect

    Budding, K.E.; Sommer, S.N.

    1986-01-01

    Exploration techniques included the following: (1) a temperature survey of springs, (2) chemical analyses and calculated geothermometer temperatures of water samples collected from selected springs and wells, (3) chemical analyses and calculated geothermometer temperatures of spring and well water samples in the literature, (4) thermal gradients measured in accessible wells, and (5) geology. The highest water temperature recorded in the St. George basin is 42/sup 0/C at Pah Tempe Hot Springs. Additional spring temperatures higher than 20/sup 0/C are at Veyo Hot Spring, Washington hot pot, and Green Spring. The warmest well water in the study area is 40/sup 0/C in Middleton Wash. Additional warm well water (higher than 24.5/sup 0/C) is present north of St. George, north of Washington, southeast of St. George, and in Dameron Valley. The majority of the Na-K-Ca calculated reservoir temperatures range between 30/sup 0/ and 50/sup 0/C. Anomalous geothermometer temperatures were calculated for water from Pah Tempe and a number of locations in St. George and vicinity. In addition to the known thermal areas of Pah Tempe and Veyo Hot Spring, an area north of Washington and St. George is delineated in this study to have possible low-temperature geothermal potential.

  12. Effects of Domestication on Predation Mortality and Competitive Dominance; Yakima/Klickitat Fisheries Project Monitoring and Evaluation Report 2 of 7, 2003-2004 Annual Report.

    SciTech Connect

    Pearsons, Todd N.; Fritts, Anthony L.; Scott, Jennifer L.

    2004-05-01

    This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from the Washington Department of Fish and Wildlife (WDFW) to the Bonneville Power Administration (BPA), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning, and (2) summarize results of research that have broader scientific relevance. This is the first of a series of progress reports that address the effects of hatchery domestication on predation mortality and competitive dominance in the upper Yakima River basin. This progress report summarizes data collected between January 1, 2003 and December 31, 2003. Raising fish in hatcheries can cause unintended behavioral, physiological, or morphological changes in chinook salmon due to domestication selection. Domestication selection is defined by Busack and Currens 1995 as, ''changes in quantity, variety, or combination of alleles within a captive population or between a captive population and its source population in the wild as a result of selection in an artificial environment''. Selection in artificial environments could be due to intentional or artificial selection, biased sampling during some stage of culture, or unintentional selection (Busack and Currens 1995). Genetic changes can result in lowered survival in the natural environment (Reisenbichler and Rubin 1999). The goal of supplementation or conservation hatcheries is to produce fish that will integrate into natural populations. Conservation hatcheries attempt to minimize intentional or biased sampling so that the hatchery fish are similar to naturally produced fish. However, the selective pressures in hatcheries are dramatically different than in the wild, which can result in genetic differences between hatchery and wild fish. The selective pressures may be particularly prominent during the freshwater rearing stage where most mortality of wild fish occurs. The Yakima Fisheries Project is studying

  13. Effects of Domestication on Predation Mortality and Competitive Dominance; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report.

    SciTech Connect

    Pearsons, Todd N.; Fritts, Anthony L.; Scott, Jennifer L.

    2005-05-01

    This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from the Washington Department of Fish and Wildlife (WDFW) to the Bonneville Power Administration (BPA), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning, and (2) summarize results of research that have broader scientific relevance. This is the second of a series of progress reports that address the effects of hatchery domestication on predation mortality and competitive dominance in the upper Yakima River basin (Pearsons et al. 2004). This progress report summarizes data collected between January 1, 2004 and December 31, 2004. Raising fish in hatcheries can cause unintended behavioral, physiological, or morphological changes in chinook salmon due to domestication selection. Domestication selection is defined by Busack and Currens 1995 as, ''changes in quantity, variety, or combination of alleles within a captive population or between a captive population and its source population in the wild as a result of selection in an artificial environment''. Selection in artificial environments could be due to intentional or artificial selection, biased sampling during some stage of culture, or unintentional selection (Busack and Currens 1995). Genetic changes can result in lowered survival in the natural environment (Reisenbichler and Rubin 1999). The goal of supplementation or conservation hatcheries is to produce fish that will integrate into natural populations. Conservation hatcheries attempt to minimize intentional or biased sampling so that the hatchery fish are similar to naturally produced fish. However, the selective pressures in hatcheries are dramatically different than in the wild, which can result in genetic differences between hatchery and wild fish. The selective pressures may be particularly prominent during the freshwater rearing stage where most mortality of wild fish occurs. The Yakima

  14. Digital representation of the Washington state geologic map: a contribution to the Interior Columbia River Basin Ecosystem Management Project

    USGS Publications Warehouse

    Raines, Gary L.; Johnson, Bruce R.

    1996-01-01

    This report describes the digital representation of the Washington state geologic map (Hunting and others, 1961). This report contains an explantion of why the data were prepared, a description of the digital data, and information on obtaining the digital files. This report is one in a series of digital maps, data files, and reports generated by the U.S. Geological Survey to provide geologic process and mineral resource information to the Interior Columbia Basin Ecosystem Management Project (ICBEMP). The various digital maps and data files are being used in a geographic information system (GIS)-based ecosystem assessment including an analysis of diverse questions relating to past, present, and future conditions within the general area of the Columbia River Basin east of the Cascade Mountains.

  15. Comparison of different methods for estimating snowcover in forested, mountainous basins using LANDSAT (ERTS) images. [Washington and Santiam River, Oregon

    NASA Technical Reports Server (NTRS)

    Meier, M. J.; Evans, W. E.

    1975-01-01

    Snow-covered areas on LANDSAT (ERTS) images of the Santiam River basin, Oregon, and other basins in Washington were measured using several operators and methods. Seven methods were used: (1) Snowline tracing followed by measurement with planimeter, (2) mean snowline altitudes determined from many locations, (3) estimates in 2.5 x 2.5 km boxes of snow-covered area with reference to snow-free images, (4) single radiance-threshold level for entire basin, (5) radiance-threshold setting locally edited by reference to altitude contours and other images, (6) two-band color-sensitive extraction locally edited as in (5), and (7) digital (spectral) pattern recognition techniques. The seven methods are compared in regard to speed of measurement, precision, the ability to recognize snow in deep shadow or in trees, relative cost, and whether useful supplemental data are produced.

  16. Organic Compounds in Potomac River Water Used for Public Supply near Washington, D.C., 2003-05

    USGS Publications Warehouse

    Brayton, Michael J.; Denver, Judith M.; Delzer, Gregory C.; Hamilton, Pixie A.

    2008-01-01

    Organic compounds studied in this U.S. Geological Survey (USGS) assessment generally are man-made, including, in part, pesticides, solvents, gasoline hydrocarbons, personal care and domestic-use products, and refrigerants and propellants. A total of 85 of 277 compounds were detected at least once among the 25 samples collected approximately monthly during 2003-05 at the intake of the Washington Aqueduct, one of several community water systems on the Potomac River upstream from Washington, D.C. The diversity of compounds detected indicate a variety of different sources and uses (including wastewater discharge, industrial, agricultural, domestic, and others) and different pathways (including treated wastewater outfalls located upstream, overland runoff, and ground-water discharge) to drinking-water supplies. Seven compounds were detected year-round in source-water intake samples, including selected herbicide compounds commonly used in the Potomac River Basin and in other agricultural areas across the United States. Two-thirds of the 26 compounds detected most commonly in source water (in at least 20 percent of the samples) also were detected most commonly in finished water (after treatment but prior to distribution). Concentrations for all detected compounds in source and finished water generally were less than 0.1 microgram per liter and always less than human-health benchmarks, which are available for about one-half of the detected compounds. On the basis of this screening-level assessment, adverse effects to human health are expected to be negligible (subject to limitations of available human-health benchmarks).

  17. Geologic Influences on Downstream Fining in the Clearwater River Basin, Western Washington State: Implications for Transient Landscapes

    NASA Astrophysics Data System (ADS)

    Belmont, P.; Pazzaglia, F. J.

    2005-12-01

    Grain size exerts a primary control on river longitudinal profile concavity and thus has important implications for bedrock incision and the feedbacks between hillslope and fluvial processes in both steady-state and transient landscapes. In the Clearwater River basin, Olympic Peninsula, western Washington state, a setting where flux steady-state conditions have been argued, we propose that downstream fining and the downstream development of bimodality in the grain size distribution is primarily attributed to variable weathering and hillslope processes throughout the basin in addition to differential grain size reduction in the channel. The grain size data showing the downstream fining trend have been collected from three sites on each of six lateral alluvial bars in the Clearwater trunk channel. Volumetric grain size analyses separated into the three major rock types found in the Clearwater, siltstone, sandstone and conglomerate, indicates that siltstones are preferentially broken down during transport despite equal recruitment of all rock types along the river continuum. The source, although underlain by relatively uniform greywacke sandstone, siltstone, and shale, is found to be delivering texturally different material to the channel as a function of mean relief, which for the Clearwater, is tightly coupled to the rate of rock uplift. Weathering-resistant sandstone cobbles, primarily derived from the upper basin, therefore dominate the coarse grain size fractions at the river mouth. The potential implications of the geologic control of downstream fining on the estimation of basin-wide erosion rates from 10Be inventories of alluvial sediment are profound. For basins that exhibit a grain size dependency of 10Be concentrations, differential grain size reduction works to dilute or concentrate quartz grains (in which 10Be is generated) differently in each grain size fraction. Whereas this problem is minimized in the Clearwater basin, where sandstones are more or less

  18. Total dissolved gas, barometric pressure, and water temperature data, lower Columbia River, Oregon and Washington, 1996

    USGS Publications Warehouse

    Tanner, Dwight Q.; Harrison, Howard E.; McKenzie, Stuart W.

    1996-01-01

    Increased levels of total dissolved gas pressure can cause gas-bubble trauma in fish downstream from dams on the Columbia River. In cooperation with the U.S. Army Corps of Engineers, the U.S. Geological Survey collected data on total dissolved gas pressure, barometric pressure, water temperature, and dissolved oxygen pressure at 11 stations on the lower Columbia River from the John Day forebay (river mile 215.6) to Wauna Mill (river mile 41.9) from March to September 1996. Methods of data collection, review, and processing are described in this report. Summaries of daily minimum, maximum, and mean hourly values are presented for total dissolved gas pressure, barometric pressure, and water temperature. Hourly values for these parameters are presented graphically. Dissolved oxygen data are not presented in this report because the quality-control data show that the data have poor precision and high bias. Suggested changes to monitoring procedures for future studies include (1) improved calibration procedures for total dissolved gas and dissolved oxygen to better define accuracy at elevated levels of supersaturation and (2) equipping dissolved oxygen sensors with stirrers because river velocities at the shoreline monitoring stations probably cannot maintain an adequate flow of water across the membrane surface of the dissolved oxygen sensor.

  19. Sea-Floor Mapping and Benthic Habitat GIS for the Elwha River Delta Nearshore, Washington

    USGS Publications Warehouse

    Cochrane, Guy R.; Warrick, Jonathan A.; Sagy, Yael; Finlayson, David; Harney, Jodi

    2008-01-01

    From March 1531, 2005, more than 252 km (19.5 km2) of seafloor offshore of the Elwha River Delta in the central Strait of Juan de Fuca was mapped by the USGS Coastal and Marine Geology Program. The purpose of this nearshore mapping was to (1) obtain high resolution bathymetry and acoustic reflectance properties of the seabed, (2) examine and record geologic characteristics of the seafloor, and (3) construct maps of sea-floor geomorphology and habitat. Substrate distribution was characterized with video-supervised statistical classification of the sonar data. Substrate of the survey was dominated by mixed sand-gravel and sand. Numerous boulder reefs were observed west of the river mouth within Freshwater Bay, whereas the sea-floor immediately adjacent to the river mouth was dominated by sand.

  20. Updated glacial chronology of the South Fork Hoh River valley, Olympic Peninsula, Washington through detailed stratigraphy and OSL dating

    NASA Astrophysics Data System (ADS)

    Wyshnytzky, C.; Rittenour, T. M.; Thackray, G. D.

    2012-12-01

    The Olympic Peninsula lies within a maritime climatic zone under the direct influence of westerly atmospheric flow and Pacific Ocean sea surface temperature variations (i.e. ENSO and PDO). During the last glaciation, large valley glaciers extended radially from the Mt. Olympus area and carved deep valleys, which preserve glacial diamicton, outwash, and lacustrine sediment emplaced during ice advance and retreat. Previous work by Thackray (1996) mapped glacial deposits through several key drainages in the western Olympic Mountains and used exposures along the South Fork Hoh River to reconstruct MIS 2 glaciation and determine the relative extent of the LGM ice margin in the region. Findings suggest that the extent of mountain glaciers in the western Olympics were much reduced during MIS 2 in comparison to MIS 3/4, with glacier mass balance primarily controlled by moisture delivery. Here we discuss new data constraining the style and timing of deglaciation in the South Fork Hoh River valley of the western Olympic Mountains, Washington, USA. Previous research in the South Fork Hoh River used radiocarbon ages, geomorphic mapping, and general stratigraphic relationships to establish a chronostratigraphic framework (Thackray, 1996). To further that understanding and provide new insight on the style and timing of MIS 2 glaciation, we examine the sedimentology and stratigraphic architecture of glacial landforms, which contain invaluable information about glacial processes and style. Optically stimulated luminescence (OSL) dating, commonly regarded as problematic in glacial sediments, constrains the ages of proximal glacial outwash and glaciolacustrine deposits that were traditionally difficult to date due to the lack of organic matter for radiocarbon dating. OSL ages are internally coherent and stratigraphically consistent with previous radiocarbon ages. Results from this research in the South Fork Hoh River valley and associated work in the Queets River valley, the next

  1. Effects of catastrophic floods and debris flows on the sediment retention structure, North Fork Toutle River, Washington

    USGS Publications Warehouse

    Denlinger, Roger P.

    2012-01-01

    The eruption of Mount St. Helens in 1980 produced a debris avalanche that flowed down the upper reaches of the North Fork Toutle River in southwestern Washington, clogging this drainage with sediment. In response to continuous anomalously high sediment flux into the Toutle and Cowlitz Rivers resulting from this avalanche and associated debris flows, the U.S. Army Corps of Engineers completed a Sediment Retention Structure (SRS) on the North Fork Toutle River in May 1989. For one decade, the SRS effectively blocked most of the sediment transport down the Toutle River. In 1999, the sediment level behind the SRS reached the elevation of the spillway base. Since then, a higher percentage of sediment has been passing the SRS and increasing the flood risk in the Cowlitz River. Currently (2012), the dam is filling with sediment at a rate that cannot be sustained for its original design life, and the U.S. Army Corps of Engineers is concerned with the current ability of the SRS to manage floods. This report presents an assessment of the ability of the dam to pass large flows from three types of scenarios (it is assumed that no damage to the spillway will occur). These scenarios are (1) a failure of the debris-avalanche blockage forming Castle Lake that produces a dambreak flood, (2) a debris flow from failure of that blockage, or (3) a debris flow originating in the crater of Mount St. Helens. In each case, the flows are routed down the Toutle River and through the SRS using numerical models on a gridded domain produced from a digital elevation model constructed with existing topography and dam infrastructure. The results of these simulations show that a structurally sound spillway is capable of passing large floods without risk of overtopping the crest of the dam. In addition, large debris flows originating from Castle Lake or the crater of Mount St. Helens never reach the SRS. Instead, debris flows fill the braided channels upstream of the dam and reduce its storage

  2. Yakima/Klickitat Fisheries Project Monitoring and Evaluation, Final Report For the Performance Period May 1, 2008 through April 30, 2009.

    SciTech Connect

    Sampson, Melvin R.

    2009-07-30

    The Yakima-Klickitat Fisheries Project (YKFP) is a joint project of the Yakama Nation (lead entity) and the Washington State Department of Fish and Wildlife (WDFW) and is sponsored in large part by the Bonneville Power Administration (BPA) with oversight and guidance from the Northwest Power and Conservation Council (NPCC). It is among the largest and most complex fisheries management projects in the Columbia Basin in terms of data collection and management, physical facilities, habitat enhancement and management, and experimental design and research on fisheries resources. Using principles of adaptive management, the YKFP is attempting to evaluate all stocks historically present in the Yakima subbasin and apply a combination of habitat restoration and hatchery supplementation or reintroduction, to restore the Yakima Subbasin ecosystem with sustainable and harvestable populations of salmon, steelhead and other at-risk species. The original impetus for the YKFP resulted from the landmark fishing disputes of the 1970s, the ensuing legal decisions in United States versus Washington and United States versus Oregon, and the region's realization that lost natural production needed to be mitigated in upriver areas where these losses primarily occurred. The YKFP was first identified in the NPCC's 1982 Fish and Wildlife Program (FWP) and supported in the U.S. v Oregon 1988 Columbia River Fish Management Plan (CRFMP). A draft Master Plan was presented to the NPCC in 1987 and the Preliminary Design Report was presented in 1990. In both circumstances, the NPCC instructed the Yakama Nation, WDFW and BPA to carry out planning functions that addressed uncertainties in regard to the adequacy of hatchery supplementation for meeting production objectives and limiting adverse ecological and genetic impacts. At the same time, the NPCC underscored the importance of using adaptive management principles to manage the direction of the Project. The 1994 FWP reiterated the importance of

  3. BACTERIOLOGY AND ALGAL ASSAYS, LOWER SNAKE RIVER RESERVOIRS, IDAHO AND WASHINGTON, 1977

    EPA Science Inventory

    The purpose of this portion of the study is to determine 1) the overall water quality of the impoundment area, and 2) to determine the effect of impoundment on bacterial water quality. Data from the pre-impoundment study indicated that the Snake and Clearwater Rivers (17060103) ...

  4. Hydrodynamic Modeling Analysis of Union Slough Restoration Project in Snohomish River, Washington

    SciTech Connect

    Yang, Zhaoqing; Wang, Taiping

    2010-12-20

    A modeling study was conducted to evaluate additional project design scenarios at the Union Slough restoration/mitigation site during low tide and to provide recommendations for finish-grade elevations to achieve desired drainage. This was accomplished using the Snohomish River hydrodynamic model developed previously by PNNL.

  5. 78 FR 64969 - Tualatin River National Wildlife Refuge, Washington and Yamhill Counties, OR; Final Comprehensive...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-30

    ...We, the U.S. Fish and Wildlife Service (Service), announce the availability of the Tualatin River National Wildlife Refuge (refuge) final comprehensive conservation plan (CCP). The CCP includes our finding of no significant impact (FONSI) for the associated environmental assessment (EA). In this final CCP, we describe how we will manage the refuge for the next 15...

  6. Flood plain and channel dynamics of the Quinault and Queets Rivers, Washington, USA

    USGS Publications Warehouse

    O'Connor, J. E.; Jones, M.A.; Haluska, T.L.

    2003-01-01

    Observations from this study and previous studies on the Queets River show that channel and flood-plain dynamics and morphology are affected by interactions between flow, sediment, and standing and entrained wood, some of which likely involve time frames similar to 200–500-year flood-plain half-lives. On the upper Quinault River and Queets River, log jams promote bar growth and consequent channel shifting, short-distance avulsions, and meander cutoffs, resulting in mobile and wide active channels. On the lower Quinault River, large portions of the channel are stable and flow within vegetated flood plains. However, locally, channel-spanning log jams have caused channel avulsions within reaches that have been subsequently mobile for several decades. In all three reaches, log jams appear to be areas of conifer germination and growth that may later further influence channel and flood-plain conditions on long time scales by forming flood-plain areas resistant to channel migration and by providing key members of future log jams. Appreciation of these processes and dynamics and associated temporal and spatial scales is necessary to formulate effective long-term approaches to managing fluvial ecosystems in forested environments.

  7. 77 FR 64538 - Tualatin River National Wildlife Refuge, Washington and Yamhill Counties, OR, Draft Comprehensive...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    ... process through a notice in the Federal Register (75 FR 67763; November 3, 2010). Tualatin River National... our planning process, by publishing a notice in the Federal Register (75 FR 67765, November 3, 2010... birds, more than 50 species of mammals, 25 species of reptiles and amphibians, and a variety of...

  8. Use of surrogate technologies to estimate suspended sediment in the Clearwater River, Idaho, and Snake River, Washington, 2008-10

    USGS Publications Warehouse

    Wood, Molly S.; Teasdale, Gregg N.

    2013-01-01

    Elevated levels of fluvial sediment can reduce the biological productivity of aquatic systems, impair freshwater quality, decrease reservoir storage capacity, and decrease the capacity of hydraulic structures. The need to measure fluvial sediment has led to the development of sediment surrogate technologies, particularly in locations where streamflow alone is not a good estimator of sediment load because of regulated flow, load hysteresis, episodic sediment sources, and non-equilibrium sediment transport. An effective surrogate technology is low maintenance and sturdy over a range of hydrologic conditions, and measured variables can be modeled to estimate suspended-sediment concentration (SSC), load, and duration of elevated levels on a real-time basis. Among the most promising techniques is the measurement of acoustic backscatter strength using acoustic Doppler velocity meters (ADVMs) deployed in rivers. The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, Walla Walla District, evaluated the use of acoustic backscatter, turbidity, laser diffraction, and streamflow as surrogates for estimating real-time SSC and loads in the Clearwater and Snake Rivers, which adjoin in Lewiston, Idaho, and flow into Lower Granite Reservoir. The study was conducted from May 2008 to September 2010 and is part of the U.S. Army Corps of Engineers Lower Snake River Programmatic Sediment Management Plan to identify and manage sediment sources in basins draining into lower Snake River reservoirs. Commercially available acoustic instruments have shown great promise in sediment surrogate studies because they require little maintenance and measure profiles of the surrogate parameter across a sampling volume rather than at a single point. The strength of acoustic backscatter theoretically increases as more particles are suspended in the water to reflect the acoustic pulse emitted by the ADVM. ADVMs of different frequencies (0.5, 1.5, and 3 Megahertz) were tested to

  9. Water Quality in the Yakima River Basin, Washington, 1999-2000

    USGS Publications Warehouse

    Fuhrer, Gregory J.; Morace, Jennifer L.; Johnson, Henry M.; Rinella, Joseph F.; Ebbert, James C.; Embrey, Sandra S.; Waite, Ian R.; Carpenter, Kurt D.; Wise, Daniel R.; Hughes, Curt A.

    2004-01-01

    This report contains the major findings of a 1999?2000 assessment of water quality in streams and drains in the Yakima River Basin. It is one of a series of reports by the NAWQA Program that present major findings on water resources in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is assessed at many scales?from large rivers that drain lands having many uses to small agricultural watersheds?and is discussed in terms of local, State, and regional issues. Conditions in the Yakima River Basin are compared to those found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, Tribal, State, or local agencies; universities; public interest groups; or the private sector. The information will be useful in addressing a number of current issues, such as source-water protection, pesticide registration, human health, drinking water, hypoxia and excessive growth of algae and plants, the effects of agricultural land use on water quality, and monitoring and sampling strategies. This report is also for individuals who wish to know more about the quality of water resources in areas near where they live, and how that water quality compares to the quality of water in other areas across the Nation. Other products describing water-quality conditions in the Yakima River Basin are available. Detailed technical information, data and analyses, methodology, and maps that support the findings presented in this report can be accessed from http://or.water.usgs.gov/yakima. Other reports in this series and data collected from other basins can be accessed from the national NAWQA Web site (http://water.usgs.gov/nawqa).

  10. Paleomagnetic evidence for repeated glacial lake missoula floods from sediments of the Sanpoil River Valley, Northeastern Washington

    NASA Astrophysics Data System (ADS)

    Steele, William K.

    1991-03-01

    Recent explanations of widespread rhythmically layered sediments in eastern Washington as the result of repeated great floods from glacial Lake Missoula implicitly suggest a paleomagnetic test for validity. If each conjectural flood layer is separated by years or decades, as hypothesized, a sequence of several such flood beds should record measurable secular variation in geomagnetic field direction. In the Sanpoil River valley where the rhythmite sequences are thought to have been deposited in glacial Lake Columbia, the paleomagnetic test consists of measuring remanent magnetization (RM) directions for thick, upwardly fining beds inferred to be sediments deposited by the influx of flood waters from glacial Lake Missoula into glacial Lake Columbia. Laboratory measurements of samples from three widely spaced sections along the Sanpoil River yield RM vectors with erratic inclinations, apparently affected by varying contributions of inclination error and (or) compaction shallowing, but with declinations that generally differ statistically from one flood to the next and that show the same west-to-east trend at all three locations. The rates of declination change inferred from these data are consistent with modern rates, thus providing the first geophysical evidence supporting the timing in the tens-of-floods theory.

  11. Delta distributary dynamics in the Skagit River Delta (Washington, USA): Extending, testing, and applying avulsion theory in a tidal system

    NASA Astrophysics Data System (ADS)

    Hood, W. Gregory

    2010-11-01

    Analysis of historical aerial photos shows that Skagit Delta (Washington, USA) distributary dynamics are consistent with the Slingerland and Smith model of avulsion dynamics where the ratio of the water surface slopes of the two branches of a bifurcation predicts avulsion stability. This model was extended to predict distributary inlet (upstream) width and bankfull cross-sectional area. The water surface gradient ratio for a bifurcation pair predicted distributary width well; the lowest R2 was 0.61 for the 1937 data points, but R2 ranged from 0.83 to 0.90 for other year-specific regression lines. Gradient ratios were not constant over the historical record; from 1937 to 1972 the mainstem river channel lengthened by 1250 m in the course of marsh progradation, while distributary lengthening was comparatively negligible. Consequently, the gradient advantage of the distributaries increased and their channels widened. After the mainstem river terminus stabilized from 1972 to the present, the distributaries continued to lengthen with marsh progradation, so that distributary gradient advantage steadily declined and the distributaries narrowed. While distributary cross sections were not available for the historical period, they were surveyed in 2007 near the distributary inlets. Gradient ratio was more closely related to distributary inlet bankfull cross-sectional area ( R2 = 0.95) than to minimum distributary width for any photo year examined. Applying this form of analysis to Skagit Delta distributaries that have been dammed in the course of agricultural development suggests that their restoration to stabilize eroding marshes at their outlets and recover salmon migration pathways would be feasible without significant risk of full river avulsion.

  12. Capture of white sturgeon larvae downstream of The Dalles Dam, Columbia River, Oregon and Washington, 2012

    USGS Publications Warehouse

    Parsley, Michael J.; Kofoot, Eric

    2013-01-01

    Wild-spawned white sturgeon (Acipenser transmontanus) larvae captured and reared in aquaculture facilities and subsequently released, are increasingly being used in sturgeon restoration programs in the Columbia River Basin. A reconnaissance study was conducted to determine where to deploy nets to capture white sturgeon larvae downstream of a known white sturgeon spawning area. As a result of the study, 103 white sturgeon larvae and 5 newly hatched free-swimming embryos were captured at 3 of 5 reconnaissance netting sites. The netting, conducted downstream of The Dalles Dam on the Columbia River during June 25–29, 2012, provided information for potentially implementing full-scale collection efforts of large numbers of larvae for rearing in aquaculture facilities and for subsequent release at a larger size in white sturgeon restoration programs.

  13. Numerical model of the salt-wedge reach of the Duwamish River estuary, King County, Washington

    USGS Publications Warehouse

    Prych, Edmund A.; Haushild, W.L.; Stoner, J.D.

    1976-01-01

    A numerical model of a salt-wedge estuary developed by Fischer (1974) has been expanded and used to calculate the distributions of salinity, temperature, chlorophyll a concentration, biochemical oxygen demand, and dissolved-oxygen concentration in the Duwamish River estuary, King County, Wash. The model was used to predict the dissolved-oxygen concentrations in the Duwamish River estuary when the Renton Treatment Plant sewage-effluent discharge is increased to its proposed maximum of 223 cubic feet per second. The computed monthly average dissolved-oxygen concentrations in the estuary decreased by a maximum of 2 milligrams per liter when compared with computations for the summer of 1971, when the effluent discharge averaged 37 cubic feet per second. The increase in effluent discharge is not expected to cause large changes in phytoplankton concentrations in the estuary. (Woodard-USGS)

  14. Biogeochemical characteristics of a polluted urban stream (Anacostia River, Washington DC, USA): inorganic minerals, nutrients and allochthonous vs. autochthonous production

    NASA Astrophysics Data System (ADS)

    Sarraino, S.; Frantz, D.; Bushaw-Newton, K.; MacAvoy, S. E.

    2011-12-01

    The Anacostia River in Washington, D.C. is among the 10 most contaminated rivers in the USA, containing sewage, metals, PAHs, and PCBs. The biogeochemical characteristics of tidal freshwater urban rivers, including the Anacostia, remain largely unstudied. This study examined base-flow geochemistry and nutrients dynamics over a one-year period (April 2010- May 2011), concentrating on inorganics (Ca, Mg, Na, S, K, P, NO3, NH4, PO4, B, Ba, Ni, Co), organic hydrocarbons, sediment and water column particulate C, N and S stable isotopes and total organic carbon. Water and sediment were sampled from three tidal freshwater sites along the Anacostia River approximately every 8 weeks. δ15N values of sediment and water column particulates ranged from +2 to +9%, with the most enriched values occurring downstream (+4 to +9%). While these values may not reflect sewage inputs, an overall enrichment was observed between spring and late summer, which may indicate microbial activity. δ13C values exhibited slightly more variation and ranged from -30 to -25%. All sites showed relative depletion in early summer compared with spring or late summer/fall. C/N ratios were generally between 13-19 in sediments, indicating autochthonous origins. Water nutrients (NO3 and NH4) demonstrated seasonal fluxes; all sites showed a peak in nutrients during early summer (June) and subsequent decline. Overall, NO3 ranged from about 0.2 to 3.3 mg/L and NH4 ranged from 0 to 1.7 μg/L. GC-MS analysis showed notable compounds such as anthraquinone (a possible carcinogen), steroid hormones and several odd-chain and branched fatty acids. Principle Component Analysis (PCA) of the geochemical data suggests the strongest control of water chemistry (25-39%) is a Ca/Mg component that was also strongly associated with nitrate and K at 2 of the 3 sites. The second component (25%) was strongly associated with Na. The possibility that cement influences the geochemistry of this urban river continues to be examined.

  15. Beach morphology and change along the mixed grain-size delta of the dammed Elwha River, Washington

    USGS Publications Warehouse

    Warrick, J.A.; George, D.A.; Gelfenbaum, G.; Ruggiero, P.; Kaminsky, G.M.; Beirne, M.

    2009-01-01

    Sediment supply provides a fundamental control on the morphology of river deltas, and humans have significantly modified these supplies for centuries. Here we examine the effects of almost a century of sediment supply reduction from the damming of the Elwha River in Washington on shoreline position and beach morphology of its wave-dominated delta. The mean rate of shoreline erosion during 1939-2006 is ~ 0.6??m/yr, which is equivalent to ~ 24,000??m3/yr of sediment divergence in the littoral cell, a rate approximately equal to 25-50% of the littoral-grade sediment trapped by the dams. Semi-annual surveys between 2004 and 2007 show that most erosion occurs during the winter with lower rates of change in the summer. Shoreline change and morphology also differ spatially. Negligible shoreline change has occurred updrift (west) of the river mouth, where the beach is mixed sand to cobble, cuspate, and reflective. The beach downdrift (east) of the river mouth has had significant and persistent erosion, but this beach differs in that it has a reflective foreshore with a dissipative low-tide terrace. Downdrift beach erosion results from foreshore retreat, which broadens the low-tide terrace with time, and the rate of this kind of erosion has increased significantly from ~ 0.8??m/yr during 1939-1990 to ~ 1.4??m/yr during 1990-2006. Erosion rates for the downdrift beach derived from the 2004-2007 topographic surveys vary between 0 and 13??m/yr, with an average of 3.8??m/yr. We note that the low-tide terrace is significantly coarser (mean grain size ~ 100??mm) than the foreshore (mean grain size ~ 30??mm), a pattern contrary to the typical observation of fining low-tide terraces in the region and worldwide. Because this cobble low-tide terrace is created by foreshore erosion, has been steady over intervals of at least years, is predicted to have negligible longshore transport compared to the foreshore portion of the beach, and is inconsistent with oral history of abundant

  16. Development and Application of a Decision Support System for Water Management Investigations in the Upper Yakima River, Washington

    USGS Publications Warehouse

    Bovee, Ken D.; Waddle, Terry J.; Talbert, Colin; Hatten, James R.; Batt, Thomas R.

    2008-01-01

    The Yakima River Decision Support System (YRDSS) was designed to quantify and display the consequences of different water management scenarios for a variety of state variables in the upper Yakima River Basin, located in central Washington. The impetus for the YRDSS was the Yakima River Basin Water Storage Feasibility Study, which investigated alternatives for providing additional water in the basin for threatened and endangered fish, irrigated agriculture, and municipal water supply. The additional water supplies would be provided by combinations of water exchanges, pumping stations, and off-channel storage facilities, each of which could affect the operations of the Bureau of Reclamation's (BOR) five headwaters reservoirs in the basin. The driver for the YRDSS is RiverWare, a systems-operations model used by BOR to calculate reservoir storage, irrigation deliveries, and streamflow at downstream locations resulting from changes in water supply and reservoir operations. The YRDSS uses output from RiverWare to calculate and summarize changes at 5 important flood plain reaches in the basin to 14 state variables: (1) habitat availability for selected life stages of four salmonid species, (2) spawning-incubation habitat persistence, (3) potential redd scour, (4) maximum water temperatures, (5) outmigration for bull trout (Salvelinus confluentus) from headwaters reservoirs, (6) outmigration of salmon smolts from Cle Elum Reservoir, (7) frequency of beneficial overbank flooding, (8) frequency of damaging flood events, (9) total deliverable water supply, (10) total water supply deliverable to junior water rights holders, (11) end-of-year reservoir carryover, (12) potential fine sediment transport rates, (13) frequency of events capable of armor layer disruption, and (14) geomorphic work performed during each water year. Output of the YRDSS consists of a series of conditionally formatted scoring tables, wherein the changes to a state variable resulting from an operational

  17. Late Quaternary Glaciation of the Naches River Drainage Basin, Washington Cascades

    NASA Astrophysics Data System (ADS)

    Sheffer, H. B.; Goss, L.; Shimer, G.; Carson, R. J.

    2014-12-01

    The Naches River drainage basin east of Mount Rainer includes tributary valleys of the Little Naches, American, Bumping, and Tieton rivers. An investigation of surface boulder frequency, weathering rind thicknesses, and soil development on moraines in these valleys identified two stages of Pleistocene glaciations in the American, Bumping, and Tieton drainages, followed by Neoglaciation. These stages include a more extensive early glaciation (Hayden Creek?), and the later Evans Creek Glaciation (25-15 ka). Thick forest cover, limited road cuts, and widespread post-glacial mass wasting hamper efforts to determine the maximum extent of glaciation. However, glacial striations at Chinook Pass, moraine complexes in the vicinity of Goose Egg Mountain, ice-transported boulders and striations on Pinegrass Ridge, and a boulder field possibly derived from an Evans Creek jökulhaup in the Tieton River valley, all point to extensive Pleistocene ice in the central tributaries of the Naches River. Lowest observed ice elevations in the Tieton (780 m), Bumping (850 m), and American (920 m) drainages increase towards the north, while glacial lengths decrease from 40 to 28 km. The Little Naches is the northernmost drainage in the study, but despite a maximum elevation (1810 m) that exceeds the floor of ice caps to the south, glacially-derived sediments are not evident and the surrounding peaks lack cirques. The absence of ice in the Little Naches drainage, along with the systematic northward change in glacial length and lowest observed ice elevations in the other drainages, are likely due to a precipitation shadow northeast of Mount Rainier. In contrast, the source of glacial ice in the Tieton drainage to the southeast was the Goat Rocks peaks. Ground-based study of neoglacial moraines and analysis of 112 years of topographic maps and satellite imagery point to rapid retreat of the remaining Goat Rocks glaciers following the Little Ice Age.

  18. Water Quality Sampling Locations Along the Shoreline of the Columbia River, Hanford Site, Washington

    SciTech Connect

    Peterson, Robert E.; Patton, Gregory W.

    2009-12-14

    As environmental monitoring evolved on the Hanford Site, several different conventions were used to name or describe location information for various sampling sites along the Hanford Reach of the Columbia River. These methods range from handwritten descriptions in field notebooks to the use of modern electronic surveying equipment, such as Global Positioning System receivers. These diverse methods resulted in inconsistent archiving of analytical results in various electronic databases and published reports because of multiple names being used for the same site and inaccurate position data. This document provides listings of sampling sites that are associated with groundwater and river water sampling. The report identifies names and locations for sites associated with sampling: (a) near-river groundwater using aquifer sampling tubes; (b) riverbank springs and springs areas; (c) pore water collected from riverbed sediment; and (d) Columbia River water. Included in the listings are historical names used for a particular site and the best available geographic coordinates for the site, as of 2009. In an effort to create more consistency in the descriptive names used for water quality sampling sites, a naming convention is proposed in this document. The convention assumes that a unique identifier is assigned to each site that is monitored and that this identifier serves electronic database management requirements. The descriptive name is assigned for the convenience of the subsequent data user. As the historical database is used more intensively, this document may be revised as a consequence of discovering potential errors and also because of a need to gain consensus on the proposed naming convention for some water quality monitoring sites.

  19. Snout dimorphism in white sturgeon, Acipenser transmontanus, from the Columbia River at Hanford, Washington

    SciTech Connect

    Crass, D.W.; Gray, R.H.

    1982-01-01

    Although differences in snout length and shape between young and adult sturgeon are known, morphological divergence in snout type of similar sized individuals has not been reported. Field observations in the Hanford reach of the Columbia River on 99 white sturgeon ranging from 35 to 205 cm total length showed two snout types based on size and shape. The occurrence of this dimorphism at Hanford may reflect isolating mechanisms, such as physical barriers which block fish movements. (RAF)

  20. Simulated Water-Management Alternatives Using the Modular Modeling System for the Methow River Basin, Washington

    USGS Publications Warehouse

    Konrad, Christopher P.

    2004-01-01

    A precipitation-runoff model for the Methow River Basin was used to simulate six alternatives: (1) baseline of current flow, (2) line irrigation canals to limit seepage losses, (3) increase surface-water diversions through unlined canals for aquifer recharge, (4) convert from surface-water to ground-water resources to supply water for irrigation, and (5) reduce tree density in forested headwater catchments, and (6) natural flow. Daily streamflow from October 1, 1959, to September 30, 2001 (water years 1960?2001) was simulated. Lining irrigation canals (alternative 2) increased flows in the Chewuch, Twisp, and the Methow (upstream and at Twisp) Rivers during September because of lower diversion rates, but not in the Methow River near Pateros. Increasing diversions for aquifer recharge (alternative 3) increased streamflow from September into January, but reduced streamflow earlier in the summer. Conversion of surface-water diversions to ground-water wells (alternative 4) resulted in the largest increase in September streamflow of any alternative, but also marginally lower January flows (at most -8 percent in the 90-percent exceedence value). Forest-cover reduction (alternative 5) produced large increases in streamflow during high-flow periods in May and June and earlier onset of high flows and small increases in January streamflows. September streamflows were largely unaffected by alternative 5. Natural streamflow (alternative 6) was higher in September and lower in January than the baseline alternative.

  1. Distribution of fish, benthic invertebrate, and algal communities in relation to physical and chemical conditions, Yakima River basin, Washington, 1990

    USGS Publications Warehouse

    Cuffney, T.F.; Meador, M.R.; Porter, S.D.; Gurtz, M.E.

    1997-01-01

    Biological investigations were conducted in the Yakima River Basin, Washington, in conjunction with a pilot study for the U.S. Geological Survey's National Water-Quality Assessment Program. Ecological surveys were conducted at 25 sites in 1990 to (1) assess water-quality conditions based on fish, benthic invertebrate, and algal communities; (2) determine the hydrologic, habitat, and chemical factors that affect the distributions of these organisms; and (3) relate physical and chemical conditions to water quality. Results of these investigations showed that land uses and other associated human activities influenced the biological characteristics of streams and rivers and overall water-quality conditions. Fish communities of headwater streams in the Cascades and Eastern Cascades ecoregions of the Yakima River Basin were primarily composed of salmonids and sculpins, with cyprinids dominating in the rest of the basin. The most common of the 33 fish taxa collected were speckled dace, rainbow trout, and Paiute sculpin. The highest number of taxa (193) was found among the inverte- brates. Insects, particularly sensitive forms such as mayflies, stoneflies, and caddisflies (EPT--Ephemeroptera, Plecoptera, and Trichoptera fauna), formed the majority of the invertebrate communities of the Cascades and Eastern Cascades ecoregions. Diatoms dominated algal communities throughout the basin; 134 algal taxa were found on submerged rocks, but other stream microhabitats were not sampled as part of the study. Sensitive red algae and diatoms were predominant in the Cascades and Eastern Cascades ecoregions, whereas the abundance of eutrophic diatoms and green algae was large in the Columbia Basin ecoregion of the Yakima River Basin. Ordination of physical, chemical, and biological site characteristics indicated that elevation was the dominant factor accounting for the distribution of biota in the Yakima River Basin; agricultural intensity and stream size were of secondary importance

  2. Water-quality assessment of White River between Lake Sequoyah and Beaver Reservoir, Washington County, Arkansas

    USGS Publications Warehouse

    Terry, J.E.; Morris, E.E.; Bryant, C.T.

    1982-01-01

    The Arkansas Department of Pollution Control and Ecology and U.S. Geological Survey conducted a water quality assessment be made of the White River and, that a steady-state digital model be calibrated and used as a tool for simulating changes in nutrient loading. The city of Fayetteville 's wastewater-treatment plant is the only point-source discharger of waste effluent to the river. Data collected during synoptic surveys downstream from the wastewater-treatment plan indicate that temperature, dissolved oxygen, dissolved solids, un-ionized ammonia, total phosphorus, and floating solids and depositable materials did not meet Arkansas stream standards. Nutrient loadings below the treatment plant result in dissolved oxygen concentrations as low as 0.0 milligrams per liter. Biological surveys found low macroinvertebrate organism diversity and numerous dead fish. Computed dissolved oxygen deficits indicate that benthic demands are the most significant oxygen sinks in the river downstream from the wastewater-treatment plant. Benthic oxygen demands range from 2.8 to 11.0 grams per meter squared per day. Model projections indicate that for 7-day, 10-year low-flow conditions and water temperature of 29 degrees Celsius, daily average dissolved oxygen concentrations of 6.0 milligrams per liter can be maintained downstream from the wastewater-treatment plant if effluent concentrations of ultimate carbonaceous biochemical oxygen demand and ammonia nitrogen are 7.5 (5.0 5-day demand) and 2 milligrams per liter respectively. Model sensitivity analysis indicate that dissolved oxygen concentrations were most sensitive to changes in stream temperature. (USGS)

  3. Influence of bedrock lithology on strath terrace formation in the Willapa River watershed, SW Washington, USA

    NASA Astrophysics Data System (ADS)

    Schanz, S. A.; Montgomery, D. R.

    2013-12-01

    River terraces in tectonically active regions such as the Cascadia subduction margin have been utilized as late Quaternary markers of rock uplift and climate, yet the important role of bedrock lithology as a control on terrace formation is rarely considered. This study investigates lithologic controls on strath terrace formation in the Willapa River basin, situated halfway between the Olympic and Oregon Coast Ranges along the Cascadia subduction zone. The Willapa River and its tributaries alternate flow through easily erodible marine sedimentary and resistant basalt bedrock. We estimate rates of fluvial incision and infer patterns of rock uplift through a combination of field mapping, surveying terrace tread and strath elevations, and radiocarbon dating of terrace abandonment. A long-term steady state between incision and rock uplift is assumed for the basin, and incision rates are calculated as the strath elevation above present thalweg divided by the age of strath abandonment. Radiocarbon dates reveal two extensive terrace sets approximately 150 and 10,000 years old, resulting in a regional rock uplift rate of 0.4×0.1 mm/yr. Terraces are present only in sedimentary bedrock whereas basalt bedrock reaches run through deep, narrow valleys lacking extensive floodplains or terraces. The marine sedimentary units erode easily both laterally and vertically with active erosion of millimeter thick flakes on subaerially exposed bedrock. In contrast, basalt bedrock erodes preferentially in large blocks along fracture planes, resulting in less laterally erodible banks and higher vertical than lateral incision rates. We estimate rock uplift rates of less than 0.5 mm/yr are high enough to initiate strath terrace formation following large, long cycle impetuses such as climatic changes, provided the bedrock lithology is weak enough to allow lateral erosion as well as vertical incision. Thus, disturbances from large climatic or base level changes initiate terrace formation, but

  4. Dispersion of Metals from Abandoned Mines and their Effects on Biota in the Methow River, Okanogan County, Washington : Annual Report 3/15/00-3/14/01.

    SciTech Connect

    Peplow, Dan; Edmonds, Robert

    2001-06-01

    The University of Washington, College of Forest Resources and the Center for Streamside Studies in Seattle, Washington, is being funded by the Bonneville Power Administration to conduct a three-year research project to measure the watershed scale response of stream habitat to abandoned mine waste, the dispersion of metals, and their effects on biota in the Methow River basin. The purpose of this project is to determine if there are processes and pathways that result in the dispersion of metals from their source at abandoned mines to biological receptors in the Methow River. The objectives of this study are the following: (1) Assess ecological risk due to metal contamination from mines near the Methow; (2) Measure impact of metals from mines on groundwater and sediments in Methow River; (3) Measure response of organisms in the Methow River to excess metals in the sediments of the Methow River; (4) Recommend restoration guidelines and biological goals that target identified pathways and processes of metal pollution affecting salmon habitat in the Methow basin; and (5) Submit peer review journal publications. When concluded, this study will contribute to the advancement of current best management practices by describing the processes responsible for the release of metals from small abandoned mine sites in an arid environment, their dispersal pathways, and their chemical and biological impacts on the Methow River. Based on these processes and pathways, specific remediation recommendations will be proposed.

  5. Washington Phase II Fish Diversion Screen Evaluations in the Yakima River Basin, 2002 Annual Report.

    SciTech Connect

    Carter, J.; McMichael, G.; Chamness, M.

    2003-01-01

    In 2002, the Pacific Northwest National Laboratory evaluated 23 Phase II fish screen sites in the Yakima River Basin as part of a multi-year project for the Bonneville Power Administration on the effectiveness of fish screening devices. Pacific Northwest National Laboratory collected data to determine whether velocities in front of the screens and in the bypasses met National Marine Fisheries Service criteria to promote safe and timely fish passage and whether bypass outfall conditions allowed fish to safely return to the river. In addition, Pacific Northwest National Laboratory conducted underwater video surveys to evaluate the environmental and operational conditions of the screen sites with respect to fish passage. Based on evaluations in 2002, PNNL concluded that: (1) In general, water velocity conditions at the screen sites met fish passage criteria set by the National Marine Fisheries Service. (2) Conditions at most facilities would be expected to provide for safe juvenile fish passage. (3) Conditions at some facilities indicate that operation and/or maintenance should be modified to increase safe juvenile fish passage. (4) Automated cleaning brushes generally functioned properly; chains and other moving parts were typically well greased and operative. (5) Removal of sediment buildup and accumulated leafy and woody debris should be improved at some sites.

  6. Hydrodynamic Modeling Analysis of Tidal Wetland Restoration in Snohomish River, Washington

    SciTech Connect

    Yang, Zhaoqing; Wang, Taiping

    2012-03-07

    To re-establish the intertidal wetlands with full tidal interaction and improve salmonid rearing habitat in the Lower Snohomish River estuary, a diked wetland along Union Slough of the Snohomish River was restored by breaching the existing dike and constructing bridges across the breaches. However, post-restoration monitoring indicated that the restored project site could not drain as efficiently as desired. To improve the drainage conditions at the restoration site during low tides, a modeling study was conducted to evaluate additional restoration scenarios and to provide recommendations for finish-grade ground elevations to achieve the desired drainage. To accurately simulate the drainage of the project site, an unstructured-grid hydrodynamic model with fine-grid resolution down to a few meters was used in this study. The model was first validated with observed water level data collected in the project site and then applied to assess the feasibility of different proposed restoration scenarios. A spatial varying bottom roughness option in the model is also implemented to better represent the high roughness due to the presence of dense vegetation in the project site. The methodology, error statistics of model validation and uncertainty of the modeling analysis are presented and discussed.

  7. Low-flow characteristics of streams in the Deschutes River basin, Washington

    USGS Publications Warehouse

    Cummans, J.E.

    1981-01-01

    The streams in the basin usually have their low flows in August and September. Seven-day low flows were smallest in 1952 when annual rainfall at the Olympia airport was also the least during the 1945-75 period of continuous gaging-station records in the basin. The magnitude and frequency of seven-day low flows were estimated for 23 streamflow sites, either from frequency analysis of data at long-term stations or from correlation of measured or computed discharges at a streamflow site with data at a long-term station. Seven-day low flows ranged from no-flow at one tributary of Deschutes River having a drainage area of 1.85 square miles to 98 cubic feet per second for Deschutes River near its mouth, where the drainage was 162 square miles. Mean monthly flows were determined for two long-term stations and estimated for months of July to September for the other streamflow sites. (USGS)

  8. Washington Phase II Fish Diversion Screen Evaluations in the Yakima River Basin, 1997 Annual Report.

    SciTech Connect

    Blanton, S.; Neitzel, C.; Abernethy, C.

    1998-02-01

    The Pacific Northwest National Laboratory evaluated 19 Phase II screen sites in the Yakima River Basin at least three times each between April 30 and August 22, 1997. The sites were examined to determine if they were being effectively operated and maintained to provide fish a safe, efficient return to the river. Data were collected to determine if velocities in front of the screens and in the bypass met current NMFS criteria and promoted timely fish bypass, if fish were protected from injury due to impingement, entrainment, and predation, and whether bypass outfall conditions allowed fish to safely return to the river. A bi-directional flow meter and underwater video system were essential in completing the investigation. In general, water velocity conditions at the screen sites were acceptable by NMFS standards. High approach velocities and slow bypass flow were the most common problems noted. Although velocities often fluctuated from one sampling location to the next, average sweep and approach velocities were very good. In general, fish should not be impinged or experience delays in returning to the river under normal operating conditions. Most screens were properly sealed to prevent fish entrainment and injury, although potential problems were identified at several screen sites. Three sites had gap openings from the forebay to the aftbay, allowing fish to be entrained. Other sites had spaces larger than 3/32 inch where small fish could become trapped. Some drum screens had flat spots but these were not been confirmed as underwater gaps, primarily because of siltation. On rare occasions, seals were intact, but cracked or turned under. Submergence levels at the drum screen sites exceeded 85% for one third of our evaluations. Eight of 12 drum screen sites experienced high water levels during at least one evaluation. Only one operating site's submergence was measured at less than 65% submergence. Two flat plate screen sites were completely overtopped with water

  9. Flood hazard assessment of the Hoh River at Olympic National Park ranger station, Washington

    USGS Publications Warehouse

    Kresch, D.L.; Pierson, T.C.

    1987-01-01

    Federal regulations require buildings and public facilities on Federal land to be located beyond or protected from inundation by a 100-year flood. Flood elevations, velocities and boundaries were determined for the occurrence of a 100-year flood through a reach, approximately 1-mi-long, of the Hoh River at the ranger station complex in Olympic National Park. Flood elevations, estimated by step-backwater analysis of the 100-year flood discharge through 14 channel and flood-plain cross sections of the Hoh River, indicate that the extent of flooding in the vicinity of buildings or public facilities at the ranger station complex is likely to be limited mostly to two historic meander channels that lie partly within loop A of the public campground and that average flood depths of about 2 feet or less would be anticipated in these channels. Mean flow velocities at the cross sections, corresponding to the passage of a 100-year flood, ranged from about 5 to over 11 ft/sec. Flooding in the vicinity of either the visitors center or the residential and maintenance areas is unlikely unless the small earthen dam at the upstream end of Taft Creek were to fail. Debris flows with volumes on the order of 100 to 1,000 cu yards could be expected to occur in the small creeks that drain the steep valley wall north of the ranger station complex. Historic debris flows in these creeks have generally traveled no more than about 100 yards out onto the valley floor. The potential risk that future debris flows in these creeks might reach developed areas within the ranger station complex is considered to be small because most of the developed areas within the complex are situated more than 100 yards from the base of the valley wall. Landslides or rock avalanches originating from the north valley wall with volumes potentially much larger than those for debris flows could have a significant impact on the ranger station complex. The probability that such landslides or avalanches may occur is

  10. Sediment deposition and inventory of chemical contaminants in the tidal Anacostia River, Washington, DC

    SciTech Connect

    Velinsky, D.J.; Wade, T.L.; Gammisch, B.; Cornwell, J.

    1995-12-31

    To determine the historical inputs and loads of sediment contaminants in the lower Anacostia River, six 3 meter gravity cores were collected in 1995. The down-core distributions of trace metals and organic contaminants (e.g., PCBs, DDTs, and PAHs) were determined. Dating of three cores using {sup 210}Pb indicate a substantial mixed layer in the upper 10 to 25 cm and an exponential {sup 210}Pb decrease to 3 meters. Sedimentation rates of 2 to 3 cm/yr were estimated and are in agreement with estimates based on pollen and sediment mass balance calculations. This suggests that bottom core sections are between 100 and 150 yrs old. However, contaminant levels were elevated in the bottom sections of most cores with levels of Pb, Cd, tPCBs, and tPAHs ranging from 23 to 610 {micro}g/g, 0.15 to 5.2 {micro}g/g, 3.9 to 1,745 ng/g, and 110 to 49,000 ng/g, respectively. These levels suggest either post-depositional migration of material or that {sup 210}Pb profiles are not representative of the true deposition. To help validate the {sup 210}Pb-age-depth profiles, the distribution of {sup 137}Cs is currently being determined for these cores. Generally, the depth distribution of most contaminants were surface maximum with lower concentrations at depth, or mid-depth maximum. However some cores had contaminant concentrations that increased with depth. The down core distributions and the results of the sub-bottom profiling will be used to help establish a better contaminant mass balance for the Anacostia River.

  11. Determination of mass balance and entrainment in the stratified Duwamish River Estuary, King County, Washington

    USGS Publications Warehouse

    Stoner, J.D.

    1972-01-01

    During a study of the effects of waste-water input on the stratified Duwamish River estuary, intensive water-velocity and salinity measurements were made in both the lower salt wedge and the upper fresher water layer for tidal-cycle periods. The net movement of water and salt mass past a cross section during a tidal cycle was determined from integration of the measured rates of movement of water and salt past the section. The net volume of water that moved downstream past the section during the cycle agreed with the volume of fresh-water inflow at the head of the estuary within (1) 3.8 and 7.2 percent, respectively, for two studies made during periods of maximum and minimum tidal-prism thickness and identical inflow rates .of 312 cfs (cubic feet per second), and (2) 15 percent for one study made during a period of average tidal-prism thickness and an inflow rate of 1,280 cfs. For the three studies, the difference between salt mass transported upstream and downstream during the cycles ranged from 0.8 to 19 percent of the respective mean salt-mass transport. Water was entrained from the .salt-water wedge into the overlying layer of mixed fresh and salt water at tidal-cycle-average rates of 30 and 69 cfs per million square feet of interface for the inflow rates of 312 cfs, and 99 cfs per million square feet of interface for an inflow rate of 1,280 cfs. At a constant inflow rate, the rate of entrainment of salt-wedge water in the Duwamish River estuary more than doubled for a doubling of tidal-prism thickness. It also doubled for a quadrupling of inflow rate at about constant tidal-prism thickness.

  12. Comparison of reach-scale morphologic adjustment in confined and unconfined alluvial mountain rivers, Olympic Peninsula, Washington

    NASA Astrophysics Data System (ADS)

    Micheletty, P. D.; Goode, J.; Pierce, J. L.; Buffington, J. M.

    2011-12-01

    Over human time scales (10-1 - 102 yr), alluvial mountain rivers respond to changes in sediment input and discharge through adjustments in reach-scale morphology (width, depth, grain size, and, to some degree, slope). Channel confinement (valley-width relative to the bankfull channel width) in these systems can strongly influence the magnitude of channel response. We compared channel responsiveness to flood events (50-100 yr) within the last 5 years in unconfined and confined valley segments on the Olympic Peninsula, western Washington. Field measurements of cross-sectional averaged width and depth in 20 confined and 20 unconfined valleys are compared to the bankfull dimensions predicted from established downstream hydraulic geometry relationships for the region. We expect that measured bankfull geometry of confined reaches will be significantly greater than the predicted bankfull dimensions, which would suggest that the morphology of confined channels is more responsive to flood events. In unconfined channels floodplains are large enough to disperse over-bank flows, which can limit the effect of peak discharges on channel morphology, whereas confined channels are forced to disperse the extra energy exerted by peak flows into increased shear stress along their bed and banks. Results from this study can aid modeling efforts to predict future changes in channel geometry and aquatic habitat in response to climate change or land use at the basin scale.

  13. Linking Short-term Upstream and Downstream Geomorphic Responses to the Removal of Condit Dam, White Salmon River, Washington

    NASA Astrophysics Data System (ADS)

    Wilcox, A. C.; O'Connor, J. E.; Major, J. J.; Coloaiacomo, E.

    2013-12-01

    Dynamiting a hole at the base of the 38-m-high Condit Dam, on the White Salmon River, Washington, resulted in rapid reservoir drainage and erosion and produced a downstream surge of water and sediment. To document the short-term upstream and downstream responses to the October 2011 Condit breach, we combined photographic methods, topographic surveys, stage and suspended sediment measurements, and stratigraphic observations. Initial reservoir erosion occurred as a result of mass failure of thick, fine-grained reservoir sediment, which was eventually supplemented by knickpoint migration as the erosion propagated upstream from the dam. About 10 percent of total reservoir sediment eroded in the first 90 minutes after the breach, and about one-third of the reservoir sediment had evacuated in the first week. Downstream, an initially sediment-poor discharge peak with an approximately 100-year recurrence interval was followed by a hyperconcentrated sediment pulse (32% by volume) that locally produced meters-thick sand deposits. The post-breach sediment dynamics at Condit were in many respects more analogous to sediment pulses introduced by volcanic eruptions or large mass failure events than by previous dam removals.

  14. Movement of a solute in the Potomac River estuary at Washington, D.C., at low inflow conditions

    USGS Publications Warehouse

    Wilson, James F.; Cobb, Ernest D.; Yotsukura, Nobuhiro

    1969-01-01

    The movement of a solute, as represented by a soluble fluorescent dye, was observed in the Potomac River estuary at Washington, D.C. The average net rate of downstream movement of the solute centroid was less than 0.6 mile per day. The movement of a solute is highly dependent on the nontidal inflow to the estuary. During the study, the average inflow was 900 cubic feet per second a very low value, equaled or exceeded 98 percent of the time. Using a storage equation, the average movement of a solute was estimated for nontidal inflow of 3,100 and 6,500 cubic feet per second; these inflows are equaled or exceeded 75 and 50 percent of the time, respectively. The study showed that tidal action was fairly efficient in dispersing the solute longitudinally. The solute, which was dumped 1,000 feet upstream from the 14th Street Bridge, was observed as far upstream as Roosevelt Island. A transient longitudinal dispersion coefficient at the end of 150 hours was determined to be 210 square feet per second. On the other hand, the lateral diffusion was a slow process and the lateral distribution of the solute was far from uniform at the end of 6? days after the release.

  15. Database for the geologic map of the Sauk River 30-minute by 60-minute quadrangle, Washington (I-2592)

    USGS Publications Warehouse

    Tabor, R.W.; Booth, D.B.; Vance, J.A.; Ford, A.B.

    2006-01-01

    This digital map database has been prepared by R.W. Tabor from the published Geologic map of the Sauk River 30- by 60 Minute Quadrangle, Washington. Together with the accompanying text files as PDF, it provides information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The authors mapped most of the bedrock geology at 1:100,000 scale, but compiled most Quaternary units at 1:24,000 scale. The Quaternary contacts and structural data have been much simplified for the 1:100,000-scale map and database. The spatial resolution (scale) of the database is 1:100,000 or smaller. This database depicts the distribution of geologic materials and structures at a regional (1:100,000) scale. The report is intended to provide geologic information for the regional study of materials properties, earthquake shaking, landslide potential, mineral hazards, seismic velocity, and earthquake faults. In addition, the report contains information and interpretations about the regional geologic history and framework. However, the regional scale of this report does not provide sufficient detail for site development purposes.

  16. Extrinsic controls on inter-basaltic plant ecosystems in the Columbia River Flood Basalt Province, Washington State, USA

    NASA Astrophysics Data System (ADS)

    Ebinghaus, Alena; Jolley, David W.; Hartley, Adrian J.

    2015-04-01

    The impact Large Igneous Province (LIP) volcanism may have had on paleoclimate, fauna and flora is still controversy. Inter-lava field plant ecosystems have the potential to record in detail the effects LIPs had on the environment in the immediate vicinity of volcanic activity. The Miocene Columbia River Flood Basalt Province (CRBP), Washington State, USA, provides excellent exposure of an entire LIP stratigraphy and offers a detailed record of inter-basaltic plant ecosystems throughout LIP evolution. The CRBP lava field comprise numerous basaltic lava flows that are intercalated with fluvial and lacustrine sediments which formed during phases of volcanic quiescence. The LIP volcanic evolution is characterised by an initial phase of high eruption volumes and eruptions rates, which is followed by waning volcanism associated with longer interbed intervals. Inter-lava field plant ecosystems are expected to correlate with phases of volcanic evolution: short interbed intervals should be dominated by early seral succession, while longer intervals should record more mature seral successions. The palynological record of the sedimentary interbeds however indicates a decline in successional status within the long interbed intervals of CRBP stratigraphy. An integrated analysis of sedimentary facies and geochemistry suggests intense volcanic ash fall derived from the adjacent Yellowstone hot spot as a major trigger for repetitive successional re-setting. This implies that inter-lava field ecosystem maturity was controlled by extrinsic forcing, and argues against environmental changes solely driven by LIPs of similar scale and magnitude to that of the CRBP.

  17. Distinguishing Features of Atmospheric River Storms Linked to Debris Flow Initiation on Mt. Hood, Oregon and Mt. Rainier, Washington

    NASA Astrophysics Data System (ADS)

    Desrochers, J.; Nolin, A. W.

    2011-12-01

    Strong eastern Pacific storms characterized by tropical-sourced moisture and heat are often referred to as Atmospheric Rivers (ARs) and are associated with the triggering of debris flows in the Cascade Mountain Range, USA primarily in the fall season. These storms typically feature freezing levels above 3000 m and heavy precipitation that can saturate slopes and rapidly melt shallow early season snowpack. In a study of periglacial debris flows on Mt. Hood, Oregon and Mt. Rainier, Washington, this combination of factors is proposed to initiate slope failure and subsequent debris flows. However, not all ARs trigger debris flows and other storms not associated with ARs may also lead to debris flows. The presence of these non-triggering storms has led to the question: what features distinguish the storms that trigger debris flows, and do these conditions differ between ARs and other storms? ACARS soundings are used to develop temporally detailed information about freezing levels and storm structure. Supplemental data from the SNOTEL network and NWS WSR-88D radar sites allow for better delineation of storm features and their impact on the ground. Antecedent snowpack, atmospheric temperature profiles, precipitation, and oragraphic enhancement are examined for storms associated with debris flows and those that failed to trigger events to determine what characteristics best differentiate the storms from one another. Specific features within the triggering storms, such as the presence of temperature inversions, are also examined for links to the elevation and geomorphic character of these periglacial debris flow initiation sites.

  18. Environmental contaminants in great blue herons (Ardea herodias) from the lower Columbia and Willamette Rivers, Oregon and Washington, USA

    SciTech Connect

    Thomas, C.M.; Anthony, R.G.

    1999-12-01

    Great blue heron (Ardea herodias) eggs and prey items were collected from six colonies in Oregon and Washington, USA, during 1994 to 1995. Contaminant concentrations, reproductive success, and biomagnification factors were determined and effects of residue levels were measured by H4IIE rat hepatoma bioassays. Mean residue concentrations in heron eggs and prey items were generally low. However, elevated concentrations of polychlorinated biphenyls (PCBs) were detected in eggs and prey from Ross Island on the Willamette River. Biomagnification factors varied among sites. Sites were not significantly different in H4IIE tetrachlorodibenzo-p-dioxin equivalents (TCDD-EQs), although the TCDD-EQ for Karlson Island was 9 to 20 times greater than that of any other site. Large differences existed between toxic equivalents calculated from egg residue concentrations and TCDD-EQs, which indicated nonadditive interactions among the compounds. Tetrachlorodibenzo-p-dioxin equivalents and nest failure were positively correlated with TCDD concentration. Fledging and reproductive rates were similar to those determined for healthy heron populations, however, indicating that any adverse effects were occurring at the individual level and not at the colony level. Their results support the use of great blue herons as a biomonitor for contamination in aquatic ecosystems. Their relatively low sensitivity to organochlorine contaminants and high trophic position allows contaminant accumulation and biomagnification without immediate adverse effects that are often seen in other, more sensitive species.

  19. Analysis of current-meter data at Columbia River gaging stations, Washington and Oregon

    USGS Publications Warehouse

    Savini, John; Bodhaine, G.L.

    1971-01-01

    points) and then integrating the depth-velocity profile. In comparing the velocity obtained by integrating the depth-velocity profile with the 10-point mean velocity for other field data, collected beyond that obtained during the 66-minute run, the difference ranged from -1.3 to +1.7 percent and averaged -0.2 percent. Extension of the curve below the 0.95 depth by use of a power function proved to be fairly accurate (when compared with actual measurements within this reach made with the special current-meter bracket). However, the extension did not improve significantly the accuracy of the integrated-curve mean velocity. Both the one- and two-point methods were found to agree with the 10-point velocity. In computing mean river velocity, values determined by the two-point method ranged from -1.4 to +1.6 percent when compared with the base integrated-curve mean river velocity. The one-point method yielded results that ranged from -1.9 to +4.4 percent and averaged 40.1 percent. In determining river flow by use of the midsection and mean-section methods, the mean-section method uniformly yields lower flows for the same dart.. The range in difference is from -0.2 percent to -1.6 percent, with an average difference of -0.6 percent.

  20. Factors Affecting the Occurrence and Distribution of Pesticides in the Yakima River Basin, Washington, 2000

    USGS Publications Warehouse

    Johnson, Henry M.

    2007-01-01

    The Yakima River Basin is a major center of agricultural production. With a cultivated area of about 450,000 ha (hectares), the region is an important producer of tree fruit, grapes, hops, and dairy products as well as a variety of smaller production crops. To control pest insects, weeds, and fungal infections, about 146 pesticide active ingredients were applied in various formulations during the 2000 growing season. Forty-six streams or drains in the Yakima River Basin were sampled for pesticides in July and October of 2000. Water samples also were collected from 11 irrigation canals in July. The samples were analyzed for 75 of the pesticide active ingredients applied during the 2000 growing season - 63 percent of the pesticides were detected. An additional 14 pesticide degradates were detected, including widespread occurrence of 2 degradates of DDT. The most frequently detected herbicide was 2,4-D, which was used on a variety of crops and along rights-of-way. It was detected in 82 percent of the samples collected in July. The most frequently detected insecticide was azinphos-methyl, which was used primarily on tree fruit. It was detected in 37 percent of the samples collected in July. All occurrences of azinphos-methyl exceeded the Environmental Protection Agency recommended chronic concentration for the protection of aquatic organisms. More than 90 percent of the July samples and 79 percent of the October samples contained two or more pesticides, with a median of nine in July and five in October. The most frequently occurring herbicides in mixtures were atrazine, 2,4-D, and the degradate deethylatrazine. The most frequently occurring insecticides in mixtures were azinphos-methyl, carbaryl, and p,p'-DDE (a degradate of DDT). A greater number of pesticides and higher concentrations were found in July than in October, reflecting greater usage and water availability for transport during the summer growing and irrigation season. Most of the samples collected in

  1. Character and distribution of borehole breakouts and their relationship to in situ stresses in deep Columbia River Basalts ( Washington State, USA).

    USGS Publications Warehouse

    Paillet, Frederick L.; Kim, K.

    1987-01-01

    The character and distribution of borehole breakouts in deeply buried basalts at the Hanford Site in S central Washington State are examined in light of stress indicator data and hydraulic- fracturing stress data by means of acoustic televiewer and acoustic waveform logging systems. A series of boreholes penetrating the Grande Ronde Basalt of the Columbia River Basalt Group were logged to examine the extent of breakouts at depths near 1000 m. -from Authors

  2. Washington Phase II Fish Diversion Screen Evaluations in the Yakima River Basin, 2003 Annual Report.

    SciTech Connect

    Vucelick, J.; McMichael, G.; Chamness, M.

    2004-05-01

    In 2003, the Pacific Northwest National Laboratory (PNNL) evaluated 23 Phase II fish screen sites in the Yakima River Basin as part of a multi-year project for the Bonneville Power Administration on the effectiveness of fish screening devices. PNNL collected data to determine whether velocities in front of the screens and in the bypasses met the National Oceanic and Atmospheric Administration Fisheries (NOAA Fisheries, formerly the National Marine Fisheries Service [NMFS]) criteria to promote safe and timely fish passage. In addition, PNNL conducted underwater video surveys to evaluate the environmental and operational conditions of the screen sites with respect to fish passage. Based on evaluations in 2003, PNNL concluded that: (1) In general, water velocity conditions at the screen sites met fish passage criteria set by the NOAA Fisheries. (2) Conditions at most facilities would be expected to provide for safe juvenile fish passage. (3) Conditions at some facilities indicate that operation and/or maintenance should be modified to improve juvenile fish passage conditions. (4) Automated cleaning brushes generally functioned properly; chains and other moving parts were typically well greased and operative. (5) Removal of sediment buildup and accumulated leafy and woody debris could be improved at some sites.

  3. Field guide to hydrothermal alteration in the White River altered area and in the Osceola Mudflow, Washington

    USGS Publications Warehouse

    John, David A.; Rytuba, James J.; Ashley, Roger P.; Blakely, Richard J.; Vallance, James W.; Newport, Grant R.; Heinemeyer, Gary R.

    2003-01-01

    . The morning of the trip will examine the White River altered area, which includes high-level alteration related to a large, early Miocene magmatic-hydrothermal system exposed about 10 km east of Enumclaw, Washington. Here, vuggy silica alteration is being quarried for silica and advanced argillic alteration has been prospected for alunite. Clay-filled fractures and sulfide-rich, fine-grained sedimentary rocks of hydrothermal origin locally are enriched in precious metals. Many hydrothermal features common in high-sulfidation gold-silver deposits and in advanced argillic alteration zones overlying porphyry copper deposits (for example, Gustafson and Hunt, 1975; Hedenquist and others, 2000; Sillitoe, 2000) are exposed, although no economic base or precious metal mineralized rock has been discovered to date. The afternoon will be spent examining two exposures of the Osceola Mudflow along the White River. The Osceola Mudflow contains abundant clasts of altered Quaternary rocks from Mount Rainier that show various types of hydrothermal alteration and hydrothermal features. The mudflow matrix contains abundant hydrothermal clay minerals that added cohesiveness to the debris flow and helped allow it to travel much farther down valley than other, noncohesive debris flows from Mount Rainier (Crandell, 1971; Vallance and Scott, 1997). The White River altered area is the subject of ongoing studies by geoscientists from Weyerhaeuser Company and the U.S. Geological Survey (USGS). The generalized descriptions of the geology, geophysics, alteration, and mineralization presented here represent the preliminary results of this study (Ashley and others, 2003). Additional field, geochemical, geochronologic, and geophysical studies are underway. The Osceola Mudflow and other Holocene debris flows from Mount Rainier also are the subject of ongoing studies by the USGS (for example, Breit and others, 2003; John and others, 2003; Plumlee and others, 2003, Sisson and others, 2003; Vallance and

  4. Evaluating greenhouse gas emissions from hydropower complexes on large rivers in Eastern Washington

    SciTech Connect

    Arntzen, Evan V.; Miller, Benjamin L.; O'Toole, Amanda C.; Niehus, Sara E.; Richmond, Marshall C.

    2013-03-15

    Water bodies, such as freshwater lakes, are known to be net emitters of carbon dioxide (CO2), and methane (CH4). In recent years, significant greenhouse gas (GHG) emissions from tropical, boreal, and mid-latitude reservoirs have been reported. At a time when hydropower is increasing worldwide, better understanding of seasonal and regional variation in GHG emissions is needed in order to develop a predictive understanding of such fluxes within man-made impoundments. We examined power-producing dam complexes within xeric temperate locations in the northwestern United States. Sampling environments on the Snake (Lower Monumental Dam Complex) and Columbia Rivers (Priest Rapids Dam Complex) included tributary, mainstem, embayment, forebay, and tailrace areas during winter and summer 2012. At each sampling location, GHG measurement pathways included surface gas flux, degassing as water passed through dams during power generation, ebullition within littoral embayments, and direct sampling of hyporheic pore-water. Measurements were also carried out in a free-flowing reach of the Columbia River to estimate unaltered conditions. Surface flux resulted in very low emissions, with reservoirs acting as a sink for CO2 (up to –262 mg m-2 d-1, which is within the range previously reported for similarly located reservoirs). Surface flux of methane remained below 1 mg CH4 m-2d-1, a value well below fluxes reported previously for temperate reservoirs. Water passing through hydroelectric projects acted as a sink for CO2 during winter and a small source during summer, with mean degassing fluxes of –117 and 4.5 t CO2 d-1, respectively. Degassing of CH4 was minimal, with mean fluxes of 3.1 × 10-6 and –5.6 × 10-4 t CH4 d-1 during winter and summer, respectively. Gas flux due to ebullition was greater in coves located within reservoirs than in coves within the free flowing Hanford Reach–and CH4 flux exceeded that of CO2. Methane emissions varied widely across sampling locations

  5. Geology and metallization of the White River Area, King and Pierce Counties, Washington

    SciTech Connect

    McCulla, M.S.

    1986-01-01

    Bedrock of the White River area is dominated by Miocene age volcanics of andesite to rhyolite composition, which may be in part coeval with plutonic phases of the nearby 26 - 14 m.y. Tatoosh batholith. These volcanic rocks host two spatially distinct and gold-bearing epithermal deposits of the acid-sulfate type that are structurally, temporally, and genetically related to the formation and resurgent magmatic activity at the margin of an early Miocene caldera (22.6 - 19.1 m.y.). The age of hydrothermal activity is 20.4 +/- 0.1 m.y. based on UAr/TZAr analysis of hypogene alunite from the mineralized zone. Hydrothermal alteration and metallization of both deposits is chemically and mineralogically similar and consists of a central core of pervasive silicification that grades outward into zones of advanced argillic, argillic, and propylitic alteration. The largest of the two target areas is defined by a silica capping. Sulfur isotope analyses of cogenetic alunite-pyrite-enargite demonstrate a (34)S of +28.8 per thousand for the alunite-pyrite mineral pair. This large fractionation corroborates other field and mineralogic evidence for the hypogene origin of the alunite, and provides a geologically reasonable isotopic temperature estimate of 190 C for this epithermal deposit. Fold was introduced in at least 3 distinct episodes of structural-hydrothermal activity. The highest concentration of gold is within a zone measuring 1600 by 300-600 feet, and is localized in parts of the similar capping that contain outcrops of matrix-supported explosion breccias and veins having anomalous concentrations of up to 480 ppb Au, 13.7 ppm Ag, 1900 ppm As, 213 ppm Sb, 7.5 ppm Hg, and 10 ppm Mo.

  6. Geologic map of the Sauk River 30- by 60-minute quadrangle, Washington

    USGS Publications Warehouse

    Tabor, R.W.; Booth, D.B.; Vance, J.A.; Ford, A.B.

    2002-01-01

    Summary -- The north-south-trending regionally significant Straight Creek Fault roughly bisects the Sauk River quadrangle and defines the fundamental geologic framework of it. Within the quadrangle, the Fault mostly separates low-grade metamorphic rocks on the west from medium- to high-grade metamorphic rocks of the Cascade metamorphic core. On the west, the Helena-Haystack melange and roughly coincident Darrington-Devils Mountain Fault Zone separate the western and eastern melange belts to the southwest from the Easton Metamorphic Suite, the Bell Pass melange, and rocks of the Chilliwack Group, to the northeast. The tectonic melanges have mostly Mesozoic marine components whereas the Chilliwack is mostly composed of Late Paleozoic arc rocks. Unconformably overlying the melanges and associated rocks are Eocene volcanic and sedimentary rocks, mostly infaulted along the Darrington-Devils Mountain Fault Zone. These younger rocks and a few small Eocene granitic plutons represent an extensional tectonic episode. East of the Straight Creek Fault, medium to high-grade regional metamorphic rocks of the Nason, Chelan Mountains, and Swakane terranes have been intruded by deep seated, Late Cretaceous granodioritic to tonalitic plutons, mostly now orthogneisses. Unmetamorphosed mostly tonalitic intrusions on both sides of the Straight Creek fault range from 35 to 4 million years old and represent the roots of volcanoes of the Cascade Magmatic Arc. Arc volcanic rocks are sparsely preserved east of the Straight Creek fault, but dormant Glacier Peak volcano on the eastern margin of the quadrangle is the youngest member of the Arc. Deposits of the Canadian Ice Sheet are well represented on the west side of the quadrangle, whereas alpine glacial deposits are common to the east. Roughly 5000 years ago lahars from Glacier Peak flowed westward filling major valleys across the quadrangle.

  7. Toxicity of Anacostia River, Washington, DC, USA, sediment fed to mute swans (Cygnus olor)

    SciTech Connect

    Beyer, W.N.; Day, D.; Melancon, M.J.; Sileo, L.

    2000-03-01

    Sediment ingestion is sometimes the principal route by which waterfowl are exposed to environmental contaminants, and at severely contaminated sites waterfowl have been killed by ingesting sediment. Mute swans (Cygnus olor) were fed a diet for 6 weeks with a high but environmentally realistic concentration (24%) of sediment from the moderately polluted Anacostia River in the District of Columbia, USA, to estimate the sediment's toxicity. Control swans were fed the same diet without the sediment. Five organochlorine compounds were detected in the treated diets, but none of 22 organochlorine compounds included in the analyses was detected in livers of the treated swans. The concentrations of 24 polynuclear aromatic hydrocarbons measured in the treated diet were as high as 0.80 mg/kg, and they were thought to have been responsible for the observed induction of hepatic microsomal monooxygenase activity in livers. A concentration of 85 mg/kg of lead in the diet was enough to decrease red blood cell ALAD activity but was not high enough to cause more serious effects of lead poisoning. The dietary concentrations of Al, Fe, V, and Ba were high compared to the concentrations of these elements known to be toxic in laboratory feeding studies. However, the lack of accumulation in the livers of the treated swans suggested that these elements were not readily available from the ingested sediment. The authors did not study all potential toxic effects, but, on the basis of those that they did consider, they concluded that the treated swans were basically healthy after a chronic exposure to the sediment.

  8. The effects of river impoundment and hatchery rearing on the migration behavior of juvenile steelhead in the Lower Snake River, Washington

    USGS Publications Warehouse

    Plumb, J.M.; Perry, R.W.; Adams, N.S.; Rondorf, D.W.

    2006-01-01

    We used radiotelemetry to monitor the migration behavior of juvenile hatchery and wild steelhead Oncorhynchus mykiss as they migrated through Lower Granite Reservoir and Dam on the lower Snake River, Washington. From 1996 to 2001, we surgically implanted radio transmitters in 1,540 hatchery steelhead and 1,346 wild steelhead. For analysis, we used the inverse Gaussian distribution to describe travel time distributions for cohorts (>50 fish) of juvenile steelhead as they migrated downriver. Mean travel rates were significantly related to reach- and discharge-specific water velocities. Also, mean travel rates near the dam were slower for a given range of water velocities than were mean travel rates through the reservoir, indicating that the presence of the dam caused delay to juvenile steelhead over and above the effect of water velocity. Hatchery steelhead took about twice as long as wild steelhead to pass the dam as a result of the higher proportions of hatchery steelhead traveling upriver from the dam. Because upriver travel and the resulting migration delay might decrease survival, it is possible that hatchery steelhead survive at lower rates than wild steelhead. Our analysis identified a discharge threshold (???2,400 m3/s) below which travel time and the percentage of fish traveling upriver from the dam increased rapidly, providing support for the use of minimum flow targets to mitigate for fish delay and possibly enhance juvenile steelhead survival.

  9. Surficial geology along the Spokane River, Washington and its relationship to the metal content of sediments (Idaho-Washington stateline to Latah Creek confluence)

    USGS Publications Warehouse

    Box, Stephen E.; Wallis, John C.

    2002-01-01

    3. to compare the metal contents of different sedimentary lithologies. This data is used to gain some understanding of the physical and chemical processes that control those metal contents. It is hoped this study can be used to guide potential future remedial actions aimed at reducing the biologic impact of metal-enriched sediments in this area. This work was undertaken in cooperation with the Washington Department of Ecology and the Environmental Protection Agency.

  10. Assessment of Salmonids and Their Habitat Conditions in the Walla Walla River Basin within Washington, Annual Report 2002-2003.

    SciTech Connect

    Mendel, Glen; Trump, Jeremy; Gembala, Mike

    2003-09-01

    This study began in 1998 to assess salmonid distribution, relative abundance, genetics, and the condition of salmonid habitats in the Walla Walla River basin. Stream flows in the Walla Walla Basin continue to show a general trend that begins with a sharp decline in discharge in late June, followed by low summer flows and then an increase in discharge in fall and winter. Manual stream flow measurements at Pepper bridge showed an increase in 2002 of 110-185% from July-September, over flows from 2001. This increase is apparently associated with a 2000 settlement agreement between the U.S. Fish and Wildlife Service (USFWS) and the irrigation districts to leave minimum flows in the river. Stream temperatures in the Walla Walla basin were similar to those in 2001. Upper montane tributaries maintained maximum summer temperatures below 65 F, while sites in mid and lower Touchet and Walla Walla rivers frequently had daily maximum temperatures well above 68 F (high enough to inhibit migration in adult and juvenile salmonids, and to sharply reduce survival of their embryos and fry). These high temperatures are possibly the most critical physiological barrier to salmonids in the Walla Walla basin, but other factors (available water, turbidity or sediment deposition, cover, lack of pools, etc.) also play a part in salmonid survival, migration, and breeding success. The increased flows in the Walla Walla, due to the 2000 settlement agreement, have not shown consistent improvements to stream temperatures. Rainbow/steelhead (Oncorhynchus mykiss) trout represent the most common salmonid in the basin. Densities of Rainbow/steelhead in the Walla Walla River from the Washington/Oregon stateline to Mojonnier Rd. dropped slightly from 2001, but are still considerably higher than before the 2000 settlement agreement. Other salmonids including; bull trout (Salvelinus confluentus), chinook salmon (Oncorhynchus tshawytscha), mountain whitefish (Prosopium williamsoni), and brown trout (Salmo

  11. Two-dimensional hydrodynamic modeling to quantify effects of peak-flow management on channel morphology and salmon-spawning habitat in the Cedar River, Washington

    USGS Publications Warehouse

    Czuba, Christiana; Czuba, Jonathan A.; Gendaszek, Andrew S.; Magirl, Christopher S.

    2010-01-01

    The Cedar River in Washington State originates on the western slope of the Cascade Range and provides the City of Seattle with most of its drinking water, while also supporting a productive salmon habitat. Water-resource managers require detailed information on how best to manage high-flow releases from Chester Morse Lake, a large reservoir on the Cedar River, during periods of heavy precipitation to minimize flooding, while mitigating negative effects on fish populations. Instream flow-management practices include provisions for adaptive management to promote and maintain healthy aquatic habitat in the river system. The current study is designed to understand the linkages between peak flow characteristics, geomorphic processes, riverine habitat, and biological responses. Specifically, two-dimensional hydrodynamic modeling is used to simulate and quantify the effects of the peak-flow magnitude, duration, and frequency on the channel morphology and salmon-spawning habitat. Two study reaches, representative of the typical geomorphic and ecologic characteristics of the Cedar River, were selected for the modeling. Detailed bathymetric data, collected with a real-time kinematic global positioning system and an acoustic Doppler current profiler, were combined with a LiDAR-derived digital elevation model in the overbank area to develop a computational mesh. The model is used to simulate water velocity, benthic shear stress, flood inundation, and morphologic changes in the gravel-bedded river under the current and alternative flood-release strategies. Simulations of morphologic change and salmon-redd scour by floods of differing magnitude and duration enable water-resource managers to incorporate model simulation results into adaptive management of peak flows in the Cedar River. PDF version of a presentation on hydrodynamic modelling in the Cedar River in Washington state. Presented at the American Geophysical Union Fall Meeting 2010.

  12. Factors initiating phytoplankton blooms and resulting effects on dissolved oxygen in Duwamish River estuary, Seattle, Washington

    USGS Publications Warehouse

    Welch, Eugene Brummer

    1969-01-01

    Phytoplankton productivity, standing stock, and related environmental factors were studied during 1964-66 in the Duwamish River estuary, at Seattle, Wash., to ascertain the factors that affect phytoplankton growth in the estuary; a knowledge of these factors in turn permits the detection and evaluation of the influence that effluent nutrients have on phytoplankton production. The factors that control the concentration of dissolved oxygen were also evaluated because of the importance of dissolved oxygen to the salmonid populations that migrate through the estuary. Phytoplankton blooms, primarily of diatoms, occurred in the lower estuary during August 1965 and 1966. No bloom occurred during 1964, but the presence of oxygen-supersaturated surface water in August 1963 indicates that a bloom did occur then. Nutrients probably were not the primary factor controlling the timing of phytoplankton blooms. Ammonia ,and phosphate concentrations increased significantly downstream from the Municipality of Metropolitan Seattle's Renton Treatment Plant outfall after the plant began operation in June 1965, and concentrations of nitrogen and phosphorus were relatively high before operation of the Renton Treatment Plant and during nonbloom periods. The consistent coincidence of blooms with minimum fresh-water discharge and tidal exchange during August throughout the study period indicates that bloom timing probably was controlled mostly by hydrographic factors that determine retention time and stability of the surface-water layer. This control was demonstrated in part by a highly significant correlation of gross productivity with retention time (as indicated by fresh-water discharge) and vertical stability (as indicated by the difference between mean surface and mean bottom temperatures). The failure of a bloom to develop in 1964 is related to a minimum fresh-water discharge that was much greater than normal during that summer. Hydrographic factors are apparently important because

  13. Total dissolved gas and water temperature in the lower Columbia River, Oregon and Washington, 2003: Quality-assurance data and comparison to water-quality standards

    USGS Publications Warehouse

    Tanner, Dwight Q.; Bragg, Heather M.; Johnston, Matthew W.

    2003-01-01

    The variances to the States of Oregon and Washington water-quality standards for total dissolved gas were exceeded at six of the seven monitoring sites. The sites at Camas and Bonneville forebay had the most days exceeding the variance of 115% saturation. The forebay exceedances may have been the result of the cumulative effects of supersaturated water moving downstream through the lower Columbia River. Apparently, the levels of total dissolved gas did not decrease rapidly enough downstream from the dams before reaching the next site. From mid-July to mid-September, water temperatures were usually above 20 degrees Celsius at each of the seven lower Columbia River sites. According to the Oregon water-quality standard, when the temperature of the lower Columbia River exceeds 20 degrees Celsius, no measurable temperature increase resulting from anthropogenic activities is allowed. Transient increases of about 1 degree Celsius were noted at the John Day forebay site, due to localized solar heating.

  14. Preliminary Design Report for the Yakima/Klickitat Production Project; Executive Summary.

    SciTech Connect

    US Bonneville Power Administration.

    1990-03-01

    A master plan for the Yakima/Klickitat Production Project (YKPP) was developed by the Northwest Power Planning Council (Council) on October 15, 1987, as a reasonable basis upon which the Bonneville Power Administration (BPA) could proceed to fund predesign work on the project. The Council approved the predesign work on the condition that eight preliminary tasks were completed. These tasks are: Agreement on a refined statement of project goals. Completion of a technical analysis of water supplies. Completion of an experimental design plan. Development of a harvest management plan. Assessment of potential genetic risks. Project coordination with all other affected parties. Submission of a preliminary design report to the Council. Develop a project management structure. The preliminary design report summarizes the work completed on these tasks. It provides a description of the preliminary design, engineering, and construction phases of project development, and gives an estimate of project costs. Also included is a description of other studies that were conducted to support YKPP planning. The results of studies conducted during the last 30 months indicate that hatchery facilities can be built in the Yakima and Klickitat subbasins to provide harvest benefits and to supplement natural production. Planning for the Yakima subbasin is at a more advanced stage of development than for the Klickitat subbasin because of greater availability of basic resource information. The information needed to proceed with final design and construction for the Klickitat subbasin will be available by 1992, as ongoing predesign work continues. This schedule is consistent with the anticipated phased completion of the YKPP by 1997.

  15. Yakima/Klickitat Natural Production and Enhancement Program : Annual Report FY 1989.

    SciTech Connect

    Fast, David E.; Hubble, Joel D.; Schribner, Thomas B.

    1989-12-01

    The purpose of this study is to develop and implement a detailed and comprehensive program for monitoring status and productivity of salmon and steelhead in the Yakima/Klickitat Basins. The procedures will cover all phases in the data gathering process from field work to computer retrievable data files. Sampling locations, sample size, sampling frequencies and methods will be described whenever specific information is available. 9 refs., 18 figs., 8 tabs.

  16. Verification of 1921 peak discharge at Skagit River near Concrete, Washington, using 2003 peak-discharge data

    USGS Publications Warehouse

    Mastin, M.C.; Kresch, D.L.

    2005-01-01

    The 1921 peak discharge at Skagit River near Concrete, Washington (U.S. Geological Survey streamflow-gaging station 12194000), was verified using peak-discharge data from the flood of October 21, 2003, the largest flood since 1921. This peak discharge is critical to determining other high discharges at the gaging station and to reliably estimating the 100-year flood, the primary design flood being used in a current flood study of the Skagit River basin. The four largest annual peak discharges of record (1897, 1909, 1917, and 1921) were used to determine the 100-year flood discharge at Skagit River near Concrete. The peak discharge on December 13, 1921, was determined by James E. Stewart of the U.S. Geological Survey using a slope-area measurement and a contracted-opening measurement. An extended stage-discharge rating curve based on the 1921 peak discharge was used to determine the peak discharges of the three other large floods. Any inaccuracy in the 1921 peak discharge also would affect the accuracies of the three other largest peak discharges. The peak discharge of the 1921 flood was recalculated using the cross sections and high-water marks surveyed after the 1921 flood in conjunction with a new estimate of the channel roughness coefficient (n value) based on an n-verification analysis of the peak discharge of the October 21, 2003, flood. The n value used by Stewart for his slope-area measurement of the 1921 flood was 0.033, and the corresponding calculated peak discharge was 240,000 cubic feet per second (ft3/s). Determination of a single definitive water-surface profile for use in the n-verification analysis was precluded because of considerable variation in elevations of surveyed high-water marks from the flood on October 21, 2003. Therefore, n values were determined for two separate water-surface profiles thought to bracket a plausible range of water-surface slopes defined by high-water marks. The n value determined using the flattest plausible slope was 0

  17. Hydrogeologic framework and groundwater/surface-water interactions of the upper Yakima River Basin, Kittitas County, central Washington

    USGS Publications Warehouse

    Gendaszek, Andrew S.; Ely, D. Matthew; Hinkle, Stephen R.; Kahle, Sue C.; Welch, Wendy B.

    2014-01-01

    The hydrogeology, hydrology, and geochemistry of groundwater and surface water in the upper (western) 860 square miles of the Yakima River Basin in Kittitas County, Washington, were studied to evaluate the groundwater-flow system, occurrence and availability of groundwater, and the extent of groundwater/surface-water interactions. The study area ranged in altitude from 7,960 feet in its headwaters in the Cascade Range to 1,730 feet at the confluence of the Yakima River with Swauk Creek. A west-to-east precipitation gradient exists in the basin with the western, high-altitude headwaters of the basin receiving more than 100 inches of precipitation per year and the eastern, low-altitude part of the basin receiving about 20 inches of precipitation per year. From the early 20th century onward, reservoirs in the upper part of the basin (for example, Keechelus, Kachess, and Cle Elum Lakes) have been managed to store snowmelt for irrigation in the greater Yakima River Basin. Canals transport water from these reservoirs for irrigation in the study area; additional water use is met through groundwater withdrawals from wells and surface-water withdrawals from streams and rivers. Estimated groundwater use for domestic, commercial, and irrigation purposes is reported for the study area. A complex assemblage of sedimentary, metamorphic, and igneous bedrock underlies the study area. In a structural basin in the southeastern part of the study area, the bedrock is overlain by unconsolidated sediments of glacial and alluvial origin. Rocks and sediments were grouped into six hydrogeologic units based on their lithologic and hydraulic characteristics. A map of their extent was developed from previous geologic mapping and lithostratigraphic information from drillers’ logs. Water flows through interstitial space in unconsolidated sediments, but largely flows through fractures and other sources of secondary porosity in bedrock. Generalized groundwater-flow directions within the

  18. 21. AERIAL VIEW LOOKING EAST TOWARDS LINCOLN MEMORIAL AND WASHINGTON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. AERIAL VIEW LOOKING EAST TOWARDS LINCOLN MEMORIAL AND WASHINGTON MONUMENT - Arlington Memorial Bridge, Spanning Potomac River between Lincoln Memorial & Arlington National Cemetery, Washington, District of Columbia, DC

  19. Disequilibrium profile of the Potomac River near Washington, D.C. A result of lowered base level or Quaternary tectonics along the Fall Line?

    NASA Astrophysics Data System (ADS)

    Reed, John C., Jr.

    1981-10-01

    Longitudinal profiles of major rivers in Maryland and Virginia are generally closely adjusted to the resistance of the rocks over which they flow, but they all show major discontinuities at or just above the Fall Line. The amount of discrepancy at the Fall Line between the actual profiles and the projection of the profiles of the upstream reaches increases from about 27 m at the James River to about 50 m at the Susquehanna River. At the Potomac River it is about 45 m. Detailed study of the terraces along the Potomac in the Piedmont above Washington, D.C., suggests that the discontinuity in longitudinal profile is the result of Quaternary downcutting in response to a lowered base level. Changes in base level during sea-level fluctuations in the Pleistocene must have been an important factor, but strong circumstantial evidence suggests that the discontinuities in river profiles may in part be due to differential uplift of the Piedmont with respect to the coastal plain along a zone of flexure or distributed faulting near the Fall Line.

  20. Monitoring recharge in areas of seasonally frozen ground in the Columbia Plateau and Snake River Plain, Idaho, Oregon, and Washington

    USGS Publications Warehouse

    Mastin, Mark; Josberger, Edward

    2014-01-01

    Seasonally frozen ground occurs over approximately one‑third of the contiguous United States, causing increased winter runoff. Frozen ground generally rejects potential groundwater recharge. Nearly all recharge from precipitation in semi-arid regions such as the Columbia Plateau and the Snake River Plain in Idaho, Oregon, and Washington, occurs between October and March, when precipitation is most abundant and seasonally frozen ground is commonplace. The temporal and spatial distribution of frozen ground is expected to change as the climate warms. It is difficult to predict the distribution of frozen ground, however, because of the complex ways ground freezes and the way that snow cover thermally insulates soil, by keeping it frozen longer than it would be if it was not snow covered or, more commonly, keeping the soil thawed during freezing weather. A combination of satellite remote sensing and ground truth measurements was used with some success to investigate seasonally frozen ground at local to regional scales. The frozen-ground/snow-cover algorithm from the National Snow and Ice Data Center, combined with the 21-year record of passive microwave observations from the Special Sensor Microwave Imager onboard a Defense Meteorological Satellite Program satellite, provided a unique time series of frozen ground. Periodically repeating this methodology and analyzing for trends can be a means to monitor possible regional changes to frozen ground that could occur with a warming climate. The Precipitation-Runoff Modeling System watershed model constructed for the upper Crab Creek Basin in the Columbia Plateau and Reynolds Creek basin on the eastern side of the Snake River Plain simulated recharge and frozen ground for several future climate scenarios. Frozen ground was simulated with the Continuous Frozen Ground Index, which is influenced by air temperature and snow cover. Model simulation results showed a decreased occurrence of frozen ground that coincided with

  1. High-resolution digital elevation model of lower Cowlitz and Toutle Rivers, adjacent to Mount St. Helens, Washington, based on an airborne lidar survey of October 2007

    USGS Publications Warehouse

    Mosbrucker, Adam

    2015-01-01

    The lateral blast, debris avalanche, and lahars of the May 18th, 1980, eruption of Mount St. Helens, Washington, dramatically altered the surrounding landscape. Lava domes were extruded during the subsequent eruptive periods of 1980–1986 and 2004–2008. More than three decades after the emplacement of the 1980 debris avalanche, high sediment production persists in the Toutle River basin, which drains the northern and western flanks of the volcano. Because this sediment increases the risk of flooding to downstream communities on the Toutle and lower Cowlitz Rivers, the U.S. Army Corps of Engineers (USACE), under the direction of Congress to maintain an authorized level of flood protection, continues to monitor and mitigate excess sediment in North and South Fork Toutle River basins to help reduce this risk and to prevent sediment from clogging the shipping channel of the Columbia River. From October 22–27, 2007, Watershed Sciences, Inc., under contract to USACE, collected high-precision airborne lidar (light detection and ranging) data that cover 273 square kilometers (105 square miles) of lower Cowlitz and Toutle River tributaries from the Columbia River at Kelso, Washington, to upper North Fork Toutle River (below the volcano's edifice), including lower South Fork Toutle River. These data provide a digital dataset of the ground surface, including beneath forest cover. Such remotely sensed data can be used to develop sediment budgets and models of sediment erosion, transport, and deposition. The U.S. Geological Survey (USGS) used these lidar data to develop digital elevation models (DEMs) of the study area. DEMs are fundamental to monitoring natural hazards and studying volcanic landforms, fluvial and glacial geomorphology, and surface geology. Watershed Sciences, Inc., provided files in the LASer (LAS) format containing laser returns that had been filtered, classified, and georeferenced. The USGS produced a hydro-flattened DEM from ground-classified points at

  2. Phase I summary and phase II plan for comparing regulated with unregulated streamflow in the Yakima River at Union Gap, Washington

    USGS Publications Warehouse

    Swift, C.H.

    1985-01-01

    A preliminary investigation of the effects of reservoir storage and canal diversion on the flow of the Yakima River at Union Gap , Washington indicates that those effects are measurable and substantial--on the average causing a reduction of roughly one-quarter from the unregulated flow. Preliminary computations of the unregulated flow of the Yakima River at Parker (near Union Gap) for the 1978 water year using the U.S. Bureau of Reclamation 's SSARR model indicate, however, that the computed flow figures contain inaccuracies. Further investigation of the model indicates that the inaccuracies can be substantially reduced by data checking and by using additional discharge records to improve the estimation of local inflows. (USGS)

  3. Washington, DC

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Citizens of the United States vote today (November 7, 2000) to determine who will be the next president and vice president of the country, as well as who will fill a number of congressional and senate seats that are up for election. This image of the U.S. capital city-Washington, D.C.-was acquired on June 1 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), a Japanese sensor flying aboard NASA's Terra spacecraft. The scene encompasses an area 14 km wide by 13.7 km tall, and was made using a combination of ASTER's visible and near-infrared channels. In this image, vegetation appears red, buildings and paved areas appear light blue, and the waters of the Anacostia and Potomac Rivers are dark grey. ASTER's 15-meter spatial resolution allows us to see individual buildings, including the White House, the Jefferson Memorial, and the Washington Monument with its shadow. Image courtesy NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team

  4. Field Summary Report for Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington, Collection of Surface Water, River Sediments, and Island Soils

    SciTech Connect

    L. C. Hulstrom

    2009-09-28

    This report has been prepared in support of the remedial investigation of Hanford Site Releases to the Columbia River and describes the 2008/2009 data collection efforts. This report documents field activities associated with collection of sediment, river water, and soil in and adjacent to the Columbia River near the Hanford Site and in nearby tributaries.

  5. Depth to water, 1991, in the Rathdrum Prairie, Idaho; Spokane River valley, Washington; Moscow-Lewiston-Grangeville area, Idaho; and selected intermontane valleys, east-central Idaho

    USGS Publications Warehouse

    Berenbrock, Charles E.; Bassick, M.D.; Rogers, T.L.; Garcia, S.P.

    1995-01-01

    This map report illustrates digitally generated depth-to-water zones for the Rathdrum Prairie in Idaho; part of the Spokane River Valley in eastern Washington; and the intermontane valleys of the upper Big Wood, Big Lost, Pahsimeroi, Little Lost, and Lemhi Rivers and Birch Creek in Idaho. Depth to water is 400 to 500 feet below land surface in the northern part of Rathdrum Prairie, 100 to 200 feet below land surface at the Idaho-Washington State line, and 0 to 250 feet below land surface in the Spokane area. Depth to water in the intermontane valleys in east-central Idaho is least (usually less than 50 feet) near streams and increases toward valley margins where mountain-front alluvial fans have formed. Depths to water shown in the Moscow-Lewiston-Grangeville area in Idaho are limited to point data at individual wells because most of the water levels measured were not representative of levels in the uppermost aquifer but of levels in deeper aquifers.

  6. The potential for chromium to affect the fertilization process of Chinook salmon (Oncorhynchus tshawytscha) in the Hanford reach of the Columbia River, Washington, USA.

    PubMed

    Farag, A M; Harper, D D; Cleveland, L; Brumbaugh, W G; Little, E E

    2006-05-01

    The Hanford Nuclear Reservation in south central Washington was claimed by the federal government as a site for the production of plutonium. During the course of production and operation of the facilities at Hanford, radionuclides and chromium were discharged directly into the river and also contaminated the groundwater. This study was designed to assess the effects of chromium (Cr) on Chinook salmon (Oncorhynchus tshawytscha) fertilization under exposure conditions similar to those of the Hanford Reach of the Columbia River. Chinook salmon gametes were exposed to aqueous Cr concentrations ranging from 0 to 266 microg Cr l(-1). The current ambient water-quality criteria (AWQC) established for the protection of aquatic life (United States Environmental Protection Agency [USEPA] 1986) is 11 microg Cr l(-1). Cr has been measured in pore water from bottom sediments of the Columbia River at concentrations >600 microg Cr l(-1). Under exposure conditions designed to closely mimic events that occur in the river, the fertilization of Chinook salmon eggs was not affected by concentrations of Cr ranging from 11 to 266 microg Cr l(-1). Data suggest that the instantaneous nature of fertilization likely limits the potential effects of Cr on fertilization success. As a result, the current AWQC of 11 mug Cr l(-1) is most likely protective of Chinook salmon fertilization. PMID:16453067

  7. The potential for chromium to affect the fertilization process of Chinook salmon (Oncorhynchus tshawytscha) in the Hanford Reach of the Columbia River, Washington, USA

    USGS Publications Warehouse

    Farag, A.M.; Harper, D.D.; Cleveland, L.; Brumbaugh, W.G.; Little, E.E.

    2006-01-01

    The Hanford Nuclear Reservation in south central Washington was claimed by the federal government as a site for the production of plutonium. During the course of production and operation of the facilities at Hanford, radionuclides and chromium were discharged directly into the river and also contaminated the groundwater. This study was designed to assess the effects of chromium (Cr) on Chinook salmon (Oncorhynchus tshawytscha) fertilization under exposure conditions similar to those of the Hanford Reach of the Columbia River. Chinook salmon gametes were exposed to aqueous Cr concentrations ranging from 0 to 266 ??g Cr l-1. The current ambient water-quality criteria (AWQC) established for the protection of aquatic life (United States Environmental Protection Agency [USEPA] 1986) is 11 ??g Cr l-1. Cr has been measured in pore water from bottom sediments of the Columbia River at concentrations >600 ??g Cr l-1. Under exposure conditions designed to closely mimic events that occur in the river, the fertilization of Chinook salmon eggs was not affected by concentrations of Cr ranging from 11 to 266 ??g Cr l-1. Data suggest that the instantaneous nature of fertilization likely limits the potential effects of Cr on fertilization success. As a result, the current AWQC of 11 ??g Cr l-1 is most likely protective of Chinook salmon fertilization. ?? 2006 Springer Science+Business Media, Inc.

  8. Washington Phase II Fish Diversion Screen Evaluations in the Yakima and Touchet River Basins, 2005-2006 Annual Reports.

    SciTech Connect

    Chamness, Mickie; Abernethy, C.; Tunnicliffe, Cherylyn

    2006-02-01

    In 2005, Pacific Northwest National Laboratory (PNNL) researchers evaluated 25 Phase II fish screen sites in the Yakima and Touchet river basins. Pacific Northwest National Laboratory performs these evaluations for Bonneville Power Administration (BPA) to determine whether the fish screening devices meet National Marine Fisheries Service (NMFS) criteria to promote safe and timely fish passage. Evaluations consist of measuring velocities in front of the screens, using an underwater camera to look at the condition and environment in front of the screens, and noting the general condition and operation of the sites. Results of the evaluations in 2005 include the following: (1) Most approach velocities met the NMFS criterion of less than or equal to 0.4 fps. Less than 13% of all approach measurements exceeded the criterion, and these occurred at 10 of the sites. Flat-plate screens had more problems than drum screens with high approach velocities. (2) Bypass velocities generally were greater than sweep velocities, but sweep velocities often did not increase toward the bypass. The latter condition could slow migration of fish through the facility. (3) Screen and seal materials generally were in good condition. (4) Automated cleaning brushes generally functioned properly; chains and other moving parts were typically well-greased and operative. (5) Washington Department of Fish and Wildlife (WDFW) and U.S. Bureau of Reclamation (USBR) generally operate and maintain fish screen facilities in a way that provides safe passage for juvenile fish. (6) In some instances, irrigators responsible for specific maintenance at their sites (e.g., debris removal) are not performing their tasks in a way that provides optimum operation of the fish screen facility. New ways need to be found to encourage them to maintain their facilities properly. (7) We recommend placing datasheets providing up-to-date operating criteria and design flows in each sites logbox. The datasheet should include

  9. Peeking below Columbia River flood basalts with high-resolution aeromagnetic data: implications for central Washington earthquake hazards

    NASA Astrophysics Data System (ADS)

    Blakely, R. J.; Sherrod, B. L.; Wells, R. E.; Weaver, C. S.

    2012-12-01

    The largest crustal earthquake in Washington's recorded history (M 6.8) occurred in 1872 in the vicinity of Lake Chelan. Numerous smaller earthquakes (>1000 earthquakes since 1971 with 1.0 ≤ MW ≤ 4.3) continue to occur 20 km south of Lake Chelan near the town of Entiat, yet little is known about active structures responsible for this ongoing deformation. A 2011 aeromagnetic survey may provide insights. The survey was flown with a fixed-wing aircraft along flight lines spaced 400 m apart and at an altitude 250 m above terrain or as low as safely possible. The survey illuminates two distinct magnetic patterns. Northwest of Entiat, broad, subdued magnetic anomalies are caused by weakly magnetic, pre-Tertiary basement rocks striking generally NW. Magnetic lineaments are associated, for example, with the NW-striking Entiat fault, the structural margin of the Chiwaukum graben, which is well represented by gravity anomalies. Southeast of Entiat, high-amplitude, short-wavelength magnetic anomalies are caused by strongly magnetic rocks of the Miocene Columbia River Basalt Group (CRBG) exposed throughout this region. Northwest-striking basement anomalies, so clear NW of Entiat, are not obvious SE of Entiat, yet there is no reason to believe basement structures do not extend beneath CRBG. We used matched filtering methods to illuminate the crustal framework of the Entiat earthquakes beneath CRBG. We selected two sub regions, one over pre-Tertiary basement NW of Entiat (sub region 1), the other over CRBG SE of Entiat (sub region 2). We modeled each sub region by fitting layer parameters to power spectra determined from magnetic anomalies (Phillips, 2007). A strongly magnetic layer was determined 470 m below the aircraft in sub region 2, which we interpret as the average top of CRBG. This interpretation is supported by the absence of a similar magnetic layer in sub region 1, where CRBG is in fact absent. Using this determination, we designed a matched filter to subdue

  10. Chapter D. Effects of Urbanization on Stream Ecosystems in the Willamette River Basin and Surrounding Area, Oregon and Washington

    USGS Publications Warehouse

    Waite, Ian R.; Sobieszczyk, Steven; Carpenter, Kurt D.; Arnsberg, Andrew J.; Johnson, Henry M.; Hughes, Curt A.; Sarantou, Michael J.; Rinella, Frank A.

    2008-01-01

    This report describes the effects of urbanization on physical, chemical, and biological characteristics of stream ecosystems in 28 watersheds along a gradient of urbanization in the Willamette River basin and surrounding area, Oregon and Washington, from 2003 through 2005. The study that generated the report is one of several urban-effects studies completed nationally by the U.S. Geological Survey National Water-Quality Assessment Program. Watersheds were selected to minimize natural variability caused by factors such as geology, elevation, and climate, and to maximize coverage of different stages of urban development among watersheds. Because land use or population density alone often are not a complete measure of urbanization, a combination of land use, land cover, infrastructure, and socioeconomic variables were integrated into a multimetric urban intensity index (UII) to represent the degree of urban development in each watershed. Physical characteristics studied include stream hydrology, stream temperature, and habitat; chemical characteristics studied include sulfate, chloride, nutrients, pesticides, dissolved and particulate organic and inorganic carbon, and suspended sediment; and biological characteristics studied include algal, macroinvertebrate, and fish assemblages. Semipermeable membrane devices, passive samplers that concentrate trace levels of hydrophobic organic contaminants such as polycyclic aromatic hydrocarbons and polychlorinated biphenyls, also were used. The objectives of the study were to (1) examine physical, chemical, and biological responses along the gradient of urbanization and (2) determine the major physical, chemical, and landscape variables affecting the structure of aquatic communities. Common effects documented in the literature of urbanization on instream physical, chemical, and biological characteristics, such as increased contaminants, increased streamflow flashiness, increased concentrations of chemicals, and changes in